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Abstract 
" 

~ - This _ t~ esi: ln vest~g~~~S the' pro blem of prediclor mist r~r king ~i th nar­

~band .... slgnais ID backward ADPCM _ JAdaphve DifferentIaI Pulse . . 
Code' Modulation) speech copers. Mistiacking is an offset betw:,en en-

coder and decoâer coefficients causèâ by.error feedback from the signal 

rec'onstruction filter to the prèdict.or adapt~tion pro~ess. Conventional 
. .. 

lI:daptive predictors, using transversal or lattice filters, are shown ta suf-
, 0,A .,. 

- fer f~o:q1 mistracking in the presence of transmission e~r.ors. Through 

modification of exjsti.ng)l.lgorithms, a n;w class of residual-driven lat· 

tice pred\ictors (LR) is presen~ed which:guarantçes tracking for aIl input , . 
signaIs without regard to t.he order of prediction . .. 
Comparisons between the LR predictor and four,'other systems wer~ 

performed. In the absence of transmission err~rs. jt is shown that a 

segmental SNR drop for speech of as much as 2 dB may be encountered 

for the LR predictor \with respect to the conventional systéms. In 
, 1 

the presence of errors, however, this degradation is outweighed bl.' th~ 
' . 

. e~hanced speech and narrowhand signal transmissÎon performance, as 

required by practical telecommunication applications. 
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Sommaire 

\ .,. ~ . 
Ce mém.oire examinJ le~ problèlll(,~ de'détraquement des filtres ae pr~. 

... ' .... 

diction employés par }(,8 codeurs de la parole MICDA (Modulation pâr 
~ .. 1 li 

Impulsions et. Codage Dif[érentie1.Adv.pfatif) lorsque ces filtres sont ex­

-cit.és par des signaux à bande étroite. Les prédideurs adaptatifs clas-
, . 

siquès, il strudure- de filtre transversal ou en treillis, s~nt. .susceptible 

à dét.raquement en présence d'erreurs d~ transmission: Après modifi-

-

cat.ions des algorithmes dassique? on présent.e une nouvelle classe,des \ 

prédict,etrrs en treiJlis (LR). Ces prédict.eurs sont ëxcit.és par l~r~~idu 

et. ils assurent la convergence des coeffici('nt.s du décodeur pour tous tes . 
signaux sans égard à l'ordre dé prédidion. 

\ 
Plusieurs comparaisons entre le prédic:teur LR et quatre autres sys­

t.èmes ont ét.é faites. Pour des signaux de p·arole, il est montré' qu'en ab­

.' sence d'erreurs de trans~nission, le prédicteur obtient un RSB segmen-' 

t al inf~rieur a 2 dB à la meilleur performance des syst.èmes classiques. 
/» 

Par cont"re, en présence d'erreurs de ~transmission, le prédicteur LR of-
-. , 

fre une performance supérieure aux autres systèmes pour les deux types 
1» • 

de signaux, COHune exigé par lèS applicatiops pratiques en télécommu-

nications. 
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Chapter 1 Introduction 

There is a major ongoing trend towards the digitizatl<:ln of telecommunication and 

telephone networks in order to lDcrease traIfsmission quality and ftexibility. Digital 

voice communicatIOn is preferable to analog because of the non-accumulation of noise 

over distance. To achieve this higher quaJit.y for voice é\nd other sIgnaIs, we must 

encode the signal at t'he source or ~t the point of analogj digit al ~onversion and decode 

it at the destination or point of digitaljanalog converSIOn. Qther advantages in digital 
~ 

communications înclude: error-protection, encrypt.ion, and the ability to- process, 

"mul tîplex. packetize and mix. 

, 
An essential component in the telephone network 1S the dzgztal encoder, a de-

vice which converts an analog waveform (voin' or data) into a stream of bits to be 
~ '" I~" 

" . 
transmitted over a digital cOIllIllunic~tions channel. At the receiving en4, a decoder 

reconstruct.s the waveform from the tran,smitted bit-stream. This process is the basis' 

, of digital communications. 

1.1 Speech Coding Activities: Theory and Stand.ards 

Speech coding activit.ies over the last three decades are divided into: theory and 
, 

development of algorithms, and standardization of speech coding techniques for net-

work applications. 

1 



1 
C. 

Speech coding theory was always way ahead oLstandards. Pulse Gode Modulatw1l ~ 

(peM) is the earliest developed and also the best understood coding system "due toits 
- 1"'.> 

simplicit.y. A PC'M encoùer is simply ét. waveform sampler followed by an ampli1 uûe 
o 

quantizer. The main aûvantage of PC'M over analog modulation t~chniques is the 

-a~il!tl to_ trade bandwidth for increaseû signaI-t.o-noise ratio - historically, a weIl 

known relationship [1). . 

In the late sixties, the Interna1wnal Telegraph and Telephone ('onsuUalzvc Com­

mlftee (CCI.1'T) defined two PCM'standards for the intematiol"tal 'network: ~-law 

64 kilobits-per-second (kb/s) PCM in North AlIl~rica, and A-Iaw 64 kb/s PCM in 

Europe [2:' These two inwmpatible re}9resentations constitute the current. standards 

in digital encoding of telephone signaIs, :vith 64 kb/s as the basic unit in channel ca-

pa·city. Transcoders map onë representation into the other at the appropriate regional 

interfaces. 

The peM standards took into account only the need to cover a Jarge dynamic 

range (using logarithmic quantization) and an ability to code aIl voiceband fre-
(, 

quency signaIs transmitted over t.he network, not only speech. This latt~r feature 
, , 

was achieved through an Înstantaneous cdding, with the code depending only on ,the 
/ 

current sample value for maximum simplicit.y. 

--.J / 
Speech coding theory progressed rapidly in the seventies and early eighties, giving . , 

rise to a variety of PCM-based waveform 1 encoding schemes. Of aU the coders suited 

for toll (telephone) quality speech. the fol1owing are the most significant: Adaptwe 

1 Sp~~ch cod~rs can b~ divided into two dasses waveform'coders and source coders Waveform coders 
transllÙt a vestige of th~ input SignaI (e g., a prediction resld~al) whlch contains enough mformation to 
reconstruct the 'mput. at th~ decoder Source coders transnut a set of parameters describmg the input 
signal (e.g., LPC coefficients, pltch period, voiced/unvoiced excltatJon~. The set of parameter~ IS used 
as a modd to "rebuild" the input. ln general, waveform coders are well suited for toll and brbadcast 
quality applications but require correspondingly high bit-rates. Source coder!i., on the otlu:r hand, are 
used in synthetlc and communications quality applications where low bit-rates are necëssary.- Hybrid 
coders combine features of waveform and source coding (se~ [3) for a complete discJlssion) 
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1 

Dlfferenlzal Pulse Gode ModulatLOn (ADPCM), Adaptwf Delfa A-IodulaiLOn (ADM), 

Ad~pttVe Transform Godmg (ATC), 5uh Band Codzng (SEC') and Adaptzve Prcdtcfwf 

Codmg (APÇ) [3]. These encoders compres~ speech signaIs. with greater effi('iency 

than peM, by removing redundant components.w. the mput prior 1.0 quantization. 

The exponential growth of VLSI (Very Large Scale Integration) t.echnology over 

the past . decade has enabled the implement ation of encoding techniques by means 
, . 

of single board and singie chip DSP packages. ,ln effed, both the theoretical and 
'" 

" economic barriers of introducing a new encoding s'cheme in the telephone network, 

have disappeared. As a resuIt, th'e CCITT undertook a four-year study, commencing 

in June 1981, with the intention of defining a new en('oding" stand~rd to supplement 

the current Il-law and A-Iaw peM standards [4]. Early pl'derence was given to 32 
, 

kb/s ADPCM, and m the October 1984 CÇITT plenary session a specifie algorithm 
, 

was recommended as an international standard [5][6). This algorithm could offer a 

2:1 reduction in bit rate from 64 kb/s PCM and mamtalll, as much as possible, the . . 

transmission performance of PCM. Thus, an 8 kHz samplinl!; and 4-bit pel' sample 

coding ar,e implicit requirements. Although ADPCM systems are adaptive, their 

performance with -non-vOlce signaIs is somewhat compromised since their d(!slgn is 

based on properties of speech. The most important PToblem in th~ 32 kb/s algorithm 

(G.ï21) was to select a lechlllque appropriate to data and speech without explicit 

decision of whi~h signaLis being communÎcated. Moreover, the technique would haye 

to ensure that the decoder recovers to match t he encoder after a transmrssion error . . 
\ 

has occurred. Some oLthe constraints observed in the design of the algorithm are: 

• transmission of speech. voiceban~ data, and Signalliili tones with good fidelity. 

• handling of multiple encoding/ dec.oding st.ages with analog or digital (transcod­

ing to/from 64 kb/s peM, either A-law or 1l-1aw) intervening links. 

• the algorithm should not rely on the t.ransmi~sion of sicle information and, in or-

3 
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( 

• 

• 

de!,. to minimize transmission delay; aIl adaptation processes should be backward­

acting in time. 

fixed bit-rat.~ in time for any channel. 

~obustness to transmission ~rrors for aIl types of-signaIs, with special attent.ion 

paid ta encoder/decoder tracking recovery after a dist.urbance. 

4 

The proposed scheme uses an adaptive dynamic-locking quantizer (DLQ) (see [7]) 

and an adaptive short-term p.redictor to compress the input sequenc~. -The adaptive \,. . 1 
DLQ was designed specifically for network applications. It employs two modes of 

adaptation, fast for speech and sloUl for voiceband data (vbd) and signalling tones, 

with a continuum of speeds in between the two modes. The adaptive predictor is 

composed of a sixth order mOV1ng-at.'cragc (~A) section that' models zeros in the 

input sigQal and a second order autoregrcss2V: (AR) section that model~ poles' in the 

input signal. Th;se sections are simple transvers'al, or tapped-delay line, filters.' 

According to the transmission constraints, the quantizer and predictor adapta-

tions are backward-acting in time without any reliance on side information. Backward 

adaptive predictive coders relyon identical quantization and prediction operations at 

Jhe encoder and decoder to ensure t hat the signal reconstruct~d at the decoder is an 

accurate replica of the ~ignal arriving at the ,ençoder. Thus~ with backward adap­

tation aU updates must be derived from the transmitted bit-stream, this being the 
. 

only link between encoder and decoder. 

1.2 Predictor Mistracking 

Two different. tracking requirements must he met by the ADPCM system .• First, . .... 

the encoder must track the input when it. is either stationary or transient. 2 This is 
, " 

2 Stationarity, in the strict-sense, imphes that the" signal statistics are constant with respect to hme. In 

1 f 
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o 

. 
o 

\ 

• 'II 

done by' adjusting the quantizer and the predict.or in order t.o match the st.atistics of 

t.he input signal. Only wh en the encoder tracks 1he input sufficiently weIl,. can there 
,,~ " 

be a gain in t.ransmission quality over ail equjvaleI~t PCM system. 

Second, as mentioned ear1ier, the adjùstment of the' decoder onto the encQder 

is neressary for the r'econstruded signal at the decoder to be as dose as possible' 

to the input signal. Henceforth, (mis)tracking will refer to the (mis)adjustment 'Of 

the decoder ont.o the encoder. Transmission errors introdare differ.ences between the 

quantized residuals ~t the êncoder and de~der thereby forcing at least short-terni 

1 deviations between the two syst.ems due to backward adaptation. Permanent mis-

tracking c'an be catastrophic - if the deroder does not invert the encoder operation, 

the output may be significantly corrupted. One of the main goals' of the CCITT 

study was to derive adaptation algorithms that are not susceptible to permanent 

mistracking. 

" Permanent mistracking does not occur with MA I;>redictors or 'quantizers. How-

ever, inistracking is a major con cern with backward-adaptive AR predictors. In 

thè ~lassical gradient adaptation algorithm for AR predictors, coefficient leakage IS 

used in order to mi tigate the èffects of, a t r~nsI1lission error. This leakage is known 

to ensure predict.or convergence ~the presenGt\of errors if the input is sufficiently 

broadband (e.g., speech, white noise). However, for narrowband signaIs, such as vbd 
~ 

and signalling ton~s, the "leaky", predictor adaptation process may po;sess heveral 

stable states and it is possible that two predictors with different initial conditions , 

will never co'nverge. Experiments with signalling t.ones have shown that even a single . 
tran~mi.ssion error can lead to prediCtor mistracking. 

the wide-sense, only the second-order statistics must be constant with tlme; ln thl! document we will 
asswne wide-sense station8r1ty unless otherwlse mdICHtl"d. Finally, the tranSlent state mlplie~ tlme­
varying stahstics; however, f~r th!." signaIs dealt wlth her!." (e g. sp!."ech J, a transi!."nt can be sufficiently 
approximated by a sequence of short-term wldl"-st'nst' statlOnary segments 

\ 
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In the CCITT proposaI, this Pioblem was overcome by using a modified gradient 
, 

coefficient àdaptation algorithm for the AR predict.or. The modification is based 

on a study on preô.ictor mistraeking by Millar and Mennelstein [~l. Gihson :~I has 

o,!?served that predictors with AR sections tend t.o track "themselves" rat.her than the -
, .. ft 4/ 

\ 

input signal; this suggests that., after ,a d~sturbance, the predictor at, the decoder ean 

diverge from the predictor at the encoder. Other work on this problem includes a 
< 

very recent study on the CeITT standard by Bonnèt et al. [Hl]. 

'In an attempt to avoid'mistracking altogether, some authors have suggested us-
~ 

ing predictors with fixed AR seètions and/or adaptive MA sections [11][12][13][14]. 

However, to achieve a given prediction gain, systems employing adaptive AR predic-

tion are computationally more. efficient Jhan thos.e employing adaptive MA prediction 

only. Thus, the development of AR predictors that do not mistrack is an important 

, theoreticaI and practical objedlve. . , 

, 

1.3 Focus and Organization of 'Thesis 

/ 

This thesis presents a new analysis of the mistl'acking problem in 32 kb/s ADPCM 
o • 

systems with AR predictors. For simpliclty, the MA predictor is not included in the 

analysis and the D LQ IS replaced by a ummodal adaptive quantizer. Sinee mistrack-

ing depends only on the AR predictor, the above changes are not significant. The 

research objectives are as follows: (1) to re-examine the dassical gradient adaptation 

algori thm for transversal predictors, and t6 show i t s suscepti bility to Illlst rackmg; (2) 

to analyze the CCITT modified gradient algonthm for transversal predlctors; and (3), 

to de~elop a better understanding of the class of predictors that does not manifest 

mistracking. To this end two lattice predictors whe also explored: a classlcal signal-

'driven algorithm which mistracks and a ,newly developed residual-driven algorithm 

'which tracks. 

6 
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In adaptive systems robustness to errors is" usually obtained at the cost of perfor-

,mance and colpplexity. In most pract.ical telecommuniçation applications, however . 

• -tliese shortcomings à~e outweighed hy the fnhanced transmission perfôrmancè in the 
'-

• presence of erro~s. Performance -\nust. b~ optmlÏzed over a ri'umber of expected trans­.. 
mission conditions, at the cost of rhaking it suboptimal in any one condition. Results 

obtained from this research -will serve to determine the performance penalties as­

sociated with ensuring robustness in the predictor to expeded 'transmission errors. 

Althongh the "setting" of this p.roject is 32 kbJs ADPCM, the results c~n be ~sed . . 
for a 'variety of systems where tracking b~tween adapi.ive filters 15 of great concern~ 

') 

, The thesis 15 divided into five chapters, induding this introduction. Chapter 2, \ 

• presen~ed as background material, deals with ADPCM 'Speech. corling in general. A 

typical encoderJdecoder cohfiguration is illustrated, and the sequence of steps'lead-

ing to recon.strudion of the input signal a't the decoder are exanuned. Objective 

performance measurements for ADPCM are then discussed. ,Forward and backward 

adaptation strategies for predictors and quantizers are compared. A section on robust 

quantization concludes this chapter. 

Chapter 3 constitutes the theoretIcal core of the thesis and is divided into three 
, . 

sections. The first -section introduces the AR m~del for speech. The second section 

deals \vith the transversal AR predic;:or and the development of. stochastlc gradi-
. 

ent adaptation algorithms. Traditional "signal-driven" adaptation (driven hy the 

cross-correlation between the residual and tht' reconstruded signal) is shown to be 

susceptible to mistracking. "Residua1-driven" adaptation (driven s_ol~ly by autororre-
. . 

lations of the residuaf) is proven to be robust. 'J;he third sectio"'n is a mirror image of 

the second, dealing with the lattice structure instead of the transversal structu,re. A 

new class of residual-driven lattice predictors is developed whlch guarantees tracking 

for aIl signaIs without regard to the order of predidion. 

7 
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" 
.Simulations and experiment.al results for t·he different prediction algorithms are 

found in Chapter 4. The algorithms are first optimized with respect to ayt'rage speech 
, ~ 

and dual-ione signaIs. Encoder and decoder t.rackin~i~ then examined for both ' 
,1 <o! .. ~ , . , 

t.ypes of signal. Thé tests illust.rate the mistracking problem with the. signal-driven 

predi~tors in t.he presense of errors, as weIl as the slight performance degradation 
. ~ 

with residual-driven adaptation in the absence of errors. 

Chapter .5 presents a summary and conclusion of the investigation and ends with 
1 

~ 

sorne suggestions for improvement and future research. 

• 

... 

\ 
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Chapter 2 

,: 

Adaptive- Differéntial -\. 
Pulse-Code Modulation 

(ADPCM-) 

, 

2.1' Digital Coding of Speech Waveforms 

Digital speech cading refers to a wide range of technique~ whi€h compress a speech 

waveform so that it may be efficiently transmitted over a digital channel. This chan-

nel could be part of a communications·system'(as in'telephony) or a storage system 

(as in digitaUy recorded anno~ncements). The analog waveform is pre-filtered and 

sa'mpled at a rate which avoids alzaszng at th~ receiver. 1 The time-discretized wave- ,. 

form, or sequence, is then coded '( compressed) and translllltt~d. At the receiving end 

there ~sts a decoder which petforms the inverse operation to the coder, xielding 

a reconstructed speech sequence. Finally the output speech waveform is recovered 
fi 

: from the sequence using an interpolation filter. The enhre process is illustrat.ed in 

-
Figure 2.1. The sampling and interpolation operat ions' are iheoretically error-free for' 

1 A basIC property O(sp~ech waveforms.is Ihat th~y are bandlun.it~d. This naturallinùtation i'l du!' to th~ 
speech production process and vanC's from sp!'ak!'r to sp!'llker. Rt'gllrdless. nlost digital codlng ~y5t!'ms 
im).lose Il strict bandwidth on th!' waveform to prevent aliaslng. In comm!'rCllll td!'phonv Il balldp,,~'i 

filter of 300 to 3400 Hz IS used. and the r!'sultmg signal IS sampl!'d at 1:1 kHz Thl~ 5l1gh! ovenuunphng 
serves to increllse the translhon reglon b!'twee.n pll5sbl\lld and stopband 50 thAt Il lt'~s '1tnng!'n! filtt'r 
can be used 
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Fig. 2.1 Digital coding system (or speech 

bandlimited inputs. In this thesis'we will take for granted these operations and deal 

only with co(Ùng, ~~ansmis"sion and decoding of digital sequences. 

The main goal of aU waveform coding systems is to reconstruct the input signal 

with the least error given a fixed transmission bit-rate. An alternate goal is to decrease 

the bit-rate while maintaining the same reconstruction quality. However, both goals 

have co~flicting requirements as wrH be shown here. 

The bit-rate of a waveform coder is determined by the number of ~~vels in the 
" 

qua:ntizer. A quantizer with L = ~B levels requîres at least B bits per s~mple to 

encode its input. Assuming a sampling frequency of 8 kHz, the resulting bit-rate will 

be 

R ='8B = 810gz-L kb/s. 

As a nieasure of quality, the szgnal-to-nolse T'allO (SNR) for a PCM system with- an 

Vlevel quantizer is given by 

SNR :::: 6B - (} = 610g2 L - B dB. 

where () is a parameter depending on the input pdf and the quantizer characteristic 
; 

'(typical values for B lie in the range: 0 to 10).2 In effect, if we decrease the 'number 

of bits (~herefore, levels) but st.ill try cover t h~ same range, the courseness of t.he new 

,,-quantizer will result in a 6 dB 105s in SNR per bit. 

- \ 
Therefore, aU other tllings being.equal, a redurtion in the transmission bit-rate 

R implies (z) a reduction in the number of levels L in the quantizer and (n)..<: corre-

2 This relationship IS lmown to hold fOI B ~ 4 and only when the quantlzer range lS matched to the 
signal range (see [15]). For B < 4 the quanhzation error becomes mcreasmgly correlated wlth the 
input 

'. 

JO 
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• 

sponding decrease in reconstruction quality SNR. 

ADPCM uses a differential encoding scheme which exploits short-term, or near . ' 

samplc, correlations in the mput speéch sequence in order 10 achieve (1J witl10ut. 

- . 
incurring (u). 

, - ./ 

2.2 ADPCM Ericoder jDecoder Configuration 

ENCODER DECODER 
CHANNEL 

~~~~._._.-.-._.-

+ 

• 
Fig. 2.2 Blbck diagram of the ApPCM encoderfdecoder 

The basic ApPCM encoder (see Figure 2.2) IS composed of a quantizer Q, an 

inverse·quantizer Q-}. and a predictor P In practice, thert' IS an .a.llalo~-to-dl/dtal 

(AjD) converter outsicle the loop wh)ch quantlzes 1 he Inpul 10 more hl!', than t'JJl-
'-

ployed for transniisslon. Thus, Q and Q-I are (h~llal-Io-(hgita1.(D/D) ron\'(·rt('r~.3 

This allows aH the math operations (+. " -: ) 10 \)(> dlJ!;llal. Howe\'er. III tlm tl\("~I~ 

- -
wc are only int.erested !TI the analysls of a t.in~lf' pJlcoder / df'coder rOlHH'fI 1011. Tht'rt' 

is no need to mode! the transcodlIlg requlTt'menh ()\lt~lrl(· the 100p To thi~ ('nq. the 

only rlzgztal part of the sYSrtem IS t he tran~ml~!>IOJl dlann('l. 

3 A quantlZer can al 50 map a finltl' \l't of ~Ylllhol\ 10 anollu'r tinitr. hUI smalln. 51"t of svmbol5 (0/0 
conversIOn) ThIS can o;('ur. for ('xampll'. In wnlhronou' lram('()(hng~ (PCM-ADPCM P(·M). 

Il 
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oMathematicâlly, a. quantization mapping Q(.) can be defined as 

Q( . )' ~. Q -} [ Q( -) J. 

A more detailed description of th~ quantizer 15 found In Sec,tion 2.5. The predlctor 

P, a linear finite-impulse-responsè digital (FIR) fiIter, is discussed in Chapter 3. 

Unlike PCM, -which simply quantizes, errC""Otlès and transmits the input sequence 

x(n), ADPCM forms a differen('~ sequence 

d 

e(n) = x(n) - i(n), (2.1 ) 

12 

where i( n) is a linear prediction of x( n). This sequence, known as the prëdzciwn r 
residual, is quantized and a codeword c( n)' is transmÎt.ted t.hro~gh the' cham\el. The 

sm aller va~iance of e( n), compared to x( n), allows a reduct'ion in. L without a_reduction. 

in SNR (se_e S~ction 2.3). Inverse quantizat.ion yields the quantl:;ed resldual sequence 

êCn) = Q(~(n)) = e(n) + q(n), (2.2) 

where q( n) is the quantization error. 

In order that the encoder and decoder track and reconstrtlct the input sequence 

in synchtony, it Îs desirable that lhe prediction x( n) be derived from previous values 

of the reconstrucied mput sequènce i( n) instead of the en{"oder input x( n). For the 
~ -

same reason, x(n) itself is formed from current values ofox(n) ~d ê(n), rather th,an 

e(n), giving 

i(n) = .r(n) + ê(n). (2.3) 

By combining (2.1)-(2.3) the reconstruded signal can be expressed as 

i(n) = x(n) + q{n), (2.4) 

which implies that the reconstruction error at the encoder is identical to the quantJ-

zation error. 



o • 

o 

l 

Th~s, a closed-Ioop str~~ture with feedback around the quantizer allows the por-
. ~ 

tion of the encoder which contains the inverse quantizer Q-l and the predictor P to 

be copied;n·the decoder (FIgure 2.2'). At the decoder the codeword .("(H) is received 
'" . 

and inverse operations le.td to 
'~ -' 

~ ,,,') -'() -'() ~ X ,'11 = X n + t n , (2.5 ) 

where i'(n), x'(n), and- ê'(n) are the decoder's reconstructed, prediction, ~nd quan­

tÎzed residual sequences, respectively. lIf the channel is error free, then 

and 

\ . 
1 

c'(n) = c(n" 

,ê'(n) = ê(n),' 

i~~)=;(I1), 

, ,'\ 

,i (n) = i(n) = x(n) + q(n). 

"#' 

(2.6) 

Hence, in, the absence of channel errors, the r~onstructed sequ.ence at the decoder 
. 1 

i'( n) will differ from j h~ input sequence at the encoder x( n ) only by the quantization 
.. 

error q( n). This is an important result which implie~ that quantization noise does, 

not accumulate over tirne. 

2.3 Objective Performance Measurement . -. 
The most cornmon objective in~icator of waveform coder performanc~ is the en-

coder/decoder SNR, defined by 

(2.7 ) 

In the absence of channel èrrors (2.6) applie~, in which case the SNR can be expressed 

(2.8a) 

. ../ 
" 
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, . 

where 

(2.8b) 

and 

(2.8d 

are the prediction gain and quantizer SNR, respectively. 

For a fixed number of levels. the quantization noise power can be made propor-
, . 

tional to the quantizer mput (prediction residual) power 

(2.9 ) 

where (2 is the quantizer performance factor (noise pow~r per unit input power)'. This 

factor is independent of the quantizer input.4 

Equations (2..8c) and (2.9) imply.that SNRQ 1/(2 is independent of the pre:. 

diction residual e( n). C'learly, the SNR is maximized when Gp is 0 maximized: or . 

14 

Î 

eq~lvalently whpn E[e2( 71)] is minimized. Most predictor adapt.ation algorithms are r. 

indeed based on minimizing Ele 2 ( 71 )], as will b€' shown in Chapt.er 3. 

tn practice, the ensemble statistics implied by the expectation operator E[·] are 

, not available and must be replaced by time averages ( .) defined as 

1 N 
(11(n))"= V L tt(n), 

.. n=:::l 

where N is the length of the arbitrary sample, sequence lt( n). 'Time averages are 

~ 

accurate estimates of ensemble statistics if the sample sequence is stationary and 

ergbdic and N is large. , 
\ 1 \ 

" -
4 2 • 

The p~rforman('e factor i depends mostlv on the quantlzer structure, I.e, type of quantlZer. number of 
levels, dyol18nuC range However, there is aJso somt' d('pendt'nce on the sta.tisticS:·Of the quantlze\llnput; • 
but this IS negligible, if the quantizatlOn is fine and th(' quantlz('r IS not overloadt'd /151 

Co. 
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Il 

50. in practical analysis, the coder perforIllanc~is represented by tht> time I\vt>r-

aged SNR. defined as 

or, expressed in dB as 

SNRdB = 10 lo~1O SNR. (2.lOh) 

Time-averaging over the entire input sequence, a:. (2.101\) would indiratt". 1<'1111:, 10 

, , 
under-emphasize the performance in S(>)l;I1wn b wlwre tilt' i Il put ('IJ('r~y I~ wt'ak ) S.; W i, 

An ,objectIve measure wlllch ('orr(':,poIld~ mort> ('lo~(·I) 10 ~l1hjt'ctl\'(' (·\"all1allOn:. 

JS found by computing the SNR of (2.1'Oa) or (:!.lOh) o\,('r lIlauy ('()nll~\1()m lIon-

overlappmg segments of the inp,ut ~f'(P'I{,I1(,t'. Thil'! l~ mOT!' III 11lt(, wrt h whal 1 lu' 
. . 

human auditory system dot'~ when evaluatlJ\~ Iht' <tualtly of a :'1~t1al. Tht'M' ~hort I('rm 

SNR val ues\ denot~d here by SN RdB(J) for 1 Il!' ) t h :,,'~nlt'nl. al ... o provlIl(, !:\(:glllf'lI t al 

performance'information that just Isn't ava.Jiihlt~ wht'II thC' ,..,'SU 1:- rOllllllltf·d o\'t'r 

the {'ntITe mput l'!equenct>, The st"gllH'nt 1~'n~lh Î:. cho"'("11 "0 that th;· IlIplll cOlll1i I)f' 

consldert'd ~Iationary for lhal JH'rÎocl of 111111' Ail .. pproJlrl.lt,· "('gllll' Il 1 )",qt;th for 

spef'ch IIlpuh wOllld 1)(> ID th(· Ord('f uf Hi 111:- or 121'< ~.ltllpl,'" 

An a\'('ra~(' M>gllwntaI ,'l'SR Il H'a"'l1 Tf' 1" (.d( \lIai,'.! .1" 
'fT 

1 1\ 
\ ' ". \r/( 

/
' " dBU 1. \ ....... 

) 1 

whrrf> f; lb lh~ numlH'r of M'gn\f'nt~ IH t 1If" Input ~"qHt'll!'r' Till:> iI\'rr.\~r· 01 th,. 

short-term S'N'R value!'> t('nd~ {o a!'>"lgn ilIOn' ('qllJtabl(' wl'lJlhlin~ .. tll ~troJlJt /lut! wl"ak 

\ 

segmental (:1' a.nd SS/(Q: 
p 

,.r 

1 ~ 1 l , 
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If the quantizer i5 adaptive, the SNRQ will he approximately constant under varying 

inputs. Thus, SNR and Gp are roughly equivalent. performance llleasu~ès.(when\ there 

are no channel errors). 

,-

In the presence'of errors, the simplificati<?ns impose? by (2.6) èannot be applied 

and the perfo~mance measures at the decoder must be' calculated with !~ference to 

the encoder signaIs; 2. C., 

SNR(Pe) = ((x(n) _ i'(n»2)" 

.' (x 2(n)) 
Gp{Pe} = ((x(n) _ x'(n))2)' 

(e 2 (n)) 
SNRQ(pe) = (Ce(n) -'ê'(n))2)' 

whete (Pe) denotes the pr~sence of errors. in the form of a bit e~ror rate for a hinary 

symmetric channe1.5 Segmental and average segmental valuês are computed as above. 

In this case, however, (2.11) does not hold since . -

" 
SNR(Pe) =1- Gp(Pe) . SNRQ(Pe). 1 

An the segmental measures discussed abC?ve will be used in Chapter 4: in order ta 

evaluate the performance of the predictors. 

1 
1 

2.4 Adaptation Strategies 

- The-input environment of a coder is generally time-varying. Speech signaIs are 

inherently non-siationary, their amplitude statistics and spectral content gradually 
.- [ . . ; 

changing over tim'e [17J. In ADPCM, hoth the quantizer and the predictor can he 

S ln a binary synunetrlc channel there is a probabllity p~ of a bit-e~ror (e.g., a 1 b~ing reeeived as a 
0) and a probability (1 - P.) of no error. This process is (1) memoryle~s since the output depends 
only on the input and (u) identically distributed sine,: the statistlcs (p,) of th·e channel do not change 
with time. Desplte the simpliclty of this modeJ, it 15 very us~ful in repr~senting exp~eted transnûssioll 
Impairments. 

1 
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adapted wjth time in arder to track the changing input &ignal and provide improvt"d 

perfornlance. 

Adaptation of the quantizer is perforJIlt'd hy changing thr quanli7.t'r·~ stt'P-)o,IZf' 

parameter ~(Tl) aaording t.o the prediction rt>sidllal powrr El! 2(,~)1. Silllilarly. 
\ 

adaptation of the predidor i5 achieveù by varying the st't of prt'dictor corffici('nb 

A(n) = {a,(n). L = 1.2, ... ,p}, In ordt>r tn track th(' "pt>ctral content of the mput 

r( 11). Thub i t is expeC"t e<'l. that. for !lign ab exll1 hi t Hl~ ~hort - t t'rlll ('IH'r~y an cl 17orft>la-

tion th at are time-xaryi ng, a ~ ys tem utllizi n~ ada.pt 1 ve 101lI pOllen t)o, )0> hould ou t jH'rforlll 

one wit h fixed componenh. 

Adaptation schellles can be das~ified ab ('It llt'r fMll'ard (opt'n -lnop) or bad'Il'" rd 

(dos~d-Ioop). The forward adaptive pr(")("e~~ t>s-tlll1atf'~ tilt' correlatlOlI in tlll' ITlput 

and uses th(' resultl' 10 adjust the paran}('h'r~ of tilt' ~y)o,t(,lII. Ba.('kwarcl adaptatlOlI. 

on the other hand, USé'i obbervatiom of an output bigrHd, a)()I1~ Wlt Il tlw curr~'lIt ht ail' 

of the system. ta fOrln tht> paramet('t adju~tllwllt . 
Th<:" rotation ADJ~(':\]-AQF-\PF and \))l'('M A(lB :\PB 11'1 IIwd to rt'ff:r to 

systems wlth forward and b;H:kward adaplatl!)11 tri both ttll' '1l1illltlzi'r i1ntl IHI·dif'lor. 

- -
respectivel::. 'flu'''(' Iwo fOflllh of :\))PC '\1 .HI' dl'>( 1I~~('cl III S(,( llOn:- ~.I 1 and 2.1.:!. 

Mixed adaptatIOn by~l<'lII)' (1.1;' AQF-:\PB or .\QB APFt art' ran'Iy f'III<OIlIl!i'ff'd III 

~DP('!\f ~pe('("h codin~. 

2.4.1 Forward Adaptation (ADPCM~AQF-APF) / 

Figure ~.~~ iJlu~tratt"h an ADPC'l\1 "y.,tt'JIl WItt. forward iulaptaillHl lt1 f/llth tl.,. 

dnl and r(n). 
. .... 
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Fig. 2.3 ADPCM system with forward adap ation 

In general, a block of Af input samples must, be collected before the adaptatioJl 

.. ' algorithms can produce valid parameter estimates. In terms of parameter calculatlOn, 
~ '>: 

. '. 

'practical constraint on At is based on the coding delay introduced: cg., a delay of 32 -,. , 

samples or 4 ms is significant and perhaps unaccept able in certain applications. 

First, Af input sampld are buffered and released only after the quantizer step-size 

~(n) and the predictor coefficients A( n) have been calculated. These parameters 
" 

ar~ then used to process the corresponding, block of 'samp,les at the encoder and 

'are transmitted to the decoder at- a rate whichJis determined by the block size M. -
o " 

Transmitted parameters, also. called sldc mformatwn, must share the channel with 
" 

t~e cocleword c(n), Framing of the overall bit sequence must be employed 50 that 

t" 
the correct .. bits carrying the appropnate side-information can be located. This poses 

synchronization problems even when the sicle information rate is low. Moreover, 

à s~all percentage of the bit.-rate, is' always dedieaf.ed t.o, the transmission of sicle 
" 

J 

\ . 

- , 
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information. 

Transmission of side information"and coding delay ar~ t he main disadvant agf>S ln 

forw'ard adaptive coders. One important adva.nta~e Îs rohustllt'sS to channel errorl,-.. 

If a chann~l error corrupts the' received adaptation param~1 ers ~'( n) and A/( n), if:, 

effects will be local t.o t.hat. part.i~ular block. ln effect. block processing is equivalcnl 

1.0 having nnite memory in t.he system. Consequently, neit her predictor nor quantize-r 
, .> 

mistracking IS a problem in forward adaptive coders. 
, 

" 

2.4.2 Backward Adaptation (ADPCM-AQB-APB) 

An alternate adaptation strat egy is shawn in Figure 2..1. In t his caM', the ql/an- ~ 

fl=er Adaptatwn LOglC uses tilt codeword c( n) and ('urrent slep-sizè tn !1;f>nerale 1 he 

1 

new step-size. Similarly, the Predzcfor AdaptatIOn Lugzc u~e~ t'( Tt), .?( 11) and currenl 

coefficients 1.0 generate the new coefficients. State feedback (nol shown in 'the fil!;llr'~) , 

occurs inside the logic plocks. ln the absence of tranSUllSSlOn errors ail th(" siJ?;nal!:> 
, , 

required for adaptation are available at the eJH'oder a<; weil as the decoder, t hll'i no 

side information needs to he trans'l1utted. A!> Il Tf'!>ult. the adaptatIon proC("l>M'~ a.t 

both ends are Identlcal. 

For simplicity, the paramt'ters can br updated willl nny nc'w ~alllpl(' -~ 1 hill 1:.· 

('alled sequentzal adapt ation. No bloek procf'!'sing IS T('(tUl red ~Jn("f' 1 h" clos("<! 1001' 

nature of the adaptat.ron system allows an infinit(' huI faditlJt, nlt'mory of prcvlOu!> 

inputs. Ther~fore, there is no codiI1~ delay in a back w~rd adaptiv(· ("oder. 

A transmission error Wl)) affllet t hf' rt'("f"iv(·d è(~df'word C"( 11 1 (no 01 hf'r informaI ion 

is transmitted) and con~equently ('( n) and;"( ni. Siun' tht>"f' ~i~nab. drlvf' thr ildllp' 

tation.paramt'ters ~'(n) and A'(n): the rrror_ will rropa~ah' arottlld tllf" "yntht'''I~ IUlci 

st~tt"-feedback loops' possi bly eaustn1!; Hu"t ra('klTl~. 
1 
'" 
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Fig. 2.4 ADPCM system with backward adaptation 

" 

1 · : · · · , 
• • · .J 

The mam problem in backward adapttve systems is to, ~esign robust algorithms 

that also perform weIl in the absence of errors. The next section deals with,such an 

algorithm for the quantizer. Predictor mistracking and its correction are dealt with 
". 

in the rema1D~ng chapters. 

2.5 Robust Quantization 

Amplitude quantization of a discrete-time signal is an important step in digital 

coding, since it determines the transmission hit-rate (as discussed in the beginning 

of this chapter). It is also the only source of distortion (quantization error) in ,the 

reconstruction process, when there are no channel errors_ 

2.5.1 Quantizer Mapping 

In ADPCM, the quantization mapping "Q(.) transtQrms the residual signal am-

" 
plitude e( n) at. time 'n' into ê( n), on~ of a finite ~et of amplit.udes determined by t.he 

• 
,/ 
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~------------------------------------------------------------~--------------------- Q 

number of levels L. This is done instantaneously and t.he transformation M time 71 

does not depend on earlier s';mples (memoryless quantization) Lf. for 11011'. Ill! do not 

conslder' the eJJecit.' of p7'fdlcilOn. 

r ... 

r ~ 
1 1 1 / 1: / l ----------,1----.------t'~..,1r--..... ·---'1-----. ------

ek-l ê"-l el: el: ~'ktl 

,e 

INSTANTANEOllS AMPLlTllDE -_ ....... __ • 

Fig. 2.5 Quantizt'f decisioll int ervals 

Dropping the time index n W'~ denote the dfCl.'Wm /t'l'fis by f k and tilt' output 

tlalues by êk (Figure 2.5); then ~he signal amplituu(> t' is reprt"s~ntt·cl by t h(· indeJS: J.. 

if it. falls in the intervà.l 

. 
k=1,2 •.... L. 

The transmiUed codeword' c tS a function of the index 1.. which d .... penOs on tht' parti~" 

ular channel codi'ng schemt' beÎng Ilsed. For ~Împli('ity. c can be ('hoM'JI <t.!-I tll!' I~inary 

representation of k (.although t hi" IS not 't he mObt bl'lI('ficial rhoicf'). Th.· (()rrf' .. porul. 

ing output value must lie inside tht' interval II.: , and IS oftt'II dlOSt'lI iU, th," lIli<lpolt\t 

value 

-T~e overall mapping ê = Q( e) is a staircast" function wit h odd sytll~lwtry ahout tl\(' 

origin. In order to match the quantizf"r to the prohabihty df'mity fun(·tÎon (pdf) of nu' 

input signal e( n), different quantizer !'>hap('l> ("an hl' d('fin(!d hy arlpropnél.ll'Iy wt t in~ 

the decision le~els ek and output ,Yalue<, ;-k· 

The optimal Yalue~ are found by tIljfllJlJlzÎn~ thf' quantizt'f 1lIt'{lII-'qUI\rf" rrrot 

'"'\ ' ~ 
(mse) E[q2] = 'E!(e-p)2] wlth respt'('t 10 '1, and -;1. gi'Yt"n àpl\rtiC'iilar Input pdL prL, J. 
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J~·ë 
There exists an iterative solution for minimizing E[q2], known as the Lloyd-Max l(era­

tzon. The minimum will be global if the pdfis log-concave; l.e., if a"llogPe(e)!ôe'2 < 0 
\ . ' . 

[1.5]. 

Severâl different typès of Q( e) are shown in Figure 2.6 Jor L = 7,8. Wit hout 1055 

. 
of generality, the umform mtdnsc quantizer of Figure 2.6( a) is ,used in the discussion 
. 

on quantizer adaptation in the following section. This is because the quantizer shape 
. . 

is not as' crucial in an aclaptive system '8.S it is in a fixed system, especially when the 

i.nput is a residual signal. 

" 

(a) ,ê . (b) Ê 

el :::;:-00 e2 es eg:::;:oo 
e e 

ê:! 
J}J 

ÊI L:::;8 

(c) ê (cl ) ê 

ê-, Ê7 

L' ~ 
:::;: 1 L . -=, 

. Fig. 2.6 Quantizer mappings: (a) uniform midrisej 
(b) nonuniform midrise; (c) uniform midtread; ,i-

and (d) nonuniform midtread.· (Adapted from_layant 
and Noll flS), p'agc 117.) 

A 4-bit or 16·1evel quantizer with a Gaussian characteristic is used in the simu-
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l 
lation of the ~bpCM system in Chapter 4. This ('orresponds to Figure 2.6(b) with 

L !::; 16. The optimum decision values and output values, based on ah input with a 

unit standard deviation (0"( ~ 1) Gaussian pdf. a.re given in Tô.ble 2.1 fUii. Dllt' tu - ' 

sym:netry only the positive values are given. The optimum values have to be ,multi- : 

- plied with (Je for input residuals with a non-unit y standard deviation. This quantizt'r 

is reported (in [15]) to achieve a maximum SNRQ of 20.22 dB wit h st.ationary Gaus-
..-..J _ 

sian inputs. In subsequent tests, we observed that the SNRQSEG ~s within 

dB for most speech and narrowhand input~. 

J.: f'k opt 
- 1 
t k oot i 

1 9 D.fiOO O.lml ~ 
10 0.217 0.326 1 

11 0.43:3 O.:;4~ 
12 0.6.50 0.7.59 

13 0.866 " 0.975 

14 1.0~:3 1.192 

1.5 1.299 1.40H ! 
! r: 

-----1 
"), I.h_l " 

----, 

Table 2.1 Optimum den~ion \altw!> n. and out rlllt \,alu("!> ;-k for 
a 16-1evt>l GaU!>hian <juant iZ('r wit la (T/ - 1: cl Ut' t () 

symnH'try only thf' po?itlvr value!> (H' ". ~ 16) an' 
shown. 

2.5.2 Quantiz~r Adaptation 

. 
ln an eady paper by ('ummiskey, .Jayant, and FlanagaJl . l~l. a slnlplr hut f'ff(*(·tivi-

adaptation algorithm was propost"d. Th('Y int ru() un'd a sim pif' rult' fM ~('nf'ral ifl~ t hr 
- -

step-size, namely "for every new input ~a/1lJ>lf·. th,' <,tf"p- ",zr 1" dll\n~,.,1 hy 1\ fl\('~or 

depending only on the knowh-d!1;e of wlllch (1lIiHltlzf'r .,101 walo. ()(·l'Upl".) hy 1 hr pr"vi~Hl" 

sample. " 

, 
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Formally, the algorithm is 

, ~ ( 1l) = L\ (n - 1) . M ( jc( n - 1) 1 ), (2.12) 

where fc( n - 1 )Ils the magnitude of the previous rodeword and l\1(·} is a step-size 
, 

multiplier fundion. Limits i!llposed on the st.ep-size determine the resulting dynamic 

range of ~he quantizer: 

~min ::; ~(n) ::; ~max, (2.13a) 

Dynamic range = 201~glO(~max/ Amin) dB. (2.13b) 

If the maxirnuri) step-size is 100 times the minimum step-size, then the dynamir range 

of the quantizer will he 40 dB; this is a suitable value for speeêh signais in telephony. 

1 

~. The step-size multiplier funrtion Mt·) takes on a specifie ~value from the set 

{Ml, M2,"'" MK }, according to which quantizer level c(TI - 1) was occupying. This 

irnplies that there are only K = L /2 multiplier values to be chosen (l. e., half the 

nuÏnber of quantizer levels, since the polarity of c( TI - 1 ))~ unimportant). Figure 2.7 

illustrates an 8-level or 3-bit uniform quantizer with associated step-size muItipliers. 

Meaningful adaptatJon for speech reqUIres a rapid range expanSIOn to handle 

sudden bursts of speech energy and -slow range compression for decaying pre-pausaI , 

sotinds. To avoid slope overload and minimize granulation noise the 'multiplier values 

shou,ld respect the following constraints: 

M K < 1, MI > 1, !cl / 

... 
. 

The most effective values for the step-s~e rnultipliers are found through extensive 

computer simula:tions on different types of input signals. Sorne results for 2, 3, 4, and 

5-bit quantizer step-size multipliers are tabulatèd by Rabmer and Schafer [li], and 

by Jayant and Noll [15]. The set given in Table 2.2 for a 4-hit quantizer is used il) 

the simulations of Chap~er 4. 
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Fig. 2.7 St.ep-size multipliers for an 8-level quantizer 

'Ml M2 M3 M4 "'f:~ 11-16 1 MI J18 j 
2.4 2.0 1.6 1.2 .9 .9 1 .H .9 : 

Table 2.2 Step-size multiplier values for a 4-bit. or 16·}evd 
quantizef 

. The~algorithm defined by (2:12) is not fully robus1 to ('hannel errors. This is 

-
beçause each n~w step-size depends on the entire pasto of the codeword sequen('e 

T • 

c(n), thereby forming an infinite memory system where errors propagate ind~finitely. 

-
Goodman and Wilkipson [19) poin1ed this out using the following argument: tewrite 

(2.12) as 
n-) 

Ô. ( n) = II M ( !C(l':) 1) . ~ (0 ). (2.14 ) 
1.'=0 

Let A'(·) and c'(·) he the de('oder versions ôf ~(.) and r(.), resp·ectively. Now assume 

t ~at at 'time fn .;: n, !c( m ) l, = t while a ('hann,.) t'rror C',,:useh k'( m ~= ). If tht're are 

~ 

1 

2-5 

,-' 
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no additional errors, then 

A'( 11) = [AI (j ) / M ( 1 ) 1 . Â ( n ). (2.15 ) 

,,As a 'result each error causes a multiplicative offset between the encoder and the 

deco~er tRat theoretically will persist indefinitely; l. C., quantizer mÎstracking. The 

following modification to (2.12) is suggested [19]: ' 

Ll(n) = ~(n -:- 1)13 M(lc(n - 1)j) 
" n-l " 

--=- II [1\-1'( Ic( k) 1) J,8(n-k-l) A'( 0 )i3n , (2.16) 
k=O 

where a <.1 is the leakage factor. Now if, at time m, j 1S received instead'of i, 
o 

" 
Ll'(11) = [M(;)/M(l)J,8(n-m-l)~(n)'. (2.17) 

Note that ~hen;3 = l" (2.16) and (2.1i) simplify to (2.14) and (2.15). 

Hence, the offset due to errors will decay exp'~nentiàlly with time, thereby elimi­

, na~ing q;uantizer mistracking .. The time constant T is controlled by the factor /3: 

T = -l/(lnJ3) sampl,es. 

Several values of j3 with co~responding time constants T (in ms) are t.abulated below. 

j3 15/16 31/32 63/64 127/1;28 

Tms 1.94 3.94 7.94 15.94 
" 

, ' 

Table 2.3 Qua,ntizer leakage facto" vs'. step-si e ti~e cf~nt 

, . 
The design value of j3 is a compromise between the sensitivity of the quà.ntizer 

~ ~ 

tQ changes in the signal variance and the sensitivity of the decoder to the effects of 

channel err-ors. This implies that quantizer adaptation with leakage will affect the 

performance of the codee in t.he absence of channel errors. Compromise values which 

result in a time constant. of 4-10 ms seem to work best for a variety of mputs and 
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error condit.ions [15][ 19]. The value !3 :; 63/64 is used in the coder simulation III 

1 Chapt.er 4. _ 
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Adapt~tion Algorithms· 
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3.1 Sp~ech Signal Model 

. The motivatiop for using a differential or pr~dictive coding scheme is based on 

the fad that a speech signal can be adequatdy modelled as a Jjnear p-th order ';'ù-

toreg~e'Ssive process, denoted by AR(p). An .4R(p) process is defined as . ' 
• p 

.r{71) ~ 2: ({/{n).r(n - i)J u(n), (3.1 ) 
1=1 

, 0 

~here the summatlion term is the predict.ed component of the speech signal and u( n) 

is the unpredicted ex~itat.ion signal. The' relationship between the ~xcitàtion u( n) 

and theoout.put x(n) c~uld be repr~sented by a slowly time-varying transfer function 

of the form 1 
~ 

v __ X(:) _ 1 
n(-) - U(=," - 1 _ "0P li (n)_-Z' --t= 1 1 -

(3.2 ) 

also known 9s an alI-pole model. 

1 An unconventional not/l.4on IS used in the z-transform equations since we are dealing wlth non-statlonary 
systems. Conceptually, the subscript n denotes slow tlme-varlation ID the parameters a l (l1}. Mathe­
mattcally, the' equations are treated under thtr assumption of short·term stationanty, 1 Co, ~;Ith fixed_ 
parametl'rs. 

r 

,J 

~-,-, 
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In general, most of tlle pol,es of (3.2) occu~ in complex conjugate pairs which 
J _ 

illodel the resonances. or forman/s. of the speech spertruIll. However, sOlUe of tht" 

pales are heavily damped and contribute only t.o the ovt'rall spectral shape, 

..... 
The excit ation sIgnal u( n) varies from a quasi- pe'T1odic train of pulses for Voit'ecl 

speecll ta random noise for unvoiced spet>~h. Thus, tilt' spe('ch si~na~lJodel cOII'sist-s 

of a time-varying linear system F1l(.::) driven by a set. of parameters {n,(T/), 1 = 
, ' 

1,2, ... ,p} and excited by a randoI1l or quasi-pcriodic input l1(n) (5('(' Figure:U). 

Random NOls!' ~ 

Il 1 Il l, 1.1 .1 Ir 
'1 11'111' If 

~ 

Paralll~ tpr" 
{I\ 1 ( ,", ) } 

29 

11(71) 
Liut'8r 

Timt'. Vftrying 
Sy~t('m: \ n (.:) 

r( 11) spt't'ch 

. , ----
,l, ,1 l' 11 1 
l' 1 _ l" "1 j 

, 
Qua'il- PenodiC'. '" 

Fig. 3.1 Sp('('ch ~l~na) mode) 

,.. 

A linear predicJor can l)('{)('fi~('d a~ il ,,-th ord('r FIH filt<""r with ('()('ffif)("tlh. 

-
{al{n), 1 = 1.2 .. .... p} and outrlut 

l' 

r( TI) - LI(/ ,( Tl Ji( 11 

,- 1', j 

1 J, 

Thé prediction IS forrncd usmg 'pa~! lIil;'I"Ipl(·~ of t h(· Tf'Conl>.trl1ct (.<1 .,i~nill r( 1/). at­

explaÎl~ed in SectIon 2.2. 

l' 
\ ~ 1 

{/ ,( 11 ).: 
"--' 
1 1 

(:1..1 ) 
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( 

Pn (.=) is also known as the analysls filter. The lllain task of this FIR filter is to 

track the ."predictable" part of (3.1), namely the sl.!mmation term ~az(n):r(n"""" 

il, by adjusting the coefficients so 1hat al(n) - U;(lI). Whe~l equality i~ achieved 
. 

for st.ahonary inputs (al ;:= (lI)' the predIction residual power will be equaI, to t,he 

excitation power plus the filtered quantization noise: .. 
o P 

E[e 2(n)] = E[u2(n)] + L a;E[q2(n)], . 

, 

(3.5 ) 

as.suming the quantization is fine. Reçalling Eq. (2.9), the ahove equation is further 

simplifjed to 

2 E[u2(n)] __ 2 
E[e!n)]= 2"P 2-- E [u(n)], (:3.6) 

1 - f. ........ 1=1 al 

since the factor f.2 ~;=1 a; « 1 for most speech inputs. Thus, Eq. (3~6) states that 
, 

the prediction residual power-IS minimal since u( 11) is either random nôise o'r a train 

of pulses. 

The synthesis filter 1S an AR structure which reconstructs x(n) bom ê(n), anq is 

defined by the equation 

p , 

i(Ti) = i(n) + ê(n) = L Cl 1(n)i(n - t) + ê(n') ( 3.7) 
z=1 

wit h transfer function 

'Hn(::)=X(,;) = 1 1 
E(::) 1 - Pn(::) = 1 ~ ~f==l ai(n)::-l' 

( 3.8) 

Comparing (3.2) and (3.8) it is clear that, were it not for the quantization error q(lI), 
,,' 1 -

Vn(z) and Hn(z) would become identical when E[e2(n)] is mini;mized. 

An adaptation algorithm for the coefficients can be Q.erived from a gradiènt searcQ 

of minimum E[e2(n)]; l.L, uszng the: goal to find the means! At this point. the . . ~ , 

implementation of Pn(:;) becomes important as adaptation algorithms are dependent 
\ 

- -
on filter structure. There are two basic types of struct.ures ta be examined in this 

() 

paper: transversal and laftzce. 
, 

/ 
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3. 2 Transv~rsal Filter 

This sect ion discusses the transversal filt.er st ruct ure and associatrd adapt ation 

algorithms. The transversal filter, illustrated in Figure :3.2, is-a direct implementa.tion 

of Pn(::) in (3.4). It is a canonical st.ructure. containing the minimum numbf"r of unit 

delays, p, required to implement a p-th order filter. In order to enSUfe stability of the 
, ~ At 

synthesis filter, there exists a set of constraints on the allowablt' range of values for 

the prediction coefficients. 

i(n) -:i"--...... ~ -1 
i(1l- 1) 

~-l 

, 
i(n.-2) 

~- 1 

0 , ,( 11) 

;(11-/1) 

Fig. 3.2 Block diagram ~f a p-th ordf'r transver1>al filtf'r 

\ 

-, 
,/ 

;(n) 

) 

Region of Stability for a Second r Order Filter. TIlt' pol,'}, of IIni::) III \1 ht 

r ~ lie inside the unit éirde in order for the hyntht>~ih filtt'r 10 tH" htabl(·. Lilllltin~ th,' . . 

'. 

discussion to a second order filter and cltoppill~ th~ ;ulle ItH!t>X 11, (:\ X) 1 ... wr~tt{'n h~rf> 

as 

1 .2 
H ( ::) = ,), -:}-------

l-al=-]-aF-~ =~-al=-1I2 

The poles of 1J( =) are &imply the roots of the denominator 

') 

::~-aJz-a2::::0 
/ 

r 'J - - -­

= 1,'_1 -- ~'} i i t ~j + rh, 
- 2 Y 4 .. 

- ImFosing the constraint 1:1 <' 1 on tht· root!> =l.2 yid(h, th(" fùll"win~ ("()II1>trainh nu 

III, < 1 ~ Il'~. 
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1 

Fig. 3.3 Stability regio'n for a second order filter: Hn (=) " 

.,ù< 

The resulting stability reglOn is shown in Figure 3.3. Thèrefore, after adaptation, the 

st~bility of Hn{:=) must be enforced by Ümiti~g the ~oefficients to the stable region. 

,. 
In practice, the stable region is slightly reduced by a fador (1 - é), where E is 

a small positive constant. This is done to keep the synthesis filter from resonating 

when the coefficients are near the boundary. The constraints for the reduced region 

are 

(3.9a) 

E :> O. (3.9b) 

J 
,\, . 

For higher order trans~rsal filter's the roots ?~ the polynomial 'are difficult to com-
~ 

pute, and the region is more complex. In tbis case, the easiest method for checking 

, stability is to use a non-linear mapping M to transform the {al} to a set {kt}, known 

'as retlection coefficients [17]. The synthesis filter is guaranteed to be stable if the 
, . 

magnitudes Iktl < 1 (see Section ,3.3.1). So, limiting the {kt} to this region and 

( mapping b'ilck (M- 1) will yie!d a stable set of {a,}, 



1 

, 

3.2.1 l\iean Square Error (MSE) Formulation of the Prediction 
Residual -' 

, 
As mentioned in Secti.on 3.C the main goai of the predict.or is t.o minimize the 

residual power, or mean square error (MSE). For FIR fiIt.ers, the MSE t>quation 

.E[e2(n)] can be ,formulated 'as a funct.ion of the coefficie~s {al}' giveri a sta.tio~ary 

in_p~t x( n). 

Ùsing a co~pact vector notation and assuming wide-sense stationarity, th(' lue-
l 

\ diction residual of (2.1) is written here as 

T- -T 
e( 11) = x( Il) - A X( TI - 1) .= .r( 11 ) - X (1/ - l)A. (:L10) 

where 

is the prediction coefficient vect.or, assumed to he in st,(>ady-state, and 

- 6. / X(n -1) = [i(n-l) i( 71- 2) 

is the :1:.econstructed signal znjormafwn vector. If the quantization is fin(' and the 

predictor is trackmg the input, so that q( 71) is uncorrelat ('d wi th .r( Ir) ana t hl' quan-

tization error power I~ much srnaller than the input si~nal pOWf~,r. Il\(' followin!l; ap-

proximation can be made: 

- 6-
X( 11 - 1) :::::: X( 11 ~ 1) = [.r( Tl - 1 ) .r( 1/ - 2) 

,'1' 
.r( n -- p) J . 

After squaring and taking th~ expectat.ion of (:l.lO), w(' grl the MSE t'quation: 

E[e 2(n)] =E[x2(n)]- 2E:.r(n)XT(71 - l)]A 

(a.12 ) 

This quantity can be plotted as a functlOn of 1 ht' co('ffin('nl s to yi(>ld an ("rror burfarf" 

for the stationary input .r( n). In the caM' of transvf"nal filt('rs, th(' &urfa('(' if' St 

~ 

quadratir function t concaVf" upward. wlth il ~11lfl;lt' ~loha.1 nltfll11lUm. Hy ,uJu"rimpoh_in,,' 

('~effi('ient trajertori~s onto th(' error ~\Ilf~c('. we obtalll an imlirator of tilt, frJ\('kin" ,; . 
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c 
performance of an adaptation algorithm. Plots of the error surface for second order 

predictors are used ip Chapter 4. 

By defining the~autocorrelation function of x( n) as 

cP(z-j) ~ E[xCn - i)x(n - j)] = cP(j-z), for aU i,), 

.' 
the autocorrelation vedor as 

p ~ E!x(n)XT(n - 1)] 

== [<p( 1 ) 4>( 2 ) ... <p( p) ] T, 

and the symmetric, autocorrelation matrix as 

~ ~ E[X(n - 1)XT(n - 1)] 

[

,.;> 4>( 0) . 
, <p( 1) 

- <P(P~I) 

<p( 1) 
<p(0) 

</>(p-2) 

----t 
•.• 'a 

the MSE equation (3.12) can be formulated as .. 

4>(p-l) 1 
4>(p-2) , 

'. , 

~(O) 

(3.13a) 

(3.13b) 

(3.13(' ) 

Ele2(n)] = 4>(0) - 2pTA + AT(»A. (3.13d) v 

Note that none of the qu~.ntities in (3.13a)-(3.13d) is a function of t.ime, due to the 

stationarityassumption. 

It is clear that (3.13d) is a quadratic form in the coefficient vector A. Hence, 
1 

there e~sts a unique minimum solution in A which can be obtained by cOIJlpleting 

the square or setting thè gradient equal to zero. The optimal solution and resulting 

I;llinimum mean-square-enor value are 

Aopt = ~-lp (3.14a) 

and 

.' 

,,' (3:14b) 
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" 

Brute force cal,culation of Aopt In (3.14a) reqU1res the solution of a sy::-tt'IH of 
"\ 

linear equations, as indicated by the matrix formulation. Although thert' l'xi::-t,::- an 

effi(ient."algorithm for,the solution (the Lt/ l ll/.snIl 8 Dllrh/ll l'roC/dllT'! IIi]). a tlifft'rf'nt 

approach is taken here leading directly 10 the slochastlc /?;ratlit'Ilt algorithm. 

3.2.2 Minimum MSE Solution for Optimal Coefficients 

The derivation of the optimal coefficient Vf'ctor IS hased 011 mi~imizillg t llf' IIwan­

. 6quare error E[e2(n)J. Simply differetltiating thil> quantity with re~pect to the f<)('tfi· 

cients and setting the result to zero will f'stablish a t>(·t of cOIH.htlOn~ fM rt'achjll~ the 

optimal solution. 

The error gradiènt is defined as 

35 

. -,' 
Setting this to zero, we obtain 

\ () 
= 2E[t(n)ÏJ-A f (Tt)! 

=- -2E:t(lIjX{1I . Ill, 
, , 

Equation (3.16) demonstratt's that. a., a ~Idf' ('fft'ct, tl",!Jrf·dl<tlJr r/" dUfll ,tilt! rf'(on" 

struded signal are ullcorrt'latrd wht'lI the optimal ('()('ffic)('nt '\6't ha .. h"f'lI [oulld, Tlll~ 

. 'ïs known a~ the prlTlClplc of orthCXjOTltllrfy t20 i. Thl' rf'!>)(!lIal If> l~fI('()rr('li\.tl'cl with thr 

input signal, as w("II, hased on tht' a~sllmpt ion l('i\dltl~ 1 () (:l, 11 ). 

Adaptmg thr (,ot'ffin("nlb in a clirf'ct 1011 oppO"UlR dl(' Il:radi('ut will f'n~urf' tht\t 

the optimal set Îs approadlf~d aftt>r a fiTllt" Illllllhrr of itl'ration". Thu~. thr RrlHlJrnt 

aoaptation algonthnl can ht' writ ll'n a .. 

, 

.1 

.. : 6 



where JI is a small adaptation gain constant or step~size parameter which scales the 

size of the change in A(~) at. each updat.-;: This is equiv~lent to perturbing the 
4 

coefficients towards the globa~ minilllulll.by descending the error surface in a direction 

~ppa'5ing the gradient (which is t he direction of maxzmum increase in the mean-square 

error). 

The algorithm will converge if the gradient direction can be assumed unchanged 

over the region of the step. Thus, the step-size parameter JI must be large enough 50 

the algorithm converges quickly to Âopt , but not so large that the algorithm hunts 

in the vicinity of the minimum. 

The selection of J.l depends on the eigenvalues of the input autocorrelation matrix 

+. The range of values for JL which ensures convergence is 

2 
O<JL< 

Àmax' 

where '\llla~ is the largest eigenvalue of +. The optimal value, resulting in the fastest 

convergence, IS 

2 
Ilopt =:= .. 

Àmin + Àmax 

For when JL = Jlopt, the adaptation modes corresponding to both the minimum and 

r maxitnum eigenvalues converge at the same rate: 

convergence rate ex: (--:-~=:):,n=II~_-_l) n 
~..l..1 

' ).mlll • 

Thus, the factor Àmax/ Àmm' called the ezgenvalue sprea~, determines the speed of 

/ con~ergence of the gradient algorithm [20J. That this quantity depends on th'e input 

51gnal is a major drawback in the use of adaptive transversal flltets. 

3.2.3 Gr.adient Algorithm for a Time-Varying Environment 

In a practical coding environment, the Input :,ignals are tillle-varying but can 

" be considered stationary in the sort-term, as discussed in Section 2.4. Thus. two 
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modifications must be a.pplied to the basic gradient alg,orithm in order, to tra<."k the 

chânging sîgnal: wefficient leakage and step-size normalization. 

Coefficient Leakage. The first modification i!lvolvt"s t he insertion of _C'oeHicient \ 

leakages so that in the absence of an input to the algorithm, l.f." ~A(,!) = 0, th(' 

coefficient vector will decay to the origin.:.? 

The use of leakage ensures that the algori t nms, af. the encoder and decod~r con-

verge after a channel error has caused the decoder algorithm to momentarily havt' 

incorreit input data. However, as shaH be ~hown later, mistracking is not pr('v('ntf>d 

if such an error corrupts the input data indefinitely; 1. (' • hy permanent ly ,hanp;inl!; 

the decoder reconstruded sequence i'( n). 

An interesting method of applying coefficient leakage is found by radially scalinl!; 

the poles of the synthesis filter Hn(:;) by,a factor I~ <' 1. Suppm,t' 1171 ( :;) has a 

pole at .: :::; =b then Hn(j3- 1:;) will have an t'fJuivalent pole at ;: :;... j;:;I' Lt>tting 

1:::, 1 
Hn+ d::) = ---:1~) ----

1-~ a(n+l}.::-l 
-"1= 1 1 

which implies that 

.' 

JI -------, 
-~ Il (71)JI:;-1 

~I=-I 1 

( :~.18a) 

1 := 1,2 .... , p 

whe~A(n) = O. This way aIl the poles of t ht' syntht"sis fiIter decay to the ofJJl;in 

at the same rate. In th~ li1eratuI~, t; is mu'ally denott'd as (1,- Il l"~ whert' b is a 

small positive value. tTsing th~ approximatlOn (1 - b)l ::::::: (1 - ih) for smallh, (3.1Hb) .... , 
i 

simplifies to 

1:::;: 1.2, .... p. (3.·1!J) 

. . 
l Som(' Cornu ~C th(' algorithm han lh(' codfiw~nt \'('ctor dacay to Il 'noo'l('ro Point, uluaUv &11 I\"(',aKI' 

point for spe-e-ch si,nals that i5 d('te-rnun('d ('xp('rimtntaUy. Thil allow. (a.t('f conv('r«"1"'(' whrn gomg 
Crom sil"ncl' to spee-ch, but has no othrr <,onJlrqUtncl' ln th~ anal y ... or prf!dlctor bl'ha"iour 

. '. 
1 1 , ./ 
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Step-Size N ol"malization. The second modific<ttiDn is the normalization of the 

step-size parameter 50 that the size of t/he updates in (3.17) remain approXÎmately th'e 

salue when the input signallevel varies considerably. This will ensure that convergence 

of the gradient algorit.hm is not strongly dependent on input signal power wh en the 

signal is not stationary. Most. differences betweel} various adaptation alg~rit.hms for 

transversal predidors evolve around t.he step-size normalization. 

The most commonly used Ilormalizer is the reconstruded signal power E[x2( n )], 

this being approximate]y equal to the input power. This is equivalent tQ having a 
\ , . 

possibly timé-varying st.ep-iize parameter 

(3.20 ) 

w here K is an appropriately ch os en constant wi th the purpos~ of preventing p( n) 

from growing' too large when the reconstructed signal power is small. . , 

In ,the computer implem~ntation of the algorithm, K is set to zero, and the 

upd~tes at time n are simply not performed if Èlx2( n)] is less thq.n ~ fixed threshold 

value; l.t:., a1(n + 1) :;::: ai(n). 5ubsequent experiments show t.hat this does not 

introduce any IzmIt cycle problems where the coefficients "lock-up" for long periods 

of time. 

Substituting (3.19) and (3.20) (with K :;::: ~) iIito (3.Ï7) and repla:cing e(n) by ê(n) 

(since the former signal is not available at the decoder) yields the modified gradient, 
q . 

algorit.hm, written here in scalar notation, , 

a (n + 1) == (1- ih)a (n) + pE[ê(n)i(n -z)] 
, • 1 E[x2(n)] ' 

i :;::: 1,2, ... , p. (3.21 ) 

50 far, the. discussion has dealt with the motivation and derivation of the generic 

gradient algorithm for adapting a transversaI' predictor. I~ the following section we 
- ~ 

show that. algorithms of the form (3.21) are susceptible to predictor mistracking. 
, 
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3.2.4· Effects of a Channel Error: ~ Possibility of Mis:~acking 

, 3.2.4.1 Traditional Adaptation 

In traditional backw~d adaptive predict.ion the reconstruction procelises at the 
~ / 

encoder and decoder can he descrihed as syst.ems in which a rticonst,t"üction fUter :F 

is driven br an adaptation algorithm 9 with system input ê( n), output $( TI), and 

coefficient vector A(n). Witho.ut regard t,o the implementation details of F and Q, 

filterjalgorithm interaction can be described using a simple operat.or notatIon, where 
- ( 

t he signal recollst ruc.tion is 

,i(n) = f{ê(n);X(lI ~ 1);A(n)}, { '3 '')f») • • ..,.w 

and the predictor adapt.ation i"S 

A(n + 1):= 9{ê(nJ+X(n - 1);A(n)}. 

The reconstruction process, illustrated conceptually in Figure :~.4. is in il. 'coupled 

configuration where the output of :F is f~d- back t,o g, and vice versa. The p-sample 
-

buffer sim ply generates the information v~ctor X( 11 - 1) [rom .il TI) and the =-1 block 

delays the coefficIent vector by one sample. 
/ 

tn 

'"' 1 p-sampl .. t X" - 1 F 
.l'n 

1 bulfrr J 
~ 

• A,,+l An 
9 .-1 

. 
Fig. 3.4 Reconstruction pro cess J !'ignal:driven algorithm) . 

For the ADP€M sy.stems consldered here, the :F and Q op~raiors are 'computf"d ., 
, ' 
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identically at the encoder and the ,decoder but the inputs ê( n) and ê'( n) can diff~r 

due to a transmission error. Suppose that at time m a transmission error causes 

to be received at the decoder. The immediate effect of this error will be slight per-

t}1rbations in i'(;') and A'( m + 1), depending on the value of ê and the state of the 

decoder protess. These perturbations will propagate around :F and g in the feedhack 

and cross-feedback loops, resulting in persistently incorrect info~mation at the inputs 

oLhoth blocks at the decoder. This will happen e~en when ê'( n) = ê( n) for n > m,' 

( or when the received signal is identic6al to the transmitted signal after the error has 

occurred. In' the long-term the error may force the decoder proçess into a different 
1 

mode of operation, perhaps an unstable one, where i'( n) #- x( ni) and A'( n) #- A( n). 
, 

, -
Theoretically, convergence of the two processes after an ini~ial offset is ensured 

only if the quantized residual i~trivially zero (or white and zero-mean) for an ext~~ded 

period of t.ime. Then the driving term in (3.21) will disappear, enabling the toeffi-

cients to decay exponentially to zero at bpt h end~ (~ue t,~ leakage). This will- force , 

the poles of the synthesis filter to the ongin. effectiveIy'resetting both reconstruction 

processes. 

In fact, this effect is witnessed with speech signaIs where periods of Iow energy (or 

silence) between utterances and the w\deband nature' of fricatives both serve as natu-
, , 

raI re-synchronizers for the reconstruction proce~s (see Section 4.3.2 for experimental 

results). 

- , 

In the case of nar,rowband inputs such as DTMF' signaIs, however, convergence 

cannot be ensured. Looking ahead ~ction 4.4.2 Figure ,4.10 shows, for the dual-

tope input signal DTMr-3 (composed of two equi-amplitude sinusoids at 69ï and 147ï. 

Hz), th'e coefficient trajectorie; for three second-order predictioTI"processes (one at J he 

" 
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encoder and tw~ at. ~he,de~oder), each with different. inj~ial conditions. We st'e,..that. 

the encoder (unaffe~t.ed by transmission errors) i5 tracking ne~r t'he opt.imal.point. for 
'>7 

t.he DTMIf-3 signal, but t.he two deny'ders are tracking near point.s ("orresponoing to 

41 

the distinct frequende~ 6~7 and 147ï H~. The dotted li ne is the boundary of the region ''--

of stability for a second order predictor W t..he t luee contours represent the error 

surfaces of DTMF-3, 697 Hz sin-usoid, and 1477 Hz sinusoid signais. The resulting 

power twist in the reconstructed output sigJlals at the deco'clers can be as largt' as 20 
o • 

dB (see Figure 4.11). Thus, mistracking is a p~en.9lllenon normally associated with 
, -

statiomtry ?arrow-band input signais, ~uch as voiceband data (v?d) and sign<)-lling 

·t 
tones. 

, 
3.2.4.2 Modified Adapta~ion ~ .;.. 

. , . 

Tracking can be ensured for aU signaIs if the rross-feedback path from ~~~ put 
- 1 

of :F to the inpulof 9 is eliminat.ed, thereby de-coupling the two blocks (Figure 3 .. ~ . . \-

illust~tes such an <trrangement). With this modiHcatJ~n, g i5 no longer mfhwnced 

by incorrect input dat.<). ~'( n), and leakage will allow the coeffi<:ient s 1.0 re-track in a' 

finite num~er of samples. after the error has occurred. The r('('omt ructed signal at 

the decoder will aiso .converge due to the.uOlquen('s~ propt'rty of tht' rt'cbnstruction 
" 

,process: l.C., ifê:(n) = ê(n), ~/(n) = A(n) ~nd .i'i''fl) f'i(n) then ;'(1..) - ;(1..) for 
, . 

k > n, assuming no additional- error~ ~411. 

As a' result. algorit.hms driven onl)' b)' ~urr~nt ancl pJ'eviou~ samples of t.he quan-

tized residual are not susceptible to mist.racking. Thus, we define a new c1ass of 

àdaptation algorith'ms such that • 

A(n + 1) = g{ê(n)~Ê(n -l);A(n)}, 
e /, ,_ 

~ 3.24 ) 

where t.he residuaf vedor ' . 

..... 



~ . .. 
E(n - 1) = [ê(n'-l) ê(n-2) 

r~laées oX(1t -01) in (3.23). However. using Ê( 1/ -1) instead
L 
of X( n -1) entails a los8 of 

'" 
performance in the absen;e of e~rors. This is hecause in the- cont ext. of MMSE)~rôdient 

estimation :thé quantited residual cont.ains significantly less information aboli t the 

input than does the reconstructed signal.. Such performancejrobustness tradeoffs are .. 
often encountered in adapt'ive system 'design. In th(s c~se the loss in performance can 

be mimffilzed by careful design of 9 in (3.24 ) .. 

• 

9 

Fig. 3.5 Reconstruction process wlth~ut cross-feedback from :F 
to ç; (residual-driven algorit},m) 

:i$~ r The labels ",signal-driven" and "residual-driven" will be used to denote 

whether the adaptation aIgorithm is of the fonn (3.23;) or (3.24): The next section 

describes specifiç implementations of the gradient algorithm. ove signal-dflven and 
- - "\ 

, . 
one residual-driven,-both using simple estimates of the gradient. 

- --------.. ~ 

, 
3.2.5 Transversal Stochastic Gradient Algorithm (LM~)' ,,! 

/ 

3.2.5.1 Signal-Driven Adàptation 

~ 

, . 
The gradient algorithm in {3.21)'is only applicable to short·term stationary signaIs . . 

and uses ense'm hIe avèrages that are not readily available in t he system. The stochasti(' 
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1 
gr.adient (SG) alg,orithm, on the other hand, uses an instanfaneous estimate ~f thè 

deterministk gradient in (3.16)~ gjven by . 
J 

f 

~A(n):::: -2('(n)X(1I -1). (:L25) 

This re-sults in a noisy gradient vedor with the quantized residual ê(lI) replacing dll)· 

Substituting this quantity in (3.17) and employing coefficient le'akage and step-si~e 

normalization as in (3.21) yields the signal-driven SG algorithm, 

where 

Il ê( n )i( n - l) 
a/In + 1) = (1- i6)a l (n) + ~'J) , 

(J~(n , r 

00 

ô-;(n) = (1 -,\) L ~1.r2(n - 1) 
i=O 

'J 'J 
= "Ô';(n - 1) + (1 - ,\).r~(11), 

l=l,:2, .... p, 

o < ,,\ < 1 

(3.26a) 

p.26h) 

is an unbîased estimate of the reconstruded sl~nal power. The const anl ). d('terminel'> 

the memory in the normaliza~ion term 

This update formula 1$ very eas!ly Implemented in ,feal.tllll{, digita,.l hardwarf' 

wlthin the allotted time post'd by the samplin/.!; rate. ThIs IS Ih(> main wason tilt> SC; 

algorithm has been preferred over other ~{'q((entjal algonthm!l'. The prin> to ,be pald 

for using the SC method, instead of a more a{'('urate ('!> t lJuator of t h,(' gra.dil,'nt, b, 

(1) slower convergence and (II) larger fluctuations about Aopt on('(' rOIl\ergel\ce ha.l'> 

ocrurred. This is due to the noisy eS~linat{'s in (:t2.1) [20!, 

3.2.5.2 Residual-Driven Adaptation 

Millar and Mermelstein [8] havf' ~ug~f"~ted a r("~I(Jual-<lrivelî al,z;orithlll for Il St'r-

and arder transversal pre<lictor whirll ha~ been adopt<,d by th(' ('CIT'1' as part of an 

internatIOnal standard for 32 kb,'!' ADPC'M [,t'If. The actual adaptation !oodu'llw pro· 

posed in [8] and [5] 15 a simplified vl'r'iion of what i~ ln follow, and will 1)(· di~CI'I~M·d 
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in Sectien 3.2.5-;-3. The approach taken is based on the fact that. MA p,redictors (u:., 

ones which lead to. aIl-zero synthesis fllters) do not. give rise to mistracking. This sug-

gests that a two pole synthesis filter Rn{:;) c~n be represented iu tenus of an 'lnfillite 

number of zeros, 
, '. 

1 1 00 

Hn(::) = '1 = 1 + "c1(n).:-z. 
1 ~- ()_-1 L... 

- ...... 1=1 al n - ,=1' 
(3.2Z) 

A SG adaptatio'n for a p-th orcier MA predldor with coefficients cz(n); input. ê(n) 

and output x(n) is glven by [8][14J 

. Ilê( n )ê( n - i) 
c,(n+l)=(l-Lb)c,(7J)+ ~') , 

CTë( n) 
L=1,2, ... ,p.· (3.28) 

The above equation is derived by solving and "estilllating the MMSE solution for a MA - , 

predictor. and is similar to (3.26a) but with the updat~s driven onIy)y the qua~tized 

residuai and the normalization based only on the reslduaI power. 

The adaptation procedure for t.he a/ln) is fou'nd by approximating Hn+d.:) by 

the infinite summatÎon in (3.27) at time 12+1, after appropriate updates to the first 

two zero coefficients c/(n), l = 1,2. The remaining cl(n) may assume "natural" values 
. 

at time n + 1. Thus, for a second order predictor. setting fJ = 0 and p = 2 J-n (3.28) 
;i 

and substitùting the result into (3.27) at time 11+1. will give 

2 00 

~ 1.+ L(Ct(n) + ~cz(n))=-l + L clin + 1)=-:/. (3.29 ) 
1=1 1=3 

~ow, equating lik~ powers of :; yields 

~al(n) = ~Cl(n), 

• ~a2 ( n) = Â C2 ( n) ...:. 2a dl) ÂCl ( n ), 
;' 

whère!:l refers to a coefficient .update. The resulting adaptation algorithm is [8] 

. ' p ê( 11 )ê( 11 - 1) 
al(n+l):::;(l-b)a}(n)+ ~'l " 

u .. ( n ) • . f _ ,,1 
<'-

(3.30a) 
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-

a2(n + 1) = (1-26)a2(n)+ ~.!, 
~ ~c(n) 

. (ê( 11 )ê( n - 2) -' 2(1] (11 lt:( n )t'( 1/ - 1)). 

where 

x' 1 
.} ~ , ') 

&-;'(11);;:: (1 -.,\) 2..... ,\ t~(ll - /). 
1::::0 

= '\ô';(n - 1) + (1 ,- ,\);2(11). 0< ,\.1. 

Note that this satisfies a feconst mction proces<; of tlH' forlll ~hown in FIJ!;I\f(' :L;) wll h 

i( n) not appearing anywhere in the ahoV<' li pelatl' (·(l'talion.,. 

Robustn~ss of the Algorithm. To pro\'t> thal llli .. tTiIl·kll1~ dlll' 10 (haIIIWI .'rrorl> . , 
/ 

15 eliminated il is suffinent to show t h,tl tlH' al~()rJI hlIl~ al the l'nl'odf'r a'nt! df'codt'f 

converge afler an ImtÎal offset ln the C(H'ffi('wllt:. Thal )<;. :'lIIpl} 11'1 (l'I( 1/ l.l':?i Il)) 

and (qj(71),Q2(n)) betwodlstinctsolutlOIIs 10 (:J.:Hla) ,Uld CL:Wh).(·,lch wilh dlff",'r<>111 

initial conditions and identlCal qu~ntiZf'd f('~J(lllal ~t'qu('nn' 1'(11). '[heu tIlt' cliff(,ft'nn' 

bet ween the firsl coefficients of tht> t wo ~olll t lOm, 

approaches zero t>xP()neI\tîa~t1r:inll' (OIl,t ant 
, , 

Il ' .... SIIIIIJ "rI:.. ' 

:\~sumlnj!; an Ilpp{'r bound on thf' factor 

1 ~~ f( 11 V ( /1 1 ) , 
~'} 

(1;-(11) 
.\1 x. 

, , 
th~ magnîtudf' of (:L:nhl ('an hf' boundt'd hy 

. JI ~11 ( " l 'II ( 11 1 . 
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where the first. term decays t.o zero with time constant:::: 1/26 and the second term 

decays to zero due to (3.31a). Thus, the coefficients are shown to conyerge "from 

different init.ial'conditions. -

The assumption that the encoder and decoder algorithms are driven by identical 

signais ê(71) is a valid one, sinee a channel error affect.s the received signal for only a 
...... 

finite number of samples (due to robust quantization). Naturally, the actual recovery . 
-) 

time aft.er a channel error is longer if the received signal ê'( n) =fi ê( n) for a finit.e 

numher of samples. 

The fitct that this algorithm is sub-optimal, due to the approximation in (3.29), 

is not as crucial as the prevention of rnistracking: We can, therefore, allow a slight 
, 

10ss in predictor performance in order to ensure robustness in the presence of errors 

(performance / rqbustness tradeoff). 

3.2.5.3 Residual-Driven Adaptation Using Sign Correlation 
M ultipliers r 

In order t.o reduce the complexity of implementatio~, the adaptation algorithm 

in (3.30) can he further simplified by ~sing only the sign info~ation of the residual 

saniples; ù .. 

al(n + 1) = (1 - 6)al(n) + Il' sgn[ê(n)] sgn[ê(n - 1)], 

a2(n+ 1) =(1-28)a2(n)+I1'(sgn[ê(n)]sgn[ê(n -2)] 

- 2a\dn)sgn[ê(n)]sgnfê(n - 1)]), 

(3.32a) 

(3.32h) 

where sgn[ J is the signum function. Generally speaking, the step-size parameter Il' 

should he the same as Ji in (3.30).' However, in su~seqUt;nt experiments Il' Îs set to ~ 
-, 

in order to optirnize the performance of all three transversal algorithms with resped 

t.o th~ same Fange of values in'I" This is not pbssible when JL' = Il. Note, a150. that 
( 
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( -
normalizatiqn by û;( ri) is not required wh en the sign multiplier is used inst ead of the· 

trùe multiplier. 

11 is known that the use of such a cru<le correlation multiplit>r <Ioes Ilot alTI'cl 'Il\(> 

convergence of the coeffiCIents in the stf'ady-s1att> /22]. ,The speed of conver~en('t". 

however, i5 decreased since the updates are no longer sensitivt" to chanp;('s in the 

residual sample magnitudes. A~ a result, therc" IS a !'Ilight ·performance de~radation' 

associated with the sign multiplier. particularly wlth lIo\l·~tatJOnary IIIput:-. f{t':.,dh 

for second order predictors indlcate that. OII tilt' a\'f"ra~(·. t hi~ ~chellW !-I1l/f"r:-- frolll I«·,;!'. 
{ 

than a 1 dB loss in prediction gain with ~pt·('('h :'Ignah. cOllqhtrt'd t~ dl(' tTlIt' lllultlplit'r 

algorithm;i:his is even lower wlth dual-toIlt· Input-. (~t'(' Sect 1011 ,l.:~ 1. Tahl«' 'l.:q, 

The original motivation for u~ing 'llg;n mult Iplit·r:. In t lit' updatt'~ wa" 1 () rt,du('(' 

implementalion complexity [8JJI)!. However, in thi:-. papt'T W(' Mt' nul (Oll( (·TII(·d ~'it li 

hfl.rdware implications such a!-. romplt'xit'y - only Wlt h al~oflt hm pt·rforIlut.II('(', So 

there is a difft>rent reason for \JIcludin~ tht· ~i~n algoTlthm III Ihls dl~CIl~~I()n: ,\rtt'r 

simulatJOIl!> of the trut' multIplier aigoflthlllln (:L:W) Il Wjl:-' dl~cov('Tt'd Ihat \'altll''' of 

the parallleters J.l and r. which YI<'ld gond 'p(·,·rh IwrforIll,ll\(,(' rt''>lllt III vny pour dllal 

tone performance, and \'IC('-\'('r~a ('>('f' S"I'tlOll" 2,1), \ton·o\'n. Il wa" Illlpc)~'Ilhl(· to 

• 
seled ('OIllIHOUlIM' val-ue., of l' ano'b wlthout ~('\'('r('ly d,·)!,r.lfllllJ!, tlll' pt'rforlllan(f' for 

eliher type of input ~ignal. T~i~ wa!. found 10 Il(' 1rlIf' ft'gardlt'!-Ih "f tll(' Vah1,(' of ,\ ill 

(a~), Thus, the> pt'fforlllann' of tll,' tram\'('rhal pn·die tor IItJliziuJ!, rt'~J(ltlal·clri\'f·11 
adaptatIon (3.30) ;11 hig;hly ~t'milJVt' tU' (1/ tIlt' typ" of \JIp1l1 (sp~"('h flr dlli\I·lonf') 

and (Il) the paranH'tf'r!-l fi and h, ln parlIf'ular.lt wa~ ob"('rv('d thnt ~f)n(1 pt'rforlllnn('(' 

for dual-tone or other narrowhnntl Input" i!> IÎmitrtl ln il "f'ry nnrrow Tf'J.!;IOH in t}l(' 

.. parameter spart' (p./I-), 

This Îs also true or t he .,i~n I1l\1ltlplirr ill~ont hm in (:~,;J:!). hut 10 il j,'hhrr rxtrnt, 
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In this case. there exist sorne çOrnpromise values of JI and b which yield relativelJ.-

good perfotman.ce for both tYP,es of input; of course, an unequal weight.ing is glven 

to the selection of values. favouring speech performance over dual-tone perfonuanl't:' . 

• 
Robustness of the Sign Multiplier Algorithm. Using an analysis ident.ical 10 

/ 

~hat of the previous' sectiQn, it can be easily shown' that the sign algorithm is also, 

irnIpune 1.0 mistracking. NQte that, in this ,case, M is always equal to 2JL'. 

3.2.5.4 Disadvantages of Transversal Residual-Driven Algorithm 

There are IWQ main problems associated wlth the residuaI-driven algorithm for 

the transversal filter (both true and sign-multiplier forms). First, the performance is 

sensitlve tQ parameter values and type bf input. although to a lesser extent with the 

sign algorithm. Second, the algorithrn canhot easily be extended for higher order pre­

dictors. This is because equatmg higher order powers of:: in (3.29) yields increasingly 

complex update terrns ~a, (n). 

Renee, it would be desirable to find a residual-drivell adaptation seheme whïeh is 

i 
independent of predictor order and whose performance is not 50 sensitive to pararneter 

values and types Qf input. This leads us to a discussion of the lattice filter. 
~ . ~ .. 

• 

1 

o 

-- . 
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3.3 Lattice Filter 

t. 

The lattice filter is an' alternatt> realiza.tion of the Iinear 'prt'dictor p,,(;) in ~..I )', 
" , 

The filter is a.modular st ruc! ure com po:-.ed of a ('~~('ad(" of ideut lcal lnt t let' ~t nJ,!;('''. ~h' 

illustrated in Fi)!;ure 3.6. 

x(n) 

}---__t. f. (n) 

k,( n) 

-----t ~ ~ 1 t----~-----< 

(a) 

, . 

("~1 1 1> ("~ 1 H'I 
f" 1 (nI 

STACE 'iTMa: STA<;E 
,) 

: _m 

JI 
- - --

bl)( n) bl (n) II~ (II' . Il,. 1 (n) 

( " ) 
Fig. 3.6 "'Lattl(,~ fIl t ('r: (a) .. Ill ~It- ., t a,g(' 1: ( li) oV"ral! 1'- th ord"r 

strurt Urt' 

Each sta~e l~ d .. ~('nb("d by t ht> ord, T' 111I1/afl f'qUilliOI1 

1 ). 

1 :L:S:ih) 

where k,(71) Îs the ,dfection coefficirnt for \ta~(" 1. 100JJl('tjlll(.·~ ,d('rff"d to f\!- tilt" l'm1ial 

cOrTelation (P.ARCOR) roefficirnt Th<> input to thr fi, .. ! ,Iall,f" 1" cJ"fj'nrcl hy th,. mitial 

condition 
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The signaIs f,( n) and b,( n) are forward and backward prediction residuals of order 

l. This is shown by iterating (3.33a) and (3.33b) ~ith the init.ial condition (3.34),' so 

t.hat .- " "'i 

, '1 

fl(n) = ~(1l) - L a~l)(n)i(ll- J), 
)=1 

1 

b,(n) = X(ll,- i) - L c;Z)(n)i(7'l - Z + J), 
)=1' 

((3.:35a) 

(3.35b) 

whe~e the sum'mation terms above correspond to i-th order forward and ~ackwarq 

predictions of i(n) and i(n - il, respedively. NO,te that 11(n) and b,(n'fare truc 

prediction residuals of the recomtructed sig~al, unlike e(n) in (2.1), which is a nOlsy 

residual of the input signal. The optimal forward and backward coefficients of order 

1 aré related by 1 

(t) (1) 
a ),opt = C),opt' 1 ::; J ::; l, (3.36) 

assuming wide-sense stationarity. 

Successive stages of the fUter geI,lerate higher ~rder forward and backward prkdic­

tion errors. where the inputs to the first stage correspond to prediction residuals of 

order 0 and the output of the final stage is the overall forward prediction error f p (ll). 

Hence, the lattice filter whitens its input by removing increasingly better predictions 

at every st age. 

However l the structure in Figure 3.~ cannot be used direçtly as a predictor Pn{ ~). 

because t~e output is a residual signal rather than a prediction si,gnai. Iterating 

(3.33a) in terms of the backward residuals yields 

p , 

fp(n) = i(n) - L k1(n)b1_ 1(n - 1), ( 3.37) 
t=1 

where the summation term corres~onds to a p-th order f~rward prediction (due to 

(3.35a)) 
p p 

i(n) = L kl(n}bl~1(7; -,l) =: L>~P\n)i(n - il· (3.38 ) 
1=1 1= 1 
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The lattice predictor must be modified accordingly, as shown in Figure 3./. As in 

the transversal case, the syn-thesis filter here is simply the structure whose input antl 

out put are ê( Tl) and x( Tl), respectively. 

rI 71) 

J, (n 1 

Fig. 3'.7 Lat1ice prediçtor of order JI 

3.3.1 Properties of the Lattice Filter 

The lattÎC(' fil ter satisfies a number of Înteresting properties. including (t) a form 

of independence between successive stages due to correlation properties of the rf"sjd~al 

sIgnaIs, (Il) a sImple verificatIOn procedure fOf t.he stabIlity of the syntheSlS filh-r, and 

(Ill} modularity of the structure. 

Correlation Properties. The tirst group of propt'rties (Ii art" IHlM·d on t h(' prin-

cîplewof orthogonality for whitening filter1-l. A larJ!;l' Ilumber of corrl'Iat ion properti('~ 

"' between the resldual signaIs and tht· IIlput have ht'en sUIllmarized by Haykin in [2:31. 

The mas! important of the-se art' 

/ 

E(br{n)i(n - 1)]:::: 0, 

Elf,{n)i(n -/)] =.- 0, 

J 

o 

( 3.:39a). 

(a.39b) 

(3.39<:) 

(3.39d)-
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where 

6 ') ., 
Pl = E[J;(n)] = E[b;(n)). .t (3.40 ) 

The equality in (3.40) follows from (3.3.511.), (3.3.5b) and (3.36). Equations (3.39a), 

(3.3ge) and (3.38) imply that the baekward residuals bt - l (1l - 1) form an orthogonal 

basis for' the prediction signal x( n), with optimal coefficients kt. In the transversal 
!. 

filter, the prediction signal was formed by a eorrelated (linearly dependent) set> of 

signal~: {i(n-.l),i(n-2), ... ,i(n-p)}. In fact, the backward residuals may be gen­

erated by applying the Gram-Schmldt orthogonalz::atzon procedure to the above set 

of signaIs. [23]. This orthogonalization pro cess allows a form of decoupling between 
-

~uccessive lattice stages. 

Synthesis Filter Stability. The stability of the synthesrs filter is ens:ured if and 

only if [20] 

1 ::; l ::; p. (3.4l) 

Hence, unlike the transversal case, a simple·. stabili ty verification' exists,. for lattice 

predictors of any order. As in (3.9), the region is reduced to avoid resonances in the 

(3.42) 

Furthermore, the residual powers at. each stage ean be expressed recursively as 

Pt = Pt- 1(:1 - k;) =:= E[$2(n)j il-d - k;). (3.43) 
j;:=.l 

This is an appealing r S'ult, which implies that the forward and backward residual 

Modularity. The design of the lattice filter allows simple addition or removal of 
. ' 

single stages (without modifying the remaining st ages) tQ form higher or lower ortler 
, 

, .filters. It is shown that t~is property is also vaJid for th; adaptation algorithm. Renee, 

the optimal p+l-th order lattice filter contains the optimal p-th order fiher . 

.. 
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3.3.2' Local MMSE Solution for, Optimal Coefficients 

In the transver~aI filter. t he optimal coefficients were round ~y a gl~bal minimjza~ 

tibn of the residual powt>r E k2( 11 ) J . .The decou pli nJ!; property of t he lat 1 ice filt e-r makt's , , 
, , 

it. possible to 'achieve t.his globa) minimization yia a sequence Of lolOal minimizations 

of the residual powers at each stage. 

The local MMSE Sllution at'-"stage 1 is found in the! follov;ing manner. ' S.uppose 

t.hat stages 1 throu~h l 1 have already be-en 'optimized. Then the Qptimal ;oeftlcit'nt . . , 

,for stà.ge 2 is the one whi<:h minimizes Pi or. equiYàl~ntly. 

.. 
(:~.44 ) 

A • 

the s~m of the for~ard and backward residua{powers. . , -

Substituting the orde~ update equatlOns (3.:~:!a) and (3.:3:~b) into (3.44), and dîf-

ferent.iating wit~ respect to kt) wê get __ 

BJz 2 ') 
Bk, = 2k1 E[f,_ d n) + b;_l Cn - 1)1 

- 4EIf,_d n )b,_ d 71 - 1)1· (3.45 ) 

~ 

Setting this gradient.·to zero r~sults in the optimal solution 

" 

The above equaÜon satisfies the condition 

Ik"opt 1 S 1. 

which would not he the case If only Elf!{lI)) or Elb~( n)} werf> minimized insft'a<l of 
~ " 

the SUIll l23H21] .. Thus, except for the equality; t he optimal solution always leads to 

a stable synthesis filter. 

. 
Adaptlve algorithms based on (3..16) havf> th(' prop('rt~ that the c?nvt'rgen('~of 

the l-th coefficient can oaur only aftt'r the low('r order ("of"fficients havp ("onv("rgfOd; 
.. 

. \ 
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This is ~~cause the inputs to st.age tare effectively non-stationary when the previ,ous 

c~effkients are st.ill varying. As a ~esult, t.he global çonverg-ence, occurring progres-

sivelyon a stage-by-stage basis, depends upon the order of the filter [20]. . , 

However, the convergence rate for each stage.(after, its inputs have stabilized) is 

,approXimately the same because updates ba\ed on ~3.46) are normalized by the input." 

power of that stage. In,eff.ect. suitable step-size values are automatically generated for. 
, , . 

each stage. This implies that convergence Qf (3.46) is hig~ly insensitive to eigenvalue 

, spread [24J. Conversely, in the transversal filter aIl updates are scaled by the same 

-
step-size patameter ~ Jl( 71), makipg converge~ce eigenva~ ue dependent as. was described 

in Section 3.2.2. 

t 

On the Pos.sibility ofMis~tr~cking. An algorithm oaseèl on (3.46) can be consid-

ered as being signal-driven, since the forward and backward, residuals are derived from 

the reconstructed signal. In fact~ these residuals indi'vrdually span the' same' signal 
1 .' 

5pace as X( n - 1) so that the discussion in Section 3.2.4 is equally valid in the °case 

of lattice filters. 

~u~ (3.46) i5 susceptible to mistracking, and the development of a residual-, 

dri ven lattice algorithm ~o·uld be beneficial. In the n~xt, section two "specifie lat,tice 
, ' 

, algorithms are examined: one signal-dnven and on'e residual-driven. 

3.3.3 Lattice St~chastic Gradient A-Igorithm (GAL) 

3.3.3.1 Signal-Driven Adaptati~n , 

The lat tice S G llgori thm (also kno~n ~ the G r~dien t Ad.p ti v.' J,al ti ce alg~r;t hnl! 
, . , 

is derived by approximating the ensemble averages in (3.46) by' fading.meniory time 
" , , 

-. 
-r 
f •• 
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arerages, 

~ . o <: Î' < 1. (3.4i) 
1 

where th.e fading fador -} is require~ in c~se of ilOII-stationary inputs, 

~The reflectian eoeffi~ient estimate in (3Aï) can also b~ defined by the following 
, - , 

recur,sive equations: 

')1 

.. C1(n) _ 1'C,(n -1) + 2f,-d n )b,_i(n - 1), 

.. J ") .) 

,Di(n) = ,Dl(n -1) +. J;-d l1 ) + I)~_dn -:: ]), 
"It/ 

(:3.48b) 
" , C1(n) 

kz(n + 1) = 'ï5;(;)' 
Î.J ~# 1 i 

(:~.4lk ) 

Thus, the numerator and denomin!ltor are, apl~roximated ~('parately and tht> 'ratIo of 

these tw~ terms ~eéon~es t~e. new ~s;imate ~f the optimal reli_c~on "o .. f!i~ient. Note 

th~t thls estimate is biased in the asymptot.ic mean i251.,for a~ 71 . - t.XJ, 

fi' 

Equàfion (3.48e) is an indirect coeffi('ient update; 'J .. 1t is not of tht' form 
r , 

k,(n -t 1):;:: 'k,(7I) +' Âk (TI). However, by IlHt.;lÎplllahng (3,~l'q and (~,:~:q th .. • <"Odfl-
1 • 

ci:nt Ilpdates'C7can he eqUlvalently expr('s~<,d in tilt' direct form iI.!. 

p . 
w hert' the st ep-size 110 15 î m pti('Jt Iy generaft·<! 111 t ht, dn vin~ t <'rm. and t ht· radi ng 

"~, , 
'factor, has the same role as À in the'.transvf'rsal.illJl;orithlll (:1.26). This is f'ffrctiv('ly 

, î ., ' • 
1 " 

; a stochasii(· gradient update equation .. slll1il~\T to the t ransvr.n;~l cahr. 

To COIJlplt'te t ht' algorithm 'Nf.' mil:~t acld ('()('Hicient lf'akaJl;f', for tht' halllt' reasons 
. fil'·, '. 

- • ..- ~ 1 _ 1 

as stated earlier for the transv('r~al filtf'r. Th~~. lht' si~na.l-drive? SC: algorithm ib 

defined, in the,dirt>,ct Conn. as 
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or, in the indirect form, as 

• (\(11) 
k/(n + 1) = (1- Z,)-D ). (3.50b) 

/( 11 

Although (3.48<") and (3.49) are equivalent, il is important t.o note that. (3.5.0a) ~nd 

(3.50b) are not, since in the direct fonn the leakage is applied only to the prevlOUS 

coefficients, whereas in the indirect form it is applied to the drivin,g term as weil. . . ., 

However, the differenc,e between the two 1S insignificant if b is close to zero . 

3.3.3.2 Residual-Driven Adaptation .. 

One way to derive .a residual-driven algorithm for the lattice filter would be to 

follow the procedure given in Section 3.2.5.2. However, this would prove to be very ln-

efficient SIllee (1) the reflection coeffiClents must firsl be mapped into transversal coef-

finents, (ll) the a~~on in (3.29) must be performed to find the residual-driven 

updates in (3.30), and (m) the·result must be mapped back to reRection coefficient 

updates: 

M- 1 (3.29) M 
k z 1-----. aL 1--- ~at t---- ~k.: 

Even if these calculations were fe~asible on a sample-by-sample basis, there are other 

disadvantages to consider. First, the result would riot be very accurate due to the 

combi d effects of the approximation in (3.29) and the non-linearity of the coefficient 

transfor ation A1. Second, the resulting ada.ptation algorithm. being a transformed . , 
, , 

e transversal algorithm, completely ignores the correlation properties or 
, ) 

th'e lattice fiItet discussed earlier. ThjJd, tne method would g~t increasingly complex !\ 

with higher order filters (as was the case wlth the transversal algorit.h)Il). 

Instead, the derivation of a re~iduaI-driven algorithm for t.he lattice filter is based 

on the following heuristic approach: In ADPCM, the residual signal is far from white 

1 

and is, in fact, correlated w~th the input signal. This i8' beca'Use the prediction pro-

fess is not. ideal, particularly with low-order predirt.ors. Intuitively, it would appear , 
v , 

, 
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that a su~-optimal set of coefficients can be selected by maximally de-correlating the 

q~antized r,esidual ê( n} instead of the reconstruded s~gnal f( ~). Thest' coefficient.s 

can then be used to form the prediction. as in Figure 3.ï. ' 

~ / , 

For example, Figure 3.8 illustrates the reconstrJlcted and, quantized residual sig-

naIs for a segment of male speech of t~e vowel lai in the word "dark". The signaIs 

are fx:om a simulated ADPCM co~er utilizing a second order lattice predictor with 

residual-driven adaptation (referred t6 as LR). Co~paring th~ waveforms in'(a) and 

('b), ~~ better yet, the magnitude spectra in (c) ~nd (d), it is obvious that the quan­

tized resldual is quite correlated with the reconstructed signal (and hence the input). 

The same trend is observ~d with other speech sounds and na~rowband si&nals. 

Implementation of Residual-Driven AIgor!thm. An implementation based on, . 

, ihis app.Joach requires two lat'l.!ce filters: one for de-correlating ê(n) and generating 

k~(n), and the other for the predictIOn. This is- deplcted In Figure 3.9. Note that the 

kz (n) generated hy the top filter are used in th-e bottom filter. 
" 

Following the results t.hu~ar for the l~ttiée filter and signal-driven algorithm, 

a residual-driven algorithm for .the above scheme can
r 

be defined by the following 

equations: 

- t - -

fz(n)"= fz-d 71 ) - kz(n)~z-I(n - 1), ) ( 3.51a) 

bz(n) = 61_j{n - 1);- kz(n)lz_1(n),_ (3.51b) 

J O( n) = bo( n) = ê( TI ), (3.51c) 

Ct(n) = ,C'î(n - 1) + 2Jz- 1 (n)bi-1.(n. - 1), r (3 .. 51d) 

-. • - . -'J -'J 
Dl(n) = ,Dz(n - 1) ~ f~.-l(n) + b~_l(n - 1), (3.51e) 

kz(n + 1) = {l_.Ô) C:z(n). 
'Dl{n) 

( 3.5lf) 

a' 
Performance' Limitations. U~ing such a method entails a sacrifice in coefficient. 

" 

! 

t 
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Fig. 3.8 Correlation bet ~een i( TI) and ê( n) for speech vowell al 
in the word "dark" (LR predictor): (a) reconstruded 
signal; (b) quantized residual; (c) short-term spectrum 
of (a); (cl) short-~erm spectrum pf (b). 
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Fig. '3.9 Implementation of residual-driven system (using two 
p-th order lattice fiIters) " 

tracking performance (compared trü the signal-driven algol'ithm), pal'tlcularly with 

wide-band input signaIs. Figure 3.10 compares the trarking behaviour of the residual-

driven predictor (LR) with that of the signal-driven predictor (LS) for the input speéch 

segment / al . 

The reason for t his Joss in performance IS âs follows: When prediction is pOOl' 

and ê(n) is strongly correlated with i(n), the coefficients wiU ,converge towards t.he 
'" , 

optimal point. As the prediction accuracy inc'reases wi th tune, the correlation ?etwe~n .. 
ê( n) and .i( n) weakens (whitening effert); l. C., the informational content of ê( n) 

~ill decrease. Thus, the genLrated\coefficients will no longer track the input; QAn 

equilibrium is achieved where the two forces balance, anp t.he mean of the coefficien~ 

trajectory will differ 'from the optidtal point by 'a small amount. This offset is smaller 

• -for narrowband signaIs si,nce there is a stronger / correlation between i( n) and ê( n) 

than is the case with wideband signaIs, even at hig~ prediction gains. 

With the- signal-driven lattice, on t.he ot her hamL the informat.ional cont.~nt. of 

1 
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Fig. 3.10 Encoder tracking of LS and LR predictors for speech 
vowel lai in the word :'dark": (a) input signal/al; 
(b) LS quantized residual; (c) LR quantized resiclual; 
(cl) k} trajectory; (e) k2 trajectory; (f) prediction gain 
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i( n) does not decrease as the prediction im ~roves. ,The only effect, às ê( n) beèomes 

white, is a small fluctuation in the coefficient t.rajl"ct.ory about the optimal point; the 

offset is negligible in Jhe mean. 

/ 

Robustness of the Algorithm. Using proof similar ta that in Section 3.2.5.2. it. , 
can be shown that the encoder and decoder algorithms converge after an initial offset. 

in the coefficients. Let Pl(n) and ql(n), 1 :::; i :::; p, be two distinct solutions to (3.5lf), 
, 

each with different i.c.'s but. with identical input ê(n). Rewriting (3.5lf) as, 

(3.52 ) 

we get the difference bëtween the first coefficients of the two solutions, 

where 4>0 ( n) is a function of the current and past values of ê( 11) and is boûnded by 

(0,1). This difference equation approaches zero exponentially with maxiU1UID time . . 

constant l/b. Once the first coefficients converge. the residuals at the output of t,he 
.l 

first lat.tice stage will also converge for the two syst'ems'. To complete the proof we 

simply show that 

given that ~he previous stages have' converged. 

p)(n) = qJ{n) for J = l -I,i - 2,,, .. ,1. 

This follows immediately from (3.52) where the second term is c.ommon to bath 

solutions and thus the di'frerence equation can be written as 

pt(n + 1) - qdll + 1) = (1 - b}(I- <Pz-](ll)) (pl(n) - qz(n)), . 

, 

.. 
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where <Pi-l(n) is again a function of the eurrent and past values of ê(n) bounded br 
c " 

(0,1). This equ.ation also approches zero exponentially with maximum tim~ constant 

lJb. Hence, the re-adjustmellt of 1.be decoder ont.o the encoder oecurs stage-by-stag~, 

with a global maXImum time constànt which depends on p, " and (1 - 6). 

'-, 

( 



Chapter 4 Experimental Results 

This ch~pter investigates the performance <;lf a 32 kb/s ADPCM encoder/~ecoder 

with speech and signalling tone inputs. Voiceband dat a inputs were not applied as it 

was felt that the result.s obtained with the simpler slgnalling tone inputs typify the 

behavio~r of the system for aIl types of narrowbanà signaIs. The;' adaptive predi~tors. 

described ~n the .previous chapter, are first optimized and then compared In t.erm\ 
. 

of tracking ability, convergence, and prediction gain in the presence and absence of 

channel etrors. 

For convenience, the following notation will be used in order to precisely refe~to 

each of the five a:daptive predktors in subsequent experiments: 

1) 

. . 

{

transversal predictor 
TS(p;'6;~; À) - signal-driven algorithm 

stability const.rail1t. 

2) TR(p; 6; Il; À) - residual·driven algorithm 
{ 

t.ransversal predictor 

_ stability constraint , 

" { transversal predictor 
3) --rRsgn(p; 6; J1) -----t residual-driven algorithm 

stability constraint 

4) 
. { lattice predictor . 1 

LS(p; 8; "1) -----t signal-driven algorithm 
. stab.ility constraint 

(3.4 ) 
-(3.26) 
(3.9 ), 

(3.4 ) 
(3.30), 
(3.9 ), 

(3.4 ) 
(3.32), 
(3.9) , 

" }. 
€ = .05 

p = 2 }, 
€ = .0.) 

" } p = '1 , 
€ = .05 -

(3.33),(3.34),(3.38) } 
(3.48~),(3.'48b),(3.50b) , 
(3.42), f = .05 
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{ 

lattice predictor -
LR(p; 6; 1) ---.. residual-driven algorithm 

st.ahility consttaint 

(3.33), (3.34), (3.38) } 
(3.51) , , 
(3.42), f = .05 

where the parameters ah ove are 

p predi ction order,-

fJ --+ , coefficient leakage factor, 
• 

J1 --. adaptation step-size (transversal), 

,\ normalization memory constant (transversal), 

1 --+ adaptation fading factor (lattice), 

t 
té --+ stability constant. . 

Not.e that the TR and TRsgn predict.ors in (2) and (3) are restricted to a second 

order implementation dlle to the derivatIOn of the re-sidual-driven algorithm (3.30). 

In l'lny case, most of the experiments in this chapter are performed with second order 

predictors. Adaptation equations for higher order TR and TRsgn predictors have 

been derived, following the same steps in Section 3.2.5.2 but with p > 2. However, 
-

the resulting updates are nonlinear and too cumbersome to be i1lustrat.ed in this 

paper, even afte~ simplification. lt is my belief that the disadvantages of higher order 

residual algorlthms for the transversai predictor far outway any gains in performance. 

Quantization is performe-d by a 4-bit or 16-level Gaussian quantizer utilizing ro-- , 

bust step-size adaptation (see Section 2.5). The Gaussian mapping seems to beâ~ 

good compromise for quant.izati~n of both speech and data residual signaIs. The 

same adaptive quantizer is used in an five ADPCM systems. and is defined by: 

1 

mappmg 

codeword 
algoritnm 

" 4-bit Gaussian 
ek and €k as in Table 2.1, with ~e ~ 1500 1 

, : , k in sign-magnitude code (SMC) 
: (2.16) with j3 = 63/64 
:' 1 step-size ~ultipliers 'as in Table 2.2 

(2.13) dynamic range = 65 dB 
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4.1 Computer Simulation Procedure 

The work to be described in this chapt.er was performed at the INRS~ Télécommu-

nications/Bell Northern' Research audio Jaboratory in Montréal. The ADPCM system 
r - 1 

in Figure 2.4 was simulat.ed on a D EC VAX 11 /8600 com putei using the predictor 

and quan.tiz~r definihons described above. The simulation program was. written in 

FORTRAN using single precision real arithmetic,l In addition, a number of audio 

processing, plathack.~and di~play utilities were used for examining the results. 
" 

A va?t library of phonetically balanced speech sequences is conveniently main­

tained for audio research. AIl the t.est sequences used in t.his work wère originally 

processed through an anti-aliasing filter. sampled at. 8 kHz, .and stored in the library 

'as audzo files. 2 Single-to~e and dual~tone sequepces were generated by computer at 
6 ./ • 

". 1.)' 

8 kHz and also stored. as audio files. The simulation program .reads s~ments of an . 
input -audio file, performs the encoding and decoding op,erations sample by sample, , 

and stores the reconstructed segments in an out.put audio file. 

The program also generates other information such as quantized residu~ls, pre-

dict~r coefficients and performance measures (SNR, Gp) thaf tan he displayed (along -

wit h the input and output sequences) as functions of t.ime. 

\ 4.2 Selection of Optimal Predictor Pariimeters 

- , 

A meaningful and fair comparison of the five predictors must be preceded ~y an 
.,. , 

optimization 9f- the speech and dual-tone performance of each pre'dictor~with respect 

to,its adaptation parame~ers. Thus, the main objective of thi; sect.ion.is to establish 

1 w~ ar~ conc~rn~d only .with algorithm p~rformanc~, not wlth a real-time hardware simulation in fixed 
point ar,thmehc. . , 

~ , , 
2 An audio fil~ contams int~g~rs in the range [- 32768, 32767] repres~ntlhg the sampl~ amphtudes jô a 

sequence. Th~ full rang~ 15 mver us~d, &1I0Wlng ~ampl~s to b~ proc~ssed wlthout anthm~tlc overflbw. 

) 
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(for each predictor) tHe optimal or best. compromise parameter values for, both types 

of input signal. 

For simplicity, the optimization is limited t.o seco..nd order predic'tors. The pre· 

dictor performance measure is segmental prediction gain (GpSEG; seè Section 2.3, 

Equation (2.11)) using 16 ms or 128 sample segments. Segmental SNR (SNRSEO) is ,-
". 1 , ' 

aiso valid, t.hough it does not. isolate the predictor performance from the combined 
J 

predictor-quantizer performance. However, this is' not important if (tj 'tbe test in-
" . .. 

puts are chosen so that the quantizer does Irot operate near the limits of ifs dynamic 

" -
range and (li) t here are no channel errors. U nder these conditions, the quantizer per-

formance is relatively const~nt, with SNRQSEO ::::; 18 dB, regardless of the type of 

inlut. Thus, the SNRSEG value is roughly equal t.o ppSEG+ 18 dB, and either value 

may'be used to evaluate predictor performance. In the presenc~ ,of errors, this relation-

ship no long~r hoIds, so SNRSEG(Pe) is used t.o evaluate the overall encoder / decoder 

performance (see Section 2.3). 

Eight spéech inputs, defined in Appendix ~, are used for speech optimization. 

The results from coding each input are averaged to give an overall speech performance 

measure. An input signal composed of two equi-amplitude sinusoids at 697 and 1477 
, -r' 

Hz is us~d for optimization on narrowband signaIs, 

. 27r fI . 211'j<> 
x(n)=AsInT,n+Asm fs~1l, (DTMF-3) 

with fs = 8 kHz, fI = 697 Hz, and 12 = 1477 Hz. This signal, referred to a~ D:;rMF-3, 

corresponds to the tones generated by pushbutton #3 on (!ommercial telephon~ sets 

using DTMF (dual-tone multi-freque:r;J.cy) signalling. 

The most important parameters for predictor adaptation a"re: 8 (coefficient leak­

age factor), J1 (adaptation step-size for transversal predictors), and 1 (adapt atidn 

fading factor for lattice predictors). The stabilit.y const.ant., f, and the norm~lizati~n 

1 
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memory constant for transversal predictors, ~ play a secondary rôle in predictor per­

formance, if adequate values are.chosen. In the following,~expernnents t.hey are fixed 

1.0 the values 0.05 and 0.9, respectively. Furthermore, and wit.hout. 10ss of generality, 
/, ,.. . 

1~e prediction ordet: is constrained to P = 2; t.he optimal adaptation parameters (h, 

and Il or /) should have little dependence on prediction order . 

. 
An optimlzation procedure for each predictor is outlined below. 

1) Encoder performance using speech and DTMF-3 inputs. 
~ 

a) find th~ average GpSEG as a function of , JI for the transversal predictors 
and 8, / for the lattice predictors using t e speech inputs of Table A.l. 

b) do the same with the DTMF-3 input Ignal. .. 
. 

cj using the result.s of (la) and (lb) find. as b varies, sorne values of JI in the 
transversal predictors and / in the latt.Ice predictors which provide high , 
GpSEG for both types of input (these val~es sh~uld be on the locus of 
maximum GpSEG. a function of 6). 

2) Encoder 1 decoder speech performance wIth transmission errOIS. 

a) with speech inputs in the presence of transmission bit errors of different rates 
Pe, find the average SNRSEGjPe) at. ~he decoder as a function of 6 and Fe; 
use the values found in (1 c) for Il and /. ' ' 

b) select the 8 in (2a) which yielCls the best. overall speech performance in the 
presence and absence of errors\ this value along with the corresponding f1 or 

,r / in (le) constit.ute the hest overall choice of predictor parameters. 

't 

Of course, an évaluation of DTMF-3 performance with errors is flot possible due 
, ' 

to mistracking in the signal-driven predictors. Trackmg perfqrmance will be exaOlined 

in Section 4.,4, using the optimal parameters found here . 

... 
4.2.1 Encode'r Optimizatlon 

. 
( . '. 

- The experilI!ents in this section correspond to parts (la), (lb), and (le) in the 
, , 

optimization procedure. The predicfor parameters were varied exponentially i~ steps';: 

" 

'-,1 
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'of .5, taking on the following values: 

8 = 2\ i = -12, -11.5, ... , -4, 

2l Il = , i = -8,-7 .. 5, .... 0, 

l' _ 

Î = 1-2 l
, 1,<= -10.-9:5, ... ,-2. 

This results in 17 x-li points in each of the paramet.e~ spaces (8,}1) and (D, ')'). Ther 
, J 

. range of values chosen include~ typical values found in the literature for SG adaptation· 

algorit.hms. ' 

There are several reasons for selecting values that are negati ve 'integer powers 9f 

two (the intermediat.e steps of .5 are inçluded only to improve the resolution of the 
./ 

parameter space). First, an exponential seaie is required in or de'! to test a wide-Jange 

of parameter vl'i)ues. Second, constants ,of th.e form 2l can be repre~ented by shift 

operations in digital hardware, thus leading to very efficient i'mplementations. 

Figurés B.l through B.5, in Appendix B, illustrate the speech and DTMF-3 per-

formance of the predictors, using cO,ntour and surface plots of GpSEG as a function of 

the parameters. The input .signals were ADPCM coded at each point in the param-. \ 

eter space of the five preüict~rs and the' GpSEG values were measured. The dotted' , -

68 
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lines in' the contour plots represent smoothed loci of maximum GpSEG as D varies 

from 2-12 to 2-4 . Thus, given any value of h, the ('orresponding value for Il or , on 
~ ., ' 

ri , ~. 

the loc~s 'will yield maximum prediction. gain. 
> 

r . • . - - . 1. ';':1"," 
" .. 1-" 

Transversal,Predictors. The ayçrage speech performance (over eight. inputs) of th'e ' 

TS, TR and TRsgn predictors is illustrated in Figs. B.1(a), B.2(a) and B.3(a), respec­

-tively. The r~sults indicate that th~ best ?peech perf~rmance, say GpSEG ~ 9 dB, for' 

aIl three predictors is limited to a triangular operating regioni~ pa.;ameter space 
1 .,._ 

(8, Il). In all cases, there is a g~adual decrease in Gp SEG which is aimost .independent 

. o~ b'as J.L -t 1, and a rapid drop which is'maxÏI!lal in the direction Iog2 8 = -:: 10g2 J1 aS 

J-L -. O. AIso, in the absence of errors GpSEa alw~ys increases as 8 -t 0, as expected. 

" \ 

,1 
! , 
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• 
Compared to the TS predictor, ,t.he TR an'd TRsgn 'predictors have.ja narrower , 

o~erating 'region with steepe. dt~ps in GpSEG d~>..JJ side;(particuJ.r1Y ~ /1 - 0).1 
In the operatingoregion, GpSEG values for the TR predidor are approximat~ 

, , , 

higher than th?se for TS or TRsgn (compare the contour at 11.2. dB in Fig. B.2( a) 
/ 

with the contours at 10 dB in Figs. B.1( a) and B.3( a)). In aIl three cases, the loci 
, ~ , 

of maximum .SpSEG follow similarly tilted trajrdories sugges~ing a dependence on 
V '" 

both parameters. 

DTMF-3 performance for the transversal pre,dictors is shown ln Figs. B.l(b), 

B.2(b) and B.3(b). The TS predict~r exhibits the same,characteri~tics as with speech 
. , 

inputs h\i~ wjth. J0';;er"G~SEG yalues throug~out the !ara,meter sp'ace; ~n fart: .aIl, five, 

pret;lictors achieve consi~ntly higl}.er GpSEG values with speech than with DTMF­

'~3; ,The locu( of maximumflpSEG for DTMF·3 appears slightly to the ri,ght of, the 

:one-for speec~, when measured along the log:! l' axis. Hence. 'the optimal speech and 

DTMF-3 pa~ameters for the TS. predicto~-are nearJ'y identical. . ' , 

.The residual predictors.., on the,other hand, behave differently with MF-3 
,f 

inputs than witp speech ~nputs. Although similar, maxIIllum' values are 04tai ed as 
, ' 

'i~ the . .:rS predic~or,- ~he shape and location of_the DTMF-3 opèr~ing regi 
, , ' 

changed with r~spect·to the sp~ech'operating regions in Figs. B.2(a) and B.3{a . The 
" " 

DTMF -3 regions are, narrQw rect.angular ridges approximately centered along the locii 

for TR; and 

" for TRsgn. ,This is pr~cisely where speech~perforll1an('e begins to drop. Thus, finding . , 

p. 

suitable pararneters in ,the TR 'q.nd TRsgn ~~éÛi('tor8 for both speech and DTMF-3 - . 
" , 

" will inyolve a compromise. 

" Q 

o 
, . 

~J • 

t 
" 
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Lattice Predictors. Speech and DTMF~3 performance for the lattice predictors is 

depÎcted in Figs. B.4 and,B.5. ASlxpecf,ed. the operatiI}g region of lattice filters is 

relatively insensitlve to different-inputs'and to varI~tion" in the parameten~, Î., Both . 

lattice predidors exhibit rectangular operating regions with very graduaI drgps in 

GpSEG in a11 directions. This insensitIvity to paramet.er values IS lurther. exemplified 

by the fact that the loci are virtllally paraUel to~ log2 b axis. The implication here 

is that the optimal 1 value is mclependent of b; afu. advantage which allows for fine 

tuning of lattice parameters one at a 'time. 
, 

, . , 

The main' difference between the LS and LR preâictors lies in their sQee<:~,perfor-. 
manee ~hown in Figs. B:4(a) and B .. 5(a). Although both 'sets of contours follow the 

sarne' pattern, the LS predictor attains an average of 3.5 dB mor~ of GpSEG through-
l ' 

'out the param~ter space (this difference is quite significant). \Vitb the DTMF-3input 

the two predictors perform almost identi<:ally (see Figs. B.4(b) and B.5(b)) extept 

for slightly higher GpSEG values for "the L~predJdor. One obser.vation is that the 

speech performan<:e cl/rops as Î ....., 1, whereas the DTMF-3 performance remains flat. 

This di'screpancy is due to the long-term non-stationarity of speech signaIs (requiring , , ., . 
a ("ertain amount of adaptaiioo. fading) as opposed to the stationarity of dual-tone, 

signals.(whith can be tracked more optimally without anY,fading). . . 

,Choosing a Reduced ~~t ofParameters. Using the previous results, a set of five 

'points was selected from the parameter space of each predidor. E~ch set of points, 

given in Table A.l, was obtained by overlapping the speech and DTMF-3 contours 
/ > 

of each PTeclidor (Figures B.I-B.5} and then ch6osing, for five centrally located and 
, " 

equi-spaced fJ, values for fi. or 1 as near as possible to both locii." 
" 

The last two, rpws indicate the minimum 'segmental prediction gains for speech 

and DTMF:3 signaIs attai,ned with each set of points (this minimù~ll occurrs w5t h the 
~ , 

,/ 
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TS 

6 Il 

2- 6 2- 3 

2- 7 2- 35 

2- 8 2- 4 

2-9- 2- 4 

2- 10 2-4 5 

> 9 dB 
> 5 dB 

T~ble 4.1 

, . 
0 

~ . . -

D'" 1 

TR TRsgn LS LR 
{y J1 b J-l 6 '1 [, '1 

,)-6 .. 2- 4 2-() 2- 3 . 2-4 1-2- 5 2-.- 6 ] -2- 5 

2-7' ~-5 2- 7 2- 4 2- 5 1-.2- 5 2- 7 1-2- 5 

2- 8 2- 6 2~6 2- 5 Q-6 1-2- 5 2-8 1-2- 5 

2- 9 2- 7 2- 9 2- 6 '2- 7 1-2- 5 2- 9 1-2- 5 

'2- 10 2- 8 2- 10 2- 7 2- 8 1-2- 5 2- 10 1-2- 5 

> 10 dB > &.8 dB > 11.5 dB > 9.2 dB .-
>5 dB > 62 dB >68 dB > 6 5 dB 

Reduced set of parameters from (D, l') and (D, "() . 
t GpSEG for speech, ! GpSEG for DTMF-3 

.' . 

t 
t 

- largest leakage .v~lue D)_ Since the LS predictor is more sensitiye to chann~l ~rrors 
, 

than the ot.her four predictors (see next Section), the selected leakage v;al~s for this 
, 

predictor'are larger than for the others. 

4.2.2 
.. ~ 

Encoder/Decoder Optimization with Transmission En'ors' 

. 
This sectio"n corresponds to parts (2a) and (2b) in the optimization procedure. 

1 The speech inputs of Table A.l were encôded using the values in Table 4.1. Each 
. , 

encoding was subjected to channel errors of four different rates ·and a zero-error 

reference: Pe = (10- 2 ,.5 . 10-:- 3 ,10-3 ,5 . 10-4 ,0). Bit erfors within a single enco,d-

ing/ decoding were randornly generat ed ,?-ccording to Pe.o However, for each Pe, the 

same random error sequence was applied to each system. This was done ln order to 

maintain sorne consi,stençy in the tests. To reduce the simulation time, only a 1O,11~ 

sample segment of each input utterance was encoded. As a result, the performance 

measures' when Pe = 0 will differ slightly fron}/! those in the previous section, where 

each utterance wa~ encoded in its entiTety. Thè results are illustrated in Figures 

: , 

Each figure cantains five curves of segmental SNR at the decoder as a lun'rtion of 
: 
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6. Each curve represents a different bit error rate; Pe. It is dear frolU these figures 

that t.he effects of leakage are most pronounced in t.he LS predictor in (d), whièh 

exhibits a significant. improvement in SNRSEG(Pe) (for aIl Pe > 0) as f, is increased 

frorn 2- 8 to 2-4 : There is some improv lent for the TS predictor in (a) and little or 

no improvement' for the resldual-driven p edidors in (b), (c}, and (e). In thè latter 

case, b has practIcally no effect on perforn nre. Generally, the most robust predictor 

in the presence of errors is LR followed by TRsgn, TR, TS, and LS. This result was . ""'" 
o , 

expected, since residual-drfven predictors are deslgned to mimmize the effects,of error 

propagation around the predicf.OrjOoP. , ' 

It is desired to find the 6 whic maximiz~s t'he o;eran performance of ,.ch system, 

given the vanous bit error rates. This performance me~sure is a ~elghted average 

SNRSEG(Pe) value, given by 

SNRw = 0.5· SNRSEG(O) + 0.25· SNRSEG(5· 10-4
) + 0.i5. SNRSEG(10-3) 

+ 0.07 . SNRSEG(5.' 10-3 ) + 0.03 .SNRSEG(lO-2). 

Such a weighting; measures th~ performance of the encoder 1 decodë; under the condi- . ' 

tion: 50% of the tim'e tlfère are no ~rrors (~e = 0), 2.5%, of the time Pe == S· 10'..1.4 , etc .. 
. ~ . 

/ Different weightin.,gs can be used; this one favours 'p~rformance !Jnder l~': error rates. 

The 6 values that maximize SNRw are indicated by the smaU arrows ln Figure 4.1 

and, constiiute, along with the appropriate li or :r values, the best ùverall choice of 
\ 

predict.or parameters. This is ail summarized in Table 4.2, where the last four rows 

give ~n indication of average" segmental perform~nce for the selected values. As an 

aside, note that the differen('e bti'tween SNRSEG and GpSEG for speech without 

errors, ranges from 17.9 dB for TS tù 18.5 dB for LR; this difference is precisely 
- ~ 

SNRQSEG, as described earlier. Using the parameter values of Table 4.2, the tracking 

performance orthe five systems can now be evaluated. 
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TS 'TR TRsgn LS LR 
{; Il Ô Il {; l' fJ 1 . fJ 1 

2- 8 2- 4 2- 8 2- 6 
1 

2- 8 2- 5 ') -4 .. 1-2- 5 2- 7 1-2- 5 
, 

216 dB 222 dB 23.0 dB 232 dB 23.1.dB * 
27.9 dB 28.8 dB 28.2 dB 296 dB 27.8 dB o 

10.0 dB 106 dB 9.9 dB 11.5 dB 9.3 dB 

6.1 dB 5.8 dB- 7.0 dB 6.8 d~ 6.6 dB 

Table 4.2 Best overall chOl,~e of predictor parameters. 
w·SNRw for speech. 0 SNRSEG for speech (no errOIS), 

1 GpSEG for speech (no t'rrors), 

! GpSEG for DTMF-3 (no errors) 

4.3 Tratking of Speech SIgnaIs 

This section explores the tracking behaviour, or dyQ.anucs, of the five predi,ctor 

adaptation algorithms for different speech inputs. The first part deals with the pre-

diction accuracy at the encoder. or t,he abilit.y'of the encoder 1.0 track the input. The 

second part déals with prediction recoyery a't the decocÎer after a burst of transmission 

errors, or the ability of the decoder to adjust to the/encoder . 
• 

4.3.1 E'nco,der Tracking 

In 'Chapter 3' it was shown that the predict.or co~fficients al updated in order 
~ . 

ta minimize the prediction residual power (MMSE). For the signal-driven predictori, 

this 'is ~'chieved by ~ellce~ding t~e l\1"SE surface in a direc:ion opposing th~tochastic 
. gradient (SG). With short-te~m stationary inputs, these algprithms should conver~e 

in the mean with a small tnisadjustment in the coefficient trajectQries due to the 
o , 

stochastic g~adient estimates .. H~er, the leakag~ factor /j acts as an extra noise 

term in the adaptation process which pnyents the coefficients from converging in 

the mean: a small offset is always present. In addition, the iriaccuracy of step-

size normalization tends ta increase bath the rnisadjustment noise and 'offset in. t.he 
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coefficients. But even with these modifications, we would like to think of the signal-

driven algorithms as heing opt17nal. in the sense that they- have heen derived directly 

from an MMSE crit.erion. 

In contrast, the residual-driven algorithms have been derivéd froJ,Il approximations 

, to the MMSE criterion. In 'the transve"ral predictO'rs, the second order approximation 

in Equation (3.30) truncates the impulse response of the equivalent alI-zero fiIter and 

thus prevents a correct minimization of the MSE. In the lattke predictor,. the la~k 

of s.pe'cttal infO'rmation in the residual signal (cO'mpared to the reconstructed signal) 

leads to" inwf,rect decO'rre!ation of the reconstrucfe~gnal. We ~ve already s~O'wn 
the suboptimality of this scheme in Figure 3.iO: 

Thus j 'Ne wO'uld exped that the signal-driven algorithms should outperform the . . 

residual-driven ones, in the absence of errQfS .. AIt hQugh this is true of the lat tice 
\ . 

predictors, ~e found that the '~subopt'imal" TR and TRsgn track betier than the. TS. 
JJ ' ' , 

Table 4.3 compares .th~ segmental prediction gain a~t SNR obtai~ed at the en~9d~r 
, " 1 

,for eight speech inputs. Surprisingly, t.he TH and TRsgn predict0rs perform quite 

weIl on the average, despite their suboptimality. Howçver, ,only 2.2 dB on the average 
l , 

separates the best (LS) from the worst (LR). 
o 

f , 

'To 'what extent, are these differences due tO' misadjustlQent and/or offset in the 

coefficient trajectories? As an exam.ple, wé iUustrat.ê predictor ttacking for OPEN-M, an 

input with relatively low prediction gain as wmpared to the other inputs (see Tablé 

4.3). The results, limited to'a 5,500 sample segment containing the utterance "Open 

the craie . .. ", are shown in Figures 4.2, 4.3, and '4.4. Note that the lattice cO'efficients, 
... 

k Z1 have been cO'nverted'to transversal cO'efficients, al' for comparison jmrposes, 

LO'O'king at Figurè 4.2, it is evident 'that the LS, TR, and TRsgn. predictor~ have 

the highest Gp, especially in voiced segments. The coefficient trajectories for these 
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c Speech GpSEG .j SNRSEG (dB) 

Input. TS TR' TRsgn 
1 

LS LR 
\ 

11 6/30.2 : 
J 

GLUE-M 11.6/2~U) 131/314 13.0/31.3 11.1/29.9. 

GLUE-F 123/29.9 9.4/2i.3 104/28.7 i 13.2/30.9 11.1/29.4 

HOGS-M 93/27.4 93/211 88/27 4 ,1 10 4/288 8.4/27.'2 

HOGS-F 10.7/28.0 94/27.3 8.8/27.0 11.3/288, 94/27.4 

9PEN- H 85/26.1 99/279 9.7/27.6~ 10.8/28.6 8.2/26.5 

~ jOPEN-F 94/275 101/284 9.5/279 11.1/29.3 8.9/27.3 . 
9 0/26.8 Hl 5/28.7 9.9/28.2 11.0/29.2 8.5/27.2 PIPE-M 

PIPE-F 93/27.7 10 9/29.4 10 1/28.8 11.3/29.8 9.0/27.8 

Average 100/27.9 10 6/288 99/28.2' 11.5(29.6 9.3/27.8 

, 'able ~.3 Comparison of speech p~rformance 

predi'ctor; are similar, with the main differenc~ beil,lg in the amount of niisadjustment 
/ 

noise which is least for the L5 and most for the TRsgn. 

'. 
. The TS and LR predictors attain lower Gp throughout most of the input. It 

appears that their coefficient trajectories are also·similar, again with the ~xception of . 

misadjustmen~ noise. 

~ , ' 

AlI five predictors perforIp equally poorly wHh the plosives /pj in "o.pen·' and '/.k/ 
;:.,' .. - Co 

in "crate". This is normal. sinee plosives cont~in very little "predictable" component. 

The segment /ejj i~ craie (between 'samples (},OOO and 6,500), .is the only one 

for which the r5. and'LR predictors performed be.tter than TR and Tn.sgn. The LS 

pre~ictor tracked this se~ment. 

Thus; for speech inputs, the predidors can be divided i-nt~ 'three. groups: (1) 

TR and TRsgn, (2) -TS and LR, and (3) LS. It appears that group (1) attains good 

t.racking for most sounds, while group (2) doesn 't track as weil. For a small percentage 

1 

of segments, the opposite is true. The LS predict.or in (3) seems to combine the good 

tracking performance of (1) and (2). 

1 

1; 
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%. Speech segment "Open the crate . .. " from: OPEN-M 

18 
..... 1'1 
;:: 

°0 (a) c::l.. 
c: ~ - x 

-10 

fOOO Sample~ 3000 4000 SOOO 6000 7000 

, 
< 

.e--
'-.J (b) 

2000 Samples 3000 4000 SIlOO 6000 7000 ,-

., -e. ~ ('è{ 

2000 Samples 3000 4000 SOOO (1000 7000 

\. ~ 

-e. >..:i (cl ) 

2000 SI?-mples 3000 4009 5000 ~ 6000- 7000 

• 

iÊ (e) 

2000 Samples JOOO 400jl 5000 6000 . 7000 . 
" ;) 

~ (f) 

J' 2000 Sam pies' ~OO 4000 SOOO 600~ 7000 
<.'\ 

-"~"Fîg:'\'~:'2" "Prèdiction gain at the encoder: (a) Speech Input 
OPEN-M, (b) TS(2; 2-8 ; 2-4; .9), (c) TRC2'; 2'-"8; 2':'6; .9); 

_ (d).TRsgn(2;'2- 8;2-s ), (e) LS(2;2-4 ; 1~2-5), (f) , 
-:;- 'LR(2; 2-7; 1-2-5 ). , 

'"" , " -
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Speech segment "Open the crate . .. "from: OPEN-M 

10 
.... 1'1 
;::: 
0.. °o~ .... =- .-- x 

-10 
2000 Samples 1I00 

2000 Samples 3000 

4000 sooo 6000 

4000 SOOO 6000 

1000 

1000 
2~~~----,-----,---~-----~----r----r---~--~~--'----' 

,...., 1.6 
r:: 
. ? 1.2 ...... 
~ 0.8 
v 0.4 

O~--~---~----~--~-----~--~-----~--~---~----~--~ 
6Obo 

,...., 
~ 

....: 
q; 
o v 

....: 
q; 
o v 

2000 Samples 3000 4000 SOOO 7000 

2000 Samples J!)OQ. 4000 ~OO 6000 7000 
2~--~---r----r---~--~----~---r~-'----~---r--~ 

1.61-.-..,..,..,--------. 
1.2 
0.8 
0.4 , ·o~--~---~--~~--~--~~--~----~---~--~~--~--~ 

2000 SampI es 1I00 • 4000 sooo 6000 7000 

--r:: 
....: 
q; 
o 
v 0.4 

O~--~--~-~--~~----~--~--~--~~--~---~----~--~ 

\ 
\ 

\ 
\ 

\ 
\. 

\ 

2000 Samples 1I00 4000 sooo - 6000 \ 

:fig. 4.3 Trajectories of coefficient a 1 ai. the encoder: (a) Speech 
Input OPEN-M, (b) TS(2;2- 8 ;2-4; .~), (c) 
TR(2;2-8 ;2-6;.9), (cl) TRsgn(2;2- 8 ;2-S ), (e) 

\ LS(2;2-4,; 1-2';"5), (f) LR(2;2-7; 1-2-5 ). 

1 
" 

\ 
\ 

, 
l' 

1800 
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1 Speech segme~t_ '~Op~n the crate ... " from: OPEN-M 

10 - 1'1 ... ... 
°0 ( a) p. 

ç:; ... - x 
-tO 

1 2000 Samples 3000 4000 5000 .6000 - 71100 

0.8 
N 

0.4 'r !;:l . ~ 
0 (b) ..... 

IV 
0 -0.4 v 

-0.8 
2000 Samples 3000 4000 5000 6000 / 71100 

0.8 
1 

N 
0.4 '= 

.....: 0 (e) IV 
0 -0.4 v 

-0.8 
2000 Samples 3000 4000 5000 6000 7000 

" 
... 

N 
..;:.j 
l' 

c::l l"J 
/ 

.....: (d) ~ 

IV 
0 

V 

, 2000 Samplès 3000 4000 5000 6000' 71100 

0.8 
N 

0.4 !;:l 

.....: 0 (e) / IV 
0 -0.4 v 

2000 Samples liDO 4000 5000 6000 71100 

0.8 
N 
!;:l 

.....: (f) IV 
0 v 

2000 Samples J)OO 4000 5000 6000 7000 -
Fig. 4.4 Trajectories of coefficient a2 at the encoder: (a) Speech 

Input DPEN-M, (b) TS(2; 2- 8 ; 2-4; .9), (e) 
TR(2;2-8 ;2-6;.9), (d) TRsgn(2;2- 8 ;2-5 ), (e) 

-- LS{2;2-4 ;1-2-5 ), (f) LR(2;2- 7;1-2-5 ). 
" , -

Il> 



" 

( 

/ 

80 

To understand the differences in tracking, we examine the (time-average) error 

su~face for t\yo voiced se~me~tS.jf ech.(see Figure 4.5). The,)t.wo segment.s, /0/ and 

feJ/, aIe from the precedmg mput. 0 EN-M. The errOI surface (t~ (11)) was calculated at. 

a finite number of points in the efficient space, using a fixed second order predictor., 

at each point. Som? of the contours are situated ~e the stability region (dotted 
. - \, 

line) ~ecause the averaging was done over a small finité segment, yielding finite values 

of MSE in this region. Each point in the coefficient trajectories in Figure 4.5 represents 

the average of 16 c.onsecutive samples. 

\( 

(e 2 (n)) dB ,... ... , t~~m 
"In, 0 

(e2(n)) dB 

Contorsl 

1 

• ••• D. 1S 7 
0 Til 10 

T"-vn 13 
LS ' 16 
L. 19 

..... 

(a) (b) 

Fig. 4.5, Time-averaged error surfaée: (a) Segment /0;'--
r samples 1,985-2,36~ of OPEN-M; (b) Segmetlt /eji -" 

samples 6,017-6,400 of OPEN-M. 

o lS 
o ,R · ' ..... 
• LS 
• La 

• 

In the first segment (Figure 4.5(a)), groups (2) and (3) have fully descended 

the error surface and are tracking near the optimupl point (1.8, -.9). Group (l)'s 

trajectory is incapable of descending past the third contour level and is t.racking the 
\ 

"-.1 11.8" 
"in. ~O 

tont.~. 

1 
2,' 

• 
, " 7 , 
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'--, . 
"\ suboptimal point (1, -.2), with the result of a 6.2 dB drop in Gp , on the average, 

compared' t.o groups (2) and (3). Since the surface is steep, the coefficient offset in 
, . 

group (1) is significanf. 

In the second segment (Figure A.5(b)), groups (1) and (3) have descended the 

error surface towards the point 5.9, -.25), although the LR pred!ctor trajectory is 

-
slightly offset from this point at (.6, .:.....11). The resuIt. 9f this off,set is a 1.1 dB drop 

/ 

in Gp compared to t~e LS pr~dictor. Group (2) is tracking near the p,oint (1.25, -.9), 

resultingin a 2.35 dB drop in Gp compared with LS. in this case the surface is flatter, 

and 'the coefficient offset in group (2) does 'not' re~;ult in much performance loss. 
l ( 

This behaviour was observed with other inputs as weIl. It is dear from the resul,ts 

" 
that, in tern~s of enc'oder tracking~ the predictors of group (1) are suboptimal, those '. . 
of group (2) are bet,ter, a-nd the LS p~edictor performs the best. 

/ 

4.3.2 Decoder Tracking 
,~ 

Given the tracking performance of each predictor at the-encoder, we now show the 
.... ' 

decoder adjustment. onto the encoder in the presence of transmission errors. Speech, 0 

performancê in the presence of tral!smission errors was d~términed in Section 4,2.2 . . 
for the five systems. A veraged results over the eight speech inputs (extracted from 

Figure 4.1) show that aU five systems have nearly the same relative drops in SNRSEG 
" 

as Fe increases (see Figure 4.6). The LR predictor, nowever, is uniformly better 
, ' 

than the others for an errpr rates testep. The figure also indic~tes that_ the lattice . ..-'-

predict~~s, as a group, are less sensiti~e to transmission errors than the transversal 

. predictors. Similar results were obtained in [26] with 16 kbit/s -ADPCM systems 

using lattice and transversal AR predictors with signal-driven adaptation . 

The better performance of the latt.ice predlctors over the transversal predictÜ'rs 

1 
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.6 TR.gn' ,. 
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10 

Z 
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,. . 0 

.' 
0 

0 .0005 • aOI 
(' 

oo~ 

Pe 
" , 

Fig. 4.6 Average speech performance with tr~nsmissi()n ~rrors 

• un der noisy transD;.lission conditions is d·ue to the speed of recovery in the des?der coefl 
o , 

ficients after ,an initial o:/fseto. As an example, the input OPEN-l'I was encoded~ecoded 
, 

with a burst of60 ra:ndom bit errors between samples 3,~65 and 3J5'20 (jE/ in "open") . 
. 

For ease of comparison, thè same burst was used with each predic~or. In all five cases, 

the coefficients at the decoder readjusted to those at the encoder after the errors 
< 

ceased (see Figure 4.7). During the b~rst, there 15 a large error at the reconstruct~d 

output which is mainly due to quantiz~r mistracki~g at the decod~r. Predictor and 

, quantizer convergence after the burst is very quick for the three predictors: TRsgn, 

LS,'and LR, at less than 100 samples. The two remaiJ:\ing predictors, TR and TRsgn, 

, re9uired 400-;500 samples to converge. Further tests confirmed that: (.l) mistrac~ing 

was limited to the duration ~f the voiced segments in which errors occurred, with re-

tracking usually taking place in less time than that; (11) errors during ot~her segments 

of speech (fricatives, plosives, etc) had 'even a less lasting effect. 
• t 

Thus, transmission errors during speech are of con cern only during the segment 

in which they occur - there is no long lastin,g effed, such as permanent mistracking 

; , 
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.. aee S"UII,I"'1I ...... .. _ SalU)ll... ... .. 

fI!, ~.;:~~:' , " :': 1; "l~+, :.;.: >': : '. :. : Il 
aM ... "....... ln'" tIN· .. 

'~al "~::0' l' (, l 'a ~ .. 

::~';::~.2 
~ ,- - - ~ - ,'- . -

~:lkiL:::J'.~~~~. ~, 
~ a;l'" S'UU1,1 .. " .... HM ~ Jftt aM Sau .. ,.I"R .... , .. 

'JM~:'~ : : :.: l, 
JIll ... ..... .. , 

,1 : dlfference between encoder 5np~t 

and.deçoder output, x(n)-x'(n) 

, , 
2 . cod. ·(11 at encoder, and decoder (') 

3 : caer. a2 a~~encoder and decoder (')' .... , 

Fig. 4.7 Decoder readjustment after a burst of errors during 
transmission of speech 
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of the decoder coefficients. 

4.4 Tracking of Du~one SignaIs 

'li • 

In this section, the tracking performance for dual-tone input signaIs is investi-

gatecl. As in the previous section, bot.h encoder and decoder t.racking are examlned. 
\ ~ 

With data signaIs, however, the latter property is of more interest. 

4.4.1 Encoder "Tracking 

The energy of DTMF signaIs is concentratecl in two narrow bands in the spectrum 

(see Fi~ure 4.8). For a stationary DT,MF-3 signal we can c~mpute the optimal second 

order predictor, narnely 

The al component of this opti,mal point is haH way between the optimal al compo-

nents of sinusoids with frequencies 697 and 141/ Hz. a2 is in,sicle the stability r~gion 
1 • If' ~ . . \ 

but close~ t~ -i (the a2 of a pure sinusoid lies on -1). This is because second order 

predictors insufficiently model the poles of a DT~F signal - a fourt h order predictor 

is required for modelling two complex-conjugate'pole pain~. However,. the next section 

will show that model insufficiency is not the reaso"n why decoder rnistracking occur~ 

with second order TS and L5 predictors. 

Although sorne pr~dicti~n g~n at the ~ncoder is desired for DTMF ~ignals, precise 

coefficient estimation for the same signa!s is not an important object,ive in ADRCM. 

This is because the tone-pair is .correctly demodula. ted at the rèceiver, despi te a lower 
, 

SNR. Table 4.4 shows, for DTMF-3, the average coefficients, Gp, and SNR in the 

steady state. Similar results were obtained wit.h other DTMF and multi-tone signaIs. 

84 
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Fig. 4.8 DTMF -3: (a) time waveform; (h) magnitude spectrum 
) 

,-

TS TR 
" 

TRsgn LS . LR 

Anv [ 0.93 -0.62 J'f [1.45 -0.94]T [1.~1 -0.93]'1' [1.03 -O.77]T [0.97 -0.65]T 

GPnv (dB) 615 581 7.03 6.75 6.54 

SNRnv(dB) 25.5; 2576 26.15 25.88 25.75 

----... 

Table 4.4 Average coefficients and prediction gain after 
convergence of encoder for DTMF-3 

It is interesting to note that, despite its spboptimality, the TRsgn precÜdor tracks 
> , 

the ~ptimal point accurately. There are seve'ral (easons f~r tpis: (î) compared to' the 

other four, this predictor was best optimized for DTMF -3 signaIs; (u) the sgn updates 

'"" are accurate (after convergence) if the signal is stationary and the step-size small . .. 
The large leakage chosen for (he LS predictor inhibits better tracking for the sake of 

\ 

robust.ness - with a srnaller leakage, it outperforms TRsgn. -\0==_ 
Il 

> \ 1 

\ 
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4.4.2 Dèc.oder Tracking 

Decoder tracking for the DTMF-3 signal was exarninéd using the following pro-. 
; - . • œdure: 

~ 

.1) Fodhe first 2,304 samples, the input was ,en~oded/ decoded wit.hout transmission . . 
errors in order !o let the decoder coe!fici.e"its adjust to the encôder .coefficients. 

2) For the next' 256 samples, bit errors with a rate Pe = .05 weie injected in the 

channel and, at the same tirné, the decoder éoefficients were held at the point 

! ' A' = [0.1 0.8] in order to introduce a known coefficient offset and not a randorn 

offset due to tra~smission errors alone.3 

3) Finaqy, for the remaining samples, the errors were removed and the decoder· 

coefficients were released to osee w hethër the predictor would recover. 

il Fi-gure 4.9 Illustrates the encoder 1 decoaer reconstruction error (.1.'( n) ~ i'( n)) and 

coefficient trajectories at step (3). The res.ults show th"at the signal-driven predictors 

" are mistracking, while the residual-d'ri"en predictors are recovering. As with speech, 

the LH predictor recovers quickly, with the coefficient offset rapldly decreasing in the .. 
first few samples after 'the removal. of errors. The ~TR and TRsgn predictors require .. 
approximately 1,000 .slimples to retrack, and àctually exhiJ:>it a "burst" in themterim. 

This is due to the slower 'convergence of the t.ransversal SG algorithrn for s~ationary 

input,s. 

The DTMF-3 operating poi~f for signal·driven predictors at tbe decoder is un-

stablé. Ah initial offset in the coefficient.s leads to a slight power twist in the corn· .. 
. ponents (697 and 1477 Hz) 'of the reconstructed signal. Both t he offset and the t.wist 

" , 

will increase in 'a direction favouring the" g~owing compon~nt, causing a steady shift 

in the operating point. The direction of t~ shift depends on the initial conditions at 

3 Either one of these disturbances alonr (t'llors or coeffici~nt offset) can lead to nùstracking in the signal. 
driven prt'didors; in fact, exp'erlments have shown that a single bit error is enough. Step (2) simply 
results 10 ~ more controlled{xperiment. ,- ' 

<, ' 
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Fig. '4.9' Decoder adjustrnent after a burst of errors and initial 
coefficient offset du~ing\ DTMF -3 transmission t 
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~ . 
the decoder (offset, ~eceived residual, predictor meillory, quantizêr memory). Tests 

indicate that mistracking is ?sually in the direction of the lower frequency component 

___ (697H-z). '. 
'l 

\ 

4 
!,' ~ \ . 

Eventually, this process. will force the predictor to track one <?f the sinusoidal 

components. This is a stable mode for the clecoder and tesb have shown.J.hat the 
, 0 

, . 
process,cannot be reversed with additional errors (even wh en the decode~ coefficients 

are momentarily ..... r~set to the DTMF-3 operati~g point, th~ decoder cont~nues to - -' 

drift towards one of the two stable modes). Other doata signaIs containing-multiple 
~ 

tones rh';y lead to similar mistracking problems. This instability is not due to modèl . . 
insufficiency in the predictor. Tests confirm that mistracking also OHurs with fourth, 

r 
fifth., and sixth order predidors. 

r. 
.~ 

As an example, Figure 4.~O compares the coefficient traject.ories at the LS encoder 
. 

(A-A') with two diverging decoder traj~ctories (B-B' and C-C'). :The three pre-

dictors have different initial conditions (A, B. C). We note that "the encoder descends 

the DTMF-3 error surface, decoder l~es~ends the' 697 Hz error surface, and deçoder 

2 d~scends the 1477 Hz error surface. The points B' and C' are stable decoder modes, 

/' and the point A' Îs 'a stable encoder mode. The resulting power twist between the 

sinusoids at the reconstructed output (i'( n)) is shown in Figure 4.11. 

The ex~eriments of this section were also carried out with the DTMF -7 signal 

-' (852 Hz and 1209 Hz) with similar results. In conclusion, mistracking in the si§nal-
\ , 

driven predictors causes severe distortion at the reconstructed output of the decoder. 

The residuaI-dri~en predictors always recover after the errors 'are removed, with the .. 
LR decoder, in particular, converging very quickly ta the encoder. 
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Fig. 4.11 Magnitude spectrum of the reconstructed ou~ut: (a) 
LS encoder; (b) L5 dec.oder -4, (c) LS decod~r 2 
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4.5 -Prediction A~curacy for Single-Tone Inputs 
- , 

, , ) 
o / , 

Thi;; se;;"ion investigates the tracking accuracy for pure si;usoids.- Ai sin,e wave, 

r 

1 , 

- . 211" l' f 
X(71) = A sin dm, ....... <p = T' 0::; 1:::; 2

s. Is = 8000 Hz, 

is perfectly rriodelled by an AR(2) filter with opt.imal coefficients 
... 

. ~ ,. . • A.pt = [2 cos 4> - 1[. . 

!ts complex conjugate poles Fe on the unit circle in the .:-plane at an angle 4>. 

Although sine wave SNR is not.Jl'n important o~jective in ADPCM, we would 

expect a high~ SNR and Gp wùJ:t aIl five pr«,;dictors for thi~ype o~ input, with the 

only degradati~n in the ~racking caused ~Y the limitI.ng stab~lity consf{aint of (3.9). . 

A high Cp is achieved when the pred~t?r tracks near the optl~al coeffi~ient point of 
- , 

the stationary signal. Since Hie error su~face;for sinusoidallnputs is elliptic, with the 
, .~ 

/ minor axis .almost paraUel to the al axis, an offest in the -al coefficient /yields a large-

.' 

drop in Cp. Offsets in the a'2 coefficient do not result in as much of a 10ss. 

'­
After encoding inputs of various frequencies, larg.e offsets in the al coefficient 

were found for the two transversal residual!driven predictors but not for the other 
" 

predictors. These dffsets re.suIt. in poor Gp for sorne of the fréquencies. Table 4.5 shows 

~he prediction gain ciâ Figure 4.12 illu6trat~' the shift from the optimal coefficients_ _. 
\ 

for each predictor; only sine waves with 1 ~ ft ::!: 2000 Hz wer~ tested, due to the 

symmetrf about al = O. 

This t~acking problem is particularly evident for the TR predictor in Figure 

4.12(b), where four of the sinusoids (404, 643, 920, and 1140 Hz) are tracked by 
1 

-' - the single point (1.9, -0.95). 

Bonnet, l\tl.acchi, and Jaidane-Saidane [10] give a mathematical analysis of this 

impairment for the TRsgn predictor. In summary; it is due to the inaccuracy of the 

\ 
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l, 
n , 

Il PredictIOn Gain Gp, (dB) 
" f Hz Ao~t \~TS TR TRsgn ~ ~LS LR 

404 [ 1 9 -1 1 11.4 24.4 238 18,1 125 
r 

1 • 
643 [ 1 75 -1 1 ,~~,3 12.8 lZ9 18.2 12.3 

920 [ 1.5 -1 1 12.8 6.5 • 6 - 18.1 13.5 
-

./ 
,1 

1140 [ 1.25 ..-1 1 14.2 2.9 5.6 111.3 13.4 
( 

1333 ~[ 1 -l' 1 15,6 . 3.0 8.3 18.6 17.6 

[ ) 1~\9 ( 

, 1511 0.75 -1 5.2 11.6 188 18.7 

1678 [ 0.5 -1 J 17 '8 8.0 15.4 18.9 21.9 

1'840 [ 0.25 -1 1 18l 14.26 20.3 19 1 2ü.i 

1990 [ .016 -1 ] 18.8 23.54 23.8 19.1 20.9 
, . 

Table 4.5 Predidor '~erformance for sine waves 

• 
gradient estimates in (3.32) which, in the Ijmit, force the coe,fficients to converge to 

1 suboptimai points dependi~g on the frequency of the sinu;oid. Th~ same type of 

impairment plagnes the TR predictor. Therefore, these two predictors should:not be 

used for frequ1ncy estimation applications. . 

The'T_S and LR predictors exhibit large offsets in'the a2 coefficient for the lower 

frequencies. }fo;ever, th~ corj'esponding 10S5 in Gp is not 'high.' The LS predictor . 
\ ,-' 

yields the least overall 'shift and highest average Cp over all frequencies. With a 
-' 

smaller leakage value, 6, the t racking performance of th~ LS is even better,' Thus, 
, 

this predictor is the most accurate frequency estimator of the five. 

,. 
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4.6 Higher Or~r Pred,icto'rs 

,Up to this point, only se~~nd otder preâictors we're examined. Increasing ,the 
, '. 

or~er of the T~ predictor does not yleld a sig~lfid\'nhmprovement in prediction gain, . , 

·p~rticulà.rly wh en we ('onsi~~r the ~dded ~omplexit; for verifying-the stahilityof t~ree 
\ . 

or more coeffi,cients.a The TR (and TJ:tsgn) algorit.hm cannot he directly extended ,to 

higher order prediction; in .any casé, it is felt that-the gain in perfol'man~e would not 

justjfy the high complexity of the algorithm . 

. Both lattic~ predict.ors. on the ~ther pand, can he easily extended to high~r orders 
- . . 

'by adding new lattice sta.ges and ensuring that the new reflection coefficients have . . 
, magnitude less than one. Predi.ftion galn versus prediction oJder for the L5 and LR 

predictors is plotted in Figure 4.13. 

(a}OPEN-M Input (b) DTMF-3 input 

1 ., 
, 14,.....,~~-........ --..-...----.....,.----....--~14 "~----........ ---~----...----~---~" 

.. L5 
, . 

" 
LR 

" " 

• 
• 

'~I----~4~--~"~--~'-----'~'----~I'~' " Il 

Order (p) Order (p) 

Fig. 4.13 Prediction gain versus prediction order: (a) Speech -
input OPEN-M; (h) DTMF-3 input, . \ 

With the OPÈN-M input 'we observe in Fig. 4.13(a) a steady increase in GpSEG 

for hoth pre~ictors for 2 < p ~ 7. For p 2 8 there is no significant increase. The 
1 

,maximum increase in GpSEG is 1.25-~B for the LS and 1.8 qB for the LR. These '. . 
figures may he improved jf the predictor p<j.rameters are opt.imized for each order p 

\ 
, r 

• 

.. 

" 

• 
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and not left at. the values found best for p' = 2, but this was not done. In addition. 

mu<."h hIgher gains are observed for, the LS predidor when a ,smaller leakage value is 

used (say Ô = 2-8 ). In this case, however. the rohustness of the S) St~I;l would be 
. 

compromised. WIth the DTMF-3 mput In Fig. 4.l3(11) slgmficant increases.are noted 
, 

at p = 3.4.,6, ï,~, 9.10 for the L5' predlctor, and at p = ,5,6, ï for the :bR predictor. 
-

Maximum increase is 16.6 dB for LS and 10.5 dB'for LR. Noisy channel tests indicate 

that higher order LR predictors never mistrack, whereas higher arder' LS'pIT'djctOfS 
#> 

are prone to nllStracbng. 

, ' 

4. 7 Predic~or Complexity 

The cOIllplexity of the TS, T,R, LS, and LR pr~dictor~ was calculated in te'nns of 

,the number of arithmetic operations (+ / -, x / -;-)' and the amount of memory required 
, " 

~ \. ~ ~ 

for processing each sample (l.e., the complexityof generatmg i(71) from the input ê(n) 

and the cu;rent state of t10 predictor). 

.. ( 

TRsgn 

TS 

TR 

LS 

LR 

" ,-

'- Fllter Algonthm Total 

Mem +/- x/-;- Mem +/- y, /- Mem T +i- T 
2 

2 

2 

2 

P 

4 
p 

1 2 3 i 5 5 5 1 t) 
1 

: " 5 
-

1 2 3 Il 5 1 Il , , 

1 2 4 fi 1 14 1) 
, 

i 
1 

5 3 4 
, 

8 16 1 
, 6 13 

3p - 1 2p - 1 2p 4p 8p 3p ip - 1 

5 3 6 

1 

12 2-0 8 17/ 

3p - 1 2p - 1 3p Hp IOp 4p gp - 1 

Table 4.6 Complexlty ofJadap.!Jve p}edictors 

~ 

4 

1 

1 

1 

i 

1 

1 

1 

x /-'-

i 

13 

16 

19 

10p - 1 

23 

12p - 1 
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Table 4.6 shows the filter, algori'thm, and total complexity of the five systenys as 

defiped at the beginmng of thls chapter. Constadts such as (1 - 8) are a single entlty 
,< ? 

and thus do not contri bute towards the ( +! -:- ) count. 
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.' .. 
Only second order tra~sversal predirtbrs were examined. while the romplexity of 

lattireDpredictors was generalized for p > 2. Note that the LR p'redirt.or is about' 
\ 

t wice as, complex. overall. as t he T~ predld or. 

'. 
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, . , 
"Summary and Conclusions 

,+ 

The intention of thIS work was to examine different A,DPCM predictor structures , 
-......-- ... '. .. 
-";.--;,- yutilizing stochastic gradient adaptation algorithms, and to compare theIr performance 

.. 

in the presence and absence of channel errors In partJcular, the predIctor mistracking 

problem wIth na~rowband ~nput signaIs was investigated. 

PreventIon of mistrackmg reqUIres that sub-optimal adaptatIon algorithms, dn-

ven solely by the résldual sIgnal. be used f.Qr updating the predictor coefficients, 

To this end we have implemented and conlpared five different adaptIve predictors . , 

according to i11ter structure/adaptatIOn "algori1 hm: TS (transversal/signal-driven),' 
ç, 

TR (transversal/resid ual-driven), TRsgn (transversal/ residual-dnvenfsgn llluiti pli-

ers), LS (lattice/signal-driven), an'd LR (t'attice/ resldual-dnven) __ 

5.1 Summary 

The signal-driven precGctors, TS and LS. use traditional transversal and lattice 
-. \ 

stochastic gradient algorithms based on mimmizmg t~e residual power_ I...'oeffi{ient 
\ ~ 1 

updates in the TS algont'hm are derived from correlations between the quantized 
• 

residual and reconstruc-ted signal. The LS algonthm generates its updates by max-
,/ ~ , 

imally Fi,e:correlating thlreconstructed SIgnaL These algorithrns utilize coefficient 

96 
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leakage with the aim of improving robust~ess to channel errors and step-size nor-

malization in order to better- trark short-tenu stationary signais. However. in both 
• 

schemes a fonn of cross-feedback exists between the- prediction synthesis fil!er and . ~ 

t.he coefficient adaptat ion w hi ch may lead to encoder 1 decoder mistracking. 

Residual-driven ),'lgorJthms were designed in order.to eliminate this problem. The 

TR algorithm mimicks the T5 algorithm by deriving its coefficient updates through 
• J 

the updates of. an approximately equivalent synthesis filtei- utilizing zeros instead of 
, 

·poles. As a result, the updates are deterrllined by autocor:J:'elations of the quantized 

residual slgnal. The TRsgn algorilhm" is a simpl,ified version of the TR using only the 

slgn of the autocorrelation term. A form of this algorithm has been adopted by the 

CCITT as a standard for 32 kb/s ADPCM. 

Tlie LJt algonthm was developed using a different approach. In practice, pre­

dicti~n IS not perfect and the quantized residual and reconstructed signaIs are cor-, . 

related. Since the L5 aIgorithI~l b~nerates t.he optimal coefficients by de-correlating 
, . 

'the reconstructed sIgnal. th.en a set of sub-optimal coefficients can be generated by 

de-correlating the residual signal. These are subseque~Hy used to drive the latdee 
1 
",. 

predictor. Therefore, an implementation of the LR predictor requires two Iatti~e 

structures: one for the algorithm and one for the predictor. In t.he residual-driven 
Q 

schemes, cross-feedback between the synthesis filter and the coeffici~nt adaptation 
" 

has been eliminated. 

The five adaptive predictors were subjectcd t.o various tests in order to compare . , 

their perfor~ance and behaviour in a typical 32 kbfs 'ADPCM system. AlI of the 

experiments were carried out with second order predictors unle,5s othèrwi5e stàted. 

The results are sllmmarized as follows. 

(a) Speech perfo~mance in the absence of errors. Experiment.s wit.h several . 

-, 
~ 
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pho~etically balan<,ed sentences by both male and female speakers indicate that the 

TS and L5 second order predictors at.tain an average GpSEG (segment.al prediction", 
~ . 

gain) of 10 and 11.5 dB respectively. However, the LS can achieve a gain of over 13 " 

dB if a smaller leakage" value is used (large leakage was requued in order to improve 

th.e predictor's robustness fo~ speech during errors). Thë difference, in GpSEG can 
c a \ 

be attributed to the fact that the LS algorithm automatically generates a different 

step-size variable at each stage that is normalized by the input power of the stage, 

wher<6as the XS algorithm uses a fixed st.ep-slze for aIl coefficients which is normalized 

bfJ the reconstructed sign?-I power (l.C .• input power of the entire predic1or). As a 

result. the LS predictor tracks stationary and non-stationary inputs faster and more 

accurately than the T5 predictor. 

Average GpSEG values for the TR, TRsgn, and LR pltèdictors are 10.6, 9.9, 

<l:.nd 9.3 dB respectively. 50, using the residual-driven predictor~ inst.ead of the TS 

pI:edictor would not entail a!big los~ in speech performance; in fact, TR fairs slightly 

better with most of the test speech inputs. This is a surprising resuIt in view of the 

~ sub-optimality of the TR algorithm. 

It. can be seen from Table 4.3 that the performance variation of the different al go-
• 0 

rithms is only 1.8 -dB in SNRSEG. Thus from the point of view of subjective speech 

quality; little dï'fference is expected to be audible. An -overall speech performance 

rating in order of decreasing GpSEG is: L5, TR. T5, TRsgn; and LR. 
~ ~ 

(1)) Speech performance in the presènce-of errors. :1:ests with speech signaIs 
- ~ , 

in the presepce of channel errors show that the signal-dri ven predictors can be made 

robust by using a large enough value of b (particularly in the L5, predictor). The 

TS predictor is more robust than the L5 predictor 'with most leakage values. In this , . , '1 ~ 

case, the automatic step-size generatlon and normalization in the L5 afgorithm plays 
... 0 • 
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a detrimental role because thls process is sensitive té> channel errors. Since the TS 

algorithm uses a fixed step-size, only the normalization t.enu i~ sensitive to errots . 

. : 'Both schemes are robust to cilanne] ~rrors wlth bit-error rat.e~ ~Pe) as high as 10- 3 . 
• "'"i'1 \ 

In fact, at the higher bit-error rates it Îs the quantizer, npt t.lië predictor, which limits 

the over~tforIllance of t,he system. 

! 
The residual-driven predictors ar~ generally more robust than the signal-driven 

.. 
predictors and are not as dependent on the choice of Ieakage 6. This is to be expect.ed, 

# 

as error propagati6n in the quantized residual i5 not a:s severe as in the reconstruct.ed 

signal. Table 4.2 shows that the performance variation un der a weighted sum of 

expected error conditions (SNRw ) is only 1.6 dB. An over,all r,ating in order of de­

croo.sing S!"Rw is: LS, ftR, TRsgn, TR, and TS. J'hus the LR predictor, which 

'yields the worst performance withdut errors yields nearly the best performance in the 
\. . 

presence of errors. ( 

The effects of transmission errors during speech inputs are temporary. $pecifically, 

a burst of errors during a voiced speech segme~t is shown to cause an offsét b~tween 

the enecider and decoder coefficients which remains only for the duration of that 
{ 

segment. Typical convergence times after an error has occurred during voiced speech 

are on t.he order of 62.5 ms (500 samples) for TS and TR, and 12.5 ms (100 samples)' , 
r 

for TRsgn, LS, and LR. Errors during fricatives, plosives or silence segments are eyen 
.. .' / 

less severe. 

. -
Thus, the ~ignal-driven predictors do n()t mistrack with speech inputs. Natural 

re-synchronizing properties of speech (fricatives, silence) and the use of coefficient 

leakage allow the decoder coefficients t.o retrack at th~ end of a voiced segment. 

(c) Dual-tone input with channel errors. However, with a dual-tone input 
., 

signal (DTMF3) there is no guarant.ee t.hat the encoder and decod~r 'coefficients will 

1 
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converge after an error has 'caused an initial offset. Experiments have confirmed that - , 
both TS and L5 can mistrack after a single channel error. This is due to the dynamic . ' 

.. _.. 1 

instabilit.y of the operating point· for signal.drl\en sequential algorithms with dual-

t.one inputs. Eventually. cross-feedback between the synthesis filter and adaptation 

algorithm force the predictor 1.0 track one of the two components. This is a stable 

operating point, or mode, for the decoder smce experiments have shown that the 

proéess cannot be reversed with additional errors. 

The observed instabllity is not due to insufficient modelling of the input signal; 

t.e.,'higher order signal-driven predict.ors 'a,r~lso prone to mistracking. Thus, the 

above problem can be eliminated only by usirlg residual-driven pre1ictors . . 
Tests with dual-tone inputs and multiple channel errors confirm that neither 

residual-driven predictor mistracks. However, t here is a significant differ~nce -in the 

convergence bme after an error has caused an initial offs~t in the coefficient s. The 

LR predictor was able t~ converge after 25 ms (200 sam pies) w hile _ the TR and 

TRsgn predictors required about 113 ms (900 saluples). This is due 1.0 the superior 

tonverge~œ properties of the lattice fiIter. 
, , 

( 

(d) Tracking a $lngle..-tone input. In orver to gain further insight in thelracking 
~ 

behaviour of !rr~' fi;e predictors, some tests wi th pure sinusoidal signals (single-t.ones) 

were performed. In theory, a sinusoid is perfectly modelled by a second order IIR 
. 

filter. rrhe chosen frequ~cies correspond to equally spaced'points in the transversal 

coefficient space (a},a2) with a2 = -1 and ar 2: 0 (due to symmetry, only positive 
\ 

al were considered). These tests ~erve in POj~ting(out any model defidencies in the 

resi~ual-d-l'iven algorithms. , 

~he two signal·driven ~lgorithms were able 1.0 track all the sinusoïdal inputs with 

little offset in the coefficients. Average GpSEG values are 15.3 dB for TS and 18.6 
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dB ~or r.S. 

The LR predictor per(ormed quite weIl throu~hout the frequency range, attainiifg 

an average GpSEG value of 16.8 dB. Thus, t he ~ery nature of the LR algorithm 

derivmg it.s updates by de-eorrelating the residual signal - does not limit it.s 

trading p~rformanç-e with highly predictable signais, only with signaIs with a large 

unpredictable component such as speech. 

A mu,ch.poorer resuIt \vas observed with the TR predictor. AIl frequencies under 
b - • 1 

2000 Hz i a quarter of the sampling frequency) .were tracked near the single point 
, . 

(2, .-! 1) and those over 2000 Hz Rear t he point ( - 2, -1). ln essence, the TR algori thm 

is not able to track the frequency content of pure sinusoids, attaining an average 

GpSEG of 11.2 dB but as little as 2.9 dB for specifie tones. The TRsgn algorithm 

performs a Httle better. with an average GpSEO value of 14.4 dB and a minimum of 

5.63 dB, but is pJagued by the same modelling impairment as th.e'TR. 

(e) Sensitivity to predictor parameters. WhIle searching -for the op~imaI pre-~ 

dictor parameters (Ji, Il b) to be used with âVerage' speech and duaI-tone signaIs, it 

was discovered that: 

• ~he performance of the transversal predi.:!ors is quite sensitive t.o different values 

of fJ.. and li; in particular, the TR and TRsgn predictors dual~tone performance 

,) is limited to a very narrow range Qf parameter values 

( 

• the performance of both lattice predictors i5 relatively insensitive to the values' 

of fJ.. and l' 

Moreover, in the transversal predietors, the optimal par~meters. for speech signaIs 

do not coincide with,those tor dual-tone signaIs. Thu's. a compromise set of parameters 

a.ffects' the performance for both t.ypes of input. In t.he case of laUice filters t.his does 

f 
o 

< -
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not occur, and the selection of parameters which result in good speech~ and dual-tone . 

J , 

p~rformance is a simple task. 

;~ <, 

(f) Predictor complexity. The cOIllplexity of. the five predJctors (filter and aJgo-

rithm) was calculated in terms of the number of aril hmetic operations (+ / - ~ * / -7 ) 

and the amount of memory (=-1) required for processing 'each sample. A ,rating in 

order of ~ncreasing complexity is: TRsgn, TS, TR, LS,'and LR. The results, sh?wn 

in Table 4.6, indicate that the LR predictor is i,).bout lwice as complex as-the TS' 

predictor. 

It is estimated that the current state of DSP ,chip technology aHows a real-time 

implementation of the LR predictor on a single chip (such as the TMS,32020). 

5.2 Conclusion& 

The final choice for a candidate predictor scheme d'epends on the following inter-

related factors: application, performance, robustness and complexity (("Ost). 

This study was geared towards the application of 32 kb/s ADPCM systems in 
\ 

telecommunications ne1.works. Basic services in the nelwork include speech, voiteba:nd 

data for modem communications, and ~liJllalling tones. Systems in the net.work must 

provide acceptable transmission of the basic services in the presence of chanp.el errors. 

Based on the above reqU1rements and the results of this study we must predude 

~he ~se of the signal-driven adaptive predirtors, TS and LS, III the network. Other 

ADPCM systems, utilizing combinatlOns of fixed-recursivê and adaptive-nonrecursi ve 
~ \ 

synth("sis filters, have been examined by varioùs authors [11][12J[13][14]. Although 

these systems are (obust in the presence of errors and are not prone to mistracking, 

it appears that, du~ to the inefficiency of fixed and/or nonrecursive synt hesls filters, 
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t1!e resulting speech performance is inadequate. Increasing the predictor complexity 

1. (e.g., filter orcler) does not resuIt in a significant increase in performance. 

Th e re,ults of t hi, wor k in di cate t ha t th "i..Si cl ua( do ven ad\tp t i ve pred i c tors, TR, ~ 
rr:Rsgn, and LR, satisfy the basic network requirements. They are shown to be robust. . . 
in the presence of errors, do not nustrack with data signaIs, an,cl perform well wit.h 

speech inputs. A 32 kb/s ADPCM internatibnal standard usin.g the TRsgn predidor 

was adopted 'by the CCITT in pctober, 1984 [6]. 

The LR predictor was developed in this study as an alternative residual-driven: 

scheme. Its main advantages over the TR predictor include: 

• modularity in b01h filter struct.ure and adq.ptation ale;orithm which allows for a 
t 

simple extension of the predidion order 

• insensitivlty to predictor pararrieter values 

• faster convergence for both speech and data signaIs in the presence and absence 

of errors 

• higher accuracy in tracking single sin'usoids. 
-. 

. -

AlI of these are due to the superiorrproperties of the lattice;filter. The main 

disadvantages are: 

• slightly poorer speec.p performance in the absence of transmiSSIOn errors 

• higher im'plementation complexity. 

The drop in speech performance of the LR prediètor ,~i th respect to the LS 
f 

predictor is qui te slgnificant (2.2 dB in GpSEC'for second order filters) and it appears 

that ,there is room for improvernent here. There are sorne questions as to whether some 

further processing of the LR coefficients (before they are used III the lattlce prediction 

filter) would yield an lmprovement In performance. This processmg should refled the 
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spectral difference between the quantized residual and the reconstructed signal in 

order 1.0 provide mOre accurate coefficient estimates. To avoid mistracking, hoWever, 
/ ' , 

< 

the processing should ,not depend in an)" way on t'he recoÏlstruded sig"nal. . This rs le(t 
'" 1 

for future researeh . . ' 
Il 
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.Appendix A. Speech Inputs Used in the Study 

,!~ble A.l illustrat~s a corpus of ~ight s~eech "inputs which is /sed in' the exp:n­

ments. The corpus IS cornposed of four phonetically balanced sentences each uttereù 

by a group of two speak~rs. Each' group consisted of a male and al female' ~peaker. 
r 

The signil:ls w~re bandpass filtered and sampled at 8 kHz. The number of samples in 

each sequence" as weIl as th~ standard deviation, meim, maximum positive samplef 

and maXImum negative sam pIe are also given. 

, 
# Samples 1 Std. Dev: Input Speaker Sentence Mean Max Mip 

GLUE-M Ml A 27648 1144 -25 1 5623 -8095 

GLUE-F FI A 37376 1 306 -19 7 1475 -2418 

HOGS-M Ml B 25856 i 1326 -24.8 8514 -95i3 

HOGS-F FI B 36608 253 -18 1 1418 -1'641 '-

OPEN-M M2 C 16640 
1 

Hil -17 1 9768 -13850 

OPEN-F F2 C 22784 2174 -188 12612 -15514 

PIPE-M M2 D 18434 1553 -18 6 8695 -13550 

PIPE-F F2 D 19712 1879 -0 5 8358 -13051 

~ 

Table A.1 Speech inputs 

Speakers: 
,<3 

Ml :, Male \ 
FI : Female - -' ., 

M2 : Male, 
F2 : Female 

Sentences: 
A: Glue the sheet to the-dark blue backg'ro,und. 
B: The hogs were fecl chopped corn and garbage. 

'a C: Open the crate, but dQn 't break t he glass. 
D: The pipe began to rust whlle new. 
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(b) DTMF-3 Input 

Fig. B.I Speech ?-nd DTMF-3 performance of TS(2; JL; 8; .9) 
predictor: contour and surface plots of Gp SEG ( dB) 
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