
Analysis Tool as a Service:

A Cloud-based Microservices Architecture for

the Design and Analysis of Aero-derivative Gas Turbines

Maruthi Rangappa

Department of Electrical and Computer Engineering

McGill University, Montréal

Canada

A thesis submitted to McGill University in partial fulfillment of the

requirements of the degree of

Master of Science (MSc.)

c©Maruthi Rangappa, April 2020



Abstract

The design of complex cyber-physical systems such as aero-derivative gas turbines (AGT)

at Siemens Canada, requires the execution of multidisciplinary workflows in which com-

putationally intensive analysis tools are run along with various design workflows. A

workflow-based tool integration framework facilitates the chaining of tools in the work-

flow, minimizes data transfer and conversion, and allows for automatic tool invocation

using tool connectors.

The existing in-house tool integration framework at Siemens Canada necessitates the

local execution of the analysis tools, which results in limited performance for complex

analysis tasks due to limited computing resources. When an analysis tool has to be run

for multiple configurations originating from design parameters, a sequential execution

method is currently used, where the analysis of the next configuration only starts once

the analysis of the previous configuration is completed. The main objective of the cur-

rent thesis is to propose a framework that supports the distributed parallel execution of

analysis tools to reduce the overall execution time of the analysis.

I aim to address these issues with cloud-based microservices architectures for workflow-

based tool integration framework and distributed parallel execution of analysis tools us-

ing replicated instances of web services providing the tool functionalities and accessible

via RESTful APIs. As a proof-of-concept, I implemented web services for wrapping two

analysis tools - a Secondary Air System analysis tool and a Finite Element Analysis tool -

used in the design of AGTs as web services, and service orchestration module to deploy

and manage these services. The evaluation performed using these services prove that

cloud-based microservices contribute to reducing the execution times by running multi-

ple analyses in parallel on distributed cloud infrastructure despite the overhead of data

transfer and service orchestration.

i



Abrégé

La conception de systèmes cyber-physiques complexes tels que les turbines à gaz aéro-

dérivées (AGT) chez Siemens Canada, nécessite l’exécution de flux de travaux multidis-

ciplinaires dans lesquels des outils d’analyse intensifs en calcul sont exécutés. Un cadre

d’intégration d’outils basé sur le flux de travail facilite le chaı̂nage des outils dans le

flux de travail, minimise le transfert et la conversion de données et permet l’appel au-

tomatique d’outils à l’aide de connecteurs d’outils. Le cadre d’intégration d’outils exis-

tant à Siemens Canada nécessite l’exécution locale des outils d’analyse, ce qui se traduit

par des performances limitées pour des analyses complexes en raison des ressources in-

formatiques limitées. Lorsqu’une analyse doit être exécutée pour plusieurs configura-

tions provenant de paramètres de conception, une méthode d’exécution séquentielle est

utilisée, où l’analyse de la configuration suivante ne démarre qu’une fois l’analyse de

la configuration précédente terminée. L’objectif principal de cette thèse est de proposer

un cadre qui supporte l’exécution parallèle distribuée d’outils d’analyse pour réduire le

temps d’exécution global de l’analyse. Dans ce mémoire, je vise à résoudre ces problèmes

avec des architectures de microservices basées sur le nuage dans le cadre d’intégration

d’outils basés sur le flux de travail et l’exécution parallèle et distribuée d’outils d’analyse

à l’aide d’instances répliquées de services Web fournissant les fonctionnalités de l’outil

et accessibles via des API RESTful. En guise de preuve de concept, j’ai implémenté des

services Web pour encapsuler deux outils d’analyse - un outil d’analyse du Système d’Air

Secondaire et un outil d’analyse par éléments finis - utilisés dans la conception des AGT et

un module d’orchestration des services pour déployer et gérer ces services. L’évaluation

réalisée à l’aide de ces services prouve que les microservices basés sur le nuage con-

tribuent à réduire les temps d’exécution en exécutant plusieurs analyses en parallèle sur

ii



une infrastructure cloud distribuée malgré la surcharge du transfert de données et de

l’orchestration des services.

iii



Acknowledgements

Foremost, I would like to thank my supervisor Prof. Dániel Varró, for his continuous

guidance and funding throughout my Master’s study and research. Through his kind-

ness, patience, enthusiasm, and, immense knowledge he kept me motivated throughout

the duration of my program.

I would like to express my gratitude to Mr. Martin Staniszewski of Siemens Canada,

who has been immensely supportive through out and provided me with all resources

necessary to conduct my research. I would like to extend my appreciation to all other

Siemens engineers who supported me through this research.

I am thankful to all the other members of the research group at McGill University and

Siemens Canada who provided me valuable support and suggestions, which helped to

carry out my research.

Finally, I am extremely grateful to my family for their continuous support and encour-

agement through all kinds of situations during my study.

iv



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abrégé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction 1

1.1 Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background: Tool Integration Workflows at Siemens Canada 6

2.1 Introduction to Gas Turbines . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Gas Turbine Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Design of Power Generation Gas Turbines . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Gas Turbine Design Process . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Design Workflows at Siemens . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Workflow Based Tool Integration Frameworks . . . . . . . . . . . . . . . . . 15

2.4.1 Tool Integration Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 Existing Tool Integration Framework at Siemens . . . . . . . . . . . . 17

2.4.3 Architecture of Existing Tool Integration Framework . . . . . . . . . 20

2.4.4 Discussion of Challenges . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

v



3 Background: Concepts and Technologies 24

3.1 Cloud Computing Service Models . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Software as a Service (SaaS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.3 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Microservices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.3 REST APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.4 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 RESTful Microservices Development Frameworks . . . . . . . . . . . . . . . 35

3.4.1 Flask-RESTful Web Service Framework . . . . . . . . . . . . . . . . . 35

3.4.2 Task Queue Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 Docker Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.1 Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.2 Docker Ecosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Docker Swarm Cluster Manager . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6.1 Cluster Management and Service Orchestration . . . . . . . . . . . . 39

3.6.2 Docker Swarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Continuous Integration and Delivery . . . . . . . . . . . . . . . . . . . . . . . 40

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Service Architecture for Tool Integration Framework 44

4.1 Service Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.1 Architectural Components . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.2 Service Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.3 Workflow Execution as a Service . . . . . . . . . . . . . . . . . . . . . 48

4.1.4 Analysis Tool as a Service . . . . . . . . . . . . . . . . . . . . . . . . . 49

vi



4.2 Concepts of Tool Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Software Architecture of the ATaaS Prototype . . . . . . . . . . . . . . . . . . 52

4.3.1 Tool Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.2 Execution Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.3 Service Provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.4 Load Balancer Configuration Management . . . . . . . . . . . . . . . 57

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Development of ATaaS Prototype 59

5.1 Tool Service APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.1 Create an Analysis Task . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.2 Get Task Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.3 Upload Input Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1.4 Starting a Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.5 Get Task Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.6 Download Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Development of Tool Services . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.1 Flask Web Service Instance Creation and Initialization . . . . . . . . 64

5.2.2 Celery Task Queue Instance Creation and Initialization . . . . . . . . 66

5.2.3 Analysis Tool Executors . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.4 Service Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3 Deployment of Tool Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.1 Docker Images for Tool Services . . . . . . . . . . . . . . . . . . . . . 73

5.3.2 Cluster Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.3 Service Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.4 LB Config Management . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4 Development of Execution Manager . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

vii



6 Performance Evaluation 83

6.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Benchmarking Setup and Execution Methodology . . . . . . . . . . . . . . . 84

6.2.1 Benchmarking Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2.2 Hardware and Software . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.3 Execution Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.3 Analysis of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.3.1 RQ1: Effect of ATaaS execution on single local computer . . . . . . . 89

6.3.2 RQ2: Effect of parallel distributed ATaaS . . . . . . . . . . . . . . . . 90

6.3.3 RQ3: Effect of Increasing Service Replicas . . . . . . . . . . . . . . . . 91

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Related Work 94

7.1 Tool Integration for Design of Cyber-Physical Systems . . . . . . . . . . . . . 94

7.2 Workflow Execution as a Service . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.3 Analysis Tool as a Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8 Conclusions and Future Work 100

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.1.1 Conclusions from architecture for tool integration framework . . . . 100

8.1.2 Conclusions of architecture for analysis tool services . . . . . . . . . 101

8.1.3 Conclusions by performance evaluation . . . . . . . . . . . . . . . . . 102

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Bibliography 104

viii



List of Figures

2.1 Sections in an Aero-derivative Gas Turbine. Image source [49] . . . . . . . . 9

2.2 High-Level GT design workflow at Siemens AGT . . . . . . . . . . . . . . . 15

2.3 Structure of a sub-workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Aspects of tool integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Domain model of the main concepts of Siemens tool integration framework 19

2.6 AGT workflow structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Architecture of the existing framework . . . . . . . . . . . . . . . . . . . . . . 21

3.1 IaaS vs PaaS vs SaaS. Image Source [25] . . . . . . . . . . . . . . . . . . . . . 25

3.2 SaaS access and deployment architecture . . . . . . . . . . . . . . . . . . . . 28

3.3 RESTful Microservices and their interactions . . . . . . . . . . . . . . . . . . 31

3.4 REST URI example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Celery task queue [69] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Docker container ecosystem. Image Source [8] . . . . . . . . . . . . . . . . . 39

3.7 Docker swarm architecture. Image Source [9] . . . . . . . . . . . . . . . . . . 41

3.8 CI/CD with Docker ecosystem. Image Source [26] . . . . . . . . . . . . . . . 42

4.1 Service Architecture for WEaaS and ATaaS at Siemens AGT . . . . . . . . . . 45

4.2 Architecture for workflow execution as a service (WEaaS) . . . . . . . . . . . 48

4.3 ATaaS architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Concepts of tool services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.5 Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1 REST APIs of SAS and FEA tool services . . . . . . . . . . . . . . . . . . . . . 60

5.2 API for creating an analysis task . . . . . . . . . . . . . . . . . . . . . . . . . 60

ix



5.3 API response for creating an analysis task . . . . . . . . . . . . . . . . . . . . 61

5.4 API response for get task information . . . . . . . . . . . . . . . . . . . . . . 61

5.5 API for uploading input files . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.6 API for getting task status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.7 Download analysis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.8 Modules of tool service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.9 Tool service creation and initialization . . . . . . . . . . . . . . . . . . . . . . 66

5.10 SAS analysis flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.11 FEA analysis flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.12 Service method for creating task . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.13 Service methods for receiving input files . . . . . . . . . . . . . . . . . . . . . 70

5.14 Service methods for starting the task . . . . . . . . . . . . . . . . . . . . . . . 71

5.15 service method for getting task status . . . . . . . . . . . . . . . . . . . . . . 72

5.16 Download analysis results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.17 Software modules facilitating deployment of tool services . . . . . . . . . . 74

5.18 Dockerfile statement for installing tool dependencies . . . . . . . . . . . . . 75

5.19 Setting up virtual environment . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.20 Cluster management flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.21 Cluster configuration file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.22 Method of creating a service . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.23 Load balancer configuration management . . . . . . . . . . . . . . . . . . . . 80

5.24 Execution manager module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1 Benchmarking setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.2 Hardware configuration of the benchmarking setup . . . . . . . . . . . . . . 86

6.3 Software tools used for benchmarking . . . . . . . . . . . . . . . . . . . . . . 87

6.4 Mean execution times for local vs one instance of ATaaS . . . . . . . . . . . . 90

6.5 Execution times for multiple analysis tasks: local vs ATaaS . . . . . . . . . . 91

6.6 Execution times: Local vs 4 replicas vs 8 replicas of ATaaS . . . . . . . . . . . 92

x



7.1 Architecture of workflow-based tool integration frameworks. Source [3] . . 95

xi



Chapter 1

Introduction

1.1 Context and Motivation

The designing of complex cyber-physical systems (CPS) such as aero-derivative gas tur-

bines (AGT) at Siemens Canada, involves experts from multiple disciplines working col-

laboratively to achieve a common design goal. Experts in each discipline perform various

design and analysis activities focusing deeply on a specific aspect of the gas turbine and

share models and design data across the disciplines. Many commercial and proprietary

engineering tools are used by each discipline to perform their design activities that in-

volve design analysis, validation, and testing.

Design Workflow: In order to streamline the design activities, Siemens Canada has es-

tablished a gas turbine design workflow involving all disciplines with in the organization.

The workflow is hierarchical and involves many intra and inter-disciplinary workflows

having workflow steps that require execution of computationally intensive analysis tools.

In the design workflow, it is often required that the results obtained from one design step

need to be used as input in another design step and involves data conversion and requires

unambiguous labelling of data.

In-house workflow based tool integration framework: An in-house workflow-based

tool integration framework is used at Siemens Canada to execute these workflows. The

framework facilitates the chaining of tools in the design workflow and minimizes manual

data transfer, conversion and labelling, and allows for automatic tool invocation using

1



tool connectors. The framework supports collaborative workflow execution and data

exchange between disciplines by using a centralized server for storing the workflows

and the associated metadata.

Practical Limitations of In-house Tool Integration Framework

Besides all the advanced features offered by the in-house tool integration framework, it

has certain practical limitations that affect the overall performance of the framework.

Limitations due to fixed computing resources: The tool integration framework is in-

stalled either on the engineer’s laptop or a shared network location and runs locally on

the engineer’s computer. It requires a local installation of the analysis tools and results

in limited performance due to the use of limited computing resources available for the

execution of computationally intensive analysis tools.

Limitations due to sequential execution: When computationally intensive analysis

tools need to be run for multiple configurations, a sequential iterative execution method

is used, which takes a long time to give results for all configurations and prolongs the

overall design process time as results from the analysis of multiple configurations is often

required to validate a design decision.

Possible Solutions

Use of powerful computing resources: One possible solution to overcome resource

limitations is to run the tool integration framework on computationally more powerful

workstation computers. Although this method gives a better performance to a certain

extent, it leads to inefficient use of resources as the workstations could be used by only

one user at a time, and if not used by anyone, it stays idle. Moreover, the performance

gain is very minimal when analysis for a large number of configurations need to be run.

2



Multiple instance execution: Another option to reduce the execution time is to run

the multiple instances of the tool integration framework on dedicated computers to in-

voke multiple instances of the analysis tools with different configurations. This solution

would require dividing the execution of configurations across many workflows and man-

ual management of multiple instances of tool integration framework during execution.

Later, results from different executions need to be manually consolidated to get complete

results.

Multi-threading or Multi-processing: The third possible solution to boost the perfor-

mance could be to implement multi-threading or multi-processing in tool connectors to

execute analysis tools in parallel for many configurations to reduce the overall execu-

tion time for multiple configurations. This method leads to the maximum utilization of

the computing resources for the tool integration framework and the analysis tools, and

starvation of other applications on the same workstation, which is not an efficient use of

resources in all cases.

Cloud-based web services: The forth possible solution is to provide services of the

tool-integration framework and analysis tools through web services. Web services can be

hosted on private or public cloud-based computing resources and scaled dynamically to

meet the cost-time requirements of executing a multiple-configuration analysis.

1.2 Objectives and Contributions

In this thesis, we explore the possibility of adopting the architecture of the cloud-based

web services (forth solution from the above) to address the limitations as the cloud-based

web services are known for their scalability, performance, and multiplicity.

3



1.2.1 Objectives

We identified the following objectives to address the limitations described above.

1. Architecture for workflow-based tool integration framework: This thesis aims to

propose an architecture for a workflow-based tool integration framework that

• Addresses the infrastructure limitations of in-house tool integration frame-

work by defining a flexible, scalable execution scheme

• Integrates with and reuses the in-house tool integration framework as much as

possible

2. Architecture for parallel execution of analysis for multiple configurations: This

thesis aims to propose a scalable architecture for parallel execution of analysis for

many configurations to reduce the overall execution time.

3. Prototype implementation using the proposed architecture: This thesis aims to

develop a prototype to demonstrate the feasibility of the proposed architecture.

1.2.2 Contributions

This section summarizes the contributions of this thesis

1. Cloud-based microservice architecture for tool integration framework: In col-

laboration with my supervisor and Siemens engineers, I designed a microservices

architecture for the workflow-based tool integration framework. The architecture

uses atomic and independent microservices to host functionalities of the tool inte-

gration framework and analysis tools as web services that are accessible via RESTful

APIs.

2. Cloud-based microservices architecture for parallel distributed execution of anal-

ysis tools: In collaboration with my supervisor and Siemens project managers and

engineers, I designed a microservices architecture that has analysis tools running in

4



a containerized environment on cloud infrastructure to achieve parallel distributed

execution of analysis for multiple configurations.

3. Development of analysis tool services and service orchestration module: I de-

veloped web services for two analysis tools by adopting the proposed architecture

for parallel distributed execution. A service orchestration module was developed to

manage the deployment, scalability and availability of the analysis services.

4. Performance evaluation of analysis services: I performed scalability evaluation of

the analysis services by using a custom test setup and documented the observations.

1.3 Thesis Outline

In general, this thesis is written in an impersonal style (dominantly in third person sin-

gular or passive sentences). When I wish to emphasize my own contribution, first person

singular sentence is used. When I wish to emphasize the joint contributions or decisions

made together with my supervisor and project managers first person plural is used.

Chapter 2 provides an overview of the multidisciplinary design workflows executed

for the design of complex cyber-physical systems and workflow-based tool integration

frameworks. Chapter 3 provides an overview of the concepts of the cloud-based web

services applicable in the context of this thesis and the relevant tools and technologies

used in this thesis. Chapter 4 describes the cloud-based microservices architecture for

the workflows-based tool integration framework and analysis tool services. Chapter 5

describes the software architecture of analysis tools services and important modules of

the analysis tool services. Chapter 6 reports observations of the performance evaluation

experiments conducted using the analysis tool services. Chapter 7 outlines the related

work and Chapter 8 presents the conclusion and future work.

5



Chapter 2

Background: Tool Integration Workflows

at Siemens Canada

Gas Turbines (GT) are widely used in various power generation applications primarily

due to their flexibility and their wide output power range from 3MW to 600MW. Since

their introduction into the power generation segment, gas turbines have evolved into

very complex cyber-physical systems (CPS). The design of such complex gas turbines

systems is a very challenging task and involves experts from many disciplines work-

ing together to complete complex design workflows and need a wide range of tools and

powerful computing resources. This is the exact situation in one of the Siemens Energy

(formerly, Siemens Power Generation (PG)) divisions, which produces Aero-derivative

Gas Turbines (AGT) gas turbines, that have an output power ranging up to 65MW [50].

Recent advancements in software and computer engineering can be leveraged to increase

the efficiency of this design process by increasing collaboration and by integrating tools

to create efficient and automated workflows.

This chapter provides the background information necessary to understand the chal-

lenges faced by Siemens AGT division in the gas turbine design process and how the tool

integration practices and frameworks can help to over come many of these challenges.

6



2.1 Introduction to Gas Turbines

Gas turbines are internal combustion engines that convert the chemical energy of the fuel

into either mechanical energy that can turn shafts to produce electric current or to kinetic

energy that can generate thrust to propel aircrafts [53]. The gas turbines were originally

developed during the 1930s and 1940s as an aviation engine. Later in the early 1980s, they

entered the power generation market as standby power generators and for peak power

support on power grids.

Gas Turbine in Aviation

All modern civil and military aircrafts, helicopters and business jets use gas turbines be-

cause of their superior thrust to weight ratio. The use of gas turbines in aviation appli-

cations has helped the aviation industry to increase the fuel efficiency per passenger seat

by 70 percent over the last decades[42]. The gas turbines are also playing a very critical

role in reducing the level of CO2 emissions of the aviation industry to meet the require-

ments of the regulatory bodies such as the Advisory Council for Aviation Research and

Innovation in Europe (ACARE)[42].

Gas Turbine in Power Generation

Gas turbines are widely used in various power generation applications firstly due to their

operational responsiveness to support peak power demands and standby power gener-

ation needs as gas turbines can be quickly brought in to and out of operation. Secondly,

gas turbines are easy to set up compared to other conventional power generation meth-

ods such as thermal power plants as gas turbines do not need pre-processing stages such

as coal burners or nuclear reactors to generate heat required to produce steam. Finally,

gas turbines are available for small to large power generation scenarios and cover a wide

spectrum of industries ranging from oil and gas to large power generation plants as gas

turbines have a wide range of output power capacity (3M to 400MW). For these same

7



reasons, gas turbines play a very critical role in the recent widespread transition towards

renewable energy sources as renewable energy sources such as wind and tidal power

generation can not provide stable power due to the very nature of the input sources used

for power generation, for example, not enough wind is blowing on a given day. In all

cases, when renewable energy sources fail to give stable power, gas turbines are used

to generate auxiliary power needed to provide stable output power. In addition to air-

craft propulsion and domestic power generation gas turbines are also used in many other

industries such as[50]

• The oil and gas industry to produce the electricity required for driving the onshore

and offshore oil production. GTs are also used to compress the gas into pipelines to

transport it over long distances.

• The chemical and fiber, cement, metals, and mining, as well as other manufacturing

industries for power generation and cogeneration

Gas Turbine Evolution

Since their initial development as engines that power the aircrafts, the gas turbines have

evolved a great amount with the advancements made in the mechanical, electrical, com-

puter and software engineering. Today, they are very complex CPS that operate at high

efficiencies, lower investment, and lesser emissions. The gas turbine manufacturers con-

tinue putting their efforts to further improve on already achieved performance and emis-

sions goals by adopting the industry 4.0 technologies to bring in more digitalization and

smartness into the gas turbines and by automating design and analysis processes through

tool integration technologies.

The following sections of this chapter will give an overview of the gas turbine de-

sign process, and design and analysis workflows used in designing aero-derivative gas

turbines at Siemens power generation division, which is the industry partner for this re-

8



search work. A later section of this chapter provides an overview of the workflow based

tool integration technologies.

2.2 Gas Turbine Components

It is essential to have an overview of the main components of a gas turbine to understand

the gas turbine design steps comprehensively. A gas turbine has 3 main components: 1)

Compressor, 2) Combustor and 3) Turbine

Figure 2.1: Sections in an Aero-derivative Gas Turbine. Image source [49]

Compressor

The compressor, which is located near the inlet of the gas turbine, is used to increase the

pressure of the air. The compression happens because the speed of the air is increased

as it passes through the stator and rotor blades of the compressor, and more and more

incoming air is pressed into the tiny gaps between the rotors and stators. This high-

pressure air is necessary for efficient combustion of the fuel in the combustor of the gas

9



turbine. A compressor in a turbine may have up to 3 sections as shown in Figure 2.1,

namely: Low-Pressure Compressor (LP Comp), Intermediate Pressure (IP) compressor,

and High-Pressure (HP) compressor. These multiple sections of the compressors increase

the pressure of air gradually to a very high point and are mixed with the fuel before

entering into the combustion chamber. Each section of the compressor will typically have

many stages (One set of rotor and stator blades in the compressors are referred to as

a stage). The number of stages needed in the turbine is decided based on the size of the

compressor and the air pressure and temperature needed at the output of the compressor.

Combustor

The mixture of highly compressed air and fuel is burnt inside the combustor to produce

a jet of hot air at high velocity to move the turbine. The type of combustor used in a

gas turbine depends on the type of fuel (natural gas, diesel, or kerosene) that the gas

turbines burn. The most common types of combustor used in the gas turbine industry are

annular combustor, Dry Low Emission (DLE), and Wet Low Emission (WLE) combustor.

The efficiency of the gas turbine depends mostly on how well the fuel is burnt in the

combustor.

Turbine

The high-velocity hot air coming out of the combustor moves through the turbine sec-

tions before exiting the gas turbine, acting on the airfoil-shaped turbine blades on its way

out. The reaction caused by this movement turns the turbine mounted on a shaft, which

is also connected to the shaft of a generator. Like the compressor, the turbine is also con-

structed in multiple sections. The section of the turbine that is close to the combustor is

called High-Pressure Turbine (HPT) and is always subjected to very high temperatures

that are above the melting point of the metals used in the making of these turbine blades.

These blades are cooled by applying cooling techniques to prevent them from melting. To

make the most use of the high velocity available near the combustor, HPT blades densely

10



populated. A large portion of the gas turbine design efforts is concentrated around the

design of the HPT turbine blades due to the complexity involved in designing the cooling

passages. The HPT section is followed by an Intermediate Pressure Turbine (IPT) and

Low-Pressure Turbines (LPT). Blades on these turbine sections are not cooled as they are

subjected to reduced temperatures because the air loses the heat as it passes through the

HPT section. It is to be noted that while the compressors are upstream (low to high),

turbines are downstream (high to low) and each compressor stage is driven by the cor-

responding turbine stage, i.e., HPC is driven by HPT, IPC is driven by IPT and LPC is

driven by LPT.

2.3 Design of Power Generation Gas Turbines

The early gas turbines were highly similar to the gas turbines used in the aviation indus-

try and used the same or similar components as their siblings. Consequently, they were

called aero-derivative gas turbines. As the demand for gas turbines in the power genera-

tion industry grew exponentially, more and more gas turbines were designed specifically

to meet the needs of the power generation industry and were called industrial gas tur-

bines. These industrial gas turbines were bigger in construction than their aero-derivative

counterparts as the size and weight were not a concern for stationary applications such

as power generation. Today both aero-derivative gas turbines and industrial gas turbines

co-exist in the market and serve different power generation needs.

Siemens in Power Generation

Siemens has been in the power generation market since the beginning and has estab-

lished itself as a significant player in the market in both industrial gas turbine and aero-

derivative gas turbine segments. The company has a dedicated division called Power

Generation (PG), which is specialized in the production of both types of turbines. Over

the years, PG division has acquired a considerable amount of specialized knowledge that

11



is possessed only by few in the industry. Today, Siemens PG has established standard de-

sign steps that help them to produce efficient and competitive gas turbines in the market.

The division has also developed many powerful and efficient design and analysis tools

that help teams to execute various design steps to achieve high productivity.

2.3.1 Gas Turbine Design Process

A typical gas turbine design starts with a specification prepared by the market research

experts based on the facts, current and future trends that they gathered, and the require-

ments derived from the customer needs and demands [42]. After some preliminary stud-

ies about the required configuration, existing designs, and design feasibility, the specifi-

cation is passed on for detailed design by specialized disciplines. Based on the nature of

the work, tools used, and the domain expertise of the involved engineers, Siemens PG

has identified the engagement of nine different disciplines in the AGT design process.

Involved Disciplines

1. Combustion: The combustion discipline is involved at the beginning of the design

cycle in helping the performance discipline to create an initial performance model.

Further, it is involved in the design and development of the combustion chamber

for the gas turbine

2. Design: The design discipline is a group of mechanical designers who design gas

turbine components and are involved throughout the gas turbine design process

3. Performance: The performance discipline plays a vital role in designing the per-

formance model at the beginning of the design process. The performance model is

a thermo-mechanical model providing pressures, temperatures, and mass flow at

every section of the engine as well as shaft rotational speeds.

4. AeroThermal: Experts in this discipline provide aerodynamic and cooling design

and analysis of compressors and turbines using state of the art tools and methods

12



5. Secondary Air System (SAS): The SAS engineers perform analyses that determine

whether the SAS will be able to provide the required amount of cooling air for

blades and vanes and sealing to the turbine components at a given operating point.

Besides, SAS engineers are responsible for bearing load calculations to assess the

integrity of bearings.

6. Thermo-Mechanical: This discipline performs thermal analysis on the entire en-

gine and produces useful information for mechanical design and lifing disciplines

to perform their analysis.

7. Mechanical Modelling: Mechanical modeling team performs the Finite Element

Analysis (FEA) on the static structural parts such as casings, bearing housings, and

mounts to understand the critical engine operating speeds and loads.

8. Stress Analysis: The engineers of this discipline perform stress analysis on the var-

ious turbine components particularly turbine blades

9. Lifing: The experts of this team perform different analyses to determine the life of

gas turbine components for the given performance attributes

2.3.2 Design Workflows at Siemens

In the detailed design phase, disciplines perform design activities concentrated on a spe-

cific aspect of the gas turbine. While disciplines such as combustion, aero-thermal, and

SAS perform design activities focused on their respective components, disciplines such

as performance and thermo-mechanical perform design activities focused on the entire

gas turbine. Thus the detailed design process is very segregated but requires interaction

between disciplines to communicate the design decisions and often involves sharing lot

of design data.

A formal design workflow is established within Siemens AGT to facilitate the collab-

oration between disciplines and to streamline the gas turbine design process with in the

13



organization. The workflow is hierarchical and iterative in nature with a high-level work-

flow facilitating collaboration while low-level workflows are focused on iterative design

analysis tasks. This section gives an overview of these workflows.

High-level Workflow

Figure 2.2 shows a simplified end-to-end gas turbine design workflow executed at Siemens

AGT. The workflow is simplified by excluding the manufacturing and real engine testing

because the design iterations triggered by these two design steps are minimum. The

workflow focuses more on the design steps - that are iterative and central to the detailed

design - ranging from performance analysis to assessment of the life of critical compo-

nents (lifing).

The disciplines in the workflow are arranged in the order of their occurrence in the

design process. The combustion discipline helps the performance team to design the per-

formance model at the beginning of the workflow. Since the combustion chamber is a

complex GT module, it doesn’t get modified frequently. Since it takes a long time to

design a new combustion chamber, it uncommon to see new combustion chambers for

every version of GT. Consequently, The performance discipline is generally placed at the

beginning of the workflow.

The major section of the workflow has a modified waterfall structure. The output of

one step is used as the input to the next step, and feedbacks are provided to the previous

steps. The mechanical modeling discipline has involvement only with the stress discipline,

and the design discipline is present throughout the workflow and supports all disciplines

by providing mechanical designs.

Low-level Workflows

The end-to-end high-level workflow is subdivided into many low-level workflows called

low-level workflows. The general structure of a low-level workflow is shown in Fig-

ure 2.3. Executing a low-level workflow always involves running a design analysis tool -

14



Figure 2.2: High-Level GT design workflow at Siemens AGT

represented as Process - on a given set of inputs to produce a set of outputs. The low-level

workflows capture tasks executed by disciplines in greater detail and can be executed

independently of other low-level workflows provided all required inputs are available.

A low-level workflow of the discipline, which is located at a higher step, can execute

a new analysis when another dependent low-level workflow located at a lower step is

working on the previous versions of the data. At Siemens AGT, low-level workflows are

executed on a proprietary workflow-based tool integration framework.

2.4 Workflow Based Tool Integration Frameworks

At Siemens AGT, experts of each discipline use different tools along the workflow steps to

perform their design activities. A design activity generally involves the use of the output

15



Figure 2.3: Structure of a sub-workflow

produced by a tool at one workflow step as the input of another tool in the next work-

flow step. One could manually run the first tool and take the produced results, convert

them to the format needed by the second tool and manually run the second tool with

the updated input. In the light of how computers and programming have changed the

way engineering activities are performed in industries, the natural impulse is to automate

such activities and could be referred to as tool integration [66].

2.4.1 Tool Integration Aspects

When many workflow based tool integration use cases are considered, one could see that

there are many aspects common to all tool integration needs. Figure 2.4 shows few of

those aspects which are most relevant in the context of the gas turbine design at Siemens

AGT.

Data Exchange in the context of the workflow based tool integration covers the needs of

chaining the output of one tool to the input of another tool. When the there is a difference

in the format (file type, data format etc.) of the output produced by the first tool and the

input needed by the second tool, a Data Conversion step is involved in tool integration. In

an iterative design process, input used by an analysis tool may change due to the change

in design decisions or by incorporating feedbacks originating other analysis results. It is

16



Figure 2.4: Aspects of tool integration

necessary to keep track of input revisions and corresponding output and feedback data by

labelling the data appropriately. The Data Tracing aspect of the tool integration addresses

this requirement. The Control Invocation aspect of the tool integration refers to the auto-

matic execution of a tool in the workflow when all required input conditions are met. The

Platform Distribution aspect of the tool integration refers to the desired benefit of executing

tools on heterogeneous computing platforms (different OS and hardware infrastructure).

2.4.2 Existing Tool Integration Framework at Siemens

Integration of two or more tools could be done by writing scripts such as MS Dos batch

scripts or Unix shell scripts or by writing specific applications in high-level programming

languages such as C++ or Python to address a specific tool integration requirement. Such

need based tool integration practices results in ad-hoc tool integration solutions which

may be error prone and unstable.

Realizing these issues, and to bring in the benefits resulting from the tool integration

aspects Siemens has developed an in-house tool integration framework. An in-house

framework offers greater flexibility in workflow design and execution as it can be modi-

17



fied to meet the specific needs of the group. This section gives an overview of workflow

design and execution activities involved in the context of the existing tool integration

framework.

Concepts of Siemens Tool Integration Framework

The Figure 2.5 shows a domain model of the main concepts of the Siemens tool integra-

tion framework. The Server is the central database in which workflow projects, workflow

revisions, and data revisions are stored. The Project represents a group of workflows re-

lated to one AGT engine. An engine has many components such as compressor, turbine

and is represented as the Component in the domain model. An engineer of Discipline work-

ing on the component creates analysis Tasks composed of many Designs which have many

Revisions. Every design has a Workflow and is globally defined in the framework using a

WorkflowDefinition file. A workflow consists of many configurable WorkflowSteps. Each

workflow step has one or more Input, Output, and a Tool, and is defined using a Workflow-

StepDefinition file which contains parameters to specify the nature of execution and the

target tool.

Workflow Design in Siemens Tool Integration Framework

In workflow design stage, a Siemens engineer composes a workflow using a workflow

definition file. An example workflow composed using this framework is shown in Fig-

ure 2.6. A workflow consists of an Inputs block, a Workflow Step (Performance Tool), and an

Outputs block. The workflow step has configuration parameters to specify the analysis

tool to be run, the mode of execution (batch or interactive) etc. At this stage, the engineer

uses many design objects provided by the framework and performs the following:

1. Configures one or many tools to take designated inputs to produce desired outputs.

2. Develops modules necessary to run the tool.

18



Figure 2.5: Domain model of the main concepts of Siemens tool integration framework

3. Assigns the workflow to a project which typically represents the gas turbine version

that the discipline is working on.

4. Uploads the workflow to the workflow repository.

Figure 2.6: AGT workflow structure

19



Workflow Execution in Siemens Tool Integration Framework

In this stage, an engineer

1. Creates designs using the workflows.

2. Adds them to a personalized task list.

3. Executes these design workflows and examines the output produced.

4. When the satisfactory results are produced, he/she saves the outputs by creating

a design revision. These design revisions can be retrieved anytime to review the

results or shared with other users of the group for their review.

2.4.3 Architecture of Existing Tool Integration Framework

The architecture of the existing tool integration framework used at Siemens AGT is shown

in Figure 2.7. The framework is a monolithic application in which the functional compo-

nents are tightly coupled. The workflow execution front-end is responsible for rendering

the workflow definitions on the UI and facilitate the execution of the workflows. The

front-end component captures the user actions on the UI and calls methods of the work-

flow execution logic to perform corresponding actions. To execute the analysis tool the

workflow execution logic communicates with the analysis execution logic. Workflows are

stored in a workflow repository and are accessed by The workflow execution component or

analysis execution components via DB interface objects. Similarly, the gas turbine design

models are stored in a model repository and are accessed by analysis execution logic when

necessary.

2.4.4 Discussion of Challenges

The current workflow-based tool integration framework used at Siemens AGT is stable

and extensible. It provides Siemens engineers with a feature-rich environment to effec-

tively define and execute workflows. However, Siemens engineers face many challenges

20



Figure 2.7: Architecture of the existing framework

while using the framework due to the limitations imposed by the architecture and the

technologies used. The following list highlights a few of these existing limitations in the

framework.

• Local (desktop) execution: Engineers run the workflow based tool integration

framework and the analysis tools on their own laptop or a workstation. This lo-

calized execution results in limited performance. Performance is even more limited

when the framework and tool are installed on the network location due to higher

application load time. Varying network bandwidths and speed also affect the per-

formance of the workflow execution.

Results produced with local execution are accessible only on the engineer’s laptop.

The engineer has to manually upload or publish the results to a central database to

21



share the results with other engineers. This limits collaboration and may result in

sharing of incorrect versions of results.

• Insufficient compute power: Many design and analysis tools used in AGT design

are computationally intensive and require powerful computational resources. An

engineer may have a standard office laptop computer or a high-end configuration

tech-laptop which often limits the performance of such tools.

Teams use workstations with high-end hardware configuration to execute computa-

tionally intensive design and analysis steps. These workstations are often dedicated

to one type of analysis and are administered by one group which results in waste of

computational resources.

• No on-demand scalability: The workflow execution frames allows running only

instance of workflow or tool at anytime. Single execution instance is a limitation

when an engineer needs to run a particular analysis for multiple engine configura-

tions. In such cases, the engineer has to resort to sequential execution of multiple

configuration which results in long waiting time for results and delays the overall

workflow.

If a parallel multiple configuration execution is necessary, an engineer must man-

ually setup multiple runtime instances of the framework and run them simultane-

ously. Such a manual setup is time consuming, uncomfortable and error prone.

• Platform dependency: AGT has design and analysis tools are that are OS spe-

cific. The requirement to run tools in heterogeneous platforms is not supported in

the current framework. The framework is platform-specific and supports execution

of tools targeted for host platform. Because of the platform-specific nature of the

framework, users need to switch between the Windows and Linux operating sys-

tems to run different tools. By doing this, engineers spend a lot of time performing

non-value-added tasks.

22



• Need for manual deployment: A Siemens engineer or the IT support team manu-

ally installs the workflow based tool integration framework on the engineers laptop

computers or on a network location securely accessible to the engineer. Design and

analysis tools used in the workflow are also installed either on engineer’s laptop

computers or the network location. When a new version of the framework or tool

is available, this manual deployment is repeated. This decentralized deployment is

error prone and requires manual intervention. The deployment becomes even more

challenging and error prone when tool integration framework has to be deployed at

multiple geographical sites of Siemens.

2.5 Summary

This chapter provided a detailed overview of the background to understand the context in

which this thesis is developed. It described the tool integration aspects that are applicable

in the context of designing a complex cyber-physical systems such as an aero-derivative

gas turbine at Siemens AGT. It also gave an overview of the existing tool integration

practices and frameworks used at Siemens AGT. The chapter concluded by discussing

the challenges associated with the existing tool integration framework.

23



Chapter 3

Background: Concepts and Technologies

Delivering AGT design workflow execution and analysis services (Referred to as AGT

services from this point onwards) as cloud-based microservices requires the use of a wide

range of concepts and technologies from the recent developments in the field of software

engineering and cloud computing. As part of this thesis, we studied cloud computing

service models used in delivering web applications.

3.1 Cloud Computing Service Models

The cloud industry has adapted three main service models namely Infrastructure as a

Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS). Figure 3.1

shows a comparison of these three service models.

• Infrastructure as a Service (IaaS): IaaS refers to the offering of computing resources

such as processors, storage and networking functions as service. An IaaS provider

sets up a large pool of computing hardware and offers it in portions to its users

on demand and charges them based on usage. The consumer hosts applications

which are typically web services on this hardware. Hosting applications on hard-

ware provided by an IaaS provider gives many benefits to the consumer. Firstly, the

consumer does not need to invest money to purchase and setup Information Tech-

nology (IT) infrastructure. Secondly, the consumer can add more resources easily to

scale up their service in case they receive unexpected high demand for their appli-

cation. Similarly, they can easily scale down when the demand goes down. Finally,

24



Figure 3.1: IaaS vs PaaS vs SaaS. Image Source [25]

they do not need to maintain the IT infrastructure as the IaaS provider is responsible

for all the maintenance.

• Platform as a Service (PaaS): PaaS refers to the offering of components such as

Operating System (OS), middleware and runtime libraries as service. The consumer

uses these components to develop their applications which are offered to end-users

as services.

• Software as a Service (SaaS): SaaS refers to the offering of software applications

as services to the end-users. The service provider hosts the application on a private

server or a public IaaS facility and provides Uniform Resource Locators (URLs) to

the end-users to access applications using thin client applications such as a web

browser. A major portion of the work carried out as part of this thesis is developing

software applications to offer AGT design analysis tools as a service that exemplifies

25



SaaS. The following sections of this chapter give an overview of the concepts and

technologies of SaaS that are most relevant to this thesis.

3.2 Software as a Service (SaaS)

The SaaS service model has revolutionized the way software is sold, delivered, main-

tained, and used. The software provider sells the licenses and gives access to the user to

the subscribed software features that can be easily accessed using a thin client application

over the internet. The software provider delivers the software to a centralized server and

maintains it. The infrastructure and the platform on which the software runs is abstract to

the user. This subsection gives an overview of the SaaS service model of cloud computing.

3.2.1 Introduction

SaaS is a capability provided to the consumer to use the service provider’s application

running on a cloud infrastructure [39]. SaaS symbolizes a transformation in the way

in which software is sold and distributed by the application providers and how con-

sumers use it. Historically, companies developing software applications sold licenses and

shipped an installer on different physical media such as USB disk or CD-ROMs, or they

provided access to a secure location from where consumers could download the software

installer over the internet.

The SaaS significantly simplifies the software delivery and maintenance process [34].

The software provider deploys the software on a cloud infrastructure that is privately

owned or rented from a third-party public cloud provider. In the case of private in-

frastructure, the software provider will manage the infrastructure. The public cloud

infrastructures such as Amazon Web Services (AWS) [7], Microsoft Azure [32], Google

Cloud [18] are provided by third party vendors in the market and the software provider

pays to the cloud provider on a usage basis. The Consumer can access the application by

using a standard thin client application such as a web browser or by using an application-

26



specific client developed by the service provider using a mobile device or a Personal Com-

puter (PC).

The cloud infrastructure including network, servers, operating system, storage, and

even the individual capabilities of the application is abstract to the consumer. The con-

sumer does not know, manage or control these resources. In a few use cases, the consumer

may be able to configure a few parameters of the application through application settings.

Few well-known applications offered in the SaaS model are Microsoft Office 365, Google

applications, and SalesForce.

3.2.2 Architecture

Figure 3.2 shows the architecture for SaaS which follows the traditional client-server ar-

chitectural style. The software product or the application being offered - AGT Services

in this case - runs on the server component. The browser, mobile applications, and desktop

applications are typical client applications which communicate with the server hosting the

SaaS application over a secure internet channel using a standard protocol such as Hyper-

Text Transfer Protocol Secure (HTTPS). Over the years, the industry has adopted many

communication schemes over HTTPS for information exchange between the client and

the server. The REpresentational State Transfer (REST) [14] Application Programming

Interfaces (API) style has gained popularity in recent years and is described in detail in

Section 3.3.3 of this chapter. The SaaS application uses many Platform Services which may

either be provided by the cloud service provider as PaaS or open-source products such as

Docker. These platform services run on cloud infrastructure which is either provided by

a cloud service provider as IaaS or could be in-house infrastructure.

3.2.3 Benefits

SaaS applications enable the customer to access applications over the network. Features

of the applications are available from a server that is centrally set up and managed by

27



Figure 3.2: SaaS access and deployment architecture

developers. As the application setup is centralized, all updates are immediately available

to the customer without needing to download or install any patches. These features of

SaaS provide many benefits few of which are most relevant to this thesis are listed below.

1. Easy to incorporate: The customer can be up and running instantly as SaaS appli-

cation is delivered via the internet and does not require any installation or setup at

the customer end.

2. Easy to manage: SaaS application is hosted on a server hence it is centrally managed

by the development team with the help of Continuous Integration and Continuous

Deployment (CI/CD) process, which helps in the seamless testing and delivery of

application to the servers.

3. Increased accessibility: The ability to access the service by using simple clients

increases user accessibility. SaaS application model saves data on the securely ac-

cessible servers. Making it available for collaborative access from inside or outside

the organization through secure channels. This eliminates geographical limitations

to access application features. Geographically distributed teams will function better

with collaboration.

28



4. Increased productivity: A user can run multiple instances of computation-intensive

applications and obtain results faster. When combined with increased accessibility,

the SaaS model results in a considerable increase in productivity.

5. Platform independence: The SaaS model gives platform independence at both

client side and server side. On the client side, an SaaS application that is hosted cen-

trally on a server can be accessed by the client running on any platform (Windows,

Linux, Mac). On the sever side, the SaaS service can be hosted on heterogenous

platforms.

6. Reduced client-side resources: Since the application is centrally hosted, all high

computation tasks are run on the server. The client-side require only basic resource

to run a browser or a client application.

7. Improved scalability SaaS applications are scalable on demand by creating more

instances of the application when the demand increases and vice versa.

3.3 Microservices

In order to design and deliver a tool or application in the SaaS model, we need to em-

brace a reasonable software architecture. This section briefly discusses different software

architectures used in developing server-side applications and then gives an overview of

microservices architecture as this architecture style is most relevant in the context of this

thesis.

3.3.1 Introduction

For a long time, server-side software applications have been dominantly using a mono-

lithic software architecture. A monolithic application embeds all business logic in a single

executable file and many Dynamic Link Libraries (DLLs). It is easy to deploy and it can

be easily scaled up by running replicas of the application on multiple servers behind a

29



load balancer. A monolithic application like Enterprise Java Beans is highly coupled and

the complexity increases as the application gets bigger.

Service Oriented Architecture (SOA) [13] is another architecture style used in the

server-side software engineering community. SOA divides the application into a few

coarse-grained services that communicate over the Enterprise Service Bus (ESB) [4]. Each

service may still resembles a monolithic application in nature and has the same complex-

ity issues of a monolithic application.

Since early 2011, a new architectural style called RESTful Microservices has emerged

in the area of server-side application development and has seen high adaptation [68].

This architecture style is inspired by Service-Oriented Computing (SOC) [19] in which

the server-side application is divided into programs called services that offer functional-

ities to other SOC components via message communication. The following subsections

describe this architectural style in more detail.

3.3.2 Architecture

Microservices architecture is widely used in developing cloud-based server-side appli-

cations. A microservice is a small, independent application running in its own process

and communicating with lightweight mechanisms [15]. Every microservice has a single

responsibility and can be independently tested and deployed to provide the capability of

software product [63] [48] [56].

RESTful microservices architecture is an adaptation of the REST architectural style for

web services initially proposed by Fielding, R. T [14] and microservices architecture dis-

cussed above. REST is a set of guiding principles that are specified to have simplicity,

scalability and high performance in applications such as web services. A REST-compliant

(RESTful) microservice must have client-server architecture and use a stateless commu-

nication protocol such as HTTP(S).

An example microservices architecture for web services is shown in Figure 3.3. The

Microservices are hosted on the distributed cloud servers. Each microservice has a single

30



responsibility and is accessible through RESTful APIs. When an API request is received

from the client, the microservice executes the corresponding business method and sends

the response in the predetermined format.

The mobile and desktop applications clients that are capable of calling RESTful APIs

access the features offered by microservices through an API gateway. The API gateway

takes one request from the client and constructs multiple requests and sends them to tar-

get microservices. It then constructs a consolidated response from individual responses

received from different microservices and sends it to the requesting client. The API gate-

way finds the target microservices through the service discovery. The service orchestration is

responsible for managing the service availability and scalability.

A thin client application like a web browser cannot interact with the microservices

through RESTful APIs. The browser requests a webpage from a web UI service which is

running along with other microservices. The UI that is loaded with the webpage is capa-

ble of sending RESTful API requests to access the feature offered by other microservices.

Figure 3.3: RESTful Microservices and their interactions

31



3.3.3 REST APIs

The fundamental concept behind REpresentational State Transfer (REST) architecture is

that the web application has resources whose runtime (REpresentational) state is ex-

changed between the client and server. The REST architecture states that web applications

achieve this by implementing uniform interfaces called REST APIs[14].

Uniform Interfaces

In the typical client-server interaction of web services, the client sends a request to per-

form some action on a system resource. One of the constraints imposed by the REST

architecture guidelines is that the web service shall allow different clients to use the same

APIs to operate on resources. This constraint has invariably lead the developers for web

services to use Create, Read, Update and Delete (CRUD) operations that are typically

found in the database systems. This drive is also because these operations can be easily

mapped to GET, PUT, POST and DELETE methods of HTTP(S) protocol embedding the

REST APIs.

REST architecture has laid down the following constraints for implementation the of

uniform interfaces.

Resource Identification through URI

The resource is the key information abstract in REST. A resource is analogous to an object

instance in the object-oriented paradigm. It has a type, associated data, relationships with

other resources and a set of methods to operate on. Any aspect of the application domain

that can be named is a resource (e.g. person, document etc.). REST mandates that these

resources shall be identified through a Unique Resource Identifier (URI) which consists

of base URL and a resource part. An optional version information is often used to identify

the API version. For example, an URL for getting the information about a project with id

12345 using the v1 version of APIS is shown in Figure 3.4

32



Figure 3.4: REST URI example

Manipulation of resources through representations

The server returns the state of the identified resource in different formats such as HTML,

XML, JSON etc. These formats are called resource representations. The client updates

or creates a new resource by sending these resource representations. The server may

support multiple resource representations and the client can request a particular resource

representation by indicating the representation type in the Content-Type header field of

the HTTP protocol.

Further the REST architecture constraints state that every message exchanged between

the client and server must be independent of the previous or future message and the client

shall be able to figure out all possible operations that can be performed on the resource

by parsing the response.

3.3.4 Benefits

Microservices designed to meet the REST interface design constraints naturally have the

following benefits.

• Simplified Design: An Important requirement of RESTful microservices is that

all services are stateless. The server does not keep track of the client’s state. The

client transfers its context whenever necessary to the server and the server provides

requested information based on this context. This allows the server-side applica-

tion to treat each request independently and simplifies the server-side application

design.

33



• CI/CD Support: Microservices fit well in the DevOps [40] process as it is easy to

deploy a small, independent, and stateless microservice on cloud infrastructure.

• Easy Scaling: It is also easy to scale up or scale down. A microservice is scaled up

simply by starting a new instance of the service on the server and by registering it

with a load-balancer or an API gateway.

• Decentralized Database: Dividing the application into single responsibility mi-

croservices leads to the separation of data. Data corresponding to one business

functionality is stored in one database and is attached to the required service.

• Distributed Application: Small, independent services can be hosted on any net-

worked computing resource. This invariably leads to a distributed system and elim-

inates the risk of single-point failure.

• Technology Independence: Each microservice is independent and communicates

with other microservices through standard channels. This gives an incredible amount

of independence to developers in choosing the technology stack for the service.

There is no need to adopt a technology or database because other services are using

it.

Open API Specification

As the popularity of REST APIs in the web services community increased, efforts are

made to standardize the API design. Since 2016, an open-source community called Ope-

nAPI Initiative [45] has started releasing specifications referenced as OpenAPI Specifica-

tion (OAS) [44] to help the community design APIs with the following intentions.

• Facilitate designing of programming language-agnostic APIs so that both users and

machines comprehend the abilities of APIs without requesting access to source code

or extra documentation.

34



• Promote a design-first approach to invest enough energy on designing APIs instead

of diving into usage.

• Use a standard way of recording and communicating APIs by using YAML or JSON

to write API specifications.

• Facilitate code generation, test generation and test automation through the usage of

standard and uniform specification formats YAML and JSON.

3.4 RESTful Microservices Development Frameworks

3.4.1 Flask-RESTful Web Service Framework

Various frameworks such as Node.js[61] in Java Script, Flask[51] in Python, Spring in

Java are used for development of RESTful microservices. For developing AGT services

we chose Flask-RESTful framework primarily because it native level integration with the

Siemens tool integration framework, which is also written in Python programming lan-

guage. Using a web service development framework in Python programming language is

necessary to reuse the modules of existing tool integration framework in the development

of the workflow execution service.

The Flask [31] is one of the widely used framework for building web services in

Python programming language and is designed to make getting started easy with abil-

ity to scale up do design complex web applications. The Flask-RESTful is a lightweight

wrapper above the Flask framework which makes designing the RESTful web services

with Flask more easy.

3.4.2 Task Queue Framework

In synchronous request processing web services the server waits until the requested task

is complete before sending the reply to the client and is blocking on both client and server

35



sides. For long running tasks such as AGT analyses, this will result in non-responsive,

high-latency workflow execution. A responsive low-latency web service would need to

reply to the clients immediately and run the long tasks in the background and be ready

to receive new requests. This can be achieved by queuing the incoming requests with the

help of a task queue and then executing the tasks in the background in the order they

arrived.

We studied many task queue frameworks and found that the Celery [17] framework

is the most suitable for distributed microservices as the task queue itself has a distributed

architecture and is easy to set up. The Celery task queue framework shown in the Fig-

ure 3.5 allows applications to post tasks in a Task Queue maintained in a Message Broker.

Then the celery task manager distributes the tasks one-by-one to one of the registered

Workers to execute the task. When the execution is complete the task results are stored in

the Message Backend and can be retrieved by the application on demand.

Figure 3.5: Celery task queue [69]

36



The message broker required for operating the Celery task queue can be set up using

frameworks such as RabbitMQ [47] and Redis MQ [33]. We selected Redis MQ as it can

also be used as the result backend of the Celery task management framework.

Because of all the benefits listed above, interfaces designed under REST constraints

and OAS guidelines are the most relevant for AGT services.

3.5 Docker Containers

Docker containers and Docker ecosystem is the technology used for the parallel dis-

tributed execution of analysis in this thesis. This section gives an overview of this tech-

nology and its foundational concepts in the context of this thesis.

3.5.1 Containers

Since the beginning, virtualization has been the backbone of the cloud computing. virtu-

alization is the technology that makes the cloud features such as elastic computing and

isolation to provide privacy and security in cloud computing possible. Many levels of

virtualization exists. In the context of this thesis, OS-level virtualization which has given

raise to the virtualization technology called containers is the most relevant. Following

sections of this chapter gives an overview of this technology.

In OS-level virtualization the kernel allows multiple isolated user-space instances re-

ferred to as containers to run simultaneously. In contrast to equally popular hypervisor

based virtualization, containers provide

• Extremely fast instance creation times: The daemon application managing the

containers can create container instances faster compared to an hypervisor. Con-

tainers boot fast and become operational instantly.

• Small per-instance memory footprint: Containers are very economical on system

resources as lightweight containers take less memory on disk and RAM

37



• High instance density on single host: More instances of containers can be run

simultaneously on a host due to their small memory footprint

The industry has seen evolution of many Containerization technologies such as Docker [46],

Rkt [41], Linux Containers and Unikernels. In this work, we focus on Docker containers,

as they are employed in production environments and are supported by popular cloud

platforms such as AWS, Azure and Google and their container orchestration systems

3.5.2 Docker Ecosystem

Figure 3.6 shows components and their interactions of the Docker ecosystem. The Docker

container technology is built-in client-server architecture and consists of a Docker Client,

a Docker Host, and a Docker Registry. The Docker host is the machine on which the Docker

daemon and containers run. The daemon is the central part of the Docker architecture and

is responsible for building Docker images and running Docker containers. The Docker

client acts as the user interface to the Docker daemon and allows the user to execute

commands on the Docker daemon. The Docker daemon works with the Docker registry

service which stores and distributes images.

A Docker image is a template that the Docker daemon uses to create a Docker con-

tainer which is the runnable instance in the Docker ecosystem. Docker has an easy

and user-friendly image description language that integrates well with the Docker im-

age build system. Once the image is built, it can be stored in a version-controlled public

or private Docker registry. Images can then be downloaded by other hosts to create and

run containers or to use as a basis for building new images.

3.6 Docker Swarm Cluster Manager

Creating stable and scalable AGT services involves starting many containers of Docker

images built for these services on a distributed cloud infrastructure. This involves man-

aging clusters of computing nodes and orchestration of services on the cluster. This sec-

38



Figure 3.6: Docker container ecosystem. Image Source [8]

tion gives an overview of the cluster management and service orchestration tools used in

this work.

3.6.1 Cluster Management and Service Orchestration

In the context of cloud computing, a cluster is a group of nodes coming together to form a

computing infrastructure for the application running on the cloud. If the cloud is viewed

as a number of connected servers, by clustering these servers, hundreds of CPU cores,

thousands of gigabytes of RAM, and hundreds of terabytes of storage becomes available

to the run one application. A cluster will typically have few manager nodes and lots of

worker nodes. A cluster dynamics keep changing as manager and worker nodes may join

and leave the cluster anytime. A stable and powerful management service is necessary to

create and manage such a cluster on distributed cloud environments.

To support more users and parallel execution of workflow service or design and anal-

ysis for AGT, we need to run many instances of the Docker containers serving the applica-

tion and distribute the incoming jobs using a load-balancer. We will also need to increase

or reduce the number of instances based on demand dynamics. In cloud computing, this

type of service creation and scaling is referred to as service orchestration.

To serve such a need, container providers have developed integrated cluster manage-

ment and orchestration services. Many such services exist. Docker swarm and Kuber-

netes are two popular open-source cluster management and orchestration services. In

39



this work, we use Docker Swarm as it comes integrated with the Docker Engine that we

have already chosen as container technology for this project.

3.6.2 Docker Swarm

Figure 3.7 shows the architecture of the Docker Swarm. A swarm [60] is a cluster of

Docker Engines consisting of one or more nodes. Swarm nodes are classified as a manager

node or a worker node. The manager node is responsible for the cluster management activ-

ities such as managing the cluster state, scheduling services and serving API requests. It

is recommended to have more than one manager in the swarm to have continued swarm

operation in-case a manager fails. Manager nodes save the cluster state on a distributed

state store and use the persistent state information to recover from failures.

A manager node performs the deployment of the service as well as manages and or-

chestrates the cluster such that the desired state of the service is maintained. When a

service is created, specified instances of the Docker containers are started on the cluster

nodes. The manager node dispatches the tasks received from the external clients based

on a predefined scheme to the worker nodes. Worker nodes execute the given tasks and

return the status of the assigned tasks. This feedback allows the efficient scheduling of

the jobs to available cluster resources.

In summary, Docker swarm cluster management and service orchestration give all the

necessary functions required to create and scale-out service across a dynamic cluster and

meets the requirements of this work.

3.7 Continuous Integration and Delivery

Today, more and more software companies are adopting agile methodologies where they

aim to deliver new features incrementally in short development cycles [36] [52]. To meet

such demanding needs industry has adopted practices such as continuous integration

and continuous delivery. Tool and technologies are now available to help organizations

40



Figure 3.7: Docker swarm architecture. Image Source [9]

in this effort. This section will give an overview of these concepts in the context of our

work.

Continuous Integration (CI) is a development practice in which software is integrated

continuously [11] during development by automating the build process. When a commit

is made to the designated stream of the code repository, the software is automatically built

and regression tests are run to verify that the new changes have not broken the software.

Through Continuous Delivery (CD) [6] the software built and verified in the CI stage

is delivered to production branch. A release engineer can then release the software to the

target group. An automated CD procedure ensures that the latest version of the software

is always available for release to the target group. Continuous deployment adaptation

of CD takes this process one step further and deploys the software to the locations from

where the target users can directly access the new version of the software.

CI/CD in the Context of AGT Services: Many automated build and deployment sys-

tems are available to incorporate the CI/CD procedures in any project. The most im-

portant ones are Jenkins [27], Travis CI [38] and GitLab [20]. In our work, we use GitLab

CI/CD system as GitLab is the repository used at Siemens AGT for software development

41



projects. Irrespective of the CI/CD system used, resulting CI/CD workflow for software

services developed using the Docker ecosystem is as shown in Figure 3.8.

Developers pull the base images needed to build the Docker image containing their

application from an image registry. The image registry can be private or public. We pro-

pose setting up a private image registry on AGT premises and public image registries

such as Docker hub are not suitable for storing export controlled images of this project.

Developers push their updated image files to the version control system such as GitLab

which has an integrated CI/CD system. The GitLab CI/CD system performs the integra-

tion stage and on successful integration, it delivers the image to a pre-configured image

registry. Finally, an automated or manual release to the target RUN environment makes

the updates available to the target users.

Figure 3.8: CI/CD with Docker ecosystem. Image Source [26]

3.8 Summary

By incorporating a web service like architecture for workflow execution and tools exe-

cution, benefits of the SaaS model can be reaped by AGT design workflow that requires

running iterative analyses. Adapting such an architecture requires the use of many con-

cepts and technologies from the cloud computing domain. This chapter provided an

42



overview of these concepts and technologies and their applicability in the context of AGT

workflows.

43



Chapter 4

Service Architecture for Tool Integration

Framework

Workflow-based tool integration framework used at Siemens AGT facilitate mapping of

AGT design process steps to chaining of tools to execute dependent analysis steps effi-

ciently. Performance bottlenecks are encountered when an engineer need to execute an

analysis step having hundreds of iterations - which is typically the case in gas turbine

design workflow. Availability of workflow-based tool integration framework and anal-

ysis tools as cloud-based web services accessible via REST APIs offer flexibility in both

deployment and accessibility. A web service with multiple service instances is able to

process multiple simultaneous requests and removes the performance bottlenecks of the

single instance tool execution [12]. This chapter gives an overview of the service architec-

ture proposed in this thesis for the tool integration framework and then gives a high-level

overview of the software architecture of the prototype developed in this thesis.

4.1 Service Architecture

The fundamental idea of the proposed architecture is to expose the workflow-based tool

integration framework and the analysis tools as microservices communicating via REST-

ful APIs. These microservices can be hosted on any public, private or hybrid cloud in-

frastructure in consistent with the business and export control requirements of Siemens

AGT.

44



The functional architecture proposed for AGT workflow-based tool integration frame-

work and analysis tools is shown in Figure 4.1. With the proposed architecture a Siemens

engineer can first access the workflow execution (WE) front-end using a web browser and

successively access the workflow execution services through the front-end application.

The front-end acts as a User Interface (UI) and allows the user to perform workflow ac-

tivities such as a) view revisions of workflows b) start execution of a workflow step c)

view the current status of the workflow step. The front-end captures these UI actions and

sends them to the WEaaS backend as RESTful end-point requests. The backend executes

the corresponding service method and returns the results. the front-end presents these

results to the user on an interactive UI that emphasizes User Experience (UX).

Figure 4.1: Service Architecture for WEaaS and ATaaS at Siemens AGT

4.1.1 Architectural Components

The proposed architecture has the following components:

45



• Workflow execution front-end (WE Front-end): Refers to the client application

such as a web browser or a mobile application that is used to access the WEaaS

features. The workflow execution front-end is platform-independent and many in-

stances of the client application can be run simultaneously.

• Workflow Execution as a Service (WEaaS): Refers to the RESTful microservice that

provides the workflow execution service of the tool integration framework. This

microservice runs in a Docker container and it is hosted on WEaaS cluster.

• Analysis Tool as a Service (ATaaS): Refers to various microservices that provide

AGT design analysis tool functionalities as services accessible via RESTful APIs.

Like WEaaS, these services also run in containers and they are hosted on a ATaaS

cluster.

• WEaaS and ATaaS interactions: An AGT analysis workflow consists of running the

tool-chains. The WE front-end requests the WEaaS to execute a particular tool for

a given configuration. The WEaaS identifies the ATaaS providing this tool service

and requests it to run the specified configuration.

• Service clusters: A service cluster consists of connected computing resources to

create a flexible execution platform for WEaaS and ATaaS services. Computing re-

sources in the cluster are called nodes. A node can be a manager or worker. A cluster

will have few manager nodes and many worker nodes. A cluster can be formed on

a public, private or hybrid cloud.

• Integration of repositories: The proposed service architecture uses two types of

repositories. A model repository for AGT engine models used in design and analy-

sis steps. An ATaaS reads and saves models in this repository. A runtime resource

repository is used by ATaaS for resources other than models such as results and

intermediate artifacts.

46



WEaaS and ATaaS involves designing microservices by using the concepts and tech-

nologies described in Chapter 3. These services are hosted on service clusters created on

demand using the Docker swarm. These key architectural components of the proposed

service architecture are discussed in more detail in the following sections.

4.1.2 Service Cluster

We propose to host the WEaaS and ATaaS on a service cluster. The service cluster provides

all necessary computing resources and middleware frameworks necessary to host WEaaS

and ATaaS. A service cluster is created using the Docker swarm engine and it has many

nodes ( Figure 4.3). Any networked computing instance having the Docker engine and

Docker swarm engine can be a node in the cluster. A swarm cluster has few manager

nodes and many worker nodes. This section describes types of nodes used in hosting

WEaaS and ATaaS services and discusses cluster creation and failure handling.

Cluster Nodes

Three types of nodes can be identified in the context of the Siemens project based on the

location of nodes.

1. On-premise nodes: These nodes are physically located in the Siemens AGT office.

In this thesis we used a mixture of laptops of Siemens engineers and few worksta-

tion computers as nodes in the service cluster. These nodes run Microsoft Windows

operating system and are used to host the analysis tools that run only on Windows

operating system. However, these nodes could be used to run linux containers as

well.

2. Remote nodes: These nodes are physically located in other geographical sites of

Siemens and are part of the private computing grids owned by Siemens. These

nodes run Linux operating system and are used to run tools that run only on Linux

operating system.

47



3. AWS nodes: These nodes are located on the AWS [7] cloud, which is a public cloud

operated by Amazon. AWS allows creation of both Windows nodes and linux nodes

and hence can be used to run any tool.

4.1.3 Workflow Execution as a Service

The WEaaS has microservices as shown in Figure 4.2.

Figure 4.2: Architecture for workflow execution as a service (WEaaS)

Workflow Execution Web UI Service

The workflow execution web UI service is responsible for serving the web pages to the

browser clients. An engineer can connect to the workflow execution service home page

using a given HTTP(S) URL via a web browser. On the workflow execution home page,

the user has provisions to

1. Connect to the workflow server and load the project assigned to the user.

48



2. Explore and create new designs by using the workflows assigned to the project

3. Create a personalized tasks list containing one or many designs.

4. Start execution of a workflow step.

5. View the status of the previously started workflow or currently open workflow.

6. View the results of completed workflows.

7. Download the results for reviewing on personal computer.

8. Upload the workflow revisions and results to the workflow repository

To provide above features, the web browser client accesses the workflow execution ser-

vice using REST APIs. Alternatively, an engineer can access all of the above features by

directly accessing the workflow execution service via a desktop application that is specif-

ically designed for this purpose.

Workflow Execution Service

The workflow execution service is the microservice in which core business logic of workflow

execution state machine is implemented. It has a RESTful interface. Clients can accesses

services offered by workflow execution service by sending valid RESTful API requests.

On receiving a valid request, the service runs an appropriate service method and returns

the response.

4.1.4 Analysis Tool as a Service

On the workflow execution front-end, a user initiates execution of a workflow step. Ex-

ecution of a workflow step involves running an analysis tool to produce the desired out-

puts. In the proposed architecture these tool invocations are implemented as RESTful API

calls to microservices that provide analysis tool services.

49



Each tool service (ATaaS) is hosted on a Service Cluster (Section 4.1.2) as a microservice

on a Docker container as shown in the Figure 4.3. Many instances of ATaaS are up and

running at any given point in time and the Service Provisioning component of the architec-

ture is responsible for the availability of the ATaaS in the desired configuration (number

of instances). ATaaS instances execute requested analysis tasks and use a Service Metadata

store to keep track of task executions and results. The Execution Manager component on

the client side is responsible for accessing the tool service via REST APIs to execute many

analysis tasks simultaneously by using gas turbine models located in a Model Repository.

The Load Balancer (LB) directs the incoming request from Clients to one of the many active

ATaaS instances. It also routes the response from the ATaaS back to the client requesting

it. A LB Config Management module creates and dynamically updates the configuration

file using which the load balancer distributes the incoming traffic to ATaaS instances.

Figure 4.3: ATaaS architecture

4.2 Concepts of Tool Services

Resources are fundamental abstractions in RESTful microservices. Therefore, identifying

these resources for the tool that need to be offered as a service is the first step in the

process of creating a service offering for an analysis tool. These resources are also the

50



fundamental concepts of the tool services. Identification of the resources needs a good

understanding of the tool use cases and generalization of concepts. We identified that

in general, an engineer runs an analysis by executing a tool on specific inputs files to

produce output files. Another general requirement is to be able to run multiple analysis

tasks simultaneously. Accordingly, we identified tool service concepts as shown in the

UML class diagram of Figure 4.4.

Figure 4.4: Concepts of tool services

A tool service hosts an analysis tool Tool and can be referenced using its name. A user

can create, view and execute analysis Tasks by using this tool. When the user creates a

task, the service puts the tasks in a task queue and returns an unique task id which can

be used by the clients to start the execution of that task or view its status. A task may

have a Configuration that is used during the execution of the analysis tool. When a task

is started an Execution Instance which keeps track of the background execution of the task

is created. The worker processes running on the server pick up the tasks from the queue

and runs them. Execution of an analysis task involves running the tool Executable by

51



using dependent Libraries to produce OutputFiles from InputFiles. When the execution is

complete, the metadata corresponding to the TaskResult is stored in the result database

and the client can download the results by using the id of the task.

4.3 Software Architecture of the ATaaS Prototype

Figure 4.5 shows the software architecture used in thesis to implement a prototype of pro-

posed service architecture. The architecture is more focused on the analysis tools services

as the development of analysis tools services has been the prime focus of this thesis and

omits the architectural details of WEaaS. The Tool Service (ATaaS) is implemented using

Figure 4.5: Software architecture

Flask and Flask-RESTful packages of Python programming language as the web service

framework. Flask is one of most popular web application frameworks in Python pro-

gramming language. It is lightweight and supports incremental development of web ser-

vices allowing developers to start with a minimal web application and then incrementally

52



scale up to more complex application. The decision to use the Flask and Flask-RESTful

to develop tool services in this thesis is made because the Python programming language

is also used in the development of the existing tool integration framework and its tool

wrappers. The Celery task queue framework is used for implementing asynchronous pro-

cessing of analysis execution requests and background execution of analysis tasks with

the help of Celery Worker Processes. The Request Routing module is responsible for connect-

ing the API end-points to corresponding Service Methods. The operations for processing

API requests are implemented in service methods which use methods provided by the

Task Management and Persistence Management modules to process all API requests related

to the creation and execution of analysis tasks. The results and task metadata produced by

the tool service modules while processing the API requests is stored in a Redis database,

which is also used as a Message Broker by the Celery Task Queue Manager for distributing

the analysis tasks to Celery worker processes. Analysis Results produced after successful

completion of analysis tasks are saved in the local file system of the tool service.

The Analysis Request Parallelization module of the Execution Manager package provides

methods required for exercising parallel distributed execution of analysis tasks. The Clus-

ter Management and Service Management modules provide methods required for provi-

sioning of tool services on service cluster. The LB Config Management module creates the

nginx.conf file used by the Nginx load balancer to distribute the incoming traffic to ATaaS

instances.

4.3.1 Tool Services

A tool service consists of following modules that collectively handle the requests from

clients and perform the specified analysis task.

Request Routing

The Request Routing module of the tool service application starts the service instance and

manages the client-server interactions. It consists of the following phases:

53



• Connection management: Request routing listens for the incoming connections on

the port on which the tool service is serving the requests and establishes connection

with clients.

• Request validation: Request routing validates an incoming request for correctness

as per the given API specification and for completeness of associated metadata or

other data items such as files.

• Invocation of service methods: Request routing connects a valid incoming request

from a client to the corresponding service method that is responsible for processing

the request.

• Response delivery: Request routing delivers the response generated by a service

method after processing a request to requesting the client.

Service Methods

A Service Method performs the action required to process a request from the client. It

involves the following steps:

• Validating request parameters: A REST API request originating from a client

has different type request specific parameters [58] associated with it. The service

method validates these parameters in the context of the request to detect out of

range and incorrect-type parameters which would otherwise result in failures dur-

ing the request processing.

• Performing requested action: The service method performs action specified in the

request such as creating or starting an analysis task or getting the information about

a specific task.

• Error handling: Besides performing the validation of the request parameters, the

service method is responsible to handle the configuration and runtime errors such

as unavailability of a network resource or failure of an analysis task.

54



• Generating response: The service method builds the response in the format spec-

ified in the API and returns it to the request routing module. The response could

be summarizing a failure or a successful completion of the action specified in the

request. The response includes a HTTP status code [24] as per the OAI specifica-

tions Section 3.3.4 for REST APIs.

Task Management

The Task Management module of the tool service provides methods for a) creating an Anal-

ysis Task and associated metadata such as task ID, b) accessing task information such as

current status of the task, and c) starting/stopping a task. The metadata associated with

the task is stored in a Redis database which is a lightweight key-value datastore.

Starting a task involves inserting the task in the task queue which is managed by the

Task Queue Manager. The queue manager distributes the tasks in the queue to a Worker

process which is running along the tool service. The queue manager uses a Message Broker

to communicate with the worker process during task allocation. In this thesis the Redis

datastore is set up as a message broker.

The worker process executes the analysis task which runs the requested analysis tool

for a given configuration and produces outputs which are saved as Analysis Results in the

internal file system. The worker process also updates the status and the result metadata of

the task in the Results Store of the database. Stopping a task requires aborting the currently

running analysis if the task is already started and removing the task from the task queue.

Persistence Management

The Persistence Management module provides the methods for storing the metadata about

tasks in the database and fetch the data whenever a client request is made. The metadata

is stored in the database with reference to the ID of the task and is persistent over client-

server sessions. The metadata is created when an analysis task is created and updated

whenever information related to that task changes.

55



4.3.2 Execution Manager

In the absence of the WEaaS, the Execution Manager module, which is developed as part of

this thesis, provides the core functionalities required for execution of analysis tool services

using the existing in-house tool integration framework. The execution manager provides

methods to the workflow designers to request analysis services.

Parallel Distributed Analysis Execution Requests Exchange

An AGT analysis workflow designer aims to run many analysis in parallel for the same

engine model but with different configurations such as different temperatures. The analy-

sis request parallelization module of the execution manager provides a method which can

be called by the workflow developer to achieve this with a single call. The request paral-

lelization module converts this one method call to multiple simultaneous API requests to

ATaaS application to start multiple parallel analysis tasks.

In addition, it also performs following actions:

• Upload the input files necessary for running an analysis tasks

• Periodically check the status of the analysis tasks and manage task failures

• Download the results of completed analysis tasks

4.3.3 Service Provisioning

Cluster Management

The Cluster Management module is responsible for creating and managing the ATaaS ser-

vice cluster of computing nodes on which the service instances are run. The computing

resources available for creating the Docker swarm can be the laptops of Siemens AGT

employees participating in the project as voluntary computing [65] resources or desk-

top workstations or AWS computing instances. The cluster manager initializes a Docker

56



swarm and then adds a computing resource as a manager or worker if that computing

resource is available in the network.

Service Management

The Service Management module create a ATaaS service on the service cluster by using

Docker service command. Creating an ATaaS service involves starting many Docker con-

tainer from the Docker image of the ATaaS on nodes of the service cluster. Each container

acts as an instance of ATaaS service and runs a Flask-restful Application and Celery Worker

Process. The number of server instances to run on the service cluster is configurable. By

default, we create one server instance on every node of the cluster.

The Docker Swarm manager has built-in fail-safe mechanism which balances the ser-

vice in case a node in the cluster goes down. It creates new instance on one of the other

nodes in the cluster and tries to make the service available with the specified number of

instances.

4.3.4 Load Balancer Configuration Management

The Nginx load balancer, which is used to generate parallel requests, uses a configuration

file (nginx.conf ) file to route the requests to ATaaS service instances running on the service

cluster. The configuration file must have a list of IP addresses of all service instances and

the port number on which the Docker container is serving the ATaaS services. The Load

Balancer Config Management module periodically queries the service and gets the latest

service configuration. If any change to the Nginx configuration file is needed, the load

balancer config manager updates the config file and loads it on the load balancer.

Load Balancer

The load balancer is responsible for directing the requests received from the request par-

allelization (Section 4.3.2) module of the execution manager to one of the ATaaS service

57



instance running on the ATaaS service cluster (Section 4.1.2). We used the Nginx[57] load

balancer in our implementation of ATaaS. Nginx is a web server framework that can be

used as a reverse proxy, load balancer, mail proxy and HTTP cache. The Nginx load

balancer is configurable to handle multiple simultaneous requests and in this thesis it is

configured to process 1024 parallel requests.

4.4 Summary

This chapter provided an overview of the proposed service architecture for the tool in-

tegration framework by describing the main components of the architecture. It also de-

scribed the software architecture used in implementing a prototype of the proposed ser-

vice architecture.

58



Chapter 5

Development of ATaaS Prototype

In this thesis, we proposed a cloud-based microservices architecture for workflow-based

tool integration framework for executing AGT design workflows. Development of the

complete framework involves developing applications on both client and server side. On

the client-side development of desktop and mobile applications that enable definition,

visualization and execution of workflows is needed. On the server-side, development of

microservices for web UI, workflow execution service and analysis tool service is needed.

In order to demonstrate the feasibility of the proposed architecture we developed a

prototype consisting of two microservices providing tool functionalities of two AGT anal-

ysis tools, namely Secondary Air System (SAS) and Finite Element Analysis (FEA), and a

manager module that allows integration of tool services with the existing tool integration

framework. This chapter first describes the APIs provided by the tool services to run anal-

ysis tasks (Section 5.1), and then provides an overview of software modules developed in

this thesis to implement processing of these API requests (Section 5.2). It also describes

how the tool services are deployed on the service cluster and how they are accessed from

the existing tool integration framework using an execution manager (Section 5.4).

5.1 Tool Service APIs

REST APIs used for accessing the tool services developed in this thesis are listed in Fig-

ure 5.1. The toolName path variable is used for specifying the name of the tool service (SAS

or FEA). A more detailed description of the APIs is given in the subsequent sections.

59



Figure 5.1: REST APIs of SAS and FEA tool services

5.1.1 Create an Analysis Task

The API for creating an analysis task is POST: /tools/<string:toolName>/tasks , where tool-

Name is a path parameter specified in the request indicating the name of the analysis (e.g.

SAS or FEA). It also takes a body parameter in the JSON format format as shown in Fig-

ure 5.2. This parameter is used to specify a name and the type of the analysis.

Figure 5.2: API for creating an analysis task

Response: If the tool service creates the task successfully, it returns the HTTP status

code 200 along with a response body as shown in Figure 5.3 which is in the JSON format

format containing the task ID of the newly created analysis task.

60



Figure 5.3: API response for creating an analysis task

5.1.2 Get Task Information

GET: /tools/<string:toolName>/tasks/<string:taskId> is the API for getting information about

a specific task using its taskId. Figure 5.4 shows the response for this API request. The re-

sponse contains a body in the JSON format format and has task name, type and other fields

indicating the current status and runtime information of the task.

Figure 5.4: API response for get task information

5.1.3 Upload Input Files

POST: /tools/<string:toolName>/tasks/<string:taskId>/input files API is used by the clients

to upload the input files required for executing an analysis task. Figure 5.5 shows an

example of this request along with the necessary parameters. The files are sent to the

server as part of the request body in a form-data field. The form-data allows definition

of custom fields in the key-value format and includes them in the request body. The

inputFiles field defined in this API allows clients to send multiple files in single request.

61



Figure 5.5: API for uploading input files

Response: The response contains the status of the file upload along with the HTTP sta-

tus code 201 which indicates successful creation of the file elements in the server.

5.1.4 Starting a Task

Once an analysis task is created, and all required input files are uploaded, a client can use

the following API to start the task.

POST: /tools/<string:toolName>/tasks/<string:taskId>/start

Response: A response with status code 202 (Figure 5.14) is sent to the client to indicate

that the request for starting the task is registered and the task itself will be started in

background when the execution resources are available. In case of an error such as invalid

task ID an error code 400 is sent as response.

5.1.5 Get Task Status

GET: /tools/<string:toolName>/tasks/<string:taskId>/status API can be used for getting sta-

tus of an analysis task. An example API request and corresponding response is shown

in Figure 5.6. The response is a JSON object containing the execution instance ID and the

status of the task which is one of the PENDING, STARTED or DONE status.

62



Figure 5.6: API for getting task status

5.1.6 Download Analysis Results

GET: /tools/<string:toolName>/tasks/<string:taskId>/results is the API for downloading the

analysis results. Clients shall start this API request in the data streaming mode (stream=True

in Python using requests class) as shown in the code snippet in Figure 5.7 to receive the

results file, which is an archive file.

Figure 5.7: Download analysis results

5.2 Development of Tool Services

Processing of the API requests described in the previous section (Section 5.1) is imple-

mented in software modules developed in Python programming language. Operations

defined in these modules create and initialize the Flask web service application and Cel-

ery task queue, and implement tool execution methods and service methods which are

63



entry points to API requests. This sections provides an overview of these software mod-

ules and describes operations implemented by these software modules.

Software modules: Tool services are developed in Python programming language by

using Flask and Flask-RESTful web service frameworks. A tool service consists of many

modules that map directly to the concepts of tool services. Figure 5.8 shows most impor-

tant modules of the tool service that are developed as part of this thesis and their depen-

dencies on the framework classes. The app module has instances of the Flask, Flask restful

and Celery classes that are used for configuring the tool service and the task queue. It

also maps the REST APIs of the tool service to the corresponding service methods by

using the Api class of the flask restful module. Service methods are defined in the user-

defined classes (Tool, OutFile, InputFile, Task, ExecutionInstance, Persistence) and they are

sub-classes of the Resource class which allows the sub-classes to expose a method each for

get, post, put, delete and patch HTTP methods to perform actions corresponding to an end-

point request. The InputFile class has methods to receive the files uploaded by the clients

and uses the reqparse class to perform this operation. The Persistence class has methods for

storing and retrieving the metadata of the tasks and execution instances which are used

by the Task and ExecutionInstance classes. It performs the store and retrieve operations

by using the corresponding methods provided by the redis module. A more detailed de-

scription of these modules is given in the following sections by providing flowcharts and

code snippets wherever necessary.

5.2.1 Flask Web Service Instance Creation and Initialization

The flask app instance of the Flask class which is from on the Flask package of the Python

programming language creates the web server application. This instance is then used as

a parameter to the Celery class to create the celery task q object which is used as the task

queue for asynchronous processing of analysis task execution requests. The flask app ob-

ject is also used for initializing the server application by adding API routes and connect-

64



Figure 5.8: Modules of tool service

ing them to corresponding service methods. Finally the tool service is started by calling

the run method of the flask app instance as shown in the code snippet in Figure 5.9. By

specifying the host=0.0.0.0 the tool service becomes accessible on the port=8080 by using

the IP address of the Docker container inside which the tool service is running. Specifying

the debug=True, the tool service is started in the debug mode in which the tool service out-

puts detailed logs and restarts the application whenever changes are made in the source

code. One should start the tool service in the debug mode only during the development

phase and strictly remove the debug=True setting in the production mode for security

reasons.

65



5.2.2 Celery Task Queue Instance Creation and Initialization

The Celery class from the Celery package initializes task queue and links it with the tool

service application. It takes the application name (Figure 5.9), and URLs for the message

broker and results backend. The Celery task queue manager uses the message broker URL

for connecting to the Redis datastore through which it distributes tasks to the Celery

workers. The result backend is used to store the metadata such as task status, and the

progress information produced during the execution of the tasks by the workers. The

URL should contain the hostname or IP address of the Docker container running the

Redis datastore along with the port number on which Redis database is accessible. By

setting the task track started flag to True, the Celery task manager is configured to update

the status of the tasks as soon as there is an update, which is not the default behavior.

Figure 5.9: Tool service creation and initialization

5.2.3 Analysis Tool Executors

The development of a software component that executes an analysis tool for a given con-

figuration requires understanding of the tool capabilities and how to run the tool. In

this thesis these components are developed as standard Python methods and qualified as

Celery tasks by using a specific decorator provided by the Celery task queue framework.

This section describes the methodology we followed to develop SAS and FEA analysis

tool executors.

66



Executor for SAS Analysis Tool

SAS analysis is performed by using a tool called SAS solver which takes an SAS Model,

performance data, and aero-thermal data as inputs. Optionally, the SAS solver can take

results from engine runs performed on the test rigs and thermo-mechanical analysis as

inputs. The execution of the solver is done for a range of ambient temperature typically

ranging from -50C to +50C. The analysis for one temperature is done in two stages.

1. Calculation of boundary conditions: Using the performance and aero-thermal data

boundary conditions required for further analysis are calculated.

2. Running the solver on the SAS model: The solver now uses the boundary condi-

tions and calculates the temperatures and pressures required at the source and sinks

of the network specified in the SAS Model. This is an iterative step and repeated un-

til the source and sink conditions are converged.

Tool executor method: Figure 5.10 shows the flowchart of the Python method imple-

mented for the SAS analysis task. The method is then qualified as a Celery task by using

the @celery.task annotation. Only a high-level flowchart of the method is given due to the

confidentiality agreement associated with the Siemens AGT resources. To begin with, the

method executes Calculate boundary conditions step, in which it runs the boundary condi-

tion calculator tool by using Performance data and Aero-thermal data as inputs. If there were

no Errors in boundary conditions, Save boundary conditions is executed to save Boundary

conditions in to a file. In the Run solver step, the method executes the SAS network solver

tool by using the SAS Model and boundary conditions. If the solver tool runs successfully,

Results are generated and the Save results step is executed. The Store errors step stores

errors in the Celery result backend.

67



Figure 5.10: SAS analysis flowchart

Executor for FEA Tool

FEA analysis is performed by using the Siemens FEA tool by running a script which is

written in the tool specific scripting language. The script consists of statements to load

libraries and models, and run different type of finite element analysis such as structural,

thermal, or mechanical to produce Finite Element Models (FEM).

68



Tool executor method: Figure 5.11 shows a snippet of the the Python method in which

the fea tool execution operation is implemented. It runs the script files corresponding to

the given analysis task by running the fea tool.exe in shell mode and examines the return

code to determine if the tool was run successfully or not. If the tool fails, an error message

along with the error code produced by the fea tool.exe is returned by the worker running

the analysis task.

Figure 5.11: FEA analysis flowchart

5.2.4 Service Methods

Task Creation Method

The service method for processing the task creation API request is implemented in the

Task (Figure 5.9) module. Figure 5.12 shows the snippet of the code that performs the task

creation operation. The method generates the taskId which is a UUID in the RFC4122[35]

format and is generated using the uuid1 [64] class of the uuid Python module. The uuid1

class generates the UUID from the host ID, sequence number, and the current time. At

this stage, the method populates the task information (taskInfo) structures using the infor-

mation available in the request parameter and stores it in the persistence datastore by using

the task ID as the key. In the event of an error in creating the task, a HTTP status code [24]

indicating the error will be returned.

69



Figure 5.12: Service method for creating task

Get Task Information Method

The service method for processing the Get Task Information API is implemented in the Task

(Figure 5.9) module and it retrieves the task information from the persistance datastore

by using the specified taskId as the key and returns it with the response code 200.

Input Files Receive Method

The file receive operation is implemented in the post method of InputFile (Figure 5.9)

module. As shown in the code snipped in Figure 5.13, if the specified task ID is valid, this

method creates a directory having the same name as task ID and saves all the files in it. It

then sends a response containing the status of the file upload along with the HTTP status

code 201 which indicates successful creation of the file elements in the server.

Figure 5.13: Service methods for receiving input files

70



Task Start Method

The operation for handling the task start request is implemented in the post method in

the ExecutionInstance (Figure 5.9) class and the Figure 5.14 shows the code snippet which

inserts the task in the task queue by calling the apply async method on the task.

Figure 5.14: Service methods for starting the task

Get Task Status Method

The operation to process the get task status request is implemented in the get method of

ExecutionInstance class and has logic has as shown in Figure 5.15. The taskInfo of the task is

first retrieved from the persistence datastore using its taskId. Then the task status is fetched

from the celery result backend by calling the AsyncResult method of the celery task and

returned to the client along with service code 200. An error message is returned in case

of an invalid API request having incorrect request parameters.

Download Analysis Results

The result produced from an analysis depends on the type of the analysis.The service

method that processes the download results request collects all output files, creates an

archive in the zip format, and sends it to the client via a send file operation as shown in the

code snippet in Figure 5.16.

71



Figure 5.15: service method for getting task status

Figure 5.16: Download analysis results

Linking APIs to service methods

The api instance (Figure 5.8) of the flask restful.Api class is used to map service APIs to cor-

responding service methods. It has a method named add resource which takes the name

of the Python class and one or more API end-points (specified as strings) as arguments

and establishes the links between them such that the HTTP POST, GET, PUT, DELETE

requests made with these APIs invoke corresponding post, get, put and delete methods

defined inside the Python class linked to the APIs. The control flow inside these methods

must be implemented to identify the incoming request (incase one class is linked to more

than one API request). For example, the following call to the add resource method connects

the /tools/<string:toolName>/tasks and /tools/<string:toolName>/tasks/<string:taskId> APIs

to the post, get, put and delete methods defined in the Task class. With these links estab-

lished, if a ’GET /tools/<string:toolName>/tasks/<string:taskId>’ request is made,

the get method defined in the Task class is invoked.

72



api.add resource(Task, ’/tools/<string:toolName>/tasks’ ,

’/tools/<string:toolName>/tasks/<string:taskId>’ )

5.3 Deployment of Tool Services

Tool services are deployed by launching many Docker containers - created from Docker

images of the tool services - of tool service on the distributed service cluster and config-

uring the load balancer to distribute traffic to the containers. In this thesis, we built the

Docker images of the tool services and developed Python modules shown in Figure 5.17

to facilitate deployment of these images.

Cluster Management package has a Manager module that contains methods to create

and manage a Docker swarm cluster. The Manager module in the Service Management

package is responsible for provisioning the service on this Docker swarm cluster. The LB

Config Management module has a Config Manager module which is responsible for moni-

toring the services running on the Docker Swarm cluster and generating a configuration

file for Nginx load balancer. It uses DockerSwarmInspect and NginxConfigBuilder modules

to accomplish this. An high-level flowchart of these modules is described in the following

sections.(Section 5.3.2, Section 5.3.3, Section 5.3.4)

5.3.1 Docker Images for Tool Services

Since the analysis tool services are hosted in Docker containers, Docker images from

which containers can be created must be built. A Docker image for a tool service must

have the tool (SAS or FEA), all the dependencies needed to run the tool (such as Visual

C++ libraries) and the tool service application, and should be configured to start the tool

service when a container is created from it.

The Docker container only supports command line environment. Therefore, only the

tools that support batch mode execution can be containerized. Creating a Docker image

that runs an analysis tool is quite challenging and involves dealing with compatibility

73



Figure 5.17: Software modules facilitating deployment of tool services

issues. Analysis tools used at Siemens have long history with many tools dating back to

early 1990s. Few tools run flawlessly on the latest operating systems while few other will

need older version of libraries such as visual C++ libraries on MS Windows OS.

Dockerfile for Building Tool Service Images

In the Docker ecosystem a Docker image is created with the help of Docker build system

consisting of base images and Dockerfiles. A base image contains operating system en-

vironment needed to install and run the analysis tools and their dependencies. In this

thesis, the mcr.microsoft.com/windows/servercore:1803[67] is used as the base image because

both SAS and FEA tools are windows tools.

Creating a Docker image of the tool service is done by writing a Dockerfile which has

statements for performing the following actions:

74



• Installing tool dependencies: All tool dependencies such as visual C++ libraries

and Python need to be installed. A Dockerfile statement for installing the Python

is shown in Figure 5.18 is and it uses the RUN statement to specify a powershell

command to install the Python from its setup file.

Figure 5.18: Dockerfile statement for installing tool dependencies

• Setting up the tool: Both SAS and FEA tools used in this thesis are set up by

simply copying them to locations in the container file system and setting up the

environment variables required for running these tools.

• Setting up the tool service: The SAS and FEA tool services which are developed

as Python packages are copied to designated location in the container file system.

• Setting up the virtual environment: The tool service has dependencies on Flask,

Flask-RESTful, Celery packages. A virtual environment is setup using virtualenv

tool to satisfy these requirements using the Dockerfile statements shown in Fig-

ure 5.19. The requirements.txt file has a list of the packages that are needed by the

tool service package and a pip install command installs all packages in it on the vir-

tual environment.

Figure 5.19: Setting up virtual environment

• Exposing ports: The port 8080 on which tool services on the container are accessible

is published by using the EXPOSE statement.

75



• Setting up the container entry point: A container entry point is the command

or script that should be run when a container instance is created. It is specified

by using the ENTRYPOINT [ ”powershell”, ”c:/fea service/start server.ps1”] command

for the FEA tool service, where start server.ps1 is the powershell script that starts the

Flask application which serves the tool service, and the celery worker process which

executes analysis tasks in the background.

The worker process is started by using the celery.exe application as follows:

celery worker -A flask app.celery task queque –pool=solo

Where flask app is the Flask web service instance defined in the app module (Sec-

tion 5.2) and celery task queue is the instance of the celery class. The –pool=solo option

is specified to use one thread per worker to run the analysis task.

5.3.2 Cluster Management

The Cluster Management (Figure 5.24) module creates the ATaaS service cluster on which

the service instances are run. It takes a JSON configuration file (Figure 5.21) which has

a list of hostnames of computing resources that can be joined as a manager or a worker

node. The computing resources available for creating the Docker swarm can be laptops

of Siemens AGT employees participating in the project as voluntary computing resources

or desktop workstations or AWS computing instances. The swarm manager initializes

a Docker swarm and then adds a computing resource as a manager or worker if that

computing resource is available in the network.

The computing resources participating in project in voluntary computing model have

a dynamic IP address which changes every time the computing resource leaves the net-

work and reconnects. The IP address of the workstations changes on reboot. The cluster

management module keeps track of the IP address of the machines that are part of the

swarm and identifies any changes in the IP address. Whenever a change in IP address

76



Figure 5.20: Cluster management flowchart

is detected, it forces the node to leave the swarm and rejoin the swarm with the new IP

address.

77



Figure 5.21: Cluster configuration file

5.3.3 Service Management

The Service Management module creates a tool service on the service cluster by calling

the create service method, which is defined as shown in Figure 5.22. The create service

method runs on a managerNode and it creates the tool service by calling the services.create

method of the Python docker module by using the Docker image of the tool service. The

placement of the tool service instances is internally managed by the Docker engine and

by default it creates at least one service instance on each node. If a node in the cluster goes

down for some reason, the Docker engine will create a new instance in one of the other

available nodes in the cluster such that specified number of instances are always running

on the cluster.

5.3.4 LB Config Management

The load balancer configuration management module provides a Manager class that takes

the hostname of the manager node in the ATaaS cluster and generates an Nginx config-

78



Figure 5.22: Method of creating a service

uration file. Along with the host name a port number on which the Docker engine on

the manager node is accessible can be specified. If not specified, the default port number

2375 will be used.

Figure 5.23 shows the processing done in the ConfigManager class. It uses methods

defined in the DockerSwarmInspect class (implemented as part of this thesis) to get the IP

addresses and port numbers of the Docker containers hosting the analysis tool service

and updates a template configuration file to generate a new nginx.conf file. The template

configuration file is edited with the help of methods implemented using the nginx open-

source Python module.

5.4 Development of Execution Manager

An overview of the high-level functionalities of execution manager is given in Section 4.3.2.

This section gives an overview of the implementation aspects. The execution manager

module is developed in Python programming language which is also the programming

language used in the development of the existing tool integration framework so that the

two components seamlessly integrate.

The Execution Manager as shown in Figure 5.24 consists of a module that has methods

which can be called by the workflows in the existing tool integration framework to start

parallel distributed execution of analysis for many configurations.

79



Figure 5.23: Load balancer configuration management

Analysis Request Parallelization: The request parallelization module provides meth-

ods for workflow developers to request execution of SAS and FEA analysis for multiple

configurations. Section 4.3.2 shows methods implemented in the Analysis Request Paral-

lelization Module. A workflow designer can request for a particular analysis by calling the

run analysis method by passing a JSON object having information of analysis configura-

tions. The run analysis method then calls the run analysis for n configs method which is

implemented using Python Asyncio[21] module. The run analysis for n configs starts the

run analysis for one config method in multiple threads from the thread pool created by us-

80



Figure 5.24: Execution manager module

ing the Concurrent library. Each run analysis for one config method sends API requests

and performs response handling by using the requests library and starts analysis tasks. It

then periodically checks the status of the analysis tasks and downloads the analysis re-

sults by calling the download result method. Alternatively, the run analysis

for one config can register an analysis complete callback method which would be called

automatically when a request processing is complete.

5.5 Summary

This chapter provided an overview of the prototype of the proposed service architec-

ture for Siemens AGT analysis tools. It described the REST APIs exposed by the tool

services and the software modules in which processing of these APIs is implemented.

The software modules are implemented in Python programming language by using Flask

81



and Flask-RESTful web service frameworks for developing tool services, and the Celery

framework for asynchronous background execution of the analysis tasks. Docker im-

ages containing the tool service packages are created to deploy the tool services on the

service cluster. An execution manager module which integrates with the existing tool in-

tegration framework and provides the methods to run multiple analysis in parallel using

asynchronous request processing is also described.

82



Chapter 6

Performance Evaluation

In this thesis, we proposed the use of cloud-based web services and containerization to

develop a prototype of the ATaaS for Siemens AGT analysis tools. The prototype is de-

veloped by adopting the service architecture proposed in the thesis for addressing the

challenges (Section 2.4.4) in the existing tool integration framework. In this chapter, we

present the performance evaluation of the prototype by giving an overview of research

questions, environments, and methodologies, and provide an analysis of results obtained

for this evaluation.

6.1 Research Questions

We address the following research questions by experimental investigation to measure

the effectiveness of the cloud-based web services designed for executing Siemens AGT

analysis tools in addressing the challenges presented in the thesis.

• RQ1:: What is the overhead of running the analysis tasks using ATaaS?

• RQ2:: What is the effect of parallel and distributed ATaaS for multiple configura-

tions when executed on multiple computers?

• RQ3:: What is the effect of increasing the number of analysis service instances on a

fixed computing infrastructure?

83



In order to answer these research questions, we set up a benchmarking environment

and ran SAS and FEA analysis tasks by creating different analysis configurations. We

then analyzed the results obtained from these experiments and derived conclusions.

6.2 Benchmarking Setup and Execution Methodology

This section gives an overview of the test setup, hardware and software used for perfor-

mance evaluation along with the execution methodology employed for different research

questions.

6.2.1 Benchmarking Setup

The setup used for performing benchmarking experiments is shown in Figure 6.1. The

setup consisted of computing resources made available by Siemens for this project. The

setup used a laptop computer and a workstation computer connected to the Siemens net-

work and sharing network resources with the other computers connected to the network

at the same time. The setup was used for local sequential execution and for the parallel

distributed execution of the analysis tasks.

Local sequential execution: For local execution of the analysis tasks, only the engineer’s

laptop is used with the following items:

• Siemens tool integration framework: The Siemens tool integration framework,

which is installed locally on the engineer’s machine, provides the workflow re-

quired to run the analysis for one or engine configurations. The workflow itself

is designed by the domain experts and is made available in the tool integration

framework for other users.

• Analysis tool: The workflow provided in the tool integration framework invokes

the locally installed analysis tools with the help of a tool connector.

84



Figure 6.1: Benchmarking setup

• Model repository: The analysis tool requires an engine design model as input

along with an analysis configuration. The model files are stored in a model repository,

which is a shared network place.

Parallel distributed execution: The setup used for parallel distributed execution of

analysis tasks consisted of many instances of ATaaS hosted on a Docker Swarm cluster,

which had two nodes, one of which was the engineer’s laptop and the other was a work-

85



station computer. The workstation was set up as a manager node in the Docker Swarm,

and the engineer’s laptop was set up as the worker node.

The tool connector in the Siemens tool integration framework running on the engi-

neer’s laptop was set up to call the execution manager’s methods to start the distributed

parallel execution of analysis by sending RESTful API requests to the service instances

running on the cluster. The Nginx load balancer running on a Docker container in the re-

mote workstation distributes the incoming requests to one of the many instances of the

ATaaS running on the cluster based on the servers list available on the configuration file.

6.2.2 Hardware and Software

The hardware configuration of the computing resources used in the benching marking

setup is shown in Figure 6.2. The engineer’s laptop which was a worker node in the

Docker Swarm cluster was a HP Zbook 15 G5 model laptop computer having Intel i7 pro-

cessor along with 32 GB RAM. The workstation was a HP Z640 computer with Intel Xeon

processor and 128 GB of RAM. While the laptop was connected to the Siemens network

through a standard wi-fi interface, the workstation was connected through the standard

Gigabit ethernet interface.

Figure 6.2: Hardware configuration of the benchmarking setup

Software tools shown in Figure 6.3 were used to set up the analysis services and to

execute analyses tasks. The Siemens tool integration framework along with the tool connectors

were used to generate different run configurations which were used as inputs to the SAS

and FEA analysis tools and ATaaS. The Siemens tool integration framework, ATaaS and

86



the execution manager are built using Python 3.5.1 and require many packages in order to

operate. The ATaaS is built using the Flask and Flask-RESTful framework and uses Celery

and Redis packages. The ATaaS are hosted using Docker desktop platform Windows 10

operating system using the Docker images for the SAS and FEA analysis tools.

Figure 6.3: Software tools used for benchmarking

6.2.3 Execution Methodology

In order to address the research questions, we ran analysis tasks using the ATaaS and

compare their execution times with local execution. First, we created analysis configu-

rations with different models and gas turbine parameters then we performed execution

steps required to answer a specific research question.

Creation of analysis configurations: Analysis configurations were created with the

help of workflows available in the Siemens tool integration framework by selecting mod-

els and specifying analysis parameters such as temperature, pressure, and humidity. The

creation of the analysis configuration using the Siemens tool integration framework con-

sists of the following steps.

1. Create tasks: Tasks were created in the Siemens tool integration framework, and

SAS and FEA workflows were added into the task. The tool integration framework

87



has a UI that allows users to select the inputs needed for the task through which

required inputs are specified.

2. Start workflow: Workflows are stared using the workflow execution UI of the tool

integration framework, which in turn starts the tool connector UI specific to the SAS

or FEA analysis.

3. Configure analysis: Model and different configuration parameters such as temper-

ature, pressure, and humidity were selected by using the UI of the analysis work-

flow.

Methodology for RQ1: To answer RQ1, we used the following execution steps.

1. Execute and record: Firstly, we executed analysis for one engine configuration by

running the analysis tools directly on the user’s computer and recorded the execu-

tion time. Then, we executed the same analysis by using the one ATaaS instance

running on the same computer.

2. Repeat: Step 1 was repeated four to five times each for SAS and FEA analysis.

3. Compare: We compared the mean execution times for each analysis type to under-

stand the effect of overhead involved in running the analysis tasks using ATaaS for

SAS and FEA analysis

Methodology for RQ2: To answer RQ2, we used following execution steps.

1. Execute and record: Firstly, we executed SAS analysis for 22 different configura-

tions and FEA analysis for 3 different configurations by running the analysis tools

directly on the user’s computer. We then executed the same analysis by using the

4 ATaaS instances of SAS and 3 ATaaS instances of FEA running on a distributed

computing environment, as described in Section 6.2.

2. Repeat: Step 1 was repeated four to five times each for SAS and FEA analysis.

88



3. Compare: We compared the mean execution times for each analysis type to under-

stand the effect of overhead involved in running the analysis tasks using ATaaS for

SAS and FEA analysis

Methodology for RQ3: In order to answer RQ3, we increased the number of instances

of SAS ATaaS to 8 on the same cloud infrastructure as used in experiments for RQ2 and

executed the same SAS analysis tasks to observe the effect on the execution times.

6.3 Analysis of Results

6.3.1 RQ1: Effect of ATaaS execution on single local computer

Figure 6.4 shows a comparison between the execution times for analysis tasks executed by

using the tools installed locally on the engineer’s computer (baseline) and ATaaS instance

running on the same computer. This measurement gives an understanding of the effect

of overhead resulting due to the need to upload the input files, executing the analysis on

isolated and virtualized container environment, and downloading the analysis results.

In Figure 6.4, it can be seen that the SAS analysis takes slightly less time (9.88%) than

the local execution despite the overhead involved in the execution of analysis tasks with

ATaaS. This difference can be attributed to ATaaS for SAS analysis having all the tool

executable and dependencies inside the Docker container hosting the ATaaS while for

local execution analysis tools are loaded from a shared network location.

In contrast, for FEA analysis, it can be seen that the execution of the analysis task using

ATaaS takes more time (30.69% on average) than running the analysis using the locally

installed tools. This confirms that substantial overhead, which is dominated by the file

transfer, is added when the execution of analysis tasks is done on by using tool services

hosted on distributed cloud infrastructure. However, if powerful computing resources

are used to host the ATaaS and network access is reduced, the effect of the file transfer

overhead can be reduced as seen in the case of SAS analysis.

89



Figure 6.4: Mean execution times for local vs one instance of ATaaS

6.3.2 RQ2: Effect of parallel distributed ATaaS

Figure 6.5 shows that the distributed parallel execution of analysis with cloud-based web

services reduces the execution time for SAS analysis by 75.88% (on average) for 22 analy-

sis tasks run by using 4 ATaaS instances running on two distributed computing resources

as described in Section 6.2 when compared against the execution time obtained using

locally run analysis tools (baseline).

In case of FEA analysis, it can be noted that, despite the 30.69% overhead involved

in running the analysis task in ATaaS, a reduction of 7.49% in execution time is seen for

3 analysis tasks run by using 3 ATaaS instances running on two distributed computing

resources as described in Section 6.2.2.

These comparisons show that using cloud-based web services providing the analy-

sis tool functionalities to execute multiple analysis tasks in parallel can result in reduced

execution times even though some file transfer and execution overhead is involved. Fur-

90



Figure 6.5: Execution times for multiple analysis tasks: local vs ATaaS

ther reduction in the execution time could be achieved by optimizing the network access

and resource usage in the virtualized container environment which is out of scope for the

current thesis.

6.3.3 RQ3: Effect of Increasing Service Replicas

Figure 6.6 shows a comparison of the execution times of 22 SAS analysis tasks executed

using locally run analysis tools, 4 ATaaS instances (baseline), and 8 ATaaS instances. It can

be seen that the parallel distributed execution of analysis tasks using 4 ATaaS instances

reduced the execution time significantly when compared to local execution. But by dou-

bling the number of ATaaS instances on the same hardware configuration increased the

execution time by about 15% when compared to the execution time with 4 ATaaS in-

stances. This shows that simply increasing the number of service instances on the same

hardware configuration may not give any improvement in the performance as more ex-

91



ecution instances sharing the same hardware resources reduces the performance of indi-

vidual service instances. Adding more computing nodes to run more service instances is

required to decrease the execution time further.

Figure 6.6: Execution times: Local vs 4 replicas vs 8 replicas of ATaaS

6.4 Summary

Our performance evaluation shows that using cloud-based web services to execute the

analysis tasks adds file transfer and overhead. However, when multiple analysis tasks

are executed simultaneously on the two or instances running on the distributed comput-

ing infrastructure, the total execution time is substantially reduced. The time saved is

proportional to the number of service instances available for running the analyses. How-

92



ever, just increasing the number of service instances on the fixed computing infrastructure

does not reduce the execution times due to the hardware limitations.

93



Chapter 7

Related Work

Cloud-based microservice architecture is the architecture of choice for many modern web

applications in several domains, and hence numerous references to the related work can

be found in the literature. In the following sections, we have identified related work more

specific to tool integration, workflow execution as a service and analysis as a service from

different domains as this has been the prime focus of this thesis.

7.1 Tool Integration for Design of Cyber-Physical Systems

Workflow-driven tool integration framework: Workflow-driven tool integration frame-

work proposed in[3] uses service-oriented architecture shown in Figure 7.1 and it uses

jBoss jBPM [29] workflow execution engine to orchestrate workflows. The framework

uses business process workflows to chain two or more tools managed by a Tool Manager.

Like the Siemens in-house tool integration framework, this framework uses tool connectors

to invoke the tools corresponding to a business process step. In contrast, the cloud-based

microservice architecture for tool integration framework proposed in this thesis, exposes

tool functionalities as independent microservices that are accessible via REST APIs. In

contrast to the architecture proposed in this thesis, the jBPM workflow-driven tool inte-

gration framework has a workflow editor (Process Editor), which allows users to define

workflows.

jETI: The jETI [37], a framework for remote tool integration, is one of the early works

in the area of providing tool integration services over the internet by using Simple Ob-

94



Figure 7.1: Architecture of workflow-based tool integration frameworks. Source [3]

ject Access Protocol (SOAP) [55] based web services. The SOAP-based web services are

similar to RESTFul web services used in our work but support only XML data exchange

between the client and the server. The jETI has a distributed tool library and uses the

Tomcat Servlet container for distributed execution of tools. The cloud-based microser-

vice architecture for tool integration and execution proposed in the thesis uses the most

recent technologies and concepts of web services and tool containerization. It provides

the benefits of modern web services such as on-demand scalability on distributed cloud

infrastructure.

ModelBus: The ModelBus [22], a model-driven tool integration framework having a

service-oriented architecture, uses BPEL for orchestration of web services that provide

a tool functions as a service for the model-based development process. The Model-

Bus has a model repository that holds sharable models and unique tool functionalities

hosted as web services on a distributed heterogeneous environment. As discussed in Sec-

tion 3.3, the microservices architecture used in our work, was introduced in the server-

95



side software engineering domain to address development complexities associated with

the monolithic applications and the SOA based web services.

Many research projects are being executed in collaboration between industries and ed-

ucational institutions to address the tool integration and interoperability challenges faced

by industries in designing modern day cyber-physical systems. The CONCERTO [43] is

one such project which aims to develop a framework to bring the integration between

tools used in various stages (such as development and verification) of the design pro-

cess for complex cyber-physical systems by means of model-driven engineering. It has a

multi-domain user modeling space which uses high-level system models (such as UML [1]

models) to combine domain specific execution platforms through model transformations

to get a seamless bidirectional integration between tools used at various design steps.

OpenMETA [62] is another project which uses model-based approach to provide exten-

sive integration framework consisting of model, tool and execution integration frame-

works.

There are also standards such as Functional Mock-up Interface (FMI) [5] developed by

Modelica Association to standardize the creation, storage, exchange and reuse of system

models to simplify the integration between different tools used in the design of cyber-

physical systems and facilitate co-simulation of systems by allowing tools to exchange

models of subsystems. In complement to this, projects like openCPS [2] aim to develop

frameworks to promote interoperability between model-driven engineering tools aligned

with different standards such as Modelica, UML and FMI.

7.2 Workflow Execution as a Service

Business Process Execution Language for Web Services (WS-BPEL) is the de facto stan-

dard for the workflow execution by the orchestration of web services and applies well to

the workflow execution as a service proposed in this thesis with minimal difference. The

focus of the WS-BPEL lies in orchestration and execution of business process steps and

96



involves a small amount of data transfer while the AGT tool integration workflow steps

often involve large amounts of data transfer. In this section, we present few works in the

area of BPEL as a service as related work in the area of workflow execution as a service

proposed in this thesis.

Orchestration as a Service: The Orchestration as a Service (OaaS) [23] provides a work-

flow design and management service and workflow execution services similar to the

services provided by the workflow execution service proposed in this thesis. It uses a

WS-BPEL compliant workflow execution engine to orchestrate the execution of workflow

steps on a distributed cloud infrastructure. The OaaS is a web service built in SOA archi-

tecture and has the issues associated with a monolithic application, while the microser-

vices architecture proposed for the workflow execution service in this thesis reduces the

development complexity of the service. Besides, microservices provide many benefits as

listed in the Section 3.3

On-Demand Resource Provisioning for BPEL Workflows Using Amazon’s Elastic Com-

pute Cloud: The authors of [10] presents a workflow execution framework based on

BPEL to schedule the execution of workflow steps on distributed hybrid cloud infrastruc-

ture consisting of dedicated local computing resources and remote computing resources

on the Amazon’s Elastic Compute Cloud. The architecture presented in this reference

is similar to the workflow execution architecture presented in our work but uses SOA

type web services running on fixed nodes. As already discussed in the above paragraph,

microservice-based web services have less development complexity than monolithic SOA

web services and provide many other benefits.

Similar to the [10], [30] presents a cloud-based architecture for distributed execution

of workflow steps using the BPEL engine and has a multi-objective scheduling algorithm

that considers data dependencies between the workflow steps to optimize the execution

time. We consider the scheduling algorithm presented in their work to be novel and wish

97



to consider such efficient scheduling algorithms in the design of our workflow execution

service as future work.

7.3 Analysis Tool as a Service

Model-as-a-Service: Model-as-a-Service [59] proposes a cloud-based RESTful microser-

vices for providing a web service to build system models for Finite Element Analysis

(FEA) and Computational Fluid Dynamics (CFD) from component models. It uses a Fed-

eration Management System (FMS) to interact with a distributed solver subsystem to run

analysis jobs, which is similar to using Docker containers for running solvers in our work.

The proposed model-as-a-service runs the analysis jobs asynchronously using a message

queue, which is similar to the use of the task queue in our implementation of the analysis

tool as a service. The containers based web service increases the elasticity of the appli-

cation and promote dynamic scaling of the application across distributed cloud (private,

public and hybrid).

CloudMEMS: CloudMEMS [54] proposes a three-tier cloud-based web model-view-

controller (MVC) architecture for running Finite Element Analysis (FEA) for Micro-Electro-

Mechanical Systems (MEMS) using the Comsol Multiphysics [28]. It uses Java REST mi-

croservices running on the AWS to provide an interface between the users and Comsol

tool. The architecture of CloudMEMS has a similarity with the ATaaS proposed in this

thesis in the sense that both provide an asynchronous interface to the analysis tools used

in multi-disciplinary design environments and use cloud-based microservices. Cloud-

MEMS architecture is specifically targeted to run on AWS and has limited adaptability

to other private and hybrid cloud infrastructure, unlike the architecture proposed in this

thesis.

Big data and cloud computing platform for energy internet: The big data and cloud

computing platform for energy internet [16] proposes a cloud-based RESTful microser-

98



vice application for data collection, analysis and visualization of energy consumption

monitoring and complementary operation of the multi-form energy system and uses

asynchronous background task processing to perform computationally intensive tasks

such as big data processing. Though this work does not involve running design analysis

such as FEA and CFD, running computationally intensive big data analysis tasks is sim-

ilar to running the analysis tools discussed in the thesis and qualifies as related work in

the context.

99



Chapter 8

Conclusions and Future Work

8.1 Conclusions

8.1.1 Conclusions from architecture for tool integration framework

In this thesis we proposed a cloud-based microservices architecture for a workflow-based

tool integration framework to address certain infrastructural and performance limitations

of the Siemens in-house tool integration framework. The proposed architecture consists

of independent microservices for the execution of workflows and analysis tools and they

communicate through REST APIs. The tool integration framework along with the ser-

vices providing the analysis tool functionalities can be hosted on service clusters running

on private, public or hybrid cloud using Docker containerization platform to support easy

deployment and on-demand scalability. Siemens engineers can easily access the work-

flow execution services provided by the tool integration framework using a lightweight

front-end application or thin client applications such as a web browser.

Limitations: The development of the workflow execution services by reusing the com-

ponents of the existing in-house tool integration framework involves huge efforts in sep-

arating tightly coupled monolithic components in to independent microservices commu-

nicating through REST APIs.

Since the proposed architecture aims to reuse the components of the existing tool in-

tegration framework, it inherits few limitations of the existing framework and they are

listed below.

100



• Currently, the workflow definition is done outside the framework by using text ed-

itors and the proposed architecture does not address this limitation.

• Definition and execution of hierarchical (workflow inside workflow) workflows is

not supported.

• Only one workflow can be executed at a given point time in the existing tool integra-

tion framework. The proposed cloud-based architecture does not explicitly address

this limitation, although it should inherently address this limitation at implementa-

tion time by asynchronous request processing methods.

8.1.2 Conclusions of architecture for analysis tool services

We also proposed a cloud-based microservices architecture for providing Siemens AGT

analysis tool functionalities as services hosted in isolated, replicated container environ-

ments accessible via the existing tool integration framework or by using the workflow

execution services in the proposed cloud-based architecture for the tool integration frame-

work. Analysis tool services can also be hosted on private, public or hybrid cloud infras-

tructure and can be accessed through REST APIs. Siemens engineers can run hundreds of

analysis tasks in parallel on a distributed cloud computing resources by using hundreds

of tool service instances when available to reduce the overall analysis time. Furthermore,

computationally intensive analysis tools perform better on cloud computing resources

than the local (on engineer’s computer) execution of the same tools as optimal computing

resources can be allocated to the tools on cloud.

Limitations: The distributed and parallel execution of analysis tasks with hundreds of

tool service instances requires lots of computing resources. The service cluster may have

low stability when voluntary computing resources are used as worker nodes as proposed

in this thesis, because a voluntary node can go down at any time. The fault tolerance in

the proposed architecture may be insufficient to manage the disappearance of the worker

101



nodes in the middle of running hundreds of analysis tasks in parallel. This is particularly

more troublesome for the FEA analysis tasks that have long execution time as tasks that

were running on the lost node needs to be restarted irrespective of its progress at the time

of node loss. The stability of the service cluster can be high when all nodes in the cluster

are located in the public cloud (AWS) but this could be very expensive as resources on the

public cloud costs more than already available in-house resources.

8.1.3 Conclusions by performance evaluation

Furthermore, we developed tool services for two AGT analysis tools, namely, SAS and

FEA analysis by using the proposed architecture. The performance evaluation of these

tool services showed that by parallel distributed execution of analysis tasks using mul-

tiple instances of the tool services reduces the overall execution time although there is

noticeable overhead. The overhead is due the upload and download of files, and execu-

tion of analysis tasks inside the constraints of Docker containers. We also observed that

the execution overhead could be reduced by using more powerful computing resources.

While the reduction in the execution time can be more with higher number of tool service

instances, simply increasing the number of instances without adding new computing re-

sources will not reduce the execution time.

Limitations: Local (on engineer’s laptop) execution is more beneficial than using re-

mote tool services to execute short, low-complexity analysis for just one or two configu-

rations. Thus, availability of the tool services may not encourage the engineers to com-

pletely abandon the local execution setup and permanently change over to using the tool

services. The effect of overhead is more severe when engineers are working remotely and

it may force the engineers to abandon using the tool services and fallback to using local

execution. Furthermore, engineers may be compelled to be physically present in office

premises to use the tool services hosted using in-house computing resources as better

performance is only guaranteed when directly connected to the Siemens network.

102



8.2 Future Work

Development of the workflow execution service: The development of the workflow

execution service by reusing the components of the existing tool integration framework

is a major future work in the development of the proposed cloud-based tool integration

framework. The in-house tool integration framework is a monolithic application and has

a tightly coupled workflow visualization front-end and workflow execution back-end.

Atomic, independent microservices will not only decouple the workflow visualization

front-end from the back-end, but also separate different concerns into multiple indepen-

dent microservices communicating using REST APIs.

Deployment on public and hybrid cloud: In this thesis, we deployed the tool services

on distributed computing infrastructure with in Siemens AGT which used only few com-

puting resources. How these tool services perform on public clouds such as AWS and

hybrid cloud combining the Siemens computing resources with AWS remains to be in-

vestigated in depth.

Integration with workflow definition service: The existing tool integration framework

and the proposed architecture for the tool integration framework excludes the workflow

definition service as the development of workflow definition service is carried out by

Ms. Jasvir Dhaliwal, a fellow researcher in the same collaborative project with Siemens

Canada. Integrating the workflow definition service with the proposed cloud-based tool

integration framework gives a high performance end-to-end workflow based tool inte-

gration framework.

103



Bibliography

[1] OMG. OMG R© Unified Modeling Language R© (OMG UML R©). 2.5.1. OMG R© Unified

Modeling Language R© Publication. 796 pp.

[2] openCPS. Interoperability of the standards Modelica-UML-FMI. 0.3. ITEA3, p. 93.

[3] András Balogh et al. “Workflow-Driven Tool Integration Using Model Transforma-

tions”. In: Graph Transformations and Model-Driven Engineering: Essays Dedicated to

Manfred Nagl on the Occasion of his 65th Birthday. Ed. by Gregor Engels et al. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2010, pp. 224–248.

[4] Robin Singh Bhadoria et al. Exploring Enterprise Service Bus in the Service-Oriented Ar-

chitecture Paradigm. Advances in Business Information Systems and Analytics (2327-

3275). IGI Global, 2017.

[5] Torsten Blochwitz et al. “The Functional Mockup Interface for Tool independent Ex-

change of Simulation Models”. In: Proceedings of the 8th International Modelica

Conference, Mar. 2011, pp. 105–114.

[6] Lianping Chen. “Continuous Delivery: Huge Benefits, but Challenges Too”. In: IEEE

Software Vol. 32.No. 2 (Mar. 2015), pp. 50–54.

[7] Jeffrey Cloud. AWS: The Ultimate Amazon Web Services Guide From Beginners to Ad-

vanced. Independently Published, 2020.

[8] Docker Container Overview and Docker Compose - XenonStack. URL: https://www.

xenonstack.com/blog/docker-container/ (visited on 01/29/2020).

[9] Docker Swarm: How nodes work. Docker Documentation. Mar. 3, 2020. URL: https:

//docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/

(visited on 03/04/2020).

104



[10] Tim Dörnemann, Ernst Juhnke, and Bernd Freisleben. “On-Demand Resource Pro-

visioning for BPEL Workflows Using Amazon’s Elastic Compute Cloud”. In: 2009 9th

IEEE/ACM International Symposium on Cluster Computing and the Grid. 2009, pp. 140–

147.

[11] Paul .M. Duvall, Steve Matyas, and Andrew Glover. Continuous Integration: Improv-

ing Software Quality and Reducing Risk. Addison-Wesley Signature Series. Pearson Ed-

ucation, 2007.

[12] Floris Erich. “DevOps is Simply Interaction Between Development and Operations”.

In: Software Engineering Aspects of Continuous Development and New Paradigms of Soft-

ware Production and Deployment. Ed. by Jean-Michel Bruel, Manuel Mazzara, and

Bertrand Meyer. Cham: Springer International Publishing, 2019, pp. 89–99.

[13] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and Design. The Pren-

tice Hall Service Technology Series from Thomas Erl Series. Pearson Education, Lim-

ited, 2016.

[14] Roy Thomas Fielding. Architectural styles and the design of network-based software ar-

chitectures. Vol. 7. University of California, Irvine Doctoral dissertation, 2000.

[15] Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. “Architecting with mi-

croservices: A systematic mapping study”. In: Journal of Systems and Software Vol.

150 (2019), pp. 77 –97.

[16] Rui Fu et al. “Big data and cloud computing platform for energy Internet”. In: 2017

China International Electrical and Energy Conference (CIEEC). 2017, pp. 681–686.

[17] Daniel Gaspar and Jack Stouffer. Mastering Flask Web Development: Build enterprise-

grade, scalable Python web applications, 2nd Edition. Packt Publishing, 2018, pp. 182–

190.

[18] JJ Geewax. Google Cloud Platform in Action. Manning Publications, 2018.

105



[19] Dimitrios Georgakopoulos and Michael Papazoglou. Service-oriented Computing. Co-

operative information systems. MIT Press, 2009.

[20] GitLab Continuous Integration & Delivery. GitLab. URL: https://about.gitlab.

com/product/continuous-integration/ (visited on 01/07/2020).

[21] Caleb Hattingh. Using Asyncio in Python: Understanding Python’s Asynchronous Pro-

gramming Features. O’Reilly Media, 2020.

[22] Christian Hein, Tom Ritter, and Michael Wagner. “Model-driven tool integration

with modelbus”. In: Workshop Future Trends of Model-Driven Development. 2009, pp. 50–

52.

[23] André Höing et al. “An Orchestration as a Service Infrastructure Using Grid Tech-

nologies and WS-BPEL”. In: Service-Oriented Computing. Ed. by Luciano Baresi, Chi-

Hung Chi, and Jun Suzuki. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,

pp. 301–315.

[24] HTTP Response Status Codes REST API Tutorial. URL: https://restfulapi.net/

http-status-codes/ (visited on 04/15/2020).

[25] IaaS vs PaaS vs SaaS: Which Should You Choose? URL: https://www.datamation.

com/cloud-computing/iaas-vs-paas-vs-saas-which-should-you-

choose.html (visited on 01/29/2020).

[26] Integrating CI/CD with Docker Enterprise Edition - Demo Webinar Recap - Docker Blog.

URL: https://www.docker.com/blog/ci-cd-with-docker-ee/ (visited on

01/29/2020).

[27] Introducing Jenkins X: a CI/CD solution for modern cloud applications on Kubernetes.

URL: https://jenkins.io/blog/2018/03/19/introducing-jenkins-

x/index.html (visited on 01/07/2020).

106



[28] Introduction to COMSOL Multiphysics. en. 2019. URL: https : / / cdn . comsol

. com / doc / 5 . 5 / IntroductionToCOMSOLMultiphysics . pdf (visited on

03/08/2020).

[29] jBPM Documentation. URL: https://docs.jboss.org/jbpm/release/7.35.

0.Final/jbpm-docs/html_single/ (visited on 04/15/2020).

[30] Ernst Juhnke et al. “Multi-objective Scheduling of BPEL Workflows in Geographi-

cally Distributed Clouds”. In: 2011 IEEE 4th International Conference on Cloud Comput-

ing. 2011, pp. 412–419.

[31] Nitin Kumar Karma. RESTFul Web Services - the Python Flask Way: Build RESTful

APIs Using Python and Flask-Restful. Independently Published, 2018.

[32] Shijimol Ambi Karthikeyan. Practical Microsoft Azure IaaS: Migrating and Building

Scalable and Secure Cloud Solutions. Apress, 2018.

[33] Jay Kreibich. Redis: The Definitive Guide: Data modeling, caching, and messaging. O’Reilly

Media, Incorporated, 2013.

[34] Chandra Krintz. “Software-as-a-Service (SaaS)”. In: Encyclopedia of Database Systems.

Ed. by Ling Liu and M. Tamer Özsu. New York, NY: Springer New York, 2018,

pp. 3544–3545.

[35] Paul J. Leach, Michael Mealling, and Rich Salz. A Universally Unique IDentifier (UUID)

URN Namespace. en. Library Catalog: tools.ietf.org.

[36] Mika V. Mäntylä et al. “On rapid releases and software testing: a case study and

a semi-systematic literature review”. In: Empirical Software Engineering Vol. 20.No. 5

(2015), pp. 1384–1425.

[37] Tiziana Margaria, Ralf Nagel, and Bernhard Steffen. “jETI: A Tool for Remote Tool

Integration”. In: Tools and Algorithms for the Construction and Analysis of Systems. Ed.

by Nicolas Halbwachs and Lenore D. Zuck. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2005, pp. 557–562.

107



[38] Meet Travis CI: Open Source Continuous Integration. InfoQ. URL: https://www.

infoq.com/news/2013/02/travis-ci/ (visited on 01/07/2020).

[39] Peter Mell, Tim Grance, et al. “The NIST definition of cloud computing”. In: NIST

Special Publication 800-145 (2011).

[40] F. Millstein. DevOps Handbook: What Is DevOps, Why You Need It And How To Trans-

form Your Business With DevOps Practices. Frank Millstein, 2020.

[41] Rimantas Mocevicius. CoreOS Essentials. Packt Publishing, 2015. Chap. 9, pp. 91–94.

[42] A.J.A. Mom. “Introduction to gas turbines”. In: Modern Gas Turbine Systems. Else-

vier, 2013, pp. 3–20.

[43] Leonardo Montecchi, Paolo Lollini, and Andrea Bondavalli. “A Reusable Modular

Toolchain for Automated Dependability Evaluation”. In: VALUETOOLS 2013 - 7th

International Conference on Performance Evaluation Methodologies and Tools, Jan.

2013.

[44] OAI. OAI/OpenAPI-Specification. Mar. 3, 2020. URL: https://github.com/OAI/

OpenAPI-Specification/blob/master/versions/3.0.3.md.

[45] OpenAPI Initiative, https://www.openapis.org/about. OpenAPI Initiative. URL: https:

//www.openapis.org/about (visited on 03/04/2020).

[46] Rene Peinl, Florian Holzschuher, and Florian Pfitzer. “Docker Cluster Management

for the Cloud - Survey Results and Own Solution”. In: Journal of Grid Computing Vol.

14.No. 2 (June 2016), pp. 265–282.

[47] Francesco Pierfederici. Distributed Computing with Python. Packt Publishing, 2016.

[48] Carlos Pinheiro, André Vasconcelos, and Sergio Guerreiro. “Microservice Architec-

ture from Enterprise Architecture Management Perspective”. In: Business Modeling

and Software Design. Ed. by Boris Shishkov. Cham: Springer International Publish-

ing, 2019, pp. 236–245.

[49] Rolls-Royce Plc. RTrent Third Party Packager - Engine Operation.

108



[50] Power up your business. siemens.com Global Website. URL: https://new.siemens

.com/global/en/products/energy/power-generation/gas-turbines.

html (visited on 10/02/2019).

[51] Kunal Relan. Building REST APIs with Flask: Create Python Web Services with MySQL.

Apress, 2019.

[52] Pilar Rodrı́guez et al. “Continuous deployment of software intensive products and

services: A systematic mapping study”. In: Journal of Systems and Software Vol. 123

(2017), pp. 263–291.

[53] Meinhard T. Schobeiri. “Introduction, Gas Turbines, Applications, Types”. en. In:

Gas Turbine Design, Components and System Design Integration. Cham: Springer Inter-

national Publishing, 2018, pp. 1–30.

[54] Anil Sehgal. “CloudMEMS Platform for Design and Simulation of MEMS: Archi-

tecture, Coding, and Deployment”. MA thesis. University of Toledo, 2018.

[55] James Snell, Doug Tidwell, and Pavel Kulchenko. Programming Web Services with

SOAP: Building Distributed Applications. O’Reilly Media, 2001.

[56] Jacopo Soldani, Damian Andrew Tamburri, and Willem-Jan Van Den Heuvel. “The

pains and gains of microservices: A Systematic grey literature review”. In: Journal of

Systems and Software Vol. 146 (2018), pp. 215 –232.

[57] Rahul Soni. Nginx: From Beginner to Pro. Apress, 2016, pp. 153–171.

[58] Step 3: Parameters (API reference tutorial) | Documenting APIs. URL: https://id

ratherbewriting.com/learnapidoc/docapis_doc_parameters.html

(visited on 04/08/2020).

[59] Sunil Suram, Nordica A. MacCarty, and Kenneth M. Bryden. “Engineering design

analysis utilizing a cloud platform”. In: Advances in Engineering Software Vol. 115

(2018), pp. 374 –385.

109



[60] Swarm mode key concepts. Docker Documentation. Jan. 7, 2020. URL: https://doc

s.docker.com/engine/swarm/key-concepts/ (visited on 01/07/2020).

[61] Basarat Syed. Beginning Node.js. Apress, 2014.

[62] Janos Sztipanovits et al. “OpenMETA: A Model- and Component-Based Design

Tool Chain for Cyber-Physical Systems”. In: From Programs to Systems. The Systems

perspective in Computing. Ed. by Saddek Bensalem, Yassine Lakhneck, and Axel Legay.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 235–248.

[63] Johannes Thönes. “Microservices”. In: IEEE Software Vol. 32.No. 1 (2015), pp. 116–

116.

[64] UUID objects according to RFC 4122 Python 3.8.2 documentation. URL: https://doc

s.python.org/3/library/uuid.html#uuid.uuid1 (visited on 04/08/2020).

[65] Volunteer computing. en. Page Version ID: 919041984. Oct. 2019. URL: https://en.

wikipedia.org/w/index.php?title=Volunteer_computing&oldid=

919041984 (visited on 04/08/2020).

[66] Anthony I. Wasserman. “Tool integration in software engineering environments”.

In: Software Engineering Environments. Ed. by Fred Long. Berlin, Heidelberg: Springer

Berlin Heidelberg, 1990, pp. 137–149.

[67] Windows Servercore Image. URL: https://hub.docker.com/_/microsoft-

windows-servercore.

[68] E. Wolff. Microservices: Flexible Software Architecture. Pearson Education, 2016.

[69] Vijay Yellepeddi. @Scale - Part I (Task Queues). experience@imaginea. URL: http

s : / / blog . imaginea . com / scale - part - i - task - queues/ (visited on

02/19/2020).

110


	Abstract
	Abrégé
	Acknowledgements
	List of Figures
	Introduction
	Context and Motivation
	Objectives and Contributions
	Objectives
	Contributions

	Thesis Outline

	Background: Tool Integration Workflows at Siemens Canada
	Introduction to Gas Turbines
	Gas Turbine Components
	Design of Power Generation Gas Turbines
	Gas Turbine Design Process
	Design Workflows at Siemens

	Workflow Based Tool Integration Frameworks
	Tool Integration Aspects
	Existing Tool Integration Framework at Siemens
	Architecture of Existing Tool Integration Framework
	Discussion of Challenges

	Summary

	Background: Concepts and Technologies
	Cloud Computing Service Models
	Software as a Service (SaaS)
	Introduction
	Architecture
	Benefits

	Microservices
	Introduction
	Architecture
	REST APIs
	Benefits

	RESTful Microservices Development Frameworks
	Flask-RESTful Web Service Framework
	Task Queue Framework

	Docker Containers
	Containers
	Docker Ecosystem

	Docker Swarm Cluster Manager
	Cluster Management and Service Orchestration
	Docker Swarm

	Continuous Integration and Delivery
	Summary

	Service Architecture for Tool Integration Framework
	Service Architecture
	Architectural Components
	Service Cluster
	Workflow Execution as a Service
	Analysis Tool as a Service

	Concepts of Tool Services
	Software Architecture of the ATaaS Prototype
	Tool Services
	Execution Manager
	Service Provisioning
	Load Balancer Configuration Management

	Summary

	Development of ATaaS Prototype
	Tool Service APIs
	Create an Analysis Task
	Get Task Information
	Upload Input Files
	Starting a Task
	Get Task Status
	Download Analysis Results

	Development of Tool Services
	Flask Web Service Instance Creation and Initialization
	Celery Task Queue Instance Creation and Initialization
	Analysis Tool Executors
	Service Methods

	Deployment of Tool Services
	Docker Images for Tool Services
	Cluster Management
	Service Management
	LB Config Management

	Development of Execution Manager
	Summary

	Performance Evaluation
	Research Questions
	Benchmarking Setup and Execution Methodology
	Benchmarking Setup
	Hardware and Software
	Execution Methodology

	Analysis of Results
	RQ1: Effect of ATaaS execution on single local computer
	RQ2: Effect of parallel distributed ATaaS
	RQ3: Effect of Increasing Service Replicas

	Summary

	Related Work
	Tool Integration for Design of Cyber-Physical Systems
	Workflow Execution as a Service
	Analysis Tool as a Service

	Conclusions and Future Work
	Conclusions
	Conclusions from architecture for tool integration framework
	Conclusions of architecture for analysis tool services
	Conclusions by performance evaluation

	Future Work

	Bibliography

