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Abstract 

 

 In wet regions subsurface drainage is essential in removing excess water in soil and 

promoting crop growth; however, it may also result in environmental problems. Implementation 

of agricultural best management practices (BMPs) on subsurface-drained lands can mitigate 

environmental problems brought on by human activities and climate change. To provide 

effective mitigation and adaptation measures for the management of subsurface-drained fields, a 

quantitative assessment of the impact of water table depth, agronomic management practices, 

and climate-change-driven rises in greenhouse gas (GHG) emissions on water quality and crop 

production were assessed through an modeling approach (Root Zone Water Quality Model, 

RZWQM2). 

Drawing on a comprehensive hydrological dataset (i.e., tile drainage, sub-irrigation, soil 

water content, sap flow and crop growth) for calibration, the RZWQM2 then accurately 

simulated crop growth and growing season drainage. However, the model significantly 

overestimated winter tile flow, indicating its reliability to be compromised by its imperfect 

winter drainage process. Implementation of Kalman filter technique successfully enhanced 

model reliability and reduced predictive uncertainties in simulating winter drainage in cold areas. 

The revised modelling approach could then serve to evaluate water and field management 

scenarios for subsurface-drained and irrigated fields. 

A comparison of the abilities of the RZWQM2 and DNDC models to comprehensively 

simulate both crop growth and the biogeochemical processes occurring within the soil profile, 

showed both models to accurately estimate soil temperature, but DNDC to perform poorly in 
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simulating the soil water content (SWC) due to the lack of a heterogeneous soil profile, shallow 

simulation depth and lack of root density functions for crops. Both models showed similar 

performances in simulating N2O emissions, with predicted cumulative N2O emissions being with 

±15% of measured vales for all four treatments; however, RZWQM2 better estimated CO2 

emissions (greater R2, lesser root mean square error). Both models accurately (within ±15%) 

estimated cumulative growing season drainage; however, RZWQM2 was more accurate in 

predicting daily drainage and DNDC was not equipped to simulate controlled drainage or sub-

irrigation. Both models performed satisfactorily in predicting grain yields of corn and soybean. 

Overall, RZWQM2 proved to be more applicable to simulating the biogeochemical processes in 

sub-surface drained fields than DNDC. 

RZWQM2 was used to evaluate different potential BMP’s ability to mitigate GHG 

emissions in a subsurface-drained corn (Zea mays L.) field under water table management. The 

optimal range of N fertilization to reduce GHG emissions while maintaining high nitrogen use 

efficiency and crop yields was identified as 125 to 175 kg N ha-1. Splitting N applications was 

found to reduce total N2O emissions by 11%. Controlled drainage with subirrigation resulted in 

21% greater N2O emissions, but 6% lower CO2 emissions compared to free drainage. A corn-

soybean rotation reduced GHG emissions by 20% over continuous corn.  

Climate change impacts on crop production, water quality and GHG emissions from 

subsurface drained fields at two sites of Eastern Canada were assessed using RZWQM2. Under 

future climate scenarios, mean drain flow and N losses through drainage would increase by 23-

41% and 47-76%, respectively. The N2O emissions would rise by 21-25% due to greater 

denitrification and mineralization, while CO2 emissions would rise by 16% due to greater crop 

biomass accumulation, faster crop residue decomposition, and greater soil microbial activity. 
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These simulations further indicated that future corn yields would decline, while soybean yields 

would increase in the future, and that climate change would exacerbate environmental pollution 

by increasing the GHG emissions from croplands and N losses in drainage. 
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Résumé 

Dans les régions humides le drainage souterrain s’avère essentiel a l’évacuation de l'excès 

d'eau dans le sol et à promouvoir la croissance des cultures; cependant, il peut aussi causer des 

problèmes environnementaux. La mise en œuvre de meilleures pratiques de gestion (MPGs) sur 

les terrains agricoles équipés d’un réseau de drainage souterrain peut permettre de mitiger les 

problèmes environnementaux advenant d’activités humaines et du changement climatique. Afin 

d’offrir des mesures efficaces de mitige et d’adaptation pour la gestion des terrains agricoles 

équipés d’un réseau de drainage souterrain, une technique de modélisation (Root Zone Water 

Quality Model, RZWQM2) fut appliquée à l’évaluation quantitative de l’impacte du niveau de la 

nappe phréatique, des pratiques de gestion agronomiques et de la hausse des émissions de gaz à 

effet de serre (GES) liée au changement climatique, sur la qualité de l'eau et la production 

agricole. Puisant dans une base de données hydrologique exhaustive (c.à.d., drainage souterrain, 

irrigation souterraine, humidité du sol, écoulement de la sève, et croissance de la culture) lors de 

l’étalonnage du modèle, RZWQM2 simula alors fidèlement la croissance de la culture et le 

volume saisonnier des eaux de drainage. Cependant, le modèle largement surestima l’écoulement 

hivernal par drains souterrains, compromettant ainsi la fiabilité de son processus de simulation 

du drainage hivernal. La mise en œuvre d’une méthodologie avec filtre de Kalman améliora la 

fiabilité du modèle, réduisant ainsi la marge d'incertitude de la simulation des eaux de drainage 

souterrains hivernaux dans les régions froides. Le modèle RZWQM2 amélioré pouvait donc 

servir à l’évaluation de scénarios de gestions des eaux et des terres agricoles pour les champs 

irrigués et dotés d’un système de drainage souterrain. 

 Une comparaison de la capacité des modèles RZWQM2 et DNDC à simuler d’une façon 

exhaustive à la fois la croissance des cultures et les processus biogéochimiques ayant lieu à 

travers le profil du sol, montra que les deux modèles donnèrent une estimation exacte de la 
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température du sol, mais que, n’étant ni capable de simuler un profil du sol profond ou 

hétérogène, ni la masse volumique de racines de la culture, DNDC fut peu performant quant à la 

simulation de la teneur en eau du sol. Pour la simulation des émissions de N2O, les deux modèles 

présentèrent des performances semblables pour les quatre traitements imposés, les émissions 

cumulatives de N2O étant prédites à ±15% près des valeurs mesurées. Cependant, RZWQM2 

livra de meilleures estimations des émissions de CO2 (R
2 plus élevé, erreur quadratique moyenne 

moins élevée) que DNDC. Les deux modèles livrèrent de bonnes estimations (en deça de ±15% 

d’erreur) de l’écoulement souterrain saisonnier; cependant, les prédictions de l’écoulement 

souterrain journalier par RZWQM2 s’avérèrent plus précises que celles de DNDC, qui n’était pas 

équipé pour simuler le drainage contrôlé ou l’irrigation souterraine. Quant à la prédiction du 

rendement en grain du maïs et des fèves soja, les deux modèles offrirent une performance 

satisfaisante. Globalement, RZWQM2 s’avéra d’une plus grande applicabilité à la simulation des 

processus biogéochimiques des terres équipées d’un système de drainage souterrain que ne l’était 

DNDC. 

RZWQM2 a servi à évaluer la compétence de différents MPGs envisageables à mitiger les 

émissions de GES provenant d’un champ de maïs équipé de drainage souterrain et opérant un 

système de gestion de la nappe phréatique. La plage optimale de fertilisation en azote permettant 

de réduire les émissions de GES tout en maintenant l’efficacité d'utilisation de l'azote et le 

rendement du maïs s’avéra entre 125 et 175 kg N ha-1. Une application fractionnée d'engrais 

azoté réduisit les émissions en N2O de 11%. Comparé au drainage libre, une irrigation 

souterraine sous régime de contrôle du drainage donna lieu à une augmentation des émissions en 

N2O de 21%, mais une baisse de 6% des émissions en CO2. Par rapport à une monoculture 

répétée de maïs, une rotation maïs-soya réduisit les émissions de GES de 20%. 
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Les impactes du changement climatique sur le rendement agricole, la qualité des eaux et 

les émissions de GES de deux champs situés dans l’est du Canada et munis de drains souterrains, 

furent évalués avec RZWQM2. Sous des scénarios climatiques du futur, l’écoulement moyen 

d'eau par les drains souterrains et la perte d’azote par ceux-ci augmenterait de 23-41% et 47-

76%, respectivement. Une augmentation de la dénitrification et de la minéralisation mènerait à 

une augmentation de 21-25% des émissions en N2O, tandis qu’une plus grande accumulation de 

biomasse de maïs, une décomposition plus rapide des résidus de culture, et une plus grande 

activité microbienne du sol augmenterait les émissions de CO2 de 16%. Ces simulations ont, en 

outre, indiqué que le rendement du maïs diminuerait, tandis que celui des fèves soja 

augmenterait. De plus, le changement climatique, en augmentant les émissions de GES 

provenant des terres agricoles ainsi que les pertes d’azote par le chemin des eaux de drainage, 

aggraverait la pollution environnementale.  
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Nomenclature 

 

The most commonly used symbols, abbreviations and acronyms are listed below. The specific 

symbols that are used in a particular equation or section are described at their place of 

appearance in the text. 

C                        carbon                                                   

CO2                            carbon dioxide 

CD                             controlled drainage 

CDS (CD-SI)             controlled drainage with sub-irrigation 

CH4                                         methane 

CREAMS                  chemical, runoff, and erosion from agricultural management systems 

CS                              corn-soybean rotation 

DNDC                       DeNitrification–DeComposition 

DR                             tile drainage 

DRP                          dissolved reactive phosphorus 

ETp                            potential evapotranspiration  

ETr                             reference evapotranspiration  

ETrs                            evapotranspiration 

FD                             free drainage 

GCM                         global climate model 

GHG                         greenhouse gas emission 

GLEAMS                 groundwater loading effects of agricultural management systems 

IF                              inorganic fertilizer 

IoA                           index of agreement 

Ksat                           hydraulic conductivity 

LAI                           leaf area index   

N                               nitrogen 

NH4
+                         ammonium 

NO3
-                                   nitrate 
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NSE                          Nash–Sutcliffe model efficiency 

NUE                         nitrogen use efficiency 

Obs                            observed 

PEST                        Parameter Estimation Software  

QPSO                       quantum-behaved particle swam optimization 

r2                               Coefficient of determination 

RCM                         regional climate model 

RH                            relative humidity 

RRMSE                    relative root mean squared error 

RMSE                       root mean squared error 

RZWQM                   Root Zone Water Quality Model 

SCM                          solid cattle manure 

SHAW                      Simultaneous Heat and Water model 

SI                               sub-irrigation  

Sim                            simulated 

SWC (𝜃)                    soil water content 
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Chapter 1 

Introduction 

1.1 Background 

For agricultural crops, both excess and lack of water can result in irreversible crop 

damages and consequently yield losses. The water table depth is affected by many factors such 

as precipitation, irrigation, evapotranspiration, deep seepage, runoff and the depth of drain outlet 

in the soil. Soil can be waterlogged when a high water table is maintained during wet period and 

the growth of crops will be limited because excess water results in anaerobic conditions in the 

root zone. Artificial drainage systems are known as an important water management to remove 

excess water in agricultural soil in humid and sub-humid regions. They have been widely 

installed in humid and cold climate regions in Eastern Canada (Morrison et al., 2014).  Although 

subsurface drainage in agricultural fields helps to promote crop production, improve machine 

trafficability and reduce N2O emissions from soil as compared to undrained fields (Madramootoo 

et al., 2007; Fernández et al., 2016), also leads to some environmental issues, especially 

increasing nutrient losses in drainage. Controlled drainage reduces N losses in drainage and 

increases or maintains crop yield (Madramootoo et al., 2001), since it reduces drainage outflow 

and enhances denitrification, thereby reducing NO3
- -N losses (Ridao et al., 1998). However, it 

results in more N2O release from denitrification (Kliewer and Gilliam, 1995), due to higher soil 

water content under water table management.  

There is a need to better understand the interactions between climate, human activities, 

environmental quality and food security. To assess the performances of drainage systems on crop 

production and water quality, field experiments have been conducted during the last few 
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decades, while very few studies have been conducted to investigate the GHG emissions under 

water table management. There have been few studies of the long-term effects of agricultural 

management practices on GHG emissions, hydrology and crop productions, since they require 

long-term data collections that are laborious and costly to conduct. Nevertheless, there is a 

concern that climate change with increasing precipitation, rising temperature and elevating 

atmospheric CO2 concentration may exacerbate the water quality and GHG emission problems, 

as well as reduce crop production. Especially high latitude countries, including Canada, are 

experiencing more changes in climate than other countries. 

Agricultural systems models have been used as promising tools for simulating the 

interactions between climate, agricultural management, crop growth and environmental quality. 

Computer modeling can be a reliable approach to assess the effects of different drainage systems 

and management practices on the hydrological processes, crop production, and the environment 

(Sands et al., 2003; Morrison et al., 2014). In addition, agricultural system models enable the 

possibility of predicting the integrated and single weather variable effects on environment and 

food security under climate change. Calibrated and validated models could be applied to examine 

the adaptive agronomic management practices to mitigate the negative impacts of climate 

change. 

The RZWQM2 is a powerful model in crop growth and hydrology simulation and has been 

extensively tested under many management practices, including tillage, cover crops, rotation, 

different planting dates, N and water table management. Recently, it has been modified to 

include the components of sub-irrigation and GHG emissions. Therefore, the focus of this study 

is to highlight the comprehensive interactions between weather, soil, water and crops under 
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different agricultural management, and propose mitigation and adaption strategies based on 

simulations.  

1.2 Objectives 

The goal of this research was to quantify the interactions between agricultural 

management, climate change, crop growth, and environmental quality. This study employs the 

RZWQM2 modelling approach to assess the agronomic practices and climate change impact on 

crop yields, water quality, water balance, and GHG emissions. The goal was achieved through 

the following specific objectives: 

i. To evaluate the hydrologic component of RZWQM2 (Root Zone Water Quality 

Model) using a comprehensive hydrological dataset including subsurface tile 

drainage, sub-irrigation, soil water content, sap flow and crop growth data such as 

leaf area index, crop yield and crop growth stages. 

ii. To test RZWQM2’s ability to predict GHG emissions in subsurface drained field 

under water table management 

iii. To compare the performances of RZWQM2 and DNDC models in simulating GHG 

emissions, crop yield and drainage flow from a subsurface drained and corn-soybean 

rotated field under water table and N management. 

iv. To use RZWQM2 to investigate the impacts of different agronomic management 

practices on long-term annual GHG emissions and propose some mitigation and 

adaptation suggestions based on the model simulations.  

v. To use the calibrated and validated RZWQM2 to assess the climate change impacts 

on future GHG emissions, water cycle and crop production in Eastern Canada 

1.3 Thesis outline 
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This thesis has been written in a “manuscript based” style. Chapter 1 is general 

introduction, which presents the background of the research, gaps in knowledge, and 

objectives of the research. Chapter 2 presents the literature review on key processes of 

subsurface drainage, water quality and GHG emissions in the Root Zone Water Quality 

Model (RZWQM2) and its applications to evaluate nitrogen and pesticide losses in tile 

drained fields. Chapter 3, 4, 5 and 6 present the results of model evaluations, applications, 

and comparisons in the forms of four research papers with connecting text. The format of the 

five manuscripts has been changed to be consistent with the requirements of Library and 

Archives Canada. Figures and tables are all presented in the end of each chapter. All the 

references cited in the thesis are given at the end of the thesis.  
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Chapter 2 

Modelling environment quality in subsurface drained cropland using the Root Zone Water 

Quality Model (RZWQM) – A review 

 

Qianjing Jiang, Zhiming Qi, Liwang Ma, Quanxiao Fang 

Abstract 

Agricultural system models are used to assess agricultural management practices and 

their environmental impacts. However, their application to evaluate water quality in subsurface 

drainage requires further investigation. Our objective was to review key processes of subsurface 

drainage and water quality as represented in the Root Zone Water Quality Model (RZWQM) and 

its application to evaluate nitrogen and pesticide losses in tile drained fields. This paper 

introduces the RZWQM by presenting the development and improvement of its hydrologic 

components, the theories used for computing the water balance, the model parameterization 

approaches, previous works on model evaluation and its comparison with other models, model 

applications to assess agricultural management and climate change impacts on hydrology, crop 

growth and water quality, model limitations and future work. The RZWQM is a one-dimensional 

biophysically-based model that has been tested and extensively used for simulating the 

hydrological processes and nutrient transport at the field scale under different agricultural 

management practices, such as tillage, cropping systems, N application, cover crops, and water 

table management. Future work is suggested to incorporate the fate and transport of phosphorus 

(P) into the model to investigate the loss of P in drainage and runoff, as well as including the 

water ponding module to improve its accuracy during flooding periods. Meanwhile, more 

evaluation is needed to further test its ability to simulate greenhouse gas emissions, N fixation, 

crop N uptake and soil water dynamics in frozen soils. Overall, RZWQM is a promising tool for 

the assessment of agricultural management strategies for scientists and policymakers. 
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2.1 Introduction 

Subsurface drainage is been practiced widely under high rainfall and high water table 

conditions, including the Midwest Corn Belt of the United States, Eastern Canada, and other 

countries such as Portugal (Randall et al., 1997; Hat- field et al., 1998; Fisher et al., 1999; 

Madramootoo et al., 2007; Boulet et al., 2015). In the Midwest of the United States, drainage is 

necessary for the crops when the water table rises up to the root zone. It has been reported to 

improve the crop yield in nearly 40% of the Corn Belt states such as Illinois, Indiana, Iowa, and 

Ohio (Johnsen et al., 1995). In Southwestern Ontario, Canada, it is also a challenge for farmers 

to remove the excess water from the flat and fine textured soils during the growing seasons (Tan 

and Reynolds, 2003). In southern Quebec where annual precipitation is usually higher than crop 

water demand, drainage is important to decrease the potential of spring flooding and runoff to 

reduce sediments and phosphorus (P) losses to the environment (Bourke, 2011). 

To optimize the soil water conditions for crops in wet regions, artificial drainage is an 

important water management practice to remove the excess water in agricultural soils. However, 

the implementation of drainage systems could result in environmental problems, especially 

reduced water quality. The indicators of water quality in agricultural modeling are usually 

described as the losses and concentration of N, P, pesticides, pathogens, and other chemicals in 

drainage water that affect food security and human health. To assess the performances of 

drainage systems on crop production and water quality, field experiments have been conducted 

during the last few decades to investigate the subsurface drainage impacts on crop yield (Grigg et 

al., 2003; Hofmann et al., 2004; Kladivko et al., 2005), nitrate, P, sulfate and pesticide losses in 

drainage water (Baker et al., 1975; Bengtson et al., 1990; Turtola and Paajanen, 1995), and soil 

erosion (Turtola and Paajanen, 1995; Øygarden et al., 1997). These field experiments indicated 
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that subsurface drainage would improve the crop yield while increasing nutrient losses in the 

drainage water. However, it requires long-term data collectionthat is laborious and costly to 

conduct. Therefore, computer modeling is a reliable approach to assess the effect of different 

drainage systems and management practices on the hydrological processes, crop production, and 

the environment (Sands et al., 2003; Morrison et al., 2014). 

Hydrologic and water quality models enable the study of different drainage systems and 

agricultural management practices with less time and lower cost over a long period of time for 

any locations with different kinds of soil types and weather conditions (Thorp et al., 2007a; Qi et 

al., 2011). During the last several decades, many hydrological models have been developed to 

simulate the process of water movement within the soil–plant–atmosphere continuum. These 

models are designed for different purposes, and most of them are capable of calculating the 

subsurface drainage, including field scale models, such as ADAPT (Alexander, 1988), 

CREAMS/GLEAMS (Knisel, 1980; Knisel and Turtola, 2000; Knisel and Douglas-Mankin, 

2012), RZWQM (Ma et al., 2012), DRAINMOD (Skaggs, 1978), EPIC and APEX (Wang et al., 

2012), and watershed models, such as BASINS/HSPF (Duda et al., 2012), SWAT (Arnold et al., 

1998), MIKE-SHE (Refshaard et al., 1995), and WARMF (Herr and Chen, 2012). Although the 

application of these models is constrained by some limitations and needs further investigation, 

they have introduced the concept of systematic approaches to agricultural systems and broadened 

people’s understanding in agricultural science (Ma et al., 2001). The DRAINMOD model has 

been widely used to simulate subsurface tile drainage in North America (Skaggs, 1978). It is a 

field-scale and process-based model that simulates the drainage flow based on water balance in 

the soil profile and weather information to study the multi-component drainage and water 

management (Skaggs et al., 2012). Subsurface drainage is calculated by a combination of the 
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Kirkham (1957) equation and the Hooghoudt equation (Bouwer and Van Schilfgaarde, 1963). 

Infiltration and runoff are calculated using the Green and Ampt Equation (Green and Ampt, 

1911), and seepage is computed by Darcy’s law. Evapotranspiration (ETrs) is calculated from 

reference evapotranspiration (ETr) according to the availability of water in soil. The CREAMS 

(Chemical, Runoff, and Erosion from Agricultural Management Systems) model was developed 

by a research team from the USDA Agricultural Research Service in 1978 to address agricultural 

nonpoint pollution problems (Knisel and Douglas-Mankin, 2012). It is a field-scale, one-

dimensional model consisting of hydrology, erosion/sediments, and a chemical component 

(Knisel, 1980). The model was enhanced with hydrology and nutrient components as well as the 

vertical flux of pesticides (Leonard et al., 1987) and developed into GLEAMS (Groundwater 

Loading Effects of Agricultural Management Systems) model. The GLEAMS model was 

initially a water quality and soil erosion model, and was later extended with the processes of 

nutrient cycles, subsurface drainage flow, pesticide flow and macropore flow (Knisel and 

Douglas-Mankin, 2012). The ETrs is estimated by Ritchie’s method separately as soil water 

evaporation and plant transpiration (Ritchie, 1972). MACRO (macropore flow model; Jarvis, 

1991) is a comprehensive model that describes the movement of water in the field and solute 

transport in different soil and crops. Soil water flow is simulated with Richards’ equation 

(Richards, 1931) while the drainage flow is calculated using seepage potential theory (Youngs, 

1980) and the Hooghoudt equation. A detailed description of the model is given by Jarvis (1991). 

These models are most frequently used for estimating soil water flow and have been successfully 

tested in a wide variety of soil conditions. 

Root Zone Water Quality Model (RZWQM) is a one-dimensional agricultural system 

model that contains physical, chemical, and biological processes for simulating the movement of 
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water, nutrients, and pesticides and growth of crops in the field under various management 

practices (Ahuja et al., 2000b). Agricultural management practice options are available for users, 

including crop cultivar selection and planting, manure application, irrigation, fertilization, 

pesticides and tillage. The RZWQM was designed as an integrated model that simulates the 

hydrology, crop growth and nutrient movement on a daily basis, with a tile drainage component 

from DRAINMOD. More than three hundred papers have been published to study the evaluation 

and application of RZWQM since it was developed. 

The objective of this paper was to review RZWQM in simulating the drainage flow by 

discussing i) the development and improvement of the drainage module and GHG component; ii) 

the calibration and parameterization of RZWQM, especially for the evaluation and application of 

RZWQM in simulating drainage and drainage water quality; and iii) the limitations and future 

needs of the model. This review aims to help potential users to better understand this model and 

make decisions on model selections for targeted management questions regarding water quality 

issues, for example, the nutrient and pesticide losses in subsurface drainage and the soil profile. 

2.2 The history of development of the hydrologic components in RZWQM 

RZWQM was initialized by USDA–Agricultural Research Service scientists in the mid-

1980s based on the need to develop a comprehensive model that could respond to various 

agricultural management practices (Malone et al., 2004a). Being officially released in 1992 for 

the first version, RZWQM is a one-dimensional model that simulates the interactions between 

management practices and the processes of hydrology, crop growth, nutrient transformations and 

pesticide transport (USDA-ARS, 1992). Since then, the model has been developed and modified 

to improve its applicability by incorporating the DSSAT 4.0 cropping system model for crop 

growth, SHAW (Simultaneous Heat and Water) for surface energy 
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balance, and GLEAMS for water erosion. To set up the model, it requires site-specific weather 

inputs including precipitation, minimum and maximum daily air temperature, solar radiation, 

relative humidity, and wind speed. Other necessary inputs are soil nutrient and hydraulic 

properties, crop cultivar information and field management practices. A simple flow chart that 

briefly describes the model input, simulation process and model output is shown in Fig. 2.1. The 

soil water balance can be expressed with an equation: 

𝐼 + 𝑃 = 𝐸𝑇𝑟𝑠 + 𝑅𝑂 + 𝐷𝑅 + 𝐿𝐹 ± ∆𝑆𝑊                                                                          [2.1] 

Where I is the irrigation amount (m), P is the precipitation amount (m), RO is the runoff 

amount (m), DP is the deep seepage (m), DR is the drainage amount (m), LF is the lateral flow 

(m) and ∆𝑆𝑊 is the change of soil water storage (m). 

To simulate the hydrologic processes, the Green–Ampt equation (Green and Ampt, 1911) 

is used in the model for calculating the infiltration of rain and irrigation water (Eq. [2.2]) and the 

Richards’ equation (Eq. [2.3]) is used for calculating water redistribution in the soil profile 

between rainfall or irrigation events (Ahuja et al., 2000a). 

The Green–Ampt equation is written as: 

V = 𝐾𝑠
̅̅ ̅ 𝜏𝑐+𝐻0+𝑍𝑤𝑓

𝑍𝑤𝑓
                                                                                                            [2.2] 

Where V is the infiltration rate at any given time (m s-1),  𝐾𝑠
̅̅ ̅ is the effective average 

saturated hydraulic conductivity of the wetting zone (m s-1),  𝜏𝑐 is the capillary drive or suction 

head at the wetting front (m), H0 is the depth of surface ponding (m), if any, and Zwf is the depth 

of the wetting front (m). 

The Richard’s equation which was used for soil water redistribution: 

𝜕𝜃

𝜕𝑧
=  

𝜕

𝜕𝑧
[ 𝐾(ℎ, 𝑧)

𝜕ℎ

𝜕𝑧
− 𝐾(ℎ, 𝑧)] − 𝑆(𝑧, 𝑡)                                                              [2.3] 
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Where 𝜃 is the volumetric soil water content (m3 m-3), t is the time (s), z is the soil depth 

(m, assumed positive downward), h is the soil-water pressure head (m), K is the unsaturated 

hydraulic conductivity (m s-1), a function of h and z, and S(z,t) is the sink term for root water 

uptake and tile drainage rates (s-1).  

The potential evaporation of water from the soil and crop transpiration are described by the 

Shuttleworth–Wallace equation (Shuttleworth and Wallace, 1985) and the soil water content 

matric suction relationship and unsaturated hydraulic conductivity-matric suction relationship are 

described by the modified Brooks-Corey relationships (Brooks and Corey, 1964). The soil water 

content vs. the matric suction relationship is described in Eq. [2.4] and Eq. [2.5] by Ahuja et al. 

(2000a): 

       𝜃(𝜏) =  𝜃𝑠 −  𝐴1𝜏 ;     𝑤ℎ𝑒𝑛 𝜏 ≤ 𝜏𝑏                                                                            [2.4]                            

       𝜃(𝜏) =  𝜃𝑟 +  𝐵𝜏−𝜆 ;    𝑤ℎ𝑒𝑛  𝜏 > 𝜏𝑏                                                                          [2.5]                            

The hydraulic conductivity vs matric suction relation is expressed as: 

            𝐾(𝜏) = 𝐾𝑠𝜏−𝑁1 ;  𝑤ℎ𝑒𝑛 𝜏 ≤ 𝜏𝑏𝐾                                                                             [2.6]                            

            𝐾(𝜏) = 𝐾2𝜏−𝑁2 ;  𝑤ℎ𝑒𝑛 𝜏 > 𝜏𝑏𝐾                                                                             [2.7]                            

Where t is the matric suction head m, t = |h|, h is the soil water pressure head), 𝜃𝑠  is the 

saturated soil water content (m3 m-3), 𝜃𝑟 is the residual water content (m3 m-3), 𝜏𝑏 is the air-entry 

or bubbling suction head (m), Ks is the field-saturated hydraulic conductivity (m s-1), and   𝜏𝑏𝐾 is 

the air-entry or bubbling suction head for this function (m), which may equal 𝜏𝑏 introduced 

above. 𝐴1, B, 𝜆, 𝑁1, 𝑁2, and 𝐾2 are constants. 
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Singh and Kanwar (1995b) modified the soil water re-distribution subroutine to simulate 

the fluctuations of the water table, and added a tile drainage component to RZWQM. The 

drainage flux is calculated using the steady state Hooghoudt equation (Bouwer and Van 

Schilfgaarde, 1963) as applied in DRAINMOD (Skaggs, 1978): 

          DFLUX=4.0𝐾𝑒𝐸𝑚 [
2.0𝐻𝑑+𝐸𝑚

𝑆2 ]                                                                                [2.8] 

Where S is the drain spacing (m), Hd is the equivalent depth of the impermeable layer from 

the center of the drain (m), DFLUX is the drainage flux (m s-1), Ke is the effective lateral 

hydraulic conductivity (m s-1), and Em is the elevation of water table above the tile drains (m). 

Johnsen et al. (1995) modified the water movement module of RZWQM to simulate the 

fluctuating water table and subsurface drainage by allowing the simulation of saturated flow. 

After the modification, the performance of RZWQM was evaluated using the field measured 

water table depth data for 3 years under three drainage spacings in North Carolina, and then 

compared with other four models including WAFLOWM, SWATRAN, DRAINMOD and 

PREEFLO. Calculated results of the RZWQM as well as the other models were comparable to 

the measured values within 20%, a result that was caused by spatial differences of hydraulic 

properties and model uncertainties. Xian et al. (2017) incorporated two transient methods, the 

integrated Hooghoudt and van Schilfgaarde equations, into RZWQM and found that the 

simulated drainage using transient methods was similar to that using steady state Hooghoudt 

equation. Meanwhile, Xian et al. (2017) also found that the simulation in hourly tile drainage 

peak could be improved by updating soil water re-distribution and water table depth while the 

rainfall was occurring, opposite to the current modeling practice of holding soil water movement 

and water table until the rain stopped. 
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Flerchinger et al. (1999) incorporated a routine for computing the snow accumulation and 

snowmelt into RZWQM without the soil freezing process, later the soil freezing and thawing 

process was incorporated into RZWQM based on the Simultaneous Heat and Water (SHAW) 

model by Flerchinger et al. (2000). This RZWQM–SHAW model was evaluated in a cold region 

in North China (Li et al., 2012), Pullman, WA and Akron, CO (Flerchinger and Cooley, 1998), 

indicating that the coupled model had comparable performance in simulating the soil 

temperature, soil water content as with the SHAW model. 

Preferential flow through macropores leads to rapid movement of pesticides and other 

chemicals to subsurface drainage (Magesan et al., 1995; Shipitalo and Gibbs, 2000). The excess 

amount of precipitation and irrigation that is not infiltrated would be considered as macropore 

flow in the presence of macropores, or directly go to the runoff in the absence of macropores 

(Malone et al., 2001a). This macropore flow is an important process that has been applied to 

simulate pesticide transport to subsurface drainage (Chen and Wagenet, 1992; Ellerbroek, 1993; 

Kumar et al., 1998c; Malone et al., 2001a, 2004b). The impact of macropores on subsurface 

drainage has been tested under several conditions with varying success. For example, Kumar et 

al. (1998c) indicated no significant effect of macroporosity on annual total drainage flow by 

comparing the statistics when simulating drainage flow with (PBIAS ranged from -26% to 8.5%, 

see Table 1 for statistics) and without macropores (PBIAS ranged from -27% to -1.5%). 

However, the macropore option slightly improved the calculation of the timing and magnitude of 

drainage peaks. Jaynes and Miller (1999) suggested that the accuracy of drainage calculation 

could be improved with more infiltration and less runoff simulated. When the macropore option 

was considered, the discrepancy would be reduced by half. However, it did not improve the 

simulation for herbicide leaching. Abrahamson et al. (2005) conducted a sensitivity test of tile 



14 
 

drainage to macroprosity using the data from the Cecil Piedmont region where preferential flow 

was observed. It was concluded that calculated drainage was similar regardless of macropore 

flow because the slopes were not significantly different from 1 and intercepts were not 

significantly different from the 0 at the 0.05 probability level. However, Malone et al. (2014a) 

stated that the chemical concentration in subsurface drainage flow was very sensitive to the 

macropore numbers. 

Fox et al. (2004) modified the macropore component in RZWQM by introducing a 

contributing area parameter (expressed as a faction) that directly connected the macropores with 

subsurface drainage to improve the drainage simulation. The model was calibrated using 

measured hydrology data from an experimental site in Indiana, USA. For model evaluation, a 

tracer and a pesticide were simulated; however, it was found that RZWQM failed to predict the 

peak concentrations of the tracer and pesticide, which was caused by the chemical buildup at the 

top of the water table, because RZWQM did not simulate chemical movement inside the water 

table. Therefore, the RZWQM was modified by incorporating an express faction into the 

macropore component, which allowed the macropore flow to enter into the drainage directly 

when the water table reached above the drain depth. Simulated results after model modification 

indicated that the modified RZWQM estimated the pesticide concentration in drainage with a 

PBIAS of 21%, while the previous version underestimated the value by 93%, because the 

modified version was able to capture the earlier peaks in tracer and pesticide concentration. The 

model results could be improved with chemicals being transported below the water table by 

diffusion or turbulent flow, rather than using an empirical express factor. To study the bacteria 

transport in the soil profile, subsurface drainage and runoff, Guzman and Fox (2011) modified 

RZWQM by incorporating bacteria transport and biopore routines into the model. The statistics 
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of model evaluation results (PBIAS and RRMSE) showed an improvement of the modified 

RZWQM in calculating the increased drainage flow and bacteria transport in response to 

irrigation and rainfall events, as well as capturing the timing and magnitude of drainage flow 

peaks and trend of bacteria concentration. 

An ongoing effort has been made to develop a stand-alone subroutine in RZWQM to 

simulate the fate and transport of P in subsurface drained field (Sadhukhan et al., 2017). The 

developed P module is designated in simulating both dissolved reactive P (DRP) and particulate 

P (PP) losses through surface runoff and tile drainage while special attention has been paid to 

simulate P loss through tile drainage using most recently updated sciences in the fate and 

transport of P in agricultural systems. The developed P subroutine was tested against field 

measured DRP and PP in tile drainage and surface runoff at a drainage site in 2008 to 2012 near 

Harrow, ON, Canada. The preliminary results suggest that this new P module is capable of 

simulating P losses with NSE > 0.5, PBIAS within ± 0.25 and IoA > 0.75 (see Table 1 for 

statistics) in both calibration and validation periods. This stand-alone module needs to be coded 

in the main stream of the model and tested with more field measured data; a user-friendly 

interface should be developed for a better application of this module. 

Not all the improvements on RZWQM were included in the currently released version of 

RZWQM (version 4.0). An early improvement to use soil water dependent macropore size by 

Hua (1995) was never incorporated in the RZWQM, neither the bacteria (Guzman and Fox, 

2011) and rainfall interception by crop canopy (Kozak et al., 2007). Effort is underway to 

assemble all the new improvements into an updated version after extensive testing. 

2.3 The nutrient component in RZWQM2 
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2.3.1 The nitrification, denitrification and organic matter decay processes in RZWQM2 

The OMNI program, developed as a submodel of RZWQM2, simulates the organic matter 

and nitrogen cycling pathways, including mineralization and immobilization, inter pool transfer 

of C and N, aerobic nitrification, anaerobic decay and denitrification, microbial biomass growth 

and death, etc. In OMNI, the decayed soil organic carbon (SOC) is channeled in three directions: 

transfer to other organic matter pools, assimilation into biomass, or as a CO2 sink via biomass 

respiration. Drawing on a fraction of the biomass pool lost to inter-pool transfer, OMNI converts 

the remaining decayed organic matter to biomass carbon by way of an efficiency factor, and 

considers the remaining organic carbon as being the result of CO2 from aerobic respiration going 

to a C sink (Ahuja et al., 2000b). The organic matter is divided into five pools: (i) plant or other 

organic structural material (slow pool), (ii) plant or other organic metabolic material (fast pool), 

including crop residues, manure, and other organic materials, (iii, iv, v) fast, medium and slow 

decaying SOM pools (Fig 2.2 and 2.3). Microbial biomass aerobic and anaerobic respiration 

result in C source storage from CO2 and CH4, respectively. Then the CO2 and CH4 are used as C 

resource for nitrification and aerobic organic matter decay, respectively (Ahuja et al., 2000). 

In RZWQM2, nitrification rate (Rnit) is computed using either zero-order or first-order 

kinetics, depending on the NH4
+ concentration, and denitrification rate (Rden) is calculated using 

first order kinetics (Ahuja et al., 2000; Fang et al., 2015): 

𝐾𝑛𝑖𝑡 = 𝐹𝑎𝑒𝑟 × (
𝑘𝑏𝑇

ℎ𝑝
) × 𝐴𝑛𝑖𝑡 × exp (−

𝐸𝑛𝑖𝑡

𝑅𝑔𝑇
) ×

[𝑂2]0.5

[𝐻𝑘ℎ𝛾1
𝑘ℎ]

× 𝑃𝑎𝑢𝑡                                                 [2.9] 

𝑅𝑛𝑖𝑡 = −𝐾𝑛𝑖𝑡 × 𝑠12 × 𝛾1                                                                                                          [2.10] 

𝐾𝑑𝑒𝑛 = 𝐹𝑎𝑛𝑎𝑒𝑟 × (
𝑘𝑏𝑇

ℎ𝑝
) × 𝐴𝑑𝑒𝑛 × exp (−

𝐸𝑑𝑒𝑛

𝑅𝑔𝑇
) ×

[𝐶𝑠]

[𝐻𝑘ℎ𝛾1
𝑘ℎ]

× 𝑃𝑎𝑛𝑎                                         [2.11] 
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𝑅𝑑𝑒𝑛 = −𝐾𝑑𝑒𝑛 × 𝑠11 × 𝛾1                                                                                                       [2.12] 

Where 𝐾𝑛𝑖𝑡 and 𝐾𝑑𝑒𝑛 are rate coefficients for nitrification and denitrification, 𝐹𝑎𝑒𝑟and 𝐹𝑎𝑛𝑎𝑒𝑟 

are soil water factors; kb is the Boltzman constant (1.383 × 10−23 J K−1); T is soil temperature; hp 

is the Planck constant (6.63 × 10−34 J s); Rg is the universal gas constant 

(1.99 × 10−3 kcal mol−1 K−1); Enit and Eden are the apparent activation energy for nitrification and 

denitrification processes (kca mole-1), respectively; Anit and Aden are nitrification and 

denitrification rate coefficients (s day-1 organism-1), respectively; [O2] is oxygen concentration in 

soil water (moles O2 per liter pore water); H is hydrogen ion concentration (moles H per liter 

pore water); kh is hydrogen ion exponent for decay of organic matter microbes, nitrification and 

denitrification (=0.167 for pH ≤ 7.0, and = -0.333 for pH >7.0); γ1 is the activity coefficient for 

monovalent; Cs is weighted carbon in the soil (μg C g soil-1); Paut is the autotrophic biomass 

population of nitrifiers (organisms g soil-1); Pana is population of anaerobic microbes (organisms 

g soil-1); s12 is the concentration of NH4
+ (moles NH4

+ per liter pore water per day); s11 is the 

concentration of NO3
- (moles NO3

- per liter pore water per day). 

In RZWQM2, the organic matter is divided into five pools: plant or other organic structural 

material (slow pool), plant or other organic metabolic material (fast pool), and fast, medium, and 

slow decaying soil organic matter. The basic equations of computing the organic matter decay 

rates for all the pools are the same, except the user-supplied rate coefficients. The decayed soil 

organic carbon flows in three directions: transferred to other organic matter pools; assimilated in 

biomass or loss as CO2 via biomass respiration (Ahuja et al., 2000).  It should be noted that the 

CO2 emission from root respiration and assimilation by plants from photosynthesis were not 

considered in this model. 
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The equations for computing aerobic decay of organic matter are also first-order, and the 

coefficient for decay (𝑟𝑑𝑒𝑐,𝑖) is (Ahuja et al., 2000): 

𝐾𝑑𝑒𝑐,𝑖 = 𝐹𝑎𝑒𝑟 × (
𝑘𝑏𝑇

ℎ𝑝
) × 𝐴𝑖 × exp (−

𝐸𝑎

𝑅𝑔𝑇
) ×

[𝑂2]

[𝐻𝑘ℎ𝜆1
𝑘ℎ]

× 𝑃𝑂𝑃ℎ𝑒𝑡′                                [2.13] 

𝑟𝑑𝑒𝑐,𝑖 = 𝐾𝑑𝑒𝑐,𝑖 × 𝑆𝑖                                                                                                         [2.14] 

Where i is the organic matter pool index, 1 ≤ 𝑖 ≤ 5, 𝐾𝑑𝑒𝑐,𝑖 is the rate coefficient for decay, 

𝑃𝑂𝑃ℎ𝑒𝑡′ is the population of aerobic heterotrophic microbes (organisms gm soil-1), Ea is the 

apparent activation energy for decay (kca mole-1), 𝑆𝑖 is the carbon substrate concentration (μg C 

gm soil-1). 

2.3.2. The development of RZWQM2 for simulating N2O emissions from nitrification and 

denitrification 

Fang et al. (2015) improved RZWQM2 by incorporating the algorithm for computing N2O 

emission from nitrification based on the NOE model and N2O emission from the denitrification 

algorithm in the DAYCENT model to predict N2O emission from the soil profile.  

The algorithm for computing N2O emission from nitrification was implemented from NOE 

model by Fang et al. (2015) as followed: 

𝑁2𝑂𝑁𝑖𝑡𝑟𝑖 = 𝐹𝑟𝑁2𝑂_𝑁𝑖𝑡_𝑁𝑂𝐸 × 𝑆𝑊𝑁2𝑂_𝑁𝑖𝑡_𝑁𝑂𝐸 × 𝑅𝑛𝑖𝑡                                                           [2.15] 

𝑆𝑊𝑁2𝑂_𝑁𝑖𝑡_𝑁𝑂𝐸 =
0.4×𝑊𝐹𝑃𝑆−1.04

𝑊𝐹𝑃𝑆−1.04
        [2.16] 

The algorithm for computing the N2O emission from denitrification was taken from the 

DAYCENT model: 

𝑁2𝑂𝐷𝑒𝑛 = 𝐹𝑟𝑁2𝑂_𝐷𝑒𝑛_𝐷𝐴𝑌𝐶𝐸𝑁𝑇 × 𝑅𝐷𝑒𝑛                                                                                [2.17] 
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𝐹𝑟𝑁2𝑂_𝐷𝑒𝑛_𝐷𝐴𝑌𝐶𝐸𝑁𝑇 =
1

1+𝑅𝑁𝑂_𝑁2𝑂+𝑅𝑁2_𝑁2𝑂
                                                                            [2.18] 

where 𝐹𝑟𝑁2𝑂_𝑁𝑖𝑡_𝑁𝑂𝐸 and 𝐹𝑟𝑁2𝑂_𝐷𝑒𝑛_𝐷𝐴𝑌𝐶𝐸𝑁𝑇 are the fractions of nitrification and 

denitrification for N2O emissions, 𝑆𝑊𝑁2𝑂_𝑁𝑖𝑡_𝑁𝑂𝐸 is the soil water factor for the oxygen 

availability effect on N2O emission during nitrification, 𝑅𝑁𝑂_𝑁2𝑂 is the ratio of NO to N2O and 

𝑅𝑁2_𝑁2𝑂 is the ratio of N2 to N2O.  

2.4 Model Parameterization for Subsurface Drainage Simulations 

2.4.1 Model calibration 

Model calibration is the process to minimize the differences between calculated and 

measured values by adjusting model parameters, usually through the trial and error procedure. 

The RZWQM input parameters could be obtained from field measurements; however, most of 

these parameters are not easy to measure, thus the model calibration procedure usually requires 

parameters estimated from literature or experience (Malone et al., 2001b). To calibrate the 

subsurface drainage component of hydrologic models like RZWQM and DRAINMOD, an 

accurate estimation of ETrs is crucial since very small changes in ETrs prediction would lead to 

significant changes in drainage (Thorp et al., 2009). A protocol for parameterization and 

calibration of RZWQM in field research was proposed by Ma et al. (2011). It was suggested that 

water table depth should be evaluated for a reasonable hydrology simulation by verifying the 

leakage rate, lateral hydraulic gradient, ET, runoff, deep seepage and lateral flow. The field 

capacity and slope of soil water retention curve were crucial parameters that affect the water 

movement and thus drainage amount. In addition, the lateral Ksat should be calibrated for each 

soil layer for calculating the drainage flow. The detailed information in choosing hydraulic 

parameters and variables for calibrating the hydrologic components are listed in Table 2 and 
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some examples related to drainage and drainage water quality calibration in RZWQM are shown 

in Table 3. 

Trial-and-error is the most traditional and widely used process for RZWQM calibration. 

However, it is subjective in a way that two users may end up with two different sets of 

parameters, while the automatic calibration is relatively objective and efficient (Ma et al., 2012). 

In addition, two sets of totally different parameters would lead to similar calculated results (Ma 

et al., 2012). This subjectivity would greatly affect the manual calibration process (Xi et al., 

2016). Therefore, several automated calibration tools and methods have been developed for 

RZWQM parameterization. 

The PEST (Parameter Estimation Software) was developed for model parameterization for 

underground water models (Doherty and Hunt, 2010). Parameters in groups can be obtained 

automatically from this software when their ranges are set by the users. It was incorporated into 

RZWQM to enhance efficiency of model calibration and to help in parameter selection for users’ 

convenience by allowing sensitivity and uncertainty analysis (Ma et al., 2012). Nevertheless, as 

an automated calibration method, PEST offers more objective, systematic and repeatable 

parametrization when compared with the trial-and-error calibration process (Malone et al., 

2014a). Examples of using PEST for RZWQM parameterization have been introduced by 

Malone et al. (2010), Fang et al. (2010), Nolan et al. (2011), and Anar and Lin (2016). Despite 

its capability of optimizing parameters for simulation results and emphasizing model outputs 

defined by users, it requires appropriate initial values and a cautious decision making in selecting 

the weighting factors in the objective function (Xi et al., 2016). In addition, it has the limitation 

that the fixed objective function format in PEST software could not be freely modified when 

necessary (Xi et al., 2015). 
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Therefore, new approaches are required for RZWQM calibration are required for 

optimizing the simulation results. Xi et al. (2015) calibrated the RZWQM automatically using a 

quantum-behaved particle swarm optimization (QPSO) algorithm for a subsurface drained field 

in Iowa as previously calibrated by Qi et al. (2011). The QPSO algorithm, introduced by Sun et 

al. (2004), is an uncertainty searching technique to find optimal solutions. The calibration results 

provided by the QPSO method were satisfactory compared with the traditional manual 

calibration method (PBIAS, NSE and RSR within the acceptable range), which indicated its 

promising applicability in automatic parameterization of RZWQM. However, this method 

requires large computation and intensive model runs, especially for comprehensive agricultural 

models like RZWQM which might take several minutes to run a single scenario, and the whole 

parameterization process could require running thousands of times and take weeks to finish the 

computation. Thus Xi et al. (2016) developed a surrogate based optimization algorithm to 

calibrate the RZWQM that aimed to improve the efficiency and reduce the computational cost 

for global parameter optimization. Calibration results suggested that this method performed well 

in parameterization for RZWQM with less computational time and cost. 

2.4.2 Sensitivity Analyses 

Sensitivity analyses help to determine the most important parameters for certain outputs 

and the sources of errors during a simulation (Ma et al., 2000). According to the Hooghoudt’s 

steady state equation which is used to calculate the subsurface drainage in RZWQM, the 

drainage spacing and depth are important input for computing subsurface drainage (Ahuja et al., 

2000a). A sensitivity analysis before model calibration for Southern Ontario, Canada, indicated 

that the tile drainage flow was most sensitive to hb, Ksat, lateral Ksat, moderately sensitive to 

drainable porosity, and less sensitive to tile drain depth (Ahmed et al., 2007a). Ma et al. (2007a) 
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tested the sensitivity of tile drainage flow to soil hydraulic parameters in RZWQM using Latin 

Hypercube Sampling. To achieve this goal, soil hydraulic parameters were measured from the 

experimental site and simulation results were compared between scenarios with measured and 

default parameters. Simulated soil hydrology was found to be better with the measured soil 

parameters than the default parameters suggested by the soil texture class within RZWQM. 

Sensitivity analysis indicated that the subsurface drainage flow was most sensitive to the 

hydraulic gradient, sensitive to saturated soil water content and lateral Ksat while not sensitive to 

bubbling pressure and Ksat. Ma et al. (2000) also stated that the hydrologic outputs of RZWQM 

were more sensitive to the average Ksat for all soil layers than Ksat of the individual soil layers. 

Sun et al. (2016) applied the GLUE (generalized likelihood uncertainty estimation) method to 

assess the uncertainty and sensitivity of RZWQM. To start the uncertainty analysis, model 

calibration was conducted first against two years of measured data from an experimental site in 

Beijing using the PEST method. Then 25 parameters most related to soil water content, NO3–N 

in soil profile, maize grain yield and wheat grain yield were suggested by PEST were 

consequently selected for sensitivity analysis. The sensitivity test listed the parameters that 

affected the four outputs mentioned above and provided an example for model parameterization. 

2.5 Model Evaluation and Applications 

The drainage component of RZWQM has been extensively evaluated in North America. 

The first evaluation for the drainage component of RZWQM was made in Iowa, USA, by Singh 

and Kanwar (1995a). The model was calibrated using the measured subsurface drainage flow 

data under four different tillage treatments in 1990 and validated using the same data from 1991 

to 1992 that were collected from the NERC water quality research site at Nashua, Iowa. The 
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statistics of both calibration and validation were within the acceptable range, with r2 varying 

from 0.49 to 0.69 and PBIAS within 13%. The model was proved to be capable of simulating the 

time of drainage peaks very close to the recorded time, and the calculated drainage flow under 

different tillage practices indicated similar trends as measured. Meanwhile, Singh and Kanwar 

(1995b) extended the previous modified RZWQM model for simulating the N losses in 

subsurface drainage water. The further modified model was later evaluated to study the impact of 

different tillage practices on N concentration and N losses in drainage water by comparing 

simulated results with measured data collected from 1990 to 1992 in Nashua, IA. The model 

evaluation indicated the modified RZWQM was capable of estimating N concentrations under 

different tillage systems during the simulated years. However, the RZWQM failed in calculating 

tillage effects on N losses in drainage in 1991 and 1992.  

In most cases, the RZWQM was judged as satisfactory in calculating the drainage flow and 

chemicals in drainage flow. Bakhsh et al. (2004a) evaluated the model with the measured data 

from a field in the Walnut Creek watershed, IA, showing that the measured drainage was 

comparable to the measured data with the NSE of 0.99, and the NO3–N losses in drainage water 

was calculated with the NSE value of 0.80. In the coastal area of Canada in Nova Scotia, the 

performance of RZWQM was evaluated for simulating the subsurface drainage flow in a shallow 

drained soil (Akhand et al., 2003). Calculated drainage amount agreed with the measured values 

with r2 of 0.60 and 0.57, respectively, for calibration and validation, indicating the wide 

adaptability of RZWQM for subsurface drainage simulation under various climate and soil 

conditions. 

The performance of RZWQM on simulating the subsurface drainage and chemical 

transport under various management practices, weather and soil conditions has been widely 



24 
 

evaluated, but few studies have been conducted to test its ability in calculating the pesticide 

transport, macropore flow, and surface runoff in tile drained field. Kumar et al. (1998a) 

calibrated the RZWQM (version 3.25) using the measured daily drainage and atrazine 

concentration data from Nashua, IA under two tillage systems in 1990 and validated it using data 

from 1991 to 1992. The PBIAS indicated that simulated drainage flow, and atrazine loss to tile 

drains matched closely with the measured values for the three years under two tillage systems, 

and the simulated timing of atrazine concentration were comparable with the observation. Later, 

Malone et al. (2014a) evaluated the model’s ability in calculating the pesticide transport using 

the data from a six-year field study (1990 to 1995) from the same location in Iowa. Results of 

both evaluations suggested that RZWQM was able to simulate the process of pesticide transport 

in subsurface drainage flow under two tillage systems for continuous years. Using hourly tile 

drainage data from Ontario, Canada, and Iowa, United States, Xian (2017) found that the hourly 

peak of tile drainage could be improved by adding the macropore component of RZWQM. 

However, the macroporosity and pore radius parameters in the model were proved to be 

insensitive. Lu (2015) first tested RZWQM in simulating surface runoff in a subsurface drained 

field in Ontario and found that the model well simulated surface runoff in a field with free 

drainage conditions but for the controlled drainage with sub-irrigation field the simulation was 

not satisfactory. 

Since the RZWQM provides options for many different agronomic management practices 

including manure application, irrigation, fertilization, pesticides, tillage, subsurface drainage, 

controlled drainage and irrigation, it has been widely used in simulating the impact of 

agricultural management practices on hydrology, water quality, and crop production. The 

performance of RZWQM in calculating subsurface drainage flow and water quality has been 
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extensively reported under different conditions, such as manure applications in Iowa (Kumar et 

al., 1998b), tillage systems (Kumar et al., 1998a; Ma et al., 2007b; Malone et al., 2014a), 

pesticide application rates (Malone et al., 2014a), N application management (Azevedo et al., 

1997; Bakhsh et al., 2001; Qi et al., 2012), and winter cover crops (Abrahamson et al., 2006; Qi 

et al., 2011). Numerous model validations and evaluations were completed to show the 

applicability of RZWQM in simulating the management practices effects (Hanson et al., 1998). 

2.6 Water Table Management 

Water table management, including the subsurface drainage, controlled drainage and 

subsurface irrigation systems, has been reported as an effective approach to improve the water 

quality by reducing the N losses in drainage water (Elmi et al., 2000; Madramootoo et al., 2001; 

Drury et al., 2014). RZWQM has been applied as a tool to develop suitable water table 

management practices under certain weather and soil conditions. Studies on the application of 

RZWQM in this context informed how different water table management strategies affect the 

water balance and N cycling across the Midwestern United States (Thorp et al., 2007a, 2008). 

The long-term simulation results from 48 locations across the Midwestern U.S. indicated that 

water table management demonstrated a significant impact on the subsurface drainage amount. 

Controlled drainage resulted in, on average, a reduction of drainage flow by 53% for 25 yr for all 

the locations. The reduction of drainage flow differed among the locations, which varied from 

35% to 68% accordingly when moving from northwest to the southeast across the region. The 

results also provided a reference for the water table management impact on reducing N loss in 

drainage across different locations in the United States. According to another simulation over 23 

yr to study the agricultural management practice impacts in Nashua, IA, by Ma et al. (2007b), the 

subsurface drainage water was on average 30% lower in the controlled drainage system than the 
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free drainage system. Consequently, the N loss in drainage water was also reduced by 29% when 

controlled drainage was applied. Based on a long-term RZWQM simulation (1996–2008), Fang 

et al. (2012) studied the effects of controlled drainage on N loss to subsurface drainage and also 

found that N loss could be reduced by 39% (9.3 kg N ha-1) after switching from free drainage to 

controlled drainage at N fertilizer application rate of 140 kg N ha-1. The averaged measured and 

simulated monthly tile flow, flow-weighted nitrate N concentration, and nitrate N losses were 

plotted in Fig. 2.4.  

These model results were in agreement with some reported field experiments. For example, 

Helmers et al. (2012) reported that annual NO3–N loss from 2007 to 2010 was reduced by 36% 

for controlled drainage at a site with silty clay loam soil in Iowa. The reduction of N and P loss 

by controlled drainage compared with a free drainage system varied from 30% to 50% depending 

on soil type, climate, drainage system design and management based on some field studies in the 

United States (Evans et al., 1995). In southwestern Ontario 14% and 26% reductions of N loss 

from controlled drainage was reported under tilled and no-till systems, respectively (Tan et al., 

1998). A two-year field study that was conducted on a loamy sand in Sweden from 1998 to 1999 

compared the nitrate loss of controlled drainage with free drainage and resulted in the total 

amounts of nitrate in drainage of 78% and 94% less, while the P loss were 58% and 85% less in 

1998 and 1999, respectively (Wesström et al., 2001). 

2.7 Fertilizer and Manure Management 

Although subsurface drainage has been proven to be an effective management practice to 

improve the growth conditions for crops, its side-effects on water quality is also of great concern 

to the environment. Since RZWQM was designed with many options for applying different 
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sources of N, and for varying the application timing and rate, it has been tested in simulating 

different N management practices impact on N losses in drainage water. 

Azevedo et al. (1997) indicated an increase of N losses in drainage and higher crop yield 

with increasing N application rates, but the increment of N losses and crop production were not 

linearly proportional to the extra N application rates. In addition, they showed no significant 

difference in N loss and crop yield between one-time N application and several split applications 

when the total amount was unchanged in this research. Kumar et al. (1998b) evaluated the 

RZWQM in simulating the drainage flow and water quality under manure applications in Iowa. 

The PBIAS of simulated annual drainage flow was in the acceptable range compared to the 

measured values for the three plots in both years (within 3.1% and -10.9% for calibration year 

and validation year, respectively), and daily drainage as well as the trend matched with the 

measured values except a few underestimations of drainage peaks in early spring due to snow 

melt. Meanwhile errors in estimating ETrs in September and missing values of some break point 

rainfall data might also result in inaccuracy of drainage calculation. Generally, the model was 

capable of calculating annual drainage flow, its timing and N loss in drainage water. However, 

the development of snow accumulation, freezing and thawing process components was suggested 

for model improvement. Moreover, the macropore flow component, as well as the estimation of 

ETrs should also be improved to enhance model performances. 

Qi et al. (2012) reported a long-term simulation using RZWQM to investigate the effect of 

different N application rates on N loss in a subsurface drainage system in north-central Iowa 

(Fig. 2.5). Crop yield was found to be reduced with decreasing N application rates. Meanwhile, 

the authors suggested an N appli cation rate to meet the requirement of the water quality standard 

(maximum contaminant level) in the Iowa region, which was similar to the recommended rate 
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from the field study. Malone et al. (2007) applied the RZWQM to quantify the long-term effects 

on crop production and water quality in subsurface drainage water with different N varieties, 

timing and rates of chemical fertilizer and swine manure. The overall calculation indicated 

increasing corn yield and N losses in response to higher N applications. Simulations of long term 

N application impacts on drainage water quality and crop production have been conducted in 

Ontario, Canada. Ahmed et al. (2007b) indicated the side-dressing of N application would lead to 

a slight reduction of N losses in drainage and significant corn yield reduction on the silt loam 

soil, while it resulted in great reduction of both N losses in drainage and corn yield on sandy 

loam soil. McKague et al. (2006) tested several N management practices that include MERN (the 

Most Economic Rate of Nitrogen), side-dress N application, pre-plant N application, split N 

applications, preside-dress N test (PSNT), and reduced N application through crop rotation. They 

suggested the N application timing and rate were important to reduce the N losses to drainage 

water. For example, it was found that split N applications could reduce N loss to drainage by 

7.6% compared with MERN. This research provided a good example of using agricultural 

models to develop the best management practices for optimizing crop production and mitigating 

its side effects on water quality as well. 

Bakhsh et al. (2001) found that RZWQM overestimated the N losses in drainage during the 

soybean years that required improvement for N2 fixation and N uptake process. Similar 

suggestions for improving the RZWQM with regard to simulating N fixation of soybean, and 

plant N uptake were proposed by Ma etal. (2007b) when investigating the effects of crop 

rotation, tillage, and controlled drainage on N losses in drain flow. The calculated tile flow, N 

losses in drainage water during the corn years, and yields of both corn and soybean matched well 

with the measured values. Subsequently, six different N application rates from zero to a plateau 
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value were simulated using the RZWQM to investigate the N application impact on corn yield 

and water quality. It was concluded that RZWQM has the potential to assess the N application 

effects on water quality and corn yield. 

2.8 Crop Rotation, Cover Crops, Tillage, and Crop Residue Removal 

The impacts of other agronomic management practices including crop rotations, winter 

cover crops, tillage, and crop residue removal on water resources and crop production have been 

investigated using RZWQM. According to a long-term simulation in Southern Ontario, Canada, 

by Ahmed et al. (2007b), RZWQM calculated greater reduction of N losses in drainage on a silt 

loam soil than on a sandy loam soil when changing the rotation from corn-soybean to corn-

soybean-soybean. As stated in the model evaluation part, the RZWQM has been evaluated in 

Nashua, IA, United States, with 26 yr of data (1978–2003) and its performance was satisfactory 

in simulating the hydrology components of water table, soil water storage and tile drainage flow, 

as well as the N balance, crop yield and biomass using the statistics of r2 and RMSE (Ma et al., 

2007c). Figure 2.6 shows the responses of RZWQM to 26 yr of weather pattern in terms of the 

crop yield, tile flow, N loading in tile flow, and flow-weighted N concentration in tile flow 

across all treatments. Statistics listed in Fig. 2.6 indicated good performance of RZWQM in 

simulating the trend of yield, annual tile flow, and N loading in tile flow, despite some 

inaccuracies because of the presence of flooding in the years of 1993 and 1999. Overestimation 

of corn yield in some years resulted from waterlogging, which RZWQM did not consider. After 

the model evaluation, the long-term management impacts on hydrology and crops was simulated 

(Ma et al., 2007b), in which results showed 14% less drainage under the corn–soybean rotation 

than under continuous corn planting, which can be explained by the difference of ETrs between 
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corn and soybean. Yearly drainage was similar during the years when ETrs was similar for the 

two crops. 

Malone et al. (2007) simulated the long-term effect of winter cover crops on N loss and 

concluded that N loss can be reduced under winter cover crop without decreasing the corn yield. 

Qi et al. (2011) investigated the long-term impact of winter rye cover on water cycling and N 

dynamics under a soybean-corn rotation system. Before the long-term simulation, the model was 

calibrated and validated against the daily drainage flow under four different treatments (winter 

rye growth prior to corn in odd years and prior to soybean in even years (TRT1), winter rye 

cover crop growth prior to soybean in odd years and prior to corn in even years (TRT2), corn in 

odd years and soybean in even years without cover crop (CTRL1), and soybean in odd years and 

corn in even years without cover crop (CTRL2). The measured and simulated daily drainage for 

2007 and 2008 were compared to evaluate the performance of RZWQM with regard to 

simulating daily drainage (Fig. 2.7). As the model calculation of drainage as well as other 

components have been judged as “satisfactory” after statistical analysis, results of long-term 

simulation indicated that winter rye cover crop reduced annual subsurface drainage and NO3–N 

loss by 11% (29 mm) and 22% (11.8 kg N ha-1), respectively, and increased annual ET by 5% 

(29 mm) through a long-term (40 yr) simulation using RZWQM. Singer et al. (2011) found that 

winter cover crop helped to reduce the annual N loss from tile drainage by 24% and 19% in the 

corn-soybean and the corn-corn–soybean rotation, respectively. The reduction of N loss 

benefited from cover crops has been reported by Kladivko et al. (2014), who simulated the corn–

soybean rotation and continuous corn planting in the states of Ohio, Indiana, Illinois, Iowa, and 

Minnesota in the Mississippi River Basin using RZWQM. The authors demonstrated 20% less N 

loss to the Mississippi River under winter rye cover crop in the Midwestern United States, which 
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indicated the cover crop strategy as an effective adoption for reducing N losses and improving 

water quality in this area. Gillette et al. (2017a) simulated the NO3
- losses in subsurface drainage 

in central Iowa over 9 yr from 2002 to 2010 and found average measured and RZWQM 

simulated drain flow N concentration with winter rye cover crop were 60% and 54% less than 

without cover crop. 

Ma et al. (2007b) reported the impact of four different tillage practices on hydrology, 

including no-till (NT), ridge till (RT), chisel plow (CP) and moldboard plow (MP). Since 

different tillage practices only resulted in changes in soil hydraulics and mixture of crop residue 

in soil surface for a very short period after the application in the model, the results showed the 

drainage flow under NT was 7% to 14% higher than MP and 2% to 5% higher than CP. It was 

indicated that the tillage effects on drainage were closely dependent on the other management 

and weather conditions, and their effect on N loss in tile flow was the least compared to other 

management practices. A recent study by Shipitalo et al. (2016) reported a simulation on the 

effect of the removal of corn stover on pesticide loss through drainage water. It was indicated 

that residue removal would result in decreasing subsurface drainage because of the reduction of 

crust conductivity and soil macroporosity. Moreover, an increase in pesticide losses in drainage 

was found to be due to pesticide sorption reduction, which was caused by more water moving 

through fewer macropores. 

2.9 Climate Change Issues and N2O emissions 

Due to its capability of simulating hydrological processes, crop production, and nutrient 

dynamics corresponding to different agricultural management practices, as well as the reasonable 

response to the elevated CO2, RZWQM could serve as a tool to assess the climate change 

impacts on future hydrologic cycle and crop production, as well as to investigate adaptation and 
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mitigation methods toward the predicted situations. Ko et al. (2012) simulated the future climate 

change impacts on crop production in the Central Great Plains of the United States using 

RZWQM model. Future weather data were generated as the input for RZWQM to investigate 

ambient temperature, CO2 and precipitation effects on crop yields. Recently, a RZWQM 

simulation by Wang et al. (2015) reported that under future climate (2045–2064), subsurface tile 

drainage, NO3–N loss and flow-weighted average NO3–N concentration would increase by 15%, 

34% and 16%, respectively in Iowa, USA. The grain yields of soybean and corn in the future 

under different scenarios are shown in Fig. 2.8. Simulated soybean yield would be increased by 

28%, which mainly resulted from the enhancement of CO2 concentration and photosynthesis rate 

while the increased temperature has negligible impact. Simulated corn yield would decrease 

because of shorter growing days and earlier maturity dates due to increased air temperature. 

Although the wind speed, relative humidity and solar radiation have great impact on the 

simulated ETrs thus affect the crop yield and water balance, the predicted future changes in these 

three weather variables were very minor thus they had negligible impact on crop production and 

water balance.  

Gillette et al. (2017) tested the modified RZWQM2 model in predicting the effect of tillage 

and N fertilization amount on N2O emissions in an irrigated corn field in Colorado, indicating 

that it slightly under estimated N2O emissions by 1.5% and 7.1% under no-tillage and 

conventional tillage, respectively. Jiang et al. (2017) evaluated RZWQM2 for predicting N2O 

and CO2 emission in a subsurface drained field in Southern Quebec under water table 

management, and used the calibrated model to investigate different agronomic management 

impacts on GHG emission. With the available simulated results for long term climate change 

impacts on N losses in water, N2O emission and crop production, the modified RZWQM was 
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applied by Wang et al. (2016) to test different management practices in mitigating the negative 

effects. In this research, various management practices were investigated under future climate 

data which included different N application rates, tillage systems, new crop cultivars, water table 

management practices, and planting date. Long term simulation results suggested that (i) 

increasing N application led to higher corn yield and more N losses in drainage; (ii) the tillage 

systems showed no obvious influence on corn yield and N loss in drainage; (iii) new corn 

cultivars were proposed for increasing yield and reducing N2O emissions, N losses in drainage in 

the future; (iv) the controlled drainage reduced the drainage flow and N losses in drainage by 6% 

and 13%, respectively, while it had very limited impact on corn yield; and (v) delaying planting 

date could be an effective way to promote crop yield. 

2.10 The Comparisons of RZWQM with other Models 

The performance of RZWQM for simulating the hydrological components has been 

compared with some other similar models, indicating that RZWQM performed equivalently to, 

or even outperformed similar models. Singh et al. (1998) compared the performance of both 

RZWQM and DRAINMOD in simulating the climate and management practices impacts on tile 

drainage water quality. Simulated results showed that both models adequately simulated the 

effects of different management practices and rainfall amount on N losses in drainage water, but 

better calculation of N losses was found in DRAINMOD than in RZWQM, which was because 

DRAINMOD had the algorithm to simulate NO3–N transformation under controlled drainage at 

that time while RZWQM did not. Another comparison between DRAINMOD and RZWQM in 

simulating the hydrology and N dynamics of a field in Iowa was reported by Thorp et al. (2009). 

After the calibration and validation of both models using the same dataset, the statistics of 

relative root mean squared error (RRMSE) and Nash–Sutcliffe model efficiency (NSE) indicated 
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that both models performed well in simulating the yearly drainage and daily drainage for the 

continuous 10 yr. However, with a greater control over the crop component by users, 

DRAINMOD simulated the NO3
- losses in drainage more accurately than RZWQM, while 

RZWQM simulated much more details of the processes with less required inputs. A comparison 

between RZWQM and GLEAMS was made by Chinkuyu et al. (2004) in simulating the 

processes by calibrating the two models using the field experimental data from the fields at the 

USDA research center in Beltsville, MD. Simulated results from both models suggested the 

presence of a seepage zone that helped to improve the accuracy in calculating the soil water 

content and surface runoff. However, statistical results of PBIAS, root mean squared error 

(RMSE), coefficient of determination (r2), NSE and index of agreement (IoA) all indicated a 

better capability of RZWQM than GLEAMS in calculating the effects of the seepage zone on 

soil water content and surface runoff, which was explained by RZWQM using the Green-Ampt 

infiltration method while GLEAMS using NRCS (Natural Resources Conservation Services) 

curve number method. Another comparison reported by Ma et al. (1999) suggested that 

RZWQM calculated the partitioning of ET to soil water evaporation more reasonably while 

GLEAMS tended to overestimate it. The performance of the MACRO model in simulating water 

discharge under a subsurface drainage system from an experimental site in Western France has 

been compared with the RZWQM by Kuzmanovski et al. (2015). The comparison between these 

two models indicated a better simulation by RZWQM rather than MACRO in simulating the 

overall drainage flow in terms of RMSE, and the RZWQM model simulated the timing of peak 

flows while MACRO model missed most of the major peaks for drainage events. 

2.11 Summary and Conclusion 
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The RZWQM is a physically-based agricultural system model that integrates the physical, 

chemical, and biological processes for simulating the movement of water, nutrients, and 

pesticides and growth of crops in the field under various management practices. The drainage 

component was developed and modified to meet certain research goals, extending its availability 

for simulating the hydrology and drainage water quality under different conditions. Experienced 

users can calibrate the model manually by a trial-and-error method, but other automatic 

calibration methods are also available such as PEST, quantum-behaved particle swarm 

optimization (QPSO) algorithm and surrogate-based optimization algorithm. The model has been 

evaluated as satisfactory and applied successfully in many regions for simulating the impact of 

agricultural management practices and climate change on hydrology and water quality. The 

RZWQM provides an efficient way to qualify and quantify the agronomic management effects 

on water balance, quality and crop production, therefore gives solutions to optimize crop growth 

conditions and improve water quality, and provides directions for future field experiments. 

Overall, it is a very comprehensive biophysically-based model and its performances in 

simulating the hydrologic process, crop growth as well as the C/N cycle are comparable to many 

hydrological models. The RZWQM integrates the modules from various models, which makes 

the model applicable to many agricultural systems and environmental issues. However, it also 

brings a formidable task for new users to calibrate this model. In addition, many other limitations 

still exist in the model. For example, since it is a one-dimensional model, it does not simulate a 

regional water table that may affect tile flow. Meanwhile the biological, chemical and physical 

processes within the soil profile are much more complex and may be influenced by many 

uncontrollable factors. Moreover, the quality of measured data from field experiments has crucial 

impact on the model performance. Furthermore, the model does not consider the water ponding 
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and flooding that may also affect its accuracy in simulating the soil water dynamics and crop 

growth. Finally, because P is one of the major factors of nonpoint source pollutions that 

contribute to eutrophication, the ongoing effort in developing P subroutine for RZWQM should 

be encouraged and continued. Therefore, future work is suggested to complete the P cycle 

component and water ponding for the model, and more evaluations are required to further test its 

ability in simulating greenhouse gas emissions, N fixation, crop N uptake and water balance in 

frozen soil. 
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Fig. 2.1. Flow chart of daily and hourly executions of RZWQM (adapted from Fang et al., 2014a), Es is soil 

water evaporation; Ec is crop transpiration; ETsz is reference evapotranspiration; DP is deep seepage; DR is 

drainage; LF is lateral flow; P is precipitation; and I is irrigation. 
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Figure 2.2. Aerobic decay of organic matter in OMNI submodel (adapted from Ahuja et al, 2000). 

 

 

Figure 2.3. Aerobic and anaerobic processes in OMNI submodel (adapted from Ahuja et al, 2000). 
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Fig. 2.4. Measured and simulated monthly tile flow, flow weighted nitrate-N concentration (FWNC), and 

nitrate-N losses. These are averaged from plots 4, 5, 6 under free drainage (FD: 2006–2008) and from plots 1, 

2, 3 under controlled drainage (CD: 2006–2008) conditions. For FWNC, some of the measured and simulated 

data with low tile flow were removed due to low impact on simulated and measured N loss; plot numbers are 

shown in brackets (adapted from Fang et al., 2012). 
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Fig. 2.5. Measured and simulated NO3-N concentration at different N rates and their fitted curves using data 

a) in individual year and b) average across years. The shaded areas are within the 95% confidence interval for 

the fitted curves based on the simulated values. The thinner short dash lines are the upper and lower boundary 

of 95% of confidence interval for the fitted curves based on the simulated values. FWANC, flow-weighted 

average NO3-N concentration (mg N L−1); MCL, maximum contaminant level (adapted from Qi et al., 2012). 
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Figure 2.6. Simulated and measured average corn and soybean grain yield, yearly tile flow, yearly N 

loading in tile flow, and flow weighted N concentration in tile flow across all treatments (adapted 

from Ma et al., 2007c). 
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Figure 2.7. Measured and simulated daily drainage in 2007 and 2008. Daily drainage in 2006 was minor after 

the daily drainage measurement starting date of 12 April 2006. TRT1: winter rye growth prior to corn in odd 

years and prior to soybean in even years; TRT2: winter rye cover crop growth prior to soybean in odd years 

and prior to corn in even years; CTRL1: corn in odd years and soybean in even years without cover crop, and 

CTRL2: soybean in odd years and corn in even years without cover crop (adapted from Qi et al., 2011). 
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Figure 2.8. Cumulative distribution functions (CDFs) of soybean and corn grain yields for future under 

different scenarios: a CDFs of soybean yields; b CDFs of corn yields; c soybean yields for different models; d 

corn yields for different models. BL: the baseline; BL_M1 to BL_M6: future scenarios from different climate 

models; AVG: average over six models (adapted from Wang et.al., 2015). 
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Table 2.1. The statistics for model evaluation (Ci and Mi are the model calculated and experimental 

measured points, n is the number of observations, 𝑪̅ and 𝑴̅ are the average calculated and measured 

values), Adapted from (Ma et al., 2012). 

Statistics Satisfactory 

range  
Full name Equation 

 

PBIAS 

 -15 % 

<PBIAS 

<15% 

 

Percent bias 

PBIAS =
∑ (𝑀𝑖 − 𝐶𝑖)100𝑛

𝑖=1

∑ 𝑀𝑖
𝑛
𝑖=1

 

 

NSE 

 

 

>0.7 

Nash-Sutcliffe 

model efficiency 

(Moriasi et al., 

2007) 

NSE = 1 −
∑ (𝑀𝑖 − 𝐶𝑖)2𝑛

𝑖=1

∑ (𝑀𝑖 − 𝑀̅)2𝑛
𝑖=1

 

IoA 

 

>0.7 Index of Agreement 

(Willmott, 1981) 

IoA = 1 −
∑ (𝐶𝑖 − 𝑀𝑖)2𝑛

𝑖=1

∑ (|𝐶𝑖 − 𝐶̅| + |𝑀𝑖 − 𝑀̅|)2𝑛
𝑖=1

 

 

RMSE 

 

- 

 

Root Mean Square 

Error 

RMSE = √
∑ (𝐶𝑖 − 𝑀𝑖)2𝑛

𝑖=1

𝑛
 

RRMSE <30% Relative RMSE 
RRMSE =

𝑅𝑀𝑆𝐸

𝑀̅
 

r2 > 0.80 Coefficient of 

determination 𝑟2 = 1 −
∑ (𝑛

𝑖=1 𝑀𝑖 − 𝑀̅)(𝐶𝑖 − 𝐶̅)2

∑ (𝑀𝑖 − 𝑀̅)2𝑛
𝑖=1 ∑ (𝐶𝑖 − 𝐶̅)2𝑛

𝑖=1

 

RSR ≤0.7 RMSE-observations 

standard deviation 

ratio 

RSR = 
𝑅𝑀𝑆𝐸

𝑆𝑇𝐷𝐸𝑉𝑜𝑏𝑠
=

√∑ (𝑀𝑖−𝐶𝑖)2𝑛
𝑖=1

√∑ (𝑀𝑖−𝑀̅)2𝑛
𝑖=1
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Table 2.2. Choice of hydraulic parameters and variables to be considered for calibration for 

hydrology processes or outcomes (adapted from Ma et al., 2011). 

Processes or Outcomes Related Parameters or Variables 

Soil water dynamics Brooks-Corey parameters, especially 𝜃1/3 (1/3 bar) and 𝜃15 (15 

bar suction), pore size distribution index (λ), bubbling pressure 

(ℎ𝑏), 𝑁2, and 𝐾𝑠𝑎𝑡, bulk density or porosity, water inputs to the 

soil and losses from the soil including plant water uptake. 

Runoff 𝐾𝑠𝑎𝑡 at surface layer, rainfall intensity, presence of macropore 

flow, and surface crusting. 

Tile flow 𝐾𝑠𝑎𝑡 and lateral 𝐾𝑠𝑎𝑡, tile spacing and depth, lateral flow below 

tile controlled by a lateral hydraulic gradient, drainable porosity 

(porosity – 𝜃1/3) and water table leakage rate. 

Water table fluctuation 𝐾𝑠𝑎𝑡 at lower soil layers, tile flow amount, lateral flow below 

the tile lines, and leakage rate. 

ETrs Albedo, residue cover, LAI (leaf area index) simulation, 

stomatal resistance, soil surface resistance to vapor flux, and 

rooting depth. 

Water uptake ETr, rooting depth, soil water content, 𝜃1/3 and 𝜃15, 𝐾𝑠𝑎𝑡 by 

layer, and soil root growth factor (SRGF). 
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Table 2.3. Examples related to drainage component and drainage water quality calibration in 

RZWQM (adapted from Ma et al., 2011). 

Parameters Calibrated Measurements to Match Authors 

Interpool transfer 

coefficients among soil 

carbon pools 

N loss in tile flow, soil N 

distribution 

Malone et al. (2010) and 

Ma et al. (1998) 

Lateral hydraulic gradients 

and lateral hydraulic 

conductivity, 

Brooks-Corey soil water 

retention parameters 

Tile flow Malone et al. (2010), Ma et 

al., (2007c), Nolan et al. 

(2011), and Qi et al. (2011) 

Porosity and field capacity Subsurface drainage Kumar et al. (1998a) and 

Bakhsh et al. (2004a) 

Pesticide adsorption 

constant and pesticide half-

life 

Pesticide loss in tile drainage Bakhsh et al. (2004b) 

Lateral sorptivity factor to 

macropore walls 

Pesticide leaching into tile 

flow 

Kumar et al. (1998a) and 

Malone et al. (2001) 

Initial soil water content if 

not measured 

Pesticide soil distribution, 

tile flow 

Azevedo et al. (1997) and 

Singh et al. (1996) 

Brooks and Corey fitting 

parameters, Ksat, lateral Ksat 

and drainable porosity 

tile flow Ahmed et al. (2007a) 
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Connecting text to Chapter 3 

Chapter 2 introduced the RZWQM by presenting the development and improvement of its 

hydrologic and GHG emission components, the theories used for computing the water balance 

and GHG emissions, the model parameterization approaches, previous works on model 

evaluation and its comparisons with other models, model applications to assess agricultural 

management and climate change impacts on hydrology, crop growth and water quality, model 

limitations and future work. Chapter 3 presents the first attempt of evaluating the hydrologic 

component of RZWQM2 (Root Zone Water Quality Model) using a comprehensive hydrological 

dataset including subsurface tile drainage, subirrigation, soil water content, sap flow and crop 

growth data (leaf area index, crop yield and crop growth stages). A Kalman filter technique was 

applied to enhance model reliability and reduce predictive uncertainties.  

The following manuscript, co-authored by Dr. Zhiming Qi, Chandra A. Madramootoo, and Ajay 

K. Singh, has been published in the journal of Computers and Electronics in Agriculture. 

 

Jiang, Q., Qi, Z., Madramootoo, C.A. and Singh, A.K., 2018. Simulating hydrologic cycle and 

crop production in a subsurface drained and sub-irrigated field in Southern Quebec using 

RZWQM2. Computers and Electronics in Agriculture, 146, 31-42. 

  

  



48 
 

Chapter 3 

Simulating hydrologic cycle and crop production in a subsurface drained and sub-irrigated 

field in Southern Quebec using RZWQM2 

Qianjing Jiang, Zhiming Qi, Chandra A. Madramootoo, Ajay K. Singh 

 

Abstract 

Agricultural system models are promising tools in evaluating the agro-environmental 

effects of water management practices. However, very few models have been tested using a 

comprehensive hydrologic data set. The present study’s objective was to evaluate the hydrologic 

component of RZWQM2 (Root Zone Water Quality Model) using a comprehensive hydrological 

dataset including subsurface tile drainage, subirrigation, soil water content, sap flow and crop 

growth data such as leaf area index, crop yield and crop growth stages. Drawing on 2008 and 

2009 data from a farm site in Southern Quebec, the RZWQM2 model showed accurate 

simulation in soil water content, sap flow, growth stage, leaf area index, and crop yield. While 

mean values for growing season tile flow under both free drainage (FD) and controlled drainage 

with subirrigation (CD-SI) were reasonably accurate, winter tile flow was significantly 

overestimated, indicating RZWQM2’s reliability to be compromised by its imperfect winter 

drainage process. Accordingly, a Kalman filter technique was applied to enhance model 

reliability and reduce predictive uncertainties. A novel modelling approach, RZWQM2 model 

equipped with a Kalman filter algorithm adequately simulated, in both calibration and validation 

phases, the hydrology and corn growth which occurred under both FD and CD-SI systems at the 

selected field site. Simulation results suggest that RZWQM2 model can be used for water 

management under subsurface drained and irrigated field and the Kalman filter technique 

significantly improved the accuracy of RZWQM2 model in simulating winter drainage in cold 

areas. 
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3.1 Introduction 

For agricultural crops, both excesses and penuries of water can result in irreversible crop 

damage and attending yield losses. A key water management practice in removing excess water 

from agricultural soils in humid regions, artificial drainage has been widely installed in the 

humid and cold climate regions of the U.S. Midwest and Northeast (Ritter et al., 1995), as well 

as eastern Canada (Madramootoo et al., 2007). Regarded as a best management practice (BMP), 

water table management not only reduces N loss but also increases or maintains crop yield 

(Madramootoo et al., 2001). Water table depth management through subsurface tile drainage can 

operate in three ways: free drainage (FD), controlled drainage (CD), or controlled drainage with 

subirrigation (CD-SI). 

Besides the benefits on crop production, CD-SI also provides significant benefits for the 

environment. A 1998 study conducted at a field site in the St. Lawrence Valley near Montreal, 

Quebec demonstrated that CD-SI deceased nitrate (NO3
-) leaching, while degrading NO3

- in the 

field and limiting its translocation (Andrade et al., 2002). Further benefits were achieved when 

dissolved organic carbon is added to the sub-irrigation water, including the acceleration of 

denitrification rate, reduction of NO3
- pollution, and lessening of N2O release attributable to 

subirrigation-enabled bacterial reduction of N2O to N2 (Andrade et al., 2002). 

A number of reports over the last few decades have shown CD-SI to increase crop yield 

while decreasing N and P losses. Controlled drainage reduced drainage outflow and enhanced 

denitrification, thereby reducing NO3–N losses (Ridao et al., 1998). The reduction of N and P 

loss achieved by implementing CD varied from 30% to 50% of losses under FD, depending on 

soil type, climate, drainage system design and management (Evans et al., 1995). On a sandy 

loam soil in Southwestern Ontario, Canada, one year’s tomato (Solanum lycopersicum L.) yield 
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under a CD-SI system increased 11% over that achieved under FD, while another year’s corn 

(Zea mays L.) increased by 64% under the same comparison. Meanwhile, the total NO3
- loss 

under the CD-SI system was 24% lower than under the FD system (Tan et al., 1997). Field study 

conducted in an experimental site in Southern Quebec from 2001 to 2002 also indicated 

significant improvement of corn yield which is around 35% under CD-SI than FD (Stampfli and 

Madramootoo, 2006). A two-year field study conducted on a loamy sand in Sweden showed that 

under CD, NO3
- losses to subsurface drainage in the first and second year were 78% and 94% 

less than under FD, while the equivalent reductions in phosphorous losses were 58% and 85% 

(Wesstrom et al., 2001). On a silty clay loam soil in Iowa, annual NO3
- losses from 2007 to 2010 

were reduced by 36% under CD compared to FD (Helmers et al. (2012). In another study, the 

increase in crop N uptake and yield observed under a CD (vs. FD) system was attributed to a 

lack of water stress during the growing season and the resulting higher N and P use efficiency 

(Wesström et al., 2014). 

Though these field studies undertook to compare drainage flow rates, water quality, and 

crop yield under CD or CD-SI systems to those under standard FD practices, evaluation of the 

CD and CD-SI system’s performance remained limited and the data limited to a few years under 

specific weather and soil conditions. Moreover, field experiments are time consuming and 

prohibitively costly. However, agricultural system models are promising tools to evaluate 

different drainage systems over a long period of time for locations differing in soil type and 

climatic conditions (Thorp et al., 2007b). For example, the RZWQM2 can be executed for over a 

hundred years to evaluate long term impact of agricultural management and climate change on 

crop production and water quality. 
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Over recent decades, the Root Zone Water Quality Model’s ability to investigate 

agricultural management practices’ effects on water quality and crop growth for sites differing 

significantly in their climatic and pedological conditions, has been widely evaluated (Ma et al., 

2012). The model’s latest version (RZWQM2) incorporates the DSSAT V4.0 crop growth 

models and the SHAW energy balance model (Ma et al., 2011). Akhand et al. (2003) 

successfully used RZWQM to predict water table, subsurface drainage, and soil moisture in 

agricultural fields situated in Nova Scotia and Southern Ontario, Canada. The model’s prediction 

of tile drainage and leached NO3
-  for sites in Iowa and the Georgia Piedmont was evaluated and 

shown to be accurate (Singh et al., 1996; Bakhsh et al., 2001; Abrahamson et al., 2006; 

Saseendran et al., 2007; Qi et al., 2011, 2012). Lu (2015) first tested the performance of 

RZWQM2 in predicting the surface runoff and drainage in a subsurface drained field in Ontario 

and found that the model satisfactorily simulated surface runoff and subsurface drainage in FD 

field but for the CD-SI field the simulation was not acceptable. 

With the exception of a study using DRAINMOD (Morrison et al., 2014), few studies 

have evaluated the performance of field-scale agricultural drainage models, drawing on a full set 

of hydrological data, in simulating hydrology in regions subject to extreme cold and humid 

conditions (i.e., Southern Quebec, Canada). For instance, DRAINMOD has been evaluated on 

the basis of its capacity to accurately simulate measured runoff, subsurface drainage flow, 

erosion, and sediment-bound nitrogen data (Wright et al., 1992), drainage and water table 

(Dayyani et al., 2010a, b; Skaggs et al., 2012; Golmohammadi et al., 2016), drainage and crop 

yield (Luo et al., 2009), or drainage only (Singh et al., 1996), but rarely against a full set of 

hydrological data including both ET and soil water content. The Agricultural Drainage and 

Pesticide Transport (ADAPT) model was tested against measured subsurface drainage and runoff 
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(Chung et al., 1992) and subsurface drainage flow only (Sogbedji and McIsaac, 2002; Gowda et 

al., 2012), while RZWQM has been evaluated using water table, soil water storage, tile drainage, 

N balance, and crop yield and biomass (Ma et al., 2007c), but none of the models have been 

assessed using ET data measured under drainage conditions. 

In calibrating a hydrologic model for simulating only one or two observed agricultural 

system components, modelers may ignore simulation errors with respect to further unmeasured 

hydrologic components, thereby erroneously presenting the overall simulation performance as 

accurate. However, it may in fact provide a poor simulation of important non-quantified 

hydrological components. For instance, one can decrease the evapotranspiration (ET), which was 

not monitored, to obtain a highly accurate simulated drainage; however, the ET value with which 

the model operates may deviate significantly from its genuine value in the field. No previous 

study has been conducted to evaluate agricultural models with a comprehensive dataset. 

The objectives of this study are to evaluate RZWQM2 for a site in Southern Quebec 

implementing both FD and CD-SI systems, using a comprehensive dataset including subsurface 

drainage flow, crop transpiration, soil water content, as well as crop yield, leaf area index and 

growth stages. A model calibration strategy to further minimize the error between simulated vs. 

measured drainage by including a Kalman filter system into the model was tested. Although the 

Kalman filter technique has been extensively studied and successfully applied in assimilating 

measurements and data (de Wit and van Diepen, 2007; Flores et al., 2012; Zhao et al., 2013), few 

studies have evaluated its performance in modeling and model calibration (Clark et al., 2008). In 

this paper, the accuracy of a drainage estimation system implementing a Kalman filter and 

drawing on a dataset from a field in Southern Quebec was evaluated. 

3.2 Materials and methods 
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3.2.1. Field experiment 

The field study was conducted from 2008 to 2009 at a 4.2 ha subsurface drained corn 

field near St. Emmanuel, Quebec (latitude 45.32, longitude −74.17). The soil at this site is a 

Soulanges very fine sandy loam with 50 g kg−1 organic matter in the top layer (0–0.25 m), 

followed by layers of sand clay loam with 1.5% organic matter (0.25–0.55 m) and clay layers 

with little organic matter content (0.55–1.0 m). Corn was planted in both years at a row spacing 

of 0.76 m. In 2008 Mycogen seed was planted on May 4 at a density of 89,000 seeds ha−1, and in 

2009 Pioneer 38N88 was planted on May 7 at a seeding rate of 85,000 seeds ha−1. 

Subsurface drained plots (75 m × 15 m) were grouped in three blocks, each housing two 

water table management regimes (FD and CD-SI) with three N application rates nested within 

each water table management regime (Fig. 3.1). The water table management practices were: 

conventional free drainage (FD) and controlled drainage with subirrigation (CD-SI), running 

along the direction of drainage pipes in each of the blocks. The three N applications were set up 

orthogonally in the middle two strips of each block. The subsurface drains were installed at a 

depth of 1.0 m on a 0.5% slope in the center of each plot (Madramootoo et al., 2001). For CD-SI 

the water table depth was set at 0.6 m and 0.75 m in 2008 and 2009, respectively. The three N 

applications, low N, medium N and high N, and N application timing are listed in Table 3.1. 

Subirrigation was achieved by pumping water from a well into the drainage pipes through water 

table control structures. Controlled drainage in sub-irrigation plots was initiated on May 21 and 

ended on Sept 9 in 2008, while in 2009 it began on June 23 and ended on Sept 9. 

3.2.2. Data collection 

A weather station was installed in situ to measure hourly temperature, precipitation, 

relative humidity, wind speed, solar radiation and soil temperature. Missing readings for some 
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days (e.g. for precipitation) were drawn from the Environment Canada weather station at Côteau-

du-Lac (Station ID – 7011947), located 500 m from the experimental site. Soil properties, 

including soil texture, organic matter content and bulk density were measured using undisturbed 

soil cores sampled from the field. 

Available experimental measurements included subsurface drainage flow, subirrigation 

amount, water table depth, soil water content (θ), crop transpiration (sap flow), grain yield, leaf 

area index (LAI), and phenological dates for emergence, silking and physiological maturity. The 

LAI was measured from June 10 to July 30 in 2008 using a LI-3000 (LI-COR Environmental, 

Lincoln, NE) and from July 21 to Aug 21 in 2009 using a LI-2000. The LAI was measured six 

times during the 2008 growing season, starting from an early stage on June 10 to a peak growing 

stage on July 30, and five times from July 21st to September 7th in 2009. The observed 

physiological maturity dates were Sep 21, 2008 and Sept 24, 2009 and the harvest dates were Oct 

15, 2008 and Oct 20, 2009. In the two control stations, 12 (2 plot drains × 2 drainage 

treatments × 3 blocks) tipping bucket flow meters were installed to measure subsurface drainage 

flow, one for each drainage pipe. The flow meters were calibrated and connected to a data logger 

(Tait et al., 1995). The θ was recorded with two sets of soil moisture sensors: WATERMARK 

sensors (Model No. 6450; Spectrum technologies, Inc., Plainfield, Ill, USA) installed at a depth 

of 0.15 m, and ThetaProbe sensors (Model ML2x; Delta-T Devices Ltd., Cambridge, UK) at a 

depth of 0.45 m (Singh, 2013). Observed θ data is available for a depth range of 0.20–0.25 m in 

2008 and 0.40–0.45 m in 2009. Corn transpiration was measured by a sap flow method using a 

Dynagage Flow32-1K system (Dynamax, Houston, Texas, USA). Mean diameter of the corn 

stem was 22 and 23 mm in 2008 and 2009, respectively. Eighteen gage models (one gage for 

each plot) of SGB19-ws (diameter ranging from 18 to 23 mm) and SGB25-ws (diameter ranging 
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from 24 to 32 mm) from Dynagage Flow32-1K system (Dynamax Inc, Houston, Texas, USA) 

were installed on 22 July 2008 and 22 July 2009 to measure the sap flow of three plants in each 

plot. The gages installed on the stem were connected to data logger with 20 to 24 gage cables, 

and the sap flow readings were taken every 60 s and averaged over 30 min intervals. 

3.2.3. Overview of RZWQM2 

The RZWQM is aone-dimensional agricultural system model that houses physical, 

chemical, and biological processes for simulating the movement of water, nutrients, and 

pesticides, as well as crop growth in the field under various management practices (Ahuja et al., 

2000b). The model uses the Green-Ampt equation (Green and Ampt, 1911) to simulate the 

infiltration of surface water and melted snow into the soil and the Richards equation (Richards, 

1931) to calculate water distribution in the soil profile between rainfall or irrigation events 

(Ahuja et al., 2000b). The potential evaporation and crop transpiration are described by the 

Shuttleworth-Wallace equation (Shuttleworth and Wallace, 1985). Tile drainage flux is 

calculated by the Hooghoudt equation (Ahuja et al., 2000b). Agricultural management practices 

option available for users include crop cultivar selection and planting, manure application, 

irrigation, fertilization, pesticides and tillage. In case of subirrigation, water was introduced to 

the soil profile at a user-defined depth as a source for solving Richards equation (Richards, 

1931). 

3.2.3.1. RZWQM2 model calibration 

The model was calibrated and validated against two years of field experiment data (2008 

and 2009). Calibration was based on phenology of corn growth stages, leaf area index (LAI), 

drainage flow rate, corn transpiration, soil water content, water table depth and yield in FD plots, 

and measured data in CD-SI plots were used to validate the model. 
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i. Hydrology component 

The bulk density was measured before planting in 2008. Soil hydraulic parameters 

including saturated and residual soil water content, saturated hydraulic conductivity (ksat), lateral 

ksat, bubbling pressure and pore size distribution were calibrated first, using measured soil 

moisture content and subsequently adjusted using drainage flow data. Both increasing the 

bubbling pressure and decreasing the pore size distribution will result in more water remaining in 

the soil, thereby decreasing the movement of water downward into the drains (Walker et al., 

2000). To maintain a high water table, the ksat of the last soil layer was set at 0.1 mm h−1 (Thorp 

et al., 2007b). The lateral Ksat was suggested to be adjusted as 2 times of vertical Ksat to match 

the peak drainage flow (Qi et al., 2011). Soil root growth factors (SRGF), representative of the 

ability of crop roots to grow in a given soil layer, influence the amount of soil water which roots 

can potentially take up from this layer (Ma et al., 2009). The SRGF values for corn were adopted 

from Qi et al. (2011). Detailed soil hydraulic parameters are shown in Table 3.2. 

In RZWQM2, potential evapotranspiration (ETp) is estimated using the Suttleworth-

Wallace approach (Ahuja et al., 2000b). To simulate the ETp, a number of parameters are 

needed, including daily leaf area index (LAI), surface soil resistance, minimum stomatal 

resistance and the albedos of dry soil, wet soil, crop and fresh residue (Ma et al., 2011). A 

reasonable simulation of LAI is essential for correct ETp simulation; therefore, given that LAI is 

closely related to the crop growth stage, accurate simulation of LAI requires an accurate 

knowledge of crop phenology. Surface soil resistance in the Shuttleworth-Wallace equation is 

sensitive to soil evaporation; therefore, increasing the albedo of bare dry soil or bare wet soil 

would lead to a decrease in evaporation. Similarly, increasing the crop’s albedo at maturity 

would result in lower transpiration. Detailed calibrated parameters are listed in Table 3.3. 
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ii. Nutrient component 

To properly initialize the soil microbial populations, it is suggested to run the model for 

at least 10–12 years prior to the simulation period (Ma et al., 1998). Accordingly, the model was 

run from 1998 to 2007 to stabilize the organic matter pools. Corn was planted using the same 

cultivar as 2008 and 2009, The weather information from 1998 to 2009 was obtained from the 

weather station at Côteau-du-Lac. Corn was planted continuously within the 10 years using the 

same cultivar parameters as indicated in Table 3.4 and the field was freely drained with the N 

fertilization amount at 180 kg ha−1 per year. Other agricultural management applied was the same 

as the treatment in 2008 and 2009, including the timing of crop planting and harvest, tillage, and 

fertilization. Initial soil organic matter (SOM) was obtained from the field experiment and the 

OM fraction were set at 4%, 3%, 2% and 2% in the soil layer at depths of 0.20, 0.40, 0.60 and 

0.80 m, respectively. 

The nutrient parameters were calibrated to obtain reasonable crop yields. The 2009 

simulated corn yield was roughly 4.0 Mg ha−1 with RZWQM2 default nutrient parameters, 

whereas the observed yield was over 10 Mg ha−1. In view of this mismatch, model output was 

found to show unreasonably low mineralization (around 20 kg N ha−1 y−1 for the top 0.80 m of 

soil). According to a soil measurement made near Montreal in 2001, where a 50 kg N ha−1 

fertilizer application was made, potential N mineralization in the top soil (0–0.20 cm) varied 

between 64 and 122 kg ha−1, according to the soil texture (Simard et al., 2001). Carpenter-Boggs 

et al. (2000) reported the mineralization amount from 150 to 160 kg N ha−1 during the growing 

season with 181 kg N ha−1 fertilization in South Dakota, US. The simulated mineralization being 

too low, more C needed to be portioned to the fast or intermediate pools (Ma et al., 2011). 

Accordingly, the interpool transformation coefficient for the slow residue pool to intermediate 
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soil humus pool was adjusted from a default value 0.1 to 0.3, and the fast residue pool to fast soil 

humus pool transformation coefficient was increased from 0.1 to 0.6 (Thorp et al., 2007b). The 

death rate of anaerobic heterotrophs was adjusted from 3.4 × 10−33 to 5 × 10−33 and that of aerobic 

heterotrophs from 5.0 × 10−35 to 4.0 × 10−37 (Table 3.3). These adjustments increased N 

mineralization from 20 kg ha−1 to around 150 kg ha−1. The concentration of NO3-N in rainwater 

was set to 1.2 mg L−1 based on an analysis of rainwater quality in Montreal (Poissant et al., 

1994). 

iii.  Phenology dates for corn growth stages 

In order to accurately simulate the development and growth of crops, crop parameters 

should be calibrated first against phenological dates, given their effect on crop yield, and 

secondly against plants’ varying sensitivity to water, nitrogen, and temperature stresses at 

different growth stages (Ma et al., 2011). Since neither the Mycogen 2R426 nor Pioneer 38N88 

cultivar was included in the DSSAT cultivar database, based on the strategy suggested by Ma et 

al. (2011), Pioneer 3382 was selected as the cultivar having predicted phenological dates 

(emergency, anthesis, and maturity) closest to observed dates. Eight cultivar parameters in the 

RZWQM2 interface can be used to adjust the growth and development of maize, including P1, 

P2, P5, G2, G3, PHINT, Maximum plant height at maturity (cm) and Plant biomass at half of 

maximum height (g), as defined in Table 3.4. The phenological parameters were set to very low 

values to match the observed growing days, including the days of emergence, silking and 

maturity. Given the date-of-anthesis’ sensitivity to P1 and P2 values, P1 was set at 200 growing 

degree days (GDD) and P2 was adjusted to 0.3 to match the observed silking day (July 30, 2008 

and August 2, 2009). To match the early maturity date of Sep 21, 2008, P5 was initially set as 

low as 550 GDD, despite the acceptable range being between 600 and 1000 GGD. However, it 
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led to the underestimation of corn yield, thus P5 was adjusted to 610 GGD to achieve a more 

reasonable estimation of both yield and maturity date. The value of PHINT was adjusted to 

match LAI during the vegetative periods. Both G2 and G3 were set to high values in the range to 

correctly simulate corn yield. 

iv.  Kalman filter 

The current RZWQM2 model predicted reasonable mean values for tile flow under FD in 

the growing season, while θ, water table depth, sap flow, growth stage, LAI, and crop yield 

showed a percent bias (PBIAS) within ±15%. However, the mean tile flow under CD-SI, as well 

as tile flow under FD in winter, were significantly overestimated. 

Given the considerable discrepancy (i.e., poor correlation) between simulated and 

observed values, one or more factors within the model, responsible for generating the error, must 

be identified and appropriately adjusted. The Kalman filter is an effective and widely-used 

method to eliminate errors which fits the Gaussian model (Xie and Zhang, 2010). Therefore, the 

errors which fit the Gaussian model would be eliminated if the RZWQM2 model were calibrated 

by the Kalman filter (Camporese et al., 2009). Hence, the Kalman filter is a promising approach 

for error elimination in this study. 

In applying the Kalman filter, the variance between model simulations and observed 

measurements is used to quantify model error (Clark et al., 2008). The characteristics and 

parameters of the Kalman filter having been obtained, it can be used to calibrate the model and 

optimize simulation results. 

At the onset, the Hooghoudt steady state equation serves to compute drainage flux in the 

RZWQM2 model: 
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𝑑𝑓 =
8𝐾𝑒𝑑𝑒𝑚+4𝐾𝑒𝑚2

𝐿2
                                                                                    [3.1] 

𝑑𝑒 is the equivalent depth of the impermeable layer below the tile drains (as affected 

by drain depth and midpoint water table height; mm ), 

𝑑𝑓 is the drainage flux ( 1mm h ); 

m is the midpoint water table height above the drain ( mm ); 

𝐾𝑒 is the effective lateral saturated hydraulic conductivity ( 1mm h ); and 

𝐿         is the distance between drains ( mm ); 

The drainage flux model could be presented as the linear system (Sinopoli et al., 2004):  

𝑥̂𝑘̅ = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 + 𝑞𝑘−1                                                           [3.2] 

𝑦𝑘 = 𝐻𝑥𝑘 + 𝑟𝑘                                                           [3.3] 

such that: 

∑ 𝑥𝑖 = ∑ 𝑑𝑓𝑖
1=𝑘
𝑖=1 = ∑

8𝐾𝑒𝑖𝑑𝑒𝑖𝑚𝑖+4𝐾𝑒𝑖𝑚𝑖
2

𝐿𝑖
2

𝑖=𝑘
𝑖=1

𝑖=𝑘
𝑖=1   

[3.4] 

where, 

𝑥̂𝑘̅  is the predicted state of the system at day k; 

𝑥𝑘−1 is the state of the system (the accumulated simulated from day 1 to day k-1); 

𝑢𝑘−1  is the control signal (i.e., observed drainage) of the system at day k-1; 

𝑞𝑘−1  is the system error of designed linear system at day k-1;  

A and B  are the linear system’s parameter; 
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𝑦𝑘          is the observed value at day k; 

𝑟𝑘 is the error of observation, i.e., the daily error between simulated and observed  

values; and 

H           is the system’s measurement parameter, in this study H = 1.  

The values of system parameters A and B are the transition matrix and the control matrix, 

respectively (Roweis and Ghahramani, 1999), which are determined by the dimension, order and 

relationship of the linear system’s different variables. For example, in the present study, having 

only one input and one output, so A and B are matrix with only one unit (a 1×1 matrix). As the 

simulated drainage is of the same order as the control input, the values of A and B must be real 

numbers. The accumulated drainage at day k represents the sum of accumulated drainage at day 

k-1 along with the control input; accordingly, the values of A and B are both 1. 

The specific sequence of the use of a Kalman filter in this study is summarized in Fig. 3.2. 

The FD data served as initial data, which could then be expressed in the form of the linear 

system model. A Kalman filter then being applied, all the necessary variables and parameters 

could be obtained. A best estimation could be generated after optimization of the Kalman filter. 

The Kalman filter system applied in the present study consisted of five main steps: the first 

two leading to an updating of time history variables, while the last three steps updated current 

state variables (Mehra, 1970). Detailed information for the five steps are as follows: 

         Step 1. Predict simulated drainage and calculate system error at day k. 
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Based on the linear system (Eq. [3.2]), the simulation value on the current day (k) could 

be predicted by the simulation value and control signal of the previous day (k − 1) as well as the 

previous day’s system error. This predicted value would be modified in Step 4. 

Step 2. Predict the estimation error at day k. 

The estimation error at day k, 𝑃𝑘̅, is given as: 

𝑃𝑘̅ = 𝐴𝑃𝑘−1𝐴𝑇 + 𝑄                      [3.5] 

where, A is the system parameter, 𝑃𝑘−1 is the estimation error at day k-1, T stands for matrix 

transpose, Q is the variance of the system error qk. 

Based on the linear system given above (Eqs. [3.2] and [3.3]), the estimation error of the 

current moment could be predicted by the system parameters and the true error of the last 

moment. Obviously, the estimation error is not the real error and it would be updated by the 

Kalman gain and other system parameters in step 4. 

Through the linear system designed above, the two state variables of the Kalman filter 

were predicted and updated in the time history. 

Step 3. Determine the Kalman gain at day k. 

The Kalman gain is the most important coefficient of the Kalman filter, allowing updating 

of both the best estimation value and the true error. The Kalman gain on the current day k (𝐾𝑘) is 

given as: 

𝐾𝑘 =
𝑃𝑘̅𝐻𝑇

𝐻𝑃𝑘̅𝐻𝑇+𝑅
  

[3.6] 

where, R is the variance of the observation error rk. 
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Step 4. Update the estimation value of the system at day k. 

With the Kalman gain generated in step 3 ([3.6]), the simulated value can be revised to a 

best estimate value for the current moment, i.e., the final simulated result. 

𝑥̂𝑘 = 𝑥̂𝑘̅
 + 𝐾𝑘(𝑦𝑘 − 𝐻𝑥̂𝑘̅

 )  [3.7] 

Step 5. Update the estimation error at day k  

The last step is to revise the estimation error to the true error using the Kalman gain, thereby 

preparing for the next round (i.e., day): 

𝑃𝑘 = 𝑃𝑘̅(𝐼 − 𝐾𝑘𝐻)  [3.8] 

Where, I is the unit matrix. In the present study, I = 1. 

Cycling through the five steps, the Kalman filter algorithm operates automatically one day 

after another, such that all of the drainage model’s Kalman filter parameters and variables are 

determined day to day. It should be noted that in the present case the Kalman Filter’s error was 

generated from FD data, the function of the Kalman filter having been to eliminate the error 

associated with a Gaussian distribution. The Kalman filter was then used for both FD and CD-SI 

data, and the simulation results show that the calibrated model has a good performance. Specific 

steps and samples of the Kalman filter designed in the present study are presented in the 

Appendix. 

3.2.3.2. Model accuracy statistics 

In this study, five statistics were used to evaluate the performance of RZWQM2 in 

simulating subsurface drain flow, soil water content, crop yield and LAI under different water 

table management practices and N application rates, in comparison with observed data. They are 



64 
 

percent bias (PBIAS), root mean squared error (RMSE), relative RMSE (RRMSE), Nash-

Sutcliffe model efficiency (NSE) and index of agreement (IoA). For the NSE and IoA, a value 1 

indicates perfect accuracy. Percent bias (PBIAS) measures the difference in mean values 

between simulated and observed data, and NSE is an indicator of the goodness of fit in terms of 

variance. Values of PBIAS within ±15%, NSE > 0.7, and IoA > 0.7 represent a satisfactory 

model performance (Ma et al., 2012). The value of the RRMSE when model estimates perfectly 

match observed data is 0, and its acceptable range is ±30%. 

PBIAS =
∑ (𝑂𝑖−𝑃𝑖)100𝑛

𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

   [3.9] 

RMSE = √
∑ (𝑃𝑖−𝑂𝑖)2𝑛

𝑖=1

𝑛
  

[3.10] 

RRMSE =
𝑅𝑀𝑆𝐸

𝑂̅
                [3.11] 

NSE = 1 −
∑ (𝑂𝑖−𝑃𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−𝑂̅)2𝑛
𝑖=1

   [3.12] 

IoA = 1 −
∑ (𝑃𝑖−𝑂𝑖)2𝑛

𝑖=1

∑ (|𝑃𝑖−𝑃̅|+|𝑂𝑖−𝑂̅|)2𝑛
𝑖=1

                                                                                               [3.13] 

where, 

n    is the number of observations; 

𝑂̅   is the mean observed value; 

𝑂𝑖   is the ith observed value; 

𝑃̅   is the mean predicted (simulated) value, and 

𝑃𝑖    is the ith predicted value. 

3.3 Results 



65 
 

3.3.1. Hydrology 

Annual precipitation at the site, located in Côteau-du-Lac, QC, was 1123 mm in 2008 and 

989 mm in 2009, compared to a long-term average (24 years of complete data between 1978 and 

2007) of 986 mm. While 2008 showed more precipitation than the long-term average, the 

growing season was slightly drier than average. In contrast, annual and growing season 

precipitation in 2009 were both very close to the historical average. Precipitation during the May 

to September growing seasons of 2008 and 2009 was similar in pattern and quantity (432 mm 

and 465 mm, respectively), and slightly below the historical average of 474 mm (Singh, 2013). 

3.3.1.1. Drainage 

The simulated and observed daily tile drainage is plotted in Fig. 3.3, showing that the 

model performed well in simulating most of the peak flows. However, it over-estimated the 

drainage flow in March 2009 and under-estimated it in August and September 2008. The 

monthly drainage during May to October 2008 and April to Oct 2009 is presented in Table 5. For 

the FD management scenario, the model over-estimated daily subsurface drainage by 30% 

(67.8 mm) in the calibration phase. Measured drainage across both years (from April 16 to 

October 27, 2008 and February 25 to November 6, 2009) was 225.8 mm, whereas the simulated 

total was 293.6 mm. The over-estimation occurred mainly in March and May, and were 69.5 mm 

and 38.9 mm, respectively for two years in total. The model under-estimated April 2009 drainage 

by 20.8 cm, perhaps because the model simulates the snow melt too early (all simulated 

snowmelt occurred before March 11, 2009). Summer drainage (June to August) under FD was 

under-estimated, especially in 2008 when the simulated annual ET was as high as 612 mm. The 

summer period ET might have been over-estimated, leading to an under-estimation of drainage 

flow. 
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For the CD-SI management scenario, most peak flows were well simulated, but the total 

drainage flow over 2 years was over-estimated by 43% (160 mm). The over-estimation of 

drainage occurred in March (80.5 mm) and May (39.6 mm). Table 5 shows the model accuracy 

statistics comparing simulated daily drainage with observed values. Daily drainage for the two 

years was over-estimated in all the plots. The model did not simulate daily drainage well, 

particularly during the snow melt period. The NSE values of daily drainage estimation for both 

FD and CD-SI were below zero (Table 5), which indicates a prediction of drainage peaks worse 

than simply taking the mean observed drainage. A high PBIAS also shows an overall over-

estimation of drainage flow. By applying the Kalman filter algorithm after calibrating the 

RZWQM2 model, the daily drainage predictions for both two treatments were improved 

significantly. The NSEs were increased from subzero values to 0.91 and 0.89 for FD and CD-SI, 

respectively. The PBIAS was improved from 30% to 9% for FD and reduced from 43% to 15% 

for CD-SI. The IoA was also increased from 0.60 and 0.66 to 0.97 for both FD and CD-SI. This 

improvement was mainly the result of error reduction through the application of the Kalman 

filter. For the FD drainage regime in the calibration phase and the CD-SI drainage regime in both 

calibration and validation phases, over the period of March to July 2009 the magnitudes of the 

RZWQM2 and RZWQM2-Kalman errors were quite distinct, the model error having decreased 

significantly after applying the Kalman filter algorithm (Fig. 3.4). 

Model accuracy statistics for monthly drainage, excluding snow melting periods (Table 

6), showed simulated subsurface drainage flow to be in good agreement with observed drainage. 

The performance of RZWQM2 in simulating monthly drainage under the FD treatment can be 

judged as “satisfactory” (PBIAS = −1.1%, IoA = 0.75), except for a low NSE of only 0.18. In 

terms of NSE and IoA, the CD-SI drainage regime simulations showed a better agreement 
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between measured and simulated monthly drainage during the growing season (April to October) 

than for the FD regime. The overall drainage was over-estimated by 25.2% with an overall NSE 

value of 0.39 under CD-SI. In both calibration and validation phases, implementing the Kalman 

filter increased the NSE from 0.18 and 0.39 for FD and CD-SI irrigation regimes, to 0.93 for 

both (Table 6). The Kalman filter algorithm reduced the under-estimation of the total monthly 

drainage amount during the growing season from 1.1% to 0.4% in FD, and lowered the over-

estimation from 25.2% to 9.0% under CD-SI. 

3.3.1.2. Soil water content (θ) 

RZWQM2 simulated θ was generally in good agreement (|PBIAS| < 15%) with observed 

θ data, though the NSE and IoA values were not high (Fig. 3.5, Table 3.7). This is widely 

encountered in soil moisture simulation studies (Fang et al., 2014 a,b). Though the model 

significantly underestimated some of the extremely high θ peaks under CD-SI in 2008 (July 23, 

Aug 7 and Aug 19), it over-estimated some peaks in 2009. 

3.3.1.3. Corn transpiration 

The observed average sap flow during summer (mainly in August) was 3.6–4.4 mm d−1 

(Fig. 3.6). For all the irrigation regimes, the error in RZWQM2 simulated (vs. measured) 

transpiration was ±15%; however, NSE values were not in an acceptable range (Table 3.8). As 

illustrated in Fig. 3.6, the simulated transpiration showed its best agreement with observed sap 

flow for the medium N fertilization treatment, with a PBIAS within 2%, 0.32 ≤ NSE ≤ 0.37 and 

0.69 ≤ IoA ≤ 0.78 (Fig. 3.6, Table 3.8). Among different N application rates, the model showed 

no differences in simulated transpiration or LAI, whereas the observed sap flow varied between 

each treatment (Figs. 3.6 and 3.7). 
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3.3.1.4. Soil water balance 

Based on the growing season water balance generated by the RZWQM2 model in the 

calibration phrase (Table 9), the water supplied by precipitation was not able to fully support the 

requirements of water usage through crop transpiration and soil evaporation. Accordingly, soil 

water storage (174 mm and 123 mm at the onset of the 2008 and 2009 growing seasons, 

respectively) was used to meet these requirements. The low soil water storage in FD at the end of 

growing season concurred with the deep simulated water table in August and September. For the 

CD-SI, no significant increase in evapotranspiration was found over the FD regime. Only 38 mm 

(20.9%) and 55 mm (30.6%) of irrigation water went into the drainage, most of the 

supplementary irrigation was routed to the soil profile to maintain the water table. 

3.3.2. Crop growth and yield 

Except for an 8-day delay in simulated (vs. measured) crop maturity date in 2008, the 

RZWQM2 model simulated different crop growth stages within 0–3 days (Table 3.10). The 

simulated phenological dates in 2009 were also reasonable, with simulated emergence being 

3 days late, silking date one day earlier and maturity date 3 days earlier. Accuracy statistics show 

a good model prediction of LAI under three different N application rates under both FD and CD-

SI irrigation regimes (Table 3.8). The NSE for the six treatment combinations ranged from 0.76 

to 0.96, with IoA close to 1 for all treatments and PBIAS within 15%. Fig. 3.7 shows that the 

simulated LAI closely followed the observed LAI. 

In both years simulated yield under FD was simulated exceptionally well (PBIAS ≈ 0%), 

while under CD-SI it was only over-estimated by 3% in 2008 and 2% in 2009 (Table 10). The 

field experiment indicated similar high yield (around 12 Mg ha−1) for all the N application rate 

treatment under both FD system and CD-SI system in 2008. This lack of difference among 
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treatments was perhaps the result of a more fertilizer-rich soil in 2008 (initial N application of 

43 kg ha−1) compared to 2009 (27 kg ha−1) (Table 3.1). In the experimental field, peas (Pisum 

sativum L.) were planted in 2007, instead of corn, resulting in a better soil structure in the 

subsequent year (Singh, 2013). To simulate high yield, reasonable rates of mineralization and 

denitrification of initial N levels were set during calibration. The model output suggests that no 

nitrogen or water stress occurred under any of the treatments in 2008. However, in 2009 the 

simulated yield differed for both FD and CD-SI drainage management routines and under the 

different N applications rates as a result of N stress brought on by lower N applications. 

3.4 Discussion 

Opposite to the results reported by Stampfli and Madramootoo (2006) and Tan et al. 

(1997), both our measured data and the modeling results showed a lower yield under CD-SI than 

FD (Table 10). This concurs with observations at the same experimental site in 1998 and 1999, 

when yields were 25% and 1.7% greater under FD than CD-SI (Madramootoo et al., 2001). The 

crops subjected to the CD-SI drainage management scenario likely suffered from waterlogging 

when too much precipitation and irrigation were applied, causing the water table to rise to very 

high levels (Madramootoo et al., 2001). In our experiment, the average water table reached up to 

20 cm below the surface, while in some plots even to the soil surface in early June and late July 

in the year of 2008. Similar results were also found in the thesis of Lu (2015), who simulated 

slightly lower corn and soybean yield under CD-SI than FD in 2008, 2009 and 2011 in Harrow, 

Ontario using RZWQM2. Meanwhile, there was no significant difference of the measured corn 

and soybean yield between FD and CD-SI, which was explained by sufficient rainfall for the 

crops in this area. 
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The present simulations showed no water stress to have occurred during the growing 

seasons; accordingly, no significance difference of crop yield was apparent between FD and CD-

SI irrigation management scenarios in 2008, when no N stress occurred. However, in 2009 the 

crop under CD-SI sustained much more N stress than that under FD, which is consistent with the 

greater NO3
- loss under the CD-SI (vs. FD) system, due to more drainage. Simulated growing 

season NO3
- leaching under the CD-SI system was 39% and 34% greater than under the FD 

system in 2008 and 2009, respectively. The crop yield under different N applications were 

similar in 2008 due to the high initial N fertilization, but the greater N stress and excessive water 

under CD-SI in 2009 might account for the lower yields under CD-SI than FD. Our simulated N 

losses under CD-SI and FD showed adverse results compared to the experiments of Tan et al. 

(1997), who indicated 24% less NO3
- - N losses under CD-SI system. This was because we 

opened the drains several times during the crop growing season when the water table reached to 

the ground, while they kept the drains closed for the whole growing season except planting and 

harvesting. Due to higher water supply from irrigation in our experiment, more water was 

drained from CD-SI and more N might be lost from drainage as a consequence. 

Overall, lower crop yield under CD-SI could be attributed to higher N losses when drains 

were opened shortly after irrigation was implemented, or waterlogging when too much water was 

supplied to the soil profile. As RZWQM2 is not capable of simulating waterlogging effects, the 

model should be improved by adding a waterlogging subroutine to better predict crop growth 

under adverse conditions. 

The RZWQM2 over-estimated the drainage in March and May. The Kalman Filter 

Algorithm significantly improved the accuracy of RZWQM2 simulated drainage by eliminating 

the errors. These errors might be attributable to the loss of snow cover through sublimation, 
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which the model does not take into account. Moreover, water infiltration during spring freeze-

thaw cycles may not be well simulated. In the fine sandy soil, the actual ksat could be very low 

when the soil temperature was below 0 °C when most water was frozen (Burt and Williams, 

1976), allowing little water flow through the soil. However, the model’s calculations yield a 

winter period ksat which differs little (2% lower) with the calibrated ksat (Table 2), which ranged 

from 30 to 60 mm h−1 in the upper soil layers. To achieve a better understanding of winter soil 

hydraulics, soil temperatures, surface temperature and snow depth should be measured, thereby 

allowing a further evaluation of the model’s capacity to simulate winter and early spring 

drainage. The drainage during the summer season in 2008 was under-estimated, which could be 

resulted from the over-estimation of ET. The RZWQM2 simulated annual ET were 612 and 

528 mm for 2008 and 2009, the value of 2008 was much higher than the DRAIN-WARMF-

simulated values by Dayyani et al. (2010a, b) for the same region from 1993 to 1996 (531 mm ≤

 ET ≤ 566 mm). Since the sap flow was only measured on 35 days each year, a longer period of 

measurement is suggested for further model evaluation. 

3.5 Summary and conclusions 

The RZWQM2 model was calibrated and validated against a comprehensive dataset of 

measured subsurface drainage flow, water table depth, soil water content, crop transpiration, leaf 

area index, yield, and phenological crop development stages for corn grown in a subsurface 

drained field in Southern Quebec. Given the challenges in fitting predicted results with such a 

comprehensive measured dataset, the RZWQM2 model performed well in simulating the 

hydrologic cycle and corn growth. Soil water content was simulated within an acceptable range 

in terms of PBIAS. Nevertheless, the model performed well in simulating the crop growth stage, 

yield and LAI under different N application rates and drainage modes. The calibration and 
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validation phase overestimation of drainage flow in winter and spring was minimized using a 

variant RZWQM2 model equipped with a Kalman filter algorithm. The resulting simulated 

values show a good correlation with the observed data; however, the Kalman filter is subject to 

the limitation that it works very well when the system error fits a Gaussian distribution, but for 

other systematic errors, it performs poorly. Although Kalman filter is a good approach to 

calibrate an imperfect winter drainage component, a better model calibration method is still 

needed. In addition, the linear Kalman filter algorithm used in this paper is not applicable for 

reducing the nonlinear errors within the model. These errors can be caused by human activities 

or other unknown environmental factors. In the recent years, the artificial neural network has 

showed excellent performance in nonlinear model estimation, therefore, future work would be (i) 

try the artificial neural network which better describes the nonlinear system to improve the 

model prediction (ii) measure sap flow for a longer period or measure the ET across the full year 

to get more reliable observed data for model calibration. 
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Figure 3.1. Experimental layout of field study (adopted from Singh et al. (2014)), WTM is 

the water table management of controlled drainage with subirrigation; FD is the free 

drainage 

 

 

Figure 3.2. The process of Kalman filter in this study 
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Figure 3.3. Comparison of observed drainage, RZWQM2-simulated drainage, and Kalman-

filtered drainage.
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Figure 3.4. The comparison of errors between simulated and observed results: RZWQM2 error 

(error 1) and RZWQM2-Kalman error (error 2) under FD (a) and CD-SI (b) 
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Figure 3.5. Simulated and observed daily soil water content (0.20-0.25 m depth in 2008, 0.40-

0.45 m depth in 2009) for free drainage - FD (a, c) and controlled drainage with sub-irrigation – 

CD-SI (b, d) 
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Figure 3.6. Simulated daily transpiration and observed sap flow under FD (a-f) and CD-SI (g-l) 
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Figure 3.7. Simulated and observed LAI under FD (a-f) and CD-SI (g-l), under three nitrogen 

fertilization regimes, across two years (2008, 2009) 
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Table 3.1. N application rate and soil residual N before planting (Unit kg N ha-1) 

N 

application 

2008 2009 

Date Low N Medium N High N Date 
Low 

N 
Medium N High N 

1st 2-May 88 88 88 2-May 52 52 52 

2nd 5-May 0 24 24 8-Jun 33 100 167 

3rd 17-Jun 0 30 122 - - - - 

Initial N*   43 43 43   27 27 27 

Total N   131 186 277   112 179 246 

*Initial inorganic residual N before planting. 

 

Table 3.2. Calibrated parameters for soil hydraulic properties. 

[a] ρ = bulk density, θs = saturated soil water content, θr = residual soil water content, τb = bubbling pressure, λ = 

pore size distribution index, 𝑘𝑠𝑎𝑡  =saturated hydraulic conductivity; SRGF = soil root growth factor. 

[b] Other required parameters include A1 (set to zero), B (computed using the RZWQM default constraint) for all 

layers, N1 (set to zero), and K2 and N2 (computed using the RZWQM default constraints) for all layers (Ahuja et al., 

2000b). The lateral hydraulic gradient was adjusted to a value of 1.5×10-6. 

Layer Depth 

(m) 

ρ 

(Mg m-3) 

Soil Water Retention Lateral 

 𝑘𝑠𝑎𝑡  

(mm h-1) 

Vertical 

𝑘𝑠𝑎𝑡  

(mm h-1) 

 

θs 

(m3m-3) 

θr 

(m3m-3) 

τb 

(mm) 

λ SRGF 

1 0-0.15 1.4 0.452 0.075 -100 0.234 50 30 1.0 

2 0.15-0.35 1.5 0.424 0.071 -180 0.224 50 30 1.0 

3 0.35-0.45 1.4 0.400 0.041 -100 0.232 50 30 0.30 

4 0.45-0.80 1.3 0.460 0.075 -156 0.320 120 60 0.07 

5 0.80-1.20 1.4 0.464 0.075 -156 0.304 20 10 0.07 

6 1.20-1.70 1.4 0.464 0.075 -156 0.304  20 10 0.01 

7 1.70-2.30 1.4 0.464 0.075 -156 0.304  20 10 0.01 

8 2.30-3.00 1.4 0.464 0.075 -156 0.304  20 10 0.01 

9 3.00-3.80 1.4 0.464 0.075 -156 0.304 20 10 0.01 

10 3.80-3.97 1.4 0.464 0.075 -156 0.304 20 0.1 0.01 
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Table 3.3. Calibrated parameters in RZWQM2 model. 

Non-default Parameters Value 

Hydrology component  

Minimum leaf stomatal resistance (s m-1) 150 

Albedo of dry soil 0.2 

Albedo of wet soil 0.3 

Albedo of crop 0.3 

Albedo of fresh residue 0.3 

Drain depth (m) 1.00 

Drain spacing (m) 15.0 

Radius of drain (m) 7.6 

Surface soil resistance for S-W 250 

Nutrient component  

Slow residue pool to intermediate soil 0.3 

Fast residue pool to Fast soil humus pool 0.6 

Fast soil humus pool to intermediate soil 0.6 

Intermediate soil to slow soil humus pool 0.4 

Concentration of NO3
- in rainwater (mg L-1) 1.2 

Aerobic heterotrophs 4×10-37 

Anaerobic 5×10-33 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 



79 
 

 

Table 3.4. Calibrated crop parameters for maize (adapted from Ma, et al. 2011) 

Calibrated Parameters  Value Range  

P1 Degree days (base temperature of 8°C) from 

seedling emergence to end of juvenile phase. 

200 100-450 

P2 Day length sensitivity coefficient [the extent 

(days) that development is delayed for each hour 

increase in photoperiod above the longest photoperiod 

(12.5 h) at which development proceeds at maximum 

rate]. 

0.3 0-2 

P5 Degree days (base temperature of 8°C) from 

silking to physiological maturity 

610 600-

1000 

G2 Maximum possible number of kernels per plant 950 400-

1000 

G3 Kernel filling rate during linear grain filling stage 

under optimum conditions(g/d) 

14.5 5-16 

PHINT Phylochron interval between successive leaf 

tip appearance  

36 36-55 

Maximum plant height at maturity (cm) 200 - 

Plant biomass at half of maximum height (g) 18 - 

 

 

Table 3.5. RZWQM2 and Kalman-modified RZWQM2 model accuracy statistics for daily 

drainage for FD (calibration) and CD-SI (validation) in 2008 and 2009 (unit: cm) 

Model Accuracy 

Statistics 

FD  CD-SI 

Observed RZWQM2 
Kalman- 

RZWQM2 

 
Observed RZWQM2 

Kalman 

-RZWQM2 

Mean 0.05 0.07 0.05  0.08 0.12 0.09 

Total 22.58 29.36 24.59  36.69 52.6 42.08 

PBIAS 
 

30% 9%  
 

43% 15% 

NSE 
 

-0.01 0.91  
 

-0.02 0.89 

IoA   0.60 0.97    0.66 0.97 
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Table 3.6. Simulated and observed monthly drainage rate and accuracy statistics for RZWQM2 

and Kalman-modified RZWQM2 models for FD and CD-SI drainage regimes implemented in 

2008 and 2009, from April to October (monthly data not available for April in 2008 (unit: mm)) 

Year Month 

FD   CD-SI  

Obs RZWQM2 
Kalman- 

RZWQM2 

 
Obs RZWQM2 

Kalman- 

RZWQM2 

 May 0.7 22.7 7.0  3.5 15.8 7.3 
 

Jun 23.6 32.3 26.1  29.5 34.6 31.2 

2008 Jul 12.6 0 8.9  31.6 3.8 22.5 
 

Aug 22.5 0 15.7  19.1 32.2 23.4 

 Sept 0.1 0 0.1  17.4 6.4 13.8 

  Oct 5.6 7.4 6  13.7 27.9 18.5 

  April 76.5 55.7 70.2  45.9 56.1 49.3 
 

May 2.2 41.1 13.8  1.6 41.2 14.7 

2009 Jun 0.1 16.3 4.9  0.3 16.2 5.6 
 

Jul 23.9 26.9 24.7  23.9 48.5 32 
 

Aug 3.8 0.1 2.7  14.3 24.3 17.6 
 

Sept 0 0 0  29.0 8.3 22.2 

  Oct 33.4 0.2 24.1  94.9 91.5 95.9 

A
cc

u
ra

cy
 S

ta
ti

st
ic

s Sum 205.0 202.7 204.1  325 406.8 354.1 

Mean 15.8 15.6 15.7  25 31.3 27.2 

PBIAS  -1.1% -0.4%   25.2% 9.0% 

NSE  0.18 0.93   0.39 0.93 

IoA   0.75 0.98    0.83 0.98 
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Table 3.7. RZWQM2 performance statistics for soil water content simulations.  

 

Table 3.8. RZWQM2 performance statistics of simulated daily transpiration vs. measured sap 

flow and leaf area index (LAI). ET is the evapotranspiration (unit: mm).  

 Model 

Accuracy 

Statistics 

FD  CD-SI 

 High 

N 

Medium 

N 

Low 

N 

 High 

N 

Medium 

N 

Low 

N 

tr
a
n

sp
ir

a
ti

o
n

 

NSE 0 0.32 0.24  0 0.37 0.03 

RMSE (mm) 0.82 0.81 0.98  0.97 0.75 1.03 

RRMSE 20% 21% 27%  24% 19% 23% 

PBIAS 8% 0% -6%  6% 2% 14% 

IoA 0.71 0.78 0.72  0.69 0.69 0.68 

ET-2008 612 612 611  601 601 606 

ET-2009 574 574 584  531 528 530 

L
A

I 

NSE 0.96 0.95 0.93  0.92 0.92 0.76 

PBIAS 9% 10% 4%  13% -12% -9% 

RMSE 0.363 0.39 0.44  0.484 0.46 0.71 

RRMSE 11% 12% 13%  15% 14% 25% 

IoA 0.99 0.99 0.98  0.91 0.91 0.93 

 

Model 

Accuracy 

Statistic 

Drainage regime 

Soil depth (year) 

FD  CD-SI 

0.20-0.25 m 

(2008) 

0.40-0.45 m 

(2009) 

 0.20-0.25 m 

(2008) 

0.40-0.45 m 

(2009) 

RMSE (cm3/cm3) 0.05 0.04  0.03 0.04 

RRMSE 17.9% 12.0%  8.7% 10.6% 

PBIAS 6% 0%  -1% 0% 

NSE 0.05 0.18  -1.78 -0.02 

IoA 0.27 0.39  0.47 0.73 
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Table 3.9. Soil water balance for FD and CD-SI drainage management regimes during the 

growing seasons (May-Sept) of 2008 and 2009 (unit: mm). 

Drainage 

regime - 

Year 

Water Balance (mm) 

Inputs (S)  Withdrawals (W) ∆S-W 

precipitation irrigation Ea Ta drainage 

FD  08 432 0  150 402 55 -174 

FD  09 462 0  134 368 84 -123 

CD-SI 08 432 182  146 403 93 -27 

CD-SI 09 462 180  134 367 139 -3 

Note: Ea, Ta, ∆S-W, are actual evaporation, actual transpiration, and change in soil water storage, 

respectively. 
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Table 3.10. Simulated (sim) and observed (obs) crop growth stages across all drainage × N 

fertilization treatments, and model accuracy statistics for crop yield (unit: Mg ha-1) under 

different treatments. Planting occurred on May 4 and May 7 in 2008 and 2009, respectively.  

Nitrogen 

level 

FD CD-SI FD CD-SI 

obs sim obs sim obs sim obs sim 

Corn yield (Mg ha-1) 

Low N 12.46  12.4 12.38  9.17 10.75  10.55 8.80  7.35 

Medium N 12.59  12.58 11.97  11.03  11.20  11.71 10.87  9.12  

High N 12.58  12.58 12.37  12.58 12.14  11.78 11.55  10.66 

Mean 12.54  12.52 12.24  10.93  11.37  11.35 10.41  9.04  

Model Accuracy Statistics 

RMSE 0.03 1.93  0.36 1.41  

RRMSE 0% 16% 3% 14% 

PBIAS 0% -11% 0% -13% 

 

 

  

 

Phenological stage 

Year of Growing Season 

2008  2009 

obs sim Difference   obs sim Difference 

Emergence May 16 May 18 +2  May 19 May 22 +3 

Silking July 30 July 29 -1  Aug 2 Aug 1 -1 

Maturity Sept 21 Sept 29 +8  Sept 24 Sept 25 +1 
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Connecting text to Chapter 4 

Chapter 3 comprehensively evaluated the RZWQM2 in simulating the hydraulic and crop growth 

components using a full dataset, which provided a sound basis for the simulation of nutrient 

movement in soil and water in subsurface-drained fields. Chapter 4 tested the RZWQM2 and 

comparted its ability with a widely used C: N cycling model, DNDC. The two models’ 

performances in predicting soil temperature, soil water content, N2O and CO2 emissions, corn 

and soybean yields, as well as daily drainage in growing seasons were compared, meanwhile 

advantages and disadvantages of each model were discussed. The following manuscript, co-

authored by Dr. Zhiming Qi, Chandra A. Madramootoo, Ward Smith, Naeem A. Abbasi, Tie-

Quan Zhang has been submitted to Geoderma.  

 

Jiang, Q., Qi, Z., Madramootoo, C.A., Smith, W., Zhang, Abbasi, N.A., Zhang, T.Q., 2018. 

Comparison of RZWQM2 and DNDC model in simulating greenhouse gas emissions, crop yield 

and subsurface drainage. Geoderma (submitted). 
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Chapter 4 

Comparison of RZWQM2 and DNDC model in simulating greenhouse gas emission, crop 

yield and subsurface drainage 

Qianjing Jiang, Zhiming Qi, Chandra A. Madramootoo, Ward Smith, Naeem A. Abbasi, Tie-

Quan Zhang  

Abstract 

Process-based models are promising tools for developing management practices that may 

mitigate greenhouse gas emissions. In this study, the newly developed greenhouse gas emission 

component and sub-irrigation module of the Root Zone Water Quality Model (RZWQM2) were 

tested and subsequently compared with the DNDC (DeNitrification–DeComposition) model 

using measured data from a subsurface drained and irrigated field with corn-soybean rotation in 

Southern Ontario, Canada. Field measured data included N2O and CO2 flux, soil temperature, 

soil moisture content, tile drainage and crop yield from a four-year field experiment (2012 -

2015). The experiment was composed of four treatments: tile drainage and inorganic fertilizer 

(DR-IF), controlled drainage with subirrigation and inorganic fertilizer (CDS-IF), tile drainage 

and solid cattle manure (DR-SCM), controlled drainage with sub-irrigation and solid cattle 

manure (CDS-SCM). Both models were calibrated using the data from DR-IF. RZWQM2 was 

validated using all three remaining treatments while DNDC was validated only for DR-SCM 

since it does not characterize controlled drainage and sub-irrigation. Statistical results indicated 

that DNDC had better ability in simulating soil temperature than RZWQM2, but RZWQM2 

performed better than DNDC in simulating soil water content (SWC) due to the lack of a 

heterogeneous soil profile, shallow simulation depth and lack of crop root density functions. 

RZWQM2 predicted the cumulative N2O emission and CO2 emission within 15% error under all 

four treatments. DNDC performed similarly under the two treatments, except the timing of CO2 
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emissions was better predicted by RZWQM2 (RMSE = 0.43-0.59) than by DNDC (RMSE = 

0.62-0.79). Both models accurately estimated cumulative drainage within 15% error during the 

growing season, but RZWQM2 was more accurate in predicting the daily drainage under 

different water table management. Both models performed satisfactorily in predicting grain 

yields of corn and soybean with PBIAS within 15%. Overall, RZWQM2 required more 

experienced and intensive calibration and validation, but it provided more accurate predictions of 

soil hydrology and better timing of CO2 emissions than did DNDC. 

Key words: controlled drainage; subirrigation; water table management; manure application; 

inorganic fertilization; corn-soybean rotation  

4.1 Introduction 

Agricultural activities directly contribute 20% of the total global greenhouse gas (GHG) 

emissions (Lokupitiya and Paustian, 2006). In Canada, 18.5% of national CO2, 28% of CH4, and 

71% of N2O gases are produced from agriculture activities (ECCC, 2017). N2O is mainly emitted 

from the nitrification and denitrification process in the soil profile, while the major source of 

CO2 production is from residue decomposition and aerobic respiration of microorganisms and 

roots. Greenhouse gas emissions are affected by soil type, soil pH, soil temperature, soil moisture 

content, soil oxygen content, and nutrient availability (Oertel et al., 2016). Agricultural 

management practices play an important role in the production of GHG, such as fertilization, 

manure application, tillage, cover crops, incorporation of crop residue, drainage and irrigation. It 

is reported that 22% of the total agricultural GHG emissions in Canada are attributed to the 

application of inorganic fertilization (ECCC, 2017). Drainage helps to improve crop productivity 

and increases soil organic carbon (SOC) through higher crop C inputs in humid areas and has the 
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potential to reduce N2O emission from agricultural soils by promoting aerobic conditions, 

however, it may also result in higher N losses through tile drains (Smith et al., 2008a). 

Chambers techniques are widely employed for measuring site specific GHG emissions, 

however it can be difficult to extrapolate these observations over larger scales since the values 

are highly relevant to the specific soil properties, weather conditions and agronomic activities 

(Smith et al., 2002). Micrometeorological techniques for measuring N2O emissions at a plot and 

field scale are costly, laborious and time intensive thus there are only a few locations in Canada 

where these techniques are used. As a consequence, there have been efforts to develop and 

validate biophysical models for simulating GHG emissions temporally and spatially under 

diverse cropping systems and evaluating the impacts of beneficial management practices (Brilli 

et al., 2017). Process-based models have been developed and tested for estimating GHG 

emissions, such as DAYCENT (Parton et al. 1998), DNDC (Li et al., 1992) and WNMM (Li et 

al., 2007). These models enrich people’s understanding of the complicated physical, microbial 

and chemical processes in the soil profile through comparison with the observations, and provide 

estimates of soil responses to climate change and some other conditions (Necpálová et al., 2015). 

The DNDC (Denitrification–Decomposition) model includes algorithms for simulating N2O, 

CO2, CH4, N2 and NOx fluxes from cropping systems, livestock and farm facilities (Li et al., 

2012) and was found to be the only model capable of simulating all trace gas fluxes considered 

in an asessment of 9 prominent GHG models (Brill et al., 2017). The model has been improved 

and evaluated for simulating N2O emission prediction in Canada (Smith et al., 2002; Smith et al., 

2008b; Smith et al., 2013; Abalos et al., 2016; He et al., 2018), India (Pathak et al., 2005), China 

(Cai et al., 2003; Zhang et al., 2015), New Zealand (Saggar et al., 2007), Europe (Levy et al., 

2007), and globally (Ehrhardt et al., 2018). Evaluations have also been extended to methane 
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production (Badu et al., 2006; Fumoto et al.,2008), NH3 volatilization (Congreves et al., 2015; 

Dutta et al., 2016), net CO2 emissions (Yadav and Wang, 2017; Li et al., 2017) and SOC (Wang 

et al., 2008; Qiu et al., 2005; Smith et al., 2012; Grant et al., 2016; Dutta et al., 2017). Yadav and 

Wang (2017) modified the DNDC model to simulate CO2 emission from three agricultural sites 

in Saskatchewan, Canada. The model estimated annual CO2 emissions reasonably in comparison 

to observations and predicted that CO2 emissions decreased when reducing the amount of 

fertilizer and irrigation. 

Although process-based models are promising tools for estimating GHG emissions, 

uncertainties still exist due to the complex nature of agroecosystems and our limited 

understanding of biogeochemical processes (Brilli et al., 2017; Ehrhardt et al., 2018). For 

example, DNDC was reported to correctly predict the seasonal N2O emission but failed to 

capture the peaks of daily N2O flux (Babu et al., 2006) or simulate the timing of N2O peaks 

(Smith et al., 2002; Smith et al. 2008b). Beheydt et al. (2007) found that DNDC predicted higher 

and more frequent N2O peaks compared to field measurements. Smith at al. (2008b) compared 

the performance of DNDC and DAYCENT model in simulating N2O emission in Quebec and 

Woodslee under different N fertilization and tillage practices. The DNDC model performed 

better than DAYCENT in simulating the seasonal N2O emissions, while both models had 

difficulties in simulating the daily N2O flux. The performance of DNDC has also been compared 

by Wu and Zhang (2014) to the WNMM and DAYCENT models and was judged as the best one 

for predicting the daily N2O emission and continuous seasonal emission, while Li et al. (2005) 

stated that WNMM performed better than DNDC and DAYCENT since the latter two models 

over-estimated the temporal N2O by 40%. In a global study using 24 models (including 

DNDCv.CAN and DayCent) with simulations across 10 experimental sites it was found that the 
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model ensemble produced an RMSE of less than 60% for N2O emissions for wheat, corn and rice 

(Ehrhardt et al., 2018). DNDCv.CAN was chosen as one of the 3 models for annual cropping, to 

be used in a reduced model ensemble. 

The model accuracy of N2O emission prediction is highly dependent on the accurate 

estimation of soil water content, soil temperature, and the concentration of NH4
+ and NO3

- in the 

top layer of the soil profile (Li et al., 2004). RZWQM2 is a comprehensive one-dimensional 

model which can be used to study the interaction of physical, chemical, and biological processes 

within the soil profile (Ahuja et al., 2000). It has been extensively tested for simulating 

hydrology (Singh et al., 1996, Akhand et al., 2003, Abrahamson et al., 2006), N dynamics 

(Cameira et al., 2007, Qi et al., 2011, Qi et al., 2012), crop production (Ma et al., 2007, 

Saseendran et al., 2007, Thorp et al., 2007), and pesticides transport (Bakhsh et al., 2004, Malone 

et al., 2014). Fang et al. (2015) improved RZWQM2 by incorporating the algorithm for 

computing N2O emission from nitrification based on the NOE model and N2O emission from the 

denitrification algorithm in the DAYCENT model to predict N2O emission from the soil profile. 

Gillette et al. (2017) tested the modified RZWQM2 model in predicting the effect of tillage and 

N fertilization amount on N2O emissions in an irrigated corn field in Colorado, indicating that it 

slightly underestimated N2O emissions by 1.5% and 7.1% under no-tillage and conventional 

tillage. Jiang et al. (2017) evaluated RZWQM2 for predicting N2O and CO2 emission in a 

subsurface drained field in Southern Quebec under water table management, and used the 

calibrated model to investigate different agronomic management impacts on GHG emissions. 

However, the modified RZWQM2 model has not been tested for predicting emissions under 

manure application, nor has it been compared to other C/N models to verify its ability in 

predicting GHG emissions. The objectives of this study are to 1) evaluate the GHG emission and 
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subirrigation components of RZWQM2 under different water table management practices, 

inorganic fertilizer and organic manure application; 2) compare the performance of RZWQM2 

with DNDC, a widely used C/N cycling model, for simulating GHG emissions, crop yield and 

drainage flow in a subsurface drained and irrigated field under soybean-corn rotation. 

4.2 Methods and materials 

 4.2.1 Field experiment 

The field study was conducted from 2012 to 2015 at the Hon. Eugene F. Whelan Research 

Farm, near South Woodslee, Ontario, Canada (42°13′ N, 82°44′ W). Experimental plots were 

equipped with subsurface drainage and sub-irrigation with a corn-soybean rotation cropping 

system. The soil type was Brookston clay loam with average soil bulk density of 1.46 g cm-3 and 

a porosity of 44.9%. The faction of clay, sand and silt was 37%, 28% and 35%, respectively. The 

saturated hydraulic conductivity ranged from 0.07 to 0.50 cm per hour (Lu, 2015). The annual 

precipitation was 643, 998, 800, 843 mm in the years of 2012, 2013, 2014 and 2015, 

respectively. The weather data, including daily precipitation, relative humidity, minimum 

temperature, maximum temperature, and wind speed were measured at the experimental site. The 

field slope was 0.5% on average. 

Each of the four treatments were assigned to two plots but the GHG data was only collected 

in one plot with 6 replicate chambers: 1) plot 9, tile drainage and inorganic fertilization (DR-IF); 

2) plot 10, controlled drainage with sub-irrigation and inorganic fertilization (CDS-IF); 3) plot 

12, tile drainage and solid cattle manure (DR-SCM); 4) plot 13, controlled drainage with sub-

irrigation and solid cattle manure (CDS-SCM). A corn-soybean rotation system was used with 

corn (Syngenta NK N459-3000GT) grown in 2012 and 2014 while soybean (Pioneer 92Y53) 

was grown in 2013 and 2015. The N fertilization was applied only in 2012 and 2014 before corn 
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planting (Table 1). The tile drains were installed at the soil depth of 0.85 m. For the CDS system 

the water table was constantly controlled at 46 cm and during the sub-irrigation period (from 

June 22nd to August 8th in 2012) the head gate was maintained at 20 cm. The tile drainage 

volume was collected in the instrumentation building using tipping buckets. Each tipping bucket 

was connected to a data logger and the tipping rates were used to calculate drainage volume. 

Soil temperature (0–10 cm) was measured in situ using the TidbiT devices (HOBO TidbiT 

v2 Water Temperature Data Logger) at the same times and locations as the GHG measurements, 

and volumetric soil water content was measured (0–10 cm) using the HH2 moisture meter with 

Theta probe type ML2x (Delta-T Devices, Cambridge, England). The N2O and CO2 flux was 

collected weekly during the growing season from 2012 to 2015 using six closed Plexiglas 

chambers (0.556 m × 0.556 m × 0.140 m) in each plot. The chambers were inserted 10 cm deep 

into the soil profile, and on top of each chamber a vent tube port was used to prevent air 

exchange. The GHG measurements in each chamber were taken five times at 15 minute 

intervals, and averaged from six chambers for each plot. 

4.2.2 Model description 

4.2.2.1 Overview of RZWQM  

The RZWQM is a one-dimensional process-based model that integrates the physical, 

chemical, and biological processes within the soil profile to simulate plant growth, movement of 

water and chemicals in water (Ahuja et al., 2000). The Green-Ampt equation (Green and Ampt, 

1911) is used for computing water infiltration after precipitation and irrigation events, then the 

Richards equation is used for redistributing water in the soil profile (Richards, 1931). The 

drainage flux is calculated using the Hooghoudt equation (Bouwer and Van Schilfgaarde, 1963) 

and potential evapotranspiration is described by the Shuttleworth-Wallace equation 
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(Shuttleworth and Wallace, 1985). Sub-irrigation is applied to a user-defined depth in the soil 

profile and redistributed using the Richards equation.  

The RZWQM2 computes the nitrification and denitrification rates using zero and first-order 

kinetics (Ahuja et al., 2000), as functions of NH4
+ concentration, NO3

- concentration, soil 

temperature, soil water and a series of constants. Fang et al. (2015) incorporated the algorithms 

for computing the N2O emissions from nitrification and denitrification from NOE and the 

DAYCENT models, respectively, after comparing four C: N cycling models. The detailed 

equations of nitrification and denitrification rates, N2O and CO2 emissions are presented in 

section 2.3.2 in this thesis. 

4.2.2.2 Overview of DNDC  

The DNDC model was initially developed by Li at al. (1992) for simulating N2O emissions 

from agricultural soils, and numerical modifications have been made to expand its applicability 

to estimate CO2 emissions and soil C and N cycling (Li et al., 1994), water and N movement 

through the soil profile and loss to tile drains (Li et al., 1996), and CH4 and NH3 emissions from 

cropping systems, livestock and full farm facilities (Li et al., 2012). DNDC consists of four sub-

models, including the soil climate sub-model, plant growth sub-model, denitrification sub-model, 

and decomposition sub-model (Li et al., 1994).  

Recently, a regional version of DNDC was developed (DNDCv.CAN) which includes 

improved crop growth with better simulation of the impacts of temperature, water and nutrient 

stress for cool season cultivars in Canada (Kröbel et al., 2011; Smith et al., 2013; Grant et al., 

2016). Smith et al. (2013) improved the response of elevated atmospheric CO2 concentration on 

crop water and nitrogen use efficiency and Dutta et al. (2016) revised the ET routine to include 
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FAO Penman–Monteith equations and crop coefficients (Dutta et al., 2016). Soil evaporation is 

affected by crop residue cover and soil moisture in the top 15 cm of the profile, while the plant 

transpiration is estimated from the crop water requirement which is determined by the crop 

biomass and the crop water use parameter specific to each crop type. Transpiration is limited by 

soil water availability and the rate of uptake by roots (Sansoulet, et al., 2014).  

DNDC simulates N2O emissions in response to nitrification and denitrification processes. 

The nitrification rate is computed as follows: 

𝑅𝑛 = 0.005 × [𝑁𝐻4] × 𝑁𝑖𝑡𝑟𝑖𝑓𝑖𝑒𝑟 × 𝑓(𝑝𝐻) [4.1]  

The N2O emission from nitrification is computed as a function of the nitrification rate, 

WFPS and temperature factor: 

𝑁2𝑂𝑛𝑖𝑡𝑟𝑖 = 0.0006𝑅𝑛𝐹𝑡𝑊𝐹𝑃𝑆  [4.2]   

Where Nitrifier is the microbial biomass of nitrifiers (the growth and death rates are 

dependent on dissolved organic carbon and soil moisture content), [𝑁𝐻4] is the concentration of 

ammonium (kg N ha-1) and pH is the soil pH value. Ft is the temperature factor for nitrification 

and WFPS is the water-filled pore space. The nitrifier biomass is computed using the relative 

growth and death rates of nitrifiers, soil moisture factor and soil temperature factor.  

The process of denitrification in DNDC model is expressed as the reduction of NO3
- to NO2

-, 

NO and N2O, and finally N2 based on a series of environmental factors such as pH, soil organic 

carbon, microbial populations and temperature. The consumption of NOx (NO3
-, NO2

-, NO and 

N2O) is expressed as: 

𝑑(𝑁𝑂𝑥)

𝑑𝑡
= (

𝑢𝑁𝑂𝑥

𝑌𝑁𝑂𝑥

+ 𝑀𝑁𝑂𝑥
×

[𝑁𝑂𝑥]

[𝑁]
) × 𝐷𝑒𝑛𝑖𝑡𝑟𝑖𝑓𝑖𝑒𝑟 × 𝐹𝑝𝐻−𝑁𝑂𝑥

× 𝐹𝑇  [4.3]   
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Where 𝑢𝑁𝑂𝑥
 is the relative growth rate of NO3

-, NO2
-, NO and N2O denitrifiers, 𝑌𝑁𝑂𝑥

 is the 

maximum growth yield on NO3
-, NO2

-, NO and N2O, 𝑀𝑁𝑂𝑥
 is the maintenance coefficient of 

NO3
-, NO2

-, NO and N2O, [𝑁] is the total nitrogen as the sum of NO3
-, NO2

-, NO and N2O, FT is 

the temperature factor, 𝐹𝑝𝐻−𝑁𝑂𝑥
 is the soil pH factor, and Denitrifier is the biomass of denitrifier 

bacteria. 

In DNDC, N gas emissions are regulated by an “anaerobic balloon” concept where the 

Nernst equation is used to estimate redox potential (Eh) which regulates the size of the aerobic 

(nitrifier) and anaerobic (denitrifier) microbial fractions. The aerobic portion is considered to be 

outside the balloon and the anaerobic inside. The balloon will swell at lower Eh or higher so 

oxygen content. The Nernst equation thermodynamically determines if nitrification or 

denitrification occurs and further determines when specific biologically-mediated reductive 

reactions from NO3→NO2→NO→N2O→N2 occur. The redox potential is estimated as follows: 

𝐸ℎ = 𝐸𝑜 +
𝑅𝑇

𝑛𝐹
× ln (

𝑂𝑋

𝑅𝐸
)  [4.4] 

Where Eh is the redox potential (volts), Eo is the standard half-cell reduction potential 

(volts), R is the is the universal gas constant, T is the temperature in kelvins, F is the Faraday 

constant, n is the number of electrons transferred in the redox reaction, and OX and RE are 

concentration of oxidant and concentration of reductant (mol L-1), respectively.   

In the denitrificiation submodel, the quantity of denitrifier-bacteria is estimated using a 

multi-nutrient dependent (Michaelis–Menten) growth function dependent on temperature, DOC, 

soil water, Eh, and pH, kinetically determining the growth rate as follows: 

𝑅 = 𝑅𝑚𝑎𝑥 × 𝐷𝑂𝐶 ( 𝐾𝑎 + 𝐷𝑂𝐶)⁄ × 𝑂𝑋 (𝐾𝑏 + 𝑂𝑋)⁄   [4.5] 
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Where R is the growth rate, Rmax is the maximum growth rate, DOC is concentration of 

dissolved organic carbon, and Ka and Kb are half-saturation for substrates DOC and OX, 

respectively. The constants and Rmax were taken from a laboratory study by Leffelaar and Wessel 

(1998). The DNDC model computes the daily CO2 emission from aerobic respiration of 

microbial organisms, crop roots, stem and leaves. Soil organic carbon (SOC) is used as the 

energy source to produce CO2, and the rate is computed using the equation (UNH, 2017): 

𝑑𝐶 𝑑𝑡⁄ = 𝐶𝑁𝑅 × 𝜇 × (𝑆 × 𝑘𝑙 + (1 − 𝑆) × 𝑘𝑟) × [𝐶] [4.6] 

Where [𝐶] is the concentration of organic C (kg C ha-1), t is time (day), S is labile fraction of 

organic matter in the pool, (1-S) is the resistant fraction of organic C compounds, 𝑘𝑙 and kr are 

the specific decomposition rates (SDR) of labile and resistant fractions, μ is the temperature and 

moisture factor, and CNR is the C/N ratio reduction factor. SDR is 0.074, 0.074, 0.02, 0.33, 0.04, 

0.16 and 0.006 for very labile litter, labile litter, resistant litter, labile microbes, resistant 

microbes, labile humads, and resistant humads, respectively. 

 4.2.3 RZWQM2 model simulation 

Meteorological data that was used for both models included maximum and minimum 

temperature, wind speed, relative humidity, solar radiation and precipitation. The hydrologic 

component was calibrated against the measured daily soil moisture and drainage data from plot 9 

(DR-IF) and validated using measured data from plot 10 (DR-SCM), plot 12 (CDS-IF) and plot 

13 (CDS-SCM). The drainage flux was not simulated under DR-SCM due to the unavailability 

of measured data. The calibrated soil hydraulic parameters are listed in Table 4.2. The nutrient 

parameters were calibrated to match the GHG measurement. The interpool transformation 

coefficient for the slow residue pool to intermediate soil humus pool was adjusted from a default 

value 0.1 to 0.3, and the fast residue pool to fast soil humus pool transformation coefficient was 



96 
 

increased from 0.1 to 0.6. The denitrification rate was reduced from 1.0×10-13 to 2.0×10-14 (Table 

4.3). The model was run for 10 years prior to the simulation period to properly initialize the soil 

microbial populations as suggested by Ma et al. (1998).  

 4.2.4 DNDC model simulation 

In this study, the Canadian regional version of DNDC, DNDCv.CAN was applied to 

simulate GHG emissions, crop production and drainage. Soil parameters were calibrated or set 

based on measurements (Table 4.4). The DNDC model was run for 10 years (from 2002 to 2011) 

prior to the simulation to stabilize soil N and C. Since the DNDC model does not include a sub-

irrigation component, it was calibrated using observed data of soil moisture, soil temperature, 

GHG flux, crop yield and drainage under DR-IF and validated only using the DR-SCM 

treatment. DNDC did not include algorithms for mechanistic tile drainage, thus the total water 

leached below 100 cm was considered the water loss to the drains. To obtain reasonable 

drainage, the soil parameters in Table 4.4 were calibrated, and evapotranspiration was adjusted 

by changing the crop water demand.   

For both corn and soybean, the physiological and phenological parameters were adjusted to 

calibrate crop yield, and biomass fractions were also adjusted to improve CO2 simulation. 

Default values were kept for the other crop parameters. The nutrient parameters available to 

users are limited, including: initial soil nitrate and ammonium, microbial activity parameters, soil 

organic matter partitioning fractions, soil C:N ratios. The soil partitioning and C:N ratios were 

kept as default.  The microbial activity parameters were adjusted to minimize RMSE for N2O 

and CO2 emissions. The rainfall intensity multiplier for microbial activity was turned off. This 

should only be needed if the model is systematically underestimating soil water content.  
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 4.2.5 Statistics 

It is common to use statistical methods with defined criteria to compare the performances 

between models. Root mean square error (RMSE) and coefficient of determination (R2) are two 

of the most commonly used statistics to access the “goodness of fit” of a model in predicting 

GHG emissions. To compare the performance ofthe models, three statistics from different 

perspectives were selected, including the percent bias (PBIAS), relative root mean square error 

(RRMSE) and correlation coefficient (R2). PBIAS presents the difference in mean simulated and 

observed values, and it is considered satisfactory when it’s within ± 15%. A value of RRMSE ≤ 

0.3 is usually considered as acceptable. The R2 =1 indicates perfect model performance, and we 

consider that the model performs satisfactorily when R2>0.5. However, it is not always 

straightforward to judge model performance by only these criteria when modelling daily N2O 

and CO2 emissions, because they only indicate how models perform in a certain day (Giltrap et 

al., 2010). Model performance may be judged as “poor” if the predicted peak emission presents 

earlier or later than field measurements. A model should still be considered as promising when it 

predicts the cumulative emissions under different conditions because the seasonal cumulative 

emissions are the major concern in real situations. The detailed equations of the four statistics are 

shown as: 

PBIAS =
∑ (𝑂𝑖−𝑃𝑖)100𝑛

𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

           [4.7]                                                                                             

RMSE = √
∑ (𝑃𝑖−𝑂𝑖)2𝑛

𝑖=1

𝑛
  [4.8]    

RRMSE =
𝑅𝑀𝑆𝐸

𝑂̅
  [4.9]      

𝑅2 =
∑ (𝑛

𝑖=1 𝑂𝑖−𝑂̅)(𝑃𝑖−𝑃̅)

√∑ (𝑂𝑖−𝑂̅)2𝑛
𝑖=1 ∑ (𝑃𝑖−𝑝̅)2𝑛

𝑖=1

  [4.10]           
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Where Pi and Oi are the model predicted and experimental observed points. The total number of 

observations is n and 𝑂 is the average observed value.  

4.3 Results and discussion 

4.3.1. Soil temperature 

In terms of statistics, DNDC performed better than RZWQM2 in predicting the soil 

temperature (Table 4.5). Predictions of soil temperature using RZWQM2 agreed well with 

observations in all four treatments. RZWQM2 under-estimated soil temperature by 7 to 18%, 

mainly because RZWQM2 used air temperature as the boundary condition for the soil surface 

(Fang et al., 2015). In addition, it may also have underestimated temperature because it simulated 

temperature as an average daily value whereas measurements were taken around noon. Overall, 

RZWQM2 reasonably simulated soil temperature with RMSEs ranging from 2.8 to 5.0 oC, 

RRMSE from 20% to 25%, and R2 from 0.70 to 0.74 for all the four treatments (Table 4.5). 

DNDC performed better than RZWQM2 for the two treatments with PBIAS ranging from 2 

to 8%, RMSEs from 2.5 to 2.7 oC, RRMSE varied from 13% to 14%, and R2 from 0.88 to 0.93. 

Model performance of DNDC for predicting soil temperature in this study was comparable to the 

previous study at the same site from 2003 to 2005 by Li et al. (2017). Although RZWQM2 

tended to miss most high peaks, both models simulated soil temperature dynamics reasonably 

well as compared with the measurements from 2012 to 2015 (Figure 4.1).  

4.3.2. Soil water content 

Although both RZWQM2 and DNDC reasonably simulated the SWC within the acceptable 

range (Table 4.6), RZWQM2 showed better performance with lower RRMSE and higher R2. 

RZWQM2 simulations of daily SWC from 0 to 6 cm followed similar trends as measured values 
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for all four treatments from 2012 to 2015 in the growing seasons except in 2012 under CDS 

system (Figure 4.2a). It greatly over-estimated the SWC when sub-irrigation was supplied in July 

and August. Overall, it performed satisfactorily in predicting SWC with average predicted values 

within 8% of observations, RRMSE from 0.14 to 0.19, and R2 from 0.56 to 0.76 for all the four 

treatments (Table 4.6). Compared to RZWQM2, the DNDC model performed less satisfactorily 

in predicting the trends in SWC (Figure 4.2b). Although the PBIAS was within 3% and the 

RRMSE was within 18%, the R2 (0.51 to 0.56) was lower than RZWQM2 for DR-IF and DR-

SCM systems (Table 4.6).  

Both RZWQM2 and DNDC simulated daily SWC driven by precipitation. Smith et al. 

(2017) compared RZWQM2 and DNDC in simulating SWC and daily water flow, indicating that 

DNDC needed improvements to include the algorithms for simulating root distribution, 

heterogeneous soil profile and water table. For soil water redistribution, the Richards equation 

was used in RZWQM2, while DNDC used an adapted cascade model (Frolking et al., 1998). 

Kröbel et al. (2010) compared the simulated soil water dynamics in North China Plain using 

DNDC and DAISY (Richards equation). They concluded that the Richards equation provided a 

better approximation of SWC than did the cascade flow used in DNDC Note that DNDC was not 

found to be sensitive to hydraulic conductivity. We also found this to be the case except during 

very high precipitation or irrigation events where ponding occurs. Otherwise, DNDC tips to field 

capacity on an hourly basis, ignoring hydraulic conductivity.   

4.3.3 Drainage 

The precipitation was 383.8, 604.3, 556.2 and 606.0 mm during the growing seasons (May 

to October) of 2012, 2013, 2014 and 2015, respectively. In general, RZWMQ2 performed well in 

predicting daily drainage under both DR and CDS systems during all four growing seasons and 

https://www.sciencedirect.com/science/article/pii/S1364815209002400#bib18
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DNDC simulated reasonable drainage under DR, even though it did not include a mechanistic 

approach for computing tile drainage (Table 4.7).  

RZWQM2 performed satisfactorily in simulating daily drainage during the growing seasons 

under both free drainage and controlled drainage with sub-irrigation. The statistics of PBIAS, 

RRMSE and R2 ranged from -14 to 14%, 0.06 to 0.10, and 0.67 to 0.87, respectively (Table 4.7). 

The measured daily drainage flow rates and those simulated by RZWQM2 are plotted in Figure 

4.3a. The model correctly predicted less drainage under CDS than DR, since a higher water table 

was maintained under the CDS system. In the growing season of 2012, due to extremely low 

rainfall, almost no drainage was observed or simulated in all treatments even when sub-irrigation 

was applied in the CDS system. In 2014, RZWQM2 missed some drainage events in August and 

September for all treatments. The observed high peak after September 10th was attributed to the 

high rainfall (72 mm) event on that day, however, the model didn’t catch these peaks because of 

the over-estimation of runoff (simulated 29 mm VS 4 mm observed in DR-IF). Overall, our 

results for predicting daily drainage under controlled drainage with sub-irrigation was improved 

over the previous study using RZWQM2 by Lu (2015), who reported an over-estimation of total 

period drainage by 25% in the same experimental site from 2009 to 2011.  

Although DNDC does not include a tile drainage component, it also performed satisfactorily 

in predicting the total drainage within 13% error with the R2 value at 0.54 because the simulated 

drainage was highly relevant to precipitation. However, it showed poorer performance in 

estimating daily drainage than RZWQM2 did under DR-IF (R2=0.54 and RRMSE=0.18). DNDC 

does not include an explicit tile drainage submodel thus neither drain spacing nor drain depth 

affects drainage. The hydraulic components that DNDC considers include precipitation, 

irrigation, soil and leaf evaporation, sublimation, crop transpiration, leaching and runoff. The 
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only parameters available to calibrate drainage in DNDC are soil physical properties and crop 

water uptake. Li et al. (2006) developed a version of DNDC which could mimic tile drainage 

using a recession curve approach and Tonitto et al. (2007) modified four drainage parameters to 

improve simulation using this model version. However, this code is no longer active in the recent 

version of DNDC, and the parameters used by Tonitto et al. (2007) are not adjustable in the 

interface. In this study, we calibrated the parameters of crop water demand to adjust the 

evapotranspiration and thereby to match the daily drainage flow in the growing season.  

4.3.4 Crop yield 

Both RZWQM2 and DNDC accurately predicted corn and soybean yields under different 

N fertilizer applications within 15% error, and were able to correctly predict the low corn yield 

in 2014 due to late planting, after adjusting the corn parameters in terms of thermal degree days 

for maturity (Table 4.8). 

RZWQM2 reasonably simulated the corn and soybean yield under four treatments all within 

15% when compared with measured crop yield. It predicted 10% higher corn yield in CDS than 

DR system in the year of 2012, due to higher water supply from sub-irrigation and less water loss 

from drainage under CDS. The measured corn yield under CDS was expected to be higher than 

DR during the extremely dry growing season in 2012 (383.8 mm rainfall from May to October), 

however, there was no significant difference (p>0.05) between the measured corn yields under 

DR and CDS. Low precipitation in May (65.5 mm) and June (17.2 mm) was the major 

contributor for the dry growing season, meanwhile the SWC was reduced from around 0.3 cm3 

cm-3 to 0.2 cm3 cm-3. Water storage was correspondingly reduced by 10 mm in the top 10 cm of 

the soil profile. RZWQM2 might have over-estimated water stress in late July and August, since 

predicted water stress mainly occurred during the grain filling period, while in actuality crop 
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water uptake appears to have been satisfied by soil water storage and rainfall as sufficient water 

was supplied from rainfall in July (102 mm) and August (110 mm). 

4.3.5 N2O emissions 

RZWQM2 estimated cumulative N2O emissions within 6% for all the four treatments and 

DNDC reasonably predicted the N2O emissions within 8% under DR-IF and DR-SCM. 

However, both models had difficulties in predicting the timing and amount of peak N2O fluxes 

with R2 ranging from 0.37 to 0.51. Although RZWQM2 and DNDC had comparable 

performance in predicting N2O flux in terms of R2 and RMSE (Table 4.9), they simulated 

significantly different patterns in N2O emission during the unmeasured periods (Figure 4.4). 

DNDC simulated more high peaks, while RZWQM2 predictions were more constant. For 

example, the DNDC predicted N2O emission right after fertilization on May 16th, 2012 was 1036 

g N ha-1, which was 201 times greater than RZWQM2 (5.14 g N ha-1) under DR-IF. However, 

since the peak values were simulated on the days when no measurements were taken, the 

possibility of these high emission peaks could not be verified in this study. Therefore, it is 

suggested to take more frequent measurements after fertilization to verify GHG emission and 

model performances. 

The measured N2O emissions for corn was lower under IF than SCM, while the condition 

was totally opposite for soybean. This is because there were higher soil nitrate and ammonium 

concentrations in IF plots than SCM for corn. Thus, the total nitrification and denitrification for 

corn was higher than for soybean. However, the total available N in the soil profile was higher 

for soybean under SCM than IF treatments due to the slow decomposition of soil cattle manure 

under corn and more total N input under SCM than IF, while most NH4
+ was nitrified and NO3

- 

was denitrified or absorbed by crops in the IF plots for corn. RZWQM2 successfully predicted 
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lower N2O emission under SCM than IF for corn and higher N2O emission under SCM than IF 

for soybean. Similarly, the DNDC model also predicted less N2O emission under SCM in 2012 

and 2014 but more N2O emission under SCM than IF in 2013 and 2015.  

Both observed average N2O emissions and those simulated with RZWQM2 under CDS were 

higher than DR. Similar findings were reported by Nangia et al. (2013), who demonstrated 19% 

higher N2O emission under controlled drainage than conventional drainage from a four-year field 

experiment in Eastern Ontario. The higher N2O emission under CDS than DR in our study was 

due to higher soil moisture content leading to more N2O emission from denitrification. Our 

results are supported by  previous reports, such as Elder and Lal (2008), who indicated a positive 

correlation between N2O flux and SWC, and Giltrap et al. (2010) also demonstrated that higher 

SWC enhanced N2O from denitrification under anaerobic conditions.  

Although RZWQM2 and DNDC showed comparable performance in simulating N2O 

emissions under DF-IF, the magnitude of their simulated N dynamics varied significantly (Figure 

4.5). The total simulated denitrification amount under DR-IF over four years was 7.2 and 2.4 kg 

N ha-1 for RZWQM2 and DNDC, respectively, and the simulated total nitrification was 297 and 

165 kg N ha-1 for RZWQM2 and DNDC. Volatilization of N simulated by DNDC under DR-IF 

was 28 and 46 kg N ha-1 in 2012 and 2014, while RZWQM2 simulated values were only 11 and 

5 kg N ha-1. The extremely high volatilization predicted for 2014 may have contributed to the 

low nitrification estimated by DNDC. However, no measurements were taken to verify the NH3 

volatilization, thus we suggest measurements ofNH3 volatilization after fertilization in the future. 

Both models predicted higher denitrification in 2014 than 2012 due to more precipitation 

and higher soil moisture content during the growing season of 2014. The simulated 

denitrification using RZWQM2 was 3.4 and 7.8 g ha-1 day-1 on average during the growing 
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seasons in 2012 and 2014, while DNDC simulated no denitrification during the grow season. 

Grant et al. (2016) measured the daily denitrification rate under free drainage and reported an 

average value of 6.5 g ha-1 day-1. Lu (2015) adjusted the denitrification rate between 7 to 40 g ha-

1 day-1 with 200 kg inorganic N application during the growing season (May to October) to 

reduce the N loss and match the simulated corn yield with measured values using RZWQM2 at 

the same site in Harrow. The simulated results from RZWQM2 in this study were comparable to 

studies from both Lu (2015) and Elmi et al. (2005), while DNDC simulated much lower total 

denitrification. 

The complex processes of N2O production and consumption were controlled by many 

interacting factors and N substrates exist in various forms such as NH4
+, NO3

-, NO2
-, NH3, N2, 

and N2O. Therefore, it is understandable that models have difficulty in predicting daily N2O flux 

(Chirinda et al., 2011). Although the statistics for predicting daily N2O emissions indicate that 

both RZWQM2 and DNDC had difficulties in predicting the timing of N2O emission peaks, the 

cumulative emission amounts were still within the acceptable range under four different 

treatments for RZWQM2. In this study, RZWQM2 showed similar performance in predicting the 

cumulative N2O emissions under DR-IF when compared with DNDC, and performed better than 

DNDC in predicting the N2O emissions under DR-SCM. Smith et al. (2002 and 2008b) 

demonstrated the difficulties of DNDC in predicting the proper timing of N2O emissions, though 

it could predict the seasonal magnitude of N2O emissions correctly. Smith et al. (2008b) 

compared the performance of DNDC and DAYCENT in simulating the N2O emission in Quebec 

City and Woodlsee under different N fertilization and tillage practices. The DNDC model 

performed better than DAYCENT in simulating the seasonal N2O emissions, while both models 

had difficulty in simulating the daily N2O flux.  
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It should also be noted that the two models predicted N2O emissions very differently 

during winter months and spring thaw periods within the four years (Figure 4.4). Although no 

measurements were taken during winter or spring in our study, Tatti et al. (2017) observed N2O 

emissions in winter in high latitudes due to enhanced denitrification, which could be attributed to 

the lower O2 concentration and increased nutrients in soil with decreasing soil gas exchange, 

disruption of soil aggregates and microbial cells as results of soil freezing. Teepe et al. (2001) 

also observed increased N2O emissions when soil temperature decreased from 10 to -6 oC. 

DNDC’s  ability to predict N2O emissions from freeze-thaw cycles has been assessed by many 

investigators (Smith et al. 2002; Li et al., 2000; Norman et al., 2008; Kariyapperuma et al., 

2011), and our simulated results from DNDC indicated high emissions in winter and spring 

freeze-thaw periods, while RZWQM2 did not predict obvious N2O emissions in the same time. 

However, Foltz (2017) stated that the high N2O emission peaks simulated by DNDC in late 

winter and early spring were not observed in a corn field in Colorado. This could be explained by 

the unfrozen soil condition due to warm soil temperatures in the field. Therefore, N2O emissions 

from freezing soil Eastern Ontario region should be further investigated in the future.   

4.3.6 CO2 emission 

Since the crops in the chambers were removed, root respiration was not taken into 

consideration in this study. RZWQM2 outperformed DNDC in predicting soil CO2 emission 

under DR-IF and DR-SCM systems with the PBIAS ranging from 4 to 14%, RMMSE from 43% 

to 54%, and R2 from 0.54 to 0.57 (Table 4.10), while the DNDC model had poor performance in 

simulating the soil CO2 emission with RRMSE 62% to 79%, and R2 from 0.23 to 0.31. 

RZWQM2 was able to catch the higher CO2 emission peaks during the growing season in four 

years under different treatments, while DNDC always missed these peaks and over-estimated the 
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emissions in June and early July. Measurement intensity after fertilization should be increased to 

further verify the CO2 emission. Although the performance of DNDC was not as good as 

RZWQM2, our prediction of CO2 emission under inorganic fertilization was comparable to the 

study by Li et al. (2017), who reported an accurate prediction of DNDC model in the same 

experimental site with the RMMSE ranging from 66.5% to 71.6% in the corn-soybean rotation 

system. Li et al. (2017) found that the crop parameters of TDD (thermal degree days), biomass 

fraction of roots and shoots were very sensitive to the soil CO2 emission peaks and timing, thus 

these parameters were adjusted to match the CO2 emission.  

There was no significant difference (p>0.05) between measured CO2 under DR and CDS 

with both inorganic fertilization and solid cattle manure. However, significantly higher (p<0.01) 

CO2 was found with SCM application than IF under both DR and CDS systems. Both RZWQM2 

and DNDC accurately predicted higher CO2 emission under DR-SCM than DR-IF due to the 

supply of soil organic carbon in solid cattle manure (Figure 4.6). Both experimental and 

RZWQM2 simulated results showed that water table management has a limited impact on CO2 

emission, but SCM application would result in higher CO2 emissions than inorganic fertilization 

due to higher organic carbon from manure. RZWQM2 under-estimated the CO2 emission in CDS 

system in the growing season of 2012, which might be due to the over-estimation of SWC during 

the sub-irrigation period.  

4.4 Summary and Conclusion 

This study is the first evaluation of the newly added GHG component for RZWQM2 under 

both inorganic fertilizer and manure application. DNDC performed better than RZWQM2 in 

simulating soil temperature, which provides a sound basis for the prediction of GHG emissions. 

RZWQM2 also performed fairly well in simulating soil temperature with PBIAS within 17% and 
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the over-estimation may be because RZWQM2 used a fixed boundary condition for the soil 

surface temperature. After model calibration, RZWQM2 performed better than DNDC in 

simulating SWC with PBIAS within 13%, RRMSE within 21%, and R2 ranged from 0.55 to 

0.68. Although DNDC estimated the average SWC within 3% and the RRMSEs were within 

17%, the R2 for both DR-IF and DR-SCM were lower than RZWMQ2. The lack of a 

heterogeneous soil profile and root density was the major limitation of DNDC for an accurate 

prediction of SWC. The computational Richards equation used in RZWQM2 performed very 

well but requires much more time for model execution. Both RZWQM2 and DNDC performed 

reasonably well in predicting tile drainage under the DR system, but RZWQM2 performed better 

than DNDC in simulating the peaks and daily trends, and RZWMQ2 had the capability to handle 

tile drainage simulation under controlled drainage with sub-irrigation. Both models closely 

predicted crop yield and biomass over the four-year study for all treatments. Although both 

models failed to predict the amount and timing of daily N2O peak emissions, they provided 

reliable estimates of cumulative N2O emissions under different treatments over four years. 

RZWQM2 also performed much better than DNDC in predicting the daily CO2 emissions and 

provided reliable estimated of average CO2 emission under different treatments.  

Overall, RZWQM2 is an agricultural system model which comprehensively handles crop 

growth, hydraulic cycles and nutrient cycling at the field scale, and DNDC is specialized for 

nutrient cycling but also reasonably simulated SWC, drainage and crop growth. RZWQM2 

requires very experienced users for calibration and validation due to the uncertainty and 

complexity of parameters and is more computationally intensive, while DNDC is more user-

friendly and works well with simple calibration. It is important to test the hydraulic components 

of agricultural system models to better understand the complicated interaction between soil, 
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water and nutrients. Improvements are suggested for DNDC in computing soil water dynamics. 

This could substantially impact C and N cycling and improve the temporal representation of 

drainage and GHG emission events. Further evaluations are needed to test RZWQM2 for 

predicting NH3 volatilization, the methanogenesis process for CH4 emissions and the impacts of 

organic and inorganic manure management on GHG emissions across a wider array of soils and 

climatic conditions.   
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Table 4.1. Agronomic management from 2012 to 2015 (IF: inorganic fertilization; SCM: soil cattle 

manure) 

 

Table 4.2. Measured and calibrated soil hydraulic parameters. 

[a] ρ = bulk density, θs = saturated soil water content, FC33= field capacity at 1/3 bar, FC15= field capacity at 15 

bar, θr = residual soil water content, τb = bubbling pressure, λ = pore size distribution index, ksat=saturated 

hydraulic conductivity. Bulk densities are measured while others are calibrated values. 

[b] Other required parameters include A1 (set to zero), B (computed using the RZWQM default constraint) for all 

layers, N1 (set to zero), and K2 and N2 (computed using the RZWQM default constraints) for all layers (Ahuja et al., 

2000b). The lateral hydraulic gradient was adjusted to a value of 1.5×10-6. 

 

 

 

 

Year 

 

Crop 

Sowing 

Date 

Harvest 

Date 

IF (kg N/ha)  SCM (kg N/ha) 

NH4NO3  NH4NO3 Organic N 

2012 Corn 25-May 5-Nov 200  130.84 230.55 

2013 Soybean 16-May 9-Oct 0  0 0 

2014 Corn 29-Jun 28-Nov 200  110.67 297.74 

2015 Soybean 25-May 8-Oct 0  0 0 

Layer Depth 

(m) 

ρ 

(Mg m-3) 

  Soil Water Retention Lateral 

 𝑘𝑠𝑎𝑡 

(mm h-

1) 

Vertical 

𝑘𝑠𝑎𝑡  

(mm h-1) 

θs 

(m3m-3) 

FC33 

(m3m-3) 

FC15 

(m3m-3) 

θr 

(m3m-3) 

τb 

 

λ 

1 0-0.05 1.36 0.487 0.233 0.104 0.025 -14.5 0.141 30 15 

2 0.05-0.25 1.60 0.415 0.227 0.109 0.025 -24.1 0.180 60 30 

3 0.25-0.45 1.46 0.449 0.330 0.248 0.025 -5.9 0.082 34 17 

4 0.45-0.80 1.40 0.472 0.350 0.272 0.025 -3.9 0.072 20 10 

5 0.80-1.20 1.40 0.464 0.328 0.246 0.025 -3.8 0.083 20 10 

6 1.20-1.50 1.40 0.464 0.320 0.236 0.025 -3.5 0.087 20 10 

7 1.50-2.00 1.40 0.464 0.250 0.166 0.025 -3.0 0.170 1 1 
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Table 4.3. Calibrated hydrologic and nutrient parameters in RZWQM2  

Non-default Parameters Value 

Hydrology component  

Minimum leaf stomatal resistance (s m-1) 150 

Albedo of dry soil 0.2 

Albedo of wet soil 0.3 

Albedo of crop 0.3 

Albedo of fresh residue 0.3 

Drain depth (m) 0.85 

Drain spacing (m) 3.8 

Radius of drain (cm) 7.6 

Surface soil resistance for S-W 250 

Water table leakage rate (cm hr-1) 0.0001 

Nutrient component  

Slow residue pool to intermediate soil 0.1 

Fast residue pool to Fast soil humus pool 0.3 

Fast soil humus pool to intermediate soil 0.6 

Intermediate soil to slow soil humus pool 0.7 

Decay rate of slow residue pool 1.673×10-8 

Decay rate of fast residue pool 5.14×10-8 

Decay rate of fast soil humus pool 5.5×10-7 

Decay rate of intermediate soil humus pool 5×10-7 

Decay rate of slow soil humus pool 4.7×10-9 

Denitrification rate 2.0×10-14 
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Table 4.4. Calibrated and measured (*) soil and crop parameters in the DNDC model 

Soil Parameters  Value 

Soil pH*  5.4 

Field capacity (wfps)  0.72 

Wilting point (wfps)  0.4 

Clay fraction*  0.37 

Conductivity (cm hr-1)  1.5 

Soil initial C*  1.66% 

Porosity*  0.449 

Crop parameters  Corn Soybean 

Maximum grain biomass production (kg C/ha/year) 6500 3200 

Biomass C: N ratio (grain) 45 10 

Biomass C: N ratio (leaf) 80 45 

Biomass C: N ratio (stem) 50 40 

Biomass C: N ratio (root) 40 20 

N fixation index 0 1 

Water demand (g water/g dry matter) 125 330 

Thermal degree days for maturity 2950 1800 

 
Microbial activity parameters    

Rainfall Intensity multiplier for microbial activity (1 default) 

 

 dedefault) 

 0 (off) 

Denitrifier Growth rate activity (1 default)  0.70 

Nitrifier Growth rate activity (1 default)  0.25 

    

 

Table 4.5. Statistics for evaluating model performances in soil temperature simulations (0 to 6cm) 

Model treatment 

Obs 

oC 

Sim 

oC 

PBIAS 

 

RMSE 

oC 

RRMSE 

 

R2 

RZWQM 

 

 

DR-IF 18.0 16.8 7% 2.8 0.23 0.73 

DR-SCM 20.0 16.8 16% 4.7 0.23 0.70 

CDS-IF 19.1 16.7 12% 3.7 0.20 0.74 

CDS-SCM 20.4 16.8 18% 5.0 0.25 0.72 

DNDC 

 

DR-IF 18.0 19.6 -8% 2.5 0.14 0.93 

DR-SCM 20.0 19.6 2% 2.7 0.13 0.88 
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Table 4.6. Statistics for evaluating model performance in soil water content (SWC) simulations (0 

to 6 cm) 

Model treatment 

Obs 

cm3 cm-3 

Sim 

cm3 cm-3 PBIAS 

RMSE 

cm3 cm-3 RRMSE 

R2 

 DR-IF 0.27 0.25 5% 0.04 0.15 0.64 

RZWQM2 DR-SCM 0.26 0.26 2% 0.04 0.14 0.76 

 CDS-IF 0.26 0.28 -8% 0.05 0.19 0.64 

 CDS-SCM 0.29 0.29 -1% 0.06 0.18 0.56 

DNDC 

DR-IF 0.27 0.27 0% 0.05 0.18 0.51 

DR-SCM 0.26 0.27 -3% 0.05 0.18 0.56 

 

Table 4.7. Statistics for evaluating model performance in daily drainage flux simulation 

Model treatment 

Obs 

(mm) 

 Sim 

(mm) PBIAS 

RMSE 

(mm) RRMSE 

 

R2 

RZWQM2 DR-IF 0.41  0.47 14% 0.04 0.10 0.87 

 CDS-IF 0.18  0.19 7% 0.01 0.07 0.67 

 CDS-SCM 0.28  0.24 -14% 0.02 0.06 0.81 

DNDC DR-IF 0.41  0.47 13% 0.07 0.18 0.54 

 

Table 4.8. Measured and simulated crop yield (Mg ha-1) 

  DR-IF  CDS-IF  DR-SCM  CDS-SCM  

crop year obs sim  obs sim  obs sim  obs sim  

RZWQM 

2012 11.4 11.7 -3% 10.9 12.4 -14% 11.2 11.2 0% 11.4 12.4 -8% 

2013 4.1 4.0 4% 3.6 3.6 1% 4.0 4.0 2% 3.6 3.6 -3% 

2014 3.9 4.0 -4% 3.9 4.0 -3% 4.1 4.1 2% 4.1 4.1 2% 

2015 3.5 3.9 -13% 3.5 3.8 -9% 4.2 4.0 5% 3.5 3.9 -15% 

DNDC 

2012 11.4 11.1 2%    11.2 10.9 3%    

2013 4.1 4.1 -1%    4.0 4.1 2%    

2014 3.9 4.1 -6%    4.1 4.1 0%    

2015 3.5 3.9 -10%    4.2 3.9 8%    
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Table 4.9. Statistics for evaluating model performance in soil N2O emissions simulation 

Model treatment 

Obs 

g N ha-1 

Sim 

g N ha-1 PBIAS 

RMSE 

g N ha-1 RRMSE 

R2 

RZWQM2 

DR-IF 2.42 2.30 5% 3.00 1.24 0.47 

DR-SCM 2.66 2.64 1% 2.90 1.09 0.48 

CDS-IF 3.15 3.28 -4% 5.26 1.67 0.40 

CDS-SCM 2.61 2.76 -6% 4.25 1.63 0.37 

DNDC 

DR-IF 2.42 2.31 4% 2.90 1.20 0.46 

DR-SCM 2.66 2.86 -8% 2.66 1.00 0.51 

 

 

 

 

 
 

Table 4.10. Statistics for evaluating model performances in soil CO2 emissions simulations 

Model treatment 

Obs 

kg ha-1 

Sim 

kg ha-1 PBIAS 

RMSE 

kg ha-1 RRMSE 

R2 

RZWQM2 

DR-IF 13.1 12.8 4% 5.6 0.43 0.57 

DR-SCM 17.8 20.3 -14% 9.6 0.54 0.54 

CDS-IF 12.6 13.3 -6% 7.4 0.59 0.33 

CDS-SCM 17.3 19.5 -13% 9.3 0.54 0.34 

DNDC 

DR-IF 13.1 13.9 -4% 8.1 0.62 0.31 

DR-SCM 17.8 16.3 8% 14.0 0.79 0.23 
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Figure 4.1. Comparison of field measured, (a) RZWQM2 simulated and (b) DNDC model 

simulated soil temperature at the soil depth of 6 cm. 
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Figure 4.2. Comparison of field measured, (a) RZWQM2 simulated and (b) DNDC simulated soil 

water content (SWC) 
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Figure 4.3. Comparison of field measured, (a) RZWQM2 simulated and (b) DNDC simulated daily 

drainage flux during the growing season from 2012 to 2015 
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Figure 4.4. Measured and simulated N2O emissions by (a) RZWQM2 and (b) DNDC under DR-

IF (Arrows are fertilizations) 
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Figure 4.5. Simulated daily (a) nitrification and (b) denitrification in soil profile by DNDC and 

RZWQM2 under DR-IF system (Arrows are fertilizations) 
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Figure 4.6. Measured and simulated CO2 emission by (a) RZWQM2 and (b) DNDC  
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Connecting text to Chapter 5 

Chapter 4 testedRZWQM2 by comparing its performance with a C:N cycling model, DNDC, in 

simulating the comprehensive biochemical processes in the soil profile and crop growth. 

RZWQM2 was found to have comparable performance with DNDC in predicting N2O emissions 

but was better than DNDC for simulating CO2 emissions. It has better algorithms for soil water 

dynamics and tile drainage simulation. It was more applicable for simulating the GHG emissions 

and hydraulic components in sub-surface drained fields. This chapter reports further testing of 

the nutrient component of RZWQM2 for predicting the GHG emissions under water table 

management using four years’ measured N2O and CO2 emission data. After model evaluation, a 

few agronomic management practices were implemented using the model to investigate their 

long-term impact on GHG emissions, and thereby some suggestions were proposed to mitigate 

GHG emissions from agricultural soils. The following manuscript, co-authored by Dr. Zhiming 

Qi, Dr. Chandra Madramootoo and Cynthia Crézé, has been published in  the journal of Science 

of the Total Environment. 

 

Jiang, Q., Qi, Z., Madramootoo, C.A. and Crézé, C. 2019. Mitigating greenhouse gas emissions 

in a subsurface-drained field in Southern Quebec using RZWQM2. Science of the total 

environment, 646, 377-389. 
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Chapter 5 

Mitigating greenhouse gas emissions in a subsurface-drained field in Southern Quebec 

using RZWQM2 

Qianjing Jiang, Zhiming Qi, Chandra A. Madramootoo, Cynthia Crézé  

Abstract 

Greenhouse gas (GHG) emissions from agricultural soils are affected by various environmental 

factors and agronomic practices. The impact of inorganic nitrogen (N) fertilization rates and 

timing, and water table management practices on N2O and CO2 emissions were investigated to 

propose mitigation and adaptation efforts based on simulated results founded on field data. 

Drawing on 2012-2015 data measured on a subsurface-drained corn (Zea mays L.) field in 

Southern Quebec, the Root Zone Water Quality Model 2 (RZWQM2) was calibrated and 

validated for the estimation of N2O and CO2 emissions under free drainage (FD) and controlled 

drainage with sub-irrigation (CD-SI). Long term simulation from 1971 to 2000 suggested that the 

optimal range of N fertilization should be in the range of 125 to 175 kg N ha-1 to obtain higher 

NUE (nitrogen use efficiency, 7-14%) and lower N2O emission (8-22%), compared to 200 kg N 

ha-1 for corn-soybean rotation (CS). While remaining crop yields, splitting N application would 

potentially decrease total N2O emission by 11.0 %. Due to higher soil moisture and lower soil O2 

under CD-SI, CO2 emissions declined by 6% while N2O emissions increased by 21% compared 

to FD. The CS system reduced CO2 and N2O emissions by 18.8% and 20.7%, respectively, 

when compared with continuous corn production. This study concludes that RZWQM2 model 

is capable of predicting GHG emissions, and simulations suggest that GHG emissions from 

agriculture can be mitigated using agronomic management practices.     
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Key words: Controlled drainage; N management; water table management; GHG mitigation; 

rotation 

5.1 Introduction 

Greenhouse gas (GHG) is an important factor for global climate change, due to the great 

impact of the three major GHGs, nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) 

on regulating precipitation and temperature (Ozlu and Kumar, 2018). Agricultural activities are 

significant contributors for GHG emissions. Approximately 8% of total GHGs are emitted 

directly from agriculture, since 52% and 84% of global CH4 and N2O emissions are produced 

from agriculture and agricultural soils act as both sink and source for CO2 (Smith et al., 2008a). 

In developing countries, GHG emissions arising from agricultural activities increased 32% 

between 1990 and 2005, and continues to do so in the face of rising population and food 

demands (IPCC, 2014). Reducing GHG emissions, mitigating the effects of GHG emissions and 

adapting to changes in climate without reducing food production and jeopardizing food security 

is becoming a global challenge.  

Nitrous oxide emissions arise from nitrification under aerobic conditions, or denitrification 

under anaerobic conditions, and carbon dioxide is mainly released through the aerobic 

decomposition of soil organic carbon. In an agricultural context, the extent and nature of GHG 

emissions is closely related to the pH, temperature, moisture content and the nutrient availability 

of the cultivated soil (Oertel et al., 2016). Agronomic management affects GHG emissions by 

altering soil nutrients, and the aerobic or anaerobic conditions to which microorganisms are 

exposed. It was reported that the inorganic N fertilization accounts for 22% to the total GHG 

emissions from agriculture in Canada (ECCC, 2017). Tile-drained fields were reported to 

produce 45% less N2O emissions from soil than undrained fields in Wells, MN (Fernández et al., 
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2016). Controlled drainage reduces drainage outflow and enhances denitrification, thereby 

reducing NO3
- -N losses (Ridao et al., 1998), however, it also results in more N2O release from 

denitrification (Kliewer and Gilliam, 1995), due to higher soil water content (SWC) under water 

table management. Elder and Lal (2008) indicated a positive correlation between N2O flux and 

SWC, since higher SWC enhanced the N2O arising from denitrification under anaerobic 

conditions (Giltrap et al., 2010). Andrade et al. (2002) demonstrated that when dissolved organic 

carbon was added to sub-irrigation water applied under controlled drainage, the bacterial 

denitrification process which transforms N2O to N2 was enhanced, NO3
− pollution was lowered, 

and less N2O was released to the atmosphere. In reducing GHG emissions from agricultural soils, 

one must optimize crop fertilization, as not all crops can take up all forms of N, and forms or 

methods of N fertilization which do not favor plant uptake could result in more N2O emissions 

(McSwiney and Robertson, 2005) and N leaching (Bergström and Brink, 1986). To mitigate the 

GHG emissions, some agronomic management practices were suggested, such as precision 

fertilization by estimating the crop N required to avoid excess N application, the use of rotations 

with legume crops, cover crops, and optimizing the timing of N application to improve N use 

efficiency (Smith et al., 2008a). Others have reported that cover crops could increase CO2 and 

N2O emissions (Sanz-Cobena et al., 2014), and tillage could also enhance GHG emissions 

(Omonode et al., 2011, Gillette et al., 2017b) because it improves soil porosity, thereby raising 

the soil O2 concentration ([O2]soil) and promoting the aerobic activities of nitrification and 

respiration.  

N2O emissions show great variability corresponding to spatial and timing with changing soil 

environment, because the soil temperature, soil moisture content, soil N and O2 availability are 

all affected by the climate condition and agricultural activities (Fang et al., 2015). Although field 
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experiments have been conducted to measure GHG emissions, collecting the GHG emission data 

on a daily basis over the long term has been laborious and very costly. Computer modeling 

allows for the simulation of GHG emissions over a longer time period. In addition, computer 

modeling provides the possibility to assess the effects of various agronomic practices on GHG 

emissions and crop production. A numbers of process-based models have been developed and 

evaluated for estimating GHG emissions (Giltrap et al., 2010, Hashimoto et al., 2011, Li et al., 

2015). One such model, the DNDC (Denitrification–Decomposition) model is capable of 

simulating N2O, CH4, and CO2 emissions, and has been tested in the United States (Li, 1995; 

Tonitto et al., 2007) , Canada (Smith et al., 2002), India (Pathak et al., 2005), China (Cai et al., 

2003), and Europe (Levy et al., 2007). However, the DNDC model does not have a tile drainage 

component, and it is not able to simulate the impact of controlled drainage or subirrigation on 

GHG emissions.   

The Root Zone Water Quality Model (RZWQM2) is a comprehensive one-dimensional 

field-scale model which can be used to study the interaction of physical, chemical, and biological 

processes within the soil profile, including the movement of water, nutrients, pesticides as well 

as crop growth under various management practices (Ahuja et al., 2000b). Optional management 

practices include controlled drainage, different types of irrigation, inorganic and manure 

fertilization, tillage, pesticide, cover crop and crop rotations. Fang et al. (2015) improved the 

RZWQM2 model after comparing the performance of four N2O emission algorithms (i.e., 

DAYCENT, NOE, WNMM, and FASSET) by coupling them with RZWQM2 to predict N2O 

emissions from soil nitrification and denitrification processes. These algorithms of N2O 

emissions from nitrification in NOE and N2O release from denitrification in DAYCENT were 

then added to the RZWQM2. In testing the modified RZWQM2 model’s ability to predict the 
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effect of tillage and N fertilizer application rate on N2O emissions in an irrigated corn (Zea mays 

L.) field in Colorado, Gillette et al. (2017b) found that conventional tillage led to 10% 

(simulated) and 12% (measured) greater annual N2O emissions than a no tillage treatment when 

a high rate of N fertilisation was applied. However, the model overestimated N2O emissions by 

16% under no-till low N fertilization rate treatments, but underestimated them by 10% under 

conventional tillage. Wang et al. (2016) applied the modified RZWQM2 model to test the 

possibility of different management practices (e.g., N application rate, tillage system, new crop 

cultivars/lines, water table management practices, and planting date) to mitigate the adverse 

effects of climate change in Iowa, USA. Long-term simulation results suggested that new corn 

cultivars could contribute to increasing yields and reducing N2O emissions and N losses in 

drainage in the future.  

Calibrated and validated agricultural system models could evaluate agronomic management 

options to mitigate GHG emissions. In addition, models can estimate the annual and long term 

GHG emissions, which is difficult and costly to conduct by field experiments on a daily basis 

over a long time period. The RZWQM2 has been evaluated to simulate different tillage effects 

on N2O emissions, but it has never been tested for simulating CO2 emissions from agricultural 

soils. The objectives of this paper are to 1) test RZWQM2’s ability to predict the emissions of 

two GHGs in a subsurface drained field under water table management; 2) use RZWQM2 to 

investigate the impacts of different agronomic management practices on long-term annual GHG 

emissions; 3) propose  mitigation and adaptation suggestions based on the model simulations.  

 

5.2 Methods and materials 
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5.2.1 Overview of RZWQM2 

RZWQM2 is a one-dimensional agricultural system model capable of simulating the 

movement of water, nutrients and pesticides in agricultural soils, as well as crop growth under 

various management practices (Ahuja et al., 2000b). It houses subroutines dedicated to physical, 

chemical and biological processes of an agricultural system. The model uses the Green-Ampt 

equation (Green and Ampt, 1911) to simulate the infiltration of surface water and melted snow 

into the soil and the Richards equation to calculate water distribution in the soil profile between 

rainfall or irrigation events (Ahuja et al., 2000b). The potential evaporation (Ep) and crop 

transpiration (Tc) are described by the Shuttleworth-Wallace equation (Shuttleworth and 

Wallace, 1985). Tile drainage flux is calculated by the Hooghoudt equation (Hooghoudt, 1940). 

Agricultural management practices that are available for users include crop cultivar selection, 

planting date, manure application, irrigation, fertilization, pesticides, and tillage. In the case of 

sub-irrigation, water is introduced into the soil profile at a user-defined depth and handled as a 

source in the Richards equation.  

The OMNI program, developed as a submodel of RZWQM2, simulates the organic matter 

and nitrogen cycling pathways, including mineralization and immobilization, inter pool transfer 

of C and N, aerobic nitrification, anaerobic decay and denitrification, microbial biomass growth 

and death, etc. In OMNI, the decayed soil organic carbon (SOC) is channeled in three directions: 

transfer to other organic matter pools, assimilation into biomass, or to a C sink via CO2 generated 

from biomass respiration. Drawing on a fraction of the biomass pool lost to inter-pool transfer, 

OMNI converts the remaining decayed organic matter to biomass C by way of an efficiency 

factor, and considers the remaining organic C as going to a C sink as CO2 from aerobic 

respiration (Ahuja et al., 2000b). The organic matter is divided into five pools: (i) plant or other 
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organic structural material (slow pool), (ii) plant or other organic metabolic material (fast pool), 

including crop residues, manure, and other organic materials, (iii, iv, v) fast, medium and slow 

decaying SOM pools. The basic equations for computing the decomposition rates of different 

pools are the same, while the coefficients of decay for different pools are different, which are 

computed as a function of user-defined rate coefficient, microbial population size, the population 

of aerobic heterotrophic microbes, ionic strength, temperature, water filled pore space (WFPS)), 

O2 concentration, etc. However, the CO2 emissions from root respiration and assimilation by the 

plant from photosynthesis are not considered in this model. The algorithms for N2O emissions 

from nitrification are adapted from the NOE model which computes the N2O emission using a 

fraction of nitrification for N2O emissions, a soil water factor for the oxygen availability and the 

quantity of nitrification, while N2O release from denitrification is computed using algorithms 

from the DAYCENT model based on NO3-N content, soil respiration, and water filled pore 

space. In RZWQM2, the OMNI program is linked to other sub-models for a comprehensive 

simulation of the whole system, including plant growth, soil chemistry, and solute transport.  

5.2.2. Fields experiment 

The field study was conducted from 2012 to 2015 at a 4.2-ha subsurface-drained corn field 

in the Saint-Emmanuel sector of Côteau-du-Lac, Quebec (lat. 45.32N, long. 74.17W). The soil at 

this site was a Soulanges very fine sandy loam with 5.0% organic matter in the top layer (0-0.25 

m), followed by layers of sand clay loam with 1.5% organic matter (0.25-0.55 m) and a clay 

layer with little organic matter content (0.55-1.0 m). Yellow bean (Phaseolus vulgaris L.) was 

planted in 2012 and grain-corn was planted each of the next three years (Pioneer 9918 in 2013, 

Pioneer 9855 in 2014 and Pioneer 9917 in 2015). Each year inorganic N fertilization was applied 

prior to seeding and during the growing season at rates and dates shown in Table 5.1. Tillage 
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practices were applied 24 hours before seedling using spring tooth harrow and after harvest with 

chisel plow each year.  

The subsurface drains were installed on a 0.5% slope at a maximum depth of 1.0 m, 

lengthwise along each subsurface drained plot (75 m × 15 m; Madramootoo et al., 2001). These 

plots were grouped into three blocks, each housing two water table management regimes: 

conventional free drainage (FD) and controlled drainage with subirrigation (CD-SI). All plots 

were under FD for the first two years (2012 and 2013), while separate CD-SI and FD plots were 

implemented in 2014 and 2015 (Figure 5.1); data from the former served in the model validation, 

while data from the latter served in model validation. For CD-SI, the water table depth was 

maintained between 0.60 m to 0.75 m from the soil surface by means of pumping water from a 

well into the drainage pipes through a water control structure.  

The GHG samples were taken from four chambers per block, with a total of three blocks 

(Figure 5.1) in 2012 and 2013. All chambers were under FD and in 2014 and 2015; two 

chambers in each block were under FD with the other two under CD-SI. The closed chambers 

(0.556 m × 0.556 m × 0.140 m), each equipped with a gas sampling and a vent tube port, were 

inserted into the soil to a depth of 0.10 m. Measurements of GHG fluxes were taken weekly 

during the growing season of the four years. Gas samples were taken using a 20-ml syringe with 

a needle tip (25-gauge, 1.6 cm, Benton and Dickson) at 0, 15, 30, 45 and 60 minutes from each 

chamber, and immediately placed in exetainers with 15 mg magnesium perchlorate (Labco, High 

Wycombe, UK) to absorb water vapor. Gas concentrations in all samples were analyzed in lab 

using the Bruker 450-GC System (Bruker corp., Bremen, Germany), then the non-steady-state 

diffusive flux estimator (NDFE) was applied to compute the gas fluxes from the changes of 
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measured gas concentrations as described by Livingston et al. (2006). Detailed information on 

the procedure can be found in Crézé (2015). 

Hourly air temperature, precipitation, relative humidity and wind speed were obtained from 

the Environment Canada weather station at Côteau-du-Lac (Station ID – 7011947), located 500 

m from the experimental site. Soil physical and chemical properties including soil texture, organic 

matter content (SOM) and bulk density (ρ) were measured using undisturbed soil cores taken 

from the field. The temperature of the soil’s top 0.06 m was monitored using a hand-held 

thermometer (Hanna® Instruments), while its volumetric water content (θv) was measured with a 

ThetaProbe (Model ML2x; Delta-T Devices Ltd., 1999, Cambridge, UK).  

5.2.3 RZWQM2 Model calibration 

The hydraulic component of the model was calibrated against the θ data measured under FD 

in 2012 and 2013, and validated using measured θ data from 2014 to 2015 under FD and CD-SI. 

The calibrated soil hydraulic parameters for different soil layers are listed in Table 5.2. Nutrient 

parameters were calibrated to match with the GHG emission measurements (Table 5.3). With the 

default organic matter decay rates, the model predicted large peaks after crop harvesting each 

year due to the fast decomposition of crop residue on soil surface. Therefore, decay rates of both 

slow and fast residue pools were decreased (Table 5.3). To fit the high emissions during the 

summer period, the decay rates of the all the soil humus pool were adjusted to increase CO2 

emissions from the decomposition of soil organic matter. The simulated average annual 

mineralization was around 160 kg N ha-1 changing these nutrient parameters. Carpenter-Boggs et 

al. (2000) also reported the mineralization amount from 150 to 160 kg N ha-1 during the growing 

season with 181 kg N ha-1 fertilization in South Dakota, US. The denitrification rate was reduced 
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from 1.0×10-13 to 3.0×10-14, similar to the calibrated values of Malone et al. (2014b), to reduce 

the N losses from denitrification. To properly initialize the soil microbial populations, Ma et al. 

(1998) suggested running the model for at least 10-12 years prior to the simulation period; 

accordingly, the model was run several times, and after each run initial residue levels were 

uploaded from the previous run to stabilize the organic matter pools. The stabilized initial 

nutrient concentrations are listed in Table 5.4.  

5.2.4 Quantification of agronomic management effects using RZWQM  

After calibrating and validating RZWQM2 with experimental data, annual GHG emissions 

were predicted based on the existing field conditions. Drawing on long-term historical weather 

data (1971—2000), alternative agronomic management practice scenarios supplementary to a 

corn-soybean (CS) rotation system were simulated with RZWQM over a 30-year period, to 

quantify their impacts on annual GHG emissions. Planting and harvest dates for simulated 

soybean [Glycine max (L.) Merr.] and corn were May 1st and November 1st, respectively. Each 

‘corn’ year, N fertilization was applied prior to the planting date. Although split N application 

was performed at  the experimental site, the fertilizer amount and application date for each year 

was decided by the farmer based on his experience (Crézé, 2015). The impact of splitting N 

application on GHG emissions over long-term period could be quantified by RZWQM2. In 

Canada, 19.8% of corn was cultivated with corn-soybean-wheat rotation system, and 18.7% was 

planted in corn-soybean rotation system to reduce the risk of soil erosion (Hamel and Dorff, 

2015), improve soil quality and sustainability of agriculture (Karlen et al., 2006). However, the 

benefits of rotation cropping system for GHG emission mitigation have seldom been quantified. 

Therefore, the comparative agronomic management scenarios investigated were:  
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(i) Seventeen N fertilization rates from 0 to 300 kg ha-1 at 25 kg ha-1’s interval in CS 

cropping system 

(ii) Seven different N application dates: May 1st, May 11th, May 21st, May 31st, June 10th, 

June 20th, June 30th in CS cropping system. 

(iii) Single N application and split-time applications totaling 200 kg N ha-1 (average N 

rates from 2013-2015) per year in CS cropping system 

a. one before planting  

b. one before planting, one after emergence 

c. one before planting and one on June 15th, around two weeks before silking. 

(iv) Two water table management scenarios in CS cropping system with 200 kg N ha-1 

pre-plant applied  

a. Free drainage (FD) 

b. Controlled drainage with sub-irrigation (CD-SI). Water table depth maintained at 

0.60 cm over the full growing season (May 1st to Oct 1st) with subirrigation 

applied from July 1st to Oct 1st at 20 mm per week. 

(v) Corn-soybean rotation (CS) and continuous corn (CC). 

5.2.5 N2O emission factor (EF) 

The N2O emission factor (EF) was computed for simulating the impact of N fertilization 

rates on annual N2O emissions following the method reported by Wang et al. (2016): 

𝐸𝐹 =
𝑁2𝑂𝐴𝑁−𝑁2𝑂𝑂𝑁

𝐹
                                                                                                          [5.1] 



132 
 

where EF is the N2O emission factor induced by fertilizer; 𝑁2𝑂𝐴𝑁 is the direct N2O emissions 

after N application (kg N ha-1 yr-1), 𝑁2𝑂𝑂𝑁 is the direct N2O emission without fertilizer, and F is 

the N fertilization rate (kg N ha-1 yr-1). The EF was computed using the N2O emission from only 

corn years in the corn-soybean rotation system to investigate the N fertilization impact on N2O 

emission. 

5.2.6 Model Accuracy Statistics 

In this study, four statistics were used to evaluate the performance of RZWQM2 in 

simulating SWC, soil temperature, N2O flux and CO2 releases, relative to observed values: 

percent bias (PBIAS), root mean squared error (RMSE), index of agreement (IoA), and 

determination of coefficient (R2) given as: 

PBIAS =
∑ (𝑂𝑖 − 𝑃𝑖)100𝑛

𝑖=1

∑ 𝑂𝑖
𝑛
𝑖=1

 
  [5.2] 

RMSE = √
∑ (𝑃𝑖 − 𝑂𝑖)2𝑛

𝑖=1

𝑛
 

 [5.3] 

IoA = 1 −
∑ (𝑃𝑖 − 𝑂𝑖)2𝑛

𝑖=1

∑ (|𝑃𝑖 − 𝑃̅| + |𝑂𝑖 − 𝑂̅|)2𝑛
𝑖=1

 
  [5.4] 

  𝑅2 =
∑ (𝑛

𝑖=1 𝑂𝑖−𝑂̅)(𝑃𝑖−𝑃̅)

√∑ (𝑂𝑖−𝑂̅)2𝑛
𝑖=1 ∑ (𝑃𝑖−𝑝̅)2𝑛

𝑖=1

                                                                                         [5.5]                               

where 

n    is the number of observations; 

𝑂̅   is the mean observed value; 

𝑂𝑖   is the ith observed value; 

𝑃̅   is the mean predicted (simulated) value; and 
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𝑃𝑖    is the ith predicted value. 

An IoA of 1 indicates perfect model accuracy and IoA > 0.7 a satisfactory model 

performance (Ma et al., 2012).  PBIAS is a measure of the difference in mean simulated and 

observed values, for which a value of ± 15% is considered satisfactory. The value of the R2 is 1 

when model estimates perfectly match observed data, and the model can be judged as 

satisfactory when R2>0.5. However, these criteria should not be straightforward used for 

evaluating model performance in predicting daily N2O and CO2 emissions. Although these 

statistics are used to judge the performance of model simulations compared to field 

measurements of daily GHG emissions, they only indicate how well the model performs on a 

given day (Giltrap et al., 2010). Models may not perform satisfactorily in terms of RMSE and R2 

if the peak is not predicted on a given day such as leading or lagging behind the measured day, 

but the total amount of GHG emissions could still be reliable if the cumulative emissions are 

reasonably predicted, and the annual emissions for long term under different environmental 

conditions is the major concern in our study. 

5.3 Results and discussion 

5.3.1. Model evaluation  

5.3.1.1. Soil temperature and soil water content (SWC) 

The simulated and measured daily average soil temperature and soil water content are plotted 

in Figure 5.2 and Figure 5.3, respectively. Both simulated and observed soil water content are 

higher under CD-SI than FD in the validation year of 2014 and 2015 due to more water supply and 

water table control under CD-SI. Detailed statistics for RZWQM simulated soil water content and 

soil temperature at the soil depth of 6 cm under FD and CD-SI from 2012 to 2015 are listed in 

Table 5.5. 
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Given the greater water supply and water table management under CD-SI, both simulated 

and observed SWC of topsoil at 0.06 m depth were higher under CD-SI than under FD (Figure 5.3, 

Table 5.5). While little if any difference in observed soil temperature occurred between FD and 

CD-SI (Table 5.5; Figure 5.2), the simulated soil temperature was 5% higher under CD-SI than 

FD.  

Based on the PBIAS, the SWC was over estimated by 11% under FD in the calibration phase, 

under-estimated by 5% under FD in the validation phase and overestimated by 1% under CD-SI 

in the validation phase, while for soil temperature the PBAIS values were 19%, 17% and 17% 

(Table 5.5). Overall, the simulated SWC followed the values and pattern of observed SWC data 

though it missed a few peaks. In contrast to SWC, the predicted soil temperature values were in 

closer agreement with observed data in terms of IoA and R2. Although the average soil temperature 

was underestimated by around 18%, the trend of soil temperature was well simulated. The 

underestimation was mainly because the temperature was taken from soil samples at day time 

around noon, while the simulated soil temperature was predicted as an average on a daily basis. 

Some of the measured high values of soil temperature were close to the daily maximum air 

temperature, while the measured minimum air temperature at night could be very low. Generally, 

the performance of RZWQM2 in simulating the soil water content and soil temperature is 

satisfactory, with the IoA ranged from 0.80 to 0.96 and R2 from 0.65 to 0.98 (Table 5.5). 

5. 3.1.2. N2O and CO2 emissions 

In the calibration phase, the model accuracy statistics (Table 5.6) and plots of simulated vs. 

observed daily N2O and CO2 emissions (Figures 5.4 and 5.5, respectively) showed the model 

performed well in simulating GHG emissions. However, it tended to underestimate some peaks. 

RZWQM2 over-estimated the total N2O emissions under FD by 2% in the calibration phase. The 
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average daily measured N2O emission in 2012 was only 0.002 kg N ha-1 because the total N 

fertilization was 70 kg ha-1, and RZWQM2 correctly simulated low N2O emissions accordingly. 

The model satisfactorily predicted the CO2 emissions with the PBIAS within 3%, and both IoA 

and R2 were higher than 0.70 in the calibration phase.  

In the validation years, RZWQM2 simulated average daily N2O emissions under FD 

(0.0115 kg N ha-1) with PBIAS=13%, IoA = 0.71, and R2 =0.56, showing a good performance in 

predicting the daily N2O emissions under FD in 2014 and 2015. However, the average daily 

measured N2O emissions under CD-SI were 0.0137 kg N ha-1, compared to the simulated value 

of 0.120 kg N ha-1, indicating a 13% underestimation of N2O emission. The IoA was only 0.21 

and R2 was 0.16 because RZWQM2 failed to catch the peak of daily N2O emission 20 days after 

fertilization under CD-SI on June 27th, 2014 (0.35 kg N ha-1), which was almost 58% over the 45 

measurements within the two years. The PBIAS would be 75%, while both IoA and R2 could be 

0.87 if the peak was removed. This peak flux occurred shortly after a heavy rainfall event (5.4 

cm) on June 25th, however, it was only observed in CD-SI, while in FD the measured N2O 

emission was 0.07 kg N ha-1. The measured SWC in FD and CD-SI on that day was 0.32 and 

0.41, respectively, which indicated a more anaerobic environment and higher denitrification rate 

in CD-SI than FD. However, the simulated SWC were 0.31 and 0.33 for FD and CD-SI. In 

addition, the measured soil temperature was 29oC on that day, while the RZWQM simulated 

temperature was only 19oC. The failure to predicte the SWC after heavy rainfall under CD-SI 

and the under-estimation of soil temperature resulted in missing N2O flux peaks. Since the N2O 

emission on June 26th is unknown, we suggest that  N2O emissions be measured more frequently 

after rainfall . Although the statistics for daily N2O emission prediction was not satisfactory for 

CD-SI, the model still successfully predicted higher N2O emissions and lower CO2 under CD-SI 
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as compared to FD. In addition, the model performance was better than similar studies using 

other models, such as DNDC with PBIAS from -41% to 221%, DAYCENT with PBIAS from -

32% to +188% under different N treatments in Quebec (Smith et al., 2008b).   

CO2 emissions were over-estimated by 7% in FD, but under-estimated by 9% in CD-SI. 

The average measured CO2 emissions were 18.2 kg ha-1 and 19.5 kg ha-1, while simulated values 

were 20.7 kg ha-1 and 16.1 kg ha-1 in FD and CD-SI, respectively. Both simulated and measured 

values indicated higher CO2 emissions under FD. Linn and Doran (1984) reported that the CO2 

production reached a peak value at 60% WFPS (water filled pore space). In this study, the 

simulated average WFPS was 65% and 75% WFPS in FD and CD-SI. The higher soil water 

resulted in less O2 availably for aerobic microbial activities and lower CO2 emissions in CD-SI.  

5.3.2. Simulating long term impacts of different N rates on annual GHG emissions 

Long term simulations using historical weather data from 1971 to 2000 served to 

investigate the impact of different N application rates and split N fertilizer applications on GHG 

emissions. Within the validated RZWQM2 model, pre-seeding nitrogen fertilizer applications at 

13 different rates, ranging from 0 to 300 kg ha-1 in intervals of 25 kg ha-1, were applied at the 

beginning of each season under corn-soybean rotation systems, and the resulting GHG emissions 

were simulated. A plot of mean annual GHG emissions vs. N fertilization rate (Figure 5.6a), 

shows that the RZWQM simulated annual N2O emissions in the rotation’s corn years which 

increased linearly from 1.47 kg N ha-1 to 3.80 kg N ha-1 as N fertilization application rate 

increased from 0 to 300 kg N ha-1. 

The annual N2O emission in corn planting years can be computed using the N application: 

E = 0.0088F+1.1955, R2=0.981 (Figure 5.6a), Where E is the N2O emissions, and F is the 

quantity of N fertilizer applied per year (kg N ha-1 y-1). The predicted results are consistent with 
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the results of experiments reported by Bouwman (1996), who developed a linear equation linking 

annual N2O emissions to N fertilization rate based on field experiments: E= 1.25F+1. Similar 

results were reported by Roelandt et al. (2005). 

At fertilization rates exceeding 150 kg N ha-1, RZWQM2 simulated N2O emissions 

equivalent to 1.23% to 1.56% of the added fertilizer N, a level consistent with the findings of 

MacKenzie et al. (1998), who reported a linear increase of N2O emissions with increasing N 

fertilization rate, and found the quantity of N released as N2O to represent 1.0% to 1.6% of the N 

applied as fertilizer. Moreover, Helgason et al. (2005) summarized the data sets from 400 sites 

across Canada over several decades and estimated a linear coefficient of N2O emissions to 

fertilizer N which accounted for 1.18% of N applications. The EFs ranged from 0.52% to 0.76% 

(Figure 5.6b) within the range from 0.003 to 0.03 suggested by IPCC (2016), who set the default 

value for mineral fertilized soil EF at 0.01. Similar to the findings from Wang et al. (2016), the 

simulated EF value increased linearly when N application increased from 100 kg ha-1 to 300 kg 

ha-1, and showed negligible difference when added N was within 100 kg ha-1. 

In contrast to N2O emissions, CO2 emissions responded differently to incrementally greater 

N fertilizer application rates, which increased when fertilizer rates increasing from 0 to 100 kg N 

ha-1 because of higher accumulated crop residues, but decreased slowly from 3.88 to 3.80 Mg 

CO2 ha-1 as the N fertilization rate rose from 100 to 300 kg N ha-1 (Figure 5.6a). Similar findings 

of decreasing CO2 emissions with higher N applications were reported by Al-Kaisi et al. (2008), 

Kowalenko et al. (1978), and Ma et al. (1999) due to lower soil pH from nitrification and 

reduced microbial activities, while Dick (1992) argued that the microbial activities might be 

stimulated with increasing N fertilization as more plant biomass returned to soil profile. 

RZWQM2 did not compute the changing soil pH value corresponding to nitrification, so the 
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predicted decreasing CO2 emission with increasing N fertilization could be explained by the 

depletion of O2 from the soil through the enhanced nitrification process in the soil. Consequently, 

the predicted CO2 emission from aerobic microbial respiration was reduced when more soil O2 

was consumed by nitrification with elevating N input. In addition, the CO2 also acted as a carbon 

source for the nitrification process, as simulated by RZWQM2.  

The simulated corn yield increase linearly with N application rate increased from 0 to 100 

kg N ha-1, then it showed a declining positive response up when fertilization rate was between 

100 to 250 kg N ha-1 before levelling off when N rate was above 250 kg N ha-1 (Figure 5.7). 

Cambouris et al (2016) observed maximum corn yield between 150 to 250 kg N ha-1 in four 

different sites in Quebec, depending on the soil texture. They determined the NUE (nitrogen use 

efficiency) as: (Total N uptake-Total N uptake at 20 kg N which is the starter application amount) 

/ Total N applied. The NUE decreased from 59% to 42% when N application increased from 100 

kg N ha-1 to 250 kg N ha-1. They proposed N fertilizer amounts ranging from 100 to 150 kg N ha-

1 to optimize corn yield and quality. In our simulation, we defined the starter fertilization rate at 

25 kg N ha-1 to compute the NUE. Our simulated NUE showed comparable results with 

Cambouris et al (2016). It responded positively with increasing fertilization from 25 kg N ha-1, 

and reached to the maximum rate at 66% when N was applied at 125 kg N ha-1, then the NUE 

decreased with rising fertilization rate (Figure 5.7). The average corn grain yields of 2016 in 

Quebec was reported at 10.14 Mg ha-1 (Institut de la statistique du Québec, 2016) and in 

Montérégie region was 10.94 Mg ha-1, which were achieved at the fertilization rate of 100  and 

125 kg N ha-1, respectively as predicted by RZWQM2. The maximum NUE was estimated with 

fertilization rate of 125 kg N ha-1, and the grain yield was 11.25 Mg ha-1 accordingly. Predicted 

corn yield and GHG emissions suggested that the minimum N application N should be higher 
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than 100 kg ha-1 to maintain the average yield of 10 Mg ha-1, but to obtain the highest efficieny 

of N uptake by corn, 125 kg N ha-1 is required. Although maximum yield was obtained at N 

fertilization rate of 300 kg ha-1, the NUE was only 46% and the annual N2O emission was 3.80 

kg N ha-1. Therefore, the optimal N application rate ranging from 125 to 175 kg N ha-1 is 

suggested in order to maintain a high yield (11.25-12.18 Mg ha-1 ) yet minimize annual N2O 

emissions (2.16-2.55 kg N ha-1). It should be noted that the suggested N application rates and 

NUE were only based on the corn-soybean rotation system. The soybean yield was not affected 

by the rate of fertilizer application in corn planting years. 

Singh (2013) used another definition for NUE computation as grain yield/ N applied for 

the field experiment from 2008 to 2009 at the same site (St Emmanuel), indicating that NUE 

decreased with increasing N application, due to more N loss from leaching and dentrification 

(Liang et al., 1991; Mejia and Madramootooo, 1998). We computed NUE using this method and 

found it to be constistent with Singh (2013). The simulated NUE was 90 kg kg-1 and 51 kg kg-1 

with fertilization amount of 125 kg N ha-1 and 250 kg N ha-1, respectively, which was 

comparable to the values computed from the field experiment reported by Singh et al. (2013), 

with the NUE at 41 kg kg-1 at high N (250 kg N ha-1) application and 99 kg kg-1 at low N (130 N 

kg ha-1) application. This comparison showed the reliabilty of RZWQM2 for simulating the N 

impacts on corn yield at this site. 

5.3.3. N fertilization timing and split application 

The N2O and CO2 emissions were predicted under one-time N application on seven 

different days: May 1st, May 11th, May 21st, May 31st, June 10th, June 20th and June 30th (Figure 

5.8). The simulated results suggested that later N application resulted in N2O and CO2 emission 

reduction. The RZWQM2 predicted up to 13.6% less N2O and 3.9% less CO2 emission when 
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the N fertilization was applied on June 30th compared to May 1st. Surplus N has potential to 

cause environmental problems due to the N loss through leaching or atmosphere because of 

different crop N demand at different growing stages (Wang et al., 2016). The RZWQM2 

simulated N2O emissions were affected by the timing of N application because 63% of the total 

N uptake by crops was from June to July (Figure 5.9). Later application of N fertilizer resulted 

in less nitrification and denitrification, due to less soil NH4
+ and NO3

- concentration after crop 

N uptake. Early one-time N application led to a longer nitrification period and more N2O was 

released before the N was taken up by the crop. However, corn yield was reduced by 0.1% to 

5.4% due to the N stress in the  early crop growing period when N fertilization was applied 

late. CO2 emission was less affected by the N fertilization timing since the crop growth was 

only slightly reduced. Results from long-term RZWQM2 simulations indicated that splitting 

the fertilization based on the crop N need could be a strategy for reducing N2O emissions while 

maintaining crop yield.  

Although fertilization on June 30th, around silking, has the greatest potential to reduce 

the N2O and CO2 emissions compared to other days, it should be noted that later N fertilization 

could be inappropriate once the corn reaches a certain height. Therefore, it is more reasonable 

to apply the N fertilizer two weeks before silking when the field is still trafficable by 

machinery. Long term simulations suggested that N application split between pre-plant and 

postemergence had a negligeable impact on GHG emissions (0.26% reduction for N2O and 

0.31% for CO2), whereas N application split between pre-plant and two weeks before silking 

resulted in substantial reductions in N2O and CO2 emissions (11.0% and 0.33%, respectively), 

without reducing crop yield. This indicates that the timing of the second N application has a 

substantial influence on GHG emissions compared to a single application. Laboratory results 
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by Fernández et al. (2016) also suggested that splitting N applications in a tile-drained field was 

an effective strategy to reduce N2O emissions by 18% as compared to a single application (1.62 

vs 1.32 kg N ha-1), while not affecting corn grain yield. Both our simulated results and the 

measured values from Fernández et al. (2016) indicated the potential of splitting N to reduce 

N2O emissions in sub-surfaced drained fields. It should be noted that the extra application of 

fertilizer would require 1.4 L to 1.8 L diesel per hectare by the tractors for field operations 

(Hanna, 2001; Grisso et al., 2010), which results in 3.78 to 4.86 kg ha-1 more CO2 emissions and 

0.0003 to 0.0004 kg N ha-1 more N2O emissions from fossil fuel. Therefore, splitting N 

fertilization at pre-plant and two weeks before silking is still recommended, which reduces N2O 

emission by 0.3 kg N ha-1 and CO2 emission by 12.67 kg ha-1.   

5.3.4. Controlled drainage with sub-irrigation impact on GHG emission 

The CD-SI was applied over the full growing season (May 1st to Oct 1st) to simulate GHG 

emissions under water table management, and these emissions were compared to those under 

free drainage conditions. Long-term simulated results showed that CD-SI improved the corn and 

soybean yields by 8% and 3% compared to FD. The simulated results showed very similar trend 

with historical records at the same site. Corn yield benifit from CD-SI by 3-7% at the St 

Emmanuel site from 1993 to 1996 (Zhou et al. 2000; Mejia et al. 2000), while in 2001 and 2002 

the corn yield was 32.9% to 36.2% higher in CD-SI than FD, due to extremely dry conditions 

during both growing seasons (Stampfli and Madramootoo, 2006).  

The long-term simulation indicated that annual N2O and CO2 emissions under CD-SI were 

respectively 21% higher and 6% lower than under FD in corn-soybean (CS) rotation cropping 

system (Table 5.7). The CD-SI resulted in higher SWC and less O2 in the soil during the growing 

season, which led to more denitrification and higher N2O emissions. The RZWQM2 simulated 
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long-term average WFPS for the 0-0.05 m soil layer, during the growing season (July 1st to 

September 30th ) was 48% and 68% for the FD and CD-SI treatments, and 62% and 78% at for 

the 0-0.5 m soil layer. A higher WPFS resulted in greater denitrification (19.89 kg N ha-1) and 

associated N2O emissions (2.76 kg N ha-1) under CD-SI, than under FD (11.17 kg N ha-1 

denitrification and 2.27 kg N ha-1 N2O emissions). Weier et al. (1993) similarly measured an 

increase in N losses from denitrification with an increase in WFPS. However, they found no 

significant difference in N2O emissions arising from nitrification between different water table 

management treatments, though nitrification under FD and CD-SI generated 62% and 52% of 

simulated N2O, respectively. Bateman and Baggs (2005) indicated that the proportion of N2O 

emission from denitrification and nitrification were determined by the WFPS: at a WFPS of 70% 

all N2O emissions were from denitrification, while at a WFPS between 35% and 60% most N2O 

was produced by nitrification (81% N2O emitted from nitrification at 60% WFPS).  

In our study, in contrast to N2O emissions, simulated CO2 emissions were less affected by 

the imposition of CD-SI (vs  FD). The CD-SI regime reduced CO2 emissions by 6% as the soil 

profile’s SWC was higher and its O2 availability less. This finding is consistent with other field 

studies with different water table management regimes (Edwards, 2014; Grant, 2014), which 

found CO2 emissions to be mainly affected by soil temperature, and to a much lesser extent by 

SWC. 

5.3.4. Corn-soybean rotation 

The long-term simulation indicated that the corn-soybean rotation (CS) system was found 

to reduce both CO2 and N2O emissions by 18.8% and 20.7%, respectively, compared with 

continuous corn (CC) (Figure 5.10a). The reduction of annual N2O emission was due to less N 

application amount under rotation system, while less crop residue from the CC cropping 
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system resulted in less CO2 emission because corn produced much more biomass than soybean. 

The RZWQM2 simulated 55.8% more above ground biomass and 51.8% more below ground 

biomass under the CS than the CC cropping system (Figure 5.10b). The results are supported 

by the experiments reported by Campbell al et al. (2014) with significantly greater N2O and 

CO2 emission under a CC system than a CS system in Wooster and Hoytville, Ohio. Vyn et al. 

(2006) also reported a 14% higher CO2 emission under a CC cropping system compared to a 

CS cropping system due to the greater corn residue returned to the soil.  

5.4 Conclusions 

The performance of RZWQM2 in predicting N2O and CO2 emissions was evaluated under 

different water table management practices. The RZWQM2 model was calibrated and validated 

based on 2012 to 2015 soil temperature, soil water content, N2O and CO2 emission data from a 

subsurface-drained field in Southern Quebec. The SWC and soil temperature were well 

simulated, and different years’ predicted cumulative growing season GHG emissions were in 

close agreement with the measured values. Trends in N2O and CO2 emissions were also 

comparable to trends in measured values, though some peaks were missed.  

After model calibration and validation, different fertilization timing and water table 

management practices were implemented to investigate the impact of N fertilization rate and 

water table management practices on GHG emissions. The long-term average annual N2O and 

CO2 emissions would be 2.16-2.55 kg N ha-1 and 3854-3887 kg ha-1 with 125-175 kg N ha-1 of 

dry urea fertilization under free drainage and corn-soybean rotation cropping system. The 

RZWQM2 output suggested that N2O emissions would respond linearly to an increasing N 

fertilization rate, while CO2 emissions would increase with a rising N application rate with 

higher corn residue but decrease slightly when N fertilization gets higher than 100 kg N ha-1 and 
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less soil O2 was available. Higher N fertilization rates were found to promote corn production 

and exacerbate N2O emissions. To optimize the corn yield and NUE, yet minimize GHG 

emissions, a N fertilization rate of 125-175 kg N ha-1 was suggested. The timing of N application 

could affect the N2O emission because the crop N demand differred with the growing stage. 

Splitting the N fertilizer application had the potential to reduce the N2O emissions by 11% but 

had very limited effects on CO2 emissions. On average, CO2 emissions were reduced by 6% and 

N2O emissions increased by 21% under CD-SI compared to FD, as a result of the higher SWC 

and lower O2 availability of the soil under CD-SI. The corn-soybean rotation system significantly 

decreased both N2O and CO2 emissions by 20.7% and 18.8% due to less N fertilizer requirement 

and less crop residue accumulated. The RZWQM2 model proved to be a promising tool in 

simulating the GHG emissions under different agronomic management scenarios.  
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Table 5.1. Crop, nitrogen fertilizer application dates and rates (kg N ha-1), and modelling 

use of GHG and other data measured in field study. 

Crop 

Year Type of 

drainage 

*N fertilizer application (kg ha-1) 

Seeding  Sidedressing  Overall 

Rate 

 
Date Rate 

 
Date Rate 

 

Yellow bean 2012 FD 21-June 60  20-Aug  10   70 

Corn 2013 FD 1-May 44  29-May 115  159 

Corn 
2014 FD and 

CD-SI 
11-May 44 

 
7-Jun 160 

 
204 

Corn 
2015 FD and 

CD-SI 
2-May 28 

 
29-May 200 

 
228 

*Fertilizer was dry and granular urea; broadcast and then incorporated using a row crop 

cultivator. FD, free drainage; CD-SI: controlled drainage with subirrigation. 

 

 

 Table 5.2. Calibrated RZWQM2 soil hydraulic parameters. 

[a] ρ = bulk density, θs = saturated soil water content, θr = residual soil water content, τb = 

bubbling pressure, λ = pore size distribution index, ksat=saturated hydraulic conductivity. 

[b] Other required parameters include A1 (set to zero), B (computed using the RZWQM default 

constraint) for all layers, N1 (set to zero), and K2 and N2 (computed using the RZWQM default 

constraints) for all layers (Ahuja et al., 2000b). The lateral hydraulic gradient was adjusted to a 

value of 1.5×10-6. 

Layer Depth 

(m) 

ρ 

(Mg m-3) 

Soil Water Retention Lateral 

 𝑘𝑠𝑎𝑡  

(mm h-1) 

Vertical 

𝑘𝑠𝑎𝑡  

(mm h-1) 

θs 

(m3m-3) 

θr 

(m3m-3) 

τb 

(mm) 

λ 

1 0-0.05 1.36 0.487 0.025 -14.5 0.254 8 20 

2 0.05-0.25 1.60 0.396 0.025 -24.1 0.231 35 70 

3 0.25-0.45 1.46 0.449 0.025 -5.9 0.082 17 35 

4 0.45-0.80 1.40 0.472 0.025 -3.9 0.072 20 40 

5 0.80-1.20 1.40 0.464 0.025 -3.8 0.083 20 40 

6 1.20-1.50 1.40 0.464 0.025 -3.5 0.087 20 40 

7 1.50-2.00 1.40 0.464 0.075 -3.0 0.170 0.1 0.1 
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Table 5.3. Calibrated RZWQM2 non-default hydrology and nutrient parameters. 

Parameters Value Default 

Value Hydrology component   

Albedo of crop 0.55 0.7 

Drain depth (m) 1.00 - 

Drain spacing (m) 15.0 - 

Radius of drain (m) 7.6 - 

Surface soil resistance for S-W 150 37 

Nutrient component    

Nitrification  8.5×10-10 1×10-9 

Decay rate of slow residue pool 1.673×10-8 1.673×10-7 

Decay rate of fast residue pool 5.14×10-8 8.14×10-6 

Decay rate of fast soil humus pool 5.5×10-7 2.5×10-7 

Decay rate of intermediate soil humus pool 5×10-7 5×10-8 

Decay rate of slow soil humus pool 4.7×10-9 4.5×10-10 

Denitrification rate 3.0×10-14 1.0×10-13 

Coefficient of N2O from nitrification 0.0016 0.0016  

Table 5.4. Initial concentrations for organic matter pools  

 

 

Layer 

Carbon pool  
Microbial population 

(organisms g-1 soil) 
Residues 

(µg C g-1) 
 

Humus 

(µg C g-1) 
 

Slow Fast  Fast 
Intermediat

e 
Slow  

Aerobic 

heterotroph

s 

Autotroph

s 

Anaerobic 

heterotroph

s 

1 122 1759  50 28 2121  3640000 17000 6366 

2 195 440  29 19 8473  724867 9082 8356 

3 281 547  32 29 12000  759544 7269 15000 

4 282 534  14 12 9160  259766 2943 14000 

5 0 1  278 148 12000  19000 1530 2278 

6 0 0  405 217 12000  17000 1220 2222 

7 111 170  0 0 277  2370 76 733 
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Table 5.5. Statistics for RZWQM2 simulated soil water content (SWC) and soil temperature 

at 6 cm soil profile under FD and CD-SI from 2012 to 2015. The units of average and RMSE for 

SWC and soil temperature are cm3 cm-3 and oC, respectively. Obsavg: the average of observed 

values; Simavg: the average of simulated values. 

    Obsavg Simavg PBIAS RMSE IoA R2 

2012-2013 SWC 0.28 0.29 -7% 0.06 0.96 0.92 

FD  Soil T 17.3 14.0 19% 3.63 0.96 0.98 

2014-2015 SWC 0.27 0.26 5% 0.06 0.80 0.65 

FD Soil T 18.3 15.1 17% 4.57 0.81 0.83 

2014-2015 SWC 0.29 0.30 -1% 0.04 0.92 0.85 

CDSI Soil T 18.4 15.9 17% 4.65 0.80 0.82 

 

Table 5.6. Statistics for RZWQM2 simulated N2O and CO2 emissions from soil profile under 

FD and CD-SI from 2012 to 2015. The units of average and RMSE for N2O and CO2 are kg N ha-

1 and kg ha-1, respectively. 

    Obsavg Simavg PBIAS RMSE IoA R2 

2012-2013 N2O 0.0110 0.0113 -2% 0.02 0.68 0.50 

FD  CO2 11.88 12.27 -3% 6.73 0.80 0.71 

2014-2015 N2O 0.0102 0.0115 -13% 0.02 0.71 0.56 

FD CO2 18.18 19.54 -7% 10.18 0.76 0.62 

2014-2015 N2O 0.0137 0.0120 13% 0.053 0.21 0.16 

CDSI CO2 17.83 16.14 9% 9.92 0.74 0.63 

 

Table 5.7. Annual RZWQM2 output under different water table treatments 

Treatment N2O 

kg N ha-1 

CO2 

Mg ha-1 

Mineralization 

kg N ha-1 

Denitrification 

kg N ha-1 

Drainage 

(m) 

FD 2.27 4.11 163.89 11.17 0.350 

CD-SI 2.76 3.87 127.61 19.82 0.479 

 21% -6% -22% 77% 37% 
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Figure 5.1. Experimental layout of field study in 2014 and 2015. In 2012 and 2013 all 

plots were under free drainage (adapted from Crézé, 2015). 
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Figure 5.2. Comparisons between RZWQM2 simulated and observed soil temperature under FD 

and CD-SI in calibration and validation phases from 2012 to 2015.  
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Figure 5.3. Comparisons between RZWQM2 simulated and observed soil water in calibration 

and validation phases, under FD and CD-SI from 2012 to 2015.  
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Figure 5.4. Comparisons between RZWQM2 simulated and observed N2O emissions in calibration 

and validation phases under FD and CD-SI from 2012 to 2015. Arrows are fertilizer application. 
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Figure 5.5. Comparisons between RZWQM2 simulated and observed CO2 emissions in 

calibration and validation phases under FD and CD-SI from 2012 to 2015  
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Figure 5.6. (a) Simulated long-term annual GHG emissions (N2O: kg N ha-1; CO2: Mg ha-1) and 

(b) N2O emission factors for corn years in the corn-soybean rotation system under different N 

rates. 
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Figure 5.7. Corn and soybean yield (Mg ha-1) and nitrogen use efficiency [NUE%, method by 

Cambouris et al (2016)] responses to different N application rates 
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Figure 5.8. Long term simulated yearly N2O (a) and CO2 emissions under different fertilization 

days 
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Figure 5.9. The RZWQM2 simulated long-term average monthly N uptake by corn 
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Figure 5.10. The GHG emission, AGB (above ground biomass) and BGB (below ground biomass) 

under rotation (RT) and continuous corn (CC) cropping system. Units: CO2: Mg ha-1; N2O: kg N 

ha-1; AGB: Mg ha-1; BGB: Mg ha-1. 
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Connecting text to Chapter 6 

 

Based on the modelling results from Chapter 4 and Chapter 5, it was concluded that RZWQM2 

was capable of predicting the GHG emissions in eastern Canada region under water table 

management and different sources of N fertilizer. In Chapter 6, future climate data generated 

from eleven GCM-RCM models were implemented into the calibrated and validated RZWQM2 

in both two sites to investigate climate change impact on GHG emissions, crop production and 

water quality. The effects of integrated and each single weather variables on the interactions of 

water, soil, nutrients and crops were quantified on field scale in Eastern Canada. The following 

manuscript, co-authored by Dr. Zhiming Qi, Lulin Xue, and Melissa Bukovsky, is under 

preparation and will soon be submitted. All literature cited in this chapter is listed in the 

reference at the end of this thesis.  

 

Jiang, Q., Qi, Z., Xue, L. and Bukovsky, M., 2018. Assessing climate change impacts on 

greenhouse gas emissions and crop production in tile drained field using RZWQM2. To be 

submitted. 
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Chapter 6 

Assessing climate change impacts on crop production, water quality, and greenhouse gas 

emissions in tile drained fields  

Qianjing Jiang, Zhiming Qi, Lulin Xue, Melissa Bukovsky 

Abstract  

Increased temperature, redistributed precipitation and elevated CO2, as results of climate change 

in the future, may exert essential impacts on greenhouse gas (GHG) emissions, crop water use 

and crop production in agricultural fields. The RZWQM2 (Root Zone Water Quality Model), 

driven by weather, soil, and crop information, is a process-based biophysical model which has 

been proven to be a promising tool to assess climate change impacts on water quality and crop 

production in tile drained cropland. However, it is not well documented  how GHG emissions 

would be affected by climate change in tile drained fields. In this study, climate change impacts 

on crop production, water quality and GHG emissions in subsurface drained fields in two regions 

of Eastern Canada were assessed using calibrated and validated RZWQM2. Eleven sets of 

climate models were run to obtain historical (1971-1999) and future (2038-2070) daily weather 

data including air temperature, precipitation, solar radiation, wind speed, and relative humidity. 

The projected future climate data suggested that, when averaged over the output from 11 climate 

models, future precipitation would be increased by 8% to 9%, minimum and maximum 

temperature would increase by 2.4 to 2.8
o
C, while the changes in radiation, wind speed, and 

relative humidity would be minor at those two sites. Our simulated results suggested that, under 

future scenarios, the average drainage flow would increase by 23% - 41% (5.7- 9.1 cm), and the 

N losses through subsurface drains, in the meantime, would be increased by 47% to 76% (12.8-

21.7 kg N ha-1). Soybean yield would be enhanced by 19% to 31% due to increased 

photosynthesis rates under elevated CO2, while corn yield would be reduced by 7% because of a 
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shorter life cycle from seedling to maturity caused by higher temperature and faster growth rate. 

The N2O emissions would be enhanced by 21% to 25% due to more denitrification and 

mineralization, while CO2 emissions would increase by 16% because of more crop biomass 

accumulation, higher crop residue decomposition, and more microbial activity. Model results 

suggested that corn yield would be reduced while soybean yield increased in the future, and 

climate change would exacerbate environmental pollution by increasing the GHG emissions 

from cropland and N losses in drainage water. 

Key words: agricultural models; carbon and nitrogen cycling; denitrification; mineralization, 

water quality; climate change 

6.1 Introduction 

Climate change as a controversial issue has attracted much attention from researchers in 

different sectors, including agriculture, economics, ecology,  food security, and human health. 

Greenhouse gases (GHGs) released from human activities are universally recognized as the most 

significant driver of observed climate change since the mid-20th century (IPCC, 2013).  

 Canada has experienced significant climate change within the past decades. The 

temperature has been increased by 0.5 to 1.5 degrees during the last century in Southern Canada 

(Zhang et al., 2000), and it is expected to continue increasing in the future. In Quebec the 

temperature will increase by 3.8°C in the southern part and 6.5°C in the northern part by 2050 

(DesJarlais et al, 2010). An increase of iceberg melting, water vapor and precipitation are usually 

predicted to come along with global warming, which is another result of climate change. 

Researchers found a worldwide decline of solar radiation ranging from 0.8% to 10.6% in 

different countries according to long-term records from 1950 to 1980 (Wild, 2009). Based on an 

analysis of historical climate data across the agricultural region of the Canadian Prairies between 
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1951 and 2005 from 7 locations, it showed a decreasing trend of solar radiation, increasing trend 

of daily temperature, annual precipitation and number of rainfall events (Cutforth and Judiesch, 

2007).  

While climate is affected by GHG emissions, the changed climate is also predicted to result 

in more GHG emissions from agricultural soils because the biochemical processes that produce 

N2O, CO2 and CH4 are affected by soil temperature and soil water. Many experiments have 

indicated that soil moisture and soil temperature are key factors that affect the GHG emissions 

(Cárdenas et al., 1993, Schindlbacher et al., 2004, Schaufler et al., 2010, Luo et al., 2013). 

Therefore, the future climate will have strongly influence GHG emissions due to warming 

temperature and changing precipitation pattern. Modelling results have indicated corn grain yield 

losses under climate change if no adaptation method is taken (Tao et al., 2009; Bassu et al., 

2014; Wang et al., 2015). Increasing temperature is reported to negatively affect maize and 

wheat yields due to faster crop growth rates, shortened crop life cycle duration, earlier maturity, 

less CO2 assimilation and reduced biomass production (Rosenzweig, 1990; Bassu et al., 2014). 

Increasing precipitation resulted in higher photosynthetic rates and crop yields in the Great Lake 

region of the Midwestern U.S (Southworth et al., 2000). Meanwhile, the increasing atmospheric 

CO2 concentration enhances plant growth. Based on over 430 observations of crop yield for 37 

species during 64 years, the enriched CO2 concentration resulted in a 28% increase in crop yield, 

and a doubling of CO2 concentration increased mean yields of C3 crops by 33% (Kimball, 1983). 

Agricultural system models provide the possibility of assessing future climate change 

impacts on greenhouse gas emissions, water quality and crop production in agricultural fields. 

Numerous agricultural models have been developed to investigate climate change impacts on 

hydrologic cycles, GHG emissions and crop productivity, such as DNDC (Smith et al., 2013; He 
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et al., 2018), SWAT (Teshager et al., 2016), DAYCENT (Rafique et al., 2014) and RZWQM2 

(Wang et al., 2015). Such modeling studies have indicated that soil CO2 release and soil carbon 

mineralization would be significantly affected by temperature and precipitation in the future 

(Raich and Potter, 1995, Wang et al., 2010; Rafique et al., 2014). Mera et al. (2006) reported that 

yield and evapotranspiration were most sensitive to precipitation while radiation showed a 

nonlinear response and was not as prominent. Smith et al. (2013) assessed the climate change 

impact on GHG emissions and crop production in Canada using the DNDC model and 

demonstrated that future climate would be more favorable for crops in Canada with increasing 

temperature and elevated atmospheric CO2 concentration. He et al. (2018) also applied the 

DNDC model to investigate the climate change impacts on crop yields and N2O emissions in 

Southwestern Ontario and indicated the maize yields would be increased due to the benefits from 

higher temperatures for maize under climate change and elevated atmospheric CO2 concentration 

significantly increased soybean yields. However, Wang et al. (2015) used RZWQM2 and stated 

that soybean yield would be increased by 28% because of CO2 enrichment. Corn yield decreased 

by 14% due to higher temperature and shorter life cycle if the same cultivar were to be planted in 

2055 in Iowa. To mitigate the negative effects of higher temperature on crop yield, He et al. 

(2018) suggested using new cultivars with higher thermal degree days which could increase the 

winter wheat yield by 39.5% with increasing biomass accumulation and higher crop N uptake in 

the future, and meanwhile significantly reduce N2O emissions as well. Wang et al. (2015) found 

that it would be challenging for Iowa to address the water quality issue in the future since the N 

losses in drainage would be increased by 33.4% because of increasing drainage from higher 

precipitation, more N loss through higher nitrification and mineralization due to rising 

temperatures. 



162 
 

RZWQM2 is a comprehensive one-dimensional model which can be used to study the 

interaction of physical, chemical, and biological processes within the soil profile, including the 

movement of water, nutrients, and pesticides, as well as crop growth in the field under various 

management practices (Ahuja et al., 2000). It has been modified by Fang et al. (2015) to simulate 

N2O emissions from nitrification and denitrification, and tested by Gillette et al. (2017) in 

predicting the tillage effects on N2O emissions in an irrigated corn field in Colorado. The 

modified RZWQM2 has also been applied by Wang et al. (2016) to test different management 

practices in mitigating the negative effects of climate change on N losses in drainage and crop 

production. When simulating the N2O and CO2 emissions in Southern Quebec by Jiang et al. 

(2017), judged it to be satisfactory in predicting the GHG emissions, soil water content and soil 

temperature. Jiang et al. (unpublished) compared the performance of RZWQM2 and DNDC 

model in simulating N2O and CO2 emissions, crop yield and drainage, indicating that RZWQM2 

has better ability in predicting the water balance and CO2 emissions from a subsurface drained 

field in Harrow, Ontario and comparable performances in simulating N2O emissions and crop 

productions as DNDC. 

In this paper, our objective was to use the calibrated and validated RZWQM2 to assess the 

climate change impacts on future GHG emissions, water cycle and crop production in two 

subsurface-drained fields in Eastern Canada. We highlighted the quantification of annual N2O 

and CO2 emissions under projected future climates on the field scale in Eastern Canada, and the 

effects of each single weather variable on water cycles, water quality and crop production.  

6.2. Materials and methods 
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6.2.1 Climate information 

Daily weather data required for running RZWQM2 included precipitation, minimum and 

maximum temperature, wind speed, solar radiation and relative humidity. The historical weather 

data were obtained at Coteau-du-Lac (Station ID: 7011947) and Harrow (Station ID: 6133360) 

from Environment Canada. In this study, eleven coupled General Circulation Models and 

Regional Climate Models (GCM-RCM) were used to generate different climatic scenarios (Table 

1 and 2) for 2038 to 2070. These future climate data were generated by The North American 

Regional Climate Change Assessment Program (NARCCAP), an international program that uses 

regional climate models (RCM), coupled global climate model, and time-slice experiments to 

generate climate scenarios and meet the research needs in United States, Canada, and Northern 

Mexico (Mearns et al., 2007). Since RZWQM2 failed to simulate the corn growth using the 

projected future climate data due to predicted frost days in growing seasons, historical climate 

data from 1971 to 1999 was also generated to obtain the monthly difference between future and 

historical weather variables. Then average changes of each month’s daily temperature (°C), 

percent change (%) of precipitation, solar radiation, relative humidity, and wind speed were 

applied to the scenarios using observed historical weather from 1971 to 2000 and 1981 to 2000 

in St Emmanuel (SE) site and Harrow (HR) site, respectively. The atmospheric CO2 

concentration was set at 548 ppm for the future scenarios (2038 to 2070), 344 ppm for historical 

scenarios of St Emmanuel (1971 to 2000, centered in 1985) and 353 ppm for Harrow (1981 to 

2000, centered in 1990). Detailed methods for generating future scenarios can be found in the 

Supplementary Material from Wang et al. (2015).  
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6.2.2 Site Description 

6.2.2.1 St. Emmanuel site  

This 4.2 ha field is located at Coteau-du-Lac in Southern Quebec, Canada (latitude 45.32o, 

longitude -74.17 o). The soil at this site is Soulanges very fine sandy loam with 5.0% organic 

matter in the top layer (0-0.25 m), followed by layers of sand clay loam with 1.5% organic 

matter (0.25-0.55 m) and clay layers with little organic matter content (0.55-1.0 m). The 

subsurface drained plots (75 m × 15 m) were grouped in three blocks, each housing two water 

table management regimes. The subsurface drains for conventional drainage were installed at a 

depth of 1.0 m on a 0.5% slope. N fertilization was applied each year before the seeding date for 

corn. Planting densities were 89,000 and 450,000 seeds ha-1 for corn and soybean, respectively. 

Detailed agronomic management for the experiment was described in Jiang et al. (2017) 

6.2.2.2 Harrow site 

The subsurface drained and corn-soybean rotated field was located in Southwestern 

Ontario (42°13′ N, 82°44′ W). The soil type was Brookston clay loam with average soil bulk 

density around 1.34 g cm-3 and porosity 52.4%. The fractions of clay, sand and silt in the soil 

were 37%, 28% and 35%, respectively. The saturated hydraulic conductivity was ranging from 

0.07 to 0.50 cm per hour (Lu, 2015). The field slope was 0.5% on average. The tile drains were 

installed at the soil depth of 0.85 m, and tile drainage volume was collected in an instrumentation 

building using tipping buckets. Each tipping bucket was connected to a data logger and the 

signals of tipping rates were converted into drainage volumes.  

6.2.3 RZWQM simulations 

RZWQM2 was calibrated and validated using the observed soil water content, soil 

temperature, and N2O and CO2 emissions from 2012 to 2015 at St. Emmanuel (SE), Quebec 
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(Jiang et al, 2017), while in Harrow (HR), Ontario the daily drainage and crop yield were also 

included (see in Chapter 4). The statistical analysis suggested a satisfactory performance of 

RZWQM2 in simulating the GHG emissions at the SE site, while the predicted daily drainage, 

crop yield and accumulated GHG emissions were also within the acceptable range at the HR site. 

Subsurface drains were set at 1 m and 0.85m depth in SE and HR sites, and N fertilizer was 

applied each year at 200 kg ha-1 before the planting date for both sites. Corn and soybean were 

rotated by running each scenario twice, corn in odd years in one run and soybean in odd years in 

the other, to ensure both corn and soybean were planted in every simulated year. Planting and 

harvesting dates were adjusted based on the field experiment. The corn and soybean were 

planted on May 1st and harvested on October 15th each year at the SE site, while at the HR site, 

both corn and soybean were planted on May 25th and harvested on November 15th and October 

15th for corn and soybean, respectively. RZWMQ2 was run under the baseline scenario firstly, 

and then the 11 sets of differences in temperature, precipitation, wind speed, solar radiation, and 

relative humidity were added to the baseline to generate future climate scenarios. The 11 full sets 

of climate data were run first with all factors in combination, then runs were done in which only 

one weather variable was changed at a time to investigate the single impact of these factors on 

hydrology, GHG emissions and crop production. Model output included the hydrology 

components, nutrient components and crop growth conditions, which were evapotranspiration, 

drainage rate, runoff, lateral flow, crop yield, crop maturity days, GHG emissions and N losses.  

6.3. Results and discussion 

6.3.1. Climate scenarios  

The annual average baseline and projected future climate variables for St. Emmanuel and 

Harrow are listed in Table 6.1. Generally, future annual precipitation would increase by 8%, and 
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minimum temperature and maximum temperature would rise by 2.9°C and 2.4°C for St. 

Emmanuel. Wind speed would increase by 1.5%, while solar radiation and relative humidity 

would decrease slightly by 2.4% and 0.4%, respectively. Similar predictions have been reported 

by  DesJarlais et al (2010) for Southern Quebec, indicating that temperature would increased by 

2.5°C to 3.8°C in winter and 1.9°C to 3.0°C in the summer, while precipitation is expected to 

increase by 8.6% to 18.1% in winter with no change in summer. Similarly, the minimum and 

maximum temperature is expected to increase by 2.8°C and 2.5°C, respectively in Harrow site. 

The precipitation in Harrow would increased by 9%, while changes of wind speed, solar 

radiation and relative humidity would be very minor. The historical average annual precipitation 

was 88 cm, while the projected average future precipitation would be 96 cm (+8 cm) from 2038 

to 2070. Our projected future temperature and precipitation in Harrow was comparable to 

previous studies at nearby Woodslee, ON, which is 34 km away from Harrow. For example, 

Smith et al. (2013) indicated that future annual temperatures would increase by 3.5°C and 

precipitation would increase by 5 cm for 2041 to 2070. He et al. (2018) stated that future 

precipitation would increase by 2 cm and 9.7 cm while temperature would increase by 3.5 and 

5.7 °C as predicted by RCP 4.5 and RCP 8.5 models. 

6.3.2. Integrated future climate impact on crop production, water quality and GHG emissions 

Taking into consideration all the changes in climate variables, our simulation showed that 

the production of corn will decrease by 7% while soybean will benefit significantly from climate 

change by 31% in the future in Southern Quebec, and in Southwestern Ontario the corn yield 

will decrease by 7% while soybean yield will increase by 19% (Table 6.2). The reduction in corn 

yield will result from higher temperature and shorter growing days from grain filling to maturity. 

The evapotranspiration will increase slightly, since increasing evaporation caused by increasing 
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temperature will be balanced by decreased transpiration because of the closure of stomata in 

response to elevated CO2. Drainage will increase by 23% in SE and 41% in HR (figure 6c), with 

the majority of the increased drainage in the months of January, February and December, as a 

result of increasing precipitation and warming winter seasons.  

Our simulated annual N losses in subsurface drainage from SE and HR were 46 and 20 kg 

N ha-1, which were comparable to previous studies in or near the experimental sites. The 

measured NO3-N losses in a field in the Pike River watershed, Quebec was 31.9 kg N ha-1 in 

2002-2003 and 40.7 kg N ha-1 in year 2003-2004 (Gollamudi et al., 2007), and Madramootoo et 

al. (1992) observed the total N losses at 36 and 70 kg N ha-1 during the growing seasons (from 

April to November) in two subsurface drained potato fields at St. Leonard d'Aston, Quebec in 

1989 and 1990. Patni et al. (1996) reported 13 to 30 kg N ha−1 losses of N in tile drains from corn 

fields in Southwestern Ontario. With changes in all the weather variables considered, the study 

areas would face a sever challenge in water quality in the future due to 47% and 59% more N 

losses in drainage for the SE and HR sites, respectively. Higher temperatures and elevated 

atmospheric CO2 concentrations in the future enhance microbial activities or promote crop 

growth, leading to more denitrification (+31.5% in SE and +53% in HR) and mineralization 

(+17.7% in SE and 15% in HR) in the soil. Consequently, the increasing trend of N losses will 

result from the increasing precipitation, and warming temperature, but elevated atmospheric CO2 

concentration will reduce N losses in drainage due to increasing N uptake by crops. The N2O and 

CO2 emission would rise by 20.8% and 15.7% in SE, and increase by 25% and 16% in HR if no 

adapting management practices were taken. Our prediction of increased GHG emissions under 

climate change were in agreement with previous studies in North America as reported by He et 

al. (2018).  
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6.3.3. Temperature impact on crop production, water quality and GHG emissions  

Monthly changes in temperature for the two sites are plotted in Figure 6.1. Both sites 

would experience greater minimum temperature increase in winter seasons of November, 

December, January and February than the other months. In HR site, the maximum temperature 

during the growing season only increased by 1.5 to 1.9oC, and minimum temperature increased 

by 1.0 to 1.6oC, which were lower than the monthly average increment (2.5oC for maximum and 

2.9oC for minimum). This is supported by the observation of historical air temperature in HR 

reported by Tan and Reynolds (2003), who indicated that the temperature in the growing seasons 

from 1980 to 2000 in Southwestern Ontario showed no obvious warming trend, which was also 

reported in other regions in Ontario (Smith et al., 1998).  

The average corn and soybean yields for over 30 years under simulated future temperature 

indicated that rising temperature will significantly reduce the corn yield by 27% and 18%, while 

soybean yield will decrease by 4% and 7% in the SE and HR sites. The negative effect of 

increasing temperature on crop production can be explained by shorter crop growth cycles 

resulted from faster grain filling and earlier maturity. Warmer temperature leads to faster 

development for crops, and the time for grain to mature will be reduced as a consequence (He et 

al, 2018). Our simulated crop life cycles (from seedling to physiological maturity) were reduced 

from 149 days to 122 days for corn (Table 6.3), and from 121 days to 109 days for soybean at the 

SE site, while at the HR site they were reduced from 146 days to 122 days for corn and from 120 

days to 111 days for soybean with higher temperature in growing seasons. The reduced crop 

yields under increasing temperature can be mitigated using new cultivars. Smith et al. (2013) 

indicated higher corn yields when planting a cultivar with longer growing degree days (GDD) 

under a future climate scenario at the Harrow site.   
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Our predicted corn yield experienced more reduction than soybean because the warming 

temperature has very different effects on corn and soybean due to their different optimal 

temperatures for growth. According to several field experiments and model simulations, higher 

(44.8% - 93.6%) corn yield was observed and simulated from cool areas with growing season 

temperatures around 18.0 to 19.8oC at Grand Junction, CO, while compared with those warmer 

areas such as Champaign, IL, (21.5~24 oC) and warm tropical sites (26.3~28.9 oC) in Katherine, 

Australia (Muchow et al., 1990). In contract to corn, soybean prefers higher growing season 

temperature. Its optimal temperature for post-anthesis, single seed growth rate, and for seed size 

are 23°C, 23.5°C, and 23°C, respectively. For example, in the Southern USA, where the current 

average growing season temperature is around 26.7oC, the soybean yield is expected to decrease 

by 2.4% with a 0.8oC temperature rise, while in the Midwest where current growing season 

temperature is around 22.5 oC, the yield may increase (Hatfield et al., 2011). A field study 

conducted in northern parts of Japan, which are cold regions with mean growing season 

temperatures ranging from 19.4 to 22.6 oC, reported that late maturing soybeans would benefit 

from a temperature increase (Kumagai and Sameshima, 2014).  

The increased air temperature resulted in warmer soil temperature, which was one of the key 

factors modulating microbial activities. When the soil temperature rises, the decomposition of 

SOM will accelerate, leading to high CO2 emissions through microbial respiration. The simulated 

CO2 emission was increased by 1.9% (+77 kg ha-1) and 2.0% (+121 kg ha-1) in SE and HR due to 

the higher respiration from microorganisms and more C mineralization, while the annual total N2O 

emissions increased by 9% (0.21 kg N ha-1) and 14% (0.07 kg N ha-1) on average for the two sites 

because of enhanced nitrification and denitrification. The consumption of O2 by microorganisms 

from respiration resulted in ideal anaerobic conditions for denitrification, therefore, higher N2O 
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emissions are tied to increasing CO2 emissions under warmer soil conditions (Elder and Lal, 2008). 

Our simulated CO2 and N2O emissions both responded positively with increasing future 

temperature, which is supported by the field studied reported by Schaufler et al. (2010). The effect 

of warming temperature on N2O might be greater than on CO2, due to the coupling of microbial C 

and N cycle (Butterbach-Bahl et al., 2013). It should also be noted that the increasing temperature 

resulted in less crop residue accumulation, thus less crop residue decompostion was simulated but 

more soil humus decomposition still led to 2% higher CO2 emssions. 

The simulated annual actual evapotranspiration was 54.9 cm for corn and 44.4 cm for 

soybean under baseline, while 58.4 cm and 50.7 cm in the future scenarios at the SE site (Table 

6.3). The similar trend was also simulated at the HR site, with the AET increased from 47 cm to 

50 cm for corn and increased from 46 cm to 48 cm for soybean. The predicted historical ET in 

SE site is comparable with annual ET in the St. Esprit agricultural watershed from 53.1 cm to 

56.6 cm simulated by Peters et al. (1971). And the simulated annual ET for HR site was 

comparable to the measured values in the years of 1992 to 1994 around 42 to 45 cm under free 

drainage for corn field at the same experimental site by Tan et al. (2002). The increase of 

evapotranspiration led to decreases of both drainage rate and runoff. Future drainage was 

decreased by 8% (-3.0 cm) and runoff was 18% lower (-1.6 cm) in SE site, while in HR site the 

drainage and runoff decreased by 2.7% (-0.6 cm) and 24% (-2.7 cm), respectively. 

Although higher temperature promoted water loss from evapotranspiration and reduced the 

drainage water, the N losses in tile drainage will increase dramatically by 41% (+19 kg N ha-1) at 

the SE site and 48% (+9 kg N ha-1) at the HR site, because 12.2% and 10% more soil organic N 

(+20.1 kg N ha-1 and +15.3 N ha-1) will be mineralized due to warming temperature in SE and 
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HR site, respectively (figure 2). Meanwhile, the annual denitrification rates will increase by 1.2 

and 1.7 kg N ha-1 accordingly.  

6.3.4. Precipitation impact on crop production, GHG emissions and water quality 

Though simulated future annual precipitation at the SE site will increase by 8.2% on 

average, the distribution of precipitation changes will not be even across each month of the year 

(Figure 6.2). Generally, the monthly rainfall in growing season will be less affected, while in 

winter there will be more precipitation increment. In the months of July, August, September and 

October the rainfall will only increase by 3.2%, 8.2%, 2.6% and 0.4%, respectively. The 

simulated increase of precipitation did not show obvious impact on crop production in the field 

because of very minor changes of precipitation in growing season and neglectable water stress 

during crop’s growing season in the St. Lawrence lowlands which is a semi-humid area. 

Therefore, the simulated future corn and soybean yields in SE will only increase by 1.1% (from 

13001 kg ha-1 to 13140 kg ha-1) and 0.2% (from 3764 kg ha-1 to 3771 kg ha-1), respectively, 

assuming only change in precipitation occurs.  

At the HR site, the historical annual precipitation was 88 cm and it will increase to 96 cm 

(9%) in the future on average. However, the distribution of the precipitation increment will also 

be uneven in different seasons. Tan and Reynolds (2003) had concerned about the increasing 

water deficit in the growing season and less crop yield in the future for this region, and our 

predicted results indicated that future precipitation will be 5% and 1% less in June and July while 

13% and 6% more in in August and September in this region from 2038 to 2070.  The changing 

precipitation pattern resulted in very minor effects on crop production, with corn and soybean 

yields increased only by 0.05% and 2%, since neglectable changes in actual and potential 

evapotranspiration were predicted in the future. 
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The predicted changes in precipitation mainly affected the hydraulic components of 

drainage, runoff and lateral flow. Changes in both crop transpiration and soil evaporation will be 

very minor with the increase of precipitation because the water stress in both regions was not the 

major concern. Future precipitation in SE site will increase from 97.6 cm to 105.4 cm (+7.8 cm), 

and the increment of drainage and runoff will be 5.4 cm (16%) and 1.8 cm (19%), respectively, 

which means 92% of the extra precipitation will go to the drainage and runoff. Similarly, the 

precipitation will increase by 8 cm (9%) in HR site, meanwhile the drainage and runoff will 

increase by 5.5 cm (26%) and 2.2 cm (6%), respectively as a consequence. While the ET for both 

corn and soybean will not be significantly affected by the increasing precipitation, relationship 

between increased precipitation, increased annual tile drainage rate and runoff from 11 models, 

can be expressed with the linear equations as shown in Figure 6.3.  Similar simulated results for 

linear relationship between increased precipitation and drainage have been reported by Wang et 

al. (2015). The increasing precipitation and thereby higher drainage resulted in more N losses in 

drainage, which increased by 9.3% (from 46.6 to 51.0 kg N ha-1) at SE and 13.8% at HR (from 

21.6 to 24.5 kg N ha-1) sites, indicating the potential negative impact of future precipitation on 

water quality issues. 

Despite the fact that rainfall events play an important role in affecting the microbial 

activities and thereby stimulate GHG emission, the simulated future mineralization, 

denitrification, CO2 and N2O emission all changed within only 1%. Although the GHG 

emissions were expected to be very sensitive to precipitation events, the long-term changes in 

precipitation did not significantly affect GHG emission on global scale (Del Grosso and Parton, 

2012). In this simulation, our daily average increment of precipitation was around 0.3 and 0.2 

mm at the SE and HR sites, and the majority of the extra water (92% for SE and 98% for HR) 
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will go to the tile drainage, lateral flow and runoff, which means the changes of soil water 

storage will be very minor. Therefore, the simulated future precipitation pattern and amount will 

not have great effects on GHG emissions.  

6.3.5. Elevated CO2 impact on crop production, GHG emissions and water quality 

Our simulation indicated that both corn and soybean yield will benefit from the enriched 

atmospheric CO2 concentration in the two sites. The predicted yields for corn were 13001 kg ha-1 

and 10360 kg ha-1 for SE and HR sites under baseline (Table 6.4), while in the future the yield 

will increase by 14.4% (14880 kg ha-1) and 15.0% (11910 kg ha-1), respectively. The soybean 

yields will increase by 29.9% and 30.3% for SE and HR sites, which were more affected by the 

elevated atmospheric CO2 concentration than the corn. Our predicted results were comparable to 

the simulation by He et al. (2018), who predicted 9.3% to 17.1% higher corn yields and 17.4% to 

33.5% higher soybean yields under elevated atmospheric CO2 concentration in the future (2071-

2100) than historical (1971- 2000) yields for Woodslee, ON. Hatfield et al. (2011) also indicated 

that doubling the CO2 atmospheric concentration would result in 30% increase of C3 crop yields 

(soybean is a C3 crop), and less than 10% increase of C4 crop yields (corn is a C4 crop). Our 

prediction is supported by a research conducted by Kimball (1983), who reported mean increase 

of soybean yield by 27% based on 12 observations when doubling the atmospheric CO2 

concentration. However, the weed growth would also be promoted, which could trade off the 

yield increment from elevated CO2 concentration (Ziska, 2000), and the application of more 

herbicide could result in water quality problem.  

The impact of elevated atmospheric CO2 concentration on water cycle mainly reflects on 

the crop’s water use. The basis for rising CO2 concentration as fertilization is through affecting 

crop’s photosynthesis and stomatal conductance, therefore to increase the yield and decrease 
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water uptake (Long et al., 2006). Changes on crop’s growth, LAI, leaf stomatal aperture and 

conductance for water loss, and water vapor pressure gradient are all factors that affect crop’s 

transpiration. In DSSAT-CERES model, the stomatal conductance decreases when increasing 

CO2 concentration therefore reduces the plant transpiration (Ko et al., 2012). In our study, the 

elevated atmospheric CO2 concentration led to reduction of the actual transpiration by 8% for 

corn to 11% for soybean at both sites. Hatfield et al. (2011) reported that the amount of measured 

crop’s water use decreased by 2 to 13% when elevating the concentration of CO2 depending on 

the species because of the closure of some leaf stomata and less water vapor loss from leaves to 

atmosphere. Our simulated future actual ET for corn and soybean reduced by 7.3% (-4.0 cm) and 

9.1% (-4.0 cm) in SE site, and reduced by 10% (-4.7 cm) and 8% (-3.5 cm) in HR site, thus 

annual drainage flow and runoff increased by 10.2% (+3.6 cm) and 2.8% (+0.25 cm) in SE, and 

increased by 12.6% (+2.8 cm) and 2.0% (+0.1 cm) in HR site as a result of the decline of crop 

ET.  

Our simulation suggested an increasing trend of N2O emissions with elevated atmospheric 

CO2 concentration in both two sites, which were 13% and 17% higher than baseline in St. 

Emmanuel and Harrow site, respectively. Higher N2O emission under elevated atmospheric CO2 

concentration has been reported by Baggs et al. (2003), Kettunen et al. (2005), Bhattacharyya et 

al. (2013) and Wang et al. (2018). This could be explained by more easily decomposable root 

exudates resulted in enhanced microbial activities in soil (Kettunen et al. 2005), thereby 

increasing nitrification and denitrification. In addition, increased C allocation from root biomass 

and exudation provided the energy for denitrification (Baggs et al., 2003). In the present study, 

the simulated denitrification increased by 21% and 24%, the annual N2O emission from 

denitrification increased by 14% and 22%, and the N2O emission from nitrification also 
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increased by 12% and 14% at the SE and HR sites, respectively. Although the enhancement of 

N2O emission was usually expected with elevated CO2 emission (Holmes et al., 2006; 

Bhattacharyya et al., 2013; Wang et al., 2018), some modeling results and FACE (free air carbon 

dioxide enrichment) experiments supported an argument that higher crop N demand might 

reduce the soil N and microbial availabilities, leading to lower denitrification and nitrification 

thus decreasing N2O emission (Hungate et al., 1997, Reich et al., 2006, Xu-Ri et al., 2012; He et 

al., 2018).  

Simulated average annual N mineralization will increase by 14.3 kg N ha-1 from 170.0 kg 

N ha-1 to 184.3 kg N ha-1 in SE site, and in HR site it will increase from 155 to 175 kg N ha-1. 

The increased C and N mineralization was resulted from higher accumulated crop residue from 

each year, leading to 15% and 18% higher CO2 emission in SE and HR sites from soil. Our 

results were supported by Rafique et al (2014), which indicated that the predicted changes in 

crop yield could be the reason for increasing/decreasing of GHG emissions due to the changes of 

soil C dynamics. De Graaff et al. (2006) also demonstrated the increase of CO2 respiration from 

soil due to the stimulation of increased total plant biomass by elevated atmospheric CO2 

concentration. Although the elevated atmospheric CO2 concentration resulted in higher 

mineralization and more denitrification, as well as increasing drainage flow, the N losses in 

drainage were reduced by 6% and 16% in two sites. This might be due to the increasing N 

assimilation of crops. The simulated N uptake by corn will be increased by 5% (from 288 to 304 

kg N ha-1) and 13% (from 283 to 321 kg N ha-1) for SE and HR sites, respectively, and soybean 

N uptake increases by 30% (from 336 to 436 kg N ha-1) and 32% (from 408 to 538 kg N ha-1) for 

the two sites. The extra N uptake of soybean was mainly resulted from the enhanced N fixation 

by soybean (from 200 to 294 kg N ha-1 in SE site and from 270 to 392 kg N ha-1 in HR site).  
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6.3.6 Solar radiation, relative humidity and weed speed impact on crop production, water quality 

and GHG emissions 

The simulated future solar radiation has limited impact on corn and soybean yields. The 

average daily radiations of baseline were around 13 MJ m-2 in both two sites, while in the future 

they were expected to decrease by 2% and 5% in SE and HR sites. The reduced radiation 

resulted different responses to crop production in the two sites, which suggested 3% yields 

reduction in HR, while in SE site crop yields increased by 2%. This could be explained by 

different seasonal patterns of radiation changes in the two regions. The future average daily 

radiation during crop growing period (from planting date to physical maturity date) rose by 3% 

to 7% in SE site, while in HR site the radiation reduced by 3% to 8%. Consequently, as affected 

by the declined radiation, the simulated corn and soybean yields in HR site were reduced by 3% 

in the future, however, future yields for corn and soybean were 1.4% and 2.0% higher than 

baseline Increased crop yields in SE resulted in slightly more crop residue decomposition and 

GHG emissions while in HR site the results were the opposite. However, changes in CO2 and 

N2O emission for both sites were within 2% due to the minor changes in yields. 

The future predicted wind speeds will be 1.5% lower and 0.4% higher than baselines at the 

SE and HR sites, respectively. Very limited differences for crop production (within 1% in SE 

and 0.1% in HR sites) were found under changing wind speed. Reduced wind speed resulted in 

lower soil evaporation (within 0.5%) in SE site, while in HR site the soil evaporation changed 

within 0.01%. The GHG emissions will   be limitedly affected by the wind speed (within 0.3% 

and 0.1% for SE and HR sites).  
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The predicted relative humidity was 2.4% lower and 1.5% higher in SE and HR sites. No 

changes were found for simulated GHG emissions, water balance or crop yields with minor 

changes in relative humidity under the future climate scenarios. 

6.4. Summary and conclusion 

Our simulated results suggest that higher future precipitation mainly affected the drainage 

and runoff but not crop yield because almost no water stress was simulated for crops in the two 

regions. The increased temperature will lead to higher evapotranspiration; therefore, less water 

will be drained out from the field and less runoff was estimated as well. However, higher 

temperature will enhance mineralization and denitrification in soil profile, leading to more N 

losses in drainage water and more GHG emissions from soil. Meanwhile, higher temperature will 

accelerate the crop growth rate and shorten the growth lengths for both corn and soybean, which 

results in lower crop yields for both corn and soybean. Furthermore, higher temperature will 

have more significant effects on reducing corn yield  (17%-27%) than soybean (4%-7%) due to 

different optimal growing temperatures for the two crops. Elevated atmospheric CO2 will result 

in the closure of some leaf stomata, thus decrease the plant water uptake and water vapor from 

the leaves to the air. For the crop production, it affects corn (C4 crop) and soybean (C3 crop) in 

different ways. The predicted yields for corn and soybean in both Ontario and Quebec would rise 

by around 15% and 30%, respectively. Soybean yield will be increased dramatically because 

increasing atmospheric CO2 concentration will lead to direct increase of net photosynthetic CO2 

uptake, while minor increase of corn yield was predicted as increasing CO2 only increases water 

use efficiency through decreasing the stomatal conductance. The hydraulic cycle, GHG 

emissions from soil and crop production were found to be not very sensitive to the future solar 
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radiation, relative humidity and wind speed because the changes of those climate variables will 

be minor.  

In conclusion, three future climate variables will be strongly associated with corn and 

soybean production: temperature, precipitation and atmospheric CO2 concentration. Increasing 

future temperature will result in crop yield reductions, especially for corn, but the negative 

impact of increasing temperature on crop production can be solved by replacing cultivars with 

longer life cycles (Smith et al, 2013; Wang et al., 2016). Nevertheless, future temperature will 

also exacerbate the problem of N losses in tile drainage and GHG emissions by affecting the soil 

microbial activities. Agronomic management practices should be considered for the future 

environmental problems. Elevated atmospheric CO2 concentration will improve crop 

productivities, but also enhance GHG emissions because of more crop residue left in soil for 

decomposition. The future precipitation will not affect the crop productions, and the extra water 

will be drained out directly from soil surface or through tiles, leading to more N losses to 

drainage water. The future study should be focused on the mitigation and adaptation strategies 

for the climate change impact on GHG emissions, crop production and water quality in Eastern 

Canada based on current simulations. 
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Table 6.1. Annual average weather variables of precipitation (P), minimum temperature (Tmin), 

maximum temperature (Tmax), wind speed (U), solar radiation, and relative humidity (RH) for 

baseline and future scenarios at (a) St. Emmanuel, Quebec and (b) Harrow, Ontario  

 

 

 

 

 

 

Site 
weather 

P 

cm 

Tmin 

°C 

Tmax 

°C 

U 

km d-1 

Radiation 

MJ m-2 d-1 

RH 

% 

 baseline 98 1.9 10.7 342 13 71 

 CRCM-ccsm 97 1.9 10.7 342 13 71 

 CRCM-cgcm3 102 5.0 13.3 338 13 71 

 ECP2-gfdl 106 4.7 13.2 340 13 72 

 HRM3_gfdl 114 4.8 12.9 343 13 72 

a HRM3_hadcm3 107 4.9 13.9 343 13 67 

 MM5I_ccsm 98 4.7 13.4 342 12 69 

 MM5I_hadcm3 113 4.6 12.7 329 11 71 

 RCM3_cgcm3 106 5.7 13.4 311 11 71 

 RCM3_gfdl 108 4.7 13.3 334 10 71 

 WRFG_ccsm 104 4.2 12.8 332 10 71 

 WRFG_cgcm3 95 4.9 13.2 328 11 70 

 Future average 108 4.8 13.1 366 12 70 

 Difference +8% +2.8 +2.4 -1.5% -2% -0.4% 

 baseline 88 5.4 13.8 336 13 78 

 CRCM-ccsm 92 8.3 16.4 342 12 79 

 CRCM-cgcm3 98 8.3 16.4 327 12 80 

 ECP2-gfdl 88 7.9 16.1 332 12 78 

b HRM3_gfdl 97 8.4 16.5 331 13 80 

 HRM3_hadcm3 105 8.9 17.1 319 12 80 

 MM5I_ccsm 96 8.6 16.4 316 12 79 

 MM5I_hadcm3 93 9.2 16.9 330 13 79 

 RCM3_cgcm3 102 8.2 16.4 321 13 80 

 RCM3_gfdl 89 6.4 14.8 330 13 78 

 WRFG_ccsm 105 9.3 17.1 323 12 81 

 WRFG_cgcm3 95 6.9 15.0 328 12 79 

 Future average 96 8.2 16.3 336 12 79 

 Difference +9% +2.8 +2.5 -3% -5% +1% 
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Table 6.2. Simulated average annual crop yields, GHG emissions, N transformations in St. 

Emmanuel and Harrow sites for baseline and future scenarios under integrated future change 

 St. Emmanuel Harrow 

 baseline Futureavg baseline Futureavg 

N2O emission (kg N ha-1) 2.3 2.8 0.9 1.1 

Denitrification (kg N ha-1) 11.5 15.2 4.5 7.1 

Mineralization (kg N ha-1) 169 199 155 171 

N in drainage (kg N ha-1) 46 68 22 34 

CO2 emission (Mg ha-1) 4.3 5.0 4.9 5.8 

ET-corn (cm) 55 56 47 43 

ET-soybean (cm) 44 46 46 43 

Drainage (cm) 35 41 22 21 

Corn yield (Mg ha-1) 13.0 12.9 10.4 9.5 

Soybean yield (Mg N ha-1) 3.8 4.9 3.6 4.3 

 

Table 6.3. Simulated average annual crop yields, GHG emissions, crop life cycles, N 

transformations in St. Emmanuel and Harrow sites for baseline and future scenarios under 

changing temperature 

 St Emmanuel Harrow 

 baseline Futureavg baseline Futureavg 

N2O emission (kg N ha-1) 2.3 2.8 0.9 1.0 

Denitrification (kg N ha-1) 11.5 15.2 4.5 6.2 

Mineralization (kg N ha-1) 169 184 155 171 

N in drainage (kg N ha-1) 46 71 22 32 

CO2 emission (Mg ha-1) 4.3 4.3 4.9 5.1 

ET-corn (cm) 55 58 47 49 

ET-soybean (cm) 44 51 46 48 

Drainage (cm) 35 32 22 21 

Corn life maturity (day) 149 122 146 122 

Soybean maturity (day) 121 109 120 111 

Corn yield (Mg ha-1) 13.0 9.4 10.4 8.5 

Soybean yield (Mg N ha-1) 3.7 3.6 3.6 3.4 
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Table 6.4. Simulated average annual crop yields, GHG emissions, N transformations in St. 

Emmanuel and Harrow sites for baseline and future scenarios with elevated CO2 concentration 

 St Emmanuel Harrow 

 baseline Futureavg baseline Futureavg 

N2O emission (kg N ha-1) 2.3 2.6 0.9 1.0 

Denitrification (kg N ha-1) 11.5 14.0 4.5 5.5 

Mineralization (kg N ha-1) 169 184 155 175 

N in drainage (kg N ha-1) 46 44 22 18 

CO2 emission (Mg ha-1) 4.3 5.0 4.9 5.8 

ET-corn (cm) 55 51 47 42 

ET-soybean (cm) 44 40 46 42 

Drainage (cm) 35 39 22 25 

Corn yield (Mg ha-1) 13.0 14.8 10.4 12.0 

Soybean yield (Mg N ha-1) 3.8 4.9 3.6 4.7 
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Figure 6.1. Projected average monthly minimum and maximum temperature for baseline and 

future scenarios at a) St. Emmanuel and b) Harrow site. 
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Figure 6.2. Monthly distribution of baseline (BL) and future (FT) precipitation for St. Emmanuel 

site (SE) and Harrow site (HR). 
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Figure 6.3. The relationships between increased precipitation, drainage and runoff in (a) St. 

Emmanuel and (b) Harrow sites. The dots and triangles are values from 11 scenarios. 
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Chapter 7 

General summary and conclusions 

7.1 General summary  

The overall goal of the research was to quantify the interactions between agricultural 

management, climate change, crop growth, and environmental quality and provide mitigation 

strategies for greenhouse gas emissions in subsurface drained fields. The RZWQM2 modelling 

approach was applied in this research to assess the agronomic practices and climate change 

impact on crop yields, water quality, water balance, and GHG emissions. To this end, a few 

model evaluations, applications and future predictions under climate change in Southern Quebec 

and Southwestern Ontario were undertaken to address research objectives.  

7.2 Conclusions 

Objective 1: To evaluate the hydrologic component of RZWQM2 (Root Zone Water Quality 

Model) using a comprehensive hydrological dataset including subsurface tile drainage, sub-

irrigation, soil water content, sap flow and crop growth data such as leaf area index, crop yield 

and crop growth stages 

While mean values for growing season tile flow under both free drainage (FD) and 

controlled drainage with subirrigation (CD-SI) were reasonably accurate, winter tile flow was 

significantly overestimated, indicating RZWQM2’s reliability to be compromised by its 

imperfect winter drainage process. Accordingly, a Kalman filter technique was applied to 

enhance model reliability and reduce predictive uncertainties. A novel RZWQM2 model 

equipped with a Kalman filter algorithm adequately simulated, in both calibration and validation 

phases, the hydrology and corn growth which occurred under both FD and CD-SI systems at the 
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selected field site. Simulation results suggest that RZWQM2 model can be used for water 

management under subsurface drained and irrigated field and the Kalman filter technique 

significantly improved the accuracy of RZWQM2 model in simulating winter drainage in cold 

areas. 

Objective 2: To test RZWQM2’s ability to predict GHG emissions in subsurface drained field 

under water table management 

The Root Zone Water Quality Model 2 (RZWQM2) was calibrated and validated for the 

estimation of N2O and CO2 emissions. It performed satisfactorily in predicting soil temperature, 

soil water content (SWC), N2O and CO2 emissions under free drainage and controlled drainage 

with sub-irrigation in southern Quebec, except for a less satisfactory simulation of N2O emission 

during the validation period due to the failure to predict an extreme value after a heavy rainfall 

event. 

Objective 3: To compare the performance of the RZWQM2 and DNDC models for in 

simulating GHG emissions, crop yield and drainage flow from in a subsurface drained and 

corn-soybean rotated field under water table and N management. 

RZWQM2 is an agricultural system model which comprehensively handles crop growth, 

hydraulic cycles and nutrient cycling in field scale, and DNDC is specialized for nutrient cycling 

but also had good ability in simulating SWC, drainage and crop growth. Both models provided 

reliable estimation of cumulative N2O emission under different treatments over four years, but 

RZWQM2 performed much better than DNDC in predicting the daily CO2 emissions. Overall, 

RZWQM2 requires very experienced users for calibration and validation due to the uncertainty 

and complexity of parameters and is more computation intensive, while DNDC model is more 
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user-friendly and works well with simple calibration. It is important to test the hydraulic 

components of agricultural system models to better understand the complicated interaction 

between soil, water and nutrients. Therefore, improvements are suggested for DNDC model in 

computing the soil water dynamics. 

Objective 4: To use RZWQM2 to investigate the impacts of different agronomic management 

practices on long-term annual GHG emissions and propose some mitigation and adaptation 

suggestions based on the model simulations 

The optimal range of N fertilization in the range of 125 to 175 kg N ha-1 was proposed to 

obtain higher NUE (nitrogen use efficiency, 7-14%) and lower N2O emission (8-22%) with 

minor yield reduction (2-9%), compared to 200 kg N ha-1 for corn-soybean rotation. The long-

term average annual N2O and CO2 emissions were estimated to be 2.16-2.55 kg N ha-1 and 3854-

3887 kg ha-1 with 125- 175 kg N ha-1 of dry urea fertilization under free drainage and corn-

soybean rotation. While remaining crop yields, splitting N application into two dates (one before 

planting and the other two weeks before silking) would potentially decrease total N2O emission 

by 11.0 %, but CO2 emission was only reduced by 0.3%. Due to higher soil moisture and lower 

soil O2 under controlled drainage with sub-irrigation (CD-SI), CO2 emissions declined by 6% 

while N2O emissions increased by 21% compared to free drainage (FD). A corn-soybean rotation 

reduced CO2 and N2O emissions by 18.8% and 20.7%, respectively, when compared with 

continuous corn production. This study concludes that RZWQM2 model is capable of 

predicting GHG emissions, and GHG emissions from agriculture can be mitigated using 

agronomic management.   

Objective 5: To use the calibrated and validated RZWQM2 to assess the climate change 

impacts on future GHG emissions, water cycle and crop production in Eastern Canada 
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Three future climate variables were strongly associated with corn and soybean production: 

temperature, precipitation and atmospheric CO2 concentration. Increasing future temperature 

would result in crop yield reductions, especially for corn, but the problem of its negative impact 

on crop production can be easily solved by using cultivars with longer growing degree days. 

Nevertheless, future temperature would also exacerbate the problem of N losses in tile drainage 

and GHG emissions by affecting the soil microbial activities. Agronomic management practices 

should be considered for the future environmental problems. Elevated CO2 concentration would 

improve crop productivities, but also enhance GHG emissions because of more crop residue left 

in soil for decomposition. The future precipitation would not affect the crop productions, and 

extra water would be drained out directly from soil surface or through tiles, leading to more N 

losses to drainage water. Model results suggested that corn yield would be reduced while 

soybean yield increased in the future, and the climate change would exacerbate environmental 

pollutions by increasing the GHG emissions from cropland and N losses in drainage water. 

7.3 Contributions to knowledge 

Based the objectives of this research, this thesis provides following contributions to 

knowledge: 

1. The agricultural system model, RZWQM2, has been comprehensively tested for its 

hydraulic, nutrient and crop growth components. Meanwhile, the performance of 

RZWQM2 has been compared with another widely used agricultural system model, 

DNDC. RZWQM2 was found to be more applicable for subsurface-drained fields. 

2. A novel RZWQM2 model equipped with a Kalman filter algorithm was first applied 

for simulating the hydrology in winter. 
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3. Optimal range of N fertilization was recommended from 125 to 175 kg N ha-1 to 

mitigate N2O emissions and improve NUE based on the simulation. The splitting N 

fertilization and rotation would help to reduce the GHG emissions, while CD-SI results 

in more N2O emissions. 

4.  Although soybean would be benefitted from the future climate change, corn yield 

would be reduced in Eastern Canada region. Nevertheless, the N losses in drainage and 

GHG emissions would increase significantly in the future if no adaptation methods 

were taken.   

 

7.4 Recommendations for future research 

1. The RZWQM2 needs further tests for GHG and NH3 emissions in different types of 

soils, and needs to be modified and tested for predicting CH4 emissions. The soil water dynamics 

of DNDC should be improved. 

2. Sensitivity and uncertainty analysis for RZWQM2 parametrization should be carried out 

to verify the key parameters in predicting GHG emissions. 

3. The impact of climate change on crop production, GHG emissions, water quality and 

food security can be positive or negative. Future research should be focused on adaptation to the 

climate change and alleviation the negative impact of the changes on environment quality and 

crop production. For example, rising temperature results in shorter growing period and earlier 

maturity, which may require cultivars with longer growing season, earlier planting date or two 

harvests instead of one. Moreover, nitrogen uptake by crops was found to increase with the rising 

CO2 concentration, thus, more nitrogen fertilization may need to be applied for the crop yield to 

benefit from the climate change, which leads to more N losses in water and GHG emissions. The 
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temperature increase in cool regions accelerated the proliferation of insect pests, and higher 

chances of pests and diseases might occur. Thus, more applications of pesticide and herbicide 

should be taken into consideration. Consequently, the pesticide leaching could also be a concern 

for food security.  

4. The climate change impact on GHG emissions are based on model simulations. It is 

recommended to conduct a field or laboratory experiment under manually changed climate to 

verify the warming, re-distributed precipitation, enriched CO2 concentration effects on the 

mechanisms of GHG emissions.  
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