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Abstract ’

-

This thesis 'investigat_es the problem of predictor mistracking with nar-

% rowband %ignals in ‘backward ADPCM. (Adaptlve Differential Pulse
Code Modulation) speech codets. Mlstx’ackmg is an offset between en-

coder and decoder coefficients causéd by error feedback from the signal

reconstruction filter to the predxctor adaptatlon process. Conventional

adaptive predictors, usmg transversal or lattice ﬁlters are shown to suf-

" fer from mistracking in the presence of transmission errors. Through

modification of existing algorithms, a new class of residual-driven lat-

) tice predictors (LR) is presented which:g;xarantges tracking for all input

: signals Without regard to the order of prediction.
< \ .

Comparisons between the LR predictor and four~other systéms were
performed. In the absence of transmission errors, it is shown that a
, segmental SNR drop for speech of as much as 2 dB may be encountered
for the LR predictor\with respect to the conventional systéms. In
the presence of errors, however, this degradatlon is outweighed by the
enhanced speech and narrowband signal transmission performance, as

required by practical telecommunication applications.
‘ \




]
Sommaire

s\ . - 8
.

Ce mémoire exallljné{ les problemes de'détraquement des filtres de pré-
dictiori employés par les codeurs de la parole MIéDA (Modulation apzir
Impulsions et Codage Différentiel Adgptatif) lorsque ces filtres sont ex-
*cités par des signaux a bande étroite. Les prédicteurs etdaptati'fs clas-
siques, & structure de filtre transversal (;u en treillis, sont-susceptible
a détraquement en présence dterreurs de {ransmission. Aprés modifi-
cations des algorithmes classiques on présente une nouvelle classe des
prédicteurs en treillis (LR). Ces prédicteurs sont éxcités par M"rgeéidu

et ils assurent la convergence des coeflicients du décodeur pour tous les
signaux sans égard a l'ordre dé prédiction. !

»

Plusieurs comparaisons entre le prédicteur LR et quatre autres sys-

L}
\ ’ ’ . . - . el
temes ont été faites. Pour des signaux de parole, il est montré qu’en ab-

sence d’erreurs de transmission, le prédicteur obtient un RSB segmen--

tal inférieur a 2 dB a la meilleur performance des systémes classiques.
»
Par contre, en présence d’erreurs de transmission, le prédicteur LR of-
fre une performance supérieure aux autres systéines pour les deux types
-
de signaux, comme exigé par les applications pratiques en télécommu-

nications.
N .
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Chapter 1 Introduction

There is a major ongoing trend towards the digitization of telecommunication and

telephone networks in order to increase trapsmission quality and flexibility. Digital
voice communication is preferable to analog because of the non-accumulation of noise
over distance. To achieve this higher quality for voice and other signals, we must
encode the signal at the source or at the point of analog/digital conversion and decode

it at the destination or point of digital /analog conversion. Other advantages in digital
y ~
communications include: error-protection, encryption, and the ability to- process,

‘multiplex. packetize and mix.

An essential component in the telephone network 1s the digital encoder, a de-

-4

vice which converts an analog waveform (voice or data) into a stream of bits to be

transmitted over a digital communications channel. At the receiving end, a decoder

reconstructs the waveform from the transmitted bit-stream. This process is the basis’

.. . . &
- of digital communications. .
d -

1
-

1.1 Speech Coding Activities: Theory and Standards

Speech coding activities over the last three decades are divided into: theory and

0
H

development of algorithms, and standardization of speech coding techniques for net-

work applications. ‘ ;



2 &
Spet;ch coding theory was always way ahead of.standards. Pulse Code Modulation ~

(PCM) is the earliest developed and also the best understood coding system ‘due to its

simplicity. A PCM encoder is simply a waveform sampler {ollowed by an amplitude

‘ 4

quantizer. The main advantage of P('M over analog modulation techniques is the

b

-ability to trade bandwidth for increased signal-to-noise ratio — historically, a well

known relationship [1]. -

-

In the late sixties, the International Telegraph and Telephone (‘onsuliative C'om-
mattee (CCITT) defined two PCM'standz;rds. for the internafio;tal’network: p-law
64 kilobits-per-second (kb/s) PCM in North America, and .~1jlaw 64 kb/s PCM in
Et'uope {2i. These two incompatible representations constitute the current standards
in digital encoding of telephone signals, with 64 kb/s as the basic unit in channel ca-

pacity. Transcoders map on€ representation into the other at the appropriate regional

interfaces. . : .

The PCM standards took into account only the need to cover a large dynamic

range (using logarithmic quantization) and an ability to code all voiceband fre-

{

(o

quency signals transmitted over the network, not only speech. This latter feature

e

was achieved through an instantaneous co'iiiné, with the code depending only on the
1 - ; //
current sample value for maximum simplicity. ,
L} * o ' ‘\J / ’

Speech coding theory progressed rapidly in the seventies and early eighties, giving
rise to a variety of PCM-based waveform! encoding schemes. Of all the coders suited

for toll (telephone) quality speech, the following are the most significant: Adaptive

! Speech coders can be divided into two classes waveform'coders and source coders Waveform coders
transmit a vestige of the input signal (e g., a prediction residual) which contains enough information to
reconstruct the ‘mput_at the decoder Source coders transmit a set of parameters describing the input
signal (e.g., LPC coeflicients, pitch period, voiced/unvoiced excitation). The sct of parameters 1s used
as a model to “rebuild™ the input. In general, waveform coders are well suited for toll and brbadcaét
quality applications but require correspondingly high bit-rates. Source coders, on the other hand, are
used in synthetic and communications quality applications where low bit-rates are necessary- Hybrid

" coders combine features of waveform and source coding (se¢ [3] for a complete discussion) 4




Differential Pulse Code Modulation (ADPCM), Adaptive Delta Modulation (ADM), ‘

Adaptive Transform Coding (ATC), Sub Band Coding (SBC') and Adaptive Predictive
Coding (APC) [3]. These encoders compress speech signals. with greater efficiency

than PCM, by removing redundant components jg the input prior to quantization.

-

The exponential growth of VLSI (Very Large Scale Integration) technology over

the past 'decade has enabled the implementation of encoding techniques by means

of singl;e board and singl'é chip DSP packages. In effect, both the theoretical ans
. .economic barriers of introducing a new encoding scheme in the telephone r;etwork,
have disappeared. As a result, the CCITT undertook a four-year study, commencing
in June 1981, with the intention of defining a new encoding‘standqrd to supplement
the current y-law and A-law PCM standards [4]. Early preference was given to 32
kb/s ADPCM, and in the October 1984 CCITT plenary session a specific algorithm
was recommended as an international standard [5}[6]. This algorithm could offer a
2:1 reduction in bit rate from 64 kb/s PCM and maintain. as much as possible, the
transmission performance of PCM. Thus, an 8 kHz sam};ling and 4-bit per sample
coding are implicit requirements. AIthoughl ADPCM systems are adaptiw_;, their
performance with“ron-voice sig{lals is somewhat compromised since their 'demgn 1s
based on properties of speech. The most important problem in the 32 kb/s algorithm
(G.721) was to select a technique appropriate to data and speech without explicit
" decision of which signal_is being communicated. Moreover, the technique would have

to ensure that the decoder recovers to match the encoder after a transmitssion error

)
has occurred. Some of the constraints observed in the design of the algorithm are:
¢ transmission of speech. GOicebanq data. and signalling(tones with good fidelity.

e handling of multiple encoding/decoding stages with analog or digital (transcod-

ing to/from 64 kb/s PCM, either A-law or u-law) intervening links.

o the algorithm should not rely on the transmission of side information and, in or-



\
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deg to minimize transmission delay, all adaptation processes should be backward-

acting in time.
Al

» fixed bit-rate in time for any channel.

e robustness to transmission errors for all types of-signals, with special attention

paid to encoder/decoder tracking recovery after a disturbance.

- -

The proposed scheme uses an adaptive dynamic-locking quantizer (DLQ) (see [7])
_and an ada};tive short-term predictor to compress the input sequenfé. The adaptive
DLQ was designed specifically for network applications. It employs two modes of
adaptation, fast for speech and slow for voiceband data (vbd) and signalling tones,
with a continuum of speeds in between the two modes. The adaptive predictor is
composed oi’ a‘ sixth order moving-average (MA) section that' models zeros in the
input signal and a second order autor;egresswe (AR) section that model§ poles in the

input signal. These sections are simple transvers'al, or tapped-delay line, filters.

According to the transmission constraints, the quantizer and preciictor adapta-
tions are backward-acting in time without any reliance on side information. Backward
adaptive predictive coders _rely on identical quantization and prediction operations at
‘the encoder and decoder to ensure that the signal reconstructéd at the‘decoder is an
accurate replica of the signal arriving at the encoder. Thus, with backward adap-

tation all updates must be derived from the transmitted bit-stream, this being the

o;lly link between encoder and decoder.

]

1.2 Predictor Mistracking

a

Two different tracking requirements must be met by the ADPCM system. First,
. .

- B

the encoder must track the input when it is either stationary or transient.? This is

™~

? Stationarity, in the strict-sense, imphes that the signal statistics are constant with respect to time. In

2

H ot .

’ £



done by adjusting the quantizer and the predictor in order to match the statistics of
the input signal. Only when the encoder tracks the input sufficiently well,‘can there

PV
be a gain in transmission qualily over an equivalent PCM system.

Second, as mentioned earlier, the adjustment of the' décoder onto'the encoder
is necessary for t};e r:econstructed signal at the decoder to be as close as possible
to‘ the input signal. Henceforth, (mis)tracking will refer to the (mis)adjustment of
the decoder onto thg encoder. Transmission errors introduce differences between the
quantized residuals at the €ncoder and declnler thereby forcing at least short-terni
deviations between the two systems due to backward adaptation. Permanent mis-

)
tracking can be catastrophic — if the decoder does not invert the encoder operation,
the output rﬁay be significantly corrupted. One of the main goals;of the CCITT

study was to derive adaptation algorithms that are not susceptible to permanent

mistracking.

<] -
Permanent mistracking does not occur with MA predictors or quantizers. How-

ever, mistracking is a major concern with backward-adaptive AR predictors. In

" the classical gradient adaptation algorithm for AR predictors, coefficient leakage 1s

used in order to mitigate the effects of a transmission error. This leakage is known
to ensure predictor convergence in_the presenag,of errors if the input is sufficiently
broadbanw.g., speech, white noise). However, for narrowband signals, such as vbd

and signalling tones, the “leaky” predictor adaptation process may pos:sess several

-
14

stable states and it is possible that two predictors with different initial conditions

will never converge. Experiments with signalling tones have shown that even a single

. . . . -
transmission error can lead to predictor mistracking.

the wide-sense, only the second-order statistics must be constant with time; in this document we will
assume wide-sense stationarity unless otherwise indicated. Finally, the transient state implies time-
varying statistics; however, for the signals dealt with here (e g. speech), a transient can be sufficiently
approximated by a sequence of short-term wide-sense stationary segments

.




In the ‘CCITT proposal, this problem was overcome by using a mo‘diﬁed gradient

‘ coeflicient adaptation algorithm for the AR predictor. The modification is based
on a study on predictor mistracking by Millar and Mermelstein [8]. Gibson ;Y| has
observed that predictors with AR sections tend to track “the;nselvef” rather than the
input signal; this suggests that, after.a di‘sturbar\lce, the predictor at the decoder can

diverge from the predictor at the encoder. Other work on this problem includes a

very recent study on the CCITT standard by Bonnet et al. [10].

"In an attempt to avoid mistracking altogether, some authors have suggested us-
ing predictors with fixed AR sections and/or adaptive MA sections {11][12][13][14].
However, to achieve a given prediction gain, systexﬁs employing adaptive AR predic-
tion are corr.l'putationally more.efficient than those employing adaptive MA prediction

only. Thus, the development of AR predictors that do not mistrack is an important

i

. theoretical and practical objective.

1.3 Focus and Organization of Thesis

This thesis presents a new analysis of the mistracking problem in 32 kl;/s AD'I§CM
systems with AR predictors. For simpliaty, the MA predictor is not included in the
analysis and the DLQ 1s replaced by a umimodal adaptive quantizer. Since mistrack-
ing depends only on the AR predictor, the above changes are not ;igniﬁcant. The

research objectives are as follows: (1) to re-examine the classical gradient adaptation

algorithm for transversal predictors, and to show its susceptibility to mistracking; (2)

to analyze the CCITT modified gradient algorithm for transversal predictors; and (3)

to develop a better understanding of the class of predictors that does not manifest

mistracking. To this end two lattice predictors were also explored: a classical signal-

‘driven algorithm which mistracks and a newly developed residual-driven algorithm

“which tracks.

~
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In adaptive systems robustness to errors is usually obtained at the cost of perfor-

4

‘mance and complexity. In most practical telecommunication applications, however,
" “these shortcomings are outweighed by the enhanced transmission performance in the

3 - . "
+ presence of errors. Performance fmust be optimized over a number of expected trans-
]

a

mission conditions, at the cost of making it suboptimal in any one condition. Results

-

obtained from this research will serve to determine the performance penalties as-

sociated with ensuring robustness in the predictor to expected transmission errors.

[}

Althongh?he “setting” of this project is 32 kb/s ADPCM, the results can be used

for a variety of systems where tracking between adaptive filters 1s of great concern:

~

( >
The thesis is divided into five chapters, including this introduction. Chapter 2, \

‘presenfzed as background material, deals with ADPCM speech coding in general. A

typical encoder/decoder cohfiguration is illustrated, and the sequence of steps'lead-
ing to reconstruction of the input signal at the decoder are examned. Objective
performance measurements Tor ADPCM are then discussed. .Forward and backward

adaptation strategies for predictors and quantizers are compared. A section on robust

quantization concludes this chapter.

Chapter 3 constitutes the theoretical core of thq thesis and is divided into three
sections. The first section introduces the AR Amo,de‘l for speech. The second section
deals with the transversal AR predicgor and the development of. stochastic gradi-
ent adaptat‘ion algorithms. Traditional “signal-dr}ven” adaptation (driven by the
crc;ss-correlation between the residual and the reconstructed signal) is shown to be‘
susceptible to ~mistracking. “Residual-driven” adaptation (driven solely by autoc;)rre—
lations of the residual) is proven to be robust. The third section is a mirror image of
the second, dealing with th‘e lattice structure instead of the transversal structure. A

new class of residual-driven lattice predictors is developed which guarantees tracking

for all signals without regard to the order of prediction.

~



. . 8
, .“Simulations and experimental results for the different prediction algorfihms are . -
‘ ) ) found in Chapter 4. The algorithms are first optimized with respect to ayerage speech
and dual%onﬁé signals. Encoder and decoder tracking,is then examined for both
types of signal. The ;ests illustrate the mistracking ;:roblem with the signal-driven
predictors in the presence of errors, as well as the slight performance degradation

D

with residual-driven a'daptation in the absence of errors.

Chapter 5\presents a summary and conclusion of the investigation and ends with

some suggestions for improvement and future research. :

\
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Adaptive Differential

Chapter 2 : Pulse-Code Modulation
. - ~ ' (ADPCM)
- ) - "
. _ \
2.1- Digital Coding of Speech Waveforms Ce

Digital speech coding refers to a wide range of techriiqueg which compress a speech
waveform so that it may be efficiently transmitted over a digital channel. This chan-

nel could be part of a communications-system (as in telephony) or a storage system

(as in digitally recorded announcements). The analog waveform is pre-filtered and

sampled at a rate which avoids aliasing at thé receiver.! The time-discretized wave-

form, or sequence, is then coded (compressed) and transmittéd. At the receiving end
there Qcists a decoder which performs the inverse operation to the coder, yiaelding

a reconstructed speech sequence. Finally the output speech waveform is recovered
?from the sequence using an interpolation filter. The entire process is illustrated in

#

Figure 2.1. The sampling and interpola-t.ion operations are theoretically error-free for -

>

! A basic property df speech waveforms is that they are bandlimited. This natural limitation is due to the
speech production 'process and varies from speaker to speaker. Regardless, most digital coding systems
impose a strict bandwidth on the waveform to prevent aliasing. In commercial telephony a bandpass
filter of 300 to 3400 Hz 1s used, and the resulting signal 1s sampled at 8 kHz This shight oversamphing
serves to increase the transition region between passband and stopband so that a less stringent filter
can be used .
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a TRANSMITTER ‘ RECEIVER )
z(t) ¢l pREFILTER [2(n) ¢(n) | prGiTAL |¢'(n _ y(n) _|INTERPOLATION | i¥(1)
"1 & SAMPLER CODER 5™ CHANNEL DECODER FILTER =

Fig. 2.1 Digital coding system for speech

bandlimited inputs. In this thesis'we will take for granted these operations and deal

only with coding, transmission and decoding of digital sequences.

The main goal of all waveform coding systems is to reconstruct the input signal
with the least error given a fixed transmission bit-rate. An alternate goal is to decrease
the bit-rate while maintaining the same reconstruction quality. However, both goals

“have conflicting requirements as wil be shown here.

The bit-rate of a waveform coder is determined by the number of Jevels in the
quantizer. A quantizer with L = 2B levels requires at least B bits per sample to

encode its input. Assuming a sampling freqﬂency of 8 kHz, the resulting bit-rate will

be
N R =8B =8logy>L kb/s.

As a measure of quality, the signal-to-noise ratio (SNR) for a PCM system with-an

»
i

" Lievel quantizer is given by
SNR ~ 6B — 0 =6loga L — 6 dB,

where 6 is a parameter depending on the input pdf and the quantizer characteristic
! T

(typical values for @ lie in the range: 0 to 10).2 In effect, if we decrease the number

of bits (therefore, levels) but still try cover the same range, the courseness of the new

‘quantizer will result in a 6 dB loss in SNR per bit.

. \
Therefore, all other things being equal, a reduction in the transmission bit-rate

R implies (1) a reduction in the number of levels L in the quantizer and (u) a corre-

? This relationship 1s known to hold for B > 4 and only when the quantizer range 1s matched to the
signal range (see [15]). For B < 4 the quantization error becomes increasingly correlated with the
input .
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sponding decrease in reconstruction quality SNR.

K

ADPCM uses a differential encoding scheme which exploits short-term, or near
sample, correlations in the mput speech sequence in order to achieve (1) witliout

incuri‘iné ().
2.2 ADPCM En/cod’er/ Decoder Configuration

ENCODER ) DECODER |

£} t -~ ~y
Ta l+\ on Q ‘n A._.&I?ﬁNE.E.I.’-_.iL.Q—l €n + In

.Y

S = | i P

L4

© Fig. 2.2 Bl‘ock‘diagram of thé ADPCM en(‘(.)der/decoder

The basic ADPCM encoder (see Figure 2.2) is composed of a quantizer Q, an
inverse-quantizer Q7 !, and a predictor P In practice, there is an analog-to-digital
(A/Q) converter outside the loop which quantizes the input to more bits than em-
ployed for transniisston. Thus, Q and Q™! are cigital-to-digital (D, D) ('(mvorwrs.g‘
This allows all the math operations (+. ~, <) to be digital. However, in this thess
we are only interested in the ana]_vsxs of a biﬁgle encoder/decoder connection. There

is no need to model the transcoding requirements outside the loop To this end. the

only digital part of the system is the transmission channel.

A quantizer can also map a fimite set of symbols to another fimte, but smaller, set of symbols (D/D
- conversion) This can occur, for example, 1n synchronous transcodings (PCM-ADPCM PCM),

b
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A more detailed description of the quantizer 1s found 1n Section 2.5. The predictor

P, a linear finite-impulse-responseé digital (FIR) filter, is discussed in Chapter 3.

Unlike PCM, which simply quantizes, encotdes and transmits the input sequence

z(n), ADPCM forms a difference sequence

¥
4

e(n) = z(n) ~ &(n), (2.1)

where r(n) 1s a linear prediction of z(n). This sequence, known as the prédictron r
residual, is quantized and a codeword c(n) is transmitted throhgh the channel. The

smaller variance of e(n), compared to z(n), allows a reduction in L without a reduction.

in SNR (see Section 2.3). Inverse quantization yields the quantized residual sequence

2(n) = Q(&(n)) = e(n) + gln), (22)

where ¢(n) is the quantization error.

In order that the encoder and decoder track and reconstruct the input sequence
in synchrony, it is desirable that the prediction Z(n) be derived from previous values

of the reconstructed input sequence Z(n) instead of the encoder input z(n). For the

- -
same reason, Z(n) itself is formed from current values of-Z(n) agd €(n), rather than

e(n), giving

F(n)= Z(n)+ &(n). (2.3)

By combining (2.1)-(2.3) the reconstructed signal can be expressed as

Z(n) = z(n) + g(n), : (2.4) -~

which implies that the reconstruction error at the encoder is identical to the quanti- >~

.
( zation error. -
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Thus, a closed-loop structure with feedback arotind the quantizer allows the por-

) o,
tion of the encoder which contains the inverse quantizer Q™! and the predictor P to

be copied jin the decoder (Figure 2.2’) At the decoder the codeword ¢'(n) is received

and inverse operations ledd to

t’ .

'n) = 7' + &'(n),” . (2.5)

where %'(n), Z'(n), and €'(n) are the decoder’s reconstructed, prediction, .'imd quan-

tized residual sequences, respectively. If the channel is error free, then

*
d(n)=c(n), -~ -
) = &, ,
| #{n) = #(n), : .
and V: L ) \ ) . -
L #(n) = E(n) = z{n) + g(n). S (2:6)

Hence, in the absence of channel errors, the reconstructed sequence at the decoder
z'(n) will differ from the input sequence at the encoder z(n) only by the quantization
error g(n). This is an im};ortant result which implies that quantization noise does

not accumulate over time. : )1

2.3 Objective Performance Measurement .- ~ -

-
The most common objective indicator of waveform coder performance is the en-

coder/decoder SNR, defined by

: - Y A Elr3(n)]
SNR = 5
) : El(z(n) — &'(n))=!

(2.7)

In the absence of channel érrors (2.6) applies, in which case the SNR can be expressed
v .
~ E[z*(n):

. SNR = ———— = Gp - SNRp, .
E{ql(n)} Gp - Si RQ (2.8a)

13
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£
- e
where ) )
‘ E[r¥(n)] :
‘D = - - 2.8b
“P = BeZ(n) - (280
and
Ele¥( Ele*(n)]
SNRp = (2.8¢)
: 27 Elg(n)]

—
©

are the prediction gain and quantizer SIVR, respectively.

»

\ 3 - -

~

For a fixed number of levels. the quantization noise power can be made propor-

tional to the quantizer input (prediction residual) power
i \
. E|¢%(n)] = € Eie*(n)), (2.9)

where ¢ is the quantizer performance factor (noise power per unit input power). This

factor is independent of the quantizer input.

Equ‘ations (2.8¢) and (2.9) imply 4hat SNRg = 1/€* is independent of the pre:

diction residual e(n). (Clearly, the SNR is maximized when Gp isamaximized,' or

K

equivalently when Ele*(n)) is minimized. Most predictor adaptation algorithms are

indeed based on minimizing E[e*(n})], as will be shown in Chapter 3.
g

3 ~

In practice, the ensemble statistics implied by the expectation operator E|-] are

, not available and must be replaced by time averages (-) defined as

ww%;Zm»
: . =1

where N is the length of the arbitrary sample sequence u(n). "Time averages are
accurate estimates of ensemble statistics if the sample sequence is stationary and

ergodic and N is large. .
A .

t

-

~

o

! The perfgrmance factor €? depends mostly on the quantizer structure, :.¢ , type of quantizer, number of
levels, dynamuc range However, there is also some dependence on the statistics® 6f the quamxzervmput'
but this 1s ncghglble if the quantization is fine and the quantizer 1s not overloaded {15

8 ' -

3
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. . . e .
So. in practical analysis, the coder performance’is represented by the time aver-

aged SVR. defined as T 4
) ‘ 2 \ ¢ 2 ‘3 \ « hd
® SATR = ("r‘)i " ) = \’-lr_‘(n )5) g.' _.;S 7_’)_: (',). I(,d)
(ge(n)y  -fes(n)) g=(n) ;
or, expressed in dB as .
' SNRyg = 10logyy SNR. (2.10b)

Time-averaging over the entire input sequence, as (2.10a) would indicate, tends to

. i -
under-emphasize the performance in segments where the input energy s weak 15,161

An objective measure which corresponds more closely to subjective evaluations
1s found by computing the SNR of (2.10a) or (2.10h) over many contiguous non-

overlapping segments of the input sequence. This 1s more m hine with what the

-

human auditory system does when evaluating the quality of a signal. These short term
SNR values, denoted here by SNRyg(7) for the jth segment, also provide segmental
performance information that just isn’t avalable when the SNH s computed over

the entire input sequence. The segment length is chosen <o that the mput could be

considered stationary for that period of time  An appropriate segment length for

speech 1nputs would be 1n the order of 16 s or 128 samples

‘

. )
An average .wgnwn;al SNR measure 1< caloulaied as
) ] I\ i
SNRSEG 5 N SN Kyt .

] !
where A" s the number of segments in the input sequence This average of the
short-term SNR values tends tlo assign more equtable weightings to strong and weak
portions of !h«i input signal. Segmental SNE can alvo be expressed as the vam of

segmental Gp and SNR():
y
g - T 1
SNRSEG ~ (t'p.\‘]l.( ;. \"\HQ SR ]\ ;\_‘ (1‘;:,’“fj e s \’RQ" uf_]! '(2 B

15
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If the quantizer is adaptive, the SNR¢ will be approximately constant under varying
inputs. THas, SNR and Gp are roughly equivalent performance measures (when there

are no channel errors}).

In the presence ‘of errors, the simplifications imposed by (2.6) cannot be applied

and the i)erformance measures at the decoder must be calculated with reference to

the encoder signals; z.e., o7 . .
i (x3(n ) | )
SNR e) = ~ TR
7o) =l — #1)?)
(x(n))
G e ] — - T
' P = Tty — #m) )
SNRo(pe) = = <e~(.ri/)) i

—wirere (p.) denotes the presence of errors in the form of a bit error rate for a binary

symmetric channel.> Segmental and average segmental values are computed as above.

In'this case, however, (2.11) does not hold since - ‘
SNR(pe) # Gp(pe) - SNRg(pe). |

All the segmental measures discussed above will be used in Chapter 4 in order to

evaluate the performance of the predictors.

!

] . ' t
2.4 Adaptation Strategies

- The-input environment of a coder is generally time-varying. Speech signals are

inherently non-sfationary, their amplitude statistics and spectral confent gradually

changing over time [17]. In ADPCM, both the quantizer and the predictor can be

* In a binary symmetric channel there is a probability p. of a bit-error {e.g., a 1 being received as a
0) and a probability (1 — p.) of no error. This process is (1) memoryless since the output depends
only on the input and (1) identically distributed since the statistics {p.) of the channel do not change
with time. Despite the simplicity of this model, it 1s very useful in representing expected transmission

impairments.
]
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adapted with time in order to track the changing input signal and provide improved

’

¢

performance.

Adaptation of the quantizer is performed by changing the quantizer’s step-size
parameter A(n) according to the prediction residnal power E}c"!(n)i. Similarly.

adaptation of the predictor is achieved by varying the set of predictor coeflicients

v

A(n) = {q(n), + = 1.2,...,p}, 1 order to track the spectral content of the input

.

r(n). Thus it is expected that. for signals exlnbiting short-term enérgy and correla-

tion that are time-varying, a system utilizing adaptive components should outperform

Jone with fixed components. R

-

1 '
Adaptation schenies can be classified as either forward (open-loop) or backurard

(closed-loop). The forward adaptive praocess estimates the correlation in the input
and uses the results to adjust the parameters of the system. Backward adaptation,
on the other hand. uses observations of an output signal, along with the current state

of the system. to form the parameter adjustment

-

' The notation ADPCM-AQF-APF and ADPCM AQB APB 1s used to refer to

systems with forward and backward adaptation 1n hoth the quantizer and predictor,

. - . . i
respectively. These two forms of ADPCM are discussed 1n Sections 2,4 1 and 2,12,

PY

Mixed adaptation systems (.0 2 AQF-APB or AQB APF) are rarely encountered

ADPC M speech coding.

2.4.1 Forward Adaptation (ADPCM-AQF-APF) /
c .

AN

v

Figure 2.3 illustrates an ADPCM «<ystem with forward adaptation in both the
predictor and the quantizer. Note that the Quantizer Adaptation Loy anst the 're.

dictor Adaptation Logic recerve their information from the respective input sequences

€(n) and r(n). -

17
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Fig. 2.3 ADPCM system with forward adaptation

In general, a block of M input samples must be collected before the adaptation

algorithms can produce valid parameter estimates. In terms of parameter calculation,

) @

the block size M must be small enough so that the inpiit.can be considered stationary

vy

" and large enough so that the estimates are reliable (32-128 sam;_‘les for speech). A

practical constraint on A{ is based on the coding delay introduced; ¢.g., a delay of 32
r
samples or 4 ms is significant and perhaps unacceptable in certain applications.

First, M input samples are buffered and released only after the quantizer step-size

A(n) and the predictor coefficients A(n) have been calculated. These parameters

are then used to process the corresponding, block of samples at the encoder and

“are transmitted to the decoder at a rate which,is detérmiped by the block size M.

. Transmitted parameters, also called side information, must share the channel with

the codeword ¢(n). I"raming of the overall bit sequence must be employed so that
the correct bits carrying the appropriate side-information can be located. This poses
synchronization problems even when the side information rate is low. Moreover,

a smal] percentage of the bit-rate, is always dedicated to, the transmission of side

[4

Q

?
}



¢

¢

" both ends are 1dentical.

information.

Transmission of side information and coding delay are the main disadvantages in

forward adaptive coders. One important advantage is robustness to channel errors.

Ifa channel error corrupts the received adaptation parameters Al(n) and A'(n), its

effects will be local to that particular block. In effect. block processing is equivalent
to having finite memory in the system. Consequently, neither predictor nor quantizer
mistracking is a problem in forward adaptive coders.

R . . .

2.4.2 Backward Adaptation (ADPCM-AQB-APB)

An alternate adaptation strategy is shown in Figure 2.1. In this case, the Quan-
fizer Adaptation Logic uses thg codeword c{n) and current step-size to generate the

- ~

new step-size, Similarlyl, the Predictor Adaptation Logic uses €(n), F(n) and current
coeflicients to generate the new coefﬁciegts. State feedback (not shown in‘lhe ﬁgur;)
occurs inside the logic blocks. In the absence of transmission errors all the signals

required for adaptation are available at the encoder as well as the decoder, thus no

side information needs to be transmtted. As a result. the adaptation processes at

v
o

For simplicity, the parameters can be updated with every new sample -—— this s,
called sequential adaptation. No block processing 1s required since the closed loop
nature of the adaptation system allows an infinite but fading memory of previous

inputs. Therefore, there is no coding delay in a backward adaptive coder.

A transmission error will affect the received codeword (1) (no other information

is transmitted) and consequently ¢'(n) and F'(n). Since these signals drive the adap-

. tation.parameters A(n) and A'(n). the error will propagate around the syathess and

’

state-feedback loops possibly causing mistracking.

’
)

-
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Fig. 2.4 ADPCM system with backward adaptation

A%

The main problem in backward adaptive systems is to design robust algorithms
that also perform well in the absence of errors. The next section deals with such an
algorithm for the quantizer. Predictor mistracking and its correction are dealt with

‘o

in the remaining chapters.

2.5 Robust Quantization

Amplitude quantization of a discrete-time signal is an important step in digital
coding, since it determines the transmission bit-rate (as discussed in the beginning
of this chapier). It is also the only source of distortion (quantization error) in-the

reconstruction process, when there are no channel errors.

2.5.1 Quantizer Mapping

In ADPCM, the quantization mapping Q(-) transforms the residual signal am-

s

plitude e(n) at time'n into &(n), one of a finite Set of amplitudes determined by the

20



number of levels L. This is done instantaneously and the transformation &t timne =

x does not depend on earlier samples (memoryless quantization) ¢f. for now. we do not

4

consider the effecls of prediction.

) .
¢ -
- ~

I
;/ ! i -
s ' ———— * - + . SR
; €-1 &, = € I & ka1
- €
INSTANTANEOUS AMPLITUDE °

Fig. 2.5 Quantizer decision intervals

)
3

Dropping the time index n we denote the decision levels by ¢f and the output

values by €, (Figure 2.5); then the signal amplitude ¢ is repres}ntc‘(l by the index &

if it falls in the interval ~ ° o ' ,
\ - ) Ik:{ek<€§€k+l}~ c=1,2.....L. ;

The transmitted codeword c is a function of the index & which depends on the partic-

&

® *

ular channel coding scheme being used. For simplicity, ¢ can be chosen as the binary
representation of k {although this s not ‘the most beneficial choice). The correspond-

ing output value must lie inside the interval I;., and 1s often chosen as the midpomnt

value ,

)

€= Qe) =

€L+ €y .
k:w‘_‘;.&_ﬂq it - I

The overall mapping € = Q(€) is a staircase function with odd symmetry about the
origin. In order to match the quantizer to the probability density function (pdf) of the

input signal e(n), different quantizer shapes can be defined by appropriately setting

3

the decision levels ¢, and output values 7.

The optimal values are found by minumzing the quantizer mean-square error
[ 9 e D - - . RS . §
(mse) E|g~] = 'E{(e—#)~] with respect 10 ¢} and 7 given a particular input pdl, pe (o).

¢4
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There exists an iterative solution for minimizing E[q%], known as the Lloyd-Maz itera-

tion. The minimum will be global if the pd{ is log-concave; z.e., if o* logpe(e)/562 <0

-

(15]. | .

Several different types of Q(e) are shown in Figure 2.6 for L = 7,8. Without loss
of generality, the uniform midrise quantizer of Figure 2.6(a) is-used in the discussion
on quantizer adaptation in the following section. This is because the quantizer shape

is not as crucial in an adaptive system as it is in a fixed system, especially when the

input is a residual signal.

gz -
El L=28 —— El L=28
-~ . rd
(c) € . (d) € _
& —
e1=—0C €9 e1=—00 €q --- er €5 =00
0 €
Ao iR,
El é\1
L'=7 L=7

- Fig. 2.8 Quantizer mappings: (a) uniform midrise;

i (b) nonuniform midrise; (¢) uniform midtread;
and (d) nonuniform midtread. (Adapted from_Jayant
and Noll [15], page 117.)

'S

A 4-bit or 16-level quantizer with a Gaussian characteristic is used in the simu-

@ ’
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lation of the AbPCM system in Chapter 4. This corresponds to Figure 2.6(b) with
L = 16. The optimum decision values and output values, based on an input with a

unit standard deviation (¢ = 1) Gaussian pdf. are given in Table 2.1 {150, Due to

symmetry only the positive values are given. The optimum values have to be multi- -

plied with e for input residuals with 2 non-unity standard deviation. This quantizer

is reported (in [15]) to achieve a maximum SNRp of 20.22 dB with stationary Gaus-

=t

sian inputs. In subsequent tests, we observed that the SNRQJE(.',is within 17.5-19.5

b

dB for most speech and narrowband inputs.

[y

k €k, opt E\k,opt{
910.600 0.109
10 | 0.217 0.326 |
, _ 11 | 0.433 0.542
; 12| 0.650 0.759

13| 0.866 “0.975

141 1.083 1.192 | ~

15| 1.299  1.408 | .
‘ 1611516 1621 :

Table 2.1 Optimum decision values r) and output values ¢} for
a 16-level Gaussian quantizer with #, - I; due to
symmetry only the positive values (9 < k o 16) are
shown. )

2.5.2 Quantizer Adabtation

In an ;tarly paper by C'ummiskey, Jayant, and F]an:;gnn ‘18 a sx;nplr but eflective
adapta?ion algorithm was proposed. They introduced a simple rule for generating the
step-size, namely “for every new input sample, the step-mize 1 changed by a factor
dependiné only on the knowledge of which quantizer slot was occupied i))- the prr‘vi(.m!;

sample.”

| \
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Formally, the algorithm is ) . .

. " A(n) = A(n -1) - M(Je(n = 1)]), e ’ (2.12) -

where |c(n — 1)| 1s the magnitude of the previous codeword and M(-) is a step-size

multiplier function. Limits imposed on the step-size determine the resulting dynamic

range of the quaﬁtizer:
Ami’n < A(n) £ Amax, . (2.13a)

Dynamic range = 2010g10! Amax/Amin) dB- (2.13b)

If the maximum step-size is 100 times the minimum step-size, then the dynamic range

of the quantizer will be 40 dB; this is a suitable value for speech signals in telephony. .

». The step-size multiplier function AM¢{-) takes on a specific value from the set
ke,

{Mi,Ma,... Mg}, according to which quantizer level ¢(n — 1) was occupying. This

implies that there are only A" = L/2 multiplier values to be chosen (2.e., half the

number of quantizer levels, since the polarity of ¢(n — 1) is unimportant). Figure 2.7

illustrates an 8-level or 3-bit uniform quantizer with associated step-size multipliers.

Meaningful adaptation for speech requires a rapid range expansion to handle
sudden bursts of speech energy and ‘slow range compression for decaying pre-pausal
sounds. To avoid slope overload and minimize granulation noise the multiplier values

should respect the following constraints:

-

Mg <1, M;>1, d My >Ms2>.--> Mg.

7

The most effective values for the step-siwe multipliers are found through extensive
'\computer simulations on different types of input signals. Some results for 2, 3, 4, and
5-bit quantizer step-size multipliers are tabulated by Rabiner and Schafer [17], and
by Jayant and Noll [15]. The set given in Table 2.2 for a 4-bit quantizer is used in

the simulations of Chapter 4.
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Fig. 2.7 Step-size multipliers for an 8-level quantizer

a

My | Mo | My | My | My | Mg | M; | Mg
2412016 [ 1.2 9 Y1 R .9 : .

Table 2.2  Step-size multiplier values for a 4-bit or 16-level
quantizeft

" The algorithm defined by (2.12) is not fully robust to channel errors. This is

because each new step-size depends on the entire past-of the codeword sequence

c(n), thereby forming an infinite memory system where errors propaga{o indgf{nitely.

Goodman and Wilkinson [19] pointed this out using the following argument: rewrite
(2.12) as

n-1 ) N
An) = [] Me(k)) - A(0). (2.14)

. k=0 . .
Let A'l.) and ¢/(-) be the decoder versions of A(-) and (), respectively. Now assume

that at'time m < n, |¢(m)| = ¢ while a channel error canses !("(mrgz j. If there are

v
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no additional errors, then
T 1 Alln) = [M(j)/M(2)]- A(n). ©(2.15)

As a tesult each error causes a multiplicative offset beiween the encoder and the
decoder that theoretically will persist indefinitely; i.e., quantizer mistracking. The

following modification to (2.12) is suggested [19}:

A(n) = Afn = 1M (jefn - 1)]) | 5
- n-1 . . .
o= [k Ay, (2.16)
k=0

where 3 <_1 is the leakage factor. Now if, at time m, j is received instead of i,

— o

~

An) = [MMEP A, - ()

Note that when 3 = 1, (2.16) and (2.17) simplify to (2.14) and (2.15). “

Hence, the offset due to errors will decay exponentially with time, thereby elimi-

' nating quantizer mistracking. The time constant 7 is controlled by the factor 3:
7=-1/(Inf3) samples.

Several values of 3 with corresponding time constants 7 (in ms) are tabulated below.

3 | 15/16 | 31/32 | 63/64 |127/128
Tms | 1.94 3.94 7.94 | 15.94

Table 2.3 Quantizer leakage factor vs. step-sife time cTs_ta?ht

The design value of B is a compromise between the[sensitivity of the quantizer

) <@

\
to changes in the signal variance and the sensitivity of the decoder to the effects of
channel errors. This implies that quantizer adaptation with leakage will affect the
performance of the codec in the absence of channel errors. Compromise values which

result in a time constant of 4~10 ms seem to work best for a variety of inputs and

26
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Prediction Structures

Chapter 3 and
: , Adaptation Algorithms

“w 9

S

3.1 Speech Signalt Model :

o

- The motivation for using a differential or predictive coding scheme is based on
the fact that a speech signal can be adequately modelled as a linear p-th order au-

toregfe‘ssive process, denoted by AR(p). An AR(p) process is defined as l

. .A p . .
:Z r(n — t) +u(n), (3.1)
where the summation term is the predicted component of the speech signal and u(n)
is the unpredicted excitation éignal The’relatlonshlp between the excxtatxon u(n)

< 9
and the output z(n ) could be represented by a slowly time-varying transfer function

of the form! o -

Va(z) = 7= = - , (3.2)

also known as an all-pole model.

~

>

7

! An unconventional notatjon 1s used in the z-transform equations since we are dealing with non-stationary
. systems. Conceptually, the subscnpt n dcnotes slow time-vaniation 1n the parameters a,(n). Mathe-

matically, the’ equations are treated under the assumption of short-term stationanty, 1 e. , with fixed .

parameters. o

28
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" '

In general, most of the poles of (3.2) occu‘ in complex conjugate pairs which
model the resonances. or formants. of the speech spectrum. However, some of the

poles are heavily damped and contribute only to the overall spectral shape.

v
»
)
<

T
The excitation signal u(n) varies from a quasi-periodic train of pulses for voiced

speech to random noise for unvoiced speech. Thus, the speech signal™model consists

of a time-varying linear system Vj(z) driven by a set of parameters {a,(n), 1 =

1,2,...,p} and excited by a random or quasi-periodic input u(n) (see Figure 3.1).

N

Random Noise £ o A
Parametery 5
- - . . ~
{tl,(ll)} ﬂ;'{y ,
l unvoiced —I\/L =
Linear i
u(n) -———et Time-Varying [———e r(n) speech
System: 1 ,(z)
voiced .
/ ., —_———

Quasi- Periodic, ’ ) 7 Spectrum

Fig. 3.1 Speech signal model

e
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A linear predictor can bedefined as a p-th order FIR filtér with coeflicients

{a,{n), 1 =1.2,....p} and outf);xt
- . P ' ,
. r(nj - Z{u,(n).?‘(n ). {(3.3)
TR ,‘

Thé prediction 15 formed using past samiples of the reconstructed signal 7(n), as

explaired in Section 2.2. The predictor tran<fer function is
~ ~ \_(\\ p v )

2) ~
Pals) = daytn): (3.4)

' <) 1

-

>
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Pp(z) is also known as the analysis filter. The main task of this FIR filter is to
track the .“p'redicta.ble” part of {3.1), namely the summation term ¥ a,(n)z(n =
t), by adjusting the coefficients so that a,(n) — a,(n). When equality is achieved
for stationary inputs (¢, = a,), the prediction residual power will l;e equal to the

excitation power plus the filtered quantization noise:
7]

: ) P 9 9
Ele*(n)] = E[(n)] + Y alE[¢*(n)], - (35)

as,suming‘ the quantization is fine. Recalling Eq. (2.9), the above equation is further

simplified to

2 Elu’( 2
E[e“(n)] = f%?—]? = E[u"(n)],' (36)
—i=1"

since the factor €2 27 10‘? & 1 for most speech inputs. Thus, Eq. (3.6) states that

——

i

the prediction residual power.1s minimal since u(n) is either random noise or a train

of pulses.

The synthesis filter 1s an AR structure which reconstructs Z(n) from &(n), and is

defined by the equation

P \ ‘
£(r) = 2(n) + &n) = 3. ay(n)&(n — 1) + &(n) (3.7)
=1 . :
with transfer function
E X(z 1 ' 1
Ha(z) = X(z) _ - — , (3.8)

E(z) 1=Pu(z) 1-XE ain)s
Comparing (3. 2) and (3 8) it is clear that, were it not for the quantization error ¢(n),

Va(z) and Hn( ) would become identical when E[e®(n)] is mlnl‘IanEd.

— N

An adaptation algorithm for the coefficients can be derived from a gradient search

_of minimum E'[ez(r.z)]; i.€., using the goal to find the means! At this point. the

-

implementation of Pp(z) becomes important as adaptation algorithms are dependent

on filter structure. There are two basic types of structures to be examined in this
Q
paper: transversal and lattice.

[y

’
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3.2 Transversal Filter .

This section discusses the transversal filter structure and associated adaptation

algorithms. The transversal filter, illustrated in Figure 3.2, is"a direct implementation

~

of Pp(z)in (3.4). It is a canonical structure. containing the minimum number of unit

»

delays, p, required to implement a p-th order filter. In order to ensure stability of the

. .
synthesis filter, there exists a set of constraints on the allowable range of values for

the prediction coefficients. - -

- \
I(n) I(n~1) F(n-2) F(in-p)
e 1 ' 271 1 ---- :- 1 T
« ai(n) ax(n) ap(n)
=== D i
Fig. 3.2 Block diagram of a p-th order transversal filter ) /

\

! \

Region of Stability for a Second Order Filt-er. The poles of Hy(:z) must

lie inside the unit circle in order for the synthesis filter to be stable. Limting the
discussion to a second order filter and dtopping the time index n, (3 8) 1s written here
as o .

1 :

=

H(:)

B T T e e P an’
The poles of H(:) are simply the roots of the denominator

) [am " ‘
2 a as .
feaypz—ap=10 == A o 1\/,.1 + a9,
/ - ) £ 4
Imposing the constraint |z < | on the roots z; 2 vields the following comstraints on

the coeflicients: . '

.

¢

ay, -

1 - ag,
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Fig. 3.3 Stability region for a second order filter: Hp(z) »

s

The resulting stability region is shown in Figure 3.3. Therefore, after adaptation, the

stability of Hy(z) must be enforced by I}miting the coeflicients to the stable region.
/

In practice, the stable region is slightly reduced by a factor (1 — ¢), where € is
a small positive constant. This is done to keep the synthesis filter from resonating

when the coefficients are near the boundary. The constraints for the reduced region

are
o

la1] €1 —a2—¢, ~ (3.9a)
laa] <1 —, | e > 0. (3.9b)
. I ~ . x - .

For higher order transxi?rsal filters the roots ?f the polynomial are difficult to com-
pute, and the region is more complex. In this case, the easiest methoz for checking
-stability is to use a non-linear mapping M to transform the {a,} to a set {k,}, known
-as reflection coefficients [17]. The synthesis filter is gu;ranteed to be stable if the
Ir‘iagnit;ldes k| < 1 (see Section 3.3.1). So, Iimitiné the {k,} to this region and
mapping back (M’l) will yield a stable set of {a,}.

v

32




¢

3.2.1 Mean Square Error (MSE) Formulation of the Prediction
Residual -

“

As mentioned in Section 3.17 the main goal of the predictor is to minimize the

residual power, or mean square error (MSE). For FIR filters, the MSE vquaiion

E[e2(n)] can be formulated as a function of the coefficiedys {a,}, giveri a stationary

ili_put z(n).

Using a compact vector notation and assuming wide-sense stationarity, the pre-

diction residual of (2.1) is written here as
¢

e(n) = x(n) — ATi(n - 1) =x(n)- XT(n - 1A, (3.10)
where )

fay aa ... (lpjT

is the prediction coeflicient vector, assumed to be in steady-state, and

< FARPISR - . - T
s X(n-1)=[z(n-1) Fn-2) ... F(n-p)i
| .

is the reconstructed signal information vector. If the quantization is fine and the
predictor is tracking the inpui, so that g(n) is uncorrelated with r(n) and the quan-
tization error power 15 much smaller than the input signal power. the following ap-

proximation can be made:

i(n—l)REX(n-])§{r(n~l) rm-2) ... sn-pn (3.11)

After squaring and taking the expectation of (3.10), we get the MSE equati‘on:
Ele*(n)] =E|z%(n)] - 2E r(n)XY(n - 1)]A '

-

4 ]

+ ATEX(n - 1)XT(n - 1)]A. O (3a2)

This quantity can be plotted as a function of the coeflicients to yield an error surface

for the stationary input x(n). In the case of transversal filters, the surface is a

quadratic function, concave upward. with a single global minimum. By superimposing -

. . . 12 . . - .
coefficient trajectories onto the error surface, we obtamn an indicator of the tracking

’ a

2
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performance of an adaptation algorithm. Plots of the error surface for second order

predictors are used in Chapter 4. °
By defining the.autocorrelation function of z(n) as
$(1—7) £ Elz(n — i)a(n = )] = ¢(j—1), forall 4,3, (3.13a)
the autocorrelation ve(:(tor as -
P £ E[e(n)XYn - 1)] -
=[¢(1) #(2) ... ¢p)] (3.13b)
and the symmetric autocorrelation matrix as
&2 EX(n - )XT(n - 1)] ‘
#®0) " (1) 7T $(p-1)
Cé(1 0 e -2 \
- ¢(: ) ¢>(: ) ) d’(?’: ", 5 (3.13¢)
o(p—1) ¢(p—2) ... ¢(0)
the MSE equation (3.]%) can be formulated as ’
Ele*(n)] = ¢(0) - 2PTA + AT®A. . ‘h (3.13d) "

" Note that none of the quantities in (3.13a)-(3.13d) is a function of time, due to the

stationarity assumption.

v

/

It is clear that (8.13d) is a quadratic form in the coefficient vector A. Hence,

there exists a unique minimum solution in A which can be obtained by completing

L

the square or setting the gradient equal to zero. The optimal solution and resulting

minimum mean-square-error value are - .

Agp = 37'P - (3.14a)

and

. E[e*(n)]min = #(0) - PT&"'P

e

= ¢(0) - PTAgp. . (3:14b)




Brute force calculation of Agpt in (3.14a) requires the solution of a system of
linear equations, as indicated by the matrix formulation. Although there éXists an
efficient algorithm for-the solution (the Levmson-Durbin procedure 17]). a different

approach is taken here leading directly to the stochastic gradient algorithm. :

1
AS

3.2.2 Minimum MSE Solution for Optimal Coefficients

[
’

.

The derivation of the optimal coefficient vector 1s based on minimizing the mean-
“square error E[e?(n)]. Simply differentiating this quantity with respect to the coetli-
cients and setting the result to zero will establish a set of conditions for reaching the

optimal solution.

. ‘A
The error gradient is defined as /
o 9 L .
= 5;13((3(,;)]. ‘ (3.15)
Setting this to zero: we obtain ’
0=,
_of (l .
=132 {f(n)HAf("):
2B (X - 1) (3 16)

Equation (3.16) demonstrates that, as a side effect, the predictor ree anal and recon

_ structed signal are uncorrelated when the optimal coeflicient st has been found. This .

""is known as the principle of orthogonality %0, The tesidual 15 uncorrelated with the

input signal as well, based on the assumption leading to (3.11). .

N
A

Adapting the coefficients in a direction opposing the gradient will ensure that
the optimal set is approached after a finite number of iterations. Thus, the gradient

adaf)tation algorithm can be written as
: TS
A(" “‘1) - A“l) '_ZVA(")

= Aln) - /:I‘.\q(n)f((n )i, h {3171

v
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where p is a small adaptation gain constant or step-size parameter which scales the
size of the change in A(n) at each update. This is equivalent to perturbing the
- A

coefficients towards the global minimum by descending the error surface in a direction

’ . / . ey s . . . .
opposing the gradient (which is the direction of mazimum increase in the mean-square

error).

The algorithm will converge if the gradient direction can be assumed unchanged
over the region of the step. Thus, the step-size parameter u must be large enough so
the algorithm converges quickly to Aopt, but not so large that the algorithm hunts

in the vicinity of the minimum.

The selection of u depends on the eigenvalues of the input autocorrelation matrix

®. The range of values for ¢ which ensures convergence is

()

’ -

0<p< ,

! Amax

where Amay is the largest eigenvalue of . The optimal value, resulting in the fastest

convergence, is
‘)

Hopt = .
P Amin T Amax

For when p = piopt, the adaptation modes corresponding to both the minimum and

maximum eigenvalues converge at the same rate: ‘.

n
[ Amaz _

AIl'llll
convergence rate .

Zuax |
Al‘“lll ' l

Thus, the factor Amax/Amp, called the eigenvalue spread, determines the speed of
con;rergence of the gradient algorithm [20]. That this quantity depends on the input
<

4

signal is a major drawback in the use of adaptive transversal filters.

-

3.2.3 Gradient Algorithm for a Time-Varying Environment

In a practical coding environment, the input signals are time-varying but can

“ be considered stationary in the sort-term, as discussed in Section 2.4. Thus. two

T
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~

modifications must be applied to the basic gradient algorithm in order-to track the

chdnging signal: coefficient leakage and step-size normalization.

Coefficient Leakage. The first modification involves the insertion of coeflicient
leakages so that in the absence of an input to the algorithm, re.” VA(n) = 0. the

coefficient vector will decay to the origin.”

The use of leakage ensures that the algorithims at the encoder and decoder con-
verge after a channel error has caused the decoder algorithin to momentarily have
incorredt input data. However, as shall be shown later, mistracking is not prevented
if such an error corrupts the input datahindeﬁnitely; .¢ . by permanently changing

the decoder reconstructed sequence '(n).

An interesting method of applying coefficient leakage is found by radially scaling
the poles of the synthesis filter Hp(z) by,a factor 3 < 1. Suppose H,(:z) has a

pole at = = zy, then Hp(B71z) will have an equivalent pole at = = Jz;. Letting

Hpq(2) = Hn(ﬂ—lz)’ we get

1 1
- N .- 3.18
1] — <P 1‘11(" + I):-—l 1 - Sl;1 ”'(")da:—; ' ( a)

— p

>

Hyq(2)

which implies that

afn < 1) = dlafn). 1=12....p C(3.18B)

whexi\VA(n) = 0. This way all the poles of the synthesis filter decay to the origin

at the same rate. In the literature, ,J is usu‘al]y denoted as (1 ~ &), where 6 is a

-

small positive value. Using‘thg approximation (1 —8)' >~ (1 — ié) for small §, (3.18h)

i

simplifies to

o

an + 1) = (1 = 18)a,(n), 1= 1,2,....p. (3.19)

? Some forms 3f the algorithm have the coefficient vector dacay to a non-zero point, usually an average
point for speech signals that is deternuned experimentally. This allows faster convergence when Koing,
from silence to speech, but has no other consequence 1n the analysis of predictor behaviour

37



Step-Size Normalization. The second modification is the normalization of the
step-size parameter so that the size of the updates in (3.17) remain approximately the
same when the input signal level varies considerably. This will ensure that convergence

of the gradient algorithm is not strongly dependent on input signal power when the

signal is not stationary. Most differences between various adaptation algerithms for

°

transversal predictors evolve around the step-size normalization.

The most commonly used normalizer is the reconstructed signal power E[73(n)),
this being approximately equal to the input power. This is equivalent to having a
: : s

possibly ti'mé-varyingl step-s\ize parameter , .

_ 7
#(77)_ E[fz(n)] +.A,7 - ’ (3'20)

where K is an appropriately chosen constant with the purposé of preventing u(n)

from growing too large when the reconstructed signal power is small.

In the computer implementation of the algorithm, KA is set to zero, and the

updates at time n are simply not performed if E{Z2(n)] is less than a fixed threshold
i

value; we., a;(n + 1) = a;(n). Subsequent experiments show that this does not

introduce any himat cycle problems where the coefficients “lock-up” for long periods

+

of time.

Substituting (3.19) and (3.20) (with K = 0) into (3.17) and replacing e(n) by &(n)

(since the former signal is not available at the decoder) yields the modified gradient .

! -~

algorithm, written here in scalar notation,

pE[E(n)z(n —1)]

ETIR i=1,2,...,p. (3.21)

a,(n +1) = (1 - i8)a,(n) +

So far; the, discussion has dealt with the motivation and derivation of the generic

gradient algorithm for adapting a transversal predictor. In the following section we

- M »
show that algorithms of the form (3.21) are susceptible to predictor mistracking.

r
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3.2.4 - Effects of a Channel Error: Possibility of Mistl_'acking

- 3.2.4.1 Traditional Adaptation

i

In traditional backward adaptive prediction the reconstruction processes at the

4 . )
encoder and decoder can be described as systems in which a rgconstruction filter F

is driven by an adaptation algorithm G with system input &(n), output Z(n), and
coefficient vector A(n). Without regard to the implementation details of F and G,

filter /algorithm interaction can be described using a simple operator notation, where

the signal reconstruction is

E(n) = F{em): X(n - 1):Aln)}, (3.22)

and the predictor adaptation is

A(n +1) = G{amkX(n - 1);A(n)}. &"zfn

/
The reconstruction process, illustrated conceptually in Figure 3.4. is in a coupled
configuration where the output of F is fed-back to G, and vice versa. The p-sample

buffer simply generates the information vector X(n — 1) from #(n) and the =~} block

delays the coefficient vector by one sample.

-

€n : 0

]:- Tn p-samplé X, -1
buffer

An+) A,.,

Fig. 3.4 Reconstruction process (signal-driven algorithm)’

-~ -

For the ADPE€M systems considered here, the F and G operators are computed
N .

*
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identically at the encoder and the decoder but the inputs &(n) and €(n) can differ

»

due to a transmission error. Suppose that at time m a transmission error causes
. ée(m)=¢e(m)+¢ i : >

to be received at the decoder. The immediate effect of this error will be slight per-

"
2

turbations in .i"(m) and A'(m + 1), depending on the value of ¢ and the state of the
decoder protess. These perturbations will propagate around F and G in the feedback
and cross-feedback loops, resulting in persistently incorrect infogmation at the inputs
of both blocks at the decoder. This will happen even when &'(n) = &(n) for n > m,.

or when the received signal is identical to the transmitted signal after the error has

3

occurred. In' the long—temi the error may force the decoder process into a different

o
¥

mode of operation, perhaps an unstable one, where 7'(n) # Z(n) and A'(n) # A(n).

Theoretically, convergence of the two processes after an initial offset is ensured

.
B 4

only if the quantized residual igtrivially zero {or white and zero-mean) for an extended

.

period of time. Then the driving term in (3.21) will disappear, enabling the coeffi-

cients to decay exponentially to zero at b,oth ends (due to leakage). This wilt force

the poles of the synthesis filter to the origin. effectively resetting both reconstruction

processes.

‘

In fact, this effect is witnessed with speech signals where periods of low energy (or
silence) between utterances and the wideband nature of fricatives both serve as natu-
ral re-synchronizers for the reconstruction proceés (see Section 4.3.2 for experimental

results).

In the case of narrowband inputs such as DTMF signals, howéver, convergence
cannot be ensured. Looki;lg ahead af_Section 4.4.2 Figure 4.10 shows, for the dual-
tone input signal DTMF-3 (composed of two equi-amplitude sinusoids at 697 and 1477,

Hz), the coefficient trajectories for three second-order prediction.processes (one at the




¢y

-

e

encoder and two at the decoder), each with different injtial conditions. We see that

the encoder (unaffected by transmission errors) is tracking near the optimal point for

the DTMF-3 signal, but the two decoiders are tracking near points corresponding to
the distinct frequencies 697 and 1477 Hz. The dotted line is the boundary of the region
of stability for a second order predictor w the three contours represent the error

surfaces of DTMF-3, 697 Hz sinusoid, and 1477 Hz sinusoid signals. The resulting

power twist in the reconstructed cutput sigpals at the decoders can be as large as 20

dB (see Figure 4.11). Thus, mistracking is a pghengmenon normally associated with
stationdry 'narrm’wv-band input signals. such as voiceband data (vbd) and signalling

tones. ’ - ’ ) .

-

4

3.2.4.2 Modified Adaptation~ . .
g !

"Tracking can be ensured for all signals if the cross-feedback path from t/hgfo\\t put
of F to the il;put_of G is eliminated, thereby de-coupling the tW(\) blocks (Figure 3.5

illugtrates such an arrangement ). With this modiﬁ/c-ahon, G is no longer influenced

H

by incorrect input data Z'(n), and leakage will allow the coefficients to re-track in a
finite number of samples,after the error has occurred. The reconstructed signal at

the decoder will also converge due to the uniqueness property of the reconstruction
<

5

_process: v.e., if Ef(n) = é(n), A'(n) = A(n) and .?'("71) #°7(n) then F'(k) — Z(k) for

. v, . . v
k > n, assuming no additional errors {21].

As a'result, algorithms driven only by /current.:md previous samples of the quan-

tized residual are not susceptible to mistracking. Thus, we define a new class of

~ adaptation algorithms such that S § .
A(n +1) = G{&n);E(n — 1): A(n)}, S (3.24)
where the residual vector , o .\\“; *
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E(n<'—1f:[e(n=—1) 8n—2) ... &n-p))T

reuplaéesoi(gu—ﬂl) in (3.23). However. using E(?I;— 1)instead of i(n —1) entails a loss of

. performance in the absence of errors. This is because in the context of MMSE gradient

v

estimation the quantized residual contains significantly less information about the

~ ¢

input than does the reconstructed signal. Such performance/robustness tradeoffs are

often encountered in adaptive system design. In this case the loss in performance can

s

be minimized by careful design of G in (3.24).

4

~

ey ~
fa Tn p-sample Xn_y
buffer .
’ -
‘1 ~
L
E .
.| psample n—1
¢ + buffer g ) Ani -1 A,
z 4

Fig. 3.5 Reconstruction process without cross-feedback from F
to G (residual-driven algoritl.m) )

*a

= The labels “signal-driven” and “residual-driven” will be used to denote

[

whether the adaptation algorithm is of the form (3.23/) or (3.24). The next section

describes specific implementations of the gradient algorithm. ope signal-dnven and

one residual-driven, both using simple estimates of the gradient.

s

- W’—-"—"_‘A_-—_“‘«- 2

3.2.5 Transversal Stochastic Gradient Algorithm (LMS)
. ¢’ -

4

>

3.2.5.1 Signal-Driven Adaptation -

o

The gradient algorithm in (3.?1 Jis only applicahle to short-term stationary sigm;ls

and uses ensemble averages that are not rf;adily available in the system. The stochastic



(5

gradient (SG) algorithm, on the other hand, uses an instantaneous estimnate of the

deterministic gradient in (3.16), given by

c b Sy = —20X(n - 1). (3.25)
. f
This resultsin a noisy gradient vector with the quantized residual &(n) replacing «(n).

Substituting this quantity in (3.17) and employing coeflicient leakage and step-size
normalization as in (3.21) yields the signal-driven SG algorithm,

é(n)i(n — 1)

a(n +1) = (1 —i6)a,(n) + == L u=1,2...p (3.26a)

)
ai(n)
B

where
oo . \
~2 Y2 :
a;(n):(l—/\)Z)\r (n —1)
1=0
= A3 n—1)+(1 — Mi¥(n), 0< X<l (3.26h)

is an unbiased estimate of the reconstructed signal power. The constant A determines

the memory in the normalization term

This\update formula 15 very easily implemented in real-time digital hardware
within the allotted time posed by the sampling rate. This 1s the main reason the SG
algorithm has been preferred over oth*er seqffential algorithms. The pnce to be paid
for using the SG method, instead of a more a¢curate estimator of the gra‘dri("nt, is
(1) slower convergence and (u) larger fluctuations about A,p once convergence has

occurred. This is due to the noisy estitnatesin (3.25) [20;.

3.2.5.2 Residual-Driven Adaptation

Millar and Mermelstein (8] have suggested a residual-driven algorithm for a sec-
ond order transversal predictor which has been adopted by the CCITT as part of an
international standard for 32 kb.'s ADPC'M [5;. The actual adaptation scheme pro-

posed in [8] and [5]is a simplified version of what is to follow, and will he discussed

=
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in Section 3.2.5:3. The approach taken is based on the fact that MA predictors (w.e.,

ones which lead to,all-zero synthesis filters) do not give rise to mistracking. This sug-

gesta that a two pole sy nthesu filter Hy(=) can be represented in terms of an infinite

number of zeros,

o o

7)

1 ! o0
Hy(z) = =1 =t 3.
n( ) 1—7‘2 a,(n)::“' 'f‘l:E:lCz(n)’ (

—=]

A SG adaptation for a p-th order MA predictor with coefficients ¢,(n), in'put. é(n)

and output Z(n) is given by [8][14]

M=% i (3.26)

(n)

The above equation is derived by solving 'cil\d ‘estimating the MMSE solution for a MA

™)

pé(n)

¢,(n +1)=(1—z(5)c,(n,)+ -
o

g ]

predictor. and is similar to (3.26a) but with the updates driven only}y the quantized

residual and the normalization based only on the residual power.

The adaptation procedure for the a,(n) is found by approximating H,_1(z) by
the infinite summation in (3.27) at time n+1, after appropriate npdates to the first

two zero coeficients ¢,(n), 2 = 1,2. The remaining c,(n) may assume “natural” values

-

" at time n+1. Thus, for a second order predictor, setting § = 0 and p = 2 in (3.28)

4
~f
B

and substituting the result into (3.27) at time n=+1, will give

o

1
‘Hy o q(z
#ilz)= 1—2;’ 1 (@) = Ag,(n)) =~
~ 14+ Z(cZ (n) + A, (n) ) -ty Zc, +1)="4 (3.29)
\ =1 .

'Now, equating like powers of = yields

Ag(n) = Ag(n),

Aay(n) = Aay(n) = 201(n)Ag(n)

where A refers to a coefficient update. The resultmg adaptation algorithm is [8]

pe(ne(n — 1) (3.308)

; ay(n +1) = (1 ~8ay(n) + —=% ,
. - E(n). #1

&

44




Lo

as(n +1) = (1 = B)as(n) + =5
% gg(n) - )
(Bm)E(n = 2) = 2ay(m)E(n )i (0 ~ 1)), T (3.30h)
where ’
2 g /-)
Goln) = (1= S Me(n - )

1==0 .

=AF%m - 1)+ (1 - M) 0< M. 1. (3.30¢)

-

Note that this satisfies a reconstruction process of the form shown in Figure 3.5 with

#(n) not appearing anywhere in the above update equations.

o

Robustness of the Algorithm. To prove that mistracking due to channel errors
h .

1s eliminated it is sufficient to show that the algonthms at the encoder and decoder

4 . 'r
converge after an 1nitial offset 1n the coeflicients That s, simply let (py(n), pafn))

and (q](n ), q;_;(n)) be two distinct solutions to (3.30a) and (3.30h), cach with different

initial conditions and identical quantized residual sequence J(n). Then the difference

between the first coefficients of the two solutions,

4

prin+1) = qn = 1) (1 8{prer qpim), (3 3a)
approaches zero exponentially with—time constant 1, 5. Sumlarly.

} P'_)(H_ s 1) - galn + 1) - () 28){pain) :13(11))
' ‘ i (n)(n - 1)

.y
~arin)

(l’l(”)‘ ql(u}} ) (3.31h)

Assuming an ﬁpper bound on the factor

i2_;f¢”(_r) ?f( no 1y
a2in

Mo o~

the magnitude of (3.31h) can be bounded by
pan < 1y galn - 1) 0 (1 28)paind .qz(n)’

Y pila) gqptn),
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where the first term decays to zero with time constant ~ 1/26 and the second term

decays to zero due to (3.31a). Thus, the coeflicients are shown to converge from

different initial ‘conditions. ~

The assumption that the encoder and decoder algorithms are driven by identical

signals €(n) is a valid one, since a channel error affects the received signal for only a
[

finite number of samples (due to robust quantization). Naturally, the actual recovery

J
time after a channel error is longer if the received signal €(n) # &(n) for a finite

+

number of samples. , T,
14 -

The fact that this algorithm is sub-optimal, due to the approximation in (3.29),

is not as crucial as the prevention of mistracking. We can, therefore, allow a slight

-
‘

loss in predictor performance in order to ensuré robustness in the presence of errors

(performance/rqbixstness tradeoff ).

3.2.5.3 Residual-Driven Adaptation Using Sign Correlation
Multipliers .
In order to reduce the complexity of implementation, the adaptation algorithm

in (3.30) can be further simplified by ﬁsing only the sign information of the residual

samples; ve.. o .

ay(n + 1) = (1 = 8)ay(n) + 4’ sgn[é(n)|sgn[é(n — 1)), (3.32a)
as(n + i) =(1 —28)as(n) + p'(sgn[@(n)] sgn(e(n — 2)]

— 2a)(n)sgn(é(n)] sgn(&(n - 1))}, (3.32b)

where sgn[] is the signum function. Generally speaking, the step-size parameter p'

should be the same as p in (3.30)." However, in subsequent experiments y' is set to &

t

in order to optimize the performance of all three transversal algorithms with respect

to the same range of values in’ i. This is not possible when g/ = . Note, also. that
) (
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L

normalization by &2(n) is not requ'i(red when the sign multiplier is used instead of the -

true multiplier.

It is known that the use of such a crude correlation‘muliiplier does not affect the
convergence of the coefficients in the steady-state [22]. The speed of convergence.
however, is decreased since the updates are no longer sensitive to changes in the
residual sample magnitudes. As a result, there 1s a slight -performance degradation-
associated with the si;!;n multiplier, particularly with non-stationary mputs Results
for second order predictors indicate that. on the average. this scheme suf/ft‘rs from less

than a 1 dBloss in prediction gain with speech signals compared t6 the true multiplier

algorithm; this is even lower with dual-tone inputs (see Section 4.3 1, Table 4.3).

The original motivation for using sign multipliers in the updates was to reduce
implementation complexity [8]|51. However, in this paper we are not concerned with
hardware implications such as complexity — only with algonthm performance. So
there is a different re,ason for including the sign algonithm 1n 1ins discussion:  After
simulations of the true nlu]hplie; algonthm i (3.30) 1t was discovered that values of
the parameters g and & which yield good <peech performance result in very poor dual
tone performance. and vice-versa (see Section 4 2.1). Moreover at was impossible to

.
select compromuse values of g and'd without severely degrading the performance for
‘erither type of input signal. This was found to be true regardless of the value of A in
(3?%). Thus, the performance of thie transversal predictor utilizing ressdual-driven
adaptation (3.30) is highly sensitive to: (1) the type of mnput (speech ar dual-tone)
and (u) the parameters g and 4. In particularat -was observed that good performance

for dual-tone or other narrowband inputs is imited to a very narrow region in the

parameter space (p.4).

This is also true of the sign multiplier algorsthm in (3.32), but to a lesser extent,

47



In this case. there exist some ~compromise values of y and § which yield relatively
good performance for both types of input: of course, an unequal weighting is given

3

to the selection of values. favouring speech performance over dual-tone performance.

L]

Robustness of the Sign Multiplier Algorithm. Using an analysis identical to
that of the previous section, it can be easily shown' that the sign algorithm is also.

immune to mistracking. Note that, in this case, M is always equal to 2y’

3.2.5.4 Disadvantages of Transversal Residual-Driven Algorithm

¢

There are two main problems associated with the residuatl-driven algorithm for
the transversal filter (both true and sign-multiplier forms). Firs.t, the performance is
sensitive to parameter values and type of input. although to a lesser extent witﬂh the
sign algorithm. Second,‘the z;]gorithxn cannot easily be extended for higher order pre-
dictors. This is because equating higher order 1‘)owers of zin (3.29) yields increasingly

-

complex update terms Ag (7).

. Hence, it would be desirable to find a residual-driven adaptation scheme which is
- - - l . 6
independent of predictor order and whose performance is not so sensitive to parameter

values and types of input. This leads us to a discussion of the lattice filter.

e



-

\ ' . \
3.3 Lattice Filter i : ,
The lattice filter is an’ alternate realization of th:' linear predictor Py(z)in @.4).

The filter is a.modular structure composed of a cascade of identical latfice stages, ay’

f
illustrated in Figure 3.6. ’
fi-1(n) fim)
by_1(n) ——— b (n) J
(a)
#n)  foln) fi(n) Ja(m) fy 1(n) Jy(n)
- L e -
STAGE STAGE STAGE /
1 2 p
- e = = =~ ——]
bo(n) by (n) balnj b, 1{n)
(b)
. £ . ’
Fig. 3.8 “Lattice filter: (a) single stage 0 (h) overadl p-th order
; structure
¢
Each stage 1s descnibed by the order update equation -
fitn) - fi_y(n) k)b, (0 ) {3.33n)
by} - b, y(n 1)y kdn)f, (o) t3.33h)

where k(n) is the reflection coeflicient for stage 1. sometimes referred to as the parntial

correlation (PARCOR ) coefficient The input to the first stage 1s defined by the initial

" condition

-

Jolny) - bytny - Finy, (3.34)
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The signals f,(n) and b,(n) are forward and backward prediction residuals of order
1. This is shown by iterating (3.33a) and (3.33b) with the initial condition (3.34), so

that

f,(n))= Z T(n—7), ] {(3.35a)

]:

—

]

. b(n) = &(n — 1) - Z Fn-1+13), . ~ (3.35b)

where the summation terms above correspond to i-th order forward and backward
predictions of #(n) and #(n ~ 1), respectively. Note that f,(n) and b,(n] are true
prediction residuals of the reconstructed signal, unlike e{n) in (2.1}, which is a nowsy

residual of the input signal. The optimal forward and backward coefficients of order

1 aré related by 4

{ =l 1<%y, (3.36)

assuming wide-sense stationarity.
s -

-

Successive stages of the filter generate higher order forward and backward pré-dic-
tion errors. where the inputs to the first stage correspond to prediction residuals of
order 0 and the output of the final stage is the overall forward prediction error fp(n).
Hence, the} lattice filter whitens its input by removing increasingly better predictions

at every stage.

1

However, the structure in Figure 3.6 cannot be used directly as a predictor Pn(z)

because the output is a residual signal rather than a prediction signal. Iterating

(3.33a) in terms of the backward residuals yields

fo(n )—Zk l,n-—l) (3.37) -

where the summation term corresponds to a p-th order forward prediction (due to
(3.35a))
’ o L) _
Fn) =Y k(nb y(n=1) = o (n)E(n — ). | (3.38)
=1 =1
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The lattice predictor must be modified accordingly, as shown in Figure 3.7. As in
the transversal case, the synthesis filter here is simply the structure whose input and

output are €(n) and Z(n), respectively.

k-—) 'v N £ ‘ ;(")

Joln) ¢ Ji{n) s~ S (l".’
x{n}) ¢ 7 -+ +
2 12 o
kq(n) -
° 21 4 2 ';’ | =
ba(n) + by(n)

Fig. 3.7 Lattice predictor of order p

o

3.3.1 Properties of the Lattice Filter

-

The lattice filter satisfies a number of interesting properties. including (i) a form
of independence between successive stages due to correlation pr(;perties of the residual
signals, (u) a simple verification procedure for the stability of the synthesis filter, and

(1) modularity of the structure.

’

Correlation Properties. The first group of properties (i) are based on the prin-
ciplerof orthogonality for whitening filters. A large number of correlation properties
between the residual signals and the input have been summarized by Haykin in [23].

The most important of these are

Elb(n)F(n -~ 1)] =0, 0<1<i~1. (3.39a)

Elf(n)Z(n - 1)) = 0, 1~ 1<, (3.39b)
‘ P 1=,
Elb,(n)b,(n)) = {!" iy . (3.39¢)
g ' i }t P a > 7 © '
Elfmibn)] = {7 127 (3.39d)



where
P, 2 E[f2(n)] = E[b(n)]. <L (3.40)

The equality in (3.40) follows from (3.35&), (3.35b) and (3.36). Equations (3.39a),
(3.39¢) and (3.38) imply that the backward residuals b,_j(n — 1) form an orthogonal
basis for the predlctxon signal 1‘( ), with optimal coeflicients k,. In the transversal
filter, the prediction 51gnal was formed by a correlated (linea.rly dependent) set- of
51gnals {z: (n—1),Z(n— 2), n—p)}. In fact, the backward resxduals may be gen-
erated by applying the Gram-Schmudl orthogonahzation procedure to the above set
of signals [23]. This orthogonalization process allows & form of decoupling between

successive lattice stages. fos

]

Synthesis Filter Stabilit&r. The stability of the synthesis filter is ensured if and

-

only if [20]
k| <1, 1<:<p. . (3.41)
Hence, unlike the transversal case, a simple.stability verification exists, for lattice

predictors of any order. As in (3. 9) the region is reduced to avoid resonances in the

synthesis filter,
- k| <1 —, 1<i1<p, €50, (3.42)
¥ .

Furthermore, the residuai powers at each stage can be expressed recursively as
P,=P_ (1 —k E'[" ) H‘({ X (3.43)

This is an appealing result, which implies that the forward and backward residual

powers always flecrease at Wach stage when the filter is stable.

L)

Modularity. The design of the lattice filter allows simple addition or removal of
single stages (without modifying the'remaining stages) ta form higher or lower order
filters. It is shown that this property is also val'i(j for the adaptation algorithm. Hence,

the optimal p+1-th order lattice filter contains the optimal p-th order filter,

€
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3.3.2" Local MMSE Solution for, Optimal Coeflicients

r

In the transversal filter. the optimal cocfficients were found by a global minimiza-
tion of the residual power E|e2(n)]. The decoupling property of the lattice filter makes
it possible to‘achieve this global minimization via a sequence of local minimizations

of the residual powers at each stage. ‘ . .,

The local MMSE sjlution a{”stage 1 is found in the following manner. Suppose

that stages 1 through :41 have already been optimized. Then the optimal coeflicient N

1

for stage 1 is the one which minimizes P; or. equivalently.
Jp = E[f3(n) 4 b3(n)l, . (3.44)
the sum of the forward and backward residua{powers.
. 1 .

Substituting the order update equations (3.33a) and (3.33b) into (3.44), and dif-

9 -~
)
- '

ferentiating with respect to k,, we get . ‘ \

6‘]1 ) 2 .
N ok, =2k;E[ff—.1(n) + b7 y(n - 1)) |
' - 4E[fl~l,(n)b1~ ](71 - 1)1 . (3'45)

1y

’ ‘ . -
Setting this gradient-to zero results in the optimal solution

L 2E(fia(n)b, 4 - 1 - (3.46)
o S R ) ) i

The above equation satisfies the condition

!kt,opt}fl- 1 /:lj:p, -

«

which wog‘ld not be the case if only E{flg(n)l or E[b?(n)} were minimjzed insfead of
the sum [23][21]..Thus, except for the equality; the optimal solution always leads to

a stable synthesis filter.

Adaptive algorithms based on (3.46) have the property that the convergence™of

the i-th coefficient can occur only after the lower order caetlicients have converged:

L]

* N 3 he
i -~
4 -
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a

This is because the inputs to stage : are effectively non-stationary when the previous
coefficients are still varying. As a result, the global convergence, occurring progres-

?

sively on a stage-by-stage basis. depends upon the order of the flter [20].

However, the convergence rate for each stage.(after its inputs have stabilized) is
‘approximately the same because updates based on~(3.46) are normalized by the input.
pox&;er of that stage. Ineffect. suitable step-size values are a,utlpmatically gene;ated for
each stage. This implies that converg;ence of (3.46) is highly insensitive to eigenvalue

“spread [24]. Conversely, in the transversal filter all updates are scaled by the same

step-size patameter, u(n), making convergence eigenvalue dependent as was described

in Section 3.2.2.

" °

On the Possibility of Mistracking. An algorithm based on (3.46) can be consid- -

ered as being signal-driven since the forward and backward residuals are derived from

the reconstructed signal. In fact, these residuals individually span the same-signal

spéce as i(n — 1) so that the discussion in Section 3.2.4 is equally valid in the ‘case

*

of lattic‘e filters.

<

#hus (3.46) is susceptible to mistracking, and the development of a residual-.

driven lattice algorithm*u}ohld be beneficial. In the next section two -specific lattice

- algorithms are examined: one signal-driven and one residual-driven.

3.3.3 Lattice Stochastic Gradient Algorithm (GAI;)
o 3 .

s

* '3.3.3.1 Signal-Driven Adaptation . ot )

The lattice SG algorithm (also known ag the Gradient Adaptive Lattice alg:)rithm )

is derived by approximating the ensemble averages in (3.46) by fading, memory time "

LN
= ety
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ayerages, ' ﬁ ' .
\ 237 3 i)l — 1)

—) L TN -
kin +1) = : 0y <1, (3.47)
LN 1 ' —-1—17’] "{f 'H’Li(f"" l)} ¥ Co

_ where the fading factor 4 is required in case of non-stationary inputs.

q ' \\
. The reflection coeflicient estimate in (3.47) can also be defined by the following

5

recursive equa,tioris: s L. ' .
\ ¥ . .
. Cyn) = +Cy(n — 1) + 2f,_y(n)b,_1(n — 1), (3.48a)

) ) * . N : ) B D) g

.Di(n) =D, (n —"1) +. f_(n) + b]_y(n ~ 1), (3.48D)

1 i CY (n) = M '

kgn +1) = ==, : (3.48¢)
Co MU= 50 S

s . 8
Thus, the numerator and denominator are approximated $eparately and the ratio of

g

these two terms becomes the new estimate of the optimal reflection coeflicient. Noté

Y

that this estimate is biased in the asymptotic mean {25], for as n -~ x, . .
' 'y ElC,
Elhk, = E |24 £~ 8 o pol -
: L [D,] " E|D, "4"‘ .

” 2 - . .~ ) ,
Equation (3.48c) 1s an indirect coeflicient update; t.e., 1t is not of the form

' B . -
¢ . . ° -
, .

ky(n+1)=kin)+ Ay (n). However, by manipulating (3.?18) and (3.33) the coeffi-

+  cient updates’can be equivalently exprested in the direct form as

Lo a(m)by(n) + by y(n = 1) fy(n)
. D,(n) )

Ry 4+ 1) = ky(n) + (3.49)

where the step sxze 15 1mphcxtly genemu d in the dnvmg term. and the fading

‘factor 7 has the same role as )\ in lhe trdnwersdl 1!g0nihm (3.26). This is effectively
; ‘ -
‘a stochastic gradient update equation. similar to the transversal case. )

o

To complete the algorlthm we misst add mvﬂment leakage for the same reasons

as stated earlier for the 1ransversal filter. Thus. the signal- drwcn SG algontlml s

deﬁned2 in the.direct form. as * .
| ’ bin) + b 1fn - 1)fi(n)
n > 1) = (0= Ao = of 1) 2 bl 2 DRG0,
. .S]:i.!" J{f (J)+b._]‘(] - l)j
- ¢ h

A
°



or, in the indirect form, as

k,(n+1)=(1_‘5)-g%. . | (3.50b)

" Although (3.48¢) and (3.49) are equivalent, it is important to note that (3.50a) and
(3.50Db) are not“, since in the direct form the leakage is applied only to the previous
coefficients, whereas in the indirect form it is applied to the driving term as well.

However, the difference between the two is insignificant if é is close to zero.

-

3.3.3.2 Residual-Driven Adaptation .

One way to derive a residual-driven algorithm for the lattice filter would be to
follow the proced'ure given in Section 3.2.5.2. However, this would prove to be very in-
efficient since (i) the reﬂecti;n coefficients must first be mapped into transversal co'ef-
ficients, (1) the appreximation in (3.29) must be performed to find the residual-driven
updates in (3.30), and (u:) thesresult must be mapped back to reflection coeflicient
updates: .

A BB A, Mo,
Even if these calculations were fchsible on a sa.rnple-b-y-sample basis, there are other

disadvantages to consider. First, the result would not be very accurate due to the

combinlgd effects of the approximation in (3.29) and the non-linearity of the coefficient

transforfnation M. Second, the resulting adaptation algorithm. being a transformed

version of Yhe transversal algorithm, completely ignores the correlation properties of,

56

the lattice filtet discussed earlier. Thjrd, the method would get increasingly complex '!\

with higher order filters (as was the case with the transversal aléorith;n).

g

Instead, the derivation of a residual-driven algorithm for the lattice filter is based
on the following heuristic approach: In ADPCM, the residual signal is far from white
and is, in fact, correlated with the input signal. This is because the p/rediction pro-

eess is not ideal, particularly with low-order predictors. Intuitively, it would appear .

v B
’ t

»
]
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&3

o

that a sub-optimal set of coefficients can be selected by maximally de-correlating the

quantized residual &(n) instead of the reconstructed signal #(n). These coefficients

can then be used to form the prediction. as in Figure 3.7.
' q ’ « ~ <
For example, Figure 3.8 illustrates the reconstructed and quantized residual sig-

nals for a segment of male speech of the vowel /a/ in the word “dark”. The signals
are from a simulated ADPCM coder utilizing a second order lattice pr.edictor with
residual-driven adaptation (referred to as LR). Corﬁparing ‘thé waveforms in_(a) and
(’b), E){r better yet, the magnitude spectra in (c) ;,nd (d), it is obvious that the quan-
tized residual is quite correlated with the reconstructed signal (and hence the input).

The same trend is observed with other speech sounds and narrowband signéls.

Implementation of Residual-Driven Algorithm. An implementation based on,

. this approach requires two latiice filters: one for de-correlating é(n) and generating

k,(n), and the other for the prediction. This is depicted in Figure 3.9. Note that the

&

k,(n) generated by the tap filter are used in the bottom filter.

Following the results thufar for the lattice filter and signal-driven algorithm,

a residual-driven algorithm for .the above scheme can’ be defined by the following<

equations:
f_z(j?5'= Fro1(n) = ky(n)by_y(n = 1), 3 - (3.51a)
‘ , b(n)=b,_1(n - 1)+ kl(n);f-_,_l(n),_ (3.51b)
fo(n) = boy(n) = &(n), g (3.51c)
G =10l - 1)+ 2fl_1(n)5;;1_(n' - 1), .(3.51d)
' Di(n) = 1Dyfn — 1)+ F2y(n) + B2 y(n — 1), (3.51e)

Cy(n)

(3.51f)

& .

-

4
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Correlation between z(n) and é(n) for speech vowel /a/
in the word “dark” (LR predictor): (a) reconstructed
signal; (b) quantized residual; (c) short-term spectrum
of (a); (d) short-term spectrum of (b).
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Fig. 3.9 Implementation of residual-driven system (using two
p-th order lattice filters) )

{

tracking performance (compared to the signal-driven algorithm), particularly with

~
.

wide-band input signals. Figure 3.10 compares the tracking behaviour of the residual-

driven predictor (LR) with that of the signal-driven predictor (LS) for the input speech

segment /a/.

The reason for this loss in performance 1s as follows: When prediction is poor

and é(n) is strongly correlated with Z(n), the coefficients will converge towards the

> -

optimal point. As the prediction accuracy increases with time, the correlation between
- -

&(n) and Z(n) weakens (whitening effect); i.e,, the informational content of &n)
will decrease. Thus, the genlsrated\coefﬁcients will no longer track the input,3An

equilibrium is achieved where the two forces balance, and the mean of the coefficient

trajectory will differ from the optirfal point by-a small amount. This offset is smaller

for narrowband signals since there is a stronger correlation between Z(n) and &(n)

~

than is the case with wideband signals, even at high prediction gains.

With the signal-driven lattice, on the other hand. the informational content of

s

-
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Fig. 3.10 Encoder tracking of LS and LR predictors for speech .
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¥or

Z(n) does not decrease as the prediction improves. The only eflect, as &(n) becomes
5 :

white, is a small fluctuation in the coefficient trajectory about the optimal point; the

offset is negligible in the mean.

»

£

Robustness of the Algorithm. Using proof similar to that in éection 3.2.5.2. 1t
)

can be shown that the encoder and decoder algorithms converge after an initial offset

in the coeflicients. Let p-l(n) and ¢,(n), 1 <1 < p, be two distinct solutions to (3.51f),

each with different i.c.’s but with identi‘cal input &(n). Rewriting (3’.51f) as

}cl(n+1)=(1 Foym) + B2 yn - 1) )k(n)
(1-49) s { Pl ) + 5,6 - 1)

2f1——1(")51—~1('n - 1)
Sy Fioi(0) + B2, - 1)

(3.52)

we get the difference bétween the first coefficients of the two solutions,

pr(n +1) = qi(n + 1) = (1 = 8){1 = eo(n)) (p1(n) - q1(n)),

where @g(n) is a function of the current and past values of €(n) and is bounded by

(0,1). This difference equation approaches zero exponentially with maximum time

constant 1/&. Once the first coeflicients converge. the fesiduals at the output of the

first lattice stage will also converge for the two systems To complete the proof we
SImply show that

pu(n) = gu(n)] =0 as n— o,

given that the previous stages have converged,

7

py(n) =qy(n) for ;=1-1,i-2,...,L

«

~

'I"his follows immediately from (3.52) where the second term is commo‘n to both

solutions and thus the difference equation can be written as

po(n + 1) = gi(n +1) = (1= 6)(1 = ¢,—1(n)) (2(n) = qu(n)),

R -
! ) . A

- ]



62

where ¢;_1(n) is again a function of the current and past values of &(n) bounded by
(0,1). This equation also approches zero exponentially with maximum time constant
1/6. Hence, the re-adjustment of the decoder onto the encoder occurs st&ige—by-stagg,

with a global maximum time constant which depends on p, v, and (1 ~ §).

-

i




(S

Chapter 4 ‘ Experimental Results

This chapter investigates the performance of a 32 kb/s ADPCM encoder /decoder
with speech and signalling tone inputs. Voiceband data inputs were not applied as it
was felt that the results obtairlled with the simpler signalling tone inputs typify the
behaviour of the system for all types of narrowband signa'ls. The adaptive‘ predi(:tors.
described in the previous chapter, are first optimized andathen compared in t_erm§I

of tracking ability, convergence, and prediction gain in the presence and absence of

channel etrors.

For convenience, the following notation will be used in order to precisely refedto

each of the five adaptive predictors in subsequent experiments:

. \ transversal predictor T (34
1) TS(pyé;u;A) — { signal-driven algorithm ¢ (3. 26
stability constraint o (39), e=
transversal predictor : (3.4)
2) TR(p,5 A) residual-driven algorithm : (3. 30 p=
stablhty constraint . : (3.9), e=
transversal predictor 1 (3.4)
S)Tngn p;6; ) — { residual-driven algorithm : (3.32),
stability constraint : (3.9), e=
lattice predictor , : (3.33),(3.34),(3.38)
4) LS( p,5 ) — ¢ signal-driven algorithm : (3.483),(3.48b),(3.50b) ,
stability constraint : (342), e¢=.05
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_ lattice predictor - ¢ (3.33),(3.34),(3.38)
5) LR(p; 6;9) — [ residual-driven algorithm : (3.51) - )
stability constraint . (342), e=.05
where the parameters above are ) o \
2 - prediction order,-
. coeficient leakage fac;or,
¢ — adaptation step-size (transversal),
A — npormalization memory constant (transversal),
v — adaptation fading factor (lattice), i
' e — stability constant; .

Note that the TR and TRsgn predictors in (2) and (3) are restricted to a second

order implementation due to the derivation of the residual-driven algorithm (3.30).

R}

In any case, most of the experiments in this chapter are performed with second order

predictors. Adaptation equations for higher order TR and TRsgn predictors have

been derived, following the same steps in Section 3.2.5.2 but with p > 2. However,

the résulting updates are nonlinear and too cumbersome to be illustrated in this

paper, even after simplification. It is my belief that the disadvantages of higher order

residual algorithms for the transversai predictor far outway any gains in performance.

Quantization is performed by a 4-bit or 16-level Gaussian quantizer utili'z‘ing ro-

bust step-size adaptation (see Section 2.5). The Gaussian mapping seems to be"%:,\l

good compromise for quantization of both speech and data residual signals. The

same adaptive quantizer is used in all five ADPCM systems. and is defined by:

Q™ —

( mapping .. 4-bit Gaussian

cogleword‘ .+ k in sign-magnitude code (SMC)
algorithim : (2.16) with § = 63/64

\

ex and &, as in Table 2.1, with o = 1500

:' 'step-size multipliers as in Table 2.2
(2.13) dynamic range = 65 dB *)
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4.1 Computer Simulation Procedure

The work to be described in this chapter was performed at the INRS-Télécommu-

nications/Bell Northern Research audio laboratory in Montréal. The ADPCM system

in Figure 2.4 was simulated on a DEC' VAX 11/8600 cor;lputex/using the predictor

and quantizer definitions described above. The simulation program was written in
FORTRAN using single precision real arithmetic.! In addition, a number of audio

processing, playback.-and display utilitigs were used for examining the results.

A vast library of phonetically balanced speech sequences is conveniently main-
tained for audio research. All the test sequences used in this work were originally
processed through an anti-aliascing filter. sampled at 8;kHz,,and stored in the library
as audio files. Single—tox;e and dual-tone sequepces were generated by computer at
8 kHz and also stored as audio files. The six/;lul"ation progra,m.re:«xdsb segments of an

input audio file, performs the encoding and decoding operations sample by sample,

and stores the reconstructed segments in an output audio file.

The program also generates other information such as quantized residuals, pre-
dictor coeflicients and performance measures (SNR, Gp) that can be displayed (along

with the input and output sequences) as functions of time.

-

4.2 Selection of Optimal Predictor Parameters

P -

-

A meaningful and fair comparison of the five predictors must be preceded by an

optimization of the speech and dual-tone performance of each pre’dictor"wiﬂ respe;"t

d'

to.its adaptation parameters. Thus, the main objective of this section.is to establish

! We are concerned only with algorithm performance, not with a real-time hardware simulation in fixed
point anthmetic.

. . : t
‘2 An audio file contains integers in the range [-32768,32767] representing the sample amphitudes jh a
sequence. The full range 1s flrever used, allowing samples to be processed without arsthmetic overflow.

- , }
.
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(for each predictor) thie optimal or best compromise parameter values for both types

!

of input signal. ]

' ' For simplicity, the optimization is limited to second order predictors. The pre-
dictor performance measure is segmental prediction gain (GpSEG; seé Section 2.3,
Equation (2.11)) using 16 ms or 128' sample segments. 'Segmental SNR (SNRSEG) is
also valid, thouéh it does not isolate the predictor performance from thf: combined
predictor-quantizer performance. However, this is not important if (z} ‘the test in-
puts are ;hosen so that the quantizer does mot operate near the limits of it:s dynamic
range and (1) there are no channel errors. Under these conditions, the quantizer per-
formance is relatively constant, with SNRoSEG =~ 18 dB, regardless of the type of
in}%lt. Thus, the SNRSE'G" value is roughly equal to Gp SEG +18 dB, and either value

may be used to evaluate predictor performance. In the presence of errors. this relation-

ship no longer holds, so SNRSEG(p¢) is used to evaluate the overall encoder/decoder

(o]

performance (see Section 2.3).

Eight spéech inputs, defined in Appendix A, are used for speech optimization.
The results from coding each input are averaged to give an overall speech performance
measure. An input signal composed of two equi-amplitude siITusoids;!at 697 and 1477
Hz is used for optimization on narrowband signals,

27Tf1 . 27i‘f')
n + Asin —=n,
fs fs

with f; = 8 kHz, f; = 697 Hz, and fo = 1477 Hz. This signal, referred to as DTMF-3,

(DTMF-3)

z(n) = Asin

corresponds to the tones generated by pushbutton #3 on commercial télephonc; sets

using DTMF (dual-tone multi-frequency) signalling. , o

"y

3

The most important parameters for predictor adaptation are: & (coefficient leak-

age factor), p (adaptation step-size for transversal predictors), and v (adaptation

2

fading factor for lattice predictors). The stability constant, ¢, and the normz}lizatibn

-
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-

memory constant for transversal predictors, ,\(z play a secondary role in predictor per-

D
bl
.

¢

formance, if adequate values are.chosen. In the following.experiments they are fixed

to the values 0.05 and 0.9, respectively, Furthermore, and without loss of generality,

-

the prediction order is constrained to p = 2; the optimal adaptation parameters (9,

and g or v) should have little dependence on predictioﬂ order.
- I
An optimization procedure for each predictor is outlined below.

m

1) Encoder performance using speech and DTMF-3 inputs. ’

a) find the average GpSEG as a function of §,u for the transversal predictors
and 6, for the lattice predictors using tMe speech inputs of Table A.1.

" b) do the same with the DTMF-2 input Signal. . .

c) using the results of (1a) and (1b) find. as é varies, some values of  in the
transversal predictors and v in the lattice predictors which provide high
GpSEG for both types of input (these values should be on the Iocus of
maximum GpSEG., a function of §). ’

2) Encoder/detoder speech performance with transmission errors.

a) with speech inputs in the presence of transmission bit errors of different rates
. * Pe, find the average SNRSE(’jpe ) at the decoder as a functlon of 6 and pe;

) use the values found in (1c) for u and 5.
\ * b) select the § in (2a) which yields the best overall speech performance in the

presence and absence of errors; this value along with the corresponding u or
v in (1c) constitute the best overall choice of predictor parameters.

-
v

Of course, an evaluation of DTMF-3 performance with errors is ot possible due

-

to mistracking in the signal-driven predictors. Tracking performance will be examined

in Section 4.4, using the optimal parameters found here.

L 4 o ¢ -~ ' "
4“4 - © 8
4.2.1 Encoder Optimizatfon
¢ T : '.
" The experiments in this section correspond to parts (la), (1b), and (1c) in the
™ . ; .
P optimization procedure. The predictor parameters were varied exponentially in steps<

-



‘of .5, taking on the following values: - . o R
| §=2, i=-12,-11.5,...,~4, -

p=2, i=-8-T5,..0, I -

. 3

v=1-2, 1= -100-95,...,-2. \
This results in 17 x 17 points in each of the parameter spaces (6, 1) and (6,7). The.

R f

. range of values chosen includes typical values found in the literature for SG adaptation °

a o

algorithms. '

There are several reasons for selecting values that are negative integer powers of

two (the intermediate steps of .5 are included only to improve the resolution of the

e

parameter space). First, an exponential scale is required in order to test a wide range

of parameter values. Second, constants of the form 2' can he represented by shift

operations in digital hardware, thus leading to very efficient implementations.

“

Figurés B.1 through B.5, in Appendix B, illustrate the speech and DTMF-3 per-

§

formance of the predictors, using contour and surface plots of GpSEG as a function of
the parameters. The input signals were ADPCM coded at each point in the param-
eter space of the five prédicto'rs and the GpSEG values were measu;ed. The ~dotted:
lines in'»the contour plots represent ;moothed loci of maximum GpSEG as § varies
fron: 2712 {6 274, Thus, given any value 0{6, the corresponding value for u or 7y on

the locus ‘will yield maximum predictiont gain.

- - ’ B
- i }_G/‘k;

’ . e
Transversal lPreciictors. The average speech performance (over eight inputs) of the

TS, TR and TRsgn predictors is illustrated in Figs. B.1(a), B.2(a) and B.3(a), respec-
‘tively. The results indicate that the best speech perférmance, say GpSEG > 9 dB, for’

all three predictors is limited to a triangular operating region?n the parameter space

;e !

" (&,p). In all cases, there is a gradual decrease in Gp SEG which is almost jnde};endent

of §'as u — 1, and a rapid drop Which is maximal in the direction logs & = = logy yt as

S

p — 0. Also, in the absence of errors Gp SEG always increases as § — 0, as expected.

—

: l\
-y o
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~ will involve a compromise. ' ' :

Compared to the TS predictor, the TR and TRsgn predictors havq/a narrower _
. pu

~

operating region with steeper drops in GpSEG én all sides (particularly as y — 0).
In the operating,region, Gp SEG/ values for the TR predictor are approximatelytdB

higher than those for TS or TRsgn (compare the contour at 11.2.dB in Fig. B.2(a)

7

with the contours at 10 dB ink Figs. B.1(a) and B.3(a)). In all three cases, the loci

of maximum &p SEG follow similarly tilted trajectories suggesting a depenrdence on

both parameters. L

DTMF-3 performance for the transversal predictors is shown in Figs. B.1(b),

. B.2(B) and B.3(b). The TS predictér exhibits the same.characteristics as with speech

inputs but with/lo&er'@iEG values throughout the parameter space; in fact, all five

. ) £ . ‘
predictors achieve consistently higher Gp SEG values with speech than with DTMF-
~3: ,"I‘he locufof maximum .GpSEG for DTMF-3 appears slightly to the right of the

one.for speech, when measured along the logs i axis. Hence. the optimal speech and

i '

a

DTMF-3 parameters for the TS predictor-are nearly identical. ’

The residual predictors, on the other hand, behave differently with DJTMF-3
v :

inputs than with speech inputs. Although similar maximum' values are obtaired as

in the TS predictor‘;vghe' shape and location of the DTMF-3 opéra.lking regiops have,

changed with respect-to the spgeéh ‘operating regions in Figs. B.2(a) and B.3(a}. The

- DTMF-3 regions are narrow rectangular ridges approximately centered along the locii

logoé =loggp —1, —8<logapu < -3 )
for TR, and . . ’
T loggd=logap,~3, —8<loggu< -2 :

- for TRsgn. -This is precisely where speechiperformance begins to drop. Thus, ﬁnfiing

suitable parameters in the TR\gnd Tﬁsgn plre/dictors for both speech and DTNfF-3

v

5 °
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Lattice Predictors. Speech and DTMF:3 performance for the lattice precriicto;s is
depicted in Figs. B.4 and B.5. As expected. the ol;erating region of lattice filters is
relatively insensitive to different-inputs-and to vanations in the parameters é,9. Both
lattice predictors exhibit rectangular operating regions with very gradual drops in
Gp SEG in all directions. This insensitivity to parameter values 1s further exen.lpliﬁed

by the fact that the loci are virtnally parallel to*:ﬁ log, § axis. The implication here
is that the aptimal v value is lndependent of 6; ah advantage which allows for fine

. . ] . ] ]
tuning of lattice parameters one at a time.

-

The main difference betweén the LS and LR predictors lies in their speech‘j)erfor-

¢

" mance shown in Figs. B4(a) and B.5(a). Although both sets of contours follow the

samt.e‘ pattern, the LS predictor z-s,ttain§ an average of 3.5 dB more of Gp SEG through-
‘out the paramgter space (this difference is quite significant). With the DTMF:3 input
the two prec!i(l‘tors perform almost identically (see Figs. B.4(b) and B.5(b)) except
for slightly higher GPSEG' values for “the Ls’predlétor. One observation is that the
speech performance d)rops as 7 — 1, whereas the DTMF-3 performance remains flat.
This di‘sérepanc,y is due to the long-term non—sfcationarity of speech signais (requiring
a certain amount of adaptation fading) as opposed to the stationarity of dual-tone

signals (whih can be tracked more optifnally without any fading).

Choosing a Reduced §¢t of Parameters. Usin'g the previous results, a set of five

‘points was selected from the parameter space of each predictor. Each set of points,

given in Table 4.1, was obtained by overlapping the speech and DTMF-3 contours

of each predictor (Figures B.1-B.5) and then choosing, for five centrally located and

“

equi-spaced 4, val}ges for pu or « as near as p(:;ssible to both locii. -

-

The last two rows indicate the minimum segmental prediction gains for speech

and DTMF:3 signals attained with each set of points (this minimum occurrs with the

v
~

@ :
o

.
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| o= g

‘ TS TR TRsgn LS LR ¢
6 u é I é u ) v é v d
276 273 | 976 7] =% 53] g4 3978 | 26 -5
277 2735 2-7 -8 2-7 p-4 ) 95 1278 2-7  1_2-®
9-8  9-4 [ -8  9-6 9=8 -5 ] p-6 1—‘2-5 2-8 1-2-%

2-% 974 | 2% 2-T| 9-9 =6 | -7 3275 ) 270 2%
9-10  5-45 9-10  9-8| 5-10 9-7 2-& (_9-5 2-10 |_9o-5
' >9dB >10 dB > 8.8 dB >11.5 dB >92dB [t
> 5 dB >5 dB > 62 dB >68 dB >65 dB ;

- Table 4.1 Reduced set of parameters from (6, u) and (6,7) .
! Gp SEG for speech, ! GpSEG for DTMF-3

" largest leakage -value 6) Since the LS predictor is more sensitive to channel errors

P ]

than the other four predictors (see next Section), the selected leakage va.l:}es for this

’

predictor'are larger than for the others.

=3

2 ; (e’l'
4.2.2 Encoder/Decoder Optimization with Transmission Errors ;

-

This section corresponds to parts (2a) and (2b) in the optimization procetiu;e.

. The speech input; of Table A.1 were encéded using the values in Table 4.1. Each

encoding was subjected to channel errors of four different rates‘and a zero-error
reference: pe = (1072,5-1073,107%,5 - 10~%,0). Bit errors within a single encad-
ing/decoding were randomly generated according to p.- However, for each pe, the

same random error sequence was applied to each system. This was done in order to

maintain some consistency in the tests. To reduce the simulation time, only a 10,112

sample segment of each input utterance was encoded. As a result, the performance

~

measures when pe = 0 will differ slightly frome those in the previous section, where

each utterance was encoded in its entirety. The results are illustrated in Figures

4.1(a)~(€). ” : ‘ .

Each figure contains five curves of segmental SNR at the decoder as a function of
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Fig. 4.1 Speech performance in SNRSEG(pe) as a function of -

leakage § and bit error rate pe.(The arrows indicate the |
optimal 6 value 1n terms of mazimum SNRw .)
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. ) /
. 6. Each curve represents a different bit error rate. pe. It is clear from these figures

that the effects of leakage are most pronounced in the LS predictor in (d), which

exhibits a significant improvement in SNRSEG(pe) (for all p. > 0) as 6 is increased

from 278 to 2°%. There is some improvéyuent for the TS predictor in (a) and little or
no improvement for the residual-driven pkedictors in (b), (c), and (e). In the latter
case, § has practically no effect on performfance. Generally, the most robust predictor
in t’he presence of errors is LR followed by TRsgn, 'I;R., TS, and LS. This result' was;

expected, since residual-driven predictors are designed to minimize the effects of error

propagation around the predictor loop.

It is desired to find the & whici maximizes the overall performance of each system,

given the various bit error rates. This performance measure is a @ezghted average

SNRSE'G(pe) value, given by
SNRW = 0 5. SNRSEG(O) +0.25 - SNRSEG(5 - 10"4) + 0. 15 SNRSEG'(IO“:*)

+0.07 - SNRSEG(5°107°%) + 0.03 - SNRSEG(1072).

Such a weighting measures the performance of the encoder/decoder under the condi- .’

tion: 50% of the time there are no errors (pe = 0), 25% of the time pe = 5- 1074, efc.”

. S

P s . T o
Different weightings can be used; this one favours performance under low error rates.

The & values that maximize SNRy are indicated by the small arrows in Figure 4.1

and constitute, along with the appropriate i or y values, the best overall choice of
- \ » i
predictor parameters. This is all summarized in Table 4.2, where the last four rows

* -

give an indication of ayerage segmental performgnce for the selected values. As an

aside, note that the difference between SNRSEG and GpSEG for speech without

‘errors, ranges from 17.9 dB for TS to 18.5 dB for LR; this difference is p%'e‘cisely

SNRQSEG, as described earlier. Using the parameter values of Table 4.2, the tracking

performance of the five systems can now be evaluated.

o
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TS "TR TRsgn LS LR
6 u ) u 6 u 6 v .8 ¥
2-8 274} 2-8 -6 -8 -5 ] 2-4 3.2°5| 27 1.2-%
216 dB 222 dB 23.0 dB 232 dB 23.1 dB |+
27.9 dB 28.8 dB 28.2 dB 296 dB 27.8 dB 0
10.0 dB 106 dB 9.9 dB 11.5 dB 9.3 dB t ?
6.1 dB 5.8 dB- 7.0 dB 6.8 dB 6.6 dB H
Table 4.2 Best overall choice of predictor parameters. ’

" SNRw for speech, ° SNRSEG for speech (no errors),
! GpSEG for speech (no errors),
! GpSEG for DTMF-3 (no errors)

4.3 Tracking of Speech Signals

This section explores the tracking behaviour, or dynamics, of the five predictor
adaptation algorithms for different speech inputs. The first part deals with the pre-
diction accuracy at the encoder, or the ability of the encoder to track the input. The

second part deals with prediction recoyery at the decoder after a burst of transmission

errors, or the ability of the decoder to adjust to thesencoder.
- + *

-

-

‘ 4.3.1 E;nco‘der Tracking y
f

In ‘Chapter 3 it was shown that the predictor coqﬁcients a@ updated in order
" to mini%m'ze the prediction residual power (MMSE). For t‘he signal-driven predictors,
this is z;chieved by descending the MSE surface in a direction opposing the‘*‘ytochastirc
-gradient (SGJ. With short-term stationary inputs, these algorithms shoul& cor{verge
" in the mean with a small pisadjustment in the coefficient trajectories due to the

stochastic gradient estimates. ,Hcﬂfer, the leakage factor § acts as an extra noise
term in the adaptation process which preyents the coefficients from converging in
the mean: a small offset is always present. In addifion, the inaccuracy of step-

- size normalization tends to increase both the misadjustment noise and offset in the
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coefficients. But even with these modifications, we would like to think of the signal-
driven algorithms as being optumal. in the sense that they have been derived directly

from an MMSE criterion.

i

In contrast, the residual-driven algorithms have been derivéd from approximations
to the MMSE criterion. In the transveral pre(iict.ors, the second order ftpproxinlation
in Equation (3.30) truncates the irppulse responscé of the equivalent all-zero filter and
thus prevents a correct minimization of the MSE. In the lattice predictor,.the lack
of spectral information in the residual s;gnal (compared to the reconstructed signal)
leads to incorrect decorre!a‘tion of the reconstruc-fe%s\ignal. We Rave already shown

the sub;)ptimality of this scheme in Figure 3.10:

\‘ \ -

Thus, we would expect that the signal-driven algorithms should outperform the

e’ [ ~

residual-driven ones, in the absence of errors. . Although this is true of the lattice
predxctors we found that the “*suboptlmal” TR and TRsgn track better than the TS

Table 4.3 compares the segmental prediction gain an?SN R obtained at the encoder

o

for eight speech inputs. Surprisingly, the TR and Tngn predictors perform quite

,well on the average, despite their suboptimality. However, only 2.2 dB on the average

2
separates the best (I:S) from the worst (LR).

‘e
>

. N t

‘To ‘what extent are these differences due to misadjustment and/or offset in the

coefficient trajectories? Asan example, wé illustraté prééiétor tracking for OPEN-M, an
mput with relatively low predlctlon gain as compared to the other inputs (see Table

3) The r‘esults, limited toa 5,500 sample segment containing the utterance “Open
the crate...”, are shown in Figures 4.2, 4.3, and 4.4. Note that tlze lattice coefficients,

k,, have been converted to transversal coefficients, a,, for comparison purposes.

Looking at Figure 4.2, it is evident ‘that the LS, TR, and TRsgn predictor; have

the highest Gp, especially in voiced segments. The coefficient trajectories for these
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Speech GpSEG | SNRSEG (dB)
Input TS TR " TRsgn LS LR
GLUE-M | 11.6/29.9 | 131/314 | 116/30.2 | 13.0/313 | 11.1/29.9.
GLUE-F | 123/29.9 | 9.4/273 | 104/28.7 | 13.2/30.9 | 11.1/29.4
HOGS-M | 93/27.4 | 93/217 | 88/2T4 | 104/288 | 8.4/27.2
HOGS-F | 10.7/28.0 | 94/27.3 | 8.8/27.0 | 11.3/288 | 94/27.4
gPEN-M | 85/261 | 99/219 | 97/27.6, | 10.8/286 | 8.2/26.5
Joren-F | 94275 | 101/284 9.5/279 | 11.1/203 | 8.9/27.3
PIPE-M | 90/26.8 | 105/287 | 9.9/28.2 | 11.0/292 | 8.5/27.2
PIPE-F | 93/27.7 | 109/204 | 101/28.8 | 11.3/208 | 9.0/27.8
Average | 100/27.9 | 106/288 | 99/28.2 | 11.5/20.6 |. 9.3/27.8

EY

' ﬁable 4.3 Comparison of speech performance

predictors are similér, with the main difference being in the amount of nisadjustment
y ' s
noise which is least for the LS and most for the TRsgn.

!
L]

The TS and LR predictors attain lower Gp throughout most of the input. It

appears that their coefficient trajectories are also-similar, again with the exception of -

a 4

misadjustment noise.

.o L8 . ) !
All five predictors perform equally poorly with the plosives /p/ in “open” and /k/

in “crate”. This is normal. since plosives contain very little “predictable” component.

2
.

The segment /ej/ in crate (between ‘samples 6,000 and 6,500),»is~ the only one

for wh%ch the TS and’LR predictors perforr-ned better than TR and TRsgn. The LS

predictor tracked this segment. ’ ‘-\,

Thus, foxj speech inputs, the predictors can be dividc;,d into ‘three. groups: (1)
TR and TRsgn, (2) TS and LR, and (3) LS. It appears that -grodp (1) attains good
tracking for most sounds, while group (2) doesn’t track as well. For a small percentage
of segments, the opposite is true. The LS predictor in (3) seems to combine the good

tracking performance of (1) and (2).
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Tt

; , s Speech segment “Open the crate...” from: OPEN-M

v
Gp

(b)

2000 Samples 3000 4000 000 6000 7000

Gp
X EoRR -y

2000 Samples 00 4000 5000 6000 7000
o0t .
16}
T | d
il (d)
4 . 1
+ 0 . g } - |
2000 Samples 3000 ~ 4000 - 9000 £ 6000 - 7000
, m: | | 1 1] T 1 1) 1§ L L) L : »
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! (e)
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R L] m: T T 8 T . R Y Y T -~ T
: 16p *
S B (f)
Il ,
0 - 2 . - -
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= Fig 4‘2 “Prediction gain at the encoder (a) Speech Input
. OPEN-M, (b) TS(2;278;27%.9), (c) TR(2; 2-8 26, 9);
- _(d).Tngn(2,2“8,2 ), (e) LS(2;27%;1-27%), (f) -
'LR(2;277;1-275).

!



78

2000 Samples 3000 4000 " 5000 6000 2000

2000 Samples 3000 4000 3000 6000 7000

2000 Samples 3000 4000 5000 - 6000 ¢ 7000
\\ Fig. 4.3 Trajectories of coeflicient a; at the encoder: (a) Speech
, Input OPEN-M, (b) TS(2;278;274;.9), (¢)
' . TR(2%27%;27%,.9), (d) TRsgn(2;27%;27°), (e)
N © VU LS(2;274,1-279%), (f) LR(2;27 7 1—-275). ,
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To understqﬂd the differex;ces in tracking, we examine the {time-average) error
surface for two voiced segments of speech (see Figure 4.5). The two segments, /o/ and
/ej/, ate from the preceding input OPEN-M. The error surface (e?(n)) was calculated at
a finite number of points in the coéflicient space, using a fixed second order predictor,
at each point. S_omé’ of the contours are situated Surside the stability region (dotted
line) because the averaging was done over a small finite segment, yiel&ing finite values

of MSE in this region. Each point in the coefficient trajectories in Figure 4.5 represents

the average of 16 consecutive samples. . ‘

}

faxr 11.871
LIL

' (*(n)) dB .

(b)

Fig. 4.5 Time-averaged error surface: (a) Segment /o/. —
- samples 1,985-2,368 of OPEN-M; (b) Segment /ej] —
samples 6,017-6,400 of OPEN-M.

In the first segment (Figure 4.5(a)), groups (2) and (3) have fully descended
the error surface and are tracking near the optimup; point (1.8, —.9). Group (1)’s

trajectory is incapable of descenaing past the third contour level and is tracking the




L

’
—
[

% suboptimal ;')oint (1,-.2), with the result of a 6.2 dB drop in Gp, on the average,

compared to groups (2) and (3). Since the surface is steep, the coefficient offset in

group (1) is significant. ’ /",

. )

In the second segment (Figure 4.5(b)), groups (1) and (3) have descended the
error surface towards the point (.9,-.25), although the LR predictor trajectory is

slightly offset from this point at (.6,~.11). The result of this offset is a 1.1 dB drop

in Gp compared to the LS predictor. Group (2) is tracking near the point (1.25, -.9),

resulting in a 2.35 dB drop in Gp compared with LS. In this case the surface is flatter,

-

and the coefficient offset in group (2) does not result in much performance loss.
L
This behaviour was observed with other inputs as well. It is clear from the results

that, in terms of encoder tracking, the predictors of group (1) are suboptimal, those

. . ; : i
of group (2) are better, and the LS predictor performs the best.

Ve

4.3.2 Decoder Tracking -

&

Given the tracking performance of each predictor at the-encoder, we now show the

- .
decoder adjustment onto the encoder in the preserice of transmission errors. Speech .

pérformanc@’: in the presence of transmission errors was determined in Section 4.2.2
for the five systems. Averaged results ove.r the eight speech inputs (extracted from
Fiﬁgure 4.1) show that all five systems have nearly the same relative drops in SNRSEG
as pe increases. (see Figure 4.6‘). The LR predictor, however, is uniformly better
than the others fO{ all error rates tested. The figure also indicq,tesjhat_ the lattice

predictors, as a group, are less sensitive to transmission errors than the transversal

_ predictors. Similar results were obtained in [26] with 16 kbit/s ADPCM systems

using lattice and transversal AR predictors with signal-driven adaptation.

The better performance of the lattice predictors over the transversal predictors

;8'¢1
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Fig. 4.6 Average speech performance with transmission errors

under noisy transmission conditions is due to the speed of recovery in the decoder coef!
ficients after an initial offset’. Asan example, the input OPEN-M was encoded gdecoded
\,Nith a burst of 60 random bit errors between samp\les 3;?65 and 3,520 (/E/ in “open”). l
| For ease of comparison, the same burst was us;ed with each predic@r. In all five cases,

*

the coefficients at the decoder readjusted to those at the encoder after the errofs{
ceased (see Figure 4.7). During the burst, tilere 1s a large error at the reconstructed
output which is mainly due to quantizer mistracking at the decoder. Predictor and
_quantizer converéence after tﬁe t;urst is very quick for the three predictors: TRsgn,

- LS, and LR, at less than 100 samples. The two remaining predictors, TR and TRsgn,
. re?uired 400500 samples to converge. Further tests confirmed that: (1) mistracking
was limited to the duration of the voiced segments in which errors occurred, with re'-‘

tracking usually taking place in less time than that; (u1) errors during other segments

of speech (fricatives, plosives, ¢ic) had even a less lasting effect.

Thus, transmission errors during speech are of concern only during the segment

( in which they occur — there is no long lasting effect, such as permanent mistracking
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" of the decoder coeflicients.

¢

4.4 'Tracking of DuakTone Signals

‘ . * . . - . -
In this section, the tracking performance for dual-tone input signals is investi-

gated. As in the previous section, bo‘th encoder and decoder tracking are examined.

.

With data signals, however, the latter property is of more interest.

4.4.1 Encoder Tracking

4

The energy of DTMF signals is concentrated in two narrow bands in the spectrum
(see Figure 4.8). For a stationary DTMF-3 signal we can C(;mpute the optimal second

order predictor, namely

. . Aopt = [1.15 -0.83]T.
Tt 9

)

The a; componeiit of this optimal point is half way between the optimal a; compo-
e ot "
nents of sinusoids with frequencies 697 and 1477 H%. a1 is inside the stability region

G,l ~a
. N

but close_to -1 (the ag of a pure sinusoid lies on -1). This is because second order

~ predictors insufficiently model the poles of a DTMF signal — a fourth order predictor
is required for modelling two complex-conjugate'pole pairs\. However, the next section

will show that model insufficiency is not the reason why decoder mistracking occurs

with second order TS and LS predictors.

Although some prgdictibn ga{n at the encoder is desired for DTMF signals, precise

[

coefficient estimation for the same signals is not an important objectivein ADRCM.

This is because the tone-pair is correctly demodulated at the receiver, despite a lower

~

SNR. Table 4.4 shows, for DTMF‘-3, the average coefficients, Gp, and SNR in the

&9

steady state. Similar results were obtained with other DTMF and multi-tone signals.

v
i
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Fig. 4.8 DTMF-3: (a) time waveform; (b) magnitude spectrum

E TS TR T Rsgn LS - LR

A, [0.93 -0.62]T|[1.45 -0.94]T[[1.23 -0.93]T | [1.03 -0.77)T | [0.97 —0.65]T
Gpav (dB) 615 5 81 7.03 6.75 6.54
SNR,.(dB) 35,57 2576 26.15 25.88 25.75

~—

, Table 4.4 Average coefficients and prediction gain after
convergence of encoder for DTMF-3

It is interesting to note that, despite its suboptimality, the TRsgn predictor tracks

»

the optimal point accurately. There are several feasons for this: (i) compared to the

other four, this predictor was best optimized for DTMF-3 signals; (1) the sgn updates

are accurate (after convergence) if the signal is stationary and the step-size small.

The large leakage chosen for the LS predictor inhibits better tracking for the sake of

robustness — with a smaller leakage, it outperforms T Rsgn.

— Qp—

m

h




4.4.2 Décoder Tracking

F
cedure: ’

rd

1) For the first 2,304 samples, the input was.encoded /decoded without transmission

errors in order to let the decoder coefliciefts adjust to the encoder coefficients.

2) For the next 256 samples, bit errors with a rate pe = .05 were injected in the
channel and, at the same timé, the decoder coefficients were held at the point
' |. A'=[0.1 0.8]in order tointroduce a known coefficient offset and not a random

offset due to transmission errors alone.?

3) Finally, for the remaining samples, the errors were removed and the decoder

| coefficients were released to see whether the predictor would recover.
. *

¢ Figure 4.9 1llustrates the encoder/decoder reconstruction error (z(n) > Zz'(n)) and

@

coefficient trajectories at step (3). The results show that the signal-driven predictors

T

; are mistracking, while the residual-driyen predictors are recovering. As with speech,
,\ the LR predictor recovers quickly, with the coefficient offset rapidly decreasing in the

first few samples after the removal of errors, The TR and TRsgn predictors require
. >

approximately 1,000 samples to retrack, and actually exhibit a “burst” in the interim.

This is due to the slower convergence of the transversal SG algorithm for stationary

-

irputs.
- ‘ . .

The DTMF-3 operating point for signal-driven predictors at the decoder is un-

stable. An initial offset in the coefficients leads to a slight power twist in the com-
¥

. ponents (697 and 1477 Hz) of the reconstructed signal. Both the offset and the twist

will increase in ‘a direction favouring the growing component, causing a steady shift

in the operating point. The direction of the shift depends on the initial conditions at

3 Either one of these disturbances alone (errors or coefficient offset) can lead to mistracking in the signal-
driven predictors; in fact, experiments have shown that a single bit error is enough. Step (2} sunply
results in a more controlled ‘cxpenment —

A

Decoder tracking for the DTMF-3 signal was e:}gami’néc’l using the following pro-,

86



)

(d) LS |
I:'

il
. i“i fidkieat |
. il R e TS 1
R TE R LT " IRIRRE ] 1 : »
Wyt i f W
- |
- IR G e wed )
1e S
' B '
- a, N e / ‘Jl
v . 2 l.t[‘ ' a 2
a,
(X! X —
- ] ) reve » :n ] ™ot ) ) e £ oo
Y
2l o 3
e :
-0 9 as M
e . N~ ) =) - 208 (™ ™ ) CRE ] e
Satuples Samples
(e) LR N
[ )
- ¢ °
1 J 1
08 ' -
N ] ] - vt ) e ) )
! .
1y Q1

|
(%]
[

aQ
A -
E teste e ) E ] 0 e
e .
- s 2 ¥
* ay aap @5 .
) ' - - 3 "uhm VN J“M "}\ IIA mﬁ.ﬂi
- o %
! o 22 -
e az o)
[ nae o me 3 o —— ] ] 3 ] ase
Snmples Samples
(c) TRsgn :
1 1 - difference between encoder input
and decoder output, z(n)—Z'(n)
[ 0 ] - N
2  coef. a; at encoder and decoder (')
\
X 9" .
. “ 8 - coef a, at encoder and decoder (')
[T a
aj ,
‘ [ ] o e »n un 208
" - ’
; ¢
' ay -
a4 N A
- u a2 - M
o e »n an am 2 .
Satuples

I+

Fig. 4.9° Decoder adjustment after a burst of errors and initial

)

b

coefficient offset during DTMF-3 transmission
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the decoder (offset, received residual, predictor memory, quantizer memory). Tests

[

indicate that mistracking is usually in the direction of the lower frequency component

— (697 Hz). - . . : e B
» . [ 4 .
> , ) i _
2 . \ . .
Evexftually, this process will force the predictor to track one of the sinusoidal

-

— " components. This is a stable mode for the decoder and tests have shown_that the

a

, .
\ process.cannot be reversed with additional errors (even when the decoder coefficients

are momentarily, reset to the DTMF-3 operating point, the decoder continues to

Mm o

drift towards one of the two stable modes). Other data signals containing multiple
. <
tones may lead to similar mistracking problems. This instability is not due to model

insufficiency in the predictor. Tests confirm that mistracking also oeccurs with fourth,

Py -

r
ﬁf&hs and sixth order predictors.

- As an example, Fiéure 4.10 compares the coefﬁcient..htrajectories at the LS encoder
(_A-,ll') with two d{verging decoder trajectories (B—B' and b—C"). The three prre-
dictors have different initial conditions (A, B. ("). We note that the encoder desc'ends
the DTMF-3 error surface, decoder 1¥esgends the 697 I‘lz error surface, and decoder
2 descends the 1477 I:Iz error surface. The points B’ and .C" are stable decoder modes,

and the point A’ isa stable encoder mode. The resulting power twist between the

sinusoids at the reconstructed output (Z'(n)) is shown in Figure 4.11.

The experiments of this section were also carried out with the DTMF-7 signal

4

~

(852 Hz and 1209 Hz) wit{1 similar results. In conclusion, mistracking in the signal-

driven predictors causes severe distortion at the reconstructed output of the decoder.

The residual-driven predictors always recover after the errors are removed, with the

»

LR decoder, in particular, converging very quickly to the encoder.

°
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4.5 "Prediction Accuracy for Single-Tone Inputs .

)

°
B S

J
This section investigates the tracking accuracy for pure sinusoids. A/ sine wave,
. 3 t

: - 2
. z(n)= Asinon, “¢= f,
fs

is perfectly modelled by an A R(2) filter with optimal coefficients

. fs = 8000 Hz,

1 /

¥ s Agpt = [2¢cos @ ——ll.

.
Lo -
| . | -
\ 3

Its complex conjugate poles lie on the unit circle in the z-plane at an angle ¢.

> ., ™
N -

Although sine wave SNR is not_an important objective in ADPCM, we would
expect a high SNR and Gp wi't_h all five predictors for t,hisa’btype of input, with the

only degradation in the tracking caused by the limiting sta.b‘}lity cons?r/aint of (3.9).

A high Gp is achieved when the pred'\gtor tracks near the optimal coefficient point of

the stationary signal. Since the error surface,for sinusoidal inputs is elliptic, with the
. ) .
minor axis almost parallel to the a; axis, an offest in the a; coefficient yields a large:

drop in Gp. Offsets in the ag coefficient do not result in as much of a loss.
. * h

After encoding inputs of various frequencies, large offsets in the ay coefficient

were found for the two transversal residualdriven predictors but not for the other

-

predictors. These dffsets result in poor Gp for some of the frequencies. Table 4.5 shows

-~

the prediction gain and Figure 4.12 illustrates the shift from the optimai coefficients

\ N
for each predictor; only sine waves with f < fj 2 2000 Hz were tested, due to the

‘symmetty about a; = 0.

This tracking problem is particularly evident for the TR predictor in F}gure

4.12(b), where four of the sinusoids (404, 643, 920, and 1140 Hz) are tracked by

. the single point (1.9, —0.95).

Bonnet, Macchi, and Jaidane-Saidane [10] give a mathematical analysis of this

impairment for the TRsgn predictor. In summary, it is due to the inaccuracy of the

)
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' ,‘L", Prediction Gain Gp. (dB)

f Hz Agy s 1 TR |ThsgnP91s | LR

404 || 19 -1 )| 114 | 244 | 238 | 181 | 125

S 643 [ 175 -1 ] '3‘}1.3 128 | 189 | 182 | 123

920 | [ 15 -1 ]| 138 [ 65.| 67 | 181 | 135

140 |[ 125 ~1 ]| 142 | 29 | 56 | 183 | 134

133 B 1 -1 || 156 | . 3.0 83 | 186 | 17.6

‘1511 ([ 075 -1 ] 1&(3\9 52 | 1.6 | 188 | 187

1678 [[ 05 -1 )| 178 | 80 | 154 | 189 | 219

P . 1840 | ] 025 -1 ] 13.&6 14.26 | 203 | 191 | 20.7

. 1990 | 016 ~1 ] 188 | 2354 | 23.8 19.1 | 209

Table 4.5 Predictor %erformnce for sine waves

?
gradient estimates in (3.32) which, in the limit, force the coefficients to coriverge to

suboptimael points dependirllg on the frequency of the sinusoid. The same type of

impairment plagues the TR predictor. Therefore, these two predictors should jnot be

[} : AV
used for freque;ncy estimation applications. .

°

The TS and LR predictors exhibit large offsets in the ay coeflicient for the lower

frequencxes However, the corresponding loss in Gp is not high. The LS predlctor

yields the least overall shxft and highest average Cp over all frequencies. With a

smaller leakage value, 8, the tracking performance of the LS is even hetter. Thus,

this predictor is the most accurate frequency estimator of the five.

‘<

91
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L 4.6 Higher Ord}er' Predictors

JUp to this i)oint, only second otder predictors were examined. Increasing the

order of the TS predictor does not yield a significant1mprovement in prediction gain,

+

‘ particularly when we consider the added z*omplexity for verifying-the stability of thiree

GpSEG dB

or more coefﬁ‘cientsa’The TR (and TRsgn) algorithm cannot be directly extended to

higher order prediction; in.any casé, it is felt that-the gain in performance would not

)
) -

justify the high complexity of the algorithm.

-Both lattice predictors. on the other hand, can be easily extended to higher orders

‘by adding new lattice stages and ensuring that the new reflection coefficients have

. magnitude less than one. Prediction gain versus prediction order for the LS and LR

predictors is plc;tted in Figure 4.13. ' N ;o , '

2

(a)}OPEN-M Input (b) DTMF-3 Input

-
&

GpSEG dB

= T n ’ M e
. Order (p) - Order (p)
Fig. 4.13 Prediction gain versus prediction order: (a) Speech -
. input OPEN-M; (b) DTMF-3 input o '

With the OPEN-M input ‘we observe in Fig. 4.13(a) a steady increase in GpSEG

for both predictors for 2 < p < 7. For p > 8 there is no significant increase. The
' i

maximum increase in GpSEG is 1.25-dB for the LS and 1.8 dB for the LR. These

figures may be improved if the predicior parameters are optimized for each order p

o
Rl
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and not left at the values found best for p = 2, but this was not done. In addition.
l much ingher gains are observed for the LS predictor when a smaller leakage value is
/ . - _ s
used (say & = 278). In this case. however. the robustness of the sy stem would be

co_mp;omised. With the DTMF-3 input n Fig. 4.13(b) sigmficant increases,are noted

at p = 3.4.6,7,8.9,10 for the LS predictor, and at p = 5,6.7 for the LR predictor.

Maximum increase is 16.6 dB for LS and 10.5 dB'for LR. Noisy channel tests indicate
that higher order LR predictors never mistrack, whereas higher order L§-predictors

are prone to mistracking. - .

9

| ‘ 4.7 Predictor Complexity

The complexity of the TS, TR, LS, and LR predictors was calculated in terms of
-the number of arithmetic operations (+/—, x /+]and the amount of memory required
- ! b y . LY

for processing each sample (:.¢., the complexity of {;eheratmg Z(n) from the input é(n)

and the current state of th® predictor).

o

2 > Filter - Algonthm Total
Mem | +/- x/+~ | Mem ‘ +/= 1 x/— | Mem | +, - ! X/.é
- TRsgn | 2 1 2 3 { 5 5 5 6 1 7
TS | 2 I > 3 s o | s s o |
TR 2 1 2 4 { 6 | 14 6 | T 16
: 2 5 3 4 8 16 6 | 13 19
| s . -
. p |3p-1]2p-1 2p 4p 8p 3p ip—1 aIOp—l
r |2 5 3 6 | 12 | 20 | 8 1777 2
’ 2 3Jp—-1 | 2p-1 3p l 6p 10p ip 9p-1]12p-1 ' §
Table 4.6 Complexity of adaptive p’r/edictors
!
;
$
Table 4.6 shows the filter, algorithm, and total complexity of the five systems as
defined at the beginning of this chapter. Constants such as (1 — &) are a single entity
e . < ?
— and thus do not contribute towards the (+/’7—) count.

-
4
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Only second order transversal predictors were examined. while the complexity of

lattice;predictors was generalized forhp > 2. Note that the LR predictor is about"

twice as, complex. overall. as the TS predictor.
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"Chaﬁter 5 7 ‘ . *Summary and Conclusions

{

s

The intention of this work was to examine different A;DPCM predictor structures

b

utilizing stochastic gradient adaptation algorithms, and to compare their performance

in the presence and absence of channel errors In particular, the predictor mistracking

- -

problem with narrowband input signals was investigated.

Prevention of mistracking requires that sub-optimal adaptation algorithms, dn-

13

ven solely by the residual signal, be used for updating the predictor coeficients.
To this end we have implemented and conlpared five different adaptlve'predictors

according to filter structure/adaptation -algorithm: TS (transversal/signal-driven),
. ; g .

TR (transversal/residual-driven), TRsgn (transversal/residual-driven/sgn multipli-

-~

ers), LS (lattice/signal-driven), and LR (lattice/residual-driven).

F

~

5.1 Summary @

g
The signal-driven pred?ctors,_ TS and LS. use traditional transversal and lattice’
stochastic gradient algorithms based on minimizing tl\l\e residual power. 'oefficient
updates in the TS algonthm are derived {from corre]t\xtions between the qui;ntized

residual and reconstructed signal. The LS algorithm generates its updates by max-,

¥

imally de-correlating the’ reconstructed signal. These algorithms utilize coefficient

= )

Vel
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leakage with the aim of improving robustness to channel errors and step-size nor-

-

~ malization in order to better track short-term stationary signals. However, in both

schemes a form of cross-feedback exists between thes prediction synthesis filter and

the coefficient adaptation which may lead to encoder/decoder mistracking.

Residual-driven 3.lgor1thms were designed in order to eliminate this problem. The

TR algorithm mimicks the TS algorithm by deriving its coefficient updates through

the updates of an approximately equivalent synthesis filter utilizing zeros instead of
“poles. As a result, the updates are determined by autocorrelations of the :quantized
residual signal. The TRsgn algorithm, is a simplified version of the TR using only the
sign of the autocorrelation term. A form of ihis algorithm h;ls been a,do;?t‘ed by the

CCITT as a standard for 32 kb/s ADPCM.

The LR algonthm was developed using a different approach. In practice, pre-
diction 15 not perfect and the quantized residual and reconstructed signals are cor-
related. Since the LS algorithm generates the optimal coefficients by de-correlating

"the reconstructed signal, then a set of sub-optimal coefficients can be generated by

de-correlating the residual signal. These are subsequently used to drive the lattice
Py

" predictor. Therefore, an implementation of the LR predictor requires two lattice

structures: one for the algorithm and one for the predictor. In the residual-driven
schemes, cross-feedback between the synthesis filter and the coefficient adaptation

has been eliminated.

-

The five adaptive predictors were subjected to various tests in order to compare
their performance and behaviour in a typical 32 kb/s ADPCM system. All of the
experiments were carried out with second order predictors unless otherwise stated.

The results are symmarized as follows.

3
°

(a) Speech berfofmance in the absence of errors. Experiments with several
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phonetically balanded sentences by both male and female speakers indicate that the .

TS and LS second order predictors attain an average Gp SEG (segmental prediction_

)

[} IS
gain) of 10 and 11.5 dB respectively. However, the LS can achieve a gain of over 13 ".

.

dB if a smaller leakage value is used (large leakage was required in order to improve
the predictor’s robustness for speech during errors). Tlhé difference in GpSEG can
be attributed to the fact that the LSQ algorithm automatically g;nerates a different
step-size variable at each stage that is norm‘alized by the input power of the stage,
whereas the T'S algorithm uses a fixed ste}‘)-swe for all coeflicients which is normalized
by the ;econstructed signal power (ue.. input power of the entire predictor). As a

result. the LS predictor tracks stationary and non-stationary inputs faster and more

accurately than the TS predictor.

Average GpSEG values for the TR, TRsgn, and LR phedictors are 10.6, 9.9,
and 9.3 dB respectively. So, using the residual-driven predictors instead of the TS
predictor would not entail a'big loss in speech performance; in fact, TR fairs slightly

better with most of the test speech inputs. This is a surprising result in view of the

1_ sub-optimality of the TR algorithm.

It can be seen from Table 4.3 that the performance variation of the different algo-
rithms is onlyh 1.8°dB in SNRSEG. Thus from the point of view of subjective :speech
quality; little difference is expected to be audible. An overall speech performance

rating in order of decreasing Gp SEGis: LS, TR. TS, TRsgn, and LR.
" 4

-

(b) Speech performance in the presénce of errors. Tests with speech signals
i & f

in the presence of channel errors show that the signal-driven predictors can be made

robust by using a large enough value of § (particularly in the LS, predictor). The

TS predictor is more robust than the LS predictor ‘with most leakage values. In this

- r case, the automatic step-size generation and normalization in the LS algorithm plays

r
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a detrimental role because this process is sensitive to channel errors. Since the TS

algorithm uses a fixed step-size, only the normalization term is sensitive to errots.

. Both schemes are robust to channel errors with bit-error rates (pe) as high as 103,

In fact, at the higher bit-error rates it is the quantizer, not the predictor, which limits

the overall=gerformance of the system.

%

The resid;ml-driven pre(dictors are generally more robust than the signal-driven
predictors and are not as deyp“endent on the choice of leakage 6. This is to be expected,
as error propagatién in the quantized residual is not as severe as in the recons‘tructed
signal. Table 4.2 shows that the performance variation under a weighted sum of

expected error conditions (SNRy-) is only 1.6 dB. An overall rating in order of de-

creasing SNRy is: LS, LR, TRsgn, TR, and TS. Thus the LR predictor, which

yields the worst performance withdut errors yields nearly the best performance in the
. Y .

( ,

presence of errors. .

)

The effects of transmission errors during speech inputs are temporary. Specifically,

a burst of errors during a voiced speech segment is shown to cause an offset between

]

the encoder and decoder coefficients which remains only for the duration of that

segment. Typical convergence times after an error has occurred during voiced speech

are on the order of 62.5 ms (500 samples) for TS and TR; and 12.5 ms (100 samples)

f

for TRsgn, LS, and LR. Errors during fricatives, plosives or silence segments are even
. 4 . ' /

less severe.

Thus, the signal-driven predictors do not mistrack with speech inputs. Natural
re-synchronizing properties of speech (fricatives, silence) and the use of coefficient

leakage allow the decoder coefficients to retrack at the end of a voiced segment.

(c¢) Dual-tone input with channel errors. However, with a dual-tone input

signal (DTMF3) there is no guarantee that the encoder and decoder coefficients will

.
2 .
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converge after an error has caused an initial offset. Experiments h‘av‘e confirmed that
both TS and LS can mistrz;ck a%te)r a single channel error. This is due to the dynamic
instability of the opera'ting point for signal-driven sequemial_aléorit/hms with dual-
tone inputs. Eventually. cross-feedback between the synthesis filter and adaptation
algorithm force the predictor to track one of the two components. This is a stable

operating point, or mode, for the decoder since experiments have shown that the

process cannot be reversed with additional errors.

The observed instability is not due to insufficient modelling of the input signal;

w.€., higher order signal-driven predictors are also prone to mistracking. Thus, the

above problem can be eliminated only by using residual-driven predictors.

.

Tests with dual-tone inputs and multiple channel errors confirm that neither

residual-driven predictor mistracks. However, there is a significant difference in the

convergence time after an error has caused an initial offset in the coefficients. The

LR predictor was able to converge after 25 ms (200 samples) while the TR and

TRsgn predictors required about 113 ms (900 samples). This is due to the superior
convergence properties of the lattice filter.

“ £ .
(d) Tracking a isingle,-tone input. In or{er to gain further insight in the tracking
behaviour of "cl'ré‘ﬁ\:e predictors, some tests with pure sinusoidal signals (sir;gle-t.ones)
were pérformed. In theory, a sinusoid is perfectly modelled by a second order IIR
filter. The chosen frequencies correspond to equally S];aced‘points in the transversal
coefficient space (aj,a9) with ag = —1 and ay > 0 (due to s‘ymmetry, only positive

ay were considered). These tests serve in pointing out any model deficiencies in the

resiciual-driven algorithms. (

!

The two signal-driven algorithiis were able to track all the sinusoidal inputs with

little offset in the coefficients. Average GpSEG values are 15.3 dB for TS and 18.6
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dB for LS.

” -
The LR predictor performed quite well throughout the frequency range, attaining

an average GpSEG value of 16.8 dB. Thus, the very nature of the LR algorithm
— deriving its updates by de-eorrela’tiné the residual signal — does not limit its
tracking p;rformance with highly predictable signals, only with signals with a large

rd

unpredictable component such as speech.

-

A much poorer result was observed with the TR predictor. All frequencies under
2000 Hz (a quarter of the sampling frequency) were tracked nea; the single point
(2, —1) and those over 2000 'Hz near the point (—2,—1). In essence, the TR algorithm
is not able to track the freque;lcy content of pure sinusoids, attaining an average
GpSEG of 11.2 dB but as little as 2.9 dB for specific tones. The TRsgn algorithm
performs a little better, with an average GpSEG value of 14.4 dB and a minimum of

5.63 dB, but is plagued by the same modelling impairment as the' TR.

(e) Sensitivity to predictor parameters. While searching for the optimal pre-

dictor parameters (u,~,8) to be used with @verage' speech and dual-tone signals, it

was discovered that: s )

o
o the performance of the transversal predictors is quite sensitive to different values

of p and 6; in particular, the TR and TRsgn predictors dual-tone performance

is limited to a very narrow range of parameter values

f

o the performance of both lattice predictors is relatively insensitive to the values '

of 1 and 4.

4

Moreover, in the transversal predictors, the opti\mal parameters for speech signals

do not coincide with those for dual-tone signals. Thus. a compromise set of parameters

affects the performance for both types of input. In the case of lattice filters this does
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not occur, and the selection of parameters which result in good speech and dual-tone -

performance is a simple task. o

o
(f) Predictor complexity. The complexity of.the five predictors (filter and algo-

rithm) was calculated in terms of the number of arithmetic operations (+/—,*/+)

and the amount of memory (z7!) required for processing'each sample. A rating in

order of }ncreasing complexity is: TRsgn, TS, TR, LS,"and LR. The results, shown

in Table 4.6, indicate that the LR_predictor is about twice as complex as-the TS

predictor.

o ———

It i1s estimated that the current state of DSP chip technology allows a real-time

implernenta'tion of the LR predictor on a single chip (such as the TMS.32020).

5.2 Conclusions

a

The final choice for a candidate predictor schexﬁe depends 0;1 the following inter-

related factors: application, performance, robustness and complexity (cost).

This study was geared towards the application of 32 kb/s ADPCM systems in
\ 2
telecommunications networks. Basic services in the network include speech, voicehand

data for modem communications, and ssgnalling tones. Systems in the network must

provide acceptable transmission of the basic services in the presence of channel errors.

Based on the above requirements and the results of this study we must preclude

the use of the signal-driven adaptive predictors, TS and LS, in the network. Other

ADPCM systems, utilizing combinations of fixed-recursiv€ and adaptive-nonrecursive
. ) \
synthesis filters, have been examined by various authors [11][12]{13][14]. Although

these systems are robust in the presence of errors and are not prone to mistracking,

it appears that, dué to the inefliciency of fixed and/or nonrecursive synthesis filters,
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the resulting speech performance is inadequate. Increasing the predictor complexity
’

« (e.g., filter order) does not result in a significant increase in performance.

The results of this work indicate that the residual-driven adaptive predictors, TR,

TRsgn, and LR, satisfy the basic network requirements. They are shown to be robust

in the presence of errors, do not mustrack with data signals, and perform well with

speech inputs. A 32 kb/s ADPCM international standard using the TRsén predictor

was adopted by the CCITT in October, 1984 {t].

The LR predictor was developed in this study as an alternative residual-driven:

scheme. Its main advantages over the TR predictor include:

e modularity in both filter structure and adgptati’on algorithm which allows for a
h :

simple extension of the prediction order

"e insensitivity to predictor parameter values

e faster convergence for both speech and data signals in the presence and absence

a

of errors

oy

e higher accuracy in tracking single sinusoids.

Al of these are due to the superior ‘properties of the lattice filter. The main

~

disadvantages are:

e slightly poorer speech performance in the absence of transmission errors

o higher implementation complexity. .

-4

The drop in speech performarllce 01; the LR predic¢tor with respect to the LS
predictor is quite significant (2.2 dB in Gp SEG for second order filters) and it appears
that ‘there is room for improvement here. There are some questions as to whether some
further processing of the LR coefficients (before they are used in the lattice prediction

filter) would yield an improvement in performance. This processing should reflect the
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o

spectral difference between the quantized residual and the reconstructed signal in

¢ 4 el

order/ to provide more accurate coefficient estimates. To avoid mistracking, however,

the processing should not depend in any way on the recopstructed signal. This s left
for future research. . ' k
v : o

“ .
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‘ Appendix A. Speech Inputs Used in the Study

Table A.1 i]lustrat;zs a corpus of eight speech’inputs which 1s l}ged in the experi-
ments. The corpus is composed of four‘phonetically balanced sentences each uttereua
.b}; ;1 group of two speakers. Each group consisted of a male and & female speaker.
The signals were bandpass filtered and sampled at 8 LHZ. The number of samples in \

. each sequence, as well as the standard deviation, mean, maximum positive sampley

and maximunt negative sample are also given.

\

Input ‘ Speaker | Sentence | # Samples | Std. Dev. | Mean | Max | Min

GLUE-M M1 A 27648 1144 251 | 5623 | -8095

’ GLUE-F F1 A 37376 306 S197 | 1475 | -2418

. ) HOGS-M M1 B 25856 1326 24.8 | 8514 | -9573
‘ " "| HOGS-F F1 B 36608 253 2181 | 1418 | -#641

OPEN-M | " M2 C 16640 1771 -171 | 9768 | -13850

OPEN-F F2 C 22784 2174 2188 | 12612 | -15514

PIPE-M M2 D 18434 1553 -186 | 8695 | -13550

PIPE-F F2 D 19712 1879 -05 | 8358 |-13051

Table A.1 Speech inputs

' Speakers: ) ' , ' / -
M1: Male \ ;
F1: Female - -
5 M2: Male . - ’
v F2: Female ‘
L. Sentences:
- ~ A : Glue the sheet to the-dark blue background.
\ B: The hogs were fed chopped corn and garbage.
1 C: Open the crate, but don’t break the glass.
D : The pipe began to rust while new. :

tod
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GpSEG dB

max 11.64 dB
min 0. 65 dB
floor -0 20 dB
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(b) DTMF-3 Input

Fig. B.1 Speech and DTMF-3 performance of TS(2; u3 6;.9)
predictor: contour and surface plots of GpSEG (dB)
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(b) DTMF-3 Input~ «

Fig. B.2 Speech and DTMF-3 performance of TR(2::6;.9)
predictor: contour and surface plots of GpSEG (dB)
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(a) Speech Inputs -
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(b) DTMF-3 Input 3

Fig~ B.3 Sopeqch and DTMF-3 performance of Tfhisgn(.?;y;;?\)
" predictor: contour and surface plots of GpSEG (dB)
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(b) DTMF-3 Input

Fig. B.4 Speech and DTMF-3 performance of LS(2:6: )
, predictor: contour and surface plots of GpSEG (dB)
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Fig. B.5 Speech and DTMF-3 performance of LR(2:6;7)
predictor: contour and surface plots of GpSEG (dB)




