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ABSTRACT

In this thesis, the dynamics and control of the shuttle
supported tethered subsatellite system are investigated. At first,
a dynamical model is developed that takes into account the three
dimensional rotational motion of the system as well as the nonlinear
vibrations of the tether, both in longitudinal and transverse directions.
Using the extended Hamilton's principle, a set of nonlinear partial
differential equations to govern the vibrations and nonlinear ordinary
differential equations to describe the rotations are derived. These
equations are app]icabie whether the Tength is constant or changing
with time. Galerkin's method (with sTight modification) is then used
to get the discretized equations for the vibrations.

Attention is then focused on the control of the motions during

the retrieval stage since both rotations and vibrations are inherently

unstable during this phase and effective control schemes are not available.

In the thesis, control laws are derived using simplified analyses and
validated through numerical integration of the original unsimplified
equations.

To start with, rotations both in and out of the orbital plane
are considered in the absence of the vibrations of the tether. A length
rate control Taw using Tinear feedback of pitch rate and quadratic feed-
back of roll rate is proposed and proved to be quite effective during
the retrieval phase. As an extension of this control law, a non-linear
tension control Taw is also suggested and verified to be of the same

effectiveness.
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The vibrations of the tether are then taken into account.
Longitudinal vibrations along with the rotational motions are examined
first and a length change control law is proposed to control them
during retrieval using that scheme. The rotations can be limited to
very smaT] ranges and the longitudinal vibrations can be damped out
without slackening the tether. In the following step, transverse
vibrations are considered as well. It is noted that both longitudinal
and transverse vibrations must be considered together, especially for
very short tether lengths. A length acceleration scheme is suggested
to control all the vibrations of the tether. In addition, fast retrieval
concepts are examined to maintain certain minimum tension during
the terminal phase of retrieval thus avoiding the problem of slackening
the tether.

Finally, thruster augmented active control is investigated as
it might have great advantage in the practical design. Thrusters in
three perpendicular directions (one of them along the direction of the
tetherline) are used. Required thrust time histories are determined.

It is noted that using the proposed schemes, successful control of all
the rotational and vibrational motions can be achieved during the retrieval
of the subsatellite while the retrieval time can be limited to about two

to four orbital periods.
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SOMMAIRE

Cette thése a pour objet 1'étude de l1a dynamique et de la
commande d'un systéme 3 satellite déployé a partir d'une navette au
moyen d'un fi].. Un modéle dynamique a d'abord &té &tabli; ce modéle
tient compte du mouvement de rotation du éystéme dans les trois sens,
de méme que des vibrations non-linéaires du fil, dans le sens longi-
tudinal et transversal. En étendant 1'application du principe de
Hamilton, 1'auteur a produit un ensemble d'@quations différentielles
partielles non-linéaires décrivant les vibrations, et un ensemble
d'équations différentielles ordinaires non-linéaires décrivant les
rotations. Ces équations s'appliquent que la 1onguehr du fil soit
constante ou variable dans le temps. L'auteur a ensuite utilisé la
méthode de Galerkin (en 1a modifiant 1égérement) pour formuler les
équations discrétes qui s'appliquent aux vibrations.

L'auteur examine ensuite le contrdle des mouvements a
1'étape de la récupération; en effet, les rotations et les vibrations
sont fondamentalement instables & cette étape, et nous ne disposons
actuellement d'aucun schéma efficace de contrdole. L'auteur dégage
donc des lois de contrdle @ 1'aide d'analyses simplifées et validées
par 1'intégration numérique des équations non-simplifiées initiales.

IT examine d'abord les rotations du systéme de part et
d'autre du plan de 1'orbite, en 1'absence de toute vibration du fil.
IT propose ensuite une loi de contrdle du taux de raccourcissement du

fil, @ partir de 1a rétroaction linéaire du taux de tangage et de la
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rétroaction quadratique du taux de roulis; cette 1oi s'est révélée
trés efficace a 1'étape de la récupération. Comme complément a cette
loi, i1 propose une loi de contrdle de 1a tension non-linéaire.

Cette derniére loi s'est révélée aussi efficace que la premiére.

I1 est alors tenu compte des vibrations du fil. Les vibra-
tions dans le sens longitudinal accompagnant le mouvement de rotation
sont d'abord examinées; 1'auteur propose une loi de contrdle de la
variation de 1a longueur du fil afin de maitriser ces vibrations
pendant la récupération. Les rotations peuvent étre gardées sous de
trés faibles amplitudes, et les vibrations longitudinales peuvent
étre absorbées sans relachement du fil. A 1'@tape suivante, 1'auteur
examine également les vibrations dans le sens transversal. I1 fait
remarquer qu'il faut tenir compte a la fois des vibrations dans le
sens longitudinal et des vibrations dans le sens latéral, particu-
1iérement lorsque le fil est trés court. I1 propose un schéma
d'accélération pour contrdler toutes les vibrations du fil. De plus,
il examine certaines notions de récupération rapide qui visent a
maintenir une certaine tension minimum sur le fil, @ 1a derniére
étape de la récupération, afin d'en éviter le reldchement.

Enfin, 1'auteur examine le probléme du contrdle actif
assisté par propulseurs, car cette technique pourrait présenter des
avantages considérables sur le plan pratique. Les propulseurs
disposés perpendiculairement dans les trois plans (1'un d'eux se
trouvant dans le plan du fil) sont utilisés 3 cette fin. Les durées
de mise 3 feu nécessaires sont déterminées. L'auteur fait remarquer,
qu'a 1'aide des schémas qu'il propose, on peut arriver i bien
contrdler tous les mouvements de rotation et de vibration pendant la
récupération de sous-satellites, et que cette opération peut

s'exécuter sur une période de deux 3 quatre orbites.
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CHAPTER 1

INTROBUCTION

1.1 PRELIMINARY REMARKS

Tether connected two-body systems have a great potential for
future space applications. Interest in the tethered systems was initially
associated with the retrieval of stranded astronauts [1,2]. However, the
problems associated with such retrieval was clearly demonstrated in a study
by Starly and Adlhoch (2], in which it was shown that the rotational motions
grew continuously as the tether was reeled in. The retrieval scheme was
not developed further because more suitable rescue techniques were developed
subsequently.

Proposals have been made to use a tether for stationkeeping between
two orbiting space vehicles [3]; however, the method has been abandoned due
to the difficulties involved in determining and controlling the required
tether tension. On the other hand, Gemini XI and XII flight tests have
successfully demonstrated the feasibility of a short tethered system. The
former used a rotating configuration while the‘1atter had a gravity-gradient
stabilized configuration [4].

With the advent of the space shuttle, a variety of fascinating
uses of these systems have been proposed during the last ten years. Some
examples are given below.

(i) Upper atmospheric experiments:. A subsatellite may be

deployed into the upper atmosphere from the shuttle using a 100-120 Km
Tong tether called 'Skyhook' [5]. This would provide an economic and

reliable way to carry out measurement of the physical properties of the



atmosphere, ionosphere and magnetosphere as well as observation of various
phenomena in the thermosphere.

ii) Artificial gravityuses: A system of two bodies linked by a

long tether aligned with the local vertical can produce anartificial gravity
for both the end bodies due to the tension in the tether caused by the
gravity gradient. The tension pulls both bodies towards the center of mass
of the system and neither body moves in a freely orbiting state. Although
the artificial gravity level produced may be very weak (0.01 g - 0.1 g
depending on the length), it may be of great help to the crew-support systems
in a space station. In addition, such a tether connected system can be used
for Tow-gravity experiments. It must be pointed out that this concept is
somewhat different from the rotating space station-cable-counterweight
systems [6].

ii1) Electrodynamic uses: A long insulated conducting tether

moving around the earth will generate electric current by intersecting the
earth's magnetic field. In some cases of emergency, electric power can
still be supplied in this way although a price is paid in terms of lowering
the altitude of the spacecraft.

iv) Radio astronomy and low frequency communication uses: A

tether can be used as an antenna for radio astronomy and very low frequency
communications. In this case, the tether itself is used as part of the
scientific instrument.

v) Transportation and space constellation uses: A tether can be

used for orbital transfer. If the subsatellite supported by the tether is
released at an appropriate time with correct initial velocity, it will reach

the desired orbit [7].



There are many other possible applications of tethered satellite
systems which will not be described here for the sake of brevity; the
interested reader is referred to the works of Bekey [7] and Rupp, et al. [8].

Of particular interest among the abovg-mentioned systems is the
shuttle supported tethered subsatellite system and in recent years many
investigators have paid attention to its dynamics and control. The system
is approaching a practical design stage and the first space flight test will
take place in the mid-eighties. This mission will be a joint project of the
NASA and the Government of Italy. The effects of various environmental
forces on the equilibrium configuration of the tether during the station-
keeping stage and the effectiveness of different deployment and retrieval
schemes will be tested in this mission.

The operation of a tethered satellite system consists of three
stages: (i) deployment; (ii) station-keeping and (iii) retrieval. During
the deployment, a reel mechanism equipped at the shuttle releases the tether
to send the subsatellite to a planned altitude. At the beginning, an initial
push may be needed to overcome the weightlessness situation until the tether
is taut. In the following process of deployment, the reel mechanism functions
somewhat 1ike a brake. A certain experiment could be carried out during the
station-keeping stage after the instrumented subsatellite has been placed at
the desired altitude. Once the experiment is completed, the reel mechanism
reels the subsatellite back to the shuttle; this is termed the retrieval stage.

This proposed shuttle supported tethered subsatellite (SSTS)* system

is really a revolutionary means to send a subsatellite intoa desired orbit

* This abbreviation will be used from now on.



compared with traditional ones. It not only avoids an extra launch operation
but also provides a totally recoverable and reusable system thus having the
possibility of a very low recurrent cost [9]. However, the task involved is
rather comprehensive and not at all routine. The core of the difficulty lies
in the system dynamics and control, especially during the retrieval stage.

Dynamics of the SSTS system involves orbital dynamics as well as
attitude dynamics. The center of mass of the system moving around the earth
is called orbital dynamics while the motion of the system relative to the
center of mass is termed attitude dynamics. Orbital dynamics is negligibly
affected by the attitude dynamics [10] as the energy associated with the
former is much Targer than that of the latter. On the other hand, the
orbital motion does affect the attitude dynamics significantly.

It is not difficult to see that the dynamics of the SSTS system
is rather complicated. The shuttle flies around the earth; the subsatellite
swings around the shuttle; the tether vibrates longitudinally as well as in
the transverse directions; the tether moves away from or towards the shuttle
during deployment or retrieval, respectively, making the system non-
autonomous; tension in the tether ranges from less than 0.1 N {(very weak) to
around 100 N, when the length of the tether changes from say, 20 m (quite
short) to 100 Km (very long). The fact that the density of air varies by
several orders of magnitude along the tether complicates the motion further.
A good modelling of the system is necessary to provide a basis for the
analysis and control of its dynamics.

It has been shown that the rotational motions are inherently
unstable during retrieval [11]. The faster the retrieval is, the larger

is the rate of growth of motion. Even during the deployment stage, if the



initial conditions are large and the deployment is required to be reasonably
fast, control of motion is still needed although it is much easier compared
with the control during retrieval.

The problems related to retrieval control of SSTS systems have
not completely been solved yet. Some of these problems will be tackled in

this thesis.

1.2 LITERATURE REVIEW

This literature review is not meant to be exhaustive. Rather a
few key references are mentioned to indicate the general development of the
subject of cable connected orbiting bodies. As for a more detailed review,
the interested reader is referred to the paper by Misra and Modi [12].
However, all the papers on the SSTS system are discussed here.

The literature review is carried out based on the nature of
scientific development rather than time sequence. This approach is believed
to be more suitable for describing where the spots of difficulty 1lie, thus,
what this thesis must really attack. The topics of dynamical modelling and

control strategies are considered below separately.

1.2.1 Dynamical Modelling

The general dynamics of SSTS systems shown in Figure 1.1 is rather
complex. Many parameters play major roles in governing the system behaviour.
An important consideration is whether the unstretched length of the tether
is constant (station-keeping phase) or varies with time (if increasing,
deployment; if decreasing, retrieval). During the station-keeping stage,

the dynamics is simpler compared to the other two stages and is quite similar
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to the dynamics of anoﬁher cable connected system, the space station-cable-
counterweight system, which has been investigated extensively. The latter
system had been proposed for the creation of artificial gravity in a space
station by rotating the entire system around its center of mass.

The investigations of the dynamics of the space station-cable-
counterweight systems (see [12]) are relevant to this study and can be
regarded as preliminary research. It is important to note that the gravity
gradient can excite longitudinal as well as transverse vibrations of the
tether [13,14]. However, a small amount of damping (1% critical damping) is
quite effective in stabilizing the system although the spin rate decreases
slightly [15].

The effort to study the dynamics of the SSTS system was first made
by Rupp [11]. He made a key development in this area; however, his dynamical
model is a drastic simplification of the actual system. The tether was
assumed to be massless and inextensible and the rotational motion was confined
to the orbital plane. His conclusion that the deployment is basically stable
and the retrieval is inherently unstable is valid even when the dynamical
models are made more sophisticated. A tension control law was proposed by
him to control the motion of the system. This law will be discussed later
in Section 1.2.2.

During either deployment or retrieval, the out-of-plane rotational
motion cannot be neglected if the orbit is in a non-equatorial plane. This
is because the out-of-plane rotation is excited by the out-of-plane component
of the aerodynamic drag caused by a rotating atmosphere. Even when the orbit
is equatorial, there might be some initial out-of-plane disturbances. During

retrieval, this initial disturbance grows without bounds. Thus, the



investigations [16-26] subsequent to Rupp's work have included the out-of-
plane rdtatfon in the dynamical model.

The mass of the tether is expected to be of the same order of
magnitude as that of the subsatellite when the tether is long enough and"
hence cannot be ignored. Another important parameter is the elasticity
of the tether. Proposed tethers are very thin (less than 1 mm in diameter)
and very long (up to 100 Km). Payload mass limitation forces us to make
the tether so thin. This makes it very flexible and extensible. Thus,
the longitudinal stretchofa 100 Km long tether can be several hundred
meters. The tether vibrates axially if there is any initial disturbance |
during deployment, station-keeping or retrieval stage . This vibration has
been represehted by a sing1e longitudinal displacement similar to that of a
spring-mass system in the works [16,20,22]. However, as the mass 1is
distributed along the tether, a more accurate representation is in terms
of combination of axial modes similar to that of an elastic bar; this has

_been done by Banerjee and Kane [25].

Furthermore, the tether can have transverse displacements making
the tether curved. This happens mainly due to two reasons. Aerodynamic
drag not only pushes the subsatellite to lag behind the shuttle but also
forces the tether to assume a curved equilibrium configuration. In addition,
if the tether is moving axially during deployment or retrieval stage, then
the Coriolis force again curves the tether. Since the tether has distributed
mass and elasticity (i.e., an elastic string), transverse vibrations occur.
This is especially serious in the orbital plane and in a fast retrieval or
deployment situation. The transverse vibrations of the tether have been

taken into account recently by several investigators such as Kohler, et al.
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[21], Modi and Misra [20,22,23] and Glaese and Pastrick [26]. Kalaghan,
et al. [19] did consider the transverse motion of the tether; but since
the co-ordinate system in which displacements are calculated does not
follow the attitude rotations, the transverse vibrations are masked by
the rotational motion.

A comparison of dynamical modes of SSTS systems used in various
investigations is given in Table 1. Because there are so many factors
affecting the dynamics, no model is exactly the same as another even though

the main considerations may be the same.

1.2.2 Control of the SSTS System

Control of the dynamics of the SSTS system during deployment and
retrieval is a challenging probiem. Since all the motions are inherently un-
stable during the retrieval stage, corresponding control is much more
difficult than that during deployment.

During the past ten years or so, the control problem has been of
great concern since it is directly related to the feasibility of the SSTS
system. Various types of control laws have been proposed. These control
laws can basically be categorized into three types:

(i) Tension control laws;

(1) Laws based on rotational rate of the tether reel, for
example, length rate control law and torque control
law;

(ii1) Thruster augmented active control Tlaws.

They are reviewed below briefly.



1.2.2.1 Tension Control Laws

Among the three types of control laws, the tension control law
was developed first. Rupp [11] formulated a tension control law to control
the inplane rotation during deployment and station-keeping. The retrieval
problem was touched upon only briefly. In his control law, the tension

Tevel in the tether is modulated in the form
T = KL + CyL + Kol (1.2.1)

where L and L are instantaneous length and length rate, respectively, LC is

a commanded length while K; , K, and C; are a set of constants. No feedback

from the swing angle was used. The most significant feature was to design
properly the tetherline spring and the viscous damping associated with the
reel mechanism, so that the frequency of the swing motion and that of the
oscillation of the length are the same. Since the two motions are strongly
coupled, the inplane rotations can be damped by adding damping to the length
equation. It may be pointed out here that this longitudinal motion is
different from the very high frequency Tongitudinal vibrations of the tether
associated with its elasticity.

Several subsequent investigations modified Rupp's tension control

Taw to improve the performance. Baker, et al. [16] modified the tension law

to

———1—m'= (RZ + 3)QZL + ZECRQL - RZQLC (].2.2)
27t

where R is the ratio between control Taw stretch frequency and orbital

frequency, &£ . is the control law damping while m, and m, are the mass of

o
the subsatellite and tether, respectively. The most significant modification
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is to make the commanded length a function of the actual length rather than

an arbitrary set of commands, i.e.,

L

¢ = Kb * Ky (1.2.3)

Kulla [27] and Kalaghan, et al. [19] used laws similar to Baker's law in
their investigations.

Bainum and Kumar [24] developed an optimal tension control law
based on an application of the linear regulator problem. The inplane swing

angle and its rate were used as feedback in this tension control law, i.e.,

T= K2+ Kyot' + Ky + Koo' + T (1.2.4)

where T, is the equilibrium tension, KQ etc. are a set of constants and

2 is defined as

L = LC/L -1 (1.2.5)

The control strategy was very effective during deployment but was not very
successful during retrieval.

| Now, the following question arises. Are these control laws
effective if the out-of-plane rotation is considered and the system is being
retrieved instead of being deployed? Modi, et al. [28] have indicated that
the answer is negative. Qut-of-plane rotation could grow up to 45°, which
is unacceptable. The above-mentioned authors thus proposed a nonlinear
strategy in which the tension uses feedback of the rate of the out-of-plane
rotation in a quadratic form*. The pitch motion is damped and the roll

bounded to a 1imit cycle of about 10° amplitude through this control. It

* This tension control law is based on a similar length rate control law
proposed in this thesis and published earlier.



-11-

appears to be one of the most promising tension control laws for retrieval.

If the vibrations of the tether, both longitudinally and in transverse
directions are taken into account in the dynamical model, the tension
control law might have to use the feedback of these vibrational variables
as well. However, no such development has been made to the best of the

author's_knowiedge.

1.2.2.2 Length Change Control

As opposed to the tension control laws, the length change laws, the
nominal unstretched length or its time derivatives are modulated using feed-
back of the state variables. This is quite direct to the reel mechanism.

The Taw corresponds to modulating the rotation of the drum of the reel
mechanism,

This type of control was originally proposed by Kohler, et al.
[21], but its effectiveness has been investigated only recently (since
1980).

Misra and Modi [29] proposed such a control law to investigate
a planar situation in the presence of longitudinal and transverse vibrations.
The numerical results were obtained using a length rate involving linear
pitch rate feedback only. Although the rotations during retrieval were
bounded, both transverse and longitudinal vibrations grew. This suggests
that feedback of vibrations is necessary for successful retrieval. Most of

the analysis in this thesis uses this type of control law.
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1.2.2.3 Thruster Augmented Active Control

During retrieval, as the length of the tether reduces to a small
value, the equilibrium tension in the tether due to the gravity gradient
approaches zero and during a dynamical situation the tether may become
slack. Thus a tension control 1aw (for example, the one suggested by
Baker, et al. [16]) or any modification of that such as a length rate law
[29] becomes ineffective. To alleviate this difficulty, Banerjee and
Kane [30] proposed to use a set of thrusters (in addition to a torgue
control law) to control the retrieval dynamics. In this active control
scheme, the thrusters are placed at the subsatellite to help reduce the
motion and speed up the retrieval process. The thrusters are capable of
exerting forces in both transverse and longitudinal directions. In their
dynamical model, the transverse vibrations are not considered in the
dynamical model. About five to six orbital periods (approximately nine
hours) are needed to complete the retrieval.

The comparison of various control Taws for the SSTS system is

shown in Table 2.

1.3 PURPOSE AND SCOPE OF THE INVESTIGATION

From the literature review, it is clear that for the SSTS
‘system the most difficult problem is controiling the motion during re-
trieval compared with deployment or station-keeping. Hence, the goal of
this thesis is aimed at studying retrieval dynamics and control.

There are two key problems associated with retrieval:

(1) control of unstable out-of-plane rotation;
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(ii) preventing the tether from becoming slack due to
unstable vibrations during the terminal stage of
retrieval.

The latter is much more challenging than the former, and very little
effort has been directed towards studying this aspect. Most investi-
gators are concerned with the rotational motions only. The vibrations

of the tether, both longitudinal and transverse, have often been

ignored as if the continuous tether always remains straight and is
inextensible. This thesis emphasizes studying the out-of-plane rotations
as well as the vibrational aspects of the tether.

The thesis may be divided into two parts. The first part

(Chapters 2 to 5) presents a genera1-dynamica1 model of the SSTS system
while the second part (Chapters 6 to 9) deals with control of the dynamics
during retrieval of the subsatellite.

In Chapter 2, the dynamical model is developed taking into

account:
(i) three dimensional rotations;
(ii) mass of the tether;
(iii) longitudinal vibrations including variation of the
longitudinal strain along the tether;
(iv) three dimensional transverse vibrations;
(v) aerodynamic drag in a rotating atmosphere
considering the oblateness of the earth;
(vi) material damping of the tether;

(vii) geometric nonlinearity, i.e., nonlinear relation

between strain and displacements, which becomes

important for short tethers.,
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Equations governing the dynamics of the system are derived using the
extended Hamilton's principle.

In Chapter 3, the generalized forces arising due to the
aerodynamic forces are formulated.

In order to get approximate solutions to the equations of
motion, the latter are discretized in Chapter 4. The ordinary differ-
ential equations thus obtained are nondimensionalized and numerical
procedures to analyse them are discussed.

In Chapter 5, the quasi-equilibrium configuration in the
case of circular orbits for a specified tether length is calculated.

The effects of various parameters on the quasi-equilibrium configuration
are examined.

The four chapters described above form the first part of the
thesis. In the following chapters (the second part of the thesis),
attention is focused on the control of the motions during retrieval of
the subsatellite. In Chapter 6, a nonlinear length rate control law is
developed to control the rotations (both pitch and roll) during retrieval.

In Chapter 7, the tether is regarded as an elastic string and
the longitudinal vibrations of the fether are thus introduced. An
appropriate length rate change Taw is proposed to control rotations
and longitudinal vibrations simultaneously.

In Chapter 8, the transverse vibrations of the tether is
brought into consideration. Vibrations of the tether, both longitudinal
and transverse, are investigated. At first, only the terminal phase of
retrieval is considered. Subsequently, both rotations and vibrations of
the tether are analysed from the very beginning of the retrieval process.

Several length change laws are examined for this case.
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In Chapter 9, thruster augmented control is investigated with
a goal of éontro]]ing the motions during a very short retrieval time.
A mixed control strategy, using first a length change control followed
by thruster control, is also presented. Some closing comments and

suggestions for further work are given in Chapter 10.



CHAPTER 2

DERIVATION OF EQUATIONS OF MOTION

2.1 SYSTEM DESCRIPTION

The system under consideration is shown in Figure 2.1. It
consists of three bodies: the shuttle, a subsatellite and a long thin
tether. The shuttle enters its orbit carrying the subsatellite
and the tether. When a scientific experiment is to be carried out,
the subsatellite equipped with the instruments and the tether are deployed
to the required altitude using a reel mechanism placed on the shuttle.

The experiment is conducted during the ;tation—keeping stage.- Then
follows the retrieval to bring the subsatellite back into the shuttle.

In Figure 2.1, body A represents the shuttle while body B is the
subsatellite, having masses Ma and Mb’ respectively. The tether has a mass
P, Per unit length and an instantaneous mass of the deployed tether MC(=pczo).
The instantaneous center of mass S can be located with respect to the center
of the earth E by the radial distance Ry, the inclination angle i of the
orbital plane to the equatorial plane, argument of the perigee 6, and true
anomaly 6. Body B is attached to the tether at pont Pb and body A at point
Pa through which the tether is deployed or retrieved. A and B are the mass
centers of bodies A and B, respectively.

Coordinate systems, X, Y, Z; Xo, Yo, Zo and Xes Yoo zC are intro-
duced to describe the motion. The last two coordinate systems are rotating
coordinate systems, while the first is an inertial system having its origin
at the center of the earth. The set of coordinate axes Xq¢, Yo, Z¢ located

at origin S is so oriented that x,-axis is along the orbit normal, y,-axis

~16-



-17-

concides with the local vertical while z,-axis completes the triad. The
unit vectors?}, 35 and ?0 are along the xq, Yo and z, axes, respectively.
The orientation of the axes Xeos Yo
tetherline) are defined by only two rotations o and y, implying an

> Z, (yC coinciding with the nominal

assumption that the rotation about the axis of the tether is ignored.

] ] !
e Yoo Z¢ and

then rotation vy is applied about zé-axis yielding axes Xos Yo 2

At first, rotation o is given about xg-axis resulting in x
o o s
called the pitch angle while y is the roll angle. The unit vectors ?c’

+

Jc and ?c are along xc, yc, z axes, respectively.

c
The flexibility of the tether must be taken into account since

the tether is very long and thin. It has longitudinal as well as trans-

~ verse displacements due to the gravity gradient, atmospheri; drag and

Coriolis forces during deployment or retrieval. The transverse vibrational
displacements along Xe and z, (nominally perpendjcu]ar and in the orbital
plane, respectively) are denoted by u and w, while the longitudinal
vibrational displacement is represented by v. The displacements u, v, w
are functions of both time as well as space coordinate Ye and form the
elastic displacement vector u. |

One must distinguish between the undeformed and deformed tether
length. Here &, (associated with "material coordinate") denotes the length
of the undeformed tether while 25 is the length of the deformed tether from
point Pa_to Pb measured along the curved tetherline. 0bvidus1y, if there
isno transverse vibration in 1:he~'ce1<'.~her',!z,s will be measured along a straight
line, but it is still not equal to %£,, since there is a longitudinal strain

in the tether.
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For given a and vy, the Tine connecting the shuttle and the
subsatellite can be defined uniquely with respect to S; with u, v and
W, the position of any arbitrary point of the tether can be determined
uniquely with respect to this line. Since u, v, w are measured from the
already rotated tetherline, the 5ma11 displacement assumption would be
reasonable.

With this understanding of the geometry, it can be seen that
there are three kinds of motion:

(i) The entire system rotates around the earth
(orbital dynamics);
(ii) The subsatellite rotates around the center of
mass of the system or that of the space shuttle
because the system center of mass is alomst coincident
with that of the space shuttle (attitude dynamics);

(ii1) The tether vibrates longitudinally and transversely

(structural dynamics).
These three kinds of motion are coupled to each other. The last two
motions affect the first (orbital motion) only slightly [10]. Hence the
orbit could be caiculated separately without any significant loss of
accuracy. It is assumed here to be Keplerian. As for the rotational
and vibrational motions, they are certainly affected by the orbital
motion and are more complicated. The equations governing these motions

are derived in this Chapter.
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2,2 BASIC ASSUMPTIONS

Some assumptions based on the physical insight to the problem
are necessary to get a reasonable dynamicé] model. Without such assumptions,
the mathematical model becomes very complicated; but on the other hahd, if
the assumptions are not quite correct or are overly simplifying, the
mathematical model will not represent the real situations. For example, in
the early stage of research on this subject, some investigators neglected
the out-of-plane rotation of the system and the vibrations of the tether.
Corresponding mathematical models of the SSTS system are oversimplified and
do not describe the dynamics of real systems very well. The most important
thing is to grasp the significant factors and eliminate the trivial ones.

The following basic assumptions are made in this thesis to obtain
a reasonable model of the system:

(i) Orbital motion is assumed to be unaffected by the attitude
motions and vibrations of the tether and is maintained Keplerian.
This assumption allows separate calculation of orbital motion.

(i1) The masses of the subsatellite and the tether are much
smaller than that of the shuttle.

The shuttle has a mass of M, = 0(104 - 105 Kg). The mass of
the subsatellite Mb is 0(]02 Kg). As for the tether, its mass is variable
depending on the length; for a 100 Km tether, the mass MC is 0(102 Kg) and
less for smaller tethers. Thus the assumption cited above is reasonable.
The consequence of this assumption is that terms like Mch’ sz, Mcz, can
be ignored compared to Ma2 making the algebra significantly simpler, as

will be seen later.
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(iii) Since the sizes of the shuttle and the subsatellite are
much smaller than the length of the tether, both the shuttle and the sub-
satellite are regarded as point masses.

When the length of the tether is small during the terminal
phase of retrieval or initial phase of deployment, the assumption is not
valid; however, it holds good for the major part of the mission.

(iv) Vibrations of the tether are small in amplitude compared
to the instantaneous length. In spite of this assumption, the nonlinearity
in the strain-displacement relation is taken into account. The reason for
retaining this nonlinearity is described later.

( v) The effects of solar radiation pressure and the earth's
electromagnetic field are neglected since they are small compared with the
earth's gravity gradient. The only environmental force taken into account
is the atmospheric drag (apart from gravity). The density of air is
assumed to vary exponentially with altitude.

(vi) Perturbing forces due to attractions of the sun and the
moon are ignored. The effect of a nonspherical earth on the earth's
gravity gradient is ignored as well.

The present dynamical model includes the following features:

(i) 3-D rotations which are allowed to be large;

(i1) the tether is not massless and not inextensible; the

material damping of the tether is included;

(ii1) both longitudinal and transverse vibrations of the tether

are considered;

(iv) variation of longitudinal strain along the tether is taken

into account; nonlinearity in the relation between longitudinal strain
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and vibrational displacements (i.e., geometric nonlinearity) is retained;

(v) aerodynamic drag is calculated considering the oblateness

of the earth, rotation of the atmosphere and eccentricity of the orbit.

2.3 KINEMATICS OF THE SYSTEM

Let the position vectors of the centers of maés of the shuttle
and the subsatellite from the center of mass S of the entire system be
denoted by ﬁa and ﬁb’ respectively (refer to Figure 2.1). Furthermore,
Tet ﬁc denote the position vector of any arbitrary point on the tether
relative to S. These position vectors can be expressed in terms of the
rotations o and y of the tether and vibrational displacements u, v and w.

Since S is the center of mass of the system, we have
MR, + MR+ S ﬁc dm = 0 (2.3.1)

Me

From geometric considerations, the following relation holds:

ﬁa + AB - ib =0 (2.3.2)

where AB is the vector from the center of mass of the shuttle to that of
the subsatellite. Since the tether has some elongation, the magnitude of
AB is larger than the undeformed length &, of the tether.

The term / ’ﬁc dm in (2.3.1) and AB in (2.3.2) need to be

Me

expressed in terms of the deformations of the tether. An arbitrary point
P on the unstretched tether moves to point Q after deformation (Fig. 2.2).

This can be expressed as
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P, y.» 0) » Qluly.s t) 5 Dy, + vy, t)]
w(y.» t)) . (2.3.3)

In (2.3.3), it is clear that Ye is used to denote position along

the unstretched tether, i.e., Yo is a material coordinate. We have,

Y € (0, 2o(t)) (2.3.4)

where £, is the instantaneous unstretched length of the tether. During
deployment or retrieval, 2, changes, thus it is a function of time. With

the above geometric understanding, AB may be Written as

BB =T, = [0o(t) + v(t,, t)13

j c (2.3.5)

Let ;c denote the position vector of any arbitrary point of the tether

from the point A. Thus, ?c is related to u, v, w as

-> _ > > >

ro = ulyes BV + Dy, + vy t)l, + wly,, )k, (2.3.6)
and

> -+ >

R =pr +R (2.3.7)

o Cc a

The integral f ﬁcdm is then given by
M
(o

2o Lo
> _ >
ﬂ ﬁcdm =/ (ﬁa +r.)edy, = Mcﬁa + E Iy, (2.3.8)
C

Substituting (2.3.5) and (2.3.8) into (2.3.2) and (2.3.1), respectively,

we have,

3
(M, + Ma)‘ﬁa +_ Mb‘ﬁb = -0 [ Ty, (2.3.9)
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and

ﬁa - ﬁb = -E& (2.3.10)

_ It may be noted that the terms on the right hand side of
equations (2.3.9) and (2.3.10) involve tether deformations. ﬁa’ ﬁb

can be solved from these two equations as

o
n

Lo
[-1/(M, + M, + Mc)][pc g Fody, + Mb23] (2.3.11)

2oV
"

Lo
[-1/(M + My« MDD L=, + MOT, + o, Foay ] (2.3.12)

0
Notice that

Ma + Mb + MC = M = constant , (2.3.13)

where M is the mass of the whole system. During deployment or retireval,

MC and Ma are variable; however, the total mass is conserved. Putting

(2.3.13) into (2.3.11) and (2.3.12), we have

o
n

Lo ;
(imle, /' Fedy, * MT5] (2.3.14)

o
"

Lo
p = (/M- - M), + 0 1 Fdy] (2.3.15)

where 70 mud'% are given by (2.3.6) and (2.3.5), respectively. Note

that ﬁc can be obtained from (2.3.7) and (2.3.14).
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ﬁa’ ﬁb and ﬁc are related to u, v, w as well as rotations o and
Y. The latter is not directly evident; however, E& is along Fc direction,

and the orientation of jc is determined by rotations o and Y.

2.4 KINETIC ENERGY OF THE SYSTEM

The total kinetic energy of the system T consists of three

parts, i.e.,
T=T, +T +T, (2.4.1)

where Ta’ Tb and Tc are the kinetic energy of the shuttle, the subsatellite
and the tether, respectively. They are calculated separately as follows.
(i) Since the shuttle is regarded as a point mass (see the basic assump-

tions), T, may be expressed as

T =(1/2M,(R, + R)- (R, + R,)

a

=(]/2)Ma(.§o'.§o + Z%O.%a + :ﬁa':ﬁa) s (2.4.2)

where ﬁo is the radius vector of the center of mass S of the system from
the center of the earth and the dot represents differentiation with respect
to time.

(ii) Similar to Ty Tb is given by

[ e . L]

T, =(1/72)M (Ro + R )+ (Ro + R

=(1/2)Mb(§0'ﬁ0 + Zﬁo‘_ﬁb + _ﬁb.-ﬁb) (2.4.3)
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(iii) The tether is a continuous body and its kinetic energy involves

integration over the distributed mass of the tether. It is given by

S0/ 0 (Ro+ R (Ro + R Jam
M

c

=(1/2)MCT.50-T.50 ¢ Ror s .ﬁcdm +(1/2 I.i :ﬁ (2.4.4)

Me
Substituting (2.4.2 - 2.4.4) into (2.4.1), we get

T =(1/2)M%o'ﬁo + ﬁ°‘(Maﬁa + Mb%b + [ %Cdm)

MC
+(1/2)Maﬁa-ﬁa +(]/2)Mb.§b-:§b +1/2) 1 :ﬁé-:ﬁcdm : (2.4.5)
C

Using (2.3.7), T can be written as

T =(1/2)'4:§0-%0 + .ﬁo.[(Ma + Mc):iia + Mb.ﬁb + f ?.«*Cdm]
: M
c

+(1/2)(M, + Mc)ﬁa-ﬁa +(1/2) bﬁb ﬁb (1/2) é %C-%Cdm

+§a- S chm (2.4.6)

Me

It is shown in Appendix A that the second term is equal to

*
zero. Hence, the kinetic energy can be rewritten as

* Derivation of this result from (2.3.1) is not trivial since Mg and
Mb vary with time.
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T= Torb * Tnonorb (2.4.7)
where L.
Torb =A('|/2)Mﬁo°_§0 (2.4.8)
and 7 L .. o
Tnonord = 0/2)(M + Mc)ﬁa'ia * O/Z)Mbﬁb'ﬁb +(1/2)s Fc‘?cdm
* :ﬁa y %cd’" (2.4.9)

Here, Torb is the orbital kinetic energy while T is the remaining

nonorb
~ part of the kinetic energy associated with rotational motion of the

system and vibrations of the tether. T is much smaller than Torb

nonorb
and does not affect the orbital motion. Hence, the orbital motion may

be calculated separately.

T can be developed further. Differentiating (2.3.14)

nonorb
and (2.3.15) and using equation (A.5)

Ry = (1Mo, S 1 Fedy, + M
2y s :
= (-1/Mo, £ ¥ dy, + MT.] (2.4.70)
and . ;0 ; .
Ry = (-1/M)[o, / Fodyg - (M- M)E;] (2.4.11)
Here . .
Fo) = G+t 50 (2.4.12)

which takes into account the fact that the tether may be moving axially.

It is similar to the convective derivative that is encountered in fluid
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mechanics. Substituting (2.4.10) and (2.4.11) into (2.4.9) and using
(2.3.13), we get

Toonor = 072) (/M) (0, + WYE o2y = (Mo /M)ep T

nonorb

o \.50
S e

Lo
+0/2)p, I ¥ F dy, (2.4.13)
0

Equation (2.4.13) is valid for any combination of values of
Ma’ M, and Mc' The magnitudes of M_, Mb and M. are of the same order in
the case of two space stations linked by a tether, for example. However,

in the present SSTS system, M_ is much larger than Mb and Mc (see Section

a
2.2). Thus from (2.4.13), we have

T ar2m g1, - 072) y2mi -1

nonorb j

’ Yo 3 W3 o3
- (MbMC/M)iTj.a/z o)..g # dy, + 0/72)M(1/%) { For 4y,

. e 20
= (1/2)sz‘j-ft:i + (172M_(1/20) 1
0

?c-?cdyc (2.4.14)

ignoring second order terms involving Mb and Mc' Equation (2.4.14) is
quite neat in vector form and has a very clear physical meaning. The
first term represents the kinetic energy of the subsatellite, while the

second is the kinetic energy of the tether.

Since 15 and ¥ _ are related to 20, U, v and w while E&, FE are

c
absolute velocities with respect to the inertial coordinate system X, Y,

is a function of

Z thus dependent on rotations a an@‘Y as well, Tnonorb
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s Y, L0, U, V, W and their derivatives. The explicit form will be

developed later in Section 2.7.

2.5 STRAIN ENERGY IN THE TETHER

The tether is very long and thin thus flexible. When it
deforms, some strain energy is stored in the tether. In the linear
elastic theory of strings, it is assumed that the initial tension in the
string is large enough and the transverse displacements cause negligible
change in this tension. But, in the present case, the tension in the
tether is not large enough all the time. When the tether is long,
gravity gradient and centrifugal force are large enough to cause reason-
ably large tension in the tether; however, when the tether becomes
shorter and shorter during retrieval of the subsatellite, these forces
weaken since they are proportional to the length 2, in general. In an
extreme case when £, approaches zero, the tension tends to zero. There-
fore we cannot neglect transverse displacement induced changes in the
tension. This implies that the Tlongitudinal vibration is strongly
coupled with the transverse vibrations [31] during the terminal stage
of retrieval.

Consider an infinitesimal element PQ having an undeformed

Tength dy_ (see Fig. 2.2). The strain in the element is given by

ds-dy
dy

c

= {{ldy tvly *dy ,t)-vly ,t)]*+[uly #dy _,t)-uly ,t) ]?
c

+[w(yc+dyc,t)-w(yc,t)]z}1/2_dyc}/dycz g_zc_ + (1/2)[(3—;:)2

+H=-)2] =€, + g (2.5.1)
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Here

£ = %%—-= strain caused by longitudinal displacement v
c

m
[N
\

= (1/2)[(%3—)2+(%¥—)2] = extensional strain caused by
¢ transverse displacements u and
W.

The tension at point P is EAe. If g; is very large compared to 2, the
tension can be regarded as EAe;, if not, it is EA(g; + €,). When the
tether is long, &; = 0(10'2-10'3) and e; = 0(10'4), i.e., €; is reason-
ably large and dominant; when the tether is shorter than 1 Km, &y =
0(10'-10-6) while €, could be large if the transverse vibrations are
not damped out.

The strain energy in the tether is given by

2:0 :
Pe = (1/2)EA { ezdyc
= (1/2)EA 5}"{ Ny (172)[( )2 + ()2]y2y (2.5.2)
0 ayc Byc 8yc C U

2.6 MATERIAL DAMPING

As the tether is deformed, usually some energy is dissipated
in the deforming process, which can be accounted for through material
damping. The mechanism is quite complex and may be explained adequately
only by using micromechanics. Irreversible sliding of the dislocations
inside the material dissipates energy [34]. Hence, the relation between
strain and stress is not exactly elastic. There is some hysteresis

phenomenon when the material is subject to vibration. The area enclosed



-30-

by the hysteresis curve indicates the energy dissipation which turns to
heat. In engineering applications, it is usually accounted for by
introducing a material damping or structural damping coefficient which
is determined by experiments [33]. One can introduce an equivailent

complex Young's modulus
E'= E, + iE, (2.6.1)
where i is the square root of -1. Then,
o= EE = (Ey + iEx)e = E4(1 + in)e (2.6.2)
where usually
n=Ey/E; << 1 . (2.6.3)
If € is harmonic with frequency wg,
ie = e/wo
and (2.6.2) becomes
o= Eile + (n/wo)e] (2.6.4)

The coefficient n is often assumed to be a constant, although
it somewhat varies with frequency as well as other factors such as the
stress level, etc. For metals, in the environment of 1g, n is between
0.01 ~ 0.001. 1In the space environment, experiments have shown that the
damping increases. In the calculations in this thesis n was chosen as

0.005. This is a conservative estimation.
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2.7 GRAVITATIONAL POTENTIAL ENERGY

The total gravitational potential energy of the system consists

of three parts; that due to the shuttle, subsatellite and the tether,

respectively, i.e.,

v

=V

G Ga

* Vob

+V

Ge

From the definition of gravitational potential energy,

-uM
V = __;a__
Ga |§o + R |
a

Vo, = ___:ETQ__

Gb ”50 + ﬁb'

v _ Lo Upcdyc
G

¢ 0 lﬁ% + ﬁc'

(2.7.1)

(2.7.2)

(2.7.3)

(2.7.4)

where u = G°Mearth’ while G is the universal gravitational constant and

Mearth

is the mass of the earth.

Here the end-bodies are assumed to be

points and the earth is assumed to be spherical.

Ga

Equation (2.7.2) may be expanded as

-uMa

/B + R ) (R + R )

SUR (Ro- By + zﬁo.ﬁa + §a,§b)- 1/2

+
oo w

z_ﬁo'.ﬁa

(—_TEFT—) + 0(

B

=71
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Ignoring higher than third order terms, we have

M R.-R 2Ro R
= a ] B . .a a3,/ a,
Voo ¥ M e U - iz RorRy - por + § (2™ (2.7.5)
Similarly,
M R.-R 2R, R
= b 1 5 b , 3 SN0 %y,
Vep ¥ e [ - 12 Ry Ry Rzt g )] (2.7.6)
and
up 2l() 2/0 Q’O
x . ¢ | . o . 37 4%
Voe - &, (o oz Ro [ Redy o7/ RoRedye + 2 e (Ro-RoFdy.
(2.7.7)
Now, using (2.7.1) and (2.3.1), we get
sy Moy u . Yo 2 . Y o 2
VG - I RO + 2R03 {Ma[ﬁa ﬁa 3(30 ﬁa) ] + Mb[_ﬁb -ﬁb 3(\]0 ﬁb) ]
L4 N
t o,/ [RoR, - 3(J0-R)?1dy .} (2.7.8)
0

The potential energy V, which includes VG and PE’ can be written as

V= vorb * Vnonorb
Here
_ M
orb = M R (2.7.9)

and is relevant to orbital motion. On the other hand,
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- _H T, . - .
Vnonor = ZRe7 (Mal(Ry™ = 3(Js R)1 + M[R,? .3(30 Ry)1

o
+ 0o L IR - 3(J0+ R ) 1dy }

L
1 0 3V U y2 W v2112
_ — % —_— 4+ (—— 2.7.
* 5 EA{ {ayc [(ayc) (ayc) 1} dy, (2.7.10)

and is associated with rotational and vibrational motions. Obviously,

Vorb is much greater than V = 0(R%/%,2).

or since Vorb/v

nonorb nonorb

2.8 ORBITAL MOTION

The system has the kinetic energy Torb and the gravitational
potential energy Vorb’ if other much smaller terms associated with the
attitude motion of the system and vibrations of the tether are ignored.
With this, the orbital motion can be calculated separately and can be
shown to be Keplerian. A Keplerian orbit is a planar orbit and is

characterized by [38]

6 = h/Ro? - (2.8.1)
and
Ro = h2/{u[1 + e cos 6]} (2.8.2)

where h is a constant, representing angular momentum per unit mass of
the system and e is the eccentricity of the orbit. Ry, 6 and 6, are as
defined earlier. Equation (2.8.2) represents an ellipse. When e is zero,

the orbit i1s circular.
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It can be shown that the mean orbital rate is given by

w = [u/a3]]/2. (2.8.3)
where a is the semi-major axis of the orbit and is given by
a = h?/[p(1 - e?)] (2.8.4)

Equation (2.8.3) represents what is known as Kepler's third Taw. Using

(2.8.1) - (2.8.4), it can be shown that

-3/2

De
H

w(1l - e?) «[1 + e cos 6]2 (2.8.5)

Re = [Ww?1/3(1 - e2)/[1 + e cos 6] (2.8.6)

Relations (2.8.5) and (2.8.6) would prove useful later. If e is nonzero,
the instantaneous orbital rotational velocity 6 varies with 8, oscillating
around w.

In this thesis, for convenience, a parameter H is used to
specify the orbit rather than the semi-major axis a or mean orbital rate

w of the orbit. The parameter H is related to the semi-major axis a by
H=13a - (1/2)(60 + bo) (2.87)

where a, and b, are the semi-major and semi-minor axes of the oblate
earth. Since a, and bo.are constants, specification of H is equivalent
to specifying a. Clearly, H is equal to the altitude of the orbit if it
is circular and the earth is assumed spherical. However, if the orbit
is not circular, the altitude above the earth's surface varies and is not

equal to H.
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2.9 EXPLICIT EXPRESSIONS FOR V and T

nonorb nonorb

Kineticenergy T and potential energy V have been

nonorb nonorb
obtained in vector form in (2.7.10) and (2.4.14), respectively. In

this section they will be expressed explicitly in terms of rotations

and vibrational displacements as

v v (o5 ¥s Uy v, Wy 2o) (2.9.1)

nonorb = “nonorb

and

Thonorb = Tnonorb (@, v5 us vy Wy 205 0y ¥, Uy ¥, W, ko)~ (2.9.2)

so that a set of equations of motion can be obtained through the extended
Hamilton's principle.

Let us introduce notations u, v, w as follows:

Lo(t)
u(t) =9«T](?T I ulygst)dy, (2.9.3)
- 1
v(t) = ToGET ! v(yc,t)dyc (2.9.4)
_ 1 K
W(t) = m s w(yc,t)dyc (2.9.5)

Furthermore, the transformation relating the unit vectors of X¢, Yo, Zo

and Xos yc, zC systems can be expressed as
-+ - - T
1 1, 0, 0 "cy, -sy, O 1.
30 =0, ca, -sof{sy, cy, O 3c (2.9.6)
k' Lo, sa, caflO0 0, 1]'%
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where ca = cos o, so = sin o, etc., are used for abbreviation. With

this, V can be expressed as

nonorb
v BTN VRN § TR PR L R PR IS |
nonorb 2 o oy 2 '3y oy Ye
c c c
# 2 [V + Vp + V5] (2.9.7)
where

Vi= (W/ReP) (M /M) M 202 + (M5 + V) + M (Lo + v(2g, £))]2

+ MCZWQ}-3Ma%GMC/Mﬂ§anU + caca(%-zo + V) - sow ]

M

- 2 cocylte + v(%o, )1}F . (2.9.8)

V., and V; are similar to V; and are not listed here for brevity, They
are given in Appendix B along with their derivations.

To simplify the lengthy expressions for V;, V., and V3, the basic
assumptions defined earlier are used, i.e.,

(i) My >> My Mc

(ii) u, v, w << &g
With these assumptions

)

L
_EAT v L1 pBu e . (BW yaTy2
nonorb = 2 £ {ayc *72 [(ayc) + (5§ZJ 1r2dy,

Vo Vo (2.9.9)
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where
Yoy = .;. [w/Ro *J0M, + 13 M0 - 3 clac?y)e,? (2.9.10)
Vo = 7 [8/Ro* I (1-3c%0c2y) Mov (o, )
1 %o 1 % ‘
+ E—'f dec]'3McLE§'£ cocy(uca - wsa)ycdyC]} (2.9.11)
From the above, Vuvw/vuy 0([u, v, w]/2¢), thus V >> Vuvw’ i.e.,

u, vV, w have a small contribution to the grav1tat1ona1 potential energy.
This is expected since vibrations are small in amplitude. VaY depends on
a, Y and 2o only while Vuvw is dependent on a, v, 2, as well as the
vibrational displacements u, v, w. If there are no vibrations and
stretching of the tether, Vuvw is zero. Otherwise, we have both Vuvw
and the strain energy term. In the simplifying procedure, care must be
taken to retain the term Vuvw by using appropriate order of magnitude
analysis, since we want a, y equations as well as the vibrational
equations both to a reasonable degree of accuracy.

In order to express T given by (2.4.14) as a function of

nonorb
rotations and vibrational displacements, Ej and ?; must be expanded
explicitly. Using (2.3.5) one obtains

3 _ . >
Ej = [0 + v(Lo, )13, + 0, X s'zfj (2.9.12)

where $C is the angular velocity of Xer Yoo 2 coordinate system. The
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-> . . . . .
components of We along Xos Yoo 2 directions can be written in matrix

form
Wy ey, sy, O[T, 0, O7(é+) ¢y, sy, 00
wyc = |-sys ¢y, 0})0, ca, saly O + |-sy, cy, 0OKO
W, 0o, 0, 140, -sa, ca]' O Lo, o0, 1l\y
(6+a)cy
= {-(6+a)sy (2.9.13)
Y
Substituting (2.9.13) into (2.9.12), we get
5 ] ) a 2’ N
Ty = LDt vito, )T £0(1 + 35 (1o, 1)) + 22 EL
7
o
[0 + v(%o, £)1(B + a)ey]$ T, (2.9.14)
-
kC

Similarly, using (2.3.6),

- ﬂ‘_ a_u_ - 3 L3 - . 3
T Gtk By, w(o + a)sy - (y, + v)YH

oV oV . . . -+
3—),:) tap - (6 + OL)CYW}JC

+ o1+

+ {§¥-+ Lo %g—-+ (6 + a)syu + (8 + &ev(y, + vIIK,  (2.9.15)
c
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Substituting (2.9.14) and (2.9.15) in (2.4.14),

=
o

Thonorb = 7—'{[(& +8)2c2y + ¥2][Ro + v(%o, t)]2

+ [0+ 5 Qoo + 5f (0, )T
c

L
'l - au _ - . _ *q9
E"{ {[at L9 —;;- w(b + a)sy (yC + v)y]

+
N]—'

0 - 2
+ [ (14 ayc) + = at + uy-(8 + G)CYW]

Q]— 3 3 * . 2

+ [a + 4, 2, + (6 + a)syur(8 + a)ey(y, + v)I*}Hdy, (2.9.16)
Tnonorb can be decomposed into two parts as (Appendix C):

T =Ty * T | , (2.9.17)

nonorb Tay uvw
where

Ta‘y= ;_ (Mb + J3. MC)[(& + e) c -Y + 'YZ]Q,OZ + = (M + M ) (2.9.]8)

and
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Ty = Mp{LGE + B2 ¥V, thorhe? J (€]
+ o g Wos )1+ 5 (0s £)) + (5 (o, 1))}
o

Lo
Mo L ALEDE + (302 + (392

2 ¢,

s 2r U yz 4 o3V ). (W y2q 4 pp AU AU, BV BV
c c C c
DWW ,n Lt w3

[(8 + a)ey 3{‘ Y at]+2(e + oc)svy [yw + (8 + a)cyu]

+2 -g-;- [wy - (b + deywlHy, (2.9.19)

In obtaining (2.9.19) the basic assumptions cited in Section 2.2 have
been used. In addition, some vibrational terms have been dropped based
on order of magnitude analysis.

Again, as in the case of gravitational potential energy, Tay

is much larger than T One can expect that the rotational motion is

uvw’
affected to a smaller extent by the vibrations compared to the vice versa.

2.10 GOVERNING EQUATIONS OF MOTION

Once the energy expressions have been obtained, there are two
ways to derive the equations of motion. One way is to expand at the

outset, u, v, w in terms of a set of admissible functions. Then, the
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integrals with respect to the coordinate Yo in the energy functionals can
be evaluated. Thus one obtains energy expressions expficit]y in terms

of a, v,etc. and Galerkin coefficients which are func¢tions of time only.
Subsequently, Lagrange's equation is used to obtain the equations of
motion. This approach has been followed by Misra and Modi [22,23].
Although this method may sometimes involve less work, it does not yield
equations in terms of u, v, w in general form. Admissible functions are
not unique anyway. If these functions are changed, the entire derivation
must be repeated starting from the energy functionals.

The other way is to use directly the extended Hamilton's
principle to get the general equations of motion (partial differential
equations for vibrations and ordinary differential equation§ for
rotations). These may be more useful, although more algebra is involved
in the derivation. This second dpproach is followed here.

The extended Hamilton's principle is

)

t,
J (8T + SW)dt = 0 (2.10.1)
Y

where 8T is the variation of the kinetic energy and 8W is the virtual

work done by all the forces acting on the system. Putting

SW=-8V + awnp (2.10.2)

where &V is the variation of the potential energy and GWnp is the work

done by all the nonpotential forces, one has
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t, t.

S SLdt = -/ SW__dt (2.10.3)
np

t: t:

Here L is the Lagrangian given by
L=T-V (2.10.4)

The expressions for T and V are given in (2.9.17 - 2.9.19) and
(2.9.9 - 2.9.11), respectively.

For the sake of brevity, only equations for a and u degrees
of freedom are developed in the main text. The other equations are

derived in Appendix D.

2.10.1 Development of the o Equation

Let us define

6OLL = L(CX + GG,, Ys Uy V, W, 2'0) - L(O"3 Ys Uy, V, W, 2'0) (2-]0'5)

Only the o degree of freedom has a generalized virtual displacement since
we are interested in obtaining the corresponding equation. Using (2.10.3),
(2.9.17-19) and (2.9.9-11)

M
c¥2 o2 {sacacy[M, (1+2 V_Ulfg_tl)+ 5

+p ——1-{ yc[Z-Sucuch+25acuSYU + cos(Zu)N]dyc}éa

c 29

e o ° 2’0
+ {[(1+2 ﬂ%ﬂflmb + % MC](oc+9)czyﬂ,02 + pc[ZR,ocy.(/)'wdyC

oy Ko %o W . du oW .9V .
+ 2 (e+oa)cyof(cyv+syu)ycdyc+of(s\((uﬁ -wsate(var -Wiz) Jdy Jea

(2.10.6)
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Here, the following relation has been used

.2

3. 0
]J/Ro = ——'——‘] T eco (2.10.7)

Integrating GaL with respect to time from t, to t, and noticing that

Gu(tl) = Ga(tz) =0 (2.10.8&)
sa = 9 (s0) (2.10.8b)
dt ’ 4 . .
one can obtain
t2 tz .
S [Aajéadt =f QuGadt (2.10.9)
t1 tl

where Aa'is the integral kernel and Qa is the generalized force corresponding

to a, which is derived in Chapter 3.

Since a is an independent generalized coordinate, da is
arbitrary and the only way the above equation can be satisfied is

if
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or

{{Mb[l + ZV(R'Oa )]'Q'O 203}(()‘ + e)C Y}

A2 o
+ 3 1T—¢—§—E§T sacaczy{Mb20@0+2v(20,t)] + %pc[zos +2 f yc\/dyc]}
0

52 Lo 62 Lo ’
-6 T—;fz—zém%sucusycyj'uycdyc T—;—E—EéwacYc(Za) { wycdyc

2d- Lo Zd..zzo
“20.qp Wo ov / wdy }+20 = {(6 + a)cy [ yvdy ).

{s f (u W a9—)d } o+ g—-{ﬁ %p( + v) L J
cdt Y 5t/ VYl Tegt ¢ 4 Ve 5t Vi

. Lo _ d . Lo
*o. 95 {svy ! Y wdy* 20, 3¢ {(6 + a)sycy { Yo u dy.}

SLO oV
{oy [ 3¢ wdyg

[aR el
‘—’-

- q : (2.70.10)

Equation (2.10.10) is very messy and contains many insignificant terms.
It can be simplified further by ignoring these small terms. We do not

ou 9v aw

know how Targe the local velocities 3t 5t° 3t °re (vibrations have high

frequencies), but at Tleast the values of u, v, w are much smaller than %,.

This fact can be used in the simplification process.
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Finally, one obtains

Mo? + T oot G [e2v(B + )1 + [c2v(B + 3 MM Pl

3

ov(L,,

+ 2M 2, 5t t)] + pci0202}+3

b 1 +ect

1 ) %
+'3'QC 210 }+ ch

d
dt

Lo . Lo 9 W
tosy Jyudy I+ sy Jywdy, +ooy Tyooop dvek= Q

2.10.2 Development of u Equation

saéaczY{Mbloz

. Lo . . 0
{~2qocy S wdy + (6 + a)ey[ey S y_vdy
0 c . o °C Cc

(2.10.11)

Using a procedure similar to the one used in Section 2.10.2,

let

§,L = Llos vy u+t 8u, vy W, 20) = Loy vy Uy vy Wy £0)

(2.10.12)

Here only a genera]iied virtual displacement §u is given. Again from

(2.10.3), (2.9.17-2.9.19) and (2.9.9-2.9.11)

1 u
{ auLdt =75 {r { T 5% Sudy dt
1 t:
ty , 0
+ L Re% Z(gL) %_ sudy _dt
ta 0 ‘yC ‘yC
t, L9
. au 9 au 3
+ .{1 2% o .g (3t ayc 0 Eﬁ <Suc)dyc dt
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ts L9
+ [ 20, f 2Y6udy dt
t

1
t* . . %o ow P}
+ f 2(8 + a)sy f [at -w 5E-GUdecdt
t1

t, . % 2
+ [ (-Y) { 2(y + v) 5f Sudy dt
t

+ f 2(8 + a)2esycy f Y, 5udy dt
t1

+ f 2y f 6udycdt
t1

t2 &
S EA S LG g LT G g oudyat
‘ c

t,; © ayc By By
éZ t2 ) ,Qlo
- (T—:—g—ggj'{l(-3oc)c asyey [y Sudy dt
tz tz
=/ Su W dt = -f { Q, 6udy dt (2.10.13)
t]_ 1

where Qu is the generalized force acting on an element dyC of the tether

corresponding to displacement u. By definition,

6u(yc,t1) = 5u(yc,t2) =0 for yCE(O,Qo) (2.10.14)

Boundary condition for u can be obtained through the variational

equation above, but from geometrical considerations, it is quite obvious
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that

u(0,t) = u(2e,t) = 0 (2.10.15)

Hence

i

Su(0,t) = Su(fy,t) = 0 (2.10.15")

In the variational equation (2.10.13) the order of integration with
respect to y, and t cannot be exchanged in general since %, =2,(t) during
retrieval and deployment. (If &, is constant, the exchange is valid).
Considering the first term, integrating by parts and using Leibnitz's

rule, we have

Lo 2o(t) Lo A2
ou, 9 =9 ou _p9%u
I 3t g Sudv, = 3 f 5t Sudy, -/ 5gz Sudy,
3 3
s U _ 3 0 bu ¢ 32y
- Lo g Sultat) = 3¢ [ 7 Sudy, -/ o7 Sudy

Carrying out similar algebra (integration by parts and use of Leibnitz's

rule) one can express (2.10.13) in the form

tz /Q/Q
il { (Au - Qu)Sudycdt =0 (2.10.16)

Since Su is independent at every point of the tether and is arbitrary,

equation (2.10.16) can be satisfied if and only if

A -Q =20 (2.10.]7)'

This leads to u equation as follows
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3 * a 2 L av e . . a_w
(ﬁ—+ 2’0 Syc_) u - 2(2'0 + at)Y - 2(6 + Q)S'Y ot

ot e (b4 opsi@y) _EA 3 Bu v 1 3u . Wy
[y + (6 + af 2 ]yc Pe 5};{ Yo [Byc * 2 Byc) * (ayc) 1}

2

8 2 -
-3 TF e cg C asYCYy, Qu (2.10.18)

Corresponding boundary conditions at the two ends are already given in

(2.10.15).

2.11 SYSTEM EQUATIONS

From Section 2.10 and Appendix D, one can summarize the equations
for a, v, u, v and w degrees of freedom with corresponding boundary con-

ditions (when required) as follows:

o _equation:

[e2y( + B)T (Mo® + L 0207 +[cPy (b + &) i2Mgo (o 2Tl o 100073

02 2’0

9 2 2 4 1 3y d s
* 3 75 e secveYiMRT + 30 R0} 20, Grilo cy{wdyc}
+ d (c 2}0 awd } o+ d {s'gj'o wdy 142 d_[(é+')2%-° vdy 3
Tdt ¢ 0 Ye 3t Ye Pe dt Y 0 YN Tdt alc Yo Ye Ye

L
d . . e
+ 2 Fry {(6 + a)sycy { yCudyc}

(2.11.7)



Y equation:

p L 4 L] * L] .
Y{MLo 24 §Q L9 3}'*‘TY{2Mb20 (2ot M%%ﬂ)'*pcz 0% o H{(0+6)?

362
1 +ech

(=%

c2alsycy Mo+ l-DCZoS} + 2p

. Ho

o (h)sy Py, My o (f 3 4y )
c Y Ye st Ye cdt Ye ot Ye

Lo X '
e, dt {(8+a)sy f Ye wdt }+2p dt {y { ycvdyc} = QY (2.11.2)
u equation:

2 - L] * L] ..
Beru - 2l + A-2(bwi)sy 2+ [§-(ova)? L1y

. o EA 3 .3u__rdv_
- 3% [sy(8+a)Iw - B—T%;{W By (( ) ( )z)]}
c c
b2 |
3 T 5 e cg C osveyy Qu (2.11.3)
Boundary conditions are
u(0,t) = 0 and u(2y,t) = 0 (2.11.4)
w_equation:
D2 w o

BV)

per + 2(5+a)ov(ior ) + Sp [(B+3)sylu + 2(Bva)sy 22

EA 3 - oW [av
c e ‘ay 3y ¢

+ y A3 [(B+a)cy]-(B+a)syvl-
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(( —) ¥(E!£02ﬂ} +3 & sacacyy . = Q (2.1
ayc 3yc 1+ ecd e W )
Boundary conditions are
w(0,t) = 0 and w(Zoe,t) = 0 (2.1
v eguation:
2 L] L] - - *
B DatvI-L(ad)2ceysy? + BOIdy, o 2L (34 oy 2]
el 4 o )2+(?-"—)2:|} - q (2.11
Pe 3yc . 2 %y, v
Boundary conditions are
v(0,t) = 0 (2.11
and
2 . e . 2_.2._1\h2
My S [atv(Lo,t) 1ML (Gd) 2eysyes B0 1)ETy,
OV . 13U y2 , (3W 52 -
+ A+ 7 [G)* + ()] [ (2.1
C C (o y =9’°
c
where
D _ (3 + 9
ot = G+ o —az) (2.1

and va is the external force acting on the subsatellite along the axial

direction of the tether.

.5)

.6)

7)

.8)

.9)

.10)



CHAPTER 3

DERIVATION OF GENERALIZED AERODYNAMIC FORCES

3.1 BASIC DEFINITIONS AND ASSUMPTIONS

The Shuttle Supported Tethered Subsatellite (SSTS) system is
subject to various environmental forces such as astmospheric resistance,
solar radiation pressure, earth's magnetic field, luni-solar perturb-
ations, etc. The most important external force is the atmospheric drag
the magnitude of which is usually much larger than the other forces. Thus
it is the only environmental force considered here.

Consider an orbit inclined at an angle i to the equatorial
plane (Fig. 3.1). Let I, J, X be the unit vectors along the earth-
centered axes X, Y, Z, respectively. X-axis is from south to north
direction, Y-axis is in the equatorial plane along the 1ine of nodes
(assumed fixed) and Z-axis completes the triad. As defined earlier,

To, 30, Ko are unit vectors along rotating X,, Yo, Zo axes, which are
along the orbit normal, local vertical and local horizontal, respectively.

The earth as well as the atmosphere assumed attached to it have

an angular velocity OOT. Since the rotational period is one day,

1 5

oo = (27/24 x 60 x 60)-Sec”| = 7.272 x 10°° Sec”! (3.1.1)

From Fig. 3.1, it is clear that the inclination angle i, shape
of the orbit and the oblateness of the earth determine how the aerodynamic
forces affect the motion. If i = 0, the orbital and equatorial planes are
coincident. Thus it could be expected that the aerodynamic forces have a
great effect on the inplane o motion and no effect on out-of-plane motion vy

since they produce no torque relevant to vy rotation. If i # 0, then v

-51~
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motion will be affected through the rotation of the earth and this effect
will be maximum for i = 90°.

The shape of the orbit is determined by eccentricity e. If
e =0, it is a circular orbit and the aerodynamic forces are the same at
different 6 when the earth is assumed to be spherical. If e # 0, then the
effect of the drag varies with 6 since the SSTS system dives into denser
atmosphere at certain times. The deeper it dives, the thicker the atmos-
phere is, hence more drag is experienced by the system.

If the oblateness of the earth is taken into account, the
situation becomes more complex. The earth is not exactly spherical.
Along north-south direction, the radius of the earth is shorter than that
along west to east. Thus, when SSTS system is in a polar orbit, the drag
again varies with 6 even if the orbit is circular. It is smallest above
the north and south poles.

Due to the presence of the atmospheric drag the subsatellite
cannot be deployed to an altitude as low as onewants without 1imit.

This is because o and/or y are increased very much due to increasing drag.

In this thesis, the following assumptions are made in order to
calculate the aerodynamic forces.

(i) It is assumed that the aerodynamic force (based on free

molecular flow) can be expressed as
F=.7 Cgoqhy V1T (3.1.2)

where Ap is the projected area of either the subsatellite or an element
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of the tether perpendicular to the relative velocity of air. Here Pa
is the density of air at the altitude under consideration while Cq is
the drag coefficient. Cd depends on the shape of the object experiencing
the aerodynamic force [39]. If the shape is cylindircal (tether) Cq can
be taken as 2. For a spherical subsatellite Cd = 1.

(ii) The variation of the density of air is assumed to be

exponential, i.e.,
o, = Poexp[-(h-H)/ho] (3.1.3)

where h is the altitude in meters above the earth's surface, p, is the
density of air at a reference altitude H,and h, is a scale factor. It
is assumed here that p,,h, and H are constants in the altitude range
covered by the tether.

(iii) The relative velocity v depends on the orbital velocity
of the center of mass of the system, the velocity of the atmosphere due
to its rotation about the earth's axis and the velocity of the element
relative to the center of mass of the system resulting due .to the
rotations and vibrations of the tether. The Tast one (vibrational

velocity) is comparatively small and hence is ignored here.

3.2 RELATIVE VELOCITY OF AIR AND THE AERODYNAMIC FORCES

The unit vectors in the orbital and inertial coordinate

systems are related by

1 ci 0 siff1 O 0 ?o
Je=1o 1 oflo 8 -s8|{3, (3.2.1)
[4 -si 0 cidlo s&  cBl[%,
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where

~

=06+ 0 (3.2.2)
and c6, etc. represent cos 8, etc., respectively. Using the first row,
ol = olci To + si s8 3o +si cd k) (3.2.3)

Let the location of a point on the tethered system be given by P (Xc’
Yoo Zc)‘ P could be either an arbitrary point on the tether or on the
subsatellite. If P is on the subsatellite, the radius vector from the

center of the earth E to P is

R, “ R, + m‘c (3.2.4)

Eb

The velocity of atmosphere at the subsatellite altitude is given by

Vs = ol x (R = glci 1o +sis63 +sicb Ko)x(R, + Qofc) (3.2.5)

Eb)
The velocity of the subsatellite is
—}.
J

(Ro + ILo.—]?(:)‘ =Ro Jo + Ry 6 —Eo + (203 )’ (3.2.6)

The first two terms represent the orbital velocity and the last term is
the velocity of the subsatellite relative to the shuttle. Hence, the

velocity of the subsatellite relative to the atmosphere is given by

vsa = hojo + Roéﬁo + (2035). - vs
= ho?o + Roé_lzo + iojc + Qogc - ofci To

+51s8 3, +sich ke)x(R, + zofc) (3.2.7)
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From (2.9.6)

Fc = =Sy 1o + ca CYJo + Sa cy Ko (3.2.8)

Furthermore,

and using (2.9.13) and (2.9.6),

3. = v(ey To + sy ca Jo + sy sa ko)

b (b + W)er(-sa To + ca ko) | (3.2.9)

Substituting (3.2.8) and (3.2.9) into (3.2.7),

> + +
= + +
sa sza 0 Vysa Jo sta Ky
where
V. =295y -%29cCyy +RoocBsi-olysicy

Xsa

«(sB sa - cB ca)

Vysa =Ry + 8y cy ca - Lo ¥ Sy co - sa oy (B+a)lo

+ 0 2q4(ci cy sa + si cd sy)
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and

sta = R + %0 sacy - Lo Y SY Sa + Ca cy(é+&)lo

- Ro o‘ci - oo(ci ca cy + si sB sy) (3.2.10)

Equation (3.2.10) includes the contribution of %,, & and v to the
velocity of the subsatellite relative to the atmosphere. It is rather
lengthy and in fact, many terms are quite small. The deployment or
retrieval velocity %, of the tether as well as & %, and v 2, terms turn
out to be negligible compared with the orbital velocity, even though 2,
.is quite large. In actual computations, they were ignored and the

following expression was used

-).
To
vsa = [Ry o ¢8 si, Ry, Re(B-0ci)] {3
>
ko
.+
To
- +( _»
= [an, Vya, Vza] io = Va (3.2.11)
ko

With the above approximation, one can assume that the velocity of any
point on the system relative to the atmosphere is the same Va and is
given by (3.2.11).

It is more convenient to express Va in terms of components

along the tether coordinate system, Xor Yoo 2 Using (2.9.6) and

c
(3.2.11)

V.=V 1 +Vv J +Vv._ % (3.2.12)
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where
ch = ¢y(R, o ¢ si) + Ry sy
Vyc = -sy ca(R, o c8 si) + Ry ¢y ca + Re(B-oci)sa
V. = sa sy(Ro 0 ¢B si) - Ry cy sa + Re(B-oci)ca (3.2.13)

The aerodynamic forces acting on the subsatellite and an

element dyC of the tether are given by

_ 1 > >
Fp= -5 Cyp Pap AlVa IV, (3.2.14)
and
> 1 >
fe = = 7 Cac Pac dAcWa'Va ’ (3.2.18)

respectively. Here Cdb and Cdc are drag coefficients associated with
the subsatellite and tether, respectively, Ab and dAc are the projected
areas of the subsatellite and an element of the tether normal to the
relative velocity pf the air while Pab and Pac 2re the density of air
at the altitudes of the subsatellite and the element of the tether under
consideration, respectively. Ab is governed by the shape of the sub-
satellite. Here the subsatellite is assumed to be spherical. Hence,
whatever is the direction of the air flow, the projected area Ab remains
the same.

The tether is assumed to be cylindrical with a diameter dc.
Now, dAC depends on the angle between the tetherline and the relative

velocity of air. Using the diagram shown below,
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dA_ = (dyc)(dc)|cos Bl
= (dc)(dyc)-/ch‘ YV AN 2 vyc2 TV 2 (3.2.16)
dYc
n
—
VaB
dc
Yo

3.3 DENSITY OF ATMOSPHERE

As mentioned earlier in this thesis, the density of air Pq
is represented approximately by an expression varying exponentially with

the altitude, i.e.,

py = Po exp[-(h-HYh,] (3.1.3)

a

Although py,, H and h, vary somewhat with altitudé, they are assumed to
be constant here and chosen so as to yield the density of air identical

to that used by Baker et al. [16]. Accordingly,

0.1513 x 1073 ! (3.3.1)

1
ho
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while py and Hyare eliminated by using a value of 04 equal to

1.2321 x 10713 kg/m® at an altitude of 200 km, i.e.,

0, = boo exp(-0.1513 x 10™%h)kg/m? (3.3.2)

where

13 3

oo = 1.2321 x 107'° exp(0.1513 x 1077 x 2 x 10%)kg/m* (3.3.3)

The oblateness of the earth affects the calculation of
altitude h. The earth and the SSTS system are shown in Fig. 3.1
schematically. Along the N-S direction, the axis is a bit shorter
than that along the W-E direction since the earth is not exactly
spherical. It is more 1ike an ellipsoid. Measurements have shown that
the semi-major axis a, of the earth is 6378.160 km while the semi-minor
axis bg is 6356.778 km [38] and the equatorial plane is essentially a
circle. Supposing that the density of air is the same everywhere on the
earth's surface, this nearly 20 km difference between the semi-major and
the semi-minor axes would affect the air density significantly even for
a circular orbit. That is because the altitude would vary up to 20 km
and variation of air density with altitude is exponential. The SSTS
system will have a lower altitude and therefore experience larger aero-
dynamic force in the equatorial plane than over the north and south poles.
Twenty km may be small compared with the radius of the earth, but it is
of great significance while calculating the density of air because it

changes by an order of magnitude within a 20 km layer.
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The eccentricity:e of the orbit obviously affects the density
as well. R, is no longer constant when e # 0. Thus the SSTS system is
sometimes far above the earth while dives into the atmosphere at some
other time changing the aerodynamic force. The difference depends on
how large e is.

Referring to Fig. 3.2, from geometric considerations, the
instantaneous radius of the earth and the altitude above the earth's
surface can be shown as [Appendix E]

1
= ap bo/[be?(1 - 827 s28) + a,®s?i 526]Z

r

earth (3.3.4)

and

h=(Ry - ty, ca cy) {1

rearth

+ (aoz-boz)z(s“i 526 c26)/[b02+(a02-b02)521 529]2}

N et

...(3.3.5)

3.4 GENERALIZED FORCES

The virtual work awa done by the aerodynamic forces is given

by

-
&W, = J F.6R (3.4.1)
system

where F is the aerodynamic force acting at an element of the system and

SR is the virtual displacement vector. R is the corresponding radius
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vector from the origin E of the inertial coordinate system, X, Y, Z.
Considering the displacements u, v and w, the radius vectors for the

subsatellite and an arbitrary point on the tether are given, respectively,

by
Rey = Ro + [o(t) + v(2o,t) T3, (3.4.2)
and
Ree = Ry + “(Yc’tﬁc + Ly, + vy 0T+ Wiy -tk (3.4.3)
where

ﬁ0 = —ﬁo (6)

Corresponding to a virtual generalized displacement So, the

variation in the radius vector ﬁébis given by

8, Rep = 80ty + [Lo+ v(k,t) 1T )
= (o+v)8, J(as7) = 20 8, T () O (3.4.9)
Clearly,
8:*
J
<+ C
6 dc = 35 %o (3.4.5)
Using (2.9.6),
87, .
= cy K (3.4.6)

o8]
Q
(9]



-62-

Substituting (3.4.5) and (3.4.6) into (3.4.4),

aaﬁEb =2, cy 8o 'lZC (3.4.7)

The virtual work done by the aerodynamic force Fb on the subsatellite

due to the virtual generalized displacement Sa is then

8 Wy = ?b -8, 'l‘iEb = 1, cy(?b . T?C)csoc (3.4.8)
Using (3.2.12) and (3.2.14)
§ W, = -ic AV 1% oy V. & 3.4.9)
a Yab~ T 7 “db Pab b| a'_0 €Y Ve O¢ (3.4.
In a similar way, we have
>
3 KEC =y, o Sa K, (3.4.10)
and
NI
Ga wac - { ( ¢ S c)
Fy et -t
= g Ye cy( ¢ C)Ga dy, (3.4.11)
Using (3.2.12), (3.2.15) and (3.2.16)
2 1
-1 ’ 24y 2)2 V. d_d )
Gu wac 2 Cdc {, pac(vxc zc! Yo CF Vg 9o @Y v o@ (3.4.12)
Since
S W, =8 W, +8 W. =010 - 8o , (3.4.13)
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using (3.4.9) and (3.4.12), we have
1

..l 2 by 2)2 f
%a 7 O Vye (g dclVye + V,0) I Ye Pac dy

+C Ab|Va|zo} (3.4.14)

db Pab

Here Qaa is the generalized force corresponding to o due to aero-
dynamic forces.
Following a similar procedure, one obtains the generalized

aerodynamic force QYa'corresponding to v as

1
Sy qe, (e f ooy dy
QYa 2 x¢ "“dc "¢’ xc z¢’ 3 Tac’c V¢
>
* Cap Pap Ab|va|20} (3.4.15)

Now, if a virtual displacement Gu(yc,t) is imposed, the

variations in the radius vector ﬁEb and ﬁEc are given by

8, ﬁEb =0 (3.4.16)

and

- -
5, ﬁEc = su(ygt)T, (3.4.17)

Equation (3.4.16) is as expected because displacement u is not relevant
to ﬁEb' It implies that the aerodynamic force acting on the subsatellite
does no work due to the virtual displacement Su, thus contributing

nothing to the generalized force Qua'
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The virtual work Gu(d wac) done by the aerodynamic force

acting on an element dyC of the tether is given by

syl ) = (F, - T )suly,.t) (3.4.18)

Using (3.2.15) and (3.2.16)

1
1 . 2 2y .
‘Su(d wac) T T2 Cdc dc pac(vxc * Vzc) vxc dyc 5u(yc,t)

Q,q ¥, Suly,t) _ (3.4.19)

ua

where Qua is the generalized force corresponding to u per unit length

of the tether acting on Yer Clearly,

nNj—

-1 2 2
Qua -T2 Cc dc Pac (vxc * Vzc). ch (3.4.20)

Similarly, the generalized force Qwa corresponding to W can

be obtained as

1
= .1 2 2y2 '
Qa 2 Cac d¢ Pac (ch * vzc) vzc (3.4.21)

As opposed to the case of virtual displacements Su and éw, the
work done due to the virtual displacement dv is dependent on the aero-
dynamic force applied on the subsatellite. This is because v(%g,t) # O
at the subsatellite end while u(®y,t) and w(%,,t) are. From (3.4.2) and
(3.4.3),
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o>
g
|

= 6v(2°,t)3c (3.4.22)

and

s R

+
v Rec dv(yc,t)JC (3.4.23)

The virtual work 6V(dwac) due to the aerodynamic force
acting on the element dyC of the tether corresponding to virtual

displacement Gv(yc,t) is given by

s (di ) =T s, R
= sv(y.t)F, « 3, (3.4.24)
Since by definition
s, (AW ) = Q. dy. + svygt) (3.4.25)
using (3.2.15), (3.2.16) and (3.4.25)
1
Qq = - %'Cdc de Pac (Vxé ¥ Vzé)z Vyc (3.4.26)

Where Qva is the generalized force applied on the tether corresponding
to v.
The virtual work done by the aerodynamic forces acting on

the subsatellite due to the virtual displacement &v(%,,t) is given by

s, W

+
v "ab 8v(%o,t) ?b " e

Qu,p + OV(Rost)  (say) (3.4.27)
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Using (3.2.12) and (3.2.14)

C

- .1 v
Qab = = 7 % Pab Ablvalvyc

As will be seen later, this QVab gives rise to a dynamic boundary

condition for the longitudinal vibrations.

(3.4.28)



CHAPTER 4

DISCRETIZATION OF THE EQUATIONS GOVERNING

VIBRATIONS USING GALERKIN'S METHOD

4.1 INTRODUCTORY REMARKS

We have already obtained a hybrid set of differential equations
to describe the dynamics of the system. For o and y, they are ordinary
differential equations, because o and y are functions of time only. For
u, v, W, they are partial differential equations because u, v and w are
not only functions of time but also of the space coordinate, i.e., at
different Yoo Us Vs W are different.

It is difficult if not impossible to get analytical solutions
for these equations for given initial conditions, since the equations
are non-linear, non-autonomous and coupled to each other. Therefore,
we have to use an approximate method and get numerical solutions using
a computer.

Generally for linear partial differential equations with
constant coefficients the exact solution can be expressed in the form

of separated variables as follows:

_ . Lu u

u = iE] T (1) ¥ () (4.1.1)
2y v

A RADRAS (8.1.2)
2w w

W= 151 T_i (t) Y_i (yc) (4.1.3)

-67-
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where Yiu(yc), etc. are so called characteristic functions or modes.
However, in the present case the equations are nonlinear and the length
is time-dependent; thus one does not know if expansions of the form
(4.1.1-4.1.3) are strictly correct or not. 1In any case, there are no
modes Yiu, etc. in the classical sense if the length varies with time.

However, one can express u, v and w approximately as

n n -

u=2o X A(t) ¢;(y.38e) = T Ay o . (4.1.4)
i=1 i=]
n n -~

w =29 § B'i(t) ¢1(yc§20)§ .Z B_i qb_i (4.1.5)
i=1 i=1
P P~

V=2 1__)":] C; (t) wsly s2o) = B2 C; s (4.1.6)

Here ¢ and s are not modes, but a set of admissible functions satisfying
at least the geometric boundary conditions. The problem that remains is
to determine Ai(t), Bi(t) and Ci(t) appropriately so that the errors
involved in satisfying the equations of motion are reduced to as small
as possible. In this thesis, Galerkin's method is used to minimize the
errors.

While choosing the admissible functions, there are a variety
of funcfions that could be candidates. Often, harmonic functions are
selected due to their nice properfies such as orthogonality and smoothness.
At both ends (yc = 0 and Yo = 20(t)), u and w must be zero. Thus we can

use the same set of admissible functions for both u and w, i.e.,

¢1-(.yc;20) = JQ_ sin ('i"T.YC/Qo) (4.1.7)
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For displacement v, we have only one geometric boundary
condition at Yo = 0 end given by v(0,t) = 0. At the Ye = 20(t) end,
where the subsatellite is attached to the tether, the dynamic boundary
condition (2.11.9) holds good which expresses a force equilibrium con-
dition. Some mechanical understanding might be useful in choosing the
admissible functions s in the expansion of v.

The tension T in a straight tether is related to v through

T = EA (4.1.8)

It is caused mainly by the gravity gradient and the centrifugal force.
This tension, in the static case, can be shown to vary quadratically
with y. (as a + bycz). From (4.1.8) then Ve, the corresponding static

longitudinal displacement, has a form

v = ¢, Yo+ C, vt (4.1.9)

If the tether is vibrating longitudinally due to the elasticity of the
tether, it will have time-dependent tension. Thus €, and €, in (4.1.9)
become time-dependent. In addition, some other longitudinal displacement
terms may be included. One can simply analyse an elastic tether fixed at
one end and a concentrated mass at the other and find the first mode of

vibration as

N —

vg = Ta(t) sin [(og o/M)2(y /20)] (4.1.10)

This suggests that an appropriate form of displacement v is
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1
v=Caltly, + Caltly ® + Ea(t)sin[(pczo/Mb)z(yC/lo)] (4.1.11)

However, the third term nearly represents the same variation with Ye

as the first two terms if pclo is small compared to Mb‘ Towards the
terminal phase of retrieval of the subsatellite, this is valid more and
more precisely. Thereforé, the third term can be combined into the

first two terms. This suggests a representation of the form

v=CGiltly, + Caltly 2, (4.1.12)

or in nondimensional form

v/ = Cl(yc/zo) + Cz(yc/20)3 (4.1.13)

Thus in this thesis Vs in (4.1.6) are chosen as

R (7,23 G T T SO (4.1.14)

In actual calculations, p is equal to 2. Genera]]y; if more
terms are chosen, less error is involved because a higher dimensional
space is used to minimize the errors in the equations. However, the
computing cost is also greatly increased. Since one cannot choose too
many terms due to limitation on computer expenses, a mechanical
understanding helps to choose the most important terms. Although only
two terms are used in numerical computations, the trend is likely to

remain the same if more terms are used.
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4.2 DERIVATION OF ORDINARY DIFFERENTIAL EQUATIONS FOR GENERALIZED
COORDINATES o, v, Ai’ Bi’ Ci

Substituting expressions (4.1.4 - 4.1.7) and (4.1.14) into a,
Y, U, v and w equations and using Galerkin's method, a set of ordinary
differential equations can be obtained for the genera]ized coordinates

C.. Only two terms are retained in the expansions of u,

Qy Y A'i’ B'i’ i

v and w henceforth implying i = 1,2. Thus one obtains eight second
order ordinary differential equations corresponding to o, vy, Ay, As,
Bi, B2, C; and C,.

For the o and y equations, the integral terms in equations
(2.11.1 - 2.11.2) are evaluated. After integration with respect to Ye

and substitution of limits, y. coordinate vanishes and one gets

fa(a’&sa{.Y.s"Ys’.Ysﬁlvo-s'éf-Oai’O"Q‘O) = 0 (4°2-1)

and

fY(';:.},Ysa’aaa,Kls--osé'.OsiOs'Q'O) = 0 (4°2-2)

Denoting u and w equations (2.11.3) and (2.11.5) as A, =0
and Aw = 0, respectively, Galerkin's method yields

29

{ Au ¢mdyc = g, m=1,2 (4.2.3)
and

L9

{ Aw cbmdyC =0, m=1,2 (4.2.4)
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Similarly, denoting v equation (2,11.7) as Av = 0 and the

boundary condition (2.11.9) as ﬂ& = 0, one obtains

Lo
o A updy  + K, =0, m=1,2 (4.2.5)

from a variational formulation. It may be noted that wm are not comparison
functions but admissible functions and do not satisfy the dynamic boundary
condition K& = 0. Thus a variational formulation starting from the energy
integrals yields an additional term in (4.2.5). Omission of this term
would result in drastically incorrect results.

Although the principles are straight-forward, the algebra
involved is very lengthy and time-consuming. Some of the steps in the
transformation of o equation and discretization of u equation are given
in Appendix F. Those for y, v and w are omitted from thé Appendix for
the sake of brevity. The resulting ordinary differential equations are
nondimensionalized by using the true anomaly 6 as the independent variable

as opposed to time t. This is carried out by using
d _ - _od _ : .
w()=0) =sg () =08() (4.2.6)

where prime refers to differentiation with respect to 6. Furthermore,

d ro d _eod o d
T [6 PT) ()= ey [6 @& ()]

22 420 ) , 4 4B d( )
= p2 _
0" =37 T ° @ d

- 52 [y - F(e) 43( )3 (4.2.7)
ds? d6 e



Here,

S5 = -8 F(e) (4.2.8)
and using (2.8.1) an& (2.8.2) it can be shown that
F(e) = 2 e s8/[1 + e ¢6] (4.2.9)
In addition, a dimensionless length may be introduced as
n = 2nfRe/2 ] (4.2.10)
where mre; is a reference length, a constant. Clearly,
n' =29'/% (4.2.11)

With the definitions above, equations (4.2.1 - 4.2.5) yield the following:

o _equation

(O + %’v){(a“—F-Fa') c?y-2sycyy'(Ha' )+3sacac®y/(1 + e c6)}

+ 2(1+a' )c2y[(1+ —-v)n + Z] (C;'+n'C;)]-(2kv) Z]{[1 -(-1)" ]/1}
i= i=

=5

*{(n"-Fn'+3n*?)cy-n'y'syIB;+n'cyB; '}-(Kv) Z [(- 1) /41
1=

- {[B;"+(6n'-F)B; '"+3(n"-Fn'+3n"2)B, Jey+[cyy ' 2+(y"-Fy')
C
syJB; H2v{[ (a"-F-Fa')c2y-2sycyy' (1+a' )+3n' (14" )c?y] Z] T?TITT

C
+(1+a" )c? y Z Tgf;Ty} (2Kv) Z [ﬁ—ll—i{[(a" F-Fa')sycy+(1+a')c(2y)y'

+3(1+a')sycynf]Ai+(]+a')sycyAT'}==Pa +S (4.2.12)
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where Pa and Sa are the nondimensionalized generalized forces corresponding
to a due to the aerodynamic forces and control forces if any, respectively.
The parameter v is the ratio between the mass of the tether and that of

the subsatellite, i.e.,

v = p'cz(,/Mb ' | (4.2.13)

and

~
]

(v2/m) (4.2.13')

In the case of n=p=2, i.e., if only A;, A;, B1, B, C; and

C, are retained, then equation (4.2.12) becomes

c2y[a"-F-Fa'](1 + %-v)-Zsycvy'(1+a')(1 + %‘V)

+

c2y(1+a! ) {2(n'+C;'+C, '#n'Citn'Cy)+un '}

1

*+3 1+e ¢6

sacoc?y(1 + %—v)-4Kv{{(n"-Fn'+3n'2)cY

n'y'sy]Bi+n'cyBy ' 1+ (Kv/2){[2B,"-B,"Jey+(6n'-F)cy(2B,'-B,")

-+

[(3n"-3Fn'+9n* 2 )cy+cyy 2+sy(y"-Fy')](2B;-B>)}

Zv{[(a"-F-Fa')czy-Zsycyy'(1+a')+3n'(1+a')dﬁﬂ(% C;+ %‘Cé)

-+

1

+ (1+cc')czv(% Ci' +5 Co' ) H+Ku{[(a"-F-Fa' )sycy+(T+a' Je(2y)y!

+ 3(1+a' )sycyn' J(2A1-A, )+ (1+a' )sycy(2A, ' ~A, ')} = Pa + Sa (4.2.14)



@ .

-75-

Yy _equation

[y"-Fy'1(1 + %—v)+Y'{2(n'+Ci'+Cz'+n'C1+n'C2)+vn'}+{(1+a')2

+ T—%—g—gg-cza}svcv(1 + %-v)+4Kv{[n"-Fn'+3n'ZJA1+n'A1'}

(kv/2){(2A;"-A;")+(6n"-F)(2A1'-A2 ' )+(3n"-3Fn"'+9n"2) (2A;-A; )}

+ (kv/2) {2(1+a")sy(2B,'-B," )+(2B1-B,) [ (a"-F-Fa' )sy+(1+a' Joyy'
# 6(14at )syn' TH2VE(Y"-Fy 430"y ) (F Co* & Co)4v' (3 &' + 3 Co'))
-p +s | (4.2.15)

where PY and SY are dimensionless generalized forces corresponding to y

due to the aerodynamic forces and control forces if any, respectively.

A, equation

1t 3 ] 8 ] 3 u ] Tr2 |2
Ay"+(3n'-F)A,'- 3 A, ‘*'[‘2' (n"-Fn')+(2- g—)ﬂ 1A,

76

+ [- % (n"-Fn')- 22 n'21Ao-aKn'y' K (y"-Fy")

K(1+a')2sycy-2Ky' {Cy'+(1- ng(Cz‘-Zn‘Cz)}

3Kc2asyey/(1+ ecd )+m2q2 ([ + 1+ Zfﬂz)c2 1A, - g%z A,C,

+ 123 Ay%e 3 A 1By 46AA,244A;B, B, +2A1B, )

3
2(1+a')sy(B1'+ 3 n'Bi)- 5 (1+a')syn'B,

{[{a"-F(a'+1)Isy+y'cy(1+a')}B; = Py (4.2.16)
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where PA1 is the nondimensionalized generalized force corresponding to
the generalized coordinate A1 due to the aerodynamic forces while Q is

defined by

1
Q= (EA/p_ %02 52)2 (4.2.17)

2 is related to the frequenciesum of transverse vibrations of the

- tether in the linearized case as follows:

1

)2/% = nma(Cy)

| —

wn/é = nm(EAC:/p 202 (4.2.18)
A, equation

Ax"+(3n'-F)A, '+ % A1'+[% (n"-Fn')- %n‘ZJAl

+ [3 (n"-Fn')+(2- 3 720 21+ (K/2) (y"=Fy ' J+(K/2) (1+a ) 2sycy

* Ky' (G, +(1- 51375)(cz'-2n'c2)}+§|<c2asycy/(1+.e co)

v 4202 {[Cy+(1+ —&?—Z)CZJAZ- gf;—z A1Co+m2[1.5A;2A,+3A, *+A;B1B;

+ 3A2322+0.5A2812]}-2(1+a‘)SY(BZ'+2n'Bz)+ %‘ (]+OL|)T'].S'YB;[

- {[o"-F(1+a' ) Isy+(1+a' )cyy'}B, = PA2 (4.2.19)

where PA2 is the nondimensionalized generalized force corresponding to

A, due to aerodynamic forces.
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B, equation

" ' 8 iar3 ] ' 'TTZ 12
By"+(3n'-F)B1'- 5 By '+[5 (n"-Fn')+(2- =—)n"*]B,

+ [ 5 ("-Fn')- B2 n'2IBo+akn! (1o Joy+Ki[a"-F (14a) by

2 (1+a' )y sy }+2K(T+a’ Yoy {Cy '+(1- %)(cz'-zn'cz)}

3Ksacacy/ (1+e c8)+m2Q2{[CyH 1+ Z%f)czjal- g—gz B,C,

+-

ﬂz[%'313+ %’31A12+681Bz2+432A1A2+231A22]}

+

+

2(1+a')sy(Ay'+ 5 n'Ay)+ 5 (14" )syn'Ap+{[a"-F(1+a’) Jsy

-+

y'ley(1+a')}A; = Pa1 (4.2.20)

where PB1 is the nondimensionalized generalized force corresponding to

B, due to aerodynamic forces.

B, equation
B."+(3n'-F)B, "+ 3 By 4[% (n"-Fn')- & n'2IB,

+ [3 (n"-Fn'J+(2- 3 72)n"218,- (K/2) L[a"~F (140’ ) Jey

2(1+a' )y'sy}-(3K/2)sacacy/(1+e ¢c8)- K (1+a')cy[C':

b (1= 52) (Ca'-2n"Ca) 47207 ([C1+(1+ 5or)CoTB 507 BaCy

+-

m2[1.5B12B,+3B7+B1A1A2+3B2A22+0.5B,A1 211+2 (1+a' )sy (A, '+2n' A )

(4.2.21)

% (T+a' )syn ' Ay +{[a"-F(T+a' ) Isy+y' (140’ )cy}A, = PBz
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where PBz is the nondimensionalized generalized force corresponding to

B, due to the aerodynamic forces. -

C; equation

(1+ %‘V+C1+Cz)(ﬂ"-Fn'+n'2)+(1+ %’V)(CIH'FCII)

(14 E ) (C" F Co')+(200)n'Cy'+(2+ T5 vdn'Cy'

1
3

1

(1+ T+e 0

vI{(1+a' ) 2cPy+y'2+

(3c%ac?y-1)}

2
+w *{Cr+Co+ —2“—— (Ay2+4A,2+B, 2+4B,2) }-Ku{[ (a"-Fa'-F)cy

[}

(1+a' )syy'J(2B1-B )+ (1+a' )cy[ (2B, ' -B, ' )+3n' (2B1-B, )]

- (y"-Fy')(2A1-Az)-v'[(2A1'-Az")#3n' (2A1-A2) 1} = P +So  (4.2.22)
where PC1 and SC] are the nondimensionalized generalized forces
corresponding to C, due to the aerodynamic and control forces,
respectively, and
2 - A2 '
w ' = EA/Mb 20 6 (4.2.22")

Modified C, equation

n ] ] 2 n ] 2 " 1 H 1
7 (n"Fn'+n' 20 S5 (C1"-FC )+ 55 (C"-FC2' 1+ % n'Cy

9 ] ] 2 t L]
+ g 0GB [(14a! ) 2ctysy 2+

T+e co (3c?ac®y-1)]+0%{- g’cz

) %'(A12+A22+812+822)+ %? (A1A2+B1B2)}-(12K/72) {(a"~Fa'

- F)ev(Bs- % B2)-(T+a' )syy' (By- -13- B2)+(1+a')ey[ (B, '~ -]g B2")
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—

+ 30" (By- g B2)I-(v"-Fy' ) (A= 3 Ax)=v'[(M'- 5 A")

+ 30" (A= g A2)THAK(T- 20 (140" Jom'By-v'n Ay ]

- 2k(1 - E%T)[(1+a')cyn'sz-y'n!Azj = Py * Sey (4.2.23)

where P., and S 5 ave the nondimensionalized generalized forces

c2 C
corresponding to C, due to the aerodynamic control forces, respectively.
Using (3.4.14), (3.4.15), (3.4.20), (3.4.21) and (3.4.26)

the generalized forces Pa, PA]’ etc. can be shown to be

]
=
= - l 2 p2 2 212
Pa 5 cYVZC/(Mb 2o B ){CdC dC(VXC +VZC ) { Ye Py dyC
+ Cap Pab Ab|7a|zo} (4.2.24)
1
1 2 A2 2 2 72’0
PY - §'vxc/(Mb %" 8 ){Cdc dc(vxc e ) { Ye Pa dyc
+ Cyp Pab AbIValzo} (4.2.25)
Lo .
Pay = LS Quq ¥2 sin (ny /2o)dy 1/p  20% B (4.2.26)
20 )
Pao = [ Qu 2 sin (2ny /ho)dy I/p, 0% 6° (4.2.27)
2, -
= 1 2
Pe1 = L Qy ¥Z sin (my /Roldy /o, £o* 6 (4.2.28)
Lo .
Pea = [ Qua Y2 sin (2ny /Ro)dy [0 2o 62 (4.2.29)
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O
n

%o .
1= Wuap ¥ 1 Qa(y/Ro)dy IM, 2o 02 (4.2.30)

-
]

2, .
2=/ Ova[(yc/ﬂo)-(yc/ﬁlo)sldyc/pC 242 82 (4.2.31)

Since Py is assumed to vary exponentially with Yo as shown in
equation (3.3.2), the integrals in the above generalized forces can be
carried out exactly. Let us define the following nondimensional

parameters

1

§ = {1 + (ag?-bo2)s™i s26 c26/[bo? + (ao2-bo?)s%i s%6]} Z (4.2.32)
€1 = (Ro-Ry, ) 70 (4.2.33)
and
£, = %4 co cy §/hy (4.2.34)
Using equations (3.3.2), (3.3.4), (3.3.5), (3.4.20), (3.4.21)
(3.4.26) and (3.4.28), after considerable é]gebra one obtains
1 -
P =5y V. {Cqp Ap exp(—El-gz)IVa)
o
2 212
* Cge de Lo (V™% exp(-£1)[- géﬁéiéll (1+ %;)
] L]
+ gzl My Lo 82 ‘ (4.2.35)

Q PY = - vXc Poc/(vzc cy) (4.2.3.6)



Pas = - —;—Cdc dc(VXC2+V2C2)% ch(poo/pc)/(é2 %)

. %‘i—ﬁ%ﬁ% ﬂ-(-])iexp(-’éz)} , 1=1,2. (4.2.37)
Pai = Ve Pai/Vye i=1,2 (4.2.38)
Py = = 7 Vye(Poc/pg)/ho B2(Cyy AIT, lexp(-E1-E2)

1
+ Gy dg 2oV 2 #0, M) Pexp(-gy)[- 228 (10 L

2

P (4.3.39)
)
1
P = =2V (0oo/0. )00 82(C,. d_2o)(v. 2+v_ 2)2 1 . 8
c2 7 Vyc ‘Poo/Pci/o dc "¢ "%""Vxe zc 22 £22
ref2r 4 by (4.2.40)
£, &2

The nondimensionalized control forces Sa, SY’ SC1 and SC2 are dependent

on what kind of actuators are used. If there is no active control device
apart from the tension control mechanism, then all of them are zero. On

the other hand, if thrusters are placed on the subsatellite to help

control the motion (as is done in Chapter 9), Sa, SY, etc. are nonzero.

4.3 NUMERICAL METHOD

For given initial conditions and specified length variation;
the equations developed in Section 4.2 for the nondimensionalized
generalized coordinates o, v, Ay, Az, B1, By, Cy and C, are solved

numerically using a computer. The equations (4.2.14-4.2.16), (4.2.19-
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4.2.21), (4.2.22-4.2.23) after some transformation and the length
equation determined from the control law (nine in all) can be arranged

in a matrix form as
[Al{q"} = {T} (4.3.1)

where the vector {q} is given by

{3 = [ny o v, C1s Cos A1, Azs By, Byl (4.3.2)

and [A] is given in Appendix G.

Here, n, the nondimensionalized length, is an input, while
a, Ys A1y Az, By, Ba, C; and C, are outputs. The goal of the dynamical
control considered in the second half of this thesis is to find a Tength
rate n' or acceleration n" using the feedback of»the generalized coordinates
o, Ys A1, Ay, By, Ba, Ci, Cy, and their derivatives so that all outputs o,
Ys Al, AZ, Bl, Bz, C1 ahd C2 are stable during the retrieval process.
Hence, we have added an n" equation from the consideration of control
law to the equations of motion.

In equation (4.3.1), [A] is a square matrix dependent on
time and {q} while {T} is a column vector, again depending on time and
{q}, and in addition {q'}.

For the convenience of numerical integration, let us define a

set of state variables Yj (3 =1, 18) as

{q}
% (4.3.3)

- |
{q'}

where the vector {q} is given by (4.3.2).
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Then the second order matrix differential equation (4.3.1) can be

transformed to an equivalent first order matrix differential equation

1!} [Vgys:d
'} = = e =l (4.3.4)
5. (AT

Equation (4.3.4) is in the right form for numerical integration.

4.3.1 Comments on Numerical Integration

The execution of the computer programme to solve (4.3.4) is
very time consuming because of the following main reasons:

(i) The dynamical model involves many state variables. The
computing time is dramatically increased with the increased number of
variables.

(i1) The set of equations is stiff in the numerical analysis
sense. A system is said to be stiff if the time constants vary by
several orders of magnitude. In the present case, the frequencies of
vibrations are much higher than the frequencies associated with rotational
motions o and y and the difference becomes larger and larger during
retrieval. The step size must be chosen to be very small to get the
correct vibrational motion.

(iii) The inversion of matrix [A] takes a lot of computer
time because the matrix is dependent on time and the generalized co-
ordinates and must be inverted at every time step.

We can do very little about (i) and (ii). The dynamical
model must be of certain minimum order to represent the actual dynamics

of the system reasonably. The tether is vibrating longitudinally and
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transversely. These vibrations cannot be neglected. Consideration of
only rotations may be inexpensive but not representative of the system
dynamics. |

As for (iii), a semi-analytical inverse programme was developed
by using block inverse concept which saves 30% of the computer cost
compared with the inversion of the entire matrix using an inversion
subroutine.

The IMSL subroutine DGEAR suitable for integrating stiff

differential equations is used to solve the equations numerically.

4.3.2 Method of Inverting Matrix [A]

If {q} is ordered in a sequence given in equation (4.3.2), it
can be noted that the matrix [A] given in Appendix G involves a unit
submatrix, i.e.,

[A11]3x3 [A12]3x6

[A] = (4.3.5)
[A21]6x3 [I] 6x6

Since there is a unit submatrix in [A], the inverse of [A] could be

done in an economical way. Let

[Bll]3x3 [812]3x6

fél = [A1! - (4.3.6)
[B21]6X3 [B22]6x6

We have

[Al(B] = [I]9x9 . (4.3.7)
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Substituting (4.3.5), (4.3.6) into (4.3.7), we get

[A11]3X3 [A12]3X6 [811]3X3 [812]3x6 [IJBXS [0]3X6
(4.3.8)

"

[A21]6X3 th 6x6 [821]6X3 [822]6x6 [O]6X3 [I]6X6

Writing the four submatrix equations and solving for the components of

[B], one obtains

(B2 Tg0; = [[AsaTyes - (Arelygs Dhordgns] (4.3.9)

[B21]gy3 = -[A21)gx3 [Br1lgys (4.3.10)

[Bi2ls,6 = -[B11ls,s [Ar2]ge | (4.3.11)
and

[B221gg = [Ilgeg * [A21lgys [Brals s [A12]5 ¢ (4.3.12)

In this way, the job of an inversion of a 9x9 matrix [A]
is reduced to a job of an inversion of a 3x3 matrix, thus saving
computing time greatly. Note that inversion is carried out thousands

of times for a nonautonomous system.



CHAPTER 5

EQUILIBRIUM STATE

During stationkeepiné, the reel mechanism does not reel
the tether in or out. Hence, the nominal unstretched length of the
tether remains unchanged. Due to the gravity gradient and centrifugal
force acting on the system, the tether remains taut while the atmos-
pheric drag on the subsatellite and the tether forces the subsatellite
to Tag behind the local vertical. In addition, the tether does not

| remain straight but becomes slightly curved due to this drag. If the
orbit is circular and in the equatorial plane, all the above forces
are steady for a constant Tength tether. An equilibrium configuration
can then be found by solving the equations of motion after putting
q% = qg = 0. For different lengths, the equilibrium configurations
are clearly different.

If the orbit is elliptic or inclined to the equatorial plane,
the above mentioned forces are not steady but change with true anomaly
8. Strictly speaking, in this case no equilibrium configuration exists.
However, we can still consider a constant length tether and Tet
9 = q¥ = 0. This will yield quasi-static equilibrium positions and
will give a broad picture of how the eccentricity of the orbit and the

oblateness of the earth affect the quasi-static behaviour of the system.

5.1 STATIC EQUILIBRIUM EQUATIONS

Letting the length of the tether remain constant, putting
q% = q$ = 0 and ignoring S; in (4.2.14-16), (4.2.19-23), the resulting

C

* A small amount of reeling in or out may be required for control purposes.

-86-
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equations are

-c2yF(1+ %—v)+ 17:63367-sacac2y(1+ %—v)-Zchzy(% Cit %-Cz)

-KvFsycy(2A1-Az) = P, (5.1.1)
L1+ IT?EéEéj'CZGJSYCY(1+ %—v)—(Kv/Z)Fsy(ZBl-Bz) = PY (5.1.2)

: 2
(1+ %—v){c2Y+ 17131367'(3C2aC2Y-1)}+w€2{C1+C2+ g—'(A12+4A22+312+4322)}

- p (5.1.3)

Cl
2 2 1 2.2 27 4 3 208 24R.24R.2
- 75 [efv+ Ti+e o) (3ctac®y-1)]]+Q*{- £ C.- Z’(Al +A,2+B12+B, %)

+ &g'(A1A2+5132)}+(12K/W2)FCY(B1' l'Bz) = P (5.1.4)

3 8 C2

-Ksycy=-3K TT;%—Eéj-czasycy+ﬂ292{A1[C1+(1+ §%T)C2]

- (20/9n2)A2c2+n2[§-A13+ %-A1812+6A1A22+4A281Bl+2A1822]}

+ FsyB; = P (5.1.5)

Al

K 1
5 sycy+{3K/2) m c2asycy+n2Q2{4A, [C,+(1+ 8%)(:2]

- %%7 AyC,+m2[6A;2A,+12A, %+4A BB, +12A,B,%+2A,B,2 ]}

+ FsyB, = P (5.1.6)

A2
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-KFcy+3K T]Te.l—ce—)- SC!.CG.CY+1T292{B1 [C1+(]+ 2_1?2_)C2]

-(20/977)B,Co+2[3 By 3 ByA1 246818, %+4B,A1A,+2B1 A, 2 ]}

'FSYAl = PB] (5.].7)
(KF/2)cv=(3K/2) {reeiegy SHcocy+r?a2 (4B, [Cr+ (1+ 537)C,]

(2912 )B1C,+Q2[6B1 2B, +12B, *+4B, A1 A, +128,A,2+2B,A, 2]}

-Fsyhs = Py, - (5.1.8)

The equations (5.1.1 - 5.1.8) are static equilibrium equations if the
orbit is circular and equatorial, while they are quasi-static
equilibrium equations if the orbit is elliptic or inclined to the

equatorial plane.

5.2 NUMERICAL RESULTS

The nonlinear algebraic coupled equations (5.1.1 - 5.1.8)
were solved numerically using an IMSL subkoutine,ZSYSTEM, based on a
guadratically convergent Newton-1ike method.

5.2.1 Variation of Static Equilibrium Configuration
with Length

A circular orbit in the equatorial plane at an altitude of

H = 220 Km was considered. The following system parameters were used:

M, = 170 (Kg)
d. =0.325 (m)
p_ = 0.658 (Kg/Km)
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11
2.1 x 10 (Newton/m?)

E =
_ 2
Cap = Cgc = 2

Table 5.1 shows how the equilibrium values of (o-m), v, A:, Az, B1,
Bo, Cy and C, change with the length of the tether.f The results are
plotted in Figure 5.1. _
Y From the table, the following salient features may be noted:
(a) The atmoshperic drag has significant effects when the
tethered subsatellite is at a lTow attitude. At &o = 120 Km, the
subsatellite lags behind the local vertical by about 27° and the
maximum transverse displacement in the orbital plane is about 2.3 Km
(weq(lo/Z) = V2 L, Bl), Because there is no atmospheric drag in the
out-of-plane direction, out-of-plane rotation y and transverse dis-
placement u are zero.
| The effect of atmospheric drag weakens rapidly with the
raising of the subsatellite. The reason is that the aerodynamic
force is proportional to the atmospheric density which reduces
exponentially with the altitude. When the length of the tether is
about 90 Km, the in-piane rotation is only 3°; thus the tether is
very close to the vertical direction.

(b) Longitudinal displacements characterized by C; and

C, are reduced gradually with the decrease of the length £, (as

* o is measured from the upward local vertical. Thus (a-w) is the
deviation from the downward local vertical.
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opposed to the rapid change above). The longitudinal displacement is
mainly caused by the gravity gradient and centrifugal forces acting

on the concentrated-mass subsatellite and distributed-mass tether.
These forces are linearly related to the masses of the tether and the .
subsatellite and the distance of their centres of mass from the center
of mass of the system, or, approximate]y from the centre of mass of
the shuttle. Since the subsatellite has a larger mass (constant)
compared to the mass of the tether (variable), it is expected that C;,
the linear part of the longitudinal displacement, will dominate the
nonlinear part, C,. (C; is nearly proportional to %, while C, is
mainly dependent on the distributed mass of the tether, which is

" roughly proportional to the square of %£,.) When the tether is short,
the effect of the distributed mass of the tether can be neglected
compared to the mass of the subsatellite. In that case, the longi-
tudinal displacements along the tether can be assumed to vary

linearly with Ye (i.e., the longitudinal strain is constant).

5.2.2 The Effects of Eccentricity and Inclination of the
Orbit on Quasi-Static EquiTlibrium State

The orbit may neither be circular nor be in the equatorial
ﬁ]ane. In the former case eccentricity is used to denote the ellipticity
of the orbit. In the latter case, inclination angle i describes the
inclination of the orbital plane to the equatorial plane.

If the orbit is elliptical, a constant length tethered
subsatellite will dive deep into the atmosphere sometimes while at

other times it will rise far above the earth's surface. O0bviously,
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the atmospheric drag will vary greatly with true anomaly 6. It is
expected that the subsatellite will deviate from the vertical more
when it is diving deep into the atmosphere because the corresponding
density of atmosphere is larger.

If the orbit is inclined to the equatorial plane, then the
oblateness of the earth will affect the altitude of the tethered sub-
satellite even when the orbit is circular. Strictly speaking, there
is no static equilibrium configuration.for these two cases as stated
in the beginning of this chapter. However, the variation of atmospheric
drag is very slow having a period of half the orbital period. Hence,
one can assume that the rate terms of the variables are so small that
they are negligible (this assumption is valid for vibrations but not
so good for rotations). Thus, a quasi-static equilibrium configuration
can be calculated at different 6 for a given constant length %,.

In the following calculations, £, and H are assumed to be
100 Km and 220 Km, respectively (see [2.8.7] for the definition of H).
The system parameters used are the same as those used in Section 5.2.1.

Three cases as listed below are considered:

Case e i Purpose of investigation
1 0.001 o0° effect of e only

2 0 90° effect of i only

3 0.001 90° combined effects

Some results for the three cases are given in Tables 5.2, 5.3 and
5.4, respectively, while Figure 5.2 illustrates these results (with

finer data points) in graphical form.
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From the tables, the following observations can be made:

(a) If the orbit is in the equatorial plane, then out-of-
plane rotation and transverse displacements are zero no matter what
the eccentricity of the orbit is. This is expected because no atmos-
pheric drag acts in the out-of-plane direction. On the other hand,
the in-plane quantities (a-m), B; and B, change significantly over an
orbital period. When e = 0.001, %2, = 100 Km and i = 0°, o ranges from
approximately 17° to 4°.

(b) If the orbit is not in the equatorial plane, the out-
of-plane rotation and transverse displacements are non-zero. This is
because due to the earth's rotation, there is a component of the
atmospheric drag in the out-of-plane direction. However, these out-
of-plane quantities are small, since the earth's rotation is much
slower than the orbital rotation. As an example, the out-of-plane
rotation v is less than 1° for e = 0 and i = m/2. As for the in-plane
quantities, (a-m), By and B, are large and change significantly. For
a polar circular orbit, the equilibrium deflections are small over the
poles, since the corresponding altitudes are large.

(c) The longitudinal displacements are not affected by e
and i significantly. These displacements are mainly governed by the
gravity gradient and centrifugal forces which are strongly affected by
the length 2, but not much by eccentricity e or orbital inclination i.

The static eqﬁi]ibrium configuration gives us some idea as

to what the initial conditions are at the beginning of retrieval.



CHAPTER 6

NONLINEAR CONTROL OF ROTATIONAL DYNAMICS

Analysis of the SSTS system using the complete set of
nonlinear equations describing the three-dimensional rotations as
well as transverse and longitudinal vibrations is rather complex.
Recognizing that inplane and out-of-plane rotations represent the
most important variables of the problem, the rotational motion is
studied first in the absence of vibrations. The rotations are allowed
to be large and hence the equations are nonlinear.

The major difficulty lies in the control of out-of-plane
rotations during retrieval. Linear length fate control laws or tension
control laws proposed by previous investigators [16,24] based on
Tinearized equations of motion do damp the inplane rotational motion
but have no effect on the out-of-plane rotation during retrieval.

This is due to the fact that change in length rate (or for that matter
change in tether tension) has only a second order coupling with the
out-of-plane rotation. Hence, to damp out-of-plane rotation, it is
necessary to use the nonlinear equations.

In this chapter, a nonlinear length change law is developed
to attain three-dimensional control of rotational motions during
retrieval. As an extension, a nonlinear tension control law is

proposed as well.

6.1 AN ANALYSIS OF ROTATIONAL MOTIONS

An analysis of the nonlinear rotational motion is necessary

in order to find an appropriate length change law. Putting all the
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terms related to vibrations equal to zero in (4.2.14) and (4.2.15),

one obtains
- F ot -2tgyy' (1o’ )+ (T+a' In' (2+0)/ (1+ £ v)

+ 3saca/(1+e co)=(P_+S_)/[(1+ %—v)czy] (6.1.1)

Yy [(240)n'/ (1+ %—v)-F]+{(1+a')2+3c2a/(1+e c8) Isycy

= (P,¥S,)/(1+ 3 v) (6.1.2)

Examining the above equations, the following features can be
noted:
(i) The two equations are coupled by nornlinear terms;

(ii) Both equations are related to n'. However, there is
some difference. a equation is coupled strongly to n' while ¥y
equation depends weakly on n' since the product n'y' is dsua]]y
small. Thus it is expected that a can be controlled easily if the
form of n' is appropriate, but the same may not be true for y.

Let us for a moment consider a very simplified case when
the orbit is circular, the generalized forces and the control forces
are absent, the motion is small and the mass of the tether is negligible
compared to that of the subsatellite. This is being done to get some
insight to the nature of the dynamics and possible form of control
law. The actual numerical calculations, of course, are based on

equations (6.1.1) and (6.1.2).
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With the above assumptions, (6.1.1) and (6.1.2) reduce to

a" +2n'(1 +a') +30=0 (6.1.3)
and

Y"A+ anYl + 4-Y =0 (6.]-4)

The two equations are now greatly simplified. One may note
now the difference between deployment and retrieval. During deployment
length %, is always increasing, i.e., n' is positive, thus the equations
involve positive damping and the motions are stable. On the other hand,
during monotonic retrieval, length %, is decreasing, n' is negative and
the equations involve negative damping. Thus both o and vy are unstable.
Physically, this can be explained in terms of Coriolis force. This
force associated with pitch and roll is such that it is along a
direction opposite to the velocity of the subsate]li;e during deployment
thus making the motion stable. On the other hand, during retrieval
this force is in the direction of the velocity of the subsatellite
pushing it to instability.

Let us further assume that the length changes as follows:

Lo = % eCt (6.1.5)

The length increases if ¢ > 0 and reduces if ¢ < 0. Clearly,
n'.= %/ =c/B=¢. (6.1.6

¢ is constant for a circular orbit under consideration.
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The solutions of equations (6.1.3) and (6.1.4) are:

1

a = Ae~Pcos[(3-22)2 0 + B] (6.1.7)
and ' ) 1
y = Ce'cecos[(4-62)2 6 + D] (6.1.8)

where A, B, C and D are constants of integration which are determined
by the initial conditions.

From the solutions, we see that a and y oscillate with
increasing amplitudes during retrieval (¢ < 0). If & is much smaller
than 1, then the period of o is nearly 2n//3 and the period of vy is m.
These estimations give us a rough picture of the rotational motions and
will be used later. Returning to equations (6.1.3) and (6.1.4) now
consider the case when n' is not only a function of 6 but also involves
state feedback. Integrating equation (6.1.3) with respect to o and
equation (6.1.4) with respect to vy, one obtains what are essentially

energy integrals. Defining Norm and NormY as

1
Norm = (% a'? + 3 o2)? (6.1.9)
1
Norm, = (3 v'2 + 2y2)2 (6.1.10)
we get
5
Norm 2 - Norm 2(0) = -2 f n'(a'® + a')do (6.1.11)
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and

5]
Nor'mY2 - NormYz(O) = .2 { n'y'2de (6.1.12)

Where Norma(O) and NormY(O) represent corresponding initial values,
respectiﬁe]y. Norma and NormY can be interpreted as the sum of
gravitational potential energy and kinetic energy for o and vy degrees
of freedom, respectively. If rotations a and y are to be stable,
energy input through length change (i.e., n') given by the RHS must
be negative or zero;alternatively the integrals on the RHS must be

positive or zero, i.e.,

) .

{ n'(a'?2 +a')de >0 (6.1.13)
and

8]

/n'y'2de>0 (6.1.14)

0

must hold. Clearly, inequality (6.1.14) will never be satisfied if n'
is negative all the time, i.e., if the length 2, is reduced monotonically.
For retrieval, we must have

8
S n'de <0 (6.1.15)

0
Since y'2 is always positive, conditions (6.1.14) and (6.1.15) appear
a bit contradictory, but actually they are not. n' need not be negative

all the time.” It may be positive sometimes and negative at other times
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in an approriate manner so as to satisfy both equations. This means
that when the tether is being retrieved, it has to be released sometime
to satisfy the stability requirements.

Let us investigate the a-motion first. Condition (6.1.13)

may be rewritten as

3] S
-/ n'a'? do f_{ n'oe' dé (6.1.16)
0

If o' >0, (6.1.16) is satisfied when n' > 0. Then the left hand side
in (6.1.16) is negative while the right hand side is positivef The
greater the difference between the two terms, more is the energy with-
drawn from the tethered system. Similarly, if o' < 0, the equation is
sti1l satisfied if one keeps n' < 0 (normally |a'| < 1); but the
difference between two sides is less than before since the signs are
now the same. |

Now a strategy of length change-rate can be deduced. Consider
a cycle of oscillation shown in Fig. 6.1(a). When a' > 0, one can make

n' small and positive while when a' < 0 one can let n' be large in

magnitude and negative, so that on the average, tether is retrieved

5]

({ n' d6 = total area = -ve) while the sign requirements specified above
to guarantee stability are still satisfied.

Consider the form of n' given by
n' = -Ky + Kz o' (6.1.17)

where K; and K, are two positive constants. This length rate is shown

in Fig. 6.1(b). Most of the features of n' shown in Fig. 6.1(a) are
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retained in Fig. 6.1(b); hence the two inequalities (6.1.15) and
(6.1.16) are likely to be satisfied. Substituting (6.1.17) into
(6.1.16) and integrating over one period it can be shown that the
stability is guaranteed if K; < K,. The Tength rate presented by
(6.1.17) is quite simple and involves linear pitch rate feedback.

In a similar manner, one can investigate inequality (6.1.14)
associated with y motion. This requirement is more challenging to
satisfy in the light of (6.1.15). Note that v'2? is always positive.
Let us approximate v hence y' as a harmonic oscillation (Fig. 6.2(a)).
In order to retrieve the tether in an average sense in a stable manner,
the following strategy is designed: when y' is small, let n' be
negative and large, which means retrieve the tether fast. When y' is
large, let n' be positive and small. Note that the total area under
the n' curve is negative implying resultant retrieval. Referring to
Fig. 6.2(b), it can be seen that n'y'? can be such that stability
requirement (6.1.14) is satisfied. n' shown in Fig. 6.2(b) corresponds

to
n' = -Ks + Ky v'2 (6.1.18)

where K; and K, are positive constants. This Tength rate involves
quadratic feedback of roll rate.

It is interesting to note that substituting (6.1.18) into
. (6.1.4) yields

" - (2Ksy' - 2KyY'3) + 4y = 0 (6.1.19)

which is the familiar Rayleigh's equation (and can be converted to
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van der Pol's equation). It is well known that the solution is a Timit
cycle whose amplitude can be calculated to be (4K3/3Ku)(1/2). This
implies that length rate given by (6.1.18) can 1imit but not eliminate
roll motion.

Combining equations (6.1.17) and (6.1.18), we get a convenient

form of n' to control both o and vy:

- | 12
n Ke[1 + Kaa + KYY ] | (6.1.20)
where Ka and KY are two negative constants. In general, Ke is a negative
function of 6 during retrieval. For exponential retrieval, Ke = ¢,

¢ < 0. The absolute values of Ka and KY depend on the initial conditions
and the allowable values of o and y. Roughly, the larger the values of
Ka and Ky, the smaller the ranges of oscillations of o and y and the

Tonger the time required to retrieve the subsatellite.

6.2 NUMERICAL RESULTS

Simulation of the three-dimensional rotational motion as
described by (6.1.1) and (6.1.2) has been carried out using the retrieval
law given by (6.1.20). The following parameters are used in the

numerical calculations:

R 7 i starting length of the tether to be retrieved = 100 Km
lf = final length of the tether after retrieval = 100 m.
Mb = mass of the subsatellite = 150 Kg.
P = mass per unit length of the tether = 1.5 Kg/Km
dc = tether diameter = 1 mm.
Ap = projected area of the subsatellite = 1 m?
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C, = drag coefficient = 2 (assumed constant).

e = eccentricity of the orbit = 0.001

1 1

21 x 1074 sec” to -3 x 10'4 sec

¢ = retrieval constant

c/o

c/E(9)]

[Kq

8o = argument of the perigee = 0
i = inclination of the orbit to the equatorial plane = 0

(unless otherwise stated).

6378 Km

The major axis of the earth = a,

il

6357 Km

The minor axis of the earth = b,

Figs. 6.3 and 6.4 show the length history and the rotational
motion of the tethered system for two different values of c, one of

-1 “V For both the

which is -1 x 107% sec™! and the other -2 x 107% sec
cases gains Ka and KY are -6 and -37, respectively, and the initial con-
ditions are a-m = 5.7° (0.1 rad), v = 1.1° (0.02 rad), o' = v' = 0.

Note that a-m reduces to about 2° within a short period of time while

vy attains a 1imit cycle having an amplitude of approximately 7°.

(Note that the simplified analysis predicts a 1imit cycles amplitude of
(4/3Ky)(]/2) rad or approximately 11°). The value of ¢ has almost no
effect on the amplitude of 1imit cycle, but has a strong effect on the
time taken for retrieval. For the smaller value of ¢ (numerically) the
retrieval time is 46 orbits while for the large c it is only 28 orbits.
Hence, a numerically large value of ¢ must be used or the gains must be
reduced. It must be realized that the tension in the tether may

increase at the initial stage, due to the inertia force associated with

the retrieval acceleration and in extreme cases the tether might break.
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Analysis of the tether length history indicates that the
retrieval at the beginning is quite rapid, but Tater the length changes
rather slowly. To reduce the retrieval time, a revised length rate

law can be proposed as follows:

n' = Kg(1+ K F + K fa' + Kny'z) (6.2.1)
where

F=1- zo/zi (6.2.2)
and KL is a constant. Initially %, = 21 and f = 0; there is no control

as the stability problem is not very serious. When the length becomes

small, the feedback gains and the effective retrieval constant increase

simultaneously. Fig. 6.5(a) and 6.5(b) compare the two length rate laws

specified by (6.1.20) and (6.2.1), respectively. It may be noted that

the retrieval time is shortened to about 15 orbits with this revised

law without increasing the rotational motion significantly. Choice of

a smaller value of Ka reduces the retrieval time but increases o.

Further reduction in this retrieval time to about 2 orbits can be

achieved by using thruster augmented control laws considered in Chapter 9.
Retrieval of the tether system corresponding to equatorial

and polar orbits is compared in Fig. 6.6. The difference is negligible.

6.3 NONLINEAR TENSION CONTROL LAW

The linear tension control laws proposed by Baker, et al. [24]
and Bainum and Kumar [16] are not very successful in controlling the

rotational motions, especially the out-of-plane rotation during retrieval.
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Similar to the nonlinear length change law proposed here, a nonlinear
tension control law has been suggested by Modi, et al. [28]*. This

nonlinear tension control law has the form

AT = K18 + Ko8' + KYY'Z (6.3.1)

where K;, K, and KY are a set of constants, AT is the difference
between nondimensional, actual and equilibrium tension while

S is a nondimensional length defined by

§ = (z-zc) , (6.3.2)

Here 2 and zc are instantaneous stretched length and commanded length
of the tether respectively. If the tether is regarded to be inextensible,

then
2 = %, (6.3.3)

It is clear that both nonlinear tension and length rate control
laws are quite similar and both use the same kind of quadratic feedback
term involving the roll rate. The nonlinear tension control law is as
effective as the nonlinear length rate change law presented in this
thesis. However, as is shown in the next chapter, when the extensibility

of the tether is taken into account, the results differ from each other.

* The nonlinear tension control law was suggested after the nonlinear
length rate law proposed here had been published.



CHAPTER 7

CONTROL OF LONGITUDINAL VIBRATIONS

Since the tether under consideration is very Tong (of the
order of 100 Km), it has to be very thin from weight consideration.
Its diameter is likely to be of the order of 1 mm only. Such a thin
tether cannot be regarded as an inextensible string as was the case in
Chapter 6. Due to the elasticity of the tether, longitudinal defor-
mations occur when the gravity gradient and other forces act on the
subsatellite as well as the tether. In addition, during deployment
or retrieval, longitudinal vibrations are unavoidable. 'Unfortunate1y,
these elastic vibrations are unstable during the retrieval stage and
they may cause the tether to be slack when the length becomes small
since then not much tension is available to the tether. Thus, these
vibrations must be damped out.

In this chapter; the longitudinal vibrations are considered
together with the rotational motions. But transverse vibrations are
ignored. A nonlinear length change law to arrest instability is pro-
posed for this case. The performance of this control law is compared

with the tension control law proposed by Modi, et al. [28].

7.1 A CLOSE EXAMINATION OF LONGITUDINAL VIBRATIONS

To gain some insight as to how to damp the longitudinal
vibrations using an appropriate length change law, a simplified case
is considered first. The following assumptions. are made:

(i) There is no rotational motion. The rotations are very

sTow compared to longitudinal vibrations; several cycles of these
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vibrations may take place during a period when very small changes in
o and y have occurred,

(i1) It is assumed that the longitudinal strain is uniform
along the tether. This is equivalent to taking only the first term,
the most important one, in the expansion. Thus € = C;.

(iii) The mass of the tether is negligible compared to that
of the subsatellite.

(iv) There are no transverse vibrations.

(v) Aerodynamic forces are ignored.
(vi) The orbit is assumed to be circular.
Based on these assumptions, only C; equation remains and

it can be written in the form
C," +2n'C;"' + (EA/szowz)Cl =3 - (n"'?) (7.1.1)

On the right hand side the term 3 is the contribution of the equilibrium
tension due to gravity gradient and centrifugal force while the term
-(n"+n'2) is the inertial force associated with the subsatellite mass

due to length change. It can be shown that
n"+n'2=2,"/% (7.1.2)
The solution for C; can be split into

(7.1.3)

where

C,o = (MLow?/EA) : (7.1.4)
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which is a quasi-static equilibrium strain and decreases during

retrieval. Substituting (7.1.3) and (7.1.4) into (7.1.1)

(C1s+C1d)"+2ﬂ'(c1s+cld)“{EA/Mb20w2)C1d = -(n"+n'?) (7.1.5)

Using the definition of n given by (4.2.10)

Ro = Lper "
Thus from (7.1.4)
Cig = (M2 w/EA)n' €] (7.1.6)
and
Cto = (3M 8, w?/EA)[n"+n'2]e" (7.1.7)

Substituting (7.1.6) and (7.1.7) in (7.1.5)

CII

! 2 = o n_ 12
Td + 2n C;d+(EA/Mb20m )c1d (1+6C)n (1+36C)n (7.1.8)

where
= 2

Considering typical values of Mb = 170 Kg, zref = 100 Km, w = 1.18

1

x 1073 sec™, E = 2.1 x 10* Newton/m? and d, = 0.325 m,

s =103

<<
c 1

Hence, approximately

C'1'd+2n'C;d+(EA/MbILow2)C1d  -(n"4n'?) . (7.1.10)
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If an exponential retrieval procedure is used n' = € < 0. Thus the
second term implies negative damping and Cld becomes unstable even
though the stiffness is increasing. Our goal is to damp Cld’ the
longitudinal vibration during retrieval.

If the retrieval is exponential, (7.1.10) becomes

2)e-C9 - _x2

t2ec -¢ (7.1.11)

c '+ (EA/Mb L

1d 1d ref

An analytical solution to the homogeneous part* of (7.7.11) can be
found as follows:

Define a new independent variable
1
u = [(12/6,E9e T (7.1.12)
Then the homogeneous part of equation (7.1.11) transforms to

d? d

auz Cld + (3/u) aﬁ'cld + Cld =0 (7.1.13)
Further define a new dependent variable F sﬁch that
Cg © u“F (7.1.14)
Then equation (7.1.13) becomes
RO SR (7.1.15)

* The particular integral of (7.1.11) reduces during retrieval. Thus, if
homogeneous solution is stabilized the total solution remains stable.
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This is Bessel's equation of order zero, the solution to which is

F = A1 Jo (U) + Bl Yo (U) (7.].]6)

where A;, B; are constants of integration and Jo, Yo are zero order
Bessel functions of first and second kind, respectively. Therefore,

from (7.1.12), (7.1.14) and (7.1.16)

-CH

-¢H

1 1
C,q=(12/6 €)% a0, [ (1278 )% 2 1B,Yo[(12/6 82)% 21} (7.1.17)

From (7.1.17), it can be seen that Cld is unstable because e'zceincreases

~

with 6 much faster (g < 0), than reduction of amplitude of oscillation of
Jo and Y,. The e-ZEe term represents the effect of negative damping
while decreasing Jq, Y, terms correspond to the increase of stiffness,
which gives some help towards stability.

The unstable longitudinal vibration Cld may cause the slackness
of the tether sometime during the retrieval. At the beginning of the
retrieval, generaleClsisre1at1ve1y large compared to Cld‘ During

retrieval, C _ is reduced; if the amplitude of C g 9rows it will catch

1S
up with Cls’ Thus slackness of the tether will occur sooner or later.
Hence, the longitudinal vibration Cld must be damped.

Now let n', the nondimensional length rate be dependent on

C1d as follows

n' = & 01 - K Gyl (7.1.18)

where KC is a positive constant. Differentiating.n' with respect to 6,
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one obtains

"= -K ¢ C! (7.1.19)

n c 1d

Substituting (7.1.18) and (7.1.19) in (7.1.10), one obtains

1 ~ ! 2
C + 2c(1—KC Cld)C1d + (EA/Mb Lo w )C1

1d d

JrEK EC (7.1.20)

o

- ~2
= -C (1-Kc C,

The dynamical strain Cld is usually much smaller than 10'2. If KC is

not chosen to be very large, then (7.1.20) may be approximated as

I ~ 1 2 ™
C + g(2 - KC)C1 + (EA/Mb Lo w )Cld 0 (7.1.21)

1d d

Thus, if KC is chosen greater than 2, the second term yields positive
damping and Cld becomes stable.

The feedback form of (7.1.18) or (7.1.19) has very clear
physical meaning. This just means using the inertial force acting on
the mass of the subsatellite due to the length acceleration judiciously,
nothing else. On the right hand side of equation (7.1.10), the term
-(n" + n'2) represents this nondimensional inertial force. If n' is
varying according to the form of (7.1.18), then a viscous type restoring
force is produced to damp the longitudinal vibration Cld'

This Tength rate law (7.1.18) is quite efficient. Again KC
can be chosen in a wide range without affecting the length rate n' too

much since Cld is very small. If n' is assumed as

n' = ¢(1 - Kc C1) c<0 (7.1.22)
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it still works, but since C; is much larger than Cld’ KC now cannot
be chosen very large especially at the beginning of retrieval. The
length rate change law (7.1.22) tends to pull C; back to zero, which
is an overcorrection.

One can rewrite (7.1.18) in terms of C,

=
]

& - K (G- € )]

¢l - KC[C1 - (3Mb 20 w?/EA)]} (7.1.23)

The difference between (7.1.22) and (7.1.23) is obvious.
Considering rotational motions a and y as well and a general

elliptic orbit, corresponding form of n' may be written as

I 1 r2 - h2
n' = ¢{1 - Koo' = Ky Kc[c1 (3Mb 2, 62/EA)]} (7.1.24)

7.2 NUMERICAL RESULTS

It must be emphasized that the numerical calculations are
carried out based on unsimplified a, vy, C; and C, equations once the
control Taw is obtained through the simplified analysis. Also note
that in the expression of longitudinal displacement, two terms are
retained, therefore the restrictive assumption of uniform strain in

the tether is relaxed. Thus v(yc, 6) has the form
v/%o = Ca(y/%o) + Ca(y/%,)3 (7.1.25)

Since we have the C; term now, the strain along the tether is allowed

to vary.



-111-

The mass of the subsatellite used in the numerical computations
is assumed to be 170 Kg which is the same as that used by Baker, et al.
[16]. The diameter of the tether is 0.325 mm. Note that even for this
small diameter, the tether is strong enough not to break.

The initial conditions are o(0) = 15°, v(0) = 3°, o'(0) =

3and C, = 2.5 x 107, Fig. 7.1 shows the

¥v'(0) =0, C; = 4.7 x 10°
motion when only a and vy are controlled using length rate Taw (6.1.20).
Note how the Tongitudinal vibration C: increases resulting in slackness
of the tether.

Corresponding motion including control of longitudinal
vibrations by using (7.1.24) is described in Fig. 7.2 and Fig. 7.3
4¢-1

with the different retrieval constants ¢ = - 2 x 10 and -4 x

]0-43'1, respectively. Note that o and y are quite stable and confined
within 3° and 8°, respectively. C; and C, approach zero in a stable
manner and C, remains positive. The longitudinal displacement is
positive everywhere along the tether at anytime, i.e., the tether is

in tensile state all the time. Numerical calculations are carried out
until the length of the tether is 50 m. The tension at the two ends of
the tether are different at the beginning but with the retfieva1 they
approach each other since C, reduces quite fast. The results in

Figs. 7.2 and 7.3 show that the length rate control law (7.1.24) is

quite effective.
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7.3 COMPARISON BETWEEN LENGTH CHANGE LAW AND TENSION CONTROL LAW

As cited in the literature review, several tension control
laws have been proposed. Out of them, two are effective during
retrieval if out-of-plane motion is considered [28,30]. It may be
interesting to compare the former to the present length change law.
(Comparison of the latter is postponed until we consider thruster
augmented control.)

If Tongitudinal stretch is ignored, i.e., the tether is
regarded as having an infinite Young's modulus, then both results are
good. The rotational motions o and y are within the same small
range and the retrieval time is nearly the same no matter which control
law is used. On the other hand, if the tether material is considered
to be elastic thus causing a longitudinal stretch of the tether, then
the vibrational results are different.. The result using the tension
control law shows ¢ < 0 sometimes, i.e., the tether becomes slack.

From the view of practical use, these two types of control
laws are different as follows:

(i) The tension control law in [28] does not rely on o'
since o motion is stabilized through its coupling with longitudinal
motion which is controlled. o' need not be measured. On the other

hand, for length change law, a' is required and must be measured.
(ii1) The Tength change law is direct to the reel mechanism.

Specifying the length rate is equivalent to specifying the rotational

rate of the reel mechanism or the speed of.the tension reel motion.

Tension control law appears indirect and more difficult to implement.
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In any case, the tension varies along the Tength of the tether while
tension control laws proposed are based on uniform tension.

(ii11) For the length change law, the reel mechanism "knows"
whether to roll in or out. Once T, a', yv' are measured n' is known;
n' > 0 implies rolling out and n' < 0 involves rolling in. For tension
control Taw, the picture is not so clear. If measured AT is larger than
zero, which means the actual tension is larger than equilibrium tension,
should the reel mechanism roll in or out? This question only can be
answered after all measured AT, Lc’ Y', L etc. are put into the tension
control law (6.3.1) to get 2,'.

From this comparison, the author feels that the Tength change

control law may be superior to the tension control law.



CHAPTER 8

NONLINEAR VIBRATIONS OF THE TETHER

A)though transverse vibrations of the tether were not
considered in Chapter 7, in practice they cannot be ignored. If
the tether is deployed downwards and is fairly long, the aerodynamic
forces are quite large in the plane of the orbit. These forces not
only push the subsatellite away from the vertical, they also act on
the tether in the transverse direction making it curved. Furthermore,
if the tether is moving axially during deployment or retrieval, the
Coriolis forces can also give rise to transverse displacements of the
tether. The stiffness of the fether arises due to the tension caused
by the gravity gradient and centrifugal forces. A1l these forces vary
during deployment and retrieval (and to some extent during stationkeeping),
thus making the elastic tether vibrate in the transverse direction along with
the longitudinal motion discussed earlier.

It may‘be recalled from Chapter 4 that the longitudinal and
transverse vibrations are strongly coupled especially at the terminal
phase of>retrieva1. On one hand, the transverse vibrations are governed
by the tension along the tether which is proportional fo the Tongitudinal
strain. On the other hand, the longitudinal strain is dependent on the
transverse displacements through nonlinear terms in the strain-
displacement relation. Clearly, the two types of vibrations are
intimately related and must be controlled together,

This chapter first considers the nonlinear vibrations by
themselves and subsequently general rotational as well as vibrational

motions.
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- 8.1 EQUATIONS GOVERNING VIBRATIONS IN THE ABSENCE OF ROTATIONAL MOTION

The equations of vibrations, both longitudinal and transverse,
have been derived in Chapter 2 and discretized in Chapter 4. If
rotations are ignored, i.e., a, vy and their time derivatives are set

to zero in (4.2.20), the corresponding B; equation is

By"+(3n'-F)By '~ 3 B, 4[5 (n"-Fn')+(2-7%/3)n"2 18,

- [(3/8)(n"~Fn')+(76/9)n'2]B,+4Kn" -KF+2K{C;"
+ [(w2-6)/m2](C,'~2n'C, ) 1+n2Q2{B, [C1+(1+3/212)C, ]
- (20/9m2)B,Co+m2[(3/4)By *+(3/4)B1 A1 2+6B, B, %+4B,A 1A,

+ (2B1A,%]} = Pp + S (8.1.1)

Ba

Equation (8.1.1) is still quite complicated. In order to
grasp some important features of vibrational motion, the following
assumptions are introduced:

(i) The orbit is assumed to be circular.
(ii) Aerodynamic forces are ignored (at terminal phase
of retrieval, they are small anyway).

(iii) C, is ignored compared to C;.

(iv) Mass ratio v is ignored compared to unity.

‘Based on the above assumptions, (8.1.1) simplifies to

B1"+3n'B;'-(8/3)B, '+2K[2n'+C; ' J+m2Q? {B,C4

+ 2[(3/4)B,3+(3/4)B1A,%+6B1B,2+4B,A1A,+2B1A,2]} = 0 (8.1.2)
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Similarly C,, A:, A, and B, equations are

C1"+2ﬂ'C1'+w€2{C1+(ﬂ72)(A12+4A22+312+4522)} = 3-(n"+n'?)

A1"+3n' A" -(8/3)Ay +m202 {A1C+m2 [ (3/4)A13+(3/4)A; B, 2
+ 6A1A22+4A28182+2A1822]} =0

Ax"+3n" A, ' +(8/3)A1 "+4m2Q2 {A,C +m2[(3/2)A1 2A,+3A, 8
+ A;B;B,+3A,B,2+0.5A,B;21} = 0

B,"+3n'B,"'+(8/3)B; ' -KC; '+4m2Q2{B,C,+m2[(3/2)B, 2B,
+ 3823+81A1A2+382A22+ (]/2)82A12]} =0

where

w€2 = EA/Mb Lo w?

and w? is given by (4.2.17).

Recall that the longitudinal strain € is given by

()
;

= gy + €5

where

u

€1 8v/8yc

and

eo = 5 [(B4)2 + (22

(8.1

(2.5.

.4)

.5)

.7)
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The term (n2/2)(A;2+4A,%+B,2+4B,2) in Equation (8.1.3) is simply
Lo
%;—{ €2 dyc and represents the contribution of nonlinearity in an

average sense.
If nonlinear strain term €, is ignored, then the corresponding

Ci, A1, Ay, B; and B, equations are

C1“+2n‘C1'+w€2C1 = 3-(n"+n'?) (8.1.8)

A1"+3n'A;'-(8/3)A"+1202%A,C, = 0 (8.1.9)

Ay "+3n" A, ' +(8/3)A, '+412Q2A,C, = O (8.1.10)

B;"+3n'B;'-(8/3)B, '+n2Q%B,C,+2KC, " = -4Kn' (8.1.11)
and

B,"+3n'B,'+(8/3)B; '+4w2Q%B,C,-KCy' = 0 (8.1.12)

Equations (8.1.8-8.1.12) govern 'linear' vibrations. Note that there
are terms like A;C;, A,Ci, etc. in these equations which are nonlinear.
However C, can be solved independently from (8.1.8) at least in
principle. Once this solution is substituted in (8.1.9-8.1.12) the

equations become linear in A;, A, By, B, and their derivatives.

8.2 COMPARISON OF LINEAR AND NONLINEAR VIBRATIONS IN THE ABSENCE OF
ROTATIONAL MOTION

In order to verify the importance of the nonlinear strain
term, numerical simulations are carried out for both cases of linear

and nonlinear strain modelling, using the same initial conditions and
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same physical parameters. The shuttle is assumed to be in an equatorial
circular orbit at an altitude of 220 Km. To start with, a constant
Tength tether (8¢ = 1 Km) is considered. A short length is chosen
because most of the difficulties during retrieval of the subsatellite
are associated with small tether lengths and in addition, nonlinearity
is more significant at these lengths.

Both nonlinear and linearized sets of equations are integrated

3 Py=-By=-0.1x1073,

with the same initial conditions: A; = B, =0.5x710"
Ci=0.45x10'3andA1'=A2‘=Bl'=Bz'=C1'=O. In Fig. 8.7, nonlinear results
for A;, B1, C; and € are compared with corresponding linear ones. ¢

for the linear case is given by the dashed curve in C; graph. It may

be noted that the periods for linear transverse vibrations are slightly
higher, i.e., nonlinear vibrations have higher frequencies indicating

that the nonlinearity is of a hardening type. Nonlinearity has a

small effect on the magnitudes of oscillations 1in the case of transverse
vibrations, at least for these initial conditions. Note that the Tlinear

strain in this simulation is given by C; while the nonlinear strain is a

function of C;, A;, By, Az, B, and Yoo

2 2
e= Corm2{[ T A 1 cli my /20)]%[ T

Bi i c(i ﬂyC/£o)]2} (8.2.1)
i=1 i=1

The difference between linear and nonlinear results increases if the
tether length is reduced further.

Vibrations of the tether during gradual reduction of its
length are considered next. Fig. 8.2 shows the behaviour of the out-

of-plane transverse modal coordinates A; and A, during exponential



-119-

reduction of length from 1 Km (equation (6.1.6), ¢ = -2 x 1074 5_1).
Note that A;, A, increase quite fast if linearized equations are used,
while the stiffening nature of the nonlinearity causes a much more
modest rate of growth.

Inplane transverse vibrations during retrieval using feedback
of C, term alone are shown in Fig. 8.3. The length rate law is simply

given by (7.1.22)

4 -1

n' = E(]—KCCl), KC =300, ¢ = -2 x 107" S = (Zw) (8.2.2)

As the coupling between transverse and longitudinal vibrations is weak
in the linearized case, the feedback of C; has no effect on B; and B,.
However, when the nonlinearity is taken into account, control of
longitudinal strain can arrest the growth of B; and B, to a certain
extent, although it cannot eliminate the growth completely.

The effects of nonlinear strain on the vibrations are
greatly dependent on the initial conditions. The larger the magnitude
of the transverse vibrations, the greater the effects of the nonlinear
strain. On one hand, this kind of coupling between longitudinal and
transverse vibrations may help to suppress the transverse vibrations.
On the other hand, these transverse vibrations may excite large longi-
tudinal vibrations. This merely suggests that the control of longi-

tudinal and transverse vibrations must be considered together.

8.3 FEASIBILITY ANALYSIS OF CONTROLLING TRANSVERSE VIBRATIONS

In the simplified equations (8.1.8-8.1.12), the following

features may be observed:
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(i) Transverse vibrations are inherently unstable during
retrieval just as are the longitudinal vibrations. If n' is negative, each
equation involves a negative damping term.

(ii) Transverse vibrations are coupled with Tongitudinal

vibrations through the stiffness term.

(iii) Al11 vibrations are coupled to n' or n".
However, the coupling is stronger for longitudinal vibrations due to
the presence of the term (n" + n'2%) on the right hand side of C; equation
(i.e., 8.1.8). Even among the transverse vibrational equations, there is
some difference. B; equation, containing a term -4Kn' on the right hand
side, is more strongly dependent on n' compared to A;, A, and B, equations.
Physically speaking, the tether is retrieved axially; thus the inertial
force due to the length change is mainly along the longitudinal direction.
Hence, longitudinal vibrations (characterized by C;) are greatly affected
by the length rate. Inplane transverse vibrations are affected by n'
because of the Coriolis effect. For B; degree of freedom, the result is
the -4Kn' while for B, the net effect is zero due to the defléction shape.

From the observations above, one may expect that control of
transverse vibrations using length change laws may be difficult, since
so many modal coordinates depend on n' weakly.

As shown in Chapter 7, the dynamic part Cid of the longitudinal

vibrations can be controlled if

'2=K C. ., (8.3.1)

In that case, C, gradually approaches the quasi-static value CJS (see

equation (8.1.8)).
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G % Cpg = [3-(n"sn )V = (3K, € y' )2 (8.3.2)

If the length change Taw involves feedback of only Tongitudinal
vibrations, the transverse vibrations obtained from numerical integration
of the unsimplified equations grow. This is shown jn Fig. 8.4(5). There-
fore, the Tlength change law must have feedback of the transverse

vibrations as well. Let

NN = KL FA A, L) (8.3.3)

where f is feedback of transverse vibrations in a functional form and

is to be determined. Therefore from (8.3.2) approximately,

X t 2
Cy (3-KC Cld f)/w€ (8.3.4)

Clearly, f must not be larger than 3, because C; represents the strain
in the tether which must remain positive.

Substituting (8.3.4) into equations (8.1.9-8.1.12), we have

B1"+3n'By '~ (8/3)B; '+ (n2/v)[3-K_ C_,'-fIB1#2K Ci' = -4kn'  (8.3.5)
B>"+3n"B, " +(8/3)By "+ (4m2/V)[3-K_ C,,'~F1B,-K Ci' = 0 (8.3.6)
A1"+3n' A" - (8/3)A, '+ (n2/v) [3-K, € 4'-FIAL = 0 (8.3.7)

R2"#30! Az " +(8/3) M '+(4T°/V) [3-K_ C,4'~FIA2 = 0 (8.3.8)



-122-

where the following relation has been used:

-1

Qz/wEZ = v (8.3.9)

This is obvious from equations (4.2.17) and (8.1.7). Moreover, the
Tongitudinal vibrational equation (7.1.10) for Cld can be rewritten

using (8.3.3) as

1 ] 1 2 -
C + (KC + 2n )Cld + We C ,=-f (8.3.10)

1d 1d

The remaining task is to determine the feedback function f
so that A;, A,, By, B, and C,q 2re all stable. Multiplying (8.3.5) by
B,' , (8.3.6) by B,', etc., édding and integrating from 6 to 6 + A6,
one can obtain an energy integral from equations (8.3.5-8.3.10). Here
A® is a small orbital angle but still large enough compared with periods

of these vibrations. We then have

8+Ab

%'[(A1'2+A2'2+3112+BZI2+C1dI2) ]
)
G+A6] 2 _'l ) d 2 2 2 2
+ [ é 'Z—{TT v (3-KCC1d ) a5 (Ay2+4A,%+B1%+4B,?)
. d , o+A0 ) 2 2 2 2
+w ? g5 (C2,)}del= [ o' [3(A124A; 1248y 2B, 2)HK By 142C Jds
6+A8

1 AL (AAr +4AA, ' +8.B; +4B,B, ' )-C, ' 1do
5

6+A8 6+A0
-k 1 (C"HC 4 )(2By"-B, " )dB-K S C ,'%dE= F (8.3.11)
6 6
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On the left hand side, the two terms represent kinetic and potential
energy associated with the vibrations, respectively. The vibrations
are damped if F, which represents the remaining integrals, is negative.

Recalling that C = 34, %, w?/EA, (7.1.4), we have

b

(]
i

3M

s = My 2o w?/EA = (3Mb Lo w2/EA)(%0'/%0)

= C1$ n' (8.3.12)

Substituting (8.3.12) in (8.3.11),

6+A0
F = f “n'[3(_A]|2+A2'2+BJ_l2+BZ‘2)+4KBl|
)

+ 2C '.2+KC (231 ! -Bz ' ),]d6+ f f['ﬂ'z\) (AJA] !
1d 1s 9

6+A8
+ 4A,A,'+B;B,'+4B,B,"')-C d']de-K S C '(2B;'-B,')d®
1 5 1d

6+A6 .
-K. [ C ,'?%ds (8.3.13)

Ce 1d

The integral ff Cld'de over several cycles will vanish. Furthermore,

since Cld has a frequency that is different from those of A;, A,, B;
0+A6
and B,, in the long run the term -K S Cld'(ZBl'-Bz')de will tend to
: 6

zero. For simplicity, it is negelcted here.
6+A0
The term Kc J Cld‘zde plays a helpful role in withdrawing
)

energy from the system, essentially making the longitudinal vibration
0+AB

C,q Stable. However the term f -3n' (Ay'2+A, ' 24+B, ' 2+B,'2)d6 is greater
3]

than zero (since n' is negative for retrieval) and plays an adverse role
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adding energy into the transverse vibrations. Note that this term is
due to the negative damping in the A;, A, Bi, B, equations. Examining
(8.3.10) and (3.3.13), the sufficient conditions to make both longi-

tudinal and transverse vibrations stable are
KC > -2n' (8.3.14)
and

FLm2v") (AgAy ' +4A,A, '+B1By ' +4B,B," ) ]
< nl[B(Al|2+A2|2+B1:2+BZ|2)+4K81|
+ KC, (2B'-B,")] (8.3.15)

Thus, one chooses

f=-K A1A1l+4A2A2'+BlBll+4Bsz|), (8.3.]6)

gl

where KAB > 0 and sufficiently large. Then the term on the left hand
side of (8.3.15) is negative all the time and large enough in magnitude
to satisfy the inequality (8.3.15).

Examining (8.3.3) and (8.3.16) the length change law to

control both transverse and longitudinal vibrations may be written as

i

n"+n'? ld AB(A1A1'+4A2A2 +B1B; '+4B,B, ")

K

KC'- B

c g 5 [(A2+B)+4(R,24B,2)]  (8.3.17)

| —
Q.IQ..

The analysis is based on Tinear strain model. However, the
computer simulation will use the unsimplified nonlinear equations (8.1.1)

etc.
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Physically, the form f chosen in equation (8.3.16) "asks" the
changing length to produce a tension having appropriate components along
the transverse directions thus stabilizing them. However, these forces
are very weak unless KAB is chosen reasonably large. Note that KAB
cannot be indefinitely large since f must be smaller than 3.

If KC and K,, are zero in equation (8.3.17), i.e., the

AB
retrieval is uncontrolled, then

n' +n'2=0 (8.3.18)
This has a solution
n' = ¢/(1+ce) (8.3.19)

where n'(0) = €; € is negative during retrieval. Recalling that

n' = 2"/ s

%o = 2.(1+c6) , (8.3.20)
where hs = 24(0) .
Clearly, - 20'= € % (€ < 0 during retrieval).

This represents a constant velocity retrieval. Hence the length
change law given in equation (8.3.17) is basically a modulation of
constant velocity retrieval. Exponential retrieval can be modulated
similarly.

The Tength change law (8.3.17) can be rewritten in length

rate form (approximately and somewhat more generally) as
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n' = Ka/{'|+Ka6+KbC1d+[Kl(A12+312)+K2 (A,2+B,%) 1},

K. <0, K

3 Ky >0 (8.3.21)

b?
The analysis is based on linear strain model. However, the bomputer
simulation will use the unsimplified nonlinear equation (8.1.1) and
similar equations obtained from (4.2.16), (4.2.19), (4.2.21) and
(4.2.2) after putting o and vy terms to zero.

The dynamics during retrieval of the subsatellite from 1 Km
is shown in Figure 8.5, where Ky = 300, Ky = 10°%, K, = -4 while K, 1s
is calculated from n'(0) = €. Note that all the vibrations are

reasonably stab]e.*

8.4 AN EXAMINATION OF FAST RETRIEVALS

When the tether becomes shorter during retrieval, the strain
or tension in the tether becomes smaller.  Examining the tension care-
fully in Figure 8.4(b), it can be seen that the tensions at both ends
have vibratory components even though they are quite small. This is
not desirable as vibrations may subsequently cause the tether to become
slack. The question arises as how to maintain a certain amount of

tension in the tether so that this can be avoided. Probably, the tether

~ should be retrieved fast at the terminal phase of retrieval, so that the

inertial force produced from the fast accelerating retrieval will add to

the tension in the tether.

* Examining (8.3.17) one notes the K, = 4 should arrest the growth of
transverse vibrations; however, in numerical simulations this was not
the case. On the other hand K, = -4 works. The reason still remains
unclear to the author.
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Recall that the quasi-static equilibrium strain is given by

C.o = [3-(n"+n'2) 1M, %, w?/EA) (8.3.2)
If we let
0 £0>er
nll + n|2 -
3-3(Re/R0)  Ro<hg (8.4.1)

where the constant zfr stands for the length at which the fast

retrieval begins, then

- 2 -
C1S = (3Mb Lep W JEA) = const for %, < %ep (8.4.2)
With (8.4.1), the strain is continuous at %, = % ¢ and remains
constant for &, < lfr'
Using the definition of n in (4.2.10), i.e.,
n_
e’ = Lo/hior >
the second part of (8.4.1) can be rewritten as
n n 12)= n
e'(n"+n'?)=3e"-3(8c /0 c) (8.4.3)
the solution to which is
- ,
e' = Ash/36+Bch/36 +(2fr/2ref) (8.4.4)

where A and B are constants. If the fast retrieval starts from € = efr,

then
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lo(efr) = er . (8.4.5)
and
n'(6e) =%, <0 (8.4.6)
Thus (8.4.4) becomes
n = zn[(zfr/zref)(1+(E//§)sh/§(e-efr)] (8.4.7)
and
n' = ¢ ch/?(e-efr)/[1+(E//?)sh/§(e-efr)] (8.4.8)
for 6 > efr' Since
n' =20/ ,
we have
,Q,gl =% T]' =4Q,ref en T]' (8-4.9)

Substituting (8.4.7) and (8.4.8) in (8.4.9),

20" = % , ¢ chJ?(e-efr) , 8>8 (8.4.10)

f fr

From (8.4.10) it is clear that the retrieval velocity is increasing

with 0.

The effect of this fast terminal retrieval on the vibrations
in the absence of rotational motions is tested by integrating the

nonlinear vibrational equations numerically. The retrieval starts from
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©

1 Km and 2. is set to 250 m. Corresponding vibrational behaviour is

fr
represented by Figure 8.6. Note that in the first phase the retrieval
speed is constant while in the second phase after %, < zfr = 250 m, it
is speeding up and the tension is maintained approximately to a constant
value. Some artificial viscous damping in the longitudinal direction

has been introduced (£ 2 0.8). Notice that A; and B, increase only

slightly, the actual displacements 2qA, etc.of course, reduce.

Figure 8.7 describes the vibratory behaviour during reduction

of the tether length given by

0 250 < 20<1000
n" = (8.4.11)
-n12'3(1000"2’o)/ko 20 < 250

where £, is in meters. The longitudinal viscous damping is the same as
in the previous case. n" = 0 corresponds to exponential retrieval. Thus
the first phase is a slow exponential retrieval, but the second phase
corresponds to- even a faster retrieval (compared to the case in Fig.
8.6) with a strong jump in acceleration at %o = 250 m. This is designed
to raise the tension in the tether, hence forcing the transverse
vibrations to smaller amplitudes. From the results, it may be seen that
the tensions at both ends of the tether jump to higher Tlevels and the
transverse vibrations are bounded to small values. It should be mentioned
here that the scale in the plots of transverse.vibrations are 10 times
smaller than the scale used in Figure 8.6.

Fast retrieval can only be performed at the very end of
retrieval. When it starts, it must be maintained until the end of

‘retrieval. Otherwise the slowdown could cause tether slackness.
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8.5 CONTROL OF GENERAL DYNAMICS INCLUDING BOTH ROTATIONS AND
VIBRATIONS

So far this chapter has examined the nonlinear vibrations at
the terminal phase of retrieval ignoring the rotational motions. This
section brings the rotational oscillations and vibrations (both longi-
tudinal and transverse) together and the investigation is from the very
beginning of retrieval. The length change law uses feedback from

rotational as well as vibrational state variables.

8.5.1 Numerical Results using Linear Strain Model

At first, the linear strain dynamic model is used for the
numerical simulation. In Section (8.5.2), nonlinear strain model is
used.

It has been shown in Chapter 6 that pitch and roll behaviour
of the system can be stabilized during retrieval of the subsatellite

using

4.-1

n' = &(1-a'-9%'2), ¢ = & = -2x10"°S" (8.5.1)

The vibrational behaviour using the same length rate is shown in
Figure 8.8. The longitudinal oscillation grows rather fast and the
transverse vibrations also build up slowly. Numerical integration was
stopped when the longitudinal oscillation became too large. This
clearly shows the importance of including vibrational feedback in the
length rate.

Figure 8.9 shows the response of the system when the length

rate is
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n' = E(1—a'—9y'2-KC Ci), KC = 30 (8.5.2)

The value of € is the same as before. Longitudinal vibrations are more
or less eliminated. The vibratory displacements Rl, Az, §J, §2 and the
resultant transverse deflection of the mid-point of the tether denoted
by R are small towards the end of retrieval. However, the nondimensional
transverse displacements represented by A;, A,, Bi, B> grow slowly.

Using a length rate

n' = E(]-u'-9y'2-KB1 B.') (8.5.3)

with KBl = 10 and employing a viscous damper to provide a force pro-
portional to C,', one obtains the system response shown in Fig. 8.10.
This response is very similar to that in Fig. 8.9, except that the
transverse vibrations are slightly smaller, The retrieval dynamics up
to a tether length of 250 m using (8.5.2) is described in Fig. 8.11. K.
is 30 for 2o > 1.2 Km but is 300 for £¢ < 1.2 Km. It is noted that again
the actual displacements A; etc. remain small. The nondimensional
transverse displacements, however, increase slightly.-

The 1inear strain model is not very good during the terminal
phase of retrieval even though the transverse vibrations may have small
amplitudes. This is because the strain in the tether approaches zero
during the retrieval. Noting that in Fig. 8.9 A;, B, are of the order

of 0.01, while C; is of the order of 107°

at 1 Km, the nonlinear strain
term calculated from A;2 By2etc. is larger than the linear term C;.
This merely suggests that the nonlinear strain has to be considered in

the dynamical modelling.
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8.5.2 Numerical Results Using Nonlinear Strain Model

Figure 8.12 shows the dynamical response represented by
Ci, A1, Ax, By and B, during retrieval of the subsatellite from

100 Km using the length change law
n' = &[1-5a'-18y'*-1.5 w_ C .1, ¢ = c/w (8.5.4)

4.-1

The retrieval constant ¢ is -2 x 10 'S ', the same as before. So are
the initial conditions of A, A;, By, B, and C,. Comparing the length
change laws (8.5.4) and (8.5.2), they are basically of the same kind.
However, the gains for o' and y'2? feedback have been changed from 1 and
9 to 5 and 18, respectively. Also, the feedback that n' gets from
longitudinal vibration has been altered from C; to Cld’ A1l these
changes have been made to make a, y and C; more stable. One can see
from Fig. 8.12 that C; is stable. However, A,;, B, are building up.

It is obvious that C; is affected by A; and By, resulting in high
frequency oscillations. This is due to the nonlinear strain term. The
strong coupling between longitudinal and transverse vibrations also
advances the occurrence of the slackness of the tether as can be seen
from the tension o shown in Fig. 8.12; This fact merely shows that
transverse vibrations could also make the tether slack just as longi-
tudinal vibrations if they are not damped out. Unfortunately, modal
coordinate By associated with transverse vibrations is quite large at
the beginning of the retrieval because of the aerodynamic and Coriolis

forces. Thus damping transverse vibrations during retrieval is quite

challenging.



-133-

Although the transverse vibrations excite longitudinal
vibrations and vice versa, the requirements to control these two types
of vibrations are somewhat conflicting. This is depicted in Fig. 8.13.
At first, retrieval from 100 Km is carried out using feedback of

longitudinal and transverse vibrations, i.e.,

n' = E{-20"-36y'y"-w C (+(1/2)Kyg fj—e— [(A12+B12)+4(A,%+B,%) ]}

and
n'(0) = ¢ (8.5.5)

After four orbits, when the length has reduced to 17 Km, feedback of

longitudinal vibration alone is used, i.e.,

n" = ¢{-2a"-36v'Y -0, Cld} (8.5.6)
where KAB’ c (= Sw) are taken as 5 x 104 and -0.5 x 10_45-], respectively.
The initial conditions are y = 1°, 0-180° = 15°, A; = -5 x 1077,

4 2 3 2

A, =5x10 ", By =-0.16 x 100", B, = 0.28 x 10°°, C; = 0.49 x 10",
Cr=-0.28 x 1075, o' =y' = Ay’ = Ay' =By’ =By' = Cy' = Cp' = 0.
From 8.13(a) it is clear that the gains used for a' and v'? are adequate
to confine the rotations to small range. The transverse vibration B; is
damped during the first four orbits while there is no appreciable growth
in A;, Ay, B,. However C; is affected adversely, resulting in large
oscillations. If the feedback of transverse vibrations is dropped, it
is clearly seen that C; becomes stable. However B;, A; steadily increase
henceforth. From the plot of tensiono (Fig. 8.13(b)), it may be noted

that during the second phase, there is a small oscillatory component
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of tension due to the transverse vibrations (C,; has negligible
oscillatory component).

The results above suggest that control of nonlinear vibrations
from the very beginning of retrieval until the end is a difficult task
if only length change strategies are used. The fact is that the tension
in the tether weakens during retrieval while there are too many degrees
of freedom to be taken care of. Probably, if the retrieval is carried
out very slowly so that the material damping is Targer than the negative
damping associated with the retrieval process, then stable retrieval might
be achieved. However, this will imply quite a long time to retrieve the
subsatellite, which may not be acceptable in the practical sense. Based
on the above reasoning, this very slow retrieval is not examined.

It might be 1nterestingvto note that under certain circumstances,
the internal resonance between longitudinal and transverse vibrations can
be used to absorb the transverse vibrational energy (although not completely)
through damping of Tongitudinal vibrations. This requires reducing the
frequency of longitudinal vibration C1d to a value closer to the frequency
associated with the modal coordiante A; (or B;).

From equation (7.1.10), if n" is chosen as

n" = a(EA/Mb L0 wZ)CJé, a = const., (8.5.7)

then Cld has a frequency of oscillation

172

W, & {[]-(a2/4)](EA/Mb 2o w2)} (8.5.8)

From equations (8.3.7) or (8.3.8), the frequency associated with A; or

By is approximately
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wpy * (312 /0 20)1/2 (8.5.9)

It may be noted that both frequencies we and wp, are

proportional to (10)'1/2. To make these two frequencies approximately
equal, i.e.,
w_ = Wa (8.5.
we must have
(1-(a%/4)] *® 3n2Mb2w2/pC EA (8.5.
The term on the right hand side is a constant while a can be chosen
arbitrarily. Consider typical parameters as follows
M, = 170 Kg (8.5.
d, = 0.325 x 1073 . (8.5.
A = ndC2/4 (8.5.
E =2.1 x 10! N/m? (8.5.
p. = 7.8 x 10° A Kg/m (8.5.
w =1.1x 1073 (8.5.
a can be determined as
a = 1.7889 (8.5.

In the numerical simulation, a is taken to be 1.8. Consider

the length change law

10)

1)

12a)
12b)
12¢)

12d)
12e)

12f)

13)



-136-
n"=g[ -50"-367'y"] + a(EA/M_ %o w?)C_ '
+10%(B1B;" + AiAL") (8.5.14)

Figures 8.14 and 8.15 show the dynamic response during the retrieval
of the subsatellite from 100 Km under the same initial conditions
and physical parameters except that a is taken as 1.5 and 1.8,

451 and the

respectively. (The retrieval constantc is -1 x 107°S’
initial conditions are the same as given in Fig. 8.13 except y = 0.5°.)
There is no internal resonance between longitudinal and
transverse vibrations for a = 1.5 while there is for a = 1.8. C(Clearly,
the behaviour of modal coordinates A:; and B; is quite different in the
two cases. For a = 1.5, transverse vibrations A;, B; are quite large
while they are small for a = 1.8. However, C; has a larger variation
at the beginning of retrieval in the case of a = 1.8. Since A, and B;
are maintained small in the case of internal resonance, the tensions at
both ends of the tether rapidly approach the same value during retrieval.
Although this resonance does not absorb the transverse
vibrational energy completely, it still does some good. In the next
chapter, which deals with the thruster augmented active control, a
mixed control strategy will be used. At first, this kind of resonance
can be employed to retrieve the subsatellite from 100 Km to a shorter
length, say 20 Km. Since transverse vibrational energy is absorbed
partially, it helps the thruster augmented control that follows. It may
be pointed out that the relatively large variation of C; at the

beginning of the retrieval is not a problem because at that moment, C;

is large enough to keep the tether taut in spite of the variation.



CHAPTER 9

THRUSTER AUGMENTED ACTIVE CONTROL

As the length of the tether reduces to a small value during
the retrieval of the subsatellite, the equilibrium tension in the tether
approaches zero and during a dynamical situation the tether may become
slack. It has been seen earlier in this thesis that the rotational
motion of the shuttle supported tethered subsatellite system as well as
the longitudinal and transverse vibrations of the tether are inherently
unstable during the retrieval phase. If only a length change or tension
control law is used, it is difficult to control all the motions during
the terminal phase of retrieval when the condition of very weak tension
prevails. This is especially true if one wants to control the objection-
able transverse vibrations.

To alleviate this difficulty, Banerjee and Kane [30] proposed
to use a set of thrusters (in addition to a torque control law) to con-
trol the retrieval dynamics. The results presented in their paper are
quite promising; however, the transverse vibrations of the tether were
neglected in their dynamical model implying that the tether always
remained straight. The objective of this chapter is to remove this
restriction and to present thruster augmented control schemes that are
effective in the presence of transverse vibrations of the tether. The
nonlinear equations of motion, developed in Chapter 4 are used for
examining the proposed thruster augmented control schemes. At first,
active control of the system dynamics by using thrusters alone is

considered. This is followed by a mixed control strategy involving the

-137-
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thrusters in conjunction with a length change control law, with an
objective of saving the thruster fuel. In order to determine an
appropriate functional form of the thrust an approximate analysis of
the equations of motion is carried out; however, the final results are

obtained numerically considering the original equations.

9.1 ARRANGEMENT OF THE THRUSTERS

Consider three thrusters placed on the subsatellite which can
fire along Tocal Xos Yoo 2 directions, respectively (Fig. 9.1). The
task of the thrust Tc’ which is along the direction of the tetherline,
is to control the longitudinal vibrations and to provide extra tension
in the tether when the tether is retrieved to a short length. The
function of Ta, acting in the orbital plane along Z.» i.e., approximately
in the direction of flight, is to provide a torque to control inplane
rotational motion o as well as the inplane vibrations of the tether.
Probably this thrust can be called inplane thrust for better physical
appreciation. Finally, TY applied along the X direction perpendicular
to the orbital plane (approximately), similarly produces a torque to
control out-of-plane rotational motion y as well as the out-of-plane
vibrations. It can be termed out-of-plane thrust.

Note that Ta and TY not only control the appropriate
rotational motions but also are used for arresting the growth of
corresponding transverse vibrations. It is not difficult to visualize
that the rotational motions can be controlled quite easily through the
thruster forces Ta and TY' A1l that is required is tbat Ta and TY act

along directions opposing the rotational motions o and y at all times.
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However, it is not so obvious how at the same time, Ta and TY can control
the inplane and out-of-plane vibrations. Hence, an approximate analysis

of the equations of motion is made at first.

9.2 ANALYSIS TO DERIVE THRUST CONTROL LAWS

9.2.1 Generalized Forces due to the Thrusters

When the thrusters Ta, TY and Tc act on the subsatellite, the
equations of motion will include the corresponding generalized forces
caused by these thrusters. Clearly, the total thrust T acting on the

subsatellite can be expressed as

T=T?+T3’+TGTZ (9.2.1)

The position vector of the subsatellite relative to the center of the

earth E is
Reg = Ro(6) + R
= Ro(0) + [Lo(t) + v(20,t)TT, (asv)
= Ro(0) + [1+ Cy + Cleo I (9.2.2)

Therefore, the generalized forces due to thrust T are:

QT,,= MoRg/aC1) = T_ %, | (9.2.32)

QT¢,= *(oRgg/3C2) = T_ Lo (9.2.3b)
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ar_ ='%(sﬁEB/au) (1+C, + Co)2y T(sfc/aa)

Since from (2.9.6) (a}c/aa) cy Ec’ we have

QTa = (1+Cy ¢ Cz)Ta Lo ¢y = T, % cy (9.2.3c)

where & is the stretched length of the tether. Similarly, using

+ .
(3JC/3Y) = -,

QT = -(1+ C1 + C)T, & = -T, & (9.2.3d)

It may be noted that QT@ and QTY are merely torques associated with a
and y rotations.

Considering the o, y and CY equations (4.2.14), (4.2.15) and
(4.2.22), which have been nondimensionalized through a division by

Mb 202 82, corresponding nondimensional generalized forces Sa, S, S

y? “C1
are
So = QTo/My 20282 = (14 €1 + C2)T cv/My %o %, (9.2.4a)
= B2
SY =-(1+C + CZ)TY/Mb Lo 6 (9.2.4b)
and
Sea = (1# Ca + C)T /M 20 B2 (9.2.4c)

Noticing that the modified C, equation (4.2.23) is obtained by

subtracting the original C, equation from the C, equation, one

can show that
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S.. =0 (9.2.44)

Defining nondimensional forces Tq, Tc and TY as

T, = T /M 2 B2 (9.2.5a)
' ?Y = T/My Lo b2 (9.2.5b)
and
T = T/M % b2 (9.2.5¢)
one obtains
S, = (1+Ci+C)T oy ®7 o (9.2.6a)
s, = -(1 % €+ €T, = T (9.2.6b)
S, = (1+Cy+ cz)TC = TC (9.2.6c)
S¢, = 0 (9.2.6d)

9.2.2 Simplified Equations

" The discretized equations of motion (4.2.14), (4.2.15),
(4.2.17), (4.2.19) - (4.2.23) are very complicated and it is difficult
to determine the reqﬁiréd control thrusts Ta, TY and Tc from these
equations. Hence, these equations are simplified solely for the purpose

of obtaining these thrusts. To do so, the following assumptions are

made:
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(i) The orbit is assumed to be circular.

(ii) The nonlinear strain term is neglected.

(iii) C, is ignored compared with C;.

(iv) Some insignificant terms in the equations are
neglected; for example in Ay equation [g (n"-Fn')+(2- %EJn'Z]Al is
insignificant compared with w2Q2{...} term, because 0% is a very large
term.

(v) Equations are linearized.
(vi) Aerodynamic forces are not considered.
(vii) Mass ratio v is small compared to 1.
With the above assumptions and substituting (9.2.6) into corresponding
a,Y, C; equations (4.2.14), (4.2.15) and (4.2.17), we have the simplified

equations as follows:

o'+ 2n'(1+a') + 30 = T (9.2.7)
B1"+3n'By '~ (8/3)B, ' +4Kn' (14’ )+Ka"+3Ka#202B Ca= 0 (9.2.8)
B2"+3n'B, " +(8/3)B, " - % Ko~ (3/2)Ka+41202B,C; = 0 (9.2.9)
Ye2n Yy = _TY (9.2.10)
AL+3n"As - (8/3)As " -4Kn'y ' -Ky" ~4Ky+m202A,C1 = 0 (9.2.11)
Ao"+3n'Ag'+(8/3) A" & Ky"+2KyHATZ2%A5Cs = O (9.2.12)
C1"#20i'n"+w_*Cy = 3-(n"+n'2)+TC (9.2.13)
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In the simplified equations above, it may be noted that fa, fy
and %c appear in o, y and C, equations but not in Ay, A, B; and B,
equations. Thus, it might appear that these transverse vibrations may
not be controllable by the thrusts Ta, TY and Tc' However, this is
not true. The out-of-plane transverse modal coordinates A; and A,
are coupled with v equation; so are the inplane transverse modal
coordinates B, and B, with o equation. Therefore A; and A, are affected

by TY as are B, and B, by Ta. This is shown in the following sections.

9.2.3 Derivation of a Suitable Form of TY

The inplane and out-of-plane motions are coupled very weakly.
Hence, corresponding equations are investigated separately for simplicity.
The equations governing y, A; and A, (9.2.10) - (9.2.12) can be written

in matrix form as

1 0 0 v 2n' 0 0 v!
-K 1 1 A"p +  |-4Kn' 3’ -(8/3) A’
K/2 0 oJ A" 0 (8/3) 3n' |\ A
4 0 0 |/v ) 1
+ |-4K w2 0 AL =-40 TY (9.2.14)
2K 0 dw? AZ) 0
where

w12 = NZQZC:[
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Inverting the matrix coefficient of the accelerations, we have

Y" znl 0 0 YI 4 6 0 v
A1" + -ZKﬂI 3n' -(8/3) All + 0 w12 0 A1
Az” -Kn' (8/3) 3n' Az' 0 0 4w12 Az

D R (9.2.15)
-K/2

Equation (9.2.15) indicates that Ai, A, are affected by
Ty. This fact can be explained from physical consideration. When
fy acts on the subsatellite, it produces a torque around the system
centre of mass, thus changing the rotational acceleration ¥. This
change in acceleration ¥ introduces distributed forces along the
tether in the transverse out-of-plane direction. Thereby, transverse
vibrations A; and A, are indirectly affected by fY'

Now, it is not difficult to see of what form TY must be. In
order to make vy, A; and A, motions stable, TY must produce rate
dependent terms to overcome the negative damping represented by the

second term of the left hand side of equation (9.2.15). This suggests

a form of T as
Y

TY = ('KYYl‘KA1A1l+KA2A21)ﬂ' (9.2‘]6)

where Ky, KAl and KA2 are positive numbers greater than 2, 3/K and
6/K, respectively. The coefficients of A,' and A,' in (9.2.16) have
different signs since the effects of ?Y on the two motions as given in

(9.2.15) have opposite signs.
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9.2.4 Derivation of a Suitable Form of Ta

Following an analysis similar to that for TY’ one can get

a simplified matrix equation for inplane motion as

o ot 0 0 (1+a')
B,"} + |2Kn' 3n' (-8/3) B,
B," Kn'  (8/3) 3n’ B,'
30 0 a 1
+ 10 w? 0 B,Y. = { -K '”ru (9.2.17)
0 0 4w?] |8, K/2

Through the coupling between pitch rotation and the vibrations,
%a can influence B; and B,.

To make inplane motion stable, Ta must depend on o', B;' and

B,' as follows:

T, = (2+K a'-Kg B1'+Kg B2 ' )n' (9.2.18)

where Ka, K,. and KB2 are positive numbers greater than 2, 3/K and 6/K,

B1
respectively (note that n' < 0 during retrieval).

It should be mentioned that the orbital rotational rate has
an effect on inplane rotation o. In equation (9.2.17), the term (1+a')
includes the contribution of the orbital rotation (1 added to the pitch
rate). During the retrieval process, orbital rdtation tends to push the

subsatellite away from the vertical. Thus, o usually has a certain amount

of steady value which is dependent on how large n' is. Dimensionless
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thrust fa given in equation (9.2.18) involves a 2n' term just to cancel
this steady rotation. Thus o is expected to return to the vertical
position. Clearly, fd required is much larger than TY' This will be

seen in the numerical results presented later.

9.2.5 Derivation of an Appropriate Form of %c

Tc acting along the direction of tetherline has two functions.
One is to damp the longitudinal vibrations, i.e., control the unstable
generalized coordinate Ci. The other is to provide a certain amount of
tension in the tether during the terminal phase of retrieval.

This second function of Tc is very important. Very small
tension in the tether is always instrumental in inducing slackness of
the tether. Theoretically, when 2, goes to zero, the tension in the
tether approaches zero as well (except when the retrieval process is
gradually speeding up). Any Jongitudinal vibrations could make the
tether slack.

The question arises as to what minimum tension must be
maintained in the tether. Obviously, the larger the thrust TC the
greater the tension provided, thus making it more likely to prevent
slackness of the tether. However, more fuel is consumed that way.
Since the tension is fairly large when the tetherAis long, the second
function of Tc could be performed at the terminal phase of retriéva].

Observing the C, equation (9.2.13) it is not difficult to
find an appropriate form of TC to damp the unstable longitudinal

vibration. TC is designed as
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i -KCwE(Cl') . 2. >0y > 8
T = (9.2.19)

‘ch€C1|+3(IQ/T-Q’0)/Q/0, ,Q,o < Q/T

where QT is a preset value of the length below which the thruster
fires additionally to maintain a certain amount of tension. The term
B(QT-QO)/RO in (9.2.19) causes the tension in the tether to remain
approximately constant when 2, is reduced below QT‘ Referring to
equation (8.4.5), one may notice that this term is almost the same as
that on the right hand side of (8.4.5).

The larger the conditional value of length zT, the larger is
the tension maintained in the tether although more fuel is consumed.
The choice of the value of QT is 1imited by the maximum thrust provided

by the thruster.

9.3 NUMERICAL RESULTS FOR THRUSTER CONTROL

Once the control laws for Ta, TY and Tc have been obtained
through a simplified analysis, their effectiveness is examined through
computer simulation. The equations used to obtain the numerical results
are no longer the simplified ones but the original more complicated ones,
j.e., equations (4.2.14), (4.2.15), (4.2.17), (4.2.19) - (4.2.23).

Both Figs. 9.2 and 9.3 use the same physical parameters as in

the case of Fig. 8.15, the retrieval constant ¢ = €w = -4 X 10'45'1 and
the initial conditions are (a-m) = 15°, y = 1°, C; = 0.47 x 10'2,

C2 = -0.19 x 1073, A, = 0.5 x 1074, A, = -0.5 x 1074, 8, = -0.16 x 1072,
By = 0.48 x 107 and Ay' = A,' = By' = Bp' = €' = Cp' =a' = y' = 0.

Since the thrusters are used to control all the motions from the
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beginning of retrieval to the end, retrieval length rate is not
modulated by the state variables and is assumed to follow the
exponential retrieval law, i.e., n' = €.

Figure 9.2 shows the dynamical response during retrieval
when an attempt is made to maintain the tension in the tether ét the
initial 1eve1,’i.e.,'in equation (9.2.19) S = 100 Km. The control

thrusts then are given by

: Ta = 2¢2v(1+v/2)[1+a' In' -20.'+10(B; '-0.58, ")

TY = -2(1+v/2)y'n'+2y'-10(A;'-0.5A, ")

-~

Tc = 'we(cl""cz')"‘3[@1-'9'0)/20] (9.3.1)

Equation (9.3.1) makes a little modification to the already derived
thrust forms from the simplified analysis since the original equations
are used now. It is not difficult to see that the first term on the
right hand side of either fa or ?Y expression is just to balance the
identical term in o or y equation.

It can be seen from Fig. 9.2 that the thruster active
control law (9.3.1) is quite successful. o rotation rapidly goes to
zero from an initial deviation of 15° away from the vertical. So does
v rotation from an initial value of 1°. A1l the transverse vibrations
Ai, Az, By, By, as We11 as the Tongitudinal variable C, are also rapidly
damped to zero. On the other hand, C, approaches a constant level. The

tensions at the two ends gradually approach the same constant value.
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The drawback of this scheme is that a large thruster

impulse is required, especially for the tether-aligned thruster.

Tc gradually increases to 70 N during retrieval. The reason is

that an unnecessarily high tension level is maintained in the tether.
It may not be practical to provide that kind of thrust. In any case,
it is not necessary to do so. A small tension maintained in the tether
is good enough to prevent slackness of the tether. Thus, henceforth we
reduce 2T and put a limitation on the maximum thrust provided by the
thrusters.

Figure 9.3 shows the dynamical behaviour of the system when
the control thrusts are provided according to (9.3.1) with %1 = 3 Km.
The maximum thrust provided by any of the thrusters is +5 N. Note that
all the motions are well controlled during the retrieval process. For
tether length less than 3 Km, the tension is maintained at a Tow level
(approximately 2 N, Fig. 9.3(e)). Thus, much smaller thrusts compared
to Fig9.2 are required. The +5 N limitation on the thrusters yielding
T_and T_ is clearly visible in Fig. 9.3(d). Again from Fig. 9.3(d),
it can be estimated that the total thruster impluse is about 50000 N.s.
It may also be noted that the thruster providing Ta works hard at the
beginning, spending more thruster fuel than that providing Tc' The time
of retrieval from a length of 100 Km to 250 m is approximately 2.8
orbits (4.2 hours). The numerical simulation was terminated at
2o = 250 m to limit computational costs; the same trend is likely to
continue when £, < 250 m. _

Although the results shown in Fig. 9.3 are quite good, they

can be improved. There are two aspects: one is further saving of the
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thruéter fuel; the other is to reduce the retrieval time. The next

section considers means to attain these improvements.

9.4 A MIXED CONTROL STRATEGY

In this section, a mixed control strategy using thrusters
as well as a length change control law is proposed. The retrieval
process is divided into two parts: one is from an initial Tength of
100 Km to 20 Km, while the other is from 20 Km to the end of retrieval.
For the first part, a length change law is used to control the motions;
this is followed by a retrieval process using a thruster augmented
active control law to control the motions and maintain a certain amount
of tension in the tether. Below 2o = 10 Km, a constant velocity
retrieval is used instead of exponential retrieval for reducing the
retrieval time,

As mentioned earlier, the thruster impulse used in the case
shown in Fig. 9.3 is still considerably large. There are two reasons
for this. One is that the thrusters start to fire from the beginning
of retrieval and last for a long time. The second reason is that the
retrieval is too slow at the terminal phase when an exponential
retrieval is used all the time. The thrusters keep on firing even
through the retrieval process turns to a snail's pace. Observing the
plots of T , TY and T_ in Fig. 9.3(d) carefully, one can note the
following:

(i) At the beginning, all the thrusters, especially that
yielding Ta work very hard. Ta is maintained for about 1.2 hours at

a maximum Tevel of 5 N. The reason is that (a-m) is quite big
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(approximately 15°) at the beginning of retrieval. Bringing the
tether back to the local vertical (a=m, for the tether deployed
downward) requires large thrust acting for a long time. A lot of
thruster fuel, of course, is spent.

(ii) At the terminal phase of retrieval, thrust TC must
be maintained at a nonzero value since a certain amount of tension is
required. If the retrieval is exponential, it lasts for a fairly Tong
time. Thus a lot of thruster fuel is spent too.

Possible improvements are clearly indicated by the above
discussion. Firstly, the thrusters need not fire so early from the
beginning of retrieval. Just let the length change control law do its
job. After 20 Km (say), fire the thrusters. To choose 20 Km as the
starting point of firing the thrusters is somewhat arbitrary. However,
if it is chosen too small, the tether might be already slack when the
firing of the thrusters starts. From 20 Km to 10 Km, exponential
retrieval is continued. Beyond that a constant velocity retrieval
instead of the exponential retrieval is carried out, mainly to reduce

the retrieval time.

9.4.1 Laws for Mixed Control Strategy

From 100 Km to 20 Km, a control law taking advantage of the
internal resonance property is used. Since B; is the largest among the
transverse vibrations, the coupling term involves the state variable B,

alone. The Tength change law thus is

n" = -ZK a"-28K y'v"+1.80.C, 4'~10"B;B,' (9.4.1)
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with the initial condition

<0 (9.4.2)

(g2}

n'(0) = ¢,
Note that (9.4.1) is equivalent to

n' = 5{1-Kaa'—Kyy' +(1.8/E)w£C1d—(5 x 103/€)[B,2-B12(0)1} (9.4.3)

From 20 Km to 10 Km, an exponential retrieval is used, i.e., all the

gainsAin (9.4.1) are zero and
n" =0 (9.4.4a)
From 10 Km onwards, a constant velocity retrieval is employed, i.e.,
n"+n'?2=0 (9.4.4b)

Care is taken so that n' is continuous at both 2, = 20 Km and
2o = 10 Km.
The thrusters start firing when the length reaches 20 Km.

The thrusts are given by

T = 2n'(1+a')-20"+[10-(3/K)n' 1 (B ' -2B,") (9.4.5a)
?Y = onty'+2y'+[10-(3/K)n' J(A; ' -2A;") (9.4.5b)
and
-5u_(C1'+C2") %o > %p
T, =

°5w€(CJ'+C2')f3(£T‘20)/20 o <2q (9.4.5¢)



-153-

where RT depends on the steady tension to be maintained for small
tether lengths. In the numerical simulation RT was chosen as either
3 km or 10 Km. In addition, a £5 N limit is put on T_, T, and T.
(The relations between Ta and fa, etc. are given in the equations
(9.2.5 a - c¢) etc. earlier).
The thrusts given in (9.4.5) are slightly different from those
given in (9.3.1). Firstly, v appearing in (9.3.1) has been ignored in

(9.4.5) since it is very small. Secondly, for fu and %Y’ a term

(-3/K)n' has been added to 10. The reason for doing so is quite obvious.

Since from 10 Km onwards the retrieval is a constant velocity retrieval,
n' becomes larger and larger in absolute value giving rise to higher
negative damping. The added term is just to balance this in the
transverse vibrational equations. If an exponential retrieval is used
all the time, n' is a constant (=C), and the correction term is not

required.

9.4.2 Numerical Results for Mixed Control Strategy

Numerical results using the mixed control strategy are shown
in Figs. 9.4 - 9.6. The dynamical response and the thrusts are plotted

with respect to g. The initial conditions for these three figures are

the same and are (o-m) = 15°,v= 1°, C; = 0.47 x 10'2, C, = -0.25 x 10'3

A = 0.5 x 10“4,_A2 = -0.5 x 107, By = -0.16 x 1072, B, = 0.48 x 1073,

and AJ_I = A, = BJ' = Bt = ;' = Cot = a' = y' = 0.
Figure 9.4 shows the system dynamics when ?a and ?Y get no

feedback from the transverse vibrations, i.e., for 20 < 20 km

s
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T, = 2n'(1+a')-20
:I:-Y = on 'yt 42y (9.4.6)
fc = -5w€(C1'+Cz')+3(2T‘20)/20, QT = 3 Km

The importance of getting feedback from the transverse vibrations for

fu and fY is clearly seen from Fig. 9.4(b). The transverse vibrations
continue to grow although the rotations o and y approach zero in

Fig. 9.4(a). This causes the tension at both ends of the tether to
oscillate rapidly (Fig. 9.4(d)). C; also is affected by the transverse
vibrations due to the nonlinear coupling (Fig. 9.4(c)). When &, is

about 6 Km, C; becomes zero, which shows that there is slackness somewhere
along the tether. The computer calculation is then terminated.

4.-1

The results in Fig. 9.5 use c(=8w) = -2 x 107°'S"

4.-1

and QT = 10 Km

while in Fig. 9.6, ¢c = -4 x 10°°'S" ' and %1 = 3 Km. Thus, the retrieval

is faster in Fig. 9.6. Numerical simulation was stopped at £, = 250 m

to reduce computational costs. The behaviour is likely to be similar

when %, decreases further, In both cases, a and y go to zero. So do

the transverse vibrations as well as longitudinal vibrational variable

C2. Ci is maintained at certain finite value during the terminal phase

of retrieval. Thus the overall dynamical resbonse is quite satisfactory.
In Fig. 9.5, the time required to retrieve the subsatellite

to 250 m is about 3 orbits (4.5 hours), while it is only about 1.3 orbits

(2 hours) in Fig. 9.6. The total thruster impulse used is approximately

20,000 N.s. in Fig. 9.5 and 10,000 N.s in Fig. 9.6. These are much
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smaller compared to 50,000 N.s (estimated from Fig. 9.3) consumed
during retrieval using the thrusters alone (i.e., no length change

control).



CHAPTER 10

CONCLUSION

10.1 CLOSING REMARKS

Throughout this thesis, the main objective of the investigation
has been the dynamical modelling of the Shuttle Supported Tethered
Subsatellite System (SSTS) and control of the motion during retrieval
of the subsatellite. Both dynamical analysis and control of the SSTS
system are very complex problems, the latter being more difficult than
the former. The two problems are closely related. A good dynamical
model of the SSTS system lays the foundation for the control analysis.

An oversimplified model may lead to incorrect control procedure.

Rather than presenting a massive amount of data, the emphasis
has been on the physical understanding of the problem and on the methods
to control the motions during retrieval. A set of partial differential
equations governing the vibrations of the tether and a set of ordinary
differential equations describing the rotations of the system have been
derived. The partial differential equations have been discretized using
Galerkin's method.

Approximate analytical procedures have been developed to gain
an insight to the dynamics of the tethered satellite systems and to
devise control laws. The control laws thus obtained have been validated
by numerical analysis of the unsimplified equations of motion. Steps
have been taken to improve the efficiency of numerical schemes. The

important conclusions based on the study are summarized below.

-156~
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Dynamical Aspects:

(i) The dynamical model of the SSTS system must consider the
vibrations of the tether. Both longitudinal as well as transverse
vibrations of the tether tend to grow during retrieval of the sub-
satellite. They could make the tether slack during the terminal phase
of retrieval when the strain or the tension is very small. This results
in Toss of control.

(ii) Aerodynamic drag is significant when the subsatellite
dives into the earth's atmosphere. The oblateness of the earth can have
an important effect on the density of the atmosphere and thus on the
aerodynamic forces actingon the subsatellite and the tether. This effect
must be taken into account in the dynamical model.

(i11) Longitudinal and transverse vibrations of the tether are
strongly coupled specifically at the terminal phase of retrieval. On
one hand, the transverse vibrations are governed by the tension along the
tether which is proportional to the longitudinal strain. On the other
hand, the Tongitudinal strain is dependent on the transverse displacements.
The dynamical model must consider the nonlinear strain term caused by
transverse vibrations since there can be significant differences between
the Tinear and nonlinear results. The tension (or strain) in the tether
is affected marginally by the transverse vibrations through the nonlinear
strain term when the length of the tether is very long. However, during
the retrieval'process, the tension (or strain) becomes weaker and weaker

and the nonlinear strain term becomes more and more significant.
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Control Aspects:

(i) Unlike in the case of deployment or station-keeping, all
the motions are inherently unstable during retrieval of the subsatellite.
Hence, the control of motion  during retrieval is comparatively more
difficult.

(i1) A nonlinear length rate feedback control law has been
developed to contro1 successfully the unstable pitch and roll rotations.
Since the pitch motion is strongly coupled to the length rate, its
growth can be arrested rather easily and it can be made as small as
desired. The roll, on the other hand, can only be confined to a finite
amplitude 1imit cycle by using quadratic feedback of the roll rate.

(ii1) During retrieval, the subsatellite moves mainly in the
axial direction of the tether. The Tlongitudinal vibrations are strongly
affected by the acceleration of the subsatellite caused by the length
change. Hence, the unstable longitudinal vibrations can be controlled
very well by using an appropriate length change control law.

(iv) It is quite difficult to control the unstable transverse
vibrations by using a length change feedback control law since the
transverse vibrations and length change are weakly coupled. Material
damping of the tether is not sufficient to overcome the negative damping
associated with retrieval of the subsatellite if the retrieval is
reasonably fast. Transverse vibrations can be suppressed by a nonlinear
length change law that produces forces along transverse directions.
However, in the meantime, longitudinal vibrations are adversely affected.

(v) In order to avoid slackening of the tether during the

terminal phase of retrieval, the control strategy must be able to maintain
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a certain amount of tension in the tether. This can be achieved by
speeding up the retrieval towards the end or using thrusters.

(vi) Thruster augmented control is a very promising means to
arrest the growth of motion at the terminal phase of retrieval. The
trouble taken in equipping the subsatellite with thrusters gets rewarded
by the short retrieval time and safety of retrieval.

(vii) A mixed control strategy which at first uses a length
change control law and follows it up with a thruster augmented control
law is quite effective. This appears to be a very promising way of
retrieving the subsatellite. The subsatellite not only can be retrieved
from a distance of 100 Km to 250 m within approximately two hours in a
safe manner, but the method also saves a lot of thruster fuel compared

to a control scheme using thrusters alone.

10.2 SUGGESTIONS FOR FURTHER WORK

There are numerous possibilities for extension of the present
investigation. Only some of the important ones are mentioned below:

(i) Investigation of the effect of using multiple tethers [42]
on the dynamics of the system may be of some interest. One possibility
is to use two or more tethers to link the subsatellite to the shuttle.

If two tethers are attached at different locations on the shuttle, it
might help in controlling the motion during the terminal phase of
retrieval. This is because there may be then more flexibility in
varying the tension. The second way is to use an extra pulley which
supports the subsatellite and the tether at the subsatellite end moves

on that pulley (see diagram below). One end of the tether is fixed to
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a point on the shuttle while the other end of the tether winds around the
drum of the reel mechanism. Turning the reel mechanism will retrieve the
subsatellite at approximately half the speed of the tether. During the
terminal phase of retrieval, this might be more effective in controlling
the motions.

There may be another feasible way to retrieve the subsatellite,
that is by using several thinner tethers. During the retrieval process,
the tethers are disconnected from the subsatellite one by one when the
length becomes shorter and shorter. Suppose that the initial length of
the tethers at the beginning of retrieval is 100 Km and the subsatellite
is linked by ten tethers having smaller cross-sectional area than the
one tether case. When the subsatellite is retrieved to a distance of
90 Km, disconnect one. When the length is 80 Km, disconnect another and
so on, until the length is 10 Km and only one tether remains connected
to the subsatellite. In doing so, the strain in the uncut tethers does

not drop substantially with the retrieval process. When the strain in
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the tethers does not change drastically, the slackening of the tethers
may be avoided and the transverse vibrations will probably not be
objectionably high. It should be mentioned that the gravity gradient
force is proportional to the length of the tethers. Even one thin
tether will be sufficient to support the subsatellite when the tether
is not very Tong.

(ii) The rotation of the subsatellite around the tether
is not considered in the present dynamical model. Probably it may
induce twist of the tether. Further research should include this
degree of freedom as well.

(iii) This research may be extended to a "dumbbell system",
with the two bodies connected by the tether having the same order of
mass. The center of mass of the system is then no Tonger very close
to that of one of the bodies. .

(iv) The study may also be extended to an electrodynamic
tether, in which case the electromagnetic forces have to be considered.

(v) Methods similar to those in this thesis can be used
to study dynamics and control of deployment gf structures other than
tethers. These structures may be beam type appendages, solar panels,
etc.

(vi) The proposed control laws must be verified by
experiments. Although NASA will test the SSTS system in space soon,
experimental simulation on the ground should prove useful. The
difficulty involved in simulating the reél environment on the ground

might be very challenging.
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(vii) The operation of the SSTS system is dependent on the
reliability of the tether. Unfortunately such long and thin tethers .
are very difficult to manufacture. Careful checking of the tether is
very important to guarantee that it has no cracks and defects so that
the tether will not break while in use. The material aspect of the
tether must be investigated further.

(viii) Material damping tests should be carried out in
Tow-g condition to provide an accurate value of damping in the tether
material. This might be done in a free fall simulation.
(ix) The dynamics of the system when the tether is partially
slack,or the motion of the subsatellite when the tether breaks are

interesting problems to investigate.
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STATEMENT OF ORIGINALITY AND

CONTRIBUTION TO KNOWLEDGE

Original contributions to the knowledge of Shuttle Supported
Tethered Satellite System through this investigation may be cited as
follows:

(i) A fairly detailed dynamical model of the SSTS system
characterizing its features has been proposed and the corresponding
analytical and numerical procedures have been developed.

(i1) A1l the vibrations of the tether have been brought
into consideration for the first time. | |

(ii1) A nonlinear length rate control law has been presented
to control the rotational motions of the system as well as longitudinal
vibrations of the tether during the retrieval of the subsatellite.

(iv) Thruster augmented control laws have been obtained to
control all the motions during the entire retrieval process and to
prevent the tether from becoming slack at the terminal phase of retrieval.
Furthermore, a mixed control strategy using first a length change control
followed by thruster augmented control has been developed. This saves

the retrieval time and thruster fuel significantly.
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“Fig. 1.1 Illustration of the SSTS system
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Fig. 3.2 Geometrical consideration of the
oblateness of the earth
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Fig. 8.14 Dynamical response (rotations and vibrations) during retrieval
from 100 Km with the nonlinear strain model using a length control
law not taking advantage of the internal resonance
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Fig, 9.1 Arrangement of the thrusters
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Fig. 9.4 Dynamical response during retrieval from 100 Km using a length
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Fig. 9.4 Dynamical response during retrieval from 100 Km using
a length control law at first followed by thruster control
without getting feedback from the transverse vibrations
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Fig. 9.5 Dynamical response during retrieval from 100 Km using a
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Three-dimensional motion
Results based on non-
linear analysis

Tether mass

Longitudinal vibration
of the tether .
Longitudinal strain
variation along the
tether

Transverse vibrations of
the tether

Torsional stiffness of
the tether

Anisotropy of the tether
Discretization procedure

Rotational motion of end
masses

Offset of the point of
attachment at the shuttle
Aerodynamic drag
Rotating atmosphere
Solar radiation

Rupp
[1975]

No

No
Yes

Yes

No

Steady state only

No
No

No

No
Yes
No
No

Baker et al.
[1976]
Yes

Yes
Yes

Yes

No

No
No

Yes

No
Yes
Yes
No

Kulla
[1976]
No

Yes
Yes

No

No
Yes

No
No

Buckens
[1977]
Yes

No
Yes

No

No
Yes

No )
No

Finite Galerkin

difference
No

No
Yes
No
No

No

No
No
No
No

Kane and
Levinson
[1977]
Yes

No
No

No

No
No

No
No

No

No
No
No
No

Kalaghan
et al.
[1978]

Yes

Yes
Yes

Masked

Masked
Masked

No
No
Point

No

No

Yes
Yes
Yes

Modi and
Misra
[1978]

Yes

No
Yes

Yes

No

Yes

-G¢-

No
No

Galerkin

Yes

No
No
No
No

(Continued to next page)

Table 1. Comparison of Dynamical Models of Shuttle Supported Tethered

Subsatellite Systems Used in Various Investigations



Kohler Modi and Misra and Bainum and Banerjee Glaese and
et al. Misra Modi Kumar and Kane Pastrick
[1978] [1979] [1989] [1980] [1982] [1982]
Three dimensional motion Yes Yes Yes Yes Yes Yes
Results based on non-
1inear analysis Yes No No Yes Yes *
Tether mass Yes Yes Yes No Yes Yes
Longitudinal vibration
of the tether Yes Yes Yes No Yes Yes
Longitudinal strain
variation along the
tether Yes No Yes No Yes Yes
Transverse vibrations
of the tether Yes Yes Yes No No Yes
Torsional stiffness of
the tether Yes No No No No No
Anisotropy of the tether Yes No No No No No
Discretization procedure Finite diff. Galerkin Galerkin - Galerkin Galerkin

& fin.elements
Rotational motion of

end masses No Yes Yes No No Yes
Offset of the point of '

attachment at the shuttle No No Yes No No No
Aerodynamic drag Yes Yes Yes Yes Yes Yes
Rotating atmosphere Yes Yes Yes Yes Yes Yes
Solar radiation Yes No No No No Yes

* Results are not based on this model

Table 1. Continued

-GG¢-



O

Investigators

Rupp [1975]

Kissel [Baker et al.,
1976]

Kulla [1977]

Kalaghan et al. [1978]

Kohler et al. [1978]

Misra and Modi [1980]

Bainum and Kumar
[1980]

Modi et al. [1981]

Bannerjee and Kane
[1982]

Motion Controlled

2D rotations and stretch
3D rotations and stretch

2D rotations and stretch
3D rotations and stretch
3D rotations and stretch

2D rotations, stretch
and transverse vibrations

3D rotations and stretch

3D rotations and stretch

3D rotations and stretch-
ing modes

Type

Tension control
Tension control

Tension control
Tension control
Tension control

Length rate con-
trol

Optimized ten-
sion control

Nonlinear ten-
sion control

Thrust augmented
torque control

Control Taw

T=K;L + CiL + K2LC

T (2 2 f_pn202
——1552“(R +3)Q°L+2CROL-R*Q%L

Mg
Kissel law
Kissel law
Kissel law

| - t T
LY =1¢ [1+ K fi]

- = 'y t
T-Ty K22+K£.£ +Kda+Ka.a

-9G¢-

— 1 12
T-To = Kj2+K) 2 '+K ,y'* and
several other forms
Tc"Tc0= u@+Ka|a'+KYY+KY|Yl+Kee

Tc = torque . : +Ke.e'
Thrusts proportional to o'
and vy'

Table 2. Comparison of Control Laws for Shuttle Supported
Tethered Subsatellite Systems used by Various

Investigators.



TABLE 5.1

Variation of equilibrium state with the tether length;

2o (Km) a-180° (degree) Yy (degree) C, (10_3) C, (10'3) A (m) K, (m) B, (m) B, (m)

10 0 0 0.41 0 0 0 0 0

20 0 0 0.85 -0.01 0 0 0

30 0 0 1.30 -0.02 0 0 0 0

40 0 0 1.76 -0.04 0 0 -0.1 0

50 0.01 0 2.24 -0.07 0 0 -0.6 0.2
60 0.05 0 2.73 -0.09 0 -2.3 0.7
70 0.19 0 3.24 -0.13 0 0 -9.8 3.1
80 0.76 0 3.77 -0.17 0 0 - 4] 14
90 3.01 0 4.3] -0.24 0 0 - 175 55
100 9.96 0 4.85 -0.49 0 0 - 604 178
110 19.67 0 5.38 -0.98 0 0 -1184 320

120 27.61 0 5.88 -1.40 0 0 -1657 418

AT



TABLE 5.2
Variation of quasi-static equilibrium configuration with

8; Q/o = 100 Km; h
e =0.001, i=0

6 (degree) 0-180° (degree) vy (degree) Ci (10-3) C» (10_3) A (m) A, (m) By (m) B, (m)

0 17.3 0 4.830 -0.8206 0 0 -973 273

30 16.3 0 4.836 -0.7709 0 0 ~-926 262

60 13.6 0 4.851] -0.6401 0 0 -795 230

90 10.0 0 4.852 -0.4856 0 0 -604 179 '
120 6.8 0 4.854 -0.3737 0 0 -424 127 %5
150 ' 5.0 0 4.854 -0.3222 0 0 -313 94.9
180 4.4 0 4.852 -0.3103 0 0 -278 84.3
210 5.0 O 4.853 -0.3229 0 0 -313 94.9
240 6.8 0 4.854 -0.3741 0 0 -424 127
270 10 0 4.851 -0.4868 0 0 -605 179
300 13.6 0 4.842 -0.6432 0 0 -796 230
330 16.3 0 4.838 -0.7718 0 0 -928 263
360 17.3 0 4.830 -0.8204 0 0 -973 273



o (degree)

30

60

90
120
150
180
210
240
270
300
330
360

TABLE 5.3
Variation of quasi-static equilibrium configuration with
8; 2o = 100 Km; ‘
e =0, 1=90°

a~-180° (degree) v (degree) Cy (10'3) C, (10'3) Ay (m) A, (m)

10.9 0.51 4.847 -0.5223 -5.2 8.3
5.9 0.24 4.864 -0. 3472 -2.6 3.9
13.0 0.03 4.871 -0.2675 0 0
5.9 0 5.872 -0.2641 0 0
13 0 4.871 -0.2675 0 0
5.9 0 4.863 -0.3486 2.6 -3.9
10.9 0 4.846 -0.5228 5.2 -8.3
5.9 0 4,864 -0.3471 2.6 -3.9
13 0 4.872 -0.2673 0 0
5.9 0 4.872 -0.2641 0 0
13 0.03 4.871 -0.2675 0 0
5.9 0.24 4.864 -0.3477 -2.6 3.9

10.9 0.51 4.846 -0.5228 -5.2 8.3

By (m)
-654
-370
- 83
- 38
- 83
-368
-654
-369
- 82
- 38
- 83
-369
-654

B> (m)
192
112

25
1
25
112
192
112
25
11
25
1
192

-6G¢-



6 (degree)

0

30
60

90
120
150
180
210
240
270
300
330
360

a-180° (degree)

18.
11.
2.

2

3
2

(o) BN o]

11.3

18.

83 2o = 100 Kms

vy (degree)
0.89
0.46
0.05
0
0

o o o

0.05
0.46
0.89

TABLE 5.4
Variation of quasi-static equilibrium configuration with

e = 0.001, i = 90°

c, (107

4.
4.
4.

821
859
883

4.872

e T - T Y - B TR T

.864
. 856
.851
.856
.864
.872
.879
.857
.821

3)

¢, (1073)

.8673
.5427
.2703
.2638
.2643
.2799
.3216
.2801
.2635
.2641
2751
.5438
.8673

Al (m)
-8.1
-4.7

1.2
2.6
1.2

-4.7
-8.1

-1.8
-3.8
-1.8

7.4
13.8

§1 (m)
-1016
- 678
- 137
-37.6
-50.3
- 168
- 312
- 169
-50.4
-37.6
- 135
- 679
-1015

o
-09¢-

199
283
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APPENDIX A

Differentiating equation (2.3.1) with respect to time, we
get,
d > -
STl + MR + M R+ /¥ dn]=0 (A.1)

M
C .

Note that Ma and MC vary during deployment or retrieval and the limits
of integration in the last term are time dependent. However, the sum

of Ma and MC remains constant as the total mass is conserved. Thus,

- . d -). _
(M + Mc)ﬁa + M Tib s Mf r.dn=0 (A.2)
C

where

o(t)

d ¥ (y_,t)d
pc dt . rc yc’ yc

Q.ICL

‘—'-

= -
Sy
o
=
i

Lo
. - 3 >
Pe 'Q'O(t)rc(Q'Oat) + fe { rvall g d.Yc (A.3)

using Leibnitz's rule for differentiation of integrals having variable

Timits. Now,

-

Q.

3
I

o PR+ 227 ey
Co ot ByC c ¢

(g}

Ly
a > y

Since ?C(O,t) is zero in our case, comparing equations (A.3) and (A.4)

leads to
= = 4
rc dm é 0t
c c

?c dm (A.5)

d
=/
dt M
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APPENDIX B

From (2.7.10),

0 3y

') 2 2
=1 9V 4 1 redu T, 3w u .
Vnonorb = 2 EA { 3y, *7 [(ayc +(3yc) ]}dyc+ 2R3 {Mafﬁaﬁa

L9
- 3G 3M [RR -3, )2 JeoSTRR -3 R )21y )

Substituting (2.8.3) - (2.8.5) into (2.3.14),

0
[(>3
1
=g
=%
[

= g DRTIM GBS V), (Lotv(20,t)) 124H2 W2)

b2 = RR = %? {Mgiaz+[Mc(%£'+.V)‘(Ma+Mc)(Q°+V(R°’t))]z

(25%v(L0,8) )14 (u- 1€ W)2hdy,

ZIZ
o

Using (2.8.11),

—4

+
Jo = [casy, cacy, - sa]

~ G

o
ol
]

M —_ — _
- M£~[casyu+cacy(%—20+v)-saw]

Mp
- -M—- CG,S'Y[,Q/ 0+V(,Q,0 :t)]

(2.3.14)

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)
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M — — -

R = - & [COLSYIJ+Coccy(l 20+V)-Sow ]

b M 2
M M .
+ 22 C casy[Rotv(to,t)] (B.6)
and
JoR_ = casy(u - !43?)+cocsy[y+ - £ (&—0— + V)
e M VT M 2

-2 (10 Vo 1)) Tl - S W) (6.7)

Putting (B.1) - (B.7) into (2.3.14),

where

[1/Ro*10M, ] OH2 UM (52 + ¥)4M, (2o (20,)) 17

Vi

+ MCZWQ}—3Ma{- %E-[Casya4cacy(%-£047)

M .
- saw]- M-tl cacy[2o+v(Lo,t) ]2 (B.9)
1

[1/Ro* 1My ] (M2 T +TM_ (52 + V)= (M +M ) (2.+v (Lo ,t)) 12

V2

- M - ) — _
+ Mc2 w}-3Mb{— M-C- [cocsyu+cocsy(§l + V)-sow]

M M .
at ¢ cacy[Rotv(2,,t) 1} (B.10)

MY
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and
Mc
= [wR 1M {f {(u - M—-U)2+[y +v- ——{—ﬂ-+ v)
M Me —
- i otv(Rg,t)) 1%+ (w - €)%

-3 ?p{cusy(u - ﬁE-E')+cacy[y +v- ﬂs.(&g_+ V)
0 M c M \2

D ety (s, ) Tsalu- 1 W2y, (8.11)

Due to the basic assumptions made in the Section 2.9, many trivial

terms can be neg1ected. At Tast the simplified V will be

nonorb

'8
- EAY av 1 2
Vnonorb T2 { {ayc 2 [( ) y ) B d

+ Vay + Vuvw (B.12)

where

N 1
V, =7 w [Mb +

oy = 3 MC](1-3c2aczy)202 | (B.13)

and

= 20 (1e2r2 2
Vuvw w?{(1-3c%ac Y)[Mb 20 v(%g,t)

29
*+ 0. f Yo v dy ]- 3p f cZasycy uy dy

L
+ 3pc £ cycoso Wy, dyc} ' (B.14)
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APPENDIX C

From (2.4.14)

T norb = %Mb T8, + —;—MC ;—0?}6 fr*c dy, (2.4.14)
Using (2.9.14) and (2.9.15),
2T Ty = o2 () 2chy i T abv(o,t) 14 TE, (14 2t)
v loathyey (c.1)
and
;—MC %—;?%&%C dy, = ;— 020{[3 +,24 ay -w(B+a)sy-(y +v)v]?
* Da(1+ 3500% G+ - (oI5 + do g+ (Bradsye
+ (é+6c)cy(yc+V)]Z}dyC (c.2)

Many trivial terms in (C.1) and (C.2) can be neglected if the basic

assumption (iv) cited in Section 2 is used, i.e.,
U,V,W << L, (c.3)

or

au oV oW
b} b}
ayc 8yc Byc

<< ] (C.4)

However, only second order smaller terms are dropped. For example,
vZ{2o,t) is dropped compared with 202 in (C.1). Since vibrational

displacements y,v,w have high frequencies, its first derivative may
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not be small and &,, which represents deployment or retrieval length
rate, ranges greatly depending on how fast whether deployment or
retrieval is. Hence, it is impossible to tell which one is dominant
between £, and %%-and so on. Hence, the high order smaller terms
are neglected by comparison with the same kind of large term.

Thus, for example, (C.1) equation can be written as

B, = B (b ferri I 2oyt t b (], 0)]

N —

i7J
ov(2o,t) (9 (2,4 t)yp
ho,2(1+2 VMast) (AVUGLT)PE 1y
+ [ 0 ( + ayc ayc 0(
ov(2o,t)y av(2g,t) | av(z )2
+ a;c ) 8t° ° 1} (C.5)
4

Two second order smaller terms marked (,” ) are ignored.

’

Following the same procedure, many trivial terms in equation

(C.2) can be neglected. Rewriting (C.2) as

Ty L vt + 1) (.6)
2 c 20y C cWYT4 1 2 310, )
one has
- [du , s du _ . e .2
T = [3,C + L, oy, W(e"'OL)SY"(}’C'*‘V)Y] (C.7)
To= o (1+ 299+ ¥y - (B+a)cy w]2 (c.8)
2 0 3y, ot Y :
and
ow s 3 o« .
Ts = [53 + Lo a—‘;—+(9+OL)SYU+(G+0L)CY(.YC+V)]2 (C.9)
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Opening the square term and neglecting the second order smaller terms,

T, can be written as

AUy L a2 (AU y2+ t2 §H_
W w(bra)sy-2 2 (y v)¥-2 b2y §
at c %3y Yc
+ ZW(é+&)svyC Y
v

ﬁzmzy)(%m(nﬁﬁgﬂ&w—mY
C C

L —
N
]

- (B+a)cyw]

o AWy 2 AW (2 e e 2, 2 oW oW
Ts = (55) Ho2 () +(B+a)c Y(yC +2ycv) 2 ot Lo By

oW /%, oW &, s oW
+ 2 55—(6+a)5yu+2 5E—(6+a)cY(yC+v)+220 5;;

(8+a)cvy +2(8+a)?sycyu v,

Substituting (C.10) - (C.12) into (C.6) and combining, we have

%o Mc - . . .
7 0cL (TTaTa)dy, = 5 Go® £ [(+h)2cty+i21e,?)

O . 2 2 2
2f [ (2 "+ (2 J4d o2 [ (V) "2 (g (2) ]
y Yo Oy

C Cc C

$ ou ou , 9V , 9V 3V . oW ow SV 2.2.002

t 2 hogg 3y, At ot sy T ot sy oy 1r2ycvL(era)ciyty?]

8 . .
+ 2(6+a)sy( a¥ W gz)+2(y+v)[(6+u)cv %%'-Y 25

ow

+ ZQoYC[(é+&)CY e

142 (B+8) syy Lywt (B+a) cyu]
Ye¢

+ 2(Lo+ S0y (B+8)eyw] ) dyc

(C.10)

(C.11)

(C.12)

(C.13)
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Putting (C.5) and (C.13) into (2.4.14) and rearranging it,

Tnonorb - Tay * Tuvw (C.14)

where
Toy = 7 (Mg + 3 MOLE#B)2c2y+72 o 5 (MM )i o2 (€.15)
= Y2 A2,402 s 2 9V(%o,t)
Tuvw = MpTL(a#8)2cy+y? Jv(Lo,t)2 0+ 5y

c

+ 2, VSQ,(), (-l+ aV(Q,o,t))_*_(aV(»on,t)) }

C

Mo TR Ay )1202[(%)

2 (4
+ 2(§1_0+(%w_0 ]+220[§Evau + 9V 3V, ow 9w

e 3t 3y, 9t dy, ot 3y,
_ 2(8+a)sy(u 2w Lye2(y +v)[(Bra)ey
ot ot c ot

-y at]+2(6+oc)sw [Yw+(6+a)CYUJ+2 [UY

- (B+a)cyw]ldy, (C.16)
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APPENDIX D
In this appendix vy, v, w equations are derived.

D.1 DEVELOPMENT OF y EQUATION

The procedure is similar to the development of a equation.

Let us define

8.k L {0, Y+SY5U, VoW, ) =L {0y, U, V,WsR0) (D.1)

Only vy has a generalized virtual displacement.

Using (2.10.3), (2.9.17-19) and (2.9.9-11)

M ][(a+6) sycy+

1242

b*

- v(2o,t)
s b = {-[(1+2 =g =>=mM 1+ece

62 ” 26
- 30¢ TTFecoy €@ / ¥ [s(2y)v-c(2y)u-sytgaw]dy

. I %) .. L0
+ pc[zzosy(e+a) { wdy -2 (6+a)2sycy { yevdy,
+ (b+a)cy % (u pral Uy gy ~(B+a)sy io (y +v) 2 qy

ot c 0 o ot C
.« o o 0 o o 2o
+ (6+a)cyy Iy wdyc+(6+a) c(2y) I oyeudy,
/Q' .
b (B¥3)sy f w2 ay Doveif(1+ 2By 4 Iy 3
+ 0, [2¢ foudy +2:{ fo yvdy} - f0 (y +v) & gy
0 c & c ot V¢
Lo

+ (8+a)sy f Ye wdy + f T dy }SY - (D.2)

Integrating GYL with respect to time from t; to t, and noticing that

sy(t1) = 6y(ts) = 0 (0.3)

&y = 95-(ay) (D.4)
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one obtains

f [A 16y dt = f Q Sy dt (D.5)
t1 tl
where AY is defined below and QY is the generalized force corresponding
to vy, which is derived in Chapter 3.
Since y is an independent generalized coordinate,dy is arbitrary

and the above equation can be satisfied if and only if
A =Q | (D.6)

This will lead to the y equation . The final vy equation after ignoring

the trivial terms is given by

Pe
o 2 3V(Q,0 5 )

3 203}+Y{2M 2o (2ot

+ Dclozio}

+ (&+é)zsycy(Mblo + l-pSLo IT;E—gj-czasycykoz[Mb

1 . %o d . %o
t pCSLo)+oC [2%, f udyC]+2 o b / yovdy ]
Lo Lo
s . ow d ou
+ (6+a)sy I Yest W@ ! Yoot dy..
d %o
i [(8+a)sy f Ye wdy } = QY (D.7)
D.2 DEVELOPMENT OF w EQUATION
Let us define
SWL = L(OL,'Y,U,V,W‘I'SW,Q,())-L(OL,Y,U,V,W,on) (D-8)

Only w has virtual displacement &w.
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~ Using (2.10.3), (2.9.17-19) and (2.9.9-11),

t, ty 2o tz . Lo
_ oW 9 w9
£ Gdet Pe { f { 5t 3t 6wdy dt + { 202 { ay ay éwdy dt
1 1
t, 29
H 3 aw 3 3
+f Lo f (at SW —— ay top W 5§_'6w)dyc dt
t o
t 2/0' 3
+ f (-2)0(B+a)cy f Swdy _ dt + f (6+a)sy S (u 35 oW
tl tl
Bu tz .. Ko k
- SE-dw)dycdt+-£l (e+a)cy.£ (yc+v) 3 6wdy dt
ts ts Roav
+ 1 (B+a)syy f Yo W dy dt- f (B+a)cy f Swdy dt}
t: ti
t, Lo
oV 1 ou
i b2 30 3 Swy dy dt f 6 dt
- p Cycasadwy dy dt = W
t, (T+eco) 5 b np
ty L4
=~/ / Q, dy, dt (D.9)
t:

where Qw is the generalized force acting on element dy. of the
tether corresponding to w.

Note that

5W()’Cat1) = ow(y.,tz2) =0 for y_€ (0.%) (D.10)

and the geometric boundary conditions are given by

w(0,t) = w(Ro,t) = 0 - (D.11)
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Hence
_6w(0,t) = w(2o,t) = 0 (D.12)

Using partial integration law and the above-mentioned conditions

(D.10) and (D.12), one obtains

ty 2, ty 2,
il {)’ {Aw}éw dyC dt = {1 {)’ Qw dyc sw dt (D.13)

Since w is independent, éw is arbitrary. Equation (D.13) can be

satisfied if and only if

A =1Q (D.14)

Finally, one obtains w equation as follows

D2 3 . Id 8 8 * L4
5tz w2 (6+a) [cy (L o+ g—‘é)+sv 5—1:—]+ Yo 5t [(8+a)ey]

s oy e 3 (0w v 1,0U 2, 9W vy
- {6+ -E + () (&
(6+a)syyy -EA 3, {ayc [ayC 2(8},(:) (Byc)j}
éz
+ 3 Trecg) Sccacyy, = Qw (D.15)
where
DL 1. (3 ,; 3



-273-

D.3 DEVELOPMENT OF v EQUATION

Similarly, let us define
8 L = Llay,y,u,vkv,w,lo)-L(a,y,u,v,w,le) (D.17)

Using (2.10.3), (2.9.17-19) and (2.9.9-11),

ta
[ 6 Ldt = f Mb[(OL+9)2 c2y+y2 208 v(L o, t)dt
t: t1
t, |
PP et BVEet) gy s [0 4 2anth V(e gy,
t) yC t1 ‘yC
t, ts Ly
v(%,,t) 3 v 3
+ {c.l Mb 3% 5t cSV(&Lo,t)dt+pC{f1 { 5t 3t cSvdy dt
ta | 0 t2 L9
7 842 -g-dldycduf by 2 6v dy, dt
t o ¢ t, O
t2 , Lo
+ [ 20 J [?—gi—!+ g—: v 6v]dy dt+ f [(8+a)2c?y
t Ye Ye t)
+¥2] f ¥ Svdy dt+ f [(8+a)cy gv; Y at] f Svdy dt
1
t2 Q/O tz Q,Q
+f f [uy-(6+a)cyw] I dy dt}-EA 5 S {Bv
t; ° ot t1 0 ‘yc

1 r3u 12, 0w 2qq 3 L2 g2
t 3 [(ayc) +(ayc) 13 oy Svdy dt- £1 Ti+ece) (1

t, a2 Lo
_ 2.2 e _Ar2R2
3ccac Y)Mb206V(Qo, )dt p ﬁl TTIEE§7 (] 3c“ac Y){ ycévdycdt
t2
=-/ &, w dt (D.18)
ty np

G Note that

GV(yc,tl) = cW(yc,tz) =0 (D.19)
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As for the boundary conditions, we only have one geometric boundary

condition at one end of the tether near the shuttle, i.e.,

v(0,t) = 0 (D.20)
Hence

sv(0,t) = 0 (D.21)

However, at the other end of the tether, a satellite is hung and it can
move up and down freely. There is no geometric boundary condition

available. Therefore
Sv(Lg,t) # 0 (D.22)

generally.
Using the partial integral law carefully (i.e., remembering that
the order of integration with respect to time t and spatial coordinate
Y. are not exchangible), one obtains
tg 2,0 t2

I s {Av}av(yc,t)dycdt+ s {EV}SV(Qo,t)dt
ti1 o t)

t2 L4 ta
=/ J Quydt+ [ Q dt (D.23)
t1 0 t
where Qv and ﬁ& are the generalized forces corresponding to Sv(yc,t)
and 6v(2,,t) respectively. Since v(yc,t) and v(%,,t) are independent,
Sv(yc,t) and Sv(%,,t) are arbitrary. The above equation can be satisfied

if and only if
(D.24)
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and

R =0 (.25)

(D.25) gives a dynamic boundary condition at satellite end of
the tether,
Finally, one obtains v equation as well as the dynamic

boundary condition at satellite end of the tether as

2 L] L] .

3 2 2., 2 . o R
: %1320%)1)6 Jye-2ec at (G+a)cyw-yu]

B G 3 LG+ 30D -, | (0.26)

Byc
and

I . L 2
M [(E+D)2e2y 472 T oM, 2 [2o+v(2,t)]
b b Dt

62

2,02 caov(o,t) L1 0uRo,t)y2
" [T+eco) Mb (1-3c%ac y)zo—EA{~15§;———-+ E.[(_Esy;___)
aw(l,,t) -
* a"y"z““)zl} = -Q, (D.27)

It is not difficult to see that equation (D.27) expresses a

force equilibrium at the satellite's end of the tether.
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APPENDIX E

Let 1 and I, be the lines of intersection of the orbital plane
with the equatorial plane and earth's surface, respectively [See Fig. 3.2(b)].
1 and . are in the orbital plane. From P, a point on 2, draw a vertical
line to the equatorial plane cutting it at H. PH is perpendicular to the
equatorial plane. From P also draw a line perpendicular to ;, and

intersect it at F; plane FPH is exactly perpendiculat to EF. Hence
APFH = i

now

i

EHsj = PH = FHsi = EHs6si
Hence,

si so (E.1)

1

sJ

Cutting the earth vertically through E.P.H., we get an ellipse representing

the shape of the surface. r satisfies the equation

earth

+\2 :\2
(rearth cj) + (rearth sj)

a02 b02 =1

Thus

1
Vearth = agbg(bo?c?j + ap?s?j) 2 (E.2)

Substituting (E.1) in (E.2),

1
rearth = agbg[ag?s?is?0 + be?(1 - s%is?6)] 2
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The altitude of any arbitrary point on the tether with the

coordinate Ye js easily obtained [see Fig. 3.2(a)] as

h=(Ro = " oopep = Yo €O cy)(ﬁ"gr) (E.4)

> . . = :
where n is a unit vector normal to the earth's surface and er a unit

vector along ﬁo direction. Let

ﬁ'gr = cos § (E.5)
We have
dr
1 earth
tg &= (E.6)
Fearth dé
Thus
! dr 2 1
E;gr = cos & = 7/(1+t92€)2 = 1/[1+ r2 ] ( eggth) ]2
earth

while using (E.3),

’ 2 _ 2 2.
1 Yearth . (a0®-bo*)s?isocs -
Pearth  9° [(ao2-bo2)s2ic26+by?] .
Finally, we get
h=(Ry - Pearth ~ Yc cacy){:+(aoz_b02)2Suiszecze
/[bo2+(ap2-be?)s2ic26]2}2 (£.8)
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APPENDIX F

a _equation
Using the expressions for u, v and w given by (4.1.4), (4.1.5)

and (4.1.6) along with (4.1.7) and (4.1.14), one can work out the

following integral terms appearing in the a equation (2.11.1):

(i) -20. 9 i, Ty Mg
Pedt oY ¢ Yoot Ve

2/2v

™

: {[1"('1)i]/i}{(ﬂ"-Fﬂ'+3n'Z)CY-H'Y'SY]Bi

o=

;
* n'cyBy M) o” CE (F.1)

L9
{ Yo W dyc}

) q %o W, 1. od .
(i1) P. g oY { Yo 3¢ W o, gisvy
= —v?(—1)1 v/iﬂ{cy[Bi"+3(n"-Fn‘+3n'Z)Bi

+ (6n'—F)Bi']+[cyy'2+sy(y“—Fy')Bi}Mb 2,2 62 (F.2)

2
‘o d s . 0
(iii) ch Y {(6+a)c?y { ycvdyc}

= 2v{[(a"-F-Fa')c?y-2sycyy' (1+a' )+3n' (1+a" )c?v]

n C. n c.'
.I ' b
151 ST (1+a )Zczyizl 2111 }Mb 2,2 62 (F.3)
d Lo

(iv) 2pC T {(B+a)syey { Yo u dyc}

@2y 1 R )syer (T )2y

™M 3

=1

+ 3(T+a' )syeyn' JAF (T+a )sycyA, "IMp 207 62 (F.4)
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where v and n are defined in the equations (4.2.13) and (4.2.10).
Substituting (F.1)-(F.4) into (2.11.1) and divided by M_ 2, 62,

we will have equation (4.2.12) which is given in the thesis.

Am equation

Using (2.10.18), equation (4.2.3) becomes

IQIO 2 I3 . 3 . .. . .
I ggz u-2(Rot H)y-2(bri)sy 2 - [+ (bea)? §1%1)Jy

ot ot c

JEA D pduydv oyl +(—§1y“;)21}]

DA TR T e
- gﬁgﬁsin mzzc dy, =0 (F.5)
Since
u= /2R singk (F.6)
w= /2B sin ggzt n=1,2...N (F.7)
v="Cy 46y B (F.8)
where ﬂn, §n are dimensional quantities,
K= A %o (F.9)
B =B %o (F.10)

and summation convention is assumed for simplicity, i.e., summation
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is carried out with respect to.a dummy index n.

With the above, we

have
- nmy
U _ nm c
By = V2 (zo)An cos —~ i
nmy
w Nty c
a—'y—c—— /2_ (QIQ)BH CcOoS e
. nTy . s nmy nmy
W m i i Ve by "™e
5t V2 A, sin 7 2 An(lo ( T ) cos "
s nmy ~ ¢ nmy nmy
W _ c _ L9 c c
= 2 B, sin » V2 Bn(zo)( T ) cos »
32y . nmy, N nTy nmy.,
5z T V2 A, sin " 2v2 An(z ) ( " ) cos o
. nm . nmy
- Cyr2o oo c
72 B (S -2(2%) Jeos
. nmy_ o, 2 nmy
_ Cy\ 2o c
EAM%A)(%)sm T
3y s onmy, N nmy nmy
T V2 B, sin e 22 Bn(go)( T )cos "
nmy 3y 2 nmy
_ Cyrlo _ X0 C
72 8 O - 202 Teos
0
~ DMy 25 2 nmy
C X0 C
-2 Bn( T ) (%o) sin ——

(F.11)

(F.12)

(F.13)

(F.14)

(F.15)

(F.16)



C
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nmy

Ty . .
c nm Lo c
+ - —
a_yat )COS Lo An[ lo(lo)cos ,Q,o
iy nmy .
(7} Gy sin =1}
22y nmy _— nmy
ayat = /2 {B ( )cos Tt Bn[- E;'E;)COS o
. nmy
2 C
2o
AT Ea)y, sin -C1)

where n = 1,2...N, and

3 Y %
5!‘= Cry.+C yc3

(F.17)

(F.18)

(F.19)

(F.20)

With above, the integral in equation (F.5) can be carried out term

by term without difficulty although the algebra is tedious.
D _ (3 ., 0O
ot ()= Gt o)

D2 8 .8 9.y L, 3
5{;‘( ) (5€'+ Lo 5;-0(3t ° T3y ) )
o C
_ 32 32 . a 82
= 5tz + Zo atay_ *t Lo 3y, + 1" 3y 2

The first term in the equation (F.5) can be integrated now using

(F.22). We have,

Since

(F.21)

(F.22)



(1)

(iii)

Lo 82u/2— ) m"T.YC st
{ 3tz sin T dyc = Qo{Am-4

- 2R g&._ fgy? “2A (22
ZAH[QO 2(20) ]Cmn 2An(20) D

where

]
I3
=S

t
3

o |
mn__(_q)mn

mn

even

~ T2-n?) >N Fm
and
2
g—-mz - %& > n=m
Dmn - ;
4mn? m+n
o)z -7, n#m
P2 LU ogin MY g0 o g2y
0 3y, 2, Ye O Yo Tmo
L9 mmy
i ou_ : c =0 R
{ Lo ayciﬁ?s1n To dyc = QoAn
where
0 R m+n=
E =
mn
4mn
mz-nz - > mEn =

0dd

(F.23)

(F.24)

(F.25)

(F.26)

(F.27)

(F.28)
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mmy
(iv) f 2%, ay at V2 sin e dy

C

s 9 ~
+42.0%/% 0 An an

where

0 s m +
2ﬂ2

_ym _
an - 4 > M

-4mn?

imZ_nZSZ ? m +
The other integrals are:

/Q;o . . mTfyc
(v) { - 224 v V2 sin T dy

C

mmy

3 Ao
22°[An (RO)An]Emn

even n #m

>
n

n = odd

2/Z %o ¥/mml(-1)™-112,

%
(vi) ! -ycw? sin —C dy, = VZ ¥ 262 (-1)™/mm

L0

Lo mmy
(vii) { Yo (0+8)2sycyw? sin

(viii) f -2 Z£¥ /2 sin

(=]
Q>
t

<
P
(=)
a
<
(9]

dyc

VZ(0+8) 2syey 202(-1)"/mm

( 1)m+1

= -2/2 Y11 202 (-1)™/mmeC, Lot [F——

(F.29)

(F.30)

(F.31)

(F.32)

(F.33)

(F.34)
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) Lq 32 . Y
(ix) { -3 TTecsT © uschyc/? sin —- dy,.

= -3/7 92/ (1+ece)clasycy La2(-1)"1/ (mr)

mmy
LU ]}}/2 sin T € dy

Lo gp d oU .9V 1 +,0u
(x) r -= { { t s [(Esa;) By

0 pc 3y 9y 3YC

This integral is rather complex. Integrating by parts, it turns

out to be
= /2_ E_. m_ﬂ [Qlfo é‘_‘l_i\!._ cos mﬂyc dy
Dc 0 0 ayc ayc L c
2 ‘ mmy
1% 3u 2 c
+ — e
7/ By, [(ayc) ( ) Jeos 5—=dy ]
= 7 ER o [1, + 1,]
Pe
2 mmy
=1 /% du_3v_ c
L Lo o 3y, 3y, %S T e
L nm mm
- l__ 0 = 2 /" _QE yC yC
e { [C, + 3C, Ye ] 2h ~ C0S ——= c0s _EE—'dyc
. - T mryC mwyC
= /2 An(nw)/ko{cl { C0OS ——= €S —— dyC
. Ly , mryC mﬂyC
+
3C, { y.* cos 7, oS 3 dyc}
_ mm

= 22, A C1 + 3/_ Cz(A /Q/o)G (n'ﬂ')

c

(F.35)

(F.36)

(F.37)
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where
‘lT2 2 1 203 -
G m * 7 e , n=m
mn (F.38)
2843 m+n (m? +n?
Tmenzyz (1) —(‘—ﬂr‘—) , n#m
I, = 1 ?0 ou [(Bu )2+(8W )ZJCOS mTryC d
27 20 0 dy dy Ay 2. Ve
c c C
1 2°/~ Sonm nmye Y osT SYe > kn kTryc
=5 { 2 An E;—cos _EE—'[Z AS E;—cos _EZ—'Ak E;'COS T
STY . . kmy mmy
B ST cy km c dy
+ 2B 2, %S 7, B, 2, %5 1, Jcos 2, c
2 nmy sy
= ANy STy KTy ok R 4B B 0 c c
= /7 An(zoz)(lo)(lo)(As A B¢ By) I cos —o— cos T
kmy mmy
cos QOC €0S QOC dyC

where n, s, k are dummy indices. Let & = -4& |

Lo
Lo nmy STy kmy mmy
c Cc c c
{ cos T, cos s cos %5 cos s dyC
) i
= ;—-f cos n& cos s& cos k& cos mg dg
0
0 fmtntstk # 0
= (F.39)
L9

+mentstk = 0

—
()]
-
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Hence
_ (/2 3 A 5 b
I, = (—30(1/20 Y3 ) nsk A (A BS Bk) (F.40)
tmtntstk=0
) 29 1 mmy .
(xi) f E;'Qua sin 7—dy_ = Ppy 20" O (F.41)

Pay is given in (4.2.37).
Substituting the integrals from (i) to (xi) into the equation

(F.5), one obtains the Em equation as

. 2
votk-oh, Goye -2 1oy 2k 1 28 doyep )

502(M)°R ¢ 45,h E_ +28 A /3(51O E
- 2o ) AfothoA E L +20o[A A (*2)]

26 mn

-+

402/ oA Fr +2/2h oy /mml (-1)"-1 T o+v212 o (-1)"/ (m)

+ VZ(5+D) 257y 02 (-1)™/ (mm)-2VZYLC 12 02 (-1)™ 1/ (1)

+

Cat o [(-1)™/ (mm )6 (-1)"/ (m*n®) T3+ (EAn2/ & o Imimh, €

-+

~ o~ l 2 ~ ~
6C2AnnGmn+ 3 (/20 ) z _ nsk(/—\S Ak+BsBk)A }

(a+6)syQoB 4(a+9)sy(—£)BnQOC

[(&+é)sy+§cy(&+é)Jzo§m = Py %0282 (F.42)
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Using nondimensionalized quantities Ai’ Bi’ Ci, Cs, n which
are defined earlier and changing independent variable t to 6, equation
(F.42) can be nondimensionalized. For i = 1, 2, m= 1 gives A; equation
while m = 2 yields A, equation, which are given in (4.2.16) and (4.2.19),
respectively.

It might be noted that Bm equations are quite similar to Am
equations. C; and C, equations involve even more algebra. However,

the procedure is the same. These procedures are omitted here for brevity.
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APPENDIX G

The first row of the matrix [A] is determined by the Tength
change feedback control Taw. Assume that the length chénge law has

the form as

= C[1-K, oc'—KY v'?] (F.1)

where C is retrieval constant and Ku, KY are the gains. Ku, KY are
positive while C is negative. Differentiating n' with respect to 6,

we get

n" + KqCa +2KYCY y' =10 , (F.2)

The first row of the matrix [A] is determined. Using equation (4.3.5),

one can write that,

1 CKa 2cKY Y
[A11] = | - %/ZvCYBl (1+%V)C2Y+2VC2Y(%‘C1+1§C2) g@sv(ZBl—Bz)
3x3 m
+’3—2€'\1(231-32) ) +@WvSY¢Y(2A1-Az) ,
42 n - —@sy(ZBl B,) . (H)+v(d ¢
T 1 3 3
3/2v 1
L" "7“_'(2‘\1 Ay) +§Cz)




0 0 0 0 0 0
- Y2vey Y2vey
0 o v v 0 0
T 2

2 (1.1

3% 2

1 1
-5(1+§v)}/A

1 1
+'2"(1+§-\))}/A
{A21} =

6x3

Ar - 3 A;

N
Wl

A+ s

W

where
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+(1h) (12/2/7°)

d (BI'JS— BQ_)}/A

-(1+30) (12/2/7°)

* (Bl-JéBz)}/A

-sy B

~SY Bz
SYA; + — Y
SYA, 5 CY
2

-5 (14 %‘V)]

Z(edorerves) (2 m)vey(28,-8,)

(- (1dvrCrtCa)  (5(/2/m)vey (28,-8,)

(B2 /mv(2n-he)
-(1+39) (12/2/°)

(Ay-ghs )}/

{-—%‘SJZ/W(ZA]_-Az)

+(1) (12/2/7°)

(Al-]gAz)}/A }

N

IS
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(b) Longitudinal strain and transverse modal coordinates Ay, A, B; and B,

Fig. 8.10 Dyngmica] response (both rotations and vibrations)
during retr1gva1 from 100 Km with the linear strain
mode} and using length rate law (8.5.3)



