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ABSTRACT

This study demonstrates that a finite-memory hold circuit
is a sampled-data filter which performs mathematical operations on
discrete signals by using finite difference techniques, Some
alternate proofs to theorems pertaining to sampled—data systems
are offered in addition to the derivation of a general expression
for the transfer function of the hold circuit which restores
sampled-data signals to an analog form. An analysis of the errors

arising in such a restoration is presented.

A method of simulating such filters using operational
amplifiers is suggested and the requirements which the various
components in such a scheme must satisfy is investigated, The
circuitry employed in such a system is described, including the
design and performance of a direct-coupled diode switch, capable

of high operating speeds which may be used for sampling and gating,

The experimental results obtained with a prototype simulation
system are compared with z- transform predictions, 'Some applications
of these sampled-data filters are suggested as areas for future

research.



CHAPTER I
SAMPLED-DATA SYSTEMS

1.1 Introduction

Concerted interest in sampled-data systems began in the early 1940's
in conmection with radar control. The results of these early investigations
were summarized by James et al.l Since then there has been great activity
in the analysis of éampled-data syétems as witnedsed by the volume of

literature published on this subject in the past decade.z"B”J

A sampled-data system differs from a continuous one in the form in
which information signals are transmitted, In the continuous case the
signal is available at all times, while in the sampled-data case it is
only available at discrete instants in time and hence is applied
discontinuously to the system, The use of a sampled-data system may be
dictated by economic reasons or considerations of weight and size. Thus,
in control systems where digital computers are employed in the control loop,
the input and output to the computer must be in a discrete or sampled=data
form, Similarly, in telemetering systems, it may be necessary to time=share
a communication chamel among several units, an& thus the transmitted

information is received in the form of samplede=data.

James et al,l presented an analysis of sampled or pulsed data systems
which wés based on specifying the weighting function for a linear filter with
pulsed data. Their method has the disadvantage of great mathematical
complexity, although there is mention of the now popular Z-transform method
of analysis, H’acColl5 discussed sampled-data servomechanisms and made a

preliminary approach to the Zetransform,



1.2 Frequency-Domain Analysis

Linvill6 analysed sampled-data systems in conventional frequency
domain terms., In particular, he showed that the sampling process produces
higher-order frequencies which may be removed by appropriate filtering. He
also showed that no frequency higher than half the sampling frequency will
be recovered in demodulating the sampled=data, This is a well known result

previously established by Shanmon, 7

U
F(s) F*()
£ )r % (€
Figure 1.1

Schematic Representation of the Sampling Process

The sampling process is represented;schematically in Figure 1,1 A
commutater switch closes for an infinitesimally short time every T seconds,
producing a sampled output f*(t) from the continuous input f(t). It is
assumed in the ensuing analysis that the output from the sampler consists
of a train of impulses equally spaced in time and with areas equal to the
value of £(t) at the sampling instants. F(s) is the Laplace Transform of

£(t) and,F*(;) is the Laplace Transform of the sampled output,

Linvillc considered the sampling process to be amplitude modulation
of an infinite pulse train by the input signal, If 8p(t) represents an
infinite train of unit impulses spaced T seconds apart, the sampling
process may be represented mathematically by the expression:

£(4) = £(4) x 6p(t) vees Ll
The infinite pulsé train may be expressed in the form of a complex

FourierVSeries:6

5T(t) =>']I" Zejk(ﬂt soeo 102

&Z:-CO




where T = 2n/m is the interval between sampling impulses,

If F () = f £ (t)e~J®% 4t is the Fouriere Transform of & (t), then we

-0

may write: - -
F (w) = f £(8) & kzweﬂk“’l*' e~J0t gy cees 143
Assuming ab_éoluf:: (;onverwgen;:-e of the infinite series, and putting k = =n:
F (o) s%‘ ?,mfw £(t) e'J(”*ml)“ dt cee. 1,30
I 2001‘(”*“‘”1) eeve Llo3c

where F(w) is the Fourier Transform of £(t).

Actually, Linvill gives the relation in terms of the I-transform as:
o0
!

F(s) -‘..F"Z F(s4jnw ) eose Lok

= - 00

vhere Ffs) is the Laplace Transform of f(t)
and F*(s) ‘is the Léplace Transform of fx(tj. However, later work by Lago8
showed that this expressibn is incomplete and should be modified to read:

o0

F'(s) = = Flsegum) + £(0%)/2 eeeo L5

Lago's éxpréssion is based on purely physical arguments and is not proven

figorously," However; its validity may be demonstrated by an example,

Consider the input to be a unit step with Laplace Transform 1/s and

value at the origin (0*) of 1., Then equation 1.5 ‘Secomes:

0

* ! - 1
F () = FH\ZM S+ jn e, to2 soee 1o6
The infinite sum in this expression may be wWritten as:
o
. I o0 | - 2 T s _ |
-ﬁ n—z_‘oo S+j n('ol ﬂ:zO: (T‘l s)l+(2nw)z rrl\ s esece 107

A sipilar expression is found in Bromwich's books?

UL T simklery)
%—_.!oo YE e R 4 cosh (2evy) - | vees 1.8
S 1L p _sihlwy) L
o 2 Z )’2 + kz )/ C.OSh(Z']T)’)— | + >/2 sce0 1.9

k=0




Substituting y = 77€V%Tr in 1.4 and simplifying the algebra, expression 1,7

become,moo ’ | o 7s) / T
and equation 1,6 becomes:
F'(s) = 1/2 cosh(T;s/2) + 1/2 el 1,118
=1/2 [cosh(Tls/?) + lj esss 1lo11b
= eTlS/(eTls -1) eeee lollc

It will be shown later that expression l,1lc is identical to that
derived by other methods and is known to be correct, Although this example
does not constitute a proof of Lago's equation (1,5) it is more elegant than

the example offered in his paper,

The significance of expression l.3c should be examined, This equation

states tbat the sampling process produces complementary frequencies related
in a simple manner to the frequency components of the imput signal, If
Figure le2a represents the frequency spectrum of a hypothetical input to a
sampler with sampling period Tl - 2n/&&, then the corresponding frequency

spectrum of the sampled output is that shown in Figure 1l.2b,
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Figure 1,2a Figure 1.2b
Hypotﬁetical Frequency Frequency Spectrum

Spectrum at Sampler Input at Sampler Qutput

Clearly, if the input spectrum contains frequencies higher than
@ /2, then the complementary spectrum (n # O in equation 1,3) will overlap

th; primary spectrum (n = 0) indicating that the frequencies in the interwval



where the overlapping occurs cannot be recovered from the sampled signal,
This establishes Shannon's sampling theorem7. The input spectrum is assumed
to be band~limited to exclude all frequencies higher than half the sampling

rate,

1.3 Z«Transform Analysis

Thé sémplingﬂprocéss is represented mathematically by the expression:
£5(4) = £(t) x 5p(t) S 5 |
Rather than expand GT(t)‘in its Fourier series as was done in the
frequency=domain analysis, we ﬁay write it in terms of its infinite time
series:
6p(t) = ;;ixs(t « nT) cese 1412
where 6 (%) is the unit_impulse functioh and T is the interval between
sampling impulses. Furthermore, if f(t) = 0 for t<® then equation 1,1
may be rewritten: ‘ - |
£*(t) = £(t) Zg% 5(t = nT) eres 113
n=

Taking the Laplace transform 6fwequati6n 1.13;

Frisy = [ #0 > 8le-nT) e ok eree Lolla

where E*(s) is the Laplace transform of Tf*(t). Assuming absolute convergence

of the infinite séfies, equation 1l.1ka becomess

© C -sT

]——%(S\ - Z f f(f) S(t-nT) e Jt eses lollib

n=0 °

°° -sn7
—_ Z f(ﬂT} e gn (X Y lolhc
Substituting z = eST in the above equation:
F(S) - Z f(r;?) z~ . ®sso 1.15
n=0

F(z) is called the Zetransform of £(t) but, strictly speaking, it is
. *
the Laplace transform of f (t) with oI replaced by 2z, The foregoing

\n



derivation follows that of Ragazzini and Zadehl® who developed the
Z=transform in its present form, Equation 1,15 expresses F(z) in an
infinite power series in z, It is also possible to determine é(z) in
closed form by application of the theory of complex convolution‘11
Juryl2 has done this by taking the complex convolution of F(s), the
Laplace transform of f(t) and (1 = e“ST)-l, the Laplace transform of
ST(t). Jury's expression is not reproduced here as equation 1,15 is

more amenable to physical interpretation of the sampling process and all

necesgsary results may be derived from it,.

The substitution of eST

= z in equation l.lkc to obtain 1,15 is
merely a matter of mathematical convenience, The ﬁaplace transform of a
sampled function is not analytic in &, but its Zutfansform is analytic in
2z, Conventional techniques may be applied to the analysis of the stability
of sampled«data systems by noting that the transformation, z = eST, maps

the left half of the s=plane into a unit circle in the zeplane,l2s13

The applications of the Z~transform are not limited to the analysis
of elctric circuits, Just as the Laplace transform may be used to solve

linear differential eqﬁations, 80 the Z~transform may be used to solve

1

linear finite difference equations,

The Z=transform of a unit step may be derived as an application of

equatioﬁ 1.15:

>

F<z) = A f(nT) z [ XX X3 1.15
n=06
For a unit step, f(nT) =1 for all n, hence
) Flz) = > 8 eees lalba
o n=0
= (1-3zHL vers 1.16b
= Z/(Zml) ) s0ee 10160

With the substitution, 2

eéT, tﬁis expression becomes identical to l.lle



which confims the validity of Lago's equation (1.5) for this particular

case,

The physical interpretation of equations 1.lhc and 1,15, is that
they represent a train of impulses starting at t+ = O, spaced T seconds
apart and with areas equal to the value of the continmnous function,
£(t), at the sampling instants. In other words, the input signal to
the sampler weights the output train of impulses with its value at the

sampling instants.

1.b4 Z-Transform Algebra

"N o)
_ — 03
[_ o‘(ﬂ

T
F( F(3) Of(s)
;éz ;T/ £¥(t) hit) , oé

Figure 1,3
A typical linear sampled~data system
In the system shown in Figure 1.3, both the input, .f(t), and the output
o(t), are sampled in synchronism and h(%) is the impulse response of the

system, If the system were continuous, the output would be found by taking

the convolution of £(t) with h(t). It will be shown that a similar technique

exists for sampled—d;té systemé.'

If H(s) is the Laplace transform of h(t), then the output Laplace
transfofm O(sj is: ‘
0(s) = Fﬁ(s) H(s) eoee 117
However, if this output’ié saﬁple& ﬁith a second sampler operating in
synchronism with the input sampler, then the output will be 0(z), i.e.,
the Zetransform of o(t). The system impulse response is h{t), therefore
at some time mT, the output will be:

o(mT) = £(O)h(mT) + £(T) | (m - DT+ ... + £(uT) h(0) ... 1.18



i.es, the sum of the system responses to that time, This may be written:

o
o(m?) = 2 £(nT) h | (men)T) vees 1,19
. n:D B -
Equation 1.19 is called a "convolution summation" and is the sampled=data
analog of the convolution integral for a contimuous system, The upper

sumation limit in 1.19 may be extended to infinity because h | (men)T| = 0

for n>m. As shown:

o(nT) = i £(a1) b | (men)?) e 120

But, 0(z) = Eoo(mT) 2™ ceee 1221
Substituting 1.20 in 1.2 results int

o) = > % £(a1) b | (men)T] 2™ vee 1,222

- : f(nT) Z h| (men)T] z~0 ecees 1.22b

- Z £(a1) 3 h{(men)T]z"" voes 1,22

Where the summation limits have been changed by noting that h[(m-n)ﬁ] =0

for m<n, Substituting k = mon in 1.22c yields:

0(z) = Zf(nT) Z n(er) 2" k,= ceee 1.23a
- Z £ (nT) z"n Z h(kT) 2" cess 14230
= F(z) H(z) esos 1le23c

Thus, the Z-transform of the output of a linear sampled-data system
with thé configuration of Figure 1,3 is the product of the Z-transform of
the input signal with the i-transform of the system impulse response, The
algebra for other system configurations has been well developed and may

be found in numerous sources.h’lo’ls’lb

The sampled output, o (t), may be determined by expanding 0(z) in
inverse‘powers of z and examihiﬁg the coefficients of the various terms
which give the value of o(t) at the sampling instants. Alternatively,

0¥(4) may be obtained in closed form by taking the inverse Z-transform.l2’13



The theory which has been developed thus far will yield the value
of the output at the sampling instants, but will not indicate how the
system behaves between samples, In some cases, this may be all that is
necessary to determine the stability of a samplede=data control system or
to aid in the synthesis of such a system. However, in the problem with
which this research is concerned, this property of the Z-transform

seriously limits its usefulness.

1,5 The Modified ZeTransform

To obtain the résponse of a samplededata system between sampling
instanté, an extension of the Z~transform, called the modified Z~transform,

15,16,17 This transform is evaluated by considering

has been developed,
the effect of introducing a fictitious time delay AT (A<1) in a linear

sampled~data system,

ITI
e
|
| o(s)

o(t)

by
F(s) F(3)
o A i bW AT

~ Figure 1.k
Samplede~Data Systeﬁ with Fictitious Time Delay AT

The manner of introducing the fictitious delay is shown in Figure
1.h, and the effect ot this delay on the system output is illustrated in

Figure 1,5.
- h(t)

h{t-AT)

) 7 o7 ¢  —t

Figure l,5a Figure 1e5b

Hypothetical System Response with no Delay Effect of a‘Delay AT on the System
< Response of Figure 1l,5a



Figure 1.5 shows that the sampled output, 0(z), of the circuit
in Figure 1.4 will give the value of the undelayed output at (n e« A)T
when the sample is taken at nT, If we define m = l=A (m<¢l), then the
output at the sampling instants of the system with the fictitious
delay will be the value of the undelayed output at (n = 1)T + mT, and
thus:

o(nT) = f(O) hin+m- mJ ¥ ewerr 2@ = 1)1 h(s1) ceer 1a2)

or, o(nT) = z f(kT) h[(n Mok o l)ﬂ vese 125
Now, [(n *Meke 1)'13 O for k>n = 1, so the upper summation limit
may be extended to infinity. Doing this, and substituting the resulting
expression in 1.21:

0(z) = jz ng f {kT) h[(n 4meke 1)@] - ees. 1426
Substitut:mg P=neke 1, and noting that h[(p + m)'l‘] = 0 for p<O,

results in the expression.

o(s) = >, £(1) Z h[(o + m)T) 2"Pakg=l vees 1,272

= z f(k‘l‘) g~k 71 Z h[(p + m)T] z*P eose 1,270

- F(z) H(z,m) coes 1.27c

where H(z,m) = ! Z h[(n + m)'l:_| -n eeos 1o28
Cheng]'"l defines H(z,m) as H(z,m) - n>o h(nT + mT) z™® and calculations
; 18

lising this expression agree with those to be found in Lago's paper,
but the definition of equation 1,28 will be used as it is the one

generally found in the literature on this subject.

As neither the fictitious delay nor the second sampler is actually
prese'nt in a practical sampled-data system, it is conventional to use the
notation

0(z,m) = F(z) H(z,m) evoo 1429
where 0(z,m) is the modified Z-transform of the output and H(z,m) is the

modified Z-transform of the system transfer function. The algebfa for

10



11

other system configurations may be found in numerous sources.lB’17

The complete system response may be found by taking the inverse
transform of O(z;m) and allowing m to vary between O and 1. The time
domain response is obtained by substituting t = (n-1+4m)T in the inverse

transform.

From an examination of equation 1.28, it is seen that:
lim z H(z,m) = H(z2)
m-»0 - - e . )
Thus, multiplying O(z,m) by z and allowing m—+0, we obtain the upper value
of the system reSpohse at the sampling instants, i.e;, the value at O*,T*,ZT*...
If we allow m—+1 in the expression for O(Z,m), we obtain the value of the
output at 0~, T, 2" .... If the system has a continuous impulse response,
the following relation exists:
lim 2z H(z,m) -"}iw H(z,m)

m-—-=0
now 1im H(z,m) = lim 2z H(z,m) - h(0)
m-—wl ) . m —»0 i
Therefore, the system can only have a continuous impulse response if
gim h(t) = 0, By the initial value theorem for Laplace Transforms this
—0
is equivalent to the relations
lim s H(S) = 0 svoce 1’30
N
If H(s) can be expressed as the ratio of two polynomials in s, then the
ﬁolyﬁomial in the denominator must be of a2 degree at least two greater than

the degree of the polynomizl in the numerator;, to satisfy equation 1430.

The modified Zetransform may also be used to express certain infinite
series in closed form.l7 This is done by noting that:
o(t) = L-L(F*(s) H(s))
where L™l denotes the inverse Laplace transform, Evaluating o(%) by taking
the in&erse Laplace transform ﬁill result in an expression in infinite

series form, o(t) may also be evaluated by taking the inverse transform of



12

0(z,m) and putting t = (n = 1 + m)T, This will yield an expression for
o(t) in closed form, The two forms of o(t) must be identical as they
describe the same system and the modified Zetransform is just a special

case of the Laplace transforme

1.6 The PeTransform

The methods of the Z-transforﬁ and the modified Z-transform are
applicaﬁle to the analysis of sampled-data systems where the sampling
impulses have zero width, Results obtained by the use of these methods
are exact only if the sampler transforms the finite amplitude of the
input signal to true impulses of equivalent area, which is physically
impossible., An analysis of the effect of the finite width of the sampling

19,20, 21

pulses has been made by Farmanfarma and has resulted in the

definition of the P~Transform.

7 The P-Transform of a continuous signal, f(T), vhich is sampled by
pulses of width h, is defined as the Laplace tranaform of the product of
£(¢) and the train of sampling pulses, each of unit height, width h, and
occﬁring periodically every T seconds. The P-Transform is obtained by
taking the complex convolution of F(s), which is the Laplace transform
of £(t), with (1 = e™P8) s71(1 = GASTj-l, the Laplace transform of the
pulsé %rain. Tables of‘P-trénsfonns ﬁill be f&und in Farmanfarma's

paper19 and Jury's book.13

An analysis has also been made by the author similar to that for
the derivation of the Zetransform in infinite series form, However, as the
resulting expression involves both integration and summation, it offers no
advantage in the physical interpretation of the sampling process over

Farmanfarmats expression,



For the openeloop system already discussed in some detail; the

modified Z-transform of the output is

0(z,m) = F(z) H(z,m) eces 1429
The time domain response is then obtained by taking the inverse transform
of 0(z,m), When the finite pulse width is taken into consideration, the
correspohding expression becomes:

0(s) = F (s) H(s) coes 1,31
where Fp(s) is the P-transform of the input, £f(t). The time domain
responseymay be found in closed form by taking the inverse Petransform of

0o(s).

The greatest inaccuracies in using the Zetransform when the sampling

pulses have a finite width occur when the system has a discontinuous imphlse

response, i.e, equation 1,30 is not satisfied, Under these conditions, the
Zetransform predicts a finite discontinuity at the sampling instants, while
the P-transform predicts a continuous output with a finite discontinuity in
its first derivative at the beginning and end of each sampling pulse,
Laege errors will be incurred in predicting any system response with the
i-transform if the sampling pulse width is comparable to the system time

constant,

The frequency domain analysis of a signal sampled by a pulse of
finite ﬁidth may be accomplished by a method gimilar to that used for the

case of ideal impulses,
Uplt)

—t

-2T =Tk T Ttk ) h T Mth . 2T, 2Ti+h
Figure 1,6

The SamplingePulse Train

13



1k

If Figure 1,6 respresents the train of sampling pulses, its finite

Fourier transform is: ,

Uplw) = ]—"f e-jnw|(-0/f

) (I _ e—jnw.h)/jnw‘rr'

(XXX ] 1.323

XN R 1032b

where ®, = 21/T,. The sampling pulse function, up(t) , may now be expanded
in a complex Fourier gseries,

= 'noo,t
Ue (t) = 2 Up ((‘o') e’ eses 1.332

n=-00

= _ined, h inw,t
= L SV i=e? T @ he Ll 1433
2mj n 21

ns —-©°

/
where 2 means that the term n = 0 is excluded from the summation, The
Fourier transform of the sampled output, Fp*(co), may now be evaluated

ﬁsing the method of section 1,2

e Cineah) inid
F_:(w\ ’\’ Z f e { J ) & Qée‘f to/rf +F&o\2—ﬁ.... 1.3ka

Substituting k = -h:

3 Roohy (| jlorkolt
=g B LT [ e
koo B 2w
- —'l g F(w*ncg) ! e"lUJh F(UJ) _h_a)l so00e 1.3L|C
2“'] n=-%0 2w

where F(w) is the Fourier transform of f(t) and @ = 2n/T1.

The foregoing analysis is quite different from that of Farmanfarma

who obtains the result

F(s) ?”j 7 Fls+ ] )—ki-’- (s 29 eee 1235

—_oo

where F(s) is the Laplace transform of £(+) and F *(s) is the Laplace transform

of the sampled output.

Expressions 1,3kc and 1.35 may be reduced to their corresponding
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forms for the case of zero pulse width by letting the amplitude of the
sampling pulses equal 1/h instead of unity and then letting h+0. It is
also noted that in the limit as h—»T, the equations become

lim F;(«D = F(w)
n-="' :

e
1lim Fp(s) = F(s)
h—T ]

as would be expected.

The physical significance of equation 1l.3lc¢ is illustrated for
the case h/T = 0,25 in Figures 1,7a and 1.7b, which show the power
spectrum of a hypothetical signal before and after sampling. It is seen
that a given complementary frequency is attenuated by the factor h(sin x)/x

over its corresponding value in Figure 1,2b, where x = nth/T and n is the

order of the complementary components Shannon's sampling theorem still

applies,
PP | Fp ()
|FW»| sinxX
| ! | 0-25 - =
| | -1 T~
| 1
| !
| | | |
_% ° % — W -0, o w, 2w,
Figure 1l.7a B Figure 1,7b
Hypotheticai frequency spectrum Frequéncy'spectrum after sampling
at sampler input, . by a finiteewidth pulse,

1,7  Sampled=Data Filters

ih additioh to the work already discussed relating to sampled~data
control'systems, much interest has been shown recently in samplededata
filters. These may be of many configurations and one type is the n + m
port netwofk with n inputs where sampled~data signals are applied and m
outputs which supply continuous signals related by weighting functions,

Wij, to the n inputs. If the general nature of the input signal is
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known, and the desired nature of the output signal is specified, then the
weighting functions may be determined according to some criterion such as

optimization in the Wiener sense 22,23

Another type of filter which seems to have many applications is the
Nepath filter described by Franks and Sandberg.zh For the particular case
where the inputs are pulse modulated, this may be considered a samplededata
filter. An application of sampled-data filtering to selfeoptimizing

systems has also been reported.25

1,8 Scope and Purpose of the Research Undertaken

Many theoretical investigations have been made in the analysis and
synthesis of sampled-data control systems and samplededata filters., However,
with a few notable exceptions,25 the reporting of experimental verification
and complementing of these results have not kept pace with theoretical
developments, although such studies are probably being conducted in areas

not generally discussed in available literature,

One reason for this situation could be the lack of suitable university
laboratory simulation facilities, which are available to the individual
research worker. Simple samplededata control systems may be studied by
means of an analog computer and a motoredriven rotary switch, but this
arrangement sets an upper limit to the sampling rate which may be used,
and does not permit the investigation of samplededata filters requiring
a memory to store values of past samples, It is true that some author326’27

have described laboratory models for studyihg samplededata systems, but their

methods have limited flexibility,

The purpose of this research is two-fold: the analytical and

experiméntal investigation of certain aspects of a type of sampleedata
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filter,

Analytical studies have resulted in some alternate derivations of
theorems in sampled=data theory already discussed in this chapter., A
general expression for the transfer function of the class of filters
cdlled finite-memory holde=circuits has also been established, This will

be considered in the rext chapter.,

The experimental investigations have dealt with methods of
simulating these sampledw~data filters and at the same time considered the
requirements which must be satisfied by the components of a sampled«data
gimulation scheme, The actual building of these filters will be left for a
future investigation as this phase of the research is concerned only with the
feasibility of certain simulation techniques and indicates which components

will require more development before an opérational filter is built,



CHAPTER II
RESTORATION OF SAMPLED-DATA SIGNALS

2.1 LowePags Filtering

In most sampled-data systems, the input is pulsed, while the
plant has been designed to’respond to a continuous input. Although
%plant" is a term generally reserved for control systems, it may also
Ee intérpreted in this context as the readeout devices in a telemetering
system, Therefore, before the sampled input is applied to the plant, it
must be demodulated or restored to a continuous signal which should be a
facsimile of the original signal, Although Ragazzini and Zadehl® observe
that the digital signal may somtimes be applied directly to the plant, they
nevertheless recommend that a restoring circuit be placed between the plant
and the sampled inpute. Thus the study of samplededata restoration circuits

is an important field for investigation,

An examination of Figure 1.2 and associated equation 1l.3c immediately
suggests one method of accomplishing the necessary restoration, If an
ideal lowepass filter could be built with zero attenuation over the range
|w|<w /2 and infinite attenuation for |w|>w/2, then this filter would
remove.all complementary frequency componenté from the sampledesignal
spectrum, leaving only the primary components which are those of the
original signal, Such an ideal filter can only be approximated, of course,
and much has been written on the design of such filters. Once such a
filter has been designed and its transfer function evaluated, its
performance in a given system may be predicted by using the Zetransform or
Petransform analysis., It should be noted that such a filter must have a
continuous impulse response as defined by equation 1,30 for a smooth

output,
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One drawback of these filters is the inevitable phase-shift
introduced in the output signal, In timeeshared communication links and
certain telemetering systems such a phase=shift is not important, but in
control systems, this phase=shift may lead to instability. For this
reason, these filters are seldom,used as restoration elements in sampledw
data control systems, Nevertheless, devices which are used do have low-

pass filtering characteristics,

2,2 The Zero Order Hold Circuit

Ragazzini and Zaden1® suggest the use of a hold circuit to restore
the digital signal to an analog form., The function of a hold circuit is to
reconstruct approximately the original time function from the impulse train
generated by the sampler, The simplest hold circuit is the zero_ brder hold,
sometimes called a clamp circuit or boxcar generator, The operation of this

circuit is shown in Figure 2,1,

£*(6) - Fold)
]
) mzr e ar sr Tt 0 T o o a7 ¢
Figure 2,la Figure 2,1b
Hypothetical Sampler OQutput Ideai Hold Output

The zero order hold maintains its output constant at the value of
the last éample until a new sample is received, whereupon the output changes
discontinuously to the new sample value, If the continuous input function,
f£(t), is expanded in a Taylor's series about the point nT, the resulting
eipfession is:g | ﬁ

£(t) = £(aT) + £1(aT) (t=nT) + £'1(nT) (tenT)? + ... cees 2,1
o

where the primeé”indicété’the derivatives of £(t) at t, = oT, The zero order




20

hold approximates f£(t) by the first term in this expansion:

fh(t) = f(nT) , nT<t<(n +1)T veee 242
where fh(t) is the hold circuit output. The transfer function of such a
hold circuit is:Lo

Gy(s) = (1 = e™T)/s ceee 2.3

and ,Go(joo) eose 2ol

-2
o

sin o
-

where T is the sampling period, Relation 2,4 is plotted in Figure 2,2

vwhich shows that this circuit has low=pass filtering characteristics,

T
iGo(J‘wjl
” -
Figure 2,2

Frequenoy'Besponée of the Zero~Order Hold

Restoration of samplededata by hold circuits is essentially a
digital operation, requiring a memory to store the values of past samples
which are required to generate the continuous output. The zerow~order hold
may be considered as a member of a class of samplededata filters embracing

all hold circuits,

It is seen that the transfer function for the zeroesorder hold
(equation'2.3) does not satisfy the requirements for a continuous impulse
fesponse (equétion 1.30) and hence its output will have finite discontinuities,

at the sampling instant‘as shown in Figure 2,1,

203 Analysis of Systems with Hold Circuits

Figure 2,3 shows a typical samplededata system employing a zeroe

order hold as a restoring element.




m
Fl® Fle) | 1= 0(3,m)
) f"(“ Se H(s)

Figure 2,3

Typical SampledeData System Employing a Zero=Order Hold

From equation 1,27c¢, the output of this system is:
' 0(z,m) = F(z) T(z,m)
where T(z, m) is the modified Zetransform of
T(8) = (1 = e'ST) H(s)/s

Consider transfer functions of the form

G (s) = G(s) e~*sT

LXRE ]

L X 2 N J

L AN ]

where k is an integer., This is the same as a circuit with a transfer

function G(s) followed by an element introducing a delay of kT seconds,

From equatioii 1;28, the modified Z-transform of equation 2,7 is:

Gy (z;m) = z=1 P o,gl L(n + m)T} -n
Now, g (t) = g(t = kT) for t>kT
. =0 ~ for t< kT
-1 Qm‘ y | n
Therefore, Gy (z,m) = z™~ ., g {(n +m - k)TJ z"
. n=0
Substituting j = n =« k, this becomes
G, (z,m) = z -1 Z \-_(j » m)T] z=J z=k
— z"k Zg [(j + m)TJ z=J
where the lower summation limit has been changed because
g(j +m) =0 for j*meO
1'1n} g(m @ 1) = g(0™) = 0 by definition.
m" - .
Hence, Gl(z,m) - K G(z,m)

énd, T(z,m)’ = (1= 3z1) Zm{H(s)/s]

[ XX Y 3

[ XN E ]

2,5

2,9

2,103

2,10b

L2 KN 2011

[ X XX J

2,12

where Zm[H(s)/s] is the modified Z-transform of H(s)/s. Equation 2,5 may now



be rewritten:

0(z,m) = (z = 1)/2 F(2) 2 \H(s)/3 veve 213

The use of a zeroeorder hold results in very little additionall
complication of the basic equations describing the sampledwdata behaviour
of a plant with transfer function K(s). Furthermore, the system in
Figure 243 will have a continuous impulse response if %EﬁwH(s) = 0, If
the hold circuit only responds to the value at the start of a finiteewidth
sampling pulse, which may be considered the ideal behaviour, the Z~transfomm
analysis of equation 2,13 is still valid even though the sampling pulses

have a finite width,

2.1 First Order Hold Circuits

Although mosf pépers on samplede=data systems consider only the zero=

order hold as a samplededata restoration element, its principle may be extended

to circuits which approximate the continuous functiqn by a polynomial in ¢
whose coefficients are determined by the sample values, For example, a first
order hold would yield an output with the form:

£,(8) = £(T) ¢ (4 = i) £T) = £ [(m = DT} ene 222
for nT<t <(n + 1)T, "
Such a hold circuit is described by Juryl3 and its operation is shown in

Figure 2,4. Its transfer function is:

Gy (s) = (1~ e=*T)2[1/5 « 1/(1s2)] ceee 2,15

When a first order hold circuit is used in the system in Figure 2,3
instead of a zeroworder hold, the coresponding equation describing the :o. .

operation of the systém is:
0(z,m) ;[z - 1]2 ?(q?{%[#(s}/&* X Zm[H(s)/sz]} vere 2416

22
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Figure 2.ka Figure 2,4b
Hypothetical Sampler Output FirgteOrder Hold Output

The general expression for the output of a hold circuit may now be
given:
- 2 n
f(lﬂ*t) 80+alt+32t "' $00 e +ant +oc. 002017
~for 0t <T. The ay are paraméters determined by past samples and are

constant ih any sampling interval.

2e5 Generalized Hold Circuits

The physical opefation of a generalized hold circuit may be visualized
by considering it to be a predicting circuit which fits a polynomial of finite
degree to past sample values and then extrapolates this function over a
sampling interval, The hold circuit output consists only of the extrapolated
portion of the function and the degree of the coresponding polynomial is
governed by the number of past samples which subsequently determine the ay

parameters in equation 2417,

A hold circuit will be defined to be of order p if the polynomial
in equation 2,17 is of degree p, This definition agrees with that for the
zero and first-ordef hold circuits'alneady discussed, To generate such a
polynomial, the hold circuit must contain a memory capable of storing p + 1
sample values and be .able to perform mathematical operations with these
quantities to generate the required polynomial, We are at liberty to define
another parameter relating to hold circuits: this is its rank, a termm which

has not been previously reported in the literature, If the output of a hold
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circuit is a polynomial of degree p, but the coefficient a, is calculated
from p + q + 1 sample values, then the hold circuit is said to have rank q,
This quantity is the number of excess sample values over the minimum, p + 1,
required by the degree of the polynomial approximation, Conventional hold
circuits have a rank of zero, The notation for a generalized hold circuit

will be (p,q) where p is its order and q is its rank,

The physical meaning of the terms, "order®” and ®rank", may be
illustrated with the aid of Figures 2,5a andu2.5b.‘ The former shows a
firsteorder, zeroerank filter output for an arbitrary set of samples;
the latter illustrates a firsteorder, firsterank output for the same set

of samples,
b fn(t) r{h(ﬂ

-
-
-

-

Added \Nj Rank

— il B A T;
Figure 2,5a Figure 2,5b
Hypotheticai (1,0) hold output Corresponding (1,1) hold output

In both cases, the filter output consisis of ramps with abrupt
discontinuities at the sampling instants, In Figure 2,5a, the slope of the
ramp is determined by two samples, while in the other figure, this quantity

is determined by three samples,

The generation of a polynomial for the restoration of sampled=data
is not a hew concept, having already been described by Porter and Stoneman.28
‘In their method, a polynomial of the rth degree is generated by cascading r
integrators whose initial conditions or displacements are adjusted at each
sampling instant in accordance with some predetermined scheme, Their method

requires only one memory unit which stores the algebraic sum of past samples,

the output of this unit being multiplied by appropriate scaling factors before
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being applied to the integrators. The stability of their system was later

investigated by Lawden.29

The approach to the design of hold circuits which has been used in
this researchris quite different from that of Porter and Stoneman, The
generalized (p,q) hold circuit is considered to have a memory capable of
storing p + q + 1 sample values so that values of the individual samples
and not just their sum may be utilized by the computing section of the
device, The hold circuit is considered to be a sampledwdata filter and a
general expression for the transfer function of a hold circuit of arbitrary
order and rank is evaluated, This may be considered to be the transfer
function of the filter to a sampledeinput and is of such a form that a
system containing these hold circuits may be readily analysed by the

Zetransform,

The use of a large but finite memory in the filter greatly increases
its flexibility because polynanials of a given maximum order may be generated
according to a variety of criteria, The filter may be interconnected in such
a way as to generate a polynomial to fit a given input with the same accuracy

as a Porter«Stoneman system,

Finally, electronic analog computing elements are used exclusively
in the coﬁstruction of the finiteememory hold circuitse. Most of Porter and
Stoneman's work was done with mechanical differential analysers although they
feported“a two integrator model which used an electronic integrator and a
Velodyne integrator, All-electronic circuitry such as used here; provides

a more flexible simulation scheme,

2,6 Analysis of Generalized Hold Circuits

Thé analysis of the genafalizéd hold-circuit can most easily be



accomplished by the use of the calculus of finite differences, We shsll

therefore define the necessary operators which will be needed,

Generally, Af(nT) is the notation for the fiirst.descending
differen0030 of £(nT), and Vf(nT) is the notation for the first
ascending difference.30 However;-as the first quantity is not used in ¢

problem at hand, the following notation will be adopted:

Af(nl) = £(nl) = £{(n = 1)T] coee
A2£(nT)= Af(nT) = Af{(n « 1)T]
MK (a)= AX71e(al) ~ A% {(n = 1)1]

The symbolic operator Er, when applied to f(nT), increases its

argument by rT:

E'f(nl) = £{(n + )T covs
ET£(al) = £(n = r)T) oo
With this notation, equation‘Q.lBa,becomess
A£(nl) = £(nT) = E-Hf(nT) cone
= (1 - h)f ()

It is convenient to abbreviate the above by writing:
Aml e E’l soes

the operand, f(nT), on each side being understood,

We may generalize equation 2,21 by writing
AP = (1 - E.l)p soee

By the binomial theoreﬁ, this becanés

S (=7 (F)&™™

r=

(o]

P\ =
where (r) 5= g%} - P
or alternatively,  APf(aT) = 2 (=1)F (F;)f [(n - r)T] secs

r=o B

Introducing the symbolé: »

&b = APf(uT)

26

he

2.18a

2.,18b
2.,18¢

2,19a
2,19b

2,202

2020b

2421

2s 22a

2022

223
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f(neT) = f{(n - r)T:)
equation 2,23 may be re«writ;enz

& = ;g;(-l)r(f)f(an) ceoo 242l

The particular fom of (p,q) hold circuit considered here is that
whose output is described by equation 2,25:

%
£}, () = £(al) +<6%(t = nT) + ..485 (t = oT)P + (4 = nT)D ZE:Rr 8R7T .. 2,25
TF TR =

for nT <t ()T
where the R, are predetermined constants called the rank coefficients.

The total output is the sum of tems of this type over all values of
n from 0 to », The Laplace transform of this output, divided by the Laplace
transform of y'bhe inpﬁt, will given the transfer function of the samplededata
filter. If F,(s) is the Laplace transform of the hold circuit output,

Z £ (t), then we have the relations:

n {n+DT

h(s) - Z\J" { i n(t - n’l')r + (‘l’- - nT)P Z R. 59"'1} ”Stdt ssoe 20263

n=0 am r=o T . P
The summation and integral signs may be interchanged; and x = t = nT

substituted in the integrals, with the result:

Fh(s) - Z{Z 5% mer e'sxe"sanx *f xpe-sxe-sn'l‘ dx ? Rrbg"'r} ceso 2,26b

N=o' rzo 'r“, ) . =\ T P

Formula 567.9 in Dwightts "Table of Integrals"31 may be applied to evaluate

the integral in equation 2426b, with the result;

0
f x¥ e"SXdx = e=8X Z r} xr=J s0e0 2627
o (r = DT eI ||
=1y =e=8T ' pp pred |
s a O Tr = 30T 83T eoen 2428

h
Substituting equation 2428 in expression 2,26b, we get the relations

o

P - -
R =2 2 gﬁe‘snT[s_t__-e“ST }"”‘ ry T |

nz0{ r=o0 7pr gr+l - -(I'_nm

+ e*’SﬂT ]: z — G-ST > E‘ Tp‘j %’ Rr Gg*r ssee 2‘29
sP*L U LA

FI :
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Consider the evaluation of the sum :E: Gr nsnT’ subject to the

n=o

condition f(n,T) = O for n<r, Substitutlng equation 2.2l for 6r we get:

Zsr =anl Ze'ﬂﬂ' Z(-l)j( J£(nm) veeo 2,308
Inxerchange summation signs and substitute m=ne j:
Zar ~enl Z (-13(%) Zf(mT) o~8JT gmemT ceer 2430b
~To e
But, f(m‘l‘) = 0 for m<0, so the sum becomeso
Za o5l & Z (=13 )Z £(aur) o737 o ~sol ceee 24300
- Z £ (n) e"s“‘T ? (-1)3(%)e=e3T cese 2030d
By the binomial theorem, the second sum becomes:
Z («1)3(5)e™sT = (1 - o=oT)7 coes 2231

The Laplace transform of the hold circuit may now be simplified:
[ead

Fo(s) = 2, f(mT) o-ont S .o DT ~e TS T
" S 53 (reg)i o7
P
+1 [pi_ = e=sT< pj 10 R (1-e-sT)P“} cone 2032
EC R = Z

The transfer function of the filter may now be found by dividing

equation 2.32 by the Laplace transform of the input, From equation 1l.llc,

o0

: *
the Laplace transformm of the input is F (s) = EEZf(mT) e=SmT, Therefore,
. A i M=o .
the transfer function of a (p,q) hold circuit, denoted by Gp q(s) is:
b ]

. o o=8TT - o=t < -3
Gy, q(s) ZQT: ){m e Z_(%%]

J=O
+1 {RL - e=ST PZ pi TP=J ] i B (1 = e-s'r)pﬂ- 2,33a
| ™ | 5P IR I
-1y a- e‘s”)r[r' (1= ue” i rf ]
8 r:p . (Ts)r ' (I‘-j)l (TS)J
" .]:.{p! (1-e sT) - e-sT V>~ﬂ ?R (1o -sT)p+r
SL - {1s)P i <p-j>x (15)? 2.3%

Noting the form of the summation in 24,33b, a new polynomial may be



defined by:

Hf = S m}
J': [*) (m-j).! (TS)J

= ]
= 0

From this definition, we may show that

Qe ryf(1e)T - T HL - (1 - e

Using these polynomiaié and relation 2435, the

29

m>r
m=ryr LY X 2.3’-’
m<r

- 1

ST) Hg - Hr asse 2035

filter transfer function

becomes: p
Gy, q(s) = s~ Z (1 - e8T)T [(1 - e"'ST) HO o Hl:]
p,4 o % r r
p o
If the rank of thePhold circuit is zero (q = 0), we have the relation
Gp O(S) - s"l Z(l - O-BT)r K(l - Q-ST) Hg - H%] eese 2437
A r-0 »
Substituting x = 1 = e-BT, this becomes
. P : P
-] .1
Gp’o(s) = X/S{Z xr Hg - Z xr Hr} foes 2. 383
. r=0 N

r=0

In the second sun put m = r =« 1, noting H% = 03

P P
G, o(s) = x/s ZXm Hr?l - Z x™ Hr]ri*l
P, , EY:) o py MO
= x/s{ xP Hg - "me (H,]§+1 - Hg)}

Again, defining new polynomials
m-r

pr =gl opt . 1
m m+l mn j=° (m*luj)z(ls)j

e0e S 2038b

LY X 20380

®oeo 2039

the transfer function for a {p,0) hold circuit b,ecomes:
P-—

Gy, o(s) = 8711 = &™°T) { (1-e=TPHO - > PoCL - e."sT)m} eonn 2410

£
m

And the transfer function for a (p,q) hold circ

p,q(s) = ¢, o(8) + 571 [ (1 = &™T)r2 - 8] ]

j:l

= 0

uit is
‘)Rj(l - e-ST)P+j es e 20111

where Gp,o(fs) is the transfer function defined in equation 2,40

H; are the polynomials defined in equa

tion 2,3l
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m are the polynomials defined in equation 2.39.

Rj are constants called rank coefficients,
~ The H; and Pﬁ polynomials defined above do not appear %o have
been previously reported in the literature, at least not in conmection
with sampled-data systems., The values of the first few polynomials as
well as certain recurrence relations will be found in Appendix I. The
final form of the filter transfer function is greatly simplified by

the use of these polynomials,

As a check on equation 2,40, this expression should reduce to
that in 2,3 and 2,15 for the zero and first order holds, respectively.
For the conventional_zero-order hold, p = 0 and g = O, hence the
transfer function of the filter is:

Go,0(®) = 5721 - o~*T) HY cons 2.L2
as Hg = 1, this expression agrees with that in éqﬁation 2.3, For the

first-order hold, p = 1, and q = O, hence the transfer function is

Gl, 0 (8) = s-l (1 - Q-ST) [(1 - e-ST) H; - Pco)] seeo0 zobBa
Substituting Hg =] 4+ (Ts)-l° ° 0, this expression reduces to
1 0 (8) = (1 - e-ST) [l/s + 1/(‘1'8 )] o000 2.L|3b

which agrees with equation 2.1,.

Examining the H; and PT polynomials, it is seen that these are

~ksT

rational functions of s.' Furthermore; terms of the form e may be

treated as shown in equation 2,11 if k is an integer. Therefore; the

modified Z-transform of G (s) is

Zm[hp’q(sﬂ ,q{%em) = Z o(si] +(z2=-1)/2 2 [Hp/é}zgz 4%_;;*3

- zm[np/s] i (%p'*j ceeo 2.l

where Zm[F(s) is the modified Z-transform of F(s), If the filter is

30
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followed by a plant with known transfer function,, the modified Z~transform
is evaluated by & method similar to that used in equation 2,16, The

modified Z~transforms for certain of the H and P polynomials will be found

in Appendix I.

An examination of equations 2,40 and 2,41 reveals that the (p,q)
hold circuits do not have a continuous impulse response so, in general,
the output from such a filter will have finite discontinuities at the
sampling instants, This may be partially corrected by placing a
resistor=capacitor ihtegrating network after the hold circuit. Such an .-
integrating circuit has a transfer function of the form (s + a)'l, 80
the overall system will have a continuous impulse response, The response
of this system may be determined by considering the integrator as the
plant in a samplededata network and evaluating the modified Z~transfomm

as shown in Section 2.3.

2.7 Analysis of the Error in a (p,q) Filter Output
The continuous input function (f)t, may be expanded in a Taylor's

series about the point nT, as shown:

£(¥) = £(aI) + Df(nT) (%t = nT) + ...+ DPE(0T) (4 = nT)T + ... 2,5

where D is the differential operator defined by th§ equation

Df (nT) = df(t)

A . t = nT

‘The operator b may be eipreased symbolically in terms of the
ascending'diffarence oberator A3 30

D=-1"lin(1 -a) =170(a +22/24+83/3+...) veee 2.6
Substituting 2,16 in 2,L5, | | |

HOK fv(nT) + (% ;"nn, (Af(n?) + Aaf(n?) *oeed) teu Lwbei2.lTa
Using the symbol 5§ = APf(nT) this becomes:
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£(4) = £(ar) + (6% +62/2 + .) (4 - nT) + (62 + 62 + .)(4 - nD? ... 247
T 21 72

Comparing equationt 2,L7b and 2,45, we see that the (p,q) hold
circuit approximates the continuous input function f(%) by using an
expansion similar to 2.L47b, but keeping only the first term in the series
associated with (t - nT)F/TT after multiplication by r!. If the rank of
the filter is not zero,'the series associated with (% - nT)T/TT may be
made to agree with the corresponding series in equation 2;h7b by a
suitable choice of the rank coefficients. This series will terminate
at the 6P*9 term due to the finite memory of the filter, A.hold circuit
that uses only the lowest difference appearing in each 52 series in
equation 2.47b, except possibly in the series starting with the term

6B, will be called a Gréup I hold circuit.

If the continuous input may be approximated by a polynomial whose
degree does not exceed p+q then the Group I hold circuit output will
coincide with the continuous function at tﬁe beginning and end of each
sampling interval when the rank toefficients are all equal %o unity., This
may be demonstrated by the following argument: at the beginning of each
sampling interval, the hold circuit output is f(nT), which coincides with
the continuous function at that instant; taking the limit of equation 2,25
as t+—~(n+1)T and setting all By = 1, we gets
" tiﬁﬁogh(t) = £(nT) + 6} + 82 + ., #6074 cere 2,18
From equation 2,19 f{(n#l)T] = Ef(nT), and by equation 2,21, E may be
replaced by the expression w »
E=(1-2)1 ceeo 2,193
which; by the binomialnthebrem becames
E = fii An cese 2,149b
There fore, f[(n*l)'l'—} Z Anf(n'l') eees 2,50a
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= P

= Z Sh e600 2050b
p=o

= f(nT) + 5% + 61?1 + eee 00.0.2.500

This series will terminate at 67 if £(t) is a polynomial of degree r,30
Therefore, if r{ p+q, expressions 2,48 and 2,50c are identical and the hold

circuit output coincides with £(t) at the end of the sampling interval,

The error, or difference, between the continuous input and the
filter output, may be determined by subtracting equation 2,25 from
equation 2,47b. The design of the hold circuit may be so modified as to
minimize this error by including as many differences as its memory allows
in each 6; series in equation 2,47b. Such @ hold circuit may be described
by only one parameter, its memory size, and will be called a Group 1I

hold circuis,.

Both the Group I and Group II hold circuits have discontinuous
impulse responses due toftho cénstnnf‘torm, £(nT), in the series expansions
£6p their outputs, This discontinuity at the séﬁpling instants may be
removed by the same method used by Porter and Stoneman to overcome this
problem. The filter circuitry is so modified that the last sample, f(nT),
is integrated before being applied to the output. Such a hold circuit
will be called a Group III circuit, and its output will have the form:

£y () = £(D) (6 = D)/T + K E-nT)p + Ko leon™/mt 5o Ly 2051
A Group IIT hold circuit may be made to fit an arbitrary continuous
function; ﬁith the same accuracy as the PortereStoneman system, although

the filter configuration will be quite different,

The transfer functions for a Group II and Group III hold circuit
may be doformincd by an analysis similar to ﬁhat given for the Group I

hold, and this problem_ will be left for a future investigation,
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The implementation of any of these hold circuits requires
the following camponents:
1) A resetable memory with sufficient capacity to store the
values of p+4q+l samples,
2) Integrators and summers to generate the desired polynomial

" output from these sample values,

The experimental work, described in the following chapters,
investigates the suitability of analog computer operational amplifiers32
to perform all these functions, A simple hold circuit is tested by
comparing its performance with that predicted by Zetransform analysis,
Discrepancies between the two values are a measure of the suitability

of this simulation scheme for this tasks The design of more complex

hold circuits is described,




CHAPTER III
THE SIMULATION AND TESTING OF A FINITE-MEMORY HOLD CIRCUIT

The preveding analysis has suggested a method of simulating
an operational hold circuit on an analog computer, The components which
are necessary for the implementation of this scheme are resetable memory
units, a sampler and suitable testing facilities, These are described

in this chapter,

3.1 Simulation of the Hold-Circuit Memory

The memory units must store the value of the samples as they
are received and supply these quantities as constant~level outputs to the
associated circuitry. 4 (p,q) hold circuit will contain p+g+l such units,
80 sach one must be capable of storing its sample value for D = (p+q+1)T

seconds, where T is the sampling interval,

2

O

Figure 3.1
The basic hold circuit memory unit,

A simple circuit to accomplish the necessary storage is shown
in Figure 3.1. In this circuit; an operational amplifier is used as an
integrator to convert the sample impulse input into a step output, The
magnitude of the output step is determined by the charge on the feedback
capacitor and is proportional to the area under the inmput pulse, The

ratio of sampling pulse width to the integrator time constant is the

35



scaling factor which relates the magnitude of the memory output to

the sample height. For vory narrow pulse widths, it will be difficult
to make this ratio equal to unity. A commutator switch is synchronized
with the sampler to discharge the feedback capacitor every D = (p+q+l)T

seconds, For an impulse input, the transfer function for this unit is

(1 - e-3Dy /s,

The feedback capacitor must have a very low leakage conductance
to retain a constant charge on its plates for the necessary length of
time, The D-C drift in the operational amplifier must be negligible or
it will alter the output voltage of the unit. Any circuitry connected
to the memory unit during the interval between successive pulse storages
must not have any signal associated with it. The performance of an

experimental memory unit is described in Chapter IV,

3.2 Analog Computer Connections for Hold Circuit Simulation.

The output of an operational amplifier is always inverted with
respect to its input and this fact makes these devices suitable for
computing the various differences required to generate a particular
polynomial, The determination of the analog computer comnections is
facilitated by the scheme described in Appendix II, This scheme requires
p(p+1)/2 integrators with associated commutator switches to simulate a
(p,é) hold circuit, exclusive of the ones used in the memory. 1In
addition to these integrators, p/2 or (p-1)/2 (whichever is an integer)
inverters and a number of summers are'alsénreduired. The method of )
calculating the scaling factors at the summer inputs is also shown in
Appendix II,

The scheme has been applied to the design of a (3,2) hold

circuit with all rank coefficients equal to unity, and tho result is
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shown in Figure 3.2, 1In this figure, the symbol Mr denotes the
memory unit which stores the sample whose value is f[ﬂn-r)fl.
Commutator switches are not shown in Figure 3,2, but every integrator
in the main computer has one connected across its feedback capacitor

to discharge this at the end of each sampling interval,

The memory of the hold circuit will contain p+q+l storage units,
gnd some means must be found to switch these into the correct Mr position

at the start of each sampling interval. The following method could be
used to accomplish this, Immediately before a sample is received, the
main computer is reset and disconnected from the memory bank, The memory
unit in the Mp+q position is reset by discharging its feedback capacitor
and then switched to the M, position, all other memory units being
advanced to the next higher position, The sample is then received and
applied to the unit ih the M, position; whereupon the memory bank is
recornected to the main computer, The details of this switching sequence

for a two-unit memory are shown in Figure 3.3,

If the scaling factor for the memory units is equal to k, the
filter may be adjusted to have an overall scale factor of unityby
multiplying. the inputs to the final summer in the main computer by the
factor 1/k, The performance requirements for the integrators in the

main conputer are the same as for those in the memory,

3.3 Facilities for Testing Sampled-Data Systems,

In building up the laboratory facilities for the study of finite
memory hold circuits, apparatus was built or purchased which would also
be suitable for the study of other sampled-data systems, Because control
systems are basically low-frequency devices, the apparatus*adoptod has a

frequency range extending from a fraction of a cycle per second into the
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audio frequencies, A block diagram of the apparatus connections 1is

shown in Figure 3,l,

The function generator is a Krohn-Hite Model LLO push-button
oscillator, Its frequency range is continuously adjustable from 0,001
cps %0 100 Kc., Sine waves with amplitude variable up to 10 volts rms
on open circuit, and square waves with s fixed amplitude of 10 volts p-p
on open circuit are available, Other periodic waveforms may be

generated by using an analog computer to integrate the square wave output,

The sampling pﬁlao train is gensrated using the Tektronix
160-Series pulse and waveform generators. These units are capable of
supplying pulses of either polarity with amplitude continuocusly variable
from O to 50 volts. - The pulse width may be varied continuously from
1 pusec, to 10 sec, The pulse spacing is variable from 100 psec, %o
10 sec,, and the pulse may be delayed by any amount over a repetitsion

period relatiw to some trigger sigml,

The low-pass filter is used to study the effect of cambined
hold circuiﬁArestoration and low-pass filtering, Two units are available,
for either band-rejection or band-pass characteristics, The band-rejection
filter is a Krohn-Hite Model 350-A; and the band-pass filter is a Krohn-
Hite Model 330-A, The high and low frequency cut-offs of both filters

may be tuned independently from 0,02 cps to 2Kc,

A Donner Model 3000 analog computer is used in the simulation of
hold-circuits, This computer has ten operational amplifiers with no
chopper stabilization, The individual amplifiers have an open-loop gain
of 3 x’lOh under a load of 20 Kohms; over most of their operating range,
and saturate when their output voltage reaches # 100 volts, The band-

width of these amplifiers extends well into the audio frequencies, and
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their short-term random drift after warm-up is only about 0,5 mVolt -

referred to the amplifier imput.

Several read-out devices are employed in the testing of
sampled-data systems., These are: a Tekironix Model 502 dual-beam
oscilloscope oquippod with a Dumont camera, a Sandborn Model 152 two-
channel recorder with asssociated preamplifiers, and a Moseley Model

2D x-y recorder,

The remaining apparatus was specially built for this research
and each unit is described separately below., A photograph of the

laboratory arrangement is shown in Figure 3,5.

3.h The Electronic Sampler

- The sampling operation may be accomplished either by mechanical
or electronic switches, Mechanical switches have the advantage that
their open-circuit resistance is several orders of magnitude higher than
the corresponding quantity in an electronic sampler; likewise their
short-circuit resistance is several orders of magnitﬁde lower than that
of an electronic switch, Also, direct-coupled electronic switches may
introduos a random drift in their output, In spite of these limitations
of olictronic switches, they were adopted in this research bescause they
are capable of faster switching speeds than mechanical switces; and i%

was desirable to build as flexible a simulation scheme as possible,

The sampling operation may be regarded as the balanced modulation
of a pulse train by the input signal, A circuit which can be used as a
balanced modulator33 is shown in Figure 3,6, This basic circuit was
considerably improved to meet the problem a% hand and the electronic

sampler which was developed is shown in Figure 3,7.
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Figure. 3.5

Experimental simulation and testing facilities.
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The electrcnic sampler,

The circuit parameters of the electronic sampler are so
chosen that a large collector current flows in the transistor when no
signal is present at the pulse input terminals, This collector current
is divided between the two parallel paths containing Rl and Rz. R is
made much larger than Ry so that most of this current flows in the latter,
The centre-tap of By is adjusted until the voltages on either side of i%
have the same magnitude, The centre-tap of Ry is then set to the point
on this potentiometer which is a groundrpotontill. RL is s large resistance

used as a buffer between the sampler and the pulse generator,



When R, and Ry have been set to their proper positionsg
the junction of diodes D, and Dj is at a potential of E = (V14Vye)/2
above ground, and the junction of diodes Dy and D) is at the same“
potential below ground, Thus, diodes Dj and Dy are open-circuited to
any input signal whose amplitude is less than E, and the sampler output
is zero for all such voltages, To sample a signal, a positive pulse
with an amplitude large enough to bias the transistor to cut-off is
applied at the sampling pulse input terminals, No current flows in

potentiometer R, under these circumstances and any input signal appears,

slightly attenuated, at the sampler output,.

The diodes and transistor used in the experimental sampler
were not selected with any particular care, components which were on

hand being used, The component values which were used are the following:

Dy; Dy 0A85 (National)
D3 MA303 "

D), MA301 "

Ty pnp 238170 "

Ry ,By,R), 10 Kohms

Rp 2 Kohms

L4 9 Volt battery

7 With these component values, the transfer characteristics
for the samﬁler in its ™ON¥ and "OFF" states are shown in Figures 3.08a
and 3,8b, respectively.“ Tﬁe traﬁsféé characteristic in the conducting
"state is seen to have a non-linearity at the origin when the sampler
output is open-circuited, This is due to the non-linear characteristics

of the diodes, This non-linearity is markedly reduced when a 10 Kohm

45
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load is placed across the sampler output terminals, and the sampler

is operated with such a load in practice, In its conducting state,
with a 10 Kohm load, the magnitude of the sampler transfer function

is 0,45, This could be corrected by placing a direct-coupled amplifier
with a gain of 1/0.L5 after the sampler, but this was not done, The
sampler transfer characteristic shows no appreciable phase shift for
input frequencies up to 3 Kc, and the phase shift does not become
serious for frequencies below 10 K¢, This phase shift is largest at
low input signal levels, and seems %o be due to the semi-conductor

properties of the diodes,

Figure 3.8b shows that the sampler will operate satisfactorily
with input signals whose amplitude does not exceed 2,5 volts, This
limit could be increased by increasing the size of the battery, V,.

The effect of a misadjustment of By on these curves is to shift them
relative to the y-axis, while a misadjustment of R shifts them relative
to the x-axis, Furthermore, if ®) is not set exactly in its centre
position, the curves in Figure 3,8a will not be symmetrical about the

origin,

The open circuit transfer characteristic suggests another
applicatioh for the electronic sampler, It could be used as a dead-
zone simulator in the study of control-systems, The magnitude of the
dead-zone may be varied by changing Vj, and the slope of the extremities

may be adjusted by placing a variable-gain amplifier after the sampler,

The sampler which was built has operated successfully with
sampling pulses as narrow as 5 psec, and pulse intervals as short as
100 psec, The apparatus available did not permit testing the sampler

with shorter pulse intervals,
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Dependence of sampler output on sampling pulse height,

The dependence of the sampler output on the sampling pulse
height is shown in Figure 3,9, The shape of this curve depends on the
setting of potentiometers By and My, but these do not affect the value
of the pulse height at which the sampler output reaches its maximum
value, Thus, the sampler output is independent of the sampling pulse
height if the latter exceeds 11 Volts, 2 value which is well within the
range of the 160-Series pulse generator, The reverse collector leakage
currentBhin Ty should be small or it will develop & voltage across the
upper half of B, which will appear at the sampler output when the

transistor is cut-off,

An examination of the sampler circuit in Figure 3,7 shows
that the lower part of Ry carries the total emitter current, I,; while
the upper part carries the total collector current, I,, If Ry has been

adjusted correctly then

Ich = IORQ eeve 301



L9

where R, and R, are the upper and lower halves of Ry, respectively,

The totsl collector current is made up of two abmponents, one of which
is temperature dependent, This temperature dependent component is
called the collector leakage current, Ico.3 Any change in Ico will
result in an unbalance of the two voltages in each half of'Bz. The

unbalance voltage will be denoted by V and is given by the expression

V= ICRC - IQRQ eo e 302
The dependence of this quantity on Ico is

AV - AI_C Rc - _A_I_e Re (XXX 303

blzo A1, AL,

When the appropriate expressionth are substituted in equation 3.} we

have the relation

AV = RC - Re cs o0 30)4
8o T—ct+ x<Re 1-o(+_13,
Ry #Rq Ry,

where R 1is the resistance in the base circuit
& = di,/di, is the forward current gain of the transistor in the

common-base configuration,

For the circuit in Figure 3,7, these values are, approximately,
'Bb =~ R, = 1 Kohm

R = 5 Kohm <= 0.99
Hence, equation 3.4 becomes:

AV/AICO = 1 Kohm eooe 305

Any changes in theV defined by equation 3,2 will result in a
carresponding D-C unbalance in the sampler output, as the centre-tap of

R) will no longer be at ground potential, The short-term random D-C

unbalance at the sampler output, due to 81l causes, is shown in

Figure 3,10, The smaller peaks have a typical magnitude of 1 — 2 mv,
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Assuming these are due to changes in Ico’ then the corresponding

AIco is 1 - 2 pamps, from quation 3,5, Variations of other transistor
parameters, such as the base-to-emitter voltage, may also contribute

to these peaks, The larger and more pronounced changes have a magnitude
of about 7 - 8 mv, These changes were attributed to poor electrical

~ contact between the wiper arm and the resistive surface, and it is
recommended that high-quality multiturn potentiometers be ugsed in future

investigations,

Typical sampler outputs are shown in Figures 3,11a and 3.,11b,
The input éignal is a 1 cps sine wave and the s;mpling interval is 0,1
sec, in both photographs, Figure 3,1la shows the output with a sampling
pulse width of 2 msec,, and the other figure ghows the output with a

pulse width of 20 msec, The vertical scales of all traces are the same,

345 Memory Circuit Resetting.

The proposed method of simulating finite memory hold circuits
requires cbmmutator switches, operating in synchronism with the sampler,
to discharge the feedback capacitors in the various integrators at the
end of each sampling interval, Again, either mechanical or electronic
switching could be used, but it was decided, in this initial study, Eo
sacrifice high speed operation for freedom fromkdrift so relays were

adopted for this purpose,

The particular relays selected were the Northern Electric
Type 293 dry-reed relay, Their construction is illustrated in Figure
3,12, The contacts are made of a magnetic material which has Yeen
plated with a conductive surface, These are very 1ight and small, so

the relays are suitable for low-power, high-speed switching,
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Short-term random D-C unbalance at the sampler output.

Figure 3.1la

Sampler output with
a 2 msec, pulse width

f(t) = 1 cps sine wave
T = 0,1 sec

Figure 3.11b

Sampler output with
a 20 msec, pulse width

f(t) = 1 cps sine wave
T = 0,1 sec
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The construction of a dry-reed relay.,

The particular relays used require a turn-on current of
6 mA, and a holding current of 2 mA, The circult built to satisfy
these requirements is shown in Figure 3,13, It comprises a monostable
multivibrator with adjustable pulse width driving a cathode-follower
with the relay coil in the cathode circult, The basic design for the
multivibrator is according to Chance et al?5 The output pulse width
is continuously variable from 1 msec, to 6 msec, The input triggering
level requirements vary with the pulse width of the output, being
about 25 volts for a 1 msec, pulse and decreasing approximately
linearly to 5 volts for a 6 msec, pulse, The triggering pulse for
this circuit is used as the reference for all other switching circuits,

and the sampling pulse is delayed about 5 msec, behind this reference,

The characteristics of the Type 293 relay coil change with
frequency and also depend on whether the contacts are open or closed,
80 an exact analysis of the optimum impedance of the generator which
energizes the coil is virtually impossible, However, the following
general observations may be made, Although the turn-on current is 6 mA,,
it is possible to close the relay contacts with a fast;rise 2 ; 3 mA,
pulse by taking advantage of the self-resonance of the éoil. Therefore,
the resonant frequency of the coil and gensrator impedance should be

high enough for the coil current to reach its turn-on value in the
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shortest possible time., The damping in this circuit must be large
enough to limit the amplitude of the resulting current oscillations

to a value which will not cause a jitter of the relay contacts, The
resistor-capacitor network shown in series with the relay coil in
Figure 3,13, serves to adjust the generator impedance to a satisfactory

value.

Figures 3.1lha and 3,14b show the current and voltage in the
relay coil after it has been energized by a 2 msec, pulse, The
horizontal scales in both photographs are 2 mseq./div. The vertical
scale in Figure 3.1ka is 2 mA/div and that in Figure 3.1lb is 10 volts/div,
The current waveform shows thét there is about a 1 msec. delay after the
coil is energized before the contacts close, The inductance of the coil
suffers an abrupt change at this point which causes the discontinuity in
the curve at the 6 mA, level, The energizing voltage is cut off after
2 msec., and the coil current begins to decay at this point, About 1 msec.
after the end of the pulse, the coil current falls below the holding
value, but the inertia of the contacts and their residual magnetism
prevent these from opening immediately, The coll current rises to the
holding value and then decays, the contacts finally opening about L msec;

after the pulse has ended,

To protect the relay contacts from current surges which occur
when discharging integrator capacitors, a 1 Kohm resistor is always
connected in series with them, Figure 3,15 shows the voltage output of
an integrator whose feedback capacitor is discharged with the Type 293
relay. The horizontal scale is 1 msec/div, The upper trace shows the
integrator output, which remains at ité origihal value for about 1 msec
after the relay coil is energized, and then decays exponentially to

zero in 0,5 msec, The remaining interval is the time taken by the relay
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Figure 3.1lla

Current through relay
coil

Vert. Scale: 2 mA/div
Horiz. Scale: 2 msec/div

- ‘ /‘LL=§==‘
o
Figure 3.15

Integrator. output during
discharging cycle

Horiz. Scale: 1 mseo/div
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Figure 3.1kb

Voltage across relay
coil

Vert, Scale: 10 volts/div
Horiz. Scalet 2 msec/div

Figure 3.16

Double~exposure effect
produced in photograph-
ing sampled-data signals,
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contacts to re-open, and when this is completed the sampling pulse,
shown in the lower trace, produces the ramp in the operational
amplifier output, It is seen that the sampling pulse is delayed
slightly less than L msec behind the energizing pulse, the complete
discharging cycle taking 3 msec, From the performance of the coil with
a 2 msec pulse it might be surmised that the discharging cycle would be
iongor; however, with shorter pulses, the coil current is not able to
rise as far above its turn-on value and hence the oscillations following
the first crossing of the holding value do not have sufficient amplitude
to keep the contacts closed, Figure 3,15 was obtained using an energizing
puise of 1 msec, which seems to be the best performance obtainable with

these relays,

3.6 Oscillographic Recording of Sampled;Déta Signals.

The normal methéd of photogr;phing an oscilloscope trace is to
synchroniz; its sweep to the waveform being observed and then to expose
the film for several sweeps, However, when a dual-beam oscilloscope
with independent signals on the two channels is used, normal photographic
techniques produce a double-exposure effect because the periods of the
two signals are different, Figure 3.16 shows a photograph which was
taken when the oscilloscope sweep was synchronized with the sampling

pulses,

To produce photographs which can be interpreted unambiguously,
a bistable multivibrator was constructed to generate single oscilloscope
sweeps, The circuit of this multivibrator is shown in Figure 3,17,
It is quite conventionalBsexcept for the input stage which is direct-
coupled through a diode to one of the multivibrator grids, The multi-

vibrator is reset manually and the neon lamp is then illuminated. Any
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input signal which exceeds 8 volts will then cause the multivibrator
to change states, producing a large pulse at the output terminals for
triggering the sweep on a Type 502 oscilloscope, An input signal will
not produce an output unless the push-button is first depressed,

The setting of the input potentiometer is quite critical and must be

readjusted if the input signal level is changed,

The trigger generator shown in Figure 3,L is sometimes used
when it is desired to use a point on the input signal waveform as a
reference, Its circuit is shown in Figure 3.18 and it is comprised
of a Schmidt'Triggor36and a bistable multivibrator., Alternate
positive and negative pulses appear at the output every time the
input signal level equals 2 volts and has a negati v slope, The upper

frequency limit of this trigger is about 5 Kc,

The circuitry described above forms the basis of a flexible
system for studying sampled-data circuits, The performance of these
urits is compared with theoretically predicted results in the next

chapter,
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CHAPTER IV
THE EXPERIMENTAL PERFORMANCE OF A ZERO-ORDER HOLD

Lol The Experimental Memory Unit.

The performance of the suggested circuit for simulating a
memory storage element was evaluated by using this circuit as a
zero-order hold, The component values used in the memory unit are

shown in Figure L,l.

J__ Relay Ccv\fo;;fs

| (-
LR Y
O"/(H.

500K ( :: ~____

Figure L.l

The experimental memory unit.

If the sampling pulse width is h msec,, then the final
value of the output of the integrator in Figure L,1 is - 20 Ah mvolts,
where Ah is the area of the pulse sample in millivolt-seconds, A
typical input sample to the memory unit is shown in Figure L,2a and

the corresponding integrator output is illustrated in Figure l,2b.
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Figure UL,.2a Figure L.2b
A typical sample input, Memory unit output.
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The‘ output from the experimental hold circuit is illustrated
in Figures L.3a and L.3b. In the former, a 0.5 cps sine wave was
sampled with 5 msec, pulses every 0.l sec., and in the latter, a 2 cps
sine wave was sampled with the same pulse train, The lower traces
show the zero-order hold output, after inversion, and the detail of the
interval between successive "steps" is similar to that shown in Figure
3.15. The slight slope of tﬁe "stép runs® is due to the combined D-C

unbalance of the operational amﬁlifiers afxd the sampler output.

Because the input to the hold circuit is not an ideal impulse,
the transfer function of the memory unit, M(s8) s should be written:

M(s) = 1-he ™ veee bl
s ] -esh

where h is the width of the sampling pulses, and T is the sampling
interval, When h<<T this may be replaced by the approximate, but more

usual expression M(s) = s=1(1 - e~8T),

When the sampling pulse width is small, but the operational
delay, 5T, of the relay contacts discussed in Section 3.5 is comparable
to the sampling interval, the transfer function of the memory unit is

M(s) = s (1 - e#2T) , eees Ue2
where p = 1-56, Because p is‘not an integer, the term e‘“BT may not be
removed as a factor z*®, as was done for the ideal hold circuit, If
the mpdified Z-transform for the plant which follows the hold circuit
is re-interpreted, however, a simple expression for the overall

transfer function is obtained,

The modified Z-transform was derived by introducing a

fictitious delay, AT, in the system output, However, the term e-psT is
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Figure L,3a

Zero-order hold output with
20 samples/cycla

Input: 0.5 cps sine wave
Pulse Width: 5 msec
Pulse Spacing: 0,1 sec

Figure L.3b

Zero-order hold ouvtput with
5 samples/cycle

Input: 2 cps sine wave
Pulse Width: 5 msec
Pulse Spacing: 0.1 sec
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equivalent to a real delay, uT, in the system, If we assume that

AT includes both the fict;tiqus_delay, A'T, and the real delay, uT,
then m = lwh = 1-A'-p = 6-A', vwhere 5 is the delay introduced by_thg
relay, Hgnce; in the modified Z-trapsform we should be using m'= 1-A',
while we are actually using m = 6-A', Therefore, we may write the

modified Z-transform of the combined plant and hold circuit directly:

lre) = o) -zl we)] Lk
= H'(z,m) - H'(z,m') eees k3D
where T(s) is the transfer function of the combined plant and hold circuit,
H(s) is the transfer function of the planf alone,

and H'(s) = H(s)/s. -
When the inverse transform is evaluated, t = (n#m-1)T is used in the
first temm of equation L.3b, and t = (nﬂn'-l)T = (n+m-5)T is used in the
second term, Thus the effect of the relay delay is included in inverse

modified Z-transform and may be separated by appropriate interpretation..

A practical remark should be made concerning the use of these
experimental hold circuits, This applies to the relative positioning of
scaling amplifiers and integrators to minimize line frequency hum in the

hqld.output. Consider the two arrangements shown in Figures L,La and

L.hib,
D

Figure L, lLa Figure l,Lb

Scaler precedes integrator, : Integrator precedes scaler,

If the hun, referred to the imput of an operational amplifier, is x mv,,

then the hum in the output of configuration L.La will be 20(10x + x)/w,
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and in the other configuration it will be 10(20x/w + x), where o is
the angular»frequency of the hum, For 60fcycle ﬁum, these two
expressions are approximately x/2 and 10x, With the operational
amplifiers in the Donner computer, x = 10 mv, peak-to-peak, and the

hum output with configuration L.lLa was measured as L mv p-p, and with

the other configuration as 110 mv p-p.

ko2 The Discontinueus Impulse Response of a Sampled-Data System.
The experimental study of a sampled-data system whose plant
has a discontinupgs impulse response, illustratesAmapy of the features
alreédy_discussed. The plant used was a resistor-capacitor integratipg
network, and the output was observed on the Moseley Model 2D recorder,
The input impedance of the recorder is 2 megohms on the ranges used,
ghunﬁed by avneéligible capacitance, The equivalent circuit of the
plant is shown in Figure 4,5, Its transfer function is 1/(2s42), and

has a discontinuous response as defined by equation 1,30,
2MQ.

N [ufd. 1~ 2MQ

Figure 4.5

Equivalent circuit of experimental plaht.

The modified Z-transform for the output of this plant, with a sampled
unit step input is }
-mT
O(ZDM) - 1 —E— e LXK N ] h.h
Z z-1 z-e"

where 0(z,m) is the modified Z-transform of the input to the recorder

T ~ is the sampling interval,




The inverse Z-transform of equation L.l is

o(t) = o™ 147 o LS
2 l-e'T

vwhere t = (n+m-1)T,

o(t) in equation L,.5 is compared with the experimental output
in Figurevh.é for a sampling interval of 2,5 sec and a sampling pulse
width of 50 msec, In this, and succeeding figures, the necessary
scaling factors have been included in the theoretical points, which
have also been shifted_pofizqntally, when 1t was necessary to compensate
for the uneven pulse spacing. The experimental curve shows a continuqus
impulse response, while equation LheS pr;dicts finite discontinuities at
the sampling instants, This experimental behaviour is partly due to the
finite pulse width, but it is principally a manifestation of the
recorder characteristics, The maximum writing speed of the Model 2D is
20 in/sec, so the recorder servomechanism behaves as a low§pass filter,
Thus fhe overall plant, consisting of the integrator network, recorder
input impedance, and the recorder servomechanism has a continuous
impulse response, a point which mist be noted in the experimental study

of these systems,

When the pulse width is compgrable to the sampling interval,
the P-~transform analysis must be used, In this case, the plant oﬁtput
for a sampled unit step input is given by the relation:

- -h M
0(8) - _1- le-g - s_ 1 soo0e h.é
2 g(1-e-5T) se1

where O(s) is the Laplace transform of the input to the recorder

h is the sampling pulse width in seconds

T is the sampling interval in seconds,
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The inverse P-transform of equation L.6 is

o(t) = El;d(;hﬂ {:n ; e-Tfmfl);e:E ceee laT
eT -1

where t = (n#m-1)T,
d(-h) is an operator introduced by Farmanfarma which denotes a

delay of h seconds along the positive time axis,

‘o(t) in eéuation L7 is compared with the experimental results
in Figure Lis7 for a sampling.intefval of 2,5 sec and a pulse width of
0.5 sec, In this case the time-response of the recorder servomechanism
is negligible compared to the sampling pulse width and the agreement

between theory and experiment is quite good.

The discrepancies which do arise between theory and experiment
are due to the usual sources, such as measﬁring the time intervals,
-8caling factors, sample heights and time constants accurately,
Vgriations in the sampling interval times and non-linearities in the
.xfaxis‘recorder servomech#nism ﬁroduce a record with uneven sampl;

spacing,

h.3 The Response of a Sampled Data System Employing a Zero-Order Hold,

The performance of the circuit in Figure l,1 was investigated by
using it as ﬁﬁe-restoring element in the sampled-data system described
in the preceding‘section. For the sampling intervals used, the delay
due to the relay may be ignored, and the modified Z-firansform of the

recorder input is

O(Z‘,m) - .]_.. Z Z-l ~l - e-_mT sece ,-|08
- 2z-1 2 Z-1 z-e:T

where 0(z,m) is the modified Z-transform of the recorder input for the

combined plant and hold circuit.
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Output of a plant with a discontimuous impulse response
when the sampling pulses are wide.

Vert, Scale: 5 volts/inch
Horiz, Scale: 1 sec./inch
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Figure L.6
Output of a plant with a discontinuous impulse response
when the sampling pulses are narrow,
Vert., Scale: 1 volt/inch
Horiz, Scale: 1 sec,/inch
]
- - |
14
y y
~ 1/
7 ey &
= ER kN e B



68

The inverse transform of equa%ion L,8 is

o(t) = (1-e~(mm-L)Ty s veee Loa
which, with the substitution t = (n+m-1)T becomes
oft) = (1-e7ty/2 U 'S

This is the same response which would be obtained if the unit step were
applied directly to the plant, without the intervening sampling and
re;toration. Equation L.9b is compared with the experimental results
in Figure L,8 for a sampling interval of 2,5 sec and a pulse width of
50 msec, The dips at the sampling instants are caused by the finite
pulse width, It would appear that the time constant of the plant is

"slightly greater than 1 second,

When the sampling pulse width is comparable to the sampling
interval, equation L.l must be used for the transfer function of the

hold circuit, The Laplace transform of the recorder input is then

O(S) - 1l - Q-hs 2: - h e-ST 1 Goe e )-lolo
s(l-e’ST) s 1-e-ST s+l ~

and the inverse P-transform of this relation is

o(t) = [1-d(-n)] | n(nT+t) - n e'T(m°l)-e't}+ nje ™ oe™t cnal L.n
2 el -1 1- el

Where t = (n+m-1)T, and the other symbols have their usual significance.

Equation 4.1l and the experimental results are compared in
Figure L.9 for a sampling interval of 2,5 sec and a pulse width of
0.5 sec, The dips are predicted by the P-transform analysis and are due to

the finite pulse width,

These results ghow that the experimental memory circuit behaves

as an ideal zero~order hold when the pulse width is small and the relay
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Figure L.8

Output of a sampled-data system employing a .hold circuit
when the sampling pulses are narrow,

Vert, Scale: 1 volt/inch
Horiz. Scale: 1 sec./inch

Figure L.9

Output of a sampled-data system employing a hold circuit
when the sampling pulses are wide,

Vert., Scale: 2 volts/inch
Horiz, Scale: 1 sec./inch
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delay is negligible, When the pulse width is large, its performance

is no longer that of the ideal hold, but, nevertheless, may be Predicted

by the P-transform analysis, However, if the memory unit is éisconnected
from the following circuit until the end of the sampling pulse, equation

Le3b may be used to predict its performance with 5§ equal to the combined

delay of the relay and pulse width,

Lol On Restoring Sampled Square Waves,

When the continuous input to the sampler is a square wave, it is
possible, under certain conditions, to restore this waveform completely
using a xero-order hold, This may be seen to be obvious, physically, by

considering the time-domain sampling picture, If the sampling pulses

70

occur at the start of every half cycle, then the hold output will consist

of alternate positive and negative pulses with a duration equal to the
sampling interval, This is the original square wave except for an
amplitude scaling faé%of. Frdquency-domain considerations indicate that
although complementary frequency components are praguced, these will
coincide with the primary frequencies if the sqQuare wave period is an

even multiple of the sampling interval,

These considerations may be established mathematically by

analysing the square wave whose first cycle is shown in Figure l,10,

+1 —

6 173 | —t

Figure l,10

First cycle of the square wave input,
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The delay, 6, is introduced for mathematical convenience,
and will be allowed to go tq O in the final expression, Physically,
this means that the sampling pulses coinciding with each half-cycle
of the square wave sample the wave to the left of the axis crossing.

The Laplace transform of this square wave is

=5
F(S) = l es; -1 e s eese ,-1012
‘g e¥ +1

»
where r is the period of the square wave, Because f(0') = O, we may use
Linvill's expression (equation 1.L) for the Laplace transform of the

sampled wave, which is

o0
F*(s) -%ZF(s-*jkml) eeve Lel3a
-
RT \
- “z T ¥ e ® % L.13b
.T; eﬁzw—"res—;:-'-/ S+ka' ssoce Y

R=-oo
where T; = 2n/w) is the sampling interval. As we want F*(s) to have
the same general form as F(s), we must have col'r'/2 = 2nn, where n is an
integer. Physically, thieﬂsuméans that the complémentary frequency
components must be coincident in the power spectrum with the primary

components, With this substitution, equation L,13b becomes

F(s) = o¥F -1 o708 & ,-ikde eee L1l
A QS—;‘ 41 'T: R = oo SQJ’ROO‘

The summation may be written as

() _J.ksw‘ 9
i Z e = 1 4_2__2 s cos(x6) —x3in(x5) li.15
T, — s+ jkay s'Ti ’T;k" 82 # x°

where x = 2nk/Tl. With the aid of the summation properties of the

modified Z-transform, the sum on the right-hand side of L,15 may be
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written
\ L2 ff;i s cos(x6) - x sin(x6) = e'STl(l.m) coss Lelb
sT, T, P 52 + x2 l - Q-STI

where m<1l, and is defined by S/Tl = p+tm, where p is an integer, Thus,

expression L,1ll becomes

F'(s) = e% -1 e-PT1s o-mIys e'STl(l"m) esve Lel7a
¥ 41 1 - e-8T1
= QSgI "l Q-STl(p+1) ®0e 0 bol?b
e¥ 41 1-eN

The Laplace transform for a zero order hold is s'l(l-e'STl), multiplying

L.17b by this expression, we have

) .
F(s) = ef -1 1 o~oT; (P*1) eeoe 118
8

S
ey +1

where Fj,(s) is the Laplace transform of the hold output. Equation L.18
states that the hold output will be a square wave delayed by p+l sampling
intervals. If 6+0, then p-0, and the square wave from the hold circuit
is delayed only one sampling interval, If the sampling pulses occurred

to the right of the axis crossing, there would be no delay for 6 = O,

This theory was tested by sampling and restoring a 5 cps square
wave, using a sampling interval of 0.1l sec and a pulse width of £ msec.
The results are shown in Figure lL.,11, The lower trace is the input, and
the upper is the hold output. The inversion of the output is character-
istic of the operational amplifier, and the delay occurs because the
sampling pulses and input signal were not phase-synchronized. The
slope of the leading edge of the restored wave is characteristic of

the experimental hold operation,
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Figure L,11

Restoration of a sampled square wave

The lower trace is the original 5 cps square wave,
The restored output is shown in the upper trace.
The sampling rate was 10 samples/sec with a pulse
width of 5 msec, The inversion of the output is

characteristic of operational amplifiers,
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Although it has been demonstrated theoretically and experi-
mentally that it is possible to restore a square wave completely by
sampling at only twice its lowest frequency component, this does not
pose any philosophical difficulties, since all the information in a
square wave is known when its amplitude and time of axis crossings
are specified, and this information is contained in the sampling

pulse train,

L.5 Hold Circuit Frequency Response and Correlation Analysis.

éo far, only éhe Z-transform and P-transform analysis of hold
circuits has been considered, but it is also possible to study these as
low-pass filters by considering their frequency response, The frequency
response of a hold circuit may be obtained by substituting s = jw in its
transfer function (equation 2,41), and evaluating the amplitude and
phase of the resulting expressioh. 1% is therefore desirable to haw a
laboratory technique for studying these quantities, Because of the low
frequencies at which hold circuits are used, standard>fraquency analysers
are not suitable, so this study is made with the aid of a digital

computer,

The auto-correlation function, @y1t"), of a periodic signal,

£1(t), is defined ' as

(1) = ff (t) £ (6+7) dt veee ba19

where T, is the period of f(t). This quantity is related to the power

spectrum, ®(w); of £, (t) by the Fourier transform

'Tz'
@11(03) = —‘TI',’_vrﬁll(T) cos(w?) dT eoos U620

If a sinusoid is sampled and applied to a filter, the power spectrum
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of the output will give the square of the magnitude of the filter

transfer function at the primary and complementary spectrum frequencies,

The foregoing predictions are tested experimen&ally by the
following procedure, The output of the filter is recorded on one
channel of the Sandborn recorder, and points taken from this chart
are used in a digital computer auto-correlation program, The output
of the auto-correlation program is the data cards for a Fourier

cosine-transform program,

Enough data points must be tabulated for each cycle of the
recorded waveform to ensure that the complementary frequency components,
introduced by this sampling operation, do not affect the accuracy of
the final computation, The programs which have been written are suitable
fo;‘periodic gsignals, and their FORTRAN language statements for the IBM
650 computer will be found in Apﬁcn&ix III, In general, the power spectrum
output will have a graph similar to Figure L,12, and the power at a given
frequency is then determined by taking the average height of the peak
at this frequency. If the period of the filtér output has been divided
into an integral number of intervals in recording the data points,
these peaks will become very sharp, and their average value may be

determined by inspection of the computer output,

The final results obtained from the computer program were
compared with predictions based on the known frequency response of the
circuit. For the filters considered in this study, their frequency
response is well known, and the comparison is a measure of the accuracy

of the digital computer calculation.
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Figure l,12

Typical power spectrum output.

The computer programs were tested by using them to measure
the magnitude of the transfer function of the Krohn-Hite Model 330-A
band-pass filter. This unit has a transfer function of the form l/sh,
and hence has a continuous impulse response, Figure h.13 shows the
Sandborn chart which was obtained when a 1 cps sine wave was sampled
every O.1 sec with a pulse width of 5 msec, The high and low cut-off
frequencies of the filter were 5 cps and 0,02 cps;, respectively.
Data points were taken every millimeter (20 msec) of the record, The
upper curve is the filter output and the lower is the original sine

wave, The theoretical and experimental results are compared in Table lL,1,

Table 4,1

Comparison of computer-calculated, through L,20 and
directly measured low-pass filter frequency response,

Frequency Relative Attentuation (db,)
; calculated measured

1 cps 0.0 0.0
9 cps 26 23
11 cps 3 29
19 cps L7 L9

This experimental technique was also used to calculate the

magnitude of the zero order hold transfer function, whose low-pass
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Two-channel recording of a sampled and filtered sine wave,
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Figure L,1lL

Recording of a sampled sine wave after (0,0) restoration and filtering.
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characteristics are proportional to (x'lsin x)2. For this study,

it was postulated that 1 cps sine wave had been sampled at 10 cps
and then restored, The resulting signal was easily calculated and
S0 data points in each cycle were used in the computer auto-correlation

program, The results of this computation are given in Table .2,

Table L.2

Comparison of computer-calculated and theoretical
zero order hold frequency response,

Frequency Relative Attenuation (db,)
ztswgizzrgig:guation calculated redicted
* on computer, %;Eﬁ—?;:Isin x)2
1l cps 0.0 0.0
9 cps 18,6 19.2
11 cps 20,1 20.8
19 cps 23,5 2L,5

The results in Tables L,1 and L,2 show that the power-spectrum
calculation is a reasonably accurate method of measuring the magnitude
of a filter trﬁnsfer function at low frequencies, Nevertheless, there
are many sources of error in this technique, one of which is the
computer program itself., The accuracy of the final result is greatest
if the waveform period is divided exactly into an integral number of
intervals; as was done for the data in Table L,2, For the data in
Table k.1, thé,values shown were determinnd by takiﬁg the area under
the appropriate peaks, after the power spectrum was obtained, The
precision with which values can be read con the Sandborn graph also
affects the accuracy of the final figures, The curves in Figure L,1lL
were obtained by using both zero-order hold restoration, and low-pass

filtering, with the same input signal as for Figure L,13, Although the



upper curve shows a greater restoration than that in Figure l,13, it

is not completely free of complementary frequencies, Hoﬁever, the
calculated power spectrum values were so small as to indicate that

the wave is monochromatic., A division of the waveform period into more
intervals; and an improvement in the precision of the data points, would

probably indicate otherwise,
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CHAPTER V

CONCLUSIONS AND SUGGESTED FUTURE INVESTIGATIONS

Sel Summary of the Results of this Research

A class of sampled-data filters, called the finite memory hold
circuits, has been defined, and the Laplace transform for one group of
these filtersconfigurations has been evaluated, resulting in the
definition of the H and P polynomials, One method of simulating these
filters, using operational amplifiers, has been proposed and the
feasibility of this method has been studied experimentally. A technique
to measure the magnitude of the filter transfer function has also been

suggested,

The experimental results indicate that operational amplifiers
are quite suitable for the simulation of these hold circuits within the
frequency range studied, although this is obviously only one of many
possible methods, The performance of the oxporimohtal memory unit
approximates the ideal when the sampling pulses are narrow, They may be
predicted theoretically even when the sampling pulses are wide, or when

the delay due to the feedback discharging cycle is appreciable,

Certain problems were encountered with the equipment which was
used, such as drift and hum in the operational amplifiers., These are
faults of the commercial units employed, however, and not deficiencies

of the basic method,
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5.2 Suggested Improvements in Laboratory Components and
Experimental Techniques

The D-C unbalance in the sampler output can be reduced to a
negligible value by using matched diodes for D3 and Dh’ a precision
voltage divider in place of By (Figure 3,7), and by replacing
potentiometer R, by two matched Zener diodes, If there is no D-C
unbalance in the sampler output, this basic circuit could replace the
relay for discharging the integrator feedback capacitor, with a
consequent reduction in the discharging cycle delay, and an increase
in the flexibility of the simulation scheme, The sampler circuit can
also be used to accomplish the necessary switching of the memory units,

as outlined in Section 3.2.

A study of operational amplifiers, to determine the most
suitable design for simulating the memory units; should be undertaken,
Chopper stabilization is probably warranted, to reduce the D-C drift,
Wide-band-width is necessary to ensure the accurate integration of
very narrow pulses, The hum level must be reduced below that in thé
Donner Model 3000 amplifiers, These requirements may result in an
operational amplifier of a design which is not available commercially.
Alternatively, some system other than one employing operational
amplifiers may be used; and the practical advantages of such systems

must not be overlooked,

A more convenient method of obtaining data points for the
auto-correlation program is also needed, Digital print-out devices
have very low writing speeds, but it might‘be possible to sample the
filter output at a high rate and record these samples on a magnetic
tape for later measurement with a digital voltmeter, A better method

would be to build an automatic auto-correlator; by using two samplers,
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each controlled by identical but relatively-delayed pulse trains,
After restoration by a (0,0) hold, the two signals would then be
multiplied together electronically, and the product integrated for

a sultable interval., The resulting signal would be recorded on the
y-axis of an x-y plotter, while the x-axis of this plotter monitored

a voltage proportional to the delay bstween the two pulse trains,

The auto-correlation method, although a powerful technique
for determining the magnitude of a network transfer function, does
not provide any information about the phase of this function., Phase
information may be obtained by cross-correla‘bion37° The complex
Fourier transform of a system input-outpuf crosg~correlation function
is the cross-power density spectrum of the input and output, When the
latter quantity is divided by the density spectrum of the input signal,
the magnitude and phase of the system transfer function is obtained,
The cross—cprrelation_function could be obtained automatically, using
the device suggested above, if one of the two samplers monitors the

filter input; while the other samples the output,

5.3 Possible Applications of the Finite Memory Hold Circuits

The finite memory hold circuits may be used as a digital to
analog converter in a sampled-data system. Their use in conjunction

38 would result in

with the analog computing scheme suggested by Hung
a flexible laboratory computer which could perform most of the
mathematical calculations of interest to electrical engineers; providing

the solution in an analog form,

These sampled-data filters could also be used as function
generators by pre-reccrding the necessary sample values on a magnetic

tape, to generate a sufficiently accurate polynomial approximation to



the desired function, Complicated periodic functions could be

generated by forming the magnetic tape into a loop.

2
’ 3have evaluated expressions for the optimum

2

Other workers
weighting functions of sampled-data filters to recover a sampled

signal from noise, The finite memory hold circuit should also be tried

in this application.

Sampled-data feedback systems are normally designed so they
will not oscillate; but they may also be designed to oscillate at very .
low frequencies, The work of Franks and Sandberg2hseems to indicate
that such an oscillator, incoréorating their N-path filter, would be
very stable, The use of a finite memory hold circuit, rather than an

N-path filter should be tried,

Seli A Proposal for a Recognizing Machine

The invention of automatic computers has prompted researchers
to 'teachﬁ these machines to perform some of the more complicated tasks
which the human mind acccmpiishes so easily. Among these tasks is the
recognition of an object under different lighting conditions, or of
identical words when spoken by different individuals, The finite memory
hold circuit promises to provide yet another method of building such a

recognizing machine,

Consider the two words "we"” and '"me," When these are converted
to an electrical signal; the ini%iai tranéiené ié different in each
case, Thus, it is their time-domain representation which seems %o
distinguish the two words, The finite memory hold circuit stores
samples of the input signal in time sequence and is ideally suited for

time~domain filtering in the sense described here,
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To build this recognizing machine, tape recordings of
identical words spoken by different individuals would be obtained,
The electrical signals from these recordings would be sampled at a
rate to be determined smpirically, and these samples would be stored
in the memory bank., The computing circuityy would be adjusted, not
to restore these signals as accurately as possible, but to produce a
unique output for a specific word, Such an adjustment should be made
by the machine itself, by self-optimization of the filter transfer

function,

This self-optimization would be accomplished by applying
each of the recorded signals of the same word to the hold circuit, and
"telling® the machine to produce the same output in all cases, By some
sultable process the machine would adjust the sampling rate, amplifier
gains and integrator time constants to obtain the desired resulﬁ.
Thus the machine would "learn™ which parts of the signal are character-

istic of a given word, |

The final stage would be to obtain another set of recordings,
this time of a different word, and to observe the filter output, If
the outputs are unique and distinct from the output for the first word,
the sampling rate; amplifier gains and integrator time constants would
be recorded, From these figures the filter transfer function would be
obtained and some information regarding the distinctive characteristics

of words would be available to the researcher,
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APPENDIX 1
Properties of the H; and P; Polynomials

Al.l « Definition of the Polynomials

The H; polynomials are defined by:

r m-r

Hy = m! m>r .

J‘Z; (m-3)! (Ts)d

= 1 me=r

= 0 mir

The P; polynomials are defined bys

m=

r+l r
H - H = J it
m+1 n ;2; (m+1-3) ¢ (Ts)d

2%

Al,2 ~ Certain Recurrence Relations for these Polynomials,

H; = 14+ (Ta)“1 m H;-l cose Al.l
r+l

H; - H;‘ = ml XXX Alo2
: ri (Ps)™T

H;*l _H;; - (TS)-lHr + (Ts)-l m(Hr - Hr 1) xXrx] AloB

H, -Hl | = (Ts)'l(mﬂ)n - (Ts)'l(m-l)ﬁm_ ceeo AL
Plrll = (Ts)-lﬂﬁl * (TS)-lm pr eeee 51.5

Prm - P}:’l - (m-r) m'. so0o0 e Aloé

(r+1)! (Te)™=T
PL - PL_; = m-1)! + melPpy _m-lPh2 ... AL7

ri(Ts)™T  Ts Ts

Prel - Ppel = m;l o oemlP_, +mlH .1 A1,8
Ts T "0 (19)2 (’I")""Hm'2 )
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The above relations may be readily established from the

definitions of the polynomials,

41,3 - Values of Certain of these Polynomials

The first four H?n polynomials ares

B = 1 Hy = 1+2/Ts + 2/(1s)?
H{ = 14 1/Ts Hg = 1+ 3/Ts + 6/(TS)2 + 6/(TS)3

The first four H,]l; polynomials arez

Hé = 0 H; = 14+ 2/Ts
Hi = 1 H; = 1+ 3/Ts + 6/(Ts)2

The first four P; polynomials are:
0 2
P, = O P, = 1/Ts + L/(Ts)

P} = 1/Ts P3 = 1/Ts + 6/(1s)? + 18/(rs)’

These tables may be extended by use of the recursion formulae,

r
ALl - Modified Z-Transforms of Hy/s and Eh/s for the Values of Hy and Py
. given in Section 41.3.

F(s) E(z,m)
Hg/s l/(z_l) A109
'Hi‘s mel o+ 1 41.10
v z-1_ (z-1)°
Ho/s (me1)? 4 2me3 + 2 Al.11
< 21- . (212 (z.1)3
H3/s (m+1)° 4 InP4ome] + fm+12 + 6 A1,12
- zT (=12 13 Tl

Hg/s 0 A1.13



H%/s

1/(z=1) A1.3h
2m+l + 2 A1,15

gl (z-1)2
3m2+3m+1 + bm+6 + 6 Al1,16

z-1 (z-l)3
0 A1,17
m + 1 A1,18
z-1 (z-1)2

omlem + lm+3 + Al.19

z-1 (z—l)2 (z-1)3
3mS+3m24m  + om2415m+7 + 18m+2)
21 (z-1)¢ (z-1)3

+ 18 51,20
(z-1)L
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APPENDIX II

A SCHEME FOR THE DETERMINATION OF ANALOG COMPUTER CONNECTIONS FOR

_THE SIMULATION OF 4 GROUP I FINITE MEMORY HOLD CIRCUIT

A2:1.~ Synthesis of the Analog Computer Connections,

Let the symbol M, denote the memory unit which stores the sample
fl:(n-—r)'ﬂ. The determination of the analog camputer connections may

be reduced to a mechanical operation by the following scheme:

1) Lay out a column of p+q4l boxes to denote the memory units,
Alternate oﬁtputs from this column (the memory bank), starting with M’i,.
are connected to inverters so that %he first differences may be formed
by the succeeding computing elements, If the order, p, of the hold
circuit is even, p/2 inverters are required, if it is odd, (p-1)/2

inverters are re quired.

2) The inverter bank is followed by p-1 banks of integrators,
whose tir;u constants are all equal to 1 second, The first bank has
p~l integrators, and each succeeding bank one less integrator than the
former, The outputs of the integrators in a given bank are connected
two-by~two to the imputs of the integrators in the next bank, The
output of the intogra‘tor in each bank which is the one nearest the Ho
memory unit is tapped-off for later intercomnections, A total of

p(p-1)/2 integrators are required in this step,

3) Connect every second memory unit output to a common summer,
Start the connections with M if p is odd, otherwise start with M.
The scaling factors in the summer are :adjusted in accordance with the

method discussed in the following section; for the moment they are
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denoted by the symbol C; q’ where r is the memory unit subscript,
H

Connect the output of the summer and the remaining memory units to

the first of p cascaded invegrators, The scaling factors for the

summer output is unity, and for the remaining memory units it is C; qQ°
}

L) The integrator outputs which were tapped-off in Step 2
are now cofmoctcd. Label the integrator banks from 1 to p-1l, starting
with the first bank ifter the inverters. Connect the outputs of the
integrators in the odd-nunb@red banks to a common summer, using a
scaling factor of unity for all inputs, Connect the cutput of this
summer, the tapped-off outputs of the integrators in the even-numbered
banks, the output of My, and the output of thg last of the p cascaded
integrators of Step 3, all to a common final summer, The filter output
is that of the final summer, Thcrscaling factors for all inputs to the

final sumer will normally be unity, unless some other scaling factor

is desired,

5) The final design may be checked by verifying that the

number of Spcfational amplifiers in any path from the output of

M

0sM2sM) ;e et0 output of the filter is odd, and the number of amplifiers

from the output of Ml,H3J{5,..in such @ path is even,

This scheme is quite mechanical, requiring no ingenuity on the
part of tho designer, and so is suitable for programming into a digital

computor39.

K2,2 « Determination of the Summer Scaling Factors,

An examination of equations 2,40 and 2.L1, shows that the last

g4l terms in the general expression for G_ _(s) are all powers of

psd
T“P(t-nT)P, These terms may be denoted by S, where
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S = T-P(-nT)P i Ry 557 vees A2.1
and Ry = 1, Substituxing 2 2h in A2.1:
S = TP (4-nT)P Z Z By(-1) (P*J)f(an) ....A2,22
= TP (t-nT)P Ej (-1)7f(n,T) i (p';j) ceee A2,

The second summation determines the coefficients of the
f(an) terms, which are the scaling factors for the memory unit outputs,

Therefore, we can writes:

et o = J}?; j(P*J) el 42,3

If the ij are all different, this sum is evaluated to determine the
necessary scaling factors in the main computer., In the particular
case where Rj = R for all j, this expression may be further simplified.

Setting‘ﬁj = H, expression A2,3 becomes:

= R i B{:J)! c0o00 A2oha

} p#j—r . ro

= 3 i < ! " [N N Azchb
1 . <p4’ i-Z".

This sum is readily identified as the sum of ascending factorials,
30

evaluated by Kunz:

j;: +3) ¢ 52*1*1; vesoB2.52
(p*j-r p+j-r) T(r+l
+q+1)' - ! ceos A.5b

Substituting #2.5b in A2,Lb,

C =R (p"‘q*l)' - p: soen A2 068
P T I)'{ (orar)!  Tp-r-1J1
+q+1 '

E[Q’rgl mﬂ vees £2,6b

where (rglj-

(p-r-l)' (rel)!
Equation A2,.6b is readily evaluated numerically, with the

aid of a table of binomial coefficients.Bl
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APPENDIX III

CCRRELATION AND POWER SPECTRUM COMPUTER PROGRAMS

A3.1 The Correlation Program

The numerical formula used is

N
B (1) = 2 £1(36) £1(3647)
j=o

where 7 = nd (n an integer), § = interval between data points.,

The FORTRAN Language statement for the IBM 650 computer is:
DIMENSION X(500), Y(500)
1 READ, CODE, T, M, N, J
READ, (X(I), I=1,M)
GO TO (2,3,2,3), J
2 DOk Is1,M
L Y(1I) = X(1)
GO TO &
3 READ, (Y(I), I=1,M)
5 MAX = N-1 “
DT = MAX
DS = DT 0,75
MO = N-2
LT = M-Nel
DO 6 Le1,LT
K = L1
TX = T* FLOTF ()
COR = X(1)*¥(L) + X(N) Y(I+K)
COR = COR/2,0
G0 TO (7,7,8,8),d
7 DO 10 I=2, MAX
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o]

21

Lo
50
55

LS
60

This program will compute either auto- or cross-correlation
functions, using the Trapezoidal rule for the summation if there are

an odd number of intervals, and Simpson's rule if there are an even

number of intervals.

The data cards are prepared in 7/bard form, When a cross-

correlation is performed, two such decks are required, These data

COR = COR + X(I) T(I+K)
COR = COR/DT

GO TO 30

DO 20 I=3, MO,2

COR = COR + X(I) Y(I+K)
COR = COR/2.0

DO 21 I=2,MAX,2

COR = COB + X(I) Y(I+K)
COR = COR/DS

GO TO (LO,kL5,kL0,L5),d
IF(K) 50,50,55

DIV = COR

CORNM = GOR/DIV

G0 TO 60

CORNM = 0,0

PUNCH, CODE, MAX, K, TK, COR, CORNM

CONTINUE
GO TG 1
END

cards are preceded by a S-word starter card:
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Word 1
Word 2
Word 3
Word L

Word 5

93

Code number
6 = interval between data points (sec.)
Total number of data points in each deck (< 500)
Number of data points to be used in each summation
1 for auto-correlation

} Trap. rule
2 for cross-correlation
3 for auto-correlation

} Simpson's rule
iy for cross-correlstion

The output of this program will have 6 words on each card:

Word 1 Code number

Word 2 Number of intervals used in each summation

Word 3 Cardinal number of point in correlation function

Word L Value of 7 at which ¢Ilé7’) is evaluated

Word 5 Value of $ip (T )

Word 6 0.0 is cross-correlation is used

Value of ﬁlléf),normalized with respect toiﬁil(O)

43,2 The Power Spectrum Program

The rumerical approximation used is

N
B11(0) = 2 $11(36) cos (Jub)
JﬂO

where 5 is the interval between the data points used in the auto-correlation

program,

The FORTBAN Language statement for the IBEM 650 computer is

DIMENSION T(500), COR(500)

READ, FD, ™, FS, M,J

D0 2 I=1,M

READ, N4, A, B, T(I), COR(I), S, V



10

ol

CONTINUE

NUM = NIM + 10°J
N = M-1

DT = N

DS = DT 0,75

MO = M-2

F = FS

W = F'6.28318

ARG = W' (1)

AR2 = WT(M)

PS = COR(1) COSF(ARG) + COR(M)*GOSF (AR2)
PS = PS/2,0

G0 To (L,6),d

DO 5 I=2,N

ARG = W'T(I)

PS = PS + COR(I) COSF(ARG)
PS = PS/DIr

G0 TO 10

DO 7 I=3, MO,2

ARG = WT(I)

PS = PS 4 COR(I) COSF (ARG)
PS = PS/2,0

DO 8 I=2, N,2

ARG = W'T(T)

PS = PS + CQR(I) COSF(ARG)
PS = PS/DS

PUNCH, NUM, N, F, PS



11 F=F 4+ FD

GO TO 3
END

This program computes the power spectrum from the oﬁtput

cards of the auto-correlation program, using the Trapezoidél rule

if there are an odd number of intervals, and Simpson's rule if there

are an even number of intervals, The deck of auto-correlation cards

is preceded by a S5-word starter card:

Word 1
‘Word 2
Word 3

Word L

Word 5 {

Desired frequency increment in power spectrum
values

Maximum frequency for which the power spectrum
is to be computed

Minimum frequency for which the power spectrum

is to be computed
Total number of input cards
1 for Trapezoidal rule

2 for Simpson's rule

The cards in the output deck have L words:

Word 1

Word 2
Word 3

Word

Code number in auto-correlation program

increased by 10 if Trapezoidal rule is used,

increased by 20 is Simpson's rule is used

Number of intervals used in the summation

Frequency at which the power spectrum is
evaluated

Value of the power spectrum
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