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Abstract

Arithmetic Quantum Chaos is a central problem at the intersection of number theory and

physics. One of the main goals in Arithmetic Quantum Chaos is to study the distribution of

mass of automorphic forms on arithmetic hyperbolic surfaces. In this thesis we investigate

the distribution of mass of holomorphic Hecke cusp forms in certain regions. As a first result,

we show that the fourth moment of holomorphic Hecke cusp forms is bounded, assuming the

Generalized Riemann Hypothesis. This work relies on the seminal work of Soundararajan

and its extension by Harper on obtaining sharp bounds for the moments of the Riemann

zeta function on the critical line. The second result is concerned about the mass distribution

of holomorphic cusp forms restricted to a special one-dimensional subset of the fundamental

domain. More precisely, we compute the so-called quantum variance of holomorphic Hecke

cusp forms for smooth compactly-supported test functions on the vertical geodesic. We

conclude the thesis by providing a short outlook for evaluating the sixth moment of cusp

forms on average.
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Abrégé

Le Chaos Quantique Arithmétique est un problème central à l’intersection de la théorie des

nombres et de la physique. L’un de ses principaux objectifs est d’étudier la distribution de

la masse des formes automorphes sur des surfaces hyperboliques arithmétiques. Dans cette

thèse, nous étudions la distribution de masse des formes cuspidales de Hecke holomorphes

dans certaines régions. Comme premier résultat, nous montrons que le quatrième moment

des formes cuspidales de Hecke holomorphes est borné, en supposant l’hypothèse de Riemann

généralisée. Ce travail s’appuie sur le résultat séminal de Soundararajan, et son extension

par Harper, sur l’obtention de bornes optimales pour les moments de la fonction zêta de

Riemann sur la ligne critique. Le deuxième résultat concerne la distribution de masse des

formes cuspidales holomorphes restreintes à un sous-ensemble spécial unidimensionnel du

domaine fondamental. Plus précisément, nous calculons la variance dite quantique des formes

cuspidales de Hecke holomorphes pour les fonctions de test lisses à support compact sur la

géodésique verticale. Nous concluons la thèse en donnant un bref aperçu de l’évaluation du

sixième moment des formes cuspidiennes en moyenne.
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Chapter 1

Introduction

1.1 Quantum Chaos

Quantum Chaos is concerned about the behaviour of Laplace eigenfunctions of dynamical

quantum systems that are “chaotic” in nature. Very little can be proved in full generality

but in certain number theoretic special cases, additional symmetries allow us to get a better

understanding. One of the major goals of Quantum Chaos is to study the mass distribution of

Laplace eigenfunctions on hyperbolic surfaces in the large eigenvalue limit. From a physical

perspective this is analogous to asking for the likelihood of finding a quantum particle with

large energy in a certain region of the surface. In the large energy limit the dynamics of

the quantum particle should be reflected by the underlying nature of the classical dynamical

system. If the underlying dynamical system is chaotic (essentially the trajectory of a particle

is very sensitive to its initial conditions), then we expect that the probability of finding the

particle in a specified region is proportional to the volume. In terms of eigenfunctions φj of

the Laplace operator we then say that the L2-mass of φj is equidistributed (see Chapter 2

for a more precise description). In this thesis we are interested in the distribution of mass

of holomorphic Hecke cusp form on the fundamental domain X := Γ\H, where Γ := SL2(Z)
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is the set of integer matrices with determinant 1 and H denotes the usual upper half-plane.

The modular surface X is chaotic in nature and we expect similar equidistribution behaviour

for our holomorphic objects of interest.

1.2 Thesis Outline

In the remaining part of the first chapter we introduce and define our mathematical objects

that we use throughout the thesis.

In Chapter 2 we will elaborate on several important questions arising in the realm of

Arithmetic Quantum Chaos, like the so-called Quantum Unique Ergodicity conjecture, the

Random Wave Conjecture and the Quantum Variance. We will also state our main theorems

and show how they fit into the above mentioned set of problems.

In Chapter 3 we prove our first main result: a sharp bound for the fourth moment

of holomorphic Hecke cusp forms (see Theorem 2.2.3). This result was obtained in our

work [Zen21b] and can be seen as progress toward the holomorphic Random Wave Conjecture

(see Conjecture 2.2.2).

Chapter 4 is comprised of our second work [Zen21a]. The main theorem is a variance

computation for holomorphic Hecke cusp forms on the vertical geodesic, i.e. the line

connecting zero and infinity on the upper half-plane (see Theorem 2.3.2).

We conclude the thesis with Chapter 5, by discussing ongoing work on the sixth moment

of holomorphic Hecke cusp forms on average.

1.3 General Notation

Throughout this thesis, we write f(x) = O(g(x)) or equivalently f(x) ≪ g(x) (or

g(x) ≫ f(x)) if there exists an absolute constant C > 0, such that |f(x)| ≤ C|g(x)| for all

x sufficiently large. The asymptotic equivalence f(x) ∼ g(x) means that g(x) ̸= 0 for
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sufficiently large x and limx→∞ f(x)/g(x) = 1. We write f(x) ≍ g(x), if f(x) ≪ g(x) and

g(x) ≫ f(x). The notation f(x) ≈ g(x) should only be interpreted informally and indicates

that f(x) and g(x) are roughly the same (up to some technical factors). The indicator

function 1P will equal 1 if the statement P is true and 0 if it is false.

1.4 Holomorphic Cusp Forms

Let H := {z = x + iy|x ∈ R, y ∈ R+} denote the usual upper half-plane and Γ := SL2(Z)

denote the full modular group, i.e. the set of matrices

{a b

c d

 ∣∣∣∣a, b, c, d ∈ Z, ad− bc = 1
}
.

The modular group Γ acts on H via Möbius transformations:

g · z := az + b

cz + d
with g ∈ Γ, z ∈ H.

For a function f : H → C and an integer k ≥ 1 we have the action

(f |k g)(z) = j(g, z)−kf(gz), where j(g, z) = cz + d with g ∈ Γ.

We say that a function f on H is Γ-invariant if (f |k g)(z) = f(z) for g ∈ Γ. Note that

(f |k γ)(z) = f(z) for γ =

1 1

0 1

 implies that f(z + 1) = f(z).

A holomorphic modular form of weight k is a holomorphic function f on H, such that

(f |k g)(z) = f(z)

and f is holomorphic at ∞ (see [IK04, p.356] for a precise definition of this notion). A



1. Introduction 4

holomorphic modular form that vanishes at all cusps is called a cusp form. The space of

holomorphic cusp forms, denoted by Sk, is a finite dimensional vector space and is endowed

with a natural Hilbert space structure via the Petersson inner product. For z = x + iy and

f, g ∈ Sk we define

⟨f, g⟩ :=
∫

Γ\H
f(z)g(z)yk dxdy

y2 .

For each f ∈ Sk we have the Fourier expansion

f(z) =
∞∑
n=1

af (n)(4πn)(k−1)/2e(nz),

where e(x) := e2πix. For the rest of the thesis we will be mostly interested in L2-normalized

cusp forms, i.e. cusp forms f of weight k such that ⟨f, f⟩ = 1.

1.5 Maass Forms and Eisenstein series

We call a function f : H → C automorphic with respect to Γ if it is invariant under the group

action, i.e.

f(g · z) = f(z) for all g ∈ Γ.

We denote the space of automorphic functions by A(Γ\H). Let ∆ := −y2( ∂2

∂x2 + ∂2

∂y2 ) denote

the hyperbolic Laplace operator. Automorphic functions that are eigenfunctions of the

hyperbolic Laplace operator are called automorphic forms, and the space of automorphic

forms is denoted by

As(Γ\H) = {f ∈ A(Γ\H) | ∆f = λf},

with λ = s(1 − s).

Important examples for automorphic forms are given by Maass cusp forms. Maass cusp

forms are L2-integrable, i.e.
∫

Γ\H |f(z)|2 dxdy
y2 < ∞, satisfy an additional growth condition at

infinity and their eigenvalue is given by λ = 1/4 + R2, where R > 0 denotes the spectral
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parameter. Similarly to holomorphic cusp on Γ\H, Maass cusp forms admit a Fourier

expansion, given by

f(z) = √
y
∑
n ̸=0

af (n)KiR(2π|n|y)e(nx),

where ∆f = (1/4 +R2)f and Ks(y) denotes the K-Bessel function.

Eisenstein series (see [IK04, Chapter 15.4]) are also important examples of automorphic

forms.

1.6 Hecke Operators

Establishing rigorous theorems in the world of quantum chaos is often very difficult. In

number theoretic special cases, additional symmetries allow us to get a better understanding.

These symmetries are given by the so-called Hecke operators. These linear operators act on

the space of holomorphic modular forms (they can also be defined for Maass forms) and are

explicitly defined by

T (n)f(z) = 1
n

k+1
2

∑
ad=n

ak
∑

b (mod d)
f
(
az + b

d

)
.

Hecke operators are commutative, i.e.

T (m)T (n) =
∑

d|(m,n)
T (mn/d2),

and self-adjoint with respect to the Petersson inner product (see [IK04, Prop. 14.9, Lem.

14.10]). Consequently, there exists an orthonormal basis of the space of cusp forms Sk, which

consists of eigenfunctions of all the Hecke operators T (n). We call such a basis a Hecke basis.

A Hecke cusp form, i.e. a cusp form that is an eigenfunction with respect to all Hecke

operators, satisfies the relation T (n)f = λf (n)f for all n ≥ 1. The Fourier expansion of a
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Hecke cusp form of weight k, is given by

f(z) = af (1)
∞∑
n=1

λf (n)(4πn)(k−1)/2e(nz),

with

|af (1)|2 = 2π2

Γ(k)L(1, sym2 f) .

The constant af (1) arises from the normalization

∫
X

|f(z)|2yk dxdy
y2 = 1.

The Fourier coefficients of a cusp form satisfy the following quasi-orthogonality relations

(see [IK04, Proposition 14.5]):

Lemma 1.6.1 (Petersson Trace formula). Let Bk be a Hecke basis of weight k cusp forms.

For any positive numbers n,m we have

ζ(2)
(k − 1)/12

∑
g∈Bk

λg(n)λg(m)
L(1, sym2 g) = 1n=m + 2πi−k

∞∑
c=1

S(m,n; c)
c

Jk−1

(4π
√
mn

c

)
.

Here L(1, sym2 f) is the symmetric square L-function defined in (1.3), S(m,n; c) denotes the

classical Kloosterman sum and Jy(x) denotes the J-Bessel function of order y.

In this thesis we will use a modified version of the Petersson Trace formula for a product

of primes (see Lemma 3.2.2) in Chapter 3 and an averaged version due to Iwaniec, Luo and

Sarnak (see Lemma 4.8) in Chapter 4.

1.7 L-functions

Next we recall some basic quantities in the theory of L-functions. We follow closely the

exposition in [IK04]. We call L(s, f) an L-function of degree d ≥ 1 if we have an Euler
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product representation

L(s, f) =
∞∑
n=1

λf (n)
ns

=
∏
p

(
1 − α1(p)

ps

)−1
· · ·

(
1 − αd(p)

ps

)−1
,

with λf (1) = 1, λf (n) ∈ C and αi ∈ C. Moreover, the gamma factor is given by

L∞(s, f) =
d∏
j=1

ΓR(s+ κj),

where ΓR(s) := π−s/2Γ(s/2) and κj ∈ C. The complex numbers αi for 1 ≤ i ≤ d, and κj for

1 ≤ j ≤ d are called local parameters of L(s, f) at the prime p and at infinity, respectively.

Together with the conductor q(f) of L(s, f), which is an integer q(f) ≥ 1, such that

αi(p) ̸= 0 for p ∤ q(f) and 1 ≤ i ≤ d, we can form the so-called completed L-function

Λ(s, f):

Λ(s, f) := q(f)s/2L∞(s, f)L(s, f).

The completed L-functions satisfies the functional equation

Λ(s, f) = ε(f)Λ(1 − s, f),

where ε(f) ∈ C, such that |ε(f)| = 1 and f is the dual of f for which λf (n) = λf (n),

L∞(s, f) = L∞(s, f) and q(f) = q(f).

An important quantity that measures the complexity of L-functions is the analytic

conductor of L(s, f), which we define by

C(s, f) := q(f)
d∏
j=1

(|s+ κj| + 3).

Remark 1.7.1. We say that the analytic conductor measures the complexity of L-functions

because one can express an L-function as two partial sums of length roughly C(s, f)1/2
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through the approximate functional equation (see [IK04, Theorem 5.3]).

The so-called convexity bound of L-functions says that

L(s, f) ≪ C(s, f)1/4+ε, (1.1)

for Re(s) = 1/2. This can be easily shown by the Phragmén–Lindelöf principle or the

approximate functional equation (see [IK04, Eq. 5.20]).

Remark 1.7.2. Heath-Brown showed in [HB09] that the ε in (1.1) is superfluous i.e. he proved

L(s, f) ≪ C(s, f)1/4 for Re(s) = 1/2.

A major theme in analytic number theory is to “break” the convexity barrier (1.1) and

to show that

L(s, f) ≪ C(s, f)1/4−δ (1.2)

for some δ > 0 and Re(s) = 1/2. A bound of the form (1.2) is termed subconvexity bound

and has often far reaching consequences in number theory. The Arithmetic Quantum Unique

Ergodicity Conjecture for example, on which we will elaborate more in Chapter 2, would

follow from a subconvexity bound for a special degree 8 L-function.

The Generalized Lindelöf Hypothesis (GLH) would show that L(s, f) ≪ C(s, f)ε, for

Re(s) = 1/2.

1.7.1 Specific L-functions

We gather now more concrete information of several L-functions that arise in our study of

the distribution of mass of holomorphic cusp forms. We recall standard information as also

stated in our work [Zen21b, Section 3].

Let f be a Hecke cusp form for SL2 (Z) of weight k. Furthermore, let λf (n) denote the
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n-th Hecke eigenvalue of f . The associated L-function of degree 2 to f is given by

L(s, f) =
∞∑
n=1

λf (n)
ns

=
∏
p

(
1 − αf (p)

ps

)−1(
1 − βf (p)

ps

)−1
,

where αf (p), βf (p) = αf (p) are complex numbers of absolute value 1. Since λf (p) = αf (p) +

βf (p), we have |λf (p)| ≤ 2, to which we refer as the Deligne bound. The gamma factor is

given by

L∞(s, f) = ΓR

(
s+ k − 1

2

)
ΓR

(
s+ 1 + k − 1

2

)
.

The analytic conductor is consequently of size

C(s, f) ≍ (|s| + k + 3)2.

We are mostly interested in the weight aspect of the analytic conductor (and s fixed) and

thus we may also write C(f) ≪s k
2, where the implied constant depends on s.

For Re(s) > 1 we define the symmetric square L-function associated to our Hecke cusp

form f by the following Euler product:

L(s, sym2 f) =
∏
p

(
1 −

α2
f (p)
ps

)−1(
1 − 1

ps

)−1(
1 −

β2
f (p)
ps

)−1
. (1.3)

The associated gamma factor is given by

L∞(s, sym2 f) = ΓR(s+ 1)ΓR(s+ k − 1)ΓR(s+ k).

It follows that the analytic conductor of the symmetric square L-function is of size

C(s, sym2 f) ≍ (|s| + 3)(|s| + k + 3)2.

L(s, sym2 f) is entire, can be analytically continued to the entire complex plane and satisfies
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the functional equation

L∞(s, sym2 f)L(s, sym2 f) = L∞(1 − s, sym2 f)L(1 − s, sym2 f),

as proved in work of Shimura [Shi75].

Next we define a so-called triple product L-function. Let g be another Hecke cusp form

of weight 2k with Hecke eigenvalues λg(n). In terms of the local parameters we can express

the Hecke eigenvalues at primes again as λg(p) = αg(p) + βg(p). Then

L(s, f × f × g) =
∏
p

(
1 − αf (p)2αg(p)

ps

)−1(
1 − αg(p)

ps

)−2(
1 − βf (p)2αg(p)

ps

)−1

×
(

1 − αf (p)2βg(p)
ps

)−1(
1 − βg(p)

ps

)−2(
1 − βf (p)2βg(p)

ps

)−1
,

with gamma factor

L∞(s, f × f × g) =ΓR(s+ 2k − 3/2)ΓR(s+ 2k − 1/2)ΓR(s+ k − 1/2)2 (1.4)

× ΓR(s+ k + 1/2)2ΓR(s+ 1/2)ΓR(s+ 3/2),

is the degree 8 triple product L-function of interest. Garrett [Gar87] showed that the

completed L-function is entire, extends analytically to the entire complex plane and

satisfies the functional equation

L∞(s, f × f × g)L(s, f × f × g) = L∞(1 − s, f × f × g)L(1 − s, f × f × g).

The analytic conductor is of size

C(s, f × f × g) ≍ (|s| + 3)2(|s| + k + 3)6,

or, when s is fixed, C(f × f × g) ≪s k
6.
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Chapter 2

Arithmetic Quantum Chaos

Quantum Chaos is concerned about the behaviour of Laplace eigenfunctions of dynamical

quantum systems that are chaotic in nature. As mentioned in the introduction, one of the

major goals is to study the mass distribution of automorphic forms. We will now describe

several results and open questions in that regard.

2.1 Equidistribution Results

Let M be a smooth compact Riemannian manifold. Moreover, let ∆ denote the Laplace–

Beltrami operator on M and let φj be the corresponding L2-normalized eigenfunctions with

eigenvalue λj, i.e.

∆φj = λjφj with ||φj||22 = 1.

We denote by dµ the volume measure on M and define the probability measures

dµj := |φj|2dµ.
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We say that a subsequence φjk equidistributes if the measures dµjk converge weakly to
1

Vol(M)dµ as k → ∞, i.e for all ψ ∈ C∞(M)

∫
M
ψ(z)|φjk |2dµ → 1

Vol(M)

∫
M
ψ(z)dµ

as k → ∞.

Remark 2.1.1. We will be especially interested in the modular surface X = Γ\H, which is

non-compact but of finite volume. For a sequence of L2-normalized Maass forms φj we then

define the probability measures

dµj := |φj|2
dxdy

y2 ,

where dµ = dxdy
y2 is the volume measure on X.

A famous result due to Shnirelman [Š74], Zelditch [Zel87] and Colin de Verdiere [CdV85]

shows that if the geodesic flow on a compact manifold is ergodic then there exists a density

one subsequence of Laplace eigenfunctions that equidistributes. A result like this is known as

“Quantum Ergodicity”. Zelditch showed in [Zel92] the quantum ergodicity result for Maass

forms on the modular surface X.

Having established a quantum ergodicity result, it is natural to ask whether every

subsequence of Laplace eigenfunctions equidistributes. The so-called Quantum Unique

Ergodicity Conjecture, introduced by Rudnick and Sarnak in [RS94], predicts that on

negatively curved hyperbolic surfaces every sequence of eigenfunctions converges to the

uniform distribution in the large eigenvalue limit.

Conjecture 2.1.1 (Quantum Unique Ergodicity, compact case). Let M be a compact

manifold of negative curvature. Then the measures dµj converge weakly to dµ as j → ∞.

The Arithmetic Quantum Unique Ergodicity conjecture, i.e. the special case were

additional structure from number theory is present, was solved by Lindenstrauss [Lin06] in

the compact case and for the full fundamental domain X with an additional argument by
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Soundararajan [Sou10]. Prior to that, Quantum Unique Ergodicty was also shown for

Eisenstein series by work of Luo and Sarnak [LS95] and by Jakobson [Jak94].

It is natural to consider similar equidistribution questions for L2-normalized holomorphic

Hecke cusp forms f of weight k on X. To do so we define the probability measures

dµf := |f(z)|2yk dxdy
y2 .

Holowinsky and Soundararajan showed in [HS10] that the Quantum Unique Ergodicity

conjecture holds for holomorphic Hecke cusp forms, i.e. dµf → 3
π
dµ as k → ∞.

2.2 Random Wave Conjecture

Another important problem in the realm of AQC is to study Lp-norms of eigenfunctions, thus

measuring additional aspects of the mass distribution of eigenfunctions. One of the major

conjectures in this regard is the Gaussian Moment Conjecture, which is a particular instance

of Berry’s Random Wave Conjecture [Ber77]. The Random Wave Conjecture predicts that

eigenfunctions in the large eigenvalue limit should behave as random waves. The notion of

a random wave is not well defined but for the sake of exposition we will think of a random

wave, as in work of Hejhal and Rackner [HR92], as a function on X given by

Ψ(x+ iy) =
∞∑
n=1

cn
√
yKiR(2πny) cos(2πnx), (2.1)

where the coefficients cn are chosen at random, with uniform distribution in [−1, 1]. The

above notion is helpful from a conceptional point of view, as we can compare it with our

deterministic objects, (even) Hecke Maass cusp forms f with spectral parameter R, whose
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Fourier expansion is given by

f(x+ iy) = C
∞∑
n=1

λf (n)√yKiR(2πny) cos(2πnx),

where λf (n) denote the Hecke eigenvalues of f and C is a normalization constant.

Remark 2.2.1. An alternative definition of a random wave is given in work of Zelditch [Zel09].

For an orthornomal basis {φλj
} of Laplace eigenfunctions he defines Gaussian ensembles of

random functions

fλ =
∑

j:λj∈Λλ

cjφλj

where Λλ is either the interval [λ, λ + 1] or [0, λ] and cj are independent Gaussian random

variables with mean 0 and properly normalized variance.

The Gaussian Moment Conjecture is a particular instance of the Random Wave

Conjecture that predicts that the moments of a Hecke Maass cusp forms agree with the

moments of a Gaussian random variable. More precisely, as in work of Humphries [Hum18]:

Conjecture 2.2.1 (Gaussian Moment Conjecture). Let B be any fixed compact set of X =

Γ\H, so that the boundary of B has µ-measure zero, and let g be a Hecke-Maass eigenform

with eigenvalue λ = 1/4 + R2, normalized such that
∫
X |g(z)|2dµ(z) = 1. Then for every

nonnegative integer n,
1

VarB(g)n/2 Vol(B)

∫
B
g(z)ndµ(z)

converges to

1√
2π

∫ ∞

−∞
xne− x2

2 dx =


2n/2
√
π

Γ
(
n+1

2

)
if n is even,

0 if n is odd,

as R (the spectral parameter) tends to infinity. Here

VarB(g) := 1
Vol(B)

∫
B

|g(z)|2dµ(z).
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Hejhal and Rackner [HR92] investigated this conjecture numerically and also provided

heuristic arguments in support of this conjecture. To perform their heuristic arguments,

Hejhal and Rackner use Theorem 3.1.1 of Salem and Zygmund [SZ54], which proves a central

limit theorem for randomized Fourier series.

Similarly, we can formulate a conjecture for holomorphic Hecke cusp forms. Inspired by

the heuristic argument of Hejhal and Rackner and the Fourier expansion of holomorphic

cusp forms we consider randomized power series of the form

f(z) =
∞∑
n=1

cn · a(n)e2πinz, (2.2)

where cn are again chosen randomly, say with uniform distribution in [−1, 1] and suitable

coefficients a(n). A probabilistic model along these lines was also used by Gosh and Sarnak

[GS12] to compute the expected number of real zeros of holomorphic cusp forms. Following

Theorem 3.5.2 of Salem and Zygmund [SZ54], which proves a central limit theorem for

randomized power series, holomorphic Hecke cusp forms should be modeled by complex

Gaussian Random variables with mean 0 and variance 1/Vol(X) as k → ∞.

Conjecture 2.2.2 (Random Wave Conjecture for holomorphic Hecke cusp forms). Let B be

any fixed compact set of Γ\H, and f a holomorphic Hecke cusp form of weight k, normalized

such that
∫
X |f(z)|2ykdµ(z) = 1. Then for every positive integer r,

1
VarB(f)r · Vol(B)

∫
B

|f(z)|2ryrk dxdy
y2

converges to
1
π

∫
C

|z|2re− |z|2
2 dxdy = Γ(r + 1),

as k tends to infinity. Here

VarB(f) := 1
Vol(B)

∫
B

|f(z)|2yk dxdy
y2 .
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2.2.1 Fourth Moment of Cusp Forms

Recently, there has been extensive work on the Random Wave Conjecture and in particular

on the fourth moment of Hecke cusp forms. The fourth moment of Hecke cusp forms is

of special interest to analytic number theorists, as there is a clear relation to moments of

L-functions via Watson’s formula [Wat08]. Buttcane and Khan [BK17] computed the fourth

moment of Hecke Maass cusp forms, assuming the Generalized Lindelöf Hypothesis (GLH),

and confirmed a special case of the Random Wave Conjecture. In [DK20], Djankovic and

Khan evaluated the fourth moment of (suitably regularized) Eisenstein series, which provides

the first unconditional result for a fourth moment of an automorphic form. Humphries and

Khan [DK20] proved unconditionally the fourth moment instance of the Random Wave

Conjecture for dihedral Maass forms.

The various fourth moment problems are, as mentioned, related to various moment

problems of L-functions. Depending on the involved L-functions the corresponding

problems vary in difficulty.

A useful heuristic to gauge the difficulty of an L-function moment problem is the

logarithmic ratio of the size of the family of L-functions relative to the size of their analytic

conductor. To exemplifiy this heuristic consider the fourth moment of the Riemann zeta

function ∫ 2T

T
|ζ(1/2 + it)|4dt.

Here we average over a family of T L-functions, and the analytic conductor of the fourth

power of zeta is of size T 4 (the analytic conductor of zeta is of size T ). The logarithmic ratio

of the size of the family relative to the analytic conductor of the L-function is consequently 4.

As we know how to compute an asymptotic formula for the fourth moment of zeta, we

should also be able to compute L-function moment problems where the logarithmic ratio of

the family versus the analytic conductor is of size 4.

Remark 2.2.2. This heuristic is of course a bit too näıve, as different aspect of L-functions
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come with a different set of difficulties.

To compute the fourth moment of Maass cusp forms we need to evaluate an L-function

with analytic conductor of size T 8, averaged over a family of size T 2. The logarithmic ratio

of these two quantities is again 4, which is why it is reasonable to expect that an asymptotic

formula can be computed. Indeed, as mentioned above, Buttcane and Khan, solve this

problem.

In this thesis we are interested in the distribution of mass of holomorphic Hecke cusp forms

and in particular, we are also interested in the fourth moment of holomorphic cusp forms.

Again, via Watson’s formula the problem is related to an L-function moment problem (see

Lemma 3.1.1). As seen later, we will need to average k L-functions, with analytic conductor

of size k6, and so the logarithmic ratio is 6. Based on the heuristic arguments above proving

an asymptotic for the fourth moment of holomorphic cusp forms is thus expected to be at

least as difficult as proving an asymptotic formula for the sixth moment of the Riemann

zeta function. At the present moment no asymptotic formula for the sixth moment of

the Riemann zeta function is known under any “reasonable “ conjecture like the Riemann

Hypothesis. Consequently, we also do not expect being able to show an asymptotic for the

fourth moment of holomorphic cusp forms.

To obtain partial results in the direction of the Random Wave Conjecture for holomorphic

cusp forms it is natural to increase the length of the family, i.e. by considering an additional

averaging over the weight k. This was done by Khan in [Kha14], where he considered a

family of size k3 and the L-function’s analytic conductor, as mentioned, is of size k6. The

logarithmic ratio of these quantities is thus reduced to 2, which is in the regime where

concrete results can be obtained.

Without averaging the best unconditional result for the fourth moment of holomorphic

Hecke cusp forms is obtained by Khan, Young and Blomer in [BKY13]. They show that

the fourth moment is bounded by k1/3+ε, while using GLH one can show immediately the

bound
∫

Γ\H |f(z)|4y2k dxdy
y2 ≪ kε. Conditionally on GRH we show in [Zen21b] that the fourth
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moment is bounded:

Theorem 2.2.3. [Zen21b, Theorem 1.1] Let f be a holomorphic Hecke cusp form of even

weight k, normalized so that ⟨f, f⟩ = 1. Assuming the Riemann Hypothesis for L(s, f×f×g)

and L(s, sym2 f), there exists a universal constant C such that

∫
Γ\H

|f(z)|4y2k dxdy

y2 ≤ C,

for k large enough.

In Chapter 3 we will restate verbatim the proof obtained in [Zen21b] as a main part of

this thesis.

2.2.2 Higher Moments of Cusp Forms

We conclude this section, by mentioning that little is known regarding the Gaussian Moment

Conjecture for n > 4 for any automorphic form. The best bounds for the sixth moment, for

example, often stem from interpolation arguments between the L4-norm and the L∞-norm.

One of the major reasons seems to be of course the lack of obvious relation to L-functions.

Unlike the fourth moment of cusp forms, which is related to L-functions, via Parseval and

Watson’s formula, there is no quick relation for the sixth moment.

In the last chapter of this thesis we suggest a different approach to higher moments,

namely directly via the Fourier expansion of cusp forms, as for example in Theorem 1.8

in [BKY13]. In some sense, we already encountered the two distinct approaches to mass

equidistribution, namely one with L-functions and one directly working with Fourier

coefficients, in the work of Soundararajan and Holowinsky on QUE for holomorphic Hecke

cusp forms.

We should also remark that for higher moments of holomorphic Hecke cusp forms it is

important to restrict our attention to compact subsets of the fundamental domain. As Xia
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showed in [Xia07] the L∞-norm of a weight k cusp form is large as a function of k, with

large values attained high up (depending on k) in the cusp. These large values get amplified

by taking higher moments, and so higher moments of holomorphic cusp forms on the entire

fundamental domain start to diverge. Indeed, Blomer, Khan and Young [BKY13] extend

the argument of Xia and show that ||F ||pp ≫ k
p
4 − 3

2 −ε. In particular, the 8-th moment on the

full fundamental domain will certainly diverge. This is not in contradiction to the Random

Wave Conjecture, which should hold only for compact sets. For the fourth moment on the

other hand, large values attained high in the cusp are still negligible, so that we can integrate

over the full fundamental domain without issues.

In fact, we believe the lower bound of Blomer, Khan and Young should be the correct

size for moments of holomorphic cusp forms on the full fundamental domain. In [Zen21b]

we conjecture

Conjecture 2.2.4. Let f be a holomorphic cusp form of even weight k, normalized so that

⟨f, f⟩ = 1. Let r be an even number and y0 > 0 then

Pr(y0) :=
∫ ∞

y0

∫ 1

0
|f(x+ iy)yk/2|r dxdy

y2 ≪ k
r
4 − 3

2 +ϵ + 1
y0
. (2.3)

In [BKY13, Theorem 1.8] Blomer, Khan and Young consider the special case when

r = 4 unconditionally. They relate P4(y0) to a shifted convolution problem. Assuming

square-root cancellation in this shifted convolution problem, which is out of reach

unconditionally, we would obtain the upper bound suggested in equality (2.3). It is easy to

generalize their computation to higher moments (see (5.3) in Chapter 5). If we then

assume square-root cancellation in the resulting summation over the Hecke eigenvalues we

are lead to Conjecture 2.2.4.
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2.3 Quantum Variance

Once we have established the expected value of a quantity (like in a QE or QUE theorem),

it is natural to ask how far the L2-mass deviates from its mean value. This deviation is

measured by the variance.

As before, we denote by M a smooth Riemannian manifold. Let K be a positive number.

We denote by BK an orthonormal basis of Laplace eigenfunctions φj on M, with spectral

parameter
√
λj in a dyadic interval of size K, i.e. {φj : K ≤

√
λj ≤ 2K}. For a smooth

compactly supported function ψ we define

µφ(ψ) :=
∫

M
ψ(z)|φ(z)|2dµ(z) and E(ψ) := 1

Vol(M)

∫
M
ψ(z)dµ(z).

We are then interested in the quantum variance, given by

V (ψ) := 1
|BK |

∑
φ∈BK

|µφ(ψ) − E(ψ)|2,

as K → ∞.

The quantum variance problem was first introduced by Zelditch in [Zel94]. Since then,

many different aspects and variants of the original quantum variance problem for Laplace

eigenfunctions were investigated. In [LS04] Luo and Sarnak computed an asymptotic formula

for the quantum variance of holomorphic Hecke cusp forms on the full fundamendal domain.

The case of Maass forms on Γ\H was settled by Zhao in [Zha10] and Sarnak–Zhao in [SZ19]

for more general observables on the modular surface. Moreover, Luo, Rudnick and Sarnak

investigated the quantum variance for closed geodesics on the modular surface in [LRS09].

In the compact setting, Nelson used the theta correspondence to compute the variance for

quaternion algebras [Nel16], [Nel17] and [Nel19]. Eisenstein series and dihedral Maass forms

were treated by Huang [Hua21] and Huang–Lester [HL20] respectively. Recently, Nordentoft,

Petridis and Risager computed in [NPR21] the variance in shrinking sets at infinity.
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In our work [Zen21a] we compute for the first time the quantum variance restricted to

the a one-dimensional set, namely the vertical geodesic connecting zero and infinity on the

upper half-plane. Before stating the main theorem, which will be explored in Chapter 4, we

digress shortly to equidistribution results restricted to certain hypersurfaces.

2.3.1 Restriction Theorems

We focus now on equidistribution questions for certain submanifolds. Rather than observing

the behaviour of eigenfunctions on the entire manifold, we try to understand their behaviour

restricted to various subregions. Questions like this are often referred to as Quantum Ergodic

Restriction Problems. Quantum Ergodicity problems restricted to certain hypersurfaces were

studied for Laplacian eigenfunction by Christianson–Toth–Zelditch in [CTZ13], Dyatlov–

Zworski in [DZ13] and Toth–Zelditch in [TZ13].

Remark 2.3.1. One of the important applications of these restriction problems is the study

of nodal domains of eigenfunctions. For a manifold M the nodal domains of φ are the

connected components of M\{z ∈ M : φ(z) = 0}. A fundamental problem in spectral

geometry and quantum chaos is to count the number of nodal domains of φ (see for example

the works [JZ16], [GRS13], [JJ18], [JY19]).

In Chapter 4 we analyze the distribution of holomorphic Hecke cusp forms on the vertical

geodesic, meaning the line connecting zero and infinity on the upper half-plane. Young

proposed the following Quantum Unique Ergodicity conjecture for the vertical geodesic:

Conjecture 2.3.1. [You16, Conjecture 1.1] Suppose that ψ : R+ → R is a smooth,

compactly supported function. Then

lim
k→∞

∫ ∞

0
yk|f(iy)|2ψ(y)dy

y
= 3
π

∫ ∞

0
ψ(y)dy

y
, (2.4)

where f(z) runs over weight k holomorphic Hecke cusp forms that are L2-normalized.



2. Arithmetic Quantum Chaos 22

To provide evidence for this conjecture, Young relates the left-hand side of (2.4) to a

(shifted) moment problem of L-functions (see Eq. 3.2 in [You16]), to which he applies the

recipe of random matrix theory (see [CFK+05]) to evaluate the main term.

Conjecture 2.3.1 is likely out of reach of current technology, which we motivate by the

following standard computation that was done in [BKY13, Section 7]. First recall that the

Mellin transform of holomorphic cusp forms is related to L-functions, i.e. for

f(z) = af (1)
∞∑
n=1

λf (n)(4πn)(k−1)/2e(nz), |af (1)|2 = 2π2

L(1, sym2 f)Γ(k) ,

we have

∫ ∞

0
f(iy)yk/2ys

dy

y
= af (1)

∞∑
n=1

λf (n)(4πn)(k−1)/2
∫ ∞

0
yk/2+se−2πny dy

y
(2.5)

= af (1) 2k/2
√

4π
1

(2π)sL(1/2 + s, f)Γ(s+ k/2).

For simplicity we investigate the quantity

I :=
∫ ∞

0
|f(iy)|2yk dy

y
,

rather than the left-hand side of (2.4), as the difficulty of those problems is likely comparable.

From the Parseval theorem and the computation in (2.5) we get that

I =
∫ ∞

−∞
2k−2 |Γ(k/2 + it)|2

Γ(k) · |L(1/2 + it, f)|2
L(1, sym2 f) dt.

Applying Stirling’s formula we get

|Γ(k/2 + it)|2
Γ(k) ∼

(
π

2k

)1/2
2−(k−2)e−2t2/k
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and consequently

I ∼
(
π

2k

)1/2 ∫ ∞

−∞
e−2t2/k |L(1/2 + it, f)|2

L(1, sym2 f) dt.

We notice now that an almost optimal bound I ≪ kε would imply that L(1/2, f) ≪ k1/4+ε.

As the analytic conductor C(f) is of size k2, this would prove a subconvexity bound of the

form L(1/2, f) ≪ C(f)1/8+ε. We do not expect being able to obtain a bound of this strength,

as it would go beyond what is even known for the simpler Riemann zeta function.

Rather than asking for equidistribution of all eigenforms (Quantum Unique Ergodicity),

we settle for the easier question: whether equidistribution holds for almost all eigenforms

(Quantum Ergodicity). In fact, we consider directly the more complicated problem of

computing the quantum variance. This will not only show equidistribution for almost all

Hecke cusp forms (in a large family), but it will also provide information about the

deviation from its expected value. In Chapter 4 we review the work in [Zen21a] and one of

the main theorems:

Theorem 2.3.2. [Zen21a, Theorem 1.2] Let ψ1, ψ2 and h be smooth compactly supported

functions on R+. Moreover, suppose that ψi(y) = ψi(1/y) for i = 1, 2. Then

∑
k≡0 (mod 2)

h
(
k − 1
K

) ∑
f∈Hk

L(1, sym2 f)
(
µf (ψ1)−E(ψ1)

)
·
(
µf (ψ2)−E(ψ2)

)
= V (ψ1, ψ2) (2.6)
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with

V (ψ1, ψ2) =K3/2 logK ·
√

2π
32 ψ̃1(0)ψ̃2(0) ·

∫ ∞

0

h(
√
u)u1/4

√
2πu

du+

+K3/2
√

2π
64 ψ̃1(0)ψ̃2(0)

∫ ∞

0

h(
√
u)u1/4

√
2πu

log(u)du+

+K3/2
∫ ∞

0

h(
√
u)u1/4

√
2πu

du ·
(√

2π
16

(3
2γ − log(4π)

)
ψ̃1(0)ψ̃2(0)

)
+

+K3/2
∫ ∞

0

h(
√
u)u1/4

√
2πu

du ·
√

2π
8

1
2πi

∫
(1)
ψ̃1(−s2)ψ̃2(s2)ζ(1 − s2)ζ(1 + s2)ds2+

+Oψ1,ψ2(K5/4+ε),

as K → ∞. Here ψ̃i(s) :=
∫∞

0 ψ(1/y)ys−1dy for i = 1, 2.
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Chapter 3

Sharp Bound for the Fourth Moment

of Holomorphic Hecke Cusp Forms

3.1 Background and Heuristics

We focus now on the proof of Theorem 2.2.3, which was established in our work [Zen21b].

We follow our exposition in [Zen21b] extremely closely.

First, we notice that the fourth moment of holomorphic Hecke cusp forms is related to a

moment problem of L-functions, as seen for example seen in [Zen21b, Lemma 5.1].

Lemma 3.1.1. Let f be a holomorphic Hecke cusp form of weight k, and let B2k denote a

Hecke basis for the space of holomorphic cusp forms of weight 2k. Then

∫
Γ\H

|f(z)|4y2k dxdy

y2 = π3

2(2k − 1)
∑
g∈B2k

L(1/2, f × f × g)
L(1, sym2 f)2L(1, sym2 g) . (3.1)

Proof. Since f 2 is a cusp form of weight 2k, we have the following decomposition in terms
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of Hecke eigenforms g ∈ B2k:

⟨f 2, f 2⟩ =
∑
g∈B2k

|⟨f 2, g⟩|2.

At this point we apply Watson’s formula (see [Wat02, Theorem 3]) to the resulting inner

product of three Hecke cusp forms (see also [BKY13, Eq. 2.7]) so that

∑
g∈B2k

|⟨f 2, g⟩|2 = π3

2(2k − 1)
∑
g∈B2k

L(1/2, f × f × g)
L(1, sym2 f)2L(1, sym2 g) .

Finally, we drop the complex conjugation bar of f , as the Fourier coefficients of f are real,

and the lemma follows.

Bounding moments of L-functions, like the right-hand side of (3.1), is a central problem in

analytic number theory. Based on Random Matrix Theory Conrey et al. [CFK+05] provided

heuristics to evaluate the main term of integral moments of various families of L-functions.

Applying their recipe indicates that the right-hand side of (3.1), and hence the fourth moment

of holomorphic Hecke cusp forms, converges indeed to the constant predicted by the Random

Wave Conjecture (see Conjecture 2.2.2 for r = 2). This heuristic argument can be seen

in [BKY13, Section 4].

It is natural to ask, whether one can evaluate moments of L-functions without invoking

the Random Matrix Theory Conjectures, but say with the help of the Riemann Hypothesis.

Indeed, in the breakthrough work [Sou09] Soundararajan obtained almost sharp bounds for

the moments of the Riemann zeta function on the critical line:

Theorem 3.1.2 (Soundararajan [Sou09]). Assume the Riemann Hypothesis. For every

positive real number k, and every ε > 0 we have

T (log T )k2 ≪k

∫ 2T

T
|ζ(1/2 + it)|2kdt ≪k,ε T (log T )k2+ε.
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Harper built upon these techniques and improved them to achieve sharp bounds for the

moments of the Riemann zeta function:

Theorem 3.1.3 (Harper [Har13]). Assume the Riemann Hypothesis, and let k ≥ 0 be fixed.

Then for all large T we have

∫ 2T

T
|ζ(1/2 + it)|2kdt ≪k T (log T )k2

,

where the implicit constant depends on k only.

The approach of Soundararajan and Harper on bounding the moments of the Riemann

zeta function is based on Selberg’s Central Limit Theorem [Sel46], [Sel92], which shows that

log |ζ(1/2 + it)| is approximately Gaussian with mean value 0 and variance 1
2 log log T for

t ∈ [T, 2T ] as T → ∞.

For a Gaussian random variable X with mean µ and variance σ2 we have the following

standard computation

E[eaX ] = 1√
2πσ2

∫ ∞

−∞
exp

(
at− (t− µ)2

2σ2

)
dt (3.2)

= eaµ+a2σ2/2 1√
2πσ2

∫ ∞

−∞
exp

(
− (t− µ− aσ2)2

2σ2

)
dt

= eaµ+a2σ2/2.

In the setting for the Riemann zeta function with X= log |ζ(1/2 + it)|, µ = 0 and σ2 =
1
2 log log T we have

E(e2kX) = 1
T

∫ 2T

T
exp(2k log |ζ(1/2 + it)|)dt

≍ exp
(
(2k)2 1

4 log log T
)

= (log T )k2
.
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The probabilistic viewpoint and the techniques of Soundararajan and Harper are very robust

and can also be applied to other families of L-functions. In particular, we adapt such a

probabilistic viewpoint for logL(1/2, f × f × g). We expect that logL(1/2, f × f × g) has

an approximately normal distribution with mean value

−
∑
p≤k

λf (p)4 + 4λf (p)2 − 4
2p

and variance of size ∑
p≤k

λf (p)4

p
.

This can be seen from the Euler product represenation of our L-function (see Remark 3.2.1

for more details). Again, following the computation in (3.2) with X= logL(1/2, f × f × g)

and mean and variance given above, we expect

∑h

g∈B2k

exp(logL(1/2, g × f × f)) ≈ exp
(

−
∑
p≤k

λf (p)4 − 4λf (p)2 + 4
2p + 1

2
∑
p≤k

λf (p)4

p

)

= exp
(

2
∑
p≤k

λf (p)2 − 1
p

)

≍ L(1, sym2 f)2.

Inserting this bound into (3.1) demonstrates heuristically, why we expect the fourth moment

of holomorphic Hecke cusp forms to be bounded.

Remark 3.1.1. In recent work Shubin [Shu21] used similar techniques as in the following

sections to estimate the variance in Linnik’s problem.

3.2 Proof of Theorem 2.2.3

We come now to the proof of Theorem 2.2.3 that we take verbatim from our work [Zen21b].
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In view of the Petersson Trace Formula 3.2.2, it will be useful to introduce a normalized

summation over a Hecke basis. Let Bk be a Hecke basis of weight k cusp forms. For any

S ⊆ Bk, we define ∑h

g∈S
λg(n) := 2π2

k − 1
∑
g∈S

λg(n)
L(1, sym2 g) .

We also define the normalized measure of the set S ⊂ Bk by

meas{S} :=
∑h

g∈S
1 = 2π2

k − 1
∑
g∈S

1
L(1, sym2 g) .

Now that we have reduced Theorem 4.12 to bounding an average of L-functions we will

follow the approach of Soundararajan and Harper to control the right-hand side of (3.1). At

first we need to approximate the logarithm of our L-function L(1/2, f × f × g) with a short

Dirichlet polynomial over primes. Working with this Dirichlet polynomial will enable us to

detect the underlying Gaussian behaviour of logL(1/2, f × f × g). To accomplish this, we

use an idea of Soundararjan [Sou09] as adapted by Chandee [Cha09] to our context.

Lemma 3.2.1. Let f and g be Hecke cusp forms of even weight k and 2k, respectively, for

the full modular group. Assuming the Riemann Hypothesis for L(1/2, f × f × g), we have

for any x ≥ 2

logL(1/2, f × f × g) ≤
∑
p≤x

λf (p)2λg(p)
p1/2+1/ log x

log(x/p)
log x

+
∑
p2≤x

(λf (p)4 − 4λf (p)2 + 4)(λg(p2) − 1)
2p1+2/ log x

log(x/p2)
log x + log k6

log x +O(1).

Proof. We express the Hecke eigenvalues λ(p) of f and g in terms of their Satake parameters

α(p) and β(p), more precisely λf (p) = αf (p) +βf (p) and λg(p) = αg(p) +βg(p). Now we can

directly apply Theorem 2.1 in [Cha09] with c = 1 and get
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logL(1/2, f × f × g) ≤
∞∑
ℓ=1

∑
pℓ≤x

(αf (p)2ℓ + βf (p)2ℓ + 2)(αg(p)ℓ + βg(p)ℓ)
ℓp( 1

2 + 1
log x

)ℓ
log(x/pℓ)

log x

+ log k6

log x +O

(
1

log2 x

)
.

Here we used that the analytic conductor of L(1/2, f × f × g) is of size k6, which can be

seen from the gamma factor L∞(s, f × f × g) in (1.4). By the Deligne bound |λf (p)| ≤

2 the contribution of the prime powers pℓ with ℓ ≥ 3 can be shown to be O(1). Since

αf (p)2 +βf (p)2 +2 = λf (p)2, αf (p)4 +βf (p)4 +2 = λf (p)4 −4λf (p)2 +4 and αg(p)2 +βg(p)2 =

λg(p)2 − 2 = λg(p2) − 1 the lemma follows.

Remark 3.2.1. Notice that on average over g the coefficients λg(p) and λg(p2) are close to 0.

Consequently, we expect the mean value of logL(1/2, f × f × g) to be essentially

∑
p2≤x

−(λf (p)4 − 4λf (p)2 + 4)
2p1+2/ log x .

Since λg(p)2 is close to 1 on average, the variance should be

∑h

g∈B2k

∑
p≤x

λf (p)2λg(p)
p1/2+log x

2

∼
∑
p≤x

λf (p)4

p1+2/ log x .

3.2.1 Detecting Randomness

In his proof, Harper detected the randomness of the harmonics Re(p−it) with Proposition

2 in [Har13]. For our harmonics λg(p), the role will be played by the following version of

Petersson’s Trace Formula:

Lemma 3.2.2 (Petersson Trace Formula). Let k be large and let n = pα1
1 · · · pαr

r ≤ k2/104,
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where the pi are distinct primes and αi ∈ N for all i. Then

∑h

g∈B2k

r∏
i=1

λg(pi)αi = h1(n) +O(k3e−k) (3.3)

where

h1(n) :=
r∏
i=1

12|αi
· (αi)!

((αi/2)!)2(αi/2 + 1) ,

in particular, h1(n) = 0 if any of the exponents αi is odd.

Moreover, if n = pβ1
1 · · · pβr

r ≤ k/100, with pi distinct primes and βi ∈ N for all i, then

∑h

g∈B2k

r∏
i=1

λg(p2
i )βi = h2(n) +O(k4e−k),

where

h2(n) =
r∏
i=1

βi∑
ℓ=0

(
βi
ℓ

)
(−1)ℓ (2(βi − ℓ))!

(βi − ℓ)!(βi − ℓ+ 1)!

In particular, h2(n) = 0 if βi = 1 for some i, and h2(n) ≤ ∏r
i=1 3βi in general.

We also have the following combined result: Let a = pα1
1 · · · pαr

r , b = qβ1
1 · · · qβs

s , with

a · b2 ≤ k2/104, pi and qj all distinct from each other. Then

∑h

g∈B2k

r∏
i=1

λg(pi)αi

s∏
j=1

λg(q2
j )βi = h1(a)h2(b) +O(k5e−k). (3.4)

Remark 3.2.2. Notice that h1 is a multiplicative function supported on even numbers. This

is reminiscent of the correlations of powers of independent Gaussian random variables. The

multiplicativity of h1 should be interpreted as quasi-independence and the support on even

numbers reminds us that odd moments of Gaussian random variables vanish. We also

highlight the condition that n ≤ k2/104. The total number of available harmonics is k,

hence the length of the square of the Dirichlet polynomial should not exceed k2, so that the

only contribution comes from the main term. The bound h2(n) ≤ ∏r
i=1 3βi follows upon
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noting that |λg(p2)| ≤ 3 by the Deligne bound.

Proof. We want to use the Petersson Trace Formula in the form of Lemma 2.1 in [RS06]

which says that ∑h

g∈B2k

λg(t)λg(u) = 1t=u +O(e−k), (3.5)

if k is large and t and u are natural numbers with tu ≤ k2/104.

To do so we need to express λg(pi)αi in terms of λg(pℓ) for 0 ≤ ℓ ≤ αi. This can be

achieved via the Hecke relations of the Fourier coefficients. An easy computation, as done

in Lemma 7.1 of [LL11], shows that

λf (p)α =
(
Aα +

α/2∑
ℓ=1

Cα(ℓ)λf (p2ℓ)
)

12|α +
(
Bαλf (p) +

α/2−1∑
ℓ=1

Dα(ℓ)λf (p2ℓ+1)
)

12|α+1 (3.6)

with

Aα = (α)!
((α/2)!)2(α/2 + 1) , Cα(ℓ) = (α)!(2ℓ+ 1)

(α/2 − r)!(α/2 + r + 1)! ,

(these coefficients only appear in the expression of λf (p)α when α is even)

Bα = 2(α)!
((α− 1)/2)!((α + 3)/2)! and Dα(ℓ) = (α)!(2ℓ+ 2)

((α− 1)/2) − ℓ)!((α + 3)/2 + ℓ)!

(these coeffiecients only appear in the expression of λf (p)α when α is odd). It follows that

the left-hand side of equation (3.3) is given by

∑h

g∈B2k

r∏
i=1

{(
Aαi

+
αi/2∑
ℓ1=1

Cαi
(ℓ1)λf (p2ℓ1

i )
)

12|αi
+
(
Bαi

λf (pi) +
αi/2−1∑
ℓ2=1

Dαi
(ℓ2)λf (p2ℓ+1

i )
)

12|(αi+1)

}
.

We apply identity (3.5) and get the main term

r∏
i=1

Aαi
12|αi

=
r∏
i=1

(αi)!
((αi/2)!)2(αi/2 + 1)12|αi

,
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since the primes pi are distinct for different 1 ≤ i ≤ r. To bound the error term we first

notice that Aα ≤ 2α, ∑α/2
ℓ=1 Cα(ℓ) ≤ 2α, Bα ≤ 2 · 2α and ∑(α−1)/2

ℓ=1 Dα ≤ 2 · 2α. Consequently,

the error term is bounded by

O
(
e−k

r∏
i=1

4 · 2αi

)
= O

(
e−kk3

)
.

Here we also used the crude bounds 4r ≪ k and ∏r
i=1 2αi ≤ k2. This shows the first part of

the lemma.

The second part of the lemma follows similarly upon using λg(p2
i ) = λg(pi)2 − 1 and the

binomial theorem. More precisely, we have

∑h

g∈B2k

r∏
i=1

λg(p2
i )βi =

∑h

g∈B2k

r∏
i=1

(λg(pi)2 − 1)βi

=
∑h

g∈B2k

r∏
i=1

βi∑
ℓ=0

(
βi
ℓ

)
(−1)ℓλg(pi)2(βi−ℓ)

=
r∏
i=1

βi∑
ℓi=0

((
βi
ℓi

)
(−1)ℓi

)∑h

g∈B2k

r∏
i=1

λg(pi)2(βi−ℓi).

At this point we use relation (3.6) to rewrite λg(pi)2(βi−ℓi) in terms of λg(pℓi) for 0 ≤ ℓ ≤

2(βi − ℓi). Again, an application of the Petersson Trace formula (see formula (3.5)), yields

the main term
r∏
i=1

βi∑
ℓ=0

(−1)ℓ (2(βi − ℓ))!
(βi − ℓ)!(βi − ℓ+ 1)!

as desired. The error term is given by

O
(
e−k ·

r∏
i=1

βi∑
ℓ=0

(
βi
ℓ

)
·
(
A2(βi−ℓ) +

βi−ℓ∑
m=1

C2(βi−ℓ)(m)
))

= O
(
e−k2r

r∏
i=1

5βi

)
,



3. Sharp Bound for the Fourth Moment of Holomorphic Hecke Cusp Forms 34

as A2(βi−ℓ) ≤ 4βi−ℓ, ∑βi−ℓ
m=1 C2(βi−ℓ)(m) ≤ 4βi−ℓ and

βi∑
ℓ=0

(
βi
ℓ

)
4βi−ℓ = 5βi .

So the contribution of the error term is given by

O

(
e−k2r

r∏
i=1

5βi

)
= O(e−kk4).

Finally, the last part of the lemma, namely equation (3.4), follows in a similar vein. The

main term is, as desired, given by

r∏
i=1

12|αi
· (αi)!

((αi/2)!)2(αi/2 + 1) ·
s∏
j=1

βj∑
ℓ=0

(
βj
ℓ

)
(−1)ℓ (2(βj − ℓ))!

(βj − ℓ)!(βj − ℓ+ 1)! .

The error term is now given by

O

(
e−k2r+s

r∏
i=1

2αi ·
s∏
j=1

5βi

)
= O(e−kk5).

This concludes the proof of the entire lemma.

Lemma 3.2.3. Define the function h1 as in Lemma 3.2.2 and let u(p) be any real numbers.

For any numbers x1, x2 ≥ 1, we have

∣∣∣∣ ∑
x1<p1,...,pn≤x2

u(p1) · · ·u(pn)
√
p1 · · · pn

h1(p1 · · · pn)
∣∣∣∣ ≤ n!

2n/2(n/2)!

( ∑
x1<p≤x2

u(p)2

p

)n
2

(3.7)

if n is even and 0 if n is odd.

Proof. Let U denote the sum on the left-hand side of the desired inequality (3.7). Recall

that h1 is supported only on squares. In particular, n has to be even and we write n = 2ℓ,
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so that

U =
∑

x1<p1,...,p2ℓ≤x2

u(p1) · · ·u(p2ℓ)√
p1 · · · p2ℓ

h1(p1 · · · p2ℓ).

We now write p1 · · · p2ℓ = qα1
1 · · · qαr

r , where the primes qi for 1 ≤ i ≤ r are distinct and

αi ≥ 1 for all 1 ≤ i ≤ r. Then U equals

∑
1≤r≤2ℓ

∑
α1+···+αr=2ℓ

∑
x1<q1<...<qr≤x2

(
2ℓ

α1, . . . , αr

)
u(q1)α1 · · ·u(qr)αr√

qα1
1 · · · qαr

r

h1(qα1
1 · · · qαr

r ),

where the multinomial coefficient counts the number of representations such that p1 · · · p2ℓ =∏
1≤i≤r q

αi
i . Since h1 is supported only on squares we see that αi for 1 ≤ i ≤ r is divisible by

2 and consequently r ≤ ℓ. It follows that

U =
∑

1≤r≤ℓ

∑
α1+···+αr=2ℓ

2|αi

∑
x1<q1<...<qr≤x2

(
2ℓ

α1, . . . , αr

)
u(q1)α1 · · ·u(qr)αr√

qα1
1 · · · qαr

r

h1(qα1
1 · · · qαr

r )

=
∑

1≤r≤ℓ

∑
β1+···+βr=ℓ

βi≥1

∑
x1<q1<...<qr≤x2

(
2ℓ

2β1, . . . , 2βr

)
u(q1)2β1 · · ·u(qr)2βr

qβ1
1 · · · qβr

r

∏
1≤i≤r

(2βi)!
βi!(βi + 1)!

We simplify and use the bound (βi + 1)! ≥ 2βi so that

U ≤(2ℓ)!
ℓ!

∑
1≤r≤ℓ

∑
β1+···+βr=ℓ

βi≥1

∑
x1<q1<...<qr≤x2

(
ℓ

β1, · · · , βr

)
u(q1)2β1 · · ·u(qr)2βr

qβ1
1 · · · qβr

r

1
2β1 · · · 2βr

=(2ℓ)!
ℓ!

( ∑
x1<q≤x2

u(q)2

2q

)ℓ
.

This concludes the proof of the lemma.

Lemma 3.2.4. Let w(p) be any real numbers such that |w(p)| ≤ C and define the function
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h2 as in Lemma 3.2.2. Then

∣∣∣∣ ∑
2m<p1,...,p2M ≤2m+1

w(p1) · · ·w(p2M)
p1 · · · p2M

· h2(p1 · · · p2M)
∣∣∣∣ ≤ (2M)!

M !

(
72C2

2m

)M
. (3.8)

Proof. The main difference to Lemma 3.2.3 is that the function h2 is supported on integers

that are divisible by squares, rather than integers that are squares. This leads to more

difficult combinatorics. Let W denote the sum on the left-hand side of inequality (3.8). As

in Lemma 3.2.3 we express p1 · · · p2M in terms of distinct primes, i.e. p1 · · · p2M = ∏r
i=1 q

αi
i .

Then

W =
∑

1≤r≤M

∑
α1+···+αr=2M

αi≥2

∑
2m<q1<...<qr≤2m+1

(
2M

α1, . . . , αr

)
w(q1)α1 · · ·w(qr)αr

qα1
1 · · · qαr

r

h2(qα1
1 · · · qαr

r ).

Here we used that h2(qα1
1 · · · qαr

r ) is zero if αi = 1 for some i. Next, we apply the crude bound

h2(qα1
1 · · · qαr

r ) ≤ ∏
1≤i≤r 3αi and |b(pi)| ≤ C for 1 ≤ i ≤ r. It follows that |W | is bounded by

(3C)2M ∑
1≤r≤M

∑
α1+···+αr=2M

αi≥2

(
2M

α1, . . . , αr

) ∑
2m<q1<...<qr≤2m+1

1
qα1

1 · · · qαr
r

We omit the ordering of the primes and drop the condition that they are distinct so that

|W | ≤(3C)2M ∑
1≤r≤M

∑
α1+···+αr=2M

αi≥2

(
2M

α1, . . . , αr

)
1
r!

∏
1≤i≤r

( ∑
2m<qi≤2m+1

1
qαi
i

)

≤(3C)2M ∑
1≤r≤M

∑
α1+···+αr=2M

αi≥2

2mr
2m·2M

(2M)!
α1! · · ·αr!

1
r!

≤(3C)2M (2M)!
2m·2M

∑
1≤r≤M

∑
α1+···+αr=2M

αi≥2

2mr
r! .

Comparing the ratios of consecutive terms of the sequence 2rm/r! we see that the sequence
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is increasing and so its maximum is attained when r = M . Together with the trivial bound

∑
1≤r≤M

∑
α1+···+αr=2M

αi≥2

1 ≤ M · 22M ≤ 23M

we conclude that

|W | ≤ (72C2)M (2M)!
M !

1
2mM ,

which completes the proof of the lemma.

We know that the expectation of a product of independent random variables is equal

to the product of the expectations. The following lemma reminds us of this fact in our

specialized setting.

Lemma 3.2.5. Let u(p), w(p) be any real numbers such that |u(p)| ≤ p1/2 and |w(p)| ≤ C ≤

p, for a constant C ≥ 0. Suppose k is large, fix the real numbers 1 ≤ yi−1 < yi for 1 ≤ i ≤ I

and let ni,m,M be positive integers such that 2(m+1)·2M ∏I
i=1 y

ni
i ≤ k2/104. Moreover, let

M ≤ 2m and 2m+1 ≤ y0 if M ̸= 0, then

∑h

g∈B2k

∏
1≤i≤I

( ∑
yi−1<p≤yi

u(p)λg(p)
p1/2

)ni

·
( ∑

2m<q≤2m+1

w(q)λg(q2)
q

)2M

≪
∏

1≤i≤I

12|ni
· ni!

2ni/2(ni/2)!

( ∑
yi−1<p≤yi

u(p)2

p

)ni
2

· (2M)!
M !

(
72C2

2m

)M
+ k7e−k.

Proof. We want to apply the Petersson Trace Formula to detect the random behaviour of

the coefficients λg(p) and λg(p2). We start by expanding the ni-th and 2M -th powers.

∑h

g∈B2k

∏
1≤i≤I

( ∑
yi−1<p≤yi

u(p)λg(p)
p1/2

)ni

·
( ∑

2m<q≤2m+1

w(q)λg(q2)
q

)2M

=
∑h

g∈B2k

∏
1≤i≤I

( ∑
yi−1<p1,...,pni ≤yi

∏
1≤r≤ni

u(pr)λg(pr)
p

1/2
r

)
·
( ∑

2m<q1,...,q2M ≤2m+1

∏
1≤s≤2M

w(qs)λg(q2
s)

qs

)
.
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Next we expand the product over i and interchange the order of summation. We get

∑
p̃

∑
q̃

C(p̃)D(q̃) ·
∑h

g∈B2k

∏
1≤i≤I

∏
1≤r≤ni

λg(pi,r)
∏

1≤s≤2M
λg(q2

s), (3.9)

where

C(p̃) =
∏

1≤i≤I

( ∏
1≤r≤ni

u(pi,r)
p

1/2
i,r

)
and D(q̃) =

∏
1≤s≤2M

w(qs)
qs

with p̃ = (p1,1, p1,2, . . . p1,n1 , p2,1, . . . p2,n2 , . . . pI,nI
) and q̃ = (q1, . . . q2M) . Each component of

the vectors p̃ and q̃ is prime and they satisfy the conditions

yi−1 < pi,1, . . . , pi,I ≤ yi ∀1 ≤ i ≤ I and 2m < q1, . . . q2M ≤ 2m+1.

By our assumption ∏I
i=1 y

ni
i · 2(m+1)·2M ≤ k2/104 and since 2m+1 ≤ y0 the primes pi,r are

distinct from the primes qs. Hence we can apply the Petersson Trace Formula, namely

Lemma 3.2.2, and get

∑h

g∈B2k

∏
1≤i≤I

∏
1≤r≤ni

λg(pi,r)
∏

1≤s≤2M
λg(q2

s) = h1

( ∏
1≤i≤I

∏
1≤r≤ni

pi,r

)
· h2

( ∏
1≤q≤2s

qs

)
+O(k5e−k).

It follows that expression (3.9) is equal to

∑
p̃

∑
q̃

C(p̃)D(q̃) · h1

( ∏
1≤i≤I

∏
1≤r≤ji

pi,r

)
h2

( ∏
1≤s≤2M

qs

)
+O

(
e−kk5∑

p̃

∑
q̃

|C(p̃)D(q̃)|
)
.

To bound the main term we notice that there is no dependency on the cusp forms g anymore

and so we can analyze the sums over p̃ and q̃ separately. We begin with the summation over

p̃ and use the multiplicativity of h1(n) so that this part of the main term equals in absolute
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value

∣∣∣∣∑
p̃

C(p̃) · h1

( ∏
1≤i≤I

∏
1≤r≤ji

pi,r

)∣∣∣∣ (3.10)

=
∣∣∣∣ ∏

1≤i≤I

( ∑
yi−1<pi,1,...pi,ni

≤yi

u(pi,1) · · ·u(pi,ni
)

√
pi,1 · · · pi,ni

· h1(pi,1 · · · pi,ni
)
)∣∣∣∣

≤
∏

1≤i≤I

12|ni
· ni!

2ni/2(ni/2)!

( ∑
yi−1<p≤yi

u(p)2

p

)ni
2

, (3.11)

by Lemma 3.2.3. Similarly, for the sum over q̃ we get

∣∣∣∣∑
q̃

D(q̃) · h2

( ∏
1≤s≤2M

qs

)∣∣∣∣
=
∣∣∣∣ ∑

2m<q1,...,q2M ≤2m+1

w(q1) · · ·w(q2M)
q1 · · · q2M

· h2(q1 · · · q2M)
∣∣∣∣

≤(2M)!
M !

(
72C2

2m

)M
, (3.12)

where we used Lemma 3.2.4. It remains to control the error term, which is given by

O
(
e−kk5∑

p̃

∑
q̃

|C(p̃)D(q̃)|
)

=O
(
e−kk5 ∏

1≤i≤I

( ∑
yi−1<p≤yi

|u(p)|
p1/2

)ni

·
( ∑

2m<q≤2m+1

|w(q)|
q

)2M)

=O(e−kk7).

In the last line we used |u(p)| ≤ p1/2, |w(p)| ≤ p and the condition∏I
i=1 y

ni
i · 2(m+1)·2M ≤ k2/104. Inserting (3.11) and (3.12) into (3.9) together with the error

term calculation concludes the proof of Lemma 3.2.5.
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3.2.2 Setup

Recall that Lemma 3.2.1 tells us essentially that

L(1/2, f × f × g) ≪ exp
(∑
p≤x

λf (p)2λg(p)
p1/2

)
exp

( ∑
p2≤x

(λf (p)4 − 4λf (p)2 + 4) · λg(p2)
2p

)
(3.13)

· exp
( ∑
p2≤x

−λf (p)4 + 4λf (p)2 − 4
2p

)
.

We want to average the right-hand side of expression (3.13) over g. Since the third

exponential in (3.13) is independent of g, we can delay its treatment until the very end of

our main proof (see Section 3.2.6). On the first two exponentials we will perform a Taylor

expansion and so it is important to control the size of the corresponding Dirichlet

polynomials. This is quite technical, and here it is how we do it precisely:

For k large enough, define the sequence (βi)i≥0 by

β0 := 0; βi := 20i−1

(log log k)2 for all i ≥ 1, (3.14)

and

I = Ik := 1 + max{i : βi ≤ e−10000}.

To simplify notation write

xj := kβj and uf,j(p) := λf (p)2

p1/(βj log k)
log(xj/p)

log xj
≤ λf (p)2. (3.15)

For each 1 ≤ i ≤ j ≤ I define

G(i,j)(g) :=
∑

xi−1<p≤xi

λf (p)2λg(p)
p1/2+1/(βj log k)

log(xj/p)
log xj

=
∑

xi−1<p≤xi

uf,j(p)λg(p)
p1/2 .
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Let us now define the set of cusp forms for which a given Dirichlet polynomial is smaller

than a suitable threshold by

G = Gk := {g ∈ B2k : |G(i,I)(g)| ≤ β
−3/4
i for all i = 1, 2 . . . I}.

Finally, we define the exceptional sets where the given Dirichlet polynomials are large. These

sets build the complement to G and the argument to handle these exceptional sets will be

different. For 0 ≤ j ≤ I − 1, we define

E(j) = Ek(j) :=
{
g ∈ B2k : |G(i,ℓ)(g)| ≤ β

−3/4
i for all 1 ≤ i ≤ j, for all i ≤ ℓ ≤ I,

but |G(j+1,ℓ)(g)| > β
−3/4
j+1 for some ℓ ∈ {j + 1, . . . , I}

}
.

Note that the variance of a Dirichlet polynomial of the form ∑
p≤k

λg(p)
p1/2 is of size log log k.

Hence it is a rare event that such a Dirichlet polynomial is larger than (log log k)3/2, which

is roughly β−3/4
i . This motivates the choice of the parameters above.

The above definitions complete the required setting for the first Dirichlet polynomial on

the right-hand side of expression (3.13). To handle the second Dirichlet polynomial of

expression (3.13), where the summation ranges over the primes squared, it will be

convenient to introduce the following notation:

wf,j(p) = (λf (p)4 − 4λf (p)2 + 4)
2p1/(βj log k)

log(xj/p2)
log xj

≤ 2 (3.16)

and

Pm(g) :=
∑

2m<p≤2m+1

wf,I(p)λg(p2)
p

. (3.17)
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Furthermore, define for m ≥ 0 the set

P(m) := {g ∈ B2k : |Pm(g)| > 2−m/10, but |Pn(g)| ≤ 2−n/10 for all m+1 ≤ n ≤ log k/ log 2}.

(3.18)

In particular P(0) is the set of g ∈ B2k such that Pn(g) < 2−n/10 for all n. The philosophy

behind this definition is similar to the definition of the sets E(j). The variance of Pm(g) is

roughly of size 2−m, hence it should happen rarely that this Dirichlet polynomial is larger

than 2−m/10, say.

The following lemma, whose proof can be found in Section 3.2.5, will be used to show

that Dirichlet polynomials of the form (3.17) are negligible.

Lemma 3.2.6. Let k be large enough and define P(m) as in (3.18). Suppose (log log k)2 <

2m+1 ≤ xI = kβI , then for any 1 ≤ j ≤ I we have

∑h

g∈P(m)
exp

(
2

∑
p≤2m+1

wf,I(p)λg(p2)
p

)
≪ (log k)−68.

The next lemma allows us to replace the exponential series of a Dirichlet polynomial with

a finite series. The truncation error is negligible, provided that the Dirichlet polynomial is

small. In fact, this is the reason why we defined the set of Dirichlet polynomials G.

Lemma 3.2.7. Let S ⊂ B2k be a set of cusp forms and let u(p), w(p) be arbitrary real

numbers. Let m,M be any non-negative integer and fix the real numbers 1 ≤ yi−1 < yi for

1 ≤ i ≤ I. Furthermore, suppose that 2m+1 ≤ y0 if M ̸= 0 and

∣∣∣∣∣ ∑
xj−1<p≤xj

u(p)λg(p)
p1/2

∣∣∣∣∣ ≤ 2β−3/4
j (3.19)
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for any 1 ≤ j ≤ I and g ∈ S. Then we have

∑h

g∈S
exp

( ∑
x0<p≤xj

u(p)λg(p)
p1/2

)
·
( ∑

2m<p≤2m+1

w(p)λg(p2)
p

)2M

≪
∑
ñ

∏
1≤i≤j

1
ni!

∑h

g∈B2k

∏
1≤i≤j

( ∑
xi−1<p≤xi

u(p)λg(p)
p1/2

)ni

·
( ∑

2m<p≤2m+1

w(p)λg(p2)
p

)2M

,

where ñ = (n1, . . . , nj) and each component satisfies ni ≤ 2⌈50β−3/4
i ⌉.

For the proof we refer the reader again to Section 3.2.5.

3.2.3 Main Contribution - Treating G

We are now in the position to establish our main lemmas. The following lemma resembles

the computation E[exp(X)] = exp(µ + σ2/2) for a Gaussian random variable with mean µ

and variance σ2. We can think of our Dirichlet polynomial G(i,I) as a random variable with

mean µ = 0 and variance σ2 = ∑
p
λf (p)4

p
. We do not know how to integrate exponentials, so

we write them as finite sum using Taylor’s theorem (see Lemma 3.2.7). Since our Dirichlet

polynomials do not take large values, we only need a few terms in the Talyor expansion,

so that the resulting Dirichlet polynomials have manageable length. Having done this, we

can change the order of summation, which reminds us of the linearity of expectations in

a probabilistic setting. The lemmas in the previous sections then allow us to deduce the

desired random behaviour.

Lemma 3.2.8. We follow the notation from Section 3.2.2. Let u(p) be any real numbers

such that |u(p)| ≤ p1/2 and let S ⊂ B2k such that

∣∣∣∣∣ ∑
xj−1<p≤xj

u(p)λg(p)
p1/2

∣∣∣∣∣ ≤ 2β−3/4
j (3.20)
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for any 1 ≤ j ≤ I and g ∈ S. Then we have for k large enough

∑h

g∈S
exp

( ∑
p≤xI

u(p)λg(p)
p1/2

)
≪ exp

(
1
2
∑
p≤xI

u(p)2

p

)
.

Proof. We abbreviate

U =
∑h

g∈S
exp

( ∑
p≤xI

u(p)λg(p)
p1/2

)
.

Using our assumption (3.20) we can directly apply Lemma 3.2.7 with yi = xi = kβj , M = 0

and see that

U ≪
∑
ñ

∏
1≤i≤I

1
ni!

∑h

g∈B2k

∏
1≤i≤j

( ∑
xi−1<p≤xi

u(p)λg(p)
p1/2

)ni

(3.21)

with ni ≤ 2⌈50β−3/4
i ⌉.

Note that

∏
1≤i≤I

xni
i =

∏
1≤i≤I

kβini ≤
∏

1≤i≤I
k200β1/4

i ≤ k400β1/4
I ≤ k2/104 (3.22)

for k large enough. Here we used that β1/4
i form a geometric progression of ratio 201/4 ≥ 2.

We can now apply Lemma 3.2.5 to the right-hand side of (3.21) and see that U is bounded

by ∑
ñ

∏
1≤i≤I

12|ni

2ni/2(ni/2)!

( ∑
xi−1<p≤xi

u(p)2

p

)ni/2

+O

(
k7e−k∑

ñ

∏
1≤i≤I

1
ni!

)
.

The error term is negligible since

k7e−k∑
ñ

∏
1≤i≤I

1
n! ≤ k7e−k ∏

1≤i≤I

∑
ni≤200β−3/4

i

1
n! ≤ k7e−keI ≤ k8e−k. (3.23)

Writing ∑
ñ

∏
1≤i≤I

12|ni

2ni/2(ni/2)!

( ∑
xi−1<p≤xi

u(p)2

p

)ni/2

= exp
(

1
2
∑
p≤xI

u(p)2

p

)
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completes the proof of the lemma.

Now that we have considered the case for generic coefficients u(p) let us focus on our

Dirichlet polynomials of interest Gi,I , together with the Dirichlet polynomial that arises from

summing over primes squared. The proof idea for the following lemma remains the same as

for Lemma 3.2.8, albeit the proof being a bit more technical.

Lemma 3.2.9. Let k be large enough and follow the notation from Section 3.2.2, then

∑h

g∈G
exp

( ∑
p≤xI

uf,I(p)λg(p)
p1/2

)
exp

( ∑
p2≤xI

wf,I(p)λg(p2)
p

)
≪ exp

(
1
2
∑
p≤xI

uf,I(p)2

p

)
. (3.24)

Proof. Recall the definition of the set P(m) in (3.18). The left-hand side of (3.24) is bounded

by ∑
0≤m≤log k

∑h

g∈G∩P(m)
exp

( ∑
p≤xI

uf,I(p)λg(p)
p1/2

)
exp

( ∑
p2≤xI

wf,I(p)λg(p2)
2p

)
.

If g ∈ P(m) then clearly ∑
2m+1<p≤√

xI

wf,I(p)λg(p2)
p

= O(1).

In particular, if g ∈ P(0) then ∑
p2≤xI

wf,I(p)λg(p2)
p

= O(1) and Lemma 3.2.9 follows directly

from Lemma 3.2.8 after setting u(p) = uf,I(p). It thus suffices to bound the quantity

∑
1≤m≤log k

∑h

g∈G∩P(m)
exp

( ∑
p≤xI

uf,I(p)λg(p)
p1/2

)
exp

( ∑
p≤2m+1

wf,I(p)λg(p2)
2p

)
.

Splitting into the sets P(m) enables us to show that the contribution from the primes squared

part is negligible. We start by looking at the case when m ≤ (2/ log 2) log log log k. Consider

the following quantity for g ∈ P(m), which is a sum of the small primes of our Dirichlet

polynomial over primes together with the primes squared Dirichlet polynomial:

∣∣∣∣∣ ∑
p≤2m+1

uf,I(p)λg(p)
p1/2 +

∑
p≤2m+1

wf,I(p)λg(p2)
2p

∣∣∣∣∣. (3.25)
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We use the triangle inequality and the Deligne bound for the Fourier coefficients, i.e.

|uf,I(p)λg(p)| ≤ 8 and |wf,I(p)λg(p2)| ≤ 6, to see that (3.25) is bounded by

∑
p≤2m+1

8
√
p

+
∑

p≤2m+1

6
p

≤ 2m/2 +O(1).

This computation is useful so that Pm(g) and the prime Dirichlet polynomial are running

over disjoint primes, as we have an application of Lemma 3.2.5 in mind. We have

T (m) :=
∑h

g∈G∩P(m)
exp

( ∑
p≤xI

uf,I(p)λg(p)
p1/2

)
exp

 ∑
p≤2m+1

wf,I(p)λg(p2)
2p


≪e2m/2 ∑h

g∈G∩P(m)
exp

( ∑
2m+1<p≤xI

uf,I(p)λg(p)
p1/2

)

≪e2m/2 ∑
g∈G

(
2m/10Pm(g)

)2M
exp

( ∑
2m+1<p≤xI

uf,I(p)λg(p)
p1/2

)
, (3.26)

where M is any non-negative integer. We choose M = ⌊23m/4⌋ and this choice will become

apparent in a calculation below.

Now we want to replace the exponential with a finite series. Since g ∈ G and 2m ≤

(log log k)2 we have that

∣∣∣∣∣ ∑
2m+1<p≤xI

uf,I(p)λg(p)
p1/2

∣∣∣∣∣ ≤ |G(i,I)(g)| +
∣∣∣∣∣ ∑
p≤2m+1

uf,I(p)λg(p)
p1/2

∣∣∣∣∣ ≤ 2β−3/4
i

and the conditions of Lemma 3.2.7 are satisfied with yi := max{2m+1, xi}. Note that since

m ≤ (2/ log 2) log log log k, we have that yi = xi for 1 ≤ i ≤ I and y0 = 2m+1. An application

of Lemma 3.2.7 to (3.26) shows that T (m) is bounded by

e2m/22mM/5∑
ñ

∏
1≤i≤I

1
ni!

∑h

g∈B2k

{ ∏
1≤i≤I

( ∑
xi−1<p<xi

uf,I(p)λg(p)
p1/2

)ni
}

·
( ∑

2m<p≤2m+1

wf,I(p)λg(p2)
p

)2M

.

(3.27)
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The next step is to use the random behaviour of the coefficients λg(p) and λg(p2) when

averaged over g ∈ B2k as we did in Lemma 3.2.5. Note that 2(m+1)·M ≪ (log log k)2 log log k =

ko(1) and so we have, as already seen for inequality (3.22),

2(m+1)M ∏
1≤i≤I

xni
i ≤ ko(1) · k400β1/4

I ≤ k2/104

for k large enough. We can therefore apply Lemma 3.2.5 with u(p) = uf,I(p) and w(p) =

wf,I(p) ≤ 4 so that T (m) is bounded up to an error term by

e2m/22mM/5∑
ñ

∏
1≤i≤I

12|ni

2ni/2(ni/2)!

( ∑
xi−1<p≤xi

uf,I(p)2

p

)ni/2

· (2M)!
M !

(
288
2m

)M

with ñ = (n1, . . . , nI) and each component satisfies ni ≤ 2⌈50β−3/4
i ⌉. The mentioned error

term is bounded as in inequality (3.23) by

k7e−k · e2m/22mM/5∑
ñ

∏
1≤i≤I

1
ni!

≪ k9e−k (3.28)

and is therefore negligible. Rearranging the Dirichlet polynomial over primes into an

exponential and applying Stirling’s formula, giving (2M)!/M ! ≪
(

22MM
e

)M
, we see that

T (m) ≪ e2m/2 exp
(

1
2

∑
2m+1≤p≤xI

uf,I(p)2

p

)
·
(

2m/5 ·M · 1152 · 2−m

e

)M
. (3.29)

By our choice of M = ⌊23m/4⌋ we have

(
2m/5 · 23m/4 · 1152 · 2−m

e

)⌊23m/4⌋

≪ e−23m/4

and so

T (m) ≪ e2m/2−23m/4 · exp
(

1
2
∑
p≤xI

uf,I(p)2

p

)
.
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Summing T (m) over m ≤ (2/ log 2) log log log k concludes the proof of the lemma in the

given range of m.

In the remaining case, when (log log k)2 < 2m+1 ≤ log k an application of the Cauchy–

Schwarz inequality will be enough to conclude the lemma. We have

T (m) =
∑h

g∈G∩P(m)
exp

( ∑
p≤xI

uf,I(p)λg(p)
p1/2

)
exp

( ∑
p≤2m+1

wf,I(p)λg(p2)
2p

)

≤
(∑h

g∈G
exp

(
2
∑
p≤xI

uf,I(p)λg(p)
p1/2

))1/2

·
( ∑h

g∈P(m)
exp

(
2

∑
p≤2m+1

wf,I(p)λg(p2)
p

))1/2

.

(3.30)

Using Lemma 3.2.8, the first factor of (3.30) is bounded by

exp
( ∑
p≤xI

λf (p)4

p

)
≪ (log k)24

.

For the second part of (3.30) we apply Lemma 3.2.6. Combining these two bounds we see

that T (m) ≪ (log k)−18 for m such that (log log k)2 < 2m+1 ≤ log k. Summing over m we

have ∑
(log log k)2<2m+1≤log k

T (m) ≪ (log k)−17,

which is clearly negligible and so the claim of Lemma 3.2.9 follows.

3.2.4 New Exceptional Set Contribution - Treating E(j)

In this section we treat the exceptional sets, i.e. those cusp forms where some (possibly all)

parts of the Dirichlet polynomial are large. In this case we cannot apply our techniques from

the last section. Although these large values cause some trouble, they are very rare. With

a Markov inequality type argument, we can indeed show that the measure of these ‘bad’
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sets is so small, that the entire contribution is negligible. Unsurprisingly, the argument will

remind us of the treatment of the primes squared part in Lemma 3.2.9.

Recall that we are now interested in the set of cusp forms, where the corresponding

Dirichlet polynomial might get large. For 0 ≤ j ≤ I − 1, we defined

E(j) = Ek(j) :=
{
g ∈ B2k : |G(i,ℓ)(g)| ≤ β

−3/4
i for all 1 ≤ i ≤ j, for all i ≤ ℓ ≤ I,

but |G(j+1,ℓ)(g)| > β
−3/4
j+1 for some ℓ ∈ {j + 1, . . . , I}

}
.

Lemma 3.2.10. For k large enough and following the notation in Section 3.2.2, we have

meas{E(0)} =
∑h

g∈E(0)
1 ≪ e−(log log k)2/C

with C = 25 · 10/e. Moreover, for any 1 ≤ j ≤ I − 1 we have that

∑h

g∈E(j)
exp

( ∑
p≤xj

uf,j(p)λg(p)
p1/2

)
exp

( ∑
p2≤xj

wf,j(p)λg(p2)
p

)
≪ exp

(
1
2
∑
p≤xj

uf,j(p)2

p

)
e(4Cβj+1)−1 log βj+1 .

Proof. We treat the primes squared part as in the proof of Lemma 3.2.9. By the exact same

reduction as in Lemma 3.2.9 it suffices to control

S(m) :=
∑h

g∈E(j)∩P(m)
exp

( ∑
p≤xj

uf,j(p)λg(p)
p1/2

)
exp

( ∑
p2≤xj

wf,j(p)λg(p2)
p

)

≪e2m/2 ∑h

g∈E(j)
exp

( ∑
2m+1<p≤xj

uf,j(p)λg(p)
p1/2

)
· (2m/10Pm(g))2M (3.31)

for m ≤ (2/ log 2) log log log k. By the definition of the set E(j) and Markov’s inequality
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S(m) is bounded by

e2m/2
I∑

ℓ=j+1

∑h

g∈B2k:|G(i,j)(g)|≤β−3/4
i ∀1≤i≤j,

|Gj+1,ℓ(g)|>β−3/4
j+1

exp
( ∑

2m+1≤p≤xj

uf,j(p)λg(p)
p1/2

)
· (2m/10Pm(g))2M (3.32)

≤e2m/2
I∑

ℓ=j+1

∑h

g∈B2k:|G(i,j)(g)|≤β−3/4
i

∀1≤i≤j

exp
( ∑

2m+1≤p≤xj

uf,j(p)λg(p)
p1/2

)(
β

3/4
j+1G(j+1,ℓ)(g)

)2L (
2m/10Pm(g)

)2M
,

(3.33)

where L is any non-negative integer, which we choose to be L = ⌊(Cβj+1)−1⌋, with C =

25 · 10/e. Now we are again in the position to truncate the exponential and proceed as in

Lemma 3.2.9, more precisely by Lemma 3.2.7 we get that S(m) is bounded by

e2m/22mM/5β
3L/2
j+1

I∑
ℓ=j+1

∑
ñ

∏
1≤i≤j

1
ni!

∑h

g∈B2k

∏
1≤i≤j

( ∑
xi−1<p≤xi

uf,j(p)λg(p)
p1/2

)
·G2L

(j+1,ℓ) · Pm(g)2M

with ñ = (n1, . . . nj), and each component satisfies ni ≤ 2⌈50β−3/4
i ⌉. Again we use Lemma

3.2.5 to capture the random behaviour of the coefficients λg(p) and λg(p)2. This lemma is

applicable since

2(m+1)2M · x2L
j+1

∏
1≤i≤j

xni
i ≤ ko(1) · k2/C ∏

1≤i≤I
k100βi

1/4 ≤ k2/104.

Then the main term of S(m) is bounded by

e2m/22mM/5β
3L/2
j+1

I∑
ℓ=j+1

∑
ñ

{ ∏
1≤i≤j

12|ni

2ni/2(ni/2)!

( ∑
xi−1<p≤xi

uf,j(p)2

p

)ni/2}
·

· (2L)!
L!

( ∑
xj<p≤xj+1

uf,j+1(p)2

p

)L
· (2M)!
M !

(
288
2m

)M
.

As in Lemma 3.2.9 we write this in terms of an exponential and we use the bound
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uf,j+1(p) ≤ λf (p)2, so that S(m) is controlled by

e2m/22mM/5β
3L/2
j+1 (I − j) exp

(
1
2
∑
p≤xj

uf,j(p)4

p

)
· (2L)!

2LL!

( ∑
xj<p≤xj+1

λf (p)4

p

)L
· (2M)!
M !

(288
2m

)M
.

The error term arising from Lemma 3.2.5 is again negligible by the same computation as in

(4.2). Together with a Stirling estimate this computation yields

S(m) ≪ e2m/2(I−j) exp
(

1
2
∑
p≤xj

uf,j(p)2

p

)
·
(
β

3/2
j+1 · 2L
e

∑
xj<p≤xj+1

λf (p)4

p

)L
·
(

2m/5 ·M · 1152 · 2−m

e

)M
.

(3.34)

In the case 1 ≤ j ≤ I − 1 we have by the definition of βj and I, that

I − j = log(βI/βj)
log 20 ≤ log(1/βj)

log 20

and

∑
kβj<p≤kβj+1

λf (p)4

p
≤ 24(log βj+1 − log βj + o(1)) = 24(log 20 + o(1)) ≤ 24 · 10.

Consequently,

(I − j) ·

β3/2
j+1 · 2L
e

∑
kβj<p≤kβj+1

λf (p)4

p


L

≤ log(1/βj)
log 20 (β1/2

j+1)1/(C·βj+1) (3.35)

The right-hand side of inequality (3.35) is bounded by

e(4C·βj+1)−1 log βj+1 ,

which is small since βj+1 ≤ βI ≤ 20e−105 . Summing over m as we did in Lemma 3.2.9 shows
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that (3.35) is bounded by

exp
(

1
2
∑
p≤xj

uf,j(p)2

p

)
e(4Cβj+1)−1 log βj+1 .

The remaining case when m ≥ (2/ log 2) log log log k is negligible compared to the main term.

As in the proof of Lemma 3.2.9 this can be seen by an application of the Cauchy–Schwarz

inequality and Lemma 3.2.6. This finishes the proof of the lemma for the cases 1 ≤ j ≤ I−1.

It remains to show the first assertion of the lemma, namely

∑h

g∈E(0)
1 ≪ e− log log k2/C .

Note that from the definition of I we see that I ≤ log log log k. Moreover,

β0 = 0, β1 = 1
(log log k)2 ,

∑
p≤k1/(log log k)2

λf (p)4

p
≤ 24 log log k.

Following the argument from before for 1 ≤ j ≤ I without the exponential factors we see

that

∑h

g∈E(0)
1 ≪ I ·

(
β

3/2
1 · 2L
e

∑
p≤kβ1

λf (p)4

p

)

≪ log log log k ·
(
β

3/2
1 · 2L
e

· 24 log log k
)L

≪ e−(log log k)2/C

by our choice of L and C. This finishes the proof of the entire lemma.
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3.2.5 Technical Lemmas

In this section we quickly prove certain technical statements that were used in the section

before. We also gather some additional technical lemmas that are needed in the final proof

of Theorem 4.12.

Proof of Lemma 3.2.6. Since |λg(p2)| ≤ 3 and |wf,I(p)|2 ≤ 2 we have that

2
∑

p≤2m+1

bf,I(p)λg(p2)
p

≪ 12 log log 2m+1.

An application of Markov’s inequality yields

B(m) :=
∑h

g∈P(m)
exp

(
2

∑
p≤2m+1

wf,I(p)λg(p2)
p

)
≪ (log 2m+1)12 ∑h

g∈P(m)
1

≤ (log 2m+1)12∑h

g∈B2k

(2m/10Pm(g))2M (3.36)

for any non-negative integer M . We apply Lemma 3.2.5 (with ni = 0 for 1 ≤ i ≤ I) to

evaluate the above moment and get

B(m) ≪ (log 2m+1)12 · (2M)!
M !

(
72C2 · 2m/5

2m

)M
, (3.37)

provided that 2(m+1)2M ≤ k2/104. We first investigate the case when log k ≤ 2m+1 ≤ √
xI .

In this range we have

2(m+1)2M ≤ kβIM ≤ k20e−10000M

and so M = 100 is certainly admissible. By our choice of M and taking into account the

size of 2m we see that

B(m) ≪ (log k)122−400m/5 ≪ (log k)12 · (log k)−80 = (log k)−68.
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Next we consider the case (log log k)2 ≤ 2m+1 ≤ log k. Since the primes p ≤ 2m+1

are smaller in size we can afford to take higher moments. We pick M = ⌊23m/4⌋ so that

2(m+1)2M ≤ (log k)(log k)3/4 ≪ ko(1) ≤ k2/104. Together with the Stirling bound (2M)!/M ! ≪

(4M/e)M we see that B(m) is bounded by

(log 2m+1)12
(
M · 4608 · 2m/5

e · 2m

)M
≪ (log log k)15e−23m/4

≪ (log log k)12 exp(−(log log k)3/2)

≪ (log k)−68.

We used that 2−m/20 · 4608 ≤ 1, if k is sufficiently large and therefore also m is sufficiently

large. This completes the proof of the lemma.

The following lemma, due to Radziwi l l and Soundararajan [RS15, Lemma 1], will be

helpful in the process of replacing the exponential series with a finite sum.

Lemma 3.2.11. Let ℓ be a non-negative even integer, and x a real number. Define

Eℓ(x) =
ℓ∑

j=0

xj

j! .

Then Eℓ(x) is positive and for any x ≤ 0 we have Eℓ(x) ≥ ex. Moreover, if x ≤ ℓ/e2, then

we have

exp(x) ≤ exp
(
O(e−ℓ)

)
Eℓ(x).

Proof of Lemma 3.2.7. Our goal is to truncate the exponential series exp(x) and replace it

with a finite series up to ℓ. During this process we incur a negligible error term, provided

that x is smaller than ℓ ( see for example Lemma 3.2.11). This is the case for our Dirichlet
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polynomials by assumption (3.19). With ℓ = 2⌈50β−3/4
i ⌉ we have

∑h

g∈S
exp

( ∑
x0<p≤xj

u(p)λg(p)
p1/2

)
·
( ∑

2m<p≤2m+1

w(p)λg(p2)
p

)2M

=
∑h

g∈S

∏
1≤i≤j

exp
( ∑
xi−1<p≤xi

u(p)λg(p)
p1/2

)
·
( ∑

2m<p≤2m+1

w(p)λg(p2)
p

)2M

≤
∑h

g∈S

∏
1≤i≤j

exp
(
O(e−100β−3/4

i )
) ∑

0≤n≤ℓ

1
n!

( ∑
xi−1<p≤xi

u(p)λg(p)
p1/2

)n( ∑
2m<p≤2m+1

w(p)λg(p2)
p

)2M

≪
∑h

g∈S

∏
1≤i≤j

∑
0≤n≤ℓ

1
n!

( ∑
xi−1<p≤xi

u(p)λg(p)
p1/2

)n( ∑
2m<p≤2m+1

w(p)λg(p2)
p

)2M

(3.38)

In the third equality we used assumption (3.19) and Lemma 3.2.11. Note that ∑0≤n≤ℓ
xn

n! ≥ 0

for every x, as ℓ is even. Using this positivity, we replace the sum over the restricted set∑h
g∈S with the full sum ∑h

g∈B2k
. Additionally, we expand the product over i and so (3.38) is

equal to

∑
ñ

∏
1≤i≤j

1
ni!

∑h

g∈B2k

( ∑
xi−1<p≤xi

u(p)λg(p)
p1/2

)ni
( ∑

2m<p≤2m+1

w(p)λg(p2)
p

)2M

with ñ = (n1, . . . , nI) where each component satisfies ni ≤ ℓ. This concludes the proof.

For technical reason in the proof of Theorem 4.12 we will need the following lemma

Lemma 3.2.12. For any 1 ≤ i ≤ I and write xi = kβi, then we have

exp
(

1
2
∑
p≤xi

λf (p)4

p1+2/ log xi

log2(xi/p)
log2 xi

)
· exp

(
− 1

2
∑

p≤√
xi

λf (p)4

p1+2/ log xi

log(xi/p2)
log xi

)
= O(1)

Proof. At first we investigate the primes up to √
xi. We want to estimate

exp
(

1
2
∑

p≤√
xi

λf (p)4

p1+2/ log xi

log2(xi/p)
log2 xi

− 1
2
∑

p≤√
xi

λf (p)4

p1+2/ log xi

log(xi/p2)
log xi

)
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After expanding the smoothing of log(xi/p) for both sums, we see that the only contribution

that is left comes from

exp
(

1
2
∑

p≤√
xi

λf (p)4

p1+2/ log xi

(log p)2

(log xi)2

)
.

We bound λf (p)4

p2/ log xi

log p
log xi

trivially by a constant (here we use the Deligne bound for the Fourier

coefficients) and see that

exp
(

1
2
∑

p≤√
xi

log p
p

1
log xi

)
= O(1).

It remains to show that

exp
(

1
2

∑
√
xi<p≤xi

λf (p)4

p1+2/ log xi

log2(xi/p)
log2 xi

)
(3.39)

is bounded. Putting absolute values, and using again the Deligne bound, expression (3.39)

is controlled by

exp
( ∑

√
xi<p≤xi

23

p

)
≪ exp (log log xi − log log √

xi) = O(1).

Hence, the lemma follows.

Lemma 3.2.13. Assume the Riemann Hypothesis for L(s, sym2 f). For any 1 ≤ i ≤ I we

have
1

L(1, sym2 f)2 · exp

 ∑
p≤

√
kβi

2λf (p)2 − 2
p

 = O(1)

Proof. This is a small modification of Lemma 2 in [HS10]. Instead of the zero free region we

use the Riemann Hypothesis for L(s, sym2 f) to bound the contribution of the zeros.

The next lemma is a crude bound for the second moment of our degree eight L-function.

The ideas are from [Sou09] and adapted to our context.
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Lemma 3.2.14. Let f and g be Hecke cusp forms of even weight k and 2k respectively for

the full modular group. Assuming the Riemann Hypothesis for L(1/2, f × f × g)

∑h

g∈B2k

L(1/2, f × f × g)2 ≪ (log k)1030
.

Proof. Define S(g, V ) := {g ∈ B2k : logL(1/2, f × f × g) ≥ V }. Notice that

∑h

g∈B2k

L(1/2, f × f × g)2 =
∫ ∞

−∞
e2V meas(S(g, V ))dV.

It suffices to investigate ∫ ∞

1030 log log k
e2V meas(S(g, V ))dV (3.40)

as otherwise we trivially have the desired result.

From Lemma 3.2.1 we have for any x ≥ 2 that

logL(1/2, f × f × g) ≤
∑
p≤x

λf (p)2λg(p)
p

1
2 + 1

log x

log(x/p)
log x

+
∑
p≤

√
x

(λf (p)4 − 4λf (p)2 + 4)(λg(p2) − 1)
2p1+ 2

log x

log(x/p2)
log x + log k6

log x +O(1)

≤
∑
p≤x

λf (p)2λg(p)
p

1
2 + 1

log x

log(x/p)
log x + 6 log log x+ 6 log k

log x +O(1).

Here we used that |λf (p)| ≤ 2 and |λg(p)| ≤ 3. If we pick x = k16/V , and notice that

6 log log k ≤ (6/1030)V , then

logL(1/2, f × f × g) ≤
∑
p≤x

λf (p)2λg(p)
p

1
2 + 1

log x

log(x/p)
log x + 3V

4 +O(1).
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Hence if g ∈ S(g, V ) then ∑
p≤x

λf (p)2λg(p)
p

1
2 + 1

log x

log(x/p)
log x ≥ V

4 .

By Markov’s inequality, we have for any non-negative integer n

meas(S(V, g)) ≤ 42n

V 2n

∑h

g∈B2k

(∑
p≤x

λf (p)2λg(p)
p

1
2 + 1

log x

log(x/p)
log x

)2n

.

By Lemma 3.2.5 this is bounded by

42n

V 2n · (2n)!
22nn!

(∑
p≤x

λf (p)4

p

)n
(3.41)

provided that x2n ≤ k2/104. From our choice of x we see that n = ⌊V/20⌋ is admissible. By

Stirling and the Deligne bound quantity (3.41) is controlled by

(
28n log log k

V 2 · e

)n
.

This in turn is bounded by (
28

20 · 1030e

)n
≪ e−3V

by our choice of n and the lower bound V ≥ 1030 log log k. We see that the contribution of

the integral in (3.40) is negligible and consequently the result follows.

3.2.6 Proof of Theorem 4.12

Proof of Theorem 4.12. Note that

{g ∈ B2k} = G ∪
I−1⋃
j=0

E(j),
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hence our goal is to show that

∑h

g∈G

L(1/2, f × f × g)
L(1, sym2 f)2 +

I−1∑
j=0

∑h

g∈E(j)

L(1/2, f × f × g)
L(1, sym2 f)2 = O(1). (3.42)

At first we approximate the L-functions with Dirichlet polynomials. Lemma 3.2.1 gives for

x = xI = kβI

logL(1/2, f × f × g) ≤
∑
p≤xI

λf (p)2λg(p)
p1/2+1/ log xI

log(xI/p)
log xI

+
∑

p≤√
xI

(λf (p)4 − 4λf (p)2 + 4)(λg(p2) − 1)
2p1+2/ log xI

log(xI/p2)
log xI

+ 6
βI

+O(1).

Consequently, the first sum in (3.42) is bounded by

e6/βI
∑h

g∈G
exp

( ∑
p≤xI

λf (p)2λg(p)
p1/2+1/ log xI

log(xI/p)
log xI

)
· (3.43)

· exp
( ∑
p≤√

xI

(λf (p)4 − 4λf (p)2 + 4)λg(p2)
2p1+2/ log xI

log(xI/p2)
log xI

)
·

· exp
(

−
∑

p≤√
xI

(λf (p)4 − 4λf (p)2 + 4)
2p1+2/ log xI

log(xI/p2)
log xI

)
· 1
L(1, sym2 f)2 .

By Lemma 3.2.9 the contribution of the first two exponential sums is bounded by

exp
(

1
2
∑
p≤xI

λf (p)4

p1+2 log xI

log2(xI/p)
(log xI)2

)
.

The last exponential factor of (3.43) can be written as

exp
(

− 1
2
∑

p≤√
xI

λf (p)4

p1+2/ log xI

log(xI/p2)
log xI

)
· exp

( ∑
p≤√

xI

(2λf (p) − 2)
p1+2/ log xI

log(xI/p2)
log xI

)
.
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Therefore (3.43) can be bounded by

e6/βI exp
1

2
∑
p≤xI

λf (p)4

p1+2 log xI

log2(xI/p)
(log xI)2

 · exp
(

− 1
2
∑

p≤√
xI

λf (p)4

p1+2/ log xI

log(xI/p2)
log xI

)

· exp
( ∑
p≤√

xI

(2λf (p) − 2)
p1+2/ log xI

log(xI/p2)
log xI

)
· 1
L(1, sym2 f)2 .

Since βI is bounded, Lemma 3.2.12 and Lemma 3.2.13 show that (3.43) is of size O(1).

We now treat the exceptional sets from the second term in (3.42). We begin, as before, by

approximating the L-function with Dirichlet polynomials. Lemma 3.2.1 with x = xj = kβj

shows that ∑h

g∈E(j)

L(1/2, f × f × g)
L(1, sym2 f)2

is bounded by

e6/βj ·
∑h

g∈E(j)
exp

( ∑
p≤xj

λf (p)2λg(p)
p1/2+1/ log xj

log(xj/p)
log xj

)
· (3.44)

· exp
( ∑
p≤√

xj

(λf (p)4 − 4λf (p)2 + 4)λg(p2)
2p1+2/ log xj

log(xj/p2)
log xj

)
·

· exp
(

−
∑

p≤√
xj

λf (p)4 − 4λf (p)2 + 4
2p1+2/ log xj

log(xj/p2)
log xj

)
· 1
L(1, sym2 f)2

for 1 ≤ j ≤ I − 1. By Lemma 3.2.10 the sum of the first two exponentials in (3.44) is

bounded by

exp
1

2
∑
p≤xj

λf (p)4

p1+2/ log xj

log2(xj/p)
(log xj)2

 e(4Cβj+1)−1 log βj+1 .

with C = 25 · 10/e. Similarly as before, we use Lemma 3.2.12 and Lemma 3.2.13 to show

that expression (3.44) is bounded by

e6/βj · e(4Cβj+1)−1 log βj+1 = e6/βj+log(βj+1)/(80Cβj).
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Moreover, since βj+1 ≤ βI ≤ 20e−105 we have

e6/βj+log(βj+1)/(80Cβj) ≤ e6/βj−10/βj = e−4/βj .

The sum over these values from 1 ≤ j ≤ I − 1 remains bounded and so we conclude the

proof of the theorem for these exceptional sets.

The only case that is left is when j = 0. In that scenario, we win because the measure of

E(0) is tiny. By Cauchy–Schwarz we have

∑h

g∈E(0)

L(1/2, f × f × g)
L(1, sym2 f)2 ≤

( ∑h

g∈E(0)
1
)1/2

·
( ∑h

g∈B2k

L(1/2, f × f × g)2

L(1, sym2 f)4

)1/2

. (3.45)

Note that L(1, sym2 f)−1 ≪ log k (see [HL94] and [GHL94]). Lemma 3.2.10 and Lemma

3.2.14 show that the right hand side of (3.45) is bounded by

e−(log log k)2/(2C) · (log k)(1030+4)/2.

For k large enough this is clearly bounded and therefore the theorem follows.
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Chapter 4

Quantum Variance for Holomorphic

Hecke Cusp Forms on the Vertical

Geodesic

In the subsequent chapter we will discuss the proof of Theorem 2.3.2 that we obtained in our

work [Zen21a]. Again, the introductory section 4.1 follows extremely closely our exposition

in [Zen21a]. Section 4.2 is taken, up to minor notational changes and the correction of

typographical errors, verbatim from [Zen21a].

4.1 High Level Sketch

The proof of Theorem 2.3.2 involves many technical details and so we begin by sketching

the main ideas of the proof. First, we relate the quantum variance problem to a shifted

convolution problem

M(ψ) ≈
∑

K<k≤2K

∑
f∈Bk

∣∣∣∣1k ∑
0<|ℓ|≤k1/2+ε

∞∑
n=1

λf (n)λf (n+ ℓ)ψ
(
k

n

)∣∣∣∣2, (4.1)
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which follows quickly after using the Fourier expansion of f(iy). If we show that M(ψ) =

o(K2) then we could deduce a Quantum Ergodicity result for the vertical geodesic, i.e.

equidistribution on average. We could try to bound M(ψ) by detecting cancellation over

the summation over n and forgoing any cancellation over the shifts ℓ, i.e.

M(ψ) ≪
∑

K<k≤2K

∑
f∈Bk

∣∣∣∣1k ∑
0<|ℓ|≤k1/2+ε

∣∣∣∣ ∞∑
n=1

λf (n)λf (n+ ℓ)ψ
(
k

n

)∣∣∣∣∣∣∣∣2.
Obtaining square root cancellation over the summation of n, which is of length k, would

then lead to the bound M(ψ) ≪ K2+ε. Consequently, this crude estimate is not sufficient to

obtain equidistribution on the vertical geodesic; we need to detect further cancellation over

the shifts ℓ. It is also natural to expect square root cancellation over the shifts ℓ. In that

case we would have M(ψ) ≈ K3/2. We prove an asymptotic formula for M(ψ) confirming

this heuristic.

To obtain an asymptotic formula for our averaged shifted convolution problem M(ψ),

we open the square in (4.1). We then apply the Petersson Trace formula, which detects

orthogonality relations between the Hecke eigenvalues. We are left with a diagonal

contribution D that is easy to evaluate and an off-diagonal expression OD, involving

Kloosterman sums. The diagonal term is easily seen to be of size K3/2. The off-diagonal

term OD is roughly given by

1
K

∑
0<|ℓ1|,|ℓ2|≤K1/2+ε

∑
K<n1,n2≤2K

∑
c≪Kε

S(n1(n1 + ℓ1), n2(n2 + ℓ2); c)√
c

ec(2
√
n1(n1 + ℓ1)n2(n2 + ℓ2)),

where S(n,m; c) denotes the classical Kloosterman sum and ec(n) = e2πin/c. Putting

absolute values everywhere and using the Weil bound for Kloosterman sums we would get

OD = O(K2+ε). To improve upon this bound, and consequently breaking the

equidistribution barrier, we need to exploit further cancellation over the shifts ℓ1, ℓ2.

We notice that the summation range over the variable c in OD is very short. To reduce
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the complexity of our exposition consider therefore the special case when c = 1 (from a

conceptional point of view not much is lost by this reduction). Then

OD ≈ 1
K

∑
0<|ℓ1|,|ℓ2|≤K1/2+ε

∑
K<n1,n2≤2K

e1(2
√
n1(n1 + ℓ1)n2(n2 + ℓ2)).

When the shifts ℓ1, ℓ2 are of size
√
K, which is the critical range, the exponential is oscillating

rapidly and we expect further cancellation. Indeed, subtracting the integer part of the phase

function and using a Taylor expansion we get

f(n1, n2, ℓ1, ℓ2) : = 2
√
n1(n1 + ℓ1)n2(n2 + ℓ2) − 2n1n2 − n1ℓ2 − n2ℓ1

= ℓ1ℓ2

2 − 1
4
ℓ2

1n2

n1
− 1

4
ℓ2

2n1

n2
+ . . .

Since

∂

∂n1
f(n1, n2, ℓ1, ℓ2) ≈ ℓ2

1n2

2n2
1

− ℓ2
2

4n2
≍ 1 and ∂2

∂n2
1
f(n1, n2, ℓ1, ℓ2) ≈ −3ℓ2

1n2

2n3
1

≍ 1
K
,

we expect to detect square root cancellation when summing over the variable n1, by a classical

Van der Corput estimate (see [IK04, Corollary 8.12]). We highlight here that the “stationary

point” of the phase function f(n1, n2, ℓ1, ℓ2) arises on the diagonal, i.e. when n1 = n2 and

ℓ1 = ℓ2. A precise version of this argument will show that OD = O(K3/2+ε), as desired.

To compute an exact asymptotic formula for our quantum variance we keep track of the

variable c. After an application of the Poisson summation formula and a stationary phase

argument, which captures the square-root cancellation mentioned above, we need to evaluate

T (c) :=
∑

a1 (mod c)
a2 (mod c)

∑
b1 (mod c)
b2 (mod c)

S(a1(a1 + b1), a2(a2 + b2); c)ec(2a1a2 + a1b2 + a2b1).

A quick computation shows that T (c) = c3φ(c), where φ(c) denotes Euler’s totient
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function. This simple expression allows us to evaluate the off-diagonal expression

asymptotically. Putting the off-diagonal term and diagonal term together we arrive at our

desired expression for the quantum variance.

4.2 Proof of Theorem 2.3.2

4.2.1 Setup

Recall from the introduction that ψ, h are smooth compactly-supported functions on R+

and Bk denotes a basis of Hecke cusp forms of weight k. We want to compute an asymptotic

formula for

V (ψ1, ψ2) =
∑

k≡0 (mod 2)
h
(
k − 1
K

) ∑
f∈Bk

L(1, sym2 f)
(
µf (ψ1) − E(ψ1)

)
·
(
µf (ψ2) − E(ψ2)

)

with

µf (ψ) =
∫ ∞

0
|f(iy)|2yk/2ψ(y)dy and E(ψ) = 3

π

∫ ∞

0
ψ(y)dy

y
.

Here the symmetric square L-function is given by

L(s, sym2 f) = ζ(2s)
∞∑
n=1

λf (n2)
ns

,

for Re(s) > 1. The Fourier expansion of a normalized Hecke cusp form is given by

f(z) = af (1)
∞∑
n=1

λf (n)(4πn)(k−1)/2e(nz),
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with |af (1)|2 = 2π2

Γ(k)L(1,sym2 f) arising from the normalization ||f ||22 = 1. Similar to Luo and

Sarnak in [LS03, p. 877] we define the function ψ̃(s) by

ψ̃(s) :=
∫ ∞

0
ψ(y−1)ys−1dy.

Then ψ̃ is entire, and for any integer j > 0 and any vertical strip a ≤ Re(s) ≤ b, it satisfies

ψ̃ ≪a,b,j (|s| + 1)−j. Mellin inversion yields

ψ(y) = 1
2πi

∫
(σ)
ψ̃(s)ysds, for σ > 0, y > 0.

4.2.2 Reduction to a Shifted Convolution Problem

To evaluate the variance V (ψ1, ψ2) we first use the Fourier expansion of f(iy) and write

|f(iy)|2 =
∣∣∣af (1)

∑
n

λf (n)(4πn)(k−1)/2e−2πny
∣∣∣2.

We then expand the square, seperating the terms with m = n from those with m ̸= n. The

terms with m = n agree up to a small error term (which we will call Eψ below) with the

expected main term E(ψ). The terms with m ̸= n lead to a shifted convolution problem and

this quantity will be denoted by Sψ.

Lemma 4.2.1. We have

Eψ :=
∫ ∞

0
ψ(y)yk|af (1)|2

∞∑
n=1

λf (n)2(4πn)k−1e−4πny dy

y
− 3
π

∫ ∞

0
ψ(y)dy

y
(4.2)

= 2π2

L(1, sym2 f) · 1
2πi

∫
(1/2)

ψ̃(s− 1)ζ(s)L(s, sym2 f)
(4π)sζ(2s)

Γ(k + s− 1)
Γ(k) ds.
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Proof.

∫ ∞

0
ψ(y)yk|af (1)|2

∞∑
n=1

λf (n)2(4πn)k−1e−4πny dy

y

= 2π2

Γ(k)L(1, sym2 f) · 1
2πi

∫
(2)
ψ̃(s)

∞∑
n=1

λf (n)2(4πn)k−1
∫ ∞

0
yk+se−4πny dy

y

= 2π2

L(1, sym2 f) · 1
2πi

∫
(2)
ψ̃(s)ζ(1 + s)L(1 + s, sym2 f)

(4π)1+sζ(2(1 + s))
Γ(k + s)

Γ(k) ds

We used that we can write the Rankin–Selberg L-function in terms of the symmetric square

as

L(s, f ⊗ f) = ζ(s)L(s, sym2 f)
ζ(2s) =

∞∑
n=1

λf (n)2

ns
.

We then shift the contour from Re(s) = 2 to Re(s) = −1/2 and pick up a pole at s = 0 with

residue
2π

L(1, sym2 f) · ψ̃(0)L(1, sym2 f)
4πζ(2) = 3

π

∫ ∞

0
ψ(y)dy

y
.

The lemma follows by making the change of variables s → s−1 for the new line integral.

The term Eψ should be seen as an error term that is of size K−1/2 (compare for example

with [LS03, Section 5]). The off-diagonal term on the other hand is given by a shifted

convolution (which we denote by Sψ) of size K−1/4 as the following lemma indicates:

Lemma 4.2.2. We have

Sψ :=
∫ ∞

0
ψ(y)yk|af (1)|2

∑
n̸=m

λf (n)λf (m)(16π2nm)(k−1)/2e−2π(n+m)y dy

y
(4.3)

= π

2L(1, sym2 f)
∑
ℓ ̸=0

∑
n

λf (n)λf (n+ ℓ)√
n(n+ ℓ)

exp
(

− kℓ2

2(2n+ ℓ)2

)
ψ
(

k

2π(2n+ ℓ)

)
+Oψ(k−1/2+ε).

Remark 4.2.1. Since ψ is smooth compactly-supported on R+, we see that (2n + ℓ) ≍ k.

The exponential factor limits the size of ℓ as otherwise we have rapid decay. It follows that

ℓ ≪ k1/2+ε and consequently n ≍ k. These observations show that the off-diagonal term is
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related to a shifted convolution problem of the form

1
k

∑
0<|ℓ|≪k1/2+ε

∑
n∼k

λf (n)λf (n+ ℓ).

Assuming square root cancellation in n and the shifts ℓ the expected size of Sψ is k−1/4+ε.

The main part of the paper is attributed to showing this statement on average.

Proof of Lemma 4.2.2. First, we show by elementary means that only the terms satisfying

n + m ≍ k contribute to the main term of Sψ. Since ψ(y) is compactly-supported, there

exist real numbers 0 < a < b such that ψ(y) is supported in [a, b]. We write L(y) =

−2π(n + m)y + k log y and set y0 = k/2π(n + m) so that L(y) attains its maximum at y0.

Suppose that y0 ≤ a/2. Then for all y in the support of ψ we have

L′(y) = −2π(n+m) + k/y ≤ −2π(n+m) + k/(2y0) = −π(n+m).

Hence,

∫ ∞

0
ψ(y)eL(y)dy

y
≤
∫ ∞

a
|ψ(y)|eL(y0)e−(y−y0)π(n+m)dy

y

≪ψ e
L(y0)e−(a−y0)π(m+n)

≪ψ e
L(y0)e−aπ(m+n)/2.

It follows that the contribution from n,m such that k/(2π(n+m)) ≤ a/2 to Sψ is bounded

by
2π2

L(1, sym2 f)
∑
n,m

(n+m)≥k/(aπ)

d(n)d(m)√
nm

·
(2

√
nm

n+m

)k
e−aπ(n+m)/2. (4.4)

Here we used the Deligne bound |λf (n)| ≤ d(n), where d(n) is the divisor function.

Expression (4.4) decays exponentially in k and is thus negligible. Similarly, we treat the

case when y0 ≥ 2b. Note that L′′(y) = −k/y2 ≤ −k/b2 for every y in the support of ψ.
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Moreover, (y − y0)2 ≥ b2. We then have

∫ ∞

0
ψ(y)eL(y)dy

y
≤
∫ ∞

0
|ψ(y)|eL(y0)−(y−y0)2 k

b2
dy

y

≪ψ e
L(y0)e−k.

The contribution from n,m such that k/(2π(n+m)) ≥ 2b to Sψ is thus bounded by

2π2

L(1, sym2 f)
∑
n,m

(n+m)≤k/(4πb)

d(n)d(m)√
nm

·
(2

√
nm

n+m

)k
e−k, (4.5)

which decays exponentially in k.

Subsequently, we restrict our attention to the case a/2 ≤ y0 ≤ 2b and in particular,

n + m ≍ k. We start by performing an inverse Mellin transform on ψ and evaluating the

integral over y as a Gamma function:

∫ ∞

0
ψ(y)yk|af (1)|2

∑
n̸=m

λf (n)λf (m)(16π2nm)(k−1)/2e−2π(n+m)y dy

y

= 2π2

Γ(k)L(1, sym2 f)
∑
n̸=m

λf (n)λf (m)(16π2nm)(k−1)/2 1
2πi

∫
(2)
ψ̃(s)

∫ ∞

0
yk+se−2π(n+m)y dy

y
ds

= 2π2

L(1, sym2 f)
∑
n̸=m

λf (n)λf (m)(16π2nm)(k−1)/2 1
2πi

∫
(2)
ψ̃(s) 1(

2π(n+m)
)k+s

Γ(k + s)
Γ(k) ds.

Similar to [LS03, Eq. 2.3] Stirlings formula yields that for any vertical strip 0 < a ≤ Re(s) ≤

b,
Γ(k + s)

Γ(k) = ks · (1 +Oa,b((1 + |s|)2k−1)). (4.6)
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Using (4.6) we have

Sψ = π

2L(1, sym2 f)
∑
n ̸=m

λf (n)λf (m)√
nm

·
(2

√
nm

n+m

)k
ψ
(

k

2π(n+m)

)
(4.7)

+Oψ

( 1
k · L(1, sym2 f)

∑
n̸=m

d(n)d(m)√
nm

·
(2

√
nm

n+m

)k)
.

The factor
(

2
√
mn

n+m

)k
is forcing m and n to be close (roughly |m−n| ≪ k1/2+ε). More precisely,

note that

m+ n

2
√
mn

=
√

(m+ n)2

4mn ≥

√√√√1 + (m− n)2

4(m+ n)2 .

In particular, (2
√
mn

n+m

)k
≤ e−O(|m−n|2/k)

and the contribution from m,n with |m − n| ≥ k1/2+ε is exponentially small in k. When

|m− n| ≪ k1/2+ε we have as in [BKY13, p. 9]

(2
√
mn

m+ n

)k
=
(

1 − |m− n|2

2(m+ n)2 +O
( |m− n|4

(m+ n)4

))k
= exp

(
k log

(
1 − |m− n|2

2(m+ n)2 +O
( |m− n|4

(m+ n)4

))
.

By a Taylor expansion it follows that

Sψ = π

2L(1, sym2 f)
∑
m̸=n

λf (m)λf (n)√
mn

exp
(

− k|m− n|2

2(m+ n)2

)
ψ
(

k

2π(n+m)

)
+Oψ(k−1/2+ε).

The lemma follows upon writing m = n+ ℓ.

Subsequently, we only consider the case when m > n and thus ℓ > 0 as the case with

m < n is exactly the same upon relabelling the variables.
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4.2.3 Cancellation in the Shifted Convolution Problem

Our goal now is to detect cancellation in the shifted convolution sum Sψ (in an L2 sense,

when averaged over k and f ∈ Bk). To do this we will use an averaged Petersson trace

formula:

Lemma 4.2.3. [ILS00, Iwaniec, Luo, Sarnak, Lemma 10.1] For any positive numbers m,n

we have

∑
k≡0 (mod 2)

2h
(
k − 1
K

) 2π2

k − 1
∑
f∈Bk

λf (m)λf (n)
L(1, sym2 f) = (4.8)

=ĥ(0)K1m=n − π1/2(mn)−1/4KIm
(
e−2πi/8

∞∑
c=1

S(m,n; c)√
c

ec(2
√
mn)ℏ

(
cK2

8π
√
mn

))
+

+O
(√

mn

K4 ·
∫ ∞

−∞
v4|ĥ(v)|dv + 1m=n

)
,

where ĥ denotes the Fourier transform of h and ℏ(v) =
∫∞

0
h(

√
u)√

2πu e
iuvdu.

Remark 4.2.2. We kept the dependency on h explicit in the error term, as our weight function

will depend on n,m and K. Similar computations are also done by Khan in [Kha10] (see for

example Lemma 2.6 and expression (2.29) therein).

Remark 4.2.3. Integrating by parts several times shows that ℏ(v) ≪A v
−A for any A > 0. In

particular, the second term on the right hand side of (3.2.2) is absorbed in the error term if

cK2/
√
mn > Kε. In our case mn will be of size K4 and so this effectively restricts the range

of c to c ≪ Kε.
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4.2.4 Variance Computation

Now we compute the main term of the variance V (ψ1, ψ2), which is given by the averaged

shifted convolutioin problem

M(ψ1, ψ2) =
∑

k≡0 (mod 2)
h
(
k − 1
K

) ∑
f∈Bk

L(1, sym2 f)Sψ1Sψ2 (4.9)

with

Sψ = π

2L(1, sym2 f)
∑
ℓ̸=0

∑
n

λf (n)λf (n+ ℓ)√
n(n+ ℓ)

exp
( −kℓ2

2(2n+ ℓ)

)
ψ
(

k

2π(2n+ ℓ)

)
+Oψ(k−1/2+ϵ)

= π

2L(1, sym2 f)
∑
ℓ,d
d|ℓ

∑
n

λf (n(n+ ℓ/d))√
d2n(n+ ℓ/d)

exp
( −kℓ2

2(2nd+ ℓ)2

)
ψ
(

k

2π(2nd+ ℓ)

)
+Oψ(k−1/2+ϵ)

= π

2L(1, sym2 f)
∑
d

∑
m

∑
n

λf (n(n+m))

d
(
n(n+m)

)1/2 exp
(

− km2

2(2n+m)2

)
ψ
(

k

2πd(n+m)

)
+Oψ(k−1/2+ε).

For the second equality we used the Hecke relations

λf (n)λf (n+ ℓ) =
∑
d|n,d|ℓ

λf

(
n(n+ ℓ)

d2

)

and replaced n by nd. For the third equality we wrote ℓi/di = mi. After expanding Sψ1 , Sψ2

we see that the main term of M(ψ1, ψ2) is equal to

∑
n1,n2
d1,d2
m1,m2

∑
k≡0 (mod 2)

h∗
(
k − 1
K

) 2π2

k − 1
∑
f∈Bk

1
L(1, sym2 f)

λf (n1(n1 +m1))λf (n2(n2 +m2))

d1d2
(
n1(n1 +m1)n2(n2 +m2)

)1/2
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with

h∗(t) = h∗
n1,n2,d1,d2,m1,m2,K(t)

= h(t)tK8 ψ1

(
tK

2πd1(n1 +m1)

)
ψ2

(
tK

2πd2(n2 +m2)

)
exp

(
− tKm2

1
2(2n1 +m1)2 − tKm2

2
2(2n2 +m2)2

)
.

We can now apply the averaged Petersson trace formula (Lemma 3.2.2) so that M(ψ1, ψ2) =

D + OD with the diagonal

D = K
∑
n1,n2
d1,d2
m1,m2

1n1(n1+m1)=n2(n2+m2)

d1d2
(
n1(n1 +m1)n2(n2 +m2)

)1/2 · ĥ∗(0) (4.10)

and the off-diagonal

OD = −
√
πKIm

(
e−2πi/8 ∑

n1,n2
d1,d2
m1,m2

∞∑
c=1

S(n1(n1 +m1), n2(n2 +m2); c)√
c

ec(2
√
n1(n1 +m1)n2(n2 +m2))·

(4.11)

× 1

d1d2
(
n1(n1 +m1)n2(n2 +m2)

)3/4 · ℏ∗
(

cK2

8π
√
n1(n1 +m1)n2(n2 +m2)

))
,

where ℏ∗(v) =
∫∞

0
h∗(

√
u)√

2πu e
iuvdu. Now that we have established the formula

M(ψ1, ψ2) = D + OD, (4.12)

we start by evaluating the diagonal term.
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4.2.5 Evaluating the Diagonal

Lemma 4.2.4. If D is given by (4.10) then

D =K3/2 logK ·
√

2π
32 ψ̃1(0)ψ̃2(0) ·

∫ ∞

0

h(
√
u)u1/4

√
2πu

du+

+K3/2
√

2π
64 ψ̃1(0)ψ̃2(0)

∫ ∞

0

h(
√
u)u1/4

√
2πu

log(u)du+

+K3/2
∫ ∞

0

h(
√
u)u1/4

√
2πu

du ·
(√

2π
16

(3
2γ − log(4π)

)
ψ̃1(0)ψ̃2(0) +

√
2π

16 ψ̃1(0)ψ̃2
′(0)

)
+

+K3/2
∫ ∞

0

h(
√
u)u1/4

√
2πu

du ·
√

2π
16

1
2πi

∫
(1)
ψ̃1(−s2)ψ̃2(s2)ζ(1 − s2)ζ(1 + s2)ds2+

+Oψ1,ψ2(K1+ε),

as K → ∞.

Proof. To evaluate D (see (4.10)), we first show that most solutions to n1(n1 + m1) =

n2(n2 +m2) arise from the diagonal, i.e. n1 = n2 and m1 = m2. We assume that n1 ̸= n2 and

m1 ̸= m2, as otherwise we are done. By completing the square the condition n1(n1 +m1) =

n2(n2 +m2) is equivalent to

(2n1 +m1)2 − (2n2 +m2)2 = m2
1 −m2

2.

Since mi ≪ K1/2+ε there are at most K1+2ε choices for the integer M = m2
1 − m2

2. Once

M,m1,m2 are fixed, n1 and n2 are determined up to Kε′ . To see this abbreviate A =

(n1 +m1 + n2 +m2) and B = (n1 +m1 − n2 −m2). Then M = 4AB and there are at most

Kε′ choices for A and B (as there are at most Kε′ divisors of M). Now A,B,m1,m2 are

determined and so are n1, n2. It follows that there are at most K1+2ε+ε′ off-diagonal terms,
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whose contribution to D is bounded by

K
∑

n1,n2,m1,m2
n1 ̸=n2,m1 ̸=m2

∑
d1,d2

1n1(n1+m1)=n2(n2+m2)

d1d2
(
n1(n1 +m1)n2(n2 +m2)

)1/2 · ĥ∗(0) ≪ψ1,ψ2 K
1+2ε+ε′

.

Hence,

D =
√

2πK2

16
∑

n1,d1,d2,m1

1
d1d2n1(n1 +m1) ·

×
∫ ∞

0

h(
√
u)

√
u√

2πu
ψ1

( √
uK

2πd1(n1 +m1)

)
ψ2

( √
uK

2πd2(n2 +m2)

)
exp

(
−

√
uKm2

1
(2n1 +m1)2

)
du

+Oψ1,ψ2(K1+ε).

Since midi ≪ K1/2+ε and mi/ni ≪ K1/2+ε for i = 1, 2, we can simplify the expression

for the off-diagonal D by a Taylor expansion and get

D =
√

2πK2

16
∑

n1,d1,d2,m1

1
d1d2n2

1

∫ ∞

0

h(
√
u)

√
u√

2πu
ψ1

( √
uK

4πn1d1

)
ψ2

( √
uK

4πn1d2

)
exp

(
−

√
uKm2

1
4n2

1

)
du

+Oψ1,ψ2(K1+ε).

To evaluate the main term of D asymptotically we perform an inverse Mellin transform on

the smooth compactly-supported functions ψ1, ψ2 and the exponential function. We then

shift the contours and collect the residues. The main term of D is equal to

√
2πK2

16
1

(2πi)3

∫
(1/2+ε)

∫
(1)

∫
(1)

∫ ∞

0

h(
√
u)

√
u√

2πu
ψ̃1(s1)ψ̃2(s2)Γ(s3)·

·
∑

n1,d1,d2,m1

1
d1d2n2

1

( √
uK

4πn1d1

)s1( √
uK

4πn1d2

)s2( 4n2
1√

uKm2
1

)s3

duds1ds2ds3.
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This is turn can be rewritten as

√
2πK2

16
1

(2πi)3

∫
(1/2+ε)

∫
(1)

∫
(1)

∫ ∞

0

h(
√
u)

√
u√

2πu
u(s1+s2−s3)/2Ks1+s2−s3(4π)−s1−s24s3·

· ψ̃1(s1)ψ̃2(s2)Γ(s3)ζ(1 + s1)ζ(1 + s2)ζ(2 + s1 + s2 − 2s3)ζ(2s3)duds1ds2ds3.

We start by shifting the contour from Re(s3) = 1/2 + ε to Re(s3) = 100. The integral on

the new line Re(s3) = 100 is negligible by the rapid decay of ψ̃1(s1), ψ̃2(s2) and the Gamma

function (it contributes at most Oψ1,ψ2(K−96)). The simpe pole at s3 = 1/2 + s1/2 + s2/2

yields the residue

√
2πK2

16
1

(2πi)2

∫
(1)

∫
(1)

∫ ∞

0

h(
√
u)

√
u√

2πu
u(−1/2+s1/2+s2/2)/2K−1/2+s1/2+s2/2(4π)−s1−s241/2+s1/2+s2/2

(4.13)

· ψ̃1(s1)ψ̃2(s2)Γ(1/2 + s1/2 + s2/2)ζ(1 + s1)ζ(1 + s2)1
2ζ(1 + s1 + s2)duds1ds2.

Next we move the line Re(s1) = 1 to Re(s) = −2 + ε (stopping just before the pole of the

Gamma function), picking up simple poles at s1 = 0 and s1 = −s2 . We use again the rapid

decay of ψ̃1(s1), ψ̃2(s2) to show that the new line integral is bounded by Oψ1,ψ2(K1+ε). At

s1 = 0 the residue is

√
2πK2

16
1

2πi

∫
(1)

∫ ∞

0

h(
√
u)

√
u√

2πu
u(−1/2+s2/2)/2K−1/2+s2/2(4π)−s241/2+s2/2 (4.14)

· ψ̃1(0)ψ̃2(s2)Γ(1/2 + s2/2)ζ(1 + s2)2 1
2duds2.

We follow up with the shift from Re(s2) = 1 to Re(s2) = −1+ε and pick up a double pole at

s2 = 0. The error term from the line at Re(s2) = −1 + ε is again Oψ1,ψ2(K1+ε). To compute

the residue at the double pole we use the expansion ζ(1 + s2)2 = 1
s2

2
+ 2γ

s
+ · · · for s2 close
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to 0, where γ is the Euler–Mascheroni constant. The residue is then given by

√
2πK3/2

16 ·
∫ ∞

0

h(
√
u)u1/4

√
2πu

· lim
s2→0

d

ds

(
s2 ·

(
K

√
u

4π2

) s2
2
ψ̃2(s2)Γ(1/2 + s1/2) ·

( 1
s2

2
+ 2γ

s
+ · · ·

))
du.

The limit is equal to

lim
s2→0

(
K

√
u

4π2

) s2
2

·
(1

2 log
(
K

√
u

4π2

)
ψ̃2(s2)Γ(1/2 + s2/2)+

+ ψ̃2
′(s2)Γ(1/2 + s2/2) + 1

2 ψ̃2(s2)Γ′(1/2 + s2/2) + 2γψ̃2(s2)Γ(1/2 + s2/2)
)
.

We evaluate the limit, using Γ′(1/2) =
√
π(−γ − log 4), to

√
π

2 ψ̃2(0) logK +
√
π

4 ψ̃2(0) log u+
√
πψ̃2(0)

(3
2γ − log(4π)

)
+

√
πψ̃2

′(0).

Thus (4.14) is equal to

K3/2 logK ·
√

2π
32 ψ̃1(0)ψ̃2(0) ·

∫ ∞

0

h(
√
u)u1/4

√
2πu

du

+K3/2
√

2π
64 ψ̃1(0)ψ̃2(0)

∫ ∞

0

h(
√
u)u1/4

√
2πu

log(u)du+

+K3/2
∫ ∞

0

h(
√
u)u1/4

√
2πu

du ·
(√

2π
16

(3
2γ − log(4π)

)
ψ̃1(0)ψ̃2(0) +

√
2π

16 ψ̃1(0)ψ̃2
′(0)

)
+Oψ1,ψ2(K1+ε).

This is our main term. There is another term of size K3/2 coming from the residue of

expression (4.13) at s1 = −s2. This residue is given by

K3/2
∫ ∞

0

h(
√
u)u1/4

√
2πu

du ·
√

2π
16

1
2πi

∫
(1)
ψ̃1(−s2)ψ̃2(s2)ζ(1 − s2)ζ(1 + s2)ds2. (4.15)

This completes the proof of the lemma.
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4.2.6 Auxiliary Lemmas

In the following section we record some lemmas that we use to compute the off-diagonal term

asymptotically. We start with some observations regarding the function ℏ(v), appearing in

the off-diagonal term. For any complex number w define the function

ℏRe
w (v) =

∫ ∞

0

h(
√
u)√

2πu
uw/2 cos(uv)du.

For w = 0 this is the real part of ℏ(v). The Mellin transform of this function and its

properties were evaluated by Khan [Kha10, Lemma 3.5] (and also Das-Khan [DK18, sec.

2.6]). Note that Khan and Das-Khan treat ℏw(v) but the observations also go through for

the real part that we consider. As in [DK18, sec. 2.6] we have by repeated integration by

parts the bound
∂j

∂vj
ℏRe
w (v) ≪ (1 + |w|)A|v|−A (4.16)

for any non-negative integer j, A and the implied constant depending on Re(w), j, A. We

denote the Mellin transform of ℏRe
w by

ℏ̃Re
w (s) =

∫ ∞

0
ℏRe
w (v)vsdv

v
.

The bound (4.16) implies that the Mellin transform is absolutely convergent and holomorphic

for Re(s) > 0. Integrating by parts several times and using again the bound (4.16) shows

that the Mellin transform deacys rapidly. More precisiely we have

ℏ̃Re
w (s) ≪ (1 + |w|)A+Re(s)+1(1 + |s|)−A,

with the implied constants depending on Re(w) and A. By Mellin inversion we have for

c > 0

ℏRe
w (v) = 1

2πi

∫
(c)

ℏ̃Re
w (s)v−sds. (4.17)



4. Quantum Variance for Holomorphic Hecke Cusp Forms on the Vertical
Geodesic 79

As in [Kha10, Lemma 3.5] we can explicitly evaluate the Mellin transform of ℏRe
w within the

range 0 < Re(s) < 1. There we get

ℏ̃Re
w (s) =

∫ ∞

0

h(
√
u)√

2πu
uw/2Γ(s) cos(πs/2)du.

The next two lemmas will be useful to treat the exponential sum in the off-diagonal term.

Lemma 4.2.5 (Poisson summation). Let f be a rapidly decaying, smooth function, then

∑
n≡a (mod c)

f(n) = 1
c

∑
n

f̂
(
n

c

)
ec(an),

where f̂(ξ) =
∫∞

−∞ f(x)e(−xξ)dx denotes the Fourier transform of f .

Proof. This follows immediately from the classical Poisson summation formula and noting

that n ≡ a (mod c) is a shifted lattice of Z.

We detect cancellation in the off-diagonal term with the stationary phase method. We use

the following version of Blomer, Khan and Young, which is a special case of their Proposition

8.2 in [BKY13].

Lemma 4.2.6 (Stationary phase). Let X, Y, V, V1, Q > 0 and Z := Q+X +Y +V1 + 1, and

assume that

Y ≥ Z3/20, V1 ≥ V ≥ QZ1/40

Y 1/2 .

Suppose that h is a smooth function on R with support on an interval J of length V1, satisfying

h(j)(t) ≪j XV
−j

for all j ∈ N0. Suppose f is a smooth function on J such that there exists a unique point
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t0 ∈ J such that f ′(t0) = 0, and furthermore

f ′′(t) ≫ Y Q−2, f (j)(t) ≪j Y Q
−j, for j ≥ 1 and t ∈ J.

Then

∫ ∞

−∞
h(t)e2πif(t)dt = esgn(f ′′(t0))·πi/4 e2πif(t0)√

|f ′′(t0)|
h(t0) +O

(
Q3/2X

Y 3/2 ·
(
V −2 + (Y 2/3/Q2)

))
.

In particular, we also have the trivial bound

∫ ∞

−∞
h(t)e2πif(t)dt ≪ XQ√

Y
+ 1.

Proof. See Proposition 8.2 in [BKY13], with δ = 1/20 and A sufficiently large. We bounded

the contribution of the non-leading terms in the asymptotic expansion of [BKY13, Eq. 8.9])

trivially by O
(
Q3/2X
Y 3/2 ·

(
V −2 + (Y 2/3/Q2)

))
.

The last lemma we need concerns the Kloosterman sum over arithmetic progressions.

Lemma 4.2.7. Let S(a, b; c) denote the classical Kloosterman sum, then

∑
a1 (mod c),
a2 (mod c)

∑
b1 (mod c),
b2 (mod c)

S(a1(a1 + b1), a2(a2 + b2); c)ec(2a1a2 + a1b2 + a2b1) = c3φ(c),

where φ(c) is Euler’s totient function.

Proof. Let us call T the sum we must calculate. First we open the Kloosterman sum and

get

T =
∑

a1 (mod c),
a2 (mod c)

∑
b1 (mod c),
b2 (mod c)

∑
x (mod c)
(x,c)=1

ec
(
a1(a1 + b1)x+ a2(a2 + b2)x+ 2a1a2 + a1b2 + a2b1

)
.



4. Quantum Variance for Holomorphic Hecke Cusp Forms on the Vertical
Geodesic 81

Here xx ≡ 1 (mod c). Since (x, c) = 1 we can substitute a1 with a1x and b1 with b1x. We get

T =
∑

a1 (mod c),
a2 (mod c)

∑
b1 (mod c),
b2 (mod c)

∑
x (mod c)
(x,c)=1

ec
(
a2

1x+ a1b1x+ a2
2x+ a2b2x+ 2a1a2x+ a1b2x+ a2b1x

)

=
∑

a1 (mod c),
a2 (mod c)

∑
b1 (mod c),
b2 (mod c)

∑
x (mod c)
(x,c)=1

ec
(
(a1 + a2)2x+ (a1 + a2)(b1 + b2)x

)

= c3φ(c).

To obtain the last equality we used orthogonality when summing over b1 and b2, i.e.

∑
b (mod c)

ec
(
b(a1 + a2)x

)
=


c if (a1 + a2)x ≡ 0 (mod c)

0 otherwise

and so a1 ≡ −a2 (mod c).

Remark 4.2.4. We highlight here that the additional summation over b1, b2 (that originally

stems from averaging over the shifts) is crucial here. In contrast to that, Luo and

Sarnak [LS04, Appendix A.2] work for the full fundamental domain with fixed shifts. The

corresponding summation over the Kloosterman sum then reduces “only” to an expression

involving Salié sums. Lemma 4.2.7 might be seen as the reason why we can obtain a

comparably clean formula for the quantum variance of the vertical geodesic.

4.2.7 Evaluating the Off-Diagonal

Our goal is to obtain an asymptotic formula for the off-diagonal OD given by
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−
√
πIm

(
e−2πi/8K

∑
d1,d2

∑
n1,n2

∑
m1,m2

∑
c

S(n1(n1 +m1), n2(n2 +m2); c)√
c

ec(2n1n2 + n1m2 + n2m1)·

(4.18)

×
ec
(
f(n1, n2,m1,m2)

)
d1d2

(
n1(n1 +m1)n2(n2 +m2)

)3/4 · ℏ∗
d1,d2

(
cK2

8π
√
n1(n1 +m1)n2(n2 +m2)

))
,

where

f(n1, n2,m1,m2) = 2
√
n1(n1 +m1)n2(n2 +m2) − 2n1n2 − n1m2 − n2m1

and

ℏ∗
d1,d2

(
cK2

8π
√
n1(n1 +m1)n2(n2 +m2)

)
= (4.19)

K

8

∫ ∞

0

h(
√
u)

√
u√

2πu
ψ1

( √
uK

2πd1(n1 +m1)

)
ψ2

( √
uK

2πd2(n2 +m2)

)
·

× exp
(

−
√
uKm2

1
(2n1 +m1)2

)
exp

(
−

√
uKm2

2
(2n2 +m2)2

)
e
iu cK2

8π(n1(n1+m1)n2(n2+m2))1/2 du.

This task requires several intermediate steps.

First we will detect square-root cancellation in the exponential sum

∑
n1,n2≍K

ec
(
f(n1, n2,m1,m2)

)

when m1,m2 are large. To see that this is possible, it is helpful to keep the critical ranges

mi ≍
√
K and ni ≍ K for i = 1, 2 in mind. We then have the following heuristic that guides

our further analysis:

f(n1, n2,m1,m2) = −m2
1n2

2n1
− m2

2n1

2n2
+ . . .
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∂

∂n1
f(n1, n2,m1,m2) ≈ m2

1n2

n2
1

− m2
2

2n2
≍ O(1) and ∂2

∂n2
1
f(n1, n2,m1,m2) ≈ −3m2

1n2

n3
1

≍ 1
K
.

From these bounds on the derivatives we can see that we expect square root cancellation in

the summation over n1 (see [IK04, Corollary 8.12]). To make this heuristic precise and to

compute an asymptotic formula for the off-diagonal OD, we will use the Poisson summation

formula and the stationary phase method, which is the subject of the following lemmas.

Lemma 4.2.8. Let OD be defined as in (4.18). Then

OD = −
√
πKIm

(
e−2πi/8∑

c

∑
b1 (mod c),
b2 (mod c)

∑
a1 (mod c),
a2 (mod c)

S(a1(a1 + b1), a2(a2 + b2); c)
c3/2 ec(2a1a2 + a1b2 + a2b1)·

×
∑
d1,d2

1
d1d2

∑
m1≡b1 (mod c)
m2≡b2 (mod c)

∑
n2≡a2 (mod c)

∑
v∈Z

Iv(n2,m1,m2, d1, d2, c)
)

with

Iv(n2,m1,m2, d1, d2, c) :=
∫ ∞

−∞

ec
(
f(x, n2,m1,m2) − v(x+ a1)

)
d1d2

(
x(x+m1)n2(n2 +m2)

)3/4 ℏ
∗
d1,d2

(
cK2

8π
√
x(x+m1)n2(n2 +m2)

)
dx.

(4.20)

Proof. We work with expression (4.18) and split the variables n1, n2,m1,m2 into residue
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classes modulo c. The off-diagonal OD is then given by

−
√
πKIm

(
e−2πi/8∑

c

∑
b1 (mod c),
b2 (mod c)

∑
a1 (mod c),
a2 (mod c)

S(a1(a1 + b1), a2(a2 + b2); c)√
c

ec(2a1a2 + a1b2 + a2b1)·

(4.21)

×
∑
d1,d2

∑
m1≡b1 (mod c)
m2≡b2 (mod c)

∑
n1≡a1 (mod c)
n2≡a2 (mod c)

ec
(
f(n1, n2,m1,m2)

)
d1d2

(
n1(n1 +m1)n2(n2 +m2)

)3/4 · (4.22)

× ℏ∗
d1,d2

(
cK2

8π
√
n1(n1 +m1)n2(n2 +m2)

))
. (4.23)

Here we used the fact that the Kloosterman sum only depends on the residue classes modulo

c. The lemma follows now upon applying the Poisson summation formula (see Lemma 4.2.5)

to the summation over n1.

Next we will analyze the quantity

∑
n2≡a2 (mod c)

∑
v∈Z

Iv(n2,m1,m2, d1, d2, c) (4.24)

with the stationary phase method.

We record here some restrictions on the variables that will be useful for the further

analysis. Since h, ψ1, ψ2 are compactly supported on R+ we have that nidi ≍ K for i = 1/2.

Additionally, di ≤ Kδ for some δ > 0, as noted in Remark 4.2.3. Indeed, if di > Kδ then

ni ≤ K1−δ and cK2/
√
n1(n1 +m1)n2(n2 +m2) ≥ K2δ and the off-diagonal term can be

absorbed in the error term. We will choose δ = 1/32 for convenience. From the observations

in Remark 4.2.3 we also have the condition cK2

n1n2
≪ Kϵ. The exponential functions ensure

that mi ≤ ni/K
1/2−ε ≤ K1/2+ε, as otherwise we have exponential decay. For technical

purposes we also impose a lower bound on mi. If both variables m1,m2 are small then the

exponential ec(
√
n1(n1 +m1)n2(n2 +m2)) is essentially smooth and the analysis is similar
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as in the case of full fundamental domain (see [LS04]). If mi ≤ K1/8 for i = 1, 2, then we

can bound OD trivially by K5/4+ε, which is smaller than the expected main term of size

K3/2. In our stationary phase analysis we will only need one of the variables mi to be large.

Since OD is symmetric in mi/ni we can assume without loss of generality that m1 ≥ K1/8.

The most important case is of course when both m1 and m2 are of size
√
K and so one

should view this restriction only as a technical convenience. To summarize, we will work

subsequently under the following conditions:

nidi ≍ K and di ≤ K1/32 for i = 1, 2, (4.25)

K1/8 ≤ m1 ≤ K1/2+ε and 1 ≤ m2 ≤ K1/2+ε, (4.26)

cK2

n1n2
≪ Kε and in particular c ≪ Kε. (4.27)

A stationary phase analysis leads to the following lemma:

Lemma 4.2.9. Let Iv(n2,m1,m2, d1, d2, c) be defined as in (4.20). Then

Iv(n2,m1,m2, d1, d2, c) =
ec

(
a1v + m1

2

(
v +m2 −

√
(v +m2)2 + 4vn2

))
e−πi/4√c√

|f ′′(x∗
v(n2))| · x∗

v(n2)3/2 · n3/2
2

ℏ∗
d1,d2

(
cK2

8πn2x∗
v(n2)

)

+O(K−2+ε)

with x∗
v(n2) = m1

2

(
− 1 + v+m2+2n2√

(v+m2)2+4vn2

)
.

Proof. We now need to check the conditions of the stationary phase Lemma 4.2.6 so that we

can apply it to the quantity Iv(n2,m1,m2, d1, d2, c) . The stationary points x∗
v(n2) for fixed

v are the solutions to the equation

∂

∂x

(
f(x, n2,m1,m2) − v(x− a1)

)
= 0
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and are given by

x∗
v(n2) =

m1
(
m2 + 2n2 + v −

√
(v +m2)2 + 4vn2

)
2
√

(v +m2)2 + 4vn2
= m1n2√

(v +m2)2 + 4vn2
·
(
1+O(K−1/2+1/32+ε)

)
.

(4.28)

From a Taylor expansion of f(x, n1,m1,m2) we see that

f(x, n2,m1,m2) = −1
4
n2m

2
1

x
− 1

4
xm2

2
n2

+ m1m2

2 − 1
8
m2

1m2

x
− 1

8
m2

2m1

n2
+ . . .

and thus
∂

∂x
f(x, n1,m1,m2) = 1

4
n2m

2
1

x2 − 1
4
m2

2
n2

+ 1
8
m2

1m2

x2 + . . . ≪ Kε.

From the bound on the first derivative of f it follows also that v ≪ Kε. The second derivate

of the phase function f is given by

∂2

∂x2f(x, n2,m1,m2) = −m2
1

2

√√√√ n2(n2 +m2)
(x(x+m1))3 .

We note here that

∣∣∣∣ ∂2

∂x2f(x, n2,m1,m2)
∣∣∣∣ ≍ m2

1n2

x3 and
∣∣∣∣ ∂j∂xj f(x, n2,m1,m2)

∣∣∣∣ ≪j
m2

1n2

x1+j (4.29)

for any integer j ≥ 2. If we evaluate the second derivative at the stationary point x∗
v we get

f ′′(x∗
v) = −((v +m2)2 + 4vn2)3/2

2m1n2(m2 + n2) = −((v +m2)2 + 4vn2)3/2

2m1n2
2

· (1 +O(K−1/2+ϵ)). (4.30)

After a tedious computation we see that the exponential evaluated at the stationary point

equals

ec
(
f(x∗

v, n2,m1,m2) − v(x∗
v − a1)

)
= ec

(
a1v + m1

2
(
v +m2 −

√
(v +m2)2 + 4vn2

))
.
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For the stationary phase analysis we also require bounds on the derivatives of the weight

function ℏ∗
d1,d2

(
cK2

8π(x(x+m1)n2(n2+m2))1/2

)
, defined in (4.19). Conditions (4.25), (4.26) and (4.27)

yield

∂j

∂xj
1(

x(x+m1)n2(n2 +m2)
)3/4ℏ

∗
d1,d2

(
cK2

8π
√
x(x+m1)n2(n2 +m2)

)
(4.31)

≪ 1
x3/2n

3/2
2
K
(1
x

+ Km2
1

x3 + cK2

n2x2

)j
≪ 1

x3/2n
3/2
2
K
(
Kϵ

x

)j

for any fixed integer j ≥ 0.

We are now in the position to determine the required parameters X, Y, V, V1, Q and Z of

Lemma 4.2.6. From the bounds on the derivatives (4.29) and the fact that x ≍ K/d1 we see

that Y = m2
1n2d1
cK

and Q = K
d1

. From (4.31) we see that X = d
3/2
1 n

−3/2
2 K−1/2, V1 = V = K1−ε

d1

and Z ≪ K1+ε+1/32. With these choices we also see that the condition V1 ≥ QZ1/40

Y 1/2 is

satisfied, as long as d2 ≤ K1/32, say. Indeed, with the lower bound on m1 ≥ K1/8 we have

QZ1/40

Y 1/2 ≪ K
√
cKZ1/40

d1m1
√
n2

≪ K

d1
· K

ε
√
d2K

1/30

m1
≪ K

d1
·K1/64+1/30+ε−1/8 ≪ V K−1/16.

We can now apply the stationary phase lemma (Lemma 4.2.6) and see that

Iv(n2,m1,m2, d1, d2, c) =
ec
(
f(x∗

v(n2), n2,m1,m2) − v(x∗
v − a1)

)
e−πi/4√c√

|f ′′(x∗
v(n2))| ·

(
x∗
v(n2)(x∗

v(n2) +m1)n2(n2 +m2)
)3/4

× ℏ∗
(

cK2

8π
√
x∗
v(n2)(x∗

v(n2) +m1)n2(n2 +m2)

)
+O(K−2).

Since x∗
v(n2) ≍ n1 we can simplify the above result slightly by using a Taylor expansion and



4. Quantum Variance for Holomorphic Hecke Cusp Forms on the Vertical
Geodesic 88

conditions (4.25), (4.26). We get

Iv(n2,m1,m2, d1, d2, c) =
ec

(
a1v + m1

2

(
v +m2 −

√
(v +m2)2 + 4vn2

))
e−πi/4√c√

|f ′′(x∗
v(n2))| · x∗

v(n2)3/2 · n3/2
2

ℏ∗
d1,d2

(
cK2

8πn2x∗
v(n2)

)

+O(K−2+ε).

This completes the proof of the lemma.

We expect the main term of (4.24) to come from the 0-frequency, i.e. when v = 0.

Lemma 4.2.10. Let Iv(n2,m1,m2, d1, d2, c) be defined as in (4.20). Then

∑
n2≡a2 (mod c)

I0(n1,m1,m2, d1, d2, c) = e−πi/4√2c
∑

n2≡a2 (mod c)

1
m1n2

2
ℏ∗
(
cK2m2

8πn2
2m1

)
+O(K−1+ε).

Proof. This lemma is a direct consequence of Lemma 4.2.9, specialized to the case v = 0.

For v = 0 the stationary point is given by x∗
0(n2) = m1n2

m2
. From (4.30) we see that

√
|f ′′
(
x∗

0(n2)
)
| = m3

2
2m1n2(n2 +m2) = m3

2
2m1n2

2
·
(

1 +O(K−1/2+ε)
)
.

Moreover, a direct computation gives

ec
(
f(x∗

0(n2), n2,m1,m2)
)

= ec(0) = 1

and thus the claimed result.

On the other hand, the contribution of the non-zero frequencies, i.e. when v ̸= 0, is

negligible. To show this we will need to detect further cancellation in the summation over

n2.
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Lemma 4.2.11. Let Iv(n2,m1,m2, d1, d2, c) be defined as in (4.20). Then

∑
n2≡a2 (mod c)

∑
v ̸=0

Iv(n2,m1,m2, d1, d2, c) ≪ d2
2√

cK1−ε . (4.32)

Proof. Let ET (for error term) denote the left-hand side of (4.32). First we use the Poisson

summation formula for the summation over n2. Together with Lemma 4.2.9 it follows that

ET = e−πi/4

c

∑
w

∑
v ̸=0

∫ ∞

−∞
ec

(
a1v + m1

2
(
v +m2 −

√
(v +m2)2 + 4vy

)
− w(y − a2)

)
(4.33)

×
√
c√

|f ′′
(
x∗
v(y))|

1
x∗
v(y)3/2y3/2ℏ

∗
(

cK2

8πx∗
v(y)y

)
dy +O(K−2+ε) (4.34)

with

x∗
v(y) =

m1
(
m2 + 2y + v −

√
(v +m2)2 + 4vy

)
2
√

(v +m2)2 + 4vy
≍ K

d1
. (4.35)

As in Lemma (4.2.9) we perform a stationary phase analysis on the integral

Jw(m1,m2, v) :=
∫ ∞

−∞
ec
(
gm1,m2,v(y) − w(y − a2)

) √
c√

|f ′′
(
x∗
v(y))|

1
x∗
v(y)3/2y3/2ℏ

∗
(

cK2

8πx∗
v(y)y

)
dy

with

gm1,m2,v(y) = a1v + m1

2
(
v +m2 −

√
(v +m2)2 + 4vy

)
.

It is again useful to have the critical cases in mind when y ∼ K and m1,m2 ∼
√
K.

The first derivative g′
m1,m2,v(y) is then again roughly bounded, while g′′

m1,m2,v(y) is of size

1/K. Consequently, we again expect square root cancellation in n2 (see for example [IK04,

Corollary 8.12]). We now perform the stationary phase method on the integral over y of



4. Quantum Variance for Holomorphic Hecke Cusp Forms on the Vertical
Geodesic 90

expression ET . The stationary points are given by the solutions to the equation

∂

∂y

(
gm1,m2,v(y) − (w − a2)

)
= − m1v√

(v +m2)2 + 4vy
− w = 0.

Since ∂
∂y
gm1,m2,v(y) ≪ Kε, we also see that w ≪ Kϵ. Moreover, we have the following bounds

on the higher derivatives:

∂2

∂y2 gm1,m2,v(y) = 4m1v
2(

(v +m2)2 + 4vy
)3/2 and ∂j

∂yj
gm1,m2,v(y) ≪j

m1v
j(

(v +m2)2 + 4vy
)j−1/2 ,

(4.36)

for j ≥ 3. From the computations in the proof of Lemma 4.2.9, in particular equation (4.28)

and (4.30) we have

√
c√

|f ′′
(
x∗
v(y)

)
|

1
x∗
v(y)3/2y3/2 =

√
2c

m1y2 ·
(
1 +O(K−1/2+1/32+ε)

)
.

Similarly to (4.31) we will need bounds on the derivatives of the involved weight function

with respect to y. It is useful to first compute

∂j

∂yj

(
x∗
v(y)

)
≪j

m1v
j−1(m2

2 + vy)
(4vy + (m2 + v)2)1/2+j ≪j

K

d1

(1
y

)j
.

Using the chain rule, a similar computation as in (4.31) yields

∂j

∂yj

√
2c

m1y2ℏ
∗
(

cK2

8πx∗
v(y) · y

)
≪j

√
c

m1y2 ·K
(
Kϵ

y

)j
≪j

√
c

m1

d2
2
K

·
(

d2

K1−ε

)j
. (4.37)

We can now again establish the various required quantities for Lemma 4.2.6. From the

computation (4.37) we can see that X =
√
cd2

2/(m1K) and V = K1−ε/d2. From the bounds

(4.36) we find Y = m1 ·
√

(v +m2)2 + 4vK/d2 and Q = ((v+m2)2 + 4vK/d2)/v. The trivial



4. Quantum Variance for Holomorphic Hecke Cusp Forms on the Vertical
Geodesic 91

bound of Lemma 4.2.6 yields

Jw(m1,m2, v) ≪ XQ√
Y

≪
√
cd2

2
vK

·
(√(v +m2)2 + 4vK/d2

m1

)3/2

≪
√
cd2

2
vK

. (4.38)

Here we used that
√

(v+m2)2+4vK/d2
m1

≍ 1, which can be deduced for example from the size of

the stationary point (see (4.35)).

From the bounds w ≪ Kε, v ≪ Kε and (4.38) it follows that

ET ≪ d2
2√

cK1−ε .

This concludes the proof of the lemma.

Using the previous lemmas we will obtain the following formula for the off-diagonal OD:

Lemma 4.2.12. Let OD be defined as in (4.18). Then

OD =
√

2πK2

8
∑
c

φ(c)
c

∑
d1,d2

∑
n2

∑
m1,m2

1
d1d2m1n2

2
·

×
∫ ∞

0

h(
√
u)

√
u√

2πu
ψ1

( √
uKm2

4πm1d1n2

)
ψ2

( √
uK

4πd2n2

)
exp

(
−

√
uKm2

2
4n2

2

)
cos

(
u
cK2m2

8πm1n2
2

)
du

+O(K5/4).

Proof. Combining Lemma 4.2.8 and Lemma 4.2.10 we obtain the main term of the off-

diagonal OD given by

−
√

2πKIm
(
e−πi/2∑

c

∑
b1 (mod c),
b2 (mod c)

∑
a1 (mod c),
a2 (mod c)

S(a1(a1 + b1), n2(n2 + b2); c)
c

ec(2a1a2 + a1b2 + a2b1)·

×
∑
d1,d2

∑
m1≡b1 (mod c)
m2≡b2 (mod c)

∑
n2≡a2 (mod c)

1
d1d2m1n2

2
ℏ∗
d1,d2

(
cK2m2

8πm1n2
2

))
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with

ℏ∗
d1,d2

(
cK2m2

8πm1n2
2

)
=

K

8

∫ ∞

0

h(
√
u)

√
u√

2πu
ψ1

( √
uKm2

2πm1d1(2n2 +m2)

)
ψ2

( √
uK

2πd2(2n2 +m2)

)
exp

(
−

√
uKm2

2
(2n2 +m2)2

)
e
iu

cK2m2
m1n2

2 du.

On the other hand, by Lemma 4.2.8 and Lemma 4.2.11, the error term is bounded by

Kε
∑
c

∑
b1 (mod c),
b2 (mod c)

∑
a1 (mod c),
a2 (mod c)

|S(a1(a1 + b1), n2(n2 + b2); c)|
c2

∑
d1,d2

∑
m1≡b1 (mod c)
m2≡b2 (mod c)

d2

d1
≪ K5/4.

We thus have

OD = −
√

2πKIm
(
e−πi/2∑

c

∑
b1 (mod c),
b2 (mod c)

∑
a1 (mod c),
a2 (mod c)

S(a1(a1 + b1), n2(n2 + b2); c)
c

ec(2a1a2 + a1b2 + a2b1)·

×
∑
d1,d2

∑
m1≡b1 (mod c)
m2≡b2 (mod c)

∑
n2≡a2 (mod c)

1
d1d2m1n2

2
ℏ∗
d1,d2

(
cK2m2

8πm1n2
2

))
+O(K5/4).

Note that cK2m2
m1n2

2
≪ Kε as otherwise we have rapid decay (using integration by parts).

Additionally, we have the derivative bounds

∂j

∂nj2
ℏ∗
(
cK2m2

8πm1n2
2

)
≪ K ·

(
Kϵ

n2

)j
≪ K ·K−j/2, (4.39)

∂j

∂mj
1
ℏ∗
(
cK2m2

8πm1n2
2

)
≪ K ·

(
Kϵ

m1

)j
≪ K ·K−j/16 (4.40)

and
∂j

∂mj
2
ℏ∗
(
cK2m2

8πm1n2
2

)
≪ K ·

(
K

m1d1n2
+ Km2

n2
2

+ cK2

m1n2
2

)j
≪ K ·K−j/16. (4.41)
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With the Poisson summation formula we see that

∑
n2≡a2 (mod c)

1
d1d2m1n2

2
ℏ∗
d1,d2

(
cK2m2

8πm1n2
2

)
= 1
c

∑
u

∫ ∞

−∞

1
d1d2m1x2ℏ

∗
d1,d2

(
cK2m2

8πm1x2

)
ec
(
−u(x−a2)

)
dx.

Repeated integration by parts and the bounds (4.39) show that the non-zero frequencies are

bounded by Oj(K−10). For the 0-frequency we have

1
c

∫ ∞

−∞

1
d1d2m1x2ℏ

∗
d1,d2

(
cK2m2

8πm1x2

)
dx = 1

c

∑
n2

1
d1d2m1n2

2
ℏ∗
d1,d2

(
cK2m2

8πm1n2

)
+Oj(K−10)

again by the Poisson summation formula. We proceed in the same way for the summation

over m1 and m2, using the derivative bounds (4.40), (4.41) respectively, to bound the non-

zero frequencies. It follows that the off-diagonal OD is up to a negligible error term given

by

−
√

2πKIm
(
e−πi/2∑

c

∑
a1 (mod c),
a2 (mod c)

∑
b1 (mod c),
b2 (mod c)

S(a1(a1 + b1), a2(a2 + b2); c)
c4 ec(2a1a2 + a1b2 + a2b1)·

×
∑
d1,d2

∑
n2

∑
m1,m2

1
d1d2m1n2

2
ℏ∗
d1,d2

(
cK2m2

8πm1n2
2

))
.

We now use Lemma 4.2.7 to simplify the summation of the Kloosterman sum over arithmetic

progressions and see that

OD = −
√

2πK2

8 Im
(
e−πi/2∑

c

φ(c)
c

∑
d1,d2

∑
n2

∑
m1,m2

1
d1d2m1n2

2
ℏ∗
d1,d2

(
cK2m2

8πm1n2
2

))
+O(K5/4).

By a Taylor expansion, using (4.25) and (4.26), we see that

ℏ∗
d1,d2

(
cK2m2

8πm1n2
2

)
=
∫ ∞

0

h(
√
u)

√
u√

2πu
ψ1

( √
uKm2

4πm1d1n2

)
ψ2

( √
uK

4πd2n2

)
exp

(
−

√
uKm2

2
4n2

2

)
e
iu

cK2m2
8πm1n2

2 du

+O(K1/2+ε),
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so that the lemma follows upon evaluating the imaginary part of OD.

Finally, we are in the position to evaluate the off-diagonal OD asymptotically. To do so

we will relate OD to a complex contour integral over several variables. We then evaluate

this contour integral with the residue theorem.

Lemma 4.2.13. Let OD be given by expression (4.18). We have

OD = K3/2 ·
∫ ∞

0

h(
√
u)u1/4

√
2πu

du ·
√

2π
16

1
2πi

∫
(ε)
ψ̃1(s4)ψ̃2(s4)ζ(1 + s4)ζ(1 − s4)ds4 +O(K5/4+ϵ).

Proof. From Lemma 4.2.12 we see that

OD =
√

2πK2

8
∑
c

φ(c)
c

∑
d1,d2

∑
n2

∑
m1,m2

1
d1d2m1n2

2
·

×
∫ ∞

0

h(
√
u)

√
u√

2πu
ψ1

( √
uKm2

4πm1d1n2

)
ψ2

( √
uK

4πd2n2

)
exp

(
−

√
uKm2

2
4n2

2

)
cos

(
u
cK2m2

8πm1n2
2

)
du.

To evaluate this expression asymptotically we perform an inverse Mellin transform on ψ1, ψ2

and the exponential function. Then OD is equal to

√
2πK2

8
∑
c

φ(c)
c

∑
d1,d2

∑
n2

∑
m1,m2

1
d1d2m1n2

2
· (4.42)

× 1
(2πi)3

∫
(1/2+ε)

∫
(2)

∫
(1+ε)

ψ̃1(s1)ψ̃2(s2)Γ(s3)
(

Km2

4πm1d1n2

)s1( K

4πd2n2

)s2( 4n2
2

Km2
2

)s3

·

×
∫ ∞

0

h(
√
u)√

2πu
u(1+s1+s2−s3)/2 cos

(
u
cK2m2

8πm1n2
2

)
duds1ds2ds3.

Finally, we also perform an inverse Mellin transform on

ℏRe
1+s1+s2−s3(v) :=

∫ ∞

0

h(
√
u)√

2πu
u(1+s1+s2−s3)/2 cos(uv)du
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as indicated in equation (4.17). We arrive at

OD =
√

2πK2

8
1

(2πi)4

∫
(1+ε)

∫
(1/2+3ε)

∫
(2)

∫
(1+3ε)

ψ̃1(s1)ψ̃2(s2)Γ(s3)ℏ̃Re
1+s1+s2−s3(s4)·

×
∑
d1,d2

∑
n2

∑
m1,m2

1
d1d2m1n2

2
·
( √

uKm2

4πm1d1n2

)s1( √
uK

4πd2n2

)s2( 4n2
2√

uKm2
2

)s3

×
∑
c

φ(c)
c

(8πm1n
2
2

cK2m2

)s4

duds1ds2ds3ds4.

We were allowed to interchange the order of summation and integration by the absolute

convergence of the integrand in the given ranges. We now rewrite the various summations

in terms of zeta functions and get

OD =
√

2πK2

8
1

(2πi)4

∫
(1+ε)

∫
(1/2+3ε)

∫
(2)

∫
(1+3ε)

ψ̃1(s1)ψ̃2(s2)Γ(s3)ℏ̃Re
1+s1+s2−s3(s4)· (4.43)

× ζ(1 + s1)ζ(1 + s2)ζ(2 + s1 + s2 − 2s3 − 2s4)ζ(1 + s1 − s4)ζ(−s1 + 2s3 + s4)·

× ζ(s4)/ζ(1 + s4)(4π)−s1−s24s3(8π)s4Ks1+s2−s3−2s4ds1d2ds3ds4.

The zeta functions ζ(1 + s1) and ζ(1 + s2) arise from summing over d1, d2 respectively. The

summation over n2 yields ζ(2 + s1 + s2 − 2s3 − 2s4), while summing over m1 gives rise to

ζ(1+s1−s4). The m2-variable leads to the factor ζ(−s1+2s2+s4) and finally the summation

over c gives ζ(s4)/ζ(1 + s4). Here we used that ∑c
φc
cs = ζ(s−1)

ζ(s) for Re(s) > 2. To evaluate

expression OD asymptotically we will iteratively shift the contours and pick up poles.

We start to compute the contour integral (4.43) by shifting the line from Re(s2) = 2 to

Re(s2) = −100. We pick up a simple pole at s2 = 0 and s2 = −1 − s1 + 2s3 + 2s4. The

new line integral is negligible by the rapid decay of ψ̃1, ψ̃2, ℏ̃ and the Gamma function. The
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residue at s2 = 0 is given by

√
2πK2

8
1

(2πi)3

∫
(1+ε)

∫
(1/2+3ε)

∫
(1+3ε)

ψ̃1(s1)ψ̃2(0)Γ(s3)ℏ̃Re
1+s1−s3(s4)· (4.44)

× ζ(1 + s1)ζ(2 + s1 − 2s3 − 2s4)ζ(1 + s1 − s4)ζ(−s1 + 2s3 + s4)ζ(s4)/ζ(1 + s4)·

× (4π)−s14s3(8π)s4Ks1−s3−2s4ds1ds3ds4.

Moving the line Re(s1) = 1 + 2ε to Re(s1) = −100 yields poles at s1 = 0 and s1 = s4. First,

we consider the residue at s1 = 0, which is given by

√
2πK2

8
1

(2πi)2

∫
(1+ε)

∫
(1/2+2ε)

ψ̃1(0)ψ̃2(0)Γ(s3)ℏ̃Re
1−s3(s4)· (4.45)

× ζ(2 − 2s3 − 2s4)ζ(1 − s4)ζ(2s3 + s4)ζ(s4)/ζ(1 + s4)4s3(8π)s4K−s3−2s4ds3ds4.

Expression (4.45) is negligible upon shifting Re(s3) = 1/2+3ε to Re(s3) = 100 and the rapid

decay of ℏ̃ and the Gamma function. On the other hand the residue of the pole at s1 = s4

of (4.44) leads to

√
2πK2

8
1

(2πi)2

∫
(1+ε)

∫
(1/2+2ε)

ψ̃1
Re(s4)ψ̃2(0)Γ(s3)ℏ̃Re

1+s4−s3(s4)· (4.46)

× ζ(2 − 2s3 − s4)ζ(2s3)ζ(s4)(4π)−s44s3(8π)s4K−s3−s4ds3ds4.

This integral is again negligible after sending Re(s3) = 1/2 + 3ε to Re(s3) = 100, as we pick

up no poles and we can bound everything trivially. In total we found that the contribution

from poles that arise after s2 = 0 is negligible. We now evaluate the residue of (4.44) at the
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pole s2 = −1 − s1 + 2s3 + 2s4. We get

√
2πK2

8
1

(2πi)3

∫
(1+ε)

∫
(1/2+3ε)

∫
(1+3ε)

ψ̃1(s1)ψ̃2(−1 − s1 + 2s3 + 2s4)Γ(s3)ℏ̃Re
s3+2s4(s4)· (4.47)

× ζ(1 + s1)ζ(−s1 + 2s3 + 2s4)ζ(1 + s1 − s4)ζ(−s1 + 2s3 + s4)ζ(s4)/ζ(1 + s4)·

× (4π)1−2s3−2s44s3(8π)s4K−1+s3ds1ds3ds4.

Next we move the line Re(s3) = 1/2 + 3ε to Re(s3) = ε (stopping before the pole of the

Gamma function) and capture poles at s3 = 1/2 + s1/2 − s4 and s3 = 1/2 + s1/2 − s4/2.

The new line integrals contribute at most O(K1+ε). The residue at s3 = 1/2 + s1/2 − s4 is

given by

√
2πK2

8
1

(2πi)2

∫
(1+ε)

∫
(1+3ε)

ψ̃1(s1)ψ̃2(0)Γ(1/2 + s1/2 − s4)ℏ̃Re
1/2+s1/2+s4(s4)· (4.48)

× ζ(1 + s1)1
2ζ(1 + s1 − s4)ζ(1 − s4)ζ(s4)/ζ(1 + s4)·

× (4π)−s141/2+s1/2−s4(8π)s4K−1/2+s1/2−s4ds1ds4.

We then shift Re(s1) = 1+3ε to Re(s1) = −1+ε and pick up simple poles at s1 = 0, s1 = s4

from the zeta functions and the simple pole s1 = −1 + 2s4 from the Gamma function. The

new line integral is clearly negligible. The residue from the gamma function contributes at

most O(K). The residue at s1 = 0, given by

√
2πK2

8
1

(2πi)2

∫
(1+ε)

ψ̃1(0)ψ̃2(0)Γ(1/2 − s4)ℏ̃Re
1/2+s4(s4)· (4.49)

× 1
2ζ(1 − s4)2ζ(s4)/ζ(1 + s4)41/2−s4(8π)s4K−1/2−s4ds4,
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is clearly also negligible. At the pole s1 = s4 the residue is given by

√
2πK2

8
1

(2πi)2

∫
(1+ε)

ψ̃1(s4)ψ̃2(0)Γ(1/2 − s4/2)ℏ̃Re
1/2+3/2s4(s4)· (4.50)

× 1
2ζ(1 − s4)ζ(s4)(4π)−s441/2−s4/2(8π)s4K−1/2−s4/2ds4,

which again contributes only to the error term. It remains to compute the chain of residues

of (4.47) starting with s3 = 1/2 + s1/2 − s4/2. At this point we get

√
2πK2

8
1

(2πi)2

∫
(1+ε)

∫
(1+3ε)

ψ̃1(s1)ψ̃2(s4)Γ(1/2 + s1/2 − s4/2)ℏ̃Re
1/2+s1/2+3/2s4(s4)· (4.51)

× ζ(1 + s1)ζ(1 + s1 − s4)1
2ζ(s4)(4π)−s1−s441/2+s1/2−s4/2(8π)s4K−1/2+s1/2−s4/2ds1ds4.

We then shift Re(s1) = 1 + 3ε to Re(s1) = 2ε and pick up a simple pole s1 = s4. The new

line integral is bounded by O(K1+ϵ) and is therefore negligible. Our expected main term,

the residue of the pole s1 = s4, is given by

√
2πK3/2

8
1

2πi

∫
(1+ε)

ψ̃1(s4)ψ̃2(s4)Γ(1/2)ℏ̃Re
1/2+2s4(s4)ζ(1 + s4)ζ(s4)(2π)−s4ds4. (4.52)

We now shift the line Re(s4) = 1 + ε to Re(s4) = ε to simplify this expression. Note that

the residue of the pole at s4 = 1 is 0, since ℏ̃Re
3/2(1) = 0. On the new line Re(s4) = ε we can

explicitly evaluate ℏ̃Re
1/2+2s4

(s4), leading to

K3/2 ·
∫ ∞

0

h(
√
u)u1/4

√
2πu

du ·
√

2π
8

1
2πi

∫
(ε)
ψ̃1(s4)ψ̃2(s4)Γ(s4) cos(πs/2)ζ(1 + s4)ζ(s4)(2π)−s4ds4.

(4.53)

Finally, we use the functional equation

ζ(1 − s) = 2(2π)−s cos(πs/2)Γ(s)ζ(s)
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so that the off-diagonal is up to an error term of size O(K5/4+ε) equal to

K3/2 ·
∫ ∞

0

h(
√
u)u1/4

√
2πu

du ·
√

2π
16

1
2πi

∫
(ε)
ψ̃1(s4)ψ̃2(s4)ζ(1 + s4)ζ(1 − s4)ds4.

This matches exactly with term (4.15) from the diagonal, if we suppose that ψ1(y) is even,

i.e. ψ1(y) = ψ1(1/y) and thus ψ̃1(s) = ψ̃1(−s).

4.2.8 Proof of the main theorem

Proof of Theorem 2.3.2. Recall the definition of Eψ (se (4.2)) and Sψ (see (4.3)). The work

of Luo and Sarnak (see [LS03, Section 5]) shows that

∑
k≡0 (mod 2)

h
(
k − 1
K

) ∑
f∈Bk

L(1, sym2 f)|Eψ|2 ≪ K1+ε. (4.54)

Moreover, we have

V (ψ1, ψ2) =
∑

k≡0 (mod 2)
h
(
k − 1
K

) ∑
f∈Bk

L(1, sym2 f)(Sψ1 + Eψ1)(Sψ2 + Eψ2)

=
∑

k≡0 (mod 2)
h
(
k − 1
K

) ∑
f∈Bk

L(1, sym2 f)(Sψ1Sψ2 + Sψ1Eψ2 + Sψ2Eψ1 + Eψ1Eψ2).

We evaluated the main term

M(ψ1, ψ2) =
∑

k≡0 (mod 2)
h
(
k − 1
K

) ∑
f∈Bk

L(1, sym2 f)Sψ1Sψ2 = D + OD,

in Section 4.2.4 with Lemma 4.2.4 and Lemma 4.2.13. Theorem 2.3.2 follows then from the

Cauchy–Schwarz ineqality and the bound (4.54).
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Chapter 5

Future Directions

Finally, we want to discuss further ongoing work regarding the Random Wave Conjecture

for holomorphic Hecke cusp forms. To do so consider

P2r(f) :=
∫ 1

0

∫ ∞

0
ψ(y)|f(z)|2rykr dxdy

y2 , (5.1)

where f denotes a holomorphic Hecke cusp form of weight k and ψ : R+ → R+ is a smooth

compactly-supported weight function.

The quantity P2r(f) can be interpreted as a 2r-moment of a Hecke cusp forms in a strip

of the fundamental domain.

Remark 5.0.1. The definition of P2r(f) might seem a bit artificial but helps in concrete

computations and should nonetheless lead to a better understanding of the Random Wave

Conjecture. Alternatively, we could try to evaluate

∫
Γ\H

ψ(z)|f(z)|2rykr dxdy
y2

with ψ a smooth compactly-supported test function on the upper half-plane. We would then

expand ψ(z) into so-called incomplete Eisenstein series and Poincaré series and proceed with
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a similar (although more difficult) analysis.

Remark 5.0.2. We are now considering also higher moments of holomorphic Hecke cusp

forms, i.e. r > 2. It is therefore of increasing importance to restrict the integration range

to a compact domain, in order to avoid large values of holomorphic cusp forms high in the

cusp.

The following conjecture is a special case of Conjecture (2.2.2).

Conjecture 5.0.1. Let f be a holomorphic Hecke cusp form of weight k, such that ⟨f, f⟩ = 1

and let ψ : R+ → R be a smooth compactly-supported test function. Then

1
Varf (P )r · Vol(P )

∫ 1

0

∫ ∞

0
ψ(y)|f(z)|2ryrk dxdy

y2 ∼ Γ(r + 1),

where

Vol(P ) :=
∫ 1

0

∫ ∞

0
ψ(y)dy

y2 = ψ̃(1),

Varf (P ) := 1
Vol(P )

∫ 1

0

∫ ∞

0
ψ(y)|f(z)|2yk dxdy

y2 ∼ 3
π
,

as k → ∞. In particular, we have

P2r(f) ∼ Γ(r + 1) ·
( 3
π

)r
· ψ̃(1),

as k → ∞.

Remark 5.0.3. We highlight here that the computations in this chapter should mostly be

regarded as heuristics. In particular, we ignore error terms for the sake of exposition, unless

they are of conceptional importance.
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5.1 The 2r-th moment and shifted convolution sums

We begin our analysis by relating P2r(f) to shifted convolution sums. To do so, we use the

Fourier expansion of f (similar to [BKY13, Section 3]).

Remark 5.1.1. For convenience of notation we will often suppress the summation range and

write ∑n a(n) for the summation ∑∞
n=1 a(n).

P2r(f) =
∫ 1

0

∫ ∞

0
ψ(y)

∣∣∣af (1)
∞∑
n=1

λf (n)(4πn)(k−1)/2e−2πnye(nx)
∣∣∣∣2ryrk dxdyy2

=|af (1)|2r
∑

n1,...,n2r

2r∏
i=1

λf (ni)(4πni)(k−1)/2
∫ 1

0
e
(( r∑

i=1
ni −

2r∑
j=r+1

nj

)
x
)
dx

×
∫ ∞

0
ψ(y)e−2πy

∑2r

i=1 niyrk
dy

y2 .

Integrating over the variable x yields

P2r(f) =|af (1)|2r
∑

n1,...,n2r
n1+...+nr=nr+1+...+n2r

2r∏
i=1

λf (ni)(4πni)(k−1)/2 ·
∫ ∞

0
ψ(y)e−2πy(n1+···+n2r)yrk−1dy

y

We then perform an inverse Mellin transform on ψ and interpret the integral over y as a

Gamma function, so that P2r(f) is equal to

|af (1)|2r
∑

n1,...,n2r
n1+...+nr=nr+1+...+n2r

2r∏
i=1

(
λf (ni)(4πni)(k−1)/2

) 1
2πi

∫
(2)
ψ̃(s)

∫ ∞

0
e−2πy(n1+···+n2r)yrk−1+sdy

y
ds

= |af (1)|2r
(4π)r−1

∑
n1,...,n2r

n1+...+nr=nr+1+...+n2r

λf (n1) · · ·λf (n2r)

(
(n1 · · ·nr)1/r

)r(k−1)/2

(n1 + · · ·nr)(rk−1)/2

(
(nr+1 · · ·n2r)1/r

)r(k−1)/2

(nr+1 + · · ·n2r)(rk−1)/2

× 1
2πi

∫
(2)
ψ̃(s) Γ(rk − 1 + s)(

4π(n1 + · · · + nr)
)sds.
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Note that from Stirling’s formula, for fixed r, we have

Γ(k)r ∼ Γ(rk − 1) · (rk − 1)(
√

2π)r−1r−rk+1/2k(1−r)/2

and (similarly as in [LS03, Eq. 2.3]) for any vertical strip 0 < a ≤ Re(s) ≤ b,

Γ(rk − 1 + s)
Γ(rk − 1) = (rk − 1)s · (1 +Oa,b,r((1 + |s|)2k−1)). (5.2)

Remark 5.1.2. The error term as stated in (5.2) is in general not good enough to be

considered negligible. In practice this is not a problem, as we can easily compute an

asymptotic expansion and evaluate the lower order terms.

Since |a1(f)|2 = 2π2

Γ(k)L(1,sym2 f) , we see that the main term of P2r(f) is equal to

π(r+3)/2rr−1/2

2(3r−5)/2
k(r−1)/2

rk − 1
1

L(1, sym2 f)r
∑

n1,...,n2r
n1+...+nr=nr+1+...+n2r

λf (n1) · · ·λf (n2r)
(n1 + . . .+ nr)r−1 × (5.3)

×
(
r(n1 · · ·nr)1/r

n1 + · · · + nr

)r(k−1)/2(r(nr+1 · · ·n2r)1/r

nr+1 + · · · + n2r

)r(k−1)/2
· ψ
(

rk − 1
4π(n1 + · · · + nr)

)
.

In the following sections we use expression (5.3) for r = 2 and r = 3 to analyze the fourth

and sixth moment of holomorphic Hecke cusp forms on average.

5.2 Fourth Moment Revisited

Aimed with the general computation for P2r(f) we sketch the evaluation of the fourth

moment in vertical strips on average.

Remark 5.2.1. Khan [Kha14] computed the fourth moment of holomorphic Hecke cusp forms

on average on the full fundamental domain. His approach is based on Watson’s formula and

the evaluation of an L-function moment problem on average. In Chapter 3 we treated this



5. Future Directions 104

moment problem without averaging but under the assumption of the Generalized Riemann

Hypothesis.

Before we begin with our analysis we notice the factor L(1, sym2 f)−r in our expression

(5.3) for P2r(f). In view of the Petersson Trace formula (see Lemma 1.6.1) it will be helpful

to analyze the average

2
KW

∑
k≡0 (mod 2)

w
(
k

K

)
ζ(2) · 12

k

∑
f∈Bk

L(1, sym2 f)r−1P2r(f),

where w : R+ → R+ is a smooth compactly supported function and W =
∫∞

0 w(x)dx.

Inserting the factor L(1, sym2 f)r−1 will affect our computation only by a constant. Indeed,

as seen in the works [Luo99], [Roy01], [CM04] on the distribution of the symmetric square

L-function at 1 we have for example for r = 2

2
KW

∑
k≡0 (mod 2)

w
(
k

K

)
ζ(2) · 12

k

∑
f∈Bk

L(1, sym2 f) ∼ ζ(2)3

and for r = 3

2
KW

∑
k≡0 (mod 2)

w
(
k

K

)
ζ(2) · 12

k

∑
f∈Bk

L(1, sym2 f)2 ∼ ζ(3)ζ6(2)
ζ(6) , (5.4)

as K → ∞.

Conjecture 5.2.1. Following the notation in the previous section, we have for P4(f), defined

in equation (5.1),

2
KW

∑
k≡0 (mod 2)

w
(
k

K

)
ζ(2) · 12

k

∑
f∈Bk

L(1, sym2 f)P4(f) ∼ ζ(2)3 · 2 ·
( 3
π

)2
ψ̃(1), (5.5)

as K → ∞.

We know sketch a proof without providing details.
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Proof sketch. From (5.3) with r = 2 we see that the main term of P4(f) is equal to

π5/2
√
kL(1, sym2 f)2

∑
n1,...,n4

n1+n2=n3+n4

λf (n1) · · ·λf (n4)
n1 + n2

(2(n1n2)1/2

n1 + n2

)k−1(2(n3n4)1/2

n3 + n4

)k−1
ψ
( 2k − 1

4π(n1 + n2)

)
.

Using the Hecke relations

λf (n1)λf (n2) =
∑

d|(n1,n2)
λf

(
n1n2

d2

)

and relabelling the variables, we obtain (up to an error term)

P4(f) = π5/2
√
kL(1, sym2 f)2

∑
d1,d2

∑
n1,...,n4

d1(n1+n2)=d2(n3+n4)

λf (n1n2)λf (n3n4)
d1(n1 + n2) ×

×
(2(n1n2)1/2

n1 + n2

)k−1(2(n3n4)1/2

n3 + n4

)k−1
ψ
( 2k − 1

4πd1(n1 + n2)

)
.

As a first step to evaluate the left-hand side of (5.5) we use the Petersson Trace formula (see

Lemma 1.6.1), which leaves us with a diagonal term D and an off-diagonal term OD. The

diagonal term is given by

D = π5/2
√
k

∞∑
d1=1

∞∑
n1=1

∞∑
n2=1

1
d1(n1 + n2)

(2√
n1n2

n1 + n2

)2(k−1)
ψ
( 2k

4πd1(n1 + n2)

)
.

Similarly, as in the computation for the quantum variance, the expression

(2(n1n2)1/2

n1 + n2

)2(k−1)
(5.6)

leads to exponential decay if |n1 − n2| > k1/2+ε. We could then perform again a Taylor

expansion of the quantity (5.6) and obtain a similar shifted convolution sum as in the

quantum variance case (notice that we have here the additional constraint

d1(n1 + n2) = d2(n3 + n4)). For the sake of exposition we choose here an alternative
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approach, that seems to be better suited for generalizations. Rather than using a Taylor

expansion, we directly compute an inverse Mellin transform for (5.6).

For Re(b) > 0, 0 < c < Re(b), we have the integral representation (see [OLBC10, p. 143,

Eq. 5.13.1])
1

(n1 + n2)b = 1
2πi

∫
(c)

Γ(α)Γ(b− α)
Γ(b)

nα−b
2
n1

dα. (5.7)

First, we perform an inverse Mellin transform on ψ, and then we use formula (5.7) to see

that

D =π
5/2

√
k

∑
d1

∑
n1,n2

1
d1(n1 + n2)

(2√
n1n2

n1 + n2

)2(k−1) 1
2πi

∫
(3)
ψ̃(s)

( 2k
4πd1(n1 + n2)

)s
ds

=π
5/2

√
k

∑
d1

∑
n1,n2

1
(2πi)2

∫
(3)

∫
(k+2)

ψ̃(s)
(
k

2π

)s
· 22(k−1)

ds+1 (n1n2)k−1 · n
α−(1+s+2(k−1))
2

nα1

× Γ(α)Γ(1 + s+ 2(k − 1) − α)
Γ(1 + s+ 2(k − 1)) dαds

=π
5/2

√
k

1
(2πi)2

∫
(k+2)

∫
(3)
ψ̃(s)

(
k

2π

)s
22(k−1)ζ(1 + s)ζ(α− (k − 1))ζ(1 + s+ (k − 1) − α)

× Γ(α)Γ(1 + s+ 2(k − 1) − α)
Γ(1 + s+ 2(k − 1)) dsdα.

Next, we evaluate the complex integral above by shifting the contour of s and α to the left

and computing the residues of the poles that yield the main term. Since we only sketch a

proof here, we ignore integrals that should be negligible compared to the main term.

We shift the line Re(s) = 3 to Re(s) = ε and pick up a pole at s = −(k − 1) + α, whose

residue is given by

1
2πi

∫
(k+2)

ψ̃(−(k − 1) + α)
(
k

2π

)−(k−1)+α
22(k−1)ζ(2 − k + α)Γ(α)Γ(k)

Γ(k + α) ζ(α− (k − 1))dα.

Shifting the line Re(α) = k+ 2 to Re(α) = k− 1 + ε we pick up a pole at α = k. The residue
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of this pole is given by

ψ̃(1)
(
k

2π

)
22(k−1)ζ(2) Γ2(k)

Γ(2k) ∼ ζ(2)3 ·
( 3
π

)2
ψ̃(1), (5.8)

as K → ∞. There are two choices for n1 to obtain a diagonal term (either n1 = n3

or n1 = n4). Once n1 is determined, the other variables are also determined. Taking

this into account we see that the result in (5.8) matches exactly the constant predicted by

Conjecture 5.2.1.

Consider now the off-diagonal term OD that is roughly of the form

1
K5/2

∑
ℓ1,ℓ2≤

√
K

∑
n1,n2≍K

2n1+ℓ1=2n2+ℓ2

∑
c≪Kε

S(n1(n1 + ℓ1), n2(n2 + ℓ2); c)√
c

ec
(
2
√
n1(n1 + ℓ1)n2(n2 + ℓ2)

)
.

Upon using the Weil bound for Kloosterman sums (see [IK04, Chapter 16])

|S(m,n; c)| ≤ (m,n, c)1/2d(c)c1/2,

we see that the off-diagonal expression OD is bounded by K−1/2+ε. Compared to the main

term (5.8) that is of constant size, this is negligible, thus finishing our sketch of proof.

Remark 5.2.2. Note that the diagonal and off-diagonal term for the fourth moment and the

quantum variance, treated in Chapter 4.1, are very similar. The major difference is the

additional condition 2n1 + ℓ1 = 2n2 + ℓ2, arising in the computation of the fourth moment of

holomorphic Hecke cusp forms. The variable n2 can then be expressed in terms of n1, ℓ1, ℓ2,

thus reducing the complexity of the problem.
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5.3 A glance at the sixth Moment

We will now continue with an investigation of the sixth moment, which is still work in

progress. Unsurprisingly, the problem comes with a steep increase in difficulty. From a

technical perspective the number of variables complicate computations considerably. The

elevated “intrinsic” difficulty can be seen in the off-diagonal term, where it is necessary to

detect significant cancellation.

In view of Conjecture 5.0.1 and equation (5.4) we propose the following averaged

conjecture:

Conjecture 5.3.1. Following the notation in the previous section, we have for P6(f), defined

in equation (5.1),

2
KW

∑
k≡0 (mod 2)

w
(
k

K

)
ζ(2) · 12

k

∑
f∈Bk

L(1, sym2 f)2P6(f) ∼ ζ(3)ζ6(2)
ζ(6) · 6 ·

( 3
π

)3
· ψ̃(1).

We conclude this thesis by sketching basic ideas for the treatment of Conjecture 5.3.1.

First, we use again (5.3) with r = 3 to express P6(f) as a shifted convolution problem.

We have

P6(f) =π
3 · 35/2

4
k

3k − 1
1

L(1, sym2 f)3

∑
n1,...,n6

n1+...+n3=n4+...+n6

λf (n1) · · ·λf (n6)
(n1 + n2 + n3)2 ×

×
(3(n1n2n3)1/3

n1 + n2 + n3

)3(k−1)/2(3(n4n5n6)1/3

n4 + n5 + n6

)3(k−1)/2
· ψ
( 3k − 1

4π(n1 + n2 + n3)

)
.

Note that (3(n1n2n3)1/3

n1 + n2 + n3

)3(k−1)/2
≤ 1. (5.9)
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From

27n1n2n3 =(n1 + n2 + n3)3 − 3
2(n1 + n2 + n3)

(
(n1 − n2)2 + (n1 − n3)2 + (n2 − n3)2

)
− (n1 + n2 − 2n3)(n1 − 2n2 + n3)(−2n1 + n2 + n3)

and a Taylor expansion, we can see with a bit more work that the left-hand side of (5.9) is

decreasing exponentially in k, unless |n1 − n2| ≤ K1/2+ε, |n1 − n3| ≤ K1/2+ε and |n2 − n3| ≤

K1/2+ε. Rewriting n2 = n1 + ℓ1, n3 = n1 + ℓ2, n5 = n4 + ℓ3 and n6 = n4 + ℓ4 we see that

P6(f) is “morally” equal to

1
K2

∑
ℓ1,ℓ2,ℓ3,ℓ4≪K1/2+ε

∑
n1,n4≍K

3n1+ℓ1+ℓ2=3n4+ℓ3+ℓ4

λf (n1)λf (n1+ℓ1)λf (n1+ℓ2)λf (n4)λf (n4+ℓ3)λf (n4+ℓ4).

Assuming for simplicity that the Hecke eigenvalues are completely multiplicative, we need

to investigate

1
K2

∑
ℓ1,ℓ2,ℓ3,ℓ4≪K1/2+ε

∑
n1,n4≍K

3n1+ℓ1+ℓ2=3n4+ℓ3+ℓ4

λf (n1(n1 + ℓ1)(n1 + ℓ2))λf (n4(n4 + ℓ3)(n4 + ℓ4))

on average. As usual, we would then apply the Petersson Trace formula, leading to a diagonal

term D and an off-diagonal term OD.

It is reasonable to expect, though not trivial to show, that the diagonal term D arises

when n1 = n4, ℓ1 = ℓ3 and ℓ2 = ℓ4. Under this assumption we see that the diagonal is

essentially bounded:

D ≈ 1
K2

∑
ℓ1,ℓ2≪K1/2+ε

∑
n1≍K

1 ≪ Kε.

Our next goal will be to show that the off-diagonal term OD is also bounded by Kε. It
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will be comfortable to introduce the following polynomial in three variables:

p(r, s, t) : = r(r + s)(r + t) (5.10)

=
(1

3 (s+ t) + r
)3

− 1
3
(
s2 − st+ t2

) (1
3 (s+ t) + r

)
+ 2s3

27 − 1
9st

2 − 1
9s

2t+ 2t3
27

=
(1

3 (s+ t) + r
)3

−B(s, t)
(1

3 (s+ t) + r
)

+ C(s, t)

with

B(s, t) := 1
3
(
s2 − st+ t2

)
and C(s, t) := 2s3

27 − 1
9st

2 − 1
9s

2t+ 2t3
27 . (5.11)

The off-diagonal expression is then roughly given by

OD ≈ 1
K7/2

∑
ℓ1,ℓ2,ℓ3,ℓ4≪K1/2+ε

∑
n1,n4∼K

3n1+ℓ1+ℓ2=3n4+ℓ3+ℓ4

∑
c≪K1+ε

S(p(n1, ℓ1, ℓ2), p(n4, ℓ3, ℓ4); c)√
c

× ec
(
2
√
p(n1, ℓ1, ℓ2) · p(n2, ℓ3, ℓ4)

)
.

Upon expressing n4 in terms of n1, ℓ1, ℓ2, ℓ3, ℓ4 and using the Weil bound for the Kloosterman

sum, we see that a trivial bound for OD is given by

OD ≪ 1
K7/2 · (K1/2+ε)4 ·K ·K1+ε = K1/2+ε′

.

In particular, we need to save K1/2 over the trivial bound, in order to show that the sixth

moment on average is bounded by Kε.

From

2
√
ab =

√
(a+ b)2 − (a− b)2 = (a+ b)

√
1 −

(
a− b

a+ b

)2

and a Taylor expansion we see that 2
√
ab ∼ (a + b), provided that a and b are sufficiently

close. We want to apply this principle with a = p(n1, ℓ1, ℓ2) and b = p(n4, ℓ3, ℓ4). The
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condition 3n1 + ℓ1 + ℓ2 = 3n4 + ℓ3 + ℓ4 and the polynomial representation (5.10) imply that

p(n1, ℓ1, ℓ2) and p(n4, ℓ3, ℓ4) are indeed “close” in a precise quantitative sense. Ignoring error

terms, it is thus sufficient to consider

OD ≈ 1
K7/2

∑
ℓ1,ℓ2,ℓ3,ℓ4≪K1/2+ε

∑
n1,n4∼K

3n1+ℓ1+ℓ2=3n4+ℓ3+ℓ4

∑
c≪K1+ε

S(p(n1, ℓ1, ℓ2), p(n4, ℓ3, ℓ4); c)√
c

·

× ec
(
p(n1, ℓ1, ℓ2) + p(n4, ℓ3, ℓ4)

)
.

Next we express the variable n4 in terms of n1, ℓ1, ℓ2, ℓ3, ℓ4 . In particular, since 3n1+ℓ1+ℓ2 =

3n4 + ℓ3 + ℓ4 we have

p(n4, ℓ3, ℓ4) =
(1

3 (ℓ3 + ℓ4) + n4

)3
−B(ℓ3, ℓ4)

(1
3 (ℓ3 + ℓ4) + n4

)
+ C(ℓ3, ℓ4)

=
(1

3 (ℓ1 + ℓ2) + n1

)3
−B(ℓ3, ℓ4)

(1
3 (ℓ1 + ℓ2) + n1

)
+ C(ℓ3, ℓ4),

where B(s, t) and C(s, t) are defined as in (5.11). Now that OD only depends on the variables

n1, ℓi with 1 ≤ i ≤ 4 and c, we split n1 into residue classes a1 modulo c and obtain

OD ≈ 1
K7/2

∑
ℓ1,ℓ2,ℓ3,ℓ4≪K1/2+ε

∑
c≪K1+ε

T (c),

with

T (c) :=
∑

a1 (mod c)
S(a3

1 −B(ℓ1, ℓ2) · a1 + C(ℓ1, ℓ2), a3
1 −B(ℓ3, ℓ4) · C(ℓ3, ℓ4); c)·

× ec(a3
1 −B(ℓ1, ℓ2) · a1 + C(ℓ1, ℓ2) + a3

1 −B(ℓ3, ℓ4) · C(ℓ3, ℓ4)).

When c is a prime, which should be the most difficult case, T (c) can be interpreted with the

formalism of trace functions over finite fields (see [FKMS19]). We will not elaborate more

on trace functions at this point, as this would go beyond the scope of this thesis. We just
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remark that the Kloosterman sum as well as the exponential function ec(·) can be interpreted

as trace functions of the variable a1 associated to special ℓ-adic sheaves.

A key feature of trace functions is that they satisfy quasi-orthogonality relations of the

form ∣∣∣∣ ∑
a1 (mod p)

t1(a1)t2(a1)
∣∣∣∣ ≤ Ct1,t2 · √

p, (5.12)

where Ct1,t2 is a constant that depends on the so-called conductor of the trace functions

t1, t2 but is independent of p. This quasi-orthogonality feature is based on deep work of

Deligne [Del80] on the Riemann Hypothesis for finite fields. For our purpose, it is best, to

think of t1(a1), t2(a1) as complex numbers of bounded size and so relation (5.12) amounts to

square-root cancellation, unless there is an obvious obstruction.

The quasi-orthogonality relations applied to T (p) for a prime p, and trace functions

t1(a1) = 1
√
p
S(f(a1), g(a1); p) and t2(a1) = ep(f(a1) + g(a1)),

for some appropriate polynomials f, g would imply that

T (p) ≪ p.

Here the implied constant only depends on the degree of the polynomials f and g but not

on their coefficients.

In the case when c is not a prime but a composite integer, usually more elementary

methods suffice to prove good results (see [IK04, Chapter 12]). It is therefore reasonable to

believe that one can show a result of the form T (c) ≪ c1+ε for primes as well as composite

integers c. Under these assumptions we would have

OD ≈ 1
K7/2

∑
ℓ1,ℓ2,ℓ3,ℓ4≪K1/2+ε

∑
c≪K1+ε

T (c)√
c

≪ Kε,



5. Future Directions 113

leading to a sharp bound for the sixth moment of holomorphic Hecke cusp forms in a

compact interval on average. In ongoing work we intend to prove such a sharp bound for

the sixth moment on average rigorously. With more work it might be even possible to solve

Conjecture 5.3.1.
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[CdV85] Y. Colin de Verdière. Ergodicité et fonctions propres du laplacien. Comm. Math.

Phys., 102(3):497–502, 1985.

[CFK+05] J. B. Conrey, D. W. Farmer, J. P. Keating, M. O. Rubinstein, and N. C. Snaith.

Integral moments of L-functions. Proc. London Math. Soc. (3), 91(1):33–104,

2005.

[Cha09] Vorrapan Chandee. Explicit upper bounds for L-functions on the critical line.

Proc. Amer. Math. Soc., 137(12):4049–4063, 2009.

[CM04] J. Cogdell and P. Michel. On the complex moments of symmetric power L-

functions at s = 1. Int. Math. Res. Not., (31):1561–1617, 2004.



Bibliography 115

[CTZ13] Hans Christianson, John A. Toth, and Steve Zelditch. Quantum ergodic

restriction for Cauchy data: interior que and restricted que. Math. Res. Lett.,

20(3):465–475, 2013.

[Del80] Pierre Deligne. La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math.,

(52):137–252, 1980.

[DK18] Soumya Das and Rizwanur Khan. The third moment of symmetric square L-

functions. Q. J. Math., 69(3):1063–1087, 2018.
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