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Abstract

Wireless networks are strained by an exponential growth in mobile network traffic and new appli-
cations, such as the internet-of-things (IoT) paradigm and smart cities, are amplifying the prob-
lem as the density of networks increases. At the same time, network providers are faced with
increasing infrastructure and service deployment costs which are not being offset by increased
revenues. Multi-carrier non-orthogonal multiple access (NOMA) and virtualized wireless net-
works (VWN) are being positioned as promising techniques to jointly meet the needs of future
network users and service providers by promoting the mutualization of network hardware and
sharing of spectrum resources. With NOMA, sub-carriers can be shared by several users con-
currently, with resulting reduction in spectrum requirements via increased spectral efficiency and
re-use, increased power efficiency, and network density. Under VWN, hardware and radio re-
sources are shared by several service providers with groups of users isolated from one another by
minimum quality of service guarantees. The use of NOMA in VWNs has not been extensively
studied and, due to the nature of wireless channels and user mobility, careful dynamic resource
allocation is required to maintain system and user performance.

The purpose of this work is to study NOMA-based VWNs and propose efficient resource
allocation algorithms to leverage the available gains for users and service and infrastructure
providers. Specifically, the use of NOMA for uplink transmissions is examined due to the many
proposed use-cases, such as distributed sensor networks, for which uplink traffic far outweighs
downlink and the greater capability of base stations in processing concurrent user signals. Ini-
tially, performance of NOMA VWN in single-input single-output channels with perfect process-
ing of received signals is examined. With the goal of minimizing required transmit power for
battery-dependent devices, an efficient iterative algorithm is presented. The proposed algorithm
is then extended to multiple-input multiple-output systems and a sensitivity analysis to increased
interference from imperfect processing of received signals is presented. Since many of the pro-
posed use-cases support critical applications such as health and public safety monitoring, we
then examine the use of NOMA VWN subject to reliability constraints. The resource allocation
problem is mapped to its robust counterpart and the techniques of chance-constrained robust op-
timization are used to develop an efficient iterative algorithm which minimizes required transmit
power subject to user rate and outage constraints. In each of these scenarios, simulation results
are presented demonstrating the performance of the proposed algorithms and the improvement
compared to traditional orthogonal multiple access is evaluated.
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Sommaire

Les réseaux sans fil subissent une croissance exponentielle du trafic des réseaux mobiles et les
nouvelles applications, tels que le paradigme Internet-des-choses (IoT) et les villes intelligentes,
intensifiant le problème à mesure que la densité des réseaux augmente. En plus, les fournisseurs
de réseaux sont confrontés à des coûts d’infrastructure et de déploiement accrus qui ne sont pas
compensés par les revenus. L’accès multiple non-orthogonal à plusieurs porteuses (NOMA) et
la virtualisation des réseaux sans fils (VWN) ont été proposés pour satisfaire les besoins des
utilisateurs et des fournisseurs de service en promouvant le partage des outils du réseau et des
ressources spectrales. Avec la NOMA, les sous-porteuses peuvent être partagées par plusieurs
utilisateurs d’une manière concurrentielle, ce qui réduit les besoins en spectre en augmentant
l’efficacité spectrale et son réutilisation, augmente l’efficacité énergétique et la densité du réseau.
Sous la VWN, les ressources matérielles et radio sont partagés par divers fournisseurs de service
avec des groupes d’utilisateurs isolés l’un de l’autre en garantissant une qualité de service mini-
male. L’utilisation de NOMA dans les VWNs n’est pas largement étudiée et, à cause de la nature
des canaux sans fil et la mobilité des utilisateurs, une allocation dynamique des ressources est
nécessaire pour maintenir les performances du système.

L’objectif de ce travail est d’étudier les VWNs se basant sur la NOMA et de proposer des
algorithmes d’allocation de ressource afin de tirer le maximum de profil pour les utilisateurs et
les fournisseurs de service. Particulièrement, l’utilisation de la NOMA pour la transmission en
lien montant est examinée pour couvrir plusieurs cas de figure tel que les réseaux de capteurs
distribués, dans lequel le trafic en lien montant dépasse largement le trafic en lien descendant et
la grande capacité des stations de bases à traiter plusieurs utilisateurs. Premièrement, nous ex-
aminant la performance de la NOMA VWN dans les canaux à une seule entrée à une seule sortie
avec un traitement parfait des signaux reçus. Dans le but de minimiser la puissance de transmis-
sion pour les appareils dépendant de batteries, un algorithme itératif est proposé. L’algorithme
proposé est ensuite étendu aux systèmes à plusieurs entrés à plusieurs sorties et une analyse de
la sensibilité à l’interférence causé par le traitement imparfait des signaux reçus est présentée.
Étant donné que de nombreux cas d’utilisation proposés prennent en charge des applications
critiques telles que la surveillance de la santé et de la sécurité publique, nous examinons en-
suite l’utilisation de la NOMA VWN sous réserve de contraintes de fiabilité. Le problème de
l’allocation des ressources est mappé à sa contrepartie robuste et les techniques d’optimisation
robustes contraintes au hasard sont utilisées pour développer un algorithme itératif efficace qui
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minimise la puissance d’émission requise, soumise aux contraintes de débit des utilisateurs et de
contrainte d’interruption. Dans chacun de ces scenarios, les résultats de la simulation démontrent
l’amélioration en termes de performance des algorithmes proposés par rapport aux autres tech-
niques classiques d’accès orthogonal.
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Chapter 1

Introduction

1.1 Background and Motivation

New and evolving applications are straining the capacity of current wireless networks with an
exponential growth rate in data traffic and increasing traffic density demands [1]. Smart mobile
devices, and the data intensive applications they support, are becoming increasingly ubiquitous
and the trend is towards an Internet-of-Things (IoT), in which devices ranging from toasters and
thermostats to cars and medical equipment require network connectivity. In addition to human
users, by 2020 there are forecast to be 3.2 billion connections for direct machine-to-machine
(M2M) communication for devices supporting vehicle navigation systems, sensor networks for
industrial, health, public safety, and asset tracking applications. Many of these devices will be
low-power sensors supporting mission critical applications which require strict guarantees on
quality of service (QoS). Without new strategies, existing mobile networks will be overwhelmed
and user experience and the ability to support these emerging use-cases will be impaired. At the
same time, cellular network operators are being faced with increasing spectrum and infrastructure
costs leading to a revenue gap where strictly upgrading the radio access and back-haul networks
will neither provide the necessary performance gains nor the desired returns on investment.

Supporting new data-intensive user applications as well as large-scale M2M and sensor de-
ployments requires significant improvements in spectral efficiency, network capacity, and traffic
density. To meet the needs of network operators, these improvements must balance the required
performance gains against economic realities by improving network utility, user and network
power efficiency, and reducing the time and cost of service and infrastructure deployment, main-
tenance, and upgrades. As standards organizations work towards meeting the targets set out by
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the International Telecommunications Union (ITU) for fifth generation (5G) cellular networks,
many promising approaches to meet these competing goals are being investigated with the pri-
mary themes being resource sharing and re-use. The principle of collaborative consumption from
the so-called “Sharing Economy” model, in which access to goods and services is monetized
rather than promoting ownership of the underlying goods or infrastructure, has been widely ap-
plied to transportation, travel, technology, media, and access to expert and professional services.
Under the sharing paradigm of collaborative consumption, idle assets are unused value and there-
fore wasted value. In the context of wireless networks, the sharing economy and collaborative
consumption promotes the mutualization of network and base station (BS) hardware, radio spec-
trum, and computing power to minimize idleness and underutilization of resources and maximize
value—in this case, in terms of network utility and return on investment, traffic density, and
spectral and power efficiency.

Virtualized wireless networks (VWNs) and network function virtualization (NFV) are being
positioned as key enabling technologies to meet the targets set for 5G networks [2–4]. Virtu-
alized solutions such as cloud-based radio access networks (C-RAN) and end-to-end NFV of
back-haul networks can reduce deployment scale and cost for service providers by supporting
multiple network operators on the same underlying hardware. Further, the mutualization of wire-
less resources through software-defined cognitive radio, dynamic spectrum access, and super BSs
which can support multiple service providers and radio access technologies (RATs), allows in-
frastructure providers to dynamically support several service providers and RATs concurrently
with on-demand set-up and tear-down of software-defined BS services and back-haul channels.
This type of as-needed deployment of functions and services on shared infrastructure maximizes
utility of hardware and network resources, which translates into increased efficiencies and re-
duced operating costs. Under the virtualization paradigm, resources are no longer allocated to
network operators on a fixed basis regardless of traffic load or network conditions. Instead, virtual
service providers, called slices in the terminology of VWN, negotiate quality of service (QoS)
through service level agreements to ensure that the needs of their users can be met. Sharing al-
lows maximum use and utility as BS resources, such as antennas and radio spectrum, and network
resources, such as front- and back-haul capacity, are allocated to network operators based on real-
time requirements. To enable VWN, one requirement is that slices are isolated from one another
so that the QoS received by each slice is not affected by the activity of other slices. The stochastic
nature of wireless channels and user mobility makes maintaining QoS particularly challenging
and efficient dynamic resource allocation algorithms are required to maintain this isolation.



1 Introduction 3

Traditionally, wireless networks have leveraged orthogonal resources for multiple access, i.e.,
separating users in time, frequency, space, or through the use of orthogonal spreading codes. In
all cases, the limited orthogonal resources enforce an upper limit on the number of users which
can be supported in a given area, time interval, or spectrum allocation. In a further shift to-
wards a sharing model for future networks, researchers and standards organizations are looking
to multi-carrier non-orthogonal multiple access (NOMA). In NOMA, sub-carriers can be shared
by multiple users to concurrently transmit in time and frequency with techniques such as suc-
cessive interference cancellation (SIC) used to resolve individual signals [5]. By grouping users
on sub-carriers and allocating transmission power intelligently, NOMA is able to outperform tra-
ditional orthogonal multiple access (OMA) in both achievable system rates and transmit power
efficiency. However, optimal user grouping and power minimization in NOMA systems is an NP-
hard problem and performing SIC requires significant processing power which adds additional
restrictions when considering battery-dependent devices [6, 7]. So far, only a limited two-user
downlink (DL) form of NOMA has been included in the 3GPP standards for fourth generation
(4G) networks and new efficient dynamic resource allocation algorithms are required to expand
this to more users as well as to uplink (UL) transmissions [8]. Through the application of NOMA
in VWN, spectrum resources can be shared by users within and across slices and RATs, with
the goal of leveraging resource sharing to improve overall network utility and performance with
global application of the resource sharing paradigm.

The principles of collaborative consumption embraced by VWN and NOMA will allow fu-
ture networks to support the diverse new and evolving use-cases proposed for 5G networks and
dynamically adapt to changing requirements as new uses are developed. Further, minimizing idle-
ness and underutilization serves to meet the technical requirements for future networks through
increased spectral efficiency and traffic density, but also increases value for service and infras-
tructure providers with increased power efficiency and lower cost infrastructure and service setup,
deployment, and management.

1.2 Thesis Contributions and Organization

The application of the principles of collaborative consumption to wireless networks is under-
way with the limited inclusion of NOMA in the 3GPP standard and new network architectures
such as C-RAN and super BSs expected to play a large role in 5G networks. Practical realiza-
tions which can extract the maximum benefit from such systems require addressing the various
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technical challenges associated with shared hardware and spectrum resources. In this thesis, the
resource management problems associated with two technologies which, by definition, rely on
the principles of collaborative consumption to jointly meet the needs of users and service and
infrastructure providers, are investigated. Each of NOMA and VWN, and their combined use,
presents unique challenges and this thesis examines the problem from a collaborative framework
and proposes efficient resource management algorithms and solutions for several scenarios.

For perspective on the problems addressed in this thesis, Chapter 2 presents relevant back-
ground on the networks and technologies discussed. First, we present an overview of existing
4G networks as well as the requirements set for 5G networks, as formalized by the ITU. Then,
detailed descriptions of NOMA and VWN are presented along with a survey of current research
and developments.

As discussed, VWN is seen as the preferred architecture for 5G networks and NOMA repre-
sents the low-level sharing of time and frequency among users and slices. Chapter 3 examines
the resource allocation problem for NOMA systems in supporting VWN comprised of low-power
devices for which UL traffic will significantly outweigh DL, e.g., distributed sensor networks.
Considering the requirements of such a system, we limit our investigations to the UL case and
consider both rate- and resource-based QoS with the goal of minimizing required transmit power
for battery-dependent devices. An efficient iterative algorithm for sub-carrier and power alloca-
tion is presented for single-input single-output (SISO) channels. An extension of the algorithm
to multi-antenna systems is also presented and simulation results for the single and multi-antenna
systems compare performance against traditional orthogonal multiple access (OMA).

NOMA relies on SIC to resolve individual user signals from the superposed received signal
and errors in performing SIC can significantly impact system performance. In Chapter 4, we
consider the problem of increased interference from residual cancellation errors due to imperfect
SIC. We extend the previously derived joint resource allocation algorithm to address the issue
of imperfect SIC in UL multiple-input multiple-output (MIMO) NOMA systems and consider
worst-case residual interference. Via simulation results, we present a sensitivity analysis of such
systems to residual cancellation errors and the performance of the proposed algorithm for MIMO
NOMA is compared to MIMO OMA.

Proposed use-cases such as health and public safety monitoring are characterized by densely
deployed high-priority low-power devices which rely heavily on UL traffic and for which outage
can be equivalent to system failure. To support such mission-critical applications, the additional
requirement of reliability must be addressed. In Chapter 5, we apply chance-constrained robust



1 Introduction 5

optimization to tackle the uncertainty from imperfect SIC in NOMA VWNs. In particular, we
derive an expression for the user outage probability as a function of SIC error variance and use
this result to formulate a robust joint resource allocation problem and develop a computationally
tractable two-step iterative algorithm. The iterative algorithm is then evaluated via simulation
against both OMA and non-robust NOMA with both perfect and imperfect SIC.

Finally, Chapter 6 presents concluding remarks and potential extensions of this research.



6

Chapter 2

Current Trends in Wireless Networks and

Key Enabling Technologies

The work presented in this thesis addresses the requirements of future networks to share hard-
ware and spectrum resources in order to meet the competing requirements of increased network
performance and reduced cost and deployment time for service and infrastructure providers. To
support the changing network landscape, use-cases, user requirements, and device capabilities,
new network architectures and multiple access strategies are needed. In this chapter, we will
briefly present an overview of 4G cellular networks and the requirements set for 5G networks.
We then present details and a brief literature review of two key technologies which are emblem-
atic of the sharing paradigm and are the focus of this thesis; namely, NOMA and VWN1.

2.1 4G Networks: An Overview

Enhancements to the Long Term Evolution/System Architecture Evolution (LTE/SAE) to meet
the requirements set out for 4G cellular networks are collectively known as LTE-Advanced (LTE-
A), formalized by the 3rd Generation Partnership Project (3GPP) in LTE releases 10 through 13
[11,12]. LTE itself was a logical evolution from previous generations in order to meet increasing
demands for higher data rates and improved quality of service. LTE met these demands at the
access level through increased spectral efficiency and improved mobility support and cell edge
data rates with new multiple access techniques. The increased spectral efficiency was achieved

1Parts of this chapter have been presented in [9, 10]
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by using orthogonal frequency-division multiple access (OFDMA) and single-carrier frequency-
division multiple access (SC-FDMA) in the DL and UL, respectively. Improvements in mobility
support and cell edge data rates were achieved through enhanced adaptive modulation, bandwidth
selection, and MIMO support.

LTE transitioned to an all-IP packet switched core network with the introduction of the
evolved packet core (EPC) and a flattened network architecture of enhanced BSs called evolved
NodeB’s (eNB) which are interconnected via high-speed data links. With direct connections
between neighbouring cells, this architecture facilitates more effective multi-point transmission,
coordination, and inter-cell interference and load management, independent of conditions in other
areas of the network. Local functions can be handled amongst the affected eNBs in neighbouring
cells with global functions and connections to external networks handled in the EPC.

Combined, these fundamental changes to the cellular network architecture allowed LTE net-
works to significantly increase user data rates and reduce control and user plane latency, con-
nection set-up, and handover delays. However, they fell short of the requirements set out for 4G
networks by the ITU, specifically in the case of peak data rates, spectral efficiency, and cell edge
performance [13]. The continuing evolution which became LTE-A was finally able to achieve the
necessary targets to meet the ITU requirements for 4G (ITU-A). Some important ITU require-
ments, and achieved performance levels for LTE and LTE-A, are highlighted in Table 2.1.

Table 2.1 ITU-A Requirements for 4G vs. LTE and LTE-A Achievements [13–16]

Description/Requirements ITU-A LTE LTE-A
DL peak spectral efficiency (bps/Hz) 15 15 30
UL peak spectral efficiency (bps/Hz) 6.75 3.75 15
Min. cell edge spectral

efficiency (bps/Hz) 0.04 0.024 0.04
DL Peak data rates (Mbps) 1000† 300 1000
UL Peak data rates (Mbps) 1000† 75 500
Scalable bandwidth up to (MHz) 40 20 100‡

† For low mobility with requirement of minimum 100 Mbps for speeds of up to 350 km/h.
‡ With carrier aggregation of up to five carrier components.

Among other innovations, LTE-A expanded MIMO/spatial multiplexing support up to 8x8
for DL and 4x4 for UL, added coordinated multi-point (CoMP) operation to increase spectral
efficiency and cell edge data rates, and improved heterogeneous network planning with the en-
hancement of support for small cells and relay nodes to increase area coverage with reduced
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power requirements. LTE-A extended bandwidth scalability in LTE by supporting carrier aggre-
gation, both within and across frequency bands. Discontiguous aggregation is supported to ensure
a higher bandwidth is available for providers who cannot support it in contiguous spectrum allot-
ments, allowing the development of license-assisted access (LAA-LTE) into the unlicensed and
television whitespace bands. Backwards compatibility is maintained by using bandwidths for
each carrier component which match those used in LTE. With 3GPP Release 13, LAA-LTE was
introduced for supplemental DL (SDL) transmissions using a random access mechanism based
on the the European Telecommunications Standards Institute (ETSI) standard [17]. Until the
inclusion of LAA, LTE-A was strictly used on and designed for dedicated licensed spectrum al-
locations with centralized scheduling and random access was only used by user equipment (UE)
which had not yet associated to an eNB [12].

2.2 5G Networks: Targets and Key Enabling Technologies

With the enhancements discussed in the previous section, LTE-A brings cellular networks into
the realm of 4G, as defined by [13]. As far as LTE-A has gone, it will not be enough for 5G
networks which are expected to support existing and new applications ranging from smart cities
and IoT devices, requiring massive machine type communication, to self-driving vehicles and
industrial automation, requiring ultra-reliable and low latency communications, with high speed
mobile broadband on the order of gigabytes per second [18]. Some of the specific requirements
for 5G networks are outlined in Table 2.2. Beyond these specific targets set by the ITU, 5G

Table 2.2 ITU-A Requirements for 4G vs. ITU-2020 Requirements for 5G [18]

Description/Requirements ITU-A ITU-2020
Peak data rates (Gbps) 1 20
Average user data rates (Mbps) 1 100
Mobility support(km/h) 350 500
Connection density (devices/km2 ) 105 106

Traffic capacity (Mbits/s/m2) 0.1 10

networks must also achieve 10× reduced latency, 3× improved spectral efficiency and 100×
network energy efficiency, compared to 4G networks.

In order to move towards 5G networks, 3GPP has numerous study items underway and
planned for future releases to meet the ITU requirements in [18]. These include significant
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enhancements to inter- and intra-band carrier aggregation and LAA-LTE for both UL and DL
to ISM bands, television white space, and other under-utilized spectrum resources, as well as
multi-carrier enhancements and improved CoMP and device-to-device communications [19].

It is expected that 5G networks will depend heavily on wired and wireless network virtual-
ization and hardware resource sharing with cloud- or fog-based radio access networks (RAN),
software defined radio, and end-to-end network slicing and orchestration [20]. The requirements
of improved spectral and power efficiency, increased traffic density, and reduced latency, and
the goals of service and infrastructure provider costs, and service and network deployment time,
require approaches which maximize the utility of network resources through resource sharing.

2.3 Virtualized Wireless Networks

Virtualization, or the “X-as-a-Service” model, has existed in computing and networking for
decades as virtual machines, virtual disks, virtual private networks, to name a few. In recent
years this paradigm has been increasingly applied to wireless networks and VWN is specifically
positioned as a key enabling technology in support of 5G targets [2, 4, 21, 22].

In the terminology of virtualization, each share of resources, or the service provider they
serve, is called a slice. As in other instances of virtualization, VWN increases network utility
and power efficiency by allowing different slices to each access a share of physical hardware
infrastructure and resources, such as BSs, antennas, and sub-carriers. Further, infrastructure and
the supported services can be decoupled so that slice instances of virtual network operator can
be created at a given BS to serve users on an as needed basis; adding cost and power efficien-
cies for infrastructure and service providers. Such sharing and decoupling can also allow greater
flexibility in service customization, finer QoS management, and more efficient infrastructure util-
itization.

Different levels of virtualization are possible in wireless networks and encompasses infras-
tructure virtualization, as in wired networks, but can also include spectrum sharing, software-
defined radio, and radio-air interface virtualization [2]. One important feature of VWN is that
slices must be both logically and effectively isolated from one another so that the service received
is not affected by the activities of other slices. Slice isolation is achieved through negotiated QoS
guarantees, for example, minimum achieved slice or user rates, minimum dedicated system re-
sources, such as antennas or sub-carriers, or maximum slice or user singal-to-interference plus
noise ratio (SINR) or rate outage probability. Maintaining isolation over time-varying channels
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for mobile users is particularly difficult and dynamic resource allocation mechanisms are needed
to achieve the desired gains in VWN.

2.4 Non-Orthogonal Multiple Access

Current cellular networks rely on a variety of OMA schemes to serve users. One limitation
of OMA, such as frequency-division multiple access (FDMA), code division multiple access
(CDMA), or orthogonal frequency division multiple access (OFDMA), which are used in 2G,
3G, and 4G, networks, respectively, is the limited availability of orthogonal resources. In the case
of CDMA, the are only a finite number of orthogonal codes of a given length, and the code length
must be limited so signals can be processed efficiently. In the case of FDMA and OFDMA, the
frequency spectrum is both limited and costly. Although unlicensed alternatives such as LAA-
LTE have been proposed, reliability can suffer in the unlicensed bands where random access
techniques are required. Recently, NOMA schemes have been positioned as a way to increase
spectral efficiency and traffic density without necessarily expanding the available spectrum, either
licensed or unlicensed [5, 23–25].

In contrast to OMA techniques, under NOMA several users can concurrently share available
sub-carriers and user signals are resolved via SIC applied at the receiver. Broadly, existing ap-
proaches to NOMA can be divided into those that use the code-domain to separate user signals
and those that use the power-domain. In contrast to CDMA, code-domain NOMA uses sparse
or non-orthogonal spreading codes with low cross-correlation to control interference. In power-
domain NOMA, the focus of this thesis, users are multiplexed in the power domain via power
control to maintain distinctness of superposed signals and allow each transmitted signal to be
resolved by the receiver, though this is handled differently for DL and UL transmissions. The
basic system model for DL and UL NOMA and how power control is used in each is depicted in
Fig. 2.1.

When first proposed for DL in [23], NOMA demonstrated gains over OMA in both spectral
and power efficiency but also the ability to maintain those gains as the number of UE in the cell
was increased. [6] demonstrated that DL NOMA can achieve both better outage performance and
ergodic sum rate than OMA, subject to careful sub-carrier and power allocation, however, the
SIC used in NOMA introduces significant complexity. This complexity of performing SIC at the
receiver has so far limited its application to two-user DL systems, such as multi-user superposi-
tion transmission (MUST) which uses superposition coding to multiplex two users for SDL [8].
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(a) Illustration of a single sub-carrier in a DL NOMA
system with two users. Since User 1 experiences a
strong channel gain, power is allocated so that User 2
is able to decode their own signal without significant in-
terference and User 1 can decode and subtract the signal
of User 2 before decoding their own.

(b) Illustration of a single sub-carrier in an UL NOMA
system with two users. Power is allocated to maintain
distinctness of individual signals in the superposed re-
ceived signal. Since User 2 is the stronger received com-
ponent, the BS decodes User 2 then subtracts the result
from the received signal to resolve User 1.

Fig. 2.1 Power control and decoding in (a) DL and (b) UL NOMA systems

As shown in Fig. 2.1(a), in DL NOMA, and MUST specifically, greater power is allocated to
the signal of the user with a low channel gain and the stronger user performs SIC to subtract the
weaker user’s signal before decoding their own.

In contrast to DL NOMA, in UL NOMA UE sharing the same channel can transmit at up to
their maximum power levels and the BS performs SIC to resolve each signal component of the
superposed received signal [5, 26]. Fig. 2.1(b) shows the basic system model for UL NOMA.
Power levels are assigned by the BS based on the available channel state information (CSI) so
that each component in the received superposed signal is distinct and resolvable for SIC to be
successfully performed. Users are decoded in order from strongest to weakest channel gains,
corresponding to strongest to weakest received power at the BS. With SIC performed by the BS,
UL NOMA can potentially support many more users in each sub-carrier than the DL case, but the
BS receives signals from all users and the intra-cell interference that is experienced by each user
is a function of the CSI of all users in the cell. Further, issues of synchronization are presented by
UL NOMA due to the different propagation delays and multi-path aspect of distributed mobile
users. To address these challenges and achieve the gains available under UL NOMA efficient
dynamic resource allocation algorithms are required.
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2.5 VWN and NOMA: A Survey

With the ever-growing demands on wireless network infrastructure and operators, both VWN and
NOMA have generated significant interest due to the gains over traditional networks and OMA
techniques. In this section, we present a literature review of the current research developments
and various considerations for each of these techniques, as well as their combined use. Both
VWN and NOMA are sensitive to the stochastic nature of wireless channels and user mobility
and dynamic efficient resource allocation is needed to achieve to maintain slice isolation and
achieve performance gains over traditional techniques.

The complexity of performing SIC, which can overburden power and processing limited UE,
has so far limited the application of NOMA to two-user DL systems and the DL case has been
extensively studied with many resource allocation techniques proposed. In [7], the authors first
provide a proof of the NP-hardness of the NOMA power minimization problem and subsequently
develop an algorithm to solve a relaxed form which is convex and can be solved by standard
optimization tools. In [27], an algorithm to derive jointly optimal power and sub-carrier allo-
cation maximizing system throughput is presented based on monotonic optimization. Further,
the authors develop a suboptimal solution based on successive convex approximation (SCA) and
variable relaxation which achieves close to optimal performance. A two-tier approach to resource
allocation maximizing sum-rate in DL NOMA systems was proposed in [28]. To solve the NP-
hard problem, the authors decompose it into separate sub-carrier and power allocation problems
which are repeatedly solved until the power allocation converges. Optimal sub-carrier alloca-
tion is derived using an integer linear programming approach. For power allocation, the authors
present several algorithms, based on successive approximation for low-complexity (SCALE),
arithmetic-geometric mean approximations (AGMA) and difference of convex functions (DC),
and prove the convergence of each to a local optimal solution.

UL NOMA has been less extensively studied, but the work in [29] presents a dynamic power
allocation schemed for both UL and DL NOMA two-user systems with the resource allocation
structured so that individual user rates achieved by OMA are improved under NOMA. Addressing
the issue of user synchronization in UL channels for dynamic mobile users, the authors of [30]
present a low-complexity asynchronous SIC which maintains the NOMA performance gain over
OFDMA in terms of capacity and bit error rate. An UL power control scheme for NOMA is
proposed in [26] based on a discrete power allocation with users ranked in the channel according
to experienced channel gains and power allocated in discrete steps based on this rank. Simulation
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results for UL NOMA systems are presented in [31] with users modelled as independent Poisson
point processes to derive user rate coverage probability and mean rate coverage probability of
all users. Further, a closed form for the Laplace transform of inter-/intra-cluster interference
is derived for both perfect and imperfect SIC. [32] presents a performance analysis of power
minimization in UL NOMA systems supporting large deployments of low power machine type
communication devices.

The application of NOMA to MIMO systems is examined in [33]. Considering the DL MIMO
case and fixed power allocations, new precoding and detection matrices are proposed and simu-
lation results demonstrate better outage performance for NOMA, even for users suffering strong
co-channel interference. Further, the authors examine user pairing and cognitive radio inspired
power allocations which further enhance the performance gains achieved under MIMO NOMA
systems and derive closed-form expressions of rate gap between NOMA and OMA in MIMO
systems. In [34], proof that there exists a power allocation under which the rate gap between
MIMO NOMA and MIMO OMA exists and that NOMA can achieve a higher sum ergodic ca-
pacity in MIMO systems, is presented. [35] proposes a linear beamforming technique for DL
MIMO NOMA with user grouping based on spatial proximity.

Uncertainty in the system and user statistics necessary to the NOMA resource allocation has
also been studied. [36] examines user grouping, power allocation, and decoding order with sta-
tistical CSI to consider the user outage balancing problem. Power allocation and decoding order
to balance outage probabilities experienced by users is solved using minimum weighted success
probability maximization. The derived algorithm was validated against an exhaustive search for
the optimal solution and performance gains against time-division multiple access (TDMA) were
presented for both continuous and discrete resource allocation scenarios. User grouping was stud-
ied by evaluating the power allocation and decoding order algorithm against random and optimal
user groupings. [37] examines NOMA for the case of perfect CSI being available to all users
but with only 1-bit feedback to the BS, as has been used in broadcast fading channels, used to
determine the power allocation policy. A closed form expression for the probability of any user
being in outage is derived and a dynamic power allocation to minimize this probability is derived
considering available feedback states. [38] studies power minimization for rate maximization un-
der outage constraints in DL NOMA systems where only average CSI is available at the BS. [39]
considers worst-case CSI uncertainty in DL NOMA supporting elastic and guaranteed minimum
rate users to propose a robust joint resource allocation algorithm based on SCALE for power
allocation and integer non-linear programming for sub-carrier allocation.
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The application of VWN to cellular networks has been of increasing interest and, though most
works consider applications to LTE/LTE-A, i.e., OFDMA-based networks, VWN and NFV repre-
sent the preferred end-to-end network architecture paradigm for 5G networks [4,22]. Maintaining
slice isolation over time-varying wireless channels, with mobile users in dynamic environments,
is particularly challenging and many efficient dynamic resource allocation algorithm have been
proposed. For example, in [40], a framework for VWN in OFDMA-based systems is proposed
wherein slices bid for access to resource blocks in a Vickey-Clarke-Groves auction. Since the
calculation of valuations for the auction is of high complexity, a heuristic algorithm is presented
where resources are assigned to the slice which reports the highest valuation for a given resource
block, until all slice demands are met or all resource blocks have been allocated. In [41], a user
association and power allocation algorithm for software defined heterogeneous cellular networks
based on quantum-behaved particle swarm optimization is presented. An asymptotically optimal
solution to bandwidth provisioning in OFDMA-based VWN systems is derived in [42]. In [3],
VWN is presented as the preferred architecture paradigm for 5G networks. An outline of a poten-
tial architecture model is presented which relies on a cognitive plane which implements functions
to collect system and resource state and user requirements to assist in the coordination of resource
allocation. Simulation results presented demonstrate significant improvement in spectrum effi-
ciency and reduction of packet loss rates, delay and jitter. The architecture is refined and further
results presented in [4], which also introduces the trial environment developed to test the architec-
ture, demonstrating a doubling of spectrum efficiency and reduction in packet loss of 95% when
virtualization control is used. [43] proposes a joint user association and resource allocation in
multi-cell VWN based on SCA and complementary geometric programming (CGP) to solve the
non-convex and NP-hard resource allocation. The application of DL NOMA to support VWNs is
investigated in [44] with the assumption of perfect SIC and no restriction on the number of users
per sub-carrier.
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Chapter 3

Power and Sub-carrier Allocation for

Uplink NOMA VWN

In this chapter, we investigate the UL resource allocation problem for VWN supported by NOMA.
The proposed algorithm for power and sub-carrier allocation is derived from the non-convex op-
timization minimizing power subject to rate and sub-carrier reservations, for which an optimal
solution is NP-hard. To develop an efficient algorithm, we decompose the optimization into sepa-
rate power and sub-carrier allocation problems and propose an iterative algorithm based on SCA
and CGP. Initially, we consider SISO channels and in the sequel we present an extension of the
resource allocation algorithm to multi-antenna systems. The proposed algorithm is evaluated via
simulation and a comparisons with traditional OMA is presented.1.

3.1 Introduction

Sub-carrier sharing and virtualization of wireless networks, as discussed earlier, represent two
promising resource sharing approaches to improve spectral and power efficiency, data rates,
traffic density, and network utility while reducing infrastructure and service roll-out time and
cost [2, 5]. In NOMA, shared sub-carriers can be used concurrently by multiple users leverag-
ing the power domain to resolve individual user signals, resulting in multiplexing gains and user
power savings. In VWN all wireless resources, e.g., power, sub-carriers, and BS hardware re-
sources, can be shared by multiple slices with negotiated QoS to increase network utility and

1Parts of this chapter have been presented in [10].
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improve spectral and power efficiencies. In both NOMA and VWN, dynamic resource allocation
mechanisms are needed to ensure user and slice performance for mobile users in time-varying
channels.

In this chapter, we examine the performance of UL NOMA in supporting slice isolation in
VWN with both rate- and resource-based QoS. As was discussed in Section 2.4, NOMA was
first proposed for DL transmissions and presented significant gains over OMA systems [23]. DL
NOMA has been studied extensively and many resource allocation schemes have been proposed,
however, these works are primarily limited to two-user systems to limit complexity of performing
SIC, as in MUST for SDL in 3GPP Release 13 [8]. Recently, UL NOMA has received more atten-
tion as higher order multiplexing gains are possible by leveraging the increased capability of the
BS to perform SIC over more users. We formalize the problem as minimizing required UE trans-
mit power for battery dependent devices subject to slice reservations, UE power limitations, and
maximum number of user per sub-carrier. For comparison, we also consider the OMA case by
restricting to one user per sub-carrier. Initially, we consider resource allocation over SISO chan-
nels to simplify the derivation and in the sequel we generalize the resource allocation algorithm to
multi-antenna systems. The NOMA power minimization, including sub-carrier allocation across
groups of users, is computationally intractable and provably NP-hard [7]. To develop an efficient
algorithm, we first decompose the problem into simpler sub-problems and iteratively solve for
optimal allocations of each of the two resources, i.e., transmission power and sub-carrier assign-
ment. Each sub-problem remains complex and in order to develop an efficient solution variable
relaxation and CGP are utilized with AGMA applied to approximate non-convex constraints, as
described in Appendix A.3. Via these techniques, each sub-problem is converted to the equiva-
lent geometric programming (GP) form which can be solved with available convex optimization
software packages. The sub-problems are repeatedly solved until an overall solution converges
in both sub-carrier and transmit power allocations.

Simulation results are presented which demonstrate that compared to OMA, NOMA is able
to provide better UE power minimization performance and support more users over a limited set
of resources for both SISO and MIMO systems. Specifically, as rate or sub-carrier reservations
or the ratio of users to sub-carriers in the system is increased, required UE transmit power also
increases in both types of systems, however, without the flexibility under NOMA of grouping
users on stronger sub-carriers, users will be pushed toward their maximum allowable transmit
power under OMA and the feasibility of continuing to meet all reservations can be impaired.

The remainder of this chapter is organized as follows: Section 3.2 presents the SISO system
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model and problem formulation. The derivation and definition of the proposed algorithm is pro-
vided in Section 3.3 and Section 3.4 presents simulation results and analysis. In Section 3.5, the
generalization of the proposed algorithm to multi-antenna systems is presented and evaluated,
followed by concluding remarks in Section 3.6

3.2 System Model and Problem Formulation

Consider a BS equipped with a single receive antenna serving a set of slices, S , in which each
slice s ∈ S has its own set of single-antenna users, Ks = {1, . . . , Ks}, comprising classes of
devices with distinct traffic patterns, priorities, and service requirements. To meet these needs,
each slice has negotiated QoS as a minimum reserved slice rate, Rrsv

s , and a minimum reserved
number of sub-carriers, N rsv

s allocated to the slice. The total number of users in the system is
K =

∑
s∈S Ks and each of the available sub-carriers, n ∈ N = {1, . . . , N}, can be shared by

at most Kmax
n users. A Rayleigh fading model is assumed, and the channel gain power between

user ks and the BS on sub-carrier n is given by

hks,n = χks,nd
−λ
ks

, (3.1)

where χks,n is the random channel power coefficient which follows an exponential distribution
with parameter 1; dks is the distance between user ks and the BS; and λ is the path-loss exponent.

In each sub-carrier n, for UL NOMA, users are ranked according to channel power gain such
that h1,n > h2,n > · · · > hK,n [5]. Then, to decode user ranked i, the BS performs SIC to remove
the signals from all users whose indices are lower than i. The remaining users, whose indices
are greater than i, are treated as unresolvable interference. Thus, assuming user i transmits with
power βi,n, the signal-to-interference-plus-noise ratio (SINR) after SIC at the BS is

γi,n =
βi,nhi,n

σ2
i,n + Iri,n

, (3.2)

where σ2
i,n is the noise power and

Iri,n =
∑K

j=i+1
βj,nhj,n, (3.3)

is the residual interference from users i < j ≤ K.
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The rate for user ranked i on sub-carrier n is then

Ri,n = log2

(
1 + γi,n

)
. (3.4)

Defining αks,n ∈ {0, 1} to be the sub-carrier allocation indicator, where αks,n = 1 means that
sub-carrier n is allocated to user ks, the sum rate achieved by each slice s can be expressed as

Rs =
∑

ks∈Ks

∑
n∈N

αks,nRi,n. (3.5)

Thus, the minimum UE transmit power to meet slice and system constraints can be formalized in
the following optimization problem

min
α,β

max
∀s∈S

∀ks∈Ks

∑
n∈N

αks,nβks,n.

Subject to: (3.6)

C1: Rs ≥ Rrsv
s , ∀s ∈ S,

C2:
∑

n∈N

∑
ks∈Ks

αks,n ≥ N rsv
s , ∀s ∈ S,

C3:
∑

n∈N
βks,n ≤ Prsv , ∀s ∈ S, ∀ks ∈ Ks,

C4:
∑

s∈S

∑
ks∈Ks

αks,n ≤ Kmax
n , ∀n ∈ N ,

C5: βks,n − αks,n × Pmax ≤ 0 , ∀n ∈ N , ∀s ∈ S, ∀ks ∈ Ks.

To maximize UE battery life, in this formulation, we are minimizing the maximum UE transmit
power over sub-carrier allocation, α = [αks,n]K×N and power, β = [βks,n]K×N while meeting
slice QoS reservations. Slice isolation is enforced by the reserved rate and sub-carriers in C1 and
C2. Transmit power is maintained below the maximum allowable UE power level by C3 and, to
limit the complexity of performing SIC, C4 restricts the number of users per sub-carrier. Finally,
to ensure that power is not allocated to sub-carriers which the UE is not using, C5 forces the
power allocation to zero when the sub-carrier allocation indicator is zero.
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Algorithm 3.1 Iterative Power and Sub-carrier Allocation
Initialize: Set t = 0, α∗(0) = [1]K×N and β∗(0) = [Pmax/N]K×N

repeat

t = t+ 1
Step 1: Derive sub-carrier allocation α∗(t) according to Algorithm 3.1.1 with input
β∗(t− 1), α∗(t− 1)

Step 2: Derive power allocation β∗(t) according to Algorithm 3.1.2 with input α∗(t),
β∗(t− 1)

until ‖β∗(t)− β∗(t− 1)‖ ≤ ε1 and ‖α∗(t)−α∗(t− 1)‖ ≤ ε2, 0 < ε1, ε2 � 1

3.3 Proposed Algorithm

The constraint given by C1 is non-convex due to the interference terms in Eq. 3.4, which relies
on both power and sub-carrier allocation. Further, C2 and C5 are also non-convex and the binary
variable adds significant complexity to the problem. In fact, both the NOMA power minimization
problem and multi-user sub-carrier allocation in a general OFDM system are NP-hard combina-
torial problems [7, 45]. In order to efficiently solve the problem in (3.6) the iterative algorithm
shown in Algorithm 3.1 is proposed.

Initially, power is evenly distributed across all sub-carriers and in Step 1, an optimal sub-
carrier allocation is derived. Then in Step 2, an optimal power allocation is derived for the sub-
carrier allocation found in Step 1. These steps are repeated until the solution to each sub-problem
is not much different than the previous iteration. While the sub-problems are simpler than (3.6),
they each remain challenging and an iterative approach is again taken. We apply variable relax-
ation to reduce the complexity of the problem and then use the techniques of CGP discussed in
Appendix A.3 to approximate non-convex constraints applying AGMA at each iteration until the
solution converges.

3.3.1 Sub-carrier Allocation

Given a fixed power allocation, we have the following residual optimization problem

min
α

max
∀s∈S

∀ks∈Ks

∑
n∈N

αks,nβks,n (3.7)

Subject to: C1, C2, C4.
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Algorithm 3.1.1 Sub-carrier Allocation
Require: Power allocation β∗(t− 1), α∗(t− 1)

Initialize: Set t1 = 1, α(0) = α∗(t− 1)
repeat

Step 1: Update ηks,n(t1) and κks,n(t1) from (3.9), (3.11)
Step 2: Derive α(t1), according to (3.12) using CVX [46]

until ‖α(t1)−α(t1 − 1)‖ ≤ ε1, otherwise set t1 = t1 + 1
return α∗(t) = α(t1)

Each of C1 and C2 is non-convex and, due to the binary variable α, this problem suffers from
high computational complexity. First, we reduce the complexity by relaxing the binary variable
αks,n to be continuous on the interval [0, 1]. Then, for each iteration, t1, we can then approximate
the non-convex constraints as convex functions by applying AGMA. When Alg. 3.1 is converged,
α can be recovered to binary via integer rounding, i.e., in each sub-carrier we choose the Kmax

n

largest αks,n > 0.5 and set them to 1 while the remaining elements are set to 0.
C1 can be written as Rrsv

s∑
ks∈Ks

∑
n∈N Rks,n

≤ 1, the left-hand side of which can be approximated
by the following convex function

xs(t1) = Rrsv
s ×

∏
ks∈KS

∏
n∈N

(
αks,n(t1)Rks,n

ηks,n(t1)

)−ηks,n(t1)

, (3.8)

where

ηks,n(t1) =
αks,n(t1 − 1)Rks,n∑

ks∈Ks

∑
n∈N αks,n(t1 − 1)Rks,n

. (3.9)

Similarly, we can transform C2 and define the convex function

ys(t1) = N rsv
s ×

∏
ks∈KS

∏
n∈N

(αks,n(t1)

κks,n(t1)

)−κks,n(t1)

, (3.10)

where

κks,n(t1) =
αks,n(t1 − 1)∑

ks∈Ks

∑
n∈N αks,n(t1 − 1)

. (3.11)
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Thus, at each iteration, t1, we solve

min
α

max
∀s∈S

∀ks∈Ks

∑
n∈N

αks,n(t1)βks,n (3.12)

Subject to: C4

xs(t1) ≤ 1 , ∀s ∈ S
ys(t1) ≤ 1 , ∀s ∈ S.

as described in Algorithm 3.1.1.

3.3.2 Power Allocation

Given a sub-carrier allocation, we solve the following optimization problem

min
β

max
∀s∈S

∀ks∈Ks

∑
n∈N

αks,nβks,n

Subject to: C1, C3, C5.
(3.13)

Here, C1 is non-convex due to the presence of the interference terms in the expression for
Rks,n. If we rewrite the rate expression as

Ri,n = log2

(σ2
i,n + Iri,n + βi,nhi,n

σ2
i,n + Iri,n

)
, (3.14)

C1 can be expressed as

C1 :
∏

ks∈KS

∏
n∈N

( σ2
i,n + Iri,n

σ2
i,n + Iri,n + βi,nhi,n

)αks,n ≤ 2−Rrsv
s , ∀s ∈ S. (3.15)

Applying AGMA, at iteration t2 we can then approximate the product terms with the follow-
ing convex function

xi,n(t2) =
(
σ2
i,n + Iri,n(t2)

)× ( σ2

φi,n(t2)

)−φi,n(t2) ×
K∏

j=i+1

(βj,n(t2)hj,n

μj,n(t2)

)−μj,n(t2)

×
(βi,n(t2)hi,n

ρi,n(t2)

)−ρi,n(t2)

, (3.16)
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Algorithm 3.1.2 Power Allocation
Require: Sub-carrier allocation α∗(t), β∗(t− 1)

Initialize: Set t2 = 1, β(0) = β∗(t− 1)
repeat

Step 1.1: Update φi,n(t2), μj,n(t2), ρi,n(t2), and ζi,n(t2) from (3.17-3.20)
Step 1.2: Derive β(t2) according to (3.21) using CVX [46]

until ‖β(t2)− β(t2 − 1)‖ ≤ ε2, otherwise set t2 = t2 + 1
return β∗(t) = β(t2)

where

φi,n(t2) = σ2/ζi,n(t2), (3.17)

μj,n(t2) = βj,n(t2 − 1)hj,n/ζi,n(t2), (3.18)

ρi,n(t2) = βi,n(t2 − 1)hi,n/ζi,n(t2), (3.19)

and

ζi,n(t2) = σ2 + Irj,n(t2 − 1) + βi,n(t2 − 1)hi,n. (3.20)

Then at each iteration, t2, we solve

min
β

max
∀s∈S

∀ks∈Ks

∑
n∈N

αks,nβks,n(t2)

Subject to: C3, C5∏
ks∈KS

∏
n∈N

[xi,n(t2)]
αks,n ≤ 2−Rrsv

s , ∀s ∈ S. (3.21)

as described in Algorithm 3.1.2.

3.3.3 Complexity Analysis

3.3.3.1 Convergence

Problems of the form of (3.12) and (3.21) are solved using an interior point method in CVX.
According to [47], the required number of iterations (Newton steps) to solve by this method is
log (c/t0δ)/ log (ξ), where c is the total number of constraints, t0 is the initial point used by the
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solver in CVX to apply the interior point method, 0 < δ � 1 is the stopping criterion, and ξ is
used for updating the accuracy of the method.

For (3.12), the total number of constraints is c1 = 2S + N and for (3.21) we have c2 =

S +K +KN . Therefore, the required iterations for each of the sub-problems to converge is⎧⎨⎩
log(c1/(t01δ1))

log(ξ1)
, Algorithm 3.1.1,

log(c2/(t02δ2))

log(ξ2)
, Algorithm 3.1.2.

(3.22)

With a polynomial presentation, the number of iterations (Newton steps) grows as O(
√
c) and we

see that the complexity of Algorithm 3.1.2 is higher than Algorithm 3.1.1 and is more sensitive to
K and N [47,48]. The number of iterations required to for each algorithm to converge is studied
further in Section 3.4.

3.3.3.2 Computational Complexity

For each iteration, a Newton step of an interior-point method costs O(c�2) operations where c is
the number of constraints and � is the number of variables [48]. For both Algorithm 3.1.1 and
Algorithm 3.1.2 we have � = KN . Thus, the total computational complexity of solving the GP
problem (i.e., number of Newton steps × required operations per step) is polynomial, namely,

CGP =

⎧⎨⎩O(c1.51 �2) = O(K2N3.5), Algorithm 3.1.1,

O(c1.52 �2) = O(K3.5N3.5), Algorithm 3.1.2.
(3.23)

In addition to the computations required to solve the GP problems, additional computational
complexity is incurred by applying the AGMA approximations to convert the problem to the
GP form. In Algorithms 3.1.1 and 3.1.2, the worst-case number of computations required is
i1 = 4KN = O(KN) and i2 = K2N + 4KN = O(K2N), respectively, each of which is of
lower order than CGP. Thus, yielding an overall complexity per iteration of each of the Algorithms
of CI = CGP.

3.4 Numerical Results and Discussions

To evaluate the proposed algorithm for UL NOMA, we simulate a single cell VWN with N = 16

sub-carriers, each of which can each be shared by at most Kmax
n = 4 users, i.e., ∀n ∈ N , serving
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Fig. 3.1 Average UE transmit power versus (a) reserved rate, Rrsv, and (b) reserved
sub-carriers, Nrsv

two slices each with Ks = 4 users, for K = 8 total users in the system, except where otherwise
noted. For comparison, results for OMA are presented where we have set Kmax

n = 1, ∀n ∈ N
to enforce orthogonality between the sub-carriers. In all trials we have Pmax = 23 dBm, and
Rrsv

s = Rrsv and N rsv
s = N rsv for all slices. The users are placed randomly within the BS

coverage area following a uniform distribution and the channel power gains are derived according
to the Rayleigh fading model with λ = 3 and distances normalized to the radius of the coverage
area. The results shown are taken over the average of 100 channel realizations.

In Fig. 3.1 (a) the average transmit power per UE versus Rrsv for both OMA and NOMA are
plotted. Power increases with Rrsv for both OMA and NOMA, because each users must transmit
with higher power to satisfy the slice reservation. In both cases shown, for N rsv = 1 and 4,
NOMA is more power efficient than OMA. For example, for Rrsv = 1 bps/Hz, NOMA requires
an average UE transmit power of 4.65 dB and 2.82 dB lower than OMA for N rsv = 1 and 4,
respectively. For Rrsv = 3 bps/Hz, NOMA requires an average UE transmit power of 1.47 dB
and 1.19 dB lower than OMA for N rsv = 1 and 4, respectively.

For both OMA and NOMA, higher transmit power is required for higher sub-carrier reser-
vations, N rsv, as shown in Fig. 3.1 (a), though the difference is not significant for the OMA
case. To demonstrate this relationship more clearly, Fig. 3.1 (b) plots the average UE transmit
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Fig. 3.2 Slice average allocated sub-carriers versus (a) reserved rate, Rrsv, and (b)
reserved sub-carriers, Nrsv

power versus N rsv for Rrsv = 1 and 4 bps/Hz. As N rsv increases, required average UE transmit
power increases. For NOMA, lower average power can be achieved through sub-carrier sharing,
however, inter-user interference from higher ranked users increases with higher sub-carrier reser-
vations. The effects of N rsv on OMA are not as significant as for NOMA, with only one user
in each sub-carrier more sub-carriers are required by each slice to meet rate reservations, which
necessitates the use of weaker sub-carriers and an already higher power than NOMA. In NOMA,
power domain multiplexing allows more flexibility in sharing stronger channels and avoiding
weaker ones but increasing N rsv reduces this flexibility, especially for N rsv ≥ Ks since each
slice serves Ks users. For N rsv = 1, NOMA requires an average UE transmit power of 4.65 dB
and 2.21 dB lower than OMA, for Rrsv = 1 and 4 bps/Hz, respectively. For N rsv increased to 3,
this gain drops to 2.44 dB and 1.24 dB, for Rrsv = 1 and 4 bps/Hz, respectively.

Fig. 3.2 examines the relationships between slice reservations and the actual slice sub-carrier
allocations, with varied Rrsv and N rsv. In all cases, each slice was found to have approximately
equal allocations between them, so the average is shown to illustrate the trend. In each of the
sub-figures, the black line, y = 8, shows the maximum sub-carrier allocation per slice possible
under OMA, as no sharing can occur. The theoretical limit for NOMA with Kmax

n = 4 users
to be assigned to all N = 16 sub-carriers is 64 in this example. In both cases, we see that for
lower reservations fewer sub-carriers are used in the OMA case, but from the previous figures, we
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Fig. 3.3 Average UE transmit power versus (a) users, K, and (b) sub-carriers, N

note the higher power is required. Up to the point where OMA approaches its maximum, more
sub-carriers may be used in NOMA to benefit from multiplexing on stronger channels. This is
more clearly seen in Fig. 3.2(b), which shows allocation versus N rsv, because the sub-carrier
reservation for each slice must be met which reduces the flexibility of the system.

In addition to the slice reservations, we also examined the performance impact of system
density, i.e., the ratio of users to sub-carriers in the system. Fig. 3.3 (a) plots the average transmit
power versus the number of users K for N = 16 with N rsv = 1 and Rrsv = 1 bps/Hz for OMA
and NOMA. As the number of users increases, since the total number of sub-carriers is fixed,
required power per user increases due to a greater reliance on shared sub-carriers. In order to
resolve each user signal, higher power is needed to maintain the distinctness of components in
the superposed signal received at the BS in order to perform SIC. Although the maximum number
of users per sub-carrier is fixed at Kmax

n = 4 for all trials, as the number of users increases, more
sub-carriers would be required to approach this maximum to leverage strong sub-carriers. The
effect of varying the total number of sub-carriers, N , in the system for fixed number of users is
depicted in Fig. 3.3 (b), for K = 4 with N rsv = 1 and Rrsv = 1 bps/Hz. As before, we see
that with decreasing system density, in this case for increasing number of sub-carriers, required
average required power for both OMA and NOMA goes down. Required power under NOMA is
lower than for OMA in all cases, and we noted that as the ratio of users to sub-carriers increases
that users in OMA are quickly pushed towards the maximum allowable transmit power.
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To examine the convergence and complexity of the proposed algorithms, the number of itera-
tions for convergence of Algorithms 3.1.1 and 3.1.2 are plotted in Fig. 3.4(a) and 3.4(b), respec-
tively, for N rsv = 1 and Rrsv = 1 bps/Hz. As was noted in Section 3.3.3, as K and N increase
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Fig. 3.4 Number of required iterations for each Algorithm versus (a) users, K, and
(b) sub-carriers, N

the required number of iterations for each algorithm to converge increases. The complexity of
Algorithm 3.1.2 was found to be higher than that of Algorithm 3.1.1, which is confirmed in the
required number of iterations. As expected, both algorithms are similarly impacted by increasing
the number of sub-carriers, N , and increasing the number of users, K, more significantly impacts
Algorithm 3.1.2.

3.5 Extension to Multi-antenna Systems

In the preceding sections, we have been considering SISO channels in our analysis of NOMA-
based VWN. In this section, we present an extension of the proposed iterative algorithm to general
multi-antenna systems. As we have seen, in NOMA systems user grouping and decoding order
are determined by ranking users according to expected received SINR via channel gains. This
is straightforward for SISO channels with a single channel gain to consider for each user but for
multi-antenna systems each transmit-receive antenna pair needs to be considered. In a general
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Base Station
Long-range User
Short-range User

D

d′

Fig. 3.5 Illustration of base station coverage area for short- and long-range users

multi-antenna system where the BS is equipped with Mr receive antennas and each user ks is
equipped with Mt,ks ≥ 1 transmit antennas we have Mr

∑
ks∈K Mt,ks possible UL channels

per sub-carrier. In general, user ks with its Mt,ks ≥ 1 antennas can transmit x ≥ 1 parallel
independent data streams, with each data stream using ny antennas where

∑x
y=1 ny ≤ Mt,ks .

Unfortunately, such a general approach will require impractically complex user grouping and
decoding ordering operations. For simplicity, we consider the approach in which user ks will use
its Mt,ks ≥ 1 antennas for one of 2 possible modes:

i Either to transmit just 1 data stream to achieve the maximum diversity gain when user ks
is far from the BS ( i.e., in the cell-edge or long-range region), with relatively low average
channel power gain,

ii or to transmit Mt,ks independent parallel data streams to achieve the maximum multiplexing
gain, when user ks is close to the BS (i.e., in the cell-center or short-range region) with
relatively higher average channel power gain.
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An illustration of the long-range and short-range regions is depicted in Fig. 3.5. The multiple
parallel independent data streams generated by short-range users must be treated independently
in resource allocation, subject to the constraint that total power across all antennas is within the
maximum power available to the user and that sub-carrier assignment groups these data streams
appropriately.

3.5.1 Extended System Model

First, let Gks,n ∈ CMr×Mt,ks be the MIMO channel response matrix for user ks on sub-carrier
n, each complex-valued element of which follows a Rayleigh fading model as discussed in Sec.
3.2. As noted, the channel conditions are crucial to the processing of received signals in NOMA,
with grouping based on relative channel gains and SIC decoding order determined by received
signal strength, both facilitated by channel statistics [5]. To simplify and facilitate user grouping
and decoding, we consider the effective channel power gain after detection and combining at the
receiver. With careful design of precoding and detection, the MIMO channel can be decomposed
into independent parallel virtual SISO channels [33, 35, 49].

One method to design the required precoding and detection is to take the singular value de-
composition (SVD) of the MIMO channel, from which we obtain

Gks,n = UΣVH, (3.24)

where the Mr × Mr matrix U and the Mt,ks × Mt,ks matrix V are unitary2 matrices used for
receive separation and transmit precoding, respectively [50]. Σ is an Mr ×Mt,ks diagonal matrix
of the singular values of Gks,n, of which RGks,n

≤ min(Mr,Mt,ks) are non-zero, √σr,ks,n, r =

1, 2, . . . RGks,n
and σr,ks,n’s are the eigenvalues of the matrix GH

ks,n
Gks,n representing the power

gains of the RGks,n
parallel virtual SISO channels after transmit precoding and receive separating,

and RGks,n
is the rank of Gks,n. Therefore, user ks with channel response matrix Gks,n of rank

RGks,n
has

• One virtual channel with power gain of h̃ks,n =
∑RGks,n

r=1 σr,ks,n , if user ks in the long-range
region, or

2Unitary matrices are defined such that, for the N × N unitary matrix U, UUH = IN , where UH denotes the
Hermitian or conjugate transpose of U and IN is the N ×N identity matrix.
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• RGks,n
virtual channels with power gains of h̃

k
(r)
s ,n

= σr,ks,n, r = 1, 2, .., RGks,n
, if user ks

in the short-range region.

Let K ′ be the total number of virtual channels of all users in the system. Then, the K ′ virtual
channels gains are sorted in the descending order as follows

h̃1,n > h̃2,n > · · · > h̃K′,n.

3.5.2 Simulation and Numerical Results

To evaluate the proposed algorithm and extension to multi-antenna systems, we simulate a single
cell VWN with N = 8 sub-carriers available to the BS equipped with Mr = 4 antennas to
serve two slices each with Ks = 2, except where otherwise noted. Users are equipped with
Mt,ks = 2 antennas except for a randomly selected user for which Mt,ks = 1. As before, users are
randomly located in the BS coverage area following a uniform distribution and, with precoding
and detection as defined in Section 3.5.1, the channel is modelled such that ||Vks,nHks,nPks ||2 =
χks,nd

−λ
ks

, where χ ∼ Exp(1) and λ = 3 is the path loss exponent. The BS coverage area of
radius R is divided into short- and long-range regions at radius r′ = 0.5R, with short-range
users having dks <= r′ and long-range users having dks > r′. We assume that a rich scattering
environment and uncorrelated antennas and thus have RHks,n

= Mt,ks independent channels
from the SVD Gks,n. Short-range users transmit Mt,ks data streams and long-range users transmit
a single data stream over all Mt,ks antenna. The results shown are taken over the average of 36
channel realizations. The performance gains of NOMA versus OMA in MIMO systems is studied
in more detail in Chapter 4.

The required UE transmit power as a function of slice reservations is plotted in Fig. 3.6, with
the SISO data from Fig. 3.1 added for comparison. In Fig. 3.6 (a) the impact of increasing rate
reservations is plotted, for N rsv = 1. As expected, we see more power is required for higher
reservations under both OMA and NOMA in both SISO and MIMO. Notwithstanding that in the
SISO system implementation had N = 16 sub-carriers and each slice had Ks = 4 users, and for
the MIMO simulation we set N = 8 and Ks = 2, lower power is needed for the MIMO users
to meet the rate reservations in all cases. For very high rate reservations, Rrsv ≥ 4 bps/Hz, i.e.,
due to the limited number of sub-carriers and users contributing to each slice’s achieved rate,
there is reduced feasibility of meeting the reservation for both MIMO systems and we see similar
power is required. For instance, if Rrsv = 4 bps/Hz, at minimum one user per slice must achieve
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Fig. 3.6 Average UE transmit power versus (a) reserved rate, Rrsv, and (b) reserved
sub-carriers, Nrsv, for MIMO NOMA

greater than 2 bps/Hz. At lower reservations, the power savings with MIMO NOMA are clearly
demonstrated. For example, MIMO NOMA requires 3.56 and 2.01 dB lower power than MIMO
OMA, for Rrsv = 1 and 3 bps/Hz, respectively.

Fig. 3.6 (b) plots the required UE transmit power versus reserved sub-carriers, N rsv, with
Rrsv = 1 bps/Hz. For N rsv ≥ 3, we see that MIMO OMA quickly approaches the maximum
allowable UE transmit power, Pmax as the system is limited to N = 8 sub-carriers. The plot
shows SISO-OMA outperforming MIMO OMA at higher reservations as a result of the different
number of available sub-carriers between these two systems. However, MIMO NOMA is able
to meet the slice rate and sub-carrier reservations at lower UE transmit power than both MIMO
OMA or the SISO system, even when the number of reserved sub-carriers exceeds the number
of available sub-carriers in the system, i.e, multiplexing of users is required. For examples,
MIMO NOMA requires 3.56 and 6.36 dB lower power than MIMO OMA, for N rsv = 1 and 4,
respectively.
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3.6 Chapter Summary

In this chapter, we have investigated the performance of UL NOMA in supporting VWNs with the
goal of minimizing required transmit power for battery dependent devices, while ensuring slice
isolation and minimum system performance. We have proposed an iterative algorithm based on
SCA and CGP to solve the resulting non-convex and computationally intractable resource alloca-
tion problem. Via simulation results, the performance of the proposed algorithm is evaluated for
both rate and resource-based slice reservations and, compared to OMA, demonstrates significant
power savings for users and the ability to support more users on fewer sub-carriers in both single-
and multi-antenna systems.
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Chapter 4

Resource Allocation for Uplink MIMO

NOMA VWN with Imperfect SIC

In this chapter, we investigate the resource allocation problem for UL MIMO NOMA VWN in
the presence of increased inter-user interference resulting from imperfections in performing SIC.
We limit our investigation to the multi-antenna system developed in the previous chapter and
extend the system model and proposed iterative power and sub-carrier allocation algorithm to
account for SIC imperfections. Simulation are performed to demonstrate the effectiveness of the
proposed algorithm and a comparison to both OMA and NOMA with perfect SIC is presented.

4.1 Introduction

The performance gains in terms of power efficiency and traffic density which are available under
NOMA systems are promising and the combination of NOMA and VWN can further increase
those gains through resource sharing across service providers. With NOMA relying on SIC to
resolve user signals, errors in performing SIC can significantly impact system performance as
residual cancellation errors increase inter-user interference on shared sub-carriers.

In this chapter, we extend the multi-antenna system model presented in Chapter 3 to evaluate
MIMO NOMA VWN performance with increased inter-user interference from residual cancella-
tion errors due to imperfect SIC. We assume SIC imperfections are random and may result from a
variety of sources, including inaccurate CSI or user synchronization, to examine the performance
degradation under worst-case interference levels from such imperfections. We again consider the

2017/11/17
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problem of minimizing required transmit power for battery dependent UE subject to slice reser-
vations and system constraints and the problem remains non-convex and NP-hard. The iterative
approach based on SCA and CGP used in Chapter 3 is again taken to develop an efficient power
and sub-carrier allocation algorithm.

Simulation results are presented which demonstrate that compared to MIMO OMA, under all
but the most extreme cases for SIC errors, MIMO NOMA provides better performance in terms
of UE power minimization and support of more users over fewer sub-carriers. As this chapter
represents an extension of the previous work considering NOMA without SIC errors, much of
the equations are reproduced here for the convenience of the reader, with the original numbering
preserved where appropriate.

The remainder of this chapter is organized as follows: Section 4.2 presents the system and
signal models and defines the effective channel gain power used to simplify the MIMO NOMA
resource allocation. The problem formulation is presented in Section 4.3 and the derivation and
definition of the proposed algorithm is provided in Section 4.4. Section 4.5 presents simulation
results and analysis, followed by concluding remarks in Section 4.6.

4.2 System Model

Consider a BS equipped with Mr receive antennas serving a set of slices S where each slice
s ∈ S has negotiated QoS as a minimum reserved slice rate Rrsv

s and a minimum reserved
number of sub-carriers N rsv

s to meet the needs of its users. For each slice, the set of users is
Ks = {1, . . . , Ks} and each user ks ∈ Ks, placed randomly in the BS coverage area, is equipped
with Mt,ks transmit antennas. The total number of users in the system is K =

∑
s∈S Ks and

each of the available sub-carriers, n ∈ N = {1, . . . , N}, each of which can be shared by at most
Kmax

n users.

4.2.1 Signal Model

The signals transmitted by each user can be expressed

xks,n = Pks x̃ks,n, (4.1)

where x̃ks,n =
√
βks,n sks,n ∈ CMt,ks×1 is the transmitted data vector, sks,n the information

bearing signal transmitted by user ks on sub-carrier n with transmission power coefficients
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βks,n = [βks,n,1, βks,n,2, . . . βks,n,Mt,ks
]T , and Pks ∈ CMt,ks×Mt,ks used for precoding at the trans-

mitter.
As discussed, for UL NOMA, users are grouped on sub-carriers and SIC is performed to re-

solve each of the superimposed transmissions received at the BS. In each sub-carrier n shared
by K users, they can be ranked according to their experienced channel gains to determine the
decoding order from strongest i = 1 to weakest i = K received signal strength. For MIMO sys-
tems, in general, user ks with its Mt,ks ≥ 1 antennas can transmit up to Mt,ks independent data
streams. Unfortunately, such a general approach will require impractically complex user group-
ing and decoding ordering operations and in Section 3.5 we divided the BS coverage area which
into short-range and long-range regions at radius r′, as depicted in Fig. 3.5. Users in the long-
range region uses their Mt,ks ≥ 1 antennas to transmit just 1 data stream to achieve the maximum
diversity gain with relatively low average channel power gain. Users in the short-range region
transmit Mt,ks independent parallel data streams to achieve the maximum multiplexing gain with
relatively higher average channel power gain. We now extend the system model presented in
Section 3.5.1 to consider errors from imperfect SIC.

Without loss of generality, let us consider the user ranked i in the decoding process. Signals
from users ranked lower than i are removed by SIC and signals from users ranked higher than i

are treated as unresolvable interference. Let Gi,n ∈ CMr×Mt,i be the MIMO channel matrix for
user i and Vi,n ∈ CMr×Mr be the matrix used for receiver shaping and detection for this user at
the BS. Thus, the observation at the BS for user i can be expressed

yi,n = Vi,nGi,nxi,n + Iri,n + Iei,n + Vi,nzi,n, (4.2)

where zi,n is an additive white Gaussian noise (AWGN) vector, Iri,n is the interference from users
which are ranked higher than i and not removed by SIC, defined as

Iri,n =
K∑

j=i+1

Vi,nGj,nxj,n, (4.3)

and Iei,n is residual interference from cancellation errors in performing SIC to remove signals
from users ranked lower then i, which we define as

Iei,n =
i−1∑
j=1

||xj,n − x̂j,n||Vi,nGj,nxj,n. (4.4)
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Here ||xj,n − x̂j,n|| is residual interfering signal power due to differences between the actual and
estimated signals for user j. In the case of perfect SIC, x̂j,n = xj,n and then Iei,n = 0 for all
users. Otherwise, some portion of the received power remains as interference. The magnitude
of SIC error is dependent on the type of SIC employed, the number of signals being cancelled,
and channel and user mobility conditions. To account for all sources of error, we define the
expected level of cancellation achieved by SIC as σ2

e = E [||xj,n − x̂j,n||], e.g. 20 dB cancellation
is equivalent to σ2

e = 0.01 [51]. Thus, we have

Iei,n = σ2
e

i−1∑
j=1

Vi,nGj,nPj x̃j,n. (4.5)

4.2.2 Effective Power Gain

As described in Sec. 3.5.1, to simplify the user grouping and decoding order problem we con-
sider the effective channel with precoding and detection vectors derived the SVD of the MIMO
channel. The effective channel power gains used are reproduced here for reader convenience.

The SVD of the MIMO channel response matrix yields,

Gks,n = UΣVH, (4.6)

where U and V are unitary matrices used for receive separation and transmit precoding, re-
spectively. The non-zero elements of the rank RGks,n

≤ min(Mr,Mt,ks) matrix Σ are denoted
√
σr,ks,n, r = 1, 2, . . . RGks,n

, and σr,ks,n are the eigenvalues of the matrix GH
ks,n

Gks,n which rep-
resent the power gains of the RGks,n

parallel virtual SISO channels after transmit precoding and
receive separating. Therefore, the user ranked i with channel response matrix Gi,n of rank RGi,n

has

• One virtual channel with power gain of h̃i,n =
∑RGi,n

r=1 σr,i,n , if user i in the long-range
region, or

• RGi,n
virtual channels with power gains of h̃i(r),n = σr,i,n, r = 1, 2, .., RGi,n

, if user i in
the short-range region.

As before, the multiple parallel independent data streams generated by short-range users over
their virtual channels must be treated independently in the resource allocation, subject to the
constraint that total power across all antennas is within the maximum power available to the user
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and that sub-carrier assignment groups these data streams appropriately. Defining K ′ to be the
total number of virtual channels for all users in the system for sub-carrier n, virtual channels can
be ranked in descending order as follows

h̃1,n > h̃2,n > · · · > h̃K′,n.

4.3 Problem Formulation

With precoding and detection as defined for user grouping and decoding order purposes, we must
consider power allocation per data stream. Letting β̃ks,n denote the power allocation coefficient
for data stream ks on sub-carrier n we can define power for each data virtual channel as

β̃ks,n =

⎧⎨⎩βks,n,mt , Users in the short-range region,∑Mt,ks
mt=1 βks,n,mt , Users in the long-range region.

(4.7)

Then, SINR for each data stream i can be written as

γ̃i,n =
h̃i,nβ̃i,n

zi,n + Iri,n + Iei,n
, (4.8)

and the achieved rate per data streams can be expressed

Ri,n = log2

(
1 + γ̃i,n

)
. (4.9)

Let us define αks,n ∈ {0, 1} to be the sub-carrier allocation indicator, where αks,n = 1 means user
ks is allocated to sub-carrier n. In this context, αks,n is applied to all the RGks,n

virtual channels
for user ks in sub-carrier n to ensure proper grouping. Then, defining K′

s to be the total number
of virtual channels over all users of slice s, the sum rate achieved by each slice s is

Rs =
∑

ks∈K′
s

∑
n∈N

αks,nRi,n, (4.10)

Finally, we can formalize the constraint on slice rate reservation as

C1: Rs ≥ Rrsv
s , ∀s ∈ S, (4.11)
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and the constraint on slice sub-carrier reservations can be expressed

C2:
∑

n∈N

∑
ks∈Ks

αks,n ≥ N rsv
s , ∀s ∈ S. (4.12)

To respect UE transmission power restrictions over all their Mt,ks antennas and limit the com-
plexity of performing SIC at the BS we add two additional constraints as follows

C3:
∑

n∈N

∑Mt,ks

mt=1
βks,n,mt ≤ Pmax, ∀s ∈ S, ∀ks ∈ Ks, (4.13)

C4:
∑

s∈S

∑
ks∈Ks

αks,n ≤ Kmax
n , ∀n ∈ N . (4.14)

Finally, to ensure that no power is allocation to sub-carriers which the UE is not assigned, we
force the power allocation to zero when the sub-carrier allocation indicator is zero

C5:
∑Mt,ks

mt=1
βks,n,mt − αks,n × Pmax ≤ 0, ∀n ∈ N , ∀s ∈ S, ∀ks ∈ Ks. (4.15)

Thus, the minimum power needed to meet slice reservations within practical system limita-
tions is obtained by solving the following optimization problem

min
α,β

max
∀s∈S

∀ks∈K′
s

∑
n∈N

αks,nβ̃ks,n (4.16)

Subject to: C1–5 .

where α and β are the K ′ × N matrices of αks,n sub-carrier allocation indicators and β̃ks,n user
transmit power factors, respectively.

4.4 Proposed Algorithm

As in problem in (3.6), constraints C1, C2, and C5 are all non-convex in (4.16) and the complexity
induced by the binary variable yields a problem which is NP-hard. In order to develop an efficient
algorithm to solve (4.16), an iterative approach is again taken and the problem decomposed into
separate sub-carrier and power allocation problems, as described in Algorithm 4.1, each of which
can be solved iteratively using the techniques of CGP and AGMA described in Appendix A.3.
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Algorithm 4.1 Iterative Power and Sub-carrier Allocation
Initialize: Set t = 0, α∗(0) = [1]K′×N and β∗(0) = [Pmax/N]K′×N

repeat

t = t+ 1
Step 1: Derive sub-carrier allocation α∗(t) according to Algorithm 4.1.1 with input
β∗(t− 1), α∗(t− 1)

Step 2: Derive power allocation β∗(t) according to Algorithm 4.1.2 with input α∗(t),
β∗(t− 1)

until ‖β∗(t)− β∗(t− 1)‖ ≤ ε1 and ‖α∗(t)−α∗(t− 1)‖ ≤ ε2, 0 < ε1, ε2 � 1

4.4.1 Sub-carrier Allocation1

Given a fixed power allocation, we have the following optimization problem

min
α

max
∀s∈S

∀ks∈K′
s

∑
n∈N

αks,nβ̃ks,n (4.17)

Subject to: C1, C2, C4.

Each of C1 and C2 is non-convex and, due to the binary variable α, this problem suffers from
high computational complexity. First we reduce the complexity by relaxing αks,n ∈ [0, 1]. In
implementation, α can recovered to binary via integer rounding, as described in Sec. 3.3. For
each iteration, t1, we can then approximate the non-convex constraints as convex functions by
applying AGMA.

C1 can again be written as Rrsv
s∑

ks∈K′
s

∑
n∈N Rks,n

≤ 1, the left-hand side of which can be approx-
imated by the following convex function

xs(t1) = Rrsv
s ×

∏
ks∈K′

s

∏
n∈N

(
αks,n(t1)Rks,n

ηks,n(t1)

)−ηks,n(t1)

, (3.8)

where

ηks,n(t1) =
αks,n(t1 − 1)Rks,n∑

ks∈K′
s

∑
n∈N αks,n(t1 − 1)Rks,n

. (3.9)

1Other than accounting for all virtual channels in the optimization and calculation of Rs in C1, (4.17) is equivalent
to (3.7) and has been reproduced here for the convenience of the reader.
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Algorithm 4.1.1 Sub-carrier Allocation
Require: Power allocation β∗(t− 1), α∗(t− 1)

Initialize: Set t1 = 1, α(0) = α∗(t− 1)
repeat

Step 1: Update ηks,n(t1) and κks,n(t1) from (3.9), (3.11)
Step 2: Derive α(t1), according to (4.18) using CVX [46]

until ‖α(t1)−α(t1 − 1)‖ ≤ ε1, otherwise set t1 = t1 + 1
return α∗(t) = α(t1)

Similarly, we can transform C2 and define the convex function

ys(t1) = N rsv
s ×

∏
ks∈K′

s

∏
n∈N

(αks,n(t1)

κks,n(t1)

)−κks,n(t1)

, (3.10)

where

κks,n(t1) =
αks,n(t1 − 1)∑

ks∈K′
s

∑
n∈N αks,n(t1 − 1)

. (3.11)

Thus, at each iteration, t1, we solve

min
α

max
∀s∈S

∀ks∈K′
s

∑
n∈N

αks,n(t1)β̃ks,n (4.18)

Subject to: C4

xs(t1) ≤ 1 , ∀s ∈ S,
ys(t1) ≤ 1 , ∀s ∈ S.

as described in Algorithm 4.1.1.

4.4.2 Power Allocation Sub-problem

Given a sub-carrier allocation, we solve the following optimization problem

min
β

max
∀s∈S

∀ks∈K′
s

∑
n∈N

αks,nβ̃ks,n

Subject to: C1, C3, C5.

(4.19)
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Here, C3 is in the proper form but C5 is a convex constraint for fixed sub-carrier assignment
and C1 remains non-convex due to the presence of the interference terms in the expression for
Rks,n. Extending the approach taken in Section 3.3.2 to account for imperfect SIC, we can rewrite
the rate expression as

Ri,n = log2

(zi,n + Iri,n + Iei,n + h̃i,nβ̃i,n

zi,n + Iri,n + Iei,n

)
. (4.20)

Removing the logarithm, C1 can then be expressed ∀s ∈ S as

∏
ks∈K′

s

∏
n∈N

( zi,n + Iri,n + Iei,n

zi,n + Iri,n + Iei,n + h̃i,nβ̃i,n

)αks,n ≤ 2−Rrsv
s . (4.21)

Then, expanding all matrix operations and calculating interference resulting from each data
stream, at iteration t2 we can approximate the product terms with the following convex func-
tion

xi,n(t2) =
(
zi,n + Iri,n(t2) + Iei,n(t2)

)× ( zi,n
φi,n(t2)

)−φi,n(t2) ×
i−1∏
j=1

( β̃j,n(t2)h̃j,nσ
2
e

γj,n(t2)

)−γj,n(t2)

×
K′∏

j=i+1

( β̃j,n(t2)h̃j,n

μj,n(t2)

)−μj,n(t2) ×
( β̃i,n(t2)h̃i,n

ρi,n(t2)

)−ρi,n(t2)

, (4.22)

where

φi,n(t2) =
zi,n

ζi,n(t2)
(4.23)

γj,n(t2) =
β̃j,n(t2 − 1)h̃j,nσ

2
e

ζi,n(t2)
, (4.24)

μj,n(t2) =
β̃j,n(t2 − 1)h̃j,n

ζi,n(t2)
, (4.25)

ρi,n(t2) =
β̃i,n(t2 − 1)h̃i,n

ζi,n(t2)
, (4.26)

ζi,n(t2) = zi,n + Irj,n(t2 − 1) + Iej,n(t2 − 1) + h̃i,nβ̃i,n. (4.27)
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Algorithm 4.1.2 Power Allocation
Require: Sub-carrier allocation α∗(t), β∗(t− 1)

Initialize: Set t2 = 1, β(0) = β∗(t− 1)
repeat

Step 1.1: Update φi,n(t2), γj,n(t2), μj,n(t2), ρi,n(t2), and ζi,n(t2) from (4.23-4.27)
Step 1.2: Derive β(t2) according to (4.28) using CVX [46]

until ‖β(t2)− β(t2 − 1)‖ ≤ ε2, otherwise set t2 = t2 + 1
return β∗(t) = β(t2)

Then at each iteration, t2, we solve

min
β

max
∀s∈S

∀ks∈K′
s

∑
n∈N

αks,nβ̃ks,n(t2)

Subject to: C3, C5∏
ks∈K′

s

∏
n∈N

[xi,n(t2)]
αks,n ≤ 2−Rrsv

s , ∀s ∈ S, (4.28)

as described in Algorithm 4.1.2.

4.4.3 Complexity Analysis

As discussed in Section 3.3.3, an interior point method is used to solved the problems in Al-
gorithms 4.1.1 and 4.1.2 and the required number of iterations to solve by this method is given
as log(c/t0δ)

log ξ
[47]. Other than the extension to account for SIC error, the problem constraints are

the same in (3.6) and (4.16), and remain so in the decomposed sub-problems. The difference in
complexity for (4.18) and (4.28) comes from three sources:

• With Mt,ks ,Mr > 1, the possible UL channels for each user over which we must optimize
is now MrMt,ks per sub-carrier, or NMrMt,ks

• For short-range users, each datastream is allocated power independently, constrained by the
sum power over all antennas less than Pmax and grouping, thus each datastream increases
the effective number of users in the system to K ′

• The inclusion of terms for imperfect SIC in the rate calculation and considering all transmit
receive antenna pairs, increases further the worst case number of required computations to
convert to the GP form using AGMA
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For (4.18) the total number of constraints remains c1 = 2S +N , as in (3.12), but considering
these sources of additional complexity, for (4.28) we have to consider all real and virtual users
and now have c′2 = S + K + K ′N . Therefore, now the number of iterations required to solve
each algorithm is now

Algorithm 4.1.1: i′1 ×
log(c1/(t

0
1δ1))

log(ξ1)
, (4.29)

Algorithm 4.1.2: i′2 ×
log(c′2/(t

0
2δ2))

log(ξ2)
, (4.30)

which still has a polynomial presentation and the number of iterations (Newton steps) grows as
O(

√
c) [47, 48].

Additionally, because we must optimize over all virtual channels, the number of variables in
both problems is now � = K ′N . The total computational complexity of solving the GP problems
is increased but remains polynomial, namely,

CGP =

⎧⎨⎩O(c1.51 �2) = O((K ′)2N3.5), Algorithm 3.1.1,

O(c1.52 �2) = O((K ′)3.5N3.5), Algorithm 3.1.2.
(4.31)

Considering the possible UL virtual channels, the worst-case number of computations required
to convert to the GP form using AGMA at each iteration is also increased. For 4.1.2, defining
M∗

t = max{Mt,ks}, we have i′2 = (K ′)2NMrM
∗
t + 2K ′N + 3K ′NMrM

∗
t = O((K ′)2N). For

4.1.1, it is now dependent on K ′ and we have i′1 = 4K ′N = O(K ′N). In both cases, this is of
lower order than CGP and thus the overall complexity per iteration of each of the Algorithms is
CI = CGP.

4.5 Numerical Results and Discussions

To evaluate the proposed algorithm for UL MIMO NOMA, we simulate a single cell VWN serv-
ing two slices each with Ks = 4 users, except where otherwise noted. The BS is equipped with
Mr = 4 receive antennas and the N = 16 sub-carriers can each be shared by at most Kmax

n = 4

users each of which is equipped with Mt,ks = 2, except for one random user in each slice for
which Mt,ks = 1. In all trials we have set Pmax = 23 dBm, and Rrsv

s = Rrsv and N rsv
s = N rsv

for all slices. The users are placed randomly within the BS coverage area following a uniform
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Fig. 4.1 Average UE transmit power versus (a) reserved rate, Rrsv, and (b) reserved
sub-carriers, Nrsv

distribution with distances dks normalized to the radius of the coverage area, R. The coverage
area is divided at radius r′ = 0.5 × R with short-range users having dks <= r′ and long-range
users having dks > r′. We assume that a rich scattering environment and uncorrelated anten-
nas and thus have RHks,n

= Mt,ks independent channels from the SVD of the MIMO channel
matrix. Short-range users transmit Mt,ks data streams and long-range users transmit a single
data stream over all Mt,ks antenna. With precoding and detection as defined in Section 4.2, the
channel is modelled as a Rayleigh fading channel such that ||Vks,nGks,nPks ||2 = χks,nd

−λ
ks

, where
χ ∼ Exp(1) and λ = 3 is the path loss exponent. Errors in performing SIC are introduced as
residual interfering signal power with σ2

e ∈ {0.01, 0.05, 0.1}, i.e., up to 10% residual power re-
maining as inter-user interference after performing SIC at the BS, with results for perfect SIC,
where σ2

e = 0, and for MIMO OMA, where Kmax
n = 1, presented for comparison. The results

shown are taken over the average of 100 channel realizations.
In Fig. 4.1 (a) the average transmit power per UE is plotted versus Rrsv with N rsv = 1 for

OMA and NOMA with varied levels of SIC error. Power increases with increasing Rrsv and
SIC error levels since higher power is required to meet the slice rate reservation and overcome
the increased inter-user interference from SIC imperfections. In all cases, NOMA is more power
efficient than OMA though for Rrsv = bps/Hz and σ2

e = 0.10 the power savings are negligible.
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For example, for Rrsv = 1 bps/Hz, NOMA requires an average UE transmit power of 6.32 dB,
6.28 dB, 5.74 dB, and 3.11 dB lower than OMA for σ2

e = 0, 0.01, 0.05, 0.10, respectively. For
Rrsv = 5 bps/Hz, power savings over OMA fall to 2.15 dB, 0.56 dB, 0.23 dB, and 0.05 dB for
σ2
e = 0, 0.01, 0.05, 0.10, respectively.

The relationship between average transmit and slice sub-carrier reservations, N rsv is plotted
in Fig. 4.1 (b) for Rrsv = 1 bps/Hz. As with increasing rate reservations, higher transmit power is
required for higher sub-carrier reservations. The effect of varying N rsv is particularly impactful
for OMA which cannot avoid weak sub-carriers in favour of shared strong sub-carriers. For
σ2
e = 0.10 we see a similarly sharp increase in transmit power for N rsv > 3 as either high levels

of interference or the use of weaker sub-carriers require higher transmit power. However, even
for high levels of SIC error, NOMA remains more power efficient than OMA. For example, with
N rsv = 1, NOMA requires an average UE transmit power of 6.83 dB, 6.52 dB, 6.33 dB, and 4.20

dB lower than OMA for σ2
e = 0, 0.01, 0.05, 0.10, respectively. At N rsv = 4, NOMA is able to

meet rate reservations with 11.93 dB, 11.71 dB, 11.22 dB, and 7.48 dB lower power than OMA
for σ2

e = 0, 0.01, 0.05, 0.10, respectively. In comparison to increased rate reservations, where
the optimal solution can allocate sufficient transmit power to a few users on strong sub-carriers,
for OMA the results for N rsv ≥ 3 are significantly impacted by reduced feasibility of finding a
suitable solution as the sub-carrier reservation forces the use of weaker sub-carriers.

The performance impact of system density, i.e., the ratio of users to sub-carriers in the system,
is depicted in Fig. 3.3. In Fig. 3.3 (a), the average transmit power versus the number of users K
is plotted for N = 16 with N rsv = 1 and Rrsv = 1 bps/Hz. As expected, with increasing SIC
error levels required power increases as there will be cases where shared sub-carriers are needed
to meet the slice rate reservation. Since the system will allow the users to be pushed into outage
as long as the reserved slice rate is met, as the number of users increases each slice can leverage
users with stronger sub-carriers or spread users over more sub-carriers at lower power. In general,
this causes the required power to meet slice reservation decreases with more users per slice and
the difference in power between the different levels of SIC error is reduced as sub-carrier sharing
becomes less beneficial. The effect of varying the total number of sub-carriers, N , in the system
for fixed number of users is depicted in Fig. 3.3 (b), for K = 4 with N rsv = 1 and Rrsv = 1

bps/Hz. As before, we see that with decreasing system density, in this case for increasing number
of sub-carriers, required average required power for both OMA and NOMA goes down due to
the increased flexibility in ignoring weaker sub-carriers and decreased reliance on power-domain
multiplexing. Required power under NOMA is lower than for OMA in general, but we note that,
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Fig. 4.2 Average UE transmit power versus (a) users, K, and (b) sub-carriers, N

as the system density increases, for high levels of SIC error the performance gains over OMA
may disappear as the optimal solution reverts to a single user per sub-carrier.

To analyse the convergence and complexity of the proposed algorithms, Fig. 4.3 shows the
number of iterations for convergence of Algorithms 4.1.1 and 4.1.2 with N rsv = 1 and Rrsv = 1

bps/Hz. In Fig. 4.3 (a) we see the required iterations as a function of the number of users, K, and
in Fig. 4.3 (b) as a function of the number of sub-carriers, N . In the analysis in Section 4.4.3, it
was found that the complexity of Algorithm 4.1.2 was higher than that of Algorithm 4.1.1, with
Algorithm 4.1.2 more sensitive to system parameters K and N , and particularly to increasing K.
This is consistent with the required number of iterations for each algorithm to converge plotted
in Fig. 4.3.

4.6 Chapter Summary

In this chapter, we have investigated the performance of UL MIMO NOMA in supporting VWNs
in the presence of increased inter-user interference from errors in performing SIC. With the goal
of minimizing required transmit power for battery dependent devices, while ensuring slice isola-
tion and minimum system performance, we proposed an iterative algorithm based on SCA and
CGP to solve the resulting non-convex and computationally intractable resource allocation prob-
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Fig. 4.3 Number of required iterations for each Algorithm versus (a) users, K, and
(b) sub-carriers, N

lem. Simulation results were presented validating the proposed algorithm and demonstrating that,
even for high level of SIC error, MIMO NOMA outperforms MIMO OMA in terms of required
user transmit power and overall system density.
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Chapter 5

Outage Constrained Resource Allocation

for Uplink NOMA VWN

In this chapter, we examine the NOMA resource allocation problem for VWN with power-
restricted but high priority users supporting critical applications such as health and public moni-
toring. Such systems require high reliability and robust resource allocation techniques are needed
to ensure performance. The proposed algorithm for power and sub-carrier allocation is derived
from the non-convex optimization minimizing power subject to rate and probability of outage
constraints. To tackle the high computational complexity of such a problem, we apply the chance-
constrained robust optimization approach to reach a tractable formulation and develop an efficient
iterative algorithm based on CGP and SCA. Simulations are performed to validate the proposed
algorithm and a comparison to both OMA and non-robust NOMA is presented.

5.1 Introduction

The application of NOMA with imperfect SIC to support VWN was investigated in Chapters 3
and 4. System performance was examined for NOMA in the presence of increased inter-user
interference from imperfect SIC and dynamic and efficient resource allocation algorithms based
on CGP were presented demonstrating the performance gains available with VWN and NOMA.
As was noted, many critical use-cases for IoT devices have strict QoS requirements and slice
level QoS guarantees the performance for groups of users. For these types applications, user-
level performance must be considered and robust optimization approaches are needed.

2017/11/17
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In this chapter, we consider the resource allocation problem for UL NOMA VWN whose
users represent power-restricted but high priority devices. As noted, DL NOMA has been exten-
sively studied and UL NOMA is of increasing interest due to the greater resources available to the
BS in performing SIC over more users, but also due to the expected increase in the number of de-
vices subject to severe power-constraints and for which UL traffic will significantly outweigh DL
traffic, such as distributed sensor networks, asset tracking, and health and public safety monitor-
ing applications. Such systems require high reliability and robust resource allocation techniques
are needed to protect against device outage. Low-power sensors and devices used in asset track-
ing are typically equipped with a single antenna, so we limit our investigation in this chapter to
UL SISO channels, though we have demonstrated a mechanism to extend resource allocation for
NOMA to multi-antenna systems in the preceding chapters. In this context, we consider slices
as groups of users serving a particular critical application, with QoS requirements driven by the
specific needs of that application. To mathematically represent these issues of slicing and iso-
lation in resource management problems, the minimum rate of each user per slice is preserved.
However, preserving minimum rate in dynamic wireless networks can be challenging and in the
context of UL NOMA, errors in performing SIC can degrade system and user performance [5].

As discussed, errors in performing SIC can result from any of several source and, as was done
in Chapter 4, we assume SIC imperfections are random. To consider the sources of SIC error and
protect the QoS and isolation of slices we apply the techniques of chance-constrained optimiza-
tion theory, where the maximum outage probability of each critical application is kept below a
predefined value [52, 53]. Since the resource allocation problem with this type of constraint suf-
fers from significant computational complexity, we first apply the Chebyshev approximation via
the Chebyshev-Cantelli inequality to reach a more tractable formulation. Then, we use this result
to formulate a robust outage-constrained resource allocation problem which minimizes transmit
power of users, which is highly desirable for critical applications which rely on low-power sen-
sors, while ensuring slice isolation and outage performance. The robust problem constrains on
a lower-bound on achieved rate to ensure outage performance and remains both non-convex and
NP-hard [7]. To tackle this complexity, we apply the techniques of variable relaxation and CGP,
discussed in Appendix A.3, to develop a computationally tractable two-step iterative algorithm
which can be solved efficiently. The proposed algorithm is then evaluated in terms of user trans-
mit power, outage performance, and system density performance.

Simulation results demonstrate that, even for high levels of SIC error variance, the proposed
algorithm for NOMA outperforms the traditional OMA case in terms of both required user trans-
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mit power and overall system density, i.e., serving more users over fewer sub-carriers at lower
power. The outage-constrained solution necessitates a power-robustness trade-off compared to
non-robust NOMA but simulation results demonstrate that, notwithstanding this trade-off that
even for high levels of SIC error variance the proposed algorithm for UL NOMA can support
more users at lower average transmit power on fewer sub-carriers than the corresponding OMA
system.

The remainder of this chapter is organized as follows: In Section 5.2, a system model for
a virtualized UL NOMA system is presented and the problem formulation based on an outage
probability analysis is presented in Section 5.3. The derivation of the proposed joint resource
allocation algorithm is provided in Section 5.4. Section 5.5 presents simulation results and their
related analysis, followed by the conclusion in Section 5.6.

5.2 System Model

Consider a BS employing UL NOMA to support a VWN in which for each slice s ∈ S serves
battery-dependent users are supporting a particular critical application. For each slice, its group
of users is Ks = {1, . . . , Ks} and the total number of users in the system is K =

∑
s∈S Ks.

Each slice has negotiated QoS based on the application priority and requirements of its users as
a minimum rate, Rrsv

s , which must be ensured for each user in supporting critical applications.
The set of available sub-carriers, N = {1, . . . , N}, is shared by all K users and SIC is applied at
the BS to resolve the individual signals when a given sub-carrier is used by more than one user
concurrently.

As discussed, to perform SIC users are ranked in each sub-carrier with signals of lower rank-
ing user removed by SIC and those of higher ranking users treated as unresolvable interference.
Thus, for the user ranked i transmitting with power βi,n, the SINR experienced for this user on
sub-carrier n is

γi,n =
βi,nhi,n

σ2
i,n +

∑K
j=i+1 βj,nhj,n + Iei,n

, ∀i, n (5.1)

where σ2
i,n is additive white Gaussian noise (AWGN) and Iei,n is the residual interference which

resulting from imperfect cancellation of the transmissions of users 1 ≤ j < i.
Defining γ̂i,n = 1 + γi,n, to simplify the derivation to follow, and αks,n ∈ {0, 1} to be the

sub-carrier allocation indicator, where αks,n = 1 means that sub-carrier n is allocated to user ks,
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the achieved rate for user ks, whose rank i is determined independently for each sub-carrier n, is

Rks =
∑
n∈N

αks,n log (γ̂) . (5.2)

Then, the constraint on achieved rate1 to meet reservations can then be expressed as

C1 : Rks ≥ Rrsv
s , ∀ks ∈ Ks, ∀s ∈ S. (5.3)

For practicality, we limit the user transmit power to Pmax and the number of users per sub-carrier
is constrained to Kmax

n by the following two constraints

C2 :
∑
n∈N

βks,n ≤ Pmax, ∀s ∈ S, ∀ks ∈ Ks, (5.4)

C3 :
∑
s∈S

∑
ks∈Ks

αks,n ≤ Kmax
n , ∀n ∈ N . (5.5)

Further, we restrict power allocation to only those sub-carriers which are allocated to users with

C4 : βks,n − αks,n × Pmax ≤ 0, ∀n ∈ N , ∀s ∈ S, ∀ks ∈ Ks. (5.6)

Then, the minimum power needed to meet slice reservations within practical system limita-
tions is obtained by solving the following optimization problem

min
α,β

max
∀s∈S

∀ks∈Ks

∑
n∈N

αks,nβks,n, (5.7)

Subject to: C1–4

where α and β are the K × N matrices of αks,n sub-carrier allocation indicators and βks,n user
transmit power factors, respectively.

1To limit notational complexity in the derivations in Sections 5.3 and 5.4, we use log to be the natural logarithm
and subsequently in this chapter user and reserved rates are expressed in units of nats/s/Hz.



5 Outage Constrained Resource Allocation for Uplink NOMA VWN 52

5.3 Robust Formulation with Outage Probability Analysis

The optimization in (5.7) assumes that SINR can be calculated from accurate CSI and a known
level of SIC residual cancellation error; however, CSI may not be accurately known and, as-
suming that SIC errors occur, the occurrence and magnitude of residual cancellation error is
non-deterministic and depends on one or more factors including, but not limited to, the type of
SIC employed, thermal and environmental noise, system parameters such as number of users,
user mobility and synchronization of received signals. From (5.1), we see that residual cancella-
tion errors from imperfect SIC will degrade the achieved SINR and may reduce users achieved
rate below their reserved Rrsv

s , i.e., the user will be in outage.
Residual cancellation errors from imperfect SIC results in a non-zero residual interference

from cancelled signals which we model as

Iei,n =
i−1∑
j=1

βj,nhj,n‖ej,n‖2, (5.8)

where we assume that ej,n ∼ CN (0, σ2
e) and as a result 1

σ2
e
‖ej,n‖2 is a random variable which

has a chi-squared distribution with 2 degrees of freedom. The assumption on ej,n is made by
considering the potential sources of error, i.e., thermal noise, CSI inaccuracy, and asynchroniza-
tion. For each source, and others not explicitly accounted for, the magnitude of the resulting
cancellation error either follows a Gaussian distribution, e.g., thermal noise and asynchronicity
received signals, as shown in [30], or at worst can be assumed to be independent and identically
distributed (i.i.d) for any sources of error resulting from co-channel interference of other users in
the system. For each source of error, the convolution of i.i.d. random variables quickly converges
to the Gaussian distribution.

To address the uncertainty in achieved SINR due to the uncertain parameter, ej,n in (5.8), we
apply the techniques of robust optimization theory where the nominal optimization problem, i.e.,
(5.7), is mapped to its own robust counterpart considering the uncertain parameter [53]. Since
the uncertain parameter affects the constraint of our optimization problem, i.e., C1 in (5.3), and
not the objective function, we apply the chance-constrained approach where the probability of
violation of the outage constraint is limited to a certain value [52]. This technique considers the
expected values of the data and accepts sub-optimal solutions which remain feasible if the data
changes; however, this introduces a trade-off between robustness and optimality via changing the
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limit of violation of constraints [54]. To apply this approach, we reformulate C1 and consider
the maximum outage probability, 0 ≤ εs ≤ 1, which has been negotiated by each slice based on
service levels required by their users. Therefore, C1 can be re-expressed for all users ks ∈ Ks as
its own robust counterpart

Pr [Rks ≤ Rrsv
s ] ≤ εs, (5.9)

which is equal to
Pr [Rks ≥ Rrsv

s ] ≥ 1− εs. (5.10)

Note that (5.10) can be considered as a maximum outage probability of reserved rate of each user.
Depending on the SLA and the request of critical applications, these threshold can be adjusted,
e.g., for highly critical mission applications, one can use very small value of εs, resulting in
significant computational complexity and less optimality [52, 53]. However, one can also allow
for increased efficiencies in cases when looser constraints are acceptable.

In this context, to tackle the computational complexity and reach a more tractable formula-
tion, the constraint with uncertain parameters is relaxed and a more tractable formulation is used
in place of the original one [52, 53]. Here, we apply the Chebyshev approximation using the
Chebyshev-Cantelli inequality, defined as

Pr (X − E[X] ≥ η) ≤ Var[X]

Var[X] + η2
, (5.11)

to replace (5.10). Substituting X = Rks and η = Rrsv
s − E[Rks ], we have

Pr
[
Rks − E[Rks ] ≥ Rrsv

s − E[Rks ]
] ≤ Var[Rks ]

Var[Rks ] + (Rrsv
s − E[Rks ])

2
. (5.12)

From the inequality in (5.12), the constraint in (5.10), which does not have a closed form solution,
can be relaxed to a deterministic form as

1− εs ≤ Var[Rks ]

Var[Rks ] + (Rrsv
s − E[Rks ])

2
, (5.13)

which can be re-arranged as

E[Rks ] +

√
Var[Rks ]

εs
1− εs

≥ Rrsv
s . (5.14)
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While (5.14) is more tractable than (5.10), we have to calculate the mean and variance of Rks . In
order to obtain the required statistics, recall that the achieved rate on each sub-carrier is indepen-
dent. Then, from (5.2), we have

E[Rks ] =
∑
n∈N

αks,nE[log(γ̂i,n)], (5.15)

Var[Rks ] =
∑
n∈N

αks,nVar[log(γ̂i,n)]. (5.16)

To find E[log(γ̂i,n)] and Var[log(γ̂i,n)], we will approximate the rate function with the help of
the Taylor series of a logarithmic function. Approximating with two terms, we have

log(γ̂i,n) ≈ log(E[γ̂i,n)] +
1

E[γ̂i,n]
(γ̂i,n − E[γ̂i,n]). (5.17)

We can take the expected value and variance of the both sides to obtain

E[log(γ̂i,n)] ≈ log(E[γ̂i,n]), (5.18)

Var[log(γ̂i,n)] ≈ Var[γ̂i,n]

E2[γ̂i,n]
. (5.19)

Now, we need to calculate E[γ̂i,n] and Var[γ̂i,n]. Similarly, we use the Taylor series to approxi-
mate the one plus SINR expression as a function of Iei,n. With two terms, we have

γ̂i,n(I
e
i,n) ≈ 1 +

ai,n
bi,n + E[Iei,n]

− ai,n
(bi,n + E[Iei,n])

2
(Iei,n − E[Iei,n]) (5.20)

and consequently

E[γ̂i,n] ≈ 1 +
ai,n

bi,n + E[Iei,n]
, (5.21)

Var[γ̂i,n] ≈
a2i,n

(bi,n + E[Iei,n])
4
Var[Iei,n], (5.22)

where, for the sake of notational simplicity, we have defined

ai,n = βi,nhi,n , bi,n = σ2
i,n +

K∑
j=i+1

βj,nhj,n. (5.23)
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As a result, considering (5.15), (5.16), (5.18), (5.19), (5.21) and (5.22), we can express the mean
and variance of Rks,n as

E[Rks,n] ≈ αks,n log

(
1 +

ai,n
bi,n + E[Iei,n]

)
, (5.24)

Var[Rks,n] ≈ αks,n

(
ai,n

bi,n + E[Iei,n]

)2

×
Var[Iei,n]

(ai,n + bi,n + E[Iei,n])
2
, (5.25)

From the definition of Iei,n and ej,n in (5.8), we then have

E[Iei,n] =
i−1∑
j=1

2aj,nσ
2
e , (5.26)

Var[Iei,n] =
i−1∑
j=1

4a2j,nσ
4
e , (5.27)

Finally, substituting (5.24) and (5.25) in (5.14), the approximation of the outage probability con-
straint in (5.10), ∀ks ∈ Ks, ∀s ∈ S can be written as

C̃1 :
∑
n∈N

αks,n log

(
1 +

ai,n
bi,n +E[Iei,n]

)
+

√
εs

1− εs
×√√√√∑

n∈N
αks,n

(
ai,n

bi,n +E[Iei,n]

)2
Var[Iei,n]

(ai,n + bi,n +E[Iei,n])
2
≥ Rrsv

s . (5.28)

Then, subject to C̃1, C2–4, the chance-constrained counterpart of (5.7) is

min
α,β

max
∀s∈S

∀ks∈Ks

∑
n∈N

αks,nβks,n. (5.29)

Note that, since C̃1 is not a linear constraint, we cannot apply the conventional approaches
of chance-constrained optimization, such as the Bernstein approximation [53]. Therefore, in the
sequel we apply the techniques of CGP discussed in Appendix A.3 to reach a more tractable
formulation.
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Algorithm 5.3 Iterative Power and Sub-carrier Allocation
Initialize: Set t = t1 = t2 = 0, β∗(0) = [Pmax/N]K×N and α∗(0) = [1]K×N .
repeat

Step 1: Derive power allocation matrix, β∗(t)
repeat

t1 = t1 + 1
Step 1.1: Update Γks,n(t1), θks(t1), νi,n(t1), ψj,n(t1), ρi,n(t1), μj,n(t1), ζi,n(t1),
Δks,n(t1), and Λj,n(t1) from (5.36), (5.37), (5.42-5.46), (5.50), (5.52)
Step 1.2: Find β∗(t1) according to (5.53) using CVX [46]

until ‖β∗(t1)− β∗(t1 − 1)‖ ≤ ε1
Step 2: Derive sub-carrier allocation matrix, α∗(t)
repeat

t2 = t2 + 1
Step 2.1: Update τks,n(t2), φks,n(t2), υks,n(t2), and ωks,n(t2) from (5.60-5.62), (5.64)
Step 2.2: Find α∗(t2) according to (5.65) using CVX [46]

until ‖α∗(t2)−α∗(t2 − 1)‖ ≤ ε2
until ‖β∗(t)− β∗(t− 1)‖ ≤ ε1 && ‖α∗(t)−α∗(t− 1)‖ ≤ ε2, otherwise t = t+ 1

5.4 Proposed Algorithm

Both C̃1 and C4 are non-convex and the optimization in (5.29) is computationally intractable due
to the binary sub-carrier allocation indicator, α. In order to develop an efficient resource alloca-
tion algorithm, we first relax the elements of α to be continuous on the interval [0, 1], and then
decompose (5.29) into separate power and sub-carrier allocation problems which, while simpler
than the original problem, remain challenging due to the nature of the constraints. For each sub-
problem, we use SCA and apply AGMA to approximate non-convex constraints with monomial
functions on each iteration until the solution converges, as discussed in Appendix A.3. Overall,
the resource allocation algorithm is shown in Algorithm 5.3. Once the algorithm converges, the
sub-carrier allocation α can be recovered to binary via integer rounding, as described in Sec. 3.3.

5.4.1 Power Allocation

With a fixed sub-carrier allocation, the optimization problem becomes

min
β

max
∀s∈S

∀ks∈Ks

∑
n∈N

αks,nβks,n (5.30)

Subject to: C̃1, C2, C4.
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For fixed sub-carrier allocation, both C2 and C4 are in the proper GP form but C̃1 remains
non-convex and appropriate approximations are required. To deal with C̃1 we define two new
variables, X = [Xks,n]K×N and Y = [Yks ]K×1, and transform C̃1 into three constraints as follows

C1.1 :
∑
n∈N

αks,nXks,n +

√
εs

1− εs
Yks ≥ Rrsv

s , ∀s ∈ S, ∀ks ∈ Ks, (5.31)

C1.2 :Xks,n ≤ log

(
1 +

ai,n

bi,n +
∑i−1

j=1 2aj,nσ
2
e

)
∀s ∈ S, ∀ks ∈ Ks, ∀n ∈ N , (5.32)

C1.3 :Y 2
ks ≤

∑
n∈N

αks,n

(
ai,n

bi,n +
∑i−1

j=1 2aj,nσ
2
e

)2

×
∑i−1

j=1 4a
2
j,nσ

4
e

(ai,n + bi,n +
∑i−1

j=1 2aj,nσ
2
e)

2

, ∀s ∈ S, ∀ks ∈ Ks. (5.33)

For simplicity of notation, let C =
√

εs
(1−εs)

, and we can re-arrange C1.1 as

Rrsv
s∑

n∈N αks,nXks,n + CYks

≤ 1. (5.34)

Then, for iteration index t1, we can apply AGMA to approximate C1.1 with the following convex
constraint

C̃1.1 : Rrsv
s ×

∏
n∈N

(
αks,nXks,n(t1)

Γks,n(t1)

)−Γks,n(t1)

×
(
CYks(t1)

θks(t1)

)−θks (t1)

≤ 1, ∀s ∈ S, ∀ks ∈ Ks,

(5.35)

where
Γks,n(t1) =

αks,nXks,n(t1 − 1)∑
n∈N αks,nXks,n(t1 − 1) + CYks(t1 − 1)

, (5.36)

and
θks(t1) =

CYks(t1 − 1)∑
n∈N αks,nXks,n(t1 − 1) + CYks(t1 − 1)

. (5.37)

To eliminate the logarithm, C1.2 can be expressed as

eXks,n ≤ 1 +
ai,n

bi,n +
∑i−1

j=1 2aj,nσ
2
e

. (5.38)
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Then, approximating eXks,n using the truncated Taylor series and re-arranging, we have

eXks,n ≈
10∑

m=0

Xm
ks,n

m!
≤

(
ai,n + bi,n +

∑i−1
j=1 2aj,nσ

2
e

bi,n +
∑i−1

j=1 2aj,nσ
2
e

)

=⇒
10∑

m=0

Xm
ks,n

m!
×
(

bi,n +
∑i−1

j=1 2aj,nσ
2
e

ai,n + bi,n +
∑i−1

j=1 2aj,nσ
2
e

)
≤ 1. (5.39)

This approximation remains non-convex but can be transformed by AGMA into a convex con-
straint on each iteration as follows

C̃1.2 :
10∑

m=0

Xm
ks,n

(t1)

m!
×

(
bi,n(t1) +

i−1∑
j=1

2aj,n(t1)σ
2
e

)
× zi,n(t1) ≤ 1, ∀s ∈ S, ∀ks ∈ Ks, ∀n ∈ N .

(5.40)

Where, substituting from the definition of b in (5.23) and applying AGMA and simplifying, we
have defined zi,n(t1) as the following convex function

zi,n(t1) =

(
σ2
i,n

νi,n(t1)

)−νi,n(t1)

×
i−1∏
j=1

(
2aj,n(t1)σ

2
e

ψj,n(t1)

)−ψj,n(t1)

×
K∏

j=i+1

(
aj,n(t1)

ρj,n(t1)

)−ρj,n(t1)

×
(
ai,n(t1)

μi,n(t1)

)−μi,n(t1)

,

(5.41)

with
νi,n(t1) = σ2

i,n/ζi,n(t1), (5.42)

ψj,n(t1) = 2aj,n(t1 − 1)σ2
e/ζi,n(t1), (5.43)

ρj,n(t1) = aj,n(t1 − 1)/ζi,n(t1), (5.44)

μi,n(t1) = ai,n(t1 − 1)/ζi,n(t1), (5.45)

and

ζi,n(t1) =σ2
i,n + ai,n(t1 − 1) +

i−1∑
j=1

2aj,n(t1 − 1)σ2
e +

K∑
j=i+1

aj,n(t1 − 1). (5.46)
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For C1.3, we introduce auxiliary variable W = [Wi,n]K×N and define two new non-convex
constraints

C1.3.1 : Y 2
ks ≤

∑
n∈N

αks,na
2
i,nWi,n, (5.47)

C1.3.2 : Wi,n ≤
∑i−1

j=1 4a
2
j,nσ

4
e(

bi,n +
∑i−1

j=1 2aj,nσ
2
e

)2 (
ai,n + bi,n +

∑i−1
j=1 2aj,nσ

2
e

)2 . (5.48)

We can again apply AGMA and on each iteration approximate C1.3.1 by

Ĉ1.3.1 : Y 2
ks(t1)×

∏
n∈N

(
αks,na

2
i,n(t1)Wi,n(t1)

Δks,n(t1)

)−Δks,n(t1)

≤ 1, ∀s ∈ S, ∀ks ∈ Ks, (5.49)

with

Δks,n(t1) =
αks,na

2
i,n(t1 − 1)Wi,n(t1 − 1)∑

n∈N αks,na
2
i,n(t1 − 1)Wi,n(t1 − 1)

, (5.50)

and C1.3.2 by

C̃1.3.2 :
Wi,n(t1)

4σ4
e

×
(
bi,n(t1) +

i−1∑
j=1

2aj,n(t1)σ
2
e

)2

×
(
ai,n(t1) + bi,n(t1) +

i−1∑
j=1

2aj,n(t1)σ
2
e

)2

×
i−1∏
j=1

(
a2j,n(t1)

Λj,n(t1)

)−Λj,n(t1)

≤ 1, ∀s ∈ S, ∀ks ∈ Ks, ∀n ∈ N , (5.51)

with

Λj,n(t1) =
a2j,n(t1 − 1)∑i−1
l=1 a

2
l,n(t1 − 1)

. (5.52)

Then, at each iteration t1, we solve

min
β,W,X,Y

max
∀s∈S

∀ks∈Ks

∑
n∈N

αks,nβks,n(t1)

Subject to: C̃1.1, C̃1.2, Ĉ1.3.1, C̃1.3.2,C2,C4,
(5.53)

which is in GP form and can be solved efficiently with standard convex optimization tools such
as CVX [46].
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5.4.2 Sub-carrier Allocation

With a fixed power allocation, the optimization problem becomes

min
α

max
∀s∈S

∀ks∈Ks

∑
n∈N

αks,nβks,n (5.54)

Subject to: C̃1, C3.

C3 is in the proper GP form, but C̃1 is non-convex and needs to be transformed into GP form.
For simplicity of notation, we define

Li,n = log

(
1 +

ai,n

bi,n +
∑i−1

j=1 2aj,nσ
2
e

)
, (5.55)

Mi,n =

(
ai,n

bi,n +
∑i−1

j=1 2aj,nσ
2
e

)2

×
∑i−1

j=1 4a
2
j,nσ

4
e

(ai,n + bi,n +
∑i−1

j=1 2aj,nσ
2
e)

2
, (5.56)

which are constants for fixed power allocation. With C =
√

εs
(1−εs)

as before, we again introduce

auxiliary variable Yks but can now express C̃1 as two non-convex constraints

C1.4 :
∑
n∈N

αks,nLi,n + CYks ≥ Rrsv
s , ∀s ∈ S, ∀ks ∈ Ks, (5.57)

C1.5 : Y 2
ks ≤

∑
n∈N

αks,nMi,n, ∀s ∈ S, ∀ks ∈ Ks. (5.58)

Applying AGMA, C1.4 can be approximated by a convex constraint as

C̃1.4 : Rrsv
s ×

∏
n∈N

(
αks,n(t2)Li,n

τks,n(t2)

)−τks,n(t2)

×
(
CYks(t2)

φks(t2)

)−φks (t2)

≤ 1, ∀s ∈ S, ∀ks ∈ Ks,

(5.59)

where
τks,n(t2) = αks,n(t2 − 1)Li,n/υks (t2), (5.60)

φks(t2) = CYks (t2 − 1)/υks (t2), (5.61)
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and
υks(t2) =

∑
n∈N

αks,n(t2 − 1)Li,n + CYks(t2 − 1). (5.62)

Similarly, we can approximate C1.5 by

C̃1.5 : Y 2
ks(t2)×

∏
n∈N

(
αks,n(t2)Mi,n

ωks,n(t2)

)−ωks,n(t2)

≤ 1, ∀s ∈ S, ∀ks ∈ Ks, (5.63)

where
ωks,n(t2) =

αks,n(t2 − 1)Mi,n∑
n∈N αks,n(t2 − 1)Mi,n

. (5.64)

Then at each iteration t2 solve,

min
α,Y

max
∀s∈S

∀ks∈Ks

∑
n∈N

αks,n(t2)βks,n

Subject to: C̃1.4, C̃1.5,C3,
(5.65)

which is in GP form and can be solved efficiently with standard convex optimization tools such
as CVX [46].

5.4.3 Complexity Analysis

5.4.3.1 Convergence

As discussed in the preceding chapters, an interior point method is used to solved the problems
in (5.53) and (5.65) and the required number of iterations is given by log(c/t0δ)

log ξ
. In the problems of

this chapter, for (5.53) the total number of constraints is c1 = 3K +3KN and for (5.65) we have
c2 = 2K +N . The problem presents as polynomial and the number of iterations again grows as
O(

√
c) [47, 48]. The required iterations for each sub-problem to converge is⎧⎨⎩

log(c1/(t01δ1))

log(ξ1)
, Power (5.53),

log(c2/(t02δ2))

log(ξ2)
, Sub-carrier (5.65).

(5.66)

We see that power allocation (5.53) has higher complexity than the sub-carrier allocation
(5.65) and is more sensitive to K and N . The number of iterations required to achieve conver-
gence is studied further in Section 5.5.
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5.4.3.2 Computational Complexity

As previously discussed, for each iteration a Newton step of an interior-point method costs
O(c�2) operations where c is the number of constraints and � is the number of variables [48].
For (5.53), the total number of variables is �1 = 3KN +K = O(KN) and for (5.65) we have
�2 = KN +K = O(KN). Thus, the total computational complexity of solving the GP problem
is polynomial, namely,

CGP =

⎧⎨⎩O(c1.51 �21) = O(K3.5N3.5), Power (5.53),

O(c1.52 �22) = O(K2N3.5), Sub-carrier (5.65).
(5.67)

In Algorithm 5.3, the worst-case number of computations required to convert to the GP form
using AGMA is i1 = 2K + 5KN + 3N and i2 = 8 + 3K + 8KN + N , for steps 1 and 2,
respectively. Each is O(KN) and of lower order than CGP yielding an overall complexity per
iteration of each of the steps in Algorithm 5.3 of CI = CGP.

5.5 Numerical Results and Discussions2

The performance of the proposed algorithm was evaluated considering a single cell VWN with
N = 16 sub-carriers which can each be shared by at most Kmax

n = 4 users, supporting two slices
each with Ks = 4 users, except where otherwise noted. In all trials we have Pmax = 23 dBm,
εs = ε, and Rrsv

s = Rrsv. The users are placed randomly within the BS coverage area following
a uniform distribution and the channels gains are derived according to the Rayleigh fading model
with hks,n = χks,nd

−λ
ks

where λ = 3 is the path loss exponent, dks is the distance between user
ks and the BS normalized to the radius of the coverage area, and χks,n ∼ Exp(1). We evaluate
SIC imperfections for several levels of SIC error variance with σ2

e ∈ {0.01, 0.025, 0.05, 0.10}.
For comparison, we present results for non-robust NOMA with both perfect and imperfect SIC,
and for OMA. For non-robust NOMA we consider ||ej,n||2 = σ2

e in (5.8), i.e., is deterministic
with σ2

e representing the imperfect level of achieved cancellation in SIC, and σ2
e = 0 represents

perfect SIC. For OMA, we set Kmax
n = 1 to enforce orthogonality between the sub-carriers. In

all formulations, where no feasible solutions exists for a given channel realization, user power is
set to Pmax and all users are considered to be in outage.

2For consistency between the derivation in the preceding sections based on the natural logarithm and the numer-
ical results presented in this section, we have maintained the units of rates in nats/s/Hz.
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Fig. 5.1 Average UE transmit power versus reserved rate, Rrsv, and Pr(outage), ε

To visualize the overall relationship between probability of outage, reserved rate, and required
transmit power, Fig. 5.1 shows the average transmit power per user versus Rrsv and ε for σ2

e =

0.01 and 0.10. Only the highest and lowest values of SIC error variance are shown in the figure
for clarity. As expected, power increases with increased rate reservations and levels of SIC error
and decreases with increasing probability of outage. For any specific value of ε, power increases
sharply for increasing user rate reservations due to the decreased feasibility, and is always higher
for increased SIC error. For any specific user rate reservation, lower power is required for less
stringent user outage constraints as this increases the flexibility in finding a feasible solution
which will provide the required maximum outage protection. The relationships over two of the
three axes are depicted in the subsequent figures for specific cases.

Average transmit power versus Rrsv is plotted in Fig. 5.2 for some cases of user outage con-
straint, ε. As expected, average required transmit power increases proportionally to rate reserva-
tions, Rrsv, and SIC error variance, σ2

e , because users must transmit with higher power to achieve
their desired rates. Power levels for all values of σ2

e are shown for ε = 0.01 and 0.50. There is
a power trade-off for robustness and the results for non-robust power optimization are presented
for comparison. For example, with Rrsv = 0.2 nats/s/Hz and ε = 0.5, i.e. power minimization
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Fig. 5.2 Average UE transmit power versus reserved rate, Rrsv

allowing up to 50% probability of user outage, 3.08 dB, 2.89 dB, 2.60 dB, and 2.55 dB higher
power is allocated by the robust optimization versus non-robust, for σ2

e = 0.01, 0.025, 0.01, and
0.10, respectively, and 3.28 dB higher than the perfect SIC case. However, for both robust and
non-robust cases, NOMA outperforms OMA based on the inability to multiplex users on strong
channels and the requirement to use weaker channels to maintain orthogonality between users
and meet rate reservations. For the robust case and Rrsv = 0.2 nats/s/Hz and ε = 0.01, OMA re-
quires 3.63 dB, 3.28 dB, 3.16 dB, and 3.14 dB, higher power compared to OMA, with σ2

e = 0.01,
0.025, 0.05, and 0.10, respectively.

For the robust optimization, average required transmit power increases with increasing SIC
error variance and rate reservations but decreases with less strict outage constraints. This can be
seen clearly in Fig. 5.3, which plots average transmit power versus probability of outage, ε, for
Rrsv = 0.1 nats/s/Hz and 0.5 nats/s/Hz. From the figure, we note that as the outage constraint
is loosened, average power decreases but for higher levels of SIC error variance and Rrsv for
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Fig. 5.3 Average UE transmit power versus Pr(outage), ε

ε ≥ 0.10 the plots converge as more users can be pushed into outage in favour reducing required
user transmit power. For example, for Rrsv = 0.1 nats/s/Hz and ε = 0.10 versus 0.01, required
transmit power decreases by 0.19 dB, 0.12 dB, 0.24 dB, and 0.30 dB, for σ2

e = 0.01, 0.025, 0.05,
and 0.10, respectively. For Rrsv = 0.5 nats/s/Hz and ε = 0.50 versus 0.01, required transmit
power decreases by 0.91 dB, 0.42 dB, 0.55 dB, and 0.92 dB, for σ2

e = 0.01, 0.025, 0.05, and 0.10,
respectively.

Experience user outage versus probability of outage constraint, ε, is plotted in Fig. 5.4.
For clarity, only the two extreme values for SIC error variance are shown. For σ2

e = 0.01 and
Rrsv = 0.1 nats/s/Hz, we see that the experienced outage is very close to the probability used
to constrain the problem, with correlation coefficient R = 0.9997 and root mean square error
(RMSE), as compared to the ideal values of experienced outage equal to ε, of 0.00322. As Rrsv

is increased, the resulting outage increasingly differs from the constraint due to decreased feasi-
bility of solutions but for σ2

e = 0.01 the worst-case correlation is for Rrsv = 0.5 nats/s/Hz at R
= 0.9771 and RMSE of 0.0306. For higher levels of SIC error variance, feasibility of solutions
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Fig. 5.4 Average user outage versus Pr(outage), ε

can be significantly impacted over the trials conducted and we see correlation coefficients of R
= 0.9606 and 0.7276 and RMSE of 0.0402 and 0.106, for σ2

e = 0.10 and Rrsv = 0.1 and 0.5

nats/s/Hz, respectively.
Experienced user outage versus rate reservation, Rrsv, is plotted in Fig. 5.5. The experienced

user outage aligns very well to the probability of outage constraint, ε, with reduced alignment
as either Rrsv or σ2

e is increased, as was also seen in Fig. 5.4. Further, results for OMA and
non-robust NOMA are presented where outage is not constrained, but when no feasible solution
exists for a given channel realization all users are considered to be in outage. For the OMA case,
at Rrsv ≥ 0.20 nats/s/Hz experienced outage is higher than the robust cases with ε = 0.01, 0.05

and higher than all non-robust NOMA cases. Non-robust NOMA with SIC error experiences
higher levels outage as the value of σ2

e increases but does not exceed 5.25% even for the worst
case level of error.

The ratio of users to available sub-carriers will reduce the flexibility of the system in both
power and sub-carriers allocation. Under OMA, the most users which can be supported is equal
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Fig. 5.5 Average user outage versus reserved rate, Rrsv

to the number of available sub-carriers, and only then if a suitably strong sub-carrier is available
for each user to meet their rate reservation. Under NOMA, stronger sub-carriers can be leveraged
by several users in order to minimize required transmit power to meet reservations, but with
increased sub-carrier sharing average transmit power will necessarily increase, especially for
higher levels of SIC error variance.

For a fixed number of sub-carriers, N = 16, Fig. 5.6 (a) plots average user transmit power
as the total number of users in the system, i.e., system density, is increased, for Rrsv = 0.1

nats/s/Hz and ε = 0.01. With more users utilizing the same number of sub-carriers, required
transmit power increases at all levels of SIC error variance as sub-carrier sharing results in in-
creased inter-user interference. For low number of users, i.e. low system density, the user rate
reservations can easily be met. As the density is increased, the required power also increases but
at faster rate under OMA than NOMA. For example, as system density increases for K = 2 to
8, transmit power under OMA increases by 2.23 dB due to reduced flexibility in avoiding weak
channels. The increase in required power under NOMA was only 1.82 dB, 1.27 dB, 1.08 dB, and
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Fig. 5.6 Average UE transmit power versus (a) users, K, and (b) sub-carriers, N

1.07 dB, for σ2
e = 0.01, 0.025, 0.05, and 0.10, respectively. In all cases, NOMA outperforms

the OMA case. For example, with K = 6, required transmit power under NOMA is decreased
compared to OMA by 3.52 dB, 3.14 dB, 2.64 dB, and 2.29 dB, for σ2

e = 0.01, 0.025, 0.05, and
0.10, respectively. For a fixed number of users, K = 4, Fig. 5.6 (b) plots average user transmit
power as the total number of sub-carriers in the system is increased, for Rrsv = 0.1 nats/s/Hz
and ε = 0.01. With an increasing number of sub-carriers, i.e. decreasing system density, required
transmit power decreases for both OMA and NOMA, with reduced requirement to utilize weaker
channels or multiplex and experience inter-user interference, but NOMA still outperforms OMA
in all cases. For example, with N = 12, required transmit power under NOMA is decreased
compared to OMA by 3.59 dB, 2.58 dB, 2.36 dB, and 1.91 dB, for σ2

e = 0.01, 0.025, 0.05, and
0.10, respectively.

The convergence and complexity of the proposed algorithms was studied in Section 5.4.3 and
the number of iterations for convergence for power allocation (5.53) and sub-carrier allocation
(5.65) problems as a function of the number of users, K, and sub-carriers, N , are plotted in Fig.
5.7 (a) and 5.7 (b), respectively, for Rrsv = 0.1 nats/s and ε = 0.01. As K and N increase the
required number of iterations for each problem to converge increases. As expected, the power
allocation problem is also more sensitive to changes in both K and N . The analysis found that
the solution of the power allocation problem to be of higher complexity than the sub-carrier
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Fig. 5.7 Number of required iterations each sub-problem versus (a) users, K, and
(b) sub-carriers, N

allocation, in (5.66), which is confirmed in the required number of iterations depicted in Fig. 5.5
and5.5.

5.6 Chapter Summary

In this chapter, we have investigated robust resource allocation in UL NOMA systems subject to
residual cancellation errors from imperfect SIC. We evaluated a VWN with slices comprised of
low power devices serving critical applications, for which minimum achieved rate and maximum
user outage must be maintained. With the goal of maximizing battery life for such devices, we
first derived the probability of outage as a function of SIC error variance and then used this
result to formulate a robust resource allocation problem minimizing transmit power subject to
slice and system constraints. The proposed iterative algorithm to solve the resulting non-convex
and computationally intractable optimization is based on SCA and uses CGP and AGMA to
transform to the convex GP form which can be solved efficiently at each iteration. Simulation
results show the expected trade-off for robustness in terms of higher average transmit power
compared to a non-robust approach. Despite this trade-off, the proposed algorithm outperforms
the corresponding OMA system in terms of average user transmit power and overall system
density due to the multiplexing gains available in NOMA systems.
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we have examined the use of UL NOMA within the VWN architecture paradigm
and proposed resource allocation algorithms to minimize required UE transmit power and support
QoS requirements of slices in several system models. We considered various QoS constraints,
including minimum slice and user rates, minimum dedicated sub-carriers, and maximum user
outage probability, for both SISO and MIMO channels to support the various expected use-cases
proposed for future networks.

In Chapter 3, we examined the performance gains which are available with NOMA com-
pared to traditional OMA in VWNs supporting slices with rate- and resource-based QoS. In this
context, we proposed an efficient dynamic resource allocation algorithm in SISO channels and
subsequently presented an extension of the algorithm to multi-antenna systems. The original
non-convex optimization problem is converted to the GP form using CGP and AGMA, and SCA
is used to iteratively solve for power and sub-carrier allocations. simulations results, we observed
that, compared to OMA, significant power savings can be achieved via the power-domain multi-
plexing available under NOMA in both SISO and MIMO channels. Further, we found that such
multiplexing can allow NOMA to support more users on fewer sub-carriers.

Chapter 4 extended the system model and iterative algorithm of the preceding chapter to for-
malize the extension to MIMO systems and examine the potential performance degradation from
imperfect cancellation of user signals in NOMA. A sensitivity analysis of NOMA systems to
residual cancellation errors from imperfect SIC was presented and via simulations results com-
pared to both perfect SIC and OMA systems. It was discovered the as levels of SIC error increase,
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performance degrades in terms of required user transmit power. Notwithstanding this degrada-
tion, even for residual interference of up to 10%, the gains with NOMA over OMA persist.

Finally, Chapter 5 introduced a robust resource allocation policy for NOMA VNW supporting
critical applications. We considered high-priority applications such as health and public safety
monitoring systems which rely on dense deployments of low-power sensors and high-reliability
of communications. By considering the uncertainty in user performance with imperfect SIC, we
developed a robust power and sub-carrier allocation algorithm which minimizes user transmit
power while maintaining QoS via minimum rate and maximum outage probability. The simu-
lation results demonstrated a trade-off for robustness in terms of higher average transmit power
compared to a non-robust approach, however, the proposed algorithm outperforms the corre-
sponding OMA system in terms of average user transmit power and overall system density due to
the multiplexing gains available in NOMA systems. Moreover, the proposed algorithm can allow
slices to set QoS targets to manage this power-robustness trade-off when a higher probability of
outage is acceptable.

6.2 Potential Extensions and Future Work

As noted in this thesis, NOMA is a new technique and there are many avenues of research, such
as UL and MIMO systems, for which there are limited works in the literature. VWN is also still
an evolving paradigm and there are a number of possible extension of the works in this thesis;
some of which are discussed below.

• In Chapters 3 and 4, we considered rate- and resource-based QoS at the slice level, with
no consideration to user QoS. One possible extension to this would be to consider multi-
level resource allocation wherein resources are allocated by the BS to slices to meet QoS
requirements and then allocated to individual users based on user SLAs within each slice.

• We considered power-efficiency via resource allocation algorithms where the objective was
to minimize user transmit power. Further studies can consider network efficiency by taking
into account overhead required for reporting CSI to the BS and communicating power and
sub-carrier allocations to users and power consumption at the BS to process both resource
allocation algorithms and SIC to resolve individual signals.

• In all chapters, we limited our investigations to single-cell VWN. It would be interesting to
extend the system models to consider intra-cell interference in multi-cell or heterogeneous
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networks, especially to evaluate the NOMA performance at cell-edge and the potential ben-
efits of multi-cell coordination and interference management and coordinated multipoint
communication.

• In Chapter 4 we consider a generalized multi-antenna system with the BS coverage area
divided into short- and long-range regions. The analysis of the optimal boundary between
these regions would make for an interesting extension to this work.

• We consider the resource allocation problem in VWN from the context of BS virtualization
to support multiple service providers. A possible extension of these works could include
cloud-based radio access networks, wherein baseband processing and resource allocation
algorithms are defined and executed remotely in the cloud, rather than locally at the BS,
and examine the performance degradation of the proposed algorithms with additional con-
straints on processing power and back-haul network capacity are imposed.

• As outlined in Chapter 2, VWN and software-defined networking can allow for so-called
“super BSs” which can support multiple-RATs. Additionally, the high cost of licensed
spectrum and the advent of LAA-LTE to extend cellular networks into the unlicensed
bands, co-existence of multiple RATs is an active research topic. One possible extension
would be to examine the use of NOMA in the context of coordinated coexistence, possibly
by considering both power- and code-domain NOMA hybrid systems.
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Appendix: Overview of Complementary

Geometric Programming

A.1 Preliminaries

Monomial and Posynomial Functions

If we have a vector x = (x1, . . . , xn) with components xi ∈ R+, for c ∈ R+ and ai ∈ R, a
monomial is a function of the form

f(x) = cxa1
1 xa2

2 . . . xan
n . (A.1.1)

A posynomial is a sum of monomial terms, i.e. a function of the form

g(x) =
K∑
k=1

cxa1
1 xa2

2 . . . xan
n . (A.1.2)

Arithmetic-Geometric Mean Approximation

In approaching many optimization problems, it becomes necessary to approximate posynomial
terms in either the objective function or constraints to convert the non-convex problem to an
approximate form. A widely used approach is to convert posynomial terms into the approximated
product of monomials is based on the arithmetic-geometric mean inequality, namely, for aj > 0

and dj ≥ 0 s.t.
∑

j dj = 1, ∑
j

aj ≥
∏
j

(
aj
dj

)dj

. (A.1.3)
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Using this inequality, the arithmetic-geometric mean approximation (AGMA) can be used to ap-
proximate posynomial functions as products of monomial terms. For example, given posynomial
function f(x) =

∑
k gk(x) where gk(x) are monomials, applying the arithmetic-geometric mean

inequality we have

f(x) ≥ f̂(x) =
∏
k

(
gk(x)

αk(x0)

)αk(x0)

, (A.1.4)

where the weights αk(x0) are computed as

αk(x0) =
gk(x0)

f(x0)
, ∀k. (A.1.5)

In the above approximation, x0 > 0 is the optimal solution obtained from the preceding iteration
of the optimization. It has been proved that AGMA provides the best local monomial approxi-
mation of f(x) near x0 [47].

A.2 Geometric Programming

Geometric programming (GP) is a class of non-linear optimization which can be efficiently solved
and has many applications in science and engineering [55]. The standard form of a GP problem
is

min
x

f0(x) (A.2.1)

Subject to: fi(x) ≤ 1, i = 1, 2, · · · ,m
gj(x) = 1, j = 1, 2, · · · ,M.

for non-negative optimization variables x = [x1, x2, · · · , xN ] and, for cj,n > 0 and aj,n ∈ R,
gj =

∏N
n=1 cj,nx

aj ,n
n , ∀ j, i.e. are monomial functions, and fi are products of monomial terms

∀ i, i.e. are posynomials.
The restrictions on the objective function and constraints in GP problems cannot be met for

many practical problems, e.g., some fi are monomial, some gj are posynomial, or are ratios of
posynomials, for some i, j, or if fi are lower bounds rather than upper bounds.
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A.3 Complementary Geometric Programming

Complementary geometric programming (CGP) is an approach to solve problems formulated in
terms of rational functions of posynomial terms [55,56]. Such problems can be solved iteratively
using successive convex approximation (SCA) by substituting monomial approximations to con-
vert the problem into the GP form via AGMA on each iteration. For example, given an upper
bound constraint, f1(x) : x1 + x2 ≥ 1, we can reformulate this as a lower bound

f1(x) :
1

x1 + x2

≤ 1, (A.3.1)

which is a ratio of posynomial terms. Applying AGMA at iteration index t we approximate this
constraint as a product of two monomial terms

f̃1(x(t)) :

(
x1(t)

ξ1(t)

)ξ1(t) (x2(t)

ξ2(t)

)ξ2(t)

≤ 1, (A.3.2)

with the weights ξi(t) defined as

ξi(t) =
xi(t− 1)

(x1(t− 1) + x2(t− 1))
, i = 1, 2. (A.3.3)

Applying these approximations to all functions in the optimization problem, as needed, the re-
sulting GP problem can be solved efficiently via numerical methods. The convergence of CGP
has been proven in [56] and it has been shown that the output of algorithms based on SCA and
AGMA converges to a local maximum of the original problem and have very close performance
to the optimal solution [43, 57, 58].
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