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Abstract

The Inverse Problem of Galois Theory is discussed. In a specific form. the
problem asks whether every finite group occurs as a Galois group over Q.
An intrinsically group theoretic property called rigidity is described which
confirms that many simple groups are Galois groups over . Connections
between rigidity and geometry are described and applications of rigidity are
provided. [n particular. after describing some of the theory of groups of
Lie type. the rigidity criterion is applied to the exceptional Lie type groups
G(p), for primes p > 5. With the confirmation of a rationality condition.
this establishes that G-(p) occurs as a Galois group over Q for all p > 5.
Furthermore. the conjugacy classes which arise in the proof of rigidity for
G.(p) are explored in detail. in the hope that a new proof might be produced

which would illuminate the geometrv associated to this rigid situation.



Résume

Le probleme inverse de la théorie de galois est traité. Dans une formulation
particuliere. le probleme est de déterminer si tous les groupes finis se réalisent
comme groupes de galois sur ). Une caractéristique intrinseque aux groupes.
appelée rigidité. est décrite. qui implique pour plusieurs groupes simples
qu'ils sont des groupes de galois sur Q. Des connections entre la rigidité et la
géometrie sont décrites. et des applications de la méthode de la rigidité sont
présentées. En particulier. ayant décrit la théorie des groupes de Lie sur les
corps finis. le critere de rigidité est appliqué a la famille des groupes de Lie
exceptionel. G»(p). pour les nombres premiers p > 3. Avec la confirmation
d’une condition de rationalité. il est établi que G.(p) se réalise comme groupe
de galois sur @ pour tout nombre premier p > 5. De plus. les classes de
conjugaison qui se présentent dans la preuve de rigidité pour G,(p) sont
explorés en détail. dans I'espoir qu'une preuve nouvelle puisse étre produite

qui illuminerait 'aspect géometrique de cette situation rigide.
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1 Introduction

The Galois Theory describes a natural way to associate a group to a normal
field extension of Q. specifically. the group of automorphisms of the extension

field fixing Q. [t is not vet known whether this procedure mav be “inverted™:

Conjecture 1 (Inverse Galois Problem) Every finite group 1s the Galous

group of some normal extension of Q.

The problem is often generalized to allow base fields other than Q. [ndeed.

studyving the analogue of Conjecture 1 over the fields C(¢t). Q(t) and Q(¢) will

be seen to be very important in studying the [nverse Galois Problem over Q.

1.1 History

The Inverse Galois Problem was proposed by Hilbert (1892). who demon-
strated that S, and 4, are Galois groups over QQ for all n. The first general
approach to the problem was proposed by E. Noether. who established a
criterion which would ensure a group G was Galois over Q (1918). namely
if its field of invariants is rational (see [Ser92|. pp xiii-xiv). The criterion
is difficult to verifv. and it was not until 1969 that a group was found (by

Swan). the cvclic group Cy; of order 7. which did not satisfv this rationality



condition. As Cy; is abelian. it is easily shown to be a Galois group over Q.
Later work by Lenstra provided an explicit criterion to establish rationality
for abelian groups. which is not met bv many known Galois groups of small
order. so another approach is probably required.

Using different techniques. by inductively solving the relevant embedding
problems. Scholz and Reichart realized every finite nilpotent group as a Ga-
lois group over Q (1937). Their ideas were extended by Shafarevich. who
established that every finite solvable group is a Galois group over @ (1954).
This result does not guarantee that G occurs as a Galois group in a regular

extension of Q(¢). however.

1.2 Strategy

In the late 1970s. there were two important developments related to the
[nverse Galois Problem. First. the classification of finite simple groups was
completed. establishing that every finite simple group is an alternating group.
a Lie type group. or one of 26 sporadic groups. At the same time. a new
technique. the rigidity method. for realizing finite groups as Galois groups was
developed (attributed variously to Fried. Belvi. Matzat and Thompson). The

technique proved especially successful at realizing simple groups as Galois

10



groups. either over Q or over an abelian extension of Q. Taken together.
these developments in the theory suggest the following strategy. first made

explicit by Thompson. for resolving the Inverse Galois Problem over (:

A) Demonstrate that every finite simple group occurs as the Galois group of

some extension of @

B) For an arbitrary finite group. solve the relevant ~embedding problems”.
given that its simple composition factors occur regularly as Galois groups:
that is. construct a Galois extension of Q with Galuis group G assuming

that step A has been solved (see Theorem 2.10).

Neither of the steps has been completed. Little will be said here about
the embedding problems in B): for details see [MM95]. Concerning step A).
the rigidity method has successfully realized all but one of the 26 sporadic
simple groups as Galois groups over Q; however, the rigidity method is only
known to realize the finite simple Lie type groups defined over F, when ¢ is
a small power of a prime p. Indeed. not a single Lie tvpe group is known
to be realized by the rigidity method as a Galois group over @ when ¢ is
a fourth power of p or higher. Thus there has been considerable research

into modifving and extending the rigidity method. with some success. See

Il



[MM95] and [Vol96] for more details.



2 Preliminaries

2.1 Galois Theory

If F is a field extension of K. Aut(F/K’} denotes the group of field automor-

phisms of F which fix A"

Definition 2.1 A field extension F/ R is said to be Galois of FAUF/R) = |7

Then Aut(F/K) s called the Galois group of the field extension.

Theorem 2.2 (Galois Correspondence) Let F/R be a Galois ertension
of fields with Galois group G. The assignment H — F¥ quves a bijective cor-
respondence between subgroups H of G and intermediate fields K C L C F.
where FH is the subfield of F fized by H. The inverse sends L to Gal(F/L).
Under this bijection. normal subgroups N <G correspond to Galois extensions

L/K. end Gal(L/K) = G/\N.

For number fields F and A” with rings of integers O and Oy the Galois
group G = Gal(F/K') acts transitively on the set of prime ideals ¢, in Of
Iving over a fixed prime p in Of. Fix a prime ¢ over p. The decomposition
group D, at o is the subgroup of G consisting of all ¢ € G such that a(p) = o.

Let F = Op/p and K = Ok/p. Then F/K is a Galois extension. Let

13



G = Gal(F/K). There is a natural homomorphism o, : D, — G. defined so
that for any f € Of. d(:f) = op(fl)(f). The kernel of o, is called the wnertie

group [, at . and is trivial if and only if p ts unramified.

Let A'(¢) denote the function held in an indeterminate ¢.

Definition 2.3 A Galois ectension F of K (t) is said to be regular if KNF =

K.

Definition 2.4 Let K be algebraically closed. k a subfield of K. and L a
finite Galows extension of K(t). of degree n. The extension L/ K (t) 1s sawd to
he defined over k if there is a reqular Galows extension f of k(t) of degree n.

such that ¢ C L.

This is illustrated below.

k()

[t will be of particular interest to know when a field extension L/Q(f) is

defined over Q.

14



2.2 Representation Theory

Let 17 be a finite dimensional vector space over a field F. Let GL(1") denote

the group of F-linear vector space automorphisms of 17

Definition 2.5 A representation p of a group G over the field F 15 a group

homomorphism from G to GL(V).

Usually F will be taken to be C. and in this case the representation may be
called compler. If F = F,. the representation will be called modular. The
dimension of V" is called the degree of the representation. The representation
p is said to be irreducible if the only p(G)-invariant proper subspace of 1" is

the trivial subspace.

Definition 2.6 The character y of a comnpler representation p is the func-

tion from G to C gqwen by x(g) = Tr(p(g)).

Hence Y(g) is the sum of the eigenvalues of p(g). Since Tr{ab) = Tr(ba).
characters are class functions on G. that is. if ¢ and A are conjugate in G.

then \(g) = \(h). Suppose G is a finite group. Then.

Proposition 2.7 The number of irreducible complex representations of G s

equal to the number of conjugacy classes in G.

15



Since p(g) € GL(1") is of finite order. its eigenvalues are roots of unity and

hence

Proposition 2.8 \(y) belonys to Zluy,| for all g in G. where n s the expo-

nent of G. In particular. \(g) is an algebraic integer.

In particular. if y(g) is rational. then y(g) belongs to Z.

2.3 Group Theory

The following definition and theorem are provided to illuminate the connec-
tion between steps A and B in Thompson's strategy. as described in the

Introduction.

Definition 2.9 A composition series of a group G s a seres

G=GQDG[D...DGR={I}

of subgroups of G where each G, 1s ¢ marimal normal subgroup in G._,.
From the definition. the composition factors G,_, /G, are simple.

Theorem 2.10 (Jordan-Holder Decomposition Theorem) Any two com-
posttion sertes of a finite group G have the same number of fuctors. The

16



unordered sets of composition factors are identical in the two sertes (up to

tsomorphism).

Definition 2.11 The normalizer in G of a subgroup H. denoted N (H). s

the subgroup of G consisting of all elements g € G for which gHg ' C H.

In other words. Ng(H). is the largest subgroup of G in which H is normal.

Let p denote a prime number.

Definition 2.12 A subgroup of G is called p-local if it 1s the normalizer of

a subgroup of order p* for somer > 1.

Definition 2.13 A subgroup of G is called local if it s p-local for some

prime p.

If G is a finite group and 7 a set of primes. then O, (G) denotes the largest
normal subgroup of G with order divisible bv a subset of the primes in 7.

Thus. O,(G) is the largest normal p-subgroup of G.

Definition 2.14 An involution s an element g € G of order 2.

2.4 Topology

Let C and T be topological spaces. Suppose there is a continuous surjective
map p : C — T. such that any ¢t € T has a neighbourhood (" such that

17



p YU} consists of disjoint open sets. each mapped by p homeomorphically
onto . Then C is called a covertng space of T and p is called a covering
map. A nniversal covering space of T is a covering space of T which is simply
connected. If T is path connected. locally path connected. and locally simply

connected then T has a universal covering space.

Definition 2.15 Let C be a covering space of T wath covering map p. A deck

transformation of C s ¢ homeomorphism d : C — C satisfying pod = p.

The set of deck transformations of any covering space form a group under
composition. Deck transformations are important in the study of fundamen-

tal groups because of the following:

Theorem 2.16 If T has a unwversal covering space L. then the fundamental

group of T at any pownt P 1s isomorphac to the group of deck transformaetions

of U.

Ifp:C — T is a covering map. and t € T. then the set p~!(t) is called
the fibre of p at t. The isomorphism of the above theorem is proved by
identifving the natural action of the group of deck transformations on p~'(t)
with the action of 7(T.t) on p~'(¢) which sends. for a homotopy class ~. a
fixed p~'(¢) to the endpoint of the path p~!(~) with starting point p~'{¢).

18



The covering p is called a Galows covering if C is connected and for every
t € T the group of deck transformations of C acts transitively on the fibre
of p at t. The degree of the covering is n = [p~!(t)] at any t € T. and this is
equal to the order of the deck transformation group. If n is finite. p is called

a finite Galois covering.

2.5 Function Fields

Definition 2.17 A function field A of dimension n over « fleld F 1s a field

extension of F of transcendence degree n. where n > 1.

A valuation is a function v : A — Z U oc satisfving v(r) = x if and only if
r=0:v{r+y) > min(e(r). c(y)): and v(ry) = v(r) + v(y). The valuation
ring R of v is the subset consisting of all r € A such that v(r) > 0. For
any nonzero r € A, then r € Rorr™' € R. The ring R is a local ring:
the valuation ideal [ of R is the unique maximal ideal of R. The ideal [
consists of all non-invertible elements in R. that is. all elements r € R for
which ¢(r) > 0. The quotient R/[ is called the residue field of .

Let ¢ be an indeterminate. Then C(¢) is a function field of dimension 1
over C. The valuation ideals of valuations on C(t) are in bijection with the
elements of C. the Riemann sphere. For example. the points 0. 1. and x in

19



C correspond. respectively. to the valuation ideals (¢). (¢ — 1). and (1/¢} in

the valuation rings Cl(t)y) = {f = %—; | q(0) # 0}. C(Hyory = {f = f-;“—:: |
a(1) #0}. and Cit), ¢, = {f = 22 | deg(p(t)) < degla(t))}.

The field of rational functions on a curve with irreducible defining equa-
tion f{r.y) = 0 over F is a one-dimensional function field. since it is the
field of fractions of Flr.y]/f(r.y). Conversely. if A" is a one-dimensional
function field over F of characteristic zero then A is algebraic and separable
over F(r}. where r € R is transcendental over F. and is thus generated by
a single (primitive) element y over F(r). which corresponds naturally to a

curve over F.

2.6 Profinite Groups

Suppose given a family of groups {Gnes}. indexed by a partially ordered
directed set /. and whenever : < ; a homomorphism f,, : G, = G,. the f,

compatible in the sense that f, o fi, = fi,. and f, is the identity.

Definition 2.18 The inverse limit. lim G, of the famiy {G.} with the ho-

momorphisms f,, s the subgroup of [[G. consisting of elements (gn)ne;.

sl

gn € Gn. whose components satisfy f,,{g,) = g, whenever 1 < j.



A group is called profinate if it is isomorphic to an inverse limit of finite
groups. An important example is the p-adic integers. denoted Z,. which
are defined for each prime p to be l:lﬂl Z/p"Z. with the canonical system of
homomorphisms. The field of p-adic numbers. Q. is the quotient feld of
Z,. The profinite completion of a group G is the inverse limit of all finite
quotients of G.

Profinite groups arise naturally in Galois theory. For example. for Gg =

Gal(Q/Q).

Go = lim Gg/H

where the inverse limit is taken over all Galois groups H = Gal(Q/R) for all
finite Galois extensions A/Q with A ¢ Q.

More generally. fix a finite set S of points on the Riemann sphere C.
To each point P of S there corresponds a valuation ideal in C(¢). the ideal
which is zero at P. Denote the set of these ideals bv S. Denote by Ms the
maximal extension of C(¢) unramified outside S. s is the union of all finite

extensions .N/C(t) which are unramified outside S.

Definition 2.19 The algebraic fundamental group of C\S is defined to be



Gal(Ms/C(t).

The algebraic fundamental group is naturally profinite: it is the inverse
limit of the Galois groups of all finite Galois extensions of C(f) unramitied
outside S. The relationship between the algebraic and ropological funda-
mental groups is discussed in section 3.1.

Let G be the Galois group of @/Q. Let ¢, = e*™" for all n. There is a
natural homomorphism from Gy onto Z*. the group of units of the profinite
completion Z of Z. This is defined below by combining the homomorphisms

0n : Gg = (Z/nZ)*. where o,(0) = £ if 0(C) = (L.

Definition 2.20 The cyclotomic character c is the homomorphism from G,

x

to lim (Z/nZ)* = Z* where (o) = (0n(0)) 1<ncx-



3 Inverse Galois Theory

3.1 The Inverse Galois Problem Over C(¢)

Fix a set $ of r distinct valuation ideals ¢y.... .. in C(f). Denote the
corresponding subset of C by S. and the corresponding points by Py. ... . P,
(as in section 2.6). Fix a base point P in C different from everv P, Let ~,
denote a homotopy class of loops based at P encircling the point P, {and no
other P,). Fixa labelling of the points so that they are arranged consecutively
clockwise around P. Then the relation 4, - v - ... - % = 1 is immediate.
Hurwitz showed that this is the only essential relation in the fundamental

group 7 of C\S. based at P. That is.

Let G5 be the algebraic fundamental group of C\S (Definition 2.19). A
profinite version of the Riemann Existence Theorem relates the algebraic

and topological fundamental groups. Let © be the profinite completion of

the topological fundamental group 7.

Theorem 3.1 (Riemann Existence Theorem) The alyebraic fundamen-

23



tal group Gs and % are isomorphic. Thus.

Furthermore. there 1s a canonical embedding of the topological fundamental
group n the algebraic fundamental group under which the homotopy classes

v, generaling © are mapped respectively to yenerators r, of Gs as a profinite

group.

The proof relies on the identification of the topological fundamental group of
lI..".\.S' and the group of deck transformations of the universal covering space
of C\S (Theorem 2.16). By using this identification. one can show that
the finite quotients of the topological fundamental group correspond isomor-
phically to Galois groups of finite extensions of C(t) in Ms. The protinite
completion of the topological fundamental group is thus isomorphic to the
algebraic fundamental group. by the comments following Definition 2.19. See
[MM95]. pp. 4-6 for full details.

The canonical embedding introduced in Theorem 3.1 allows one to de-

scribe the inertia groups in Gs. as in the following theorem of Abhvankar.

Theorem 3.2 The images r, of the respective homotopy classes ~, under the

24



canonical injection from = into Gs generate procyclic tnertia groups (r,) at

valugtion wdeals in Mg above .

For a proof see [MM95]. p. 6.

Theorem 3.3 Every finite group is the Galous group of some field extension

of C(t).

Proof: For any finite group G which may be generated by r — | elements

Gi. ... .gr-1. define 2 homomorphism o from Gs onto G by

G t<r-1
o(xl) = (34)

(!]l'-“'gr—l)—l L=

Denote by F the fixed field of Kerp. a normal subgroup of Gs. By Theorem

2.2. F/C(t) has Galois group isomorphic to

Gs/Kero =G

Hence the Inverse Galois Problem is solved over C(t).

(R
(1]



3.2 From C(t) to Q(¢t)

Knowing the Inverse Galois Problem to be solved over C(¢). one may prove
that anyv extension L/C(t) is defined over a finitely generated extension of
Q and thus over Q by a specialization argument. Tvpically one proceeds as
over C(t). by fixing a set S of valuation ideals in Q(t). and examining the
maximal extension M of Q(t) unramified outside S. There are several ways
to complete this. by using Hilbert's [rreducibility Theorem as in {Vol96] or
Weil descent as in [MM95]. Indeed. the proof may be extended to solve the
Inverse Galois Problem for any function field over an algebraically closed field
of characteristic zero. In particular. the Inverse Galois Problem is solved over
Q(t). Grothendieck formulated the analogue of Theorem 3.2 in this descent.
demonstrating that the generators of the algebraic fundamental group of
Ms/Q(t) generate procyclic inertia groups at valuation ideals above the ¢, €

S. For details. see [MM93]. pp. 9-12.

3.3 The Rigidity Method: From Q(t) to Q(t)

Before presenting the basic rigidity theorem. a series of lemmas is required.
Henceforth. S will denote a set of r puints in P;(Q) invariant as a set under

G-. Then S will denote the corresponding set of valuation ideals in Q(t).

26



and Mg the maximal extension of Q(t) unramified outside S. The group

Gs = Gal(Ms/Q(t)) is profinite. with presentation

(L1 Laeeeo Ly | Ly-o xp = 1)

As before. one hopes to produce a homomorphism o from [ = Gal( Ms/Q(¢))
onto G. Then F := .‘-[_:5“" is a Galois extension of (¢) with Galois group

G. and there is the following situation:

s \

The notation of the diagram will be used throughout. Restating Grothendieck’s

analogue of Theorem 3.2. described at the end of Section 3.2.

Lemma 3.5 Each generator r, of Gs generates u procyclic inertia yroup

(r,) at a valuation ideal in Mg above p, € S.

Furthermore. Gs a['s and Gg is a complement of Gs. so ['s is a semidi-
rect product of G and Gs. and Gg acts on Gs. This action is not fully

27



understood. but using Lemma 3.5. the conjugacy classes of the r, can be
described. Since S is invariant as a set under Gg. the o, € S are permuted
by ¢ € G3. s0 o may be viewed as a permutation of the indices {1.2.... .r}

(since 1 <5< r ). Let & be a lift of some o € Gal(Q(t)/Q(t)) to [s.

Lemma 3.6 In Gs. (r,)? is conjugate to '’

) e the cne .
o+ Where ¢ 15 the cyclotormie

character.

See [MMO93]. pp. 14-15.

3.3.1 Rationality

Definition 3.7 A conjugacy class C in a finite group G is called rational if

for every irreducible character y of G. x(C) € Q.

By Proposition 2.8. C is rational if and only if \(C) € Z for all . Let n be

the exponent of G.
Lemma 3.8 A class C is rational if and only if C* = C whenever (a.n) = 1.

Proof: Let ¢ € Gal{Q(x2,)/Q). and let p be an irreducible representation of
G. with character . p: G = GL.(C). There is a natural action of # on the

image of p by Proposition 2.8. Then ¢ o p is an irreducible representation of



G. and since Tr(gop(y)) = oo Tr{p(g)). the character of copis co\. Thus.
(Z/nZ)* = Gal(Q(u.)/Q) acts on the set of irreducible characters of G.

Let o« € (Z/nZ)*. Then the map ¢ — ¢“ defines a group-action of
(Z/nZ)" on theset G. If (a. n) = 1. denote by g, the element of Gal{Q( 1. )/Q)

for which 6,((,) = ¢2 for every primitive n' root of unity ¢,. Then

7o 0 \(C) = (C) (3.9)

If for all irreducible characters y, \(C) € Q. then a, o \(C) = (). so by
equation (3.9). ¢(C) = (C?) for all x. But then C = C® by the orthogo-
nality relations for characters. Conversely. if C = C® whenever (. n) = L.

then by equation (3.9).

da0x(C) = \(C%)

so \(C) is fixed by o, for all « and thus y(C) € Q. d
Hence. if the class C is rational. then for anyv g in C. anyv generator of the
cvclic group {g) is also in C.

By Lemma 3.8. one has the following.
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Proposition 3.10 Any conjugacy class of involutions s rational.

3.3.2 Rigidity

For a class vector v = (Cy.Cs. ... .C.) of conjugacy classes of a finite group
G. define ¥, to be the set of r-tuples (¢;.¢2.... . g-) such that
l. q € C, forall «;

(%7

cAgi-ge. .- . 9r) =G

3 qgs...9r = 1.

Definition 3.11 A vector v of conjugacy classes is called rigid if |S,| = \G].

G acts on ¥, by componentwise conjugation.

Lemma 3.12 [f Z(G) = {1}. then the action of G on &, 15 free.

Proof: Suppose for some y € G and (gy.....g,) € &, that ygy~' =g, for
all 2. Then y would commute with a set of generators for G and hence would
be in Z(G). which is assumed trivial. 3

From this lemma. the following equivalent formulation of rigidity follows

immediately:
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Lemma 3.13 Assume . is nonempty. If Z(G) = {1}. then v s a nqd

vector of conjugacy classes tf and only if the action of G on ¥, is transitive.
Define H € Hom(Gs.G) so that o € H if and onlv if
L. o is surjective: and
2. o(r,) € C, for each &.
The following lemma is a special case of the Hurwitz classification. in {MM95].
p- 25.

Lemma 3.14 There is « byection between the sets H and ¥..

Proof: For 0 € H. define an r-tuple (gy,... . gr) by g, = o(r,) for each :.
Then since 0 € H. g, € C, for each i: since o is surjective. {(q.....¢g,) = G.
and since ry-...-r. = l. theng;-...-g- = L.so (g1.... . g.) € T.. Conversely.
given (gy.... .9,;) € ¥.. define a homomorphism ¢ € Hom(Gs.G) by o(r,) =
g; for all i. Since the set of g, generate G. o is surjective. and by definition

o(r,) € C, for all i. Hence o is in H. _

Define a G-action on H as follows. Forge G. - € H. r € Gs.

g-e{r) = gu(r)g™! (3.15)
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With this definition. then by the bijection between H and L, above. one has
Lemma 3.16 ¥, aend H are isomorphic as G-sets.

The main result of this section can now be stated and proved.

Theorem 3.17 (Basic Rigidity Theorem) Let G be ¢ finite group. with
trivial center. If there erists a class vector (C,.... .C,) of conjugacy clusses
of G which s rgid and rational. then G s the Galows group of a reqular

extenston of Q(t).

Remark: While the Rigidity Theorem is proved here for any r-vector of
conjugacy classes. in practice the theorem is virtually alwavs applied with
r=23.

The notation of this section will be used in the proof.

Proof: Choose S so that each point P, € S is invariant under Gg. By

Theorem 2.2. G is a normal subgroup of [s. so there is the exact sequence

l—?Gs—‘rFs—)GQ—‘rl



Let v € Hom(G5s.G). and let r € Gs. Define a [ s-action on Hom(Gs. G)

as follows. For ~ € [s.

(L)) = v(vr Y

Extend the G-action in (3.15) to Hom(Gs.G) so that ¢ - v(r) = gu(r)g™!
for all v € Hom(Gs.G). Then the G and [ s-actions commute: that is
(g-v)-v=g-(v-7)

By Lemma 3.16. since ¥, is stable under the action of G. then H is
stable under the action of G. By Lemmas 3.12 and 3.13. G acts freely and
transitively on H.

Since the set S has been chosen so that it is fixed elementwise by Gg.
then. using the notation of Lemma 3.6. ¢4, = ,. Thus. by Lemma 3.6.
conjugation by v € [s sends a generator r, to a conjugate of a power of
I,. But the conjugacy classes C; are assumed rational. so it follows from the
equivalent definition of rationality in Lemma 3.8 that v - ~(r,) € C,. Thus.
-~ € H. and H is also stable under the action of [s.

The homomorphisms ¢ € Hom(Gs.G) which are surjective will define

Galois extensions e of Q(t) with Galois group G. Since any homo-
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morphism in H defines a Galois extension of Q(t) with Galois group G. to
complete the proof it will suffice to show that anv v € H may be extended
to a homomorphism o from [s to G. Let y € [s. v € H. As will be proved.

the following defines a homomorphism o from [ to G which extends v

oly) v=v-y

That is. it will be shown that there is a unique element o(y) in G such that

for all r € G,

o(y)v(r)o(y™") = wlyry™")

and o(r) = v(z) for all £ € Gs. H is fixed by the action of [g. 50 v-y € H.

Since G acts transitively on H. then o(y) exists. and since G acts freelv on

H. o(y) is uniquely determined. If r € Gs. then for all ¢ € G5

o{r)r(glo(r™") = v(zgr™) = v(r)w(gv(c™)

so o(r)-v = ¢{r) -t and o(r) = «(r) for any r € G since G acts freely and

transitivelv. Thus o extends v and all of the claims have been established.
d
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The theorem has many generalizations. The condition that the center he
trivial. adequate for applications to simple groups. can be relaxed to allow for
groups whose center has a complement. The rationality condition can also
be relaxed: see [\0l96]. {Ser92|. [MM93]. If one is interested only in realizing
G as a Galois group over the maximal abelian extension Q*® of Q. then the

rationality criterion can be dispensed with. That is.

Theorem 3.18 [f there is a riqid vector of conjugacy clusses of G, then G

is a Galois group over QP°.

Rigid class vectors have been found in most of the simple groups of Lie
tvpe. but in very few cases are these vectors rational: hence most simple
groups of Lie type are known to occur as Galois groups over Q*®. but very
few are known to occur over Q. Twenty-four of the twenty-six sporadic simple
groups are known to be realized as Galois groups over Q hy rigidity. The
two exceptions. the Mathieu groups My; and Mo both contain rigid (but
not rational) triples of conjugacy classes. Using different techniques. it was
established by Matzat that 1y, is a Galois group over Q. leaving M.y as the
only remaining sporadic group not known to be a Galois group over Q. The

most comprehensive account of known results may be found in [MM95].
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3.4 Verifying Rigidity and Rationality

[n practice one tvpicallv chooses r = 3. so that one is working with a triple
of conjugacy classes. The following approach is often used to verify that such

a triple is rigid:

1. Compute the number n of solutions (ry.rs. r3y) of ryrory = L. with
r, € C,. For this there is a formula. the validity of which is proved

below:

_ GGG = x(Ci)x(Ca)x(Cs)
"= Z:: (3.19)

| (1)

2. Determine how many of these triples (r,. rs. £3) generate G. To do this.

it is usually necessary to have information about maximal subgroups

of G.

Proof of (3.19):
Fix an irreducible representation p of ¢G. By Schur’s Lemma. the central-

izer of the image of p is the set of scalar matrices. Thus.

il Y plaga™!) = Agld (3.20)

Gl &
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for each g € G. as the left side commutes with p(h) for all h € G. Let

be the character of p. Considering the trace of the left side. one finds that

Ag = {—t% since \(1) is the dimension of Id.
Now. taking the product of (3.20) with the corresponding sides of equation
{3.20) but with ¢ replaced by g, € G allows one to inductively extend this

formula to an arbitrary number r of group elements. One obtains

g)---x(gr)
(-

|
|GI* Z plovqiot .. .orga]!) = i

(oy.....0.)ECT

By computing traces and then multiplying by \(1)|G|"~! one has

X1 -1 1y et W) - (gr)
Gl (m'_;w Wowof - orgror) = 16

Let ® be the characteristic function of 1 in G so that ®(1) = 1 and ®(g) =
0 for all ¢ # 1. The orthogonality relations for characters confirm that
b = cl:_ Zx v(1)x where the sum ranges over all characters y of irreducible

representations of G. Now summing the above equation over all irreducible
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characters \ of G.

- - i r- (( ). (lr}
Y. ®ogot o0 ) =) (G {EL\(”#
X

[ SYS: SRT] i

By the definition of ®. the left side of this equation gives the number of
solutions (ay.. ... o.) € G to qyqio{' . ..o.9.07" = 1. Let C, denote the
conjugacy class of g,. Now. the equation also counts the number of solutions
n to the equation ¢, ...t, = 1 for t, € C, up to centralizers of the elements

g,- That is.

=2 GI™™ \g1) .- x(gr)
{Celgi)l .- 1Celg ) W(1)r-2

61

which may be rewritten by using |C;(g,)| = ;C'! and taking r = 3 to give

equation (3.19). |

3.5 From Q(¢) to Q

If rigidity criteria ensure that G is a Galois group over {)(f). the Hilbert
[rreducibility Theorem guarantees rhat the extension of Q(#) with Galois
group G can be specialized in infinitelv many wavs to give an extension of {

with Galois group G. More precisely.
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Theorem 3.21 (Hilbert Irreducibility Theorem) Let A'/Q(t) be a reg-
ular finite Galows ertension. with Galois group G. and with minimal poly-
nomial f(t.r) € Q[t][r]. Then for wmfinitely many ty € Q. the polynomial
f(to. r) € Q] 15 the mumamal polynomial of a Galows ertension of Q with

Gulois group G.

The proof is somewhat technical. and is only summarized. [t is equivalent
to prove that each irreducible polynomial f(¢. r) in Q[¢|[r] has infinitely many
specializations f(tg..r) over Q which are irreducible in Q[z]. [ndeed. one may
prove this for any finite set { f,(¢.r)} of polynomials in Q[t}{z], as in ([Vol96].
pp. 10-18). One calls a subset S of the natural numbers sparse if for some
r.0 < r < L. and almost all natural numbers n. [SN{L..... n} < n".
From the definition. one sees that a finite union of sparse sets is also sparse.
Now one shows that there is an integer s for which the sets S(f,.s) = {n €
N fils+ %.q) = 0 for some q € Q} are all sparse. using complex analytic
techniques ([Vol96]. pp. 16-18). Then S := L;,'S(f‘.s) is a finite union of
sparse sets. and is therefore sparse. The complement C of S in N is the set of
natural numbers n for which all of the f,(s + % ) are irreducible over Q. As

C is the complement of a sparse set. C is infinite. establishing the theorem.
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4 Applications of Rigidity

4.1 The Symmetric Group

For those finite groups with an uncomplicated geometric interpretation. or
for which generators and relations are easilv manipulated. there are often
elegant proofs of rigidity (not requiring the formula (3.19) or other elaborate
calculations). As one example. a rigid triple is exhibited in the group S,.
Recall that elements are conjugate in S, if and only if they have similar

disjoint cycle decompositions. Let C, denote the conjugacy class of i-cveles.
Theorem 4.1 The triple v := (C5.Cr—1.Cp) is ngid in Sy,

Proof: Let (t.a.{ta)™!) € v. Relabelling as necessary. let a = (1 2 ... n-1).
Then ta € C,, if and only if ¢ = (jn) for some ; # n. Since it is well known
that S, is generated by (In) and (12...n), to prove rigidity it will suffice to
show that (In} and (jn) are conjugate by an element in the centralizer of .

It is easily verified that

12 . J oo on—=1
J o4+l 0 2y-1 0 -1
is such an element (where the bottom row is considered modulo n}. i
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4.2 PSLy(F,)

Elegant proofs of rigidity can sometimes be found for the classical finite
matrix groups by interpreting them as groups of transformations of a vector
space. As one example. the group PSL,(F,) has manv rigid triples. one of
which is described in the following theorem. When p > 2. there are two
distinct conjugacy classes of unipotents (that is. consisting of elements of

order p) in PSL,(F,). Let C,(,” denote the conjugacy class containing the

1 1
class in PSL,(F,) of (the other unipotent conjugacy class contains

01
an identical element but with a non-square in the upper right-hand corner).
Theorem 4.2 There 15 a rigid triple v = (C". Cy. C3) of unipotent classes

in G = PSLy(F,) for all primes p # 2.

Proof: A triple (a;.a2.a3) of unipotent elements will be producced such
that [Je, = 1 and (q,) = G. unique up to conjugation. Lift (a,} to SLa(F,)
and write (a,) for the resulting triple. Since PSL,(¥,) = SL.(F,)/ % L. then
[]a. = £1. Now @, has. up to multiplication by scalars. a unique eigenvector
t, with eigenvalue 1. Since a; and a, are. by assumption. noncommuting
unipotents. @; and a, cannot simultaneously stabilize the one-dimensional

space spanned by t. so vy, must be linearly independent from v|. Thus.
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(vy. ) defines a basis for the two-dimensional space on which SLy(F, ) acts.
Writing a; and @, with respect to this basis. using the fact that the matrices

have determinant 1.

Il 1 0
a, = . ay =
01 1
| 1 0
Scale vy by . so that a; = . and now write a» = (1e.
01 y 1

let y = zx). Now. since qya, = i&_{l. one finds

As @3 has 1 as its only eigenvalue. the trace of a;' is 2. The above equation
thus forces ¥ = 0 or y = —-. depending on the sign of the right-hand side.
[t is impossible that y = (). as this would force a, to be the identity. Thus.
y = —4 (here it is required that p # 2) and the triple is unique up to
conjugation. [t is well known that these elements generate G. and v is thus

a rigid class vector for PSL,(F, ). O



5 Global Rigidity

5.1 The Geometry of a Rigid Class Vector

[t was established in Theorem (4.2) that v = (C',‘,“.Cg.(.";) is a rigid class
vector in PSL,(p) for all primes p > 2. It is natural to consider the group
G = PSL-_)(Z[%}). There are homomorphisms p, : G — PSL,(p) for all
p > 2. given by reduction mod p. Since the class vector is rigid for all p > 2.
one expects this information to be encoded in the structure of the ~global”
group G. It is first necessary to reformulate the definition of rigidity in an
appropriate way. so that it applies to finite and infinite groups. as follows.
Call a class vector v = (Cy.C», C3) in a (possibly infinite) group rigid if there
is exactly one orbit of triples {g;. g2, g3} € v under conjugation by G. where
the triples satisfv the conditions g, € C,. gi9293 = L. and (g,) = G.

To refine these ideas and indicate some geometrical connections. a few
definitions are required. Let 7 be a prime. An f-adic representation of G
is a continuous homomorphism p : Go = GL,(Qy). for some n. For a place
v unramified with respect to p. define P, ,(T) := det(ld - Fr, ,T) where T is
an indeterminate and Fr,, is the conjugacy class of p(Frob,.) for any place

w over v.
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Suppose there are f-adic representations v of Gy for all but finitely many

primes ¢.

Definition 5.1 The system of representations {v} 1s a strictly compatible
systemn of representations if there erists a fired finite set S of primes such

that:
1. vy 15 unramified outside SU € for all 7.
2. P,,,(T) has rational coefficients f v ¢ SUE: and
3. Pop (T) =Py, fréSUliul,.

The class vector v in PSL,(F,) from Theorem 4.2 arises naturally when

considering a particular family of elliptic curves over Q(¢):

E(t): y’=1z(r - Li{r-¢)

The action of Gg) on the p-division points. which form a two-dimensional

module. gives modular representations p,(t) for all p > 2. The py(¢t) are

so-called Frey representations. The image of the restriction pp(t) | .

contained in SL,(F,). Let p,(¢t) be the projectivization of this restriction.

so that p,(t) has image in PSL,(F,). Then p,(¢) is ramified only at 0. 1
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and . and generators of the corresponding three inertia groups are mapped
respectively to elements in the three conjugacy classes in v. [n this sense. the
rigid triple ¢ is associated to the elliptic curve E(t). See [Dar98] for further
details.

One might ask if this situation occurs more generaily when one has a rigid
triple in the rational {or S-integral) points of an algebraic group. That is.
one asks whether class vectors which are rigid for almost all primes p arise
from some geometric object. One would expect to be able to ask this question
quite generally among the finite groups of Lie type. for two reasons. First. by
definition the finite Lie tvpe groups are equipped with a parametrization over
the finite fields ¥, for all (or almost all) primes p. Second. they are all simple
or nearlv simple groups. and among simple groups one finds an abundance
of rigid triples of conjugacy classes. For this reason. it is worthwhile defining
the Lie type groups and developing some of their structure. This is done in
the next section. In particular the Lie tvpe group Ga(p) will be explored.
Because of the possibility of describing G.(p) geometrically. one expects to
he able to prove rigidity for this group in a way that would be convenient for
addressing the questions of this section. Much of the remainder of this paper

is devoted to collecting the information that would probably be necessary if
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a proof of the tvpe envisioned is indeed possible.
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6 Lie Type Groups

6.1 Overview

The finite groups of Lie tvpe are closely related to the simple Lie algebras
and their associated Lie groups. First. some of the classification theorv of
Lie algebras is described. From the complex Lie algebra g, and its Lie group
G+ a class of finite simple groups may be produced. Indeed. for all 4 = p". p

prime. a finite group G.(q) will be defined. simple except when ¢ = 2.

6.2 Lie Theory

Definition 6.1 A bracket product is a binary bilinear product on a vector

space V' satisfying the follounng for all r. y. 2 € V"
L [r.r]=0
2. (Jacobi's Identity) {x.[y. 2]} + [y. [z- 2] + [z. [z 4]} = O

Definition 6.2 1 Lie algebra is u finite dimensional vector space over a

field. endowed with a bracket product.

For what follows. the field of scalars will be taken to be C. [n the follow-
ing. let L be an arbitrary Lie algebra. L is said to be abelian if {z. yl = 0 for
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all r and yin L. Let L' be the unique maximal ideal of L such that L/L" is
abelian. Define L™ inductively for m > 1 by L™ = [L. L™, L is nudpotent
if L™ = 0 for some m. The normalizer in L of a sub Lie algebra S is the set

of all r € L such that [r.5] C S.

Definition 6.3 4 Cartan subalgebra H of a Lie algebra L ts ¢ nipotent

subalgebra of L satisfinng N (H) = H.

Associate to r € L the linear transformation adr of L given by multipli-

cation by r: that is. adr(¥) = [r.¢] forall £ € L.

Definition 6.4 The adjoint representation is the representation of L acting

on itself where r — adr for all £ € L.

Definition 6.5 The Killing Form is the bilinear form (z.y) on L queen by
(r.y) = Tr(adr o ady)
Definition 6.6 4 L:e algebra L is semisimple :f its Killing form 15 nonde-

generate.

In a semisimple Lie algebra a Cartan subalgebra is a maximal abelian sub-
algebra H satisfving that adh is diagonalizable for all h € H.
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Definition 6.7 A Lie algebra L is simple if dim L > | and L contains no

non-trvial ideals.

Any semisimple Lie algebra is a direct sum of simple Lie algebras. As shall be
described. the simple Lie algebras can be completely classified. Henceforth.
L shall denote a simple Lie algebra (although most of what is described is
true for semisimple Lie algebras as well). L has a Cartan subalgebra H. and
the dimension ¢ of H over C is independent of the choice of H and is called

the rank of L.

6.3 Classification of Simple Lie Algebras

The dual space H* of H is the set of linear functions from H to C. For each

a € H*. make the following definition.

Definition 6.8 The root space L, is the set {xr € L : [h.z] = a(h)r for allh €

H}.
L, is nontrivial for only finitely manyv a. and Ly = H.
Definition 6.9 a € H" s a root of L if a # 0 and L, 15 nontrunal.

Theorem 6.10 (Root Space Decomposition) Let o be a root of L. Then
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L, is a one-dimensional vector space over C. Furthermore.

The Killing form is nondegenerate on H. This allows one to construct a
bijection between H and H® as follows. Associate to any 4 € H* the unique

element t; € H which satisfies. for all h € H.

(ts. h} = d(h)

In particular, the notation t, will be reserved for those elements in H which
correspond to roots a. Now define a bilinear form on the dual space H* by
(0.7%) = (ts5.¢t,). with respect to which orthogonality will be understood in
H*. Then (a..3) € Q for any roots a. 3. Furthermore. if S is any set of roots
which are a basis for H*. any root may be written as a linear combination

of roots in S. Thus. restricting scalars to QQ makes H* into an ¢-dimensional

rational Euclidean vector space £. Now one can prove

Proposition 6.11 Suppose « ts a root. If ka s a root. then k =1 or —1.

The reflection w,, of E through the plane orthogonal to o permnutes the roots.

Aa.d)
13.3)

Finally. is an integer for all roots a. 3.
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The Weyl Group of L is the symmetry group of the root set which is
generated by the reflections w,. The last part of Proposition 6.11 motivates

the definition of a new bilinear form on H* by

Fix a basis of E consisting of roots {e;....¢s}.

Definition 6.12 A root o s positive with respect to the basis {e).... .es}

if the first non-zero coefficient a, is positive, writing o« = a\ey + ... + aey.

Definition 6.13 A root s simple if it is positive and cannot be ecpressed as

the sum of two positive roots.
Then a set of simple roots is defined once a basis {e,.... e/} is fixed.

Theorem 6.14 The set of simple roots ts a basis of E. Any positive root
may be written as a Z>q-linear combination of simple roots. If a and 3 are
distinct simple roots. then (a.3) < 0 and a — J 13 not a root. Given any

posite non-simple root . @ stmple root 3 ezists such that a — 3 s positive.

[t will be necessarv in discussing Lie tvpe groups to further refine the
theory, by constructing an integral basis for the simple Lie algebras. For a
root a. define h, = t—z‘ﬂ-— Previous considerations allow one to deduce

a.a}”
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Theorem 6.15 (Chevalley Integral Basis Theorem) Let «)...a be a
set of simple roots (with respect to some basis. as above). Then there are r,

which span the root spaces L, satisfying the follounng for all roots a. 3:
L [hy. r,] = (0. 3)zg:

2. [tn-L-a] = he. and h, may be erpressed as ¢ Z-linear combination of

the h,,:
3. [rq. 23] =0 if a + 3 is not a root: and

4. [fa-L3] = (r + )Loeg tf @+ 3 is a root: r 1s the unique integer for

which 3 — ra s a root and 3 — (r + 1)a s not a root.
With the notation of the above theorem. make the following definition.

Definition 6.16 The Chevallev Basis of L consists of the h, and the r,.

Definition 6.17 The structure constants .V, ; of the simple Lie algebra L

are the coefficients defined by the follounng:

{.L’(,. -f:l] = -Vo..i-ra-t—d

where N, 3 =0 tf a + 3 s not a root.

(S]]
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The values of the structure constants may be computed by using Theorem
6.15.

A complete classification of the simple Lie algebras can be deduced from
Proposition 6.11 and Theorem 6.14. The Cartan matriz gives one concise
way to completely describe the structure of a simple Lie algebra. in the sense
that all products in the Lie algbra may be determined from the matrix. A
Cartan matrix is an £ by ¢ matrix where a,, = (o,.r,). More schematically.
the Dynkin Diagram of a semisimple Lie algebra also completely determines

its structure.

Definition 6.18 The Dynkin Diagram of a semusimple Lie algebra L s a
graph with one verter for each simple root a,. Two vertices o, and «, are
connected unth a,a,, hnes. If the weights (o,. ) end (a,.q,) are not equal.
a symbol < is draum on the lines connecting v, and «,. pointing to the root

with smaller weight.

The Dyvnkin diagram is connected if and only if the Lie algebra is simple:
otherwise L is a direct sum of the simple Lie algebras corresponding to the
connected components of the diagram. The theory that has been developed
severely restricts the possible Dynkin diagrams of simple Lie algebras. From
this. one may deduce the classification theorem of simple Lie algebras. which
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is only summarized:

Theorem 6.19 If L is a finite dimensional compler simple Lie algebra. then:

L. L belongs to one of the four “classical” famuies of Lie algebras. a,. b,.

¢, and D, or

2. L 15 one of the five exceptional Lie algebras g. fy. ¢5. €7, and ¢s.

The subscript always denotes the number of simple roots in the Lie algebra.
and hence nodes in the Dvnkin diagram.
The Lie algebra of primary interest here is g,. which has the Cartan

matrix:

The Dynkin Diagram of g, is



Two other simple Lie algebras will be referred to in the discussion of g..

the family of spectal linear Lie algebras.

Q-

n

and the orthogonal Lie algebra by:

by : o o —>—0

Remark: The Lie group (which will be discussed in the next section) of
a, is the special linear group SL,.{(C). The Lie group of b is the orthogonal
group O7(C) consisting of orthogonal transformations.

From the Dvnkin diagram. a complete diagram of the roots in g, can be

constructed. The essential information for doing this is contained in Propo-

sition 6.11. In particular. for roots a. J3. then (c. 3) € Z. But

(a. 3) (3. )
(3.3) (. )
el 13

t 0_
fﬂ —cos al cosd

(. (I q)

icos> 8
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where # is the angle between a and 3. and since this must be an integer. the
possible values for # are severely restricted. Since the values (. 3) for simple
roots c. 3 are evident from either a Dyvnkin diagram or a Cartan matrix. then
the configuration of the simple roots is easilv determined. Then by reflecting
through planes orthogonal to the simple roots. one can generate the complete
root set. In the case of g,. there are two simple roots of unequal weights.
The short root will be labelled a. and the long root 3. From the Cartan
matrix or the Dynkin diagram. it is seen that (. J)}{3.a) = 3. so from the
above equation. cosf = v/3/2. and § = 57/6. From this information. the

entire root diagram can be constructed.

Ja+23

J a+J 200+ 3 3a + 3

%

g2 : - / ¢
/ \
-3a-3 -2a-J3 —-a —J -3
-3Ja-23

From this diagram. the svmmetry group of the root set may be described.

Proposition 6.20 The Weyl group of g, is the dihedral group Dy of order

12.



To each root r, there corresponds a one-dimensional root subspace L, of

g». and by the Cartan decomposition. one thus has

where the sum is over the twelve roots r,. Thus. since H is 2-dimensional

over C. g, is a 14-dimensional Lie algebra over C.

6.4 Lie Groups

To each Lie algebra is naturally associated its Lie group. a family of automor-
phisms of the Lie algebra. Lie groups may also be characterized intrinsically:
see [War83).

A linear map D from L to L is a derivation if it satisfies the product rule
D(fg) = fD(g) + D(f)g. A derivation D is nilpotent if D" = 0 for some n.

For a nilpotent derivation. exp(D) is well-defined.

Definition 6.21 For a nilpotent dertvation D. its exponential ts defined by

D‘.‘ D.; D-l
+ — e e

exp(D)z:l«:—Da.h—z— Tt

H



[f r € L. then adr is a nilpotent derivation.

Proposition 6.22 If D is a nilpotent derwation of L. then exp(D) s an

automorphism of L.

[n particular. exp(adr,) € AutL. where r, is in the Chevallev basis. For
notational convenience write X,(¢) for exp(ad(tr,)) for each r,. and anv
t € C. Fix a root a: then the group { X(t) : t € C} = Csince X, (t).N(u) =
Xal(t + u).

The Lie groups can now be defined.

Definition 6.23 The Lie Group G associated to the simple Lie Algebra L

is the subgroup of AutL generated by {X,(t)} for all roots a. allt € C.

6.5 Defining Groups of Lie Type

From the Lie groups of simple Lie algebras. Chevallev was able to construct
analogous families of finite groups. the Chevalley Groups. All have trivial
center. and most are simple groups.

Theorem 6.15 establishes that the bracket product of two Chevaliev basis
elements can be expressed as an integral linear combination of basis elements.

Write L7 for the subset of L consisting of Z-linear combinations of elements
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in the Chevalley basis. By Theorem 6.13. Lz is a Lie algebra over Z. Let
K be a finite field. Then A ®z Lz is a vector space over K. If {e,} is the
Chevalley basis for L. then the set {1 @ e,} is a basis for A2 L. Defining a
bracket product by [1@r.12y| = 1 3[r. y| makes A3 L7 into a Lie algebra
over A, which will be denoted Lg.

To define the associated Lie tvpe group. one again considers families of
automorphisms of the Lie algebra Ly arising from adr,. First. it can be
shown that (adr,)™/m! stabilizes Lz. Since adr, is nilpotent. exp(\z,)
acts on Lz @ Z[\] where )\ is an indeterminate. Thus exp(\r,) acts on
Lz 2 Z[\] @ K. and by letting \ — ¢. exp(Ar,) acts on Lg. As in the
complex case. write .X,(¢) for exp(ad(tr,)) for each r, in the Chevallev
basis and for £ € A. One may now define families of centerless finite groups

for each simple Lie algebra.

Definition 6.24 The Chevalley Group of the Lie algebra L over the finite
field K s the group generated by all of the X,(t) for nonzero sumple roots .

and t € K.

Definition 6.25 The group G2(q) s the Chevalley group of the Lie algebra

g2 over the field F,.



6.6 Structure of Lie Type Groups

Let G be a finite group of Lie tvpe. arising from the Lie algebra L. Let A be
a finite feld of characteristic p. Fix a root @. Then X, (f+u) = X, (¢).X, (u).

Hence {X,(t) : t € A’} = K as an additive group.

Definition 6.26 The root subgroup y, of G attached to a is the subgroup

{Xa(t):t€ R},

Root subgroups are abelian since theyv are isomorphic to the additive group
of K. Any Chevalley group is evidently generated by its root subgroups.
For any root r. the subgroup (X (1). X_,(1)) is closely related to SL,(A’)

as follows.

Theorem 6.27 There ts a surjective homomorphism o from SLa(R')} onto

the subgroup (\X,(1), X_.(1)) of G. under which

o = X.()

o — X_(t)
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Define

hn(t} = -\’o(t)'\’—n(—t_l )-\-n(t)-\-n{—' I-)-\’-n(l)‘\.n( -]») (628)

Carrving out the relevant matrix calculation. one observes from the above

theorem that the h,(¢) are the images of the diagonal matrices

0 ¢!

Then hy(tu) = ho(t)ha(u). so Hy = {hq(t) : t € K’} is a homomorphic
image of A™*.
Definition 6.29 The Cartan subgroup H of G is the subgroup of G gener-

ated by all of the H,. for roots a.

The Cartan subgroup is abelian. and normalizes each root subgroup. Define

.V to be the normalizer of H in G.

Theorem 6.30 11" = N/H where W s the Weyl group of the Lie algebra

L.

Define P to be the p-Sylow subgroup of G generated by the v\, for positive
roots a. Using the product relations in. say. Theorem 6.15. one deduces that
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X, (t) — | is nilpotent on the Lie algebra. so that \.(¢) is unipotent. Indeed.

any element of order a p-power in ( is unipotent.

Definition 6.31 The Borel subgroup B of G s HP. for the Cartan sub-

group H. and the p-Sylow subgroup P.

The Borel subgroup B is the normalizer of P in G.

The group G can be decomposed with respect to a Borel subgroup and its
Weyl group. as follows. A Weyl group IV is a Cozeter group: that is. there
is a defining set {w.....wny,} of involutions which generate 11", and the set
of all relations (w, w,)"‘l = 1 defines V", where k,, is the order of w,uw,. The
number m is the Lie rank of GG. Recall Theorem 6.30: for each : fix a lifting
n, to .V of the defining reflections w, of 1¥". The Wevl group acts on the root
set. Define for each w € I}" the subset of the positive roots by ¥ consisting
of all positive roots reflected by w to negative roots. Define P; = [] .. A

rey.

theorem of Bruhat describes the structure of & in terms of B and V.

Theorem 6.32 (Bruhat Decomposition) (. BnN=H

2. G=BNB



3. For any n € N and any 1.

BnBn,B C {BnB)U (Bnn, B)

For any . n,Bn, # B.

-

Oy

For every w € W, fir a lift n,. of w to N. Euch element ¢ € G may
he erpressed in a unique way as a product bn,.p,.. where b e B, w € 11

and p, € Pj.

One can gain considerable information about maximal subgroups of G

from the corresponding Dynkin diagram. First. make the following definition.

Definition 6.33 A parabolic subgroup of G is a proper subgroup of G con-

taining a Borel subgronp.

Let ¥" be a parabolic subgroup of G. Let O = O,(}} be the largest normal

p-subgroup of Y. where p is the characteristic of F. Let ¥ = }/0.

Theorem 6.34

~
I
|
—
vt
-
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where Y, aY for all i. and each Y, is a Chevalley group over some field of

charactenstic p.

The Y, are called Lewi factors of the parabolic subgroup Y. [t is possible to

determine all of the parabolic subgroups of & from its Dynkin diagram.

Theorem 6.35 There 1s a bijection between proper subgraphs of the Dynkin

diagram D and parabolic subgroups Y of G containing a fired Borel subgroup

B.

A parabolic subgroup corresponding to a single node of the Dynkin diagram
is called a minimal parabolic subgroup. Fix a parabolic subgroup Y and its

corresponding subgraph S of D.

Theorem 6.36 There is a bijection between the Lewr factors of Y and the
connected components of S. Each Lewt factor is a Lie type group: its Dynkin

diagram 1s the component of S determined in this drjection.
Minimal parabolic subgroups generate &. Fix a Borel subgroup B.

Theorem 6.37 If the Lie rank of G is at least 2. then G s generated by all

of the munimal parabolic subgroups containing B.

The following theorem will be referred to.
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Theorem 6.38 (Borel-Tits Theorem) If.J is a mazimal p-local subgroup

of G. then .J 15 a parabolic subgroup.

There is the following useful formula. which permits caleulation in a

Chevalley group. Let ~ and ¢ be linearly independent roots.

Theorem 6.39 (Chevalley Commutator Formula)

(X500, Xo(w)] = [ Nevess(Comal =ty )

1.2>0

where the product is taken over all i, j such that 1~ + j0 s a root. and s
taken in order of increasing ¢ + j. The constants C,;,;5 are nonzero integers.

|C.)ré] < 3. and are defined as follows:

Cll‘((i = -\["r.o'.x
Clpd' = -‘[6.7.1

. l
Cang = §-1I~ ch2

Cang = -%-‘[&u.a:z

t

where M. s, = &

NesNeres oo Ne(i—nyres where the N are the structure

constants of L. The list quves all possible values for C,rq by the classification
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theory of stimple Lie algebras.

As has been discussed. anv Chevalley group is generated by its root el-
ements X, (1) for roots r. A theorem of Steinberg establishes that the rela-
tions already described in this chapter are sufficient to give a definition of a

Chevallev group by generators and relations.

Theorem 6.40 (Steinberg’s Theorem) Let R be the root set of a sumple
Lie algebra L. L # a,. and for each r € R and each j € F define u symbol
X.(j). Further define h.(i) as in equation (6.28). Let G denote the group

generated by the X.(j) with the relations

X ()X () = Xt +)

ho(iVhe(j) = heli - j)

and the Chevalley commutator relations with structure constants determined

by L. Then G/Z(G) s somorphic to the Chevalley qroup of L over the field

F.
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6.7 Theory of Finite Simple Groups

By the classification theorem of finite simple groups. completed in 1980. it is

known that virtually everv finite simple group is a Lie type group.

Theorem 6.41 (Classification of Finite Simple Groups) If G s a fi-

nite simple group. then G is one of the followtng:

1. An alternating group Ap:

e

. A group of Lie type:

S

. One of the 26 sporadic groups.

From this classification. manyv theorems about simple groups may be proved

by exhaustive verification. One example of such a theorem is the following:

Theorem 6.42 Every finite simple group has a presentation with ezactly

two generators.

No conceptual proof is known (see [Gor82]). Evidently. in order to find a
rigid triple of conjugacy classes in a given finite group. it is necessary that
G be generated by two elements. In this sense. Theorem 6.42 provides some

justification for the Remark following Theorem 3.17.
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7 Rigidity and Rationality for G,(p)

7.1 The Structure of G(p)

In order to use rigidity and rationality criteria to realize G,(p) as a Galois

group over @Q, it suffices to have information about
L. the conjugacy classes of G(p):
2. the irreducible representations of G»(p) and their characters: and
3. the subgroups of G»(p).

First. the results from the preceding chapter are applied to G2(p) in order
to illuminate its structure.
As the Wevl group of G(p) is the symmetry group of the root diagram

of g». one has

Proposition 7.1 The Weyl group of Ga(p) ts the dihedral group Dg of order

12.

With this. the Bruhat decomposition may be used to determine the order

of Ga(p).
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Proposition 7.2

IGa(p)l = p*(p® - D(p* - 1)

Proof: Bv Theorem 6.32. each element of G.(p) can be expressed uniquely

as the product of an element in B and an element in P, . for a unique w € [}".

v -

Thus.
Galp)l = ) |BI-IP;]
ws v
= Plp-1*)_ IP;]
well’
The orders [P | can be easily computed for each w: one has |P_| = p*"!

where n(w) is the number of positive roots which w maps to negative roots.

Thus.

IGa(p)l = PPlp—1*p° +2p° +2p' +2p" +2p" + 2p+ 1)

P(® - D(p - 1)
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Using the information from section 6.6. one mayv deduce the following
diagram of some of the significant subgroups of Ga(p). Each of the subgroups
is indicated along with its order.

Ga(p) pipt - Dip? -1

1, pP(p* = Np-1)

12(p - 1) AY B Pp—1)°
AN
N/H=W =Dg \ yd \\
(p-1)? H P p°
| |
| !
p—- l HQ ) Yo p
AN /
\
{1} 1

Many of these subgroups can be defined in terms of the generators of

Ga(p). Let & denote the set of positive roots of g,. with & and J3 the short



and long simple roots respectively. Then

H % (hohs) = Cpoy x Cpoy

o
17

(X.(1).r € &7)

o]
e

(X,(1). h.r € B7)

g
174

(X_a. X (1).hpr € ®7)

Y, = (X_g Xo(1).her € &)

Furthermore. the subgroups (x,.x_r) are isomorphic to SLj(F,). and the
group (x,.r € {long roots}) is isomorphic to SL3(F,) as can be seen by the
corresponding embedding in the Lie algebra.

This completes the investigation of the subgroups of G»(p). Here some el-
ementary results about the conjugacy classes of G,(p) are summarized: they
will be proved in section 9. First. the involutions in G»(p) form a single conju-
gacy class. This will be denoted by C,. The unipotent class containing X, (1)
will be denoted C,. and C,y will denote the class containing X,(1).X;(1).
The class C,; is also unipotent. and consists of elements of order p when
p > 3. The elements X,(1) and X,(1).X;(1) are not conjugate. so these

classes are distinct. Below. the characters of G-(p) which are simultaneously

il



nonzero on C,. C, and C,; are tabulated with their values. These are the
only characters which make a nontrivial contribution to the sum in formula
(3.19). which will be used below to establish that these conjugacy classes
form a rigid triple in G,(p). Define d. e so that ¢ = =1. ¢ = p mod 3.
d = 1. d = p mod 4. The following tables are taken from [FF84}: the

notation for the characters has not been changed.



Xid

xi(m)
alm)”

xa(ma)

X6(7s)
Xb(m)"
X1a(m1- Ta)
Xialm1-ma)"
Xip{T1. )
Yib(ﬁl-Wb)'
Xoa{T2. Ta)
Cog{ T2 Ta)"
(2. Th)

Xop(m2. )"

p3+e
51
p-—1

(p®=1}p*-1)
(p+1)-

(p°-bi(p?-1)
(p=1)*

(p?-1)(p®-1)

(p=1)=

(p°-L(p®-1)
{p+1)°

w9 w© h-] [~
' FIJ 1 FO- 1 Fﬁh | Fﬂ
| — = — - - —

]
iﬁ

x b~} 3
lﬁ iﬁ

C. Ca Cas

1 l 1
p+e p+e e
2p + 1 p*+1 l
(p+1)° (p+H2p+1) 1
-p+ 1 (p+L(2p+1) I
p-1*  (p-D2p-1 1
-p-1*  (p-1@2p-1 1
p’ -1 -p-1 -1
- -1 -p-1 -1
p° -1 p-1 -1
-(p" - 1) p-1 -1
(p+2)(p+1) (p+1)? L
-p(p+1) (p+1)7 i
(p+2)(p+1) pP+p+1 L

-plp+ 1) pr+p+l L
~p-p-1) -pP+p-1 -1
plp-1) -pPP+p-1 -~
—(p-2(p-1 -(p-1* -1
plp—1) -(p-1F -1
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Some of these characters occur more than once: their number is indicated

below:

#{\}
wlm) 57— Hp+ 47+ 6d + 8e)
u(m)* L(3p* - 18p + 21 - 6d)

(™) “—8(p2 - 10p + 23 — 6d — 8e)

()’ L(3p* - 6p — 3 + 6d)
Xa(7a) st = 4p+3)
Xa(7a)" W' -1)
Y6() s(p* —4p+3)
Yo(ms)" HIZERY
(1. 7a) Yp -6 -2 —d)
Xla (M1 Ta)" Yp-2+d
X1 ) p—-4-d)
(T )" Hp-2+d)
X2a(72. Ta) Hp—2+d)
XalT2-7a)" Hp—d)
oy (T2 Tp) Hp— 4+ 2 +d)
(72 )" Hp —d)



The sizes of the conjugacy classes will also be required in order to use
(3.19). and are summarized below: centralizers of representative elements

from each class are computed in Section 9. One has

ICl = Pt +p+ 1 —p+ 1)
ICal = P°(P°-1)

ICasl = P'P° =D - 1)

Remark. The class Cuy is called a regqular class of unipotents: that is. it is
the unique conjugacy class of unipotents of largest order in Ga(p). and comes
from the unique class of unipotents in the algebraic group G, of maximal

dimension.

7.2 A Rigid Class Vector

Here a rigid and rational class vector in the finite simple group G1(p). p > 3.
is exhibited. establishing that it occurs as a Galois group over Q. The first

published proof of this result appeared in [FF84|.

Theorem 7.3 The vector v = (C,.C,.Cos) ts a ratwnal class vector for

G.(p) for all primes p > 5.



Proof: The class C, is rational by Proposition 3.10. There are several
ways to prove that the unipotent classes are rational. It is not difficult to
explicitly calculate elements ¢ for which gug=' = ‘. where v = X (1) or

u = X,(1).X3(1). Alternatively. the character table shows that \(C,) € Q

for all irreducible characters . a

Theorem 7.4 The vector v = (C,.C,.Cag) is a ngid class vector for Ga(p)

for all primes p > 5.

Let S, denote the set of triples (g;.¢s.q3) with g, € C, satisfving that
g19293 = 1. The proof will proceed in two steps. First it is established from
the character table that there is one orbit of triples in S, under conjugation
by Ga(p). In proving this result from the character table. one encounters
difficulty presenting the explicit calculation because of its length. One mayv
greatly condense the proof by using estimates for some of the terms that
appear in the character sum. The cost of using these estimates as done
below comes in a restriction of the validitv of the proof to those primes
p > 19. It should be emphasized. however. that this is onlv done for ease
of presentation. and the result indeed holds for all p > 7: see [FFS4|. The

proof that the triples generate G,(p) was first given in [FF84]. and requires



a detailed knowledge of simple group theory. This part of the proof is only
summarized.
1. The number of triples in S, is |Ga(p)|.

Proof: By the character table and formula (3.19). then

Ca)x(Cas)
(1)

o C.
X

It must be shown that |S,|/]G| = L. As |S,|/|G] counts the number of orbits
in S, under conjugation by G. then |S,|/|G| must be an integer. Temporarily.
let .V denote the character sum on the right hand side of the equation above.

Substituting the sizes of the conjugacy classes and |G|.

1Sl _ PP -V -V —pt D o)
Gl PR - D - 1 A
(P +p+ )PP ~-p+1) -

—— A" 1.6

A1) (6}

In order to evaluate V. associate the following functions to the characters

of Ga2{p). To those characters which occur in pairs \ and \". associate the

function

UC) X (Cas)(CH(# ) + C(CH(FEY))]

Ny () == (1)




One observes in the table that \ and " always take on the same value on

the classes C,, and C,j. 50 n - takes on the value

CUCIUCa (OO + CONCas ) (F# )] -
- \(1) ‘

J

Ny (p):

which appears in character sum in .V. For the isolated characters y». 3 and

O I Co bt 5)

11 for which #y = 1. let n,(p) serve as an abbreviation for ST

Hence

N=Y e+ Y np (7.9)
X

(v.x")

It will be seen that the main contribution to .V comes from the trivial char-
acter in the second sum. This will be demonstrated by using estimates to
bound all of the other summands. First the second sum over the isolated

characters is considered. By explicit calculation. one finds

elp+e): (p*=1)(2dp+1)
Y ondp) = 1+ ——+ :
: p+e p* -1

. elp+e)i(p? —e)+(p' = 1}(2dp + 1)

o pP-1

. (2d +e)p® + (4d+ Lpt +pP = (=2d)p> +p-1-¢
Pl

= 1




[n order to bound this in absolute value. observe that it is maximized for
e = d =1 and that the coefficients of p are all less than or equal to five.
Hence the sum of terms of fourth degree and lower can he bounded by p* — 1.

since p > 5. Hence

4
Y np)| < 1+; (7.10)

X

That is. the sum over the isolated characers is 1 + O(1/p). Next considering
the paired characters \. \". one observes immediately for \,(7,) and \,(7)
that the numerator in n, ,. is of degree at most five. while the denominator
is of degree six. Closer inspection indicates that the degree five terms cancel
in the numerator. and one is then able to easilv estimate for these characters
that |ny -] < pi

Now for the remaining pairs of characters. n, ,-. cne finds summands of
equally high degree in the numerator and denominator. However. in each case
the highest degree terms in the numerator cancel. permitting one to deduce
the existence of a constant ¢, for which |n, .| < %. This is already sufficient
to deduce that 0 < .V < 3/2if p is chosen large enough to dominate all of the

¢, ensuring that |5,|/|G| = 1. since this value must be an integer. [n order to



deduce the least p for which the result applies. it is necessaryv to estimate each
of the n, .. This has been done naively below. proceeding with techniques
analogous to those used in (7.10). computing the nonvanishing term of highest
degree in the numerator and bounding the numerator’s rematning terms. One

arrives at the following bounds:

3

[nt’ll"’l ’ < -
[ “w p

°)

Ing v < =
ASTRA ST p

)

Ine, el <7
3

| nx’qb,xf,b' l < -
=T b

)

|n . I'I < -
X4 p
el < -
XX, p

where the labels for the characters have been abbreviated. Hence. substitut-

ing all of these estimates into (7.9). writing M = .V - .

M| < f+i~l—)
p b p

20

< —

P



since by assumption p > 7. In order to use this result. a rough estimate

is required for T := %‘%ﬂ which appears in (7.3). One has T =

if—E'b’-
ppi-p*l S0

pAp -1
I (2Ap+1
< H__;<(p ))
P\ p-1
3
< ].+—,;
P

again using that p > 7. Now. |5,|/|IG| = NT: the above estimates can be

combined as follows:

N< NT <.\a‘(l+i)
p?

20 20 :
l-—< NT <(1+—) (lfi)
p p P

From this. one deduces that. for p > 23
0<NT <2

Since NT =5,|/|G!| is an integer. this forces ¥NT = 1. d
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To prove the result for 7 < p < 19 one can either improve the above
estimates or carry out the explicit calculation of NT. One finds that NT =1
(see [FF84]|. p. 323).

2. Each triple in S, generates Ga(p).

Summary of Proof: The complete proof appears in [FFS8|. but requires
a detailed knowledge of finite group theory. The proof proceeds as follows: let
(g1. g2. g3) € S.. First. one establishes that the group .JJ = (g1. g2. g3) 1s not p-
local. By Theorem 6.38. ./ would then be contained in a parabolic Y. Indeed
J is contained in the subgroup Y’ of Y generated by its p-order elements.
The Levi decomposition allows one to determine the structure of ¥'/0,(").
The image gy of the involution g, in Y'/O,(}") is then determined to be
central of order 2. which forces §,5,7, # L.

Next one shows that .J is not g¢-local for any prime q different from p.
Here information is required about g-subgroups of G»(p) and its subgroups.
One uses this data and an analysis for g even and odd to show that p cannot
divide the order of the normalizer of an elementary abelian ¢g-subgroup of .J.

Once it is known that .J is not a local subgroup. it can be established
that .J is simple. First one shows that a minimal normal subgroup .V of .J

is simple. with trivial centralizer. so that .J C Aut.N. Then the classification



theorv of finite simple groups is invoked in order to enumerate the possible
structures of AutV in order to establish that the index of V in AutV is
either too small to be divisible by p or is a power of 4. Since p divides /|
this forces vV = .J.

Finally. having demonstrated .J is simple. the classification theory of finite
simple groups is again used: one lists each of the finite simple groups and for
each such group S. one identifies a structural feature present in .J and absent
in S or vice versa. forcing S # .JJ. For onlv one S is it impossible to do this.
namely G,(p). |

An immediate corollary of Theorems 7.3 and 7.4. by Theorem 3.17. is

Corollary 7.11 Ga(p) s a Galois group of a reqular extension of Q(t) for

all primes p > 5.

And. by Theorem 3.21.

Corollary 7.12 [fp > 5 is a prime. then Ga(p) s the Galows group of some

normal field ertension of Q.

In fact. the restriction on p may be relaxed. Thompson has shown that
Y. is a rigid and rational triple for G»(3). although there is a slight variation
required in the proof. in part because {Co3] = 25 when p = 5 ([Tho84]).
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G(3) is also known to be a Galois group over Q. Thus. Ga(p) is a Galois

group over Q for all primes p # 2.
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8 Geometric Interpretations

Since it can be established that v, = (C..C,.Cay) is a rigid class vector
in G(p) for all primes p > 5. one might ask whether this triple -lifts”™ to

the group G = G»(Z]

[T
.

%. %]) As in section 3.1. there are homomorphisms
pp : G = Gap) for all p > 5. Since it is possible to prove in a uniform
way for p > 5 that the class vector is rigid. one might hope to find a “global
triple” v in G which reduces mod p to give v, for all p > 5. There are
structural deviations in Ga(p) for p = 2. 3 and 5 that suggest that these
primes need to be inverted. as G,(2) is not simple. G»(3) has a non-trivial
outer automorphism. and in G,(3) elements in the regular unipotent class

C,s have order p* = 25. The first question one might attempt to answer is

the following.
Question 1 For all primes p > 5. does the rigid vector v lifts na p, to «a

rigid triple of conjugacy classes in G?

That is. one asks whether the vector v in G(p) arises from reduction mod p
of a vector in G.
[f the above question has an affirmative answer, then with the rigidity

theorem one can prove from Theorem 7.4 that there are homomorphisms o¢
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for each prime ¢ > 5. and for all n

o : Gy = GAZ /L)

and hence an f-adic representation

Ofx G:(t) d Gl(Z,)

Specializing these homomorphisms at some ¢ = ¢y produces {-adic represen-

tations of Gy, which shall be denoted by v.

vy : Go = GoZy)

These representations arise from the existence of a rigid triple in G»(Z,).

and in fact G»(Z[3. 3. }]). One is led to ask:

Question 2 Do the homomorphisms vy form a strictly compatible system of

f-adic representations’

If the answer to this question is affirmative. it would suggest that the
svstem of representations arises from rediction mod ¢ on some underlving
geometric object (it is conjectured that every strictly compatible svstem of
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¢-adic representations has an underlving geometry in this sense). More pre-

ciselv. one might ask

Question 3 Is there a vartety V" over Q(t) and some 1 £ N such that the
representations vy occur as Jordan-Holder constituents of H (V.. Qr) for

each prime { > 57
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9 On GQ.

In order to answer the questions of the preceding section. a new proof of
rigidity for Ga(p) would be required. as the character table formula does not
provide the information required to lift the triple to G»(Q). Thompson has
reportedly proved rigidity in a different way. with a lengthy calculation using
generators and relations. [t would be ideal to find an elegant proof of rigidity
which relied on the geometric interpretation of G,(p). similar to the proof of
Theorem 4.2 for PSL,(F, ). In the following. data about the conjugacy classes
in the rigid triple from Theorem 7.4 is collected that would likely be used if
such a proof were feasible for G.(p). It is assumed that the interpretation
of G, as the automorphism group of the octonion algebra would be the key
to such a proof. The goal is to identify geometric structures in @, which

characterize the relevant conjugacy classes.

9.1 A Representation of G,

An irreducible seven-dimensional representation p of G,(p} can be described
explicitly. Let e,, denote the T x 7 matrix with a 1 in the (.. J)}** position

and zeros elsewhere. Assume that w = 2 € F,. Then a representation p
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of G»(p) may be described as follows:

pXs(l)

P -\'.‘(I*J( l)

Id+ €33 — €g5

Id + e —es;

P Niges(l) — Id +ey3 - 47
p:X_3(1) — [d+e3 —es
p: X o s(l) = Id+ey—es
p: N ga-ag(l) — Id+ey —e
p:Xo(l) = Id+ey —es; +wep —wes; —e5
p:Xaws(l) = Id+eyr —eys +wep — weg) — g3
P Noaas(l) = Id —es3 +eap — ey + we; — ey
p:X_a(l) = Id—eg +em3 —twey + ey —eas
p:X_ay(l) = Id-em+ess—wey +iwe — e

p: N oa_s(l) — [d+es —esxp+wey —wey —exy

Oune may verifv that these satisfv the Chevalley commutator formula and the

other relations in Theorem 6.40. establishing that the above matrix repre-
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sentation is isomorphic to Ga(p). The above representation was computed

from a Lie algebra representation in [Hum72]. pp. 103-104.

9.2 The Octonions

Possibly the most useful interpretation of G (p) is as the antomorphism group
of the algebra of octonions O (often called Cayley numbers). defined over F,.

Recall that C may be constructed by defining a product on R x R as
follows: (ry..L3) - (y1.y2) = (L — yaIa. Loy + YaLy). The real quaternion
algebra H may be constructed by defining a product on C x C by (r;. ) -
(11, 42) = (21 = JaLa. La; + yory). Continuing this duplication procedure

produces the octonion algebra.

Definition 9.1 The real algebra of octonions is the set H x H unth the

product

(1. Ia2) - (g1 y2) = (L — JaLa. Loy + yaly)

Defined in this way. O is a non-associative eight-dimensional division
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algebra over R A natural basis for the octonion algebra is the set

{(1.0).(2.0). (. 0). (k.0). (0. 1).€0.2). (0. ). (0. k) }

where {1.:. .k} is a basis for H. The center Z(Q) of @ is the one-dimensional
subspace spanned by (1.0).
As in H. there is an analogue of complex conjugation. Let (a.b) € O.

Then define conjugation in Q as follows:

(a.b) = (a. -b)

One defines the trace and norm on the octonions as follows:

The seven-dimensional space orthogonal to Z(Q) then consists of those octo-
nions with trace 0. The trace and norm are related bv the following formula.

which may be proved directly from the definitions:

2 —Tr(r)c+N(r) =9 (9.2)
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The bilinear form 3 of .V is given by J(z.y) = %(.ry + yT) = Tr(ry).

Let O, denote the algebra of octonions. defined over the finite field F,.
The theory becomes more complicated in this situation due to the presence of
isotropic vectors. i.e. nonzero vectors v of norm 0. One observes from (9.2)
that an isotropic ¢ in the trace zero component of the octonions satisfies
v = 0. While O is a division algebra. @, is not. as any isotropic is a
nontrivial zero divisor. However. Q) is still alternative. that is. arbitrary

elements r.y in Q) satisfy

r(ry) =1’y and (ry)y =ry°.

Theorem 9.3 Let p > 5. The group of alyebra automorphisms of Qp ts

isomorphic to Ga(p).

Indeed. in ((Hum72|. p. 103) a correspondence is produced between the
seven-cdimensional representation described in section 9.1 and the action of

G2(p) on the seven-dimensional complement of Z(Q),).
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9.3 The Automorphisms of Q,

By an automorphism of @, it will be meant an algebra antomorphism. First.
one may observe that any automorphism of @, will preserve the bilinear form
on the octonions. and from this deduce that the octonion automorphisms act
orthogonally and preserve length. Hence G,(p) may be embedded in SO-(F, ).
One may give a verv precise description of an octonion automorphism. but

first it will be useful to record the following combinatorial resuit.

Proposition 9.4 There are p*(p* +p+ 1)(p* — p+ 1) quaternion subalyebras

of Q.

To count the number of quaternion subalgebras of ©,. first the number n of
orthogonal unit bases for quaternion subalgebras are counted. and second.
the number ¢ of orthogonal unit bases of a fixed quaternion subalgebra are
counted. There are then n/¢ quaternion subalgebras. Note first that two
orthogonal unit vectors e; and e, in V7 uniquely determine a quaternion
subalgebra of ©,. since (l.e;.ez. ¢y - €2) is an orthogonal unit basis for a
quaternion subalgebra of Q. Thus. e; may be chosen to be any unit vector

in 1. and e, any unit vector in 15 := ey C 1%, Hence.

[
n = >(#{units in {7}) - (F{units in 15})
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Similarly. ¢ ts computed by carrving out the analogous calculation in an
ambient four-dimensional space. Thus. letting |, be an :-dimensional F,-

vector space.
f = 3(#{umts in V1}) - (#{units in 13})

These values mayv be computed relatively easily using Jacobi sums (an explicit

formula for any dimension and any F, is given in ([IR82]. p. 102)): one has

n = (p°+ep’)p’ - ep?)

€ = (p°+e)p—e)

where e = £1. e = pmod 4. Thus

50,3 1 3 _
nfi = p’(p’ +e)(p’ —e)
p(p+e)(p—e)
p'(p* + 1)(p* - 1)
(p+{p-1)

= plp'-p+ L)(p'=p+ 1)

[
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Now. one has the following description of an automorphism of the octo-

nions.

Proposition 9.5 Fir a quaternion subalyebra H, of Q, and a unut vector
orthogonal to H,. An algebra automorphism o of the octonions is completely
described by specifinng the automorphism o induces on Hy: the quaternion
subalgebra o(H,): and o(e). which must be a unit vector orthogonal to o(H, ).
Furthermore. any o specified in this way may be ertended to an alyebra au-

tomorphism of Q.

First. let H, have basis (1.:. . k). Then since e is orthogonal to H,. a basis
for O, is given by (1.:. j.k.e.ei.ej.ek). Thus. specifving o on {1.¢. ). k. ¢}
determines o completely. Conversely. one may compute the number of maps
o that one might specify in this way. One has p*(p* +p+1)(p* —p+1) choices
for the image of H, by Proposition 9.4. One has p(p* — 1) automorphisms of
H,. And a Jacobi sum calculation indicates that there are p(p* — 1) possible
unit images of e in the four-dimensional orthogonal complement of o(H,}.

Hence

pHp* +p+0(p* —p+Dp(p* - p(p — 1) =p°(p° - 1)(p* - 1)



different ¢ may be specified in this way. As this is precisely the order of
Ga(p) = AutQ,. every g specified in this way must be an automorphism of

0,. o

9.4 The Involutions
Using Proposition 9.3. it is possible to prove the following proposition.
Proposition 9.6 All wnvolutions are conjugate in Ga(p).

Consider the image ¢ of an involution in the seven-dimensional representation
of G,(p). Since the representation is embedded in SO:(F,). the determinant
of « must be . Since the determinant is the product of the eigenvalues of «.
the —1 eigenspace must have dimension 2. 4 or 6. Thus ¢ has at least two
—1 eigenvectors ¢ and ;. Then (l.:.j.k = ij) span a quaternion subalgebra
of @,. Now «(k) = ¢(t}e(j) = ¢j = k so kis a +1 eigenvector for c. Choose
an orthogonal eigenvector e so that e:. ek and ej complete a basis for Q,. If
e 1s assumed to be a —1 eigenvector. then e: is a +1 eigenvector. so the —1
eigenspace cannot be 6-dimensional. If e is assumed to be a +1 eigenvector.
then e: and ej are both —1 eigenvectors. This forces the —1 eigenspace to
have dimension 4. and the trace of : must be -1 in the seven-dimensional
representation of G,(p). In addition. doing a case analyvsis for the possible
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eigenvalues of ¢ and j. the +1 eigenspace can be seen to form a quaternion
subalgebra of @,. The -1 eigenspace is the orthogonal complement of the +1
space. 50 1 is determined by its +1 eigenspace. Let 177 be the +1 eigenspace

of «. Then for any g € G, the +1 eigenspace of gig™t is g(177). since

9tg ™ (g(V)) = gu(V7) = g(V7) {9.7)

Hence in order to show that all involutions are conjugate in G,(p) it now
suffices to show that G,(p) acts transitively on the quaternion subalgebras
of @,. But this follows immediately from Proposition 9.5. a

As the proof above indicates, there is a one-to-one correspondence be-

tween quaternion subalgebras of @, and involutions in G,(p).

Proposition 9.8 There are p*(p* + p + 1)(p* — p + 1) involutions in Ga(p).

Proof: The number of quaternion subalgebras of 0, was determined in
Proposition 9.4 to be p*(p? + p + 1)(p® — p + 1). and they are in bijective
correspondence with the involutions in Go(p). 0

Some involutions may easily be described explicitly. Consider the map /
on O, which sends (a.b) — (a. —b). Then ¢ is an involutory automorphism

of @,. and all of the above may be easily verified for .
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The centralizer of an involution can be described. [ndeed. any g € Cy; (1)
must act orthogonally on the —1 eigenspace 177, Hence C;(1) — SO(F,).

As the order of C; (1) is equal to that of SO(F,). the groups are isomorphic.

9.5 The class C,

The class C, consists of unipotent transformations. and one is therefore able
to associate a flag to an element U of C, by considering kernels of successive
powers of .V = " — 1. Since .V is nilpotent. ker .V* C ker V*~!. One thus has

a flag

Fu: 0

ker V—ker V2 —— - —ker V"' — 1 = ker V'

where V" =0and V""! £ 0. I[f v € ker V. then V(v) = 0 and ({"-1)(r) = 0.
so U'(r) = v. Conversely. if {(¢) = » then v € ker V. Hence ker .V is
the largest subspace of 1” which is fixed pointwise by {". Similarly. the
elements of ker V? are preciselv those w for which U'(«) = n + w for some
n € ker.V: kernels of higher powers of .V may be similarly reinterpreted
with respect to . The unipotent gl'g~'. g € G. has associated flag g(Fr-):
this is verified by a calculation virtually identical to (9.7). The dimensions
appearing in the flag of a unipotent are thus invariant under conjugation. For

the unipotents in G,(p). these dimensions may be computed for the action of

98



Ga(p) on the seven-dimensional subspace of @, orthogonal to Z{Q,). From
the representation in Section 9.1 the results mayv be readily deduced. One
finds for X,(1) that the nontrivial dimensions appearing in the flag are 3 and

6: that is. the flag associated to an element in C, is

0 124 s 135

using subscripts to denote the dimensions of the vector spaces in the flag.
The centralizer of X,(1) may be described. By the Chevalley commu-
tator formula. one determines that the root elements which commute with
Xall) are {Na(t). X3a+3(t). X_3. Xjas3. X_30-23}. The elements Xiqeny
and X _3,-23 generate a group of order p(p* - 1) isomorphic to SL,(F,).
while one of these roots with the remaining three will generate the p-Svlow
subgroup in the centralizer. of order p'. The centralizer itself has order

pip? — 1).

9.6 The regular class of unipotents
One may also compute the flag associated to elements in C,;: one finds the
flag to be

l 1 | 2 13 12 15 s i

again using subscripts to denote dimension.
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The centralizer of a regular unipotent can be explicitly described. Fixing
the element 7 = X, (1).\3(1). one has that (7) C C;{7). Further. by the
Chevallevy commutator formula it follows that Xj,.025(1) commutes with hoth
Xa(l) and X (1) and hence with 0. As ' # \jq423tl) for any .. one has
that C(0) = (0. X3a-25(1)) and has order p*.

This concludes the description of the conjugacy classes in the rigid class

vector .
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10 Conclusion

The group Ga(p) is the Galois group of a regular extension of Q(#) for all
odd primes p > 5. By the Hilbert [rreducibility Theorem. Gy(p) is thus a
Galois group over Q. This was established by exhibiting a rigid and ratio-

nal triple of conjugacy classes in Go{(p). It is asked whether these triples

Jr—
) )

arise from reduction mod p of a triple in G»(Z{: |). Further. it is asked

!
L3

53
Lol

if the /-adic representations of Gy associated with this rigid triple form a
compatible system of representations. If these questions could be answered
affirmatively. one would expect there to he some geometrical object attached
to these representations. For the purpose of investigating these questions.
the published proof of rigidity is not satisfactory. [t would thus be of interest
to have a different proof of rigidity for Ga(p) which incorporated geometric
information about the action of Ga(p) on various structures in the octonions.
As a step in this direction. characterizations of the conjugacy classes in the

rigid triple for G.(p) were provided in terms of the geometry of O,.
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