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Abstract

The [nverse Problenl of Ga.lois Theory is discussed. [n a :.;pecific fornl. the

problem asks whether every finite group occurs as a Galois group over Q.

.-\n intrinsically group theoretic property called rigidity is describecl which

confirms that rnany sinlple groups are Galois groups over tQ. Cnnnections

between rigidity and geornetry are described and applications of rigidity a.re

provided. [n particular. after describing sorne of the theory of groups of

Lie type. the rigidity criterion is applied to the exceptional Lie type groups

G2 (p), for primes p > 5. \Vith the confirmation of a rationality condition.

this establishes that G2 (p) oceurs as a Galois group over Q for all p > 5.

Furthermore. the conjugaey classes whieh arise in the proof of rigirlity for

G2 (p) are explored in detail. in the hope that a new proof might be produced

which would illuminate the geometry associated to this rigid situation.
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Résumé

Le problènle inverse de la théorie de galois est traité. Dans une fornllllatiun

particulière. le problènle est de déterminer si tons lps groupfls finis se réalisent

cornnle groupes de galois sur Q. L" ne caractéristique intrinst'C[lle aux groupes.

appelée rigidité. est décrite. qui implique pour plusieurs groupes sinlpl('s

quïls sont des groupes de galois sur Q. Des connections entre la rigidité et la

géonletrie sont décrites. et des applications de la méthode de la rigidité sont

présentées. En particulier. ayant décrit la théorie des groupes de Lie sur les

corps finis. le critère de rigidité est appliqué à la famille des groupes de Lie

exceptioneL G2(p). pour les nombres premiers p > 5. Avec la confirmation

(rUne condition de rationalité. il est établi que C',!(p) se réalise comme ~roupe

de galois sur Q pour tout nombre premier p > 5. De plus. les classes de

conjugaison qui se présentent dans la preuve de rigidité pour G2(p) sont

explorés en détail. dans respoir 'lU'une preuve nouvelle puisse ètre produite

qui illuminerait ra'ipect géometriqlle de cette situation rigide.
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1 Introduction

The Galois Theory describl1s a natural wa.y to associate a ~roup to a normal

field pxtension of Q. spedfically. t he group of autonlorphisnls of thp pxtpnsion

field fixing Q. It i5 not yet known whethpr this procedure nlay hp "in\'Prtf'd":

Conjecture 1 (Inverse Galois Problem) Everg jinite gT01Lp i.o; the Ca.lms

group of ..wrne no'nnal exienszon of Q.

The problenl i5 often generalized to allaw base fields other than Q. Ind(lpd.

studying the analogue of Conjecture Lover the fields C(t). Q(t) and Q(t) will

be seen to be very important in studying the Inverse Galois Problenl over Q.

1.1 History

The Inverse Galois Problem was proposed by Hilbert (1892), who denlOn­

strated that Sn and An are Galois groups over Q for aIl TL The first genflral

approach to the problem was propospd hy E, ~oether, who estahlished a

criterian which wauld ensure a group G \\ëlS Galois o\'er Q (l9 l8), namely

if its field of invariants is rational (see [5er921, pp xiii-xi\'). Tht" criterion

is difficult to verify. and it was not until L969 that a group Wa.."i found (by

Swan). the ryclic group C'17 of arder .tï. which did not satisfy this rationality

9
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condition. .-\s C47 is abelian. it i5 easily shawn to he a Galois group O\'er Q.

Later work hy Lenstra pro\'ided an explicit criterion to rstablish ratiunality

for ahelian groups. which i5 nat met by nlany known Galois groups of sfnall

orcier. so another approach i5 probably required.

L"sing different techniques. by inductively solving tht' rph~\'allt emilf'dding

probleols. Scholz and Reichart realized every finite nilpotpnt group a.."i a Ga­

lois group aver Q (1937). Their ideas were extended by Shafarevich. who

established that every finite solvable group i5 a Galois group over Q (195.I).

This result does not guarantee that G occurs as a Galois group in a regular

extension of Q(t). however.

1.2 Strategy

In the late 1970s. there \Vere t\Va important developments related to the

Inverse Galois Problem. First. the classification of finite simple groups \Vas

completed. establishing that every finite simple group is an alternating group.

a. Lie type gronp. or one of 26 sporadic groups. .-\t the sanle tinle. a. ne\\"

technique. the rigidity method. for realizing finite groups ,L'" Galois groups was

developed (attributed variously to Fried. Belyi. ~[atzat and Thompson 1. The

technique proved especially successful at realizing simple groups as Galois

10
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groups. either over Q or over an abelian extension of Q. Taken together.

these devplopments in the theory suggest the followillp; strategy. first nlade

explicit by Thornpson. for resolving the Inverse Galois Problplll O\'pr Q:

.-\) Dt.\nlOtlstrate that every nnite simple group occurs as tlw Galois group of

sorne extension of Q;

B) For an arbitrary finite group. solve the relevant "pmbedding prublems" .

gi"en that its sinlple composition factors occur regularly as Galois groups:

that is. construct a Galois extension of Q with Galuis group G a.ssunling

that step A has been soIved (see Theorem 2.10).

~either of the steps has been completed. Little will be said here about

the enlbedding problems in B): for details see [~[~[g5I. Cuncerning step A).

the rigidity method has successfully realized aH but one of the 26 sporadic

siInple groups as Galois groups over Q however. the rigidity nlethod is only

known to realize the finite simple Lie type groups defined o\"er !Fq when q is

a small power of a prime p. Indeed. not a single Lie type ~rOl1p is known

to be realized by the rigidity method as a Galois group o\"er IQ when Cf is

a faurth power of p or higher. Thus there has been considerable research

inta modifying and extending the rigidity method. \\ith sorne success. See

Il
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[~1~195) and [VoI96} for more details.
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2 Preliminaries

2.1 Galois Theory

If F is a fipld extension of I{. Aut( F/ [{} denotes thp group l)f field autoruor­

phisms of F which fix A:.

Definition 2.1 :l field exten.')lon FII\· is said to be Galois if FAut(F/K) =[{.

Then Aut( F/ K) 18 called the Galois group of the field pxteno;ion.

Theorem 2.2 (Galois Correspondence) Let FI K he li Galol.r; extensIon

of fields witll Galoi:; group G. The assignment H -t FFf !]tues a bijective cor·

respondence between subgroup.,; H of G andinteTïTlediate fields K C L c F.

where FH is the ,o;ubfield of F fixed by H. The invp.r.se .,ends L to Gal( FI L).

Under this bliection. normal subgroups .V<lG correspond to Galois exien.'Hon.'i

LI K. and Gal(L/[{) ::: G j.V.

For number fields F and I{ with rings of integers OF and CJ1\. the Galois

group G = Gal( FI [() acts transitively on the set of prînle ideals 91 in OF

lying o\'cr a fixed prinle p in {)1\. Fix a prime V O\'er p. The tlecompo.'iztiorl

group Dp at ~ is the subgroup ofG consisting of ail (J E G such that fT( ~) = v.

Let t == OF / ~ and Ë\ == ()l\ / p. Then t 1Ï\ is a Galois extension. Let

13
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ë = Gal(F / [~). There is a natural homonlorphîsnl Q,-, : Dr,) --+ è. dpfirwd ~o

- -
that for any f E OF- d(f) =op(d)(f). The kprnpl of of"J is eallpd the lTLf'rtul

group [~ at ~_ and is trivial if and only if V is unranliti(ld.

Let l{ (t) denote the function tiflld in an incletflnninatt' t.

Definition 2.3 A. Galoù; extension F of /{(t) 15 :ilud to be rflgular If /\. nF =

n.

Definition 2.4 Let n be algebraically clO.'if~ll. k a ..mbfidd of [\- _ and L a

jinite Galois exten.51o-n of h·(t). of ciegree. n. The extenswn Lln(t) 1.5 .';(lui to

he defined over k if there i.s a regular GalOlS extensIOn f of k( t) of degTf~e Tl.

such that €cL.

This is illustrated below_

L

// ""
/ "',f h-(t)
'-"

"

n '-'....

k(t}

ft will be of partîcular interpst to kno\\" when a field pxtpnsion LjQ(t) lS

defined o\'er Q.

l-l
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2.2 Representation Theory

Let \" he a. finite dimensional veetor spaee O\'er a fidd F. Lpt CL( \") (il1[lotf'

the group of F-linear veetor space automorphisms of \-.

Definition 2.5 .-t representation p of CL group G ouer th~ jiPld F l.>; il gnJ/Lp

horrwmorphl..-;ln from G to GL(\").

Csually F will he taken ta be C. and in this easp the representation may be

ealled cornple:r. If F = f p ! the representation will be called modular. The

dimension of \' is called the degree of the representation. The representation

p is said to be iTTedu.cible if the only p( Cl-invariant propf'r subspace of \' is

the trivial subspaee.

Definition 2.6 The charaeter X of a romplex repre.'ientatiorL pi..; the func­

tion fro'm G to C gwen by \(9) = Tr(p(g)).

Henee \(g) is the SUffi of the eigenvallies of p(g). Sinee Tr(rzb) = Tr(ba).

characters are class funetions on G. that is. if g and h are conjugate in G.

then \.(g) = \(h). Suppose C is a finite group. Then.

Proposition 2.7 The numbe'r of iTTedunble (~omplex representation--<; of G is

equal to the nu.mber of conjugacy clas.îe.î ln G.

l5



•

•

Since p(g) E GL(\") is of fillite arder. its eigenvalues are roots of unit~" and

Proposition 2.8 \ (g) belony.c; to l[/lnl for aU 9 lTL (;. wh~re Tl l.'i the PIpO·

Tu'nt of G. ln paTttcular. \ (9) i.s an tllgebralc tnteger.

In partirular. if \: (9) is rational. then \(9) belongs to l.

2.3 Group Theory

The following definition and theorern are proviùed to illuruinatp the connec­

tion between steps :\ and B in Thompson's strateg)". as described in the

Introduction.

Definition 2.9 A composition series of a group G l.'i a .'if'Tles

G = Go [> G l r> ... [> Gn = {l}

of "mhgrolLps of C wherE each CI l,r; a maximal normal subqroup ln G:- l ·

From the definition. the composil'ion factors Gr-llGr are sirnple.

Theorem 2.10 (Jordan-Hôlder Decomposition Theorem) .-lny two com­

position "ene.') of a finlte group G have the ..;ume TllLnlbeT of factors. The

16
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uTwnlered set.') of composition factors are identical in the two .'Wr1.p..'i (up tu

l.'iorrl,orphi.'tTn ).

Definition 2.11 Tht> normalizer ln G of a ..rubgro'Up H. rifTLotfd ~(;{ fI). L.O;

the .·mbgroup of G consisling of aIL eleTnent.5 g E G fol' w/urh 9Hg -1 ç H.

In other words. ~G(H). is the largest subgroup of G in which H is normal.

Lt1t p denote a prime number.

Definition 2.12 .4 subgroup of G is called ~local lf lt lS the rlOnnalizer of

a .'mbgroup of arder pr for sorne l' ~ 1.

Definition 2.13 ...1. subgro'Up of G i.'5 called local l[ il 1.<; p-Iocal for ..;orne

pnTne p.

[f G is a finite group and ii a set of primes. then O,.(G) denotes the largest

normal subgroup of G \Vith order divisible by a subset of the prinles in li.

Thu5. Op( G) is the largest normal ~subgrollp of G.

Definition 2.14 An involution i.5 an eifment 9 E G of order 2.

2.4 Topology

Let C and T he topological spaces. Suppose there is a continuons sl1rjecti\'e

map p : C -1' T. such that any t E T has a neighbonrhood C snch that

17
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p- L(U) consists of disjoint open sets. each mapped by p honleorIlorphically

onto C. Then C is callt?d a couering space of T and p is eaUed Cl. rUI.'(Tlnq

map. :\ 'L1üversal couenng "pace of T is a l'overing spac:e of T which is sirnply

connected. rf T is path connected. locally path eonnt'ctrd. and locally sirllpl~'

connected then T ha..; a universal covering space.

Definition 2.15 Let C he Cl covering space oIT W1th cOlJenng map p. ..l (lf:'ck

transformation of C 1.') a homeomorphism d: C ~ C .-;atzsfY'lng P Q ri =p.

The set of deck transformations of any covering space farm a group under

composition. Deck transformations are important in the study of fundanlen­

tal groups because of the following:

Theorem 2.16 If T has a un:versal couenng .5pace C. then the fundClTnental

group ofT at any pmnt P 1.5 isomorphlC to the group of deck transfonnation,-;

of C·.

If p : C ~ T is a covering map. and t E T. then the set p-l(t) is caUrd

the fibre of p at t. The isomorphism of the aho\'e theorerll is pron~d hy

identifying the natural action of the group of drck transfonnations on p -l (t)

with the action of 7i(T.t) on p-l(t) which sends. for a homotopy class "'" a

n.'\:ed p-l(t) ta the endpoint of the path p-l( ..... ) with starting point p-l(t) .

18
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The covering p is called a. Calo'v; couering if C is conneeted and for every

t E T the group of deck transfornla.tions of C acts transitively on the fibrfl

of pat t. The degTf'.e of the eovering is Tl = Ip-l(t)1 at any t E T. and this is

equal to the arder of the deck transfornlation group. lf ri. is finite. p is ca.llf'ei

a. finlte Galois covering.

2.5 Function Fields

Definition 2.17 A. function field l{ of dimension n nuer tL field F lS a jidd

extenswn of F of transcendence degree n. where n 2:: 1.

.-\ valuation is a function Il : K -+ Z U IX satisfying dI) = x if and only if

r = 0: r:(r + y) 2:: min(L'{r). dy)): and L'(XY) = dI) + l!(Y), The ual'lutWTl

ring R of t' is the subset consisting of aH r E l{ such that t'( r) 2:: O. For

any nonzero l E K. then .r E R or x- L E R. The ring R is a local ring:

the ualuation ideal [ of R is the unique maxinlal ideal of R. The ideal [

consists of aH non-invprtihle elenlents in R. that is. aH elernents r E R for

which e(r) > O. The quotient RII is called the resid1Lp. jidd of ".

Let t he an indeternlÎnate. Then C( t) is a function field of dirnension L

over C. The valuation ideals of t:alllations on C(t) are in bijection \\"ith the

elements of C. the Riemann sphere. For example. the points O. i. and x in

19
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t correspond. respectively. to the valuation Ideals (t). (t - 1). and (ljt) in

the valuation rings C(t)it) = {f = :~:i 1 q(O) # O}. CUlft-l) = {f = :~:; 1

q(l) -# O}. and C(t)(~1 = {f = :~~i 1 deg(p(t)) ~ deg(q(t))}.

The field of rational runetions on a cun'p with irredlleible defining t~qlla-

tian f(x. y) = 0 over F is a one-dinlensional function fipld. since it is the

field of fractions of F[x. .'111f(x. y}. Convcrsely. if I{ is a orlP-dinlensional

function field over F of characteristie zero then I{ i5 algebraic and separahle

over F(x). where .x E h- i5 transCf)ndental over F. and is thus generated by

a single (primitive) clement y over F(x). which corresponds naturally to a.

curve o'-er F.

2.6 Profinite Groups

Suppose given a family of groups {CnE,}' indexed by a partially ordered

directed set Land whenever l ::; j a homomorphism fll : C) ~ CI" the fll

conlpatible in the sense that flt 0 fkj = fkzo and fn is the identity.

Definition 2.18 The in\'erse linlit. linl C n of the fa'mil!] {Crt } IL'ith the ho-

rnorT&orphisms fll is the .ïubgro'up of IT Gn consisting of eirment.ï (gn )nEI.
n~f

gn E Gn. who.5e component., .o;ati.'ify III (9)) = gr whene'lJer i ~ J .

20
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:\ group is called projirute if it i5 isomorphic to an in\'erse lilnit of finite

groups. .-\n inlportant example is the p-adic integer.'1, denott'd Lp- which

are defined for puch prinle p to be Iim Zlpnz. with the canonical systPIIl of

honlomorphisnls. The field of p-adic nunlbers. Q". is thf' quotient field of

lp. The profintte conlpletion of a group G is the in\'erse limit of aIl finitf'

quotients of G.

Profinite groups arise naturally in Galois theory. For exanlple. for Go =

Gal(Q/Q).

GQ ~ lim GQ/H-
where the inverse limit is taken over aU Galois groups H = Gal(Q/ [{) for aIl

finite Galois extensions K /Q \\;th K c Q.

~[ore generally. fix a finite set S of points on the Rienlann sphere è.

Ta each point P of S there corresponds a valuation ideal in C(t). the ideal

which is zero at P. Denote the set of these ideals by S. Denote by .\[5 the

maxinlal extension of cr t) unranlified outsidf' S . .\[5 is the union of ail finite

extensions .V/C(t) which are unramified outside S.

Definition 2.19 The algebraic fundamental group of è\s is dejined ta bp.

21
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Gal( -lls/C(t)).

The algebraic fundanlental group is naturally profinitp: it is tlw iIl\ï'rSp

limit of the Galois groups of aIl finite Galois extensions of C( t) unramitü'd

outside S. The relationship between the algebraic and tupolugical fllnda-

mental groups is disctlssed in section :3. t.

Let Gç he the Galois group of Q/Q. Let (n = e:!1tl.' Il for aH n. There is a

natural homonlorphism from Go onto i)(. the group of nnits of the profinite

completion il of Z. This is defined below by conlbinin~ thp homonlorphisnls

Definition 2~20 The cyclotomie character c l.'i the hornonwrphism from Ge

to Hm (l/nZ):< = i x where c(f1) = (On(Û))L<n<x'
0.....- -

22
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3 Inverse Galois Theory

3.1 The Inverse Galois Problem Over ([(t)

Fix il set S of r distinct valuation ideals 91 ..... Pr in C( t). Denote thp

corresponding subspt of è by S. and the correspondin~ points hy Pl'" .. Pr

(as in spction 2.6). Fix a base point P in è different fronl p\'ery Pz. Let "",

clenote a homotopy class of loaps based at P encircling tllP point ~ (anci no

other Pl)' Fix a labelling of the points sa that they are arran~pd consecutivply

dockwise around P. Then the relation "'11 • "'!2 ••••• ~{r = l is imnIediate.

Hllnvitz showed that this is the only essential relation in the fundamental

group ri of (:\5. b~ed at P. That is.

- - (A,.... ..., l "J • "/. • ", - 1)
.1 - . (. :'l .... ·'r '1 12 •.. r-

Let Cs he the algebraic fundamental group of ê\S (Dpfinition 2.19). .-\

profinite \'ersion of the Rienlann Existence Theorpm rplatps the al~ehraic

and topolo~ical fundamental groups. Let:r he the profinitP complption of

the topological fundamentaI group ;r.

Theorem 3.1 (Riemann Existence Theorem) The a[yebruw fUTulll1TU~l1-
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tal grou.p Gsand..r Clre i.'iomorphic. Thus.

G ....... (~~ ~ "'. - - - 1)r s = ·L' ::! ~ . . . • 1r· 'L' ,:,!..... ,r - .

Furtherowre. therc lS Cl canonical ~'mbetldiT1g of thp lopo[oqù:al !IlUdlL1ILf'rtla[

group LI! the algebralc fundamental group Ilnder lJJhu-h tht-' hOTTwtopy da..;,·w.'i

~{l generating ir are mapped respecti1.'ely to yenerators r t of c;s a." il projinLtf'

group.

The proof relies on the identification of the topological fundamental group of

ê\s and the group of deck transformations of the universal co\'ering spa('(l

of è\S (Theorem 2.16). By using this identification. one can show that

the finite quotients of the topological fundamental ~roup correspond isonlur-

phically to Galois groups of finite extensions of C(t) in .\Is - The profinitp

completion of the topological fundamental group is thus isomorphic to the

algebraic fundamental group. by the comments following Definition 2.19. See

[~1~[951. pp. -1-6 for full details.

The canonical embedding introduced in Theorem 3.1 allows one to dp-

scribe the inertia ~roups in Cs. as in the following theorem of .-\bhyankar.

Theorem 3.2 The image.., Ir of the re.5pective homotopy classe.') ""t u.nder the

2-1
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canonical injectzon /rom ii :nto Cs generate procyclicinertia groups (.rI) at

valuation ideaIs in .\/s ubO'ue Pl-

For a proof see [~(~[951. p. 6.

Theorem 3.3 Evenj jinzte group is the Galo·i,.; group of .·wrne field exteTL.'HUTl

of C(t).

Proof: For any finite group C which may be generated by r - l elentents

91 ..... gr -1. define a homomorphism (J) from Cs onto C by

gl i ~ r - l
o(xl ) = (3..t)

(gl •.•.. gr_d- 1 i = r

Denote by F the fixed field of KerlD. a nornlal subgroup of Cs. By Theorem

2.2. FjC(t) has Galois group isomorphic to

GslKera> ~ G

Hence the In\"(~rse Galois Prohlem is solved over C( t ).

o
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3.2 From C(t) to Q(t)

Knowing the Inverse Galois Probleru to be solved over C(t). onp may prowa

that any extension L/C( t) is defined over Cl finitely generated extension L)f

Q and thus over Q by a specialization argument. Typically one pro('('pcis a.s

over C(t). by fixing a set S of \·a.luation ideals in Q(t). and exarnining the

maximal extension '\[s of Q(t) unrarnified outside S. There are several ways

ta complete this. by using Hilberfs Irrpducibility Theorenl as in (\'01961 or

\\'eil descent as in [~L\[951. Indeed. the proof may be extpnded to solve the

Inverse Galois Problem for any function field over an algebraically closed field

of characteristic zero. In particular. the Inverse Galois Problem is soh'ed over

Q(t). Grothendieck formulated the analogue of Thcorern :3.2 in this dpscpnt.

demonstrating that the generators of the algebraic fundamental group of

J[s/Q(t) generate procyclic inertia groups at valuation ideaIs above the VI E

S. For details. see [~'[~[951. pp. 9-12.

3.3 The Rigidity lVlethod: From Q( t) to Q(t)

Before presenting the basic rigidity theorenl. a series of [emmas is required.

Henceforth. 5 will denote a set of r points in it'r(Q) invariant as a set under

G~. Then S will denote the corresponding set of \'aluation ideals in Q(t) .
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and .\Is the nlaximal extension of Q(t) unramified outside S. The group

Cs == Gal(Jls/Q(t)) is profinite. with presentation

:\5 before. one hopes to produce a homomorphism 0 from rs == Gal( .\[s /Q( t))

onto G. Then F :== .\[;ero is a Galois extension of Q(t) with Galois group

C. and there is the following situation:

.\[

~
\ "'-
\ F

rs GS\\ le
Q(t)

/

~Q
Q(t)

The notation of the diagram will be used throu~hout. Restating Grothendieck's

analogue of Theorem 3.2. described at the end of Section :3.2.

Lemma 3.5 Each generator Il of Cs generate.o; IL procyc/ic Lnertl:L yrolLp

(X1 )- al a valuation ideal in .\[s above VI E S.

Furthermore. Cs <l rs and Cc i5 a complenlent of Cs. sa rs is a semidi-

[pet product of GO and Cs. and Co acts on Cs- This action tS not fulh-
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undprstuod. but llsing Lemnla :3.5. the conjugat:y cla~ses of the Il can be

described. Since S is invariant as a set under Co.. thp VI E Sare pernultf'd

by (j E G~. so fT may be viewed as a. permutation of the indices {1. 2..... r}

(sinrt' l ~ ! ~ r ). Let (j he a lift of sorne (j E Galt Q(t) IQ(f)) to rs.

- . C(O'}Lernma 3.6 ln CS. (.L'I)11 l.'i conJugate to II1(t)' whrrp. C lS tht~ cyclotoTTur

charrzcter.

See p..D,l95]. pp. 1-1-15.

3.3.1 Rationality

Definition 3.7 A conj'ugacy class C in a jinde group C is called rational zl

for f'very irreducible character '( olC. '((Cl E Q.

By Proposition 2.8. C is rational if and only if '( (C) E Z for aU \. Let n he

the exponent of G.

Lemma 3.8 A clas.') C is rational if and only ifCO == C whrnF. L'PT ( o. n) == 1.

Proof: Let (j E Gal(Q(/Ln }/Q). and let p be an irreducible representation of

G. with character \. p : G -+ GLr(C). There is a natural action of fT on the

irnage of p by Proposition 2.8. Then (j 0 p is an irreducible representation of
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G. and since Tr(aop(g)) =aoTr(p(g)). the character of aop is 170 \. Thus.

(li nZ)': ~ Gal(Q(J1n )jQ) acts on the set of irreducible charaeters of G.

Let n E (II n'l)(. Then the map 9 -+ gO deffnes il group-action nf

(Ill nZ)' on the set G. [f (o:. n) = 1. denote byan the eletnent ufGahQ{Jln }/lQ)

for which a('t((I1) = (~ for every primitive nth root of unity ('1' Then

(3.9)

[f for aIl irrpdllcihle chararters Xl '((Cl E Q! then f1a 0 X(C) = ,tC). so hy

equation (3.9). X(C) = '((CO) for aIl '(. But then C = en by thf' orthogo­

nality relations for characters. Conversely. if C = Co whenevpr (n. n) = 1.

then by equation (3.9).

a Q 0 \(C) = '((CO)

= X(C)

sa \ (C) is fixed by acr for ail 0 and thus \ (C) E Q. o

•

Henre. if the class C is rational. then for any 9 in C. any generator of the

cyclic group (g) is aIso in C.

By Lemma 3.8. one has the following.
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Proposition 3.10 Any fonjugacy das.'; of involutions z.... ratwnal.

3.3.2 Rigidity

For a dass V('ctor L' = (Cl' C2• ••.• Cr) of conjugacy dasst's uf a finitp ~r()tLp

G. define ~lJ to he thp set of r-tuples (gl. g..! • •••• gr) sach that

1. f1& E Cl for ail l;

'_J. ( \ GgL·g2~··· . grr = ,;

3. 9 l 92 ... gr = 1.

Definition 3.11 A upctor u of conjugacy classes is called rigid zfl~1J1 = 'Gl.

G acts on ~,! by componentwise conjugation.

Lemma 3.12 If Z( C) = {l}. then the action of G on ~,. Z.'t free.

Praof: Suppose for sonte !J E Gand (91.' ... gr) E ~t. that Y9lY - t = !il for

aIlla Theo y would cornnlute with a set of generators for Gand hencp wouhl

be in Z(G). which is assllnled trivial.

From this lemnla. thp following equivalent fornullation of rigidity follows

irnrnediately:
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Lemma 3.13 AS.'oj'u'Tne ~t. lS noneTnpt:tj. If Z(G) = {l}. then L' i.o; a. nYld

vector of conjugacy classes if and oniy if the action of G on ~u is tTfLn,';itnw.

Ddine H C Horn(GS, G) so tbat 0 E H if and only if

Lois surjective: and

2. tD(x t ) E Cl for each i.

The following lemma is a special case of the Hun'ritz classification. in (~[~[!)51.

Lemma 3.14 There i.o; Cl bIjection bp.tween the sets H and ~L"

Proof: For rD E H. define an r-tuple (gb'" .gr) by Y. = O(Ir ) for each l.

Then since 0 E H. 91 E Cr for each i: since 0 is surjective. (y1 ..... gr) = G.

and since Il',. -'.Lr = 1. then gl'" ,-gr = 1. 50 (y1., ... gr) E ~,., Conversely.

given (Yh .... gr) E ~t:. define a hornomorphism fi) E Hom(Gs.G) by O(I r ) =

gi for ail i. Since the spt of gl generate G. 0 is surjective. and by rlefinition

O(Xr) E Cr for aIl i. Hence 0 is in H,

Define a G-action on H as follows, For 9 E G. t· E fI, I E Gs.

•
!J' t,:'(r) = gC(X)g-l (3,15)
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\\ïth this definition. then by the bijection between H and ~l' abo\'e. one has

Lemma 3.16 ~l' and H a.rp.. iso'morpfàc CL.'; G-.'iet..,.

The oHlin result of this section ran no\\" he statpd and provrd.

Theorem 3.1 i (Basic Rigidity Thearem) Let G b~ CL jinlle group. with

trivial center. If there ensts II class uector (Cl' .... Cr) of conjugacy ela.lise..;

of G which LS rigid and rational. then G lS the Calm..; !Jro-up of il reglllar

extension of Q( t) .

Remark: \\"hile the Rigidity Theorenl is proved here for any r-vector of

conjugacy classes. in practice the theorem is \'irtually always applied with

r = 3.

The notation of this section will be used in the proof.

Praaf: Choose S 50 that each point Pl E S is invariant under G Q. By

Theorem 2.2. Gs is a normal subgroup of rs. so there is the exact sequence
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Let t' E Hom( Gs. C). and let .r E Gs. Define ars-action on Horn(Gs. G)

a..<; follows. For -~ Ers.

Extend the G-action in (3.15) to Honl(Gs.G) so that !J . t:(r) = gl'(r)g-l

for a.Il t' E Honl(Cs. C). Then the C and rs-actions commute: that is

(g'e)'~i =9'(1,;'---')'

By Lemma 3.16. 'iince ~v is stable under the action of G. then H is

stable under the action of G. By Lemmas 3.12 and :3.13. G acts freely and

transitively on H.

Since the set 5 has been chosen 50 that it is fixed elementwise by Gr;..

then. using the notation of Lemma 3.6. PO'(I) = Vr' Thus. by Lemnla 3.6.

conjugation by 'Y Ers sends a generator Il to a conjugate of a puwer of

Ia- But the conjugacy classes Cl are assumed rational. so it folloW5 from the

equivalent definition of rationality in Lemma :3.8 that l' .•,(i t ) E Ct. Thus.

t· . -. E H. and H is also stable under the action of r s.

The homomorphisms t: E Hom( Gs. C) which are snrjective will define

Galois extensions .\[;en~: of Q( t) with Galois group G. Since any honlo-

33



•

•

morphism in H defines a. Galois extension of Q(t) with Galuis p;roup G. to

conlpletp the proof it will suffice to show that any t' E H may be pxtended

to a hornomorphism 0 fronl r s to C. Let y Ers. l' E fI . .\s will he pro\"pd.

the following defines a hamomorphisnl 0 froIn rs to C; which pxtends v:

fD( y) . t' = t1! • Y

That i5. it will be shawn that there is a unique clement o(y) in G such that

for aIl .r E Cs,

and o(r) = li:(X) for aIl x E Cs. H is fixed by the action uf r$. SO l" Y E H.

Since G acts transitively on H. then œ(y) exists. and since G aets freely on

H. cr>(y) is uniquely determined. If x E Gs, then for aB g E Gs

so o(r)· t· = l'(x) 'l' and o(x) = t:(x) for any l E Cs since G acts freely a.nd

transiti\·ply. Thus 0 extends ~. and ail of the dainlS have been established.

o
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The theorem has many generalizations. The condition that the center he

trivial. adequate for applications to siulple groups. Lan he relaxed to allow for

groups whose center has a conlplenlent. The rationality condition Lan also

he relaxpd: spe [\'0196]. [Ser92]. p.[~[95]. If one is intprestpd only in rpalizing

G as a. Galois group aver the maxinlal abelian extflnsion Q'lb of Q. then the

rationality criterion can be dispensed with. That is.

Theorem 3.18 If there is a ngld uedor of conj1lgacy classe.li of G. then G

is a Galois group ove; If.1b .

Rigid class vectors have been found in most of the sinlple groups of Lie

type. but in very few cases are these vectors rational: hence most simple

groups of Lie type are known to occur as Galois groups over Q"b. but very

fe\\" are known to occur over Q. Twenty-four of the twenty-six sporadic simple

groups are known to be realized as Galois groups over Q hy rigidity. The

two exceptions. the '\Iathieu groups '\[23 and '\[2-' both contain ril?;id (but

not rational) triples of conjugacy classes. Csing different techniquE's. it was

established by ~[atzat that '\[2,1 is a Galois gronp over Q. lpa\'in~ .\f.!3 as the

only rerllaining sporadic group nat known to be a Galois group over Q. The

most conlpr{'hensive account of known results may be round in [~I~[9.j] .
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3.4 Verifying Rigidity and Rationality

In practice one typically chooses r = =3. so that one is working with il triplp

of cOlljugacy classes. The following approach is orten uSt'(1 to \'erify that sueh

a triple is rigid:

1. Compute the nurnber n of solutions (Il, I~. I:d of rl.L;!I3 = 1. with

.rr E CI' For this there is a formula.. the validity of which is pro\'pd

below:

(3.19)

2. Determine how many of these triples (Il, I2. I3) generate G, Ta do this,

it is usually necessary ta have information about nUl.xirnal subgrollps

orc,

Proof of (3.19):

Fix an irreducible n~presentationp of G. By Schur's Lemma. the central-

izer of the image of Il is the set of scalar matrices. Thus,

•
l ~ _[

-CI L p(Œga ) = ,\,Id
1 , 1
. J'::G

36
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for each 9 E G. as the left sicle commutes with p(h) for aH h E G. Let \

he the character of p. Considerinp; the trace of the left sicle. one finds that

\ - 'dg) "(1)' h l' . fIl.. q - \(TI' Slnc~ \ 15 t e ( 1menSlOtl 0 ( .

:"Ia\\". taking the product of (3.20) with the correspondin~sides of equil.tion

(3.20) but \Vith g replaced by 92 E G allows one to inductively extend this

formula to an arbitraf}" nunlber r of group elements. One abtains

By computing traces and then multiplying by '«(I)lGlr-l one has

Let ~ be the characteristic function of l in G 50 that <I>( 1) = l and (~(g) =

o for aIl 9 i= l. The orthogonality relations for characters confirnl that

<P = :bt L, \ (l) \. where the sunl ranges over aH characters '( of irreducîbl{\

representations of G. ~ow summing the above equation over aIl irredllcible

3ï
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characters \ of G.

By thp definition of (~. the left sicle of this f1quation ~in\s tiH' nllmbpr of

conjugacy class of 91' :"iow. the equation also counts the nllnlber of solutin[ls

n to the equation t l ••. t,. = l for t r E Ct up to centralizers of the elpments

gr' That is.

which may be rewritten by using ICc;(gl)\

equation (3.19).

3.5 From Q(t) to Q

'(;1 .••.= ic,: and taklng r = .1 to ~l\"e

•

If ri~idity criteria ensure that G is a Galois ~rot1p ot'er Q(t). the Hilbert

Irreducibility Theorem guarantees that the extension of Q(t) with Galois

group G can he specialized in infinitply many ways ta gi\-e an extension of Q

with Galois group G. ~[ore precisply.
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Theorem 3.21 (Hilbert Irreducibility Theorem) Let l{/Q(t) he fl reg-

ular finite Gczlo'is extension. urith Calo'v; group G. and with minlmai poly-

rwrrual f( t. .r) E Q[tHI]. Then for tnfillztely many fil E Q. the pO/YTloTTluli

f(to . .r) E Q[.r] t.' the mlTlimal polynomial of a Calot.,; tJ.rtf:'nSLOn of IQ lelth

Caloù; group G.

The proof is somewhat technical. and is only sumnHlrized. It is equivalpnt

ta prove that earh irreducible polynomial f(t . .r) in Q[tJ[rj has infinitply nlany

specializations f(to . .r) over Q which are irreducible in Q{.r]. Indepd. onp, rnay

prove this for any finite set {f,(t . .r)} ofpolynomials in Q{tl[.rl, as in ([\'01961.

pp. 10-18). One caBs a 5ubset S of the natural numbers spar..,e if for sorne

r.O < r < 1. and almost aB natural numbers n. ISn {l. ... . n}1 ~ nr
•

From the definition. one sees that a finite union of sparse sets is also sparse.

~ow one shows that thcre is an integer :; for which the sets 8(/1'.';) := {n E

N 1 /&(.-; + ~. q) = 0 for sorne q E Q} are aIl sparse. using cornplex analytic

techniques ([\'01961. pp. 16-18). Then S := US(!l'''') is Cl finite union of
t

sparse sets. and is therefore sparse. The complement C of 5 in N is the set of

natural numners Tl for which aIl of the fI (s + ~ . .r) are irreducibLe over Q. As

C is the complement of a sparse set. C is infinite. pstablishing the theorem.
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4 Applications of Rigidity

4.1 The Symmetric Group

For those finite groups with a.n uncomplicated geonwtrit' interprctatiun. or

for which generators and relations are easily ulanipulattld. then" are oftpn

elegant proofs of rigidity (not requiring the formula (:3.19) or uther elaboratp

calculations). .\s one exaruple. a rig;id triple is exhibitf'd in thf' group Sn'

Recall that elements are conjugate in Sn if and only if they have sinlilar

disjoint cycle decornpositions. Let Cl denote the conjugaey class of l-cycles.

Proof: Let (L. Q. (ta) -() Eu. Relabelling as necessary. Ipt n = (1 2 ... n-1).

Then tCt E en if and only if l = (j n) for sorne j i= n. Sînce it is wpll known

that Sn is generated by (ln) and (12 ... n), ta prove rigidity it will suffice to

show that (ln) and Un) are conjugate by an element in the eentralizer of Ct.

It is pa.."iily verified that

J

j + 1

... n - 1 )

2j - 1 ... ) - l

•
is stIch an element (where the bot tom raw is considered nludnlo rz). n

-to
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Elegant proofs of rigidity can sometimes be found for tlw dassieal finitp

matrix groups by interprptin~ thenl as groups of transfornlatio[ls of il \'p('tor

space. As one example. the group P5L.,!(lFp ) has [nan~; rigid triplps. one uf

\vhich is described in the following theorem. \Vhen fJ > 2. there are two

distinct conjt1~a.cy dasses of unipotents (that is. consisting of elf'nlents of

arder p) in PSLAlFp ). Let C~l) denote the conjugacy dass cuntainin~ the

c1ass in PSL2(lFp ) of (~ :) (the other unipotent cOlljugacy dru;s contains

an identical clement but with a non-square in the upper ri~ht-ha.nd corner).

Theorem 4.2 There 1." a rigid triple L' = (C~1) • Co,!. C:d of unipotent da.sse:;

in G = PSL!(Fp ) for ail prime.., p f; 2.

Proof: A triple (al, a2~ a:d of unipotent elements will be produccpd snch

that Il al = 1 and (al) = G. unique up to conjugation. Lift ((l.) ta SL2 (lFp )

and write ((i.) for the resuIting triple. Since PSL2 (IFp ) ~ SLAlFp )/ ± 1. then

Ilà. = ±l. ~ow cL, has. up ta multiplication by scalars. a llniqup ei~pnw\ctor

L" with eigennl.lue 1. Sinee al and fl2 are. by assunlptian. nonrommuting

unipotents. àl and U2 cannat simultaneously stabilize the one-dinlensional

space spanned by l.'l ~ 50 1:2 must he linearly independent froHI l'l. Thns.

-l1
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(Vt. L':!) defines a ba"is for the two-dimensional spare on which SL!( IFp ) acts.

\\"riting al and à,,! with respf'ct to this basis. using the fart that the rnatrin1s

have deternlinant l.

Scale Ul by x. 50 that (lI = (l 1). and now \vrite a2 = (l 0) (i.e.

o l y l

let y = :x). Now. since ata,,! = ±àï l
. one finds

__I_~(l+!J 1)
(11 - ~

!J l

.-\S à1 has 1 as its only eigenvalue. the trace of à:l"l is 2. The above equation

thus forces y = 0 or !J = ---1. depending on the sign of the right-hand sicle.

It is inlpossible that !J = O. as this would force à2 to he the identity. Thus.

!J = --1 (here it is required that p :j: 2) and the triple is unique np to

conjugation. It is wpll known that these elements generate G. and t' is thus

•
a rigid class vector for PSL2 (IFp ).

--12

o



•

•

5 Global Rigidity

5.. 1 The Geometry of a Rigid Class Vector

It was established in Thfloreol (-1.2) that L' = (C~II. C:!_ Cd is a. rh;id da.."is

vector in PSL:!(p) for a.Il primes p > 2. It i5 natural to cansider the group

G = PSL2 (ZOJ). There are homomorphisms Pp : G -+ PSL2 (p) for aIl

p > 2_ given by reduction mod p. Since the class veetor is rigid for ail p > 2­

one expects this information ta be encaded in the structure of the ·'global"

group G. It i5 first nece5sary ta refarmulate the definition of rigidity in an

appropriatp way. sa that it applies ta finite and infinite groups. as fo11o\\'s.

CalI a class vector v = (Cl' C2 ! C:s) in a (possibly infinite) group ngld if there

is exactly one orbit of triples (91- 92. g:d E L' under conjugatian by G. where

the triples satisfy the conditions 9l E Cl- 919293 = L. and (9t) = G.

Ta refine these ideas and indicate sorne geometrical connections. a fpw

definitions are required. Let f be a prime. An f-adic repre"H~ntati()nof Gc

is a continuous hornonlorphisnl P : GQ ~ CLn ('GL). for sonlP n. For a place

v unrarnified with respect ta p. define Pv.p(T) := det(Id - Frv.pT) where T is

an indeterrninate and Frv.p is the conjugacy class of p(Frob,L') for any place

u' o\-er v .

-13
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Suppose there are f-adic representations ~', of Go for ail but finitely many

prinleS f.

Definition 5.1 The .îy:;tP.TTl of repreBentcztwn" {L'f} &.0; ft strictly conipatible

systenl of representations if there exist."i a fixed jinûe .îet S of pnTTLe•., ..,lI.C!z

that:

1. l't is trnra"ufied out.'ride Su f for ail P:

2. PII.Pt (T) ha.., rational coefficients If v ~ Su €: and

The class vector v in PSL.!(IFp ) fruni Theorem -1.2 arises naturally when

considering a particular family of ellîptic curvps over Q(t):

E(t): y2 == .r(.r - L)(.r - t)

The action of GC(tl on the ~division points. which form a two-dimensional

module. gi\'es modular representations pp(t) for aIl p > 2. The pp(t) arp.

so-called Frey repre.5entations. The image of the restriction pp( t) !c- is
Q(tl

contained in SL2 (lFp ). Let pp( t) he the projectÏ\'ization of this restriction.

50 that pp( t) has image in PSLl(iFp ). Then pp(t) is ramified only at O.

-l-t
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and x. and generators of the corresponding three inertia groups are nUlPPf'd

rf'spectivply to fllPIuents in the three conjugacy dass~s in c. [n this spnse. the

ri~id triple t' is associated ta the elliptic euryp. E(t). St'l' [Dar98j for furtlwr

details.

One might ask if this situation occurs rnore generally when one h~ a ri~id

triple in the rational (or S-integral) points of an algebraic group. That is.

one asks whethflr class vecrors which are rigirl for alnlost aIl primes p arisp

from sorne geornetric object. One would expect to he able to ask this question

quite generally among the finite groups of Lie type. for two reasons. First. by

definition the finite Lie type groups are equipped with a paranletrization over

the finite fields IFp for aU (or almost aU) primes p. Second. they are aU simple

or nearly simple groups. and amoog simple groups one finds an abundance

of rigid triples of coojugacy classes. For this reasoo. it is worthwhile defining

the Lie type groups and developing sorne of their stnlcture. This is done in

the next section. [n particular the Lie type group G~(p) will he explorpd.

Because uf the possibility of describing G2(p) geometrically. one expects to

he able ta prove rigidity for this group in a way that woulel be convenient for

addressing the questions of this section. )'Iuch of the rernainder of this paper

is devoted ta collecting the infonnation that woulrl probably be necessary if
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a proof of thp type envisioned is indeed possible.
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6 Lie Type Groups

6.1 Overview

The finite groups of Lie type are dosely related ta the sinlplp Lie algehra..."i

and their associated Lie groups. First. SOUle of the classification theory of

Lie algebra.s i5 described. From the complex Lie algebra 92 and its Lie ~rot1p

G'l a dass of finite sinlple groups may he produced. Indeed. for ail fi = p,.. p

prime. a finite group G'!,(q) will be defined. sinlple except when q = 2.

6.2 Lie Theory

Definition 6.1 :l bracket product is a binary bilinear prodllct on fl uector

."pace \: ,r;atisfying the following fOT ail .r . .li. : E \ P:

1. [I. .rl = 0

2. (Jacobîs ldp.ntity) [.c. [y.:1] + [y. [:. .rl] + [.:. [.c. y]] =0

Definition 6.2 :l Lie algebra i.'i rl finite dimensional vector .'ipfl('f· oupr Il

field. endowed with a bracket product.

For what follows. the field of scalars will be taken ta be C. [n the follow­

Ingo let L be an arbitraI}' Lie algebra. L i5 said to he abelian if (r.!ll = 0 for
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aH .r and y in L. Lt.'t L l he the unique mëLxinlal ideal of L such that LI L! i~

abelian. Define Lm inductively for rn > l by Lm = [L. Lm-lI. L is ntipotflnt

if Lm = 0 for sonle 111. The nornializer in L of il sub Lil) alg;ebra 5 is t hp Sf't

of aH .r E L slLrh that [I.5] C S.

Definition 6.3 ..1 Cartan subalgebra 11. of a Lze algphra L t.') (L Tulpotntt

subalgebra of L satisfYlng .\h (11.) =1l .

.-\ssociate ta .I E L the linear transformation ad.r of L given by multipli­

cation by r: that is. ad.r( f) = [.c. el for aIl l E L.

Definition 6.4 The adjoint representation i..., the representation of L tletzng

on itself where .r ~ ad.r for ail .I E L.

Definition 6.5 The Killing Forni is the bilinear IOTin (.c. y) on L g1.ven b.'l

( .I. y) =Tr(ad.r 0 ad.l/)

Definition 6.6 .-t Llf~ aigebra L is sernisinlple LI il.") Killing fonn l.'; nOlllfF.-

generate.

In a semisinlple Lie algebra a Cartan subalgebra is a maximal abplian ~11h­

algebra 1l satisfying that adh is diagonalizable for aH h E H.
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Definition 6.7 .-l Lie algebra L Li simple if dim L > 1 and L contarT1.'; llO

lWTL-tnv'ial ideal.l).

.-\ny semisirnple Lie algebra is a direct SUffi of simple Lip algebras..-\s shaH he

described. the simple Lie algebras can be conlpletely dassified. Henceforth.

L shaH denote a simple Lie algebra (although most of wha.t is described is

true for semisimple Lie algehras as weil). L has a Cartan subalgebra H.. and

the dinu~nsion eof 1l O\'er C is independent of the choice of 1/. and is called

the rank of L.

6.3 Classification of Simple Lie Aigebras

The dual space 1l- of'1-I. is the set of linear fnnetions from 1l to C. For each

Cl E te, rnake the following definition.

Definition 6.8 The root spaee La IS the set {x EL: [ho ri = o( h).r for ail h E

Ji}.

Lo is nontrivial for only finitely many 0:, and Lo = 11..

Definition 6.9 Ct E 1/.- i."1 a root of L if fi =1= 0 and L~ l."1 nontnV1cli.

Theorem 6.10 (Root Space Decomposition) Let Q he (1 root of L. Thpn
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Lo is il one-dimen,'nonal lJector .';pllce o'Uer C. Furthe171LOr~.

The Killing form is nondegenerate on Ji. This allows one tu ('on~trurt a

bijection between 11. and 'H: as follows..-\ssociate ta any ,5 E 1-1: the unique

element t,; E 11. which satisfies. for ail h E 11..

(tJ. h) =â(h)

In particular. the notation tQ will be reserved for those elements in 1-l which

correspond ta roots o. ~ow define a bilinear fornl on the dual space Je by

(J. "y) = (t6. t~). with respect to which orthogonality will be understood in

1e. Then (n. J) E Q for any roots o. 3. Furthermore. if 5 is any set of roots

which are a basis for 1-t:. any root may be written as a ({}linear combination

of roots in S. Thus. restricting scalars to Q makes 1i: inta an t-dirnensional

rational Euclidean \'cctor space E. ~ow one can prO\'e

Proposition 6.11 Suppose Q lB a root. If kQ i.'i a rooi. then k = l or -1.

The reflection lCf} of E throllgh the plane orthogonal to 0: pennute:; the roOt.5,

F" LI· 2(0.3)· . fi Il . 3zna Jl. f 3.3) lS an znteger or a root.') O. ,
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The ~Veyl Gro'up of L is the symmetry group of the root set which is

generated by the reflections 'L'n. The last part of Proposition 6. LLmotivatf's

the definition of a new bilinear farm on Je by

.)(.~ .. )
(
_) - u. f

0."1 =--
, ("f. Î )

Fix a basis of E consisting of roots {eb'" pd·

Definition 6.12 :1 root fi lS positive with respect ta the basl.'; {el" ... El}

if the first non-zero coefficient al is positive~ wnting n = alel i- ... + (l,el.

Definition 6.13 .-\ root IS simple if it i.s positive and cannat be expres.-;ed a.';

the sum of two positive roots.

Then a set of simple roots is defined once a basis {E 1•••• el} is fixed.

Theorem 6.14 The set of simple roots is a basis of E. Any po.sitzve root

may be written a.s a Z~o-linear combination of !fl"mple root.';. If 0: and 3 arp.

d'i.stlnct simple root.5. then (o. J) ::: 0 and 0 - j v; nol a root. Given any

positIve non-simple root Q. a siT1lple root 3 en:;ts !w.ch t!Lat (}: - .3 Z.î positive.

It will be necessary in discussing Lie type ~roups to further refinE' the

theory. by constructing an integral basis for the simple Lie algebras. For a

root Q. define ho = (2t?). PreYlous considerations allow one ta dedllce
0:.0
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Theorem 6.15 (Chevalley Integral Basis Theorem) Ld ni." 0, be a

set of .'ilmple roots (lL"Zth re.ïpect to 80·me basts. as abo ve). Thf'Tt therp arp. .l'(}

which spart the root spCJ.CP.S L~ ,-;atisfying the followùtg for ail root...; n. j:

2. [.ro . .r _~I = ho. and ho may be expressed as CL l-linp.fJ.T cornbination of

the h~l:

.1. [.ra. XlI =0 if 0 + J lS not a root: and

4. [xa • l JI = (r + 1)xQ+J 1.f a + J is a root: r l." the untque lTLteger for

which .3 - ra is a root and 3 - (r + 1)0 i.5 not a root.

\\ïth the notation of the above theorem. make the fol1owing definition.

Definition 6.16 The Chevalley Basis of L con.';l.5tB of the ha, and the xa .

Definition 6.17 The structure constants .Vo .J of the simple Lze algebra L

are the coefficients defined by the following:

where .Ya .J =0 lf Ct + J i.o; not a root.
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The values of the structure constants may be conlputed by usin~ Theorem

6.15.

.\ coruplete classification of the simple Lie algebras can bEl df'ciuced fronl

Proposition fi. Lland Theorenl fi.l·t The Cartan TTlfLt11.X ~i\"es OIlP concise

way to completely describe the structure of a sinlple Lie al~ebra. in the sensp

that aIl products in the Lie algbra may he determined from the rnatrix. .\

Cartan rnatrix is an t by ematrix where al] = (Qlo Ct]). ~[orf' schematicallyo

the DynJ.:ln D'wgram of a semisimple Lie algebra also completely cleternlÎnes

its structure.

Definition 6.18 The Dynkin Diagram of a sem,..,imple Lie algebra L lS a

graph lllith one vertex for each sirnple root QI' Two uertices QI and n] are

connected w1th al]a)t fines. If the weights (Ol~ Qt) and (or 0)) are not equal.

a syrnboL < i.., dru'wn on the Lines connecting Qt and G). point1ng to the root

with srrwller weight.

The Dynkin dia~ram is connected if and only if the Lie algebra. is siulple:

otherwise L is il direct SUffi of the simple Lie algebras corr(lspondin~ to the

connected conlponents of the diagram. The theory that ha.s becn deyeIüped

severely restriets thp possible Dynkin diagrams of simple Lie algebra..'i. From

this. one may deduce the classification theorenl of simple Lie algebraso which
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is only sunlmarized:

Theorem 6.19 If L l.'; a finite dirnen...rio11al cOTnplex ,'.lmple LU! fllgp.nra .. thf'll:

1. L belong,...; to one of the four ··dll.'iSZrar /aTTulif' ..; of Lœ fllyebrCl...;. Cln • brl •

2. L is one of the ]ive pxceptional Lie algebra..; g·.!o fa 0 tt) 0 t-;- 0 and e~.

The subscript always denotes the number of sinlple roots in the Lie algehrao

and hence noeies in the Dynkin diagrarn.

The Lie algebra of primaf)° interest here 15 92 .. which has the Cartan

matrix:

( .) -1)
-3 2

The Dynkin Diagram of 92 is

•

92 : 0=<=0



•
Two other silnple Lie algebras will he referred to in the discussion of 92.

the fanlily of special linear Lie algpbras.

0.,1 :

Tl

0--0--···--0--0

and the orthogonal Lie algebra b:J:

b3 : 0--0->-0

Remark: The Lie group (which wiU be discussed in the next section) of

On is the speciallinear group SLn... dC). The Lie group of b1 is the orthogonal

group Oj(C) consisting of orthogonal transformations.

From the Dynkin diagram. a complete diagram of the roots in 92 can be

construçted. The essential information for doing this is contained in Propo-

sition 6.11. In partîcular. for roots Q. 3. then (o. J) E Z. But

•

(n. 3)(3. a)
(0.3) (J.o)
-{----

(J.J}(n.o)

!oi IJi
= -l-l- cos0- cos 0

j31 IQI



•
where f) is the angle between Q and 3. and sinCt~ this must be an integrr. thp

possible values for (:J arp severely restricted. Since the "alues (n. 3) for simple

roots o. j are evident from either a Dynkin diagranl or a Cartan nlatrix. thpn

the configuration of the sinlple roots is rasily dpternlined. Then hy rf'tlecting

through planes orthogonal to the simplfl roots. one can generate the complete

root set. In the case of g~. there are two sinlple roots of uneql1al wpights.

The short root wiU be labelled Q. and the long root J. fronl the Cartan

matrix or the Dynkin diagram. it is seen that (o. J}{3. 0) = :3. so from the

above equation. cos f} = 13/2. and f} = 5ii/6. From this infornlation. the

entire root diagram can he constnlcted.

3

-3

•

-:30 - 2.1
From this diagrarn. the syrnmetry group of the foot set nlay he dpseribp(l.

Proposition 6.20 The ~Veyl group of g~ is the dihedral group Dt) of onler

12.
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To each root r. there corresponds a one-clirnensional root subspace Lr of

g2. and by thp Cartan deconlposition. one thus has

12

g2 =H.œ L [r,
1::::1

\,rhere the sum is over the twelve roots rt. Thus. since H. is 2-dirnensional

over C. 92 is a l-l-dimensional Lie algebra aver C.

6.4 Lie Groups

Ta each Lie algebra is naturally associated its Lie group. a farnily of automor-

phisms of the Lie algebra. Lie groups may also be characterized intrinsically:

see [\Var83].

A linear map D from L to L is a derivatzon if it satisfies the product rule

D(fg) = fD(g) + D(f)g. .\ derivation D is nilpotent if Dn =0 for sorne TL

For a nilpotent derivation. exp( D) is well-defined.

Definition 6.21 For a nilpotent derivution D. lt." exponential 15 definetl hy

D"l DJ Dol
exp(D) = 1+ D + T + -.-, + -, ..._ .3. -1.
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lf .r E L. then aclx is a nilpotent derivation.

Proposition 6.22 If Di,,; iL nilpotent tienvutwn of L. thfn flXp( D) l.-; (lTl

lLutomorphisrn of L.

[n particular. exp (ad.L·(} ) E AutL. where .fa is in the Chf'\'alley hasis. For

notational convenience write '\0 (t) for exp(ad(txf})) for each If}' and any

t E C. Fix a root 0: then the group {.\a(t) : t E C} ~ C since .\(}(t).\a(ll) =

'\Q(t + u).

The Lie groups can now be defined.

Definition 6.23 The Lie Group G aS.'jociuted to the ,-;zmple Lif Algebra L

is the sllbgro'Up of .-\utL generrlted by {.\Q(t)} for aU roots o. nll tEe.

6.5 Defining Groups of Lie Type

From the Lie groups of simple Lie algebras. Chevalley was able to construct

analogons fanülies of finite groups. the Chevalley Group:;. AlI have trivial

center. and mast are sinlple groups.

Theorem 6.15 establishes that the bracket product of two Chevalley basis

plements l'an be expressed as an integral linear combination of ba.."is clements.

\\"rite Lz for the subset of L consisting of Z-linear combinations of elenlents
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in the Chevalley basis. By Theorenl 6.15. Lz is Cl. Lie algebra o\'er l. LN

K be a finite field, Then l\ 0z Lz is a \'pctor space over !\. If {l"I} is the

Chevalley basis for L. then the set {1 ,3 r f } is a basis for h· ,2) [2. Dptining il

bracket product hy [1 13.c. 11:2) yI = L·~ [.c. yI makes !\..2) Lz into a Lie algpbra

over 1\. which will be denoted Ll{ .

To define the associated Lie type group. one again considers fanlilies of

automorphisrns of the Lie algebra Lr: arising fronl ad.ro ' First. it can he

shawn that (ad.cn)m/ rn ! stabilizes Lz. Since adxn is nilpotent. exp( ..\Io )

acts on Lz 0 l[,,\l where '" is an indeterminate. Thus exp( ,,\Io ) acts on

Lz .~ Z[;\] I~ f\. and by letting ,,\ -r t. exp(Axn ) acts on Ll{ . .-\s in the

camplex case. write .\n(t) for exp(ad(txo )) for each .ro in the Chevalley

basis and for t E f\. One may now define families of centerless finite groups

for each simple Lie algebra.

Definition 6.24 The Chevalley Group of the Lie algebra L O1}f~T the jinzte

field [{ is the gronp generate.d by ail of the .\o(t) for non:ero .'izmplp root,.; o.

and t E h-.

Definition 6.25 The grmjp G2(q) z.o; the Chevalley group of the Lle algebra

S2 over the field lFq .
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6.6 Structure of Lie Type Groups

Let G be il finite group of Lip type. arising fronl the Lit~ al~ebra. L. Lpt [\' he

a finite field ofcharaCH1ristic p. Fix il root o. Then '\u(t+IL) = '\u(t).\n(IL).

Hence {.\o (t) : t E I\} 3: !\ as an additive gronp.

Definition 6.26 The root subgroup \0 of C attached tu a is the ,'5ubqroup

{.\0 (t) : t E fi}.

Root subgroups are abelian since they are isomorphic to the additive group

of K. Any Chevalley group is evidently generated by its root subgroups.

For any root r. the subgroup (.\,.(1) ..\_,.( 1)) is closely related to SL.dh')

as follows.

Theorem 6.27 There 1.5 a .'iurjeetive homomorphù;m ft> from SL!(!\') onto

the subgrolJ.p (.\,.(1), .\_,.(1)) ofC. cUIder which

0 (~ :) -t .\,.(t)

0 (: :) -t .\_,.(t)
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Define

(6.28)

•

Carrying out the relevant matrix calculation. une obsPr\'ps fron1 the aho\'p

theorelll that the ho (t) are the images of the diagonal matrices

(

t ())

o t- 1

image of K·.

Definition 6.29 The Ca.rtan subgroup H of G is the .'5ubgroup of G gener-

ated by aIL of the Ho. for roots Q.

The Cartan subgroup is abelian. and normalizes each root subgroup. Define

.V to be the normalizer of H in G.

Theorem 6.30 U' == .YIH where Ir is the ~re!Jl group of the. Lze aLge.bra

L.

Define P to he the jrSylow subgroup of G generated by the \n for po~iti\"e

roots Q. [sing the product relations in. say. Theorpm 6.15. one deduces that
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.\,.(t) - l is nilpotent on the Lie algebra. Su that .\,.( t) is unipotent. Indeed.

any clement of order a p-power in G is uni potpnt.

Definition 6.31 The Borel subgroHp B of G Vi HP. [or thf' Cartall "HLh-

group H. and the p-SylollJ .'iubgroup P.

The Borel sub~roup B is the normalizer of P in G.

The group G can be decomposed with respect to a Borel subgrollp and its

\Veyl group. as follows . .-\. \Yeyl group Ir is a Coxeter group: that is. there

is a definlng set {Wl ..... u,'m} of involutions which generate Ir. and the set

number m is the Lie rank of G. Reeall Theorem 6.30: for each i fix a. liftin~

nt to .V of the defining reHeetions lL'z of Ir. The \rpyl group aets on the root

set. Define for each w EH' the subset of the positive roots by \{1~ consisting

of all positive roots reflected by Ir to negati\'p roots. Define PI; = IT x,...-\
r~I{t.~

theorem ûf Bruhat describes the structure of G in terms of Band .V.

•

Theorem 6.32 (Bruhat Decomposition)

2. G = H.YB
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.J. FOT any n E .V and 11llY i.

5. For evenj w E U·. .fix a lift nu: of w to .v. EIlCh dt!ment 9 E G may

he expressed in a u.nzque way as a product bTl'cP't·. ruherp b E B. IL' E tr

and Pw E P;;.

One can gain considerable information about [Ilaxinlal subgroups of G

fronl the corresponding Dynkin diagram. First. nlake thp following definition.

Definition 6.33 .4 parabolic subgroup of G is (l propPT .·;u,hgroup of G fOrt­

taining a Borel SUbgTOUp.

Let }- he a parabolic sUbgrOllp of G. Let CJ = OpO -) hfl the largest nonnal

p-subgroup of }-. where p is the characteristic of f. Let V = } -/CJ.

Theorem 6.34
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whe.re }~ <1 r for aU i. and each }~ is Cl Chevalley group OllfT .-;OTfLF field of

{'hlLrad~n..;tzc p.

TllP } ", are called Leui factor.ï of the parabolîc sub~rollp }". It is possible tu

detprrninr aU of the parabolic subgroups of C; [runi its Dynkin diagranl.

Theorem 6.35 There l.'i a b'ljectl0n be.tween proper ,'mbyrflphs of the Dynkin

difL!Jrarn D and parabolic subgroups }. of G contaznzTtq a ji.xpci Borel .'i1lbgrollp

B.

:\ parabolic subgroup corresponding to a single node of the Dynkin diagram

is caUed a minimal paraboLic subgroup. Fix a parabolic suogroup }. and its

corresponding subgraph 5 of D.

Theorem 6.36 There i.'i a bijectwn betwe.en the Le"l:'l facturs of }. and the

connected component.5 of S. Each Lem factor lS a Lie type group: zls Dynkin

diagram IS the component of S dete17nined in thi.., bijpdion.

~Iîninial parabolic subgroups generate G. Fix Cl 8on~1 sub~rollp B.

Theorem 6.37 If the Lie rank of G is at lea.,t z. then G l.-; generated by ail

of the mznimal parabolic subgro'Up."i contalning B.

The following theorem will be referred to.
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Theorem 6.38 (Borel-Tits Theorem) If J i8 a rnuxùnal p-local 8ubgro'Up

of G. then ./ l., lL parabolic .'rubgroup.

There is the followin~ userui fornlula. which perntits caklliation lU a

Chevalley group. Let "',. and J be linearly independent roots.

Theorem 6.39 (Chevalley Commutator Formula)

[.'(s(t) .•\~(u)} = II .\n+l.s(Ct)1d( -tVu))
t.»O

where the product i,5 taken ove'r aIL i. j such thllt ri + jtS 18 a root. and lS

lakenin order of increa."ing i + j. The constants Ctj1J are Twnzero integers.

ICtn6 1 ~ 3. and are defined as follow.5:

Clh6 = '\[,.,.15.&

Ctr,.; .\[.;...,.}

C3:htf
l

= 3·\[*1 ....,;·..,·2

.)

C23.,J = -= JI,; .... cS·):3 . ~..-

where .\!.,..s.n = ~.V.,..s.V.,..r""s'" .Vr.(z-Llr .... 5 where the .V.,..s are the. .-;tnJdurF'

conBtant.., of L. The li.st gives aIL po:;."ible tta[ue." for Cz1n by the cla.-tszjinltion
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theory of ..,i"~ple Lle algebras.

As has been cliscussf'd. any Chevalley gronp is gerwrattlc[ by its root pl-

enlents .\,.( l) for roots r. A theorenl of Steinberg establishes that tht' rp(a­

tians already described in this rhapter are sufficient to gi\"fl a definition of a

Chevalley group by generators and relations.

Theorem 6.40 (Steinberg's Theorem) Let R be the root .'iet of II .'ilTTlple

Lle algebra L. L :1= al. and for each r E Rand each j E lF dejine il s!J1nbol

.\r(j). FurthpT rfpfiTlP hr(i) n.'; Ln equation (6.28). Let ë denotp the gTOllp

generated by the .\rU) wi.th the relation.;;

.\r ( i) .\,. (j) =.\,.(i + j)

h,.(i}h,.(j) = hr(i . j)

and the Chevalley commu.tator relations with stnlctu.Te constant.r; detp.rnnnpd

by L. Then ê/Z(è) LS L-"omorphic to the Chevalley group of L OllEr thf~ field

IF.
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6.7 Theory of Finite Simple Groups

By tht' classification theorenl of finite sinlple groups. completed in 1980. it is

known that virtually every finite sinlple group is a Lie type group.

Theorem 6.41 (Classification of Finite Simple Groups) If G l.'i cl ji­

nlte :nmple group. then G is one of the following:

1. ...ln alternating group .-ln:

2. A group of Lie type:

.1. One of the 26 sporadic group.';.

Fronl this classification. many theorems about simple groups may be proved

by exhaustive verification. One example of such a theorem is the following:

Theorem 6.42 Euen) finite simple group has a presentation w1.th exactly

two generators.

~o conceptual proof is known (see (Gor82}). Evidently. in ürrier to find a

rigid triple of conjugacy cl~ses in a given finite group. it is neCf'ssary rhat

G he generated by t\vo elements. [n this sense. Theorem 6...t2 pro\-ides sorne

justification for the Remark fol1owing Theorern :3.1T.
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7 Rigidity and Rationality for G2(p)

7.1 The Structure of G2(p)

In order to use rigidity and rationality critPria to realizr' G'!(p) as a Galois

group over Q~ it suffices to have information a.bout

l. the conjugacy classes of G2(p):

2. the irreducible representations of G2 (p) and their characters: and

3. the subgroups of G'2(p).

First. the results from the preceding chapter are applied ta G2(p) in order

to illuminate ils structure.

As the \reyl group of G2(p) i5 the symmetry group of the root diagram

of 92. one has

Proposition 7.1 The ~VeyL group ofG2(p) i.., the dihedral group V 6 of order

12.

\\ïth this. the Bruhat deconlposition may he used to dfltPrmine the order
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Proposition 7.2

Proof: By Theorem 6.:32. each Element of G2 (p) can bEl pxpressed uniquely

as the product of an element in B and an eleInent in P,; . for a unique u: E tr.

Thus.

L IBI' IPtt-:1

•

= p6(p - 1)2 L I~;I
wEn-

The orders IP,;1 can be easily computer! for each lL': one ha." IP,;1 = pn(IL"t

where n( w) is the number of positive roots which IL' nlaps to negative roots.

Thus.

o
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Csing the information fronl section 6.6. one rnay uechlfp the following

diagram of sorne of the significant subgroups of G'l(p), Each of thp suhgroups

is indicated along with its ordpL

12(p - If

(p - If

p - 1 p

•

G2 (p). Let (~+ denote the set of positive roots of g.!_ with n and 3 the short
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and lon~ simple roots respectively. Then

H :::: (ho! hJ ) ~ Cp- l x C'p-l

P ~ (.\r( 1). r E (~~)

B ~ (.\r(l). hr. r E «(>+)

} ·1 ~ (.\_a ..\r(l).hr.r E (~ .. )

}; ~ (.\-J . .\'A 1). hr • r E (~-)

Furthermore. the subgroups (Xr. \-r) are isomorphic ta SL:!(lFp ). and the

group C\r. r E {long roots}) is isomorphic to SL:J(lFp ) as can he seen by the

corresponding embedding in the Lie algebra.

This completes the investigation of the subgrollps of G2(p). Hpre sonie el­

ementary results about the conjugacr classes of G2 (p) are sunimarized: they

will be proved in section 9. First. the involutions in G2 (p) fortn a single conju­

gacy class. This will be denoted by Ct- The unipotent class containing _\,.( l)

will be denoted Lll" and Cad \\ill denote the class containing .\o( l ).\.dî 1.

The da"is COJ is aIsa unipotent. and consists of f·lpments of orcier p when

p > 5. The dentents '\0(1) and .\0(1}.\3(1) are not conjugate. so tlwsp

classes are distinct. Below. the characters of G2(p) which are simuItaneolls1y
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nonzero on CL' Co and Col are tabulated \Vith their values. Thesfl are the

only characters whieh make a nuntriviaI contrihution to the SUIn in forrnula

(:3.19). which will be llspd belaw ta establish that thflse ronjugacy das~ps

form a rigid triple in GAp). Define d. e sa that (' = ±L. e = p mucl :t

d = ± l. d =p rnod ~. The following tables are taken fronl [FF8-l\: tht'

notation for the characters has nat been changed.

-')
1-
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Ct CQ Cod

\id

'<:J:! p:J +e p+e p+t' e

.'<:n ~ 2dp + L p~ + I
p. -1

xdrrd
(pD _ 1)( po! - l)

3(p+l)! (p + 1)(2p + I)(p.,.l).!

,<drrd tr
(pri_l)(p2_1)

-(p + If! (p + 1)(2p + I)(p"l).!

'u(ir".!)
(p.!-llCp6-1) :J(p - 1)2 (p - 1) (2p - I)(p.,.l)!

X2( 1r',!).
(p.! -1 )(pC» -Il

-(p - If (p - L)(2p - L)(p+I)!

Xa(1t'a) p6 _ l pl - 1 -p - 1 -1

Xa (iTa )" p6 - 1 _(p2 _ L) -p - 1 -1

Xb(1t'b) p6 _ 1 p2 - 1 p - l -1

Xb(1ib)"' p6 _ l -(p:! - L) p-l -1

X'la ( 1r t- 1ra )
p!>-l

(p +2)(p + 1) (p + 1)2
p-l

X;a (1r l- 1ra)·
pÔ_l

-p(p + 1) (p + L)2p-l

X;b( 1rl_ irb) ~ (p + 2)(p + 1) p'.! + p + lp-l

'<'lb (ni- 1rb) or Et.:.! -p(p + L) pl + p + lp-l

.'(~a(ir.!_ 1ra)
pô_l

-(p - 2)(p - I) _p2 + p - 1 -1p.,.l

.'<~a(if:!_ ira)"'
p!i_l

p(p - 1) -pl. + P _ l -Ip..... l

'(;b(irl. ;rb)
p6_t

-(p - 2)(p - 1) -(p - I):! -1p"l

X;b( n'.!_ jïb r lt.=!. p(p - I) -(p - 1)! -(
p+l
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Sorne of these characters occur more than once: their nurnber is indicated

below:

#{ \}

\diTd fs(p~ - l--lp + -lï + 6d + Sel

\1 (rrd'" -fg(:lp:.! - 18p + 21 - 6d)

\2( ir·.d -fg(p2 _ lOp + 23 - 6d - Se)

\2( iï2r ~(3p:2 - 6p - =3 + 6d)

\a(iïa ) ~(p2 - --lp + 3)

Xa(iT l1 )· ~(p2 - l)

\b( iib) ~(p2 - 4p + 3)

'l(b ( ÎÏ,,)" ~(p2-1)

\'La(iT't. iTa ) t(p - 6 - 2e - d)

'(' (- -)" t(p - 2 + d). la Ill. lia

\~b(rrh iib) i(p - -l - d)

\' (- -). t(p - 2 + d)lb Ill- .lb

'-~a ( iT2· :ïIl ) t(p - 2 + d)

,-' (- -). t(p - cl)'la 112· lia

\~b (:ï2~ 7ib) t(p - -l + 2e + cl)

, (- - r t(p - d)\2b 112· lib

• ï-t
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The sizes of the conjugacy classes will also be reqllired in order to Ilse

(:3.19). and are sumrnarized heIow: centralizers of n'prpspntaü\,c e!Ptllflnts

fronl eaeh class are coruputed in Section 9. One has

ICLI = p'(i! + p + l)(p:! - P + 1)

ICol = p2(p6 - 1)

ICodl pt(p6 - l )(p! - l)

Remark. The class Cod is called a regulur dass of unipotents: that is. it is

the unique conjugacy class of unipotents of lar~est order in C,!(p). a.nd conles

from the unique dass of unipotents in the algebraic group C2 of nlaxinlal

dimension.

7.2 A Rigid Class Vector

Here a rigid and rational class \"ector in the finite simple group G,.!(p). p > j.

is pxhibited. establishing that it oceues as a Galois group on'r lQ. The fiest

puhlished proof of this result appeared in (FF8-l}.

Theorem 7.3 The uector t'

G:!(p) for aU primes p > .J .
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Proof: The class CL is rational by Proposition :3.10. There are several

ways tu prove that the unipotent dasses are rational. It is not difficult ta

explicitly calculate elernents 9 for which gug -1 = ILl. wllPre IL = .\n ( 1} or

u = _\o(l).\j(l). :\lternatively. the character table shows rhat \(Ct ) E Q

for aIl irreducible characters \. o

•

Theorem 7.4 The uector L' = (CL- Co' Cod) is a nqid da,..;,.; t'e.ctor for G:!(p)

for aU primes p > 5.

Let St! denote the set of triples (91.92. 9:d with gr E C't satisfying that

91929:1 == 1. The proof will procecd in twa steps. First it is pstablished from

the character table that there is one orbit of triples in Sv under conjllgation

by G2 (p). In proving this result from the character table. one encounters

difficulty presenting the explicit calculation because of its length. One may

greatly condense the proof by using estimates for some of the terms that

appear in the character sumo The cost of using these estitnates as done

belo\\" canles in a restriction of the \"alidity of the prouf to rhuse prinles

P > 19. ft should be emphasized. howe\·er. that this is onl.\" done for ease

of prpsentation. and the result indeed hoIds for ail p ~ 7: see [FF8-t1. The

proof that the triples generate G2 (p) was first given in [FF8-t]. and requires

76



•
a. detailed knowledge of sinlple group theory. This part of the proof i5 only

1. The number of triples in S,. is IGAp)l.

Proof: By the character table and formula (:3.19). then

It must be shown that !Sri/ICI == 1. :\s ISt.I/ICI connts the nunlber of orbits

in Su undcr conjugation by G. then ISul/ICI must be an integer. Tenlporarily.

let ~V denote the character SUffi 00 the right hand side of the equation abo\'c.

Substituting the sizes of the canjugacy classes and IGI.

lSvl == pl(p6 - l Hp:! - l )p4(p2 - P + l )p2(p6 - 1) . V
ICI p12(pti - 1)2(p2 - l r~ .

== (p2 + p + l )(p2 - P + 1) . V
[i2(p2 - 1) .

(7.5)

(7.6)

In arder to evaluate .V. associate the fallowiog funetions ta the characters

of G'l(p), Ta those characters which occur in pairs \ and \lP. assüciate the

function

•
()

\ (Cfl) '( (Coj ) [ '( ( CL )(-;; \:) + \ .. (CL) (# \ .. )1
nx.x• p := -------\-(-l)-----~

,,

(7.7)
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One observes in the table that \ and \. always take on the sanle value on

the classes Co and C·oJ . so 11.(.\" takes on the va.lue

which appears in character sunl in ~v. For the isolated characters \2'2. \,t~ and

Hence

~V = L n\.·c(p) + L Tl\(p)
(,. \" J \

(7.9)

It will be seen that the main contribution to ~V cornes [rom the trivial char-

acter in the second snm. This will be demonstrated hy Ilsing estimatt-'s to

bound aIl of the other sUITlmands. First the second sunl aver the isolated

characters i5 considererl. By explicit calculation~ one finds

•

F(p+p)'! (p-l-l)(2dp+ 1)
= 1+. + ---.----

p.\+e pb-L

dp + ef(p:J - e) + (pl - 1)(2dp + 1)
= 1+ 6

p - 1

(2d + e)p5 + (-Id + 1)pl + pJ + (- 2d) po! + P - l - f'
1+ _

pb - l
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[n order to bound this in absolute value. observe that it is ma.xinlized fur

e = d = land that the coefficients of p are aH less than or equal to fivp.

HPIlCP the sunl of ternIS of fourth degree a.nd lower can bp houndecl by p-I - l.

sin('e p > 5. Hence

('.lO)

•

That is. the SUffi over the isolated characers is 1 + O( lip). ~ext considerin~

the paired characters \. \ •. one observes immediately for \a (ilf1) and \b( iib)

that the numerator in Tl't.x· is of degree at most five. while the denominator

is of degree six. Closer inspection indicates that the degree five terms cancel

in the numerator. and one is then able to easily estimate for these eharacters

~ow for the remaining pairs of characters. n\.\". cne finds summands of

eqllaHy high degree i~ the nunlerator and denominator. Howe\'er. in each case

the highest degree terms in the numerator cancel. pern1Ïttin~ one to deduce

the existence ofa constant Cx for which In't.x·1 < ;. This is aLready sufficient

to deduce that 0 < .V < =3/2 if p is chosen large ~nollgh to dorninate ail of thp

C'(' ensuring that IS,·I/IGI = 1. since this value must be an intpger. [n order ta

,9
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deduce the Ieast p for which the resuit applies. it is necessary to estinlate pach

of th~ Tl". '1: •• This has been dom~ naÏvely heInw. procp.Elding with techniqutls

analogons to those nsed in (T.10). conlputing the non\"anishin~ ternl ofhighesf

degree in the nunlerator and bounding thp nunwrator's remaining tpnns. One

arrives at the fol1owing bounds:

p
.)

< -
p
.)

< -

< -

l n, ·,·1
\lb'\lb

ln, ,·1
'-1.lot 1'1

P
:3

p
2

In"I.x'I·1 < ­p
3

In\~.\~·1 < p

where the labels for the characters ha\'e been abbreviatrd. Hence. sllbstitut-

ing aIl of these estinlates into (i.9). writing .\f = .v - 1.

•
-l -l 15

I.\EI < - ~ ~ ~ -
p p- P
20

<
p
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since by asSuIuption p ~ T. ln order to use. this result. a rough estinlate

is recluired for T := (p~+p~l)(p!-p+l) which appears in (1 ..]). One hiL"i T =
p~(p~ -1)

pl+p~ -1 .
1 • sap -p-

1 1(2p1 + 1)1 < T < 1 ï --:) -.,--
p- p- - 1

< 1+~(2(P+l))
p- p - 1
:3

< 1+--:)
p-

again using that p ~ 1. :"iow. ISul/ICI = .VT: the abo\'p estimates cau he

combilled as fo11ows:

..... < .""T <."" (1 + ;2)
20 (20) ( :3 )1 - P < .VT < 1+ P l + p2

From this. one deduces that. for p ~ 23

0< .VT < 2

Sincp .VT = ISrl/ICI is an integer. this forces .VT = 1.
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To prove the result for ï ~ p ~ 19 one can flither inlprO\'C the aho\Op

estinlatrs or carry out the explicit calculation of .VT. Onp finds that .VT = l

(see [FF8-l1. p. :3:2:3).

2.. Each triple in St: generates G2 (p)·

Summary of Proof: The coruplete proof appears in (FF8-t1. but requin~s

a detailed knowledge of finite group theory. The proof procppds a..>; fo11o\\'s: let

(YI. 92' 9:d ESt.. First. one establishes that the group ./ = (YI. 92. 9:s) is not p­

local. By Theorenl 6.38. ./ would then be contained in a parabolie }o. Indepd

J is contained in the subgroup }r, of }'r generated by its p-order elements.

The Levi decomposition allows one to determine the structure of }Of/Op(} Of).

The inlage 91 of the involution YI in }'f / OpO 'f) is then determined to bEl

central of order 2. which forces ?it929'J 1= l.

='ext one shows that ./ is Dot q-Iocal for any prime q different from p.

Here information is required about q-subgroups of G2 (p) and its subgroups.

One uses this data and an analysis for q e\"en and odn to show that p cannot

divide the order of the normalizer of an elenlentary abelian q-sub~rot1p of J.

Onre it is known that ./ is not a local subgrollp. it l'an b(l pstablishecl

that ./ is simple. First one shows that a minimal nornml sllbg;roup .\" of J

is sinlple. with trivial centralizer. 50 that J ç AUL\". Then the classification
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theory of finite sirIlple grollps is invoked in order to enunlera.te the possible

structures of Auc\" in order to establish that thp irulex of .V in .-\ucV is

either too small to he di\'isible by p or is a. power \)f if. Sinre p cli\'idps i.J1

this forces .V = ./.

Finally. ha\'in~ demonstrated J is sinlple. the classification theory uf finite

sinlple groups is again used: one lists each of the finitp simple groups and for

each such group S. one identifies il. structural [eature present in .J and ahsent

in S or vice versa. forcing S # J. For only one S is it impossible to cio this.

o

•

.-\n imnlediate corollary of Theorelns ï.3 and ï .-t by Theorenl :3.17. is

Corollary 7.11 G2(p) cs a Galoi:; group of a regulur exten,';ion of Q(t) for

ail primes p > 5.

And. by Theorenl 3.2l.

Corol1ary 7.12 If p > 5 1.5 a prime. then G2 (p) cs the Galols group of :wmf

nOT7nal field extension of Q.

In fact. t he restriction on p may be rela..xed. Thompson has shawn that

~I! is a rigid and rational triple for G2 (5). a.lthough there is Cl slight \'ariatioll

required in the pruof. in part because ICoJI = 25 when p = ·5 ([Tho8-tll .
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G2(:3) is also known to he a Galois group over Q. Thus. G'!,(p) is a Galois

group over Q for aIl prinlt's P :1 2.
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8 Geometrie Interpretations

Since it t'an he estahlishf'd that t'p = (CL' CO. Coj ) is a rigid dass w1ctor

in G.~(p) for a.Il prinles p > 5. one nlight ask whethrr this triplp "lifts" tu

the group G = G2 (ZO. î. ~D. :\s in section 5.1. therf' arp homomorphisms

Pp : G --+ G2 (p) for aIl p > 5. Sin{'e it is possible ta prove in a nniform

way for p > 5 that the class veetar is rigirl. one rni~ht hope ta find a "global

triple" t' in G which reduces rnod p to give Up for aIl p > :l. There arp

structural deviations in G2 (p) for p = 2, :3 and 5 that suggest that thpse

primes need ta be inverted. as G2 (2) is not simple. G2 (:3) has a non-trivial

outer automorphism. and in G2 (5) elements in the regular unipotent class

Cod have order pl = 25. The first question one rnight attempt to answer is

the following.

Question 1 FOT aU primes p > 5. does the rigid uectoT v lifts via Pp to IL

rigid triple of conjugacy classes ln G?

That Î5. one asks whether the \'ectar t· in G:!(p) arises fronl reduction mod p

of a vector in G.

If the above question has an affirrnati\'e answer. then with the rigidity

theorenl one can prove from TheorplU 'lA that there are homomorphisrlls 0(11
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for each prinlt' f. > ,J. and for aH n

and hence an f-adic representation

Specializin~ these homomorphisms at sorne t = to pradnees {-aclie rpprr~en­

tations of GO' which shaH be denoted by l'i,

These representations arise from the existence of a rigid triple in G2(Z,).

and in fact G2 (ZO. ~. ~]), One is led to ask:

Question 2 Do the h01TlOmorphi.sm.5 ,~" form a .,;tnctl!/ compatzble .>;y,..tf'.Tn of

[-adic representations'!

If thp answer to this question is affirnlati\'e. it would sHgge~t that tliP

system of representations arises from recillction mod f. on sonle llnderlyinf!;

geonletric abject (it is canjectured that eyery strietly compatible systpm of
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t-adic representations has an underlying geonletry in this spnse). ~[ore pre-

("iSE'h·, one might ask

Question 3 1.0; there fl lJanety \' over Q(t) and .îOTnf 1 ~ N :iuch that tltt'

repres~ntl1tionsCt occur as .Jordan-Holder constltu.e.nt.'i (Jf H~t (\ '/~U l,·(b ) for

each pn'me e> 5'?
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In orcier to ans\\,pr the qupstions of the preceding s('ctiott. il (ll'W prouf of

rigidity for G'!(p) would he rpquirpd. as the character tahlE' forrnula dOf:'S Ilot

provide the infornu\tion requirpd tu lift the triple to C,!(Q). Thonlpson has

reportedly proved rigidity in a different way. with a lengthy ('alrlllation using

generators and relations. It would be ideal to find an elegant proof of rigidity

which relied on the geonletric interpretation of G2 (p). ~irnilar to tliP praof of

Theorern .1.2 for PSL2(fp ). In the following. data about thp ("onjll~acy classes

in the rigid triple from Theorem TA is collected that would likely he used if

such a proof \Vere feasihle for G2(p). ft is assuITled that the interpretation

of C'! as the autonlOrphisnl group of the oetonion algehra wonld bp. the kpy

ta snch a proof. The goal is to identify geometric strurtures in Op which

characterize the rele\ëlnt conjugacy classes.

9.1 A Representation of Gz

An irrpducihle seven-dimensional representation p of G'!(p) ('an bp described

explicitly. Let El; denote the" x ï matrix \\;th a 1 in thr (i. J )th position

and zpros plsewhere..-\ssume that IL' := .j2 E iFp. Then a n"lpresentation p
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of G'l(p) rnay be descrihed as follo\\'5:

J1 : .\.:d 1) ~ [d + e:n - e65

Il : '\:Ia~j( 1) ....-,. [d + et:! - e"ji

p : .\·10 ~:!.:1( 1) ........ [d + eu - e6i

p: .\-J(1) !-'-+ [d + e12 - e,)6

p : '\-10-.3(1) l'--f [d + e2.t - ei5

P : .\-:Io-:.!B{l) ....-,. [d + el.. - ei6

p: .\0(1) ~ [d + e'l6 - el; + 1rel'2 - 'Cf,}l - e'j:!

p: .\Q.,-J( 1) .....;. Id + e2ï - e.lS + {L'el3 - lL'Ffil - e63

P : .\"'·2n+J( 1) ~ Id - e.:;3 + e62 - IL'e·u + /L'fi; - Pli

p: .\-0(1) .....;. Id - ef).l + e,J - lCf:!l + 'Cf l.'} - "''25

P:·\-o-J(l) ;--+ Id - fil + e.:;., - lL'e:u + Ire 16 - e:l6

p : .\ -ln-A 1) .....;. Id + eJ.'i - e26 + /LOf II - IL'fil - e7-t

One may \"erify that thflse satisfy the Chevalley cornmutator fornlula and tllt'

other relations in Theorem 6AD. establishing that the above matrix n'pre-
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sentation is isomorphic to G2(p). The abo\'e representation wa.s cumputed

frorrl a Lie algebra rflpresentation in [Hurr172j. pp. 10:3-10-1.

9.2 The Octonions

Possibly the must useful interpretation of G2(p) is as the alltoIllorphisnl ~ruup

of the algebra of octonions 0 (often caLled Cayley nU1nber:;). defined over iFp .

Recall that C ma.y be constructed by defining a prodtlct on !R x R as

follows: (Xl- .L"2) • (YI. y..d = (rl!}l - Y2I2~ I2!}l + Y,!.L"d· The real quaternion

algebra JH[ may be constructed by defining a product on C x C by (Xl, X:!) .

(YI! Y2) = (ZIYl - Y2.r2· Z'l!JI + Y2 I l)' Cantinuing this duplication procedure

produees the oetonian algebra.

Definition 9.1 The real algebra of oetonions iB the .'iet !rI x H Il.J1.th thp

product

Defined ln this way_ 0 is a. non-associative eight-dimensîonal dÏ\-isian
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algebra over R .-\. natural basis for the octonion algebra is the set

{( 1. 0). (l. 0). (J. 0). (k. 0). (O. 1). (O. i). (D. J ). (O. k) }

\vhere {1. i. j. k} is a basis for iHL The center Z (0) of 0 is the one-dimpusional

subspace spanned by (1. 0) .

.-\.S in IHL there is an analogue of complex conjugation. Let la. b) E O.

Then define conjugation in 0 as follows:

(a. b) = (Ci. -b)

One defines the trace and norm on the oetonions as follows:

Tr(.z:) := l + r. ~(.r):= rr

The seven-dimensional space orthogonal to Z(O) then consists of thase oeto­

nions with trace o. The trace and norm are related by the following formula.

which may be proved directly from the clefinitions:

,
.r2

- Tr(r).c + \(.r) = 0

91
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The bilinear forn1 J of .V is given by j(x.y) = ~(.rY + .'JE) = Tr(.ry).

Let Op denote the algebra of octonions. defined O\'pr tht' finitp fipld f p.

The theory becomes more conlplicatpd in this situation clllP tn thp preSPlU'p of

isotropie vectors. i.e. nonzero vectors l.' of nornl Q. One I)hspn'ps fronl (9.:!)

that an isotropie 1.: in the trace zero conlponent of tlw oetonions satisfies

V2 = O. \\"hile 0 is a division algebra. Op is oot. as any isotropie is a

nontrivial zero divisor. However. Op is still alternative. that ls. arbitrary

elements I. y in Op satisfy

Theorem 9.3 Let p > .5. The group of algebra a"lJ.to·morphi";1n~ of Op t.,

lsomorphic ta G2 (p) .

Indeed. in ([Humï2}. p. 105) a correspondence is produced between the

seven-dirnensional representation described in section 9.1 and the action of

GAp) on the seven-dinlensional complempot of Z(Op)'
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9.3 The Automorphisms of Op

By an auturnorphislll of Op it will be mpant an al~f'hra illltornorphism. First.

OUf' rnay observe that any alltonlorphism of Op will prtlscn·p dU' hilinear furnl

on thp octunions. and franl this deduce that the octonion automorphisnls act

orthogonallyand preserve length. Hence G2(p) may be elnbedded in SO-;-(lFp ).

One may give a very precise description of an actonion illltolllOrphism. but

first it will be useful to record the following conlbinatorial result.

Proposition 9.4 There are pol (p2 +P+ L) (p:! - P + 1) quatf'nuoTt .'fubalgebrfLs

To connt the number of quaternion sllbalgebras of Op. first the nllmber rl of

orthogonal unit bases for quaternion subalgebras arp counted. and second.

the number { of orthogonal unit bases of a fixed quaternion subalgebra are

counted. There are then nif quaternion subalgebras. ~otP first that two

orthogonal unit vectors el and el in ~;. uniquely deternlÎne a quaternion

sllbalgebra of Op, since (1. et. e2, el . E2) is an orthogonal unit hasis for a

quaternion subalgebra of Op. Thus. el may he chospn ta he any unit n'ctor

in \:. and el any unit vector in \6 := Pi" C \:. Hence.

l
n = ï( #{ units in t7}) . (#{nuits in \ ~})
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Similarly. f is conlputed by carrying out the analo~olls cakulation in an

anlbient four-dinlPnsional spaee. Thus. lettin~ \: hl' an t-dimpnsional !Fp -

\'petar spaee.

These values rnay he computed relatively easily using Jacohi SllnlS (an pxplidt

formula for any dimension and any IFp is given in ([IR8:!l. p. lü2)): nul' has

t = (p2 + e)(p - e)

where e = ±l. e =p nlOd -1. Thus

p5 (pJ + e )(p:J - el

p(p + e)(p - e)
pl(pJ + l)(p:J - 1)

(p + l)(p - 1)

= pl (pl _ P+ 1) (pl ~ P+ 1)

:1



•

,

:'\ow. one has the following description of an alltomorphisnl of thp o('to-

nIOns.

Proposition 9.5 Fix il quatemzon ...;ubalgebru Iffip of Op and a IHni l't-'c!nr t

orthogonal to ~:Ip. A TL algebra automorphi.'lm a of the oetOTlWr1S is cùmplddy

described by .'ipeclfYlng the automorphtsm a tnduces on Hp: the qUlltenuOfl

subalgebra a(~): and Œ(e). which mw,t be a unit vecior ort!wyonal to l1(iHIp).

Furthennore. any a ..,pecified in this way may be extenderl to an alycbra (W.­

tomorphi.snl of Op.

First. let lH!p have basis (1. i. j. k). Then since e is orthogonal ta Hp. Cl ha...;is

for Op is given by (l.t.j.k.e.ei.ej.ek). Thus. specifying (j on {l.l.J.Il.t'}

determines a completely. Conversely. one may compute the nunlber of maps

(J that one might specify in this way. One has p'(p"l +p+ l )(p"l_ p+ 1) choi('(~s

for the image of Hp by Proposition 9.-t. One has p(p:! - 1) autonlorphisnls of

18lp .•\nd a Jacobi sum calculation indicates that there are p(p"2 - 1) possible

unit images of e in the four-dimensional orthogonal complement of a(JHp}.

Hcnce
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ditferPllt (J may be spedtied in this way. .\s this is precisely the arder of

C,!(p) = .\utOp • p\"ery a specified in this way must he an autamorphism of

~. C

9.4 The Involutions

Csin~ Proposition 9.5. it is possible to prove the following proposition.

Proposition 9.6 ALI Lnvoi'lLtwn.., are conjugale ln G2(p) .

Consider the image L of an involution in the seven-dirnensional representatiun

of GAp). Since the representation is embedded in S07(1Fp )' the determinant

of L nlust be 1. Since the determinant is the product of the eigenvailles of l.

the -1 eigenspace must have dimension 2. -l or 6. Thus l has at lea'it twn

-1 eigenvectors land j. Then (1. i. j. k = ij) span a quaternion subalgebra

of Op' ~ow l(k} = t{l)L(j) = lj = k sa k is a +1 eigen\"ector for l. Choose

an orthogonal eigenvector e 50 that ei. ek and ej complete a basis for Op. If

e is assumed ta he a -1 eigenvector. then el is a +1 eigen\·pctor. sa the -1

eigenspace cannat be 6-dimensionai. If e is assunled to he ël. ...... 1 eigenvpctor.

then ei and ej are bath -1 eigenvectors. This forces the -1 f'i~enspace tu

have dimension -1. and the trace of L must be -1 in the sp\"pn-dinlen~ional

representation of GAp). In addition. doing a case analysis for the possible
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eigen\ïllues of i and j! the + l eigenspace can be seen to fornl a quatprnion

subalgebra of Op. The -1 eigenspace is the orthogonal conlpleruent of th!' ~ L

spal'P. sa f is determined by its + l pigenspace. Let V.. lw tht> + L f'igrnspan'

of l. Then for anY!l E G'l! the +1 eigenspace of g[g-I. is q(\'''). siucp

(D. ï)

Hence in arder to show that aIl involutions are conjugate in G'2(P) it now

suffices to show that G'l(p) acts transitively on the quaternion subal~ebras

of Op. But this fo11ow5 imnlediately from Proposition 9.5. o

,

.-\S the proof above indicate5. there is a one-to-one correspondence be­

tween quaternion subalgebras of Op and involutions in G'!(p).

Proposition 9.8 There are p'(p2 + p + l)(p:! - p + 1) inunllltzons zn G2 (p).

Proof: The number of quaternion subalgebras of Op was rletermined in

Proposition 9.-1: to be p.l(p2 + p + 1)(p2 - p + 1). and tht'Y are in bijeeti\'e

correspondencp. \\ith the involutions in G2 (p).

Sorne involutions may easily be described explicitly. Consider the map f

on Op which sends (a. b) ~ (n. -b). Then l is an in\·oIutory autonlorphism

of Op. and aIl of the above may be casHy \'erified for l.
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•
The centralizer of an involution can be described. Indepd. any 9 E Ctc;( 1)

nlust act orthogonally on the -l eigenspace \'-. Hene~ ('(;(1) ~ SOdiFp).

As the order of Cc;(t} is l'quaI to that of SOdfp)' the ~rotlps are isonlurphic,

9.5 The class Cet

The class Co consists of unipotent transformations. and OllP is therefore able

to associate a Hag to an element C of Cc. by considering kernels of sucressivp

powers of .V =[... - l. Since .V is nilpotpnt. ker .Vl C ker .\"1 ~ l, Oue thus has

a Hag

Fu : 0-- ker .V -- ker ."..! -- ... -- ker .YT - 1-- \' = ker .\fT

where .yr = 0 and .Vr
-

l :j:. O. If t' E ker .V. then .V(L') =0 and (C -l)(e) =O.

sa C(t:} = l:. Conversely. ifC(L') =,' then t' E ker.V. Hence ker.V is

the largest subspace of l" \vhich is fixed pointwise by C. Similarly. the

elements of ker .V2 are precisely those rc for which [:( IL') = n + IL' for sanIe

n E ker .V: kernels of higher powers of .V may be similarly reinterpreted

with respect ta F. The unipotent geg- I
• g E G. ha.s associated Hag g(F,,):

this is \'erified by a calculation \-irtually identical to (9.7). The dimensions

appearing in thE.' flag of a unipotent arp thus invariant under conjllgation. For

the unipotents in G2 (p). these dimensions may be compllted for thp action of
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G"l(p) on the seven-dinlensional subspace of Op orthogonal to Z(Op). FrOUl

the representation in Section 9.1 the results may be rt'adily deduced. Onfl

fincls for .\0 (1) that the nontrivial dirnensions appparing in the Hag are :1 and

6: that is. the fiag associated to an elcnlent in Cet is

O--t:l--\6--~7

llsing subscripts to denote the diulcnsions of the vector spacps in the fiag.

The centralizer of .\0(1) may be described. By the Chevalley conlniU­

tator fonnula. one detern1Ïnes that the root eleuLents which conlffiute with

.\0(1) are {'\Q(t) ..\3a+j(t). X'-3- .\30+"lBT '\·-:)0-1.3}. The eleuients .\:lo+·.U

and .\-30 -23 generate a group of arder p(p2 - 1) isomorphic to SL"l( lFp ).

while one of these roots with the remaining thrpc will generate the p"Sylow

subgroup in the centralizer. of order pl. The centralizer itself has order

p.l(p~ - 1).

9.6 The regular class of unipotents

One may alsu COUipute the flag associated to elelucnts in CoJ : one finds thp

fla~ ta be

l--li --\.; -- \; --\~l--\~ --lfi --l7

again using sllbscripts to denote dimension.
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The centralizer of a reglliar unipotent can he explicitly dpseribf'd. Fixing

the elenlcnt Œ = .\,}( l ).\j( 1). one has that ((1) C C(;(rrl. Furthflr. by thp

Chevalley conlnlutator fornlllia it follows that '\:Io~:!j(1) C'Olnmutfls with hoth

'\0 ( 1) and .\J( l) and hPllCf' \Vith (1. As al :1 '\:10+:!J( l) for any l. one has

that CG(a) = (a. -rio--:u(l)) and has arder p2.

This concludes the dpscription of the conjugacy classes in the rigid dass

vector r.
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10 Conclusion

The group G"!(p) is tilt' Galois group of a re~ular extpnsil)[l of (~(t) for ail

odd prirntls p > ·1. By the Hilbert Irredllcibility Theorpnl. C;·!(pl is thu:; a

Galois group ovpr Q. This Will) established by exhihiting a rigicl and ratio­

nal triple of eonjugacy classes in GAp). It is asked whtlther thpse tripIps

arise [rorn reduction mac! p of a triple in GAZ[&. ~. kD. Further. it is askec[

if the f-adic representations of GO associated with this rigid triple fornt a

compatible system of representations. If these questions couId he éU1S\\'~r(ld

affirrnatively. one would expect there to he sorne geonletrical object attadlC'd

to these representations. For the purpose of investigating these qupstions.

the published proof of rigidity is not satisfactory. It would thus he of interpst

to have a different pronf of rigidity for G'l(p) which incorporated genrnetrie

information about the action of G2(p) on varions structures in the oetonions.

.-\5 a step in this direction. characterizations of the conjllgacy classes in the

rigid triple for G'l(p) were provided in terms of the geometry of Op.
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