INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the uniikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note: will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6° x 9° black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

A hardware/software partitioning
framework for the codesign of digital
systems

Houria Oudghiri
B.sc, National institute of computer science, (Algeria) 1988
M.sc, National institute of Computer science, (Algeria) 1991

Department of electrical engineering
McGill University, Montréal
May1999

“A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment
of the requirements for the degree of Philosophae Doctor”

© Oudghiri Houria, 1999

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ofttawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et R
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre réfdérence
Our file Notre référence
The author has granted a non- L auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-55368-X

 ABSTRACT

The thesis provides a new approach to the codesign of digital systems. Complex sys-
tems tend to have mixed hardware-software components and are often subject to severe
cost, performance, and design-time constraints. Our approach is to codesign these systems.
The codesign approach allows the hardware and software designs to be tightly coupled
throughout the design process. We focus on three key problems of system modeling, sys-
tem analysis and system hardware-software partitioning.

A key contribution of the thesis is to use hierarchy as it is available in modeling tools to
handle complex system models but also during the codesign process to provide different
modeling alternatives for the same input system. This use of the hierarchy, during the
codesign process, allows the extension of the design space explored to find the final imple-
mentation.

Another key contribution is the analysis of the hierarchical model for any target archi-
tecture using automatic estimators and scheduling algorithms. The performance estimation
provides information on the performance of each block in the model when it is run on soft-
ware resources or implemented on hardware. The scheduling algorithm is used to identify
critical paths in the system execution and also to identify data dependency between the dif-

ferent model components.

The last main contribution is the hardware-software partitioning algorithm. The pro-

posed algorithm is based on a weighted graph partitioning heuristic. The partitioning algo-

it

rithm performs into two nested loops. The outer loop is used to select the blocks which
take a long time to execute in order to move them to hardware. This selection has the main
objective of accelerating the system execution. The inner loop is used to select the neigh-
bors of the block selected in the outer loop. The neighbors which have the most data
dependency are first selected in order to minimize the hardware-software communication

cost.

We embody all the above concepts in a framework containing tools for hierarchical
modeling, system analysis and partitioning. This new framework provides designers with
a list of hardware-software implementations corresponding to the different levels in the
system hierarchy. These codesign alternatives are provided with their performance and

cost measures to allow the designer selecting the final implementation.

iii

SOMMAIRE

Cette thése présente une nouvelle approche pour le codesign des systémes digitaux. Les
systémes digitaux deviennent de plus en plus complexes et ont tendance a contenir des
composants hybrides qui peuvent étre du logiciel ou du matériel. La conception de tels
systémes est souvent sujette a des contraintes sévéres sur le cofit, la performance ainsi que
sur le temps de conception. On propose, dans cette thése une approche pour réaliser le
codesign de tels systémes. Cette approche permet de concevoir le logiciel aussi bien que le
matériel dans le méme processus de conception. Nous nous sommes intéressés, dans cette
thése, surtout a trois problémes clés dans le domaine du codesign qui sont la modélisation
au niveau systéme, I’analyse de performance ainsi que le probléme de partitionnement
logiciel-matériel.

L’une des contributions majeures de cette thése, est |’utilisation de la hiérarchie non
seulement pour permettre de modéliser des systémes trés complexes mais aussi lors du
processus de codesign afin de fournir différentes alternatives de modélisation pour le
méme systéme en entrée. Cette utilisation de 1a hiérarchie, pendant le processus de code-
sign, permet d’étendre d’une fagon considérable 1’espace des solutions qu’on explore afin
de trouver la solution finale. En effet, chaque niveau dans la hi€rarchie donne un nouveau
modele sur lequel tout le processus de codesign est exécuté afin de trouver une solution
logicielle-matérielle. Plusieurs niveaux de hiérarchie vont donc permettre de rechercher

une solution pour chaque niveau. Ceci constitue une nette amélioration par rapport aux

iv

travaux classiques ol une solution est recherchée pour un seul modéle en entrée.

Une autre contribution concerne I’analyse du modele hiérarchique pour n’importe
quelle architecture cible. Ceci est réalisé en utilisant des outils d’estimation automatique
ainsi que des algorithmes d’ordonnancement. L’estimation automatique des performances
fournit, d’une fagon rapide, des données sur les performances de chaque bloc du modéle
lorsque celui-ci est exécuté sur une ressource logicielle ou bien implémenté sur le matériel.
Les algorithmes d’ordonnancment servent a identifier les goulots d’étranglement dans
I’exécution du systéme au complet et aussi a2 déterminer les dépendances en données entre
les différents blocs du modgle.

La demiére contribution majeure est 1’algorithme de partitionnement logiciel-matériel.
L'algorithme proposé est basé sur une heuristique de partitionnement d’un graphe
pondéré. Cet algorithme est réalisé€ en deux boucles imbriquées. La boucle externe sert a
sélectionner les noeuds qui sont les plus lents et qui sont déterminants sur la performance
finale du systéme. Cette premiére sélection sert donc a accélérer I’exécution du systéme.
La boucle interne sert a sélectionner les voisins les plus dépendants du bloc sélectionné par
la boucle externe afin de minimiser le coiit de la communication entre les partitions

logicielle et matérielle.

Toutes ces contributions ont été intégrées dans un environnement de codesign permet-
tant de réaliser une modélisation hiérarchique, une analyse du systéme en entrée et enfin
un partitionnement autornatique du systéme en entrée en deux implémentations, I'une

logicielle et I’autre matérielle.

Acknowledgements

I would like to acknowledge my supervisor, Januzs Rajski, for having accepted me

as a Ph.D student, supported me and assisted me throughout my doctoral studies.

I would also like to acknowledge my co-supervisor, Bozena Kaminska, for her guid-

ance and assistance throughout my doctoral thesis.

As a member of my supervisory comitte, I acknowledge Prof. Ted Szymanski for his

suggestions during the earlier stages of my research work.

I am beholden to all my friends in the VLSI design laboratory at McGill and at the
University of Montréal for their assistance. My special thanks to Claude Villeneuve for the

pleasant work I had with him.

In addition, I would like to express my thanks to the Algerian Gouvernment for their

support during my master and which allows me to continue towards Ph.D.

For financial support, I would like to acknowledge Prof. Yvon Savaria, the director

of the PULSE project and all the project partners.

Finally, on a more personal level, I am grateful for my parents and to all my family

members back home for their support throughout the course of my studies.

vi

TABLE OF CONTENTS

LISTOF FIGURES ...t X1
LIST OF TABLES ...t ee e e X1ii
CLAIM OF ORIGINALITY ..cceniiieiceeeeeeeeeeeeeeeneeeeeeeennns X1V
INTRODUCTIONooooiiiiiieiecrreeerreereceeses e s e e ereeeeeee e e 1
Lo 1. MOAEHNG. ...ttt cre et eeeeeeareesereeee e s e e e e e seseesessesssnnns 5

1. 2. Performance eSstimationceeeeeeemeieeieeeeeeecieeeeeeeeeeeneeeeeeeeeaneanes 6

1. 3. PartitiONing ...cccccvveericrirreeieeeieireisneesesieeeseseeeeseesasessasassasssnsnnsenaes 7

CODESIGN METHODOLOGY ..uoeeeeeeeeeeevceeeeeeeeenennn, 9
2. 1. Motivations for hardware/software codesignccccceeeeeerreacannns 10

2. 2. The codesign problem statement................cceeeieeremcmceerreeneneane. 11

2. 3. A typical codesign flow and tools for codesign........cccccuceuueeeee. 13

2.3.1 System mOdeling.....cooceevmreriiiiiicanrrceccrerenir st 13

2.3.2 System analysiS.....c.cecoceeemieiieeecoiiierireeeeereeeeeeee s eereneceseeaeereeseenens 14

2.3.3 PartiliOniNE.....cccoceeeemeeeieeeeeeeeieneeeeeereereesnsseaneneennssssssssssssasaasesaseeesanes 14

2.3.4 COSYRHESIS cecvereeiereeeeeeeeereenieneretreerereesssneseres emeanasserenamnssaaseaaeees 15

2.3.5 CoOSIMUIALIONceeeeeeeeeerecneennnrtreeeereeeranreeeesesnsenemassseeneennnnnsssaeaees 16

2. 4. Related WOIK.......ouuiiiieiieieeieeeecicciteeeeeeserereeeeeseseemmnnneaeeeaesnnenns 16
2.4.1 Specification and verifiCation..........ccccceieeeervvcmeeecerrrcccceneseeeeeeeeenne 17

242 Co-SIMUIAION.......ccociieerereeeeeeereers e e e eerneneeeeeseacanessenesssaneeeeeenns 19

vii

243 SyStem aNalySiS....cccoeeeerieierirecneecreencseeententr e eeseaeesessasassnnes 19

244 PartitiONiNg.....ccoorvereeereirrvisseersreeesressssrsnsssessesssssssssesssscsmmsssnnsomn 20

24.5 Cosynthesis and prototyping.........cceceeveeerermererrreseeersceeeeereecrcenens 22

2. 5. The proposed codesign framework.......cccceeeoemieeeiciiiieaiacinnnnnn. 24

2. 6. SUMIMATY...ccciorireeeeeiaceeteaareceeeecte et ee e e eeeeseeoe e meeeeenneseneeaoeanans 28

3 SYSTEM SPECIFICATION.........oueeeeeeeeeeeeeeeteeeee e 30
3. 1. Modeling techniquescccccceiiivciiiiimmmemiiininirecerece e 31

3.1.1 Finite State Machines..........cccoeeommriririiiiirrccceceeaeees 31

3.1.2 Data flow graphscccccueeeoioeocieeiiiieee e 32

3.1.3 CommuniCating PrOCESSESc.cocereerrrrrrieeersrreerumasseesssseeeenerseneensens 32

3.1.4 Object-oriented MOAEINGcocoemrrrmeciiiiiiiicecrece e 33

3.2. The proposed modelccoooiiiiiiiiiiiiiiiiirci et eecceeeeeene 34

3. 3. The model data StIUCIUIeccooemiiiiremicceeeecece e eeeeeeeeee 40

3.4, SUMMALY...ooiiieiieeieeeceet e eeetere e enemeeecsste sttt e sesmseneeesssesaseees 43

4 SYSTEM ANALYSIS ... teeeeeeeeeeeveeveeeaeeeeeemenes 45
4. 1. Performance estimationcccceeeererececieererrernnsinenceceesennsenennes 45

4.1.1 Hardware performance estimationcccoceeeuirueereeeueeeeereesereennes 46

4.1.2 Software performance estimationccooeeeeeeeieeemeeieeieecnneeeeenene 47

4. 2. The proposed estimation technique............cccoovviiiinncinnnnane. 47

4.2.1 The Specsyn eStimMatorS......ccoeeeererersreeesacressmssamsmransesssesssenneassreeres 48

4. 3. Schedulingcccceeeriirrnrerartiriiereeeeeeeeeeenre e s ee s e e 54

4. 4. SUMIMALY......uveeeeeeeeeeerneeereeererererarsraessseeeaesareneeseeseneeaesaasessesessns 58

5 SYSTEM PARTITIONINGccooiiiiiieeeeccieieennnccceeceernnnnaes 59
5.1. Problem definitioncccecociiiiiiiiiccciiiniecitinner e 61

5.2, Related WOIK......ccouiiiiiiiiieiiiiiireeeeeceecccccee s eeeaneee s seese s e ennenes 62

viii

5.2.1 Theinput mModel ...t e 62

5.2.2 The Granularitycceccceeeeeeceeeeceieeeeeeeeeeeeeeereeeeemeeeeeeeeeeeseeseseeeens 63

5.2.3 The COSt fUNCHOMN.coiireeeecreece s e eeeene e cre e sceeeeeenrnea 64

5.2.4 The partitioning algorithimcccooeerieeeeeicreceereceeeer e 66

5.3. The proposed partitioning techniquecccceeeeeererccueerreennns 71
5.4. The partitioning algorithm implementation........cccccccceeeeueeen... 78
5.5. The algorithm complexitycccoeeeiiieeeeeieeeieeeciccmeeeeree e 80
5.6, SUIMMALY ...oiiieieeeeeeeeeeeeeeeeeeeeeee e e e e sas s e eeseessnnenasaeeeeeaen 83
6 CASE STUDIES ... e et ees s e s eesene e 85
6. 1. The target architeCturecccccovveeeeiiieee et 86
6.2. The FFT eXampleoooeiiioiiiiiieeeeeeeecceeeeeeseraeseneeennnes 87
6.2.1 The high-level description of the FFT transform.......................... 87

6.2.2 The FFT hierarchical modelingcc.cccoirneoniinninniiriicnncnneene 90

6.2.3 The performance estimation and schedulingccccccoeecceeeenncnce. 92

6.2.4 Partitioning alternativesc.coeceeveerrvereeecesomrenereeseeseseacersceeseeenees 93

6. 3. The power network simulation algorithmccccceevueennnnee. 99
6.3.1 The high-level description of the power network simulation 99

6.3.2 The hierarchical modeling of the power network simulator-....... 101

6.3.3 Performance eStmation «....cc.cceeceeeereeeeeeeccceenroenensessesereceaeuennes 103

6.3.4 Partitioning alternativescccccueeeereeeeemmmeeceeraescccccerecraennneneens 104

6.4, SUMIMACYoootiiieeeeeececeiieeeeeeeeeee e eeeseesseaesesanmeaneeeaeessaaneens 107
7 CONCLUSIONS. ... citeeceirreteertteseeeeseeseasememsemeeseeeeeans 108
7. 1. CONrDULIONS . .ceoimmenmiiiiiiiiieteeeeeeereeeeeceeeeceeecenaeeaeaeseeaesesenaas 108
7.1.1 Hierarchical modeling.......ccococrvciiiiirrocniiiiiinreee e 109

7.1.2 SysStem Partitioningccceeeceeeecceeercrscerscsccsceesissrssrnsesssssssesrsnnesneens 110

7.1.3 SysStem analysiScceeeeceeeeeeeiieeereeeeeaeeeneeeereessesennnmsosseessesnrressens 112

7. 2. Future dir€CtiONSc.eeeereuceririiieniiceeeeeecereeeensrenneneeeeeensassees 112

7.2.1 Framework integration...........ceeeeeeeeeeeereeecceemmmmmmemceeeeeeeeeeseeeeseseennes 112

7.2.2 Hardware and software synthesis.....ccccccccarvciinnniincnriecrecccnnnee 113

7.2.3 Interface SYNtheSiS........e . eeeeeeeeeeeeeeeeereeeecreetereeneeerecreee e eneeseneennnens 114
APPENDIX

Technolgy files for the system estimationc.ccccceeceeenc.e. 115

REFERENCES ...ttt eeeeceee s 127

LIST OF FIGURES

Figure. 1.1 The hardware/software codesign ProCess.c.oceeeeeeercerrencesscraceesereeruesneermennnns 4
Figure. 2.1 The typical codesign flow ProCess.c...ccoecmeeeecerecceemrsccesrererseesesnesseesenns 16
Figure. 2.2 The proposed codesign floW.........coeeeecerremeeieeneeeeeeceoeneaeeeeeceesnesteeesaeeeenes 26
Figure. 2.3 Modeling and codesign alternativesccceeeceveeeececereeceeeciceeesrecereeeceeeneen. 27
Figure. 3.1 Examples of the different modeling techniques.ccccceeeceeeeernnecvinmnannnnnes 33
Figure. 3.2 The HDLC entity environment and block digram.c.ccccceeeecceeviinnnnnnnnnn.... 36
Figure. 3.3 The hierarchical model of the HDLC entity.......ccccecceerecereccererceeveeenrreennnen. 37

Figure. 3.4 The data flow graph models corresponding to different levels of hierarchy. 37

Figure. 3.5 Possible hardware/software partitioning.ceccceeeeeieierisemnccenscenncnncens 40
Figure. 3.6 The data structures used to implement the hierarchical model. 42
Figure. 3.7 The data structures used to implement the data flow graph. 43
Figure. 4.1 The behavioral analysis SteP......cccceeveriervmrirecrriniercierie et ceeeenee 48
Figure. 4.2 The allocation list for hardware estimation.ccccceeeeeeercirereercterreennenaennne 50
Figure. 4.3 The SpecChart description of the FIR filter.ccccvvumeumniincnnieniiienncccennens 51
Figure. 4.4 The list of ZENEriC INSLUCLIONS.cocevirrrerriecriiererisererissrssseseersissssescessens 53
Figure. 4.5 An example of ASAP and ALAP scheduling.........cccoceeveierrniricniiienccercnnnen. 55
Figure. 4.6 The ASAP and ALAP scheduling procedures...........ccocoeeienerenieruieccceenaens 56
Figure. 4.7 The task scheduling for different levels in the hierarchy.cccccceveeeeiee 57
Figure. 5.1 The proposed hardware-software partitioning procedure.........cccccveueeuenen. 76
Figure. 5.2 The partitioning procedure flow for the HDLC example................c.cccucec.e. 77

Figure. 5.3 The procedure to find the critical path in the data flow graph. 80
Figure. 5.4 The principal procedures used in HAP.........ccccccornmiiiimmininciiiccccereecann. 82

Figure. 5.5 The complexity of the principal procedures in the partitioning algorithm.... 82

Figure. 5.6 The search directions in the codesign space exploration.......cc..cccceeeeveeeennnens 84
Figure. 6.1 The codesign target architeCture.ccccoeeeeericcmriiereiiecrceetiececreeeeeeerccneeenne 87
Figure. 6.2 The FFT transform C Programi.ccccoeereceereceerersremessineniensesesessnssscsneeenns 89
Figure. 6.3 The hierarchical model of the FFT transform behavior.ccccccccevemrennnenee.... 91
Figure. 6.4 ASAP/ALAP scheduling at two different levels of the FFT hierarchy......... 94
Figure. 6.5 The matlab program of the network simulation algorithm. 100
Figure. 6.6 The hierarchical model of the network simuiation behavior. 102
Figure. A.1 The technology file of the PULSE Processor.ccccovveririncccniiiceciiieneaes 125
Figure. A.2 The technology file for the C40 proCessor.ccceereevreeecmvneirreveecnnnnne 126

LIST OF TABLES

Table.2.1 Fields of system design with related WorK..........ccceveceriemrmerenrieenecrecnnnererrecnnes. 23
Table.4.1 Memory size of the Dase tyPes.....cccoeeiiiieereieeee e eecees 54
Table.5.1 Comparison of the common partitioning methods.cccoeeecieceenncccreceecrrcceenen. 70
Table.6.1 Performance estimation of the FET blocks.cccoeeioeereiiniiiriniiiiieiccennenns 92
Table.6.2 The FFT transform partitioning under timing Constraintsccccceeeeeeeennnnn. 95
Table.6.3 Block assignment at different hierarchical levels of the FFT model. 97
Table.6.4 Alternative comparison for the FFT transform. ...c.....ccccocvvviriinniiinnnicnnncenn. 98
Table.6.5 The performance estimation for the power network simulator blocks. 104

Table.6.6 Block assignment at different hierarchical levels of the network simulation algo-
911212 SO PSRRI 105

Table.6.7 Codesign alternatives for the network simulation algorithm..............c..c....... 106

Claim of originality

The author claims originality for the following contributions of the dissertation:

e Chapters 1 through 5 contain reviews in their first sections, although these reviews are
original in the sense of providing a new classification of related works according to

determinant characteristics in the codesign field.

o Chapter 2 presents a novel codesign flow based on the hierarchy and performance esti-

mation. This flow is reiterated for each level in the hierarchy.

o Chapter 3 develops a new use of hierarchy for models of digital systems described at
high-level. The hierarchy is not presented as a new approach for design but is consid-
ered in a different way. The majority of modeling tools support hierarchy but only to
allow handling complex systems. We exploit this same hierarchy used to simplify the
modeling step to provide various input models for the same input system. This use of
hierarchy provides an expansion of the modeling space because different input models
are available for each level of the hierarchy, but also an expansion of the codesign
space because a hardware-software solution may be found for each level of the hierar-
chy. Our Codesign process consider at each level of the hierarchy a set of blocks with

different abstraction when moving through the hierarchy levels.

® Chapter 4 proposes a new analysis methodology for the codesign of digital systems.
The analysis is performed in two stages: the performance estimation and the task
scheduling. The performance estimation is performed using known automatic estima-
tors but we provide these available estimators with technology files for each resource
of our target architecture. The task scheduling is performed to find critical paths and
bottlenecks in the system execution. The scheduling step identifies the concurrency

between the system tasks in an independent way of the partitioning.

xiv

e Chapter 5 proposes a new hardware-software partitioning algorithm based on a

dependency graph partitioning. The nodes and edges of the dependency graph are
weighted in order to minimize the system execution time and the hardware-software
communication overhead. The hardware-software partitioning is performed on the
basis of two types of selection, global and neighborhood. The global selection selects
the bottlenecks in the system to accelerate the system execution. The neighborhood
selection operates on the neighbors of the bottlenecks in order to minimize the hard-

ware-software communication overhead.

Chapter 6 provides extensive experimental verification on two case studies. For each
case study, two lists of hardware-software partitioning alternatives are provided: the
timing constraint list and the hierarchy list. The timing constraint list gives the list of
hardware-software partitioning alternatives obtained for different timing constraints.
The hierarchy list provides a list of hardware-software partitioning alternatives for the

same timing constraint but at different levels of the hierarchy.
Chapter 6 also provides a comparison between the hardware-software alternatives

obtained for the same timing constraint to show the necessity of a performance-area

tradeoff.

Xv

INTRODUCTION

S ystem-level design usually invoives designing an application specified at a high-
level abstraction. A typical design objective is to minimize cost (in terms of area or power)
while the performance constraints are usually throughput or latency requirements. The
specification at system level is built of basic components called tasks. This specification has
two characteristics. First, tasks are at a higher level of abstraction than atomic operations or
instructions. This allows for complex applications to be described easily and more natural-
ly. Secondly, there is no commitment to how the system is implemented. Since the specifi-
cation does not assume a particular architecture, it is possible to generate either a hardware,
or a software, or a mixed implementation. This is specially important for the synthesis of
complex applications whose cost and performance constraints often demand a mixed hard-
ware-software implementation. For such applications, full-software implementations (pro-
gram running on a programmable processor) often cannot meet the performance

requirements, while custom-hardware solutions (custom ASIC) may increase design and

product costs. It is important therefore, not to commmit each task in the application to a par-
ticular mapping (hardware or software) or implementation when specifying the application.
The appropriate implementation for each task can be selected by a global optimization pro-
cedure after the specification stage. The task level of abstraction allows this flexibility.
Maneal development of a lower-level design specification (such as at the RTL level) is
quite intense due to the complexity of the applications. As a result, it is desirable to specify
the application at the task level and allow a design tool to generate lower levels of imple-
mentation from it.

Such a system-level design approach is now viable due to the maturity of lower level
design tools and semiconductor technology. Computer-aided design tools that operate at
lower levels of abstraction are quite robust. The next step is to use these CAD tools for sys-
tem-level design. Also, advances in semiconductor manufacturing have made it possible to
fabricate a “system on a chip”.

Figure 1.1 summarizes the key issues in system-level design. These are system spec-
ification, modeling, partitioning, synthesis, simulation and design-space exploration. A sys-
tem is first specified in a high-level language as a set of tasks. It is then transformed into a
model to catch its functionality details at a high-level of abstraction. Several hardware and
software implementation options are usually available for each task in the description. The
partitioning process determines an appropriate mapping (hardware or software) for each
task. A partitioned application has to be synthesized and simulated within a unified frame-
work that involves the hardware and software components as well as the generated inter-
faces. The software synthesis of a task is to generate the code for the task on a given

processor. Finally, the validation of the final implementation is often performed using co-

simulation tools. The system-level design space is quite large. Typically, the designer needs
to explore the possible options, tools, and architectures, choosing either automated tools or
manually selecting his/her choices (feedbacks in Figure 1.1). A design-space exploration
framework attempts to ease this process.

The most important aspect of system-level design is the multiplicity of design and
modeling options available for every task in the specification. Each task can be implement-
ed in several ways in both hardware and software mappings, and can also be modeled as a
big black box, a set of subblocks or a set of basic operations. The partitioning problem is to
select an appropriate mapping of each task from a given model. In system-level design,
there are a number of such tasks and overall design is to be optimized. Clearly, it is not
enough to optimize each task independently. For example, if each task were fed to a high-
level hardware synthesis tool that optimized for speed, then the overall area of the system
might be too large. Hardware-software partitioning is the problem of determining an imple-
mentation of each task so that the overall design is optimized.

Once the appropriate implementation for each task has been determined, the hard-
ware-software synthesis problem is that of synthesizing the implementation. Implementa-
tions for tasks mapped to hardware or software can be generated by feeding the task
descriptions to synthesis tools. The hardware synthesis consists of high-level synthesis
[McFarland 90] followed by logic synthesis [Brayton90] and layout synthesis
[DeMicheli86]. The software synthesis comprises high-level software synthesis [Pino95],
followed by compilation and assembly. System-level design is not a black-box process, but
relies considerably on user creativity and interaction. For instance, the user might want to

experiment with the design parameters. The design process could get quite anwieldy as the

user experiments with the design methodology. As a result, an infrastructure that supports
design space exploration is also a key aspect of the system-level design process. Tools for
design space exploration must include performance estimation tools. Estimation tools give

quick predictions on the outcome of applying certain synthesis or transformation tools.

(System speczﬁcation)

(System modeling)
.
(Partitioning)
I
[

Partition 2

, generation

partition 1

1

Partition 4

\ generation
pa:%glon 3

generation
SW
| |

nrerface
nthesis

[Co-implementation |

Cosimulation

\ 'Final implementation

Figure 1.1. The hardware/software codesign process.

Designing systems containing both harware and software components is not a new
problem. The traditional design approach has been somewhat hardware first in that the soft-
ware components are designed after the hardware has been designed and prototyped. This
leaves little flexibility in evaluating different design options and hardware-software map-
pings. With isolated hardware and software design paths, it also becomes difficult to opti-
mize the design as a whole. Such a design approach is especially inadequate when

designing systems requiring strict performance and a small design cycle time. The key tenet

in codesign is to avoid isolation between hardware and software designs to proceed in par-
allel, with feedback and interaction between the two as the design progresses. This is ac-
complished by developing tools and methodologies that support coupled design of
hardware and software through a unified framework. The goal of codesigning the hardware
and the software components of a system is to achieve high quality designs with a reduced
design time.

Our main objective, in this thesis, is to provide efficient solutions to some relevant
codesign problems. The main tasks involved in the codesign process have been presented
in the above paragraphs. These are the system modeling, the system parformance estima-
tion and the hardware/software partitioning. The techniques used to perform such tasks are
determinant on the final hardware/software implementation. We propose new and original
techniques to perform these tasks with the objective of providing more efficiency and better
design space exploration. The proposed objectives with a statement of originality are pre-

sented below for each one of these tasks.

1. 1. Modeling

The specification at the system level is often modeled as a set of tasks. These tasks
are described at the basic operation level in some modeling framework or at the pro-
cess level (sequence of basic operations) in some others.

Digital systems are becoming more and more complex and this complexity involves
the use of new modeling characteristics, as the hierarchy in order to make the model-
ing of such complex systems tractable. The hierarchy has been proven to be extreme-
ly useful when modeling highly complex systems. The majority of modeling tools

include the hierarchy in their modeling approach. In this thesis, we consider the hier-

archical model available and we propose a new use of this available hierarchy. The
hierarchy is not used only to ease the modeling process but all along the codesign pro-
cess by considering the different modeling alternatives available in a hierarchical
model, each one with a different complexity.

The main objective intended by this use of hierarchy is to have several modeling al-
ternatives and to codesign each one of these alternatives. Many co-implementation al-
ternatives are then provided since a possible hardware/software implementation with
its own performance and cost is found for each one of the modeling alternatives. This
use of hierarchy is a new and original way to expand the design space exploration

which is a key tenet in the codesign process.

1. 2. Performance estimation
In literature, many tools are available for performance estimation on a specific target
architecture. The available estimation tools are often tied to a specific architecture
and new tools have to be developed if the target architecture is changed. We intend
in this thesis to use generic estimation tools that can be tied dynamically to any target
architecture. The target architecture resources are first described in a generic way and
put into the data base of the estimation tools. Then, the estimators consider any input
algorithmic specification and provide performance estimation measures when the in-
put algorithm is run or implemented on the selected resources. The main objective, at
this step, is the flexibility to consider many possible target architectures for the same
input system specification rather than having one target architecture fixed at the very

early stages of the design.

1. 3. Partitioning

Partitioning is the main task in the codesign process since the final hardware/software
implementation is tightly dependent on the techniques used to select and map the
tasks to hardware or to software. Many automatic partitioning algorithms have been
proposed during the past years but without convincing codesigners to adopt the auto-
matic solution. Codesigners have not enough confidence in an automatic solution for
partitioning because they want to make the main decisions by themselves.

We propose a partitioning solution which is between the complete automated and
manual partitioning. We propose an automatic partitioning technique which attempts
to try several task mappings and then provides the desiger with the obtained alterna-
tives and their performance estimations. The automatic partitioning algorithm is in
charge of the complex and iterative search process while the decision of selecting the
final implementation is left to the designer.

This thesis presents in detail each one of the original proposals presented above. Chap-
ter 2 briefly presents an overview of related work in system design and computer-aided
techniques developed for system synthesis, and the general scheme of the proposed code-
sign framework. The organization of the rest of thesis can be explained by relating it to the
organization of our codesign CAD framework. The input to our system is an algorithmic
description of the system functionality. The description is compiled into a hierarchical sys-
tem graph model based on dataflow graphs whose features and properties are described in
Chapter 3. Chapter 4 describes performance estimation and analysis techniquesrused to pre-
dict the performances of possible hardware/software implementations. In chapter 5, we de-

fine the problem of system partitioning and present an automatic approach to partitioning

digital systems for hardware/software cosynthesis. Chapter 6 describes case studies consid-
ered for hardware/software codesign and the results obtained after applying our codesign
approach. Chapter 7 presents conclusions where the objectives defined above are recalled

in the context of obtained results and finally the directions for future research are presented.

CODESIGN METHODOLOGY

While the CAD tools for the design of individual application specific ICs, or
ASICs, are in a fairly mature state, in some application domains it is even possible to com-
pletely synthesize an ASIC from a high-level behavioral description in a matter of hours,
CAD methodology for dedicated systemns have not kept pace. Real-life systems are com-
posed of a mix of software running on general purpose programmable hardware, ASICs and
other dedicated hardware, electromechanical components, and mechanical interconnect and
packaging, and a unified approach that encompasses the various software, hardware, and
mechanical aspects of system design is desirable.

The increased functional and implementation complexity and heterogeneity of sys-
tems mean that one cannot just scale and apply chip design techniques to the design of a
system. For example, it is difficult and unnatural to represent and simulate an entire system

according to a single computation model as is usually done in the case of chips. This simple

architecture model of a single controller and a datapath as used for chips is inadequate for
most board level systems. Clock synchronous hardware implementation is usually adequate
for chip but not for an entire system. Software issues are absent in a chip design as ASICs
mostly have hardwired controllers. In short, system level design is more than just a scaled
version of chip design.

Since system-level design oversees high-level synthesis, logic synthesis, etc..., deci-
sions made at the system level impact all the layers below it. In other words, if the objective
in system-level design is to come up with the “best” system implementation, there are a
large number of design options. The system-level designer is faced with the questions of
selecting the best design options.

The general design methodology is shown in Figure 2.1. The inputs to the codesign
tool include the design specification and the design constraints, and the output is an imple-
mentation for the system. This chapter describes the various components of the standard
codesign tool. In section 2.2, the codesign problem is stated with all the involved steps. In
section 2.3, a typical codesign flow is described and the various tools required in the code-
sign process are outlined. In section 2.4, we present a list of the most known frameworks
related to the codesign of digital systems. In section 2.5, we outline the proposed method-

ology with the advantages it offers compared to the related works.

2. 1. Motivations for hardware/software codesign

Most digital functions can be implemented by software programs. The major reason
for building dedicated application-specific hardware (ASICs) is the satisfaction of perfor-

mance constraints. These performance constraints can be on the overall time (latency) to

perform a given task, or more specifically on the timing to perform a subtask and/or on the
ability to sustain specified input/ouptut data rates over multiple executions of the system
model. The hardware performance depends on the resuits of operation scheduling and the
performance characteristics of individual hardware resources. The software performance
depends on the number of instructions the processor must execute and the cycles-per-in-
struction metric of the processor. In general, application-specific hardware implementa-
tions are faster since the underlying hardware is optimized for the specific set of tasks.
However, some parts of the description of an ASIC machine may be well suited to a com-

monly available reprogrammable processor while others may take too long to execute.

2. 2. The codesign problem statement

Hardware software codesign is a complex problem that involves the following sub-

problems:

1. Modeling the system functionality and performance constraints

System modeling refers to the specification problem of capturing important as-
pects of system functionality and constraints to facilitate design implementation
and evaluation. Among the important issues relevant to mixed system designs
are:

. Explicit or implicit concurrency in the specification.
. Model of communication- shared memory versus message passing-.
. Control flow specification or scheduling information.
When the concurrency is implicit, the concurrency information is obtained by

performing a dependency analysis for which the complexity depends on the sys-

tem model used.

2. Choosing the granularity of the hardware/software partitions. The system
functionality can be handled either at the functional abstraction level, where a
certain set of operations is partitioned, or at the process communication level
where a system mode!l composed of interacting process models is mapped onto
either hardware or software. The former attempts fine-grain partitioning while
the later attempts a high-level library binding through coarse-grain partitioning.
Each choice has advantages and disadvantages. The first one allows efficient
and refined analysis and transformations but at a higher computing complexity.
The second one reduces the processing complexity with a loss in design effi-
ciency since blocks or processes are considered instead of basic operations. This
reduces the partitioning alternatives compared to those available at the basic
operation level.

3. Determining the feasible partitions of application-specific and re-program-
mable components. The blocks in the system functionality are assigned to hard-
ware or to software in such a way that the resulting implementation satisfies the
functionality requirements and the constraints. This is a difficult problem
because good system-level cost metrics, accurate techniques for estimating the
cost, and techniques for reliable performance estimation of system-level hard-
ware and software are required.

4. Specifying and synthesizing the hardware, the software and the hardware/
software interface. Each one of the determined partitions is synthesized to

obtain the final implementation using the automatic tools available on the mar-

12

ket. This synthesis is also done under performance and cost constraints.Hard-
ware and software synthesis tools use different specification languages (for
example, VHDL for hardware synthesis and C for software synthesis) and thus
the resulting partitions must be translated to the specific description language in
order to be automatically synthesized.

The next chapters focus on the various aspects of the codesign process with the prop-
osition made for each one of these steps. In the next section, we follow the codesign prob-
lem presentation by showing a typical codesign flow in section 2.3. In section 2.4, a list of
related works in codesign are classified according to their major characteristics. In section

2.5, our proposed codesign framework is presented.

2. 3. A typical codesign flow and tools for codesign

A typical codesign flow is shown in Figure 2.1. A task-level specification is trans-
formed into the final implementation by a sequence of tools. The final implementation con-
sists of custom and commodity programmable hardware components and the software
running on the programmable components. The design constraints include the desired
throughput and the architectural model (maximum allowable hardware area, memory size,
communication model). The design flow describes the sequences of steps that operate on
the design data to generate the final implementation. The components of the codesign flow

include tools for modeling, analysis, partitioning, synthesis and simulation.

2.3.1 System modeling

Models are often needed in order to avoid creating detailed implementations. A mod-

13

el of a system helps to estimate relevant properties, like area and delay, of its implementa-
tions. The model is built from a set of interconnected basic elements. The model complexity
depends on the basic element complexity. Indeed, if the basic element is an arithmetic or
logical operation, the model may be very complex because the majority of systems are gen-
erally constituted of a large set of these simple operations. If the basic element is a task or
a process (a set of interconnected basic operations), the model complexity may be reduced
considerably. This means that the model complexity depends on the model granularity. The
more the granularity is fine the more the model is complex and hard to handle. We propose
a modeling technique with a variable granularity that allows the use of a simple model as
long as the constraints are satisfied. We handle complex models only when the constraints
cannot be satisfied with simple models. In chapter 3, we show the advantages of such a

modeling technique.

2.3.2 System analysis

The system analysis involves two main tasks. These are the performance estimation
and the scheduling of the model tasks. The performance estimation provides estimates of
the implementation metrics (area and execution time requirements) for each of the tasks in
the speciﬁcatién when different hardware and software realizations are considered. The
scheduling determines the possible execution flows of the different tasks based on their data
dependencies. The estimates and task scheduling guide the partitioning algorithm during

the task mapping. Details of the estimation and scheduling tools are discussed in chapter 4.

2.3.3 Partitioning

Once the estimates of the area and execution time and the scheduling of the functional

blocks have been performed, the next step in the codesign flow is the partitioning. The goal
of the partitioning is to determine, for each task the mapping to hardware or to software
while optimizing the overall design. The partitioning is a non-trivial problem. Consider a
task-level specification, typically in the order of 50 to 100 tasks or nodes. Each task can be
mapped to either hardware or software. Furthermore, within a given mapping, a task can be
implemented in one of several options. Suppose there are 5 design options. Thus, there are
(2x5)'® design options in the worst case! Although a designer may have a preferred im-
plementation for some p nodes, there are still a large number of design alternatives with re-
spect to the remaining nodes (2x5)'®~". Determining the best design option for these
remaining nodes is, in fact, a constrained optimization problem. In section 5.3, thc;, partition-
ing algorithm that uses a graph partitioning heuristic is presented. The proposed heuristic is
very efficient with the complexity O(N 2), where N is the number of tasks in the design spec-

ification.

2.3.4 Cosynthesis

Once the application is partiotioned into hardware and software, the individual hard-
ware, software, and interface components are synthesized. The particular synthesis tool
used depends on the desired technology. The VHDL code can be generated and passed
through synopsys tools to generate the hardware implementation. Similarly, different soft-
ware synthesis strategies can be used; for instance, the C description may be generated. The
interface generation depends on the desired architectural model. There are several pub-
lished approaches to the problem of synthesizing hardware and software from high-level

specification.

15

2.3.5 Cosimulation

Once the hardware, software, and the interface components are synthesized, a valida-
tion/verification step is required. This is often a cosimulation of the different components,
hardware, programmmable hardware and software. Examples of such cosimulation tools
are Ptolemy (Stanford University) and logic modeling [Synopsys95].

We propose a codesign tool as a framework for system-level design. The tool is a uni-
fied platform consisting of tools for modeling, analyzing and partitioning of mixed hard-
ware-software systems. Simulation and synthesis tools may be used from those available

on the market.

/ (Specification ﬂ

)D .
Y Compiler
(Internal model

Y Analysis tools

C Partitioning
Partitioning tool

(Interface synthesisD

Y .
QCosimulation) Simulator
\ iFinal implementation /

Synthesis tools

Figure 2.1. The typical codesign flow process.

2. 4. Related work

Work in the computer-aided approach to system design is relatively new. Recent in-

16

terest in system synthesis has been stimulated by the success and maturity of chip-level syn-
thesis tools and the emergence of synthesis approaches at levels of abstraction higher than
logic-level and RTL-level circuit description. In the follow sections, we briefly review re-
lated work that is directly relevant to the codesign problem.

Table 2.1 gives some pointers to fields in system design. A system design typically
requires to address all these topics. But the relevance of each topic depends very much on
the considered application domain. For example in avionics, the system security and a val-
idated design are of the utmost importance, whereas in digital signal processing the high
performance power and the chip complexity are the main design topics.

Achieving performance requires a careful tailoring of the system structure to the re-
quirements imposed by the algorithms. For complex applications, this makes an analysis of
the programs necessary to determining the requirements. Analysis tools are required to sup-
port this in a an efficient way. Table 2.1 gives the list of some codesign works with the main
codesign problems each of them has addressed. In the next paragraphs, these problems are

listed with the solutions proposed in literature.

2.4.1 Specification and verification

The input system is specified into a formal language that allows an easy and formal
specification with functionality checking and verification facility. This specification is de-
terminant for the next steps in the codesign flow. The more efficient the specification lan-
guage is, the easier are the analysis and partitioning steps. Some codesign frameworks in
literature are dedicated mainly for a strong and efficient formal language for specification
and verification.

One of these works is CODES [Buchenrieder92] which stands for COncurrent DES-

17

sign. The system is specified as a set of communicating parallel random access machines
(PRAMSs). The design process is modeled using Petri Nets which are a well known strong
formal modeling technique. The input specification is simulated using StateMate or SDL
tools widely used for the communication protocol simulation and verification.

Another work concentrating on the formal specification language is COSMOS
[BenIsmail94b]. The main objective of this codesign framework is to provide an interme-
diate format SOLAR {O’Brien95] which can model system-level constructs in a synthesis-
oriented manner. The philosophy is to allow the designer to use customized languages to
describe different aspects of his system and to provide translators to this intermediate form.
SOLAR is able to model and synthesize a wide range of communication schemes between
concurrent processes.

Another work related to specification and modeling is the SpecCharts formal lan-
guage [Gajski93] developped by Gajski et al. at the university of California at Irvine. This
formal language is an attempt to build a bridge between hardware and software specifica-
tions. The system’s behavior is conceptualized as a hierarchy of sequential and concurrent
behaviors. The hierarchical structure is described in the language SpecCharts while the ba-
sic behaviors are described in VHDL language. This has been a very elegant solution for
modeling both hardware and software but raises the question of the need for a standard.

The last work in this category of frameworks concentrating on specification and mod-
eling is the tool developped by Chiodo et al. [Chiodo94]. This tool uses a unified formal
specification model called network of Codesign Finite State Machines (CFSMs) to describe
control-dominant systems characterized by relatively low algorithmic complexity such as

embedded controllers. The modeling tool is also used to describe techniques to realize a

CFSM as either a hardware or software FSM, to generate the interfaces between the result-

ing hardware and/or software FSMs.

2.4.2 Co-simulation

Simulation is a very uselful facility at the starting of the design to check the function-
ality and at the end of the design to verify the design implementation. The simulation is of-
ten used as an alternative to formal verification for complex systems.

The main framework known for system-level simulation is PTOLEMY [Buck94a].
PTOLEMY is a framework for the simulation, prototyping and software synthesis of digital
signal processing systems. PTOLEMY’s strength is its unified framework that primarily
addresses the simulation of specifications as a set of heteregeneous computation models
constituting a DSP system. Examples of supported models are synchronous data flow
(SDF), dynamic data flow (DDF), discrete events (DE) and signal-level digital hardware
(Thor).

In addition to a simulation framework, PTOLEMY also provides code generation
abilities for its synchronous data flow (SDF) model using DSP processors, C, Silage or
VHDL languages as targets. The strength in heterogeneity by use of diverse computation
models in Ptolemy comes at the loss of an analytical handle on system properties when the
input system is not from a DSP application..This is particularly true for system specifica-
tions that feature a significant amount of control flow. Nevertheless, Ptolemy represents an

important step towards simulation of complex systems.

2.4.3 System analysis

The codesign process requires a profiling and a performance analysis of the input

19

specification in order to find a final implementation for the different system blocks such
that the overall system performance is optimized. This analysis phase is determinant for an
efficient hardware/software partitioning. Some codesign frameworks emphasize on this ap-
sect as SpecSyn [Vahid92] and CASTLE [Theinbinger94].

SpecSyn is an automatic codesign framework which uses the SpecCharts language
for the input specification. The hardware and software performance and area estimation
may be determined for a wide range of resources described into technology files. The tech-
nology file library contains many standard processors and some custom ASIC types.

CASTLE is a complete cosynthesis environment in which data flow graph (DFG) rep-
resentation is derived from an array of specification formats as Verilog, VHDL and C. This
environment has very efficient profiling and analysis procedures which provide the design-
er with a wide range of information allowing him to make manually the appropriate map-

ping of the model’s operations.

2.4.4 Partitioning

Several partitioning algorithms have been proposed in literature and are presented
with more details in chapter 5. Here, we briefly review some of the codesign frameworks
which are mainly intended for partitioning.

COSYMA [Henkel93], CO-SYnthesis for eMmbedded Architectures, performs par-
titioning of operations at the basic block level with the goal of providing speedup in pro-
gram execution time using hardware co-processors. Input to COSYMA consists of an
annoted C-program. This input is compiled into a set of basic blocks and corresponding Di-
rected Acyclic Graph or DAG-based syntax graphs. The syntax graphs are helpful in per-

forming dataflow analysis for definition and use of variables that helps in estimating

20

communication overheads accross hardware and software. The syntax graphs are parti-
tioned using simulated annealing algorithm under a cost function. This process is repeated
using exact performance parameters from synthesis results for a given partition.

The chief advantage of this approach is the ability to utilize advanced software struc-
tures that result in enlarging the complexity of system designs. However, selective hard-
ware extraction on potential speedups makes this scheme relatively limited in exploiting
potential use of hardware components. Further, the assumption that hardware and software
components execute in an interleaved manner (and not concurrently) results in a system that
under-utilizes its resources.

Another framework based on the language UNITY for the specification of concurrent
systems [Barros94] uses clustering for partitioning. The partitioning scheme associated
with it classifies UNITY assignments according to a set of five attributes which identify the
degree of data dependency and parallelism between assignments. Associated with each of
these attributes is a set of implementation alternatives. A two-stage clustering algorithm
then selects assignments to be grouped according to similarity of implementation alterna-
tives, data dependencies, resource sharing and performance. The clustered assignments are
scheduled for a given target architecture. Finally, an interface graph is constructed based on
clustering results. This process is then reiterated based on satisfaction of design constraints.

The last framework presented here is VULCAN II [Gupta93]. VULCAN I addresses
the problem using I/O data rate constraints to partition a description in Hardware C such
that a maximal set of operations is implemented as software running on a microprocessor
while the remaining operations are mapped to ASICs in a common-memory shared-bus ar-

chitecture. The partitioning algorithm is greedy and moves non-deterministic delay opera-

21

tions to software in order to meet hardware cost constraints while satisfying performance

requirements.

2.4.5 Cosynthesis and prototyping

Once a system has been analyzed and partitioned, the different resulting partitions
need to be implemented to obtain the final concurrent hardware/software implementation.
This is performed by a synthesis phase of each one of the partitions using two types of tech-
niques, standard synthesis tools or by protototyping each one of these partitions on an ex-
isting architecture. Academical examples for the two types are presented below.

From the first class, we present Chinook tool for the cosynthesis of real-time reactive
embedded systems [Chou95]. The Chinook system consists of six tools. The first one is a
front-end parser of system descriptions in annoted Verilog. The second one is the processor/
device library containing detailed generic specification of the processor device interfaces
as well as timing schemas for software run-time estimation. The third tool is the device/
driver synthesizer that compiles the timing diagrams and Verilog devices into a customized
code for the given processor. The fourth tool is the interface synthesizer which has the role
of allocating I/O resources to connect a processor to the desired peripheral devices and cus-
tomizing the access routines accordingly. The fifth tool is the communication synthesizer
in charge of generating the hardware and software needed from inter-processor communi-
cation. The last tool is the scheduler which generates C code to meet real-time constraints
in software with all resources allocated.

The chief advantage of this approach is its efficiency in building suitable input/output
interfaces for controlling external devices.

The second class is based on prototyping. A typical example is the SIERA tool

22

[Srivastava95]. SIERA is a framework for rapid prototyping of systems that span across
chip and multiprocessor boards in hardware as well as device drivers and operating system
kernels in software. This work utilizes chip-level synthesis tools and DSP code synthesis
tools to present a framework for performing both activities. A system is specified as a net-
work of concurrent sequential processes in VHDL. The communication between processes
is by means of queues. This specification is manually mapped into an architecture template.
The main strength of this methodology lies in management of system complexity by using

modularity and reusability afforded by existing libraries.

Other codesign aspects have been addressed in literature too. One of them is the code
generation for the software synthesis. Typically, flexible processors are used for software
implementation. Another codesign interest is related to case studies on specific examples.
Applying design automation to real-life problems provides insight into the complexity and
requirements demanded by these systems.

The related work review, presented above, is not exhaustive but merely representative

of the contemporary work by examining important CAD frameworks for codesign.

Table 2.1: Fields of system design with related work

Topics References

Specification & verification CODES [Buchenrieder92], COSMOS [BenlIsmail 94b],
SpecCharts [Gajski93]

Simulation PTOLEMY [Buck94b], Insulin [Sutarwala93]

Analysis ADAM [Jain92], SPECSYN {Vahid92], CASTLE [Theibinger94]

Partitioning COSYMA [Henkel94], VULCAN II[Gupta93], UNITY[Barros93]

Cosynthesis and prototyping | Chinook [Chou95], STIERA[Srivastava95]

Case studies and JPEG [Gupta94c], Powertrain [Hu94], Video[Wilberga],
MPEG([Wilberg96]

Code generation CAPSYS [Auguin94], CodeSyn [Lien94]

2. 5. The proposed codesign framework

Our proposed methodology is presented according to the codesign problem statement
already presented in section 2.1. Figure 2.2 shows the proposed codesign flow. The input
specification is described in any HDL or programming language where a certain hierarchy
is inherent. This description is then manually translated into a hierarchical model based on
data flow graphs. The hierarchical model can also be taken from any modeling took avail-
able on the market. Each element or task in the model is a node in a graph, this node may
be a simple basic operation or may be decomposed into a subgraph where sub-nodes may
be basic operations or other data flow graphs. Edges between nodes correspond to data de-
pendencies between operations or tasks. The hierarchy of the input system allows the use
of a variable granularity rather than a fixed one at the level of basic operations or at the level
of tasks.

Figure 2.3(b) shows the different modeling views provided by the hierarchy for the
FIR filter example described in Figure 2.3(a).

The FIR behavior may be built of one black box with all the inputs and outputs, or of
three blocks where the outer loop (the first For loop) is decomposed, or five blocks where
the two loops are decomposed or finally of seven blocks corresponding to the assignment,
comparison, multiplication and addition basic operations.

This model is then estimated in order to determine for each node in the model the per-
formance and area metrics when implemented into hardware or software using the Specsyn

estimators. We provide the technology files of our specific resources to these estirnators

[Gong95]. The technology files describe the target hardware and software.

The next step is the partitioning. A level of hierarchy or a given granularity is first
selected. This results in a set of tasks corresponding to the system model at the chosen gran-
ularity. These tasks are then assigned to hardware or to software while minimizing a cost
function and satifying a performance constraint. Figure 2.3(c) shows the number of possible
hardware/software partitionings for each one of the possible models for the FIR filter. The
more the number of blocks increases, the more the number of possible alternatives increases
too and the more the partitioning algorithm becomes complex. We will show in the next
chapters how the optimal modeling level may be found to satisfy the performance con-
straints while simplifying the partitioning algorithm.

Once a hardware or a software implementation has been determined for each element,
the hardware and software synthesis are performed according to the processor on which the
software will be run and to the hardware technology targeted for hardware. The interface
between the two partitions is also synthesized. The final implementation is then validated
using a cosimulation environement.

One of the main contributions in the proposed codesign framework, shown in Figure
2.2, is the possibility to choose different granularities. The tool starts at the simplest model
of the input system by fixing a coarse-grain modeling. The model is built of a small number
of components and the partitioning algorithm complexity is of course reduced. If the con-
straints are not satisfied using this modeling level, the tool may change the granularity to-
wards fine-grain modeling. The number of components increases but the design exploration
may be more efficient. We will show later in chapter 6 how the variation of the granularity

allows a very efficient design space exploration.

(System specification’

(@'erarchical modelin;

-t

(Fixed granularity model’

Behavioral analysis

(Partitioning)

.

Sw partition

(Sw synthesis,

Hw partitionl

(Hw synthesis’

—

[

o

Hw/Sw interface'

—

(Cosimulation)

Modify the

granularity

Y Final implementation

Figure 2.2. The proposed codesign flow.

26

Maodel 1

FIR

data-out

FIR-filter()

begin
Fori=1toN
do
Forj=1toM
do. . .
if (i >))
then i o .)
data-out[i] = data-in{i-jJ*coeff[j] + data-out[i];
end if;
endo
endo
\end FIR-filter;
(a). High-level description of the FIR filter.
Model 2 Model 3 Model 4
i
data-in Cmp-ij
FIR-loopl|—— coeff
T daa-in} ppupiply (NT
Tooe
INT Accumulate ia_tg_-out
1 data-outl
j—{Iner-j +—i
_ \ii

(b). The modeling level alternatives for the FIR filter example.

Model Model complexity sg qujtl;lt,'leea’;zz’t"{t‘;?l{g/s
Model 1 1 block 2
Model 2 3 blocks 8
Model 3 5 blocks 32
Model 4 7 blocks 128

(¢). The codesign alternatives for the FIR filter example.

Figure 2.3. Modeling and codesign alternatives.

27

The proposed codesign approach provides new contributions for the following aspects:

1. The proposed use of hierarchy overcomes many of the limitations of modeling tech-
niques. Our approach supports various models from the simplest to the most complex
Jor the same input system. These modeling alternatives are already available in any hi-
erarchical modeling tool but we propose to take advantage of it during the codesign
process. A main feature in codesign is to explore the design space efficiently in order
to find the best final implementation. Our modeling technique allows an enlargement
of the modeling space for the same input system and thus a large choice for the final

implementation.

2. A model analysis step is performed to estimate the performance of each block and to
determine the critical blocks with all the possible concurrency between them. This
analysis step provides very important information that will later guide the partitioning

algorithm in order to optimize the overall system performance.

3. The partitioning algorithms in the literature are various but a non-negligeable num-
ber of codesign frameworks perform partitioning manually. Those partitioning algo-
rithms which are automatic consider a limited number of parameters in order to
simplify the algorithm complexity. In our proposed algorithm, many parameters may
be taken into account (performance requirements, hardware/software concurrency,

and communication overhead).

2. 6. Summary

This chapter showed a typical codesign flow, a review of the most popular codesign
frameworks and then the proposed methodology. Our work is not an attempt to implement
a complete codesign framework, but we concentrate on specific tasks to improve the stan-

dard codesign flow. All our proposed tools and techniques are intended to be integrated into

28

available cosynthesis tools. Developing the compiler which translates the input specifica-
tion into an internal model and the hardware and software synthesis tools is out of the scope
of our work. Compilers and synthesis tools are already available as industrial tools. Our ob-
jective is to propose efficient techniques for specific tasks in the codesign flow that can be
easily integrated into available codesign frameworks to improve their performance and de-
sign exploration techniques. The major improvements provided by our proposition are re-
lated to the granularity flexibility that expands considerably the codesign space exploration
and the pseudo-automatic partitioning approach. The follow chapters present the different
codesign steps in detail with the solutions and approaches adopted in our codesign method-
ology. The next chapter presents the modeling technique in detail. We also concentrate in
chapters 4 and S on the partitioning algorithm using a graph partitioning heuristic which

takes into account the performance estimation and concurrency between model’s tasks.

SYSTEM SPECIFICATION

This chapter examines issues in the specification and modeling of system func-
tionality for systems that are the target of hardware/software consynthesis. The essential
idea is to capture properties of a system without regard to its implementation.

Specification and design approaches provide many advantages through a designer’s
lifecycle. First, by creating a test-bench early in the design process and simulating the be-
havior, functional errors and omissions are detected early and easily corrected. Similar cor-
rections can be extremely difficult to make late in the design cycle. Second, by defining
module behavior completely, fewer integration problems are likely to occur after concur-
rent design of each of the modules. Third, by using a machine readable language, automated
estimators and synthesis tools can be applied to reduce the design time or to rapidly evaluate
alternative implementations. Finally, by writing a behavioral specification independent of
any implementation information, redesign is greatly simplified. A variety of languages have

been proposed for behavioral specification, such as VHDL, Verilog, HardwareC, CSP, and

StateCharts. A good language should support a conceptual model useful for the particular
system to be specified. Existing languages support conceptual models such as finite-state
machines or data flow graphs.

In section 3.1, a list of the modeling techniques generally used in related work is giv-

en. In section 3.2, the proposed model is presented on examples to show the efficiency of

the modeling technique.

3. 1. Modeling techniques

A model refers to an abstraction over its object, capturing important relationships be-
tween components of the object. Models are often needed in order to avoid creating de-
tailed implementation.

A formal model of a design should consist of the following components:

L. A functional specification (implicit or explicit relations involving inputs and out-
puts)

2. A set of properties that the design must satisfy.

3. A set of performance indexes that evaluate the quality of the design.

4. A set of constraints on performance indexes.

Common models used to capture the functionality of digital systems are listed in the
next sections. Each one of these models is appropriate for a specific application field. A

combination of one or two of these models may be required when using hybrid systems.

3.1.1 Finite State Machines
Traditional FSMs are good for modeling sequential behavior, but are impractical for

modeling concurrency or memory because of the so-called state explosion. Several speci-

31

fication languages are based on finite-state machines, like StateCharts and SDL
[Benlsmaii94b]. In order to avoid their limitations, the FSMs are often improved by three
characteristics to reduce the state space size: hierarchy, concurrency and non-determinism.
Figure 3.1(a) shows an example of a simple FSM state digram. This state diagram shows
the system control flow from one state to another or what is called state transitions. The
state transitions are the edges on the state digaram. These transitions are initiated by input
conditions or environmental events (values on the edges). Several common systems may be
modeled as FSMs but these are more appropriate for control-dominated systems because no
data processing is specified in the FSM behavior. To overcome such a limitation, extended

FSMs have been proposed where the data processing is added to each state definition.

3.1.2 Data flow graphs

A program is specified by a directed graph where the nodes represent computations
and the arcs represent totally ordered sequences of events. Examples of languages based on
data flow graphs are Esterel [Dembinski], HardwareC [Gupta%4], and Verilog [Hu94]. Fig-
ure 3.1(b) shows a small data flow graph where the nodes are basic arithmetic operations
and the arcs shows the sequencing and data dependencies between the operations. The bot-
tom of Figure 3.1(b) shows the arithmetic expression modeled by the data flow graph. This
kind of modeling has been shown to be appropriate for data-driven applications especially
digital signal processing applications. Data flow graphs have been extended to Control-

Data flow graphs in order to support control-driven applications.

3.1.3 Communicating processes

The system behavior is described as a set of concurrent processes communicating via

32

message passing or shared data. This model is appropriate for control-dominated systems
with concurrency which is a characteristic supported neither by finite-state machines nor by
data flow graphs. An Example from this category is CSP [McFarland92] and VHDL
[Eles94]. Figure 3.1(c) shows a VHDL code sample where two processes execute concur-
rently. The two processors are synchronized using wait statements on common signals

(signall and signal2). Internally, each process may be modeled as an FSM or a data flow

b ¢ d N\
Procl : process
+ begin
if (reset = 1’)
then
d out <= “0’;
* end if;

signall <= ‘1’;
wait signal2;
D end process;

2
é’,_) proc2 : process

begin
wait until signall =’1’;
out <= out *2 +d;

signal2 <= “1’;

x end process;

x =(+1) * (k - ((a+b) * (c*d)))/2 -/
(a). A finite state machine (b). A data flow graph (¢). Concurrent processes
Figure 3.1. Examples of the different modeling techniques.

3.1.4 Object-oriented modeling

The system behavior is described as a set of objects with their associated procedures
and functions. This modeling concept is largely used in software development but its list of

users and application fields is continuously increasing. This makes it a future candidate for

33

modeling high-level systems which can be implemented in hardware or in software. An at-

tempt to use the C++ language for high-level systems has been purposed [Forrest92].

3. 2. The proposed model

In our codesign framework, we consider the input system as a hierarchical data flow
graph. This means that the system behavior is represented as a set of processes or functions,
each one described as another set of processes and functions until basic nodes are reached.
Basic nodes are simply basic operations like arithmetic or logical operations. Blocks or
functions may be the processes from VHDL description or the procedures in a C specifica-
tion. Then, each block or function is decomposed into subblocks or basic statements. When
basic statements are reached, the hierarchy is stépped while non-basic statements are de-
composed until their basic statements are reached. Examples of non-basic statements are
loops, conditional branches or simply a block of sequential statements. Each level in the hi-
erarchy provides a different model, in terms of complexity, for the same input system.

Figure 3.2(a) shows an example from the communications field, the HDLC entity
with its environment [Berry91]. An HDLC entity is the set of functions needed to perform
the communication between a user and the network, in such a way that all low-level func-
tions related to the network are transparent at the user side. The HDLC entity communicates
with the user via the variables, user-Input, and user-output, and with the network via the
variables, frame, endframe, iline, sline, and nriine. Internally the HDLC functions are struc-
tured into three main blocks, the window manager, the emission manager and the frame re-
ceiver, as shown in Figure 3.2(b).

Figure 3.3 shows the HDLC entity as a hierarchy of interacting and dependent ele-

34

ments. We propose a new use of the already available hierarchy to consider different views
of different complexity for the same system functionality. Indeed, level 1 of hierarchy
shows the main block, then at level 2 the main block is decomposed into 3 blocks, the win-
dow manager block, the emission manager block, and the frame receiver block. At level 3
of the hierarchy, each one of these blocks is decomposed into 3, 2, and 2 subblocks respec-
tively. Note that the frame receiver block is constituted at this level of one basic operation
(assignment statement) for which no further decomposition is possible, and a loop structure
which can be decomposed in the next level as the set of basic operations of the loop body.

This example shows how the behavior is structured from few complex boxes at low
levels of hierarchy to the most detailed description which is simply a lot of basic and simple
operations at high levels of hierarchy. These different modeling views are avaiiable in all
modeling languages supporting the hierarchy. Our main contribution is to use each one of
these modeling alternatives during the codesign process.

Each level of the hierarchy in the model is described as a data flow graph. Figure 3.4
shows examples of data flow graphs obtained for two different levels in the HDLC hierar-
chy.

A node in the data flow graph is characterized by its inputs (input edges to boxes), its
outputs (ouput edges from the boxes) and the internal functionality of the node. The node
may be a simple operation or a pointer to another data flow graph. Edges between nodes in
the data flow graph correspond to data dependencies. Nodes that may be executed concur-
rently do not have any data dependencies as the user-input handler and acknowledge han-
dler blocks. Dependent nodes have to be executed sequentially as is the case of the frame

emitter and line manager blocks.

35

This data flow graph modeling allows the analysis to identify concurrent and depen-
dent blocks in the model. In Figure 3.4(b), the blocks acknowledge handler, buffer manager
and frame emitter have to be executed sequentially because they have data dependencies.
The buffer manager block waits for the variable na which is an output of the biock acknow!-
edge handler and the frame emitter block waits for the variable nu which is output by the
buffer manager block. The blocks line manager and buffer manager can be executed in par-

allel since there is no common variable shared by the two blocks.

/ \ f User'l-illpllt User-output \
USE RI

User-output User-input l Window-Manager I
NS I |[NR

window)
Frame
Receiver
LINE l
EndFrame Frame

HDLC ENTITY empty
Emission
Frame
_ j \ EndFrame NRline fline NSline J
(a). The HDLC inputs, outputs, (b). The HDLC block diagram

Manager
and environment

Figure 3.2. The HDLC entity environment and block digram.

36

]
Window I User - input - Handler
Manager |

Acknowledge - handler }—+—

Buffer - manager 1:—

I

I

|

|

|

| Emission I—|—| Frame - Emitter

: Manager : I Line -Manager I-I———

[

! { |

[i [

I Frame Assignment statement '

| Receiver | |
LOOP I——-—

[| l |

_ Level1 ! Level 2 ! Level 3 | Level 4/

Figure 3.3. The hierarchical model of the HDLC entity.

e N

(na, nu, user-input, NRline,

} window-empty)

Window manager,

(frame, endframe) | (nu) (lline)

CEmission mannget) Frame receiver

Frame Emitter

&(na, user_input) ‘Tv':nm:; o)
User-input Acknowledge
handler handler

Buffer manager) (frame.endframe) (nr)

}

Assignm

Line manager

ent

~

line-free
(lline)

e

NSline User-output

- AN

(nr)

LOOP

¢NSlinc

User-output

{+

%

(a). The data flow graph at level 1.

(b). The data flow graph at level 2.

Figure 3.4. The data flow graph models corresponding to different levels of hierarchy.

37

When codesigning the HDLC function, the designer may start to find the best parti-
tioning at level 1. In this case, the partitioning algorithm handles only three functional and
interdependent blocks which are the window manager, the emission manager and the frame
receiver (Figure 3.4(a)). Each block is assigned to hardware or to software based on its per-
formance estimation determined during the performance estimation step.

The data flow graph at this level shows that the block frame receiver is independent
of the other two blocks, the window manager and the emission manager. If the two later
blocks were assigned to software and the block frame receiver to hardware, there will be no
communication overhead because no communication is needed between the two partitions,
Figure 3.5(a). Executing the frame receiver block concurrently with the blocks window
manager and emission manager reduces the overall execution time. The total execution
time is the maximum of two execution times: the frame receiver execution time in hardware
and the sum of the window manager and emission manager software execution times.

A complete software solution where all the blocks are assigned to software would ex-
ecute sequentially all the blocks even if they can be executed in parallel. The total execution
time is then the sum of the execution times of the three blocks, window manager, emission
manager and frame receiver.

If no partitioning that satisfies the performance requirements is found when consid-
ering the HDLC as three interconnected blocks, the number of blocks may be increased by
moving to level 2 of the hierarchy.

At this level, seven blocks build the system model, the user-input handler, the ac-
knowledge handler, the buffer manager, the frame emitter, the line manager, the assign-

ment statement and the loop (Figure 3.4 (b)). This detailed model allows more partitioning

38

alternatives. Indeed, more partitioning combinations are performed with seven blocks than
with 3 blocks. All the possible alternatives may be evaituated before proposing the final im-
plementation.

The data flow in Figure 3.4(b) shows that the blocks line manager, buffer manager
and loop may be executed concurrently while the blocks user-input handler, acknoweldge
handler, buffer manager and frame emitter have data dependencies and should be executed
sequentially.

Figure 3.5(b) shows a possible hardware/software partitioning. Two variables, na and
line-free, need to be transferred between the hardware and the software partitions. The over-
all execution time is equivalent to the sum of the execution times of the following three
blocks, the user-input handler, the buffer manager and the I-frame emitter. The execution
time is of course less than the execution time of the complete software solution which
would be the sum of the execution times of the seven blocks in the input model.

The level of abstraction may be reduced more and more as long as the required per-
formance is not satisfied or until the most detailed model of the input system, i.e the basic

operation description level, is reached.

39

I-Frame receiver

User-output

(na,nu,user-input, NRline, window empty)

Software
partition

Window manager]

Frame
Endframe

ission manage

NSline

- /

(a). Hardware/software partition at level 1.

f

N

(na,user-input)

User-input
handler

Frame Emitter

Iline

NSline ¥

(nu,NRline,window empty)

Assignment

LOOP

user-output

Hardware
partition

(frame,
endframe)

\

/

(b). Hardware/software partition at level 2.

Figure 3.5. Possible hardware/software partitioning.

3. 3. The model data structure

In this section, we describe the data structure used to implement the proposed model

in a C++ framework. We present the principal classes and the list of associated functions

and procedures. Figure 3.6 shows the two major classes needed to implement our hierarchi-

cal data flow graph model. These classes correspond to two objects: the task and the data

flow node.

40

The first class describes each task in the hierarchical model, Figure 3.6. The task de-
scription block contains information on the task identifier, the task type, the list of variables
used by the task, the list of performance and area estimates of the task, the pointer to its sub-
tasks if the task is not a basic operation.

The lower part of the description block shows the list of procedures associated with
the task object. These are the class constructor to build the description block for each task
in the model, the procedures transcoding, mapping and type-computing to extract the per-
formance estimates read from a technology file for each task in the model. The transcoding
procedure is used to determine the block read from the data files. The mapping procedure
matches the read block with the corresponding block in the model. The type-computing
procedure determines the block type (basic or non-basic). Finally, the last procedure is
span-hierarchy to span the hierarchy of the task in order to determine the basic operations
used by the task. This procedure is used to compare two tasks in order to determine the com-
mon basic operations between them.

The second class shown in Figure 3.7 is the basic element or the node in the data flow
graph structure. The description block of the node contains information on the node identi-
fier which is the same as the one used in the hierarchical model, the list of the nodes con-
nected to the current node. This list is split into two lists, one for the successors and the other
for the predecessors. The list of successors correspond to the list of tasks in the model that
use an input variable which is ouput by the current task while the predecessors are those
tasks that provide the input variables of the current task.

The node description block contains also the scheduling cycle of the node when

scheduled As Soon As Possible, ASAPly and As Late As Possible, ALAPly. These two val-

41

ues determine the critical nodes in the data flow graph. We will see in chapter 4 how these
values are determined. Finally, the last field is the next node in the data flow graph.

The list of procedures associated with the object “data flow graph node” are: the con-
structor procedure to build the description block for each node in the data flow graph and
two procedures to determine the list of successors and the list of predecessors for each node
in the data flow graph. These lists are determined by extracting data dependencies of the

current node with all the other nodes in the graph.

/‘ List of object’s data fields i
Identifier

\

T VARIABLE DESCRIPTION BLOCK
ype Identifier
List of variables -
Type
Estimate list
Hierarch Usage
y Hardware size
Next block -
Software size

List of object’s procedures

\Next variably

Constructor() 7~ Hardware time "\
Transcoding() Software time
Mapping() Hardware area

Type-computing()

\ Span-hierarchy()

J

\ (a). TASK DESCRIPTION BLOCK (hierarchical model) /

\Software area_/

Figure 3.6. The data structures used to implement the hierarchical model.

/ ; List of object’s data fields ;
Node identifier
List of successors

List of predecessors

ALAP scheduling cycle
ASAP scheduling cycle

Next node

List of object’s procedures

Constructor()

Find-predecessor-list()

K Find-successor-list() }
& (b). NODE DESCRIPTION BLOCK (data flow graph) J

Figure 3.7. The data structures used to implement the data flow graph.

3. 4. Summary
As shown above, the proposed model has two main characteristics, the hierarchy and
a variable granularity. The use of these features allow an expansion of the design space. For
each level of the hierarchy, a different granularity is provided for the same input system.
Such a way of using the hierarchy enhances the codesign process with a new feature

which has four main advantages:

1. Many input models are possible for the same input system. The difference between

all these models is their complexity while they describe the same behavior.

2. For each input model, the codesign process explores the design space to find a so-

lution.

3. No need to handle a complex input model when the performance constrairets are

43

satisfied using simple input models.

4. The above advantage may reduce considerably the CPU runtime of the codesign

process.

We will show later that the generation of different implementation alternatives for the
same system is achieved only by varying the level of hierarchy.

Once the system model is constructed, the analysis of the behavioral blocks is per-
formed to estimate the performance of each block in the model on the target architecture
and to determine the concurrency and the dependency between the model blocks. Such
analysis data is used during the partitioning to find the best assignment for each block. The
next chapter presents the system analysis approach with the proposed performance estima-

tion and scheduling techniques.

SYSTEM ANALYSIS

In this chapter, we describe two major analysis tasks. The first one is the perfor-
mance estimation which provides the performance estimates used for block mapping during
the partitioning. The second one is the scheduling to determine the execution flow of the
different blocks in the design. This scheduling determines the concurrency between the dif-
ferent blocks. This information is also used during the partitioning.

Section 4.1 describes the performance estimation problem and in section 4.2 , the pro-
posed technique for the performance estimation is presented. Sections 4.3 and 4.4 describe

the scheduling problem and the proposed scheduling technique respectively.

4. 1. Performance estimation

System design is a set of tasks which convert the system-level specification into a set
of completely specified interconnected modules implementing the specification. Each mod-
ule could be implemented in hardware or as software executing on a processor. A hardware

implementation has better time performance whereas a software implementaticn has lower

cost, shorter development time and allows changes late in the design cycle. Thus, the most
efficient implementation has a minimal amount of costly application-specific hardware
while still meeting the required timing performance constraints.

Due to the large search space associated with system-level design, it becomes a ne-
cessity to have the capability of obtaining estimates of design parameters such as area and
performance that will characterize any implementation of the design. In the absence of es-
timates, the designer cannot make synthesis decisions and perform tradeoffs without actu-
ally synthesizing each partition and then evaluating the implementation.

Estimates of design parameters assist the designer providing him with the capability
of exploring large design search in a relatively short time. The savings in time are evident
if the designer were to synthesize the design completely before realizing that an undesirable
design decision had been made early is the design cycle.

Furthermore, hardware/software partitioning requires performance estimations that
will predict the execution time in order to identify which portion in the specification can be
migrated from hardware to software while not violating the constraints or which portion

needs to be implemented in hardware to satisfy the timing constraints.

4.1.1 Hardware performance estimation

The hardware estimation techniques are related to area and performance of a design
intended for a hardware implementation. Area metrics are concerned with the area of entire
processes or behaviors and consequently with the chip area. Thus, the designer will be able
to determine as to how much area will a particular behavior require or wether a set of given
behaviors be assigned to the same chip without violating the area constraints specified for

that chip. The performance metrics are concerned with the execution time for processes and

inter-process communication times.

4.1.2 Software performance estimation

In order to rapidly explore large design space encountered on hardware/software sys-
tems, automatic software estimation s indispensable in hardware/software partitioning in
which designers or partitioning tools must trade off a hardware with a software implemen-
tation for the whole or a part of the system under design. Software estimation provides three
software metrics, execution time, program memory size and data memory size for a given

target processor.

4. 2. The proposed estimation technique

Once the model is obtained from the specification, we perform an analysis on each
element in the model to characterize its performance and the effect it has on the whole sys-
tem performance. This analysis is performed in two steps, the performance estimation and
the scheduling steps (Figure 4.1). The first step is the performance estimation which is per-
formed given a data base library of the available resources. Four parameters are determined
during this step: the execution time and the area of each partition (hardware and software).
We used the Specsyn estimators developed at the university of California at Irvine to per-
form this step. These estimators are presented in the next section [Narayan92b] [Gong93]
[Huang95]. The second analysis task is the scheduling of the different blocks to determine
the overall execution time and the critical execution path in the model. The proposed sched-
uling technique will be presented in section 4.4. The information provided by the behavioral

analysis step is then given to the partitioning algorithm in order to take the right decisions

47

when mapping blocks to hardware or to software.

(C Hierarchical model) \

Behavioral analysis

CPerformance estimation) CModel schedulina

A
Specsyn estimators ASAP/ALAP scheduling

' '

Execution time ASAP and ALAP values
\ & Code size Critical path

v
_ (Partitioning__) W,

Figure 4.1. The behavioral analysis step.

4.2.1 The Specsyn estimators

Our estimation technique is based on two estimators for software and hardware de-
veloped at the university of California at Irvine. The software estimator is based on a ge-
neric model and does not require different estimators for different target processors. The
hardware estimator is based on data path mapping of the processes with a given clock cycle.

1. Hardware estimation

The inputs to the area and performance estimators are:

1. A SpecChart description representing the design for which the area has to be

estimated. A SpecChart consists of hierarchical concurrent state diagrams built

on top of the VHDL language. An example of a SpecChart description is given

48

in Figure 4.3. The system is first defined as an entity with its input and output
ports. This entity description is similar to the entity definition in VHDL.. The
architecture is then built of three sequential blocks, read_data, processing and
write_data. Each one of these blocks is then described as a VHDL process, i.e
a set of sequentiai instructions [Narayan92a].

2. An allocation list consisting of the number of available operators of each type
to implement the design and their delays. If no allocation list is specified, the
estimator will allocate one operator of each class (adder, multiplier, etc.) need-
ed in the design. Figure 4.2 shows the content of an allocation list file. Each line
in this file describes a resource block. The block is defined by its class, type,
delay (number of cycles needed to execute the block), area/bit (the average
number of transistors required to implement one bit slice of the block) and the
number of copies available.

3. The clock cycle which will be used to determine the number of microstates in
the design. The first line in Figure 4.2 specifies the clock cycle which is equal
to 50 ns in this example.

The design model for estimation is a datapath/control logic model on which the
scheduled behavior is mapped. The scheduling technique used is very simple, the
ASAP scheduling.

Using the scheduled behavior with the provided clock cycle, a time estimation is eval-
uated following the execution flow determined during scheduling.

The strategy for area estimation is based on dividing the total design area into the fol-

lowing components:

49

1. Datapath blocks, which consists of registers, function units such as adders and
interconnect units such as multiplexers. The datapath blocks are assumed to
comnsist of a stack of bit-sliced components.

2. Control units, which controls the data transfers within the datapath compo-
nents. The control unit could be a random logic implementation consisting of
two-level AND-OR gates or of a ROM.

3. Memories which are used to implement the arrays in the design specification.

/

CLK 50

CLASS multiplexer TYPE multiplexer DELAY 7 AREA/BIT 2 1
CLASS memory TYPE memory DELAY 19 AREA/BIT 3 l
CLASS memory TYPE register DELAY 15 AREA/BIT 9 1
CLASS operator TYPE & DELAY 0 AREA/BIT 0 1
CLASS operator TYPE abs DELAY 56 AREA/BIT 9 1
CLASS operator TYPE mod DELAY 163 AREA/BIT 38 1
CLASS operator TYPE rem DELAY 163 AREA/BIT 38 1
CLASS operator TYPE ** DELAY 163 AREA/BIT 38 I
CLASS operator TYPE * DELAY 163 AREA/BIT 38 l
CLASS operator TYPE / DELAY 163 AREA/BIT 38 1
CLASS operator TYPE + DELAY 49 AREA/BIT 9 1
CLASS operator TYPE - DELAY 56 AREA/BIT 18 l
CLASS operator TYPE /= DELAY 23 AREA/BIT 7 1
CLASS operator TYPE >= DELAY 23 AREA/BIT 7 |
CLASS operator TYPE <= DELAY 23 AREA/BIT 7 1
CLASS operator TYPE > DELAY 23 AREA/BIT 7 1
CLASS operator TYPE < DELAY 23 AREA/BIT 7 [
CLASS operator TYPE = DELAY 23 AREA/BIT 7 1
CLASS gate TYPE xor DELAY 6 AREA/BIT 4 1
CLASS gate TYPE not DELAY 2 AREA/BIT 2 I
CLASS gate TYPE nor DELAY S AREA/BIT 2 1
CLASS gate TYPE nand DELAY 3 AREA/BIT 2 1
CLASS gate TYPE or DELAY 6 AREA/BIT 3 l

\CLASS gate TYPE and DELAY 5 AREA/BIT 3 1 /

Figure 4.2. The allocation list for hardware estimation.

50

/ — MM : Data dimension
—~ NN : Coefficient dimensions

entity FIR_1D is
port
(
input_port :ininteger;
output_port : out integer

end;

architecture FIR_IDA of FIR_ID is

begin

behavior FIR_behavior type sequential subbehaviors is
type tabieau_!0 is array(0 to 10) of integer:
type tableau_I00 is array(0 to 100) of integer:

variable NN.MM :integers
variable data_in,data_out : tableau_100;
variable coeff : tableau_100;

begin
Read_data: (TOC, true,Processing);
Processing:(TOC, true,Write_data);
Write_data:(TOC, true,stop);

behavior Read _data type sequential subbehaviors is
begin
foriin | to MM
loop
data_in(i):= input_port:
end loop;
end Read_data;

behavior Write_data type sequential subbehaviors is
begin
foriin [to MM
loop
output_port <= data_out(i);
end loop;
end Write_data;

behavior Processing type sequential subbehaviors is
begin
foriin 1o MM
loop
data_out(i) :=0;
forjin [to NN
I°‘.’F .
tG<=i)
then
data_out(i) := data_out(i) + data_in(i-j) * coeff(j);
end if;
end loop;
end Toap:
end Processing;

\end FIR_behavior;
end FIR_1DA;

Figure 4.3. The SpecChart description of the FIR filter.

51

2. Software estimation

The software estimator is based on a generic model and does not require differ-
ent estimators for different target processors. A single estimator and a set of tech-
nology files for different target processors are used. This makes the estimator fast
and easy to extend for different target processors.

In order to obtain the estimates for processes, these process code must be com-
piled into machine instructions of the target processor. For example, if the process
will be implemented on an Intel 8086 processor, it needs to be compiled into the
8086 instruction set. Using the timing and size information associated with each
type of instruction such as how many clock cycles the 8086 instruction executes
and how many bytes it takes, we can obtain the performance and program size of
the process.

Instead of using different compilers and estimators for different processors, a
generic estimation model is used. The processes described in SpecChart are con-
verted into a set of generic instructions shown in Figure 4.4. The list of generic in-
struction is given with the possible addressing modes for each one of them. The
estimator computes the software metrics based on the generic instructions and the
technology files for the target processors. For example, if the process is going to
be implemented on a Motorola 68000 processor, then the technology file for the
68000 processor is used during the estimation. The technology file for the target
processor supplies information about how many clock cycles each type of generic
instruction needs and how many bytes it takes if the generic instruction is executed

on that target processor. The technology file for a target processor is derived from

52

the timing and size information of the processor’s instruction set. Examples of

technology files are given in Appendix A.

The advantages encountered by this estimation techniques are:

1. With a generic model, we do not need to use different compilers and different es-
timators for different target processors. Instead, only a single compiler, estimator
and a set of technology files are required for the estimation.

2. The generic model makes it much easier to apply the estimator to other target pro-
cessors. The estimation can be carried out as long as the technology file for the tar-
get processor is supplied.

3. It is much easier and faster to compile the specification into a generic instruction
model than those associated with specific processors because the translation from

the high-level specification to the generic code is automatic.

Instruction Destination Source 1 Source 2
ALU Dest_addressing (1) Srcl_addressing (2) SrcZ_addressing (2)
MUL Dest_addressing Srcl_addressing Src2_addressing
DIV Dest_addressing Srcl_addressing Src2_addressing

COMPARE Dest_addressing EMPTY Src2_addressing

MOVE EMPTY EMPTY EMPTY
CJUMP EMPTY EMPTY EMPTY
JUMP EMPTY EMPTY EMPTY

RETURN EMPTY EMPTY EMPTY
CALL EMPTY EMPTY EMPTY
NOP EMPTY EMPTY EMPTY

(1) {Register, Direct Memory}
(2) {Constant, Register, Direct Memory, indirect Memory}

Figure 4.4. The list of generic instructions.
The software execution time of a process is determined using flow analysis of

the execution time of its constituent basic blocks. The execution time of each basic

block is computed by summing the time execution of its constituent generic in-

53

structions. The execution time of each generic instruction is taken from the tech-
nology files supplied to the estimator.

The software area estimation is to determine how much program memory
(bytes used to store the compiled program representing the process) and how much
data memory (bytes used to store the data manipulated by the process) are needed.

Based on the size of each generic instruction, the program memory size of each
basic block is the sum of that of all generic instructions in that basic block. The
data memory size is determined based on the data declaration parts in the specifi-
cation. The data memory size of each declared type is specified in a configuration
file. The information used in the configuration file of Specsyn estimators is shown

in Table 4.1

Table 4.1: Memory size of the base types

| Base type Data memory size (bytes)
FBIT T
1tvector n/s, n 1s the number of bits in the vector
" Boolean
_haracter
Integer
Natural
eal
tng
‘iime

1 B o BN B —

4. 3. Scheduling

The performance estimates obtained for each block in the model are not suffi-
cient to determine the execution time for the complete model. This is possible only
after performing a scheduling of the blocks. The scheduling problem is to find an
efficient sequencing of the tasks to optimize or tend to optimize the required re-

sources and the total execution time. With the estimated performance for each

54

task, performing scheduling provides a measure of the overall execution time.
The scheduling problem is a well known problem, also known to be NP-Com-
plete. Many heuristics have been proposed to solve this problem in a polynomial
time. The simplest techniques are the ASAP (As Soon As Possible) and ALAP (As
late As Possible) scheduling. In the ASAP approach, each task is scheduled as
soon as a resource is available to execute it while the ALLAP approach tends to
schedule a task as late as possible. Figure 4.6 shows the algorithmic description of
these two scheduling techniques. The two approaches allow, when applied to the
same data flow graph, to determine the critical path. Figure 4.5 shows a scheduling
example using ASAP (a) and ALAP (b) approaches on the same data flow graph.
The critical path is determined by the list of tasks for which the execution cycle is
the same independently of the approach applied (the sequence T1, T3, T4 and T6

constitutes the critical path).

/

\-

critical path\ @ @ T

Cycle |

3
y

4
%.
\TB T3 @ Cycle 2
£
\)
7
T4 T5) (T4 j Cycle3
[
@
U

(a). ASAP scheduling (b) ALAP scheduling /

Figure 4.5. An example of ASAP and ALAP scheduling.

55

ALAP()

alap-cycle = asap-cycle;
while (all tasks not scheduled)
{

I{XSAP()

asap-cycle =0;
while (all tasks not scheduled)

if (all successors of task; are scheduled

or task; has no successors) if (all predecessors of task; are schedul

or task; has no predecessors)
schedule task; at asap-cycle;

}
}

}asap-cycle = asap-cycle + 1;

L

schedule task; at alap-cycle;

}
}
| alap-cycle = alap-cycle - 1;

N

Figure 4.6. The ASAP and ALAP scheduling procedures.

The performance estimation step allows the characterization of each block indepen-
dently of other blocks while the scheduling step determines the position of blocks in the
complete system execution flow. At each level of hierarchy, the selected blocks are ASAP
(As Soon As Possible) and AL AP (As Late As Possible) scheduled to determine the critical
path and thus to identify critical blocks (Figure 4.1).

Figure 4.7 shows the obtained scheduling at two different levels of hierarchy for the
HDLC example. At level 1, three blocks are considered and two possible execution paths
are found. The critical path is the one starting at the block window manager and finishing
at the block emission manager. At level 2, seven blocks are selected and four longest paths
are found. Two critical paths are found in this case, the first one starts at the block user-
input handler and ends at the block frame emirter while the second starts at the block ac-

knowledge handler and ends at the block frame emitter.

56

ASAP scheduling ASAP scheduling
(na, nu, user-input, NRline, . (na, user_input) . NRline,
*window —empty) (lline) a r.np (n:in d ow?ccm pty) (frame,endframe) (nr)
{(Window manager, Frame receiver : CL-’ CL’
: User- t
isugulixllgx!l Line manager Assi

b — — — —— —— — — et

User-output
[frame, endframe)

Emission manager

NSline

(na, nu, user-input, NRline,
‘ window-empty)

Window manager,

frame, endframe) |(nu) ([line)

— — — —— — —— — ——

NSline User-output

— e — — e — —— — — — — —— —— — —

User-output

NSliine

(nu, NRline.
window-empty

(na, user_input)

User-input
handler

User-output

(a). The ASAP and ALAP scheduling
at level 1 of the hierarchy.

KALAP scheduling J \ALAP scheduling /

(b). The ASAP and ALAP scheduling
at level 2 of the hierarchy.

Figure 4.7. The task scheduling for different levels in the hierarchy.

The scheduling step has two main objectives:

a). Identify the critical paths in the model execution.

b). Determine all the possibilities of concurrency berween the hardware and soft-

ware partitions by determining clearly all data dependencies.

57

. 4. 4. Summary

We have seen in this chapter that the performance estimation and scheduling tasks al-
low to determine an estimate of the execution time for the whole system. The next chapter
shows the way these estimates are used during partitioning to guide the partitioning deci-

sions.

58

SYSTEM PARTITIONING

In this chapter we address the problem of system functionality partitioning with the
objective of achieving an implementation into separate components. The partitioning prob-
lem is of two types: homogeneous and heterogeneous. The objective of homogeneous par-
titioning is to partition a system functionality into a minimal number of parts such that all
parts are implemented completely in hardware or in software. Homogeneous partitioning
for hardware is typically done under size constraints on each of the parts, whereas for soft-
ware implementations, the objective of partitioning is typically to increase resource utiliza-
tion in order to achieve speedup in overall execution time.

We focus here on the heterogeneous partitioning problem, where the objective is to
partition the system model for implementation into hardware and software components.
The difference in the rates of computations causes variations in the rates of communication

between hardware and software components and thus entails a higher communication over-

head than purely hardware or software partitions, due to necessary handshake and buffering
mechanisms. Clearly, the problem of partitioning into hardware and software is much more
complex than partitioning for implementations into purely hardware or software. The par-
titioning procedure presented in this chapter attempts to perform a division of functionality
at diferent levels of the model, from the basic operation level to complex block level. The
partitioning procedure attempts to supplement the conceptual design process by providing
the system designer a means to handle the compexity associated with a detailed design de-
scription like at the language-level operations.

The partitioning problem for flow graphs refers to the assignment of operations in the
graph to hardware or software. This assignment to hardware or software determines the de-
lay of the operation. Further, the assignment of operations to a processor and to one or more
application-specific hardware circuits involves additional delays due to communication
overheads. All partitioning schemes must attempt to minimize this communication.

In this chapter, we focus on the hardware-software partitioning problem. As dis-
cussed in chapter 2, the task-level description of an application is specified as a DFG (Data
Flow Graph) representing precedences and this DFG is the input to the partitioning tools.

The partitioning problem is to map each node of the DFG to hardware or software,
and to determine the schedule for each node. The hardware-software partitioning problem
is not just limited to making a binary choice between a hardware or software mapping.

The partitioning problem is a difficult one because good system-level cost metrics,
accurate techniques for estimating the cost, and the techniques for reliable performance es-
timation of system-level hardware and software are not always available.

Partitioning is, in general, a hard problem. The design parameters can often be used

60

to formulate it as an integer optimization problem. Exact solutions are intractable for even
moderately smalil problems. We propose and evaluate a heuristic solution.

The chapter is organized as follows. In section 5.1, the partitioning problem is de-
fined. In section 5.2, we discuss the related work in the area of hardware-software partition-
ing. In section 5.3, we present the HAP (Hierarchy, Analysis and Partitioning) algorithm to

solve the partitioning problem. Its performance is analyzed in section 5.4.

5.1. Problem definition

First, we state the major assumptions underlying the partitioning problem.

I. The precedences between the tasks are specified as a DFG. A performance
constraint on the DFG is given as a deadline D, ie, the execution time of
the DFG should not exceed D clock cycles.

2. The target architecture consists of many processors (which execute the soft-
ware component) and many custom datapaths (the hardware components).
The software and hardware components have capacity constraints. The
communication costs of the hardware-software interface are represented by
three parameters, the hardware (software) area required to communicate
one sample of data accross the hardware-software interface and the number
of cycles required to transfer the data. This cost represents the area of the
interface glue logic and the size of the code that sends or receives the data.

3. The area and time estimates for the hardware and software implementation
of every node are assumed to be known. The specific techniques used to

compute these estimates have been desribed in chapter 4.

61

The hardware-software partitioning problem (PP):

Given a DFG, area and time estimates for hardware and software mappings of all
nodes, and communication costs, subject to resource capacity constraints and a deadline D,
determine for each node i, the hardware or software mapping (Mi) and the start time for the
execution of the node (schedule i), such that the total area occupied by the nodes mapped
to hardware is minimum.

PP is combinatorial in the number of nodes (e(z”) by enumeration). The problem is
known to be NP-hard [Kalavade93].

Many techniques have been proposed to solve this problem. The next section presents
a list of the most known works in the field followed by our approach presented in section

5.3.

5.2. Related work

Partitioning methods can be classified according to four characteristics, the specifica-
tion model supported, the granularity at which the partitioning is performed, the cost func-
tion to be minimized and the partitioning algorithm used.

According to [Edwards97], the main partitioning related works are presented and
classified below according to four characteristics: the input model, the granularity, the cost

function and the partitioning procedure.

5.2.1 The input model

In chapter 2, different specification languages have been presented for codesign. The

input specification is always translated into an intermediate representation which is used

62

during the other codesign steps like analysis, partitioning and synthesis. Column 2 in Table
5.1 shows a list of input models used by the principal partitioning algorithms described in
the literature. In this list, we notice that the Control Data Flow Graph (CDFG) model is the
most used [Henkel93] [Kalavade94] [Steinhausen93] [Gupta93]. This model is widely used
because it may be extracted from different input descriptions, like an HDL specification as
well as a programing language specification. The CDFG model is a unified modeling tech-
nique for both hardware and software but suffers some limitations as size explosion when
it is used to modeling complex systems or some modeling failures when it is used for con-
trol-dominant systems.

To overcome such limitations, other modeling techniques are sometimes used as
shown in Table 5.1. These may be HDL languages like VHDL [Thomas93] {Eles96]
[Luk94], timing diagram [Chou94], set-based [Kumar92] or communicating processes

[Benlsmail94b].

5.2.2 The granularity

The intermediate representation may have different complexity levels according to
the model used and to its granularity too. Column 3 in Table 5.1 shows the different possible
levels of granularity used in the literature. These are mainly two, the operation level or the
task level. The operation level is more used than the task level because of its inheritance
from the high-level synthesis field [Henkel93] [Kalavade94] [Gupta93] [Steinhausen93].
The basic modeling element in CDFGs is often the basic operation and the use of this level

of granularity in the codesign field becomes intractable even for systems with medium com-

plexity.

63

To overcome such a limitation, some codesign frameworks moved to the task level in
order to reduce the modeling complexity [Benlsmail94b] [Olokutum94] [Hu94] [Eles96].
The system is built of complex blocks called tasks and these tasks are mapped to hardware
or to software. The limitation of such level of granularity is the loss of system details avail-
able at the operation level. More mapping alternatives are possible at the operation level
than at the task level.

COSYMA [Henkel93] has now a new version where the variable granularity has been
introduced [Henkel97]. The system tries to reduce the complexity of the basic operation
[evel by grouping some basic operations in what they called macro-instructions. These mac-
ro-instructions are generated using an optimization procedure

Our proposed variable granularity allows to overcome both problems by selecting any
granularity in the system model from the most complex tasks to basic operations. There is
no computation overhead added in the partitioning process because the blocks are available
directly from the hierarchy. The Blocks can be macro-instructions at the first levels of the
hierarchy or operations at the last levels of hierarchy. Unlike the COSYMA system, the
blocks in our modeling have not to be generated but are already embedded in the hierarchi-

cal model.

5.2.3 The cost function

The hardware/software partitioning is peformed with the objective to optimize the
system final performance. The performance is often measured by two parameters, the sys-
tem execution time and the hardware area. Different techniques are used to estimate or to

evaluate such performance as shown in column 4 of Table 5.1. Three main techniques are

64

used to measure the system performance: Profiling, synthesis and simulation.

The profiling consists in identifying the performance critical regions and bottlenecks
in the input specification. The profiling is generally performed using compilers or analysis
tools on a software specification [Henkel93] [Steinhausen93] [Kumar92]. The profiling has
the main objective of identifying bottlenecks in the software implementation in order to
move critical regions to a hardware implementation.

The synthesis technique consists in generating a final implementation using synthesis
tools when a hardware/software solution is proposed. The execution time and the hardware
area are evaluated for the synthesized implementation and this information is then refeeded
into the partitioning process to find other implementation alternatives [Olukutum94]
[Thomas93]. This process is reiterated until the design constraints are satisfied. The use of
such a technique to evaluate the system performance is sometimes impratical because the
synthesis phase may be time consuming and a complex task to perform at each iteration. To
overcome such a limitation, some tools adopt the estimation approach instead of the syn-
thesis one.

The third main technique used to evaluate the implementation cost is the simulation.
The simulation is used for each proposed hardware/software implementation to determine
the performance of each partition and also to determine the cost of the communication be-
tween the two partitions [Henkel93]. The simulation technique is very effective because it
provides a real evaluation of the system but it is a very time consuming phase.

Other techniques have been proposed to evaluate the cost of the final implementation
quickly with a certain loss of efficiency. These techniques are based on estimation tools or

some analysis criteria like the similarity, the concurrence/sequence between modules

65

[Barros92], the closeness between operations [Henkel93], the schedulability of the tasks

[Kalavade94] or the rate matching of different tasks [Luk94].

5.2.4 The partitioning algorithm

The last characteristic to classify partitioning techniques is the partitioning algorithm.
Two main classes are first identified: manual or automatic partitioning. In the manual par-
titioning, a complete analysis and modeling environment is given to the designer who will
entirely decide where operations or tasks are mapped [Steinhausen93] [BenIsmail94b]
[Thomas93] [Luk94]. The other class of algorithms propose an automatic solution for the
partitioning problem.

Many algorithms have been proposed in the second class. Some cof these algorithms
are very known and have already been used in many circuit design fields like high-level
synthesis, logic synthesis, place and routing etc... .

D’ Ambrosio et al. [Hu94] describes a branch and bound based approach for partition-
ing applications where each node has a deadline constraint (instead of an overall throughput
deadline). Each node has three attributes: the deadline, the number of software instructions
needed to execute it, and the type of hardware units it can be immplemented on. The target
architecture consists of a single software processor and a set of different hardware modules.
The input specification is transformed into a set of constraints. The set of constraints is
solved by an optimizing tool called GOPS, which uses a branch and bound approach, to de-
termine the mapping. The approach suffers from limitations similar to those in a ILP for-
mulation, that is, solving even moderated-sized problems can become computationally

infeasible.

66

Kalavade et al. use an acyclic depending graph derived from a DFG (data flow graph
where nodes are basic operations) to simultaneously map each node to software or hardware
and schedule the execution of the tasks. The approach is heuristic and gives approximate
solution to very large problem instantiations [Kalavade94].

Vahid et al. perform the partitioning of a variable-grained SpecCharts specification.
SpecCharts is a hierarchical model in which the leaves are “states” of hierarchical State-
Charts-like FSMs. Classical clustering and simulated annealing partitioning algorithms are
applied. A refinement step may be performed after partitioning where each partition is syn-
thesized to get better area, pin, chip count, and performance constraint satisfaction measure
[Vahid].

Chou et al. describe a specialized scheduling-based algorithm for interface partition-
ing. The cost function is time for software and area for hardware. The algorithm is based on
a min-cut procedure. This tool attempts to implement the interfaces as hardware or software
partitions [Chou94].

Gupta et al. discuss a scheme where all nodes (except the data dependent delay tasks)
are initially mapped to hardware. Nodes are at an instruction level of granularity (basic op-
erations). Nodes are progressively moved from hardware to software subject to timing con-
straints. A hardware mapped node is selected (this node is an immediate successor of the
node previously moved to software). This node is moved to software if the resultant solu-
tion is feasible (meets specified throughput) and the cost of the new partition is smaller than
the earlier cost. The cost is a function of the hardware and software sizes. The algorithm is
greedy and is not designed to find a global minimum [Gupta93].

Clustering is another heuristic used to perform partitioning. Units are clustered ac-

67

cording to some criteria like similarity, concurrency, sequencing, and mutual exclusion
[Barros93] [Barros94].

A Kernighan-Lin swapping procedure is also used to perform partitioning. The
procedure is applied on an initial solution where operations are classified according to their
synthesizability [Olukutum94].

Ernest et al. use a graph-based model with nodes corresponding to basic operations
in C. The cost function is derived using profiling to discover bottlenecks, estimation of
operations closeness and estimation of the communication overhead incurred when blocks
are moved across partitions. The partitioning is performed in two loops. The inner loop
uses a simulated annealing with a quick estimation of the gain derived by moving an
operation between hardware and software to improve an initial partition. The outer loop is
manually performed by the designer and uses synthesis to refine the estimates used in the
inner loop [Henkel93]. The authors of this system have updated it recently to consider a
variable granularity as we have seen in the section 5.2.2.

The last tool is HMS (Hardware/Multi-Software partitioning) is a heuristic partitioning
tool with scheduling [Sheliga94]. The scheduling process is not used as an analysis step before
partitioning but the partitioning algorithm itseif is based on the schedulability. Operations are
selected for a hardware or a software implementation according to their needability. The
needability measures the constraint of an operation to be scheduled in the current execution flow

with the current hardware/software partitioning.

The variant proposed solutions have been shown to be effective for various appli-
cations. The field is new and any contribution is welcome. The list of tools presented above

is not exhaustive but the main algorithms have been listed. The proposed algorithms in lit-

68

erature have been shown to be effective even if some of them suffer from some limitations.
Due to the inherent nature of simulated annealing, this scheme requires long run times and
the quality of the solution depends on the cooling schedule.The min-cut and clustering ex-
amples have local solution problems. The mathematical programming technique has the de-
sign space explosion problem even for moderately-sized systems.

It is very difficult to propose an exhaustive algorithm for partitioning since the prob-
lem is known to be NP-Complete and that is the main reason for the use of heuristics.

Our proposed partitioning technique has a major advantage not available in any of
these works. Indeed, all the works listed above consider a fixed granularity as shown in col-
umn 3 of Table 5.1. This granularity may be at the operation level or at the task or process
level. Our proposed methodology allows a use of a variable granularity according to the
performance constraints. The most abstract model is used first and while the performance
constraints are not satisfied, more details are taken into account until the operation level if
needed.

We also propose a pseudo-automatic partitioning heuristic based on graph partition-
ing techniques. In table 5.1, most of the related work use a manual partitioning or an auto-
matic partitioning. An automatic approach for partitioning reduces the codesign time and
increases the number of alternatives considered by the partitioning tool before proposing
the best implementation. The automatic search of the best implementation is clearly faster
and more efficient. But the automatic solutions did not gain a lot of success in the codesign
field because designers want to have the facility to make the design decisions. For this rea-
son, we propose a pseudo-automatic partitioning tool which looks for different design al-

ternatives, proposes these alternatives with their performance measures and lets the

69

designer select the appropriate final implementation.

Table 5.1: Comparison of the common partitioning methods.

Partitioning Model Granularity Cost function Algorithm
tool
COSYMA profiling (Sw), Manual (outer)
genll:ellgi]] synchronization & Simulated annealing
enke .
simulation (Hw) (inner)
SpecSyn Profiling (SW) Clustering
[Vahid] Processor cost (HW) Simulated Annealing
Communication cost Manuat
UNITY Similarity Clustering
[Barros92] Concurrence/sequence
PTOLEMY Schedulability Heuristic with look-
{Kalavade94] ahead
CASTLE Profiling Manual
(Steinhausen93] FORE
COSMOS N/A Manual
{Benlsmail 94a] '
VULCAN Execution time ~ Heuristic, greedy
[Gupta93]
[Chou94] Time (SW), area (HW) Min-Cur
[Olukotum94] Profiling (SW) Kernighan and Lin
Synthesis (HW)
(Kumar92] Profiling Mathematical pro-
gramming
[Hu 94] Profiling scheduling Branch and Bound
analysis
[Thomas93] Profiling (SW) Manual
Synthesis (HW)
[Eles96] Profiling Simulated annealing
(Luk94] Rate matching Manual
[Sheliga94] Scheduling cycles Schedulability based
. heuristic

70

5.3. The proposed partitioning technique

In this section, we first introduce the graph partitioning problem and then its use for
hardware/software partitioning problem formulation. The proposed graph partitioning al-
gorithm is based on the techniques presented in [Kernighan70] and [Oudghiri92]]. These
techniques consider a graph G = (E, V), where V is the set of nodes and E the set of edges.
Each edge in E is also weighted by a cost value as in [Oudghiri92]. The graph G is then
partitioned into the minimal number of cliques. Nodes are assigned to cliques while keeping
the weights on edges from different cliques at a minimal value. This means that the edges
with large weights must be assigned to the same clique. The graph partitioning techniques
have been used to formulate and solve a wide range of problems for the following reasons:

1. The graph partitioning has the simplicity of constructive-iterative algorithms but uses
a global formulation of the problem.

2. At each step of the iterative algorithm, the graph formulation may include all the re-
quired data to make the best selection. This formulation provides a flexible way to in-

clude such data (weights on the edges).

This technique has been used to perform high-level synthesis [Oudghiri92] and is now
extended to perform hardware/software partitioning of a digital system as we show in the
next paragraphs [Oudghiri97].

First, the graph G is constructed in such a way that nodes are the blocks in the behavioral

71

model considered at a given level of hierarchy. G is a complete graph because all the blocks
are connected by an edge. Edges of the graph are weighted by a closeness function, which
corresponds to the number of common variables between the two nodes. Two operations
with a large number of common variables have to be assigned to the same partition in order
to minimize the communication needed between the final partitions. The weights on the
graph edges provides an easy way to clustering strong dependent tasks.

This graph is then partitioned into a fixed number of cliques using the heursitic in
[Kemnighan70]. These cliques may be different software implementations and different
hardware implementations. In our case, two cliques are considered and correspond to the
implementations on software and hardware. The steps of the partitioning algorithm are
shown in Figure 5.1.

The algorithm puts all blocks into the software partition at the first step. If the constraints
are not satisfied by the software solution, blocks are moved to hardware.

First, Algorithm 1 (Figure 5.1) selects the most time consuming node in the behavior
(step 3.i), based on the performance estimates already determined in chapter 4, and assigns
it to the hardware (step 3.ii). If the constraints still not be satisfied, the next node is selected
among the neighbors of the node selected in step 3.i (step 3.iii). The neighbors are consid-
ered according to the increasing order of their edge weights. The neighbor with the maxi-
mum number of common variables with the current node is selected.

At each assignment, the dependency graph is updated. The update consists in deleting or
merging no more needed edges. The edges connecting the assigned block to blocks from
the same partition are deleted. The edges connecting two blocks from the same partition to

a node from a different partition are merged into one edge. The weight on edges correspond

72

to the number 6f common variables between two blocks. When two edges are merged, the
weight of the new edge is the cardinality of the union of the two common variable sets. In
Figure 5.2(c), the edges (buffer-manager, frame-emitter) and (user-input-handler, frame-
emitter) are merged into one edge when the block frame-emitter is assigned to hardware as
shown in Figure 5.2(d).

This selection and graph update are repeated until the performance constraints are satis-
fied or all the model blocks have been moved from software to hardware.

Ateach partitioning step, the system execution time is compared to the performance con-
straints. The system execution time is computed using three parameters: the performance
estimation of each block, the concurrency and dependency between blocks (result of the
scheduling step) and the communication time. The execution time is computed using the set

of equations shown below.

Execution — time = Ztime ~h (i) [time—-s(i)] + comm (i) Eq.1
i

c () =) transf(j)
omm (i Zj: rans Eq.2

transf(j) = k cycles.
Time-h(i) is the hardware time execution of the block i in the input model.
Time-s(i) is the software time execution of the block i in the input model.
Comm(i) in the communication time required by the block i to transfer data between the
hardware and software partitions and j is one of the transferred variables by the block i.
Time-h is selected if the block i has been assigned to hardware and time-s is selected if
the block i has been assigned to software.

The first equation computes the complete execution time considering blocks on the crit-

ical path. For each critical block, the estimated hardware or sofware execution time (time_h

73

and time_s) is used if the block is assigned to hardware or to software respectively. The
communication time is computed by the second equation which is the sum of the transfer
time of all variables used by the block and which are updated by the blocks assigned to a
different partition.

The transfer time from hardware to software or vice-versa for one variable is k cycles
and is determined according to the transfer speed of the available resources (processors and
ASICs).

Eq.1 is used in a recursive procedure that searchs the longest path in the design flow as
shown in Algorithm 2 (Figure 5.3). The procedure longest-path() starts from a root block
and spans all the possible paths starting from the root block successors. Each one of the suc-
cessors is considered as a new root and the procedure is recalled for that block. At the end,
the procedure provides the slowest path. The system execution time is then computed for
this path by the procedure longest-path().

Figure 5.2 shows the partitioning flow steps for the HDLC example. The HDLC is con-
sidered at level 2 of its hierarchy, i.e the model is built of seven blocks which have the de-
pendencies shown in Figure 5.2(a).

We considered an execution time constraint equal to 18 ms. The software implementa-
tion of the system runs during 27 ms and does not satisfy the time constraint equal to 18 ms.
When considering these performance values, Algorithm 1 peforms as shown in Figures
5.2(b) to 5.2(d).

First, the node LOOP is selected and assigned to hardware. This assignment reduces the
total execution time to 25 ms. The input constraint (18 ms) is not yet satisfied. At the next

step, the LOOP block neighbors are considered (assignment) and the maximum weighted

74

edge is selected (only one in this case). The assignment block is then assigned to hardware
and the total execution time becomes 22.65 ms. The dependency graph is updated as shown
in Figure 5.2(c). The edge (LOOP, Assignment) is moved to hardware and is now
considered as one node in the hardware partition.

At this step, the constraints have not been satisfied yet and another block is
selected, the frame emitter block because this block has the maximum execution time in the
list of blocks assigned to software. The assignment of the block frame emirter 1o hardware
reduces the total execution time to 19.02 ms but this time is still beyond the time constraint.
One of the frame emirter neighbors is seiected (the one with the maximum weighted edge),
the line manager block. This last assignment provides a total execution time equal to 17.58
ms with one variable to be transferred between hardware and software partitions, as shown
in Figure 5.2(d).

At this step, the time constraint is satisfied, the algorithm is stopped and the final
partitioning is output. Four blocks, loop, assignment, Frame emitter and line manager,
have been assigned to hardware, and three blocks, user-input handler, acknowledge handler
and buffer manager have been kept in software.

We have shown in this section the partitioning procedure and the way the dependency
graph is built to formalize the partitioning problem. The selection strategy of nodes has also
been shown for each step of the algorithm. The proposed heuristic has the following main
objective: minimizing the hardware partition while satisfying the performance constraints. The
proposed heuristic is greedy and the final assignment depends on the selection order. In the next

section, we present the different modules defined to implement the partitioning algorithm.

75

é Algorithm 1 }

Input: List of blocks and time constraints.
Output: Two subsets where blocks are assigned.

STEP 1: Construct the complete weighted dependency graph G.

STEP 2: Assign all blocks to software.
Compute the complete system execution time.

/ Step 3.ii: Assign i to hardware.
Update the system execution time (Eq.1).

p——— pr——

Step 3.iit. I Select the maximum weighted edge connected to i.
with the most time consuming node (j).

Step 3.iii.2: Assign j to hardware.
Update the dependency graph G.
Update the system execution time (Eq.1).

Figure 5.1. The proposed hardware-software partitioning procedure.

76

(na, user_input)

(nu, NRline,

window-empty) (frame.endframe) (nr)
Acknowledge 3 Cg
han dlerg Line manager} (Assignment

handler
(nu

(Iline) (nr)

LOOP
(nu)
User-output

\ NSline

a. The input data flow graph.

b. The initial dependency graph and the initial partition.

Hardware So,

Assignment

-

Hardware

=) o)

Loor Acknawiedge

d. Hardware/software partitioning when the frame-emitter node is selected (iteration 2).

Figure 5.2. The partitioning procedure flow for the HDLC example.

77

5.4. The partitioning algorithm implementation

The proposed hardware/software partitioning algorithm has been implemented as a
set of modular blocks in C++. In this section, we will give a modular description of the par-
titioning algorithm. Only the main procedures in the partitioning algorithm will be present-
ed.

Figure 5.4 shows the principal procedures and functions involved in the partitioning
algorithm. These are five procedures and two functions. The procedures are: the weighted
graph construction, the partition initialization, search the maximum weighted edge in the
graph, search the maximum weighted node in the graph, and reduce the dependency graph.
The two functions are : compute time and compute area of the complete system at each par-
titioning step.

The general functionality of each one of these modules is described below.

1. Construct-weighted-graph() : this procedure is provided with the
number of building blocks in the model at a given level of hierarchy and
provides, at the output, a graph where the blocks are connected by edges.
Each edge in the graph in weighted by an integer value corresponding to
the number of common variables between the two blocks connected by the
edge.

2. Initialize-partition() : this procedure assigns all the blocks in the depend-
ency graph to the software partition. This provides the initial assignment of
all the blocks and also the total software execution time computed by the
function compute-time().This time will be compared to the time constraints

to make the decision of moving blocks to hardware.

78

3. Search-max-node() : this procedure determines the block which has the
largest execution time. This is performed by visiting all the graph nodes
and checking their performance estimate.

4. Search-max-weighted-edge() : this procedure determines the maximum
weighted edge connected to the current block. This search corresponds to
finding among the neighbors of the current block the one which has the
largest number of common variables with the current block.

5. Reduce-graph() : each time a node is moved from software to hardware,
the dependency graph is updated. This update may consist in deleting some
edges or updating the edge weights.

6. Compute-time() : this function determines the total execution time of the
current implementation of the system considering the blocks in hardware,
the blocks in software and the required communication time. This proce-
dure takes into account the concurrency to provide a realistic evaluation of
the system overall execution time.

7. Compute-area() : this function determines the total area of the system or
the code size if the system is completely implemented in software.

In the next section, we consider the complexity of the proposed heuristic built of the

presented procedures.

79

Algorithm 2

?ﬁd critical_path()

while (there is an invisited block ;)
longest_path(block;);
}

void longest_path(block;)
t if (block; is assigned to HW)
then
cumul += time-h(block;) + comm(block;);

else
cumul += time-s(block;) + comm(block;);

end if;

for each successor of block;
longest_path(successor);

if (cumul > glob-cumaul) glob-cumul = cumul;

}

-

Figure 5.3. The procedure to find the critical path in the data flow graph.

5.5. The algorithm complexity

In order to evaluate the complexity of our proposed partitioning technique, we first
compute the complexity of each procedure used in the heuristic. These procedures have
been presented in the previous section and their complexity is shown in Figure 5.5.

The main loop is iterated until all blocks have been assigned or as soon as the perfor-
mance constraints are met. This loop has a computing complexity of O(N) in the worst case,
where N is the number of blocks that build up the input model.

The procedure Search-max-weighted-node() identifies the most weighted block, i.,
the block with the maximum execution time. In the worst case, this procedure requires N

iterations.

80

The procedure Search-max-weighted-edge() finds the most weighted edge connected
to the current node. This procedure iterates, in the worst case, (N-/) times.

The procedure Compute-system-performance() determines the current performance
of the systermn according to the current assignments of blocks. This procedure has a O(N)
complexity.

The last procedure, Reduce-graph, has the role of reducing the dependency graph
each time a node has been assigned to one of the two partitions. This procedure visits all the
common neighbors of the assigned block and all the blocks in the same partition. In the
worst case, this procedure has a O(N) complexity.

The four procedures all together have a O(N) complexity. These procedure are called
in the main loop body. Thus, the partitioning algorithm has a O(N?) complexity in the worst
case.

The heuristic complexity of O(N 2y is considerably reduced compared to a 02Ny com-
plexity of the exhaustive solution. This heuristic provides a polynomial time solution for a

hard problem known to be NP-Hard.

81

o

(void construct_weight _graph(),

void initialize_partitions()

void partition_graph()

-

void search_max_node()

void search_max_weight_edge()

(i)
)

(void reduce _graph()’

(float compute_time()’

(float compute_area() ,

——— While (time constraints not satisfied)

Figure 5.4, The principal procedures used in HAP.

/While all nodes have not been visited >

do

Search- max-weighted-node();
Search-max-weighted-edge();
Compute-system-performance();

Reduce-graph();

_Endo;

Figure 5.5. The complexity of the principal procedures in the partitioning algorithm.

—
—
—
—

O(N})

O(N)
O(N)
O(N)
O(N)

82

5.6. Summary

The proposed partitioning algorithm has the following main advantages:

1. The global dependency graph formulation is a complete description of the dependency
between the input model blocks. The graph nodes are the blocks in the application
model and the edges are the interactions between the blocks.

2. The weighted nodes identify the time consuming blocks while the weighted edges in
the dependency graph quantify the dependency between blocks. Thus, the classification

and the comparison between blocks are easy to perform.

3. The area and time estimation values associated with each node in the graph allows
an estimation of the system overall area and time at each partitioning step. Thus, par-

titioning decisions are taken based on this available data.

4. The node scheduling performed during the analysis step allows taking into account
the possible concurrency between hardware and software partitions. Indeed, depen-

dent and independent blocks are clearly identified during the scheduling step.

5. The nested loop structure used in Algorithm 1 is used to perform a two-level selec-
tion. The first selection (outer loop) is performed on nodes which require a long time to
execute in order to accelerate the complete system execution time. The second selection
(inner loop) is performed on neighbors of the block already selected in the outer loop

in order to minimize the communication cost.
6. The heuristic complexity is O(N?). A feasible solution is possible in polynomial time.

This completes the presentation of our approach. The availability of such an approach
for codesigners provides new characteristics for efficient design space exploration. Indeed,
different input models for the same input system are considered and each block in the model
has time and area estimates, while the concurrency and dependency between blocks are also
taken into account. Hence, the proposed tool performs a wide (different input models cor-

responding to levels in the hierarchy) and deep (weighted graph partitioning at each level)

83

. search before proposing a solution to the designer as shown in Figure 5.6.

@ystem specification)

' v ¢

_ » Wide search

Model 1 Model 2 Model n

¥ Y Y
® < - G

' : l

(System evaluationj

(Final implementatiou)

Deep search

Figure 5.6. The search directions in the codesign space exploration.

84

CASE STUDY AND RESULTS

In this chapter, we will show a DSP example and a network simulation algorithm
codesigned on a specific architecture to show the codesign results obtained by our approach
for two examples with different complexity. The FFT transform is a DSP example while
the power network simulation algorithm is a complex algorithm used to simulate real power
networks. Section 6.1 presents the resources involved in the target architecture. The consid-
ered examples, the FFT algorithm and the power network simulation algorithm have been
codesigned on the target architecture. Two sections are used to describe the results obtained
for each one of the two case studies, sections 6.1 and 6.2. Each section contains the follow-
ing subsections: the high-level description of the example, its hierarchical and variable-
grain modeling, its performance estimates and finally the different codesign alternatives
found for the example using our partitioning procedure. These case studies show the effi-

ciency of our technique and the wide range of alternatives it is capable to provide for each

input design.

6. 1. The target architecture

In our case, systems to be codesigned are intended to be implemented on the archi-
tecture in Figure 6.1.

The target architecture includes a DSP standard processor with a specific SIMD pro-
cessor. The codesign process has to partition the application algorithm into two execution
codes, one for the DSP processor (software) and the other for the custom SIMD processor
(hardware). This kind of codesign may be considered as pseudo-hardware/software parti-
tioning and our technique is enough general to perform it.

This architecture is based on two types of processors as shown in Figure 6.1. The Tex-
as Instruments DSP processor TMS320C40 [Texas92] is used as the master processor and
the custom SIMD processor PULSE [Marriot98] as the slave processor. PULSE is dedicat-
ed to massive data processing which are very common in high-speed DSP applications. In-
ternally, PULSE is a SIMD processor with four paraliel processing units. This processor is
a custom circuit developed at Ecole Polytechnique of Montréal and is intended to run con-
currently with the C40 processor in order to accelerate time consuming DSP applications.
PULSE has very strong parallel instructions and communications features within one pro-
cessing unit as well as between different processing units. The two processors communicate

data via a program memory and a local data memory or via asynchronous communication

ports, as shown in Figure 6.1.

86

LOCAL
Data Memory

PULSE TMS320C40
SIMD A Standard DSP
processor Asynchronous communication processor

| PROGRAM §, |
Memory

N /)

Figure 6.1. The codesign target architecture.

6. 2. The FFT example

The FFT transform is a function which is often used in the DSP field and is one of the
basic functions in signal and image processing. It allows the transformation of a temporal
function to a frequency one in order to make the function analysis much easier than using
temporal functions. In the next sections, we show the high-level C description of the FFT,
its hierarchical model, performance estimates and finally the partitioning results obtained

when this DSP transform is codesigned on the architecture described in Figure 6.1.

6.2.1 The high-level description of the FFT transform

The C program of the FFT transform is shown in Figure 6.2. The inputs are the data
array (data), the data array dimension (nn) and the kind of transform FFT or Inverse FFT
(isign). The output is the output data array (data). The function involves many computations
and requires rapid implementations [Christopher92].

The main program includes the declarations of the variables and calls to the functions

87

bit-reversal and danielson. The function bit-reversal reverses the positions of the values in
the data array according to the desired transform. The data are reversed if the inverse FFT
is performed. This function calls a simple function swap(a, b) which swaps two input values
aandb.

The main function in the algorithm is danielson() and it corresponds to a fast tech-
nique to perform the FFT transform. It is constituted of a main loop and two nested loops.
The main loop contains the two nested loops and a set of data preparation and update state-
ments. These preparation steps provide the values of the FFT coefficients at each iteration
of the loop. The FFT coefficients are not stored in a memory but are computed iteratively
and when needed. The nested loops compute the output values of the FFT for the input data
and provides the result in the same array.

The presented C program shows some hierarchical characterisitics. Indeed, all the
nested structures have implicit hierarchical structure and some dependent instructions may
be grouped into a task structure. In the next section, we show the hierarchical model of the

FFT transform.

83

main()

unsigned n, mmax, m, j, istep,i;
double wtemp,wr,wi,wpr,wpi,theta;
float tempr,tempi;

float data[100];

int nn = 50; /* data array size*/
int isign = 1; /* Perform IFFT*/
n=nn<<]l;

i=1L

Bit-reversal();

Danielson();

void Bit-reversal()

for (i = 1; i <n; i+=2)
{
if i >j)
{ swap(&data[j],&datal[i]);
} swap(&data(j+1],&data[i+1]);

m=n>>1;

while (m <=2 && j > m)
{

j=m;

m>> 1;

}

}j+=m;

void swap(float *a, float *b)

{
float temp;
temp = *a;
a=b;

void Danielson()

{

mmax = 2;

while (n > mmax)

{
istep = mmax << 1;
theta = isign * (6.2831 / mmax);
wtemp = sin (0.5 * theta);
wpr = -2 * wtemp * wtemp;
wpi = sin (theta);
wr=1;
wi=0;
for (m=1;m<mmax;m+=2)

{

for (i=m;i<n;i+=istep)

{

j =1+ mmax;

data[j] = data[i] - tempr;
datafj+1] = data[i+1] + tempi;
datafi] += tempr;

data[i+1] += tempi;

wr = wtemp * wpr - wi * wpi + wr;
wi = wi * wpr + wtemp * wpr + wi;

mmax = istep;

}

N

tempr = wr * data[j] - wi * data[j+1];
tempi = wr * data[j+1] + wi * data[j]

Figure 6.1. The FFT transform C program.

89

6.2.2 The FFT hierarchical modeling

Figure 6.3 shows the FFT transform as a hierarchy of interacting and dependent
blocks using the modeling technique shown in chapter 3. At level 1, the main FFT block is
decomposed into 3 blocks, the Initialization module, the Bit reversal module and the
Danielson control module which is the main processing task in the FFT transform.

At the next level of the hierarchy, each of the previous modules is decomposed into
2, 3 and 2 subblocks respectively. Note that the initialization module is made up, at this lev-
el, of two blocks, initialize variables and initialize data. The variable initialization block is
not decomposed, at the next level, because it contains only basic operations for which no
further decomposition is possible, while the data initialization loop body is decomposed
into 3 blocks, Initialize the index, Read the indexed data and increment the index.

The blocks can be decomposed in this way until the basic operations are reached. The
initialize block has a three levels of hierarchy and the bit-reversal block has four levels of
hierarchy. The most complex block, Danielson, has eight levels of hierarchy. Thus, the FFT
hierarchical modeling provides eight levels of hierarchy and 39 blocks.

During the codesign of such a function, the designer may start to find the best parti-
tioning only at level 1. In this case, the partitioning algorithm handles only three functional
and interdependent blocks. Each block is assigned to hardware or to software based only on
its performance estimation already computed. Dealing with all the block details and basic
operations is not required.

If no partitioning that satisfies the performance requirements is found, the number of
blocks may be increased by moving to level 2. At this level, seven (7) blocks build the sys-

tem model. At the last level, level 8, twenty four (24) blocks build up the FFT model.

90

-

!
!
I
I

Bit O\ |
Reversal

Initialize
Variables

:

Danielson\!

Bit_loop]

Index_init

Read_data

Bit_cond

Bit_test

Bit_swapl

Bit_incr

;
5

Bit_shift

;

T
|
|
|
|

Index_incr) |
I
I
I
|
|

Bit_loop2

%

I

Loop2_test

Bit_acc

Loop2_ass
Loop2_shift

[CDan_IoolDI__(Dan_(est)

Level 1

I
|
control /| | |
}
|
I

| : -
Danielson D L
| an_loopl oop|_init

Level 2

Dan_incr

Level 4

I
I
I
|
I
I
I
I
I
I
I
|
|
I
I
I
I
I
I

Loopl_body

I
I
I
|
I
!
I
I
I
I
I
I
I
I
I
I
I
!
!

Dan_loop2

|
!
I
I
|
|
|
|
I
I
|
|
I
|
|
I
I
|
|
|
|
|
|
I
I
I
| Level 5
1

|
I
I
I
I
I
|

Loop2_init

Loopl_incr Update
Variables

|
I
|
Level 6!

|

I
I
I
I
|
!
I
I
I
|
I
I
I
|
I
I
I
I
|
|
I

F)

|
IQOOPZ_bOMitiali@

Level 7

I
!
I
I

Dan_real

Level BJ

Figure 6.2. The hierarchical model of the FFT transform behavior.

91

6.2.3 The performance estimation and scheduling

Table 6.1 shows the execution time and the code size of the different blocks in the
FFT model when each of them is run on the processors C40 and PULSE.

The first four rows in Table 6.1 show the execution time and the code size of the three
blocks that build the FFT at level 1. The remaining rows show the performance estimation
of some blocks from other levels in the hierarchy. Note that the Danielson block is the slow-
est block in the FFT behavior because it is the most complex and it contains two nested
data processing loops, Dan-loop! and Dan-loop2. This performance estimation step allows

the identification of the bottlenecks in the FFT behavior.

Table 6.1: Performance estimation of the FFT blocks.

Execution time (ms) Code size (Bytes)
Module

PULSE C40 PULSE C40

Initialize 1.48 2.28 184 92
Bit-reversal 3.6 7.04 432 192
Danielson 14.16 26.36 992 440

Initialize-data 096 1.92 80 40
Bit-loopl 1.4 272 368 160
Dan-loopl 12.52 23.12 912 408
Dan_loop2 10.4 20.84 736 312

The next step determines the data dependencies between the FFT blocks. This con-
sists first in determining the list of successors and predecessors for each block in the model
and then scheduling the blocks ASAPly and ALAPly to identify the possible critical paths
in the FFT execution flow.

Figure 6.3 shows the FFT transform data flow graph at two different levels of hierar-

92

chy.

The first data flow graph, Figure 6.3(a), is built of three nodes. Only one critical path
is possible because the nodes are data dependent and must execute sequentially. The second
data flow graph, Figure 6.3(b), is built of seven blocks. The ASAP and ALAP scheduling
provides the critical path whose execution flow is constituted by the following sequence of
blocks, Initialize-data, Bit-loopl and Dan-loop.

These graphs are used to determine the total execution time of the FFT when the
blocks are assigned to PULSE or to C40.

For example, in the initial partition, the complete FFT behavior is assigned to the pro-
cessor C40 and the total execution time is the sum of all the block execution times. The con-
currency cannot be used for the initial partition because the C40 processor executes the
instructions sequentially even if they are independent. We may take advantage of the con-
currency when the concurrent blocks are assigned to two different partitions or processors.

In the next section, we present the different partitioning alternatives for the FFT trans-

form.

6.2.4 Partitioning alternatives

Here, a typical signal processing function, the FFT transform, is used to show the pro-
posed codesign framework results. The FFT transform program has been codesigned on the
architecture shown in Figure 6.1. Three sets of results have been generated to validate our
methodology.

The first set shows the codesign results under performnance constraints. The second

set of results shows codesign determined for the same input system but at different levels

93

of the hierarchy. Finally, the third set of results is a comparison between the obtained code-

sign implementations and the complete software or hardware implementations.

(Bit-init) (‘Init-data) ((Init-var) (‘Dan_init)
\ \ / mu step 1

Bit-loopl

/ scheduling step 2
7
CBlt-mct) @n-loo@ seheduling step 3

! scheduling step |
A
|

scheduling step 2
|
I

Danielson scheduling step 3

qwd oo

ASAP scheduling

ASAP scheduling

(Bit-init) Clmt-data) CImt-vav

scheduling step |

| Bit-loopl;
| scheduling step 2

(Bit—incé} @an-loo@/
\

(Initializ9
scheduling step 1

Bit-revers
scheduling step 2

Danielson .
scheduling step 3

scheduling step 3

\ ALAP scheduling

\ ALAP scheduling

(a). Scheduling at level 1 (a). Scheduling at level 2
Figure 6.3. ASAP/ALAP scheduling at two different levels of the FFT hierarchy.
6.2.4.1 Partitioning under time constraints

The analysis values for the FFT subblocks have been already shown in Table 6.1.
Based on these parameters and using our heuristic partitioning procedure, the first set of the
FFT transform partitioning resuits is shown in Table 6.2. Table 6.2 shows co-implementa-
tion alternatives generated for the FFT transform when different timing constraints are

specified.

94

The FFT transform is considered at the level 1 of the hierarchy. If the constraint is
completely relaxed (column 1 in Table 6.2), which means that the constraint is equal or
greater than the complete software solution, the complete C40 solution is adopted without
any partitioning. The more the constraint is decreased the more blocks are moved to PULSE
to accelerate the execution.

For example, to reach the 25 ms constraint (column 4 in Table 6.2), two blocks are
executed on PULSE (Danielson and Bit_reversal) and one block on C40 (Initialize). When
the timing constraint is equal to 20 ms (column 5 in Table 6.2), the three blocks are assigned
to PULSE. This set of results shows the first characteristic of our framework, codesign with

input time constraints.

Table 6.2: The FFT transform partitioning under timing constraints

Modules Cl1=40ms C2=35ms C3=25ms C4=20ms

Initialize C40 C40 C40 PULSE
Bit-reversal C40 C40 PULSE PULSE
Danielson C40 PULSE PULSE PULSE

C40-time 38.2 ms 11.84 ms 5.80 ms Oms
PULSE-time Oms 14.16 ms 18.15 ms 19.24 ms
Total time 382 ms 26 ms 23.95ms 19.24 ms

6.2.4.2 Partitioning alternatives at different levels of the hierarchy

In the next group of results, we considered the behavior at different levels of hierar-
chy, from 1 to 7 with the same timing constraint. These partitioning results are shown in

Table 6.3.

95

At level 1, all initialization and input operations (Initialize blocks) are implemented
on the TMS320C40 processor, while data preprocessing and processing operations
(Bit_reversal and Danielson blocks) are assigned to the PULSE processor. At level 2, only
the data processing parts in both Bit_reversal and Danielson blocks are assigned to PULSE.
At level 3, only the Dan-loop algorithm in the Danielson block with bit swapping blocks in
the Bit_reversal module are assigned to PULSE. At level 7, only the data processing blocks
related to bit swapping functions and the multiplication of complex numbers are assigned
to PULSE.

The three last columns in Table 6.3 show the execution time for each proposed solu-
tion from level 1 to 7. These values show how the computation load is distributed between
the two available processors as a function of the level of hierarchy. At levels 1 and 2, the
obtained performance satisfy largely the input constraint but PULSE is taking all the com-
putation load. Note that this will lead in more memory size since the instruction size in
PULSE is twice the C40 one (66 and 32 respectively). The same thing is observed for levels
6, 7. At the middle levels, 4 and 5, the partitioning is more balanced than at other levels.
The resulting implementation performance is very close to the constraint but the memory

size is well balanced.

6.2.4.3 Partitioning tradeoff

The last group of results provide a comparison between the complete hardware and
the complete software solutions. In Table 6.4, the partitions obtained at level 1 and level 7
are compared to complete C40 implementation and complete PULSE implementation. Note

that the system performance is 20.44 ms if implemented on PULSE and 38.64 ms if imple-

96

mented on C40. An intermediate implementation where all initialization and read opera-
tions are assigned to C40 and all data preprocessing and processing operations are assigned
to PULSE has an execution time equal to 23.95 ms (solution#1 in Table 6.4). The last im-
plementation proposed, where only processing operations are assigned to PULSE, leads to
an execution time equal to 23.84 ms (solution#7 in Table 6.4).

The solution #1 reduces the execution time by 40% of the complete C40 implemen-
tation execution time while the memory size is reduced by 23% of the memory size required
by the complete PULSE implementation. In solution #7, the execution time is reduced by
38% while the memory size is reduced by 65%. The two solutions satisfy the input con-
straint equal to 25 ms but solution #1 needs three times the memory size needed by solution
#7. This shows that a trade-off has to be found when the memory size is taken into account.
In this section, we presented the FFT transform behavior to show the ability of our tool to
find co-implementations using the proposed algorithm. This algorithm allows the genera-

tion of a list of possible implementations when different levels of hierarchy are considered.

Table 6.3: Block assignment at different hierarchical levels of the FFT model.

Level Nb. of C40 PULSE | Time(ms)/time constraint =25 ms]
Blocks

PULSE C40 Total
1 4 2 2 18.14 4.8 2294
2 8 6 2 18.8 2.96 21.76
3 19 11 8 15.56 9 24.56
4 29 18 10 14.68 10.24 24.92
5 36 17 13 14.56 10.4 24.94
6 47 40 7 6.82 17.72 24.54
7 52 40 12 7 17.92 24.52

97

The objective of exploring the major points in the codesign space has been reached
by varying the level of hierarchy. This means that our tool is able to find as many imple-
mentation possibilities as hierarchy depth allows, which is a new and advantageous feature
compared to previous works.

The generated alternatives are compared to the lower-bound performance (the hard-
ware solution) and the upper-bound performance (the software solution) implementations
in order to find the best trade-off. The final decision may be taken by the designer or by an

automatic tool to be developed.

Table 6.4: Alternative comparison for the FFT transform.

Execution time (ms) Code size (Bytes)
Partition PULSE C40 Reduction PULSE C40 Reduction
1 (C40) o 38.64 - 0 1260 —
2 (PULSE) 2044 0 — 2196 0 —
solution #1 18.15 4.80 40% 1424 264 23%
solution #7 5.2 18.64 38% 352 412 65%

98

6. 3. The power network simulation algorithm

The power network simulation algorithm is a very time consuming algorithm used by
power network companies to simulate their electrical networks. Various and long process-
ing involving a lot of vector and matrix computations are required in such simulations. In
the next sections, we show the high-level matlab description of the algorithm, its hierarchi-
cal model, performance estimates and finally the partitioning resuits obtained when this al-

gorithm is codesigned on the architecture described in Figure 6.1.

6.3.1 The high-level description of the power network simulation

Figure 6.4 shows the matlab description of the power network simulation algorithm.

The algorithm is composed of three main pieces. The first one is the data and constant
preparation phase. The second one is a list of matrix computations and finally the compu-
tation of the vectors Ug, Ig and Vb which are the main charcateristics of the network that
we want to determine. Theses vectors are computed and updated at each simulation itera-
tion. The simulation algorithm is then executed into two nested loops. The first loop reiter-
ates 600 times which corresponds to 5 seconds in the network real lifetime. The network
characteristics, Ug, Ig and Vb, have to be computed each 5 seconds. The second loop is the
convergence loop for the characteristics values of the network. These characteristics have
to be determined at a stable state and this stable state corresponds to the given precision.
When the characteristics values do not change from one iteration to ancther by more than
the precision value, the precision loop is stopped and the current values of the network char-
acteristics are stored. In the next section, we show the hierarchical modeling of such a be-

havior.

99

fid = fopen(‘data_in.bin’,’r’);
Ug = fread(fid, 21, int32);
Vb = fread(fid, 18, int32);
Ig = fread(fid, 6, int32);
invAg = fread(fid, [21,21], int32);
invAgRgu = fread(fid, [21,21], int32);
invAgRgk = fread(fid, 21, int32);
invYeifg = fread(fid, (18, 6], int32);
invYepfg = fread(fid, [18, 6], int32);
fclose(fid);
Vbm = [Vb(1:2) Vb(3:4) Vb(5:6) Vb(7:8) Vb(9:10)
Vb(11:12) Vb(13:14) Vb(15:16) Vb(17:18) I';
Ugm = [Ug(1:7) Ug(8:14) Ug(15:21)]’;
res(1,:) = [Vbm(5,:) Ugm(2, 2) Ugm(2, 1) Ugm(l, 2)];
invYeg = invYeifg;
For k=1 : 600
If (k =11) invYeg = invYepfg; end
invAgRg = invAgRgu * Ug + invAgRgk:
oPe = zeros(3,1);
dPe = ones(3,1);
While (max(abs(dPe)) > 1E-2)
Dg =Ugm(, 2);
Dg = Dg - fix(Dg/(2*pi)) * (2*pi);
Dg = Dg - fix(Dg/pi) * (2*pi);
sgnsncs = [sign(Dg) sign((pi/2) - abs(Dg))];
Dg = abs(fix(Dg/(pi/2)) * pi - Dg);
chgsncs = fix(Dg/(pi/4));
Dg = abs(chgsncs * (pi/2) - Dg);
Dgp2 =Dg .* Dg;
Dgp3= Dgp2 .* Dg;
Dgp4 = Dgp3 .* Dg;
Dgp5S = Dgp4 .* Dg;
sncsDg = (ones(3,1) Dg Dgp2 Dgp3 Dgp4 Dgp5] *
(010-1/6 1/120; 1 0 -1/2 - 1/24 0]";

If chgsnes(1)
sncsDg(l, :) = snesDg(l, 2:-1:1); end

If chgsncs(2)
sncsDg(1, :) = sncsDg(2, 2:-1:1); end

If chgsncs(3)
snesDg(1,) =snesDg(3, 2:-1:1); end

sncsDg = sgnsncs .* sncsDg;
Bgl={0000010;

[000000 I} *sncsDg(1,1) +

[000000I;

[00000-10] *sncsDg(1,2);
Bg2=[0000010;

[00000O0I] *sncsDg(2,1) +

[C000001;

[00000-10] *sncsDg(2.2):
Bgl={0000010;

[0000Q0 1} *sncsDg(3,1) +

[000000I;
[00000-10]" * sncsDg(3.2);

Bg =[Bgl zeros(7,2) zeros(7,2)
zeros(7,2) Bg2 zeros(7,2)
zeros(7,2) zeros(7,2) Bg31;

Cg=Bg";

Ig=Cg * invAgRg;

Vbm = [Vb(1:2) Vb(3:4) Vb(5:6) Vb(7:8
Vb(9:10) Vb(11:12) Vb(13:14)
Vb(15:16) Vb(17:18)}";

Ug = invAg * Bg * Vb(1:6) + invAgRg;

dPe =Ugm(:, 3) - oPe;

oPe =Ugm(:, 3);

end %precision loop
res(k+1,:) =[Vbm(5,:) Ugm(2, 2)
Ugm(2, 1) Ugm(l, 2)};

end %iterative loop

fid = fopen(*data_out.bin’,’w’);
fwrite(fid,res, ‘int32’);
fclose(fid);;

Figure 6.4. The matlab program of the network simulation algorithm.

100

6.3.2 The hierarchical modeling of the power network simulator

Figure 6.5 shows the power network simulation algorithm as a hierarchy of interact-~
ing and dependent blocks using the modeling technique shown in chapter 3. At level 1, the
simulation algorithm is decomposed into 2 blocks, the data preparation module and the net-
work simulation module which is the main processing task in the simulation algorithm.

At the next level of the hierarchy, each of the previous modules is decomposed into
2 subblocks. Note that the data preparation module is made up, at this level, of two blocks,
vector initialization and coefficient initialization. The vector initialization block is decom-
posed, at the next level, into 3 subblocks corresponding to the initialization of the three vec-
tors Ug, Ig and Vb. The coefficient initialization is decomposed into 2 blocks, one block for
the initialization of the network generator coefficient and the other block for the initializa-
tion of the network admittance coefficient.

The blocks can be decomposed until the basic operations are reached. The vector ini-
tialization block has a two level hierarchy and the coefficient initialization block has a three
level hierarchy. The most complex block, Net simulation, has an eight level hierarchy. This
hierarchy level is the result of the successive decompositions on the nested loops until the
basic operations are reached. Thus, the network simulation algorithm has a hierarchical
model with eight levels and a complexity equal to 94 blocks

During the codesign of such a function, the designer may start to find the best parti-
tioning at level 1. In this case, the partitioning algorithm handles only two functional and
interdependent blocks. Each block is assigned to hardware or to software based only on its
performance estimation already computed. Dealing with all the block details and basic op-

erations is not required unless the design performance constraints are not satisfied.

101

Init_veclors

Data_prep

Init_coeffs

Nel_simulatio

(g)
—(GCII-COCffS)W—(lnil_invAgRgu)
Init_invAgRgK

Init_invYeifg

— (@)

—{(Init_invYepfg)

Init_invYeg

—(Adm_updalc Adm_lcst)
Adm_then

Cal_AgRg

AgRg_,proQ

oPe_fnit)

AgRg_ace)

dPe_init

»——@ion_lwp

Prcc_test-)

Main
Processing

vector
Vbm_cal

—(Interfaces Tension_Bg }—
(Injection) Current_Cg
Clurrent

Dg)_dg2_div
]

Dgi_dg2)_

—Ggl _dg2_sub,

Dgl_compute

Dgl_dg3)—

—(Dg!_dg3_div}

sgnsncsi_cal
sgnsncs_cal

{Dg! _dg3_mul)

—(Dg_compute }H

—{ snesDg_vl)}

Gen_multl

sgnsncs2_cal

—(Dg 1_dg3_sub |

chgsncs_cal

Dg3_compule

Dg3_dg_mult
Dg3_dg_sub

Dg_square
Dg_cubic
Dg_to_four
Dg_to _five

sncsDgl_multl

sncsDgl_mul2

sncsDgl_subl

sncsDgl_sub2
sncsDg2_mult]
sncsDg2_mult2

sncsDg2_sub!
snesDg2_sub?

Swap_pcrm@

) Qg

sncsDg2_vl

Swap_test

Swap_then

—(sncsDg_v2

sncsDgl_v2)

Swnp_pcmmt]

&
=
=
(=]
P<]
3]
El
£
%
=]
:
o
3
3
3
g
3
:
g
E
n
-1
£
B
B

102

6.3.3 Performance estimation

Table 6.5 shows the execution time and the code size of the different blocks in the
network simulation algorithm when each of them is run on the processors C40 and PULSE.

The execution time of some blocks of the simulation algorithm are presented in col-
umns 2 to 4 in Table 6.5. The initialization blocks are very small and do not take along time
to execute as shown in Table 6.5, columns 3 and 4. Blocks like the main loop and the pre-
cision loop are the more complex and take a lot of time to execute. For example, the main
loop takes 978,000 cycles to execute its 600 iterations. One iteration of the precision loop
lasts 889,000 cycles while the loop may reiterate several times before reaching the desired
precision. Only one iteration of the precision loop is considered because the number of it-
erations is unknown. This performance estimation step allows the identification of the crit-
ical regions in the simulation algorithm. These are clearly, the main loop at level 2 of the
hierarchy, the precision loop at level 3, the main processing block at level 4, and interfaces
block at level 5.

Columns 5 to 7 in Table 6.5 show the number of micro-instructions needed by each
block and the corresponding memory size required for each processor. The main loop is
built of 145 instructions which correspond to 580 bytes on the C40 processor and to 1305
bytes on the PULSE processor. The gen-matrix block is built of 7 instructions and the cor-
responding memory size is only 28 bytes on C40 and 163 on PULSE. Note that the Init-
coeffs block needs much more instructions even if it takes less execution time than the gen-
matrix block. This is due to the large number of sequential instructions in the Init-coeffs
block while the gen-matrix block is built of only 7 instructions but in a 21 iteration loop.

This values show the time-memory tradeoff we have to take into account.

103

Table 6. 5: The performance estimation for the power network simulator blocks.

Execution time (ms) Code size (Bytes)

Module Nb.cycles PULSE C40 Nb. instructions [~ pyULSE C40
Init_vectors 45 0.008 0.018 10 90 40
Init_coeffs 140 0.025 0.56 21 189 84
Main_loop 978,000 17.6 39.12 145 1305 580
Tmp_coeffs 54,000 2.16 097 10 90 40
Precision_loop | 889,000 16.2 36 111 999 444
Interfaces 340,200 774 17.2 87 783 348
Gen_matrix 369,000 6.64 14.76 7 163 28

6.3.4 Partitioning alternatives

Table 6.6 shows co-implementation alternatives generated for the network simulation
at different levels of hierarchy, from 1 to 10 with the same timing constraint.

Atlevel 1, all initializations and data preparing steps (Data_prep) are implemented on
the TMS320C40 processor, while data preprocessing and processing operations
(Net_simulation) are assigned to the PULSE processor. At level 2, only the data processing
blocks in the net_simulation block are assigned to PULSE. At level 3, the main_processing
block is assigned to PULSE. Finally, at level 9, only data processing blocks are assigned to
PULSE. The three last columns in Table 6.6 show the execution time for each proposed so-
lution from level 1 to 10. These values show how the processing charge is distributed be-
tween the two available processors as a function of the level of hierarchy. At levels 1 to 4,
the obtained performance satisfy largely the input constraint but PULSE is taking all the
computation load. Note that PULSE solutions require more memory size since the instruc-
tion size in PULSE is more than twice the C40 one (66 and 32 bits respectively). In levels,

5 to 10, the partitioning is balanced by moving less blocks towards the processor PULSE

than at the first levels. The resulting implementation performance is still satisfying the same
constraint with very close values and the memory size is reduced. The performance values
of the final partitions, for each level in the hierarchy, are provided to the designer in order

to select the appropriate implementation.

Table 6. 6: Block assignment at different hierarchical levels of the network simulation algorithm

Level Nb. of C40 | PULSE Time(ms) / time constraint = 30 ms]
Blocks
PULSE C40 Total
1 2 1 1 17.64 0.08 17.64
2 4 3 1 17.6 0.074 17.6
3 12 10 2 16.2 3.127 18.53
4 20 15 5 15.74 3.05 17.83
5 27 17 10 5.06 27.76 29.93
6 31 22 9 4.64 2741 29.29
7 36 27 9 4.06 28.68 27.04
8 46 31 15 4.06 28.35 27.04
9 60 46 14 4.06 28.01 27.04
10 64 55 9 4.06 27.96 27.04

Table 6.7 shows, with more details, some of the partitioning obtained at different lev-
els of the hierarchy. For each one of these alternatives, we provide the performance estima-
tion which is the execution time of the complete system and the code size corresponding to
the required data memory space.

The system performance is 17.80 ms if the system is completely implemented on
PULSE and 39.12 ms if implemented on C40. An intermediate implementation where all
initialization and output operations are assigned to C40 and all data preprocessing and pro-

cessing operations are assigned to PULSE has an execution time equal to 28.68 ms (solution

105

#1). The last implementation proposed, where only processing operations are assigned to
PULSE, leads to an execution time equal to 27.41 ms (solution #2). These two solutions are
found for the same input constraint equal to 30 ms. Both solutions satisfy this timing con-
straint but the difference is the code size needed to implement each one of them.

The solution #1 is approaches the input constraint by 9% while the required memory
size is reduced by 45% of the memory size required by the complete PULSE implementa-
tion. The solution #2 approaches the timing constraint by 4% and the required memory size
is reduced by 75%. The two solutions satisfy the input constraint equal to 30 ms but the so-
lution #1 needs 1.67 times the memory size needed by the solution #2. Of course, the solu-
tion #1 is a better solution when the comparison is based on the timing performance but for
the same input constraint, solution #2 is better than solution #1 because the desired perfor-

mance is obtained with less area cost.

Table 6. 7: Codesign alternatives for the network simulation algorithm

Execution time (ms) Code size (Bytes)
Partition PULSE C40 Solution Precision || PULSE C40 ZoArea
1 (C40) 0 39.12 ———- 0 772 —
2 (PULSE) 17.64 0 -—-- 3088 0 ——
solution #1 4.64 2741 9% 1424 264 45%
solution #2 4.06 28.68 4% 352 412 75%

106

6. 4. Summary

These case studies provide the following main conclusions on the impact the hierar-
chy has on the generated partitioning alternatives.

1. An optimal level in the hierarchy may be identified to obtain an optimal and balanced

partitioning of blocks between hardware and software partitions.

2. The use of the most detailed model, the operation level, does not always mean obtain-

ing the best solution.

3. Considering the first levels in the hierarchy, during partitioning, improve consider-
ably the time performance but this is not the case for the code size. This is due to the
fact that big blocks are moved from software to hardware when using first levels of the

hierarchy.

4. The use of the wedium and the last levels may decrease considerably the code size or
the area with a very little degradation in performance while the use of first levels re-

duces the execution time but requires more memory storage space.

107

CONCLUSIONS

The thesis studies a systematic approach to partition systern-level designs into hard-
ware and software. The key contributions are summarized in section 7.1. In section 7.2. we

conclude with a discussion of some of the future directions to this research.

7. 1. Contributions

In this thesis we developed techniques for the codesign of digital systems. Pure hard-
ware or software implementations often cannot meet constraints like cost, performance or
time-to-market. Due to the algorithmic complexity of systems and also to avoid early com-
mitment to a particular hardware or software implementation, the systems are specified at
a high-level of abstraction.

Our approach to codesign is to design the hardware and the software in paraliel with

feedback and interaction between the two as the design progresses. The codesign approach

enables the exploration of a wide variety of implementation alternatives simply by using
the available hierarchical model of the input system. Thus, the system can be optimized in
its entirety.

Five key problems are identified in the context of system-level codesign: modeling,
partitioning, analysis, synthesis and simulation. We provide new and original solutions to
the three former problems and these solutions are summarized in the next sections.

At the system-level, designs are typically represented as task graphs, where tasks
have moderate to large granularity already fixed at the specification level even if the input
specification is hierarchical. We present a modeling technique for system level tasks with
variable granularity. The key contribution is summarized in section 7.1.1.

Each task in the system specification can be implemented in hardware or in software.
The resulting implementation typically differ in area and execution time. The objective in
system level design is to select the “best” implementation for the system as a whole. We
presented an automatic approach to solve this problem by formulating the partitioning prob-
lem as a dependency graph partitioning problem. The key contributions are summarized in
section 7.1.2.

In order to select the best implementation, one needs efficient estimation tools to
compare the possible implementations. The estimation avoids the complex and time con-
suming synthesis steps by providing fast and efficient evaluations. The key aspects of the

estimation steps are summarized in section 7.1.3.

7.1.1 Hierarchical modeling

The use of hierarchy as presented in our codesign approach is an original contribution

109

of this thesis. We are not aware of any other work that attempts to do this at the system-level
even if the majority of systems are described using hierarchical modeling. All the proposed
systems use a flattened model of the input system at the task level or at the operation level.
We proposed a solution which takes advantage of the hierarchical model at the input.

The way we use the hierarchy provides the flexibility to select a given complexity.
Each level in the hierarchy provides a different input model. The models have large com-
plexity when fine grain models are reached (hierarchy flatten) but these models are not used
unless no satisfying solution is found with the simple models. Our contribution has three
main advantages:

1. The number of models with different complexity that the hierarchy provides allows
the expansion of the design space exploration without any computation overhead
because the hierarchy is a charactersitic already available in all modeling tools.

2. The model complexity used during partitioning may be selected among the range
of possible models provided by the use of hierarchy. The simple models are used
first and when no satisfying solution is found, more complex models may be con-
sidered.

3. The possibility to use only simple models as long as the found solutions satisfy the

constraints allows the reducing of the overall design CPU time.

7.1.2 System partitioning

Hardware/software partitioning is the problem of determining, for each node in the
application, a hardware or a software mapping and schedule for execution. The end-objec-

tive is to minimize the total hardware area subject to timing constraints. Since the problem

110

is known to be NP-Hard, we developed an efficient heuristic.

We presented the proposed heuristic to solve the hardware/software partitioning

problem. This heuristic has several unique features:

1. The mapping selection of a task is performed such that the finish time of the task
is minimized. The task is selected using a global-time criterion.

2. In addition to global consideration, neighborhood preference is taken into account.
The next tasks to be selected are those which have strong data dependency with the
global selected task.

3. The global selection has the main objective of minimizing the execution time in or-
der to satisfy the timing constraint. The local preference has the main objective of
minimizing the communication cost between the hardware and the software parti-
tions.

4. The weighted dependency graph used to formulate the partitioning problem uses a
global formulation where the graph nodes are the application tasks. The graph nodes
are weighted by their execution time while the graph edges are weighted by the
number of shared data between the two tasks in the graph edge. All the weights are
determined from the estimated performance and cost.

5. The partitioning heuristic takes into account all the possible concurrency and com-
munication overhead between the hardware and the software partitions before pro-
posing the “best” implementation.

6. Our proposed heuristic is computationally efficient (O(. N?)) when compared to the

0(2") theoritical complexity. N is the number of tasks in the system model.

111

. 7.1.3 System analysis

Behavioral analysis is the problem of determining fast performance and area esti-
mates for the whole system to ease the decision making step during the automatic hardware/
software partitioning. We used available estimation tools but our key contribution is the ex-
tent of such estimators for our specific target architecture.

1. The specsyn estimators provide the time and area estimates for each block in the
model independently of its hierarchy or of the subblocks that build it. Our key con-
tribution is to determine the estimates hierarchically for each block. At a given level
of hierarchy, the block time and area estimates include the time and area estimates
of all its subblocks. During partitioning, the estimate is ready and we do not need to
span the block hierarchy to find its performance estimates at each iteration.

. 2. The technology files for our specific architecture components have also been de-
termined and added to the estimator data base. These technology files correspond to

the two processors used in our target architecture, the C40 and PULSE processors.

7. 2. Future directions

7.2.1 Framework integration

Our contribution focuses on partitioning, analysis and modeling. These steps are a
key tenet in codesign process but need to be integrated in existing or future codesign frame-
works.

In order to perform such an integration, several questions need to be answered. I.

. what is the specification language and the modeling concept supported? 2. If the hierarchy

112

is implicit, how is it extracted? 3. how the partitioning algorithm would be integrated in the
available codesign tools that do not support partitioning?

All common specification languages used in industrial tools support the hierarchy be-
cause of the growing complexity of specified systems. We think that integrating our use of
hierarchy in the available frameworks would be an easy task while providing a powerful
feature for future codesign tools by simply taking advantage of the hierarchy already em-
bedded in these frameworks.

The available cosynthesis tools do not include automatic partitioning facility but fo-
cuses on hardware high-level synthesis and software code generation for different proces-
sors. The integration of our automatic partitioning heuristic would be very easy because it
is a completely independent module. The heuristic needs a set of dependent blocks with
their performance estimates as inputs and provides, at the output, a mapping of these blocks

to hardware or to software.

7.2.2 Hardware and software synthesis

The partitions found by our proposed partitioning algorithm have to be synthesized
in order to provide the final implementation. High-level synthesis tools may be used to per-
form hardware synthesis. A good candidate for this synthesis would be the Synopsys be-
havioral compiler which is available at universities [Synopsys97]. As for the software
synthesis, standard compilers may be used. The key issue for the future is to translate the
obtained partitions to the appropriate description language, like VHDL for Synopsys and C

for compilers.

13

7.2.3 Interface synthesis

In the proposed partitioning heuristic, we used a simple formula to determine the
communication time overhead. This equation needs to be more elaborated in order to reflect
the real time and also the area overhead which is not considered in the equations presented
in chapter 5. An interface synthesis or an efficient interface estimation tool is required. The
interface evaluation has a big impact on the final implementation and using an interface es-

timation or synthesis tool is a must.

114

Appendix A. Technolgy files for the system estimation

In this appendix, complementary information is provided for the performance estima-
tion phase. The performance estimation has been presented in chapter 4 and is performed
using two automatic estimators developed at the university of California at Irvine.

In order to use such estimators, some information has to be provided. This information
is the SpecCharts description of all the behaviors we want to estimate and the technology
files for our target architecture resources. In the next section, we present the SpecCharts
description of one of the case studies, the FFT example. The other sections of this appen-
dix present the technology files for both the Texas Instruments C40 processor and the

SIMD processor PULSE.

A. 1. SpecCharts description

The FFT C description has been presented in chapter 6. Here, we show a SpecCharts
description which is used to estimate the performance of the FFT algorithm when it is run
on the C40 or PULSE processors.

The description below shows the SpecCharts description of the FFT example. This
description has the same structure as VHDL and is composed of two parts. The first part is
the entity where the input and output ports of the system are defined. The second part is
the architecture where the functionality and the structure of the system are described. The
architecture heading is composed of all the variables and constants used in the FFT behav-
ior. The FFT behavior is composed of three main blocks, Initialize, Bit-reversal and dan-
ielson. The control flow between these three blocks is described at the beginning of the

FFT architecture. For each block, a control flow is defined by the following statement:

115

Block name: (TOC, condition, next block)

The different fields in this statement are:

1. Block name: 1t is the current block where the control flow is.

2. TOC (Terminate On Completion), this key word means that the control is given to
another block only after the completion of the current block.

3. Condition : This key word means that the control is given to another block only if
the Condition is true even if the block processing is completed. If this field is True,
this means that the flow is given to the next block at the completion unconditionaly.

4. Next block is the name of the next block to which the control is given. If the current
block is the last block in the control flow, the key word Stop is used to describe the
end of the control flow graph.

After the definition of the control flow, each block in the flow graph is then described
internally. The block may be hierarchical and thus composed of other blocks. These blocks
are first described in a control flow and then their internal description is given, or may be
a simple behavior described as a set of VHDL statements. In the description below, the
block Initialize is of type sequential behaviors and is composed of a hierarchy of two sub-
blocks, Data-initilaize and Var-initialize. An example of simple behavior is Var-initialize
which is of type code and is described by a set of VHDL statements to initialize the varia-
bles n, i and j.

—use work.data.all;

entity FFT_E is

port

(

input_port : in integer;
output_port : out integer
)

end;

116

architecture FFT_A of FFT_E is
begin
behavior FFT_behavior type sequential subbehaviors is

type tableau is array (O to 100) of integer;

variable n, mmax,m,j,istep,i,nn,isign : integer;

variable wtemp,wr,wpr,wpi,wi,theta,tempr,tempi,tmp1,tmp?2 :integer;
constant six : integer:= 6;

constant half : integer:= 5;

constant deux : integer:=-2;

constant un : integer:= |;

constant zero : integer:= 0;

variable data: tableau;

begin

Initialize:(TOC, true,Bit_reversal);
Bit_reversal:(TOC, true,Danielson_ctl);
Danielson_ctl:(TOC,true,Stop);

behavior Initialize type sequential subbehaviors is
begin

Data_initialize:(TOC, true, Var_initialize);

Var_initialize:(TOC,true,stop);

behavior Data_initialize type sequential subbehaviors is
begin
Init_index:(TOC, true,Read_data);
Read_data:(TOC, true,Incr_index);
Incr_index:(TOC,(i<nn),Read_data),
(TOC,(i>=nn),stop);

behavior Init_index type code is
begin

i:=0;

nn := 50;

isign :== [;

end Init_index;

behavior Read_data type code is
begin

117

data(i):=input_port;
end Read_data;

behavior Incr_index type code is
begin

Ii=1i+1;
end Incr_index;

end Data_initialize;

behavior Var_initialize type code is

begin
n :=nn;
=1
i=1;

end Var_initialize;

end Initialize;
behavior Bit_reversal type sequential subbehaviors is

begin
Bit_init : (TOC,true,Bit_loopl);
Bit_loopl : (TOC,true,Bit_incr);

Bit_Incr :(TOC,(i<n),Bit_loopl),
(TOC,(i>=n),stop);

behavior Bit_init type code is
begin
1:=1;
end Bit_init;

behavior Bit_Incr type code is
begin
1:=i+2;
end Bit_Incr;

behavior Bit_loop! type sequential subbehaviors is
begin

Bit_condition:(TOC, true,Bit_shift);

Bit_shift :(TOC,true,Bit_loop2);

Bit_loop2 :(TOC,true,Bit_acc);

Bit_acc : (TOC,true,stop);

118

behavior Bit_shift type code is
begin
m:=nn; --Shift
end Bit_shift;

behavior Bit_acc type code is
begin
Ji=j+m;
end Bit_acc;
behavior Bit_condition type sequential subbehaviors is
begin
Bit_test : (TOC,(i<j),Bit_swap1),
(TOC,(i>=j),stop);
Bit_swapl: (TOC,true,Bit_swap2);
Bit_swap2: (TOC,true,stop);
behavior Bit_test type code is
begin

null;
end Bit_test;

behavior Bit_swapl type code is
begin

tempr := data(i);

data(i) := data(j);

data(j) := tempr;

end Bit_swapl;

behavior Bit_swap2 type code is
begin

tempr := data(i+1);

data(i+1) := data(j+1);

data(j+1) := tempr;

end Bit_swap?2;

end Bit_condition;

behavior Bit_loop2 type sequential subbehaviors is
begin
Loop2_test: (TOC,(m<2 and j<m),Loop2_assign),
(TOC,(m>=2 or j>=m),stop);

119

Loop2_assign:(TOC, true,Loop2_shift);
Loop2_shift:(TOC,true,Loop2_test);

behavior Loop2_test type code is
begin
null;

end Loop?2_test;

behavior Loop2_assign type code is
begin

j=j-m;

end Loop2_assign;

behavior Loop2_shift type code is
begin
m:=m; --Shift
end Loop?2_shift;
end Bit_loop2;

end Bit_loopl;

end Bit_Reversal;

behavior Danielson_ctl type sequential subbehaviors is
begin

Dan_init : (TOC,true,Dan_loop);

Dan_loop : (TOC, true,stop);

behavior Dan_init type code is
begin

mmax = 2;

end Dan_init;

behavior Dan_loop type sequential subbehaviors is
begin

Dan_test : (TOC,(n > mmax),Danielson),
(TOC,(n <= mmax),stop);

Danielson : (TOC,true,Dan_incr);

Dan_incr : (TOC,true,Dan_test);

120

behavior Dan_test type code is
begin

null;

end Dan_test;

behavior Dan_incr type code is
begin

mmax := istep;
end Dan_incr;

behavior Danielson type sequential subbehaviors is
begin
Dan_initializations:(TOC, true,Dan_loop1);
Dan_loop! :(TOC,true,stop);

behavior Dan_initializations type code is
begin

istep := mmax;

theta :=isign * (6 /mmax);

wtemp := theta / 2; --sinus

wpr := 2 * wtemp * wtemp;

wpi := theta; --sinus

wr:=1;

wi :=0;

end Dan_initializations;

behavior Dan_loopl type sequential subbehaviors is
begin
Loopl_init : (TOC,true,Loopl_body);
Loop1_body: (TOC,true,Loop1_incr);

Loop!l_incr: (TOC,(m<mmax),Loopl_body),
(TOC,(m>=mmax),stop);

behavior Loop! _init type code is
begin

m:=1;
end Loopl_init;

behavior Loopl_incr type code is
begin
m:=m+2;

121

end Loopl_incr;

behavior Loopl_body type sequential subbehaviors is
begin
Dan_loop2 :(TOC,true,Dan_var_update);
Update_var: (TOC,true,stop);

behavior Update_var type code is
begin
wr := wtemp * wpr - wi * wpi + wr;
wi := Wi * wpr + wtemp * wpi + wi;
end Dan_var_update;

behavior Dan_loop2 type sequential subbehaviors is
begin
Loop2_init:(TOC,true,Loop2_body);
Loop2_body:(TOC, true,Loop2_incr);
Loop2_incr:(TOC,(i<=n),Loop2_body),
(TOC,(i>n),stop);
behavior Loop2_init type code is
begin
i:=m;

end Loop?2_init;

behavior Loop2_incr type code is
begin
i:=1+ istep;
end Loop2_incr;
behavior Loop2_body type sequential subbehaviors is
begin
Initialize-j : (TOC,true,Dan_real);
Dan_real : (TOC,true,Dan_imag);
Dan_imag : (TOC,true,stop);

behavior Initialize-j type code is
begin

j =1+ mmax;

end Initialize-j;

122

behavior Dan_real type code is

begin
tempr := wr * data(j) - wi * data(j+1);
data(j) := data(i) - tempr;
data(1) := data(i) + tempr;

end Dan_real;

behavior Dan_imag type code is
begin
tempi := wr * data(j+1) + wi * data(j);
data(j+1) := data(i+1) + tempi;
data(i+1) := data(i+1) + tempr;

end Dan_imag;

end Loop2_body;
end Dan_loop2;
end Loopl_body;
end Dan_loopl;
end Danielson;
end Dan_loop;
end Danielson_ctl;
end FFT_behavior;

end FFT_A;

123

A. 2. Technology files

In order to use the specsyn estimators, one has to provide the SpecCharts input like the
one shown in section A.l. This specification is then run on any resource from the data
base to estimate the performance. The performance estimates provided by the specsyn
tools are the execution time (number of clock cycles) and the code size (bytes). The
resource data base provided with the specsyn estimators contains many standard proces-
sors like the processor 68000 of Motorola or the 6800 of Intel. Our target architecture
already shown in chapter 6 is built of two processors, the Texas instruments C40 and the
custom SIMD processor PULSE developped at Ecole Polytechnique of Montréal. In order
to estimate our case studies on the target architecture, we need to have the technology files
for both the C40 and PULSE processors. We have constructed such models, shown in Fig-
ures A.l1 and A.2. In these files, each line describes the number of clock cycles and bytes
required for each generic instruction. If the processor has the parallelism capability, this
feature is described into a complementary file to specify which generic instructions may
be run in parallel. The files to specify the parallelism have also been created but are not

presented in this appendix because of their complexity.

124

g # arc comments.
This is the technology file for the PULSE processor. \
DirectMem means direct memory addressing.
IndirectMem means indirect memory addressing.
OP DESTINATION SOURCE! SOURCE2 . time tes) size(bytes) opP DEST. Sourcel Source2 time size
ALU Regiscc Constant Consant (clocgcycles) ¢
egister onstant gister I 8 .
ALU Register Register Constant 1 8 MUL Regisier Constant Constant L.
ALU Register Register Register 1 g MUL Register Roqsmm & egister 1 8
ALU Register DirectMem Constant 1 8 MUL Register Register constant ! s
ALU Register Constant DirectMem 1 8 R°8!"“ Py Pl .
ALU Register DircctMem Register 1 8 MUt s M Donsat | g
ALU Register Register DirectMem 8 Mu gisier - Constant irectMem
ALU Register DirectMem DirectMem | 8 MUL Register DirectMem Register 1 8
ALU Register IndirectMem Constant 2 16 MUL Register Register DirectMem 1 8
ALU Register Constant IndirectMem 2 16 MUL Register DirectMem DirectMem 1 8
ALU Register IndirectMem Register 2 16 MUL Register IndirectMem Constant 2 16
ALU Register Register IndirectMem 2 16 MUL Register Constant IndirectMem 2 16
ALU Register Int em DirectMem 2 16 MUL Register IndirectMem Register 2 16
ALU Register DirectMem IndirectMem 2 16 MUL Register Register IndirectMem 2 16
ALU Register IndirectMem IndirectMem 3 24 MUL Register IndirectMem DirectMem 2 16
ALU DirectMem Consmant Constant 1 8 MUL Register DirectMem IndirectMem 216
ALU DirectMem Constant Register 1 8 MUL Register IndirectMem IndirectMem 3 0u
ALU DirectMem Register Constant 1 8 MUL DirectMem Constant Constant 1 8
ALU DirectMem Register Register 1 8 MUL DirectMem Constant Register 1 8
ALU DirectMem DirectMem Constant 1 8 MUL DirectMem Register Constant I 8
:LLE Diremml\}em C‘_’“"“m‘:[‘ %‘cmM““ i g MUL DirectMem Register Register 1 8
DirectMem DirectMem gister A i i
ALU DircctMem Register Di em i 2 MUL DmMem DirectMem (_:onsmm 1 8
= : rectM MUL DirectMem Constant DirectMem | 8
ALU DirectMem DirectMem DirectMem ! 8 MUL DirectMem DirectMem Register I 8
ALU DirectMem IndirectMem Constant 2 16 DircctM Regi Di g M ! 3
ALU DirectMem Constant IndirectMem 2 16 MUL DirccMem Register DirectMem
ALU DirectMem IndirectMem R egister 2 16 MUL DircctMem DirectMem DirectMem 1 8
ALU DirectMem Register IndirectMem 2 16 MUL DirectMem [ndirectMem Constant 2 i6
ALU DirectMem Indir ectMem DirectMem 2 16 MUL DirectMem Constant IndirectMem 2 16
ALU DirectMem DirectMem IndirectMem 2 16 MUL DirectMem IndirectMem Register 2 16
ALU DirectMem IndirectMem IndirectMem 3 24 MUL DirectMem Register IndircctMem 2 6
Ay gg::g mg P i : MUL DirectMem IndirectMem DirectMem 2 16
irectM. irectM) 5
ALU Register Empty DirectMem ! 8 hl\:gt g:reaMZ:: alduecmfffm Eir:cm?r:: S 21-?
ALU Register Empty IndirectMem 2 16
ALU DirectMem Empty Constant I 8 CMP Register Constant Constant 1 8
ALU DirectMem Empty Register 1 8 CMP Register Constant cchlst:r 1 8
ALU DirectMem Empty DircctMem | 8 SME Register Register -onstant ! H
ALU DirectMem Empty IndirectMem 2 16 QMP Repistc DiretMem Coastant L8
DIV Register Cc Cons 3 12 CMP Register Constant DirectMem 1 8
DIV Register Ce Regi 3 12 CMP Register DirectMem Register 1 8
DIV Register Register Constant 3 12 CMP Register Register DirectMem I B
DIV Register Register Register 2 8 CMP Register DirpctMem DirectMem 1 8
DIV Register DirectMem Constant 3 12 CMP Rcgister IndirectMem Constant 2 16
DIV Register Constant DirectMem 2 8 CMP Register Constant IndirectMem 2 16
DIV Register i emn Register 2 8 CMP Register IndirectMem Register 2 16
DIv Register Register DirectMem 2 8 CMP Register Register IndirectMem ?.’ 16
DIV ~Register DirectMem DircctMem 2 8 CMP Register [ndirectMem DirectMem 216
i i CMP Register DirectMem IndirectMem hd 16
DIV Register IndircctMem Constant 3 12 &l ndi Indi 3 24
DIV Register Constant IndirectMem 2 8 SMP Register | UiirectMem {ndirectMem . s
DIV Register [ndirectMem Register 2 8 CMP DircctMem Consmant Register 1 8
DIV Register Register IndirectMem 2 8 CMP DirectMem Register Constant 1 8
DIV Register IndirectMem DirectMem 2 8 CMP DirectMem Register Register 1 8
DIV Register DirectMem I[ndirectMem 2 8 CMP DirectMem DirectMem Constant 1 8
DIV Register IndirectMem IndirectMem 2 8 CMP DirectMem Constant DirectMem 1 8
DIV DirectMem Constant Constant 4 16 CMP DirecctMem DirectMem Register 1 8
DIV DirectMem Constant Register 3 12 CMP DirectMem Register DirectMem l 8
DIV DirectMem Register Constant 4 16 CMP DirectMem DireetMem DirectMem 1 8
DIV DirectMem Register Register 3 12 CMP DirectMem IndirectMem Constant 2 16
DIV DirectMem DirectMem Constant 4 16 CMP DirectMem Constant IndirectMem 2 16
DIV DirectMem Constant DirectMem 3 12 CMP DirectMem [ndirectMem Register 2 16
DIV DirectMem DirectMem Register 3 12 CMP DirectMem Register IndirectMem 2 16
DIV DirectMem Register DirectMem k] 12 CMF DirectMem [ndirectMem DirectMem 2 16
DIV DirectMem DirectMem DirectMem 3 12 CMP DirectMem DirectMem indirectMem 2 16
DIV DirectMem IndirectMem Constant 4 16 CMP DirectMem IndirectMem [ndirectMem 3 2
DIV DirectMem Constant IndirectMem 3 2
DIV DirectMem IndirectMem Register 3 12 MOV Register Empty Constant I 8
gg gmMcm F:)gutu: llgducclMem Z; }% MOV Register Empty Register 1 8
an Al A r M - .
B BuoNem Bt e,] B Moy mwms mwo prewen
DIV Di em Indi em IndirectMem 3 12 <8l pry 7
MOV DirectMem Empty Coastant 1 8
NOP Empty Empty Empty ! 8 MOV DirectMem Empry Register 18
CIUMP Empty Empty Empty I 8 ! ¥ e
MOV DirectMem Empty DirectMem ! 8
e EE';‘;‘; EEH‘“;‘; g_’f“’g ! : MOV DircctMem Empty [ndirectMem 116
CALL Em Em) E; e 1 8 MOV [ndirectMem Empty Constant 2 16
pty pty mpty MOV IndirectM Register 2 16,
EFAULT Empty Empty Empty 1 8 ndicectMem Empty Reg S

Figure A.1. The technology file of the PULSE processor.

125

Anything after “#' are comments.

This is the technology file for the C40 DSP processor.

DirectMem means direct memory addressing.
IndirectMem means indirect memory addressing.
OP DESTINATION SOURCE! SOURCEZ(. time ’ size(bytes) op DEST. Sourcel Source2 time size
ALU Register Constant %onsmn(¢ OCE cycles) 8
ALU Register Constant egister 2 8 .
ALU Register Register Constant 2 8 MUL Register Constant Constant :1‘ 8
ALU Register Register Register 1 4 MUL Register Constant Register 2 8
ALU Register DirectMem Constant 2 8 MUL Register Register ~ Constant : 8
: : 5 MUL Register Register Register 1 4
ALL Register Constant DirectMem 5 8 MUL Register DirectMem Constant 2 8
Ao Reoser Rematr ™ Dibiem 3 8 MUL Register Constant DirectMem 2 8
ALU Register DirectMem DirectMem 2 8 MUL Register DirectMem Register 2 8
ALU Register IndirectMem Constant 2 8 MUL Register Register DirectMem 2 8
ALU Register Consant IndirectMem 2 8 %& g:zxjstcr Egm&n Dérchcm L3 g
ALU Register IndirectMem Register 1 4 gister i em Constant 2
ALU Register Register IndirectMem | 4 MUL Register Constant [ndirectMem 2 8
ALU Register IndirectMem DirectMem 2 8 MUL Register IndirectMem Register 1 4
ALU Register DircctMem IndircctMem 2 8 MUL Register Register IndirectMem 1 4
ALU Register IndirectMem [ndireetMem 1 4 MUL Register IndirectMem DirectMem 2 8
ALU DimctMem Constant Cons.umt 3 i2 MUL Register DirectMem [ndirectMem 2 3
2{:8 &rﬁcmem gon:smm gocgm:f g }% MUL Register IndirectMem IndirectMem 1 4
irectviem egister nstant MUL DirectMem Constant Constant 3 12
ALU DirectMem Register Register 2 8 MUL DirectMem Constant Register 3R
ALU DirectMem DirectMem DC""SW“ 3 i2 MUL DircctMem Register Constant 3012
ALU DirectMem Constant irecctMem 3 2 MUL DirectMem Register Register 2 8
ALU DirectMem DirectMem Register 3 12 MUL DirectMem DirectMem Constant 3o
ALU DirectMem Register DireccetMem 3 12 . ? 5
ALU DirectMem DircctMem DircctMem 3 12 MUL DirectMem Constant DirectMem 3 13
ALU DirectMem IndirectMem Consant 3 12 MUL DircctMem DircctMem Registcr 312
ALU DirectMem Constant IndirectMem 3 12 MUL DircctMem Register DircctMem 3 12
ALU DirectMem IndirectMem R egister 2 8 MUL DirectMem Dl{cu.Mem DirectMem 3 12
ALU DirectMem ister IndirectMem 2 8 MUL DirectMem IndirectMem Constant 3 12
ALU DirectMem Indir ectMem DirectMem 3 12 MUL DirectMem Constant IndirectMem 3 12
ALU DirectMem DirectMem IndirectMem 3 12 MUL DirectMem IndirectMem Register 2 8
‘}\lf_% %‘:g:Mm:m [ndlr;cmfcm C[‘gglsrl:cn(tMem lz i MUL DirectMem Register [ndirectMem 2 8
: Emp i MUL DirectMem IndirectMem DirectMem 3 12
:Eg g:p:g EE:pg &m’m ll : MUL DirectMem DirectMem [ndirectMem 3 12
ALU Rc:lister Emg(y IndirectMem 1 4 MUL DirectMem [ndirectMem IndirectMem 2 8
ALU DircctMem Empty Constant 2 8 CCMS gcgésra gonmnr gon_smm 2 g
ALU DirectMem Empty Register 2 8 egister onstant cgister s
ALY DircctMem Empey DircctMem 2 8 CMP Reomer Reomer Repaer 3 8
ALU DirectMem Empey IndirectMem 2 8 CMP Register DirectMem Constant 2 8
DIV Regi: Ce Ce 3 12 CMP Register Constant DirectMem 2 38
DIv Register Constant Register 3 12 CMP Register DirectMem Register 2 8
DIv Register Register Constant 2 12 CMP Register Register DirectMem 2 g
Div Register Register Register 3 8 CMP Register DirectMem DirectMem 2 8
DIV Register DircctMem Constant 2 12 CMP Register IndirectMem Constant 2 8
DIV Register Constant DirectMem a2 g CMP Register Constant IndirectMem 2 8
DIV Register DirectMem Register 2 8 CMP Register IndirectMem Register 2 8
DIV Register Register DirectMem 2 8 CMP Register Register IndircctMem 2 8
7 . . 3 CMP Register IndirectMem DirectMem 2 8
DIV Register DirectMem DirectMem 3 8 - " A 5
DIV Register IndirectMem Constant 2 12 CMP Regisier DirectMem IndirectMem 3 3
DIV Register Constant [ndiectMem 2 S GMb DitaMem Comam Comamt 3 12
DIV Register IndirectMem Register 2 8 CMP DirectMem Constant Register 3 12
gg]f %ggs(er l[lnigilstct Ig[xmctMcm % g CMP DircctMem Register Constant 3 12
gister rectMem irectMem CMP DirectMem Register Register 3 12
DIV Register DirectMem IndirectMem 2 8 CMP DirectMem DirectMem Constant 3 12
DIV Register IndirectMem IndirectMem 2 8 CMP DirectMem Constant DirectMem 3 12
DIV DirectMem Constant Constant 4 16 CMP DirectMem DirectMem Register 3 12
DIV DirectMem Constant Register 3 12 CMP DirectMem Register DirectMem I 12
DIV DirectMem Register Constant 4 16 CMP DirectMem DirectMem DirectMem 3 12
DIV DirectMem Register Register 3 12 CMP DirectMem [ndirectMem Constant 3 12
DIV DirectMem DirectMem Constant 3 16 CMP DirectMem Coanstant IndirectMem 3 12
DIV DirectMem Constant DirectMem 3 12 CMP DirectMem IndirectMem Register 3 12
DIV DirectMem DirectMem Register 3 12 CMP DirectMem Register IndirectMem 3 12
DIV DirectMem Register DirectMem 3 12 CMP DirectMem IndirectMem DirectMem 3012
DIV DirectMem DirectMem DirectMem 3 12 CMP DircctMem DirectMem IndirectMem 3 12
gg gm:ctM em [ndirectMem Constant 4 16 CMP DircaaMem IndirectMem [ndirectMem 3 12
irectMem Constant IndirectMem 3 12
DIV DirectMem IndirectMem Register 3 12 MOV Register Empty Constant 1 4
gg gimMmctMem E!cgiszeéw %mem g 12 MOV Register Empty Register 1 4
i em IndirectMem i em 12 v i i 1 4
DIV DircctMem DirectMem IndirectMem 3 12 MOV Rebmmr B iem I
DIV DirectMem IndirectMem IndirectMem 3 12 V Di C 5]
NOP Empty Empty Empty I 4 MOV DirectMem Empty onstant 2
CIUMP Empty Empty Empty 1 3 MOV DirectMem Empty Register 1 4
JUMP Em 1 4 MOV DirectMem Empty DirectMem 2 8
RET Emoty E‘Em"*’pz EmE‘“"pg A A MOV DircctMem Empty IndirectMem 2 8
CALL Em Em) 1 4 MOV IndirectMem Empty Constant 2 3
p pty Empty V Indi i 1 4
\@AULT Empty Empty Empty 1 4 MOV IndirectMem Empty Register

Figure A.2. The technology file for the C40 processor.

126

REFERENCES

[Alhayek96]. G. Al Hayek, Y. Le Traon and C. Robach, “Test economics criterion for

hardware/software partitioning”, International Test Conference 1996.

[Auguin94]. A. Auguin, F. Boeri and C. Carriere, “Automatic exploration of VLIW proces-
sor architectures from a designer’s experience based specification”, CODES’94, pp 108-
115.

[Bakhshi94]. S. Bakhshi and D.D. Gajski, “A component selection algorithm for high per-
formance pipelines”, Technical report #94-01, Univ. of California, Irvine, June 1994.

[Barros93]. E. Barros, W. Rosenstiel and X. Xiong, “Hardware/software partitioning with
UNITY”, Proceedings of Int. workshop on hardware/software codesign, October 1993.

[Barros94). E. Barros and A. Sampaio, “Toward provably correct hardware/software par-

titioning using OCCAM”, Proceedings of CODES’94, October 1994.

[BenIsmail94a]. T. Ben Ismail, K. O’Brien, and A. Jerraya, “Interactive system-level par-

titioning with PARTIF”, ICCAD’94, pp 464-468.

[BenIsmail94b]. T. Ben Ismail, M. Abid and A. Jerraya, “COSMOS: A codesign approach
for communicating systems”, CODES’94, September 1994, pp 17-24.

[Berry91]. G. Berry, and G. Gonthier, “Incremental development of an HDLC entity in
Esterel”, Computer Networks and ISDN systems, Vol.22, No. 1, 1991, pp35-49.

[Binh96]. N. Binh, M. Imai, A. Shiomi, and N. Hikichi, “A hardware/software partition-

ing algorithm for designing pipelined ASIPs with least gate count”, 33rd DAC 1996,
(hrtp://kona.ee.pitt.edu/33dac/papers/1996/dac96/htmfiles/).

127

[Boriello92]. G. Boriello ans A. Sangiovanni-Vincentelli, “Models for the hardware/soft-
ware codesign of embedded controllers”, CODES’92.

[Buchenrieder92]. K. Buchenrieder and C. Veith, “CODES: a practical concurrent
design environment’, CODES’92.

[Buchenrieder93]. K. Buchenrieder et al., “Hardware/software codesign with PRAMs
using CODES”, in Computer hardware desription languages, IFIP transcations, vol.A-32,
1993, Edited by D. Agneur et al.

[Buck94a]. J.T. Buck, S. HA, E.A. Lee and D.G. Messerschmitt, “PTOLEMY: a frame-
work for simulating and prototyping heterogeneous systems’, Intermnational journal of
computer simulation, special issue on “simulation software development”, vol.4, April

1994, pp 155-182.

[Buck94b]. J.T. Buck, “A dynamic dataflow model suitable for efficient mixed hardware/
software implementations of DSP applications”, 3rd CODES’94, Grenoble.

[Camurati94]. P. Camurati, F. Corno, P. Prinetto, C. Bayol, and B. Soulas, “System-level
modeling and verification: a comprehensive design methodology”, ICCAD’94. pp636-
© 640.

[Cheng94]. W. Cheng, and Y. Lin, “Code generation for a DSP processor”, ICCAD’94,
pp 82-87.

[Chiod092]. M. Chiodo, A. Sangiovanni-Vincentelli, “Design methods for reactive real-
time system codesign”, Int. CODES’92.

[Chiodo93a]. M. Chiodo, P. Giusto, H. Hsieh, A. Jureka, L.Lavagno, and A. Sangiovanni-

Vincentelli, “A formal specification model for hardware/software codesign”, Technical

Report, June 1993.

128

[Chiodo93b]. Chiodo, P. Giusto, H. Hsieh, A Jurescka, l. Lavagno, and A. Sangiovanni-
Vincentelli, “ Synthesis of mixed hardware/software implementation from CFSM specifica-

tions”, June 1993.
[Chiodo94]. M. Chiodo, P. Giusto, A. Jurescska, M. Marelli, H.C. Hsieh, A. Sangiovanni-
Vincentelli, and L. Lavagno, “Hardware/software codesign of embedded systems”, IEEE

Micro, August 1994, pp 26-36.

[Chou92]. P. Chou, R. Ortega, and G. Boriello, « Synthesis of the hardware/software inter-
face in microcontroller-based systems”, [CCAD’92, pp 488-495.

[Chou94]. P. Chou, E.A. Walkup and G. Boriello, “Scheduling for reactive real-time sys-
tems”, IEEE Micro, August 1994, pp 37-47.

[Chou95]. P. Chou, R. Ortega and G. Boriello, “The Chinook hardware/software Co-syn-
thesis system”, International symposium on system synthesis, Cannes, France, September
13-15, 1995. pp 22-27.

[Christopher92]. R. Christopher, “Signal processing in C’, Wiley 1992. pp 496-535.

[Dembinski]. P. Dembinski, and S. Budkouski, “Specification language Estelle”.

[Eduards94]. M. Eduards and J. Forrest, “A development environment for the cosynthesis
of embedded hardware/software systems”, EDAC’94, pp 469-473.

[Edwards97]. S. Edwads, L. Lavagno, E. Lee and A. Sangiovanni-Vincentelli, “Design of
embedded systems: formal models, validation and synthesis”, Proceedings of the IEEE,

vol. 85, no. 23, march 1997, pp 366-390.

[Eles94]. P. Eles, Z. Peng and A. Doboli, “VHDL system-level specification and partition-

129

ing in a hardware/software codesign environmenr’, CODES’9%4.

[Eles96]. P. Eles, Z. Peng and A. Doboli, “Hardware/software partitioning of VHDL sys-
tem specification”, EURO-DAC’96.

[Ernst92]. R. Ernst and J. Henkel, “Hardware/software codesign of embedded controllers
based on hardware extraction”, CODES’92.

[Forrest92]. J. Forrest, “Multiple abstraction-level descriptions using C++", International

workshop on Codesign, Colorado, September [992.

[Gajski93]. D. Gajski, F. Vahid, S. Narayan, “SpecCharts: a VHDL front-end for embed-
ded systems”, TR93-31, University of California at Irvine, June 1993.

[Gajski93]. D. Gajski, J. Gong, F. Vahid, and S. Narayan, “The specsyn design process
and human interface”, TR93-3, University of California, Irvine, 1993.

[Gajski94a]. G. Gajski, F.Vahid, and S. Narayan, “A system design methodology: Execut-
able specification refinement”, ICCAD’94, pp 458-463.

[Gajski94b]. D. D. Gajski, F. Vahid and S. Narayan, “System-level methodology and tech-
nology”, Univ. of California, Irvine, 1994.

[Gong93]. J. Gong, D.D. Gajski and S. Narayan, “Software estimation from executable
specifications”, technical report ICS-93-5, March 1993. University of California, Irvine.

[Gong95]. J. Gong, F. Vahid and S. Narayan, “The SpecCharts/Specsyn User's manual

version 3.2”, University of California, Irvine, September 1995.

[Gupta92]. R K. Gupta and G. De Micheli, “System level design”, Internal report CS-92,
Stanford university, 1992.

130

[Gupta93]. R K. Gupta, and G. De Micheli, “Hardwazre/software cosynthesis of digital
systems”, IEEE Micro, September 1993, pp 29-41.

[Gupta94a]. R. Gupta, and G. De Micheli, “Constrained software generation from hard-

ware/software systems’, International workshop on codesign, 1994, pp 56-63.

[Gupta94b]. R.K Gupta, C.N. Coelho,Jr and G. De Micheli, “Program implementation
schemes for hardware/software systems”, IEEE Computer, January 1994, pp 48-55.

[Gupta94c]. R. Gupta et al., “Experience with image compression chip design using a uni-

fied system construction tools”, DAC’94, pp 250-256.

[Gupta96]. R.K. Gupta, “Analysis of operation delay and execution rate constraints for
embedded systems™, 33td DAC 1996, (http://kona.ee.pritt.edu/33dac/papers/1996/dac96/
htmfiles/).

[Henkel93]. J. Henkel, T. Benner and R. Emst, “Hardware generation and partitioning
effects in the COSYMA system”, CODES’93.

[Henkel94]. J. Henkel, R. Ernst, U. Holtmann and T. Benner, “Adaptation of partitioning
and high-level synthesis in hardware/software cosynthesis’, Proceedings of the Int. Conf.

on CAD, November 1994,

[Henkel96]. J. Henkel and R. Emst, “The interplay of run-time estimation and granularity

in hardware/software partitioning”, CODES’96, Pittsburgh 1996.

[Henkel97]. J. Henkel and R. Ermnst, “A hardware/software partitioner using a dynami-
cally determined granularity”, 34th Design Automation Conference, 1997, pp691-696.

[Herman94]. D. Hermann, J. Henkel and R. Ernst, “Are approach to the adaptation of esti-

131

mated cost parameters in the COSYMA system”, CODES’94, pp 100-107.

[Hu94]. X. Hu, J.G. D’ Ambrosio, B.T. Musray and D. Tang, “Codesign of architecture for
automotive powertrain modules”, IEEE Micro, August 1994, pp 17-25.

[Huang93]. I. Huang, and A. Despain, “Hardware/software resolution of pipeline hazards
in pipeline synthesis of instruction set processors”, ICCAD’93, pp 594-599.

[Huang95]. C. Huang, and D. Gajski, “Software performance estimation for pipeline and

superscalar processors” TR95-20, University of California at Irvine, June 95.

[Jain92]. R. Jain et al., “Predicting system-level area and delay for pipelined and non-
pipelined designs”, IEEE transactions on CAD, vol. 11, no. 8, August 1992, pp 955-965.

[Kalavade92]. A. Kalavade and E.A. Lee, “Hardware/software codesign using
PTOLEMY- A case study”, CODES’92.

[Kalavade93]. A. Kalavade, and E.A. Lee, “A hardware/software codesign methodology
Jor DSP applications”, IEEE Design and Test of computers, September 1993, pp 16-28.

[Kalavade94]. A. Kalavade and E.A. Lee, “ A global criticality/local pahse driven algo-

rithm for the constrained hardware/software partitioning problem”, Proc. CODES’94.

[Kernighan70]. B.W. Kernighan and S. Lin, “An efficient heuristic procedure for parti-
tioning graphs”, The Bell system technical journal, February 1970, pp 291-307.

[Korf94]. F. Korf, R. Schlor, “Interface controller synthesis from requirement specifica-
tion”, ICCAD’94, pp 385-394.

[Krishnakumar90]. A.S. Krishnakumar and K. Sabini, “VLSI implementation of commu-

nication protocols: a survey”, IEEE journal on selected areas in communication, vol 7

132

no.7, September 1989. pp 1082-1090.

[Kramer92]. H. Kramer and J. Miller, “Assignment of global memory elements for multi-
process VHDL specifications”, ICCAD’92, pp 496-501.

[Kumar92]. S. Kumar, J.Ayler, B. Johnsin and W. Wulf, “A framework for hardware/soft-
ware codesign”, Int. workshop on hardware/software codesign”, Colorado, September

1992.

[Leupers94]. R. Leupers, W. Schenk, and P. Marwedel, “Retargetable assembly code gen-
eration by bootstrapping”, ICCAD’94, pp 88-93.

[Lien94]. C. Lien, T. May, P. Paulin, “Register allocation through resource classification
for ASIP microcode generation”, ICCAD’94.

[Lin96]. B. Lin, “A system design methodology for hardware/software co-development of
telecommunication network applications”, 33rd DAC, 1996, (http://kona.ee.pitt.edu/
33dac/papers/1996/dac96/htmfiles).

[Luk94]. W.Luk and T. Wu, “Toward a declarative framework for hardware/software
codesign”, CODES’94.

[Lundberg92]. L. Lundberg, “Generating VHDL for simulation and synthesis from a
high-level DSP design tool”, VHDL simulation, synthesis and formal proofs of hardware,

1992 Kluwer Academic Publishers, pp 149-161.

[Mancini94]. G. Mancini, “Hardware/software coverification in ATM’, ICCAD’94, pp 1-
7.

[Marriot98]. P. Marriott, J.C. Kraljic and Y. Savaria, “Parallel Ultra Large Scale Engine

SIMD architectures for real-time Digital Signal Processing Applications”, Proc. of

133

ICCADG9S.

[Marwedel93]. P. Marwedel, “Tree-based mapping of algorithms to predefined struc-
tures”, ICCAD’93, pp 586-593.

[McFarland92]. M.C. McFarland, T.J. Kowalski and M.J. Pemain, “Language and formal
semantics of the specification system CPA”, CODES’92.

[Menez92]. G. Menez, M. Auguin, F. Boeri and N. Carriere, “A partitioning algorithm for
system-level synthesis”, [ICCAD’92, pp 482-487.

[DeMicheli94]. G. De Micheli, “Computer-aided hardware/software codesign”. IEEE
Micro, August 1994. pp 10-16.

[Mitra93]. R. Mitra, B. Guha, and A. Basu, “Rapid prototyping of microprocessor-based
systems”, ICCAD’93, pp 600-603.

[Narayan92a]. S. Narayan, F. Vahid and D. Gajski, “Modeling with SpecCharts”, TR90-
20, University of California at Irvine, October 1992.

[Narayan92b]. S. Narayan and D.D. Gajski, “Area and performance estimation from sys-
tem level specifications”, Technical report ICS-92-16, December 1992, University of Cali-

fornia at Irvine.

[O’Brien95]. K. O’Brien, T. Ben Ismail, and A.A. Jerraya, “A flexible communication
modeling paradigm for system-level synthesis”, GMD Institut Set, 1995.

[Olukotun94]. K.A. Olukotun, R. Belaihel, J. Levitt and R. Ramirez, “A hardware/soft-

ware cosynthesis approach to digital system simulation”, IEEE Micro, August 1994, pp
48-58.

134

[Oudghiri92]. H. Oudghiri and B. Kaminska, “A global and weighted algorithm for
scheduling and allocation in high-level synthesis”, European design automation confer-

ence, March 1992, Belgium, pp 491-495.

[Oudghiri97]. H. Oudghiri, B. Kaminska and J. Rajski, “A hardware/software partition-
ing technique with hierarchical design space exploration”, Custom integrated circuit con-

ference, May 1997, Santa Clara, pp 95-98.

[Pino95]. J.L. Pino, S. Ha, E.A. Lee and J.T. Buck, “Software synthesis for DSP using
PTOLEMY”, Journal of VLSI signal processing, no.9, 1995, pp7-21.

[Potkonjak94]. M. Potkonjak, J. Rabaey, “Algorithm selection: a quantitative computa-
tion- intensive optimization approach”, ICCAD’94, pp 90-94.

[Puri94]. R. Puri, and J. Gu, “A divide-and-conquer approach for asynchronous interface
synthesis”, ICCAD’94, pp 118-125.

[Rao93]. D.S. Rao and F.J. Kurdali, “Hierarchical design space exploration for a class of
digital systems”, IEEE transcations on VLSI, vol. 1, no.3, September 1993, pp 282-295.

[Schnaider96]. B. Schnaider, and E. Yogev, “Software development in a hardware simula-
tion environment”’, 33rd DAC 1996, (http://kona.ee.pitt.edu/33dac/papers/1996/dac96/
htmfiles/).

[Sheliga94]. M. Sheliga and E. H-M. Sha, “System partitioning and scheduling for hard-
ware/software codesign”, Technical Report, University of Notre-Dame, Department of

CSE, 199%4.

[SKS92]. SKS Group, “On an experiment in system codesign: a mass flowmeter”,

CODES’92.

135

[Srivastava95]. M.B. Srivastava and R.W. Brodersen, “SIERRA : a unified framework for
rapid prototyping of system level hardware and software”, IEEE transactions on CAD, vol.
14, no.6. June 1995, pp 676-693.

[Steinhausen93]. U. Steinhausen et al., “System synthesis using hardware/software code-
sign”, CODES’93.

[Subrahmanyam92]. P.A. Subrahmanyam, “Hardware/software codesign: what is needed
for success?”, CODES’92.

[Sun92]. J.S. Sun and R.W. Brodersen, “Design of system interface modules”, [CCAD’92.
pp478-481.

[Susuki96]. K. Suzuki and A. Sangiovanni-Vincentelli, “Efficient software performance
estimation methods for hardware/software codesign”, 33rd DAC, 1996, (http://

kona.ee.pitt.edu/33dac/papers/1996/dac96/htmfiles/).

[Sutarwala93]. S. Sutarwala, P.G. Paulin and Y. Kumar, “Insulin: an instruction set simu-

lation environment”, Proc. CHDL, Ottawa, April 1993, pp 355-362.

[Synopsys95]. “SmartModel library reference manual”, Synopsys Logic Modeling Group,
1995.

[Synopsys96]. “The Design Compiler Reference”, Synopsys, Inc. 1997.

[Texas92]. “The TMS320C40 parallel processing seminar workbook Texas Instruments,
Inc., 1992.

[Theibinger94]. M. Theibinger, P. Stravers, and H. Veit, “CASTLE: an intercative envi-

ronment for hardware/software codesign”, 3rd workshop on hardware/software codesign,

Grenoble september 22-23, 1994, pp 203-209.

136

[Theoen97]. F.Theoen, J. Dersteen. G.Jong, G. Goossens, and H. De Man, “Multi-Thread-
Graph: a system model for real-time embedded software synthesis” International Euro-

pean Design Automation Conference, 1997, pp 476-481.

[Thomas93]. D.E. Thomas, J.K. Adams and H. Schmit, “A model and methodology for
hardware/software codesign”, IEEE Design and Test of computers, September 1993, pp 6-
15.

[Thomas96]. J.K. Thomas, and D.E. Thomas, “The design of mixed hardware/software
systems”, 33rd DAC, 1996, (http://kona.ee.pitt.eduw/33dac/papers/1996/dac96/htmfiles/).

[Vahid91]. F. Vahid, “A survey of behavioral-level partitioning systems”, TR91-71, Uni-
versity of California, Irvine, October 1991.

[Vahid92]. F. Vahid, and D. Gajski, “Specification partitioning for system design”, 29th
DAC, 1992, pp 219-224.

[Vahid]. F. Vahid, J. Gong and D. Gajski, “A binary-constraint search algorithm for min-
imizing hardware during hardware/software partitioning”, Dept.of Information and Com-

puter Science, UC at Irvine

[Vercauteren96a]. S. Vercauteren, B. Lin, and H. De Man, “Constructing application-
specific heterogenoeus embedded architectures from custom hardware/software applica-
tions”, 33rd DAC, Las Vegas, June 1996, (http://kona.ee.pitt.edu/33dac/papers/1996/
dac96/htmfiles/).

[Vercauteren96b]. S. Vercauteren, B. Lin, and H. De Man, “A strategy for real-time ker-

nel support in application-specific hardware/software embedded architectures” 33rd DAC
1996, (http://kona.ee.pitt.edu/33dac/papers/1996/dac96/htmfiles’).

137

[Wenban92]. A. Wenban, J. O’Leary, and G. Brown, *“ Codesign of communication proto-
cols”, CODES’92, Colorado, September 1992.

[Weiskamp]. K. Weiskamp and B. Flamig, “ The complete C++ primer”, Academic press,
Inc. 1989.

[Wilberg95]. J. Wilberg, A. Kuth, R. Composano, W. Rosentiel, and H.T. Vierhaus,
“Design exploration in CASTLE”, Workshop on high-level synthesis algorithms tools and
design (HILES), GMD studies, vol.276, Stanford University, November 4th, 1995.

[Wilberg96]. J. Wilberg, P. Plager, R. Composano, M. Langevin, and H.T. Vierhaus,
“Codesign of hardware, software and algorithms - a case study-", International sympo-

sium on circuits and systems, Atlanta, Georgia,May 12-15, 1996.

[Wilberg a]. J. Wilberg, and R. Composano, “VLIW processor for video processing’

[Wilberg b]. J. Wilberg, R. Composano and W. Rosenstiel, “Design flow for hard-

ware.software cosynthesis of a video compression system”.

[Wilson94]. T. Wilson, G. Grewal, B. Halley, and D. Banerji, “An integrated approach to
retargetable code generation”, ICCAD’94, pp 70-75.

[Wolf93]. W. Wolf, and R. Manno, “High-level modeling and synthesis of communicating
processes using VHDL” TEEE transactions on information and systems, vol E76.D, no. 9,

September 1993, pp 1039-1046.

[Wo0094]. N. Woo, and A. Dunlop, “Codesign from cospecification”, IEEE computer, Jan-
uary 1994, pp 42-47.

[Zirojnovic96]. V. Zirojnovic, and H. Meyr, “Compiled hardware/software co-simula-
tion”, 33rd DAC, 1996, (http://kona.ee.pitt.edu/33dac/papers/1996/dac96/himfiles/).

138

