
INFORMATION Ta USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy slJbmitted. Thusi sorne thesis and

dissertation copies are in typewriter face, while others may be trom any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

cOPY submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

ln the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, thase will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the daletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original. beginning at the upper left-hand corner and continuing

from left to right in equal sections with smalt overtaps.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality. 6" x 9" black and white

photographie prints are available for any photographs or illustrations appearing

in this copy for an additional charge. Contact UMI direetly to order.

Bell & Howellinfonnation ancf Leaming
300 North Zeeb Raad, Ann Arbori MI 48106-1346 USA

800-521-0600

•

•

•

A hardware/software partitioning
framework for the codesign of digital

systems

Houria Oudghiri
B.sc, National institute of computer science, (Algeria) 1988

M.sc, National institute of Computer science, (Algeria) 1991

Department of electrical engineering
McGill University, Montréal

May1999

"A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfilment
of the requirements for the degree of Philosophae Doctor"

© Oudghiri Houria, 1999

1+1 National Library
of Canada

Acquisitions and
Bibliographie Services

395 Wellington Street
OttawaON K1A ON4
Canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395. rue Wellington
Ottawa ON K1 A ON4
Canada

Your file Votre référsnœ

Our file Notre rëférenœ

The author has granted a non
exclusive licence allowing the
NationaI Library ofCanada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership ofthe
copyright in this thesis. Neither the
thesis nor substantial extracts frOID it
may be printed or otherwise
reproduced without the author' s
pernusslon.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

0-612-55368-X

Canada

•

•

•

ABSTRACT

The thesis provides a new approach to the codesign of digital systems. Complex sys

tems tend to have mixed hardware-software components and are often subject to severe

cost, performance, and design-time constraints. Our approach is to codesign these systems.

The codesign approach allows the hardware and software designs to be tightly coupled

throughout the design process. We focus on three key problems of system modeling, sys

tem analysis and system hardware-software partitioning.

A key contribution of the thesis is to use hierarchy as it is available in modeling tools to

handle complex system models but also during the codesign process to provide different

modeling alternatives for the same input system. This use of the hierarchy, during the

codesign process, allows the extension of the design space explored to find the final imple

mentation.

Another key contribution is the analysis of the hierarchical model for any target archi

tecture using automatic estimators and scheduling algorithms. The performance estimation

provides information on the performance of each block in the model when it is ron on soft

ware resources or implemented on hardware. The scheduling algorithm is used to identify

critical paths in the system execution and also to identify data dependency between the dif

ferent model components.

The last main contribution is the hardware-software partitioning algorithm. The pro

posed algorithm is based on a weighted graph partitioning heuristic. The partitioning aIgo-

ii

•

•

•

rithm performs into two nested loops. The outer loop is used to select the blocks which

take a long time to execute in order to move them to hardware. This selection has the main

objective of accelerating the system execution. The inner loop is used to select the neigh

bors of the block selected in the outer loop. The neighbors which have the most data

dependency are first selected in order to minimize the hardware-software communication

cost.

We embody all the above concepts in a framework containing tools for hierarchical

modeIing, system analysis and partitioning. This new framework provides designers with

a list of hardware-software implementations corresponding to the different levels in the

system hierarchy. These codesign alternatives are provided with their performance and

cost measures to allow the designer selecting the final implementation.

iü

•

•

•

SOMMAIRE

Cette thèse présente une nouvelle approche pour le codesign des systèmes digitaux. Les

systèmes digitaux deviennent de plus en plus complexes et ont tendance à contenir des

composants hybrides qui peuvent être du logiciel ou du matériel. La conception de tels

systèmes est souvent sujette à des contraintes sévères sur le coût, la performance ainsi que

sur le temps de conception. On propose, dans cette thèse une approche pour réaliser le

codesign de tels systèmes. Cette approche permet de concevoir le logiciel aussi bien que le

matériel dans le même processus de conception. Nous nous sommes intéressés, dans cette

thèse, surtout à trois problèmes clés dans le domaine du codesign qui sont la modélisation

au niveau système, l'analyse de perfonnance ainsi que le problème de partitionnement

logiciel-matériel.

L'une des contributions majeures de cette thèse, est l'utilisation de la hiérarchie non

seulement pour permettre de modéliser des systèmes très complexes mais aussi lors du

processus de codesign afin de fournir différentes alternatives de modélisation pour le

même système en entrée. Cette utilisation de la hiérarchie, pendant le processus de code

sign, permet d'étendre d'une façon considérable l'espace des solutions qu'on explore afin

de trouver la solution finale. En effet, chaque niveau dans la hiérarchie donne un nouveau

modèle sur lequel tout le processus de codesign est exécuté afin de trouver une solution

logicielle-matérielle. Plusieurs niveaux de hiérarchie vont donc permettre de rechercher

une solution pour chaque niveau. Ceci constitue une nette amélioration par rapport aux

iv

•

•

•

travaux classiques où une solution est recherchée pour un seul modèle en entrée.

Une autre contribution concerne l'analyse du modèle hiérarchique pour n'importe

quelle architecture cible. Ceci est réalisé en utilisant des outils d'estimation automatique

ainsi que des algorithmes d'ordonnancement. L'estimation automatique des performances

fournit, d'une façon rapide~ des données sur les perfonnances de chaque bloc du modèle

lorsque celui-ci est exécuté sur une ressource logicielle ou bien implémenté sur le matériel.

Les algorithmes d'ordonnancment servent à identifier les goulots d'étranglement dans

l~exécutiondu système au complet et aussi à déterminer les dépendances en données entre

les différents blocs du modèle.

La dernière contribution majeure est l'algorithme de partitionnement logiciel-matériel.

L'algorithme proposé est basé sur une heuristique de partitionnement d'un graphe

pondéré. Cet algorithme est réalisé en deux boucles imbriquées. La boucle externe sert à

sélectionner les noeuds qui sont les plus lents et qui sont déterminants sur la performance

finale du système. Cette première sélection sert donc à accélérer l'exécution du système.

La boucle interne sert à sélectionner les voisins les plus dépendants du bloc sélectionné par

la boucle externe afin de minimiser le coût de la communication entre les partitions

logicielle et matérielle.

Toutes ces contributions ont été intégrées dans un environnement de codesign permet

tant de réaliser une modélisation hiérarchique, une analyse du système en entrée et enfin

un partitionnement automatique du système en entrée en deux implémentations, 1tune

logicielle et l'autre matérielle.

v

•

•

•

Acknowledgements

l would like to acknowledge my supervisor, Januzs Rajski, for having accepted me

as a Ph.D student, supported me and assisted me throughout my doctoral studies.

l would also like to acknowledge my co-supervisor, Bozena Kaminska, for her guid

ance and assistance throughout my doctoral thesis.

As a member of my supervisory comitte, l acknowledge Prof. Ted Szymanski for his

suggestions during the earlier stages of my research work.

l am beholden to all my friends in the VLSI design laboratory at McGill and at the

University of Montréal for their assistance. My special thanks to Claude Villeneuve for the

pleasant work l had with him.

In addition, l would like to express my thanks to the Algerian Gouvemment for their

support during my master and which allows me ta continue towards Ph.D.

For financial support, l would like ta acknowledge Prof. Yvon Savaria, the director

of the PULSE project and all the project partners.

Finally, on a more personallevel, l am gratefuI for my parents and to all my family

members back home for their support throughout the course of my studies.

vi

2.4.

•

•

•

TABLE OF CONTENTS

~][~~ <=>~ ~<=J~~ }(Î

~][~~ <=>~ ~~~~~ Jeiii

C::~~ <=>~ <=>~<=J~~I~ Jei"

1 ~<=>][)~c::1[1[<=>1'f 1

1. 1. Modeling 5

1. 2. Performance estimation 6

1. 3. PartItIomng 7

2 C::ODE~I<=JN METHODOLOGY 9

2. 1. Motivations for hardware/software codesign 10

2. 2. The codesign problem statement 11

2. 3. A typical codesign flow and tools for codesign 13

2.3.1 System modeling 13

2.3.2 Systemanalysis 14

2.3.3 Partitioning...... 14

2.3.4 Cosynthesis 15

2.3.5 Cosimulation . 16

Related work 16

2.4.1 Specification and verification 17

2.4.2 Co-simulation 19

vii

•

•

2.4.3 System analysis 19

2.4.4 Partitioning 20

2.4.5 Cosynthesis and prototyping 22

2. 5. The proposed codesign framework 24

2. 6. Summary 28

3 SYSTEM SPECIFICATION 30

3. 1. Modeling techniques 31

3.1.1 Finite State Machines 31

3.1.2 Data flow graphs 32

3.1.3 Communicating processes 32

3.1.4 Object-oriented modeling 33

3. 2. The proposed model 34

3. 3. The model data structure 40

3. 4. Summary 43

4 SYSTEM ANALYSIS 45

4. 1. Performance estimation 45

4.1.1 Hardware performance estimation 46

4.1.2 Software performance estimation 47

4. 2. The proposed estimation technique 47

4.2.1 The Specsyn estimators 48

4. 3. Scheduling 54

4. 4. Summary 58

•
5 SYSTEM PARITII0NING 59

5.1. Problem definition 61

5.2. Related work 62

viii

•

•

•

5.2.1 The input model 62

5.2.2 The granularity 63

5.2.3 The cost function 64

5.2.4 The partitioning algorithm 66

5.3. The proposed partitioning technique 71

5.4. The partitioning algorithm implementation 78

5.5. The allgoritfrrrL c;oIIlpleJCÏt)r 80

5.(). ~llllJl[[laur)r .••••••.•••..•.•••.•••.•..••••••••••••••..••.••.•••.••••••••.•••••••••.••••••••.••• 83

() C::~~~ ~1[1[J][)~~ ..••.••.••...•..••..•.•..••..••.•.••.•••.•••.••••.•••••.•••••••••• ~:;

6. 1. The target architecture 8()

6. 2. The FFf exam.ple 87

6.2.1 The high-Ievel description of the FFf transform 87

6.2.2 The FFf hierarchical modeling _ 90

6.2.3 The performance estimation and scheduling 92

6.2.4 Partitioning alternatives 93

6. 3. The power network simulation allgorithm 99

6.3.1 The high-Ievel description of the power network simulation 99

6.3.2 The hierarchical modeling of the power network simulator.. 101

6.3.3 Performance estimation 103

6.3.4 Partitioning alternatives 104

6. 4. Summ.ary 107

7 C::ONCLU~IONS 108

7. 1. Contributions 108

7.1.1 Hierarchical modeling.... 109

7.1.2 System partitioning 110

7.1.3 System analysis 112

7. 2. Future directions 112

ix

•

•

•

7.2.1 Framework integration 112

7.2.2 Hardware and software synthesis 113

7.2.3 Interface synthesis 114

APPENDIX
Technolgy files for the system estimation 115

~~~1'f~~~ 1~~

x



•

•

•

LIST OF FIGURES

Figure. 1.1 The hardware/software codesign process 4

Figure. 2.1 The typical codesign flow process. 16

Figure. 2.2 The proposed cadesign flow. 26

Figure. 2.3 Modeling and codesign alternatives 27

Figure. 3.1 Examples of the different modeling techniques 33

Figure. 3.2 The HDLC entity environment and black digram. 36

Figure. 3.3 The hierarchical model of the HDLC entity 37

Figure. 3.4 The data flow graph models corresponding to different levels ofhierarchy. 37

Figure. 3.5 Possible hardware/software partitioning 40

Figure. 3.6 The data structures used to implement the hierarchical mode!. 42

Figure. 3.7 The data structures used to implement the data flow graphe 43

Figure. 4.1 The behavioral analysis step. 48

Figure. 4.2 The allocation list for hardware estimation. 50

Figure. 4.3 The SpecChart description of the FIR fil ter. 51

Figure. 4.4 The list of generic instructions. . 53

Figure. 4.5 An example of ASAP and ALAP scheduling 55

Figure. 4.6 The ASAP and ALAP scheduling procedures............................................... 56

Figure. 4.7 The task scheduling for different levels in the hierarchy 57

Figure. 5.1 The proposed hardware-software partitioning procedure 76

Figure. 5.2 The partitioning procedure flow for the HDLC example 77

xi



•

•

•

Figure. 5.3 The procedure to find the critical path in the data flow graphe 80

Figure. 5.4 The principal procedures used in HAP. 82

Figure. 5.5 The complexity of the principal procedures in the partitioning algorithme 82

Figure. 5.6 The search directions in the codesign space exploration 84

Figure. 6.1 The codesign target architecture 87

Figure. 6.2 The FFf transforrn C program. 89

Figure. 6.3 The hierarchical model of the FFr transform behavior. 91

Figure. 6.4 ASAPIALAP scheduling at two different levels of the FFr hierarchy. 94

Figure. 6.5 The matlab prograrn of the network simulation algorithme 100

Figure. 6.6 The hierarchical model of the network simulation behavior 102

Figure. A.l The technology file of the PULSE processor. 125

Figure. A.2 The technology file for the C40 processor. 126

xii



•

•

•

LIST OF TABLES

Table.2.1 Fields of system design with related work....................................................... 23

Table.4.1 Memory size of the base types 54

Table.5.1 Comparison of the common partitioning methods 70

Table.6.1 Perfonnance estimation of the FFf blacks 92

Table.6.2 The FFf transfonn partitioning under timing constraints 95

Table.6.3 Block assignment at different hierarchicallevels of the FFf mode!. 97

Table.6.4 Alternative comparison for the FFf transfann. 98

Table.6.5 The performance estimation for the power network simulator blacks. 104

Table.6.6 Block assignment at different hierarchicallevels of the network simulation algo-

rithm lOS

Table.6.7 Codesign alternatives for the network simulation algorithm......................... 106



•

•

•

Claim of originality

The author claims originality for the following contributions of the dissertation:

• Chapters 1 through 5 contain reviews in their first sections, although these reviews are

original in the sense of providing a new classification of related works according ta

determinant characteristics in the codesign field.

• Chapter 2 presents a novel codesign flow based on the hierarchy and performance esti

mation. This flow is reiterated for each Level in the hierarchy.

• Chapter 3 develops a new use of hierarchy for models of digital systems described at

high-Ievel. The hierarchy is not presented as a new approach for design but is consid

ered in a different way. The majority of modeling tools support hierarchy but only ta

allow handling complex systems. We exploit this same hierarchy used to simplify the

modeling step to provide various input models for the same input system. This use of

hierarchy provides an expansion of the modeling space because different input models

are available for each level of the hierarchy, but also an expansion of the codesign

space because a hardware-software solution may be found for each level of the hierar

chy. Our Codesign process consider at each level of the hierarchy a set of blacks with

different abstraction when moving through the hierarchy levels.

• Chapter 4 proposes a new analysis methodology for the codesign of digital systems.

The analysis is performed in two stages: the performance estimation and the task

scheduling. The performance estimation is performed using known automatic estirna

tors but we provide these available estirnators with technology files for each resource

of our target architecture. The task scheduling is perforrned to find critical paths and

bottlenecks in the system execution. The scheduling step identifies the concurrency

between the system tasks in an independent way of the partitioning.

xiv



•

•

•

• Chapter 5 proposes a new hardware-software partitioning algorithm based on a

dependency graph partitioning. The nodes and edges of the dependency graph are

weighted in order to minimize the system execution time and the hardware-software

communication overhead. The hardware-software partitioning is performed on the

basis of two types of selection, global and neighborhood. The global selection selects

the bottlenecks in the system to accelerate the system execution. The neighborhood

selection operates on the neighbors of the bottlenecks in order to nùnimize the hard

ware-software communication overhead.

• Chapter 6 provides extensive experimental verification on two case studies. For each

case study, two lists of hardware-software partitioning alternatives are provided: the

timing constraint list and the hierarchy liste The timing constraint list gives the list of

hardware-software partitioning alternatives obtained for different timing constraints.

The hierarchy list provides a list of hardware-software partitioning alternatives for the

same tinùng constraint but at different levels of the hierarchy.

• Chapter 6 also provides a comparison between the hardware-software alternatives

obtained for the same timing constraint to show the necessity of a perforrnance-area

tradeoff.

xv



•

•

•

1

INTRODUCTION

System-Ievel design usually involves designing an application specified at a high

level abstraction. A typical design objective is to minimize cost (in teans of area or power)

while the perfonnance constraints are usually throughput or latency requirements. The

specification at system level is built of basic components called tasks. This specification has

two characteristics. First, tasks are at a higher level of abstraction than atomic operations or

instructions. This allows for complex applications to be described easily and more natural

ly. Secondly, there is no commitment to how the system is implemented. Since the specifi

cation does not assume a particular architecture, it is possible to generate either a hardware,

or a software, or a mixed implementation. This is specially important for the synthesis of

complex applications whose cost and performance constraints often demand a mixed hard

ware-software implementation. For such applications, full-software implementations (pro

gram running on a programmable processor) often cannot meet the performance

requirements, while custom-hardware solutions (custom ASIe) may increase design and



•

•

•

product costs. It is important therefore, not ta commit each task in the application ta a par

ticular mapping (hardware or software) or implementation when specifying the application.

The appropriate implementation for each task can be selected by a global optimization pro

cedure after the specification stage. The task level of abstraction allows this flexibility.

Manual development of a lower-Ievel design specification (such as at the RTL level) is

quite intense due ta the complexity of the applications. As a result, it is desirable to specify

the application at the task level and allow a design tool to generate lower levels of imple

mentation from it.

Such a system-level design approach is now viable due to the maturity of lower level

design tools and semiconductor technology. Computer-aided design tools that operate at

lower levels of abstraction are quite robuste The next step is to use these CAD tools for sys

tem-Ievel design. AIso, advances in semiconductor manufacturing have made it possible to

fabricate a "system on a chip".

Figure 1.1 summarizes the key issues in system-Ievel design. These are system spec

ification, modeIing, partitioning, synthesis, simulation and design-space exploration. A sys

tem is first specified in a high-Ievel language as a set of tasks. It is then transformed into a

model to catch its functionality details at a high-Ievel of abstraction. Several hardware and

software implementation options are usually available for each task in the description. The

partitioning process determines an appropriate mapping (hardware or software) for each

task. A partitioned application has to be synthesized and simulated within a unified frame

work that involves the hardware and software components as weIl as the generated inter

faces. The software synthesis of a task is to generate the code for the task on a given

processor. Finally, the validation of the final implementation is often performed using co-

2



•

•

•

simulation tools. The system-Ievel design space is quite large. Typically. the designer needs

to explore the possible options, tools. and architectures, choosing either automated tools or

manually selecting his/her choices (feedbacks in Figure 1.l). A design-space exploration

framework attempts to ease this process.

The most important aspect of system-Ievel design is the multiplicity of design aod

modeling options available for every task in the specification. Each task cao be implement

ed in several ways in both hardware and software mappings, and cao aIso be modeled as a

big black box. a set of subblocks or a set of basic operations. The partitioning problem is to

select an appropriate mapping of each task from a given mode!. In system-Ievel design.

there are a number of such tasks and overall design is to be optimized. Clearly. it is not

enough to optimize each task independently. For example, if each task were fed to a high

level hardware synthesis tool that optimized for speed, then the overall area of the system

might he too large. Hardware-software partitioning is the problem ofdetermining an imple

mentation of each task so that the overall design is optimized.

Once the appropriate implementation for each task has been determined, the hard

ware-software synthesis problem is that of synthesizing the implementation. Implementa

tions for tasks mapped to hardware or software cao be generated by feeding the task

descriptions to synthesis tools. The hardware synthesis consists of high-Ievel synthesis

[McFarland 90] followed by logic synthesis [Brayton90] and layout synthesis

[DeMicheli86]. The software synthesis comprises high-Ievel software synthesis [pino95],

followed by compilation and assembly. System-Ievel design is not a black-box process. but

relies considerably on user creativity and interaction. For instance, the user might want ta

experiment with the design parameters. The design process could get quite aowieldy as the

3



•

•

•

user experiments with the design methodology. As a result, an infrastructure that supports

design space exploration is also a key aspect of the system-level design process. Tools for

design space exploration must include perfonnance estimation tools. Estimation tools give

quick predictions on the outcome of applying certain synthesis or transformation tools.

( System specificationJ ~

( System mode/îng J
--

( Partilioning J
1 1 1 1

1 Partition l 1 Partition 2 Partition 3 Partition 4

~
Hardware r Code .., ( Code

., r Code
synrhesis \.. generation ) \.. generation \... generation...t

1
HW 1 S.w l 1 s.w 2 1 par§'l}6n 3partItIon partItIon partIt10n

1 1 1 1

_r Jnre~1ac.e )-\. syntlfJeslS

1 Co-implementation 1
1

.-
( CosimuLationJ

-
"Final implementation

Figure 1.1. The hardware/software codesign process.

Designing systems containing both harware and software components is not a new

problem. The traditional design approach has been somewhat hardware first in that the soft-

ware components are designed after the hardware has been designed and prototyped. This

leaves little flexibility in evaluating different design options and hardware-software map-

pings. With isolated hardware and software design paths, it also becomes difficult to opti-

mize the design as a whole. Such a design approach is especially inadequate when

designing systems requiring strict performance and a small design cycle time. The key tenet

4



•

•

•

in codesign is to avoid isolation between hardware and software designs to proceed in par

allel, with feedback and interaction between the two as the design progresses. This is ac

complished by developing tools and methodologies that support coupled design of

hardware and software through a unified framework. The goal ofcodesigning the hardware

and the software components of a system is to achieve high quality designs with a reduced

design time.

Our main objective, in this thesis, is to provide efficient solutions to sorne relevant

codesign problerns. The main tasks involved in the codesign process have been presented

in the above paragraphs. These are the system modeling, the system parformance estima

tion and the hardware/software partitioning. The techniques used to perform such tasks are

determinant on the final hardware/software implementation. We propose new and original

techniques to perform these tasles with the objective of providing more efficiency and better

design space exploration. The proposed objectives with a statement of originality are pre

sented below for each one of these tasks.

1. 1.. Modeling

The specification at the system level is often modeled as a set of tasks. These tasks

are described at the basic operation level in sorne modeling framework or at the pro

cess level (sequence of basic operations) in sorne others.

Digital systems are becoming more and more complex and this complexity involves

the use ofnew modeling characteristics, as the hierarchy in order to make the model

ing of such complex systems tractable. The hierarchy has been proven to he extreme

ly useful when modeling highly complex systems. The majority of modeling tools

include the hierarchy in their modeling approach. In this thesis, we consider the hier-

5



•

•

•

archical model available and we propose a new use of this available hierarchy. The

hierarchy is not used only to ease the modeling process but all along the codesign pro

cess by considering the different modeling alternatives available in a hierarchical

model, each one with a different complexity.

The main objective intended by this use of hierarchy is to have several modeling al

ternatives and ta codesign each one ofthese alternatives. Many co-implementation al

ternatives are then provided since a possible hardware/software implementation with

its own perfonnance and cast is found for each one of the modeling alternatives. This

use of hierarchy is a new and original way to expand the design space exploration

which is a key tenet in the codesign process.

1. 2. Performance estimation

In literature, many tools are available for performance estimation on a specifie target

architecture. The available estimation tools are often tied to a specifie architecture

and new tools have to be developed if the target architecture is changed. We intend

in this thesis to use generic estimation tools that can be tied dynamically ta any target

architecture. The target architecture resources are first described in a generic way and

put into the data base of the estimation tools. Then, the estimators consider any input

algorithmic specification and provide performance estimation measures when the in

put algorithm is mn or implemented on the selected resources. The main objective, at

this step, is the flex.ibility to consider many possible target architectures for the same

input system specification rather than having one target architecture fixed at the very

early stages of the design.

6



•

•

•

1. 3. Partitioning

Partitioning is the main task in the codesign process since the final hardware/software

implernentation is tightly dependent on the techniques used to select and map the

tasks to hardware or to software. Many automatic partitioning algorithms have been

proposed during the past years but without convincing codesigners to adopt the auto

matic solution. Codesigners have not enough confidence in an automatic solution for

partitioning because they want to make the main decisions by themselves.

We propose a partitioning solution which is between the complete automated and

manual partitioning. We propose an automatic partitioning technique which attempts

to try several task rnappings and then provides the desiger with the obtained alterna

tives and their performance estimations. The automatic partitioning algorithm is in

charge of the cornplex and iterative search process while the decision of selecting the

final implernentation is left to the designer.

This thesis presents in detail each one of the original proposaIs presented above. Chap

ter 2 briefly presents an overview of related work in system design and computer-aided

techniques developed for system synthesis, and the general scheme of the proposed code

sign framework. The organization of the rest of thesis can be explained by relating it to the

organization of our codesign CAD framework. The input to our system is an algorithrnic

description of the system functionality. The description is compiled into a hierarchical sys

tem graph model based on dataflow graphs whose features and properties are described in

Chapter 3. Chapter 4 describes performance estimation and analysis techniques used to pre

dict the performances of possible hardware/software implementations. In chapter 5, we de

fine the problem of system partitioning and present an automatic approach to partitioning

7



•

•

•

digital systems for hardware/software cosynthesis. Chapter 6 describes case studies consid

ered for hardware/software codesign and the results obtained after applying our codesign

approach. Chapter 7 presents conclusions where the objectives defined above are recalled

in the context ofobtained results and finally the directions for future research are presented.

&



•

•

•

2

CODESIGN METHODOLOGY

W hile the CAO tooIs for the design of individual application specifie ICs, or

ASrCs, are in a fairly mature state, in sorne application domains it is even possible to com

pletely synthesize an ASIC from a high-level behavioral description in a matter of hours,

CAD methodology for dedicated systems have not kept pace. Real-life systems are com

posed of a mix ofsoftware running on general purpose programmable hardware, ASrCs and

other dedicated hardware, electromechanical components, and mechanical interconnect and

packaging, and a unified approach that encompasses the various software, hardware, and

mechanical aspects of system design is desirable.

The increased functional and implementation complexity and heterogeneity of sys

tems mean that one cannot just scale and apply chip design techniques to the design of a

system. For example, it is difficult and unnatural to represent and simulate an entire system

according to a single computation model as is usually done in the case of chips. This simple



•

•

•

architecture model of a single controller and a datapath as used for chips is inadequate for

most board level systems. Clock synchronous hardware implementation is usually adequate

for chip but not for an entire system. Software issues are absent in a chip design as ASrCs

mostly have hardwired controllers. In short, system level design is more than just a scaled

version of chip design.

Since system-Ievel design oversees high-Ievel synthesis, Iogic synthesis, etc..., deci

sions made at the system lever impact all the layers below it. In other words, if the objective

in system-Ievel design is to come up with the "best" system implementation, there are a

large number of design options. The system-Ievel designer is faced with the questions of

selecting the best design options.

The general design methodology is shown in Figure 2.1. The inputs to the codesign

tool include the design specification and the design constraints, and the output is an imple

mentation for the system. This chapter describes the various components of the standard

codesign tool. In section 2.2, the codesign problem is stated with all the involved steps. In

section 2.3, a typical codesign flow is described and the various tools required in the code

sign process are outlined. In section 2.4, we present a list of the most known frameworks

related to the codesign of digital systems. In section 2.5, we outline the proposed method

ology with the advantages it offers compared to the related works.

2. 1. Motivations for hardware/software codesign

Most digital functions cao be implemented by software programs. The major reason

for building dedicated application-specifie hardware (ASICs) is the satisfaction of perfor

mance constraints. These performance constraints cao be on the overall time (latency) to

ID



•

•

•

perform a given task, or more specifically on the timing to perforrn. a subtask and/or on the

ability to sustain specified inputlouptut data rates over multiple executions of the system

modeL The hardware performance depends on the results of operation scheduling and the

performance characteristics of individual hardware resources. The software performance

depends on the number of instructions the processor must execute and the cycles-per-in

struction metric of the processor. In general, application-specific hardware implementa

tions are faster since the underlying hardware is optimized for the specific set of tasks.

However, sorne parts of the description of an ASIe machine may be weIl suited to a com

monly available reprogrammable processor while others may take too long to execute.

2. 2. The codesign problem statement

Hardware software codesign is a complex problem that invoives the following sub

problems:

1. Modeling the system functionality and performance constraints

System modeling refers to the specification problem of capturing important as

pects of system functionality and constraints to facilitate design implementation

and evaluation. Among the important issues relevant to mixed system designs

are:

• Explicit or implicit concurrency in the specification.

• Model ofcommunication- shared memory versus message passing-.

• Control flow specification or scheduling information.

When the concurrency is implicit, the concurrency information is obtained by

performing a dependency analysis for which the complexity depends on the sys-

Il



•

•

•

tem model used.

2 • Choosing the granularity of the hardware/software partitions. The system

functionality can be handled either at the functional abstraction level, where a

certain set of operations is partitioned, or at the process communication level

where a system model composed of interacting process models is mapped onto

either hardware or software. The former attempts fine-grain partitioning while

the later attempts a high-levellibrary binding through coarse-grain partitioning.

Each choice has advantages and disadvantages. The first one allows efficient

and refined analysis and transformations but at a higher computing complexity.

The second one reduces the processing complexity with a loss in design effi

ciency since blocks or processes are considered instead of basic operations. This

reduces the partitioning alternatives compared to those available at the basic

operation level.

3 • Determining the feasihle partitions of application-specifie and re-program

mable components. The blocks in the system functionality are assigned to hard

ware or to software in such a way that the resulting implementation satisfies the

functionality requirements and the constraints. This is a difficult problem

because good system-level cost metrics, accurate techniques for estimating the

cast, and techniques for reliable performance estimation of system-Ievel hard

ware and software are required.

4 • Specifying and synthesizing the hardware, the software and the hardware/

software interface. Each one of the determined partitions is synthesized to

obtain the final implementation using the automatic tools available on the mar-

12



•

•

•

ket. This synthesis is aIso done under performance and cast constraints.Hard

ware and software synthesis tools use different specification languages (for

example, VHDL for hardware synthesis and C for software synthesis) and thus

the resulting partitions must be translated to the specifie description language in

order to be automatieally synthesized.

The next chapters focus on the various aspects of the eodesign process with the prop

osition made for each one of these steps. In the next section, we foHow the codesign prob

lem presentation by showing a typicaI codesign flow in section 2.3. In section 2.4, a list of

related works in codesign are classified aecording to their major charaeteristics. In section

2.5, our proposed codesign framework is presented.

2. 3. A typical codesign flow and tooIs for codesign

A typical codesign flow is shown in Figure 2.1. A task-Ievel specification is trans

formed into the final implementation by a sequence of tools. The final implementation con

sists of eustom and commodity programmable hardware eomponents and the software

running on the programmable components. The design constraints include the desired

throughput and the architectural model (maximum allowable hardware area, memory size,

communication model). The design flow describes the sequences of steps that operate on

the design data to generate the final implementation. The eomponents of the codesign flow

inelude tools for modeling, analysis, partitioning, synthesis and simulation.

2.3.1 System modeling

Models are often needed in order to avoid creating detailed implementations. A mod-

13



•

•

•

el of a system helps to estimate relevant properties, like area and delay, of its implementa

tions. The model is built from a set of interconnected basic elements. The model complexity

depends on the basic element complexity. Indeed, if the basic element is an arithmetic or

logical operation, the model may be very complex because the majority of systems are gen

erally constituted of a large set of these simple operations. If the basic element is a task or

a process Ca set of interconnected basic operations), the model complexity may be reduced

considerably. This means that the model complexity depends on the model granularity. The

more the granularity is fine the more the model is complex and hard to handle. We propose

a modeling technique with a variable granularity that allows the use of a simple model as

long as the constraints are satisfied. We handle complex models only when the eonstraints

cannot be satisfied with simple models. In chapter 3, we show the advantages of sueh a

modeling technique.

2.3.2 System analysis

The system analysis involves two main tasks. These are the performance estimation

and the scheduling of the model tasks. The performance estimation provides estimates of

the implementation metries Carea and execution time requirements) for eaeh of the tasks in

the specification when different hardware and software realizations are considered. The

scheduling determines the possible execution flows of the different tasks based on their data

dependencies. The estimates and task scheduling guide the partitioning algorithm during

the task mapping. Details of the estimation and scheduling tools are discussed in chapter 4.

2.3.3 Partitioning

Once the estimates of the area and execution time and the scheduling of the functional

14



•

•

•

blocks have been perforrned, the next step in the codesign flow is the partitioning. The goal

of the partitioning is to detennine, for each task the mapping to hardware or to software

while optimizing the overall design. The partitioning is a non-trivial problem. Consider a

task-Ievel specification, typically in the order of 50 to 100 tasks or nodes. Each task can he

mapped to either hardware or software. Furthermore, within a given mapping, a task can he

implemented in one of severa! options. Suppose there are 5 design options. Thus, there are

(2xS) 100 design options in the worst case! Although a designer may have a preferred im-

plernentation for sorne p nodes, there are still a large number of design alternatives with re

spect to the remaining nodes (2 x 5) lOO-p. Determining the best design option for these

remaining nodes is, in fact, aconstrained optirnization problem. In section 5.3, the partition

ing algorithm that uses a graph partitioning heuristic is presented. The proposed heuristic is

very efficient with the complexity O(N2), where N is the number of tasks in the design spec

ification.

2.3.4 Cosynthesis

Once the application is partiotioned into hardware and software, the individual hard

ware, software, and interface components are synthesized. The particular synthesis tool

used depends on the desired technology. The VHDL code can be generated and passed

through synopsys tools to generate the hardware implernentation. Similarly, different soft

ware synthesis strategies can be used; for instance, the C description may be generated. The

interface generation depends on the desired architectural mode!. There are several pub

lished approaches to the problem of synthesizing hardware and software from high-Ievel

specification.

15



•

•

•

2.3.5 Cosimulation

Once the hardware, software, and the interface components are synthesized~ a valida

tion/verification step is required. This is often a cosimulation of the different components,

hardware~ programmmable hardware and software. Examples of such cosimulation too1s

are Ptolemy (Stanford University) and logic modeling [Synopsys95].

We propose a codesign tool as a framework for system-level design. The tool is a uni

fied platfonn consisting of tools for modeling~ analyzing and partitioning of mixed hard

ware-software systems. Simulation and synthesis tools may be used from those available

on the market.

Partitioning tool

Synthesis tools

) Simulator

Final implementation

Figure 2.1. The typical codesign f10w process.

2. 4. Related work

Work in the computer-aided approach to system design is relatively new. Recent in-

16



•

•

•

terest in system synthesis has been stimulated by the success and maturity ofchip-level syn

thesis tools and the emergence of synthesis approaches at levels of abstraction higher than

logic-Ievel and RTL-Ievel circuit description. In the follow sections, we briefly review re

lated work that is directIy relevant to the codesign problem.

Table 2.1 gives sorne pointers to fields in system design. A system design typically

requires to address all these topics. But the relevance of each topic depends very much on

the considered application domain. For example in avionics, the system security and a val

idated design are of the utmost importance, whereas in digital signal processing the high

performance power and the chip complexity are the main design tapies.

Achieving performance requires a careful tailoring of the system structure to the re

quirements imposed by the algorithms. For complex applications, this makes an analysis of

the programs necessary to detennining the requirements. Analysis tools are required to sup

port this in a an efficient way. Table 2.1 gives the list of sorne codesign worles with the main

codesign problems each of them has addressed. In the next paragraphs, these problems are

listed with the solutions proposed in literature.

2.4.1 Specification and verification

The input system is specified into a formal language that allows an easy and formai

specification with functionality checking and verification facility. This specification is de

terminant for the next steps in the codesign flow. The more efficient the specification lan

guage is, the easier are the analysis and partitioning steps. Sorne codesign frameworks in

literature are dedicated mainly for a strong and efficient formal language for specification

and verification.

One of these works is CODES [Buchenrieder92] which stands for COncurrent DES-

17



•

•

•

signe The system is specified as a set of communicating parallel random access machines

(PRAMs). The design process is modeled using Petri Nets which are a weIl known strong

formai modeling technique. The input specification is simulated using StateMate or SDL

too1s widely used for the communication protocol simulation and verification.

Another work concentrating on the formai specification language is COSMOS

[BenIsmail94bJ. The main objective of this codesign frarnework is to provide an interme

diate format SOLAR [O'Brien95] which can model system-level constructs in a synthesis

oriented manner. The philosophy is to aIlow the designer to use custornîzed languages to

describe different aspects of his system and to provide translators to this intermediate forme

SOLAR is able to model and synthesize a wide range of communication schemes between

concurrent processes.

Another work related to specification and modeling is the SpecCharts formaI lan

guage [Gajski93] developped by Gajski et al. at the university of California at Irvine. This

fonnal language is an attempt to build a bridge between hardware and software specifica

tions. The system's behavior is conceptualized as a hierarchy of sequential and concurrent

behaviors. The hierarchical structure is described in the language SpecCharts while the ba

sic behaviors are described in VHDL language. This has been a very elegant solution for

modeling both hardware and software but raises the question of the need for a standard.

The last work in this category of frameworks concentrating on specification and mod

eling is the tool developped by Chiodo et al. [Chiod094]. This tool uses a unified formaI

specification model called networkofCodesign Finite State Machines (CFSMs) to describe

control-dominant systems characterized by relatively low algorithmic complexity such as

embedded controllers. The rnodeling tool is aIso used to describe techniques to realize a

l8



•

•

•

CFSM as either a hardlNare or software FSM~ to generate the interfaces between the result

ing hardware and/or software FSMs.

2.4.2 Co-simulation

Simulation is a very uselful facility at the starting of the design to check the function

ality and at the end of the design to verify the design implementation. The simulation is of

ten used as an alternative to formal verification for complex systems.

The main framework known for system-level simulation is PTOLEMY [Buck94a].

PTOLEMY is a framework for the simulation~ prototyping and software synthesis of digital

signal processing systems. PTOLEMY~s strength is its unified framework that primarily

addresses the simulation of specifications as a set of heteregeneous computation models

constituting a DSP system. Examples of supported models are synchronous data flow

(SDF)~ dynamic data fIow (DDF), discrete events (DE) and signal-Ievel digital hardware

(Thor).

In addition to a simulation framework, PTOLEMY also provides code generation

abilities for its synchronous data flow (SDF) model using DSP processors, C. Silage or

VHDL languages as targets. The strength in heterogeneity by use of diverse computation

models in Ptolemy cornes at the loss of an analytical handle on system properties when the

input system is not from a DSP application..This is particularly true for system specifica

tions that feature a significant amount of control fIow. Nevertheless, Ptolemy represents an

important step towards simulation of complex systems.

2.4.3 System analysis

The codesign process requires a profiling and a performance analysis of the input

19



•

•

•

specification in order to find a final implementation for the different system blocks such

that the overall system performance is optimized. This analysis phase is deterrninant for an

efficient hardware/software partitioning. Sorne codesign frameworks emphasize on this ap

sect as SpecSyn [Vahid92] and CASTLE [Theinbinger94].

SpecSyn is an automatic codesign framework which uses the SpecCharts language

for the input specification. The hardware and software performance and area estimation

may be determined for a wide range of resources described into technology files. The tech

nology file library contains rnany standard processors and sorne custom ASIe types.

CASTLE is a complete cosynthesis environrnent in which data flow graph (DFG) rep

resentation is derived from an array of specification formats as Verilog, VHDL and C. This

environment has very efficient profiling and analysis procedures which provide the design

er with a wide range of information allowing him to make manually the appropriate map

ping of the model's operations.

2.4.4 Partitioning

Several partitioning algorithms have been proposed in literature and are presented

with more detaiIs in chapter 5. Here, we briefly review sorne of the codesign frameworks

which are mainly intended for partitioning.

COSYMA [HenkeI93], CO-SYnthesis for eMmbedded Architectures, performs par

titioning of operations at the basic block level with the goal of providing speedup in pro

gram execution time using hardware co-processors. Input to COSYMA consists of an

annoted C-program. This input is compiled into a set of basic blocks and corresponding Di

rected Acyclic Graph or DAG-based syntax graphs. The syntax. graphs are helpful in per

forming dataflow analysis for definition and use of variables that helps in estimating

20



•

•

•

communication overheads accross hardware and software. The syntax graphs are parti

tioned using simulated anneaIing algorithm under a cost function. This process is repeated

using exact performance parameters from synthesis results for a given partition.

The chief advantage of this approach is the ability to utilize advanced software struc

tures that result in enlarging the complexity of system designs. However, selective hard

ware extraction on potentiaI speedups makes this scheme relatively limited in exploiting

potential use of hardware components. Further, the assumption that hardware and software

components execute in an interleaved manner (and not concurrently) results in a system that

under-utilizes its resources.

Another frarnework based on the language UNITY for the specification ofconcurrent

systems [Barros94] uses clustering for partitioning. The partitioning scheme associated

with it classifies UNITYassignments according to a set of five attributes which identify the

degree of data dependency and paraIlelism between assignments. Associated with each of

these attributes is a set of implementation alternatives. A two-stage clustering algorithm

then selects assignments to be grouped according to similarity of implementation alterna

tives, data dependencies, resource sharing and performance. The clustered assignments are

scheduled for a given target architecture. Finally, an interface graph is constructed based on

clustering results. This process is then reiterated based on satisfaction of design constraints.

The last framework presented here is VULCAN II [Gupta93]. VULCAN II addresses

the problem using I10 data rate constraints to partition a description in Hardware C such

that a maximal set of operations is implemented as software running on a microprocessor

while the remaining operations are mapped to ASrCs in a common-memory shared-bus ar

chitecture. The partitioning algorithm is greedy and moves non-detenninistic delay opera-

21



•

•

•

tions to software in arder to meet hardware cost constraints while satisfying performance

requirements.

2.4.5 Cosynthesis and prototyping

Once a system has been analyzed and partitioned, the different resulting partitions

need to be implemented to obtain the final concurrent hardware/software implementation.

This is performed by a synthesis phase ofeach one of the partitions using two types of tech

niques, standard synthesis tools or by protototyping each one of these partitions on an ex

isting architecture. Academical examples for the two types are presented below.

From the first class, we present Chinook tool for the cosynthesis of real-time reactive

embedded systems (Chou95]. The Chinook system consists of six tools. The first one is a

front-end parser of system descriptions in annoted Verilog. The second one is the processor/

device library containing detailed generic specification of the processor device interfaces

as weIl as timing schemas for software ron-time estimation. The third tool is the deviee/

driver synthesizer that compiles the timing diagrams and Verilog devices into a customized

code for the given processor. The fourth tool is the interface synthesizer which has the role

of allocating I/O resources to connect a processor to the desired peripheral devices and cus

tomizing the access routines accordingly. The fifth tool is the communication synthesizer

in charge of generating the hardware and software needed from inter-processor communi

cation. The last tool is the scheduler which generates C code to meet real-time constraints

in software with ail resources allocated.

The chief advantage of this approach is its efficiency in building suitable input/output

interfaces for controlling extemal devices.

The second class is based on prototyping. A typical example is the SIERA tool

22



•

•

•

[Srivastava95]. SIERA is a framework for rapid prototyping of systems that span across

chip and multiprocessor boards in hardware as weil as device drivers and operating system

kemeIs in software. This work utilizes chip-IeveI synthesis tools and DSP code synthesis

tools to present a framework for performing bath activities. A system is specified as a net-

work of concurrent sequential processes in VHDL. The communication between processes

is by means ofqueues. This specification is manually mapped into an architecture temphite.

The main strengili of this methodology lies in management of system complexity by using

modularity and reusability afforded by existing libraries.

Other codesign aspects have been addressed in literature tao. One of them is the code

generation for the software synthesis. Typically, flexible processors are used for software

implementation. Arrother codesign interest is related to case studies on specifie examples.

Applying design automation to real-life problems provides insight into the complexity and

requirements demanded by these systems.

The related work review, presented above, is not exhaustive but merely representative

of the contemporary work by examining important CAD frameworks for codesign.

Table 2.1: Fields of system design with related work

Topics References

Specification & verification CODES [Buchenrieder92], COSMOS [BenIsmaiI94b],
SpecCharts [Gajski93]

Simulation PTOLEMY [Buck94b], Insulin [SutarWala93]

Analysis ADAM [Jain92], SPECSYN [Vahid92], CASTLE [Theibinger94]

Partitioning COSYMA [HenkeI94], VULCAN II[Gupta93], UNITY[Barros93]

Cosynthesis and prototyping Chinook [Chou95], SIERA[Srivastava95]

Case studies and JPEG [Gupta94c], Powertrain [Hu94], Video[Wilberga],
MPEG[Wilberg96]

Code generation CAPSYS (Auguin94], CodeSyn [Lien94]

23



•

•

•

2. s. The proposed codesign framework

Our proposed methodology is presented according to the codesign problem statement

aIready presented in section 2.1. Figure 2.2 shows the proposed codesign flow. The input

specification is described in any HDL or programming language where a certain hierarchy

is inherent. This description is then manuaIly translated into a hierarchical model based on

data flow graphs. The hierarchical model cau aIso be taken from any modeling tool avail

able on the market. Each element or task in the model is a node in a graph~ this node may

he a simple basic operation or may be decomposed into a subgraph where sub-nodes may

be basic operations or other data flow graphs. Edges between nodes correspond to d3ta de

pendencies between operations or tasks. The hierarchy of the input system allows the use

of a variable granularity rather than a fixed one at the level of basic operations or at the level

of tasks.

Figure 2.3(b) shows the different modeling views provided by the hierarchy for the

FIR. fùter example described in Figure 2.3(a).

The FIR behavior may be built of one black box with ail the inputs and outputs, or of

three blocks where the outer loop (the first For loop) is decomposed, or five blocks where

the two loops are decomposed or finally of seven blocks corresponding to the assignment,

comparison, multiplication and addition basic operations.

This model is then estimated in arder to determine for each node in the model the per

formance and area metrics when implemented ioto hardware or software using the Specsyn

estimators. We provide the teehnology files of our specifie resources to these estirnators

24



•

•

•

[Gong95]. The technology Ides describe the target hardware and software.

The next step is the partitioning. A level of hierarchy or a given granularity is first

selected. This results in a set of tasles corresponding to the system model at the chosen gran

ularity. These tasIes are then assigned to hardware or to software while minimizing a cost

function and satifying a performance constraint. Figure 2.3(c) shows the number ofpossible

hardware/software partitionings for each one of the possible models for the FIR. filter. The

more the numberofblocks increases, the more the numberofpossible alternatives increases

too and the more the partitioning algorithm becomes complexe We will show in the next

chapters how the optimal modeling level may be found to satisfy the performance con

straints while simplifying the partitioning algorithm.

Once a hardware or a software implementation has been determined for each element,

the hardware and software synthesis are performed according to the processor on which the

software will be run and to the hardware technology targeted for hardware. The interface

between the two partitions is aIso synthesized. The final implementation is then validated

using a cosimulation environement.

One of the main contributions in the proposed codesign framework, shown in Figure

2.2, is the possibility to choose different granularities. The tool starts at the simplest model

of the input system by fixing a coarse-grain modeling. The model is built of a small number

of components and the partitioning algorithm complexity is of course reduced. If the con

straints are not satisfied using this rnodeling level, the tool may change the granularity to

wards fine-grain modeling. The number ofcomponents increases but the design exploration

may be more efficient. We will show later in chapter 6 how the variation of the granularity

allows a very efficient design space exploration.

2S



•

•

Behavioral analysis

Partitioning

Cosimulation

Final implementation

Modify the
granularity

•

Figure 2.2. The proposed codesign flow.

26



•

•

•

FIR-rIlterO ~
begin
For i = 1 to N
do

Forj = l toM
dOfe ")[ [> J

then
data-out[i] = data-in[i-j]*coeff[j] + data-out[i];

end if;
endo

endo
end FIR-rIlter;

(a). High-Ievel description of the FIR nIter.

Modell Model2 Model3 Mode14

r ", r ", f-i-.., r
1 Imt- 1

. ",

1
Init- i f-l-

nnIill ~ rL--
1

Init- j 1 lmt- J

dai-in creff
j~ Cmp-i-jdata-in ~data-in- ~_outFIR-Ioopl - data-out

_ Multiply FFlR cOëlT
FIR-Ioop2 r---

~

1 LTJ ~Accumulate~autdata-out

~j~ Incr- j data-out

--Li ~i
j---l Incr- j ~j

Incr- i i---i [ncr- i I---i
~ ~ ~ ~

Ch). The modeling Ievel alternatives for the FIR f"•.lter example.

Model Model complexity Possible hardware/
software alternatives

Model 1 1 block 2

Model2 3 blocks 8

Model3 5 blacks 32

Madel 4 7 blacks 128

CC). The codesign alternatives for the FIR fllter example•

Figure 2.3. Modeling and codesign alternatives.

27



•

•

•

The proposed codesign approach provides new contributions for the following aspects:

1. The proposed use ofhierarchy overcomes many ofthe limitations ofmodeling tech

niques. Our approach supports various models from the simplest to the most complex

for the same input system. These modeling alternatives are already available in any hi

erarchical modeling tool but we propose to take advantage of it during the codesign

process. A main feature in codesign is ta explore the design space efficiently in arder

to find the bestfinal implementation. Our madeling technique aLlows an enlargement

ofthe modeling space for the same input system and thus a large choice for the final

implementation.

2. A model analysis step is performed to estimate the performance ofeach block and to

determine the critical blacks with ail the possible concurrency between them. This

analysis step provides very important information that will later guide the partitioning

algorithm in order to optimize the overail system performance.

3. The partitianing algorithms in the literature are various but a non-negligeable num

ber ofcodesign frameworks perform partitioning manually. Those partitioning algo

rithms which are automatic consider a limited number of parameters in order to

simplify the algorithm complexity. ln our proposed algorithm, many parameters may

be taken into account (performance requirements, hardware/software concurrency,

and communication overhead).

2.6.Summary

This chapter showed a typical codesign flow, a review of the most popular codesign

frameworks and then the proposed methodology. Our work is not an attempt to implernent

a complete codesign framework, but we concentrate on specifie tasks ta improve the stan

dard codesign flow. AIl our proposed tools and techniques are intended to be integrated into

28



•

•

•

available cosynthesis tools. Developing the compiler whieh translates the input specifica

tion into an internai model and the hardware and software synthesis tooLs is out of the scope

of our work. Compilers and synthesis tools are already available as industrial tools. Our ob

jective is to propose efficient techniques for specifie tasks in the codesign flow that can be

easily integrated into available codesign frameworks to improve their performance and de

sign exploration techniques. The major improvements provided by our proposition are re

lated to the granularity flexibility that expands considerably the codesign space exploration

and the pseudo-automatie partitioning approach. The follow chapters present the different

codesign steps in detail with the solutions and approaches adopted in our codesign method

ology. The next chapter presents the modeling technique in detail. We also concentrate in

ehapters 4 and 5 on the partitioning aIgorithm using a graph partitioning heuristic which

takes into account the perfonnance estimation and concurrency between model ~ s tasks.

29



•

•

•

3

SYSTEM SPECIFICATION

ThiS chapter examines issues in the specification and modeling of system func

tionality for systems that are the target of hardware/software consynthesis. The essential

idea is to capture properties of a system without regard to its implementation.

Specification and design approaches provide many advantages through a designer' s

lifecycle. First, by creating a test-bench early in the design process and simulating the be

havior, functional errors and omissions are detected early and easily corrected. Sirnilar cor

rections can he extremely difficult to make late in the design cycle. Second, by defining

module behavior completely, fewer integration problems are likely to occur after concur

rent design of each of the modules. Third, by using a machine readable language, automated

estimators and synthesis tools cao be applied to reduce the design time or to rapidly evaluate

alternative implementations. Finally, by writing a behavioral specification independent of

any implementation information, redesign is greatly simplified. A variety of languages have

been proposed for behavioral specification, such as VHDL, Verilog, HardwareC, CSP, and



•

•

•

StateCharts. A good language should support a conceptual model useful for the particular

system to be specified. Existing languages support conceptual rnodels such as finite-state

machines or data flow graphs.

In section 3.1, a list of the modeling techniques generally used in related work is giv

en. In section 3.2, the proposed model is presented on examples to show the efficiency of

the modeling technique.

3. 1. Modeling techniques

A model refers to an abstraction over its object, capturing important relationships be

tween components of the object. Models are often needed in order to avoid creating de

tailed implementation.

A formai model of a design should consist of the following components:

1. A functional specification (implicit or explicit relations involving inputs and out-

puts)

2. A set of properties that the design must satisfy.

3. A set of performance indexes that evaluate the quality of the design.

4. A set of constraints on performance indexes.

Common models used to capture the functionality of digital systems are Iisted in the

next sections. Each one of these models is appropriate for a specifie application field. A

combination of one or two of these models may be required when using hybrid systems.

3.1.1 Finite State Machines

Traditional FSMs are good for modeling sequential behavior, but are impractical for

modeling concurrency or memory because of the so-called state explosion. Several speci-

31



•

•

•

fication languages are based on finite-state machines, like StateCharts and SDL

[BenIsmaiI94b]. In arder to avoid their limitations, the FSMs are often improved by three

characteristics ta reduce the state space size: hierarchy, concurrency and non-determinism.

Figure 3.1(a) shows an example of a simple FSM state digram. This state diagram shows

the system control flow from one state ta another or what is called state transitions. The

state transitions are the edges on the state digaram. These transitions are initiated by input

conditions orenvironmental events (values on the edges). Several common systems may be

modeled as FSMs but these are more appropriate for control-dominated systems because no

data processing is specified in the FSM behavior. To overcome such a limitation, extended

FSMs have been proposed where the data processing is added to each state definition.

3.1.2 Data flow graphs

A program is specified by a directed graph where the nodes represent computations

and the arcs represent totally ordered sequences ofevents. Examples of languages based on

data flow graphs are Esterel [Dembinski], HardwareC [Gupta94], and Verilog [Hu94]. Fig

ure 3.1Cb) shows a small data flow graph where the nodes are basic arithmetic operations

and the arcs shows the sequencing and data dependencies between the operations. The bot

tom of Figure 3.1(b) shows the arithmetic expression modeled by the data flow graphe This

kind of modeling has been shawn to be appropriate for data-driven applications especially

digital signal processing applications. Data flow graphs have been extended to Control

Data flow graphs in order ta support control-driven applications.

3.1.3 Communicating processes

The system behavior is described as a set of concurrent processes communicating via

32



• message passing or shared data This model is appropriate for control-dorninated systems

with concurrency which is a characteristic supported neither by finite-state machines nor by

data flow graphs. An Example from this category is CSP [McFarland92] and VHDL

(Eles94]. Figure 3.l(c) shows a VHDL code sample where two processes execute concur-

rently. The two processors are synchronized using wait statements on common signaIs

(signall and signal2). Intemally, each process may be modeled as an FSM or a data flow

graph.

•

x =0+1) * (k - «a+b) * (c*d»)/2

Procl : process
begin

if (reset = '1')
then

out <= '0';
end if;
signall <= '1';
wait signaJ2;

end process;

pr0c2 : process
begin

wait until signall ='1';

out <= out *2 +d;

signal2 <= 'l';

end process;

(a). A finite state machine (b). A data flow graph (c). Concurrent processes

•

Figure 3.1. Examples of the different modeling techniques.

3.1.4 Object-oriented modeling

The system behavior is described as a set of objects with their associated procedures

and functions. This modeling concept is Iargely used in software development but its list of

users and application fields is continuously increasing. This makes it a future candidate for

33



•

•

•

modeling high-Ievel systems which can be implemented in hardware or in software. An at

tempt to use the C++ language for high-Ievel systems has been purposed [Forrest92].

3. 2. The proposed model

In our codesign framework, we consider the input system as a hierarchical data flow

graph. This means that the system behavior is represented as a set of processes or functions,

each one described as another set of processes and functions until basic nodes are reached.

Basic nodes are simply basic operations like arithmetic or logical operations. Blocks or

functions may be the processes from VHDL description or the procedures in a C specifica

tion. Then, each block or function is decomposed into subblocks or basic statements. When

basic statements are reached, the hierarchy is stopped while non-basic statements are de

composed until their basic statements are reached. Exarnples of non-basic statements are

loops, conditional branches or simply a block of sequential statements. Each level in the hi

erarchy provides a different model, in terms of complexity, for the same input system.

Figure 3.2(a) shows an example from the communications field, the HDLC entity

with its environment [Berry91]. An lIDLC entity is the set of functions needed ta perform

the communication between a user and the network, in such a way that aIl Iow-Ievel func

tians related ta the network are transparent at the user side. The HDLC entity communicates

with the user via the variables, user-Input, and user-output, and with the network via the

variables,jrame, endframe, iline, sUne, and nrline. Internally the HDLC functions are struc

tured into three main blacks, the window manager, the emission manager and the frame re

ceiver, as shown in Figure 3.2(b).

Figure 3.3 shows the HDLC entity as a hierarchy of interacting and dependent ele-

34



•

•

•

ments. We propose a new use of the aIready available hierarchy to consider different views

of different complexity for the same system functionality. Indeed, level l of hierarchy

shows the main black, then at level 2 the main block is decomposed into 3 blacks, the win

dow manager black, the emission manager black, and the frame receiver black. At level 3

of the hierarchy, each one ofthese blocks is decomposed into 3, 2, and 2 subblocks respec

tively. Note that theframe receiver block is constituted at this level of one basic operation

(assignment statement) for which no further decomposition is possible, and a loop structure

which can be decomposed in the next level as the set of basic operations of the loop body.

This example shows how the behavior is structured from few complex boxes at low

levels of hierarchy to the most detailed description which is simply a lot of basic and simple

operations at high levels of hierarchy. These different modeling views are available in aIl

modeling languages supporting the hierarchy. Our main contribution is to use each one of

these modeling alternatives during the codesign process.

Each level of the hierarchy in the model is described as a data flow graph. Figure 3.4

shows examples of data flow graphs obtained for two different levels in the HDLC hierar

chy.

A node in the data flow graph is characterized by its inputs (input edges to boxes), its

outputs (ouput edges from the boxes) and the internaI functionality of the node. The node

may be a simple operation or a pointer to another data flow graph. Edges between nodes in

the data flow graph correspond to data dependencies. Nades that may he executed concur

rently do not have any data dependencies as the user-input handler and aclazowledge han

dler blacks. Dependent nodes have to be executed sequentially as is the case of the frame

emitter and Une manager blocks.

35



• This data flow graph modeling allows the analysis to identify concurrent and depen-

dent blocks in the modeI. In Figure 3.4(b)~ the blocks acknowledge handler, buffer manager

andframe emitter have to be executed sequentially because they have data dependencies.

The buffer manager block waits for the variable na which is an output of the block acknowl-

edge handler and the frame emitter block waits for the variable nu which is output by the

buffer manager block. The blocks fine manager and buffer manager can be executed in par-

EndFrame NRlme Orne NShne

1
1

Window-Manager

window Butrerempty

Emission
Manager Frame

Receiver

Frame . .

User-output User-input

HDLC ENTITY

allel since there is no common variable shared by the two blocks.

User-input User-output

•
(a). The IIDLC inputs, outputs,

and environment
(b). The HDLC block diagram

Figure 3.2. The HDLC entity environment and block digram.

•
36



Level3

L.....-__L_o_o_p It--:.:--
1 Level4Level2Levell

1 HDLC: : 1 1 1 User - input - Handler 1
1

Window
l Manager 11

1 1 1Acknowledge - handler 1 1

1 1
1

BufJer - manager 1 1

1 1 1

1 1 1
1 •1

1

Frame - EmitterEmission 1 1 • 1

1 Manager 1
1 Line -Manager 1 1

1 r 1

1 1 1
[

1

1 1 i Assignment statement 1 1

J
Frame

1 l 1Receiver

•

(nu. NRIine.
window-empty)

Figure 3.3. The hierarchical model of the HDLC entity.

(na. nu. user-input. NRIine.
window-empry)

•

Figure 3.4. The data 80w graph models corresponding to difTerent levels of hierarchy.•
(a). The data ftow graph al levell. Cb). The data flow graph at level 2.

37



•

•

•

When codesigning the HDLC function, the designer may start to find the best parti

tioning at level 1. In this case, the partitioning algorithm handles only three functional and

interdependent blocks which are the window manager, the emission manager and the frame

receiver (Figure 3.4(a)). Each block is assigned to hardware or to software based on its per

fonnance estimation determined during the performance estimation step.

The data flow graph at this level shows that the blockframe receiver is independent

of the other two blocks, the window manager and the emission manager. If the two [ater

blocks were assigned to software and the blockframe receiver to hardware, there will be no

communication overhead because no communication is needed between the two partitions.

Figure 3.S(a). Executing the frame receiver black concurrently with the blocks window

manager and emission manager reduces the overall execution time. The total execution

time is the maximum of two execution times: the frame receiver execution time in hardware

and the sum of the window manager and emission manager software execution times.

A complete software solution where ail the blocks are assigned to software would ex

ecute sequentially all the blocks even if they can be executed in parallel. The total execution

time is then the sum of the execution times of the three blocks, window manager, emission

manager andframe receiver.

If no partitioning that satisfies the performance requirements is found when consid

ering the HDLC as three interconnected blacks, the number of blocks may be increased by

moving to level 2 of the hierarchy.

At this level, seven blocks build the system model, the user-input handler, the ac

knowledge handler, the buffer manager, the frame emitter, the fine manager, the assign

ment statement and the loop (Figure 3.4 (b)). This detailed model allows more partitioning

38



•

•

•

alternatives. Indeed, more partitioning combinations are performed with seven blacks than

with 3 blocks. AlI the possible alternatives may be eValuated before proposing the final im

plementation.

The data flow in Figure 3.4(b) shows that the blocks Une manager, buffer manager

and loop may be executed concurrently while the blocks user-input handler, acknoweldge

handler, buffer manager andframe emitter have data dependencies and should be executed

sequentially.

Figure 3.5(b) shows a possible hardware/software partitioning. Two variables, na and

line-free, need to be transferred between the hardware and the software partitions. The over

all execution time is equivalent to the SUffi of the execution times of the following three

blocks, the user-input handler, the buffer manager and the [-frame emitter. The execution

time is of course less than the execution time of the complete software solution which

would be the SUffi of the execution times of the seven blocks in the input mode!.

The level of abstraction may be reduced more and more as long as the required per

formance is not satisfied or until the mast detailed model of the input system, i.e the basic

operation description level, is reached.

39



•

Software
partition

NSline

(frame.
endframe),..-------

user-output

(nu,NRIine,window empty)(na.user-input)

NSline

User-output

(na.nu.user-input. NRline. window empty)

Frame
Endfram•
(a). Hardware/software partition at level 1. (b). Hardware/software partition at level2.

Figure 3.5. Possible hardware/software partitioning.

3. 3. The modeI data structure

In this section, we describe the data structure used to implement the proposed model

in a C++ framework. We present the principal classes and the list of associated functions

•
and procedures. Figure 3.6 shows the two major classes needed ta implement our hierarchi-

cal data flow graph modeI. These classes correspond ta two abjects: the task and the data

flow node.

40



•

•

•

The first class describes each task in the hierarchical model, Figure 3.6. The task de

scription block contains information on the task identifier, the task type, the list of variables

used by the task, the list of performance and area estimates of the task, the pointer to its sub

tasks if the task is not a basic operation.

The lower part of the description block shows the list of procedures associated with

the task object. These are the class constructor to build the description block for each task

in the model, the procedures transcoding, mapping and type-computing to extract the per

formance estimates read from a technology file for each task in the model. The transcoding

procedure is used to determine the black read from the data files. The mapping procedure

matches the read black with the corresponding block in the model. The type-computing

procedure determines the block type (basic or non-basic). Finally, the last procedure is

span-hierarchy to span the hierarchy of the task in order ta determine the basic operations

used by the task. This procedure is used ta compare two tasks in arder to detennine the com

mon basic operations between them.

The second class shown in Figure 3.7 is the basic element or the node in the data flow

graph structure. The description block of the node contains information on the node identi

fier which is the same as the one used in the hierarchical model, the list of the nodes con

nected ta the current node. This list is split into two lists, one for the successors and the other

for the predecessors. The list of successors correspond ta the list of tasks in the model that

use an input variable which is ouput by the CUITent task while the predecessors are those

tasks that provide the input variables of the current task.

The node description black contains also the scheduling cycle of the node when

scheduled As Soon As Possible, ASAPly and As Late As Possible, ALAPly. These two val-

41



• ues detennine the critical nodes in the data flow graphe We will see in chapter 4 how these

values are detennined. Finally, the last field is the next node in the data flow graph.

The list of procedures associated with the object "data flow graph node" are: the con-

structor procedure to build the description black for each node in the data flow graph and

two procedures to determine the list ofsuceessors and the List of predecessors for each node

in the data flow graphe These lists are detennined by extracting data dependencies of the

CUITent node with aIl the other nodes in the graphe

RIPTION BLOC

( List ofobject's data fields '\
Identifier VARIABLE DESC

Type /' Identifier
List of variables -- Type

Estimate list Usage
Hierarchy

Hardware size
Next block

Software size
List ofobject's procedures Next variable

ConstructorO Hardware time-TranscodingO - Software time
MappingO Hardware area

Type-computingO Software area

Span-hierarchy()

•

(a). TASK DESCRIPTION BLOCK (hierarchical model)

Figure 3.6. The data structures used to implement the hierarchical model.

•
42



•

•

•

( List ofobject's data fields '\
Node identifier

List of successors

List of predecessors

ALAP scheduling cycle
ASAP scheduling cycle

Nextnode

List ofobject's procedures

ConstructorO

Find-predecessor-listO
Find-successor-listO

(h). NODE DESCRIPTION BLOCK (data flow graph)

Figure 3.7. The data stnlctures used to implement the data f10w graph•

3.4.Summary

As shown above, the proposed model has two main characteristics, the hierarchy and

a variable granularity. The use of these features allow an expansion of the design space. For

each Level of the hierarchy, a different granularity is provided for the same input system.

Such a way of using the hierarchy enhances the codesign process with a new feature

which has four main advantages:

1. Many input models are possible for the same input system. The difference between

aU these models is their complexity while they describe the same behavior.

2. For each input model, the codesign process explores the design space to find a so

lution.

3. No need ta handle a camplex input model when the perfonnance constraints are

43



•

•

•

satisfied using simple input models.

4. The above advantage may reduce considerably the CPU runtime of the codesign

process.

We will show later that the generation ofdifferent implementation alternatives for the

same system is achieved only by varying the level of hierarchy.

Once the system model is constructed, the analysis of the behavioral blacks is per

formed ta estimate the performance of each block in the model on the target architecture

and to determine the concurrency and the dependency between the model blocks. Such

analysis data is used during the partitioning to find the best assignment for each block. The

next chapter presents the system analysis approach with the proposed performance estima

tion and scheduling techniques.

44



•

•

•

4

SYSTEM ANALYSIS

In this chapter, we describe two major analysis tasks. The first one is the perfor

mance estimation which provides the performance estimates used for block mapping during

the partitioning. The second one is the scheduling to determine the execution flow of the

different blocks in the design. This scheduling determines the concurrency between the dif

ferent blocks. This information is aIso used during the partitioning.

Section 4.1 describes the performance estimation problem and in section 4.2 , the pro

posed technique for the performance estimation is presented. Sections 4.3 and 4.4 describe

the scheduling problem and the proposed scheduling technique respectively.

4. 1. Performance estimation

System design is a set of tasks which convert the system-Ievel specification into a set

ofcompletely specified interconnected modules implementing the specification. Each mod

ule could be implemented in hardware or as software executing on a processor. A hardware

implementation has better time performance whereas a software implementation has lower



•

•

•

cost, shorter development time and allows changes late in the design cycle. Thus, the most

efficient implementation bas a minimal amount of costly application-specifie hardware

while still meeting the required timing performance constraints.

Due to the large search space associated with system-Ievel design, it becomes a ne

cessity to have the capability of obtaining estimates of design parameters such as area and

perfonnance that will characterize any implementation of the design. In the absence of es

timates, the designer cannot make synthesis decisions and perform tradeoffs without actu

ally synthesizing each partition and then evaluating the implementation.

Estimates of design parameters assist the designer providing him with the capability

of exploring large design search in a relatively short time. The savings in time are evident

if the designer were to synthesize the design completely before realizing that an undesirable

design decision had been made early is the design cycle.

Furthermore, hardware/software partitioning requires performance estimations that

will predict the execution time in order to identify which portion in the specification can be

rnigrated from hardware to software while not violating the constraints or which portion

needs to be implemented in hardware to satisfy the timing constraints.

4.1.1 Hardware performance estimation

The hardware estimation techniques are related to area and perfonnance of a design

intended for a hardware implementation. Area metrics are concerned with the area of entire

processes or behaviors and consequently with the chip area. Thus, the designer will be able

to determine as to how much area will a particular behavior require or wether a set of given

behaviors be assigned to the same chip without violating the area constraints specified for

that chip. The perfonnance metrics are concemed with the execution time for processes and

46



•

•

•

inter-process communication times.

4.1.2 Software performance estimation

In order to rapidly explore large design space encountered on hardware/software sys

tems~ automatic software estimation is indispensable in hardware/software partitioning in

which designers or partitioning tools must trade off a hardware with a software implemen

tation for the whole or a part of the system under design. Software estimation provides three

software metrics, execution time~ program memory size and data memory size for a given

target processor.

4. 2. The proposed estimation technique

Once the model is obtained from the specification, we perfonn an analysis on each

element in the modeI to characterize its performance and the effect it has on the whole sys

tem performance. This analysis is performed in two steps, the performance estimation and

the scheduling steps (Figure 4.1). The first step is the performance estimation which is per

forrned given a data base library of the available resources. Four parameters are determined

during this step: the execution time and the area of each partition (hardware and software).

We used the Specsyn estimators developed at the university of Califomia at Irvine to per

form this step. These estimators are presented in the next section [Narayan92b] [Gong93]

[Huang95]. The second analysis task is the scheduling of the different blocks to determine

the overall execution time and the critical execution path in the mode!. The proposed sched

uling technique will be presented in section 4.4. The information provided by the behavioral

analysis step is then given to the partitioning algorithm in arder to take the right decisions

47



•

•

•

when mapping blocks to hardware or to software.

HierarchicaI model")

r Behavioral analysis ~

V ,1.

"""1

Performance estimation) (Model scheduling

"
~.,,- /' ..............

~ ~IIS . fASAPIALAP schedulinglHardware and iJecsyn estimators
software

technology f"des

,r
"

Execution time A8AP and ALAP values

'-. & Codesize Crilical palh

,.
Partitioning ")

Figure 4.1. The behavioral analysis step.

4.2.1 The Specsyn estimators

Our estimation technique is based on two estimators for software and hardware de-

veloped at the university of Califomia at Irvine. The software estimator is based on a ge-

neric model and does not require different estimators for different target processors. The

hardware estimator is based on data path mapping of the processes with a given clock cycle.

1. Hardware estimation

The inputs ta the area and performance estimators are:

1. A SpecChart description representing the design for which the area has to be

estimated. A SpecChart consists of hierarchical concurrent state diagrams built

on top of the VHDL language. An example of a SpecChart description is given

48



•

•

•

in Figure 4.3. The system is first defined as an entity with its input and output

ports. This entity description is similar ta the entity definition in VHDL. The

architecture is then built of three sequential blocks, read_data, processing and

write_data. Each one of these blacks is then described as a VH.DL process, i.e

a set of sequentiai instructions [Narayan92a].

2. An allocation list consisting of the number of available operators of each type

to implement the design and their delays. If no allocation list is specified, the

estimator will allocate one operator of each class (adder, multiplier, etc.) need

ed in the design. Figure 4.2 shows the content of an allocation list file. Each line

in this file describes a resource block. The black is defined by its class, type,

delay (number of cycles needed to execute the black), arealbit (the average

number of transistors required to implement one bit slice of the black) and the

number of copies available.

3. The clock cycle which will be used to determine the number of microstates in

the design. The first line in Figure 4.2 specifies the clock cycle which is equal

ta 50 ns in this example.

The design model for estimation is a datapathlcontrol logic model on which the

scheduled behavior is mapped. The scheduling technique used is very simple, the

ASAP scheduling.

Using the scheduled behavior with the provided clockcycle, a time estimation is eval

uated following the execution flow determined during scheduling.

The strategy for area estimation is based on dividing the total design area into the fol

lowing components:

49



• 1. Datapath blacks, which consists of registers, function units such as adders and

interconnect units such as multiplexers. The datapath blacks are assumed ta

consist of a stack of bit-sliced components.

2. Control units, which contraIs the data transfers within the datapath compo-

nents. The control unit cauid be a random lagic implementation consisting of

two-ievei AND-OR gates or of a ROM.

3. Memories which are used to implement the arrays in the design specification.

CLK50
CLASS multiplexer TYPE multiplexer DELAY 7 AREAIBIT 2 NUM 1
CLASS memory TYPE memory DELAY 19 AREAIBIT 3 NUM 1
CLASS memory TYPE register DELAY 15 AREAlBIT 9 NUM 1
CLASS operator TYPE & DELAY 0 AREAIBIT 0 NUM 1
CLASS operator TYPE abs DELAY 56 AREAIBIT 9 NUM 1
CLASS operator TYPE mod DELAY 163 AREAIBIT 38 NUM 1
CLASS operator TYPE rem DELAY 163 AREAIBIT 38 NUM 1• CLASS operator TYPE ** DELAY 163 AREAIBIT 38 NUM 1
CLASS operator TYPE * DELAY 163 AREAlBIT 38 NUM 1
CLASS operator TYPE 1 DELAY 163 AREAIBIT 38 NUM 1
CLASS operator TYPE + DELAY 49 AREA/BIT 9 NUM 1
CLASS operator TYPE - DELAY 56 AREAIBIT 18 NUM 1
CLASS operator TYPE 1= DELAY 23 AREA/BIT 7 NUM 1
CLASS operator TYPE >= DELAY 23 AREAIBIT 7 NUM 1
CLASS operator TYPE <= DELAY 23 AREA/BIT 7 NUM L
CLASS operator TYPE > DELAY 23 AREA/BIT 7 NUM 1
CLASS operator TYPE < DELAY 23 AREAIBIT 7 NUM 1
CLASS operator TYPE = DELAY 23 AREAlBIT 7 NUM 1
CLASS gate TYPE xor DELAY 6 AREAIBIT 4 NUM 1
CLASS gate TYPE not DELAY 2 AREAlBIT 2 NUM 1
CLASS gate TYPE nor DELAY 5 AREAlBIT 2 NUM L
CLASS gate TYPE nand DELAY 3 ARENBIT 2 NUM 1
CLASS gate TYPE or DELAY 6 AREAIBIT 3 NUM 1
CLASS gate TYPE and DELAY 5 ARENBIT 3 NUM 1

Figure 4.2. The allocation list for hardware estimation•

•
50



•

•

•

- MM : Data dimension
- NN : Coefficient dimensions

entity FIR_ID fs
port
(

inpucport : in integcr;
output-port : out integer

);

end;

an:bitec:tun: FIR_IDA or FIR..ID fs

be&":!
behavior F1R_behavior type sequential subbeha.viors is

type tableau_la is array(O to la) of integer:
type tab1c:au_100 is array(O to 100) of integer;

variable NN.MM : integer;
variable datajn.dara_out: tableau_lOO;
variablecocff : tableau_100;

begin
Rend_data: (TOC,ttue,Proœs.sing);
Proa:ssing:{TOC,true,Write_data);
Write_dala:(Toc'ttue,stop);

behavior Rem_data type scquentiaJ subbehaviors is
begin

fori in 1 to MM
loop

dalajn(i):= input-POrt:
endloop;

end Rud_data;

behavior Wrlte_data type scquential subbehaviors is
begin

fori in 1 la MM
loop

output-port <= data_out(i);
endloop;

end Write_data;

behavior Proc:essing type sequential subbehaviors is -..,
begin

fori in 110 MM
loop

daIa_oul(i) ;= 0;
for j in 1 10 NN

loop
ir(j <= i)
lhen

dala_Oul(i) := data_out(i) + data.-ïn(i-j) • coeff(j);
end if;

end loop;
endOtoop;

end Processing;

Figure 4.3. The SpecChart description of the FIR flUer.

51



•

•

•

2. Software estimation

The software estimator is based on a generic model and does not require differ

ent estimators for different target processors. A single estimator and a set of tech

nology files for different target processors are used. This makes the estimator fast

and easy to extend for different target processors.

In order to obtain the estimates for processes, these process code must be com

piled into machine instructions of the target processor. For example, if the process

will be implemented on an Intel 8086 processor, it needs to be compiled into the

8086 instruction set. Using the timing and size information associated with each

type of instruction such as how many dock cycles the 8086 instruction executes

and how many bytes it takes, we can obtain the performance and program size of

the process.

Instead of using different compilers and estimators for different processors, a

generic estimation model is used. The processes described in SpecChart are con

verted into a set of generic instructions shown in Figure 4.4. The list of generic in

struction is given with the possible addressing modes for each one of them. The

estimator computes the software metrics based on the generic instructions and the

technology files for the target processors. For example, if the process is going ta

be implemented on a Motorola 68000 processor, then the technology file for the

68000 processor is used during the estimation. The technology file for the target

processor supplies infonnation about how many clock cycles each type of generic

instruction needs and how many bytes it takes if the generic instruction is executed

on that target processor. The technology file for a target processor is derived from

52



•

•

•

the timing and size information of the processor' s instruction set. Examples of

technology fIles are given in Appendix A.

The advantages encountered by this estimation techniques are:

1. With a generic model, we do not need to use different compilers and different es-

timators for different target processors. Instead, only a single compiler, estimator

and a set of technology files are required for the estimation.

2. The generic model makes it much easier to apply the estimator to other target pro-

cessors. The estimation can be carried out as long as the technology file for the tar-

get processor is supplied.

3. It is much easier and faster to compile the specification into a generie instruction

model than those associated with specifie processors beeause the translation from

the high-Ievel specification to the generic code is automatic.

Instruction Destination Source 1 Source 2

ALU Descaddressing (1) Srcl_addressing (2) ~rcz_aC1aressmg (2)

MDL Descaddressing Sre l_addressing Sre2_addressing

DN DesCaddressing Sre l_addressing Sre2_addressing

COMPARE Descaddressing EMP1Y Src2_addressing

MOVE EMPTY EMPTY EMPTY
CJUMP EMPTY EMPTY EMPTY

JUMP EMPTY EMP'IY EMPTY

RETURN EMPTY EMPTY EMPTY
CALL EMPTY EMPTY EMPTY

NOP EMPTY EMPTY EMPTY

(1) (RegJster. Direct Memory1
(2) (Constant. Register. Direct Memory. fndirect MemoryJ

Figure 4.4. The Iist of generic instructions.

The software exeeution time of a process is determined using flow analysis of

the execution time of its constituent basic blocks. The execution time ofeach basic

black is computed by summing the time execution of its constituent generic in-

53



•

•

•

structions. The execution time of each generic instruction is taken from the tech-

nology files supplied ta the estimator.

The software area estimation is ta determine how much program memory

(bytes used ta store the compiled program representing the process) and how much

data memory (bytes used to store the data manipulated by the process) are needed.

Based on the size ofeach generic instruction, the program memory size ofeach

basic block is the SUffi of that of all generic instructions in that basic block. The

data memory size is determined based on the data declaration parts in the specifi-

cation. The data memory size of each declared type is specified in a configuration

file. The infonnation used in the configuration file of Specsyn estimators is shawn

in Table 4.1

Table 4.1: Memory size of the base types

Base type Data memory size (bytes)
DH l

Bltvector nns. n 15 me numOer 01 O1ts ln me vector
Boolean L
cnaracter L
tnteger ~

Natural 4
Real lS
~tnng 4
·nme 4

4.3.Scheduling

The performance estimates obtained for each block in the model are not suffi-

cient to deterrnine the execution time for the complete model. This is possible only

after perforrning a scheduling of the blacks. The scheduling problem is to find an

efficient sequencing of the tasks ta optimize or tend to optimize the required re-

sources and the total execution time. With the estimated performance for each

54



•

•

task~ performing scheduIing provides a measure of the overall execution time.

The scheduling prablem is a weIl known problem~ also known to be NP-Com

plete. Many heuristics have been proposed ta solve this problem in a polynomial

time. The simplest techniques are the ASAP (As Saon As Possible) and ALAP (As

late As Possible) scheduling. In the ASAP approach, each task is scheduled as

saon as a resource is available to execute it while the ALAP approach tends to

schedule a task as late as possible. Figure 4.6 shows the algorithmic description of

these two scheduling techniques. The two approaches allow, when applied to the

same data flow graph, to determine the critical path. Figure 4.5 shows a scheduling

example using ASAP (a) and ALAP Cb) approaches on the same data flow graphe

The critical path is determined by the list of tasks for which the execution cycle is

the same independently of the approach applied (the sequence Tl, T3, T4 and T6

constitutes the critical path).

Figure 4.5. An example of ASAP and ALAP scheduling.•

criticalpalk

(a). ASAP scheduling (b) ALAP scheduling

~ Cycle 1

1Cycle 2

1Cycle 3

~ Cycle 4

55



• ASAPO
{

asap-cycle = 0;
while (aIl tasks not scheduled)
{

For (each taskinot scheduled yet)

{if (alI successors of taski are seheduled
or taski has no suceessors)

{
schedule taski at asap-cycle;

}
}

}asap-cycle = asap-cycle + 1;

}

ALAPO
{

alap-cycle = asap-cycle;
while (aIl tasks not scheduled)
{
For (each taski not scheduled yet)

{ if (all predecessors of taski are sehedul
or taski has no predecessors)

{
schedule taski at alap-cycle;

}
}
alap-cycle =alap-cycle - 1;

}
}

•

•

Figure 4.6. The ASAP and ALAP scheduling procedures.

The performance estimation step allows the characterization of each block indepen-

dently of other blacks while the scheduling step determines the position of blocks in the

complete system execution flow. At each level ofhierarchy, the selected blocks are ASAP

(As Saon As Possible) and ALAP (As Late As Possible) scheduled ta determine the critical

path and thus to identify critical blocks (Figure 4.1).

Figure 4.7 shows the obtained scheduling at two different Ievels of hierarchy for the

HDLC example. At level 1, three blacks are considered and two possible execution paths

are found. The critical path is the one starting at the block window manager and finishing

at the block emission manager. At level 2, seven blocks are selected and four longest paths

are found. Two critical paths are found in this case, the first one starts at the block user-

input handler and ends at the blockframe emitter while the second starts at the block ac-

knowledge handler and ends at the blockframe emitter.

56



•

•

ASAP scheduling

frame. endfrnmc) (nu)

NSline

(na. nu. user-input. NRline.
window-empty)

Ca). The ASAP and ALAP scheduling
at level 1 of the hierarchy.

ASAP scheduling

(na. user_input) (nu. NRline.
window-empcy

ALAP scheduling

Cb). The ASAP and ALAP scheduling
at level 2 of the hierarchy.

•

Figure 4.7. The task scheduling for different levels in the hierarchy.

The scheduling step has two main objectives:

a). ldentify the critical paths in the model execution.

bJ. Determine al! the possibilities of concurrency between the hardware and soft

ware partitions by detennining clearly aU data dependencies.

57



•

•

•

4. 4. Summary

We have seen in this chapter that the performance estimation and scheduling tasks al

low to determine an estimate of the execution time for the whole system. The next chapter

shows the way these estimates are used during partitioning to guide the partitioning deci

sions.

58



•

•

•

5

SYSTEM PARTITIONING

L this chapter we address the problem of system functionality partitioning with the

objective of achieving an implementation into separate components. The partitioning prob

lem is of two types: homogeneous and heterogeneous. The objective of homogeneous par

titioning is to partition a system functionality into a minimal number of parts such that aIl

parts are implemented completely in hardware or in software. Homogeneous partitioning

for hardware is typically done under size constraints on each of the parts, whereas for soft

ware implementations, the objective of partitioning is typically to increase resource utiliza

tion in order to achieve speedup in overall execution time.

We focus here on the heterogeneous partitioning problem, where the objective is to

partition the system model for implementation into hardware and software components.

The difference in the rates of computations causes variations in the rates of communication

between hardware and software components and thus entails a higher communication over-



•

•

•

head than purely hardware or software partitions, due to necessary handshake and buffering

mechanisms. Clearly, the problem ofpartitioning into hardware and software is much more

complex than partitioning for implementations into pureLy hardware or software. The par

titioning procedure presented in this chapter attempts to perform a division of functionality

at diferent levels of the modeI, from the basic operation level to complex block level. The

partitioning procedure attempts to supplement the conceptual design process by providing

the system designer a means to handIe the compexity associated with a detailed design de

scription Iike at the language-leveL operations.

The partitioning problem for flow graphs refers to the assignment of operations in the

graph to hardware or software. This assignment to hardware or software determines the de

Lay of the operation. Further, the assignment ofoperations to a processor and to one or more

application-specifie hardware circuits involves additional delays due ta communication

overheads. Ail partitioning schemes must attempt to minimize this communication.

In this ehapter, we focus on the hardware-software partitioning problem. As dis

cussed in chapter 2, the task-level description of an application is specified as a DFG (Data

Flow Graph) representing precedences and this DFG is the input to the partitioning tools.

The partitioning problem is to map each node of the DFG to hardware or software,

and to determine the schedule for each node. The hardware-software partitioning problem

is not just Iimited to making a binary choice between a hardware or software mapping.

The partitioning problem is a difficult one because good system-IeveI cost metncs,

accurate techniques for estimating the cost, and the techniques for retüible performance es

timation of system-Ievel hardware and software are not always available.

Partitioning is, in general, a hard problem. The design parameters can often be used

60



•

•

•

to fonnulate it as an integer optimization problem. Exact solutions are intractable for even

moderately small problems. We propose and evaluate a heuristic solution.

The chapter is organized as follows. In section 5.1, the partitioning problem is de

fined. In section 5.2, we discuss the related work in the area of hardware-software partition

ing. In section 5.3, we present the HAP (Hierarchy, Analysis and Partitioning) algorithm ta

solve the partitioning problem. Its perfonnance is analyzed in section 5.4.

5.1. Problem definition

First, we state the major assumptions underlying the partitioning problem.

1. The precedences between the tasks are specified as a DFG. A performance

constraint on the DFG is given as a deadline D, i.e, the execution time of

the DFG should not exceed D clock cycles.

2. The target architecture consists of many processors (which execute the soft

ware component) and many custom datapaths (the hardware components).

The software and hardware components have capacity constraints. The

communication costs of the hardware-software interface are represented by

three parameters, the hardware (software) area required ta communicate

one sample of data accross the hardware-software interface and the number

of cycles required ta transfer the data. This cast represents the area of the

interface glue logic and the size of the code that sends or receives the data.

3. The area and time estimates for the hardware and software implementation

of every node are assumed ta be known. The specifie techniques used ta

compute these estimates have been desribed in chapter 4.

61



•

•

•

The hardware-software partitioning problem {PP}:

Given a DFG, area and time estimates for hardware and software mappings of aIl

nodes, and communication costs, subject to resource capacity constraints and a deadline D,

determine for each node i, the hardware or software mapping (Mi) and the start time for the

execution of the node (schedule i), such that the total area occupied by the nodes mapped

to hardware is minimum.

pp is combinatorial in the number of nodes ( el2N
) by enumeration). The problem is

known ta be NP-hard [Kalavade93J.

Many techniques have been proposed to solve this problem. The next section presents

a list of the most known works in the field followed by our approach presented in section

5.3.

5.2. Related work

Partitioning methods can be classified according to four characteristics, the specifica

tion model supported, the granularity at which the partitioning is performed, the cost func

tion to be minimized and the partitioning algorithm used.

According to [Edwards97], the main partitioning related works are presented and

classified below according to four characteristics: the input mode!, the granularity, the cost

function and the partitioning procedure.

5.2.1 The input model

In chapter 2, different specification languages have been presented for codesign. The

input specification is always translated into an intermediate representation which is used

62



•

•

•

during the other codesign steps Iike analysis, partitioning and synthesis. Column 2 in Table

S.l shows a list of input models used by the principal partitioning algorithms described in

the literature. In this list, we notice that the Control Data Flow Graph (CDFG) model is the

most used [HenkeI93] [Kalavade94] [Steinhausen93] [Gupta93]. This model is widely used

because it may be extracted from different input descriptions, like an HDL specification as

well as a programing language specification. The CDFG model is a unified modeling tech

nique for both hardware and software but suffers sorne limitations as size explosion when

it is used to modeling complex systems or sorne modeling failures when it is used for con

trol-dominant systems.

To overcome such limitations, other rnodeling techniques are sometimes used as

shown in Table S.l. These may be HDL languages like VHDL [Thomas93] [Eles96]

[Luk94], timing diagram [Chou94], set-based [Kurnar92] or cornrnunicating processes

[BenIsmaiI94b].

5.2.2 The granularity

The intennediate representation may have different complexity levels according ta

the model used and to its granularity too. Column 3 in Table S.l shows the different possible

levels of granularity used in the Iiterature. These are mainly two, the operation level or the

task level. The operation level is more used than the task level because of its inheritance

from the high-Ievel synthesis field [HenkeI93] [Kalavade94] [Gupta93] [Steinhausen93].

The basic modeling element in CDFGs is often the basic operation and the use of this level

ofgranularity in the codesign field becomes intractable even for systems with medium com

plexity.

63



•

•

•

To overcorne such a limitation, sorne codesign frameworks moved to the task level in

arder to reduce the modeling complexity [BenIsmaiI94b] [Olokutum94] [Hu94] [Eles96].

The system is built of complex blacks called tasks and these tasks are mapped ta hardware

or to software. The limitation of such Ievel of granularity is the loss of system details avail

able at the operation level. More mapping alternatives are possible at the operation level

than at the task level.

COSYMA [Henke193] has now a new version where the variable granularity has been

introduced [HenkeI97]. The system tries ta reduce the complexity of the basic operation

level by grouping sorne basic operations in what they called macro-instructions. These mac

ro-instructions are generated using an optimization procedure

Ourproposed variable granularity allows to overcome both problems by selecting any

granularity in the system model from the most complex tasks to basic operations. There is

no computation overhead added in the partitioning process because the blocks are available

directly from the hierarchy. The Blocks can be macro-instructions at the first levels of the

hierarchy or operations at the last levels of hierarchy. Unlike the COSYMA system, the

blacks in our modeling have not to be generated but are already embedded in the hierarchi

cal mode!.

5.2.3 The cost function

The hardware/software partitioning is peformed with the objective ta optimize the

system final performance. The performance is often measured by two parameters, the sys

tem execution time and the hardware area. Different techniques are used to estimate or to

evaluate such performance as shown in column 4 of Table 5.1. Three main techniques are

64



•

•

•

used to measure the system performance: Profiling, synthesis and simulation.

The prolùing consists in identifying the performance critical regions and bottlenecks

in the input specification. The profiling is generally perforrned using compilers or analysis

tools on a software specification [HenkeI93] [Steinhausen93] [Kumar92]. The profiling has

the main objective of identifying bottlenecks in the software implementation in order to

move critical regions to a hardware implementation.

The synthesis technique consists in generating a final implementation using synthesis

tools when a hardware/software solution is proposed. The execution time and the hardware

area are evaluated for the synthesized implementation and this information is then refeeded

into the partitioning process to find other implementation alternatives [Olukutum94]

[Thornas93]. This process is reiterated until the design constraints are satisfied. The use of

such a technique to evaluate the system performance is sometimes impratical because the

synthesis phase may be tirne consuming and a complex task to perform at each iteration. To

overcome such a limitation, sorne tools adopt the estimation approach instead of the syn

thesis one.

The third main technique used to evaluate the implementation cost is the simulation.

The simulation is used for each proposed hardware/software implementation to determine

the performance of each partition and also ta determine the cast of the communication be

tween the two partitions [HenkeI93]. The simulation technique is very effective because it

provides a real evaluation of the system but it is a very time consuming phase.

Other techniques have been proposed to evaluate the cast of the final implementation

quickly with a certain loss of efficiency. These techniques are based on estimation tools or

sorne analysis criteria like the similarity, the concurrence/sequence between modules

65



•

•

•

[Barros92], the closeness between operations [HenkeI93], the schedulability of the tasks

[Kalavade94] or the rate matching of different tasks [Luk94].

5.2.4 The partitioning algorithm

The last characteristic ta classify partitioning techniques is the partitioning algorithm.

Two main classes are first identified: manuaI or automatic partitioning. In the manual par

titioning, a complete analysis and modeling enviranment is given to the designer who will

entirely decide where operations or tasks are mapped [Steinhausen93] [BenIsrnail94b]

[Thomas93] [Luk94]. The other class of algorithms propose an automatic solution for the

partitioning problem.

Many aIgorithms have been proposed in the second cIass. Sorne cf these algorithms

are very known and have already been used in many circuit design fields like high-Ievel

synthesis, logic synthesis, place and routing etc....

D'Ambrosio et al. [Hu94] describes a branch and bound based approach for partition

ing applications where each node has a deadIine constraint (instead of an overall thraughput

deadIine). Each node has three attributes: the deadline, the number of software instructions

needed to execute it, and the type of hardware units it can be implemented on. The target

architecture consists ofa single software processor and a set of different hardware modules.

The input specification is transfonned into a set of constraints_ The set of constraints is

solved by an optimizing tool called GOPS, which uses a branch and bound approach. to de

tennine the mapping. The approach suffers from limitations similar to those in a ILP for

mulation, that is, solving even moderated-sized problems can become cornputationally

infeasihle.

66



•

•

•

Kalavade et al. use an acyclic depending graph derived from a DFG (data flow graph

where nodes are basic operations) to simultaneously map each node to software or hardware

and schedule the execution of the tasks. The approach is heuristic and gives approximate

solution ta very large problem instantiations [Kalavade94].

Vahid et al. perform the partitioning of a variable-grained SpecCharts specification.

SpecCharts is a hierarchical model in which the leaves are "states" of hierarchical State

Charts-like FSMs. Classical clustering and sirnulated annealing partitioning algorithms are

applied. A refinement step rnay be performed after partitioning where each partition is syn

thesized ta get better area~ pin. chip count. and performance constraint satisfaction measure

[Vahid].

Chou et al. describe a specialized scheduling-based algorithrn for interface partition

ing. The cost function is time for software and area for hardware. The algorithm is based on

a min-eut procedure. This tool attempts to implement the interfaces as hardware or software

partitions [Chou94J.

Gupta et al. discuss a scheme where aIl nodes (except the data dependent delay tasks)

are initially mapped to hardware. Nades are at an instruction level of granularity (basic op

erations). Nodes are progressively moved from hardware ta software subject to timing con

straints. A hardware mapped node is selected (this node is an irnmediate successor of the

node previously moved to software). This node is rnoved to software if the resultant solu

tion is feasible (meets specified throughput) and the cost of the new partition is smaller than

the earlier cost. The cost is a function of the hardware and software sizes. The algorithm is

greedy and is not designed to find a global minimum [Gupta93].

Clustering is another heuristic used ta perform partitioning. Units are clustered ac-

67



•

•

•

cording to sorne criteria like similarity, concurrency, sequencing, and mutual exclusion

[Barros93J [Barros94].

A Kernighan-Lin swapping procedure is aIso used ta perform partitioning. The

procedure is applied on an initial solution where operations are classified according to their

synthesizability (Oluk:utum94].

Ernest et aI. use a graph-based model with nodes corresponding to basic operations

in C. The cost function is derived using prorl1ing to discover bottlenecks, estimation of

operations closeness and estimation of the communication overhead incurred when blocks

are moved across partitions. The partitioning is performed in two loops. The inner loop

uses a simulated annealing with a quick estimation of the gain derived by moving an

operation between hardware and software to improve an initial partition. The outer loop is

manuaIly performed by the designer and uses synthesis to refine the estimates used in the

inner loop [HenkeI93]. The authors of this system have updated it recently to consider a

variable granularity as we have seen in the section 5.2.2.

The last tool is HMS (Hardware/Multi-Software partitioning) is a heuristic partitioning

tool with scheduling [Sheliga94]. The scheduling process is not used as an analysis step before

partitioning but the partitioning algorithm itseif is based on the schedulability. Operations are

selected for a hardware or a software implementation according to their needability. The

needability measures the constraint of an operation to be scheduled in the CUITent execution flow

with the CUITent hardware/software partitioning.

The variant proposed solutions have been shown ta be effective for various appli

cations. The field is new and any contribution is welcome. The list of tools presented above

is not exhaustive but the main algorithms have been listed. The proposed algorithrns in lit-

68



•

•

•

erature have been shown to be effective even if sorne of them suffer from sorne limitations.

Due to the inherent nature of simulated annealing, this scheme requires long ron times and

the quaIity of the solution depends on the cooling schedule.The min-eut and clustering ex

amples have local solution problems. The mathematical programming technique has the de

sign space explosion problem even for moderately-sized systems.

ft is very difficult to propose an exhaustive algorithm for partitioning since the prob

lem is known to be NP-Complete and that is the main reason for the use of heuristics.

Our proposed partitioning technique has a major advantage not available in any of

these works. Indeed, aIl the works listed above consider a fixed granularity as shown in col

umn 3 of Table 5.1. This granularity may be at the operation level or at the task or process

level. Our proposed methodology allows a use of a variable granularity according to the

performance constraints. The most abstract model is used first and while the perfonnance

constraints are not satisfied, more details are taken into account until the operation level if

needed.

We aIso propose a pseudo-automatic partitioning heuristic based on graph partition

ing techniques. In table 5.1, most of the related work use a manuai partitioning or an auto

matie partitioning. An automatic approach for partitioning reduces the codesign time and

increases the number of alternatives considered by the partitioning tool before proposing

the best implementation. The automatic search of the best implementation is clearly faster

and more efficient. But the automatic solutions did not gain a lot of success in the codesign

field because designers want to have the facility ta make the design decisions. For this rea

son, we propose a pseudo-automatic partitioning tool which looks for different design al

ternatives, proposes these alternatives with their performance measures and lets the

69



• designer select the appropriate final implementation.

Table 5.1: Comparison of the common partitioning metbods.

Partitioning Model Granularity Cost fonction Aigorithm
tool

COSYMA profiling (Sw). Manual (outer)
[HenkeI93] synchronization & Simulated annealing
[HenkeI97]

simulation (Hw) (inner)

specSyn Profiling (SW) Clustering
[Vahid] Processor cost (HW) Sîmulated Annealing

Communication cost Manual

UNITY Similarity Clustering
[Bacros92]

Concurrence/sequence

PTOLEMY Schedulability Heuristic with look-
[Kalavade94] ahead

CASTLE Profiling Manual
[Steinhausen93]

• COSMOS NIA Manual
[BenIsmail94a]

VULCAN Execution time Heuristic, greedy
[Gupta93]

[Chou94] lime (SW), area (HW) Min-Cut

[Olulcotum94] Profiling (SW) Kemighan and Lin

Synthesis (HW)

[Kumar92] Profiling Mathematical pro-
gramming

[Hu 94] ProfiIing scheduling Branch and Bound
analysis

[Thomas93] Profiling (SW) Manual

Synthesis (HW)

[Eles961 Profiling Simulated annealing

[Luk94] Rate matching Manual

[Shcliga94] Scheduling cycles Schedulability based
heuristic

•
70



•

•

•

5.3. The proposed partitioning technique

In this section, we first introduce the graph partitioning problem and then its use for

hardware/software partitioning problem formulation. The proposed graph partitioning al

gorithm is based on the techniques presented in [Kernighan70] and [Qudghiri92]]. These

techniques consider a graph G =(E, V), where V is the set of nodes and E the set of edges.

Each edge in E is also weighted by a cost value as in [Qudghiri92]. The graph G is then

partitioned into the minimal number ofcliques. Nades are assigned to cliques while keeping

the weights on edges from different cliques at a minimal value. This means that the edges

with large weights must be assigned to the same clique. The graph partitioning techniques

have been used to formulate and solve a wide range of problems for the following reasons:

1. The graph partitioning has the simplicity ofconstructive-iterative algorithms but uses

a global formulation ofthe problem.

2. At each step of the iterative algorithm, the graph formulation may include ail the re

quired data to make the best selection. This formulation provides a flexible way to in

clude such data (weights on the edges).

This technique has been used to perform high-level synthesis [Qudghiri92] and is now

extended to perform hardware/software partitioning of a digital system as we show in the

next paragraphs [Oudghiri97].

First, the graph G is constructed in such a way that nodes are the blocks in the behavioral

71



•

•

•

model considered at a given level of hierarchy. G is a complete graph because aIl the blacks

are connected by an edge. Edges of the graph are weighted by a cLoseness function, which

corresponds to the number of common variables between the two nodes. Two operations

with a large nurnber ofcommon variables have to be assigned to the same partition in arder

to minimize the communication needed between the final partitions. The weights on the

graph edges provides an easy way to clustering strong dependent tasks.

This graph is then partitioned into a fixed number of cliques using the heursitic in

[Kernighan70]. These cliques may be different software implementations and different

hardware irnplementations. In our case, two cliques are considered and correspond ta the

implementations on software and hardware. The steps of the partitioning algorithm are

shown in Figure 5.1.

The algorithm puts all blocks into the software partition at the first step. If the constraints

are not satisfied by the software solution, blacks are moved to hardware.

First, Algorithm 1 (Figure 5.1) selects the most time consuming node in the behavior

(step 3.i), based on the performance estimates already determined in chapter 4, and assigns

it to the hardware (step 3.ii). If the constraints still not be satisfied, the next node is selected

among the neighbors of the node selected in step 3.i (step 3.iii). The neighbors are consid

ered according to the increasing arder of their edge weights. The neighbor with the maxi

mum number of common variables with the CUITent node is selected.

At each assignment, the dependency graph is updated. The update consists in deleting or

merging no more needed edges. The edges connecting the assigned black ta blacks from

the same partition are deleted. The edges connecting two blacks from the same partition ta

anode from a different partition are merged into one edge. The weight on edges correspond

72



•

•

•

ta the number of common variables between two blocks. When two edges are merged~ the

weight of the new edge is the cardinality of the union of the two cornmon variable sets. In

Figure 5.2(c), the edges (buffer-manager, frame-emitter) and (user-input-handler~ frame-

emitter) are merged ioto one edge when the black frame-emïtter is assigned to hardware as

shawn in Figure 5.2(d).

This selection and graph update are repeated until the performance constraints are satis-

fied or all the model blocks have been moved from software to hardware.

At each partitioning step, the system execution time is compared to the performance con-

straints. The system execution time is computed using three parameters: the performance

estimation of each block, the concurrency and dependency between blocks (result of the

scheduling step) and the communication time. The execution time is computed using the set

of equations shown below.

Execution - time = Ltime - h Ci) [time -5 (i)] + comm Ci) Eq.l

i

comm Ci) = LtransfU)
j E~2

transfU) = k cycles.
Time-h(i) is the hardware time execution of the black i in the input mode!.

Time-s(i) is the software time execution of the block i in the input model.

Comm(i) in the communication time required by the block i to transfer data between the

hardware and software partitions and j is one of the transferred variables by the black i.

Time-h is selected if the block i has been assigned to hardware and tfme-s is selected if

the black f has been assigned to software.

The first equation computes the complete execution time considering blacks on the crit-

ical path. For each critical black, the estimated hardware or sofware execution time (time_h

73



•

•

•

and time_s) is used if the black is assigned ta hardware or to software respectively. The

communication time is computed by t..'le second equation which is the sum of the transfer

time of all variables used by the black and which are updated by the blacks assigned to a

different partition.

The transfer time from hardware ta software or vice-versa for one variable is k cycles

and is determined according ta the transfer speed of the available resources (processors and

ASrCs).

Eq.l is used in a recursive procedure that searchs the longest path in the design flow as

shawn in Aigorithm 2 (Figure 5.3). The procedure longest-path() starts from a root block

and spans all the possible paths starting from the root block successors. Each one of the suc

cessors is considered as a new root and the procedure is recalled for that block. At the end,

the procedure provides the slawest path. The system execution time is then computed for

this path by the procedure longest-path().

Figure 5.2 shows the partitioning flow steps for the HDLC example. The HDLC is con

sidered at level 2 of its hierarchy, i.e the model is built of seven blocks which have the de

pendencies shown in Figure S.2(a).

We considered an execution time constraint equal ta 18 ms. The software implementa

tian of the system mns during 27 ms and does not satisfy the time constraint equal ta 18 ms.

When considering these performance values, Algorithm 1 peforms as shawn in Figures

S.2(b) to S.2ed).

First, the node LOOP is selected and assigned to hardware. This assignment reduces the

total execution time ta 25 ms. The input constraint (18 ms) is not yet satisfied. At the next

step, the LOOP black neighbars are considered (assignment) and the maximum weighted

74



•

•

•

edge is selected (only one in this case). The assignment block is then assigned to hardware

and the total execution time becomes 22.65 ms. The dependency graph is updated as shawn

in Figure 5.2(c). The edge (LOOP, Assignment) is moved to hardware and is now

considered as one node in the hardware partition.

At this step, the constraints have not been satisfied yet and another block is

selected, the frame emitter block because this block has the maximum execution time in the

list of blocks assigned to software. The assigrunent of the block frame emitter to hardware

reduces the total execution time to 19.02 ms but this time is still beyond the time constraint.

One of the frame emitter neighbors is selected (the one with the maximum weighted edge),

the Une manager black. This last assignment provides a total execution time equal to 17.58

ms with one variable to be transferred between hardware and software partitions, as shown

in Figure 5.2(d).

At this step, the time constraint is satisfied, the algorithm is stopped and the fmal

partitioning is output. Four blocks, loop, assignment, Frame emitter and Une manager,

have been assigned ta hardware, and three blocks, user-input handler, acknowledge handler

and buffer manager have been kept in software.

We have shown in this section the panitioning procedure and the way the dependency

graph is built to fonnalize the partitioning problem. The selection strategy of nodes has also

been shawn for each step of the algorithm. The proposed heuristic has the following main

objective: minimizing the hardware partition while satisfying the performance constraints. The

proposed heuristic is greedy and the fmal assignment depends on the selection order. [n the next

section, we present the different modules defined to implement the partitioning algorithm.

75



• Alr:orithm 1

Input: List of blocks and time constraints.
Output: Two subsets where blocks are assigned.

STEP 1: Construct the complete weighted dependency graph G.

STEP 2: Assign alI blocks to software.

Compute the complete system execution time.

•

•
Figure 5.1. The proposed hardware-software partitioning procedure.

76



•

•

a. The input data flow graph•

b. The initial dependency graph and the initial partition.

Hardware

I
pmcnt

LOOP

c. Hardware/software partitioning when the node LOOP is selected. (iteratioD 1)

Hardware So are

•
II

d. Hardware/software partitioning when the frame-emitter node is selected (iteratioD 2).

Figure 5.2. The partitioning procedure Dow for the HDLC example.

77



•

•

•

5.4. The partitioning a1gorithm implementation

The proposed hardware/software partitioning algorithrn has been implemented as a

set of modular blocks in C++. In this section, we will give a modular description of the par

titioning algorithm. Only the main procedures in the partitioning algorithm will be present

ed.

Figure 5.4 shows the principal procedures and functions involved in the partitioning

aIgorithm. These are five procedures and two functions. The procedures are: the weighted

graph construction, the partition initialization, search the maximum weighted edge in the

graph, search the maximum weighted node in the graph, and reduce the dependency graph.

The two functions are : compute time and compute area of the complete system at each par

titioning step.

The general functionality of each one of these modules is described below.

1. Construct-weighted-graph() : this procedure is provided with the

number of building blocks in the model at a given level of hierarchy and

provides, at the output, a graph where the blocks are cannected by edges.

Each edge in the graph in weighted by an integer value corresponding to

the number of cammon variables between the two blocks connected by the

edge.

2.lnitialize-partition() : this procedure assigns aU the blocks in the depend

ency graph ta the software partition. This provides the initial assignment of

all the blocks and also the total software executian time computed by the

function compute-timeO.This time will be cornpared to the time constraints

to make the decision of moving blocks to hardware.

78



•

•

•

3. Search-max-node() : this procedure determines the black which has the

largest execution time. This is performed by visiting aU the graph nodes

and checking their performance estimate.

4. Search-lnax-weighted-edge() : this procedure determines the maximum

weighted edge connected ta the current black. This search corresponds ta

finding among the neighbors of the CUITent black the one which has the

largest number of common variables with the CUITent black.

5. Reduce-graph() : each time anode is moved from software ta hardware,

the dependency graph is updated. This update may consist in deleting sorne

edges or updating the edge weights.

6. Compute-time() : this function determines the total execution rime of the

CUITent implementation of the system considering the blacks in hardware,

the blacks in software and the required communication time. This proce

dure takes into account the concurrency to provide a realistic evaluation of

the system overall execution time.

7. Compute-area() : this function determines the totaI area of the system or

the code size if the system is completely implemented in software.

In the next section, we consider the complexity of the proposed heuristic built of the

presented procedures.

79



•

•

•

void critical..path()
{

while (there is an invisited block i)

longesCpath(bloc~);

}

void longest-path(block;)
{
if (hlocki is assigned to HW)
then

cumul += time-h(bloc~) + comm(blocki);

else
cumul += time-s(blocki ) + comm(blocki);

end if;

for each successor of blocki
longesCpath( successor);

if (cumul> g1ob-cumul) glob-cumul = cumul;
}

Figure 5.3. The procedure to find the critical path in the data flow graph.

s.s. The aIgorithm complexity

In order to evaluate the complexity of our proposed partitioning technique, we first

compute the complexity of each procedure used in the heuristic. These procedures have

been presented in the previous section and their complexity is shown in Figure 5.5.

The main loop is iterated until all blocks have been assigned or as soon as the perfor-

rnance constraints are met. This loop has a computing complexity of OrNY in the worst case,

where N is the number of blocks that build up the input mode!.

The procedure Search-rnax-weighted-nodeO identifies the most weighted block, Le,

the block with the maximum execution time. In the worst case, this procedure requires IV

iterations.

80



•

•

•

The procedure Search-max-weighted-edgeO finds the most weighted edge connected

to the CUITent node. This procedure iterates, in the worst case, (N-I) times.

The procedure Compute-system-performanceO determines the CUITent performance

of the system according to the current assignments of blocks. This procedure has a O(N)

complexity.

The last procedure, Reduce-graph, has the role of reducing the dependency graph

each time anode has been assigned to one of the two partitions. This procedure visits aIl the

common neighbors of the assigned block and ail the blocks in the same partition. In the

worst case, this procedure has a OrNY complexity.

The four procedures ail together have a O(N) complexity. These procedure are called

in the main loop body. Thus, the partitioning algorithm has a O(N2
) cornplexity in the worst

case.

The heuristic complexity of O(N2) is considerably reduced compared to a O(2N) com

plexity of the exhaustive solution. This heuristic provides a polynomial time solution for a

hard problem known to he NP-Hard.

81



•

•

void construct_weight~aph()

void initialize_partitionsO

void partition~aphO

r-----........~While (time constraints not satisfied)

void search_max_node(J

Figure 5.4. The principal procedures used in HAP.

While aIl nodes have not been visited
do

Search- max-weighted-node();
Search-max-weighted-edge();
Compute-system-performance();
Reduce-graph();

Endo;

-.. O(N)

---. O(N)
---. O(N)

-.. O(N)
~ O(N)

•
Figure 5.5. The complexity of the principal procedures in the partitioning aIgorithm.

82



•

•

•

5.6. Summary

The proposed partitioning algorithm has the following main advantages:

1. The global dependency graphformulation is a complete description ofthe dependency

between the input model blocks. The graph nodes are the blacks in the application

model and the edges are the interactions between the blocks.

2. The weighted nades identify the time consuming blocks white the weighted edges in

the dependency graph quantify the dependency between blocks. Thus, the classification

and the comparison between blocks are easy to perform.

3. The area and time estimation values associated with each node in the graph allows

an estimation ofthe system overall area and time at each partitioning step. Thus, par

titioning decisions are taken based on this available data.

4. The node scheduling performed during the analysis step allows taking into account

the possible concurrency between hardware and software partitions. Indeed, depen

dent and independent blocks are clearly identified during the scheduling step.

s. The nested loop structure used in Algorithm 1 ès used to perform a two-level selec

tion. The first selection (outer loop) is performed on nodes which require a long time to

execute in order to accelerate the complete system execution time. The second selection

(inner loop) ès performed on neighbors of the block already selected in the outer [oop

in order to minimize the communication cost.

6. The heuristic complexity is O(N2). Afeasible solution is possible in polynomial rime.

This completes the presentation of our approach. The availability of such an approach

for codesigners provides new characteristics for efficient design space exploration. Indeed,

different input modeIs for the same input system are considered and each block in the model

has time and area estimates, while the concurrency and dependency between blocks are also

taken into account. Hence, the proposed tool perfonns a wide (different input models cor

responding to levels in the hierarchy) and deep (weighted graph partitioning at each leveL)

83



• search before proposing a solution ta the designer as shawn in Figure 5.6.

System specification

•

Model! Model2 Modeln

Analysis

Wide search

Deep search

•

System evaluation

Figure 5.6. The search directions in the codesign space exploration•

84



•

•

•

6

CASE STUDY AND RESULTS

L this chapter, we will show a DSP example and a network simulation algorithm

codesigned on a specific architecture to show the codesign results obtained by our approach

for two examples with different complexity. The FFI' transfonn is a DSP example while

the power network simulation algorithm is a complex algorithm used to simulate real power

networks. Section 6.1 presents the resources involved in the target architecture. The consid

ered examples, the FFf algorithm and the power network simulation algorithm have been

codesigned on the target architecture.Two sections are used to describe the results obtained

for each one of the two case studies, sections 6.1 and 6.2. Each section contains the follow

ing subsections: the high-Ievel description of the example, its hierarchical and variable

grain modeling, its performance estimates and finally the different codesign alternatives

found for the example using our partitioning procedure. These case studies show the effi

ciency of our technique and the wide range of alternatives it is capable to provide for each



•

•

•

input design.

6. 1. The target architecture

In our case, systems to he codesigned are intended to be implemented on the archi

tecture in Figure 6.1.

The target architecture includes a DSP standard processor with a specifie STh1D pro

cessor. The codesign process has to partition the application aIgorithm into two execution

codes, one for the DSP processor (software) and the other for the custom SIMD processor

(hardware). This kind of codesign may be considered as pseudo-hardware/software parti

tioning and our technique is enough general to perform it.

This architecture is based on two types of processors as shown in Figure 6.1. The Tex

as Instruments DSP processor TMS320C40 [Texas92] is used as the master processor and

the custom SIMD processor PULSE [Marriot98] as the slave processor. PULSE is dedicat

ed to massive data processing which are very common in high-speed DSP applications. 1n

ternally, PULSE is a SIMD processor with four parallel processing units. This processor is

a custom circuit developed at Ecole Polytechnique of Montréal and is intended ta ron con

currently with the C40 processor in order to acce1erate time consuming OSP applications.

PULSE has very strong parallel instructions and communications features within one pro

cessing unit as weIl as between different processing units. The two processors communicate

data via a program memory and a local data memory or via asynchronous communication

ports, as shown in Figure 6.1 .

86



• LOCAL
Data Memory

PULSE TMS320C40

SIMD
processor

Standard DSP
processor

•

•

_---...... PROGRAM 1+-__--1

Memory

Figure 6.1. The codesign target architecture.

6. 2. The FFT example

The FFT transform is a function which is often used in the DSP field and is one of the

basic functions in signal and image processing. It allows the transformation of a temporal

function to a frequency one in order to make the function analysis much easier than using

temporal functions. In the next sections, we show the high-Ievel C description of the FFf,

its hierarchical model, performance estimates and finally the partitioning results obtained

when this DSP transform is codesigned on the architecture described in Figure 6.1.

6.2.1 The high·level description of the FFT transform

The C program of the FFr transfonn is shown in Figure 6.2. The inputs are the data

array (data), the data array dimension (nn) and the kind of transform FFr or Inverse FFT

(isign). The output is the output data array (data). The function involves many computations

and requires rapid Implementations [Christopher92].

The main program includes the declarations of the variables and caBs to the functions

87



•

•

•

bit-reversai and danielson. The function bit-reversai reverses the positions of the values in

the data array according to the desired transfonn. The data are reversed if the inverse FFT

is perfonned. This function caUs a simple function swap(a, b) which swaps two input values

a and b.

The main function in the algorithm is danieIsonO and it corresponds to a fast tech

nique to perform the FFr transfonn. It is constituted of a main Ioop and two nested Ioops.

The main loop contains the two nested loops and a set of data preparation and update state

ments. These preparation steps provide the values of the FFT coefficients at each iteration

of the loop. The FFf coefficients are not stored in a memory but are computed iteratively

and when needed. The nested loops compute the output values of the FFT for the input data

and provides the result in the same array.

The presented C program shows sorne hierarchical characterisitics. Indeed, aIl the

nested structures have irnplicit hierarchical structure and sorne dependent instructions may

be grouped into a task structure. In the next section, we show the hierarchical model of the

FFT transform.

88



Figure 6.1. The FFT transform C program.

•

•

•

r .0mam

{ . d ..,
unslgne n, mmax, fi, J, Istep,l;
double wtemp,wr,wi,wpr,wpi,theta;
float tempr,tempi;
float data[lOO);

int nn =50; /* data array size*/
int isign = 1; /* Perfonn IFFT*/

n=nn« 1;

j = 1;

Bit-reversalO;

DanieIsonO;
}

r

void Bit-reversaIO
{

for (i = 1; i < n; i+=2)
{

if (i > j)

{ swap(&data[j) ,&data[i));

swap(&data[j+ l],&data[i+1D;
}

m= n» 1;

while (m <- 2 &&j > m)
{
j- =m;

m» 1;
}

} j+= m;

}

r void swap(tloat *a, tloat *b)
{

float temp;
temp = *a;
a=b;
*b = temp;

}

void DanielsonO
{

mmax =2;
while (n > mmax)
{
istep = mmax.« 1;
theta = isign * (6.283 1 / mmax);
wtemp = sin (0.5 * theta);
wpr= -2 * wtemp * wtemp;
wpi = sin (theta);
wr= 1;
wi=O;

for (m=1;m<mmax;m+=2)
{
for (i=m;i<n;i+=istep)
{

j = i + mmax;
tempr = wr * data[j] - wi * data[j+ 1];

ternpi = wr * data[j+1] + wi * data[j]

data(j] =data[i] - tempr;

data(j+1] = data[i+ 1] + ternpi;

data[i] += ternpr;
data[i+ 1] += tempi;

}

wr =wtemp * wpr - wi * wpi + wr;
wi =wi * wpr + wtemp * wpr + wi;

}

}mmax = istep;

} ~

89



•

•

•

6.2.2 The FFT hierarchical modeling

Figure 6.3 shows the FFr transfonn as a hierarchy of interacting and dependent

blocks using the madeling technique shown in chapter 3. At level 1, the main FFf block is

decompased into 3 blocks, the Initialization module, the Bit reversai module and the

Danielson control module which is the main processing task in the FFI transforme

At the next level of the hierarchy, each of the previous modules is decomposed into

2,3 and 2 subblocks respectively. Note that the initialization module is made up, at this lev

el, of twa blacks, initialize variables and initialize data. The variable initialization block is

not decompased, at the next level, because it contains only basic operations for which no

further decomposition is possible, while the data initialization loop body is decomposed

into 3 blacks, Initialize the index, Read the indexed data and increment the index.

The blocks can be decompased in this way until the basic operations are reached. The

initialize block has a three levels of hierarchy and the bit-reversai block has four levels of

hierarchy. The most complex block, Danielson, has eight levels ofhierarchy. Thus, the FFf

hierarchical modeling pravides eight levels af hierarchy and 39 blacks.

During the codesign of such a function, the designer may start to find the best parti

tioning only at level 1. In this case, the partitioning algorithm handles only three functional

and interdependent blocks. Each block is assigned to hardware or ta software based only on

its performance estimation already computed. DeaIing with all the block details and basic

operations is not required.

If no partitioning that satisfies the performance requirements is found, the number of

blacks may be increased by moving ta level 2. At this level, seven (7) blacks build the sys

tem mode!. At the last level, level 8, twenty four (24) blacks build up the FFI model.

90



s.:
0
.~

cu..c:
Qj

.Q

~
tS
~e..
~
lU
i3,..
0

'il -."
Q\a

"B....
.::

~
Qj...
.::
Qj

.::
E-i
co-!
\C

i
~

1

1

1

1 1

1 :C-----B-it-_t-es-t)

(BitJoop~ BiCcond FKBicswap0

eBitjnc0 1 Bit_shift leBit_swap~

1 1

1 1

1 Bit loop2 1 Loop2 test
1 - 1 -

le Bit_acc ) leLoop2_~~0
: Dan_inil): :C!_OOP2_shi~
(DanJoop)+-( Dan_test )1

: (Danielson ~an_)Oop9f(LooPI_ini0

1 (Danjncr )1 1~ooPl_bod~ DanJoop2}{Loop2 ini0
1 1 1 1 1 - - .

1 1 1(Loopljnc9 1 Up,date I(LooP2_bodKInitializ~
1 1 1 1 Vanables Il::=:::::::::

( LoOP2_mCf\ (iD ~l
1 1 1 1 1 _ JI\: an_reay
1 1 1 1 l 'QJanjma)
1 1 1 1 1 1

Leve) 2 1 Leve) 3 1 Leve.) 4 1 Leve) 5 1 Levet 61 Leve) 7 1 Levet 8Level 1

e e e



•

•

•

6.2.3 The performance estimation and scheduling

Table 6.1 shows the execution time and the code size of the different blacks in the

FFI model when each of them is run on the processors C40 and PULSE.

The first four rows in Table 6.1 show the execution time and the code size of the three

blocks that build the FFf at level 1. The remaining rows show the performance estimation

ofsorne blacks from other levels in the hierarchy. Note that the Danielson black is the slow

est block in the FFI behavior because it is the most camplex and it cantains two nested

data processing loops, Dan-Ioop l and Dan-Ioop2. This performance estimation step allows

the identification of the bottlenecks in the FFI behaviar.

Table 6.1: Performance estimation of the FFT blocks.

Execution time (ms) Code size (Bytes)
Module

PULSE C40 PULSE C40

lnitialize 1.48 2.28 184 92

Bit-reversai 3.6 7.04 432 192

Danielson 14.16 26.36 992 440

lnitialize-data 0.96 1.92 80 40

Bit-loopl 1.4 2.72 368 160

Dan-loop1 12.52 23.12 912 408

Dan_Ioop2 10.4 20.84 736 312

The next step detennines the data dependencies between the FFI blacks. This con

sists first in determining the list of successors and predecessors for each black in the model

and then scheduling the blacks ASAPly and ALAPly to identify the possible critical paths

in the FFf execution flow.

Figure 6.3 shows the FFr transform data flow graph at two different levels of hierar-

92



•

•

•

chy.

The first data flow graph, Figure 6.3(a), is built of three nodes. Only one critical path

is possible because the nodes are data dependent and must execute sequentially. The second

data flow graph, Figure 6.3(b), is built of seven blocks. The ASAP and ALAP scheduling

provides the critical path whose execution flow is constituted by the following sequence of

blocks, Initialize-data, Bit-Ioopl and Dan-Ioop.

These graphs are used to determine the total execution time of the FFf when the

blocks are assigned to PULSE or to C40.

For example, in the initial partition, the complete FFI behavior is assigned to the pro

cessor C40 and the total execution time is the sum ofaIl the block execution times. The con

currency cannot be used for the initial partition because the C40 processor executes the

instructions sequentially even if they are independent. We may take advantage of the con

currency when the concurrent blacks are assigned to two different partitions or processors.

In the next section, we present the different partitioning alternatives for the FFI trans-

forro.

6.2.4 Partitioning alternatives

Here, a typical signal processing fonction, the FFI transfonn, is used to show the pro

posed codesign frarnework results. The FFT transform program has been codesigned on the

architecture shown in Figure 6.1. Three sets of results have been generated to validate our

methodology.

The first set shows the codesign results under perfonnance constraints. The second

set of results shows codesign determined for the same input system but at different levels

93



• of the hierarchy. Finally, the third set of results is a comparison between the obtained code

sign implementations and the complete software or hardware implementations.

•

schedulin slep 1

----r--- scheduling step 2

scheduling srcp 3

ASAP scheduUng

(InitiaIiz9

scheduling srcp 2

scheduling slep 3

ALAP scheduUng

(a). Scheduling at level 1

ASAP scheduling

ALAP scheduling

(a). Scheduling at level2

scheduling slep 2

scheduling slep 3

scheduling slep 3

•

Figure 6.3. A5APIALAP scheduling at two different levels of the FIT hierarchy.

6.2.4.1 Partitioning onder time constraints

The analysis values for the FFf subblocks have been aIready shown in Table 6.1.

Based on these parameters and using our heuristic partitioning procedure, the first set of the

FFT transform partitioning results is shawn in Table 6.2. Table 6.2 shows co-implementa

tion alternatives generated for the FFr transfarm when different timing constraints are

specified.

94



• The FFf transfonn is considered at the level 1 of the hierarchy. If the constraint is

completely relaxed (column 1 in Table 6.2), which means that the constraint is equal or

greater than the complete software solution, the complete C4D solution is adopted without

any partitioning. The more the constraint is decreased the more blocks are moved to PULSE

to accelerate the execution.

For example, to reach the 25 ms constraint (column 4 in Table 6.2), two blocks are

executed on PULSE (Danielson and Bit_reversai) and one block on C40 (InitiaIize). When

the timing constraint is equaI to 20 ms (column 5 in Table 6.2), the three blocks are assigned

to PULSE. This set of results shows the first characteristic of our framework, codesign with

input time constraints.

• Table 6.2: The FFT transform partitioning under timing constraints

Modules Cl= 40 ms C2=35ms C3 =25ms C4= 20 ms

Initialize C40 C40 C40 PULSE

Bit-reversaI C40 C40 PULSE PULSE

Danielson C40 PULSE PULSE PULSE

C40-time

PULSE-rime

Total time

38.2 ms

Oms

38.2 ms

11.84 ms

14.16 ms

26 ms

5.80 ms

18.15 ms

23.95ms

Oms

19.24 ms

19.24 ms

•

6.2.4.2 Partitioning alternatives at different levels of the hierarchy

In the next group of results, we considered the behavior at different levels of hierar-

chy, from 1 to 7 with the same timing constraint. These partitioning results are shown in

Table 6.3.

95



•

•

•

At lever 1, ail initialization and input operations (InitiaIize blocks) are implemented

on the TMS320C40 processor, while data preprocessing and processing operations

(Bit_reversai and DanieIson blocks) are assigned to the PULSE processor. At level 2, only

the data processing parts in both Bit_reversai and Danielson blocks are assigned to PULSE.

At level 3, only the Dan-Ioop algorithm in the Danielson block with bit swapping blocks in

the Bit_reversai module are assigned to PULSE. At level 7, only the data processing blocks

related to bit swapping functions and the multiplication of complex numbers are assigned

to PULSE.

The three last columns in Table 6.3 show the execution time for each proposed solu

tion from level 1 to 7. These values show how the computation load is distributed between

the two available processors as a function of the level of hierarchy. At leveIs 1 and 2, the

obtained performance satisfy largely the input constraint but PULSE is taking aIl the com

putation load. Note that this will lead in more memory size since the instruction size in

PULSE is twice the C40 one (66 and 32 respectively). The same thing is observed for levels

6, 7. At the rniddle levels, 4 and 5, the partitioning is more balanced than at other IeveIs.

The resulting implementation performance is very close ta the constraint but the memory

size is weIl balanced.

6.2.4.3 Partitioning tradeoff

The last group of results provide a comparison between the complete hardware and

the complete software solutions. In Table 6.4, the partitions obtained at level 1 and level 7

are compared to complete C40 implementation and complete PULSE implementation. Note

that the system performance is 20.44 ms if implemented on PULSE and 38.64 ms if imple-

96



•

•

mented on C40. An intennediate implementation where all initialization and read opera-

tions are assigned to C40 and ail data preprocessing and processing operations are assigned

to PULSE has an execution time equal to 23.95 ms (solution#l in Table 6.4). The last im-

plementation proposed, where only processing operations are assigned to PULSE, leads to

an execution time equal to 23.84 ms (solution#7 in Table 6.4).

The solution #1 reduces the execution time by 40% of the complete C40 implemen-

tation execution time while the memory size is reduced by 23% of the memory size required

by the complete PULSE implementation. In solution #7, the execution time is reduced by

38% while the memory size is reduced by 65%. The two solutions satisfy the input con-

straint equal to 25 ms but solution #1 needs three times the memory size needed by solution

#7. This shows that a trade-off has to be found when the memory size is taken into account.

In this section, we presented the FFf transform behavior to show the ability of our tool to

find co-implementations using the proposed algorithm. This algorithm allows the genera-

tion of a list of possible implementations when different levels of hierarchy are considered.

Table 6.3: Block assignment at different hierarchicallevels of the FFT model.

Level Nb. of C40 PULSE Time(ms) 1 rime constraint = 25 ms]
Blacks

PULSE C40 Total

1 4 2 2 18.14 4.8 22.94

2 8 6 2 18.8 2.96 21.76

3 19 11 8 15.56 9 24.56

4 29 18 10 14.68 10.24 24.92

5 36 17 13 14.56 1004 24.94

6 47 40 7 6.82 17.72 24.54

• 7 52 40 12 7 17.92 24.52

97



•

•

•

The objective of exploring the major points in the codesign space has been reached

by varying the leveI of hierarchy. This means that our tool is able to find as many imple

mentation possibilities as hierarchy depth allows, which is a new and advantageous feature

compared to previous works.

The generated alternatives are compared to the lower-bound performance (the hard

ware solution) and the upper-bound performance (the software solution) implementations

in order to find the best trade-off. The final decision may be taken by the designer or by an

automatic tool to he developed.

Table 6.4: Alternative comparison for the FFT transform.

Execution time (ms) Code size (Bytes)

Partition PULSE C40 Reduction PULSE C40 Reduction

1 (C40) 0 38.64 ---- 0 1260 ----

2 (PULSE) 20.44 0 --- 2196 0 ---

solution #1 18.15 4.80 40% 1424 264 23%

solution #7 5.2 18.64 38% 352 412 65%

98



•

•

•

6. 3. The power network simulation a1gorithm

The power network simulation algorithm is a very time consuming algorithm used by

power network companies to simulate their electrical networks. Various and long process

ing involving a lot of vector and matrix computations are required in such simulations. In

the next sections, we show the high-Ievel matIab description of the algorithm, its hierarchi

cal model, performance estimates and finally the partitioning results obtained when this al

gorithm is codesigned on the architecture described in Figure 6. L.

6.3.1 The high-Ievel description of the power network simulation

Figure 6.4 shows the matlab description of the power network simulation algorithm.

The algorithm is composed of three main pieces. The first one is the data and constant

preparation phase. The second one is a list of matrix computations and finally the compu

tation of the vectors Ug, Ig and Yb which are the main charcateristics of the network that

we want to determine. Theses vectors are computed and updated at each simulation itera

tion. The simulation algorithm is then executed into (wo nested loops. The first loop reiter

ates 600 times which corresponds ta 5 seconds in the network real lifetime. The network

characteristics, Dg, Ig and Yb, have to be computed each 5 seconds. The second loop is the

convergence loop for the characteristics values of the network. These characteristics have

to be detennined at a stable state and this stable state corresponds to the given precision.

When the characteristics values do not change from one iteration to another by more than

the precision value, the precision loop is stopped and the CUITent values of the network char

acteristics are stored. In the next section, we show the hierarchical modeling of such a be

havior.

99



•

•

~d = fopenCdata_in.bin' :r');

Ug = fread(fid. 21, int32);
Yb = fread(fid, 18. in(32);

Ig = fread(fid, 6, in(32);
invAg = fread(fid, [21,21], int32);

invAgRgu = fread(fid, [21,21], int32);
invAgRgk = fread(fid, 21, in132);
invYeifg = fread(fid. [18,6]. in(32);
invYepfg = fread(fid. [l8, 6]. in(32);
fclose(fid);

Ybm = [Vb(1:2) Vb(3:4) Vb(5:6) Vb(7:8) Vb(9:LO)
Vb(1l:12) Vb(13:14) Vb(lS:16) Vb(l7:18) J';

Ugm = [Ug(I:7) Ug(8:14) Ug(15:21)]';

res(l,:) = [Vbm(5,:) Ugm(2, 2) Ugm(2, 1) UgmCl, 2)];

invYeg = invYeifg;
For k=l : 600
If (k =11) invYeg = invYepfg; end

invAgRg= invAgRgu * Ug + invAgRgk;

oPe = zeros(3,l);
dPe = ones(3,l);

While (max(abs(dPe» > IE-2)
Dg = Ugrn(:, 2);
Dg = Dg - fix(Dg/(2*pi» * (2*pi);
Dg = Dg - fix(Dg/pi) * (2*pi);
sgnsncs = [ sign(Dg) sign«pil2) - abs(Dg»];

Dg = abs(fix(Dg/(pil2» * pi - Dg);
chgsncs = fix(Dg/(pil4»;

Dg = abs(chgsncs * (pil2) - Dg);

Dgp2 = Dg.* Dg;

Dgp3= Dgp2 .* Dg;

Dgp4 = Dgp3 .* Dg;

DgpS = Dgp4.* Dg;

sncsDg = [ones(3,1) Dg Dgp2 Dgp3 Dgp4 Dgp5] *
[0 1 0 -l/6 11120; 1 0 -ln - l/240]';

If chgsncs(l)
sncsDg(I, :) = sncsDg(l, 2:-1:1); end

Ifchgsncs(2)
sncsDg(l, :) = sncsDg(2, 2:-1:1); end

If chgsncs(3)
sncsDg(I.:) =sncsDg(3. 2:-1:1); end

sncsDg = sgnsncs .* sncsDg;

Bgl = [0 0000 10;
[000000 1]' * sncsDg(I.I) +
[0000001;
[00000 -1 0]' * sncsDg(l,2);

Bg2 = [0 0000 1 0;
[000000 II' * sncsDg(2,1) +
[0000001;
[00000 -1 Or * sncsDg(2.2);

Bgl = [00000 1 0;
[000000 1]' * sncsDg(3,l) +
[0000001;
[0 0 0 0 0 -1 0)' * sncsDg(3,2);

Bg = [ Bgl zeros(7,2) zeros(7,2)
zeros(7,2) Bg2 zeros(7,2)
zeros(7,2) zeros(7,2) Bg3];

Cg=Bg';
Ig = Cg * invAgRg;

Vbm = [Vb(l:2) Vb(3:4) Vb(5:6) Vb(7:8
Vb(9:1O) Vb(11:12) Vb(l3:14)
Vb(l5:16) Vb(l7:18)]';

Ug = invAg * Bg * Vb(l:6) + invAgRg;

dPe =Ugrn(:. 3) - oPe;
oPe =Ugm(:, 3);

end %precision loop

res(k+1,:) = [Vbm(5,:) Ugrn(2, 2)
Ugm(2, 1) Ugm(l. 2)];

end %iterative loop

fid = fopenCdata_out.bin','w');
fwrire(fid,res, 'in82');
fclose(fid);;

•
Figure 6.4. The matlab program of the network simulation algorithme

100



•

•

•

6.3.2 The hierarchical modeling of the power network simulator

Figure 6.5 shows the power network simulation algorithm as a hierarchy of interact

ing and dependent blocks using the modeling technique shown in chapter 3. At level 1, the

simulation algorithm is decomposed iuto 2 blocks, the data preparation module and the net

work simulation module which is the main processing task in the simulation algorithm.

At the next level of the hierarchy, each of the previous modules is decomposed into

2 subblocks. Note that the data preparation module is made up, at this level, of two blocks,

vector initialization and coefficient initialization. The vector initialization block is decom

posed, at the next level, into 3 subblocks corresponding to the initialization of the three vec

tors Ug, Ig and Yb. The coefficient initialization is decomposed into 2 blocks, one block for

the initialization of the network generator coefficient and the other block for the initializa

tion of the network admittance coefficient.

The blocks can be decomposed until the basic operations are reached. The vector ini

tialization block has a two level hierarchy and the coefficient initialization block has a three

level hierarchy. The most complex block, Net simulation, has an eight level hierarchy. This

hierarchy level is the result of the successive decompositions on the nested loops until the

basic operations are reached. Thus, the network simulation algorithm has a hierarchical

model with eight levels and a complexity equal to 94 blacks

During the codesign of such a function, the designer may start to find the best parti

tioning at level 1. In this case, the partitioning algorithm handles only two functional and

interdependent blocks. Each block is assigned to hardware or to software based only on its

performance estimation already computed. Dealing with all the block details and basic op

erations is not required unless the design perfonnance constraints are not satisfied.

101



Dgl_dg2_div
&.:

Dgl_dg2_muh 0
';=

Dg Ldg2_sub œ
-=

DgUg3_div
Q,I
.c

(Dgl_dg3_muh =0
'::1

DgCdg3_sub ":;
,§
III

~...
NeUitnul3tÎorH 1\. LQUI'_'t:~1 ) 1 1

~UgL_Ug..5UD)
1 !

Q,I

=Q,I

'fi
e.w
0

~ 9"0
0
El
'5..
~
~
Q,I

:El
Q,I

~
IIÏ
\C

e
~
ti:

e • e



•

•

•

6.3.3 Performance estimation

Table 6.5 shows the execution time and the code size of the different blacks in the

network simulation algorithm when each of them is run on the processors C40 and PULSE.

The execution time of sorne blocks of the simulation algorithm are presented in col

umns 2 to 4 in Table 6.5. The initialization blacks are very small and do not take along time

to execute as shawn in Table 6.5, columns 3 and 4. Blocks like the main loop and the pre

cision loop are the more complex and take a lot of time ta execute. For example, the main

loop takes 978,000 cycles ta execute its 600 iterations. One iteration of the precision loop

lasts 889,000 cycles while the loop rnay reiterate several times before reaching the desired

precision. Only one iteration of the precision loop is considered because the nurnber of it

erations is unknown. This performance estimation step allows the identification of the crit

ical regions in the simulation algorithm. These are clearly, the main loop at level 2 of the

hierarchy, the precision loop at level 3, the main processing block at level4, and interfaces

block at level5.

Columns 5 to 7 in Table 6.5 show the number of micro-instructions needed byeach

block and the corresponding memory size required for each processor. The main loop is

built of 145 instructions which correspond to 580 bytes on the C40 processor and to L305

bytes on the PULSE processor. The gen-matrix black is built of 7 instructions and the cor

responding memory size is only 28 bytes on C40 and 163 on PULSE. Note that the Init

coeffs black needs much more instructions even if it takes less execution time than the gen

matrix black. This is due ta the large number of sequential instructions in the Init-coeffs

block while the gen-matrix black is built of ooly 7 instructions but in a 21 iteration loop.

This values show the time-memory tradeoff we have to take into account.

103



•

•

•

Table 6. 5: The performance estimation for the power network simulator blocks.

Execution time (ms) Code size (Bytes)
Module Nb.cycles PULSE C40 Nb. instructions PULSE C40

!nievectors 45 0.008 0.018 10 90 40

lniccoeffs 140 0.025 0.56 21 189 84

Main_Ioop 978,000 17.6 39.12 145 1305 580

Tmp_coeffs 54,000 2.16 0.97 10 90 40

Precision_loop 889,000 16.2 36 III 999 444

Interfaces 340,200 7.74 17.2 87 783 348

Gen_matrix 369,000 6.64 14.76 7 163 28

6.3.4 Partitioning alternatives

Table 6.6 shows co-implementation alternatives generated for the network simulation

at different levels of hierarchy, from 1 to 10 with the same timing constraint.

At level l, aIl initializations and data preparing steps (Data_prep) are implemented on

the TMS320C40 processor, while data preprocessing and processing operations

(Net_simulation) are assigned ta the PULSE processor. At level 2, only the data processing

blocks in the net_simulation black are assigned to PULSE. At level3, the main_processing

black is assigned ta PULSE. FinaIly, at level9, only data processing blocks are assigned to

PULSE. The three last columns in Table 6.6 show the execution time for each proposed so-

lution from lever 1 to 10. These values show how the processing charge is distributed be-

tween the two available processors as a function of the level of hierarchy. At levels 1 to 4,

the obtained performance satisfy largely the input constraint but PULSE is taking aIl the

computation load. Note that PULSE solutions require more memory size since the instruc-

tion size in PULSE is more than twice the C40 one (66 and 32 bits respectively). In levels,

5 to 10, the partitioning is balanced by moving less blocks towards the processor PULSE

104



• than at the first levels. The resulting implementation perfonnance is still satisfying the same

constraint with very close values and the memory size is reduced. The performance values

of the final partitions, for each level in the hierarchy, are provided ta the designer in arder

to select the appropriate implementation.

Table 6. 6: Block assignment at different hierarchicallevels of the network simulation algorithm

Level Nb. of C40 PULSE Time(ms) 1 time constraint = 30 ms]
Blocks

PULSE C40 Total

2 1 1 17.64 0.08 17.64

2 4 3 17.6 0.074 17.6

3 12 10 2 16.2 3.127 18.53

4 20 15 5 15.74 3.05 L7.83

5 27 17 10 5.06 27.76 29.93

6 31 22 9 4.64 27.41 29.29

• 7 36 27 9 4.06 28.68 27.04

8 46 31 15 4.06 28.35 27.04

9 60 46 14 4.06 28.01 27.04

10 64 55 9 4.06 27.96 27.04

Table 6.7 shows, with more details, sorne of the partitioning obtained at different lev-

els of the hierarchy. For each one of these alternatives, we provide the performance estima-

tion which is the execution time of the complete system and the code size corresponding ta

the required data memory space.

The system performance is 17.80 ms if the system is completely implemented on

PULSE and 39.12 ms if implemented on C40. An intermediate implementation where aIl

•
initialization and output operations are assigned to C40 and all data preprocessing and pro-

cessing operations are assigned to PULSE has an execution time equal ta 28.68 ms (solution

105



-.

•

•

#1). The last implementation proposed, where only processing operations are assigned to

PULSE, leads to an execution time equal to 27.41 ms (solution #2). These two solutions are

found for the same input constraint equal to 3D ms. Both solutions satisfy this timing con

straint but the difference is the code size needed to implement each one of them.

The solution #1 is approaches the input constraint by 9% while the required memory

size is reduced by 45% of the memory size required by the complete PULSE implementa

tion. The solution #2 approaches the timing constraint by 4% and the required memory size

is reduced by 75%. The two solutions satisfy the input constraint equal to 30 ms but the so

lution #1 needs 1.67 times the memory size needed by the solution #2. Of course~ the solu-

tion #1 is a better solution when the comparison is based on the timing performance but for

the same input constraint, solution #2 is better than solution #1 because the desired perfor

mance is obtained with less area cost.

Table 6. 7: Codesign alternatives for the network simulation algoritbm

Execution time (ms) Code size (Bytes)

Partition PULSE C40 Solution Precision PULSE C40 %Area

l (C40) 0 39.12 ---- 0 772 --
2 (PULSE) l7.64 0 ---- 3088 0 ---

solution #1 4.64 27.41 9% l424 264 45%

solution #2 4.06 28.68 4% 352 412 75%

106



•

•

•

6.4.Summary

These case studies provide the foUowing main conclusions on the impact the hierar

chy has on the generated partitioning alternatives.

1. An optimallevel in the hierarchy may be identified to obtain an optimal and balanced

partitioning ofblocks between hardware and software partitions.

2. The use ofthe most detailed model, the operation Level, does not always mean obtain

ing the best solution.

3. Considering the first leveLs in the hierarchy, during partitioning, improve consider

ably the time performance but this is not the case for the code size. This is due to the

fact that big bLocks are movedfrom software to hardware when using first levels ofthe

hierarchy.

4. The use ofthe medium and the last levels may decrease considerably the code size or

the area with a very Little degradation in performance while the use ofjirst Levels re

duces the execution time but requires more memory storage space.

l07



•

•

•

7

CONCLUSIONS

The thesis studies a systematic approach to partition system-IeveI designs into hard

ware and software. The key contributions are summarized in section 7. 1. In section 7.2. we

conclude with a discussion of sorne of the future directions ta this research.

7. 1. Contributions

In this thesis we developed techniques for the codesign of digital systems. Pure hard

ware or software implementations often cannot meet constraints like cost, performance or

time-to-market. Due to the algorithmic complexity of systems and also to avoid early com

mitment to a particular hardware or software implementation, the systems are specified at

a high-Ievel of abstraction.

Our approach to codesign is to design the hardware and the software in parallel with

feedback and interaction between the two as the design progresses. The codesign approach



•

•

•

enables the exploration of a wide variety of irnplementation alternatives simply by using

the available hierarchical model of the input system. Thus, the system can be optimized in

its entirety.

Five key problems are identified in the context of system-Ievel codesign: modeling,

partitioning, analysis, synthesis and simulation. We provide new and original solutions to

the three former problems and these solutions are summarized in the next sections.

At the system-Ievet designs are typically represented as task graphs, where tasks

have moderate to large granularity already fixed at the specification level even if the input

specification is hierarchical. We present a modeling technique for system level tasks with

variable granularity. The key contribution is summarized in section 7.1. 1.

Each task in the system specification cao be implemented in hardware or in software.

The resulting implementation typically differ in area and execution time. The objective in

system level design is to select the "best" implementation for the system as a whole. We

presented an automatic approach to solve this problem by formulating the partitioning prob

lem as a dependency graph partitioning problem. The key contributions are summarized in

section 7.1.2.

In order to select the best implementation, one needs efficient estimation tools to

compare the possible implementations. The estimation avoids the complex and time con

suming synthesis steps by providing fast and efficient evaluations. The key aspects of the

estimation steps are summarized in section 7.1.3.

7.1.1 Hierarchical modeling

The use ofhierarchy as presented in our codesign approach is an original contribution

109



•

•

•

of this thesis. We are not aware ofany other work that attempts ta do this at the system-Ievel

even if the majority of systems are described using hierarchical modeling. AlI the proposed

systems use a flattened model of the input system at the task level or at the operation level.

We proposed a solution which takes advantage of the hierarchical model at the input.

The way we use the hierarchy provides the flexibiIity to select a given complexity.

Each level in the hierarchy provides a different input model. The models have large com

plexity when fine grain models are reached (hierarchy flatten) but these models are not used

unless no satisfying solution is found with the simple models. Our contribution has three

main advantages:

1. The number of models with different complexity that the hierarchy provides allows

the expansion of the design space exploration without any computation overhead

because the hierarchy is a charactersitic already available in aIl modeling tools.

2. The model complexity used during partitioning may be selected among the range

of possible models provided by the use of hierarchy. The simple models are used

first and when no satisfying solution is found~ more complex models may be con

sidered.

3. The possibility to use only simple models as long as the found solutions satisfy the

constraints allows the reducing of the overall design CPU time.

7.1.2 System partitioning

Hardware/software partitioning is the problem of determining, for each node in the

application, a hardware or a software mapping and schedule for execution. The end-objec

tive is to minimize the total hardware area subject to timing constraints. Since the problem

110



•

•

•

is known to be NP-Hard, we developed an efficient heuristic.

We presented the proposed heuristic to solve the hardware/software partitioning

problem. This heuristic has several unique features:

1. The mapping selection of a task is perforrned such that the finish time of the task

is minimized. The task is selected using a global-time criterion.

2. In addition to global consideration, neighborhood preference is taken into account.

The next tasks to be selected are those which have strong data dependency with the

global selected task.

3. The global selection has the main objective ofminimizing the execution time in or

der to satisfy the timing constraint. The local preference has the main objective of

rninimizing the communication cast between the hardware and the software parti

tions.

4. The weighted dependency graph used to formulate the partitioning problem uses a

global formulation where the graph nodes are the application tasks. The graph nodes

are weighted by their execution time while the graph edges are weighted by the

number of shared data between the two tasks in the graph edge. AlI the weights are

determined from the estimated performance and cost.

5. The partitioning heuristic takes into account all the possible concurrency and com

munication overhead between the hardware and the software partitions before pro

posing the "best" implementation.

6. Our proposed heuristic 1S computationally efficient (O(N2») when compared to the

O(2N ) theoritical cornplexity. N is the number of tasks in the system mode!.

III



•

•

•

7.1.3 System analysis

Behavioral analysis is the problem of determining fast performance and area esti

mates for the whole system to ease the decision making step during the automatic hardware!

software partitioning. We used available estimation tools but our key contribution is the ex

tent of sueh estimators for our specifie target architecture.

1. The specsyn estimators provide the time and area estimates for each black in the

model independently of its hierarchy or of the subblocks that build it. Our key con

tribution is to determine the estimates hierarchically for each block. At a given level

of hierarchy, the block time and area estimates include the time and area estimates

of all its subbloeks. During partitioning, the estimate is ready and we do not need to

span the block hierarchy to find its performance estimates at each iteration.

2. The technology files for our specifie architecture components have aiso been de

termined and added to the estimator data base. These technology files correspond to

the two processors used in our target architecture. the C40 and PULSE processors.

7. 2. Future directions

7.2.1 Framework integration

Our contribution foeuses on partitioning, analysis and modeling. These steps are a

key tenet in eodesign process but need to be integrated in existing or future codesign frame

works.

In order to perform such an integration, several questions need to be answered. l.

what is the specification language and the modeling concept supported? 2. If the hierarchy

112



•

•

•

is implicit, how is it extracted? 3. how the partitioning algorithm wouId be integrated in the

available codesign tools that do not support partitioning?

Ail common specification languages used in industrial tools support the hierarchy be

cause of the growing complexity of specified systems. We think that integrating our use of

hierarchy in the available frameworks would be an easy task while providing a powerful

feature for future codesign tools by simply taking advantage of the hierarchy already em

bedded in these frameworks.

The available cosynthesis tools do not include automatic partitioning facility but fo

cuses on hardware high-Ievel synthesis and software code generation for different proces

sors. The integration of our autornatic partitioning heuristic would be very easy because it

is a completely independent module. The heuristic needs a set of dependent blocks with

their performance estimates as inputs and provides, at the output, a mapping of these blocks

to hardware or ta software.

7.2.2 Hardware and software synthesis

The partitions found by our proposed partitioning algorithm have to be synthesized

in order to provide the final implementation. High-Ievel synthesis tools may he used ta per

form hardware synthesis. A good candidate for this synthesis would be the Synopsys be

havioral compiler which is available at universities [Synopsys97]. As for the software

synthesis, standard compilers may be used. The key issue for the future is to translate the

obtained partitions to the appropriate description language, like VHDL for Synopsys and C

for compilers.

113



•

•

•

7.2.3 Interface synthesis

In the proposed partitioning heuristic~ we used a simple formula to detennine the

communication time overhead. This equation needs ta be more elaborated in order to reflect

the real time and also the area overhead which is not considered in the equations presented

in chapter 5. An interface synthesis or an efficient interface estimation tool is required. The

interface evaluation has a big impact on the final implementation and using an interface es

timation or synthesis tool is a must.

114



•

•

•

Appendix A. Technolgy files for the system estimation

In this appendix7 complementary information is provided for the performance estima

tion phase. The perfonnance estimation has been presented in chapter 4 and is performed

using two automatic estimators developed at the university of Califomia at Irvine.

In order to use such estimators7 sorne information has to be provided. This information

is the SpecCharts description of aIl the behaviors we want to estimate and the technology

files for our target architecture resources. In the next section, we present the SpecCharts

description of one of the case studies 7 the FFf example. The other sections of this appen

dix present the technology files for both the Texas Instruments C4D processor and the

SIMD processor PULSE.

A. 1. SpecCharts description

The FFI C description has been presented in chapter 6. Here, we show a SpecCharts

description which is used to estimate the performance of the FFT aigorithm when it is run

on the C40 or PULSE processors.

The description below shows the SpecCharts description of the FFI' example. This

description has the same structure as VHDL and is composed of two parts. The first part is

the entity where the input and output ports of the system are defined. The second part is

the architecture where the functionality and the structure of the system are described. The

architecture heading is composed of all the variables and constants used in the FFf behav

ior. The FFf behavior is composed of three main blocks, InitiaIize 7 Bit-reversaI and dan

ieison. The control flow between these three blocks is described at the beginning of the

FFf architecture. For each block, a control flow is defined by the following statement:

115



•

•

•

Black name: (TOC, condition, next black)

The different fields in this statement are:

1. Black name: It is the current block where the control flow is.

2. TOC (Terminate On Completion), this key ward means that the control is given ta

another black only after the completion of the CUITent block.

3. Condition: This key word means that the control is given to another black only if

the Condition is true even if the black processing is completed. If this field is True,

this means that the flow is given ta the next black at the completion unconditionaly.

4. Next black is the name of the next black to which the control is given. If the CUITent

block is the last black in the control flaw, the key ward Stop is used to describe the

end of the control flow graph.

After the definitian of the control flow, each black in the flow graph is then described

internally. The black may be hierarchical and thus composed of other blacks. These blacks

are first described in a control flow and then their internal description is given, or may be

a simple behavior described as a set of VHDL statements. In the description below, the

black Initialize is of type sequential behaviors and is composed of a hierarchy of two sub-

blacks, Data-initilaize and Var-initialize. An example of simple behavior is Var-initialize

which is of type code and is described by a set of VHDL statements to initialize the varia-

bles n, i andj.

-use work.data.all;
entity FFf_E is
port
(
input_port : 10 mteger;
output_port : out integer

);
end;

116



•

•

•

architecture FFf_A ofFFr_E is

begin

behavior FFr_behavior type sequential subbehaviors is

type tableau is array (0 to 100) of integer;
variable n, mmax,m,j,istep,i,nn,isign : integer;
variable wtemp,wr,wpr,wpi,wi,theta,tempr,tempi,tmp 1,tmp2 :integer;
constant six : integer:= 6;
constant half : integer:= 5;
constant deux: integer:=-2;
constant un : integer:= 1;
constant zero : integer:= 0;
variable data: tableau;

begin

Initialize:(TOC,true,Bit_reversal);

Bit_reversal:(TOC,true,Danielson_ctl);

Danielson_ctl:(TOC,true,Stop);

behavior Initialize type sequential subbehaviors is

begin

Data_initialize:(TOC,true,Var_initialize);

Var_initialize:(TOC,true,stop);

behavior Data_initialize type sequential subbehaviors is

begin

Init_index:(TOC,true,Read_data);

Read_data:(TOC,true,Incr_index);

Incf_index:(TOC,(i<nn),Read_data),

(TOC,(i>=nn),stop);

behavior lnit_index type code is
begin
i :=0;
nn:= 50;
isign := 1;

end lnit_index;

behavior Read_data type code is
begin

117



•

•

•

data(i) :=input_port;
end Read_data;

behavior Incf_index type code is
begin
i:= i+1;

end Incf_index;

end Data_initialize;

behavior Var_initialize type code is
begin

n := nn;
j := 1;
i := 1;

end Var_initialize;

end Initialize;

behavior Bit_reversai type sequential subbehaviors is

begin

Bit_init : (TOC,true,Bit_Ioopl);

Bit_Ioop 1 : (TOC,true,Bit_incr);

Bit_Iner : (TOC,(i<n),Bit_Ioop 1),
(TOC,(i>=n),stop);

behavior Bit_init type code is
begin
i := 1;

end Bit_init;

behavior Bit_Incr type code is
begin
i:=i+2;

end Bit_Incf;

behavior Bit_Ioop 1 type sequential subbehaviors is

begin

Bit_condition:(TOC,true,Bit_shift);

Bit_shift :(TOC,true,Bit_Ioop2);

Bit_Ioop2 :(TOC,true,Bit_acc);

Bit_acc : (TOC,true,stop);

118



•

•

•

behavior Bit_shift type code is
begin
m:=nn; -Shift

end Bit_shift;

behavior Bit_acc type code is
begin
j:=j+m;
end Bit_acc;

behavior Bit_condition type sequential subbehaviors is

begin

Bit_test: (TOC,(i<j),Bit_swap l),

(TOC,(i>=j),stop);

Bit_swap1: (TOC,true,Bit_swap2);

Bit_swap2: (TOC,true,stop);

behavior Bit_test type code is
begin
null;

end Bit_test;

behavior Bit_swap l type code is
begin
tempr := data(i);
data(i) := dataG);
dataG) := tempr;

end Bit_swap 1;

behavior Bit_swap2 type code is
begin
tempr := data(i+1);
data(i+1) := dataG+1);
dataG+ 1) := tempr;

end Bit_swap2;

end Bit_condition;

behavior Bit_Ioop2 type sequential subbehaviors is

begin

Loop2_test: (TOC,(m<2 and j<m),Loop2_assign),

(TOC,(m>=2 or j>=m),stop);

119



•

•

•

Loop2_assign:(TOC,true,Loop2_shift) ;

Loop2_shift:(TOC,true,Loop2_test);

behavior Loop2_test type code is
begin
null;

end Loop2_test;

behavior Loop2_assign type code is
begin
j:= j - m;
end Loop2_assign;

behavior Loop2_shift type code is
begin
m:=m; --Shift

end Loop2_shift;
end B it_Ioop2;

end B it_Ioop I;

end Bit_ReversaI;

behavior Danielson_ctl type sequential subbehaviors is

begin

Dan_init: (TOC,true,Dan_Ioop);

Dan_Ioop : (TOC,true,stop);

behavior Dan_init type code is
begin
mmax :=2;

end Dan_init;

behavior Dan_Ioop type sequential subbehaviors is

begin

Dan_test: (TOC,Cn > mmax),Danielson),
(TOC,(n <= mmax),stop);

Danielson: (TOC,true,Dan_iner);

Dan_iner: (TOC,true,Dan_test);

120



•

•

•

behavior Dan_test type code is
begin
null;

end Dan_test;

behavior Dan_iner type code is
begin
mmax:= istep;

end Dan_iner;

behavior Danielson type sequential subbehaviors is

begin

Dan_initializations:(TOC,true,Dan_loop 1);

Dan_Ioopl :(TOC,true,stop);

behavior Dan_initializations type code is
begin
istep := mmax;
theta := isign * (6 Immax);
wtemp := theta / 2; --sinus
wpr:= 2 * wtemp * wtemp;
wpi := theta; --sinus
wr:= 1;
wi := 0;

end Dan_initializations;

behavior Dan_Ioop 1 type sequential subbehaviors is

begin

Loop l_init : (TOC,true,Loop l_body);

Loop l_body: (TOC,true,Loop l_iner);

Loop l_iner: (TOC,(m<mmax),Loop l_body),
(TOC,(m>=mmax),stop);

behavior Loop l_init type code is
begin
m:= 1;

end Loop l_init;

behavior Loop l_incr type code is
begin
m:= m+2;

121



•

•

•

end Loop l_incr;

behavior Loop l_body type sequentiaI subbehaviors is

begin

Dan_Ioop2 : (TOC.true.Dan_var_update);

Update_var: (TOC.true,stop);

behavior Update_var type code is
begin
wr := wtemp * wpr - wi * wpi + wr;
wi := wi * wpr + wtemp * wpi + wi;

end Dan_var_update;

behavior Dan_Ioop2 type sequential subbehaviors is
begin

Loop2_init:(TOC,true,Loop2_body);

Loop2_body:(TOC.true,Loop2_incr) ;

Loop2_incr:(TOC,(i<=n),Loop2_body),
(TOC,(i>n),stop);

behavior Loop2_init type code is
begin
i:= m;

end Loop2_init;

behavior Loop2_incr type code is
begin
i := i + istep;

end Loop2_incr;

behavior Loop2_body type sequential subbehaviors is

begin

Initialize-j : (TOC.true,Dan_real);

Dan_reaI : (TOC.true,Dan_imag);

Dan_imag: (TOC,true.stop);

behavior Initialize-j type code is
begin
j := i + nlmax;
end InitiaIize-j;

122



•

•

•

behavior Dan_real type code is
begin
tempr := wr * data(j) - wi * data(j+l);
data(j) := data(i) - tempr;
data(i) := data(i) + tempr;

end Dan_real;

behavior Dan_imag type code is
begin
tempi := wr * data(j+l) + wi * data(j);
data(j+l) := data(i+l) + tempi;
data(i+1) := data(i+1) + tempr;

end Dan_imag;

end Loop2_body;

end Dan_Ioop2;

end Loop l_body;

end Dan_Ioop 1;

end Danielson;

end Dan_Ioop;

end Danielson_ctl;

end FFf_behavior;

123



•

•

•

A. 2. Technology files

In arder ta use the specsyn estimators, one has to provide the SpecCharts input like the

one shown in section A.l. This specification is then run on any resource from the data

base to estimate the performance. The performance estimates provided by the specsyn

tools are the execution time (number of dock cycles) and the code size (bytes). The

resource data base provided with the specsyn estimators contains many standard proces

sors like the processor 68000 of Motorola or the 6800 of Intel. Our target architecture

already shawn in chapter 6 is built of two processors, the Texas instruments C40 and the

custom SIMD processor PULSE developped at Ecole Polytechnique of Montréal. In arder

to estimate our case studies on the target architecture, we need ta have the technology files

for bath the C40 and PULSE processors. We have constructed such models, shawn in Fig

ures A.1 and A.2. In these files, each Hne describes the number of clock cycles and bytes

required for each generic instruction. If the processor has the parallelism capability, this

feature is described into a complementary file to specify which generic instructions may

be run in parallel. The files to specify the parallelism have aIso been created but are not

presented in this appendix because of their complexity.

124



• g are COmmcDlS.

fi This is lite tedu1ology file for lite PULSE proœs.5or.
fi DircctMcm means direct memory addressing.
fi IndireclMem means indirect memory addressing.

# OP DESTINATION SOURCEI SOURCE2 lÎme sizc(bytes) OP DEST. Sourcel Source2 rime sizc

ALU Register Constant Constant
(c1oc~ cycles)

8
ALU Register Constant Register 1 8

MUL Rcgistcr Constant Consl:UIt 1 8ALU Register Register Constant 1 8
ALU Registcr Regisrcr Regislcr 1 8 MUL Registcr Consrant Register 1 8
ALU Register DircctMem Constant 1 8 MUL Re~lcr Regislcr Conslam 1 8
ALU Register Constant DirectMem 1 8 MUL Regislcr Regislcr Regisrcr 1 8

ALU Register Din:ctMem Rcgislcr 1 8 MUL Rcgislcr DircctMcm Constant 1 8
ALU Register Register DircctMcm 1 8 MUL Regisrcr Constant DircctMem 1 g

ALU Register Dircc:tMem DirectMcm 1 8 MUL Registcr DirectMem Registcr 1 8

ALU Registcr Indin:ctMcm Consrant 2 16 MUL Regislcr Rcgistcr DirectMem 1 8
ALU Registcr Constant Indirec:tMem 2 16 MUL Registcr DircctMcm DircctMcm 1 8
ALU Registcr Indin:ctMcm Registcr 2 16 MUL Registcr IndircctMcm Constant 2 16
ALU RCg!stcr Re~ IndirectMcm 2 16 MUL Registcr Constant IndircctMem 2 16
ALU Registcr [n cm Din:ctMem 2 16 MUL Registcr [ndirec:tMcm Regisler 2 16
ALU Registcr DircctMcm IndirectMcm 2 16 MUL Registcr Rcgistcr [ndircctMem 2 16
ALU Registcr IndircctMem InclirectMem 3 24 MUL Rcgistcr IndircctMcm DirectMcm 2 16
ALU Din:ctMcm Constant Constant 1 8 MUL Registcr DircctMcm [ndircctMcm 2 16
ALU DirectMcm Constant Registcr 1 8 MUL Rcgisrer IndircctMcm IndircctMem 3 24
ALU DirectMcm Registcr Consrant 1 8 MUL DircctMcm Consrant Constant 1 8
ALU DirectMem Registcr Registcr 1 8 MUL DircctMcm Constant Register 1 8
ALU Din:ctMcm DircctMcm Constant 1 8 MUL DirectMem Registcr Constant 1 8
ALU DirectMem Constant DirectMem 1 8 MUL DirectMem Register Regisler 1 8
ALU DirectMcm DircctMem Registcr 1 8 MUL DircctMem DirectMcm Constant 1 8
ALU Din:ctMem Register DirectMem 1 8 MUL DircctMem Constant DirectMem 1 g
ALU DirectMcm DircctMem DirectMem 1 8 MUL DircctMem DircctMem Regisler 1 g
ALU DircctMem IndirectMem Constant 2 16
ALU Din:ctMem Constant IndirectMem 2 16 MUL DirectMcm Rcgister DirectMcm 1 8

ALU DirectMem IndircctMem Registcr 2 16 MUL DirectMem Din:ctMem DireetMcm 1 8
ALU Din:ctMcm R~stcr IndircctMem 2 16 MUL DirectMem IndirectMem Constant 2 16
ALU DirectMem ln rec:tMem DircctMem 2 16 MUL DirectMcm COtlStaDt [ndirectMem 2 16
ALU DirectMem DircctMem IndirectMcm 2 16 MUL DircctMem IndircctMem Regislcc 2 16
ALU DirectMem IndircctMem [ndircctMem 3 24 MUL DircctMem Regisrcr IndirectMcm 2 16
ALU Register Empty Constant 1 8 MUL DireetMem IndirectMem DirectMem 2 16
ALU Registcr Empty Register 1 8

MUL DirectMem DircctMem IndirectMem 2 16
ALU Registcr Empty DircctMem 1 8

MUL DirectMem IndirectMem IndircctMem 24
ALU Registcr Empty lJ1directMem 2 16• ALU DircctMem Empty Constant 1 8 CMP Register Constant Constant 1 8
ALU DirectMcm Empty Register 1 8 CMP Register Conslant Regisler 1 8

ALU DirectMem Empty DirectMem 1 8 CMP Rcgister Register Constant 1 8

ALU DirectMem Empty [ndircctMem 2 16 CMP Register Regisler Regisler 1 8
CMP Register DirectMem Constant 1 8

DlV Registcr Constant Constant 3 12 CMP Rcgisler Constant DirectMcm 1 8
DlV Registcr Constant Regisler 3 12 CMP Rcgisler DircctMem Rcgisrer 1 8
DlV Rcgister Regisrcr Constant 3 12 CMP Regisler Register DirectMem 1 8
DlV Rcgister Regisrcr Rcgister 2 8 CMP Rcgisler DircctMcm DireclMcm 1 8
DlV Rcgister DirectMem Constant 3 12 CMP Regisler IndircctMem Constant 2 16
DlV Register Constant DirectMem 2 8 CMP Registcr Constant IndircctMcm 2 16
DlV Registcr Din:ctMem Registcr 2 8 CMP Rcgisler IndircctMcm Registcr 2 16
DlV Register Registcr DirectMem 2 8 CMP Rcgisler Registcr IndircctMem 2 16

DlV Registcr DircctMem DirectMem 2 8 CMP Rcgistcr IndircctMem DirectMem 2 16

DlV RegiSlcr [ndirectMem Constant 3 12 CMP Register DirectMem IndirectMem 2 16

DlV Registcr Constant [ndirec:tMem 2 8 CMP Register IndirectMem IndircctMem J 24
CMP DirectMcm Constant Constant 1 8

DlV Register IndirectMem Register 2 8 CMP DirectMcm ConsWlt Regisler 1 8
DlV Rcgisler Registcr IndircctMem 2 8 CMP DirectMcm Register Constant 1 8
DlV Register IndircctMcm DirectMem 2 8 CMP DirectMem Register Registcr 1 8
DlV Rcgislcr Din:ctMcm IndirectMem 2 8 CMP DirectMem DirectMem Constant 1 8
DlV Rcgister IndircaMem IndireetMem 2 8 CMP DirectMem Constant DirectMem 1 8
DlV DircctMem Constant Constant 4 16 CMP DirectMcm DirectMem Regisler 1 8
DlV DircctMcm Constant Regislcr 3 12 CMP DircetMcm Regisler DirectMem 1 8
DlV DirectMem Regislcr ConsllUlt 4 16 CMP DireetMem DircctMem DirectMem 1 8
DlV DircctMem Registcr Rcgister 3 12 CMP DircetMcm IndircctMem ConsllUlt 2 16
DlV DirectMcm DireetMem Constant 4 16 CMP DireetMem Constant IndircctMem 2 16
DlV DirectMem Constant DircctMcm 3 12 CMP DireetMem lndirectMem Register 2 16
DlV DircctMem DireetMem RegiSlcr 3 12 CMP DirectMem RegiSler IndirectMem 2 16
DlV DirectMem Regislcr DirectMcm 3 12 CMF Direc:tMcm [ndirectMem DireetMem 2 16
DlV DircctMcm DircctMem DircctMem 3 12 CMP DirectMem DirectMcm fndirectMem ! 16
DlV DircctMcm IndircctMem Constant 4 16 CMP DirectMem lJ1directMem IndireetMcm J 24
DlV DircctMcm Constant IndirectMem 3 12
DlV DirectMcm IndircctMcm Registcr 3 12 MOV Regislet' Empty Constant 1 8
DlV DircctMcm Rcgistcr IndirectMem 3 12 MOV Registcr Empty RegislCl" 1 8
DlV DirectMcm IndircctMem DirectMem 3 12 MOV Registcr Empty DirectMem 1 8
DlV DirectMcm DircctMem IndircctMem 3 12 MOV Rcgister Empty IndirectMem 2 16
DlV DirectMcm IndircctMem IndircctMem 3 12
NOP Empty Empty Ernpty 1 8 MOV DirectMem Empty Constant 1 8

MOV DirectMem Empry Regisler 1 8ClUMP Ernpty Empty Ernpty 1 8
MOV DirectMcm Empty DircctMem 1 8

lUMP Empry Empty Empty 1 8 MOV DirectMem Empty IndireetMem 2 16
REl' Empty E:mPty Empty 1 8

MOV IndircctMem
~~

Constant ., 16CALL Empty Erripty Empty 1 8
MOV [ndirectMem Register ï 16• EFAULT Empty Empty Empty 1 8

Figure A.I. The technology file of the PULSE processor.

125



• Anytbing after -II' arc c:ommenrs.
#1 This is the tedtnology file (or the C40 DSP proœssor.
#1 Direc:tMem me:ms direct mcmory addressing.
lUI IndirectMem means indirec:t memory addtessing.

Il OP DESTINATION SOURCEI SOURCE2 time size(byres) OP DEST. Sourcel Source2 ume size
ALU Register Constant Constant

(cloc~ cycles)
8

ALU Register Constant Register 2 8
MUL Register Constant COnstlUUALU Register Register Constant 2 8 8

ALU Register Register Register 1 4 MUL Register Constant Register 8
ALU Register Dircc:tMem Constant 2 8 MUL Register Reg!ster Constant 8
ALU Register Constant Direc:tMem 2 8 MUL Regist&:! Register Regis ter 1 4

ALU Register DirectMem Register 2 8 MUL Register Direc:tMem Constant 2 8
ALU Register Register Direc:tMem 2 8 MUL Register Constant Direc:tMem 2 8
ALU Register Direc:tMem Direc:tMem 2 8 MUL Register Direc:tMem Register 2 8
ALU Rc:gister Indirec:tMem Constant 2 8 MUL Regisrer Register Direc:tMem 2 8
ALU Register COnst:lI\t [ndiree:tMem 2 8 MUL Register DirectMem Direc:tMem 2 8
ALU Register lndin:c:tMem Register 1 4- MUL Register Indircc:tMem Constant 2 8
ALU Register R~Ster Indiree:tMem 1 4 MUL Register Constant [ndirec:tMem 2 8
ALU Register [n rectMem DirectMem 2 8 MUL Register IndirectMem Register 1 4
ALU Register DirectMem Indirec:tMem 2 8 MUL Register Register Indira::tMem 1 4
ALU Register Indirec:tMem [ndirec:tMem 1 4 MUL Register IndirectMem DirectMem 2 8
ALU DirectMem Constant Constant 3 12 MUL Register Direc:tMem Indirec:tMem 2 8
ALU DircctMem Constant Register 3 12 MUL Register IndircctMem IndirectMem 1 4
ALU DircctMem Regist&:! Constant 3 12 MUL DirectMem Constant Constant 3 12
ALU Direc:tMem Rcgistc:r Registc:r 2 8 MUL Diree:tMem Constant Register 3 [2
ALU DirectMem DirectMem Constant 3 12 MUL Diree:tMem Register Constant 3 12
ALU DirectMem Constant DirectMem 3 12 MUL DireaMem Register Register 2 8
ALU Direc:tMem Dircc:tMem Register 3 12 MUL Direc:tMem Direc:tMem Constant J 12
ALU Direc:tMem Register DirectMem 3 12 MUL Diree:tMem Constant DirectMem 3 12ALU Dirc:ctMem DircctMem DirectMem 3 12 MUL Diree:tMem Direc:tMem Regis ter 3 12ALU Direc:tMem IndircctMem Constant 3 12
ALU Direc:tMem Constant IndirectMem 3 12 MUL Diree:tMem Register DirectMem 3 [2

ALU Direc:tMem lndircc:tMem Register 2 8 MUL DirectMem Direc:tMem DirectMem 3 12
ALU Direc:tMem R~ister lndirectMem 2 8 MUL Direc:tMem [ndirectMem Constant 3 12
ALU Dircc:tMem InrectMem DirectMem 3 12 MUL Diree:tMem Constant Indirec:tMcm 3 12
ALU Direc:tMem DireetMem IndirectMem 3 12 MUL Direc:tMem IndirectMem Register 2 8
ALU Dircc:tMem lndirectMem IndirectMem 2 8 MUL Direc:tMem Register IndirectMem 2 g
ALU Register Empty Constant 1 4 MUL DirectMem lndireetMem Diree:tMem 3 12ALU RegiSter Empty Register 1 4

MUL DirectMem DirectMem Indirec:tMem 3 12ALU Register Ernpty Direc:tMem 1 4
MUL Diree:tMem Indirec:tMem IndirectMem 2 8ALU Register Ernpry lndiree:tMem l 4• ALU DirectMem Empty Constant 2 8 CMP Register Constant Constant 2 8

ALU DirectMem Ernpty Register 2 8 CMP Register Constant Regis ter 2 8

ALU DirectMem Empry Direc:tMem 2 8 CMP Register Register Constant 2 8

ALU Direc:tMem Empty IndirectMem 2 8 CMP Register Register Register 2 8
CMP Register DirectMem Constant 2 8

DIV Register Constant Constant 3 12 CMP Register Constant DirectMem 2 g
DIV Regisrer Constant Register 3 12 CMP Register DirectMem Regisrer 2 8
DIV Register Register Constant 2 12 CMP Register Register DirectMem 2 8
DIV Register Register Register 3 8 CMP Register Dircc:tMem DirectMem 2 8
DIV Register DirectMem Constant 2 12 CMP Register IndirectMem Constant 2 8
DIV Register Constant DirectMem 2 8 CMP Register Constant Indirec:tMem 2 8
DIV Register DirectMem Regi5ter 2 8 CMP Register lndirectMem Register 2 g

DIV Register Register DirectMem 2 8 CMP Register Register IndirectMem 2 8

DIV Register Diree:tMem DirectMem 3 8 CMP Register IndirectMem DirectMem 2 8

Drv Register IndirectMem Constant 2 12 CMP RegiSler DirectMcm Indiree:tMcm 2 8

Drv Regisler Constant IndirectMem 2 8 CMP Register IndirectMem IndirectMem 2 8
CMP DirectMem Constant Constant 3 12

DIV Register IndirectMem Register 2 8 CMP DireaMem Constant Register 3 12
Drv Register Register [ndirectMem 2 8 CMP Diree:tMem Register Constant 3 12
DIV Register lndirectMem DirectMem 2 8 CMP DirectMem Register Register 3 12
DIV Register DirectMem lndirec:tMem 2 8 CMP DirectMem DirectMem Constant 3 12
DIV Register Indirec:tMem IndirectMem 2 8 CMP DirectMem Constant DirectMem J 12
DIV Dirc:ctMem Constant Constant 4 16 CMP DireetMem Direc:tMem Register 3 12
DIV DirectMem Constant Register 3 12 CMP DirectMem Register DirectMem 1 12
DIV DirectMem Register Constant 4 16 CMP DireetMem DirectMem DirectMem 3 12
DIV Dirc:ctMem Register Register 3 12 CMP DirectMem IndirectMem Constant 3 12
Drv DirectMem DirectMem Constant 4 16 CMP DireetMem Constant IndirectMcm 3 12
DIV Din:c:tMcm Constant DirectMem 3 12 CMP DirectMem IndirectMem Register 3 12
DIV DirectMcm Direc:tMem Register 3 12 CMP DirectMem Register lndirectMem 3 12
DIV Direc:tMem Register DirectMem 3 12 CMP DirectMem IndirectMem DirectMem 3 12
DIV DirectMem DirectMem DirectMem 3 12 CMP DirectMem DirectMem Indirec:tMem 3 12
DIV DirectMem (ndiree:tMem Constant 4 16 CMP DireetMem IndirectMem [ndireetMem 3 1
DIV Dircc:tMem Constant lndirectMem 3 12
Drv DirectMem IndirectMem Regislet 3 12 MOV Register Empty Constant 1 4
DIV DirectMem Register lndirectMem 3 [2 MOV Register Empty Register 1 4
DIV Direc:tMem IndirectMem DirectMem 3 12 MOV Register Empry DirectMem 1 4
DIV DirectMem DirectMcm lndirectMem 3 12 MOV Register Empty IndirectMem 1 4
Drv Direc:tMem IndirectMem IndirectMem 3 [2
NOP Ernpty Empty Empty 1 4 MOV Direc:tMem Empty Constant 2 8

CJUMP Empty Empry Empty 1 4 MOV Direc:tMem Empry Register 1 4

lUMP Empry Empty Empty 1 4
MOV DirectMem Ernpry DirectMem 2 8

REr Empty Empry Empty 1 4 MOV DirectMem Empry IndirectMem 2 8
CALL Empty Empry Ernpty 1 4 MOV Indirec:tMem =& Constant 2 8

• EFAULT Empty Empty Empty l 4 MOV IndirectMc:m Register 1 4

Figure A.2. The technology file for the C40 processor.

126



•

•

•

REFERENCES

[Alhayek96]. G. Al Hayek, Y. Le Traon and C. Robach, "Test economics criterioll for

hardware/software partitioning", International Test Conference 1996.

[Auguin94]. A. Auguin, F. Boeri and C. Carrïere, "Automatic exploration ofVLnVproces

sorarchitecturesfrom a designers experience based specification", CODES'94, pp 108

115.

[Bakhshi94]. S. Bakhshi and D.D. Gajski, "A component selection algorithmfor high per

formance pipelines", Teehnicai report #94-01, Univ. of California, Irvine, June 1994.

[Barros93]. E. Barros, W. RosenstieL and X. Xiong, "Hardware/software partitioning with

UNITY", Proceedings of Int. workshop on hardware/software eodesign, Oetober 1993.

[Barros94]. E. Barras and A. Sampaio, "Toward provably correct hardware/software par

titioning using OCCAM", Proeeedings of CODES'94, Oetober 1994.

[BenIsmaiI94a]. T. Ben Ismail, K. O'Brien, and A. Jerraya, "Interactive system-level par

titioning with PARTIF', ICCAD'94, pp 464-468.

[BenIsmai194b]. T. Ben Ismail, M. Abid and A. Jerraya, "COSMOS: A codesign approach

for communicating systems", CODES'94, September 1994, pp 17-24.

[Berry91]. G. Berry, and G. Gonthier, "Incrementai development ofan HDLC entity in

Esteref', Computer Networks and ISDN systems, Vo1.22, No. 1, 1991, pp35-49.

[Binh96]. N. Binh, M. Imai, A. Shiomi, and N. Hikiehi, "A hardware/software partition

ing aigorithmfordesigning pipelinedASIPs with least gate count", 33rd DAC 1996,

(http://kona.ee.pitt.edu/33dac/papers/1996/dac96/htmfilesf) .

127



•

•

•

[Boriello92]. G. Boriello ans A. Sangiovanni-VincentelIi, "Models for the hardware/soft

ware codesign ofembedded controllers", CODES '92.

[Buchenrieder92]. K. Buchenrieder and C. Veith, "CODES: a practical concurrent

design environment", CODES'92.

[Buchenrieder93]. K. Buchenrieder et al., "Hardware/software codesign with PRAMs

using CODES', in Computer hardware desription languages, IFIP transcations, vol.A-32,

1993, Edited by D. Agneur et al.

[Buck94a]. J.T. Buck, S. HA, E.A. Lee and D.G. Messerschmitt, "PTOLEMY: aframe

workfor simulating and prototyping heterogeneous systems", International journal of

computer simulation, special issue on "simulation software development", volA, April

1994, pp 155-182.

[Buck94b]. J.T. Buck, "A dynamic datafiow modei suitablefor efficient mixed hardware/

software implementations ofDSP applications", 3rd CODES'94, Grenoble.

(Camurati94]. P. Carnurati, F. Corna, P. Prinetto, C. BayoI, and B. Soulas, "System-LeveL

modeling and verification: a comprehensive design methodology", ICCAD'94. pp636

640.

(Cheng94]. W. Cheng, and Y. Lin, "Code generationfora DSP processor", ICCAD'94,

pp 82-87.

(Chiodo92]. M. Chiada, A. Sangiovanni-Vincentelli, "Design methods for reactive real

lime system codesign", Int. CODES'92.

[Chiodo93a]. M. Chiodo, P. Giusto, H. Hsieh, A. Jureka, L.Lavagno, and A. Sangiovanni

Vincentelli, "A formaI specification model for hardware/software codesign", Technical

Report, June 1993.

128



•

•

•

(Chiodo93b]. Chiodo, P. Giusto, H. Hsieh, A Jurescka., 1. Lavagno, and A. Sangiovanni

VincentelIi, " Synthesis ofmixed hardware/software implementation from CFSM specifica

tions", June 1993.

(Chiodo94]. M. Chioda, P. Giusto, A. Jurescska, M. MarelH, H.C. Hsieh, A. Sangiovanni

VincentelIi, and L. Lavagno, "Hardware/software codesign ofembedded systems". IEEE

Micro, August 1994, pp 26-36.

(Chou92]. P. Chou, R. Ortega, and G. Boriello, "Synthesis ofthe hardware/software inter

face in microcontroller-based systems", ICCAD'92., pp 488-495.

(Chou94]. P. Chou, E.A. Walkup and G. BorieIlo, "Scheduling for reactive real-time sys

tems", IEEE Micro, August 1994, pp 37-47.

(Chou95]. P. Chou, R. Ortega and G. Boriello, "The Chinook hardware/software Co-syn

thesis system", International symposium on system synthesis, Cannes, France, September

13-15, 1995. pp 22-27.

[Christopher92]. R. Christopher, "Signal processing in C', Wiley 1992. pp 496-535.

[Dembinski]. P. Dembinski, and S. Budkouski, "Specification language Estelle".

[Eduards94]. M. Eduards and J. Forrest, "A development environmentfor the cosynthesis

ofembedded hardware/software systems", EDAC'94, pp 469-473.

[Edwards97J. S. Edwads, L. Lavagno, E. Lee and A. Sangiovanni-Vincentelli, "Design of

embedded systems: fonnal models, validation and synthesis" , Proceedings of the IEEE,

vol. 85, no. 23, march 1997, pp 366-390.

[Eles94]. P. Eles, Z. Peng and A. Doboli, "VHDL system-Level specification and partition-

129



•

•

•

ing in a hardware/software codesign environmenf" CODES '94.

[Eles96]. P. Eles, Z. Peng and A. Doboli, "Hardware/software partitioning of VHDL sys

tem specification", EURO-DAC'96.

[Ernst92]. R. Ernst and J. Henkel, "Hardware/software codesign ofembedded controllers

based on hardware extraction", CODES '92.

[Forrest92]. J. Forrest, "Multiple abstraction-level descriptions using C++", International

workshop on Codesign, Colorado, Septernber L992.

[Gajski93]. D. Gajski, F. Vahid, S. Narayan, "SpecCharts: a VHDLfront-endfor embed

ded systems", TR93-31, University of CaIifornia at Irvine, June 1993.

[Gajski93]. D. Gajski, J. Gong, E Vahid, and S. Narayan, "The specsyn design process

and human interface", TR93-3, University ofCaIifornia, Irvine, 1993.

[Gajski94a]. G. Gajski, EVahid, and S. Narayan, "A system design methodology: Execut

able specification refinement', rCCAD'94, pp 458-463.

[Gajski94b]. D. D. Gajski, E Vahid and S. Narayan, "System-level methodology and tech

nology", Univ. of California, Irvine, 1994.

[Gong93]. J. Gong, D.D. Gajski and S. Narayan, "Software estimationfrom executable

specifications", technical report ICS-93-5, March 1993. University of California, Irvine.

[Gong95]. J. Gong, E Vahid and S. Narayan, "The SpecCharts/Specsyn User's manual

version 3.2", University ofCalifornia, Irvine, Septernber 1995.

[Gupta92]. R.K. Gupta and G. De Micheli, "System Level design", InternaI report CS-92,

Stanford university, 1992.

130



•

•

•

[Gupta93]. R.K. Gupta, and G. De Micheli, "Hardware/software cosynthesis ofdigital

systems", IEEE Micro, September 1993. pp 29-41.

[Gupta94a]. R. Gupta, and G. De Micheli, "Constrained software generationfrom hard

ware/software systems", International workshop on codesign, 1994, pp 56-63.

[Gupta94b]. R.K Gupta, C.N. Coelho,Jr and G. De Micheli, "Program implementation

schemesfor hardware/software systems". IEEE Compllter, January 1994, pp 48-55.

[Gupta94c]. R. Gupta et al., "Experience with image compression chip design using a uni

fied system construction rools", DAC'94. pp 250-256.

[Gupta96]. R.K. Gupta, "Analysis ofoperation delay and execution rate constraints for

embedded systems", 33rd DAC 1996, (http://kona.ee.pitt.edu/33dac/papers/1996/dac96/

htmfilesl) .

[Henke193]. J. Henkel, T. Benner and R. Ernst, "Hardware generation and partitioning

effects in the COSYMA system", CODES'93.

[HenkeI94]. J. Henkel, R. Ernst, U. Holtmann and T. Benner, "Adaptation ofpartitioning

and high-level synthesis in hardware/software cosynthesis", Proceedings of the Int. Conf.

on CAO, November 1994.

[HenkeI96]. J. Henkel and R. Ernst, "The interplay ofrun-time estimation and granularity

in hardware/software partitioning", CODES'96, Pittsburgh 1996.

[HenkeI97]. J. Henkel and R. Ernst, "A hardware/software partitioner using a dynami

cally determined granularity", 34th Design Automation Conference, 1997, pp69 1-696.

[Herman94]. D. Hermann, J. Henkel and R. Ernst, "An approach to the adaptation ofesti-

131



•

•

•

mated cost parameters in the COSYMA system", CODES'94, pp 100-107.

[Hu94]. X. Hu, J.G. D'Ambrosio, B.T. Musray and D. Tang, "Codesign ofarchitecture/or

automotive powertrain modules", IEEE Micro, August 1994, pp 17-25.

[Huang93]. 1. Huang, and A. Despain, "Hardware/software resolution ofpipeline hazards

in pipeline synthesis ofinstruction set processors", ICCAD'93, pp 594-599.

[Huang9S]. C. Huang, and D. Gajski, "Software perfonnance estimation for pipeline and

superscalar processors" TR95-20, University of Califomia at Irvine, June 95.

[Jain92]. R. Jain et al., "Predicting system-Ievel area and delay for pipelined and non

pipelined designs", IEEE transactions on CAD, vol. Il, no. 8, August 1992, pp 955-965.

[Kalavade92]. A. Kalavade and E.A. Lee, "Hardware/software codesign using

PTOLEMY- A case study", CODES'92.

[Kalavade93]. A. Kalavade, and E.A. Lee, "A hardware/software codesign methodology

for DSP applications", IEEE Design and Test of computers, September 1993, pp 16-28.

[Kalavade94]. A. Ka1avade and E.A. Lee, .. A global criticalityllocal pahse driven algo

rithmfor the constrained hardware/software partitioning problem", Proc. CODES'94.

[Kernighan70]. B.W. Kemighan and S. Lin, "An efficient heuristic procedure for parti

tioning graphs", The Bell system technical journal, February 1970, pp 291-307.

[Korf94]. F. Korf, R. Schlor, "Interface controller synthesis from requirement specifica

tion", ICCAD'94, pp 385-394.

[Krishnakumar90). A.S. Krishnakumar and K. Sabini, "VLSI implementation ofcommu

nication protoco[s: a survey", IEEE journal on selected areas in communication, vol 7

l32



•

•

•

no.7, September 1989. pp 1082-1090.

[Kramer92]. H. Kramer and J. Miller, "Assignment ofglobal memory elements for multi

process VHDL specificationsn
, ICCAD'92, pp 496-501.

[Kumar92]. S. Kumar, J.Ayler, B. Johnsin and W. Wulf, '~Aframeworkforhardware/soft

ware codesign ", Int. workshop on hardware/software codesign", Colorado, September

1992.

[Leupers94]. R. Leupers, W. Schenk, and P. Marwedel, "Retargetable assembly code gen

eration by bootstrapping", rCCAD'94, pp 88-93.

[Lien94]. C. Lien, T. May, P. Paulin, "Register allocation through resource classification

for ASIP microcode generationn
, rCCAD'94.

[Lin96]. B. Lin, "A system design methodology for hardware/software co-development of

teLecommunication network applications", 33rd DAC, 1996, (http://kona.ee.pitt.edu/

33dac/papers/1996/dac96/htmfiles).

[Luk94]. W.Luk and T. Wu, "Toward a declarativeframeworkfor hardwarelsoft..vare

codesign", CODES'94.

[Lundberg92]. L. Lundberg, "Generating VHDLfor simulation and synthesisfrom a

high-level DSP design toof', VHDL simulation, synthesis and fonnal proofs of hardware,

1992 Kluwer Academie Publishers, pp 149-161.

[Mancini94]. G. Mancini, "Hardware/software coverification in ATM", rCCAD' 94, pp 1

7.

[Marriot98]. P. Marriott, I.C. KraIjic and Y. Savari~ "ParaUeZ Ultra Large Scale Engine

SIMD architectures for real-time Digital Signal Processing Applications", Proc. of

133



•

•

•

ICCAD98.

[Marwedel93]. P. Marwedel, "Tree-based mapping ofalgorithms to predefined stnlc

tures", ICCAD'93, pp 586-593.

[McFarland92]. M.C. McFarland, T.I. Kowalski and M.J. Pernain, "Language andfonnal

semantics ofthe specification system CPA", CODES'92.

[Menez92]. G. Menez, M. Auguin, F. Boeri and N. Carrïere, "A partitioning algorithmfor

system-leveL synthesis", ICCAD' 92, pp 482-487.

[DeMicheli94]. G. De Micheli, "Computer-aided hardware/software codesign". IEEE

Micro, August 1994. pp 10-16.

[Mitra93]. R. Mitr~ B. Guha, and A. Basu, "Rapid prototyping ofmicroprocessor-based

systems", ICCAD'93, pp 600-603.

[Narayan92a]. S. Narayan, F. Vahid and D. Gajski, "Modeling with SpecCharts", TR90

20, University of Califomia at Irvine, Oetober 1992.

[Narayan92b]. S. Narayan and D.D. Gajski, "Area and performance estimationfrom sys

tem leveZ specifications", Teehnical report rCS-92-16, Deeernber 1992, University of Cali

fomia at Irvine.

(Ü'Brien95]. K. O'Brien, T. Ben Ismail, and A.A. Jerraya, "Aflexible communication

modeling paradigmfor system-level synthesis", GMD Institut Set, 1995.

(Ülukotun94]. K.A. Olukotun, R. Belaihel, J. Levitt and R. Rarnirez, "A hardware/soft

ware cosynthesis approach to digital system simulation", IEEE Micro, August 1994, pp

48-58.

134



•

•

•

[Qudghiri92]. H. Oudghiri and B. Kaminska, "A global and weighted algorithmfor

scheduling and allocation in high-level synthesis", European design automation confer

ence, March 1992, Belgium, pp 491-495.

(Qudghiri97]. H. Oudghiri, B. Kaminska and J. Rajski, "A hardware/software partition

ing technique with hierarchical design space exploration", Custom integrated circuit con

ference, May 1997, Santa Clara, pp 95-98.

[Pino95]. J.L. Pino, S. Ha, E.A. Lee and J.T. Buck, "Software synthesis for DSP using

PTOLEMY", Journal of VLSI signal processing, no.9, 1995, pp7-21.

[Potkonjak94]. M. Potkonjak, J. Rabaey, "Algorithm selection: a quantitative computa

tion- intensive optimization approach", ICCAD'94, pp 90-94.

[Puri94]. R. Puri, and J. Gu, "A divide-and-conquer approachfor asynchronous interface

synthesis", ICCAD'94, pp 118-125.

[Rao93]. O.S. Rao and EJ. Kurdali, "Hierarchical design space exploration for a class of

digital systems", IEEE transcations on VLSI, vol. C no.3, September 1993, pp 282-295.

[Schnaider96]. B. Schnaider, and E. Yogev, "Software development in a hardware simula

tion environment''' 33rd DAC 1996, (http://kona.ee.pitt.edu/33dac/papers/1996/dac96/

htmfilesl).

(Sheliga94]. M. Sheliga and E. H-M. Sha, "System partitioning and scheduling for hard

ware/software codesign", Technical Report, University of Notre-Dame, Oepartment of

CSE,1994.

(SKS92]. SKS Group, "On an experiment in system codesign: a mass flowmeter",

CODES'92.

135



•

•

•

[Srivastava95]. M.B. Srivastava and R.W. Brodersen, "SIERRA: a unifiedframeworkfor

rapid prototyping ofsystem level hardware and software", IEEE transactions on CAO, vol.

14, no.6. June 1995, pp 676-693.

[Steinhausen93]. U. Steinhausen et al., "System synthesis using hardware/software code

sign", CODES'93.

(Subrahmanyam92]. P.A. Subrahmanyam, "Hardware/software codesign: what is needed

for success?", CODES'92.

(Sun92]. J.S. Sun and R.W. Brodersen, "Design ofsysteln interface modules", ICCAD'92.

pp478-481.

(Susuki96]. K. Suzuki and A. Sangiovanni-Vincentelli, "Efficient software performance

estimation methods for hardware/software codesign", 33rd DAC, 1996, (http://

kona.ee.pitt.edu/33dac/papers/1996/dac96/htmfiles/).

(Sutarwala93]. S. Sutarwala, P.G. Paulin and Y. Kumar, "!nsulin: an instruction set simu

lation environmenf', Proe. CHDL, Ottawa, April 1993, pp 355-362.

(Synopsys95]. "SmartModellibrary reference manual", Synopsys Logic Modeling Group,

1995.

[Synopsys96]. 'The Design Compiler Reference", Synopsys, Inc. 1997.

[Texas92]. "The TMS320C40 parallel processing seminar workbook" Texas Instruments,

Inc., 1992.

[Theibinger94]. M. Theibinger, P. Stravers, and H. Veit, "CASTLE: an intercative envi

ronment for hardware/software codesign", 3rd workshop on hardware/software codesign,

Grenoble september 22-23, 1994, pp 203-209.

136



•

•

•

[Theoen97]. F.Theoen. J. Dersteen. G.Jong. G. Goossens. and H. De Man, "Multi-Thread

Graph: a system model for real-time embedded software synthesis" International Euro

pean Design Automation Conference, 1997, pp 476-481.

[Thomas93]. DE. Thomas, J.K. Adams and H. Schmit, "A model and methodologyfor

hardware/software codesign", IEEE Design and Test of computers, September 1993, pp 6

15.

[Thomas96]. J.K. Thomas, and D.E. Thomas, "The design ofmixed hardware/software

systems", 33rd DAC, 1996, (http://kona.ee.pitt.edu/33dac/papers/1996/dac96/htmfilesl).

[Vahid91]. F. Vahid, "A survey ofbehavioral-Level partitioning systems", TR91-71, Uni

versity of California, Irvine, Detober 1991.

[Vahid92]. F. Vahid. and D. Gajski, "Specification partitioning for system design", 29th

DAC. 1992, pp 219-224.

[Vahid]. F. Vahid, J. Gong and D. Gajski, "A binary-constraint search algorithmfor min

imizing hardware during hardware/software partitioning", Dept.of Information and Com

puter Science, DC at Irvine

[Vercauteren96a]. S. Vercauteren, B. Lin, and H. De Man, 'CConstructing application

specifie heterogenoeus embedded architectures/rom custom hardware/software applica

tions'" 33rd DAC, Las Vegas, June 1996, (http://kona.ee.pitt.edu/33dac/papers/1996/

dac96/htmfilesl).

[Vercauteren96b]. S. Vercauteren, B. Lin, and H. De Man, 'CA strategy for reaL-time ker

nel support in application-specifie hardware/software embedded architectures" 33rd DAC

1996, (http://kona.ee.pitt.edu/33dac/papers/1996/dac96/htmfilesl).

137



•

•

•

[Wenban92]. A. Wenban, J. O'Leary, and G. Brown, "Codesign ofcommunication proto

cols", CODES'92, Colorado, September 1992.

[Weiskamp]. K. Weiskamp and B. Flamig, " The complete C++ primer", Academie press,

Inc. 1989.

[Wilberg95]. J. Wilberg, A. Kuth, R. Composano, W. Rosentiel, and H.T. Vierhaus,

"Design exploration in CASTLE', Workshop on high-Ievel synthesis algorithms tools and

design (HILES), GMD studies, vo1.276, Stanford University, November 4th, 1995.

[Wilberg96]. J. Wilberg, P. Plager, R. Composano, M. Langevin, and H.T. Vierhaus,

"Codesign ofhardware, software and algorithms - a case study-", International sympo

sium on circuits and systems, Atlanta, Georgia,May 12-15, 1996.

[Wilberg a]. J. Wilberg, and R. Composano, "VUW processorfor video processing"

[Wilberg bJ. J. Wilberg, R. Composano and W. Rosenstiel, "Designflow for hard

ware.software cosynthesis ofa video compression system".

[Wilson94]. T. Wilson, G. Grewal, B. Halley, and D. Banerji, "An integrated approach to

retargetable code generation", ICCAD'94, pp 70-75.

[WoIf93]. W. Wolf, and R. Manno, "High-Ievel modeling and synthesis ofcommunicatÏ1zg

processes using VHDL" IEEE transactions on information and systems, vol E76.D, no. 9,

September 1993, pp 1039-1046.

[Woo94]. N. Woo, and A. Dunlop, "Codesignfrom cospecification", IEEE computer, Jan

uary 1994, pp 42-47.

[Zirojnovic96]. V. Zirojnovic, and H. Meyr, "Compiled hardware/software co-simula

tian", 33rd DAC, 1996, (http://kona.ee.pitt.edu/33dac/papers/J996/dac96/htmfilesl).

138


