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ABST:IACT 

This study demonstrates that a finite-memory hold circuit 

is a sampled-data filter which performa mathematical operations on 

discrete signale by using finite difference techniques. Some 

alternats proofs to theoreme pertaining to sampled-data systems 

are offered in addition to thf) derivation of a general expression 

for the transfer funotion of the hold circuit which restores 

sampled-data signala to an analog fo:m. An analysis of the errors 

arising in suoh a restoration is presented. 

A method of simulating such filters using operational 

amplifiera is suggested and the requirements which the various 

components in such a schema must satisfy is investigated. The 

circuitry employed in such a system is described, including the 

design and performance of a direct-coupled diode switch, capable 

of high operating speeds whioh may be used for sampling and gating. 

The experimental resulta obtained with a prototype simulation 

system are canpared wi th z- transfo:nn predictions. · Some applications 

of these sampled-data filters are suggested as areas for future 

research. 



1.1 Introduction 

CHAPTER l 

SAMPLED-DATA SYSTEMS 

Concerted interest in sampled-data systems began in the early 19L0 1s 

in conneotion with radar control. The ref!ul ts of these early investigations 

were summarized by James et a1.1 Since then there bas been great activity 

in the analysis of sampled-data systems as witnessed by the-volume of 

literature published on this subject in the past decade. 21 3,L 

A sampled-data system differa from a continuons one in the form in 

~ich information signala are tr~nsmitted. In the continuons case the 

signal is available at ail times, while in the sampled-data case it is 

only available at discrete instants in time and bence is applied 

discontinuously to the system. The use of a sampled-data system may be 

dictated by econœio ressons or considerations of weight and size. Thus, 

in control systems where digital computera are employed in the control loop, 

the input and output to the computer must be in a disorete or sampled-data 

form. Similarly, in telemetering systems, it may be necessary to time-share 

a communication channel among several units, and thus the transmitted 

information is reoei ved in the form of sampled-data. 

James et al. 1 presented an analysis of sampled or pulsed data systems 

which was based on speoif;ing the weighting funation for a linear filter with 

pulsed data. Their method has the disadvantage of great mathematical 

aomplexity, although there is mention of the now popular Z-transform method 

of analysis. KaaColl5 discussed sampled-data servcmechanisms and made a 

preliminary approach to the Z-transform. 



1.2 Frequenoz-Domain Anal1sis 

Linvill6 analysed sampled-data systems in conventional frequenoy 

domain terms. In particular, he showed that the sampling prooess produces 

higher-order frequencies whioh may be removed b.r appropriate filtering. He 

also showed that no frequency higher than half the SUI.pling frequency will 

be recovered in demodulating the sampled-data. This is a well known result 

previous~ established by Shannon.7 

Figure 1.1 

Sohenatio Representation of the Sampling Process 

The sampling process is represented schematioally in Figure 1.1 A 

oommutater s'Ni teh closes for an infinitesimally short time every T seconds, 

producing a SUI.pled output f*(t) frcm the oontinuous input f(t). It is 

assumed in the ensuing anal.ysis that the output frœ the sampler consista 

of a train ar impulses equally spaced in time and with areas equal to the 

value of f(t) at the sampling instants. F(s) is the Laplace Transform of . - . 
f(t) and J' (s) is the Laplace Transform of the sampled output. 

Linville considered the sampling process to be ampli tude modulation 

of an infinite pulse train by the input signal. If ôT(t) representa an 

infinite train of unit impulses spaoed T seconds apart 1 the sampling 

process may be represented mathematioally b.r the expression: 
-If; 

f(t) ~ f(t) x ër(t) •••• 

The infinite pulse train may be expressed in the form of a complex 

Fourier Series:6 
CIO 

1.1 

ôT(t) = ·~ Lejkcot ••• " 1.2 
k=- <Xl 

2 



where T • 2n/oo is the interval between sampling impulses. 
00 

If F (ro) • f (t)e- 00 dt is the Fourierc Transform of t (t), lf,. J. j~ * 
-<><> 

then we 

may write: 
oO co 

r• {ro) • J f(t)-}. L ejkœ:J.t e-jcot dt 
-oc ~= -Oo 

•••• l.Ja 

Assuning absolute convergence of the infinite series, 

r* (ro) ._L i foc f(t) e·j {(~Jf<ncü.L)t dt 

and putting k • •n: 

· 'ft n=-oo _.,o 
.... l.Jb 

- 1 """ 
• 'T', ~ F ( œ+nOOJ_) 

1\~-~ 
•••• 

-c 

where F(ro) is the Fourier Transtorm of f{t) • 

.lctually, Linvill gives the relation in terms of the L-transform as: 
étO 

.. f -~ 
F (s) • rr, LJ F(s•jnt.OJ.} .... l.L 

1 1'\::-QO 

where F(s) is the Laplace Transform of f(t) 

and i'f-(s) is the L~place T~ansform of r""'(t}. However, later work by LagoS 

showed that this expression is incomplete and should be modified to read: 
00 

-t- 1 ,. 
F (s) • rr. L..J F(s•jn~) + f{0"")/2 

1 n= -oo 
•••• 1.5 

Lago' s expression is based on purely physioal arguments and is not proven 

rigorously, However, its validity may be demonstrated by an example. 

Consider the input to be a unit step with Laplace Transfora 1/s and 

value at the origin (o"") of 1. Then equation 1.5 beoomes: 

* ' ~ .. 1 1 
F (s) • 'P, .... S S+Jrlw, + 2 ..... 1.6 

The infini te sum in this expression may be wri tt en as : 
00 

2. z 'T', s - 1 
n:::oo {'T',s)'+(2n'i'l")'2. rr,s •••• 1.7 

.A si~lar expression is round in Bromwich's book:9 
oO 

~ ~~2-
P<t-=o-oO 

îf' s î ~h (211)'}. 
'( c.osh (2«y)- 1 •••• 1.8 

or 
"" 1 

2. L Y' -t' ~ 2. 
~:.0 

11 sinh(z:rrtJ + •••o 1.9 y c.o.>h (?:rrt) - 1 y 

3 



Substituting y • 0 o/2'\"1' in l.L and simplifying the .algebra, expression 1. 7 

becomes: 
1 1$) 1 ;;:;- 2": . v:J 

1, n~ -<X> $ + J n ' 
= 1 sin h {~ S) 

2. c.osh('ns)-1 

and equation 1.6 becomes: 

r(s) • 1/2 cosh(T1 s/2) + 1/2 

• 1/2 [ cosh{T1 s/2) .., iJ 
T1s/ T1s • e {e • 1) 

U)Sh ( T,s) 
2 •... 1.10 

•••• 

•••• l.llb 

•••• l.llc 

It will be shown later that expression lalla is identical to that 

derived by other methode and is known to be correct. Although this example 

does not constitute a proof of Lago's equation (1.5) it is more èlegant than 

the example offered in his paper. 

The significance of expression 1.3c should be examined. This equation 

states that the sampling process produces complementary frequencies related 

in a simple mannar to the frequency components of the input signal. If 

Figure 1.2a representa the frequency spectrum of a hypothetioal input to a 

sampler with sampling period T1 • 2~~~ then the corresponding frequency 

spectrum of the aampled output is that shown in Figure 1.2b. 
1 F(w)l 

1 1 

1 
1 

1 

1 
1 

1 
1 

1 

1 1 

. 
Hypothetical Frequency 

Spectrum at Sampler Input 

1 

1 

1 

1 
1 

-
1 

P(w) 

1 Y,, 1 

1 1 

1 
1 

1 
1 

1 1 -~1 0 ~ 
Figure 1.2b 

Frequenoy Speotrum 
at Sampler Output 

Clearly, if the input speotrum contains !requenoies higher than 

1 

~/2, then the oomplementary apeotrum (n 1 0 in equation 1.3} will overlap 

the primary apectrum (n • 0) indioating that the frequencies in the interval 



where the over1apping occurs cannot be recovered from the sampled signal. 

This establishes Shannon1s sampling theorem7. The input spectrum is assumed 

' to be band·l~ted to exclude ail frequencies higher than hal! the sampling 

rate. 

1.3 Z-Transform Analysis 
. . .- -
The sampling process is represented mathematically by the expression: 

.f*(t) • f(t) x ôT(t) •••• 1.1 

Rather than expand ôT(t) in its Fourier series as was dona in the 

frequencycodomain analysis, we may write it in terms of its infinite time 

series: 
Q(l 

ô'J!(t) • ::Z ô(t - nT) 
"1'\-::1.- oc 

•••• 1.12 

where ô(t) is the unit impulse function and T is the interva1 between 

samp1ing impulses. Furthermore, if f(t) • 0 for t<!:P then equation 1.1 

may be rewritten: 
00 

f~(t) • f(t) ~ ô(t • nT) •••• 1.13 
(\:0 

~ ,. 

Taking the Laplace transform of equation 1.13: 

= co r 
F*(s) ::: j f(t.) 2-: S(t-nT) e-s dt 

. 0 f\=0 
•••• l.lLa 

where r*(s) is the Laplace' transform of :f~(t). Assuming absolute convergence 

of the infini te séries, equation l.lLa b~comes: 

Z Joof'(t) S(t-n'T') e-sT dt 
n ~ 0 ° 

•••• 

= 
Z f(n'T) e-sn'T' •••• 1.1Lo 
n=o 

Substituting z • esT in the above equation: 
co 

F(s) • ~ f(ri!) z-n •••• 1.15 
- .. (\:: 0 

F(z) is cal1ed the Z-transrorm or r(t) but, strict~ speaking, it is 

'*' sT the Laplace transrorm or r (t) with e replaoed by z. The roregoing 

5 



derivation follows that of Ragazzini and Zadeh10 who developed the 

Z-transform in its present form. Equation 1.15 expresses F(z) in an 

infinite power series in z. It is also possible to determine F(z) in 

closed form by application of the theory of camplex convolution.11 

Jur,r12 has done this by taking the complex convolution of F(s), the 

Laplace transform of f(t) and (1 - e·sT)•1, the Laplace transform of 

ôt(t). Jury's expression is not reproduced here as equation 1.15 is 

more amenable to physical interpretation of the sampling process and all 

necessary resulta may be derived fran it. 

The substitution of esT • z in equation l.lhc to obtain 1.15 is 

merely a matter of mathematical convenience. The Laplace transform of a 

sampled function is not analytic in $, but its z-transform is analytic in 

z. Conventional techniques may be applied to the analYsis of the stability 

of sampled-data systems by noting that the transformation, z • esT, maps 

the left half of the s•plane into a unit circle in the z-plane.l2,l3 

The applications of the Z.transform are not limited to the analysis 

of elctric circuits. Just as the Laplace transform may be used to solve 

linear differentiai equations, so the z-transform may be used to solve 

linear finite difference equations.lh 

The Z-transform of a unit step may be derived as an application of 

equatio~ l.i5: 
00 

F(z) • ~ f(nT) z•n 

For a unit step, f(nT) • 1 for al1 n, hence 
00 

, .( ) --~.' •n F z • L.1 s 
f\~0 

• (1 - z-1)•1 

• ~/(z ... l) 

•••• 1.15 

•••• 

•••• 

•••• 1.16o 

With the substitution, z • eàt, this expression becames identical to l.llo 

6 



which confirma the validity of Lago's equation (1.5) for this particular 

case. 

The physioal interpretation of equations l.lùo and 1.15, is that 

they represent a train of impulses starting at t • o, spaced T seconds 

apart and with areas equal to the value of the continuous function, 

f(t), at the sampling insta~ts. In other words, the input signal to 

the sampler weights the output train of impulses with its value at the 

sampling instants. 

l.L Z-Transform Algebra 

'T' 
~ 

~· 
F(~) 
f'{t) 

h lt) 

Figure 1.3 

r 
1 
1 

~- _ _Q(~} 
o•(t) 

O(sl 
o(t) 

.A typical linear sanpled-data system 

In the system shown in Figure 1.3, both the input, \f(t), and the output 

o(t), are sampled in synchronisn and h(t) is the impulse response of the 

system. If the system were continuous, the output would be found by taking 

the oonvoiution of f(t) with h(t). It will be shown that a similar technique 

exista for sampled-data systems. 

ir H(s) is the Laplace transform of h(t), then the output Laplace 

transform O(s) is: 

O(s) • Jl'"*(s) H(s) •••• 1.17 
-

However, if this output is sampled with a second sampler operating in 

synohronism vith the input sampler, then the output will be O(z), i.e., 

the z-transform of o{t). The system impulse response is h(t), therefore 

at some time rrtr, the output will be: 

o(mT) • f(O)h(mT) + f(T) h [ (m - l)T J • .... + f(mT) h(O) H. 1.18 

7 



i.e., the sum of the system responses to that time. This may be written: 
n'\ 

o(mT) "' 2, f(nT) h lCm•n)T] •••• 1.19 
1"\ "" 0 

Equation 1.19 is called a "convolution summation" and is the sampled-data 

analog of the convolution integral for a continuous system. The upper 

summation limit in 1.19 may be extended to infinity because h [Cm-n)T] • 0 

for n >m. As shown: 
oO 

o(m.T) = :Z f(nT) h l<m-n)T] •••• 1.20 

But, O(z) • o(mT) • ••• 

Substituting 1.20 in 1.21 resulta in: 
00 OC> 

O(z) • ~ 5, f(nT) h ~ (m-n)T] z-m •••• 1.22a 
YY\.-::.o., n -:. o C)rC) 

• 2.f(nT) Z b[(m-n)~ z-m •••• 1.22b 
1'1~ 0 t'l'\~ 0 

• Z f(nT) ~ h (Cm-n)T]z -m •••• 1.22c 
\1"\ ':. 0 yY\"':;. 0 

Where the summation limita have been changed by noting that h[(m-n)T] • 0 

for m<n. Substituting k • m-n in 1.22c yields: 
CX> ·--o 

O(z) • '2: f(nT) 2: h(kT) z•kz-n 
n=o ~~o ..:o 

. .. • ~ f(nT) z-n 2: h(kT) z•k 
""o ~-::o 

•••• 1.2.3a 

•••• 1.2.3b 

• F(z) H(z) 

Thus, the Z-transform of the output of a linear sampled-data system 

with the configuration of Figure 1 • .3 is the product of the Z-transform of 

the input signal with the Z·transform of the system impulse response. The 

algebra for other system configurations bas been well developed and may 

be found in nunerous sources.h,lO,l.3,lh 

The sampled output, o* (t), may be determined by expanding O(z) in 

inverse powera of z and examining the coefficients of the various terms 

wbich give the value of o(t) at the sampling instants. Alternatively, 

o'+<(t) may be obtained in clo;ed form by taking the inverse Z.transform.12,l.3 

8 



The theory which has been developed thus far will yield the value 

of the output at the sampling instants, but will not indicate how the 

system behaves between samples. In soma cases, this may be all that is 

necessary to determine the stability of a sampled-data control s,ystem or 

to aid in the synthesis of such a system. However, in the problem with 

which this research is concerned1 this property of the Z-transform 

seriously limite its usefulness. 

loS The Modified Z.Transform 

To obtain the response of a sampled-data system between sampling 

instants, an extension of the Z.transform, called the modified Z·transform, 

has been developed.lS,l6,l7 This transform is evaluated by considering 

the effect of introducing a fiotitious time delay AT (A<l) in a linear 

sampled-data system. 

Figure l.L 
-

Sampled•Data System with Fictitious Time Delay AT 

The mannar of introducing the fictitious delay is shown in Figure 

l.L, and the affect ot this delay on the system output is illustrated in 

ligure l.S. 
h(t) h {t.-l!.or) 

Figure l.Sa Figure loSb 

9 

Hypothetioal System Response with no Delay Btfect of a Delay AT on the System 
Jlesponse of Figure loSa 



Figure 1.5 shows that the sampled output, O(z), of the circuit 

in Figure 1.~ will give the value of the undelayed output at (n • A)T 

when the sample is taken at nT. If we define m • l-A (m<l) 1 then the 

output at the sampling instants of the system with the fictitious 

delay will be the value of the undelayed output at (n • l)T + mT, and 

thus: 

o(nT) = f'(O) h \Çn -~r m - l)Tj + •••• + f ~(n • 1)~ h(mT) 
"-1 

•••• 

or, o(nT) • 2, f(kT) h [Cn + ··~ .;. k • 1}~ 
\k!•O . •••• 

1.2~ 

Now, h[(n • m- k- l)~ • 0 for k> n- 1, so the upper sUI1111.ation limit 

may be extended to infinity. Doing this, and substituting the resulting 

expression in 1.21: 
00 oO 

O(z) • 2 Z f'{kT) h[(n + m- k • l)~z-n 
~ f\:0 11!-,.0 

Substituting p • n- k • 1, and noting that-h[{p + m)T] 

results in the expression: 
00 co 

O(z) • L f(kT) L: h[(p + m)T] z-Pz•kz•l 
~-=o p-::.o co 

. = '2: f'(kT) z-k z•l Z h"[(p + m)T] z•P 
lt"'o p ::(1 

• F(z) H(z,m) 
00 

•••• 1.26 

• 0 for p<O, 

•••• 1.27a 

•••• 1.27b 

1.27c 

where H(z,m) •-z-Î ·.:z h [Cn + m)~ z-n •••• 1.28 
1'\-:oO QO 

Cheng1k·def:ines H(z,m) as H(z,m). • L h(nT + mT) z-n and oa1cu1ations 
fl:o 

using this expre~sion.agre~ with those to be found in Lago•s paper_.lB 

but the definition of equation ·1.28 will be used as it is· the one 

genera11y found in the 1iterature on this subject. 

As neither the fictitious delay nor the second samp1er is aotually 

present in a practica1 samp1ed-data system, it is conventional to use the 

notation 

O(z,m) = F(z) H(z,m) •••• 1.29 

where O(z,m) ia the modified Z-tranaform of the output and H(z,m) is the 
~ . 

modified Z-transform of the system tranafer function. The a1gebra for 

10 



other system configurations may be found in numerous sources.l3,l7 

The complete system response may be found by taking the inverse 

transform of 0(~1m) and allowing m to vary between 0 and 1. The time 

domain response ia obtained by substituting t • (n-l+m)T in the inverse 

transform. 

From an examination of equation 1.28, it is seen that: 

liJa z H(z,m) • H{z) 
m ... o 

Thus, multiplying O(z,m) by z and allowing m-rO, we obtain the upper value 

11 

+ .... + of the system response at the sampling instants, i.e, the value at 0 ,T 1 2T ••• 

If we allow m-.1 in the expression for O(z,m), we obtain the value of the 

• T• 2T• output at 0 , , , •••• If the system has a continuous impulse response 1 

the following relation exista: 

lim z H(z,m) • lim H(z,m} 
m-o m_.l 

now lim H(z,m) • lim z H(z,m) - h(O) 
"'-' m-.o 

Therefore, the system can only have a oontinuous impulse reeponse if 

lia h{t) • o. By the initial value theoran for Laplace Transforma this 
t-o 
is equivalent to the relationz 

lim s H(s) • 0 •••• 1 ... 30 
s-= 

If H(s) oan be expressed as the ratio of two polynomiale in s, then the 

polynomial in the denominator must be of a degree at least two greater than 

the degree of the polynomial in the numerator, to satisfy equation 1.30. 

The modified z-transform may also be used to express certain infinite 

series in olosed form.17 This is done by noting that: 

o(t) • t-1 (F*(s) H(s)) 

where L-1 denotes the inverse Laplace transform. Evaluating o(t) by taking 

the inverse Laplace transform will result in an expression in infinite 

series forme o{t) may also be evaluated by taking the inverse transform of 



O(z,m) and putting t • (n- 1 +- m)T. This will yield an expression for 

o(t) in closed form. The two forme of o(t) must be identical as they 

describe the same system and the modified Z.transform is just a special 

case of the Laplace transform0 

1.6 The P•Transform 

The methode of the z-transform and the modified z-transfora are 

applicable to the analysis of sampled-data srstems where the sampling 

impulses have zero width. Resulte obtained by the use of these method8 

are exact only if the sampler transforma the finite amplitude of the 

input signal to true impulses of equivalent area, ~ich is physically 

impossible. An an~lysis of the effect of the finite width of the sampling 
19 20,21 

pulses has been made by Farmanfarma 1 and has resulted in the 

definition of the P-Transform. 

The P-Transform of a continuous signal, f{T), "hhich is sampled by 

pulses of width h, is defined as the Laplace transform of the product of 

f(t) and the train of sampling pulses, each of unit height, width h1 and 
~ 

occuring periodically every T seconds. The P-Transform is obtained by 

taking the canplex convolution of F(s), which is the Laplace transform 

of f(t)~ with (1 • e-hs) s-1 (1 • e~8T)•1, the Laplace transform of the 

pulse train. Tables of P-transfoms will be found in Farmanfarma • s 

paperl9 and Jur,r's book.l3 

An analysis has also been made by the author similar to that for 

the derivation of the Z-transform in infinite series form. However, as the 

resulting expression involves both integration and summation, it offers no 

advantage in the physical interpretation of the sampling process over 

Farmanfarma•s expression. 

12 



For the open-loop system already discussed in same detail, the 

modified Z-transform of the output is 

O(z,m) • F(z) H(z,m) 

The time domain response is then obtained by taking the inverse transfo.rm 

of O(z,m). When the finite pulse width is taken into consideration, the 

corresponding expression becomes: 

O(s) • F (s) H (s) 
p •••• 1.31 

where Fp(s) is the P-transform of the input, f(t). The time domain 

response may be found in closed form by taking the inverse P-transform of 

O(s). 

The greatest inaccuracies in using the z-transform ~en the sampling 

pulses have a finite width occur when the system has a discontinuous impUlse 

response, i.e. equation 1.30 is not satisfied. Under these conditions, the 

Z•transform predicts a finite discontinuity at the sampling instants, while 

the P-transform predicts a continuous output with a finite discontinuity in 

its first derivative at the beginning and end of each sampling pulse. 

LaEge errors will be incurred in predicting any system response vith the 

Z-transform if the sampling pulse width is comparable to the system time 

constant. 

The frequency domain analysis of a signal sampled by a pulse of 

finite Width may be accamplished by a method similar to that used for the 

case of ideal impulses. 
l ) Up t. 

1 

0 h 

Figure 1.6 
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The Sanpling-Pulse Train 

-t 

1.3 



If Figure 1.6 respresents the train of sampling pulses, its finite 

Fourier transform is: 

"' "" ,/, J e -J n w/=' d t 
1 0 

• ••• 1.32a 

•••• 1.32b 

where œ1 • 2n/T,. The sam.pling pulse function, ~(t), may now be expanded 

in a oomplex Fourier series. 

• ••• 1.33• 

•••• 1.33b 

1 
'Where 'L. m.eans that the term n • 0 is exc1uded from the summ.ation. The 

* Fourier transform. of the sam.p1ed output, F p (œ), ma:r now be eva1uated 

using the m.ethod of section 1.2 

Substituting k = -h: 

1 
00 1 ( J ~cil, h) J~ _ · (w+~w,)t 

Fi" (<.ùl = --: L \ - e fl1:) e J dt: + Plw) h~, 1 3Lb 
2trj Il.- - k - • • • • • 

1'<--oo -oo 2rr 

::: :i_ z' F(w-tnw,) 1- ejnûV; + F(w) hw, .... 1.3Lc 
2rrj ,.,_..., n 21r' 

where F{ro) is the Fourier tranaform of f{t) and «Q • 2n/Tl• 

The foregoing analysis is quite different from that of Farmanfarma 

who obtains ~e result 
c-P*(s)- .-=-.' ZoO 1 

F(s+ J·~w,) 1 - ej~w,h + F(s) hw, 
li 2 ' .k •••• 1.3.5 .rfj Il-~ 2 

lL 

'<"'-00 'Tr 

where F(s) is the Laplace transform of f(t) and F;(s) is the Laplace transform 

of the sampled output. 

Expressions 1.3Lc and 1.35 may be reduced to their corresponding 



forma far the case of zero pulse width by letting the amplitude of the 

sampling pulses equal l/11 instead of uni ty and then letting h...O. It is 

also noted that in the limit as h-T, the equations becom.e 

• lim fp(œ) • F(œ) 
fl ... 'l' 

as would be expeated. 

The physical significance of equation l.3Lc is illustrated for 

the case h/T • 0.25 in Figures 1.7a and 1.7b, which show the power 
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spectrum of a,hypothètiœal signal before and after sampling. It is seen 

that a gi ven com.plementary frequency is attenuated by the factor h(sin x)/x 

over its corresponding value in Figure 1.2b1 where :x • nràl/T and n is the 

order of the complem.entary component. 

applies. 

1 F(w)l 

- • 0 '-l• 
~ ï 

-w 

Figure 1.7a 

Hypothetical frequency spectrum 
at s ampler input. 

Sampled-Data Filters •• 

Shannon1s sampling theorem still 

Il 1 IFp (w) 

sin~ 
0•2.5" / -::r--- --

.... ~ o-~ 
1 

_n 
Figilre 1.7b 

Frequency spectrum after sampling 
by a finite-width pulse. 

In addition to the work already discussed relating to sampled-data 

control systems, much interest has been shown recently in sampled-data 

filters. These may be of many configurations and one type is the n + m 

port network ~th n inputs ~ere sampled-data signala are appliéd and m 

outputs which supply continuous signala related by weighting functions, 

Wij' to the n inputs. If the general nature of the input signal is 



known, and the desired nature of the output signal is specified, then the 

weighting functions may be determined according to some criterion auch as 

optimization in the Wiener sense.22,23 
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.Another type of fil ter which seems to have many applications is the 

N-path filter described by Franks and Sandberg.24 For the particular case 

where the inputs are pulse modulated, this may be considered a sampled-data 

filter. An application of sampled-data filtering to self•optimiaing 

systems bas also been reported. 25 

1.8 Scope and Purpose of the Research Undertaken 

Many theoretical investigations have been made in the analysis and 

synthesis of sampled-.data control systems and sampled-data filters. However, 

with a few notable exceptions, 25 the reporting of experimental verification 

and complementing of these resulta have not kept pace with theoretical 

developments, although auch etudies are probably being conducted in areas 

not generally discussed in available literature. 

One resson for this situation could be the lack of suitable universit,r 

laborator,y simulation faoilities, whioh are available to the indiY!dual 

research worker. Simple sampled-data control systems may be studied by 

means of an analog computer and a motor-driven rotary switch, but this 

arrangement sets an upper limit to the sampling rate lilich may be used, 

and does not permit the investigation of sampled-data filters requiring 
26,27 

a memory to store values of past samples. It is true that some authore 

have described laboratory models for studying sampled-data systems, but their 

methods have limited flexibility0 

The purpose of this research is two-fold: the analytical and 

experimental investigation of certain aspects of a type of sample-data 



fil ter. 

Analytical studies have resulted in some alternate derivations of 

theorems in sampled-data theory already discussed in this chapter. A 

general expression for the transfer function of the class of filters 

càlled finite-memor.y hold-circuits has also been established. This will 

be considered in the 12xt chapter. 

The experimental investigations have dealt with methods of 

17 

simulating these sampled-data filters and at the same time considered the 

requirements which must be satisfied by the components of a sampled-data 

simulation scheme. The actual building of these filters will be left for a 

future investigation as this phase of the research is concerned only with the 

feasibility of certain simulation techniques and indicates which components 

will require more development before an opèrational filter is built. 



CHAPTER II 

RESTORATION OF SAMPLED-DATA SIGNALS 

2.1 Low.Pass Filtering 

ln most sampled-data systems, the input is puls~d, while the 

plant has been designed to respond to a continuous input. Although 
..• 

•plant" is a term generally reserved for control systems, it may also 

be interpreted in this oontext as the read-out deviees in a telemetering 

system. Therefore, before the sampled input is applied to the plant, i t 

must be demodulated or restored to a continuous signal whioh should be a 

faosimile of the original signal. .Although Ragazzini and ZadehlO observe 

that the digital signal may samtimes be applied direotly to the plant, they 

nevertheless recommend that a restoring circuit be placed between the plant 

and the sampled input. Thus the study of sampled-data restoration circuits 

is an important field for investigation. 

An examination of Figure 1.2 and assooiated equation 1.3c immediately 

suggests one method of accamplishing the necessary restoration. If an 

ideal low-pass filter oould be built with zero attenuation over the range 

lroi<Oj_/2 and infini te attenuation for lroi>OOJ,./2, them this filter would 

remove all complementary frequency components from the sampled-signal 

speotrum, leaving only the primary components ~ich are those of the 

original signal. Such an ideal filter oan only be approximated, of course, 

and muoh has been ~itten on the design of suoh filters. Once suoh a 

filter bas been deaigned and its transfer function evaluated, its 

performance in a given system may be predicted by using the Z-transform or 

P•transform analysis. It should be noted that auch a filter must have a 

continuous impulse response as defined b,y equation 1.30 for a smooth 

output. 



One drawback of these filters is the inevitable phase-shift 

introduced in the output signal. In time•shared communication links and 

certain telemetering systems such a phase-shift is not important, but in 

control systems, this phase-shift may lead to instability. For this 

reason, these filters are seldomJused as restoration elements in sampled• 

data control systems. Nevertheless, deviees which are used do have low-

pass filtering characteristics. 

2.2 The Zero Order Hold Circuit 

llagazzini aoo Zadeh10 suggest the use of a hold circuit to restare 

the digital signal to an analog fona. The f'unction of a hold circuit is to 

reconstruct appraximately the original time f'unction from the ±mpulse train 

generated by the sampler. The simplest hold circuit is the zero~brder hold, 

sametimes called a clamp circuit or baxcar generator. The operation of this 

circuit is shown in Figure 2.1. 
f*(~) 

'---l........___,___~_,__t 
0 '1' ';!.T 3'1' 4'1' S'l' 

Figure 2.1a 

Hypothetical Sampler Output 

~--~--~--~---L--~~t o ., a"' ~ '17' 57 

Figure 2.lb 

Ideal Hold Output 

The zero order hold maintains its output constant at the value of 

the last sample until a new sample is reoeived, whereupon the output changes 

discontinuously to the new sanple value. If the continuous input f'Unction1 

f(t), is expanded in a Taylor 1s series about the point Dr, the resulting 

expression ist 

f(t} • f(nT} + f''(nf) (t•nT) <t .f' '(nT) (t•nT)2 + ••• 2.1 
- - . - .2! 
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where the primes indicate the derivatives of f(t) at tn • nT. The zero arder 



hold appraximates f(t) by the first term in this expansion: 

fh(t) = f(nT), nT:.Çt<(n+: 1 l)T • • • • 2. 2 

where fh(t) is the hold circuit output. The transfer function of such a 

hold circuit is:1Q 

G0(s) • (1 - e·sT)/s •••• 

and 
j G0(j<D)I· ~~sin #l •••• 

where T is the sampling period. Relation 2.L is plotted in Figure 2.2 

which shows that this circuit bas low•pass filtering oharacteristios. ,., 

Frequenoylœsponse of the Zero-Order Hold 

Restoration of sampled-data by hold circuits is esaentially a 

2.3 

digital operation, requiring a memory to store the values of past samples 

which are required to generate the continuons output. The zero-order hold 

may be considered as a member of a class o:f sampled-data .f'ilters embraoing 

all hold circuits. 

It is seen that the transfer function for the zero~order hold 

20 

(equation 2.3) does not satisf.y the requirements for a continuous impulse 

response (equation 1.30) and bence its output will have finite discontinuities .. 

at the sampling instant as shown in Figure 2.1. 

2.3 Ana1ysis of Systems with Hold Circuits 

Figure 2.3 shows a typical sampled-data system em.ploying a zere>e 

order hold ae a restoring element. 



Fls) ~ F('i) 1 1- e- s'P 11------1 
~ J .f*{~) s 

~----~ ~------~ 

Figure 2.3 

Typical Sampled-Data System Employing a Zero-Order Hold 

From equation l 0 27c, the output of this system is: 

O(z,m) • F(z) T(z,m) •••• 2_.S 

where T(z,m) is the modified Z-transfoDm of 

T(s) = (1 • e·sT) H(s)/s •••• 2.6 

Consider transfer functions of the form 

G (s) • G{s) e•ksT 
1 •••• 

where k is an integer. This is the same as a circuit wi th a transfer 

function G(s) followed by an element introducing a delay of kT seconds. 

From equation 10 28, the modified Z-transform of equation 2.7 is: 
. 00 

2.7 

a1 (z,m) • z•l :~: g1 l (n + m)T] z•n •• •• 2.8 
n=o 

Now, g1 (t) • g(t • kT) for t,?kT 

= 0 for t< kT 
00 

Therefore, G1 (~,m) • z-l 2~ g \_ Cn + m - k)T] zrn 
f\"0 

Substituting j • n - k, this becomes 
00 
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P1 (z,m) • z-1 L g L(j 'lit m)~l z•j z•k •••• 2.10a 
i""-fk co - .. 

• z•l z-k ~g [ (j + m)Tj z•j 

~ere the lower summation limit has been changed because 

Hence, 

and, 

g(j + m) • 0 for j · + m •CO 

lim g(m • 1) = g(o•) • 0 by definition. 
m-.1 

"k Q1 (z,m) • z• G(z,m) 

T(z,m~ • (1 - z•1) Z.LH(s)/s] 

•••• 2.10b 

•••• 2oll 

•••• 
where Zm[H(s)/~is the modified Z.transform of H(s)/s. Equation 2.5 may now 



be rewritten: 

O(z,m) • (z - 1)/z F(z) ZmlH(s)/~ •••• 2.1.3 

The use of a zero-order hold resulta in ver.y little additionall 

complication of the basic equations describing the sampled-data·behaviour 

of a plant with transfer function •(s). Furthermore, the system in 

Figure 2 • .3 will have a continuôus impulse response if lim H(s) • o. If 
s-.CIO 

the hold circuit only responds to the value at the start of a finite-width 

sampling pulse, which may be considered the ideal behavioUD, the Z-transform 

analysis of equation 2.1.3 is still valid even though the sampling pulses 

have a finite width. 

2.~ First Order Hold Circuits 

.Although most papers on sampled-data systems consider only the zero-

order hold as a sampled-data restoration element, its principle may be extended 

to circuits which approximate the oontinuous funotion by a polynomial in t 

whose coefficients are determined by the sample values. For example, a first 

arder hold would yield an output with the form: 

fh (t) • f(nT) • (t ; nT){ f{nT) • f [Cn .. 1)~} •••• 2.1h 

for nT~t <(n +- l)T. 

Such a hold circu:Î. t is described by Juryl.3 and i ts operation is shown in 

Figure 2.h. Its transfer function is: 

•••• 2.15 

When a first order hold circuit is used in the system in Figure 2 • .3 

instead of a zero•order hold1 the coresponding equation desoribing the u 

operation of the system is: 

O(z,m~ •[z ; 1J2 F(s){ ~(H(s)/~ + i ZmlH(s)/s2]} •••• 2.16 
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Figure 2.~a Figure 2.~b 

Hypothetioal Sampler Output First.Order Hold Output 

The general expression for the output of a hold circuit may now be 

given: 

f(nœ + t) • a0 + a1t + a2t 2 + •••• + antn + ••• ..2.17 

. for 0~ t <T• The ai are parameters determined by past samples and are 

constant in any sampling interval. 

2.5 Generalized Hold Circuits 

The physical operation of a generalized hold circuit may be visualized 

by considering it to be a predicting circuit whioh fits a polynomial of finite 

degree to past sample values and then extrapolates this function over a 

sampling interval. The hold circuit output consista only of the extrapolated 

portion of the funotion and the degree of the ooresponding polYnomial is 

governed by the nun.ber of past samp1es which subsequent!y determine the ai 

parameters in equation 2.17. 

A hold circuit will be defined to be of order p if the po!ynomial 

in equation 2.17 is of degree P• This definition agrees with that for the 

zero and first-order hold circuits already dis.oussed. To generate auch a 

po!ynomial, the hold ciroui t must contain a memory capable of storing p + 1 

sample values and be~ble to perform mathematical operations with these 

quantities to generate the required polynomial. We are at liberty to define 

another parameter relating to hold circuits: this is its rank, a term which 

has not been previously reported in the literature. If the output of a hold 



circuit is a polynomial of degree p1 but the coefficient ap is calculated 

from p + q + 1 sample values, then the hold circuit is said to have rank q. 

This quantity is the number of excess sample values over the minimum, p + 1, 

required by the degree of the polynomial approximation. Conventional hold 

circuits have a rank of zero. The notation for a generalized hold circuit 

will be (p,q) where p is its order and q is its rank• 

The physical meaning of the terme, "order• and •rank", may be 

illustrated w1 th the a id of Figures 2.5a and 2 • .5b. The fonner shows a 

first-order 1 zero-rank filter output for an arbitrary set of samples; 

the latter illustrates a first-order, first-rank output for the same set 

of samples. 
fn(t) 

t -

2L 

.Figure 2. Sa 

Hypothetical (11 0) hold output 

Figure 2.5b 

Corresponding (111) hold output 

In both cases, the filter output oonsists of rampe with abrupt 

discontinuities at the sampling instants. In Figure 20 5a1 the slope of the 

ramp is determined by two samples, while in the other figure, this quantity 

is determined by three samples0 

The generation of a polynomial for the restoration of sampled-data 

is not a new concept, having already qeen described by Porter and Stoneman. 28 

In their method, a polynomial of the rth degree is generated by casoading r 

integrators whose initial conditions or displacements are adjusted at each 

sampling instant in accordance with some predetermined scheme. Their method 

requires only" one memory unit lllhich stores the algebraic sum of past samples1 

the output of this unit being multiplied by appropriate scaling factors before 



being applied to the integrators. The stability of their systém ,was later 

investigated by Lawden.29 

The approach to the design of hold circuits whioh has been used in 

this researoh is quite different from that of Porter and Stoneman. The 

generalized (p,q) hold circuit is oonsidered to have a memory capable of 

storing p + q + 1 sample values so that values of the individual samples 

and not just their sum may be utilized by the oomputing section of the 

deviee. The hold circuit .is considered to be a sampled-data filter and a 

general expression for the transfer funotion of a hold circuit of arbitrary 

order and rank is evalua ted. This may be considered to be the transfer 

funotion of the filter to a sampled•input and is of such a form that a 

system containing the se hold ciroui ts may be readily analyaed by the 

Z.•transform. 

The use of a large but finite memory in the filter greatly inoreases 

its flexibility beoause polynanials of a given maximum order may be generated 

aooording to a variety of criteria. The filter may be interconnected in such 

a way as to generate a polynomial to fit a given input with the same accuracy 

as a Porter.Stoneman system. 

Finally, electronic analog camputing elements are used exclusively 

in the construction of the fini te-memory hold circuits. ·Most of Porter and 

Stoneman's wark Has done with mechanical differential analysera although they 

reported a two integrator model which used an eleotronic integrator and a 

Velodyne integrator. All-electronic circuiV,ry auch as used here, provides 

a more flexible simulation scheme. 

2.6 .lnalptis of Generalized Hold Circuits 

The analysis of the generalized hold circuit can most easily be 



accomplished by the use of the aalculus of finite differences. We shall 

therefore define the necessary operators which will be neededo 

GenerallJ1 âf(nT) is the notation for the first~descending 

difference30 of f(nX), and~f(nT) is the notation for the first 
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ascending difference.3° Hawever, as the first quantity is not used in the 

problem at hand, the following notation ldll be adopted: 

Af(nT) • f(nT) • f l_(n ... l)T] 

A2f(nT)= Af(nT) • Af[(n - l)T] 

Akf(nT)• Ak-lf(nT) • Ak•ll(n • 1)~ 

•••• 

•••• 

•••• 

The sym.bolic operator Er, when applied to f(nT) 1 increases its 

argunent by rT: 

Erf(nT) • f [Cn • r)T] 

E-rf(nr) • fL(n- r)TJ 

With this notation, equation 2.18a ,becomesg 

Af(nT) • f(nT) - g:tf(nT) 

• (1 - r 1).f(nT) 

It is convenient to abbreviate the above by writingg 

A • 1 • E~l 

the operand, f(nT), on each aide being understood. 

We may generalize equation 2.21 by writing 

AP • (1 • E•1)P 

By the binomial theorem, this becanes 
p 

•••• 

•••• 

•••• 

•••• 

2.18a 

2.18b 

2.19a 

2.19b 

tl • ~ (•l)r (~)E•r ••• 0 20 22b 
1=0 

where ( ~) • pl 
(p • rH r! 

or a1ternatively, APr(nT) 

Introducing the symbols: 

ô~ • APf(nT) 



f(nrT) • f (en - r)TJ 

equation 20 23 may be re•written; 
p 

ô~ • ~(-l)r(~)fCnrT) 

The parlicular fo:rm. of (p1 q) hold circuit considered here is that 

whose output is described by equation 2.25: 
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fh(t) • f(nT) +~~~(t • nT)+ •• +ô~ (t • nT)P + {t- nT)P ~Rr ôg+r •• 2.25 

fof" ~'f ~ t <. (n+l)'l:.r TP . TP Pl 

~ere the Br are predetermined constants called the rank coefficients. 

The total output is the sun of tenns of this type over all values of 

n from 0 to •· The Laplace transform of this output, divided by the Laplace 

~transform of the input, will given the transfer function of the sampled-data 

filter. If Fh(s) is the Laplace transform of the hold circuit output, 

L:: fh (t) 1 then we have the relations 
" 00 {1'1+-i)'l' p C\ 

l"h(o) • ~L { ~ 6~(t ;rnT)r + (t -Tr:)P ~ 11,. eg•je-atdt •••• 

The summation and integral signs may be interchanged, and x • t • nT 

substituted in the integrais, with the result: 
OQ p ,.. '11 ~ 

l" h ( s) • .~ { ~. ~::.s. r" e-sx.~snTdx + l xPe-BXe"""nT dx ;0 R,.6r:J ,. , , 2,26 b 

Formula 567.9 in Dwight*s -Table of Integrals•31 may be applied to evaluate 
. - ' 

the integral in equation 2.26b1 with the result; 

•••• 

• ••• 2.29 



2t 

Cf'O 

Consider the evaluation of the sum L 8~ e-snT., subject to the 
1'1~0 

for 8~ we get : 

.... 2 • .30b 

•••• 

•••• 

•••• 2.31 

The Laplace transform of the hold circuit may now be simplif.ied: 
CIO 

L: f(mT) e•smT{t {1 ... e·sT)r[ r1 ... e·sT i: rl Tr-j J . ., , • • 
~~n · · r:.o Tr · · sr+l j'"O (r-j)l s3+:Jj 

+!... r ~ • e•tff. ± pl TP•j J t Rr(l-e•s'I')P+:t•} •••• 2.32 
TP l sP+ j ~o (p•j) 1 s3+:J r=-1 

The transfer function of the filter •Y now be found by dividing 

equation 2.32 by the Laplace transforœ of the input. From equation l.~o, 
<Xl 

the Laplace transform of the input is F*(s) • L f(mT) e•smT. Therefore, 

+ lJ pl. 
s l ' 

rtl ":.0 

2.33a 

Noting the form of the surnmation in 2.33b1 a new polynomial may be 
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defined by: 
m-r-

~ ml 
j= o (m-j}l (Ta):l 

m">r 

- 1 •••• 2.3L 

• 0 m <.r 

From this defini ti on, we may show that 

(1 • e·sT) rl/(Ta)r - e·sT H; • (1 • e•ST) H~- H~ •••• 2. 3.5 

Using these polynomiale and relation 2.35, the filter transfer funation 

becanes: 

If the rank of the hold circuit ia zero (q • 0), we have the relation 
p 

G oCs) • s•l ~(1- e·sT)r ~(1 • e·sT) H~- H~J 
p, ,.. .. o . . . 

Substituting x • 1 - e-sT, this becomes 
p . p 

Gp,O(s) • x/sf ~ xr H~ • ~ rl Ç} 
1 In the second sum put m = r • 1, noting H0 • 0: 

p p-1 

Gp,o(s) • x/s{ ~~ H~ ;, "'~ r'1 H! ... 1} 

• x/s{ xP H~ • 'Z ~ <Hi+l • ~)} 
m'o 

Again, defining new polynomiale 
m-r 

P.r • Hr+ 1 • Hr • ~ j ml 
m m+l m j {-; (lll+l:j) l {1~}1 

the transfer funotion Eor a (p,O) hold circuit becanes: 
P-1 

ap,o(s) • s•l(l • e-sT) { (1 - e-sT)P Hg • .:' , A~(l - 6 •
8 T)m} 

'((\ 0 

And the transfer funotion for a (p,q) hold circuit is 

G (s) • G (s) + s•l f (1- e~8T)H0 • Hl] ~R (1. e•sT)p+j 
p,q p,O l P P ? J j 

J" 1 

where Gp,o(s) is the transfer function defined in equation 2.Lo 
r HM are the polynomiale defined in equation 2.3L 

•••• 

•••• 2. 38a 

•••• 2.38b 

•••• 

•••• 2.39 

•••• 2.Lo 



~ are the polynomials defined in equation 2.39. 

Rj are constants called rank coefficients. 

The H~ and ~. polYnomiale defined above do not appear to have 

been previouslY reported in the literature, at least not in oonnection 

with sampled-data systems. The values of the first few polynomiale as 

well as certain recurrence relations Will be found in Appendix I. The 

final form of the filter transfer function is greatly simplified by 

the U!!le of these polYnomiale. 

As a check on equation 2.~0, this expression should reduce to 

that in 2.3 and 2.15 for the zero and first order holds, respectively. 

For the conventional zero-order hold, p • 0 and q • o, hence the 

transfer function of the filter. is: 

G (s) • s-1(1 - e-sT) H0 

o,o 0 
ooo. 2.L2 

as Hg • 1, this expression agrees Wi th that in equation 2.3. For the 

first-order hold, p • 1, and q • o, hence the transfer function is 

G (s) • s-1(1 - e-sT) r(l - e-sT) Hlo - poJ 
1,0 ~ 0 •••• 2.L3a 

0 -1 0' - -
Substituting H1 • 1 + (Ts) ; P0 • o, this expression reduces to 

a1, 0 (s) • (1- e~8T) 2 [~s • l/(Ts2B 0000 2.L3b 

which agrees with equation 2.15. 

Examining the H~ and .Pxi polynomiale, it is seen that these are 
. kT 

rational functions of s. Furthermore, terme of the form e- 8 may be 

treated as shown in equation 2.11 if k is an integer. Therefore, the 

30 
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followed by a plant with known transfer function,, the modified Z-transform 

is evaluated by a method similar to that use~ in equation 2.16. The 

modified Z-transforms for certain of the H and P polynomiale ld 11 be found 

in Appendix I. 

An examination of equations 2.Lo and 2.41 reveals that the (p,q) 

hold circuits do not have a continuous impulse response so, in general, 

the output from such a filter will have finite discontinuities at the 

sampling instants. This may be partially corrected by placing a 

resistor•capaoitor integrating network after the hold circuit. Such an 

integrating circuit has a transfer function of the form {s + a)•1, so 

the overall system will have a c ontinuous impulse response. The response 

of this system may be determined by considering the integrator as the 

plant in a sampled-data network and evaluating the modified z-transform 

as shawn in Section 2.3. 

2. 7 .Analysis of the Error in a (p1 q) Filter Output 

The continuous input function (f)t, may be expanded in a T~lor's 

series about the point nT, as shown~ 

f(t) • f(nT) + Df(nT) (t-nT) + ••• + nrf(nT) (t- nœ)r + •••• 2.L5 
. . r! 

where D is the differentiai operator defined by the equation 

~r~~) • d~~t~ 1 t • nT 

The operator D may be expressed symbolioally in terms of the 

asoending difference operator à:30 

D • -T-1 ln(l • à) • T•l(à ~ à2/2 + à3/3 + ••• ) 

Substituting 2.L6 1n 2.L5, 

f(t) = f(nT) + (t - nT) (àf(nT) + à2f(nT) 
. "r . . . 2 . 

+ ••• ) + •• t 

Using the symbol eP • ÀPf(nT) this becames: 
n . 

•••• 2~L6 
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f(t) • f(nT) +(ô~+ ô~/2 + •• )(t-nT)+ (ô~+ ô~+ •• )(t- nT) 2 •••• 2.L7b 
T 2! T2 

Comparing equationè 2.L7b and 2.L5, we see that the (p,q) hold 

circuit approximates the oontinuous input function f(t) b.r using an 

expansion similar to 2.L7b, but keeping only the first term in the series 

aesooiated with (t - nT)r /Tr after multiplication ~by rl. If the rank of 

the filter is not zero, the series associated with (t - nT)r/Tr may be 

made to agree with the oorresponding series in equation 2.L7b by a 

suitable choice of the rank coefficients. This series will terminate 

at the ôp+q term due to the fini te memory of the fil ter. A.hold circuit 

that uses only the lowest difference appearing in eaoh ô~ seriee in 

equation 2.L7b, except possibly in the series starting with the term 

ag, will be called a Gr6up I hold circuit. 

If the continuous input may be approximated by a polynomial whose 

degree does not exceed p+q then the Group I hold circuit output will 

coincide with the continuous function at the beginning and er:d of each 

sampling interval when the rank êoefficient& are a11 equa1 to unity. This 

may·be demonstrated by the following argument: at the beginning of each 

sampling interval, the hold circuit output is f(nT), which coincides with 

the continuous function at that instant; taking the limit of equation 2.25 

as t-(n+l)T and setting a11 ~ • 1, we getg 

1tm fh(t) • f(nT) + ak + a2 + ••• +ô~+q 
t-(n+1)'1' n •••• 

From equation 2.19 f l(n+1)T] • Ef(nT), and by equation 2. 21, E may be 
~ ' 
replaced by the expression 

whioh, 

! • (1 - A)-1 
. -

by the binomial theorem becanes 
00 

E• 'Z t.n 
n:.o oo 

There.:f1ore, 'f ~n+1)T]--- L Allr(nr) 
n:o ,. , .. 

•••• 

•••• 

0000 

2.48 

2.L9a 

2.L9b 

2.5oa 
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00 

-~ b~ •••• 2.50b 

This series•wi:ll terminate 

p-=o 
• f(DX) + al + a2 + ••• n n 

at ô~ if f(t) is a polynomial 

• ... · 2.5oc 

of degree r )0 

Therefore, if r~p+q, expressions 2.L8 and 2.5oc are identical and the hold 

circuit output coincides with f(t) at the end of the sampling interval. 

The error, or difference, between the continuous input and the 

f1lter output, may be determined by subtracting equation 2.25 from 

equation 2.ll7b. The design of the hold circuit may be so modified as to 

minimize this error by inoluding as many differences as its memory allows 

in each ô~ series in equation 2.h7b. ~uch a hold circuit may be described 

by only one parameter, its memory size, ~nd will be called a Group ~~ 

hold circuit. 

Both the Group I and Group II hold circuits have discontinuous 

impulse responses due to. the constant. term, !(nT), in the series expansions 

for their outputs. This disoontinuity at the sampling instants may be 

rlll'l.oved by the same method used b;r ~orter and Stoœman to overcane thil!! 

problem. The filter circuitry is so modified that the last sample, f(nT), 

is integrated before being applied to the output. Such • hold circuit 

will be oalled a Group III circuit, and its output will have the formg 

'fb(t) • f(nT)(t ... dr)/T + K,\t-n'r)/'f' -r-K2(\:.-n'l')?./rr~ +... •••• 2.51 

A Group III hold circuit may be made to fit an arbitrary continuous 

function, with the same accurac;r as the Porter.Stoneman system, although 

the filter configuration will be quite different. 

The transfer functions for a Group ~II and Group III hold circuit 

may be determined by &n analysis similar to that given for the Group I 

hold, and this problem~idll be left for a future investigation. 



The implementation of any of these hold circuits requires 

the following c cmponents: 

1) A resetable memory wit~ sufticient capacity to store the 

values of p+q+l samples, 

2) Integrators and summers to generate the desired polynomial 

output from these sample values. 

The experimental work, described in the following chapters, 

investigates the suitability of analog computer operational amplifiers32 

to perform all these functions. A simple hold circuit is tested by 

camparing its performance with that predicted by Z-transform analysis. 

Discrepancies between the two values are a measure of the suitability 

of this simulation soheme for this task. The design of more ccmplex 

hold circuits is described. 



CHAPTER Ill 

THE SIMULATION AND TESTING OF A F,INITE.:MEMQRY HOLD C:mCUIT 

The preaeding analysis has suggested a method of simulating 

an operational hold circuit on an analog computer. The components which 

are necessary for the implementation of this scheme are resetable memory 

units, a sampler and suitable testing facilities. These are described 

in this chapter. 

3.1 Simulat~on of the Hold-Circuit Memory 

The memory units must store the value of the samples as they 

are received and supply these quantities as constant-leve! outputs to the 

associated circuitry. A (p,q) hold circuit will contain p+q+1 such units, 

so each one must be capable of storing its sample value for D • (p+q+l)T 

seconds, where T is the sampling interva1. 

D 

_r_• 
o D -t 

_j_ 
0 -t 

Figure 3.1 

The basic hold circuit memory unit. 

A simple circuit to accomp1ish the necessary etorage is shown 

in Figure 3.1. In this circuit, an operational amplifier is used as an 

integrator to convert the sample impulse input into a step output. The 

magnitude of the output step is determined by the charge on the feedback 

capacitor and is proportional to the area under the input pulse. The 

ratio of sampling pulse width to the integrator time constant is the 

35 



ecaling factor which relates the magnitude of the memory output to 

the eample height. For very narrow pulse widths, it will be difficult 

to make this ratio equal to unity. A commutator ewitch is synchronized 

With the sampler to discharge the feedback capacitor every D • (p+q+l)T 

seconds. For an impulse input, the transfer fUnction for this unit ie 

(1 - e-sD)/s. 

The feedback capacitor must have a very low leakage oonàuctance 

to retain a constant charge on i ts plates for the necessary length of 

time. The D-C drift in the oper;ational amplifier must be negligible or 

it will alter the output voltage of the unit. Any circuitry connected 

to the memory unit during the interval between successive pulse storages 

must not h;ave any signal associated with it. The performance of an 

experimental memory unit is described in Chapter IV. 

3.2 4nalog Computer Connections for Hold Circuit Simulation. 

The output of an operational amplifier is always inverted wi th 

respect to i ts input and this fa ct makes thes• deviees sui table for 

camputing the various differences required to generate a particular 

polynanial. The determination of the analog canputer cormeotioœ is 

facilitated ~ the scheme described in Appendix II. This scheme requires 

p(p+l)/2 integrators with associated commutator switches to simulate 1 

(p,q) hold circuit, exclusive of the ones used in the memory. In 

addition to these integrators, p/2 or (p-1)/2 (whichever is an integer} 

inverters and a number of summers are also required. The method of 

calculating the scaling factors at the s\JIU!ler inputs is also shown in 

Appendix II. 

The sch.ne has been applied to the design of a (31 2) hold 

circuit with ;11 r;nk coefficients equal to unity, and the result is 
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shown in Figure .3.2. In this figure, the eymbol M denotee the 
r 

memory unit which stores the samplelilose nlue is r({n-r)T}. 

Commutator ewitches are not shown in Figure 3.2, bui every integrator 

in the main computer bas one connected aerees ite feedback capacitor 

to diecharge this at the end of each sampling interval. 

The memory of the hold circuit will contain p+q+l storage unite, 

~,nd sœ.e means must be round to swi teh the se into the correct Mr pod ti on 

at the start of eaoh eampling interval. The following method could be 

used t o accomplish this. Immediately before a sample is recei ved, the 

main computer is reset and disconnected from the memory bank. The memory 

unit in theM position ie reset b,y dieoharging its feedback oapacitor 
p+q 

and then swi tched to the M0 poei ti on, all ether memory uni ta being 

advanced to the nexi higper position. The sample is then received and 

applied to th~ unit in the M0 posi Uon, whereu:pon the memory bank is 

reoonnected to the main computer. The details of this ~itching sequence 

for a two-unit meaor;y are shown in Figure 3.3. 

If the scaling factor for the memory uni te is equal to k, the 

filter may be adjueted to have an overall ecale factor of unityby 

multiplying the inputs to the final summer in the main c amputer by the 

factor 1/k. The perfonnance requirements for the integrators in the 

main computer are the same as for those in the memory. 

3.3 Facilities for Testing Sampled-Data Syetems. 

In building up the laboratory facilities for the study of finit• 

memory hold circuits, apparatus was buili or purchased which would also 

be suiiable for the study of ether eampled-daia systems. Because control 

systeme are baeically low-frequency deviees, the apparatue adopted bas a 

frequency range extending from a fraction of a cycle per second into the 
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audio fraquancias. A block diagram of the apparatus connections is 

ehown in Figura J.L. 

The function generator ie a Krohn-Hite Modal LLO pu~h-button 

oecillator. Ite fraquency range ie continuouely adjustabla from 0.001 

eps to lOO Kc. Sine wavae with amplitude variable up to 10 volte rms 

on open circuit, and square wavee with a fixed amplitude of 10 volte p-p 

on open circuit are available. Other periodio wavaforms may be 

ganerated by using an analog computer to integrate the square wava output. 

The sampling pulsa train is generatad using the Tekironix 

16o-Seriee pulse and wavaform genaratore. Thaee unite are capable of · 

eupplying pulsas of ai ther polari ty wi th ampli tude continuously nriabla 

from 0 to 50 volts. The pulsa width may ba variad continuously from 

1 ~sac. to 10 sac. The pulse spacing is variable from lOO ~sec. to 

10 sac., and the pulse may be delayad by any amount over a repetition 

period rela'\i w '\o sana trigger 1!11 gl'lllo 

The low-pass fil ter is used to study the effect of canbinad 

hold circuit restoration and low-paee filtering. Two unite are available, 

for aither band-rejection or band-paes charaoterietics. The band-rejection 

filhr is a Krohn-Hite Madel 350-A, and the band-paes filter is a Krohn

Hite Modal 3.30-Ao The high and low frequency cut-offs of bath filters 

may be tunad independenily !'rom 0.02 eps to 2Ko. 

A Donner Modal 3000 analog canputer is used in the l!limubtion or 

hold-circuits. This computer hae ten operational amplifiers wi '\h no 

cqopper etabilization. The individual amplifiers have an open-loop gain 

of 3 x 10L under a load of 20 Kohms, ovar most of thair oparating range, 

and saturata whan thair output voltage reachee * lOO volte. The band

width of thasa amplifiers extende well into the audio frequencias, and 

~0 
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their shor'\-1ierm random drU'\ &fter warm-up is only about o.S mVolt -

referred to the amplifier inpu'\. 

Several read-out deviees are employed in the testing of 

sampled-data systems. These areg a Tektronix Model 502 dual-beam 

oscilloscope equipped wi \h a Dun ont camera, a Sandborn Model 152 two

channel recorder with aesociated preamplifiers, and a MoseleyModel 

2D x-y recorder. 

The re~ining apparatue was specially built for this research 

and each uni'\ ie described eeparately ~low. A photograph of the 

laboratory arrangement ie shown in Figure 3.5. 

J.L The Electronio Sampler 

The sampling operation may be accanplished ei th er by me cha nic al 

or electronio swi teh es. Mechanical swi tches have the advantage tha\ 

their open-circuit resistance is several orders of magnitude higher than 

the corresponding quantity in an eleatronic sampler, likewiee their 

short-circui'\ resis'\anoe is several orders of magnitude lower than that 

of an electronic swi \ch. Al!Jo, direct-coupled electronic switches mq 

introduot a random drift in their outpu\. In spite of these limitations 

of electronic switches, they were 1dopted in this research because they 

are capable of faster switching speeds than mechanical swi1iàles, am U 

was desirable to build as flexible a simulation scheme as poesible. 

h2 

The sampling operation may be regarded as the balanced modulation 

of a pulse train by the input si gl'Uil. A circuit which can be ueed as a 

balanced modulator 33 is shown in Figure 3.6. This basic circuit was 

conaiderably im.prowd to meet the problem a'\ hand and the electronic 

aampler which was developed is shown in Figure 3. 7. 



Figure.3.5 

Experimental simulation and testing facilities. 
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Figure 3.6 
A diode modulator circui~ 
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Figura 3.7 

SAMPL1N~ 

R3 PUL5E 

The circuit parama\are of \he electronic eampler are so 

chosen tha1i a large collector current nowe in the traneietor whtn no 

signal ie present at '\he pulse input terminale. This collector curren'\ 

is dividad between the two parallel pathe containing ~ and R2• Bi is 

made much larger than ~ eo tha'\ most of this curran'\ nowa in 1ha lat'\ar. 

Th• cantre-·hp of R2 is adjueted until tihe voltages on ei ther sida of i '\ 

hava \he same magnitude. The centre-·tap o! R1 ie then set to the point 

LL 

on this po\entiometar which il 1 ground potantial. }\ ie a large reeishnce 

used as 1 buf!er between the eampler and the pulsa generator. 



When 111 and Rz have been set to their proper positions, 

the junction of diodes D1 and D3 is at a potential of E • (Vl+V0 e)/2 

above ground, and the junction of diodes D2 and DL is at the sam.e 

potential below ground. Thus, diodes D1 and D:2 are open-circuited to 

any input signal whose ampli tude is lesa th an E, and the sampler output 

is zero for all auch voltages. To sample a signal, a positive pulse 

with an amplitude large enough tobias the transistor to eut-off is 

applled at the sampling pulse input terminais. No current flows in 

potentiometer li_ under these circumstances and any input signal appears, 

slightly attenuated, at the sampler output. 

The diodes and transistor used in the experimental sampler 

were not selected with any particular oare, canponents which were on 

band being used. The component values lilich were used are the follo'Wing: 

Dp D2 QN,85 (National) 

DJ MA.303 11 

Dû MA.301 tt 

Tl pnp 2.3Bl70 " 
R:J..,R.3,R~ 10 Kohms 

Rf2 2 Kohm.s 

vl 9 Volt battery 

With these camponent values$ the transfer charaoteristics 

for the sam.pler in i ts "ON" and "OfFtl states are Ehown in Figures .3. Ba 

and 3.8b, respectively. The transfer characteristic in the conducting 

· state is seen to have a non-linearity at the origin when the sampler 

output is open-cirouited. This is due to the non-linear characteristics 

of the diodes. This non-linearity is •arkedly reduced lilen a 10 Kohm 
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load is plaoed aoross the sampler output terminale, ani the sampler 

is operated wi th auch a load in pra otioe. In its oonducting state1 

with a 10 Kohm load, the magnitude of the sampler transfer funotion 

is o.b5. This could be corrected b.Y placing a direct-coupled amplifier 

with a gain of l/O.L5 after the sampler, but this was not clone. The 

sampler transfer charaoteristio shows no appreciable phase shift for 

input frequencies up to 3 Kc, and the phase shift does not became 

serious for frequencies below 10 Ko. This phase shift is largest at 

low input signal levels, and seems to be due to the semi-oonductor 

propertiea of the di odes. 

Figure 3.8b shows that the sampler will operate satisfaotorily 

with input signala whoae anplitude does not exceed 2 • .5 volts. This 

limit could be increased by increasing the aize of the battery, V1• 

The effect of a misadjustment of~ on these ourves is to shift them 

relative to the y-axis, while a misadjustment of Eishifts them relative 

to the x-axis. Furthermore, if ~l is not set exactly in its centre 

position, the curves in Figure .3.8a Will not be symmetrical about the 

origin. 

The open circuit transfer characteristic suggests another 

application for the electronic sampler. It could be used as a dead

zone simulator in the study of control-systems. The magnitude of the 

dead-zone may be varied by changing V1, and the alope of thè extremities 

may be adjusted by placing a variable-gain amplifier after the sampler. 

The sampler which was built has operated successfully with 

sampling pulses as narrow as 5 ~sec. and pulse intervals as short as 

lOO ~sec. The apparatus available did not permit testing the sampler 

with shorter pulse intervals. 
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Dependance of sampler output on sampling pulse heigbt. 
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The dependence of the sampler output on the sampling pulse 

height is shown in Figure 3.9. The shape of this curve depends on the 

aetting of potentiometers R1 and m2, but these do not affect the value 

of the pulse heignt at which the sampler output reaches its maximum 

value. Thus, the sampler output is independant of the sampling pulse 

height if the latter exoeeds 11 Volts, a value which is well within the 

range of the 160-Series pulse generator. The reverse collector leakage 
3h 

eurre nt in '1'1 should be sma11 or i t will deve1op a vol tage across the 

upper half of ~ which will appear at the sampler output when the 

transistor is eut-off. 

An examination of the samp1er circuit in Figure 3. 7 shows 

that the 1ower part of~ carries the total emitter current, I 8 , whi1e 

the upper part oarries the total col1ector current, I 0 • If R2 has been 

adjuated oorrectlT then 

•••• 3.1 
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where mc and 18 are the upper and lower halves of H2.t respeotively. 

The total oolleotor ourrent is made up of two ciomponents, one of whioh 

is temperature dependent. This temperature dependent component is 
.3L 

called the collector leakage current, I • Any change in I will 
. 00 co 

result in an unbalance of the two voltages in eaoh half of ~· The 

unbalance voltage will be denoted by V and is given by the expression 

•••• .3.2 

The depende nee of this quanti ty on I
00 

is 

•••• .3 • .3 

.3L 
When the appropriate expressions are substituted in equation .3.L we 

have the relation 

t::,.V • Be Re •••• .3.lt 
'KI co l-e(+ o<Rê l-et+~ 

Rb.ffte 1\, 

mere ·~ is the resistanoe in the base circuit 

~ • di0/die is the forward current gain of the transistor in the 

canmon-base configuration. 

For the circuit in Figure .3.7, these values are, approximatelY1 

R0 • ile • 1 Kohm 

1\, • 5 Kohm 0(. 0.99 

Renee, equation J.L becomes: 

t::,.V/6!
00 

• 1 Kohm •••• .3.5 

Any changes in the V defined by equation .3.2 will result in a 

oorresponding D-C unbalance in the sampler output, as the oentre-tap of 

~l will no longer be at ground potential. The short-term randpm D-C 

unbal&nce at the sampler output, due to all causes, is shown in 

Figure .3.10. The smaller ·peaks_ have a typioal magnitude of 1 2 mv • 

Ù9 



Assuming these are due to changes in I 00, then the corresponding 

âi
00 

is 1 - 2 ~amps. from equation 3.5. Variations of other transistor 

parameters, such as the base-to-emitter voltage, may also contribute 

to these peaks. The larger and more pronounced changes have a magnitude 

of about 7 - 8 mv. These changes were attributed to poor electrical 

contact between the wiper armand the resistive surface, and it is 

recommended that high-quality multiturn potentiameters be used in future 

investigations. 

Typical sampler outputs are shown in Figures 3.1la and 3.llb. 

The input signal is a 1 eps sine wave and the sampling interval is 0.1 

sec. in,both photographe. Figure 3.lla shows the output with a sampling 

pulse width of 2 msec., and the other figure ~hows the output with a 

pulse width of 20 msec. The vertical ecales of all traces are the same. 

3.5 Memory Circuit Resetting. 

The proposed method of simulating finite memory hold circuits 

requires commutator switches, operating in synchronism with the sampler, 

to discharge the feedback capacitors in the various integrators at the 

end of each sampling interval. Again, either mechanical or electronic 

switching could be used, but it was decided, in this initial study, to 

sacrifice hign speed operation for freedom from drift so relays were 

adopted for this purpose. 

The particular relaya selected were the Northern Electric 

Type 293 dry-reed relay. Their construction is illustrated in Figure 

3.12. The contacts are made of a magnetic material which has ijeen 

plated with a conductive surface. These are very light and small» so 

the relaya are suitable for low-power, high-speed switching. 

5o 



Figure 3.10 

Short-term random D-C unbalance at the sampler outout. 
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Sampler output with 
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Figure J.llb 

Sampler output with 
a 20 msec. pulse ~dth 

f(t) • 1 ops sine wave 
T • 0.1 seo 



Figure 3.12 

C..onto..c.t 
Terminais· 

The construction of a dry-reed relay. 

The particular relaya used require a tum-on current of 

6 mA. and a holding current of 2 mA. The circuit built to satisfy 

these requirements is shown in Figure 3.13. It comprises a monostable 

multivibrator with adjustable pulse width driving a cathode-follower 

with the relay coil in the cathod! circu:l. t. The basic design for the 
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multi vibrator is according to Chance et al. The output pulse width 

is continuouslY variable from 1 msec. to 6 msec. The input triggering 

level requirements vary with the pulse width of the output, being 

about 25 volts for a 1 msec. pulse and decreasing approximatelY 

linearly to 5 volts for a 6 msec. pulse. The triggering pulse for 

this circuit is used as the reference·for all other switching circuits, 

and the sampling pulse is delayed about 5 msec. behind this reference. 

The characteristics of the Type 293 relay coil change with 

frequency and also depend on whether the contacts are open or closed, 

so an exact analYsis of the optimum impedance of the generator which 

energizes the coil is virtually impossible. However, the following 

general observations may be made. Although the turn-on current is 6 mA., 

it is possible to close the relay contacte with a faet-rise 2 - 3 mA • 

. Pulse by ta king advantage of the self-resonance of the coil. Therefore, 

the resonant frequency of the coil and generator impedance should be 

high enough for the coil current to reach its turn-on value in the 
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shortest possible time. The dlilmping in this circuit must be large 

enough t o limi t the ampli tude of' the re sul ting current oscillations 

to a value which will not cause a jitter of' the relay contacts. The 

resistor-capacitor network shown in series with the relay coil in 

Figure 3.13, serves to adjust the generator impedance to a satisf'actor,y 

value. 

Figures 3.1~a and 3.~b show the current and voltage in the 

relay coil af'ter it has been energized by a 2 msec. pulse. The 

horizontal ecales in both photographs are 2 msec./div. The vertical 

ecale in Figure 3.1La is 2 ~div and that in Figure 3.l~b is 10 volts/div. 

The current wavef'orm shows that there is about a 1 msec. delay af'ter the 

coil is energized bef'ore the contacts close. The inductance of' the coil 

suf'f'ers an &brupt change at this point which c&uses the discontinuity in 

the curve at the 6 mA. level. The energizing voltage is eut off after 

2 msec. and the coil current begins to decay at this point. About 1 msec. 

after the end of the pulse, the coil current falls below the holding 

value, but the inertia of the contacts and their residual magnetism 

prevent these from opening immediatelf. The coil ourrent rises to the 

holding v&lue and then decays, the contacts finally opening about ~ msec. 

after the pulse has ended. 

To protect the relay contacts from current surges which occur 

when discharging integrator oapacitors, 1 1 Kohm resistor is always 

connected in series with them. Figure 3.15 shows the voltage output of' 

an integrator whose feedback capacitor is discharged with the Type 293 

relay. The horizontal scale is 1 msec/div. The upper trace shows the 

integrator output, which remains at its original value for about 1 msec 

after the relay coil is energized, &nd then decays exponenti&lly to 

zero in 0.5 msec. The remaining interval is the time taken by the relay 

--··-------------
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Double-exposure effeot 
produoed in photograph
ing sampled-data signale. 



contacts to re-open, and when this is completed the sampling pulse, 

shown in the lower trace, produces the ramp in the operational 

1mplifier output. It is seen that the sampllng pulse is debyed 

slightly lese than L msec behind the energizing pulse, the complete 

discharging cycle taking 3 lll8ec. From the performance of the ooil wi th 

a 2 msec pulse i t might be surmised that the discharging cycle would be 

longer; however, wi th shorter pulses, the coil current is not able to 

rise as far above its turn-on value and hence the oscillations following 
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the first crossing of the holding value do not have sufficient amplitude 

to keep the contacts olosed. Figure 3.15 was obtained using an energizing 

pulse of 1 msec, which seeme to be the best performance obtainable with 

these relaya. 

3.6 Oscillographio Recording of Sampled-Data Signale. 

The normal method of photographing an oscilloscope trace is to 

synchronize its sweep to the waveform being observed and then to expose 

the film for several sweeps. However, when a dual-beam oscilloscope 

with independent signale on the two channels is used, normal photographie 

techniques produce a double-exposure effect because the periode of the 

two signals are different. Figure 3.16 shows a photograph which was 

taken when the oscilloscope sweep was synchronized with the sampling 

pulses. 

To produce photographe which oan be interpreted unambiguously, 

1 bistable multivibrator was construoted to generate single oscilloscope 

sweeps. The circuit of this multivibrator is shown in Figure 3.17. 
35 

It is quite oonventional exoept for the input stage whioh is direct-

coupled througn a diode to one of the multivibrator grids. The multi

vibrator is reset manuall.y and the neon lamp is then illuminated. Any 
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input signal whioh e:xceeds 8 volts will then cause the multivibrator 

to change states, producing a large pulse at the output terminale for 

1iriggering the sweep on a Type 502 oscilloscope. An input signal will 

not produce an output unless the push-button is first depressed. 

The setting of the input potentiometer is quite critical and must be 

readjusted if the input signal level is changed. 

The trigger generator ehown in Figure 3.L is sometimes used 

when it is desired to use a point on the input signal waveform as a 

reference. Its circuit is shown in Figure 3.18 and it is oomprised 
36 

of a Schmidt Trigger and a bistable multivibrator. Alternate 

positive and negative pulses appear at the output every time the 

input signal level equals 2 volts and has a negati ;e slope. The upper 

frequency limit of this trigger is about 5 Kc. 

The circuitr,r described above forms the basis of a flexible 

system for studying sampled-data circuits. The performance of these 

units is compared with theoretically predicted resulta in the ne:xt 

chapter. 
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CHAP'l'ER IV 

THE EXPERIMENTAL PERFORMANCE OF A ZERO-DRDIR HOLD 

L.l The Experimental Memory Unit. 

The performance of the suggested circuit for simulating 1 

m.mory storage element was evaluated by using this circuit as a 

zero-order hold. The component values used in the memory unit are 

shown in Figure L .1. 

Figure L.l 

The experimental memory unit. 

If the sampling pulse width is h msec., then the final 

value of the output of the integrator in Figure L.l is - 20 Ah mvolts, 

where Ah is the area of the pulse sample in millivolt-seconds. A 

typical input sample to the memory unit is shown in Figure L.2a and 

the corresponding integrator output is illustrated in Figure L.2b. 

ré) f~o~tt) 

r 
1 

h 1 

1 

1 -toh 
0 t, t:2. -t 1 t"l.. -t t, 

Figure L. 2a Figure L.2b 
A typical sample input. Memory unit output. 
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The output from the experimental hold circuit is .illustrated 

in Figures h.3a and -~.J'b. In the former, a 0.5 eps sine wave was 

sampled with 5 mseo. pulses every 0.1 seo., and in the latter, a 2 eps 
aine wave was sampled with the same pulse train. The lowar traces 

show the zero-order hold output, after inversion, and the detail of the 

interval between successive •steps" is similar to that shawn in Figure 
. 

3.15. The slight slope of the "step runa• is due to the combined D-C 

unbalanoe of the operational amplifiera and the sampler output. 

Because the input to the hold circuit is not an ideal impulse, 

the transfer function of the memory unit, M(s), 

M(s) = 1 - h e-sT s 1 _ e-sh 

should be written: 

•••• 

where h is the width of the sampling pulses, and T is the sampling 

interval. When h<:<T this may be replaced by the approximate, but more 

usual expressionM(s) • s-1(1- e-sT). 

When the sampling pulse width is small, but the operational 

delay, 6T, of the relay contacts discussed in Section 3.5 is comparable 

to the sampling interval, the transfer function of the memory unit is 

H(s) • s-1 (1 - e~8T) •••• 4.2 

where ~ • 1-6. Because ~ is not an integer, the term e-PsT m~ not be 

removed as a factor z'1l1 as was done for the ideal hold circuit. If 

the modified Z-transform for the plant whidh follows the hold circuit 

is re-interpreted, however, a simple upression for the overall 

transfer function is obtained. 

The modified Z-transform was derived by introducing a 

fioti tious delay, !T, in the system outpu-t. However, the tem e-flsT is 
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Zero-order hold outout with 
20 samples/cycle 

Input: 
Pulse vlidth: 
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0.5 cos sine wave 
5 msec 
0.1 sec 

Figure L.Jb 

Zero-order hold output with 
5 samples/cycle 

Input: 
1:\llse Width: 
Pulse Spacing: 

2 eps sine wave 
5 msec 
0.1 sec 
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equivalent to a real delay, ~T, in the system. If we assume that 

âT includes both the fictiti?us_delay, A'T, and the real delay, ~T, 

then m • l+à • 1-à'-~ • 5-à 1 , where 5 is the delay introduced by the 
. ' 

relay. Renee, in the modified Z-transform we should be using m'• l-A', 

while we are actually using m • 5-à'. Therefore, we may write the 

modified Z-transform of the cambined plant and hold circuit directly: 

•••• L • .3a 

• H1 (z,m) - H'(z,m') •••• L • .3b 

6.3 

where T(s) is the transfer function of the combined plant and hold circuit, 

H(s) is the transfer function of the plant alone, 

and H1 (s) • H(s)/s. 

When the inverse transform is evaluated, t • (n~-l)T is used in the 

first term of equation L • .3b, and t • (n~'-l)T • (n+m-5)T is used in the 

second term. Thus the affect of the relay delay is included in inverse 

modified ~transform and may be separated by appropriate interpretation •. 

A practical remark should be made concerning the use of these 

experimental hold circuits. This applies to the relative posi tioning of 

scaling amplifiera and integrators to minimize line frequency hum in the 

hold output. Consider the two arrangements shown in Figures L.ha and 

10 

Figure h.La Figure L.Lb 

Scaler precedes integrator. Integrator precedes scaler. 

If the hun, referred to the input of an operational amplifier, is x mv., 

then the hum in the output of configuration L.La will be 20(10x + x)/œ, 



and in the other configuration it will be 10(20x/œ • x), where œ is 

the angular frequency of the hum. For 60-cycle hum, these two 

expressions are approximately x/2 am lOx. Wi th the operational 

amplifiera in the Donner comput~r, x • 10 mv. peak-to-pea~, _and the 

hum output with configuration L.La ~a~ measured as L mv p-p, and with 

the other configuration as no mv p-p. 

L.2 The Discontinueus Impulse Response of a Sampled-Data gystem. 

The experimental study of a sampled-data system whose plant 

has a discontinuo~s impulse response, illustrates many of the features 

already discussed. The plant used was a resistor-capacitor integrating 
. -

network, and the output was observed on the MoseleyModel 2D recorder. 

The input impedance of the recorder is 2 megohms on the ranges used, 

shunted by a negligible capa ci tance. The equivalent circuit of the 

plant is shown in Figure L.5. Its transfer function is ~(2s+2), and 

has a discontinuous response as defined by equation 1.30. 
2.t-'ln 

-..,....~fJ1t2Mn 
Figure L.5 

Equivalent circuit of experimental plant. 

The modified Z-transform for the output of this plant, with a sampled 

unit step input is 

O(z,m) 
-mT 

• 1 z e 
~ z-1 -z--e-=-•r 

•••• ù.L 

where O(z,m) is the modified Z-transform of the input to the recorder 

T is the sampling interval. 



The inverse Z-transform of equation L.L is 

o(t} • e-mT l~e~nT 
2 1-e-1' 

where t • (n+m-l)T. 

•••• L.5 

o(t) in equation L.S is compared with the experimental output 

in Figure L.6 fo~ a samplit:lg interval of 2.5 sec a~ a sam.pling pulse 

width of 50 msec. In this, and succeeding figures, the neoe~sary 

scaling factors have been included ~n the theoretical points, which 

have also been shifted horizontally, when it was necessary to com.pensate 

for the uœven pulse spacing. The experimental curve shows a eontinuous 

impulse response, while equation L.S predicts finite discontinuities at 

the sam.pling instants. This experimental behaviour is partly due to the 

finite pulse width, but ~t is principally- a manifestation of the 

recorder characteristics. The maximum writing speed of the Model 2D is 

20 i~sec, so the recorder servomechanism behaves as a low-~ss filter. 

Thus the overall plant, consisting of the integrator network, recorder 

input impedance, and the recorder servomechanism has a continuous 

impulse response, a point which m-.,st be noted in the experimental study 

of these systems. 

When the pulse width is comparable to the s~pling interval, 

the P-transform analysis must be used. In this case, the plant output 

for a sampled unit step input is given by the relation: 

O(s) 
-hs 

• 1 1-e · 
2 s(l-e·sT) 

1 

s+l 
•••• L.6 

where O(s) is the Laplace transfonn. of the input to the recorder 

h is the sampling pulse width in seconds 

T is the sampling interval in seconds. 

65 



66 

The inverse P-transform of equation L.6 is 

• 1-d -hLJ n - e . -e O(t) [ . ( ~) { . -T(m-1). -t} •••• L.7 
eT - 1 

where t • (n+m-l)T. 

d(•h) is an operator introduced by Farmanfarma which denotes a 

delay of h seconds along the positive time axis. 

·o(t) in equation L.7 is compared with the experimental resulta 

in Figure L.7 for a sampling interval of 2.5 sec and a pulse width of 

o. 5 sec • In this case the time-response of the recorder servomechanism 

is negligible oompared to the sampling pulse width and the agreement 

between the ory and experiment is qui te good. 

The discrepancies Which do arise between theory and experiment 

are due to the usual sources, auch as measuring the time intervals, 

scaling factors, sample heights and time constants accurately. 

Variations in th~ sampling interval times and non-linearities in the 

x-axis recorder servomech.nism produce a record with uneven sample 
. . 

spacing. 

L.3 The Response of a Sampled Data System Employing a Zero-Order Hold. 

The performance of the circuit in Figure ~.1 was investigated by 

using it as the restoring element in the sampled-data system desaribed 

in the preceding section. For the sampling intervals used, the delay 

due to the relay may be ignored, and the modified Z-iransform of the 

recorder input is · 

O(z,m) • 1 z --2 z-1 
z-1 { -mT} .1 - e · 

;:]: z-e-T 
L.B 

z 

where O(z,m) is the modified Z-transform of the recorder input for the 

combined plant and hold circuit. 
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Figure L.6 

Output of a plant with a discontinuous impulse response 
when the sampling pulses are narrow. 

. 1 

Vert. Soalez 
Horiz. Scale: 

1 volt/inch 
1 sec./inch 
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The inverse transform of equation L. 8 is 

o(t) • 

which, with the substitution t • (n+m-l)T becomes 

o(t) • • ••• L.9b 

This is the same response which would be obt~ined if the unit step were 

applied directly to the plant, ~thout the intervening sampling and 

restoration. Equation L.9b is compared with the experimental resulta 

in Figure L.8 for a sampling interval of 2.5 sec and a pulse width of 

50 msec. The dips at the sampling instants are caused ~ the finite 

pulse width. It wo,ild appear that the time constant of the plant is 

slight~ greater than 1 second. 

'When the sampling pulse width is comparable t o the sampling 

interval, equation L.l must be used for the transfer function of the 

hold circuit. The Laplace transform of the recorder input is then 

O(s) 1. -ha{ 1 h -sT} 1 • - e - e 
s(l-e-6T) ; 1-e-sT s+l 

o. •• L.lO 

and the inverse P-transform of this relation is 

o(t) • [ \\ { -T(m-1) -t} { -mT -t 1-d(-h~ E
2

(mT+t) - n + e -e + h e -e 
eT - 1 1 - e-T 

Where t a (n+m-l)T, and the ether symbols have their usual significance. 

Equation L.ll and the experimental resulta are campared in 

Figure L.9 for a sampling interval of 2.5 sec and a pulse width of 
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0.5 sec. The dips are predicted by the P-transform ana~sis and are due to 

the finite pulse width. 

These resulta •how that the experimental memory circuit behaves 

as an ideal zero-arder hold when the pulse width is small· and the relay 
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delay is negligible. 'When the pulse width is large, its performance 

is no longer that of the ideal hold, but, nevertheless, may be predicted 

by the P-transform analy"sis. However, if the memory unit is ~sconnec:ted 

from the following circuit until the end of the sampling pulse, equation 

~.3b may be used to predict its performance with 6 equal to the combined 

delay of the relay and pulse width. 

~.~ On Restoring Sampled Square Waves. 

When the continuous input to the sampler is a square wave, it is 

possible, under certain conditions, to restore this wawform completely 

using a ~ro-order hôld. This may be seen to be obvious, physically, by 

considering the time-domain sampling picture. If the sampling pulses 

occur at the start of e"Very half cycle, then the hold output will consist 

of alternate positive and negative pulses with a duration equal to the 

sampling interval. This is the original square wave except for an 

amplitude scaling fac~tor. Frequency-domain considerations indicate that 

although complementary frequency ccmponents are prQduced, these. will 

coincide with the primary frequencies if the square wave period is an 

even multiple of the sampling interval. 

These considerations -.y be established mathematically by 

analysing the square wave whose first cycle is s~own in Figure ~.10. 

+1 r--

' 

6 ï'h. -t 

-1 

Figure h.lO 

First cycle of the square wave input. 
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The delay, ô, is introduoed for mathematical convenienoe, 

and will be allowed to go to 0 in the final expression. Physioally, 

this means that the sampling pulses coinciding with each half-oycle 

of the square wave sample the wave to the left of the axis crossing. 

The La pla oe transform. of this sqttare wave is 

F(s) • 1 e"l' -~ 
s ef +1 

e-ôs ..... 
• where .,.. is the period of the square wave. Because f(O } • 01 we may use 

Linvill's expression (equation l.L) for the Laplace transform of the 

sampled wave, which is 

-bS -J~Sw1 e e 
s +- J ~ ûJ, 

•••• L.l3a 

•••• L.l3b 

where T1 • 2~"1 is the sampling interval. As we want F*(s) to have 

the a ame general fonn as F(s), we must have to:l-r /2 • 2nn, where n is an 

integer. !hysically, this means that the camplementary frequency 

components must be coïncident in the power spectrum with the primary 

components. With this substitution, equation 4.13b becomes 

y*\s) • est -1 

• v +1 

8 -ôs ~ e-;k.ow, 

'r. ~ s+ J J(w, 
~ ... -.... 

The summation may be w~itten as 

- 1 
s11 .IL 

•• 0 • 

where x • 2ruc/T1• Wi th the a id of the summation properties of the 

modified Z-transfonn~ the sum on the right-hand aide of L.l5 may be 

L.lL 

L.l5 
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. 17 wr1.tten 

cos(xô) - x sin(xô) 
s2 + x2 

• •••• L.l6 

where m < 1, and is defined by 6/T1 • p+m, where p is an integer. Th us, 

expression L.lL becomes 

F*'(s) • est' -1 e-PTls .-mT1s e-sT1 (1-m) •••• L.l7a 
\1' +1 1 - .-sTl e '-

• .sr -1 .-sTl(E+l) 

eY' +1 1 - .-sTl 

The Laplace transform for a zero order hold is a-1 (1-e-8ÏI), multiplying 

L.l1b by this expression, we have 

e f -1 1 .-sTl (p+l) 

.${ +1 s 
•••• L.lB 

where Fh(s) is the Laplace transform of the hold output. Equation L.18 

states that the hold output will be a square wave delayed b,y p+l sampling 

intervals. If 6~0, then p•O, and the square wave from the hold circuit 

is delayed only one sampling interval. If the sampling pulses occurred 

to the right of the axis crossing, there would be no delay for ô ~ o. 

This theOiy was tested by sampling and restoring a 5 eps square 

wave, using a sampling interval of 0.1 sec and a oulse width of 5 msec. 

The resulta tilre shown in Figure l!.ll. The lower trace is the input, and 

the upper is the hold output. The inversion of the output is character-

istic of the operational amplifier, and the delay occurs because the 

sampling pulses and input signal were not phase-synchronized. The 

slope of the leading edge of the restored wave is characteristic of 

the experimental hold operation. 
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Figure L.ll 

Restoration. of a sampled square wave 

The lower trace is the original 5 eps square wave. 

The restored output is shown in the upper trace. 

The sampling rate was 10 samples/seo with a pulse 

width of 5 msec. The inversion of the output is 

oharaoteristio of operational amplifiera. 
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Although it has been demonstrated theoretically and experi-

mentally that it is possible to restore a square wave completely by 

sampling at onlY twice its lowest frequency component, this does not 

pose any philosophical difficulties, since all the information in a 

square wave is known when its amplitude and time of axis crossings 

are specified, and this information is contained in the sampling 

pulse train. 

L.5 Hold Circuit FrequencyResponae and Correlation Analysis. 

So far, only the Z-transform and P-transform analysis of hold 

circuits has been considered, but it is also possible to study these as 

low-pass fil ters by considering their frequency responseo The frequency 

response of a hold circuit may be obtained by substituting s • jro in its 

transfer function (equation 2.Ll), and evaluating the amplitude and 

phase of the resulting expression. It is therefore desirable to have a 

laboratory technique for studying these quantities. Because of the low 

frequencies at which hold circuits are used, standard frequency analysera 

are not suitable, so this study is made with the aid of a digital 

computer. 

The auto-correlation function, )!flltr), of a periodic signal, 

f1(t), is defined37 as 

rÂ (r> • ..!.. J"r, <t) f 1 <t+':t') dt 
"'11 'r, () •••• L.l9 

where T1 is the period of f 1 (t)o This quantity is related to the power 

spectrUll'l, ~ (œ), of f 1 (t) by the Fourier transform 

1
7! 

~11 (œ) • ~ ~11 l1') cos(ro?") dr 
1 0 

•••• L.2o 

If a sinusoid is sampled and applied to a filter, the power spectrum 
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of the output will give the square of the magnitude of the filter 

transfer function at the primary and complementary spectrum frequencies. 

The foregoing predictions are tested experimentally by the 

following procedure. The output of the filter is recorded on one 

channel of the Sandborn recorder, and points taken from this chart 

are used in a digital computer auto-correlation program. The output 

of the auto-correlation program is the data cards for a Fourier 

oosine-transform program. 

Enough data points must be tabulated for each cycle of ~he 

recorded waveform to ensure that the camplementary frequency components~ 

introduced by this sampling operation, do not affect the accuracy of 

the final computation. The programs which have been written are suitable 

for periodic signala, and their FORTRAN language statements for the IBM 
- ' 

650 computer will be found in Appendix III. In general, the power spectrum 

output will have a graph similar to Figure L.12, and the power at a given 

frequency is then determined by taking the average height of the peak 

at this frequency. If the period of the filter output has been divided 

into an integral number of intervals in reoording the data points, 

these peaks will become very sharp, and their average value may be 

determined by inspection of the computer output. 

The final resulta obtained from the computer program were 

compared with pnedmctions based on the known f.requency response of the 

circuit. For the filters conaidered in this study, their frequenoy 

response is well known, and the comparison is a measure of the accuracy 

of the digital computer calculation. 
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Figure L.l2 

Typical power spectrum output. 

The computer programs were tested by using them to measure 

the magnitude of the transfer funotion of the Krohn-Hite Model 330-A 

band-pass filter. This unit has a transfer function of the form 1/sL, 

and hence has a continuous impulse response. Figure L.l3 shows the 

Sandborn chart which was obtained when a 1 eps sine wave was sampled 

every 0.1 sec with a pulse width of 5 msec. The high and low out-off 

frequencies of the filter were 5 eps and 0.02 eps, respectively. 

Data points were taken every millimeter (20 msec) of the record. The 

upper curve is the filter output and the lower is the original sine 
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wave. The theoretical and experimental resulta are compared in Table L.l. 

Table L.l 

Comparison of computer-calculated., through L.2Q, and 
direotly measured low-pass filter frequency response. 

Frequency 

1 eps 

9 eps 

il eps 

19 eps 

Relative Attentuation (db.) 
calculated measured 

o.o o.o 
26 23 

31 29 

L7 L9 

This experimental technique was also used to calculate the 

magnitude of the zero order hold transfer function, whose low-pass 
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Figure L .. 13 

Two-ch~nnel recording of a s~mpled and filterœd sine w~v•. 

Figure L.lL 
Reoording of a sampled aina WQVe ~fter (0,0) restoration and filtering. 



charae'teristics are proportional to (x-1sin x) 2• For this study, 

it was postulated that 1 eps sine wave had been sampled at 10 eps 

and then restored. The resulting signal was easily calculated and 

50 data points in each cycle were used in the computer auto-correlation 

program.. The results of this computation are given in Table L.2. 

Table L.2 
Comparison of computer-calculated and theoretical 

zero order hold frequency response. 

Frequency Relative Attenuation (db.) 
at which attenuation calculated Eredicted was determined. 

on computer. from (x-lain x) 2 

1 eps o.o o.o 

9 eps 18.6 19.2 

11 eps 20 .. 1 20.8 

19 eps 23.5 2L.5 

The resulta in Tables L.1 and L.2 show that the power-spectrum 

calculation is a reasonably accurate method of measuring the magnitude 

of a filter transfer function at low frequencies. Nevertheless, there 

are ma~ sources of error in this technique, one of which is the 

computer program itself.. The accuracy of the final result is greatest 

if the waveform period is divided exactly into an integral number of 

intervals, as was done for the data in Table L.2. For the data in 

Table L .1, the values shown were determined by taking the area under 

the appropriate peaks, after the power spectrum was obtained. The 

precision with which values can be read on the Sandborn graph also 

affects the accuracy of the final figures. The curves in Figure L.1L 

were obtained by using both zero-order hold restoration, and low-pass 

filtering, with the same input signal as for Figure L.13. Although the 
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upper curve shows a greater restoration than that in Figure L.l3, it 

is not completely free of oomplementary frequenoies. However, the 

calculated power apectrum values were so small as to indicate that 

the wave is monochromatic. A division of the waveform period into more 

intervals, and an improvement in the precision of the data points, would 

probably indicate otherwise. 
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CHAPTER V 

CONCUJSIONS AND SUGGESTED FUTURE INVESTIGATIONS 

5.1 Summary of the Resulta of this Reeearoh 

A class of sampled-data filters, called the finit• memory hold 

circuits, has been defined, and the Laplace transform for one group of 

these filter~configurations bas been evaluated, resulting in the 

definition of the H and P polynomiale. One method of simulating these 

filters, using operational amplifiera, has been proposed and the 

feasibility of this method has been studied experimentally. A technique 

to measure the magnitude of the filter transfer function has also been 

suggested. 

The experimental resulta indicate that operational amplifiera 

are quite suitable for the simulation of thes• hold circuits within the 

frequency range studied, although this is obvious~ only one of many 

possible methode. The performance of the experimental memory unit 

approximates the ideal when the sampling pulses are nirrow. They may be 

predicted theoretically even when the sampling pulses are wide, or when 

the delay due to the feedback disoharging cycle is appreciable. 

Certain problems were encountered with the equipment which was 

used, such as drift and hum in the operational amplifiera. These are 

faults of the oommaroial unite employedJ however, and not defièiencies 

of the basic method. 
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5.2 Suggested Improvements in Laboratory Components and 
EXperimenta14fechriiques 

The D-C unbalance in the sampler output can be reduced to a 

negligible value by using matched diodes for n3 and DL, a precision 

voltage divider in place of Ri (Figure 3.7), and by replacing 

potentiometer ~ by two matched Zener diodes. If there is no D-C 

unbalance in the sampler output, this basic circuit could replace the 

relay for discharging the integrator feedback capacitor, with a 

consequent reduction in the discharging cycle delay, and an increase 

in the flexibility of the simulation scheme. The sampler circuit can 

also be used to accomplish the necessary switching of the memory unite, 

as outlined in Section 3.2. 

A stuqy of operational amplifiera, to determine the most 

suitable design for simulating the memory unite, should be undertaken. 

Chopper stabilization is probably warranted, to reduce the D-C drift. 

Wide!band-width is necessary to ensure the accurate integration of 

very narrow pulses. The hum level must be reduced below that in the 

DonnerModel 3000 amplifiera. These requirements may result in an 

operational amplifier of a design which is not available commercially. 

Alternatively, some system other than one employing operational 

amplifiera may be used, and the practical advantages of such systems 

must not be overlooked. 

A more convenient method of obtaining data points for the 

auto-correlation program is also needed. Digital print-out deviees 

have very low writing speeds, but it might be possible to sample the 

filter output at a high rate and record these samples on a magnetic 

tape for later measurement with a digital voltmeter. A better method 

would be to build an automatic auto-correlator, by using two samplers, 
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each controlled by identical but relative~-delayed pulse trains. 

After restoration by a (0,0) hold, the two signala would then be 

multiplied together electronical~, and the product integrated for 

a suitable interval. The resulting signal would be recorded on the 

y-axis of an x-y plotter, while the x-axis of this plotter monitored 

a voltage proportional to the delay between the two pulse trains. 

The auto-correlation method, although a powerful technique 

for determining the magnitude of a network transfer function, does 

not provide any .information about the phase of this funotion. Phase 

information may be obtained by cross-correlation37o The complex 

Fourier transform of a system input-output cross-correlation function 

is the cross-power density spectrum of the input and output. When the 

latter quantity is divided by the density spectrum of the input signal, 

the magnitude and phase of the system tranafer function is obtained. 

The cross-correlation function could be obtained automatically9 using 

the deviee sug~sted above, if one of the two samplers monitors the 

filter input, while the other samples the outputo 

5o3 Possible Applications of the Finite Memorz Hold Circuits 

The finite memory hold circuits may be used as a digital to 

analog converter in a sampled-data system. Their use in conjunction 

wi th the analog canputing scheme suggested by Hung38 would result in 

a flexible laboratory computer which could perform most of the 

mathematical calculations of interest to eleotrical engineers, providing 

the solution in an analog form. 

These sampled-data filters could also be used as function 

generators by pre-recarding the necessary sample values on a magnetic 

tape, to generate a sufficient~ accurate polynomial approximation to 
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the desired function. Complicated periodic functions could be 

generated by forming the magnetic tape into a loop. 

22 23 
Other workers ' have evaluated expressions for the optimum 

weighting functions of sampled-data filters to recover a sampled 

signal from noise. The finite memory hold circuit should also be tried 

in this application. 

Sampled-data feedback systems are normally designed so they 

will not oscillate, but they may ale? be designed to oscillate at very. 

2L low frequencies. The work of Franks and Sandberg seems to indicate 

that auch an oscillator, incorporating their N-path filter, would be 

very stable. The use of a finite memory hold circuit, rather than an 

N-path filter should be tried. 

5.L A Proposal for a Recognizing Machine 

The invention of automatic oanputers bas prompted researchers 

to •teaoh" these machines to perform some of the more complicated tasks 

which the hum~m mind aoccmplishes so easily. Among these tasks is the 

recognition of an abject under different lighting conditions, or of 

identical words.when spoken by different individuals. The finite memory 

hold circuit promises to provide yet another method of building auch a 

recognizing machine. 

Consider the two words "we" and 11me." When these are converted 

to an electrical signal, the initial transient is different in each 

case. Thus, it is their time-domain representation whioh seems to 

distinguish the two words. The finite memory hold circuit stores 

samples of the input signal in time sequence and is ideally suited for 

time-domain filtering in the sense described here. 
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To build this recognizing machine, tape recordings of 

identical words spoken by different individuals would be obtained. 

The electrical signala from these recordings would be sampled at a 

rate to be determined empirical1y, and these samples would be stored 

in the memory bank. The computing circuitry would be adjusted, not 

to restore these ~ignals as accurately as possible, but to produce a 

unique output for a specifie word. Such an adjustment should be made 

by the machine itself, by self-optimization of the filter transfer 

function. 

This self-optimization would be accomplished by applying 

each of the recorded signala of the same word to the hold circuit, and 

11telling" the machiœ to produce the same output in all cases. By some 

suitable process the machine would adjust the sampling rate, amplifier 

gains and integrator time constants to obtain the desired result. 

Thus the machine would "learn• which parts of the signal are character

istic of a gi ven word. 

The fin.al stage would be to obtain a nother set of recordings, 

.this time of a different word, and to observe the .filter output. If 

the outputs are unique and distinct .from the output for the first word, 

the sampling rate, amplifier gains and integrator time constants would 

be reoorded. Fran these figures the .filtèi- transfer .function would be 

obtained and some information regarding the distinctive characteristics 

of words would be availa ble t o the researcher • 
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APPENDIX I 

r r 
Properties ~ the HM. and Pm Polynomials 

Al.l "" Definition of the Polynanials 

r 
The IÇ. polynomials are defined byt 

• 1 

• 0 m<.r 

'rh• ~ polynomials are defined byz 

...;r r+l 
r..:_•R' -m 111+1 ~ -r(m-+-:-1--jj~)-:-~-(~T"""'ls )!"":!3 

j .. 0 

Al.2 - Certain Recurrence Relations for these Polynomials. 

r 

s.. -

~1 -H~-1 • 

~ . m 

~- pr+l. 
JI. Ill 

p~ - Pi;_l • 

-1 r 
1 + (Ts) m Hm-l 

m! 

(Ts)-1 (m+l)H~ - (Ts)-1(m.-l)Hi-2 

(Ts)·l~l + (Ts)-~ ~-1 

(m-r) mt 
(r+l)! ('ns)•-r 

(m-l) 1 
rl(Ts)M'!"r 

•••• Al.l 

•••. Al. 2 

•••• -Al.) 

•••• Al.L 

• ••• Al.S 

•••• Al.6 

•••• Al. 7 

~+1 - ~-1 • m.+l ~ - m-l P~_2 + m+l a;; -m-l Hi-2 Al.8 
Ts Ts (Ts)2 (~ 
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The above relations may be readily established from the 

definitions of the polynomiale. 

Al.3- Values of Certain of.these Polynomiale 

The first four ~ polynomiale area 

H~ • 1+2/Ts + 2/(Ts)
2 

Hi • 1 + 1/Ts H~ • 1 + 3/Ts + 6/(Ts)
2 

+ 6/(Ts)3 

The first four ~ polynomiale area 

- 1 

~ • 1 + 2/Ts 

H1 • 1 + 3/Ts + 6/(Ts) 2 
3 

0 The first four Pm polynCII!.ials area 

p~ • 0 P2 • 1/Ts + L/(Ts) 2 

P~ • 1/Ts PJ • 1/Ts + 6/(Ts)2 + 18/(Ts) 3 

These tables may be extended by use of the recursion formula• • 

.41.11 - Modified Z-Transforms of ~s and ~s for the Values of~ and ~ 
given in Section Al.3. 

F(s) 

H~s 

Hîfs 
u2/s 

F(z,m) 

1/(z-1) 

m+1 • 1 
Z-r (z-1)2 

(m+l)2 • 2m+3 + 2 
~z-1~ (z-1)2 (z-1)3 

(m+l)
3 

+ 3m2+9m+7 + 6m+12 + 6 
z-1 ~z-1)2 (z-1)3 1Z=!)L 

0 

Al.9 

A1.10 

Al.l1 

A1.12 

A1.13 
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HÎfs l/(z-1) .tli.lL 

Hifs 2m+1 + ·2 .U.1.5 
z-1 (z-1)2 

Hj;s 3m2+3m+1 • 6m+6 + 6 A1.16 
z-1 (z-1)3 

PVs 0 A1.17 

pOlis m + 1 !1.18 
z-1 (z-1) 2 

PYs 2m2+m + Lm+3 + L A1.19 
z-1 (z-1)2 (z-1)3 

pO 3m3+3m2+m + 9m2+1.5m+7 + 18m+2h 3 
z-1 (z-1)2 (z-1)3 

+ 18 A1.20 
(z-1)L 



APPENDIX II 

A SCHEME FOR THE DETERMINATION OF ANAIDG COMPUTER CONNECTIONS FCil 

THE SIMULATION OF A GROUP I FINITE MEMORY HOLD CIRCUIT 

A2.1-~ Synthesis of the Analog Computer Connections. 

Let the symbol Mr denote the me mory unit which stores the eample 

f [(n-r)~. The determin&tion of the analog canputer connections may 

be reduced to a mechanical operation by the following schemet 

1) Lay out a column of p+q+l boxes to denote the memory unite. 

Alternate outputs from this coll.llln (the memory bank), starting withM1 ,. 
~ -

are connected to inverters so that the first differences may be formed 

by the succeeding computing elements. If the order, p, of the hold 

circuit is even, p/2 inverters are required, if it is odd, (p-1)/2 

inverters are required., 

2) The invarter bank is followed qy p-1 banks of integrators, 

whose time constants are all equa1 to 1 second. The first bank has 

p-1 integrators, and each succeeding bank one lesa integrator than the 

former. The outputs of the integrators in a given bank are connected 

two-by-two to the ii1Puts of the integrators in the next bank. The 

output of the integrator in each bank which is the one nearest the M 
0 

memory unit is tapP'd-off for 1ater interconnections. A total of 

p(p-1)/2 integrators are required in this step. 

3) Conœot every second memory unit output to a conmon sl.lllmer .. 

Start the connections with M
0 

if p is odd, otherwise start with M1 • 

The scaling factors in the summer are adjusted in accordanoe with the 

m.ethod discussed in the fo11owing section, for the moment they are 
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r denoted by the s,ymbol C ; where r is the m.emary unit subscript. p,q_, 

Conneot the output of the sumner and the remaining amory unite to 

the first of p cascaded intw~t"n0r5, The soaling factors for the 

summ.er output is unity, and for the remaining memary units it is c;,q• 

~) The integrator outputs which were tapped-off in Step 2 
. 

are now oonneoted. Label the integrator banks from 1 to p-1, starting 

with the first bank after the inverters. Connect the outputs of the 

integrators in the odd-nunbered banks to a common sunmer, using a 

scaling factor of unity for ali inputs. Connect the output of this 

summer, the tapped-off outputs of the integrators in the even-numbered 

banks, the output of M0 , and the output of the last of the p cascaded 

integrators or Step 3, all to a common final summer. The filter output 

is that of the final sU11111er. The scaling factors for ali inputs to the 

fin&l sunmer will normally be unity, u.nless some other scaling factor 

is desired. 

5) The final design may be checked by verifying that the 

number of operational anplifiers in any path from the output of 

Mb 1M2,ML,••to output of the filter is odd, and the number of amplifiera 

from the output of M1,M3~5•••in such a path is even. 

This schetH is quit• mechanical, requiring no ingenuity on the 

part of the designer, and so is suitable for programming into a digital 

computer39• 

,2.2 - n.termination o! the Summer Scaling Factors. 

ln examination of equations 2.~0 and 2.Ll, shows that the last 

q•l terme in the general expression for G q(s) are all powtrs of p, 
r-P(t-nT)P. These terme may be denoted by S, where 
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S • r-P(t-nT)P 2: Rj ôrj 
j -:.0 

and R0 • 1. Substituting 2.2L in A2.lt 
't , ... j 

S = T~P(t-nT)P jf; ~ Rj(-l)r(~j)f(nz.T) 
• r-P(-t;-nT)P ~ (-l)rf(nz.T) 2:, :aj lp;j) 

r-.o j:::. o 

•••• J2.1 

•••• A2.2a 

•••• !2.2b 

The second summation determines the coefficients of the 

f(DTT) terms, which are the sca1ing factors for the memory unit outputs. 

Therefore, we can write: 

c~,q • ;t. 11j(~j) •••• A2 .3 

If thé ~j are all different, this sum is evaluated to determine the 

necessary scaling factors in the main computer. In the particular 

case where Rj = R for all j, this expression may be further simplified. 

Setting ~j = R, expression A2.3 becomes: 

cr - R ~ (p+j)! 
p,q ~(p+j-r)! r! 

,. !, ± (p+j)! . 
r. j=o(p+j-r)! 

•••• 

•••• 

A2.La 

A2.Lb 

This sum is readily identified as the sum of asoending faotorials, 

evaluated by Kunz:30 

~ (e+j)! • lp+j+l~! ~ {p•j-r)1 p+j-r !(r+l) j"O 

Substituting A2.5b in A2.Lb, 

cr =·R {(p+q+l)! 
p,q (r+l)! (p+q-r)! 

• n[~~i1) - (r~~] 
(ri \. . . ' 1

) (p-r-lJt (r+l)! 
where 

j=-1 

p! } {p-r-1)! 

- p! } 
(p-r-1)! 

•••• 12 .Sa 

•••• A4.5b 

•••• A2.6a 

•••• A2 .. 6b 

Equation A2 .. 6b is readily evaluated numerically, with the 

aid of a table of binomial coefficients.3l 
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APPENDIX III 

CORRELATION AND POWU SPECTRUM COMPOTEa. l'ROGRAMS 

A3.l The Correlation Program 

The m:merical formula used is 
N 

rlll (r) • :Z fl (j6) rl {j6•7î 
J-O 

where 7' • n6 {n an integer), 6 • interval between data points. 

The FOBXRAN Language statement for the IBM 650 computer is: 

DIMENSION X{500), Y{500) 
-

l ltEAD, CODE, T, M, N, J 

READ, (X(I), I=l,M) 

GO TO (2,3,2,3), J 

2 DO b I•l,M 

b Y(I) • X(I) 

GO TO 5 

3 READ, (Y{I), I•l,M) 

5 MAX • N-1 

IYr • MAX 

ns • m* o. 75 

MO • N-2 

LT • M-Noe-1 

DO 6 L-l,tr 

K • L-1 

fi • T * FWl'F (K) 

COR • X(l)*Y(L) + X(N)*Y(N+K) 

co:a • mB/2. o 
GO TO (7,7,8,8},J 

7 DO 10 1•2, MAX 
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10 COR • CO!I + X(I)*Y(I+K) 

COll • COB/rtt 

oo ro .3o 

8 DO 20 !•.31 M01 2 

20 COft • GOR + X(I)*Y(I+K) 

GOa • COB./2 .o ' 

DO 21 I•2,1UX1 2 

21 COR • COR + X(I)*Y(I+K) 

COR • COJ/DS 

.30 GO TO (hO,h5,4o,L5),J 

Lo IF (K) 50, 50, 55 , 

50 DIV • COR 

55 COllNM • COR/DIV 

GO TO 60 

45 COJDM .. o.o 

60 PUNCH, CODE, MAX, Ir, TK, cœ, a:mNM 

6 CONTINUE 

GO TO 1 

END 

This program will compute either auto- or cross-correlation 

runotions, using the Trapezoidal rule for the sunmation if there are 

an odd num.ber of intervals, and Simpson1a rule if there are an even 

num.ber of intervala. 

The data carda are prepared in 7/card form. When a cross

correlation is performed, two such decks are required. These da'ia 

cards are preoeded by a 5-word starter cardt 
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Word 1 

Word 2 

Word 3 

Word L 

Word 5 
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Code number 

6 • interval between data points (seo.) 

Total number of data points in eaoh deck {~ 500) 

Number of data points to be used in each summation 

1 for auto-correlation } 
Trap. rule 

2 for cross-correlation 

3 for auto-correlation } 
Simpson 1 s ru le 

L for cross-correlation 

The output of this program. will have 6 words on each card: 

Word 1 

Word 2 

Word 3 

Word L 

Word 5 

Word 6 

Code number 

Number of intervals used in each summation 

Cardinal num.ber of point in correlation function 

Value of r at ltlich ~ll (r} is evaluated 

Value of ,011(r) 

0.0 is cross-correlation is used 

Value of ~ll tr) ,normalized wi th respect to7!111i (0) 

A3.2 The Power S;eectrum Program. 

The numerical approximation used is 
N 

cpll (ro) = ?, ~11 (jô) cos (jroô) 
-- J ~. 0 

where ô is the interval between the data points used in the auto-correlation 

program. 

The FemmN Language statement for the IBM 650 computer is 

DIKENSION T(SOO), COR(SOO) 

1 llEID, FD, lM, FS, M,J 

DO 2 I•l,M 

BEAD1 NUK, A, B, T(I), COI(I), S, V 



9L 

2 CONTINUE 

NUM ... NUM + 1o*' J 

N • M-1 

DT c N 

'* DS • DT 0.75 

MO • M-2 

F • FS 

3 W • F""6.28318 

JRG • v""T(l) 

A~ • w•T(M) 

PS • COR(l}~COSF(ARG) + cœt(ll)*coSF(AR2) 

PS • PS/2.0 

GO TO, (L,6) ,J 

L 00 5 I .. 2,N 

.ARG .. w*T(I) 

5 PS • PS + COB(I)*coSF(ABG) 

PS • PS/11t 

GO TO 10 

6 DO 7 !•3, M0,2 

AllG • W~T(I) 

7 PS • PS + COll(I)"*coSF(ARG) 

PS • PS/2.0 

DO 8 I•2, N,2 

A1lG • w*T(I) 

8 PS • PS + COB(!).._. COSF(.PG) 

PS • PS/DS 

10 PUNCH, NUM, N, F, PS 

IF(FM-F) 1,1,11 



GO TO .3 

END 

This program computes the power spectrum from the output 

cards of the auto-oorrelation program, using the Trapezoidal rule 

if there are an odd number of intervals, and Simpson's rule if there 

are an even nunber of intervals. The deck of auto-correlation cards 

ie preceded by a 5-word starter cardt 

Word 1 

Word 2 

Word .3 

Word L 
'Word 5 

Deeired frequency increment in power epectrum 
values 

Maximum frequency for which the power spectrum 
ie to be computed 

Minimum frequency for which the power spectr\Dil 
is to be computed 

Totàl nll1lber of input cards 

for Trapezoidal rule 

for Simpeon 1e rule 

The carde in the output deck have L worde~ 

Word 1 Code number in auto-correlation program 

increaeed by 10 if Trapezoidal rule ie ueed, 

increaeed by 20 is Simpson'e rule ie used 

Word 2 Num.ber of intervale used in the eummation 

Word .3 Frequency at which the power epectrum ie 
evaluated · 

Vord L Value of the power epectrum 
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