
National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and Direction des acquIsItions el
Bibliographic Services Brancll des services bibliographiques

395 Welllnglon SUee! 395. rue Wellincllon
Ottawa, OntariO QIlJ.wa (Onlallô)
K1ADN4 KIADN·'

('.., '.r,' ,",Ir". "",·I,~ .. ".

NOTiCE

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C·30, and
subsequent amendments.

Canada

AVIS

La qualité de cette microforme
dépend grandement de la qualité
de la thèse soumise au
microfilmage. Nous avons tout
fait pour assurer une qualité
supérieure de reproduction.

S'il manque des pages, veuillez
communiquer avec l'université
qui a conféré le grade.

La qualité d'impression de
certaines pages peut laisser à
désirer, surtout si les pages
originales ont été
dactylographiées à l'aide d'un
ruban usé ou si l'université nous
a fait parvenir une photocopie de
qualité inférieure.

La reproduction, même partielle,
de cette microforme est soumise
à la Loi canadienne sur le droit
d'auteur, SRC 1970, c. C-30, et
ses amendements subséquents.



•

•

THEORY AND APPLICATIONS OF
PREDICTIVE STOCHASTIC COMPLEXITY

Jimmy l3aikovicius

I3.Sc. University of Minnesota 1986

M.Sc. University of Minnesota 1987

Department of Eleetrical Engineering

McGill University, Montréal

A thesis submitted to the Faculty of Graduate Studies and Research

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

December 1992

© Jimmy Baikovicius



1+1 f\lalional Library
of Canada

Bibliotl1èque nationale
du Canada

Acquisitions and Direction des acquisitions et
Bibliograpl1ic Services Brancl1 des services bibliograpl1iqlles

395 Wellinglon Street 395. rue Wl,)lllngton
Otlawa, Ontario Ottawa (Oillallo)
K1AON4 KIAONo!

\"",1",- \"1.",,'1,'''''''·,'

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
hisjher thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in hisjher thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
hisjher permission.

L'auteur a accordé une licence
irrévocable et non exclusive
permettant à la Bibliothèque
nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa thèse
de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thèse à la disposition des
personnes intéressées.

L'auteur conserve la propriété du
droit d'auteur qui protège sa
thèse. Ni la thèse ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-87643-3

Canada



•

•

Abstract

The objective of this thesis is to solve modc1 order sc1ecl.ion, a!lll challge-poilll.

detection problems in real time using a form of predictive st.ochasl.ic complexit.y. A

consistent method for finding the best model order for certain kinds of AlU\'1 A pro­

cesses is presented. An interesting facl. is thal. the estimat.or "badlless", obt.ained

when using fixed gain, increases the "badness" of overparamcl.rizat.ion. Model 01'­

der selection simulations involving AR processes illust.rate this facl. very c1early. A

successful model order selection simulation for ARMA proccsses is prescnt.ed.

A change-point detection method for certain kinds of ARMA processes is ob­

tained for time variant change-points. Also, the abrupt jump paramet.er case, and

change-point detection using undermodeling are considered. A novel result is that

undermodc1ing could in many cases improve the performance of t.he change-point. de­

tection scheme. Sorne results of the analysis of the change-point detecl.ion scheme

are obtained and extensive simulations show that the approach exhibits surprisingly

good detection capabilities.

Lastly, we prove that the original form of the adapt.ive controller for linear t.ime

invariant systems, as obtained in [Ger90a], can be computed in a mllch less expen­

sive manner. Simulations for an ARX system exemplify the stabilit.y and tracking

capability of the adaptive controller. Moreover, the elfect of dit.hering on closed loop

performance is illustrated.
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Résurné

Cette thèse présente une méthode pour le choix de l'ordre du modèle et la

détection de point de changement en temps réel. On utilise une forme de compléxité

stochastique prédictive. Une méthode consistante pour trouver le meilleur ordre

du modèle pour certains processus ARMA est élaborée. Il est particuli~rement

intéressant de constater que le "mauvais-rendement" de l'estimateur à gain fixe aug­

mente le "mauvais-rendement" de la sur-paramétrization. Ce fait est clairement il­

lustré par des simulations de choix d'ordre du modèle, impliquant des processus AR.

Une simulation réussie du choix d'ordre du modèle pour processus ARMA est aussi

présentée.

Une méthode de détection de point de changement pour certains processus ARMA,

pour points de changement temporellement variants, est obtenue. Le cas paramétrique

d'un saut brusque et la détection de point de changement, utilisant un modèle de

degré inférieur, sont également considérés. Quelques résultats partiels de l'analyse

de l'algorithme de détection de point; de changement sont obtenus et les simulations

montrent que l'approche bénéficie de trés bonnes capacités de détection.

Finalement, nous montrons que la forme originale du contrôleur adaptatif pour les

systèmes linéaires en temps invariant, comme ceux obtenus dans [GergOa], peuvent

être calculés de manière beaucoup plus efficace. Des simulations pour un système

ARX montrent la stabilité et la capacité de suivi du contrôleur adaptatif. De plus

l'effet de perturbation sur les performances du système en boucle fermée est examinée.

iii
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Claim of Originality

The following original contributions were made:

• Successful implementalion of the stochastic complexiLy based model order sc­

lection results for ARMA systems.

• The use of predictive stochastic complexity to solve change-point dcLeet.ion prob­

lems: Work includes design, partialtheorcLical analysis, and ext.ensive comput.er

experimentation.

• The capability of the change-point deteclion scheme Lo det,ecL slowly Ume vary­

ing change-points.

• Empirical investigation of the issue of undermodeling in change-poin!. det.ecLion

problems showing that undermodeling could in facL improve the performace of

change-point deteetion methods.

• The reduclion of the computational complexi!.y of a Ljung scheme based adap­

tive controller: Work includes theoretical proof as weil as compnt.er simnlations

of the controller.
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Chapter 1

Introduction

A crucial consideration when modeling phenomena from observed data, is the

relationship and tradeorr between model complexity and model fit. For instance, a

complex model might be able to match the data with high precision. However, if the

description of the model itse1f (in sorne weil specilied sense) turns out to be as lengthy

as that of the data, then no overall reduction in the complexity of the original string of

data would be achieved. If this type of procedure is employed, it will certainly defeat

the modeling objective of striving to maximally reduce the complexity of events by

extracting their regular features using compact mathematical descriptions.

The stochastic complexity modeling theory (d., [Ris89]) takes both model com­

plexity and performance into account in a natural way. At present, this theory

provides one of the most respected methods for solving model selection problems.

Moreover, it has by now evolved from its original framework, and is being used as

a very important tool in change-point detection (d., [13G90], [GB91], [BG92a], and

[BG92b]) and adaptive control problems (c.L, [Ger91c]).

The stocllastic complexity of a set of data is the shortest code length that can be

achieved when encoding the data with models in a given model class. This theoretical

information mcasure is computed orr-Iine making it impractical for a large class of real

1
ii



• CHAPTER 1. INTRODUCTION .)

•

problems. A major innovation of the theOl'Y has been lhe in\.rol\ndion of \.he conn·p\.

of predictive stochastic complexily in [RisS6] which is a l'cal \.ime approximation of

the stochastic complexity which depends on an estimation algorilhm. The aim of this

thesis is 1.0 implement, test and reflne stochastic complexity based mo<!cl scledion

and change-point detection methods in l'cal time using a form of predictive slochas\.ic

complexity. These methods make extensive use of the theore\.ical results <!evc1oped by

Gerencsér and Rissanen (d., e.g., [Ris89], [GR9!], [Ger9Ic]) in the area of slochast.ic

complexity.

1.1 Thesis Outline

We shal1 shortly recapitulate the salient feat.ures of t.his dissertatioll whose hOlly

is divided into flve chapters. Chapter 4, on model order selectioll, Chapt.er 5, 011

change-point detection, and Chapter 5 on the adapl.ive cont.rol of a linear st.oclHL~t.ic

system can be fol1owed independently of each other.

In Chapter 2, we shal1 present sorne preliminary material which wc feel is essent.ial

for an understanding of the stochastic complexity based melhod for model order

selection and change-point detection, 1.0 be developed in this dissertalion. These

topics are the classical maximum likelihood method, the theory of informalion and

coding, and a class of weakly dependent processes known as L-mixing processes (c.f.,

[Ger89c]). These types of mixing proc~sses are found 1.0 l'laya cenlral role in the

asymptotic theory of a broad class of estimator processes.

Since the model selection, change-point detection, and adaptive control methods

1.0 be presented in this thesis rely heavily on the prediction-erraI' met.hod for the

identification of parameters in stochastic systems (d., e.g., [Lju87]), Chapler 3 will

present this estimation algorithm for the l'articulaI' case of ARMA processes. 130th its

off-Hne and on-Hne versions will be introduced, as wel1 as its variant, oblained when
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using forgelling of past data with exponential rate. A simulatinn will be induded to

il1ustrate this identification procedure.

Chapter 4 will be initiated by a short discussion around some of the foundations

of the modeling problem. The purpose is to place into perspective the stochastic com­

plexity modeling theory, claborated by Rissanen (c.f., [Ris89]). This theory serves as

inspiration and guidance to much of the material to be presented in this dissertation.

The stochastic comp!exity theory will be presented up to some extent, leading us

to the notion of stochastic complexity for a set of data. An on-line approximation

of it cal1ed predictive stochastic complexity (d., [Ris86]) will be described in some

detai1. Il will be shown that predictive stochastic complexity is a mathematically

weil understood criterion which can be used to solve mode! selection problems in real

time. (This on-line feature distinguishes the modeling methods derived using predic­

tive stochastic complexity from other modeling method such as AIC or BIC which

are inherently off-line.) Specifically, we will introduce a method for finding the best

mode! order for a set of data among ARMA models of different order. We shall show

by computer experiments that this modeling scheme is consistent for certain types

of ARMA modelsj thus validating the theoretical daim found in [GR91]. Moreover,

using fixed gain in the prediction-error estimation procedure, the sensitivity of the

criterion to overmodeling increases qualitative!y. This fact will be demonstrated by

simulations which compute the best AR model for a given set of data. A model order

selection simulation involving ARMA models will also be presented. Furthermore,

we shall study the effect of parameter uncertainty versus model order uncertainty via

simulation.

In Chapter 5, we will be concerned with a general outline of the change-point de­

tcction problem, and a number of frequently used change-point detection techniques

(d., e.g., [Bas88]). We will begin by reviewing sorne of the well-known work done in

the last 20 years in the area of change-point detection. One goal is to underline the
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general problem formulation, and highlight some of its most csscntial feat.urcs and

difficulties. The survey should also serve as a sclf-containcd introduction to thc lopic

aiding readers unfamiliar with the area in understanding the change-point. ddect.ion

method in general, and our change-point detection scheme which is inspired by ami

based on the stochastic complexity theory. The stochastic complexity based change­

point detection method to be devcloped in this thesis is intended for use with ARMA

systems under the assumption that they have a slow and non-decaying drirt after t.he

change-point occurs. A salient feature is that the resulting change-point ddcction

algorithm will be finally expressed in tertns of fairly simple recursive equal.ions. Thc

abrupt jump parameter case and change-point detection wil.h undermoùcling will be

also investigated. A novel result is that undermodeling-which is not treated in the

Iiterature of change-point detection-could in many cases improve the perrormance or

the change-point detection scheme. Some partial results on the analysis of the scheme

are obtained, showing that these methods arc amenable 1.0 I.heo~etical anrdysis. More­

over, simulations will show that the approaches exhibit surprisingly good ddect.ion

capabilities. The simulations will include the issue of robustness of the change-point

detection method with respect 1.0 the fixed gain of the prediction error algorithlll, the

improvement of performance when using undermodeling, and the comparison of the

method with a "naive" procedure based on unprocessed parameter estimates.

In Chapter 6, the adaptive control problem for finite dimensional time invariant

linear stochastic systems, as introduced in [GergOa], will be described. One of the

main computationally expensive features when implementing the adaptive controller

of [GergOa] is its dependence on the directional derivatives of the adaptive feedback

transfer function gain. In this thesis, we will prove that in fact there is no such de­

pendence, reducing considerably the computational complexity of the algorithm. We

will also extensively ilIustrate this adaptive control methodology for an ARX system,

showing the stability and tracking capability of the adaptive controller. Moreover,
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the elfecl on the closed loop performance caused by the dither proccss, which is em­

bedded in the controller to guarantee identifiability of the closed Joop system, will be

studied via simulations.

The final chapter, Chapter 7, will end with sorne concluding remarks about the

contributions of this thesis along with an indication of possible areas of further re­

search.
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Chapter 2

Preliminary Material

In this Chapter we shall present sorne basic topics which we feel are essential for an

understanding of the stochastic complexity based method for model order selection

and change-point detection, which will be developed in subsequent sections. Thus

in Section 2.1 the c1assical maximum likelihood method will be presented, while in

Section 2.2 one of its main limitations-its inability to deal with models of diffcrcnt

complexity-will be described. This limitation is overcome by the stochastic COIll­

plexity theory in Chapter 4. Since one of the pillars of this theory is the thcory

of information and coding, we shaH shortly introduce it in Section 2.3. Lastly in

Section 2.4 a c1ass of weakly dependent stochastic processes known as L-mixing pro­

cesses, which play a central l'ole in the asymptotic theory of a broad class of estimator

processes, will be presented.

Sorne of these topics, such as the maximum likelihood method and the thcory of

information and coding, are weil known in the scientific community. Neverthelcss,

the short introductions which follow will familiarize the reader with the notation of

the thesis and help facilitate the understanding of the present dissertation .

6
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The maximum likelihood (ML) mcthod is unquestionably the most widespread

estimation technique in both the thcoretical and practical realms of the statistical

discipline (d., [IlI81)). Since a vast literature is definite1y available, the purpose here,

beyond that of a bricf account of the method itself, is to serve as an introduction to

sorne of the main ideas of the modeling strategies that are extensively employed in

subsequent sections.

Let the sequence of real numbers Yll"" yN represent a set of observed data

obtained from a certain experiment. Often, sequences like Yt, ... ,YN wil\ be shortly

denoted yN. Now, based on physical considerations-or any other pertinent factor­

the follt'wing modeling assumption is usually made:

Let Yt, ... , YN be a sequence of independent and identically distributed (i.i.d.)

real-valued random variables each having density f("O), where 0 EDe 1R.k, D an

open domain, and IR.k the k-dimensional Euclidean space. Then yN is assumed to be

a realization of the random variables yN.

What the above assumption says is that yN is an outcome of the joint density

n~=l f(', 0), and that this density is the "truc" density governing the set of data

yt, ... ,YN. Hence n~=l f("O) is the "truc" model defining all the constraints expe­

rienced by the data. (Note that the above modeling set-up falls into a parametric

type of modeling and the specification of 0completely describes the "truc" density.)

The raie of any identification method is thus to provide a good estimate, in sorne

well specified sense, of the unknown "true" parameter O. By doing so one obtains an

approximation of the "true" density.

Although this type of modeling assumption characterize by the notion of "true"
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models is of common practice in classical statistica\ infercncc, il. is thc source of onl'

of its major weaknesses. This will mainly be addressed and discusscd in Chaptcr .\.

The idea behind the ML method of estimation is 1.0 approximate thc "trnc" dC'nsity

by the density that makes the data string yN the most probable among the class of

joint densities {TI~=1 J(',O),O E D}. This view is rooted in the belicr that, at least

for large data samples, the data must be a "good" representative of its assllm"d

but unknown generating "true" density. More precisely, thal. the mass of the "tmc"

density is predominately concentrated al. the given observed data yN.

For a data set yN, define the likelihood function as
N

TI J(Yn, 0) : Do --> Ill+, (2.1)
n=l

where Do C D is compact. This function expresses the likelihood of getting the data

set yN if the true density were specified by O. Now define the estimatc
N

ÔN = arg max TI J(Yn,O).
oeDo n=l

ÔN is called the ML estimator (MLE) of O. The best approximation of the "tmc"

density in the ML sense is then given by J(.,ÔN ).

Note that the Iikelihood function, defined by (2.1), is a deterministic funet.ion of its

argument O. Nevertheless, il. is of common practice 1.0 consider the likelihood function

1.0 also be a function of ail of the possible data sequences al!owed by the assumed joint

distribution. Thus one generally writes TI~=1 J(Yn, 0), which is a random variable for

any fixed 0 EDo. Under this framework, one could analyze various properties of

the method itself independently of the actua! data yN. In the sequc1, only when wc:

would Iike 1.0 stress the fact that yN actual!y rcpresents just a tentative modc1 for the

observed data, shall the notation yN be alternatively used.

The analysis of the ML estimator is based on what we shal! cal! the "up-bottom"

approach, an approach which has been shawn to be a powerful tool for both the
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analysis and devclopment of identification methods (d., [GerS9c]). It is named "up­

bottom" since it is based on first finding a non-computable but analytically tractable

solution to the identification problem and then approximating this solution by a

cornplitable one. More precisely, the approach consists of finding an asymptotic cost

function with the property of having an absolute minimum at the "true" parameter O.
Then one "goes down" and finds a good computable approximation of that asymptotic

cost function. This is usually done hy resorting to sorne kind of law of large numbers.

As will soon he c1ear, it is much more convenient to do the analysis of the ML

method using
N

L(yN,O) = - E log J(Yi' 0),
n=l

which is called the negative log-likelihood function. Moreover, note that

for n, m E [1, Nj,

by application of the independence hypothesis exhihited by the sequence yN. Thus,

without loss of generality, we can work with L(yI, 0).

For the first proposition of the ML method, we need the first partial derivatives

of L(yI, 0) with respect to 0, i.e.,

t:. 8
Lo(YI, 0) = 80L(YI, 0) = (8/80)J(Yt, 0)/J(yI, 0).

Henceforth, the partial derivate of any function with respect to one of its arguments

will be denoted as above, i.e., h.,(x, y) = (8/8x)h(x,y).

Proposition 2.1.1 We have

lE LO(Yt, 0) 1 . = O.
0=0

•
PROOF. C1early

(2.2)
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The left hand side of (2.2) can be written as

Jfo(x, ~) f(x, O)dx = Jfo(x, O)rlx
f(x,O)

8 J .-- 80 f(x,O)dx,

and since f f(x, O)dx =1, we get the daim of the proposition. 1

Let us now introduce the asymptotic cost function

Then, based on Proposition 2.1.1 we get

Wo(O) 1 . = o.
0=0

III

•

Now, the partial derivative with respect to 0 of the gradient process Wo(O) is givcll

by

•
Proposition 2.1.2 Woo(O) is symmetric and positive semi-definite.

REMARK. 1(0) = Woo(O) is called the Fisher information matrix. Since 1(0) is t.he. -
slope of Wo(O) at 0, it provides information about the accuracy of the cstimator 0N.

Propositions 2.1.1 and 2.1.2 imply that the cost function W(O) is locally mini­

mized at O. The so-called "up" part of the approach has thus been completcd. What

remains is to find a computable solution of the deterministic function W(O). (Observe

that W(O) is not computable since it involves an expectation and in practicc only yN

is available. Note also that if we assume the validity of the modeling assumptions,

then yN represents just one of the many possible realizations of the sequence of ran­

dom variables yN.) With the help of the law of large numbers we can arrive at a

computable approximation for the cost function W(O).
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Proposition 2.1.3 Under sorne suitable conditions, (e.f., [IIIBI}), we have

11

1 N
J~oo N ?; L(Yn, 0) =W(O),

with probability 1.

and (2.3)

•

ProposiLons 2.1.1-2.1.3 provide a solid theoretical justification for the ML method.

Indeed, if the daLa is a realizaLion of the assumed c1ass of densities, then except on a

set of probability zero, we have

o 1 N
0= Hm arg max N L L(Yn' 0).

N_oo eeD n=1

The asympLoLic properties of the ML estimator are captured by the next two

proposiLions.

Proposition 2.1.4 Under sorne suitable conditions, (c.f., [fIIBI}), we have

where OM(') is defined in 2.4.1.

(Hints: Make a Taylor series expansion of (1/N)Le(yN, 0) about ÔN and evaluate

at O. Use the Li.d. assumption and the law of large numbers for the second term in

the Taylor expansion. Finally apply the centrallimit theorem.)

Combining Propositions 2.1.3 and 2.1.4, it is immediate that the MLE ÔN con·
o

verges to the "true" parameter 0 with probability 1. Therefore, the ML method for

LLd random variables is strongly consistent.

The last proposition provides an estimate of the variance of the estimator.

Proposition 2.1.5 We have under sorne sui/able conditions, (c.j., [fIlBI}),



• CHAPTER 2. PRELlilHNARY MATERIAL l:!

•

Observe that the higher the Fisher information matrix, the lo\\'er the ",\l'i,wC<' or

the MLE estimator, resulting in better estimation. Also Proposition 2.1.5 shows t.hat.

the MLE asymptotically achieves the well-known Cramer-Rao lower bouilli roI' t.he

variance of any estimator (d., [Cai88]).

For the sake of simplicity of exposition we have limited the scope or t.he ML

method to independent random variables. However ail previous results can be 1'1'01'­

erly generalized for certain types of dependent random variables like those gellerated

as outputs of Gaussian ARMA processes (d., [Cai88]). In this more general case

the joint density of the random variables yN loses the pleasant struclure-that or

being the direct product of the density of the simple random variables-and thus the

analysis becomes more involved.

2.2 A Major Limitation of the Classical Maxi­

mum Likelihood Method

The classical ML method admits the comparison of dirrerent parameter-vailles or a

given parametric model class (see Section 2.1). Tbat is, its application is confined to

parametric models with known dimension. It is certainly advantageolls to investigate

the applicahility of the ML method to cases in which the parametric dimension of the

model is not assumed to be known a-priori. This shaH he the main objective of this

section. It will he shown that a direct, or in other words naive, use of the classical

ML method is not fit to tackle these more complex modeling problems.

Let us continue with a similar set-up as to that of Section 2.1, but with the

distinction that the parametric dimension of the "truc" model class is unknown. Wc

then need to first modify the notation slightly 50 as to cover this more general case.
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The "truc" model order is denoted by i.: , the "truc" paramclcr by Ok , and the domain.. .
whcre Ok belongs by Dk . This type of notation will be uscd repeatedly in this thesis

when the dimension of the model is not known. Otherwise, when working in the

context of a known model order, the previous simpler notation will be maintained.

Wc shall only study the case of over-parametrization. Thus the classes considered

will be of the form U(·, Ok), Ok E Dk c m.k, k ~ i.:}. (We only coyer this case for

simplicity of exposition since otherwise the "true" modcl will not bclong to the set of

tentative model classes, and as a result the problem would become more complex.)

Note that a direct application of the ML method to the case of ovcrparametrized

model classes indexed by k leads us to the following definition for the ML estimator:

-k • N kON = arg mmL(y ,0 ).
O'ED'

(2.4)

•

What we shall then cali the "naive" formulation of the ML method is the claim

that the "goodness" of a modcl class with respect to a given data set yN can be

captured by the likelihood function.

Before introducing the next proposition, we would like to stress that the parameter

Ok is obtained by adjoining k - i.: zeros to the assumed true parameter Ok .

Proposition 2.2.1 We have

J~ lE (L(yN, ôt) - L(yN,Ok)) = -~dimOk.

(Hint: Make a Taylor series expansion about Ô'f.v and used Proposition Z.1.5.)

• ••
Since L(yN, Ok) = L(yN, Ok ) is independent of the model order k, Proposition 2.2.1

implies that L(yN, ô'f.v) does not penalize over-parametrization. Indeed if k > k' > k
then

(2.5)
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Therefore, in this case, the "naive" model selection appl'Oach \l'ill \l'l'OlIgl)' Cl>1Il'hhil'

that the k-th model class would be preferred in the ML sellse O\'er the Il-th mOlll'!

class. Thus the ML method fails to be a proper ehoicc for a IInh'ersalmodl'1 se1ect.ioll

eriterion. Sinee modeling is basieally eoneerned with finding data eOllstraint.s t.hat.

will shorten the representation of the original data set., we are forced t.o rejcct. t.his

"naive" approaeh sinee it eontradicts the spirit of mode1ing.

For the sake of clarity, let us illllstrate Proposition 2.2.1 by a simple linear regres­

sion example. Assume that the "true" model for the randolll variables yN is givell hy

the regression model

Xl = 0, (2.G)

where (en) is an Li.d. random process with density N(O, 0'). COllsider the mode1

classes deseribed by

TOkYn = xn +en (2.7)

where dimOk = k ~ k. Note that by adjoilling the pl'Opel' number of zeros to the
.' .veetor Ok one obtains Ok, whieh is the parameter value in the k-th model class which

makes (2.7) a "perfeet" fit. For sorne Ok E n k define the prediction error process

Then, it is straightforward to see that

1 N 2
L(yN,Ok) = -2 L.: (€n(Ok))

20' n=1

N 'k) 1 ~( )2and L(y ,0 = 22 LJ Cl" •
(j n=l

•

Now let us compute the MLE of Ok. Observe that in the regression case the MLE Ô~

coincides with the LSE (Ieast square estimate). Now applying Propositioll 2.2.1 olle

gets

J~oo lE 2~2 ~ ( (f~(Ô~)) 2- (cn)2) =-~dimOk. (2.8)

Aeeording to (2.8) and sinee cN is independent of k, the more parameters we use,

the smaller the cumulative square prediction error process E~=I (f~(Ô~))2, or the
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•

greater tbe likclibood of tbe data yN! 'l'bus tbe "naive" ML metbod fails to penalize

over-parametrizatioll.

It is interesting to note bowever, tbat tbe second moment of the ML estimator is

sensitive to over-parametrization. Tbe next proposition shows that the covariance of

tbe MLE penalizes over-parametrization.

Proposition 2.2.2 We have for k ::2: k

(IIint: Apply tbe matrix inversion lemma to the matrix Cov(Ô~ - Ok).)

The above proposition shows that it is not difficult to find other criteria that

will succeed in penalizing over-parametrization. However, this and other methods

usuaHy lack the appealing interpretation of the classical ML method. We shaH then

seek a method that will not fail the over-parametrization test, and for that matter

any existing test, but that will recapture, in a sense, the essence of the ML method.

This shan be provided by the stochastic complexity theory which will be presented

in Chapter 4. In order to lay down the main concepts of this theory we need to look

at sorne of the basic clements of the information and coding theory.

2.3 Information and Coding Theory

The origin of information theory dates hack to the pioneering work of8h'lnnon

in the late 40's (d., [Abr63]). His initial motivation was the engineering problem of

how to transmit information through noisy channels. Nevertheless, he was quick to

realize the implications of his thcory much beyond his original problem formulation.

Since then, the theory of information has had an impact on a variety of fields such as
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linguistics, semantics, psychology, biology, eeonomies, music and t.he art.s, and e\','n

philosophy. More recently, the theory of informat.ion hns b,~'tl Ilse,1 by !tissanl'n as

the starting point fol' the stochastic complexity theOl'y (d., [!tisi8]), a geueral t.hellry

for extraeting modcls from data. The natural link between the st.ochaslic cOlllplexit.y

and information theories is the main reason that wc arc int.erest.cd in Illllierslalllling

the foundations of the latter theory.

In order to introduce the basic ideas of information theOl'y, wc fi l'st. nœd t.o bring

forward sorne of the elementary notions of coding theory.

Definition 2,3.1 Let A be a finite alphabet, B a fini le sel of WOl'lls cOlllposed of

combinations of the binary symbols {D, 1}, and C : A -> B a one-to-one mapping.

Then A is called the source alphabet, C(·) the code, B the code ttl/I/wbct, and the

elements of 8 codewords.

Note that since C(·) is defined as a one-to-one mapping, the code is nonsingnlar

(i.e., ail codes are dirrerent), and uniquely decodable. These arc (lroperlies which are

clearly indispensable for any proper code.

Let 1: 13 -+ IN be the mapping associating each clement. of 8 with the length of its

corresponding codeword as expressed by adding the number of the codeword binary

digit representation. Now define the composed mapping L = 10C, and lel

Lm". fÈ, max L(a).
aEA

Denote S(a) the set of ail nodes which are extensions of a at levcl L",.x'

'1'0 guarantee th....t codewords l'an be decoded as they arc recieved without using

any bits from subsequent codewords, a further condition has to he imposed on the

code C(.).

Definition 2.3.2 A code CO is said ta he a prefix code if and on1y if for ail a, a' E

A, a i= a', S(a) n S(a') = 0.
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The imporLanL feaLure abouL prefix codes is LhaL Lhey can be insLanLaneously

decoded while codewords arc received, meaning Lhat there is no need, for example,

Lo use separaLing commas beLween codewords. Unless otherwise specified, codes C(·)

will be considered to be prefix codes.

Prefix codes can be shown to be constrained in the size of their corresponding

codewords: Lhey cannoL be made arbiLrarily small as expressed by the well-known

inequality duc to KrafL in 1949.

Proposition 2.3.1 (Kraft Inequality) IfC(·) is a prefix code then

(HinL: Use Lhe disjoint property of prefix codes.)

The converse of ProposiLion 2.3.1 is also true.

Proposition 2.3.2 Given L(·) satisfying the /(raft inequality, there exists a prefix

code C(-) with codclength L(·)

(Hint: Arrange L(a)'s in increasing order, and use lexicographie ordering (d., [Abr63]).)

In general, it is not difficult to obtain many different types of code mappings C(-)

for any given source A even if they are constrained to be prefix codes. Therefore, a

criterion is needed to choose among the numerous available prefix codes. Obviously

one desires the prefix codes to have associated short codelengths. It is at this crucial

point LhaL sorne sorL of probabilistic model for the emission of the source symbols in

A is most useful. Doing so will allow for a meaningful definition of coding optimality.

The frequency of occurrence of each letter in the source alphabet can be assumed

to define a probability distribution for that alphabet. The)dea is then to assign

short codewords to leLters with a high probability of occurrence and conversely, long

codewords to letters with a low probability of occurrence. Let us assume that p(.)
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represents a "good" probabilistic model for the distributiou of the leLlers of ail al­

phabet A with respect ta a particular language. Based on this (ll'Obabilistic mode! of

the source A, the optimal coding is defined as follows:

Definition 2.3.3 Let the average code/ength of a prefix coùe CO be

L = L: p(a)L(a) .
•e'"

Then, the optimal coding is defined as

Cop, = arg min L.
C prefix

Note that Cop,(') strongly depends on the assumed underlyillg probability distribulioll

p(.).

Shannon defined the informative value of a letter a E A as

l(a) =log (l/p(a)). (2.9)

Observe from (2.9) that if a letter is very unlikely, then ils information content will

be high implying a large cost of removing uncertainty. This sort of connection gives

a meaningful physical interpretation to the information measure 1(·).

The main step in the search for the optimal coding Cop,(') is the following propo­

sition due to Shannon.

Proposition 2.3.3 Given any finite or countable alphabet A, with probability dis­

tribution p(.) over A, we have for any prefix code with codelenyth L(·) the Shannon

inequality

•

L: p(a)L(a) ;:: - L: p(a) logp(a) =L: p(a)l(a).
.eA .eA .eA

Let us define the entropy of an information source A as

N(p) ~ - L:p(a)logp(a) .
.eA

(2.10)
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•

JI (p) can be interpreled as a measure of the levc\ of disorder of the symbols of A.

For example, one can show that if the probability distribution is evenly distributed­

that is, source symbols are equiprobable-then the resulting entropy is maximized

(d., [Abr63]). Note that from Shannon's inequality, I:I(p) is the lower bound beyond

which no prefix code C(-) can exceed.

REMARK. Allhough Proposition 2.3.3 is non-constructive, it does provide two very

important features:

i) a universal yardstick with the help of which, in principle, the information in­

herent in dilferent sources can be compared by means of the asymptotic lower

bound JI(p)j

H) a connection between the information measure and the codelength since Cop,(') =

f(·), which provides an important interpretation for the information measure

itself.

The proof of the Shannon inequality, is mainly based on the following important

inequality:

Proposition 2.3.4 (Kullback-Leibler inequality) Given any two distributions

J(x) and g(x) over a finite or countable set X, then

- L: J(x)logg(x) <:: - L: J(x)logJ(x).
=eX =eX

(Hint: Use the concave property of the log function ).

REMARl<. The Kullback-Leibler measure

M(g,fl =- L: J(x) log g(x) + L: J(x)logf(x),
=eX =eX
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•

which computes a distance between two probability distributions, represenl.s the main

contribution of the theory of information and coding to the field of statist,ics.

Note that the Kullback-Leibler inequality also holds for conl.inuous variables. Lel.

~ be a random variable over the set ,\' with density function J(x), then if g(x) is an)'

other density function for ~ l'le have

- rJ(x)logg(x)dx;::: - rJ(x)logJ(x)clx.lx lx

Since -log J(x) achieves the lower bound of the Shannon inequality, it can be viewed

as a sort of optimal "codelength" in the continuous case. Is it possible 1.0 achieve the

lower bound II(p) in the discrete case? If l'le set

L(x) = [-log2J(x)] +1,

where [b] denotes the integer part of b, then clearly L(x) satisfies the Kraft inequality.

Thus, there exists a prefix code with codelength L(x). Moreover, l'le have

L: J(x)L(x) + L: J(x) log2 J(x) < L: J(x)(L(x) + log2 J(x))
:EX :EX :EX

- L: J(x) = 1,
:EX

which says that the codelength L(x) differs by only one bit from the optimal code.

Hence for a large alphabet the lower bound lI(p), in practice, can be assumed to have

been achieved.

An important observation is that if l'le have equality in the Kraft inequality,

then 2-L(:) is a probability distribution. The importance of this distribution is that

it can he taken to represent a constructive model for the emission of the symbols

xE X. Note, moreover, that a correspondence between codelengths and probability

distributions has been established. The consequences of this correspondence are of

paramount importance to the l'lay l'le interpret modeling, for the optimal code has

, 1

\:
('
~=
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a corresponding distribution which can be viewed as the distribution that assigns

maximum probability to the observed data.

An iIlustrative example of this correspondance can be given by recalling that the

ML estimator of the "true" parameter of a density governing a sequence of i.i.d.

random variables is _ N

ON = arg min L: -log f(Yn, 0). (2.11)
oeD n=1

Notice that (2.11) also represents a means of finding the shortest description, i.e.

shortest code1ength, for the data yN. Therefore, the ML criterion and the search

for the shortest code1ength coincide when one model class-in this case a class of

densities-is given and what is thus left to determine is the value of the parameter

in that given class. As we have previously seen, the ML method cannot be directly

extended when dilferent model classes are to be compared since we have proved that

the method does not penalize overparametrization. In Chapter 4 we will show how

to compare dilferent model classes in a way that resembles the ML notion.

2.4 L-Mixing Processes

Any !inear rational stable filter would produce a weakly dependent stochastic

process if driven by white noise. Since this is one of the most frequently used models

for the realization of stochastic processes, (d. [Cai88]), weakly dependent processes

appear natural1y in system identification.

A type of weakly dependent process, known as L-mixing, has been shown to

play a fundamental role in the analysis of system identification methods [Ger89c].

This is because al1 stochastic processes relevant to system identification are L-mixing

processes, and moreover they arc invariant under the usual operations performed 'in

estimation. An early development of this kind of mixing, referred to as "exponential
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stability", can be found in [Lju76) and [RC79). Sec also [CaiSS). In this prcscntation

we will mainly follow [Ger89c).

The defining property of a weakly dependent process is that its distant past con­

tributes a negligible information pattern to its process prcsent. Thercforc, wcakly

dependent processes bchave much like indcpcndent proccsscs whcn a snbscqncncc

with an appropriate lag is cxtraclcd from the original weakly llcpcndcnt scqncncc of

random variables. '1'0 darify these ideas, we introducc thc following dcfinitions.

Consider the stochastic process (xn(O)) defined on 71, x D, whcrc 'lI, dcnotes the

set of natural numbers, D C lRk • We assume, unlcss otherwisc spccificd, that 11 ~ O.

Definition 2.4.1 The stochastic proccss (xn(O)) is said to be 111 -boundcd if for ail

l~q<oo

Mq(x) =SUI' lE I/qlx,,(0ll" < 00.
n~O

OeD

If (xn(O)) is M-bounded we write xn(O) = OM(l). Similarly, if c" is a positive

sequence we write xn(O) =OM(c..) if xn(O)/c.. =OM(l).

Definition 2.4.1 extends naturally to the particular case of stochastic proccsscs

which do not depend on a paramcter, or to those which dcgenerate into a randoln

variable.

Example 2.4.1 For any stable matrix A and M-bounded proccss (u,,), the stochas­

tic process (xn ) generated by the state space equation

Xo =0 (2.12)

•

is M-bounded. (Hint: use the triangular inequality).

We say that a stochastic process (xn ) tends to a random variable x in the M-sensc

if for ail q ~ 1 we have
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Similarly, wc can define differentiation in the M-sense.

A stochastic process (xn ) is Fn-adapted if the sets

{(w, m) : xn(w) E B E S(m.), m ~ n}

23

arc FOl x S(m.) measurable.

Let (FOl) and (F;) be families of independent monotone increasing and monotone

decreasing u-algebras respectivc1y. A typical example is provided by the u-algebras

F.. =u{c;:i~n} and

•

where (Ci) is an i.i.d. sequence of random variables.

Definition 2.4.2 A stochastic process (xn(O)) is said to be L-mixing with respcct

to (Fn,F;) uniformly in 0 if it is Fn-adapted, M-bounded, and with T a positive

integer and

"MT,X) = suplE l/q!Xn(O) -1E(xn(O)!.r;;_T)\q,
n>.
OËD

we have for any 1 ~ q < 00

00

rq = rq(x) = L:ïq(T,X) < 00.
T=l

The phrase "uniformly in 0" in Definition 2.4.2 is omitted for stochastic proces'ses

which do not depend on a parameter. We would Iike to recall that L-mixing process

were first introduced in [Ger89c].

Example 2.4.2 If the input process (un) in Example 2.4.1 is an i.i.d. sequence,

then the output process (xn ) is L-mixing.

PROOF. Iterating (2.12) wc get for m ~ n
n

X n = A(n-m)xm+L: An-iBui.
i=m

Clearly X n - lE (xnIF;);) =L:7=m An-iBUi, and the result follows using the triangular

inequality and the fact that A is stable. 1



•

•

CHAPTER 2. PRELIMINAR1' MATERlAL

Example 2.4.3 Discrcle time stationary Gau$$ian ARl\IA l'l'OCC$SC$ arc L-llIixiu!\.

(Hint: Use astate space representation).

If (:rn ) is an L-mixing process, then by definition, taking !Il < lt, (J'n ) can be

approximated by an :F'-:;-measurable mndom variable with an error decrea$ing ex­

ponentially with m. For this reason, it becomes convenient to c\ecoml'ose L-Illixing

processes as Xn =X~m +X~m' where X~m =lE (xnl:F,;')." ,
One of the main reasons L-mixing proeesses are 50 useflll is I.hal. I.hey arc invarianl.

under the usual operations performec\ in system identification.

Theorem 2.4.1 Let (xn ) and (Yn) be L-mixillg pl'OCCSSCS (l1lcl C E Ill, thcll:

(a) (cxn ) is L-mixing.

(b) (xn+Yn) is L-mixillg.

(c) (xn ' Yn) is L-mixing.

PROOF. (a) and (b) are trivial. To l'l'ove (c) let m < Il, then for any 1 :5 '1 < 00 wc

have by the Cauchy-Schwarz and Jensen inequalities

IIxnYn - x~,mY~mllq :5 II xn(Yn - Y~m)lIq + IIY~,m(xn - x~,m)lIq

:5 M2q (X)-y2'1(y, 1l - m) +M2'1(y)-t2'1(X, Il - ml·

Since (xn) and (Yn) are L-mixing the result follows. 1

Note that property (c) of Theorem 2.4.1 is not shared by other types of mixing

processes.

Based on a well known lemma, it is sufficient to find just one :Ft, mCiLqUmblc

random variable which approximates X n fairly weil to verify the L-mixing property.
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Lemma 2.4.1 Lei { be an M-bounded, :F-measurable random val'iable, and lei F'

be some a-subalgebm of:F. 1ïlen for any :F'-measurable rantlom variable TJ. and for

ail 1 :::; q < 00. we have

If X n is L-mixing then a strengthened Hëlder-inequality is obtained. Analogous

inequalities for uniform mixingstationary sequences are given in [IL71J, and for strong

mixing stationary sequences in [Dav68].

Lemma 2.4.2 Lei X n be an L-mixing proeess sueh that EXn =0, Vn ;::: O. Let m < n

and eonsider an :Fm measurable M -bounded random val'iable TJ. Then for 1 < P :::; 00.

1 < q :::; 00, sueh that Cl/pl +(1/q) =1

(2.13)

POOOF. Since x~,m is independent of :Fm, we can write

lE X n TJ - lE (x~m + x~,m)TJ

- IEx+ lET} +IExo TJ.n,m n,m

Note that IEx~,m = -lEx~,m' thus

(2.14)

•

Using the monotonicity of the Lq norms for the first term of (2.14), and applying

Hëlder's inequality to the second term, we get (2.13). 1

Example 2.4.2 illustrates that L-mixing processes passed through certain types of

stable linear filters remain L-mixing. This property of L-mixing processes holds for

a general class of stable filters .
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Definition 2.4.3 Let a linear filter he described by

n

X n = L: 4>(11,m)llm
m=O

where 4>(n, .) is locally in 12[0,00) for ail 11 ~ O. Set

,p(l) = sup 14>(11, m)l·
n-m=l

Then the filter is said to be stable if

00

4>" = L:,p(1) < 00.
/=0

Example 2.4.4 The filter in Example 2.4.2 is stable. For the exponential smool.hing

case, i.e. A = B = ),,), E R, we get 4>" = 1.

Theorem 2.4.2 The output process of a linear stable flUel', stable in the sense of

Definition IL(. 3, which satisfies

00

r = L: 14>( 1) < 00.
/=0

and whose input process Un is L-mixin!J, is also L-mixin!J. Moreovel', fOl' 1 ~ If < 00

we have

and

•

PROOF. (A continuous-time version of this proof is given in [GerSOc]). 1

The next theorem is a moment inequality for L-mixing proccsses which rescmblcs

Burkholder's inequality.

Theorem 2.4.3 ([Ger89c]) Let (xn ), n ~ 0 be an L-mixin!J process with lf~ x" =

0, \1 n ~ 0, and let (In) be a deterministic sequence. Then for ail 1 ~ m < 00

N' N /

( )
1 2 1/2 1/2

]El/2m sup lL:fnxnI2m~Cm L:f; M2;..(x)f2'n(x),
l!:N'SN n=l n=l

where Cm depends only on m.
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Corollary 2.4.1 Let (xn ) be as in Theorem 2.4.3, then

~ t Xn = OM(N-I/2).
n=l

Corollary 2.4.2 Let (xn ) be as in Theorem 2.4.9, and let 0 < A < l, then

N

2:(1- At-nAxn = OM(A1/ 2).
n=]

Deline the process I:::.x/t:J.O g, Ixn(O +h) - xn(O)I/lhl, where 0 =F 0 +hE D.

27

•

Definition 2.4.4 The stochastic process x n (0) is M -Lipschitz-continuous in 0 if the

process I:::.x/I:::.O is M-bounded, i.e. iffor ail 1 :5 q < 00

Example 2.4.5 If (xn(O)) is absolutely continuous with respect to 0 a.s. and the

gradient of the process (xn(O)) is M-bounded, then (xn(O)) is M-Lipschitz-continuous.

Now let (xn(O)) be a measurable, separable, M-bounded stochastic process, and

also M-Lipschitz continuous in 0 for 0 E D. By Kolmogorov's continuity theorem,

(d., [IH81]), the realizations of (xn(O)) are continuous in 0 with probability 1. Thus

taking a compact domain Do C intD

is well-delined for almost ail w's. As the realizations of xn(0) are continuous, x~ is

measurable with respect to :F, that is x~ is a random variable. Let us estimate its

moments.

Theorem 2.4.4 For aU positive integers q and s > q

where C depends only on k, q, s and Do, D.
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The following theorem is a very useful result which, among othel's things, implil's

the validity of a uniform strong law of large numbers for [,-mixing l'roccsses.

Combining Theorems 2.4.3 and 2.4.4 and selting fu = l, we gel t.he followin));

corrolary.

Corollary 2.4.3 Let the assumptions of 7'heol'ems 2.4.3 ancl 2.4.4 ho/cl, then

and a/sa for 0 < À < 1

The following inequality will prove useful when estimating tail-probabilites of l,­

mixing process in Section 5.5.4.

Theorem 2.4.5 ([Ger89b]) Let (un), n ~ 0 be a zerO-melLn, bonnclecl L-mixiny

process such that r",,(u) < 00, and let (fu), n ~ 0 be a mcasu1'Ilblc, loCrtlly SII"ut7'C

summable function. Thcn

If (xn ) 'S an L-mixing process and (f(x)) is an absolutcly continuous funclion

which grows al. most polynomi",lly together with its first derivatives, then one can

show that the process f(xn) is also L·mixing. However, if we take a discontinuous

function g, say g(x) = 1:>., 1 the characteristic function of the set {x> cl, then one

cannot conclude that (g(xn )) is L-mixing. Thercfore, il. is not truc that the level set

A.,n = {w; X n > c}

can be approximated by .r~-measurable sets. These observations are the basis for

wilat are called Lo-mixing processes.
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•

Definition 2.4.5 A slochaslic proccss (xn(O)), n :::: 0 is Lo-rnixing uniforrnly in 0

(wilh respect lo (.rn , .1';;)) if for any q :::: 1 and any c > 0

00

r"c =L ,;(T) < 00.
T=l

Obviously definilion 2.4.5 also applies lo processes which are not pararncter de­

pendent. We summarize four basic facts about Lo-rnixing processes which can be

found in [Gernb]:

Theorem 2.4.6 If Il sloehaslie proeess (x n ) is Lo-mixing lhen {or aIl s :::: 1

Converse/y, if for aIl s :::: l, '.(T, x) ::; C.n-·, then (xn ) is Lo-mixing, and for any

c> 0 and s > 0

Theorem 2.4.7 Let (xn ), n :::: 0 be an Lo-mixing proeess, and let 1 C fi. be a fixed

nonempty open interva1. Then there exists a sequence of real numbers Sn E 1 such

that the process Yn = Ir>sn(xn) is Lo-mixing, and for any r :::: 1 and c > 0

r. (y) < 2G r(,+J+c)/(,+I)(x)
'le _ 0 T,c/{r+l+c)

where Co depends only on 1 and r.

Theorem 2.4.8 Let x = (x,.\O)) be as in Theorem 5.2 and assume that (x(O)) and

6x/60 al'e Lo-mixing with respect ta (.rn , .1';;). Then the process x' = (x~) is also

Lo-mixing with respect ta (.rn , .1';) and for any c > 0 and r > p
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Theorem 2.4.9 Let (un) be an Lo·mixing proeess and dcJinc the 11I'occss (:1',,) by

Xn = (1 - À)X"_I + ,\u"

with 0 < À < 1. Then (x,,) is Lo·mixing, and Jor ail q 2: 1 IIn,[ e > 0

rq,,(x) = 0(,\-1+'/2
) •

:w
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Chapter 3

Prediction Error Method for

ARMA Processes

The model selection, changc-point deteetion, and adaptive control mcthods to

be presented in this thesis rely heavily on the prediction-error method (PEM) for

the identification of parameters in stochastic systems. This scheme has been exten­

sively studied in such works as [And71), [L884J, [Lju87), [Cai88J, and [HD88J. We

shaH present the prediction-error method for autoregressive moving-average ARMA

processes, since this is the model on which the above problems will be formulated.

Observe that the PEM method coincides with the conditional maximum likelihood

method when the input is Gaussian white noise (c.f., [Cai88J). The conditions that

will be imposed in this section to ARMA systems will be assumed to hold thereafter

unlcss othenvise specificd.

31
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3.1 PEM: Off-Line Case

Let (Yn),n = O,±l,±2, ... be a second ol'der stational')' ARMA (1',</) pl'Oœ~~

described by

Yn +aiYn-1 +... +a;'Yn_p' = en +cien-I +... +c;.c .._Q••

In a shol'thand notation A"y = C'e, whel'e A', C· are pol)'nolllial~of the lmckwal'll

h'f' " A"( -1) ,,",p' "-i 1 C·( -1) "",,,' "1" -J. 0 1s 1 li opcra ...or, 1.C. Z = L..i=O a.·z 1 an( :: = L.Ji=O, Wh,' (l,._ r ail<.

c;. :F 0, and aii = cà = 1.

Condition 3.1.1 The polynomials A"(Z-I) and C· (Z-I) are stllble rmdl'c/rltive l'dllle.

To describe the noise process let us assume that we are given a probability spacc

(n,.r, P) and a pair of families of u-algebras (.r", .r;;), 1\ ;::: 0 such that .r.. c .r
is increasing and .r;; c .r is decreasing. Moreovel',.r.. and .r,; are independent fol'

ail n.

Condition 3.1.2 The input noise (e,,) is a second order statio7l<l11J, L-mixiny /Im­

cess with respect to (.r",.r;;), and furlhermore

and

•

for aIl n. (The concept of L-mixing is described in Section 2.4).

Let 0 denote the k g, p +q-dimensional vector composed of the coefficients of

the polynomials A(z-I) and C(z-I), and D C IRk be an open domain such that the

polynomials A(Z-I) and C(Z-I) corresponding to 0 E D arc stable. Moreover, let

Do c D be a compact domain with 0" E intDo, where intDo denotes the interior of

Do. For 0 E D define an estimated noise process (,,,(0)) by the dilfcrence cquation

C,(O) = Ay,
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e ~I Ai'c*1 y ~I AIC 1e(0) ~
Figure 3.1: Generation of Lhe prediction error process «.(0».

where for n ::; 0 we set Y. = fn(O) = O.

Figure 3.1 illustrates the computation of the prediction error process (fn(O)).

The cost function associated with the off-line time-invariant predicition-error method

is given by

(3.1)

We shall define the orr-line time-invariant estimator ÔN as the parameter 0 E D that

minimizcs VN(O). It can be shown that this minimization is equivalent to solving

or equivalently
N

L: fD.(O) . fn(O) =0,
n=l

(3.2)

(3.3)

where dirrerentiation is taken both in the almost sure and M-sense (c.f., Defini­

tion 2.4.1). (The dirrerentiation notation was introduced on page 9.) More precisely,

if (3.3) has a unique solution in Do, then ÔN is that solution. Otherwise, ÔN is ar­

bitrarily subjected to the condition that ÔN E Do. Note that the estimator ÔN is

measurable by the measurable selection theorem.

The asymptotic cost function of the off-line prediction-error method is given by

•
It can be shown that

lim sup IN1 VN(O) - W(O)I = 0
N-ooOeDo

a.s. (3.4)
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and that the same uniform law of large numbers holds for thc gradicnt proccsscs

8VN/80 and 82VN/802
• (See e.g. [Lju76], [lIan73]).

Under Conditions 3.1.1 and 3.1.2, the asymptotic equation aW(O)/iJO = II has a

unique solution in Do and the lIessian

8
2

1R· = -2W(O)
80 0=0'

is non-singular (d., [ÂS74)). This fad and (3.4) imply that for almost ail w, thc

"likelihood equation" (3.1) has a unique solution in Do for N > No(w) whcncvcr

O· E intDo. A precise statement about the uniqueness of a solution is givcn by thc

following theorem:

Theorem 3.1.1 ([Ger8ge]) For cach fixcd d > 0 and any m 2: 1 the equIltion

8
80 VN(O) = 0,

has a unique solution in Do. Morcovcr, this solution is ,tisa in thc s],h",'c {O : 10 ­
0·1 < d} with at least probability 1 - O(N-m ).

A characterization of the estimation error of the off-linc prediction-error identifi­

cation method is provided by the next theorem:

Theorem 3.1.2 ([Ger8ge]) Under Conditions 3.1.2 and 3.1.1 wc have

ÔN - O· = _(R-rl~f,fOn(ÔN_l}en + OM(W1
).

n=l

An immediate consequence of Theorem 3.1.2 is the following result:

Theorem 3.1.3 ([Ger90b]) Under the conditions of Theorem 3.1.2 UJe havc

(3.5)

•
Note that the right hand side o'f (3.5) gives an almost sure upper bound for the

Lq(n,:F,p) norm of the estimation error. For the latter, the law of the iteratcd

logarithm applies (c.f., [AC1I82)).
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3.1.1 Off-Line PEM with Fixed Gain

For the time variant off-Hne estimation case, we use the prediction error algorithms

with fixed gain given in [Ger89c], which "weighs down" past data with geometric rate.

In this case the cost-function associated with this estimation method is given by

N

V,\\(O) = L: (1- '\t-n '\(En (O))2
n=l

0< ,\ < l,

where ,\ is called the forgetting factor or gain of the algorithm. The off-Hne time

variant prediction error estimator Ô; of ON is given as the solution of

(3.6)

•

More precisely, if a unique solution of (3.6) exists in D, then Ô; is the D-valued

random variable reprcscnting such a solution. Unfortunately, the probability of the

"exceptional sets" oC n, for which (3.6) has no solution, does not tend to 0 as N -> 00.

But this difliculty is dealt with in [Ger92b].

A characterization of the estimation error of the off-line smal1 gain prediction-error

identification method is given by the fol1owing theorem:

Theorem 3.1.4 ([Ger92bJ) Under Conditions 3.1.2 and 3.1.1 and (en) Lo-mixing

we have

NÔ; - O· - _(R·)-l L:(l - ,\)N-n'\con(Ô;-1' O·)en + rN
n=l

_ OM('\1/2),

where rN =OM('\)'
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3.2 PEM: On-Line Case

Numerous engineering problcms-found in areas such as robotics, power systems,

aerospace-require solutions that ought to be implemented in l'cal time. 8ince the

dynamics of physical plants are frequently altered during operation duc, for exmnple,

to changes in their operating conditions, wearing out of their mechanical parts, failures

in their components, on-line identification methods arc an essential component in the

synthesis of automatic supervisory systems of plants.

In the early stages of developmcnt of the theory of recursive estimation, quit,e a

few ad hoc methods, which are still very popular among praetitioners in the field,

were discovered. For instance, we could mention the extended least square, the in­

strumental variable, and the recursive maximum likelihood mcthods.

Among one of the best and most powerful is the recursive prediction-l'l'roI' methOlI.

We will present tbis method for the special case of the on-line estimation of the

parameters of ARMA systems (d., [L884], [Lju87], [Cai88), and [8889]).

While recursive estimation of time invariant systems has attracted lI1Uch atten­

tion, the recursive estimation of time varying systems has been almost completely

neglected. However, a simple method for getting recursive estimators for the parame­

ters of a time variant system has been known for sorne time. While simulation resllILs

show reasonable performance (e.g., [L884] and 8ection 3.4), the lack of theoretical

analysis has apparently discouraged many practitioners in the area from applying it.

However, this drawback has been eliminated since many of the important theoretical

aspects of the problem have been recently resolved. An olf-line estimation method

was developed and analyzed in [Ger89c], while a general time varying Ljung's scheme

was presented and analyzed in [Ger89~.

The recursive time-invariant prediction error algorithm is summarized as follows .
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Let us assume that an initial guess O~ of the true pararueter O· is given. Let A'~_l

and C~-l denote the PolYl.omia!s corr-~sponding to O~_l' Assuming that processes

(0:) and ((~) have been generated for n ~ N -l, we define (~ by the equation

(3.7)(C~_l(O) N = (A~_IYt,
where the initial conditions are set to Yn = (~ = 0 for n ~ O. The left hand side

of (3.7) means that the !inear filter corresponding to the operator C~_1 acts on the

process ((0) \Vith the evaluation bcing performed at time N. The right hand side

of (3.7) is interpreted in a similar fashion.

It is easy to see that the gradient of (~ with respect to any 0 E D can be computed

by

where

(3.9)

(3.8)N~l

N~2.

Now let R~_1 denote the estimate of the Hessian (82 j802 )W(0), with initial guess
"'0 "'0 "'NRI = cl, c > O. Then ON and ~ are computed by the fol\owing recursion

"'0 "'0 1 ("'0 )-1 8 0 0oN- - 0N-l - N RN_1 8lN . (N

"'0 "'0 1((8 0)(8 0)T "'0)RN_ - RN_1 +N 80(N 80(N - RN_1

•

The random variables O~_ and R~_ ought to be adjusted if they violate the

boundedness conditions now described. Let Do CD and DR be compact domains in

+ "'0 "'0 "'0 "'0 "'0 "'0IR!' q andntPXP,respectively. Define (ON' RN) = (ON_,RN_)if(ON_,RN_) E Dox
'"0 '" 0 '"0 '" 0 '"0 '" 0DR and (0 N' RN) = (0 0 , ~) if(ON-' RN_ ) If. Do x DR. Note that the time is not

reset!

The domain Do C IR!'+q should be chosen in such a way as to guarantee the

exponential stability of the time varying filter given by (3.8) and (3.9), which is
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achieved by imposing Condition 3.2.1 below. Let the projection of Do on mq Ill'

denoted by De. For each cEDe there corresponds a polynomial C(:-I), wil,h whidl

we can associate a companion matrix

1

o
o
1

o
O... 0

The set of these companion matrices will be denoted by J)ë'

Condition 3.2.1 The truncation domain Do is smaIl enongh in the sense t/ltlt the

matrices ë in Dë are jointly stable, i.e. thel'e exists a sY1ll11lel1'ic positive rleJinite

matrix U such that ëT U ë < b U with some 0 < b < 1.

REMARK. Although Condition 3.2.1 is certainly restrictive, it is inherent in Ljnng's

scheme. Indeed, we have to assume a-priori that the time-varying filter given by (3.8)

and (3.9) is "slowly time-varying", and hence exponentially stable. Whet.her the

local analysis of Ljung's scheme given in [Ger89fj can be "globalized" still remains an

interesting question.

Clearly, we should assume that 0" E Do, but in any case this will be implied by

Condition 3.2.2. As for Dn we assume that it is an arbitrary compact domain of

symmetricpositive definite matrices such that R" = (82 j802)W(0, 0")10=0' E intOll.

Other requirements on Do and Dn will be imposed by Condition 3.2.2.

To further specify the properties of Do and Dn, wc consider the associated ordinary

dilferential equation

•
',\

O(t) - -R(tr1 :0 W(O(t))

R(t) - G(O(t)) - R(t)

(3.10)

(3.11 )
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where

_[-I 0]J- ,
X -I

the eigenvalues of the matrix J arc -1. Thus (3.10) and (3.11) have a locally station­

ary point (0', R') and moreover this equilibrium point is asymptotically stable (c.f.,

The right hand side of this ordinary dilferential equation is defined in D x m.+ (p x p)

where IR+(p x p) denotes the set of symmetric positive definite px p matrices. NOIV,

since the Jacobian matrix associated to (3.10) and (3.11) linearized at point (0', R')

has the following structure

[ÂS741, [Cai88]).

It is essential for the analysis (c.f, [Ger89n) that the solution trajeetories of (3.10)

and (3.11) starting from (0:, Rao) do not hit the boundary of Do x DR, This can he

ensured by the following condition which is a more explicit formulation of the usual

assumption that the initial guess must be "good enough".

Condition 3.2.2 Do x DR is a domain of attraction for (3.10) and (3.11) (i.e. for

any initial value (0(0), R(O)) E Do X DR the solution (O(t), R(t)) of (3.10) and (3.11)

converges ta (O',R')). In addition, (O',R') E intDo,R, and (00 , Ra) E intDo,R where

DO,R is a compact domain invariant for (3.10) and (3.11), and DO,R C Do X DR,

Final/y, the image of DO,R under the ftow, say <Pt, defined by (3.10) and (3.11), is in

intDo,R for any smal/ t > O.

•

Condition 3.2.3 For the "memory" of the input process (en) given by '"(q(T,e) we

have that for any q ;:: 1 there exists c > 0 which may depend on q such that '"(q(T, e) =
O(T-1- c ). In addition, we have for some 8 > 0

sup lE exp(8e~) < 00.
n~O
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Theorem 3.2.1 ([Ger89~) Under Conditions S.l.!J-S.l./, IInd Condiliolls :1.:1./­

S.2.3 wc have

and

3.2.1 On-Line PEM with Fixed Gain

The recursive prediction error a!gorithm with fixed gain is summarized as follows.

Let us assume that an initia! guess O~\ of the true parameter O', is givcn. Assuming

that processes (0~\) and (f~) have been generated for n ::; N - l, wc dcfinc (~ by the

equation

(C;-lf>.t=(A;-lyt, (3.12)

"'>. ", >. "\where AN_l' and CN_I denote the polynomials cOl'responding to O~_I' Thc init.ial

conditions in (3.12) are set to Yn = f~ = 0 for n ::; O. lt is easy to scc that thc gradicnt

of f» with respect to any 0 E D can be computed by

where

r/>N-I = (-YN-h'" - YN-p, f~_I" •• f~_q)T.

::::À ::::: À
Then 0N' RN are computed by the following recursion:

"'>.ON -

">.RN -

(3.13)

(3.11)

•
where 0 ::; À :5 1 is the fixed gain of the algorithm.

The recursive prediction error algorithm was written in a form which includes bath

its time invariant and time variant versions. For if À =0, the popular time invariant

prediction error algorithm version is obtained, whereas if À > 0, the algol'ithm has the
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capabilities of tracking time variant parameters. The raie of A, when A> 0, is similar

to that of the off-line counterpart, that is, to "weigh down" past data with geometric

rate. In (11) and (12) the choice of liN + A, as the fixed gain for the algorithm, is

chosen 50 as to reduce the uncertainty due to initial conditions at the start of the

recursive algorithm, and to tra.ck the time varying parameters afterwards.

3.3 On-Line and Off-Line PEM's Link

A heuristic derivation of the RML method was obtained by considering an approx­

imate recursion of the solution of the likelihood equation. This 3011 but forgotten

derivation nonetheless indicates that there should be an intimate relation between

the nonrecursive or off-Iine and the recursive or on-line maximum-likelihood estima-

tor.

Theorem 3.3.1 ([Ger91d], [Ger90bJ) Under Conditions 3.1.1-3.2.3 we have

3.4 A Simulation of the Recursive PEM

Bere, we sha1l iIlustrate the recursive prediction-error methods introduced in the

previous sections. A process (y) will be generated by appending in time a time

invariant and a time variant ARMA system. This is done 50 as ta a1low us to ilIustrate:

i) how the time invariant version of the PEM will give consistent parameter estimates

when the parameters of the system are time invariant; ii) how the time variant version

of the PEM will provide tracking capabilities of the time variant parameters.

Let the time invariant ARMA(2,1) system then be given by

(3.15)
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with

ai = -.7 ai =.8 ci = -A. (3.lli)

Then (3.15) generates the proccss (y) for N < 500.

Now let the slowly time varying ARMA(2.1) system be given by

(3.17)

where the time variant parameters ar,.,I,ar,.,2 and CN,I arc obtained by linearly Il\oving

from the time invariant paramcters in (3.16) to the parameters

(3.18)

•

The process (y) is finally generated by (3.17) for N = 500..... 1000. (A rigol'Ons

description of this type of time-variant system is given in Section 5.5.) Bath ARMA

pracesses are driven by a Gaussian white noise pracess (c) with mean 0 and variancc 1.

We now l'un two recursive l'EM's in parallel. The time-invariant prediction error

th d 'd th . t ::::0::::0 d ::::0 f· • d· . 1me 0 provl es e estima es al,N' a2,N' an cI,N 0 al. a2• an CI respective y;

whereas the time-invariant prediction error method with fixed gain ..\ = .0113 gives

th t· t ::::.\::::.\ d ::::.\ f· • d· t' 1 il tl tle es Ima es al,N' a2,N' an cI,N 0 al,N' a2,N' an cI,N, respec Ive y. Olle

parameter estimates and the "truc" parameters are plotted in Figures 3.2-3.4.

Next, is a similar simulation to the one just introduced with the only difrcl'clICC

that wc now take the fixed gain ..\ = .02. Moreover, instcad of having a slowly

time variant change in the dynamics we have an abrupt jump at N = 500, with the

dynamics remaining constant after the jump. The initial values of the paramcters of

the polynomials of the ARMA system bcfore N = 500 are given by (3.16) wherca.q

.the values of the parameters after N = 500 are given by (3.18). Parameter estimates

and "true" parameters are now plotted in Figures 3.5-3.7.
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Figure 3.3: The true parameter a;.N' and itl.· time i.nvariant and time variant cstimatcs

â~,N' anci â~,N respectivcly.
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Chapter 4

Model Order Selection

As Jar as the laws oJ mathematics reJer to realily, they

are nol certain; and as Jar as they are certain, lhey do

not reJer to rcalily. Albert Einstein

4.1 Introduction

A major constituent of scientific research is the construction of mathematical

models for elements of our perceivable world, which use as raw material, data pro­

vided by our ever more sophisticated instruments. Mathematical models (thereafter

simply called models) act as abstract and compact languages to assist us in the end­

less search for a better understanding of reality. Hence, the primary aim of such

intellectual produce is to attempt to unearth what could be referred to allegorically

as the mechanism that generated a particular set of data. By extracting the regular

features of data in the form of models, the complexity of observable events would

tend to be reduccd. Any such found regularities could be interpreted as ref1ections of

nature's relative order.

Can models exactly match the particular reality they intend to explain, and thus

in sorne sense allow for a mirroring of the total "true" nature of physical phenomena?

49
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The first known affirmative answer dates back to Pythagoras who bdieved that natnl'L'

itse1f was numbers. Many centuries later, Galileo Galilei sustahed that the great book

of nature was written in terms of mathematical charaeters, like triangles, circles, and

other geometric figures. Numerous other great thinkers like Descartes, Leibniz, allt\

Kant also held the viewpoint of mathelllaticallllodels as being ingrained in realil,y.

This perspective, although always somehow confronted, began to be strongly chal­

lenged at the beginning of this century, a period in which firmly established theorics,

like Newton's classical mechanics, began to be improved upon or even abandonCl\.

As a result of this deeper look at reality through clever and elaborated expCl'illlents

in mainly the subatomic world, absolute certainty gave way to the notion of tb, per­

petuai inherent imperfection of any theory or, in particular, any Illodcl of rea\ity.

Although this conviction is constantly gaining further ground a dcfi71itc ans\Ver to

such a profound philosophical question cannot be provided wil,h absolute certainty,

Statistics foremost mission lays in the construction of probability models for data.

The prevalent tendency in this field has been to assume that a given data set is

the outcome of a "truc", albeit almost never fully specified, distribution. Thus,

that the data is actually considered as being generated by sorne sort of mechanislll

governed by such a distribution, (One could assume that the distribution arc of

Normal, Binomial, Exponential or Poisson type for example.) Wc would then expect,

actually require, the field of statistics to offer weil established methods by which to

identify from the data that "truc" type distribution in sorne categorical and explicit.

way. Unfortunately this is not the case: no general applied rigorous data-dependent

methodology is available by which to obtain that sort of "truc" type dist.ribution.

Moreover, physical justifications for the existence of "truc" modcls can, in a way,

be proven only applicable in a handful of cases. (One could mention, for example,

gambling games.) Therefore wc could rightfully argue that. the very initial steps of
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the statistical modcling process are in general dealt with in an ad-hoc manner.

After a "true" type modcl has been assumed by any kind of dubious method, ~he

statistical discipline gives rigorous and involved techniques by which to determine

whatever has been left unspecified in those a-priori assumptions. Examples of such

techniques abound in the highly devcloped theory of estimation which incorporates

claborate procedures to allow for the making of decisions about the mode1ed phe­

nomenon in "optimal" ways. However, a note of caution must be raised since ail

these a-posteriori daims are contingent on the correctness of the a-priori assump­

tions, assumptions that always contain sorne degree of subjectivity. As a result, we

could face the risk of making unfounded statements about the studied phenomenon,

while unsoundly making rigorous only the last phases of the modeling process.

Is it possible to choose a model in a wholly data-dependent manner? Tackling

this question requires a proper understanding of the relationship and tradeolf between

modcl complexity and model fit. For instance, a complex model might be capable

of matching data with high precision. However, if the description of the model itself

(in sorne weil specified sense) turns out to be as lengthy as that of the data, then no

overall reduction in the complexity of the original string of data would be achieved.

A simple example is the polynomial fitting of data. Assume that the dimension of the

polynomial is taken to be equal to the number of data ,)oints. Then we are guaranteed

to have a perfeet fit, but with a model complexity matching or superseding that of the

raw data. If this type of procedure is employed, it will certainly defeat the modeling

objective of striving to maximally reduce the complexity of events by extracting their

regular features using compact mathematical descriptioDs. Hence a necessary tradeolf

between model complexity and model fit needs to be taken into account.

Even though the statistical discipline has notably enlarged our understanding of

numerous aspects of our perceivable reality, the bulk of this theory fails to answer

such preliminary questions as how to choose between models of dilferent complexity.
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For example, the classical least square mclhod (c.f., [CaiSS]) succccds in (Hm'i,lin!!:

the parameter values of a polynomial of fixed order iu some optimal way, but breab

down when the polynomial order needs to be determiued. 'l'hus, most of the statistical

modeling methods either totally fail to consider the above complexity-fit tradeolf, or

they address it in a form not disassociated from what could be after-all subjeet.iw

considerations.

Let us look at the Minimum Prediction Errol' (MPE) modelillg scheme, which

can encompass a wide varicly of modeling selectiou theorics. This method is ,ldine.!

in terms of two scalar criterion functions, one which penalizes the lack of fit of the

model with respect to the data, while the other penalizes the complexity of the mode!.

(For a general and rigorous treatment of the MPE method the l'eader is refel'l'ed to

[Cai88].) For instance take a family of functions {h(·,O),°E D} (one could think, for

example, of the family of polynomials) and consider the prediclor sequence fil,· .. ,fiN

for a set of data yI, ••• , YN given by the predictor models

1 ::; n ::; N,

•

with XI,' •• , ZN sorne known deterministic sequence. An MPE criterion can then he

constructed with the help of the loss functions: 1(-,.), which penalizes the lack of fil

of the model with respect to the data, and /C('), which weighs the complexity of the

model itself. Finally one deITnes the criterion function as

N

LN(fi) = E I(yi,fii) + /C(h), (4.1)
i=l

Although LN(fi) directly addresses the issue of model complexity versus model fit, it

does not provide in its general formulation any clue on how to properly balance these

two issues. Even if a subjectively chosen criterion based on (4.1) is found to satisfy

properties like consistency and efficiency, it will hardly achieve what is of outmost

importance, that of a soÙd physical interpretation for such a critcrion.
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Since any .uccessful modeling method will in some form weigh the complexity­

fit tradeoff, and since the MPE is defined in such a generality so as to encompass

ail reasonable weigh types, one can certainly claim that al1 modeling methods are

just special cases of the MPE method. lIowever, this type of reasoning is in a sense

deccptive since the MPE method by itself fails to guide us towards concrete and

meaningful modeling theories, theories that should be entrenched with solid physical

interpretations outside of their internaI logical consistencies.

Il is essential to stress the basic recurring theme in 11.11 of the statistical modeling

methods, that is, the assumption of the existence of a "truc" distribution for the

data. Under this category wc can also include those melhods addressing the issue

of model complexity, and even those which use an approximating family of models

not containing the "truc" distribution. It is then not surprising that justifications for

these procedures are based on how wel1 they succeed in providing an estimate, i.e.

an approximation, of the "truc" mode!. The bottom line is that such a "true" model

is made accountable for 11.11 interpretations, predictions and decisions. Moreover, this

sort of rationale lacks any real base, since subjective features are necessarily associated

with the assumption of a "true" mode!. As a result we could say that the classical

inference methods might 11.11 have the appearance of being objective techniques but

that in fact they hide the real issue behind the cloud of "true" models. These methods

therefore fail to be whol1y data-dependent, which represents a serious drawback since

it could be argued that in very general terms the only available "truth" is the given

data.

Let us now brieOy show how the most renowned modeling procedures, derived

from the Kullback-Leibler distance between two prob?bilitj' densities, are developed.
é

We shal1 use as an example the wel1-known Ale cri~eria (c.f., [Aka73]).

Assume that the data yN is a realization of an LLd. sequence of l'andom variables
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with density function g(.). Let the family of density fnnd.illns .'\.1(0) = {I(', 0); (/ E J)}

be used to fit a model to the data yN. The "truc" dcnsit.y g(.) is not nl'l'essarily

included in the mode! class 0'\.1(0). Now recall that the Kullback-Leihkr ,listance

between two densities is given by

M(J,g) = - i: log J(., O)g(x)dx +i: logg(x)g(x)dx. (,1.2)

Since the second term in (4.2) is constant,

L(O) = -lE 10gJ(·,0)

c;:.a be used as a basis fol' mode! selection. Note, however, that L(O) cannot he nsed

in its present form to solve the selection problem, since it reqnires the cOlllputat.ion

of an expectation. Moreover, the expectation is with respect to the unknolVn densit.y

g(.). Therefore it is necessary to find sorne computable approximation of L(0). The

construction of practical modeling methods derived from l'ost f\lnctions lik" (4.2)

l'an then be carried out as follows. (Since here the put'pose is only to introd\lcc the

main ideas of how these types of modeling methods can be developed, wc rcfer t.h"

reader to [Aka73] for the list of technical conditions needed to apply this type of

methodology. )

(i) Let
o •o=arg mm L(0)

oeD

and

wherc



- .
That is, 0N corresponds to the maximum likelihood estimator of o. Proceed by
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- .
performing a Taylor series expansion of LN about 0 to get the crucial approxi-

mation result
- • 1 1

L(ON):::::: L(O) + 2Ntrr- E,

where matrix E is given by

E = ;OL(O) 1 0=0'

(4.3)

and the matrix r by

(H) Compute unbiased estimators for the terms of the right hand side of (4.3). For
•L(0) one gets

whereas for E and r one obtains

and

1
. ,

0=8

respectively.

The final criterion subsequently reduces to

(4.4)

•
It is interesting to note that if there exists a density J(., 0) which can completely

match the "truc" density 9(·) then one can show that r = E. Thus trr;l En = dimO,
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and the criterion function (4.4) simplifies to the well known Akaike's criterioll (Ale)

given by
N

AIC(k) = I: -log!(Yi,ÔN ) + k.
1=1

Note that the assumption of the existence of a "truc" ,listribution is use,l in all

essential way to arrive at a suitable utility funclion. This is because the above met.ho,l

is derived as an approximation of the minimum I<ullback-Leibler distance bct\\'ccn

the "true" density g(.) and the densities in M(O).

Many of the well-knolVn modclillg procedmes arc del'Ïved in a fashion similar

to the above. They moreover constitute what arc generally agrccd ta be t.he most.

rigorous techniques available for modcl selection. One could mention fol' examp\e

the BIC (c.f., [Sch78] and [Saw78]), the Pearson Chi-squared, and the Crtllnél··von

Mises criteria among others (c.f., [LZ86]). The first is based on an asymptot.ical1y

unbiased estimator for the Kullback-Leibler distance, whereas the other t.IVO use as a

starting point, dilferent notions for the "distance" between modcls. For instance t.he

Cramér-von Mises distance is defined as

L(O) = lE (g(.) - !(', 0))\

and the steps which lead to its final criterion are donc in a similar manner to tllal.

which leads to the AIC criterion.

What could be raised as another salient inadequacy in ali those modcling methods,

aside from their use of "true" models, is the absence of a solid physical int.erprel.at.ion

of their final criteria. As a consequence, the methods lack the intuitive appeal 50

necessary when dealing with practical problems. Furthermore, and in particular for

the very popular AIC criterion, it generally fails to be consistent (c.L, [Ris89]).

A well-known modeling procedure which is wholly data-dependent is the cross­

validation method (d., [St074]). !ts basic idea is the following: fit a modcl to a data

set of size N - m, and then perform a validation test. For example, uSe the linear
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regression modcl given by (2.6) to modcl the data yN, and define the prediction error

process

(,,(0) = y" - x~O.

For the sake of simplicity let m = 1 (usually rcfered to as the "one item out cross­

validation criterion"). Now compute the following sequence of least square estimators

Ô(j) = arg min { f. (,;,,(0)J2}.
oeD i=l,ii'i

Then the criterion is based on the cumulative sum of the squares of the off-sampIe

prediction errors

The degree of the polynomial is then taken as that value of k which corresponds to

the minimum value of the criterion LN(k). The main objections to the use of this

modeling method are as follows. Firstly, it is a heuristic approach with no rigorous

indication of how to choose the crucial parameter m. Secondly, it was shown in [Sto77J

that the cross-validation method is asymptotically equivalent to the AIC method, and

thus the criticisms of the latter also hold for the former.

A possible way out of the modeling problem dilemma is to elaborab a modeling

theory which will a-priori grant sorne degree of imperfectness to any mode!. What

will then become meaningful is the ability to compare tentative model classes of

different complexity in the light of available data, and give definite answers about the

goodness-of-fit of a model class only in relation to tentative compp-ting models.- -

In the mid-seventies a nove! modeling approach was iniÙated by Jorma Rissa­

nen [Ris78] which could in "- sense be considered a natural outgrowth of the theory of

algorithmic complexity developed among others by Chaitiri, Solomonoff, Kolrpogorov

(d., [KA87], [Lev73], [ML74J, and [ZL70J). This modelingendeavor, presentlyküolvn

as stochastic complexity, has constituted a major breakthrough il. :,he way we view
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modeling and moreover it has had profound practical rcpcrcussions, It has bCCllmc

by now one of the most respected methods for statistical infcrence. (For some carly

devc10pments sec [Ris7S], [Sch7S], and [ShiSO]. Some l'CCCnt SUl'\'eys arc giv,'n in

[RisS7J, [RisS9], and [GR91].) As a raclically differcnt conceptual rormulation with

respect to previeus modc1iug methods, the stochastic complcxity is clml'acteri",,1 by

the following distinguishable features:

(i) Not based on "true" modc1 assumptions.

(ii) Subjective only in the sc1ection of tentative buL not necessarily forever ,ldiniLe

model classes.

(iii) Unique-type criterion function is defined for ail modc1ing pl'Oblems.

(iv) The criterion funetion weighs mode! comp!exiLy and modc1 fiL in a naLmal way,

(v) Universa! in that any mode! classes-parametric or non-parameLric-can be

compared irrespective of their distinct complexity through a COllllllon bcnch­

mark: the associated total code !ength.

(vi) Computable, unlike the theory of algorithm cOlllplexity,

Let us stress that aside from the suggestive choice of model classes, the sLechas­

tic complexity modeling method is not subjected to arbitrary or subjective choices.

Moreover, it is totally data-dependent and provides us with a clear and concreLe

physical justification outside of the interna! consisLency of the theory.

In the foliowing two sections we shaH present the stocha.~Lic complexiLy LlieOl'y in

more detai!.
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4.2 Stochastic Complexity

59

The art of modeling has a natural connection to the theory of information and coding

(rcfer to Section 2.3 for a short introduction of this theory). The !ink is estab!ished

by the fact that finding data constraints (if one's goal is to send the same amount

of information as that contained in the original data seL) amounts to reducing the

number of bits to be transmiLLed. Conversely, obtaining shorter descriptions for the

data gives rise to modcls which beLLer represent the constraints of raw data.

As a simple example consider the case of a data yN such that Yn ;:: 0; "In E [l, N].

Then, only the binary digit

{

1
b = '

0,

Yn ;:: a"In E [1, N);

3 n E [1, N] such that Yn < O.

would be needed to represent a possible inherent constraint of the so-called generating

mechanism, instead of using a binary digit pel' datum as the representation. The

se;trch for the shortest encoding of a set of data can be taken to be equivalent to the

search for best mode1s, an issue which will be further elaborated. (Encoding of a set

of data means a more compact data representation with respect to the original data

set, but that maintains the same amount of information as that which is contained

in the raw data.)

Under the assumption that a set of data yN behaves according to a "true" prob­

ability modcl, say f(·, 0) with 0E D, Shannon proved that the shortest encoding in

tlll: mean pel' symbol code1ength sense can be asymptotically attained by the entropy,

that is ·-IE logf(·, 0) (see Section 2.3). If a mode: deviates !,omehow from the "true"

- .performance. For instance let 0 E D be an estimator of the '''true'' parameter 0 then

•
distribution J(·,O) then the l\ullback-Leiblcr inequality (d., Proposition 2.3.4) can

be used, in principle, as a oasis for measuring the resulting degradation in coding

• lE logf(-,Ô) -lE 10gf(·,0);:: 0, (4.5)
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which vanishes if and on\y if Ô - 0 under proper identifiability cOllllitions (c.g.,

lE 10gf(·,Od -lE logf(·,02) = 0 implies 01 = O2 for aH 0.. O2 E D).

Observe that the lcft hand side of (4.5) corresponds for fix k to (,he 10g-likdihoUll

equation which in Section 2.2 was shown to be an unsollnd modcl se!ect.ion criterion

since it failed to penalize the complexity of modc1s. Therdore, if we arc to base

a theory of modeling upon the theory of information and coding, some cssent.ial

modifications must be performed. '1'0 begin with wc should l'cmoYe the aSslllllption

of a "true" model. Then wc should associate to any tentative mode! c1ass a certain

degree of uncertainty by properly weighing its complexity. However, this willreqllirc a

redefinition of the notion of Shannon's information, more along t.he lines of algorithmic

complexity, which shaH be discussed shortly.

Before doing 50 let us introdllce Theorem 4.2.1 which gives a generalization of the

I<ullback-Leibler inequality in that it will remain valid when modcls of dirfCl'ent com­

plexities are involved. This theorem will l'l'ove essential as a theoretical fonndal,ion

of the stochastic complexity theory.

First, the l'roof of Theorem 4.2.1 requires the fol1owing technical condition for the

smoothness of the tails of parametric densities.

Definition 4.2.1 Let {J(y N , O)j 0 E Dk }, where Dk is a compact. subsel of Illk

with nonempty interior, be a set of compatible probability densit.y functions (i.e.,

LYN+l p(yN'YN+t;O) = p(yNjO) ) Then the tai/-condition il; satisfied if there exist

estimators ÔN =ÔN(yN) such that for any l'cal constant c > 0

00

I: P(N1
/

2 IÔN - 01 > c log N) < 00

N=I

uniformly in O.

The tail-condition imposes a constraint on the convergence of the pdrameter cs­

timates ÔN'S. It has by now been verified in many important case like for in the AlI:
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case in [IIMl'S!J) and [llDS!J], and for Caussian ARMA processes in [CerS!Je). (The

extension of this last result to mu1tivariab1e 1inear stochastic systems is straighlfor­

ward.)

Thcorcm 4.2.1 (c.r. [Ris86]) Assume that the tai/-condition is satisfied, and let

9(') be any set of comlJatible I,robability density funetions defined on the data yN.

Then, for ail 0 E D k ,

(4.6)

•

exceI,t for a subset of Dk witl! Lebesgue measure zero.

REMARK. Theorcm 4.2.1 provides an asymptolically sharp 10wer bound for the code­

1ength no matter what encoding procedure is used.

Dy comparing (4.6) with (4.5) we see that Theorem 4.2.1 does indeed genzralize

the Kullback-L"libler inequality. According to this theorem, no matter of how weil

we manage to provide an estimate gN(yN) to approximate an assumed true density

fN(yN,O), the generalized Kullback-Leibler distance between these two probability

densities cannot be made asymptotically smaller than the lower bound (k/2) log N.

This result follows the intuitive notion that complex models should be intrinsically

more difficult to estimate due to the increase of a-priori model uncertainty. In prin­

ciple, Theorem 4.2.1 reveals something about the merit of the estimation algorithm

when ikj,,,,rformance is compared to the lower bound (k/2) log N. We shall later

show that this theorem can he taken as a theordical foundation of the stochastic

complexity theory.

Can the information content of a data set be computed direetly from the data

itse1f without turning to typically poody justified a-priori "true" model assumptions?
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An affirmative answer to this question has been orrered by t.he theOl'y of algorit.hlll

complexity (c.f., [KA87], [Lev731, [ML74), and [ZL70]).

In the theory of algorithm complexity, the information of a sel of data is ddinl,,1 as

the length of the shortest computer program which succeeds in dup!icaling th... original

data. The computer programs arc those which can be obtained by a Univel'sal 'l'uming

Machine (UTM) (The salient property of a UTM is that of making any st.atement.s

in the theory independent or the type of comput.er.) An import.ant. charact.crist.ic or

this set-up is that all partial recursive functions can be obt.ained wit.h t.he hclp or t.he

UTM.

This innovative definition of information is a totally data-dependcnt concept.. Il

is the data which is imposing the shortest computer program and t.hus its associat.ed

algorithm information can be taken as an inherent. propel't.y of t.he dat.a, This is in

sharp contrast to Shannon'5 information which is based on an a-priori "t.rue" modcl

class for the data. Unfortunately, the theory of algorithm complexit.y fails t.o proville a

methodology by whieh to construcl those short.est programs, This non-compul,abilil,y

impairs its use as a praetical modeling theory. Nevertheless, wc should st.ress t.he con­

tribution of the theory of algorithm complexity--aside from its paramount orrerings

to the field of computer science-for deepening the concept.ual underst.anding of t.he

modeling problem.

One could say that the stochastic complexity theory has nourished as a resnlt. or

the blending of the theories of algorithm complexity, and informat.ion and coding,

'1'0 paraphrase Rissanen, it successfully adds the missing component.s to each of il.s

founding theories. It does 50 by replacing the UTM wit.h probabilil.y model cl,L~scs

on one side, and by computing the information in the data relative to the model class

chosen on the other. This emerging theory is now computable and detached from the

assumptions of "true" models, making the whole modeling process data-dependent.

The colleetion of models from which tentative explanations of data arc 50ng\tt are
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of the form of parametrized conditional compatible k-dimensional distributions

63

or

•

Model classes of the type M k = {P(·,O),1l'(O)jO E Dk } which are given in terms

of a probability distribution 1l'(0) associated to the parameters of the model, do not

have the connotation that one usually associate with them in the Bayesian framework.

They do not intent to represent data independent prior knowledge but just to provide

another possible way in which to encode the data with.

The utility function of the stochastic complexity theory by which models are

compared, is constructed in terms of the least code length needed to encode the data

\Vith the help of a modcl class. Sincc the model itself-that is, its structure and

parameters-has to be conveyed so that the receiver can replicate the original data,

the encoding of the model is also counted as part of the overall cost of encoding

the data. The criterion function is then defined as the least number of binary digits

needed to encode the data with respect to the particular model class plus the number

of bits needed to represent model structure and parameters. What is fundamental

about the stochastic complexity utility function is that since both data and models

are encoded in a similar manner, both model complexity and model fit are measured

using the same benchmark: the codelength. Thercfore, the competing issues of model

complexity and model fit are taken into account in a natural sort of way.

The first general modeling method based on this coding notion was developed by

J. Rissanen in [Ris78) . It rested on a two-part code construction and led to what is

called the Minimum Description Length (MDL) criterion. We shall shortly describe

it here, before introducing its latest but more abstract version, so as to make the

ideas expressed above more transparent.

As a first step one computes the cost of encoding the data yN with respect to a par­

ticular modcl in Mk, which as seen previously can be taken as -log p(yN, 0). Then
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one needs to encode the modcl itself. This encoding can be donc by tirst trllncat.ing

the parameter 0 up to a precision 0 = 2-Nd , where Nd is the trllncated paramcl.l'r's

total number of digits in its binary digit representation, and then constrllctillg a l'l'l'fil'

code for ~he truncated 0 with codclength -k log o. As a resll1t., the overall codc1cngt.h

is given by

L(yN, 0) g, - log p(yN , 0) - k log o. (U)

The two-part MDL modeling criterion is then derived by tirst solvillg the followillg

optimization problem:

min L(yN, 0). (4.8)
oeDJc.6

Note that this minimization involves two conflicting factors. For example, decrcasing

the precision 0 decreases the length necessary for the ellcoding of the paramet.er 0

(second term in (4.7), while increasing the cost of encoding t.he data yN (tirst tcnn

in (4.7). This is so because

- tl NON(OO) =arg min{ -log P(y ,0),0 =oo}
OED'

(4.!))

will in general deviate from ÔN which is the solution of (4.9) when no truncation is

involved (i.e., 0 -+ 0).

To solve the double minimization in (4.8), wc proceed by performing a Taylor

expansion of (4.7)

(4.10)

•

where

8
2

N 1E = 802L(y ,0) _
O=ON

Now for the sal:p. of simplicity assume E =NI, where 1 is the identit.y mat.rix wit.h.

dimension k. Then simply minimize the dominant o-t.erm of t.he expansion (4.10),

that is
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from which a simp!ecomputatio:l gives o' = (Nt l
/

2
• Finally, substituting o' in (4.10)

wc arrive at what is known as the two-part codelength MDL criterion:

- kMDL(k) = -log p(yN, ON) + 2'log N. (4.11)

•c:
'1

From the above construction wc can conclude that the MDL criterion asymptotically

l'caches the minimum codelength among members of the model class Mk relative to

this particular two-part coding strategy and the estimation method used to obtain ÔN.

WC williater show that the MDL criterion does indeed reach the minimum codelength

independenlly of, in this case, the particular two-part coding strategy.

Note that the MDL criterion asymptotically penalizes the increase of parametric

complexity more heavily than the way the Ale does.

The stochastic complexity is ~.. information theoretic measure of the complexity

of a string of data relative to a model class. The model which achieves the stochastic

complexity is the representative of aIl that can be kl.lown from the data about the

"mechanism" that generated the data relative to the give;1 model class. This stems·

from the fact that by delinition the stochastic complexity reaches the least possible

code length for the data and thus no more regular features can be extracted from it

with the given model class. Model classes can then be compared by their associated

stochastic complexity. Wc can loosely say that the length of the shortest encoding

for a set of data yN wi th respect to a model class M k is a stochastic complcxity of

the data relati V(, to the given model class.

There are sorne asymptotically equivalent computations of stochastic complexity.

Theil' dilference lies in whether the encoding is done in an on-Hne, batch or semi-batch

manner. The non-predictive stochastic complexity (c.f., [Ris89]) is defined as

(4.12)

It can be deduced by (etting 0 -> 0 in the two-part code construct (d., [Ris89]). If

a modcl class M k = {P(', 0) j 0 E Dk} is used then we can defined the conditional
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distribution

(iti

11(O,yN) = p(yN,O) (j P(yN,O)dO)-1

to construct I(yN, M k).

Notice that the non-predictive stochastic complexity, defincd as a mapl'ing 1 :

(yN, Mk) -+ !R+, is detached from any subjective considerations sincc it has no free

parameters to choose from. This is in sharp contrast to the MPE mcthods, likc (.\.1),

where there is a multiple choice of criterion functions depending on the wcighting of

model fit and modc1 complexity.

The main justifications for the stochastic complexity thCOl'y arc as follows:

(i) For many important cases it can be proved that I(yN,Mk) is asymptotically a

stochastic complexity of the data yN with respect to the modc1 c1ass M k •

Those are the cases in which the tail-condition Îs known to he satislicd, as for cx­

ample in a Gaussian ARMA set-up. The justification that in fact the non-predictive

stochastic complexity I(yN, M k ) does correspond to a stochastic complexity of a scl.

of data, at least for models satisfying the tail-condition, can be easily derived from

Theorem 4.2.1. Indeed, by rewriting (4.6) as

(4.1:3)

• j'

for ail e > 0 and for a large enough N, and comparing jl; with (4.11) we lind that

the MDL criterion reaches asymptotically the lowest bound for the t.otal codc1cngt.h.

Aiso since the non-predictive stochastic complexity can he shown to be asympt.oti­

cally equivalent to the MDL as the truncation precision tends to zero (d. [Ris89]),

I(yN, Mk) also reaches the Jower bound.

',\
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•

(ii) The stochastic complexity theory can be taken as a generalization of the maxi­

mum likelihood mcthod when modcls of dirrerent complexity arc to be compared.

Let P(x) = 2-1(%). Then P(x) is a probability function with the property of

globally maximizing the likelihood of the data.

(iii) '1'0 any type of prediction errors wc can associate codelengths whose minimized

value is the stochastic complexity.

Il is easy to show that up to a constant any prediction enor measure can be

viewed as an equivalent codclength derived criterion [Ris89]. For example, let fiN be

any predictor for a (YN) Gaussian ARMA (p, q) process. Now let EN = fiN-YN. 'l'hen

with K(yN) such that f fo(xlyN)dx = l defines a proper density function and thus

we can associate the codelength

Moreover, Wl> can affirm the following theorem since the tail-condition is known to

be satisfied for Gaussian ARMA processes (d., [GR86] and also [Kab88] for a related

result).

Theorem 4.2.2 Let a Gaussian ARMA(p,q) satisfy Conditions 3.1.1 and 3.1.2. Let

(En) be any prediction error process, then

N

lim lE 2:(E~ - e~)/q2(p +q) 10gN ~ 1
N-oo n=)

except for a set of ARMA parameters of measure O•



• CHAPTER 4. MaDEL aRDER SELECTION

4.2.1 Predictive Stochastic Complexity

flS

•

The non-predictive stochastic complexity given in (·1.12) is compnt.cd olf-linc t.hus

making il. impractical for a large c1ass of important ]>roblcms, likc thosc ill\'ol\'ing

dynamical systems which frequently ought 1.0 be solvcd in l'cal tillle. Fol' this rcason,

an approximation of the stochastic complexity which is com]>utcd OII-liuc was illt.ro­

duced by [Ris8G] (see also [Daw84]). lt is called predictive stochastir. eOlllplexity. II.

is also an information theoretic measure of the complexity of a string of ,lnt.a, huI. in

this case il. is not only relative 1.0 a model class but also 1.0 a parl.icular estimal.ion

method. The on-line feature distinguishes the predictive stochastie eomplexit.y thCOl'y

from other modeling methods such as the AIe or me, (c.r. [Akll.ïO], [Akll.i3], [SchïS],

[Saw78]) which are inherently off-line.

II. will be shown that the predictive stochastic complexity is a Illat.hematicll.lly weil

understood criterion, which 'can be used in solving model selection problems in real

time. II. can also be used as a fundamental 1.001 1.0 solve other important problcms sueh

as adaptive control, the estimation of nonparametrie lransfer functions, and change­

point detection (d., [BG90], [G1391], [GB90], and [BG92ll.]). For some applic(Ltiolls

in other arcas of statistics the reader is referred 1.0 [QR89] and [WBG8].

Predictive stochastic complexity is defined in terms of predictive encoding, which

can also be considered a universal coding procedure (for related works in this area

see [LJ74], [Ris84], and [ZL78]). Let us first then introduce the predictive encoding

concept through an example of its implementation.

Suppose we pick a model class represented by the family of dcnsitics {J(., 0), 0 E

D} 1.0 model a set of data yN. Assume for the sakc of simplicity thal. k = 1. Now,

recall that for any trial parameter 0 E D, a prefix code O(Yi, 0) with i = 1, ... , N ean

be constructed (c.r., Section 2.3) such thal. for an observation Yi we gel. thc associated

code length

L(Yi,O) =-log J(Yi, 0) .
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The predictive encoding !"lrocccds as follows:

69

•

(i) Pick up any initial guess 00 E D and encode the first observation YI with the

code CI = C(YI> 00 ).

(ii) Compute the ML estimator Ô. of O· using YI.

(iii) Use the estimator ÔI to encode the next datum Y2 as C2 =G(Y2' Ùd.

(iv) Go to item (ii) and repeat the procedure unlil the whole data sequence is

encoded.

As an end result we get the generation of the sequellce of codes Cl> .•• , cN.

Ouly if we cau decode the sequence CI>' .• , CN, and get the original data yN se­

quentially as the data is transmitted, could we then conclude that we had constructed

a predictive encoding procedure. Let us show that this is the case. As a first step

assume that the information about the model class {f(.,O),O E D}, and the initial

condition 00 is known (Le., it has already been transmitted to the decoder). The

decoding is done as follows:

(i) When the decoder receives the code CI> it can certainly compute YI by solving

the equation C(YI> 00 ) = CI.

(ii) Then, it can compute ÔI by solving the ML equation.

(iii) Once C2 is received, the observation Y2 can be recovered by solving C(Y2, Ôd=
C2. Again Ô2 is obtained form the ML equation.

(iv) The decoding is then repeated sequentially until the sequence CI>' •• , CN has

been exhausted.
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A very important consequence of the predicti\'e encOlling proce<llll'e i$ t.hat.

,0

can easily be shown to deRne a density for the data yN. Thi$ shows that. a densit.y

F(yN,Oo) for the data yl!"" YN is being learnt or const.ructed, as dat.a beconws

available. Not.ice that this is done through a tmly sequential cùnstl'llction.

One of the main features of the predictive encoding procedure is that. it. can be

employed as a met.hodology for choosing amongst. different. modcl classes. For in­

stance, take the case where two modcl classes MI = {J(.,O),O E Dd, and M~ =

{g(., !/J),!/J E D2 }, are considered for a given dat.a sequence. Then, the predict.ive

encoding procedure will provide us with coding sequences c{, ... ,c~, di, ... ,c!~, ami

densities F(yN, 00) and G(yN, !/Jo). By comparing t.he total code lengt.hs L.~l cf ;Uld

L.~l cf, the mode! class that associates the minimum tot.al code length is t.hell chosell.

Moreover and for example, if the model class Ml is Rnally chosen then

(4.1'1)

•

Therefore, according to (4.14), the best mode! corresponds 1.0 the conslruci.eu uensily

that gives us the maximum probability with respect to the data. Clearly this resem·

bles the ML idea and represents one of the basic faets that serves as a foundatioll of

the theory of stochastic complexity.

Definition 4.2.2 For the model class described by the family of densit.ies {J(', 0); °E

D}, the predictive stochastic complexity is defined by

where Ôn _ 1 is an estimator obtained using only the dat.a yN-l by means of sorne I.ypc

of estimation algorithm.
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•

Sincc the predictive stochastic complexity can be shown to be asymptotical1y

equivalent to the non-predictive stochastic complexity (c.f., [Ris89]) then I p also

l'caches the lower bound as specified in Theorem 4.2.1.

Example 4.2.1 For the !inear regression given by (2.6), define the prediction error

l'rocess

Then it is easy to sec that the predictive stochastic complexity is given by

N 2
I: (En(Ôn_1)) .
n=l

Note that the prediction error (n(Ôn- 1) is-using Rissanen's terminology-"honest"

since for its computation we only use data which precedes the moment n. Compare

this to the Arc approach where En(ÔN) is not computable at time n.

Let us now turn to the analysis of predictive stochastic complexity for the i.i.d.

case. Recall that at step n the code length is given by -log/(Yn,ôn-l). Assume that

the data was actually generated by the density with parameter O·. Then c1early the

optimal encoding will be -log J(Yn, O·). We would like to investigate how rnuch we

have to "pay" for not knowing O·. The following theorern was proved by Davisson for

the AR case (d., [Dav65]).

Theorem 4.2.3 (Davisson's formula) Under certain regularity conditions (c.J.,

(Dav65J) imposed on the density J(-, O·),

- k
lE o'( -log /(çn, On-d +log J(xn,O·)) = 2n (1 +0(1)).

(IIint: Perform a second order Taylor-series expansion of the left hand side).

The above theorem can be interpreted as a statement about the difference between

two rnean pel' symbol code lengths: one based on the knowledge of O·, and the other

on the model dass onl~·.
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Example 4.2.2 The eummulative elfeet of paramcler uncertainty for the tinear re·

gression of Example 4.2.1, is given by

If instead of the "honest" estimators Ôn-l we were to use ÔN, the cUlllu1ati \'e c1fcd

of parameter uncertainty for the regression case would be

(,1.15)

Observe that the Icft hand side of (4.16) cannot be interprcled as a codcleugth,

sinee ÔN is unknown to the decoder. lIowever, if we transmit ÔN, whieh increases

the length of the message by '- k bit~, e > 1/2 a constant, then decoding !>ecomes

possible. Let
(;. 1 N _

J(k) = lE - I>~(ON) +ck
2 n=1

(4.16)

then models ean be eompared through their assoeiated J(k)'s values. Note that for

e = 1, (4.16) corresponds to Akaike's information criterion.

One main disadvantagt. of Ale type criteria is that they are inherently off·liue.

Therefore, for example, they are not suitable for use in real-time control syst.ems.

This is a direct consequence of its definition sinee at each time n futlll'c valucs of t.hc

data are needed to compute the estimate ÔN.

It is easy to see that J(k) penalizes overpararnetrization. lnoceo, let. >l'. = (11",0)

be an extended paramcter, say dim,p· = k' > k. Then we have

•

1 N _

lE 2" :L:(f~(,pN) - c~) = -k'(1 +0(1)).
n=1

Substracting L:~=1 c~ from equat.ion (4.17) we concluoe t.hat

Œ(J(k') - J(k)) = (k' - k)(1 +0(1)),

,,'1
., ,~

"

(4.17)
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Althollgh the predictive stochastic complexity is computationally intensive in its

original fonn, a suitable modification for th~ ARMA case with great potential for

generalization is now available. The important fact is that it does not affect the

asymptotic properties of the original predictive stochastic complexity (c.f., Theo­

rem 3.6 in [CR91]). Ongoing researchîndicates that this important stel' can also be

canicd out in the multivariable caSe.

4.3 Model Order Selection for ARMA Models us-

ing Predictive Stochastic Complexity

The present section will be Iimited to the specific but difficult problem of findir.g

the best modcl order for a sel of data among ARMA modcls of different l'rder. This

is an important problem in the statistical theory on Iinear stochastic systems. The

AR case was analyzed by [HMP89] and [HD89]. The latter work is based on the

work of [Wei87]. The analysis of the significanl1y more difficult ARMA case was

sellled in [Cer8ge]. This work provides a computationally feasible version of predictive

stochastic complexity which will be used in the mode! order se!ection of ARMA

systems. Moreover, We shall show that the predictive stochastic complexity modeling

method is consistent for a certain types of ARMA models.

The main result of [Cer8ge] is that under certain not too restrictive conditions We

have

(4.18)

•

where (en) is 11lC' input noise process, 0'2 = lE (en)2, En is an "honest" prediction error,

and 1', q arc overestimated values of the true orders p., q. (but only one of them is

stricl1y greater than the true order).

While this result is certainly of great interest it may be criticizeJ from"a practical
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point of vicw sincc the sensitivity of the criterion L:::=.(,?'l' to owr"st.illlat.ion is not.

very rna!"ked. Using instcad the fixed gain prediction-error l'roccss (;~, th" sl'nsit.i\·it.y

of the criterion to ovprmodcling is increased, as it will he descrihcd Iat.el" How",",'r,

fixed gain recursive estimat.ion meth"ds are not. as weil underst.ood as t.he t.radit.io,,,,1

estimation met.hods. Hence, the asymptotic properties of t.he predictive st.ochast.k

complexit.y associat.ed with a fixed gain recursive prediction e'Tor seellls to be \"l'l'Y

difficult at present. A less challenging project, which was undertaken in [Cern!>], is

the analysis of predictive stochastic cClnplexity associat.ed with the off-line Iixell-gain

estirnator. Sorne of the rCllult that folhw can be found in [G1390J and [IlG92a].

4.3.1 Technical Conditions and Main Theorems

Let us first introduce sorne of the technical conditions which arc ncedcd 1.0 solve

the rnodeling prohlem for ARMA classes. Let (y,,), n = 0, ± l, ±2, ... he a second

order stationary ARMA(p, '1) process satisfying the followilJg dirrerence equation:

A"y = C"e.

Condition 4.3.1 The input proccss (e,,) is a discrclc-timc, sccond DI'dcI' slrtlio71It7·1/.

Lo-mixing proccss, and satisfics Condition 3.1.2.

Let

Dp',q' = {(p, '1) : p;::: p" and '1 = '1" or II = p. and '1 ;::: (n· (~.l!J)

•

denote the set of model orders describing overestimated structures. For each (rI, q) E

Dp• ,q' we define the "true" parameter by appropriatc1y augmenting (rI -1/) +('1 - (t)

zeros to the parameter-vector (ai, ... a;., ci, ... c;,).

Let G C ffi.p+q denote the set of O's such that the corresponding polynomiab

A(z-I) and C(Z-I) are stable. Gis an open set. Let D· and D be compact, domains

such that 0" E D" C intD and D C G. Bere intD denotes the interior of D.
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Let us define

75

N

SMp,q) = L (t~r
n=l

(For the definition of t~ rcfer to Section 3.2.) In the Gaussian case Stt(p, q) is a

predictive stochastic complexity relative to the ARMA(p, q) mode! class and the re­

cursive fixed-gain olf-line prediction error estimation method. Note that t~(Ôn:l) is

"honest" in the terminology of [Ris86], Le. to generate the prediction error process

we only use data preceding the moment n.

Now let us denote

6.p~(p,q) = sMp+ l,q) - SMp,q),

and

6.q~(p,q) = SMp,q +1) - SMp,q).

Moreover, denote 6.Mp,q) whenever 6.pMp,q) or tlq~(p,q) can be considered. The

next theorem captures the excess of predictive slochastic complexity between consec­

utive ARMA(p, q) model classes when only one of the model orders is overestimated.

Theorem 4.3.1 ([Ger92b]) Under Conditions 3.1.2 and 3.1.1 and for (p, q) E

Dp' ,q', we get

(4.20)

wiler'e C is a nonmndom constant.

We recall (d., [Ger86]) that when the predictive stochastic complexity is taken

relative to the recursive time invariant olf-line prediction error estimation method,

we have for (p, q) E Dp' ,q'

Comparing ('1.20) and (4.21) we can clearly see that the fixed-gain predictive stochas­

tic complexity SMp, q) is qualitatively much more sensitive to overparametrization•
J~I~~,<log N)-l tlJ1.,(p, q) =0'2 a.s.

"

(4.21)

•



• CHAPTER 4. AJODEL OIWER SELECTION j(i

q

1

1 p* p'" p

•

Figure 4.1: Tbe undcr-paramctrizatioll and ovcr-purmllctrizulioll l'cgiollN.

than the time invariant predictive stochastic comp1cxity SR.(p,'1)' Thc st..,rt.1ing f.,ct

is that the "badness" of the estimator incrcascs qualitativc1y thc "badncss" of over­

parametrization.

Let poo, qoo be a-priori upper bou'.lds for the unknown truc ordcr modcls 1" ,'1',

and let us consider the set of model order pairs

Fp',q' = {(p, q) : p ~ poo and q ~ '1' or P ~ 1" and '1 ~ ,r}.

In Figu·e 4.1 the regions Dp',q' and Fp',q' arc illustratcd.

It is a well-known maxim that in the underparamctrization rcgioll, morc prcciscly

for (p, q) E Fp' ,q' \ Dp' ,q' we get for small >"5
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where 61 is a constant (c.f., [D1I89]). Simul",lion studies show that a similar result

holds true for t>.Mp, q), i.e., for small ,\'s

Hm N-1t>.F,(p,q) < 62 < C a.s.
N_co

wherc 62 is also a constant.

4.3.2 Selecting the Best ARMA(p,q) Model

(4.22)

•

We shall Sec that the predictive stochastic complexity S»(p, q) can be successfully

used for modcl order estimation when ,\ is small. The following theorem gives the

conceptual framework:

Theorem 4.3.2 ([GR9!]) Let the conditions of Theorem 4.3.1 and the validity of

(4.22) hold, and denote PN,qN the solution ta the problem

min SMp,q).
(p,q)EFp','l'

Then for suJ]iciently large N's, N > No(w), we have fiN = p" and qN = q".

REMARIC S»(p, fJ) provides the only real-time computab!e criterion of model order

estimation for ARMA systems.

Let us now oul1ine the scheme to find an optima! AIlMA mode! in practice:

i) Compute t>.p~{1, 0). If .6.p~(1,J) > 0 then stop the search. The optima! moqe!

is AR(l). If instead .6.p~(l, 0) < 0 then the optima! mode! is not AR(I) and

thus continue with (ii).

H) Compute .6.qMO, 1). If .6.qMo, 1) > 0 then stop the search. The optima! mode!

is MA(I). If instead .6.qMO,I) < 0 then set p =1 and q =1 and continue the

search according ta the next item.
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iii) Start moving from point (1,1) along the line {(l',q);1' = q}, in the plane with

a:ds given by the tentative model orders l'and '1, as long as tJ.1',~(I),q) al III

tJ.qMp,q) are neg?tive. That is, the decision to 1lI0Ye along {(l',q);/l = ,Il is

donc by comparing the ARMA(p+ 1, '1) and ARMA(]" '1 + 1) model classes wit.h

the ARMA(p, '1) model class. (llere we are applying (4.22) which charact.erizes

the behaviour of both tJ.p~(p,q) and tJ.qMp,q) in J·~•.••\D""",) Now, whell

at least tJ.pMp,q) or tJ.qMp,q) becomes positive then ]' = p' and/or '1 = '1'.

That is, according to ('1.20) we are comparing ARl\'IA 1lI00tel classes atollg t.he

region Dp••••• 1'0 determine where we actual1y hit t,he regioll D".,./" COlllput.e

ë;.p~(p - 1, '1) and ë;.q~(p, '1 - 1). Then one of the fol1owing situat.ions lIIight.

arise:

a) If tJ.pMp -1,'1) < 0 and tJ.q~(p,q-1) < 0 then], = l" and '1 = 'l'.

b) If DoT/Ml' -1,'1) < 0 and ë;.q~(p,q-1) > 0 then p =p' and '1 ~ 'l'.

c) If ë;.pMp -1,'1) > 0 and tJ.q~(p,q -1) < 0 then lJ = 'l'and l' ~ l'"

For cases (b) and (c) where the search is not over, proceed as follows. For Ci~~C (b)

compute ë;.q~(p,q -1) for decreasing values of '1, and when '1 is such that tJ.q~(I),'I­

1) < 0 then set q = q" and stop the search. Case (c) is done simiiarly.

Since the above heuristic description of the model order selection method tcaves

many important details open, let us make the following commellts:

i) Trouble may occur in Pp•.•• \Dp•.•• , the region where wc underestirnate the

model order. Although incleasing p or '1 by 1 decreases S»(p, '1) duc ta 1111­

d-~rmodeling by an amount proportional to N, it also increases SMp, '1) duc

Lo parameter uncertainty by an amount proportional to N. If À is not srnall

er'ough, then the cfrect of parametcr uncertainty may dominate, causing the

exccss of predictive stochast:: complexity to become posite and thus wc rnay
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•

slagnale in Ji;",q' \Dp',," Thus, il is imporlanllo sel ,\ small in Fp',,' \Dp',,"

or lry differenl ,\'s lo "nsure lhal lhis does not happen. This issue is illuslraled

in Section 4.3.5

ii) Il would be imporlanl to choose N under lhe constraint of a desired lower

bound for

P(D.~(p, q) < 0 1 (p, q) E Fp',q' \Dp',,')'

and

P(D.~(p, q) > 0 1 (p, q) E Dp'".),

Le. the probabilities of correct decisions,

iii) instead of fixing an a-priori value for N, we can take it as the minumum N

such lhal D.&(p, q) has linear trend with fixed probability. This should reduce

the computation search time.

iv) AIl the results of this section are in terms of the off-line fixed gain prediction

error method. The reason being that the asymptotic properties of the predictive

stochastic complexity associated with fixed-gain recursive prediction-error have

not yet been analysed. However, we applied this algorithm in the simulation

and it indicates that the proposed procedure wOl'ks cxceptionally weil in l'cal

time.
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4.3.3 AR Model Order Selection Simulations

In this section we will solve a model order selection prob!cm by applying i\ Il

modcls. The purpose of starting with this simp!cr problctn-<ls opposml to <lpplying

ARMA models to the order selection problem-is that it is simplilies thc illustral,ion

of the effect of the fixed gain ,\ on the modcl order selection procetlurc.

We start by generating 2000 data points by means of a computer simulation of

a time invariant AR(4) system, driven by a Gaussian white noisc input pmccss with

mean 0 and variance 1.

The time invariant AR(4) system is given by

YN +aiYN-1 +... +a.jYN-4 = eN

with

ai =.5 a; =-.3 a; = -.2 a~ = A.

•

The order selection strategy is based on comparing the AR(p) to the mode! c1ass

AR(p + 1) c1ass. The comparison is done by computing the predic\.ivc stoclllc,tic

complexity associated with each AR model and calculating their dilfcrcncc. Thns,

deline

.6.R.(p) = S'Jv(p +1) - sRr(p).

which is the excess of predictive stochastic complexity between the AR(r, + 1) and

AR(p) mode! c1as::, when app!ying the time invariant predidion eWlr aigoril.llln.

The mode! order selection scheme presented in Section 4.3.2 is sirnplified Jignif­

icantly in the AR case since we now on!y have to search for order modcls on iL line

instead of a plane (as in the ARMA case). Thus, we just have to simp!y keep in­

creasing the order of the AR mode! until the dilrerence of the stochastic complexil.ies

associated with the AR(p) minus the AR(p +1) modcls is negative.
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Figure 4.2: The dilference oC predictive stachastic camplexities oC adjacent AR madels
WhOll using the timc invnriant prediction error estimation mcthod.
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Note the sort of logarithmic drift of the excess of predict.i"e st.ochast.ic Cûlllplexit.y

in Step cl of Figure 4.2. This is prediet.ed by the theOl'y when t.he t.illle-im'ariant.

rccursive prediction error method is used-sec (-1.18).

Figure -1.2 shows that there is not much point in increasing the order of the AR

model beyond p = 4. Thus the truc modcl order, p' = -l, of the AR systelll was foullll.

Let us now repeat the previous experiment but instead use the lixed gain prediction

error algorithm to generate the prediction error process. Thus, in this case dcfinc

t,~(p) = S~(p+ 1) - S~(p),

which is the excess of predictive stochastic complexity bctween the AR(p + 1) and

AR(p) model class, when applying the prediction errOr algorithlll wit.h fixed gain ,\.

We set the value of the fixed gain ,\ = .0125 and the resull.s arc il1usl.ral.ed in

Figure 4.3. We then double the value of the lixed gain, that is wc set ,\ = .025, and

perform the experiment again. Figure 4.3 shows the results when using this value

of .\. Similarly to the previous simulation, the same conclusion is drawn when using

fixed gain: The scheme finds the true model order, p' = 4, of the AR system.

The impoctant observations that can he raised from these last two simulations

are: i) The differencc of the a~sociated predictive stocha~~ir. "omplexities of adjaccnl.

AR models, when the moC!~! is overparamclrized-sœ Step cl of Figure 4.:1 and

4.4-grows proportiollal1y to the gain À. This fact confirms the theoretical statement

given in Theorem 4.3.1. Namely, the estimation "badness" jncrea~es the "badness"

of overparametrizationj ii) In the over-par<>.metrization regioll, the clifference of the

associated predictive stochastic complexities of adjacent AR moclels have l.early linear

drifts as opposed to the logarithmic drift obtained when the time invariant recursive

prediction error method is used (i.e., Step cl of Figure 4.2) .
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4.3.4 ARMA Madel Order Selection Simulat.ion

Let data be generated by the fol\owing AHilIA(·I,:l) Syslell\

with

and

a; =.3

c; = .9

a; = .7

c; = -.5

•

The system is driven by a Gaussian white noise input process (c) wit.h lIlean 0 and

variance .5.

The simulation is l'un for 1000 data points, genel'ating the l'ea!ization yN of 'yN. ln

what follows we shall apply t.he mode! selection procedure pl'esented in Section -1.:3.2

1.0 determine the best ARMA(p,q) model representation for t.he da!.a yN. The order

selection strategy is based on comparing the ARMA(p, '1) modelwith the AH.MA 11\0d­

els ARMA(1l + l, '1) and ARMA(p, '1 +1). The comparison is donc by computing t.he

predictive stochastic complexity associated with each ARMA model and calcnlat.ing

their difference. Recall that

!::.pMp, '1) = S~(p + l, '1) - S~(p, '1),

is the excess of predictive stochastic complexity of the ARMA(], + l,,,) 11\0del class

when compared to the ARMA(p, '1) model class, whereas

tiq~(p, '1) = sMp, " + 1) - s~(p, ,,),

is the excess of predictive stochastic complexity of the ARMA(p, '1 + 1) model class

when compared to the ARMA(p, '1) model chels.
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Let ilS follow the mode! order selection olltline of Sectioll 4.3.2: Start with an

An( 1) alld I\'1A( 1) Illodcl classes 'UIU illcrease the orders of these modcls in the autore­

f\ressi", alld Illoving average directions llllti! wc hit the o\'er-parametrization region.

Figure ,1.5 illllstrate the behaviour of the uifference of predicti\'e s\ochastic comp!el(­

ity of adjacent ARMA mode! classes in the under-parametrization region. Sincc ail

the figures Figure '1.5 have negative drift wc concludc that wc should increasc mode!

orders Il and q.
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Figure 4.5: The difference of predictive stochastic complexities with gaill ,\ = ,01 fo,'
neighboring ARMA models in the under.parametrization regioll.

•

The search in the (p, q) coordinate system corresponding 1.0 the under-parametrization

region is presented in Figure 4.6. The arrows in this figure have a one-ta-one cor·

respondence to th/) figures in Figure 4.6. For instance, the arrow e in Figure 4.5

represents the excess of predictive stochastic complexity taken with respect Lo Lhe

ARMA(3,2) and ARMA(2,2) modc1 classes as plotted in Step e of Figure 4.5.
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5

ss

2 3 4 5

•

Figure 4.6: First scheme steps: To reach over-parametrization region. (Each arrow
corresponds ta n figure in Figure 4.5.)

Now, we increase the model orders of the ARMA classes in both directions. The

results are illustrated in Figure '1.7. This figure shows that we actually did hit the

over-paramdrization region since ~Pi\ooo(4,4) > 0, and ~qi~oo(4,4) > O. Therefore,

we should decrease both model orders.
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Figure '1.7: The difference of predictive stochastic complexities with gain ,\ = .01 for
l1eighboring ARMA models in the over-parametrization region•
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The search in the (l', q) plane is illustraled in Figme ·LS.

1
Dr"......... ··t

:===-~~.:-_,
2 , , ARMA(4.3)

2 3 4 5 p

Figure 4.8: Bit ovcr-pnrnmctrization rcgion. (Each nrl'oW COl'l'CSPOlilis ta n figure in
Figure 4.5.)

Finally, we decrease the model orders of the ARl\'IA modcls classes IIntil wc gct

a negative drift for both f,.pfJ(p, q) and f,.qfJ(p, q). These last steps arc shown in

Figure 4.9 and Figure 'LlO.
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Figure 4.9: The dilference of predictive stochastic complexities with gain ..\ = .01 for
ndghboring ARMA Dl0dcls nfound the boundnry of the ovcr-pnrnmctrizntion rcgion.
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Figure 4.10: Last search steps. True model arder found.

The optimal modcl was found to be ARMA(4,3) which coincides with the order

of the original ARMA mode!.

•
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4.3.5 Simulation Example of Parameter Versus Model 01'­

der Uncertainty

This section will show how the c1fect of paramcter unccrt.aint.y may dominat.e ",'cr

modcl arder uncertaint.y.

Let data he genc-at.ed by the ARMA(2,1) Ny == C"c syst.em wit.h p:u':uuc!.cr

values

fL" == [1 --.5 .il and C' == [1 .01],

•

driven by a Gaussian white noise input. process wit.h mean 0 and \':Irianœ ,~, The

gain of the fixed-gain recursive prediction error algorit,hm is scl t.o .\ == ,n l.

500 1000

N

Figure 4.11: The difference of predictive stochastic complexities with Ilain .\ = .01 of
an ARMA(2,1) and AR(2) models.

In Figure 4.11 the dirrerence of predictive st.ochastic complexit.ies of an AllMA(2,1)

model wit.h an AR(2) model is illustrated. More preciscly wc comput.e f),q;(2, 1).

Since f),q;(2, 1) > 0 wc conclude that (2,0) E Dp",q" which does not. correspond t.o

the arder of the original ARMA model. This is caused by t.he predominant. effect

of parameter uncertainty over model arder uncertaint.y. 'Nhen t.his occurs one can

decrease ,\ or use the time invariant recursive prediction error algorit.hm.
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Chapter 5

Change-Point Detection

5.1 Introduction

Change-point detection is the problem that deals with the estimation of the time

or space location of quantitative and/or qualitative changes along the evolution of

processes. In more concrete terms, a change-point represents a crucial behavioral al­

teration of the properties or characteristics of a physical system or signal which ought

to be detected. The need for change-point detection procedures arises in both natu­

rai as weil as human-made physical systems (referred to in the sequel as machineries

or mechanisms), or combinations of both. Failures occurring in physical plants, in

particular sensors and actuators, are typical examples of change-point type machine

disruptions, whereas earthquakes and the diagnosis of brain and sound signais rep­

resent illustrations of natural systems. The applications of change-point detection

techniques are currently being found in a variety of scientific aetivities such as math­

ematics, medicine, economics, and engineering.

When dealing with mechanisms, the term failure or fault detection is most com­

monly employed, since it accurately describes the faet that a total or partial break­

down of a component of a monitored machinery has occurred. For this type of physical

92
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system, it is often the case that more than plain change-point dct.cction schcnws are

needed as part of the overall supervisory strategy of physical plants. For examplc,

sorne systems will also require the isolation of faults, that is the specific system's

physical location of them. lvlethods that can achieye these t\\'o t.ypes of diagnost.ics

are usually rcferred to as FDI (fault detection and isolation) methods. An C\'cn fur­

ther step in a supervisory scheme is to entrench it with accommodat.ion capabilit.ics.

That is, after the isolation step is completed successfully, adjustment to a new and

acceptable configuration takes place. This could also inc1ude the on-line replace­

ment of a broken part if provision for hardware component copies has been made

beforehand. This more complete supervisory strategy is known as the FDlA (raulL

detection, isolation, and accommodation) scheme.

In contrast, when dea:ing with natural systems, the term change. point dct.eetion

is most frequently employed .. Clearly, there is a natural overlapping of the two camps

since very often stochastic process signal models arc used to monitor mechanisms. III

this thesis we will use both terms, that is fault detection and change-point detection,

indistinguishably.

Since modern machineries consist of interconnections of large numbers of compo­

nents, most of them crucial to the overall system performance, the design of fault

detection schemes is vital to any successful long-term system design. The l'ole of

failure detection schemes is to reveal possible malfunctions of components by giving

sorne type of early warnings 50 that proper action can be taken. Successful impie­

mentations of these schemes will allow for the maintenance of an adequate level of

plant performance and security, and if need be, might even avoid a catastrophe.

Traditionally, change-point detection schemes were utilized in quality cont.rol (d.,

[Pag54J, [Tay68J), and the proposed solutions were known as control charts. Soon

after, they were used to anticipate failures in physical systems. Typical examples arc

failures in sensors and actuators, fatigue of structures, and failures in nuclcar plants.
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These earlier applications have evolved to also include change-point detection in

the recognition of signais, and as one of the basic features in the modeling stages

of physical systems. For instance, they have been utilized for modcling variations

in the operating conditions of physical systems. The basic fact that makes these

schemes so uscful is their ability to succcssfully deal with many kinds of non-stationary

processes. Good illustrations are the modeling of speech, sequential segmentation

of images (d., [BEGSl]), and the diagnosis of ECG (clectrocardiogram) and EEG

(clectroencephalogram) signais. For example in (d., [GWW+78] the detedion and

classification of cardiac arrhythmias from data coming from ECG signais has been

favorably reported.

Other noteworthy examples of change-point detection applications are the design

of fault detection in a robotic system [WF90], and the processing of geophysical sig­

naIs [BasSG], where the jumps occurred as a consequence to signais traveling through

different geological levcls. Another example along this line is the study of earthquake

produced ground motion to assist in the design of structures being built in seismic

areas (d., [PD90]).

Fault detection has also entered the area of adaptive contro!. Since classical

adaptive controltheory is mainly suited to time invariant uncertain systems, or time

variant systems with very small rates of variation, it became natural to extend the

applicability of adaptive controllers to systems which present abruptly or slowly time­

variant change-points (d., [RS73]). This can be attained by using the information

given by a change-point estimator in the reshaping of the current controllaw.

For the most part, we shall not attempt to give a comprehensive review of ail the

work done in the last 20 years in the area of change-point deteetion. Although the

literature of fault detection is not as extensive as in other fields in systems and control,

a variety of survey papers and books have already been devoted to this area. The
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reader is referred to the survey papers of [WiI7G], [l\lirSO], [iseS·1J, [BasSSJ, [LllI\IS!l],

and [Nik91]. There arc also sorne important books writt.en on the subjed alll! t.1\l'se

include [BB86], and [Tcl86].

Our goal here is to underline the general problel1l formulat.ion, and highlight sonle

of its most essential features and difficulties. The present.ation shonl,1 also serve

as a self-contained introduction to the topic, assisting readers unfal1liliar wit.h t.he

area in understanding the change-point detection l1lethod which will be devcloped in

subsequent sections.

5.2 First Elementary Detection Methods

In the carly stages of the devclopment of change-point det.ection procedmes, il

naive approach was used to tackle the problem. It consisted of using unprocessed

measured signais, say y(t), until they surpassed sorne a-priori defined fixed t.hresh­

old h. This simply meant that the following trivial scheme was used:

{
< h no alarmj

y(t) =
;::: h alarm on,

which has been generally known as limit checking. Surprisingly enough, this type of

procedure was still in us'" by ;>arts of the Space Shuttle Columbia's monitoring system

when it exploded in mid-air (c.L, [Cik86]).

Another earlier failure detection method which was implemented in machiner­

ies, consisted of processing the information given by exact hardware copies of the

monitored parts of a plant. This method is called hardware redundancy. A faulty

component will produce a different signal from that of the others and thus can he dis­

cerned using a simple memoryless voting system. For example, let (YI), (Y2), and (Y3)

be the signais produced by three identical system hardware components and consider
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for some c > 0 the fllnetion

9G

•

where lA denotes the indicator funetion of the set A. Then

{
< 2 no alarmj

r(t) =
;::: 2 alarm on.

Ullder the evellt {r(t) = 2}, discrete decision logic can be used to discard the faulty

compollent. A more involved voting system approach can be found in [Br074]. An

intrinsic drawback of voting systems is that they have dimculties deteeting what are

usually rcferred to in the literature as soft faults, for instance small shifts in bias.

ln [FG82], a procedure is given for the estimation of sudden jumps in bias vectors for

lillear systems.

The hardware redundancy FD! procedure is still being used due to its simplicity

and to the fact that FD! methods have not yet matured to the level of providing

robust fault diagnosis schemes good enough to make voting systems obsolete. The

drawbacks of hardware redundancy are evident: cost, and depending on the situation,

also weight and physical space. Moreover, FDI schemes in voting systems wiII have

an unacceptable long-term reliability. This is due to the fact that the component

copies used by a voting system wiII aIl wear at similar rates. (Note that wearing is

the main cause of hardware system's faults.)

Consider a fault detection scheme which can detect a system fault based on the

signal produced by only one component. Manufacturing better hardware components

will then add to the overall system reliability but in general could be either too costly

or sometimes not possible to realize. As was just recent1y mentioned, using hardware

redundancy will not significant1y improve the long-term reliability. Any consider­

able long-term improvement in the scheme's reliability should then be obtained by

ameliorating the software (i.e. the failure detection algorithms) rather than the hard­

ware. An aeronautic example given in [DDDW77] shows that the number of hardware
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backup components can l'ven be etfect.ivcly rcdllccd, t.hllS IOll','ring t.he o\','rall desi!',n

cost.

The intrinsic drawbacks found in the first available change-point, ,ldcl'l.i'"1 t"l'h­

niques, plus greater demands on safcLy, rcliabilit.y ,md performance dellHln,k,1 lI\'"','
elaborate failure detection methods. The sophisticated and mo,l,,1'll procc,lllres orig­

inated in studies like the ones given in [PagM], and [Shi61] in the beginning of the

60's, coinciding with the advent and rapid spread of computer technology. This coin­

cidence was by no means accidentaI since the availabilit.y of digital cOlllpllters opelll'd

a l'cal possibility for the creation of sophisticated supervision systems. Allot.lwr fac­

tor that contributed to the growth of this field was the COnClll'rellt pmgress t.h,Ll, was

taking place in control systems and system identification.

5.3 Change-Point Detection for SignaIs

In this section wc will focus our attention on statist.ical mcLhods for solving

change-point problems in a stochastic framework. We shall mainly be conccl'llcd

with the foundations of this problem.

5.3.1 The Off-Line Mathematical Formulation

Let us start with a formai mathematical statement of the pmblem. Let YI, ... ,yN

be a set of data, and M a class of models, then the orf-line change-point detection

probll'm is dl'fined as the issue of choosing between the hypothesis

Ho : YI, ... , YN generated by Mo E M,

and

•
3 1 ~ T' ~ N such that {

YiJ""YT'-I,

YT',·", YN,

generated by M~ E Mi

generated by MIE M.
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•

11 0 represents the null hypothesis of no change-point in the data yN and H1> the

alternative hypothesis indicating the presence of a change-point in the data sequence

yN. The assumption that r" is not known is the distinguishing feature of the change­

point problem. If r" is known the result is the standard two-sample statistical problem

(c.f., [Tay68J) Other related questions are the estimation of the change-point and the

concurrent estimation of the models themselves.

Change-point detection problems for signaIs are always stated or transformed into

a stochastic framework, meaning that the data is assumcd to be a realization of a

stochastic proccss, and the models are explicitly or implicitly described by probability

distributions. Thus, for cxample, the models can correspond to conditional densities

of the form

As can be clearly scen from the problem statement, change-point deteetion fans

into the more general topic of model selection. '1'0 choose between the multiple

models implicitly given by hypothesis 1-10 and Hl> is to decide which of these model

descriptions best represents the set of data yN. This represents one of the intrinsic

difliculties of change-point deteetion problems since general model selection theories

are only recently achieving adequate success (c.f., [Ris89J).

We are not aware of any work in the field of parametric failure detection in which

the selection of the model class M was itse1f one of the central issues. The departing

point has been the a-priori assumption that the model class M was the "true" model

class representing the data. Therefore, no available technique had any provision for

the comparison of dirrerent model classes M in its change-point detection formula­

tion. We shall address this issue in Section 5.5 based on the ideas and tools provided

by the stochastic complexity theory. Let us only mention now that under this frame­

work the multitude of possible models represented by Ho and I-It correspond to only

tentat,ive explanations of the data. Thus the change-point will explicitly depend on

1/
Il
"

.-
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lhe parlicular modcl c1ass, say M, choscn. IIowcycr, for lhc sakc of simpliciLy, in lh"

inlroductory exposilion lhal follows Icl us assumc lhal t.he dat.a is aclnally gcnerat.ed

according lo one of lhc modcls in lhc c1ass spccified in lhe hypolhesis I1u and Ill,

To furlher cimplify lhe discussion we will assume lhal Lhe dat.a exhibit.s only one

change-point, and lhal wilhoul Joss of generalily Mo = ~I~. Clear!y, lher" is no loss

of generalily in imposing lhe first assumplion if t.he change-poinl delection prohlcm

is lo be so!ved on-Iine.

5.3.2 Change-Point Detection and Model Complexity

The comp!exily of the change-poinl delection problem depends above ail on t.he

assumption made about the mode! c1ass M. Il can be a parameLric or a nonparamcll'Ïc

mode! c1ass. In the nonparametric framework, we can menLion Lhe work of [BJ68] in

which tests for a shift in the level of a stochastic proccss wcre devclopcd, and [Pic85]

for detecting a change in thc spectrum of a limc scrics. (Sec also [PeI.79] and [DP86].)

As an examp!e of a non-parametric change-point delection melhod, Icl us presenllhe

Ko!mogorov-Smirnov test defined by the sl.alislic

S(yN) = sUI' IFj(x) - FN_j(x)1
'"

where
• 1 j • 1 N
Fj(x) = -; I: IyiS'" FN_j(X) =~ I: Iy,S'"

J i=! - J i=j+l

are empirica! distributions. Then the hypolhesis of change lit is chosen if lherc is il

k E [1, N] such that

where the threshold h is set so as to guarantee a fixed false alarm probabilily. A

localized version of the Kolmogorov-Smirnov test can be found in [DW77]. Recent

works in the area of nonparametric fault detection include [BhaS7] and [Car8S].
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•

In this dissertation, we will only look at the parametric case which is where the

bulk of the research was done. As a result, it is more appropriate to describe the

modcl class M as M(O), where the parameter 0 is in a domain nk C IR\ k the

dimension of the parametric mode!. Similarly, models Mo and Ml will be denoted

by Mo, and Mo, respeclively. In Sections 5.3.3, 5.3.7, and 5.3.8 we will discuss the

issue of change-point deteclion and the complexity of the models used in situations

of increasing complexity.

5.3.3 Change-Point Detection with Known Models

Among parametric change-point detection problems thcre arc varying degrees of

complexity. The simplest deteclion problem is realized when the models MD, and MD,

arc completcly known in advance. This results from the fact that the only unknown

is the change-point T", thus limiting the selection to a finite set of possible models.

Not surprisingly, ail the work on change-point detection within the first decade of

serious research in the area was carried out under this hypothesis. As unrealistic as

this assumption may be, that research-as will be shown later when describing the

work of Shirayev-laid many of the main foundations on how a proper change-point

detection problem should be stated.

Let us show, through a simple example, how this simplified change-point problem

is solved using olle of the best known change-point detection methods: the likelihood

ratio approach. Assume that the data yN is a realization of an Li.d. sequence of

random variables with densities J(-,Oo) and J(',Od before and after the change re­

speetively. For instance, 00 and Dl might represent two different known means. Let

us define the likelihood ratio between the hypothesis Ho and HI at 1 ::; T ::; N by
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Then, the Iike\ihood ratio test, which provides an olf-line solut.ion, to the change-point

detection problem is given by

(5.1 )

•

for sorne properly set threshold h. If inequality (5.1) is satisfied for some TE [l, N],

then the data is said to contain a change-point. Moreover, that particular value of

T represents the estimate of T". This test enjoys sorne of the asymptotic optimalit.y

properties established by [Lor71] which will be described in Section 5.3.6.

Notice that even in this simple formulation the change-point dctection problclll is

a multiple hypothesis testing problem. This is so since for each tentative T we have

a different hypothesis Hl' As a consequence, the change-point problclll is a diflicult

problem to solve, since uniformly most powerful tests do not exist (sec the discussion

on page 106). Finally, for a multivariate normal mean likclihood ratio tcst version of

the change-point problem, the reader is rcferred to [SW86].

5.3.4 On-Line Versus Off-Line Procedures

There are two general classes of change-point detection formulations: the off­

line or a-posteriori change-point detection, and the on-line, scquential, or sometimcs

referred to as the quickest change-point detection problem. In the off-linc formulation,

which was presented in Section 5.3;1, a finite set of data is assumed to be given a-priori

and the problem is to decide whether or not it contains a change-point. If it does

then the scheme should estimate its time-Iocation. Under this set up the generalized

Iikelihood ratio approach is considered to be one of the most powerful methods of

change-point detection (d., [Bas88]). Note that in the a-posteriori change-point

detection problem it is possible to have multiple change-points in a given data set.

Under this situation special care must be taken to solve the problem (c.f., [Mac74],

and [Fed75]).
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Note that the off-line set-up is in a sense simpler since one could in principle

search Cor a very large number oC, Cor example, possible parameters 0\. Thus, the

non-existence oC time-constraints would avoid the need Cor more c1ever methods. Nev-

erthcless, such searches could be computationally expensive up to the point oC not

been realistically implementable.

The on-line set-up has reccived a great deal oC attention in the literature, the first

piece oC work dating back to [Pag54]. Vnder this set-up one does not have to worry

about multiple change-points since the decision oC change versus no-change has to be

perCormed at the arrivaI oC each new observation and its decision perCormed beCore the

arrivai oC the next one. Anotber point tbat bas to be taken into consideration is the

very lill1e time available between samples which excludes the possibility oC intensive

search procedures.

An example oC an on-line implementation of the likelihood ratio test based on the

statistic (5.1) is provided by the well-known and very much used cusum (cumulative

sum) stopping rules, first introduced by [Pag54], oC which a possible form oC the

stopping time is giving by

where

T=min{T > OjS(T) =~ max AIJ /H (T) > h},LJ I<T<N ],0 1 -
n=l - -

(5.2)

Il is important to note that stopping rule (5.2) admits the recursive computation

(5.3)

•
Another very important consideration when choosing among different detection

rules is the efficiency associated with each statistic. For instance, the optimal test

could be too computationally expensive. Thus a suboptimal rule might be preferred,

especially when on-line implementations are needed.
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In this thesis, wc are particularly interested in providing on-line solutions to the

change-point detection problem. However, the off-Iine formulat.ion will he cxt.ensivdy

used for the theoretical analysis of the chane-point scheme.

5.3.5 Bayesian Versus Non-Bayesian Formulations

Depending on how researchers treat the change-point time, wc could lind two

formulations for the change-point detection problem: the Bayesian and the non­

Bayesian set-up. In the former set-up, the change-point time is assumed to follow

sorne a-priori given density (d., [Bat62], (Gar69], (Smi75], and [Shi78)). Shil'yaev's

work on Bayesian change-point detection will be brieny presented in the next section.

A common probability model for the change-point T is given by

P(T = 0) = Po, P(T > niT;:: 1) = exp(-'\n), (5.'1)

for sorne known Po and ,\ constants.

In the non-Bayesian set-up, the change-point T = T' is assumed to be totally

unknown. Wc would follow the non-Bayesian approach since in most applications

it is not realistic and rather impossible to consider an a-priori distribution for the

change-point time.

5.3.6 Change-Point Detection and Optimality

•

An important issue in change-point detection problems is to provide solutions

whieh will exhibit sorne form of optimality. The first proper notion of optimality in

an on-Iine framework is found in the pioneer work of Shirayev (d., [Shi61], [Shi63],

and [Shi78)). Due to its importance and impact on the field of change-point deteet.ion

wc shall provide a short summary of the mentioned papers.

The articles address the on-Iine change-point detection problem for a sequence of

i.i.d. random variables whose distributions are known before and after the change,
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and where the change·point has an a-priori geometrical distribution. The aim is to

find a stopping time which will consequently help solve the change-point problem in

the quickest possible way.

Consider then the probability space (n,.r, P) and a. filtration .rN, N ~ O. Define

the stopping times T as the class of functionals r such that for each T we have

{T < N} E .rN C.r. Let T be a random variable defined in (n,.r, P) which

represents the a-priori distribution of the change-point. In this framework wc write

T" = T(W). (The distribution of T used by Shirayev was (5.4).)

Now define the following risk function

p(T) = P(T < T) +clE(T - TIT ~ T)P(T ~ T),

whcre c > 0 is sorne given constant.

Note that the risk function p(T) is given in terms of two conflicting terms

(5.5)

Td = IE(T - T"IT ~ 'r) and RI =P(T < T").

•

These are known respectively as the probability of false alarms and the detection

delay.

Due to the necessary tradeolr between Td and R" Shiryaev solved the optimization

problem among the subclass of stopping times ra C r such that

P(T < T") = a,

that is, rais the set of stopping times with an a-priori fixed probability of false alarm.

The optimal stopping rule, T" can then be obtained by solving

T" =arg minTd.
Ter.

Shiryaev then showed that the optimal detection rule for the case of the change in

drift of a process (y) generated by

(5.6)
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where a is a constant and (eN) is a Gaussian proccss \Vith indepcndcnt increments,

and I{ A} the indicator function of the sct A, is

T* =min {Ni P(r* $ NIFN) > (1 - 0)(1 - P(r* =O))},

which is the conditional probability distribution of thc changc-point timc giving the

observations up to the prcscnt time until they surpass the Icvcl (1- 0)(1- P(r* = 0)).

The definitions of Td and Rf introduccd by Shiraycv arc not the only possible

ones. Howevcr others found in the literature dilfer only slightly. For example, when

r* is totally unknown but fixed, the delay lime is frequently defined as

Td = ~iflE(T -riT ~ r).

In the case of two fixed models Mo. and Mo, describing the dynamics bcfore and

after the change respectively, Td and Rf represent, in a sense, the behavior of the

change-point detection criterion with respect to the parametric values 00 and 01,

Now, let us define

L(O) = IET(O), oEDo,

•

where L(O) is known in the literature as the average l'un length (ARL) function. The

purpose of introducing L(O) is to be able to coyer other, in principle, possible values

of the parametric modcls. It is easy to see that L(Oo) and L(Od are directly rclal,ed to

Rf and Td. Therefore since L(0) captures for 00 and 01 the properties of the change­

point detection algorithm as defined by Shirayev, L(O) generalizes those pl'Operties

for 0.11 the possible 0 E Do. The function L(0) is the direct counterpart of the power

function in hypothesis testing (d., [Nik91]).

In an off-line set-up, the notion of optimality of a change-point problem is generally

formulated in the context of c1assical hypothesis testing. Let 8(yN) be a given statistic

and h a level to be chosen optimally as follows: Under the constraint
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known as the levcl (representing the probability of opting for a change when a change­

point did not occur) maximize the power of the test, that is

(the probability of deciding on a change when a change did occur). Note that since

III is actual1y a multiple hypothesis, a Uniformly Most Powerful (UMP) test is looked

for. However as shown in [DP86], if the change-point is total1y unknown then no UMP

test exists in a non asymptotic framework even under known models before and after

the change-point. Nevertheless, UMP tests can be recaptured in certain asymptotic

formulations. For example, for fixed models Mo and MI, and under the assumption

that

lim TOln = -y,
n-oo

0<-y<1

•

the likelihood ratio test is found to be optimal for a level and a power of exponential

type.

There seems to be a slight confusion in the literature about the meaning of opti­

mality of a change-point detection procedure. Shirayev defined it as the 'detection rule

or functional, among a general class of functionals, which minimizes a well-defined risk

function. On the other hand, many researchers have employed the term optimality

as the optimization of an a-priori given suflicient statistic or criteria (i.e., likelihood

ratio) wi th respect to the design parameters of the problem. Clearly, Shirayev's ap­

proach is much more involved, and for complex change-point detection situations it

might be almost impossible to implement. That is why the other notion of optimality

has been more frequently used. However, researchers have failed to point-out this

dilference.

The optimality notion to be used in this thesis is based on minimizing a statistic

characterized by the stochastic complexity of the data with respect to tentative models
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•

over a threshold and a fixed gain related to the estimation of those modds. Let ns

then state the general optimality definition for a change-point dcleclion seheme in

line with our future use. Let us mention that this is the most widely used defini\.ion.

Definition 5.3.1 An on-Iine change-point test or deteclion rule is called o/,limal

wilh respect ta the statistie ehosen ta solve the problcm, if and only if for Rf =a, Ct

an a-priori given constant, the delay time Td is minimized over ail possible de\.ect.ioll

rules.

Other possible definitions of optimality arc certainly used. For example one could fix

a value for Td and minimize Rf.

In an on-line framework [Lor71] proved the optimality of the Page-llinkley's test

for an LLd. sequence of random variables with known distribution bcfore and after

the change. More precisely, the smallest possible delay time '1'.1 was established fol'

the Page-Hinkley's test stopping time given in (5.3) when the rate of false alm'ms

Rf -+ 00, and the threshold h = Rd, Also, the following interesting asymptotic

relation was obtained in the mentioned paper

where 1(0) is Kullback's information measure.

The work of [D1'86] provides the asymptotic distribution of the test statistic and

the change-point time in a GLR framework.

The exact formulas relating Rf and Td with the threshold h for the sequential

detection of a change in mean for Bernoulli random walks and brownian motions

were established by [Bas81]. For a brownian motion whose drift changes from /10 i- 0

to /lI and fixed dispersion u,

Rf = :0 (;:0 (exp (2~~h) -1) - h) ,
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and we refer the reader to [BasS1J for the expression Td since it is too cumbersome

to be included here.

Note that the computation of the dclay time Td and the probability of false alarms

Rd arc closcly linkcd to thc distribution of the detection rule, or stopping time T. The

cxact or approximate computation of such distributions has been the prevailing focus

of thc mathematical statisticallitcrature that dcals with thc change-point problcm.

Sorne of the first results in this direction wcre the asymptotic distributions of the

change-point estimatc and its associated Page-Hinkley tcst statistics (c.f., [Hin70])

for an i.i.d. scqucncc with a simple change in mean. Even for this simple casc thc

asymptotic distribution is not given in an explicit form but in terms of doublc Laplace

transforms.

Onc of the most complete works for exact distributions of test' statistics for change­

point changcs is [JJSS7]. Thc authors' results are valid for thc detcction of a changc

in an Li.d. normally distributcd scqucnce with known or unknown variance and

whose constant mean could expcrience only a singlc change. The intricate naturc of

the distribution of thc test statistics for this very simple case shows the difficulty of

finding thcm in more involved situations.

5.3.7 Change-Point Detection with Unknown Model Pa-

rameters

Whcn thc paramctric dimcnsion k of thc modcl class M(O) is known but the

paramctric-valucs 00 and 01 are not, the change-point detection problem becomes

substantially more intricate. Note that in this case the likelihood ratio test, commonly

known as the GLR (generalized likelihood ratio) is given by

•
minmaxmax.cH /H (or) ~ h > O.

00 01 TOi
(5.7)
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Evidently, solving inequality (5.7) instead of (5.1) is a much more difficulttask sincc

the search is no longer finite. One possible simplification for this problcm is obtaincd

by using sorne of the c1assical statistical estimation methods, for example the least

square or the maximum likclihood estimation schemes. In most change-point detec­

tion problems, 00 could be properly estimated in advancc by one of these estimation

methods, the reason being that the assumption of having sufficient data bcforc the

changc-point, can in general be made. Thercfore, for theoretical purposes, one can

assume that 00 is given. As a result one does not usually have to consider the min­

imization in inequality (5.7). Moreover, let us mention that in some simple cases,

like when using model (5.6), the maximization can be reduced to a single one (d.,

[Bas88]).

In view of the above observation, the aetual challenge arises when 01 is not known,

which is the most typical case found in applications. The difficulty in solving this

problem stems from the fact that model and change-point estimation have to be

performed concurrently. This represents one of the main challenges in change-point

detection problems. One attempt at resolving this issue (d., [BEG81]) involves the

assumption of a lower bound, say /::"0, for the jump magnitude

•

and designing the test under the worst-case scenario, that is, considering a jump of

magnitude /::"0. A related approach along those lines is the so-called local asymptotic

method (e.g., [DP86]). In [DP86] the assumptions used is

with r" -t 00. The authors c1aim that this assumption is uscful when litlle is known

about the models after the change but one is nonetheless interested in som sort of

worst case optimize solution.
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•

lu what are called the local approaches to the change-point detection problem,

th~ central idea is to construct the statistic for change-point detection from the dom·

inant terms of the asymptotic expansion of the likelihood ratio. In many important

situations, like Gaussian AR or ARMA models, the expansion is possible and one can

then show that the random variable

is asymptotically (r --> 00) distributed, for smallllOI -00 11 ,according to the following

laws

N(O,I(00 )) for r < r*,

N(I(OIl(OI - 00 ), I(OIl) for r ~ r*

where 1(0) is the Fisher information matrix.

Another approach which deals with the case of unknown 01 is based on the as·

sumption that this parameter could take only one value out of a finite set of a-priori

given values, that is to say

01 = {O:,O~, ... ,Oï'im < oo}

Methods based on this assumptions can he accomplished as simple extension to pre­

vious approaches since filters could be l'un in parallel for each of the fixed 01 values.

A similar type of solution can also be applied if working under the as,;umption that

the model Mo, could only be among a finite number of completely defined models'

structures and values, not necessarily sharing ail the same dimension for example.

Ali these fault detection problem formulations fall into what is known as MM (mul­

tiple model) approaches. These were extensively studied by [WJ76] among others. A

successful implementation was reported by [WES+SO] in which the MM method was

applied to the detection of incidents on freeways.
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Recently, sorne investigations \Vere carried out iu \\'hich the only kuo\\'1cllg" as·

sumed about 01 is that il. is an unkno\\'n coustant, Le. corrcspondiug 1.0 il tillll'­

invariant model (c.f., [Bas88] and [Nik91]). The method has becll called the t\\'o'11Iodd

approach. Ho\Vever, it is mainly based on heuristic arguments alld unfortullate\y 110

theoretical backing has yet been provided. The method thal, \\'e shall propose ill

Section 5.5 partially resembles the two-mode\ approach. Thus, our proposed schell\e

could be viewed as a first step towards a solid foundation of the two-modcl schell\c.

5.3.8 Change-Point Detection in Very Complex Situations

In sorne applications, the change-point T", instead of being modcled by a jUll1p,

is better represented by a slowly time-variant change. An illust,ration could be givcn

by the depth of sleep monitoring applied ta patients undergoing SUl·gery. IL also

finds application in equipment maintenance by providing fast deteetion of worn do\Vn

components (c.f., [PFC89]). For this particu!ar case the time variation is very slow

sa these types of faults are known, in the literature, as incipient faults.

A possible modeling strategy for this case is ta use time variant parametric modcls

MOl (n) , where n represents time. This formulation of the change-point problell1 has

not, 1.0 the best of our knowledge, been previously investigated. ln this tbesis we sball

propose a solution in which the parameters Ol(n) are assumed to be unknown.

We now arrive al. the case where the parametric dimcnsion k of tbe cboscn modcl

class M (0) is unknown. This sort of formulation has never been tackled by researchcl's

in the field, and in this dissertation we shall provide sorne promising directions for

solving this problem. More precisely, we will look al. the issue of underparameteriza­

tion when detecting change-points.

The most diflicult change-point detection situation is obtained when the model

class M(O) is itself unknown. However, there can be no hope of solving the detection
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problem unless a model class, containing models which could satisfaetorily describe

the main features of data after the change-point, is given a-priori. This is because,

in general, change-point deteetion algorithms would have to be implemented on-line.

This constitutes a fundamental constraint in the design of change-point detection

algorithms since, as a consequence of an on-Iine implementation, there would not be

enough time to make any extensive model searches. Nevertheless, to search among

mode! classes of excessive complexity might be fruitless since the data set after a

change-point is usually very small due to the frequent desire for promptness of de­

tection. For this reason, mode! classes that are too complex would do, in general,

poorer jobs than simple classes. Therefore, if at least some a-priori knowledge about

the dynamics after the change-point is available, it seems reasonable to presume that

a non-necessarily restrictive model class is given for the description of the data after

the change-point. Therefore we will henceforth assume, that a model class will be

given for the implementation of the detection algorithm.

5.4 Failure Detection for Dynamical Systems

In this section we shaU mainly deal with the deterministic approaches that have

been proposed in the literature to solve fault detection problems. Since the basically

simple methods under this framework were dealt with in the introduction, wc shaU

concentrate our efforts on the class of elaborate FOI methods which were introduced

in the carly 70's. The origin of this class of techniques was the dissertations of [Bea71]

and [Jon73]. The main feature of theses methods, as opposed to the previouôl:,' mnre

prominent ones (see Section 5.2), is the use of an explicit mathematical modcl of

the system or subsystems to be monitored. There are now a number of similar and

improved methods based on those original dissertations and these will be described
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in what follows.

The basic idea of those schemes is a simple one. Let us assume the ,wailability or

a "good" model /lI of, say, an 8180 system P, and moreoYer let us assnllle that. t.he

system's input (u) is available.

p
U +( Yp e

- Ym

M

Figure 5.1: Model based FDI lIIethod.

Then the difference output model process (Yp) and the measured output signal IY",)

(see Figure 5.1) generates the residual process (en) which if properly designed shollid

give an indication of a fault when it exceeds sorne given threshold. BaseJ on this

notion a variety of more elaborate and efficient methods were developed. Thesc pro­

cedures are usually referred to as analytical redundancy methods, since they compare

true measurements with artificial ones provided by the mode!. (Recall that earliel'

methods were based on comparing signaIs given by redundant physical components.)

The most weil known methods of FDI for dynamical systems are: the parity

space, the detection filter, and the Kalman fllter based approach. We will now discllss

the basic ideas of each one of them. We will try to take the most simple scenario

to illustrate each approach since our goal is simply to convey the general idea of

the methods, and not to give the full in depth design steps needed in more general

situations. References will he provided that cover many of the more complex cases.

Before presenting the different FDI methods let us introdllce sorne or the l''eqic

aspects involved in the steps taken when modeling railures in dynamical systems.

1,
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5.4.1 Modeling of Failures for Dynamical Systems

114

A very general and compact description of dynamic systems that are subjected

to changes in time is found in the survey paper of Frank [Fra90]. Here, we will follow

a. similar formulation for the description of the models.

The class of stochastic [inear dynamical models given by

Xn+t - AXn +BUn +EWn

Yn = CXn+DUn +Fvn.

(5.8)

(5.9)

provides a very general model representation for the normal operations of systems.

As it is weil known, A models the dynamics of the system, Band Ethe way the

actllator signal (un) and system noise (wn ) enter the system respectively, C the way

measurements of the system are taken, and D and F the way the reference input (Un)

and noise (vn) affects the measurements (Yn) respectively (d., [Kai80]).

Since listing ail of the model dimensions in (5.8)-(5.9) would be cumbersome and

would not add to the understanding of the main ideas, let us just say that as usual

uppercase letters denote matrices and lowercase letters denote vectors of appropriate

dimension. Let us in general denote the i-th column of a matrix M by mi, and the

i-th component of a vector v by vi.

Let faulty system configurations be described by the class of models given by

Xn+t - AXn +BUn + EWn + [(In

Yn - CXn +DUn + FVn +Ggn.

(5.10)

(5.11)

•

The normal and fallity model configurations described by (5.8-5.9) and (5.14­

5.15) respectively can represent a wide variety of non-faulty a~Îd faulty situations.

Let us illustrate this through sorne simple examples.

In a deterministic set-up the non-faulty model is frequent1y given by the state
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space equations

Xn+l = AXn + BUn

Yn = Cxn,

115

(5.12)

(5.1a)

Typical faulty configurations are givell as follows: For a mode! with ac\.UiÜor ami

sensor faults, we have

Xn+t - AXn +BUn + I\ In

Yn - CXn + Ggn.

(5.[·1 )

(5.15)

For instance, if the matrix [( = bi and I~ is a step funcLion, wc get a typical acLuator

bias failure; if I~ = -u~ a the total breakdown of an actuatorj if G = ci and g:. a step

function we get a sensor biasj and if g~ =-x~ a dead sensor. Modc1 (5.14)-(5.15) cau

also incorporate changes in its free dynamics. For example, if In = x,,, the trausitiou

matrix equals A +[(.
We have discussed only a few types of fault situations. However, with these simple

examples, the reader should be able to model, in a similar fashion, numerons fault

situations.

Finally let us add an example in a stochastic framework. For instance, a nominal

model can be given by

Xn+t - AXn + BUn +W n

Yn - Cxn+un

(5.IG)

(5.17)

where W n and Un are the process and sensor noise respecLivc1y. Some parLicnlar

examples of faulty system operation can he given hy

•
Xn+l - AXn +BUn +W n + In

Yn - CXn +Un +Un

(5.18)

(5.19)
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where In and gn arc two noise processes which give in this case increased process

noise and added sensor noise, respectively.

In general, wc can say that the term EWn is used to model unknown inputs to the

open-loop system and to the actuators, whereas ]<In is used to model faults in the

plant and in the actuator dynamics. The term FVn basically models unknown inputs

to the sensors, whcreas Ggn models faults in the sensors.

A terminology employed frequently in the literature is to rerer to the rault terms

like E, K, F, and G as signatures, and to the time functions Wn , In, Vn, and gn as

modes. Note that in general, the modes will be functions of In>T but we did not write

it explicitly for brevity of notation.

In the design of fault detection algorithms, one is interested in maximizing the sen­

sitivity of the detector to sensor ma1functions while assuring that remains insensitive

to disturbances and noise (d., [PFCS9]).

5.4.2 The Parity Space Approach

Let us assume that the true system to be monitored is represented, in its non­

faulty operation, by the standard deterministic state space equations:

Xo = 0 (5.20)

(5.21)

From s-pairs of input-output data {(Yi, Ui), i E [n - s, n]} and by simply recursively

solving equations (5.20) and (5.21) starting from time n - s, we can obtain the

following input-output-state relations

•
[

yn:.-,] _M [U~._']
= Ox(n -s),

Yn Un

(5.22)
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where matrix 111 is a Hankel matrix formed with the first 5 IVlarkov paramdcrs of

system (5.20)-(5.21)

M=

o
CB 0

CAB CB

o
o

CAB CB 0

and the vector 0 is
C

CA
0=

CA'

which coincides with the ohservahility matrix of system (5.20)-(5.21) if 5 = dill1:c"

(d., [KaiSO]). Note that (5.23) can he used to check for consistency of the data set

{(Yi, Ui), i E [n - s, nI} with respect to the mathematical model (5.20-5.21). This

is so since under any deviation from the ideal situation-presence of disturhanccs,

modeling errors, noise, failures, etc.-(5.23) wil\ cease to hold. Note that in the ideal

case any of the scalar equations, which are extracted from the dynamic equations and

are contained in (5.23), wil\ suffice to check for consistency. However, the redundant

scalar equations in (5.23) Can he exploited for FOI purposes when they deviate from

the ideal situation. Let us see how:

Deline the parity space of order s as

p={V;VT.O=O}.

Then one can define the residuals

•
_ T. ([Yn:_.] _ [un:_.])

r n -v . M. ,

Yn Un

(5.23)
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and gct the following situations:

{
= 0 when system is operating under (5.20)-(5.21);

r n
:f: 0 at the presence of a fault.

Clearly, in a real situation, rn should exceed a certain level before signaling an alarm.

The space P can be then interpreted as the invariant unreachable manifold of vectors

of input-output data generated by the lcft hand side of (5.23). The freedom thus

obtained for choosing the vectors u can be used to try to make each signal (rn )

sensitive to a specific type of failure.

In practice, modeling errors, disturbances, and noise have to be taken into ac­

count. However, in general, there is not enough freedom to satisfy ail of the numerous

specifications. Thus sorne optimal solution based or. the minimization of a certain

appropriate cost function must be employed.

5.4.3 The Kalman Filter Based Approach

Let us assume that the true system to be monitored is now represented by

The stochastic processes Wn and Un are second order stationary and uncorrelated with

lEwn = lEun = 0, lEwkWJ = Rok;, and lEukUJ = SOk;, where oki is the Kronecker

delta operator.

The most simple FDI design, under this category of methods, is based on the

construction of one Kalman filter. Let Xnln-l = (znIH~-l), that is, the orthogonal

projection of the state Zn ante the Hilbert space H~-l, which is the space generated

by the random variables Vo, .•• , Vn-l. Then the Kalman fllter corresponding to the

non-faulty model is given by

•

(5.24)

(5.25)

(5.26)
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•

where J(n is the l~alman filter gain calculated by soh'ing the well-known Hiœ"t.i

equation (c.f., [Cai88]).

Now one can compute the dilference between the measured output and the esti­

mated output to generate the residual process

f n = Yn - CXnln-h

and use it as a basis for fault detection. Under the non-fault opemtion the residual

corresponds to the innovation process which is Gaussian white noise wil,h knowlI

variance. If a fault occurs these convenient properties will be 10st, and thus statistical

tests for a change in the probability distribution of the residuals can be used. Fol'

example, in sorne particular situations a change in mean test will suffice to detect a

change from the normal operation (d., [MP71]).

A well-known approach, which is based on the use of a single Kalman filter, is 1,0

apply the GLR test to this particular case. (See for example the al'l.icle of Willsky

in [BB86].) It is also based on computing the innovations based on a Kalman filter

designed under a non-faulty operation. Since dilferent types of faults will be l'ellected

in a different manner onto the innovations, the GLR actually computes the likelihood

of events by calculating the correlations of the residuals with certain abrupt change

signatures which are related to the dynamic profile of each change.

A drawback of the methods based on one Kalman filter is that parametric changes

cannot be accounted for. In order to generalize these kinds of methods to more

complex fault situations, a bank of Kalman filters is used.

Suppose that in the time interval [1, N], an unknown number of change-points oc­

curred, and that every change-point is representcd by a jump to a modcl Mi bclonging

to a c1ass of models M A {Mi; i E [1, Il, 1 < oo}. A mcthod has bccn proposed to

solve this multiple change-point problem using a bank of Kalman filters. In order to

account for any possible structural changes at cach point in time, a growing bank of
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Kalman filters are employed. That is, at each time n, 1 Kalman filters are started

in parallcl in order to assess each possible type of change. The method is based on

recursive1y computing the conditional probability densities

p(X nIYI,' .. ,Yn; Mi), (5.27)

for each possible model Mi E M. The densities (5.27) can be computed via the

innovation processes of an exponentially growing bank of Kalman filters. Under the

assumption that Xc, (wn ), and (vn ) arc jointly Gaussian with IEwn = IEvn = 0, the

Kalman filters give the conditional densities

•

of the state process (xn ) for each hypothetical model Mi (d., [Cai88]). It can be

easily seen that the conditional densities given by the Kalman filters form the bulk

of the computations of the conditional probabilities (5.27).

Under the assumption that only one change-point needs to be detected-meaning

that in practice the change-points occur at ample respective distances in time-the

bank of Kalman filters will grow linearly in time. This bank is related to aU possible

blended models constructed as foUows: a non-faulty model for n E [0, k), and a faulty

model for n E [k, N]. Since the faulty model could be any of the possible 1 fault·

models, one gets that the total number of possible blended models are IN - 1+ 1.

Therefore, under the assumption of a single change-point, the method is simplified

considerably.

One of the main drawbacks of the above procedures is that the classical Kalman

filter has infinite memory, and thus will respond too slowly to any abrupt change in

the dynamics of the system if it happens much beyond the time constant of the filter.

Numerous modifications are possible to overcome this problem. For example we could

mention the exponential age-weighting of data, and limited memory filters, sorne of
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whieh fix the filter gain. However, ta the best of our knowledge, alllhe lcchniqncs

for improving the response of Kalman fillers which are applied la lhc dclccLion of

abrupt changes, are ad-hoc, in thal they are derived only from praclical expcricncc.

Unfortunately, no theoretical analysis for lhe possible increase of FDI pcrformancc

has been done.

Note that in ail these melhods Kalman filters are used ta generale slale eslimalcs

from incorrecl models, models which might deviate considerably from lhe hypolllclical

model for which the Kalman filler was originally designed. No llleorclical work lias

been performed to analyse possible filler inslabilily and degraded performancc. An

informai discussion of this issue can be found in lhe paper of Willsky [131386].

Another important point is that the Kalman fillers are conslrucled on lhe basis

of an exact knowledge of system models. Again no robuslness analysis accounling for

model uncertainty has yet been incorporated in this class of FOI melhods.

5.4.4 The Detection Filter Approach

The detection Inter approach has normally been carried oul for a conlinuous-Lime

LTI. In order to maintain the homogeneity of this survey wc will presenl lhis meLhod

for discrete-time LTI systems.

Let us assume that the true system to be monitored is again given by (5.20-5.21).

Then for FOI purposes we design the full-arder observer

Xn+! - (A - IlC)xn+BUn,

fin - CXn.

Now, define the residuals as

Xo = 0 (5.28)

(5.29)

• Then the idea is ta choose the matrix Il such that, under the nominal model, lhe
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residual rn decays to zero, while under the faulty model, rn increases in such a way

as to refieet the fault in a unique and appreciable way.

Now, let us define the error process as

Then combining (5.20) and (5.28)), wc get the following dilference equation

It is well·known that the solution of (5.30) is given by

n

f n = (A - Hc)n eo +L L(A - }/c)n-i!k+!.
k=1

(5.30)

(5.31)

Wc sec from (5.31) that the first requirement needed to be imposed on the matrix}/

is that A - IIC must be stable. This in turn will satisfy the first requirement for r",

which is liron=oo r" -+ 0 under the nominal mode\.

Now assume that n is large enough so that the first term in (5.30) can be negleeted,

and moreover assume that only the i'h actuator fault is affecting the operation of the

system. Then (5.30) can be simplified as

n

f" = Ii L(A - IIc)n-ift+1
k=1

Now assume that one can find a matrix II such that the subspaces

(5.32)

Si = C n[li l;(A - IIC)

•

are mutually independent. (Here n[D] denotes the range of the matrix D.)

If a matrix }/ satisfying the above two conditions exists, then the FDI problem is

solved by monitoring the signaIs
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where ('IS) denotes projection onto the subspace S, that is

.{= 0 when system is operating under (5.20)-(5.21) i
v'n

'" 0 at the presence of a fault.

In practical situations a threshold has to be used before setting an alarm signal.

Note that the effect of the fault on the residuals v;, depends not on the Lime

functions f~ but on the signatures li. Therefore this mcthod has the advantage of

only needing knowledge of the direction, that is the signature, in which the fault

affects the system. We stress that this is the main advantage of this method as

opposed to other FDl techniques.

The main drawback is that up to now no robustness analysis has been performed.

Therefore the method requires precise modeling if satisfaetory results are to be ex­

pected.

5.5 Predictive Stochastic Complexity Applied to

Change-Point Detection for ARMA Systems

In this section, we shaH present a change-point deteetion method for ARM A

systems under the assumption that they have a slow and non-decaying drift after

the change occurs. Aiso the abrupt jump parameter case, and change-point detection

with undermodeling will be considered. The general deteetion scheme to be devcloped

is inspired by the stochastic complexity theory. A salient feature is that the resulting

change-point detection algorithm will ultimately be expressed in terms of fairly simple

recursive equations. Sorne results on the analysis of the scheme are obtained, showing

that the method is amenable to theoretical analysis. Moreover, simulations show that

the approach exhibits surprisingly good detection capabilities. Sorne of these results

can be round in [BG90], [GB91], and [BG92a] .
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5.5.1 The Mathematical Model
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Wc shall now specify the modeling conditions to be imposed on the change.point

detection problem, which is divided into two parts. The first part corresponds to the

time before the change·point, where the system is considered to be time invariant.

The second part is valid for the time after the change-point, where the system is

considered time varying. In contrast to the time invariant system, we will see that

the description of the time variant system is not a standard one.

We now describe the dynamics before the change·point. Let (Yn) for 0 ::; n <
r· < 00, be the output of an ARMA(p·, q.) system generated by the equation

A·y = C·e, (5.33)

where (en) is the input process. The values of en and Yn for n ::; 0 are assumed to

be O. (Recall that r· is the actual location of the change.point.)

The time·invariant ARMA(p·, q.) system given by (5.33) satisfies Conditions 3.1.1

and 3.1.2.

The dynamics after the change-point is described by the time varying ARMA(p·, q.)

system

r· ::; n ::; N ::; 00 (5.34)

The interpretation of the left hand side of (5.34) is as follows: the difference operator

A~ acts on the process (y) and the evaluation is done at time n to get Yn' The right

hand side is interpreted similarly.

We impose on the so·called "frozen time system" (frozen at time n) described by

A~y = C~e, (5.35)

•
the following condition.

Condition 5.5.1 The frozen time system given by (5.95) satisfies Condition 9.1.1

for each n, r· ::; n ::; N.
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Let O~ denote the k = p+ q-dimensional vector composed of the coefficients of the

polynomials A~ and C~.

Condition 5.5.2 We have sUPn~T' 10~+1 - O~I = S < 00, wllcl'e S is (Ill ltl'l'Cl' bOltllll

for the rate of change of the time varying ARMA(p"q'), and WllCl'C 1·1 dcnotcs Ihc

Euclidean norm.

We denote by MT' the model dass described by appending in time the motlcls

given by (5.33) and (5.3'1).

We say that a system is slowly time varying if Condition 5.5.2 hoIds. (A more

general definition and a theory of slowly time varying systems is given in [ZW!Jlj.)

This definition of time varying systems is particularly useful for identification pur·

poses. For example, it is we11-known that if S is sufficient\y small then the ARM A

system described by (5.35) is stable (also inverse stable).

We would like to point out a certain drawback with the slowly time varying tlefini·

tion expressed by Condition 5.5.2. The drawback is that this definition does not seem

to capture the "true rate of change" of the system in ail cases. In the following three

simple examples we will come across systems which arc rapidly changing according to

our definition but very slowly changing according to the definition given in [ZW!Jl].

The first example is given by considering the case where O~ =O' for ail TI except

for n = 7", and where S =0; - O' is large. The next illustration is obtained by the

time varying ARMA system described by the equation

(5.36)

•
where the parameter an typically alternates between only two values, say 0'1 and 0'2,

and S = laI - a21 is large. The drawback of our slowly time variant definition is eve!l

more apparent in continuous-time, as we sha11 sec by the final example which follows.
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Suppose we have a continuous-time process modeled by a parametric model whose

true parameter is given by

0; = o· + E: sin(wt), ('.37)

•

where E:W is large but E: is small. Then S = E:W is large, but there is no reason to

expect that the time variant estimation method will track 0;.
The difficulty in defining the proper rate of change did not emerge in earlier

change-point detection publications because it was generally assumed that the changes

in the parameters were instantaneous, i.e, the jump parameter case. In spite of

these shortcomings, our definition has the advantage that the standard identifica­

tion procedures applied to this type of time varying ARMA model are theoretically

tractable. A fairly complete analysis of this kind of time varying system is availabl,~

in (d., [Ger89rJ).

5.5.2 The Encoding Procedure

In this section we will encode the data process (Yn) by means of a predictive

encoding procedure. This procedure makes extensive use of the olf-Hne and on·line

prediction error estimation methods introduced in Sections 3.1, and 3.2 respectively.

Let us describe the predictive encoding procedure. Let iln(O) denote the one-step

ahead prediction of Yn, using 0 E D as the system parameter vector. It is easy to see

that the prediction error is fn(O). Now, let T, with 0 < T :5 N, represent a possible

location for the change-point. In order to get "good" prediction, it is clear that we
-0 -À

should use the estimators 0n-I for 0 :5 n < T, and 0n-I for T :5 n :5 N, at time n. It

then folloll's that the optimal predictive code length for Yn with respect ta the model

MT) T fixed, with the olf-line time invariant and small gain prediction error method

is given by

(5.38)
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Thus we associate to the observation Yn the code length C(Yn. T). Not.e t.hat. t.he

prediction errors fn(Ô :-1) and f n(Ôn.l-I) arc, in t.he t.erminology or [Ris86]. "honest.".

i.e. to predict Yn only data preceding the moment n is lIsed.

A weak point about the codelengths C(y., T) is that they arc obtained lIsing a

eomputationally intensive procedure. Namely, in order to obtain the prediction errors

fn(Ôno_I ), and fn(Ô:_1) wc have to start the computation at. time 0 roI' each time Il.

Moreo';er, wc also have tn compute at time n - 1 prediction error processes rrom time

ountil time n - 1, for eaeh iteration along the search roI' the estimat.ors ÔU l' allli
n-

Ô:-1' Sinee the ultimate objedive is to obtain a change-point detection method tlHlt

will be eomputable in real time, we nend to modiry the encoding proc.~dnre so as to

make it on-line. It ean be obtained by ,,,oking at recursive estimation m"ti.ods. The

olf-line encoding procedure will 1I0netheless prove very userul in the analysis or the

change-point detection method.

Let us now state the on-line predictive encoding procedure roI' the dat.a process

(Yn). As in the olf-line case, the optimal predictive code length roI' Yn with respect.

to the model MT) T fixed, with respect to the on-line time invariant and small gain

prediction error method is given

if n <: Tj

if T,. ~ T.

(5.:J!))

•

The codelengths for the process (Yn) could be computed by running two recUl'sive

prediction error algorithms in parallel for the whole time interval [1, NJ.

5.5.3 Change-Point Detection as Madel Selection

According to theprevious section, for each possible T, where 1 ~ T ~ N, wc have

a mode! dass MT with the help of which the sequence (Yn) is encoded. Let us denne
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the associated total codelcngth for MT by

N T-1 N

SN(r) = L C(Yn, r) = L(f~)2 + L(f~)2.
n=1 n=1 n=T
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The use of the word codelength is justified since in the Gaussian case, (i.e., when (en)

is Gaussian white noise), SN(r) is identical to what Rissanen defined as predictive

stochastic complexity.

Observe that SN(r) serves as a basis for comparison between dilferent model

classes, i.e. dilferent M;s. According to the stochastic cornplexity theory, the best

model class description of the data process (Yn), is the one whose associated total

codelength is minimum. This mode! class implicitly gives an estimate for the change­

point, showing that the change-point detection method has been reduced to a model

selection problem.

Set

then the estimator of r" is defined by

Let us denote the increments of SN(r) with respect to r by

It is straightforward to see that

and hence the increments of SN(r) with respect to rare independent of N. If we

now rewrite S.....(r) as

•
T-l 'T-l

SN(r) = SN(I) +L (SN(k +1) - SN(k)) -: SN(I) +L Uk,
k=1 k=1

(5.40)
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then the minimization of SN(r) with respect to r is cqni\'alcnt to t.hc minilllir.at.illll

of
T-1

S'(r) = :E tlk·
k=1

since SN(1) is constant. With this observation, a formai correspondencc bctwccn

cumulative sum methods and our stochastic complexity based mcthod is est,ablishcll.

Now let N represent the present time and say that wc wish to signal thc prcscncc

of a change-point as quick as possible as data becomes available to us scqncntia11y.

lt is important to observe that there is an intrinsic di[ference betwccn fimling thc

minimum of SN(r) when ail the data sequence is givell and signaling this minimum

on-Hne. For the on-Hne alarm signal of the change-point we use the so-ca11cd Pagc-

Hinkley test (d., [Hin70]). Let

and

d(N) = S'(N) - m'No

Then define the stopping time, or alarm time, as

T = min{N > Ojd(N) > il > o},

(5,41)

(5,42)

•

where il is sorne constant level. The need to use a threshold il is, in a sense, what makes

the off-Hne and the on-line change-point detection problems intrinsically dirrerent.

Observe that al. present time N, only two prediction errors have to be compllt.ed in

order to know whether or not we have an alarm. Note that for

we have:;: = f .
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5.5.4 Analysis of the Change-Point Detection Method
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•

In the pioneering work of [Shi63], the first statements about desirable properties of

on-line change-point detection methods for i.i.d. random variables were given. Those

were the minimization of the rate of false alarms and the delay time, i.e. the time

c1apsed between the change-point and the alarm signal. Since these arc conflicting

requirements, and thus cannot be minimized simultaneously, he proposed to fix the

probability of false alarms and find, among a very general class of statistics, the one

that minimizes the dc1ay time. In our case the statistic for solving the change-point

detection problem for ARMA systems is at first obtained without consideration for

these requirements. What we do instead is to construct the change-point statistic

based primarilyon stochastic complexity ideas. Then we analyze the effect of param­

eters, such as the threshold h and the fixed gain À, on the false alarm rate and the

dc1ay time. Although a complete analysis of the change-point detection method still

needs further rcsearch, we neverthc1ess have sorne very encouraging results.

As a lirst step in the analysis we need to replace the recursive prediction error

process (f~) with its off-Iine version (fn(Ô:-1))' and consider the off-Iine associated

total codelength SN(r) g, L~=\ C(Yn,r). Now, deline the increments of SN(r) \Vith

respect to r by

( - a )2 ( - À )2 -Then clearly u, = f,(0,_\) - f,(0,_\) ,and hence the increments of SN( r) are

independent of N. Similarly to the on-line case, we get that the minimization of

SN(r) is equivalcnt to minimizing
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Theorem 5.5.1 ([Ger91a]) Undcr Conditions S.l.l, S.l.!!, lllld llfllier the IISSllInl'­

tion ofno-change, i.e. l' < 1'0, for any"\ > 0 the pl"OCCSS UT is L-mixing, (/nd mIJl"'''I'Cr

for aIl l' such that l' :5 l'", and with sorne 0 < Co < 1.

Theorem 5.5.2 ([Ger91b]) Under suitable conditions, mlll 1I11l1e1' thc (/SSllm]Jt.ion

of change, i.e, l' > l'", we have

(5A3)

where (OIT) is L-mixing and such that OIT = OM(,.\1/2), Cllld (02T) is a dctcl'lllinisl.ie

process such that 02T = OM(S/"\). Moreover, letting ,.\ = S2/3 we get

REMARK. With this choice of ,.\ = ÈP/3 the order of magnitude of the upper bouml

of the tracking error in inequality (5.43) is minimizcd. Wc dcnotc titis choicc of ,.\ by

Theorem 5.5.3 Under the conditions of Theorem 5.5.1, and the assum]ltioll t1wt

the change-point is a jump, i.e.

we have

{
Oj,

0° =
T 0°

2'

if l' < TOi

if l' ~ 1'0,

•
PROOF• First note that
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A particular case of Theorem 5.5.2 is obtained by setting fi = 0, getting

Let us now compute lE ([(~(O;, Oj)]2 - (e.)2). Based on [Ger88a] we can write

132

(5.44)

((~(0;,Om2 = ((~(O;,O;W +2(~.(0;,0;)(~(0;,0;)(0; - Oj) +
(0; - Oj)T ((~o.(O;,O;)e. +f~.(O;,O;) (f~'(O;,O;)/) (0; - Oj),

to get

lE ((f~(0;,Om2 - (e.?) = (0; - OjflEf~.(O;,O;) (f~.(O;,O;»)T (0; - Oj),

- (0; - Oj)TWOO(O;,O;)(O; - Oj). (5.45)

Combining equations (5.44) and (5.45) we get

which proves the daim. 1

Using the previous theorems, the next corollary gives a rigorous theoretical j usti­

fication for the change-point detection method in the case of an abrupt change-point.

Corollary 5.5.1 If'\ is smaIl enough, and the efJect of the "nonstationary initial

conditions" arc negleeted, then

(a) Under the conditions of Theorem 5.5.1 wc get

•
lE (ü.) = -QI < Di

(b) Under the conditions of Theorem 5.5.3 wc get

lE (u.) = Q2 > Di

r < rO.

r > rO .

(5.46)

(5.47)
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Now let us consider the problem of false alarms. For this purposc wc shaH work

under the assumption of no-change, Le. N < r·. Let us rewrite the stoppillg timc '1'

given by (5.42), in its off-Hne version and in a form more suitable to allalysis. 'l'hat.

is, let

'1' = min {N > Oi max t Uk > h> o} .
l$.mSN k=m

Letting Uk = Uk -lE (Uk), we get Ük = Uk - al' Now denlle

N

V';.;(al)= max :LUk-al'
lSmSN k=m

(5.'18)

•

Then, to arrive at an expression for the false alarm l'ate, wc observe thal. thc frequellcy

of the event {V';.;(ad > h}, is, say

where lB is the indicator function of the set B, and FI represents an upper bouilli

for the frequency of false alarms. Since V';.;(ad is an L-mixing proccss in a restriet.cd

sense, we have by the law of large numbers

The next theorem shows that an upper bound for the probability of the sel.

{v;.,(al) > h} can actually be computed.

Theorem 5.5.4 If UN is a zero-mean L.mixing process such that M"" (U) < 00

and r "" (U) < 00, then setting {J = ad (2M",,(U)r",,(U)), and -( = at{J/2 IDe have

P (v;,.(atl > h) < cie-PI.

Remark: Theorem 5.5.4 shows that with h large enough, the rate of false alarms

Fl can he made as small as desired.
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PHOOF. (Theorem 5.5.4) Using (5.48) we get that

p (1lrv(od > h) ::; f/ CÊ (Uk - 01) > h) .

134

(5.49)

(5.50)

•

Since (Uk) is a bounded, zero-mean L-mixing process we have by Theorem 2.4.5 \Vith

Uk == Uk and fk == f3, that

lE exp (f3CÊ Uk) -f321>:(N - m +1)) ::; 1

\Vith 1>: =2Mco (U)1'c,,(U), for which

lE exp (f3 k~ (U k - al)) ::; elp2K-P".)IN-m+I).

Choosing f3 = 0t!21>: the right hand-side of (5.50) becomes exp (-~:(N - m +1)).
Now for the m-th term in the left hand side of 5.49 we get

p C~ (Uk - al) > h) - P(exP[f3~ (Uk - al) > expf3h])

::; exp ( - ~~ (N - m +1)) /ePh

by Markov's inequality. Let 'Y = 01f3/2, then summation over m from 1 to N gives

N::; I: e-"I(N-m+t) /ePh

m=l

< C"l(l - e-"Itle-Ph

Setting CI =c-"I(1 - e-"It l we get the daim of the theorem. 1

The present form of the analysis is thus far not very practical since the process

(l.(Ô'~_I,O·)f is obtained through a computational1y intensive procedure as was

pointed out in the previous section. A similar deficiency was overcome in [Ger89a]

by using a strong approximation result which relates off-line and on-line estimators.

It is conjectured that a similar result holds for fixed gain estimators. For the time

being, ho\Vever, we must be satisfied \Vith the above results.
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The next aspect to be analyzed is the performance of OUI' changc-point l!l'l.cdion

method as measured by the so ealled detection dclay. That is, thc timc clapsc,l

between the change-point and the alanu time. Morc prcciscly, wc wonll! likc \.0

analyze the probability

F2 = PiT - T" < 8t > O}.

For this matter, we need to understand the nature of thc stochastic process '1' - T",

or equivalently the nature of the process Er:T" Ub A first step in the l'ight dircction

is provided by Theorem 5.5.2

What is actually left by the analysis is a lower bounel fol' thc tracking l'l'roI' ((~)2_

e~ in terms of S. As was illustrated by the various examples givcn prcviously, our

definition for slowly time variant systems does not seem to capture the "tl'lle rate

of change". It is therefore very difficult to obtain a lower bounel fol' the tracking

l'l'l'or. Nevertheless, Theorem 5.5.2 seems to be an important ste!, towards obtaining

an expression for the delay time.

5.5.5 Change-Point Detection and Undermodeling

One of the main goals of real-time change-point detection algorithms is to detect

change-points as quickly as possible. Hence, these algorithms should use the minimum

number of data samples after the change-point. As was shown in previous sections,

change-point detection problems are l'articulaI' types of model selection problellls.

This connection implies that the issue of quickest detection translates naturally to

the question of how to choose "good" models for systems when only few data arc

available. It is intuitively c1ear that knowledge of only the parametric structure of

a "good" model of a complex system might be of little help when only a short dat.a

sequence coming from this system is available. This is simply because of the fad that

the elfect of uneertainty about the parametric values of a complex structure might
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be much more undesirable than the uncertainty due to the undermodeling of this

system. Note that in change-point detection problems which occur in practice the

pararnetric values of the system after the change (and sometimes even the structure)

arc unknown. This makes it reasonable to investigate whether undermodeling could

improve the performance of change-point detection algorithms. 'là the very best of

our knowledge, this issue has not been previously investigated. In the present section

we shaH give a partial theoretica.! justification that unùermodeling could in principle

improve the effectiveness of change-point detection algorithms. We will also support

this claim via simulations in Section 5.6.

The recent results obtained in [Ger92a] provide us with important guidelines on

how to theoreticaHy tackle the issue of undermodeling in change-point deteetion. We

shaH consider here the specifie problem ofundermodeling of ARMA processes by using

the simpler AR mode! structure. 'l'hus, we shaH explore the possibility of using AR

models classes as the tentative descriptions of the data after the change-point, instead

of the more complex ARMA modcls-even though the data is aetuaHy generated by

an ARMA system.

Let (y) be the ARMA(p, q) process given by

A'y =C'e, (5.51)

•

satisfying Conditions 3.1.1 and 3.1.2. Now consider AR(k) model classes which fit

the data produced by (5.51). Let Ak denote any stable k-th order polynomial with

constant term 1, and le~ the k-th order predictor error process be defined as

'l'hen the optimal k-th order predietor errer process is given by
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and the effect of model uncertainty is quantified as the excess of mean-sqnare predic­

tion erraI'

•Since Ak is generally not known in practice, let us apply the time invariant recllI'si\'c

least square method ta obtain the estimator sequence (A~,k) of I\k. Thcn the dfcet

of parameter uncertainty is given by

Ok ("'O,k)fN = AN_ly N'

Note that p(k) +m(Ak) = lE ((f~k)2 - (eN)2) is the excess of predictive ~l.ochast.ic

complexity between the model class AR(k) and the ideal codelength that wonld he

obtained if the parameters of the ARMA(p, q) modcl were known without uncertaint.y.

In [Ger92aJ the following result was established

(5.52)

under sorne suitable conditions on k = k(N).

For change-point detection purposes, we would like 1.0 compare the dirference of

predictive stochastic complexities which are obtained with the help of AR(k) and

ARMA(p,q) model classes. Let us then apply the time invariant PEM as described

in Section 3.2 to get the prediction error

•

Then in [Ger89dJ the following result was derived:

lE ((f~+q? - (eN?) = (~ (p +q)) (1+ 0(1)).

Now combining (5.52) and (5.53) we get

lE ((f~r? - (f~k?) = (~ (p +']- k) - P(k)) (1+ 0(1)).

(5.53)

(5..51)
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This says lhal in principle il is possible lo achieve a 10wer predictive slochaslic com­

plexily wilh an AR(k) model class lhan wilh lhe original ARMA(p, q) mode! class

for small sampIe sels.

Il is conjectured lhal a similar result also holds if we compule the prediclive

stochastic complexilies relalive lo lhe recursive algorilhms wilh small gain À. Namely,

thal

(5.55)

•

Therefore, for example, if p +q > k and the contribution of the model uncertainty

p(k) is small enough so that q2~(p+q - k) - p(k) > 0, then the encoding using the

AR(k) model class gives shorter codelength than the one obtained if we instead use

an ARMA(rJ, q) model class. In this case, we shou!d then expect a decrease in the

probability of false alarms.

In the coming simulation we shall show how the change-point detection perfor­

mance is actually improved using the just described undermodeling ideas.

5.6 Change-Point Detection Simulations

What follows are a sequence of simulations to illustrate the change-point detection

problem b:- means of the stochastic complexity approach which was presented in

previous sections. In Section 5.6.1 an example of the detection of a slowly time

variant change-point is presented, followed in Section 5.6.2 by illustrations of the

effect that the fixed gain À has on the performance of the change-point detection

algorithm. In Section 5.6.4 the issue of undermodeling in change-point detection will

be investigated. Lastly, in Section 5.6.5, the stochastic complexity based change-point
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detection method wil1 be compared to what coulù be thought. of as a naive change­

point detection procedure obtained by simply monitoring the time variant. paranwt.l'r

estimates,

5.6.1 Slowly Time Variant Change-Point Simulation

Let data yN be generated by a computer program that simulates a time ill\'ari­

ant ARMA(p*, q*) system until a chosen change-point T", anù a slowly time varying

ARMA(p*, q*) system after and including time T". lVlore precise1y, wc simulat.e a

model in the model class MT" (This mode1 class is described in Section 5.5.1.) Gnly

a computer realization yN of the process yN generated by MT" plus the orders Il' and

q" of the ARMA systems, are assumed to be given a-priori to the user for the imple­

mentation of the change-point detection algorithm. In Section 5.604 we will illust.rat.e

that the correct knowledge of the model orders after the change-point. is not cl'llcial

and that undermodeling actually can improve the performance of the change-point

detection scheme.

The present simulation is l'un unti! N = Nf = 1000, and the change-point is

chosen at N = T" = 500. The input process (e) is Gaussian white noise with mean 0

and variance 1. Let p" = 2 and q" = l, and consider the time invariant ARMA(2,1)

system as described in (3.15). Then (3.15) generates the proccss (y) until the change­

point T".

From N = T* unti! N = Nit the process (y) is generated by the slowly time

yarying ARMA(2,1) system described in (3.17). Note that the l'oies of this ARMA

system moye linearly from an initial location .35 ± .82i at N =T" to a final location

.35 ± .28i at N =Nit as il1ustrated in Figure 5.2.

In Figure 5.3 the realization of the process (y) used in the simulation is shown.

Note that the change in the dynamics of the data process yN is hardly noticeable.

As the data yN becomes ayai!able, we l'un two recursive prediction error algorithrns
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Figure 5.2: The time history of the pole-zero locations of the slowly time variant model
M,o.
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•
Figure 5.3: The data process yN generated by model M,o which has a slowly time
variant change-point at T O = 500.
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in parallel for the on-line computation of the predict.ion el'fors (~~., and {:~. The iix",1

gain ,\ of the time \'arying prediction error algorithm is set. t.o it.s .\ = .\'1'1 laine p;i\·,'n

by "'oP' = [)2/3 = .0113. (Rcfer to the rcmark on Theorem 5.5.:!.) The pal'ilmeler

• ".\ ".1 d ",1 f dl' l"cstlmates a t ,N1 a'2.Nl an ct,N 0 ai.N1 u;..I\" an ci,N arc S lOwn 11\ 'lgures :1.2-~\..t,

rcspectivcly.

The computations (~, and (~ allow us to compute t.he deleclor d(N) given in

(5.41). (See Figure 5.4b.) This dctector is used to tnrn an alarm on \\'hen it ex·

cceds sorne given threshold h. The prediction errDrs also allaw ns t.o compute the

stochastic complexity JV1,. SN,(T) for each moclcl class ,1/1, = 1, ... ,1000 (as delincd

in (5.40)) once all the observations yN have been obt.ained, that is when N = Nf.

(See Figure 5.4a.)
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Figure 5.4: a) Predictive stochastic complexity with respect ta model c1l1sses M,; hl
The on·line detector.

Th~ off·line estimate of the change point T" is T = 628, which corresponds to the

value of T which minimizes SNJ(T) in the)nterval (D, Nf]. The estimation error of the

change·point is rLbén T - T" = 128.

",\
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Figure 5.5: The detectioll delay Td = T - rO as a functioll of the threshold h.

The bcluwiour of the detection delay Td with respect to the threshold h is shown

in Figure 5.5. The values of h range from its minimum value which allows no faise

alarms to occur in [0, TO), to its maximum value which acheives detection in the time

interval [T', N,l.

We shall see that the delay time for the abrupt change-point case to be presented

in Section 5.6.3 is much smaller than the delay time of the slowly time variant change­

point just described for fixed h. This shows that t.he delay time, Td = T-To, is greatly

alfected by the rate of change of the system S. That is, we should expect to obtain

smaller Td with greater S. Therefore, the delay time and also the off-line change­

point detection estimate must he viewed relative to the change in magnitude of the

parameter vector in the time interval [T', Tj. (Refer to Figure 5.22 of Section 5.6.5.)



• ClIAPTER 5. CHANGE-l'OINT DETECTION [·1 :l

5.6.2 Performance of the Change-Point Detection Aigorithm

with Respect to the Fixed Gain ,\

Wc shall now repeat t.he simulation of Section 5.G.I l'or dill'crcnt. \',l1u"s or \.Ill'

fixed gain .\. The purpose is ta study the c1rect Iixed gain on change. point. dct.cdion

performance. Since we plan ta use values of .\ as small as '\'1',/10, wc nccd ta h;wc

a larger value for the final time Nf. This is 50 sincc for '\"1',/10 the t.illle invariant.

and time variant recursive prediction erraI' algorithms describcd in (:1.l3-:l.1'1) will

coincide until time N = 10/'\01" = 886. Thus, bath algorithms would producc t.hc

same prediction errors until this particular time N. Therefore let Us set Nf =4000

and r* = 3500, \Vith the l'est of the parameters remaining at t.heir previously assignClI

values. In Figure 5.6 the realization of the process (y) is present.ed.

5.-----,....----.__---.__--~.__--~...__--___.

360037003600350034003300

-5L ~ _'_ ~ ~ ~ ___l

3200

N

1 1 ARMA process before change

ARMA process artel' change

Figure 5.6: The data process yN gcncratcd by modcl MT' which hns Il slowly tilllc
variant change-point at r' = 3500.

•
Figure 5.7 shows the behaviour of the stochastic complexities and the dctcctor

d(N). The change-point estimate is T = 3567, and the estimation errer T - r' = 67.
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Figure 5.7: tI) Predictive stochtlstie complexity with respect to model cltlsses MT b)
The on-linc dctcctol'.

In Figure 5.S we display the detector d(N) for values of the fixed gain ..\ ranging

from IO"\opt ta ..\opL/IO.
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Figure 5.8: The on-Hne detector d(N) with different values of the fixed gain '\.



• CIIAPTER 5. CII.-\NGE-l'OINT DETECTIOS 1·17

In order to make the comparison of the beha"iour uf the tlelect.urs .1("') fur dif­

ferent \'alues of .\ more c1ear, wc plot them tugether after the challge-I'"int T" in

Figure 5.9 and Figure 5.\0.
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Figure 5.9: The on·line detector d(N) for decrensjng vnlues of the Iixcd gnin À•
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Figure 5.10: The on-line ùetector d(N) for increasing values of the fixeù gain À.

In Figures 5.11 and 5.12 the detection delay Td is plotted with respect to the

threshold h for the dirrerent values of À that are being considered. This is done so

as to best appreciate the varied performance of the change-point detection method

with respect to À. Note that the best performance is obtained for À = '\opt, which

shows that the a-priori chosen value of À was indeed a good choice. The beginning of

each of these plots marks the minimum threshold h under which no false alarms are

obtailled for the particular realization yN of yN that we are looking at. Hence, for

values of h less than this minimum the change-point is not detected since for these

values of h we have T < r" .
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Figure 5.11: The detection dclay Td = T - TO as Il f\lnclion of lhu lhrusholc.l Il for
decreasing values of the fixed gain '\.

Another observation that can be drawn from Figures 5.11 and 5.12 is t.hat. t.he dclay

time Td is not drastically affected when values of ,\ which differ from '\OPL by about.

100% are used. Moreover, for the values of ,\ being considered which dirrer by more

than 100% from '\OPL, the change-point detection algorit.hm sl.il! providcs reasonable

performance with the except.ion of À < Àop,/4. This il!ust.rat.es t.he l'Obust.ncss of t.he

change-point detection met.hod with respect 1.0 t.he fixed gain À•

•
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Figure 5.12: The detection dclay 1'" =T - T' as a function of the threshold Il for
incrcnsing values of the fixcd gain .\.

5.6.3 Jump Change-Point Detection Simulation

•

The simulation in this section will dilfer from the one introduced in Section 5.6.1 in

that the change-point, instead of being slowly time variant will be a jump, Thel'efore

the poles and the zero of the ARMA(2,1) system will jump from their initia! condition

to their final condition as exhibited in Figure 5.13. The only other dilference is that

the gain ..\ is set to ..\ = .02. The parameter estimates â~,N' â;,N' and ~,N of ai ,N'

a;,N' and ci,N are shown in Figures 3.5-3.7, respectively.

In Figure 5.14 the realization of the process (y) withthe abrupt change-point is

presented. Again note that the change in the dynamics of the data process yN is

hardly noticeable.

Figure 5.15 shows the behaviour of the predictive stochasitic complexities SNJ(r)

and the detector d(N). The off-line estimate of the change point r' is l' =503, and
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Figure 5.13: Jump case: The initial and final pole-zero locations of the time variant AII.MA(2,1)
system.
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Figure 5.14: The data process yN generated by model MT' which ha., an abrnpt c"all~c·poilltat
r' = 500.
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Figure 5.15: al PredicLive sLochosLic complexity wiLh respecL ta model classes J\.1 ,; b) The on-Iine
deLeclor.

thus the estimation error of the change-point is only T - r" = 3.

The rclationship between those thresholds h for which no false alarms occur, and

the detection delay Td is depicted in Figure 5.16.
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Figure 5.16: The detoclion delay Td = T - T" os a funclion of the threshold h.
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5.6.4 Change-Point Detection and Ulldcrmotlclillg

Here, the issue of undermodcling in change-point dct.ect.ion ll'ill Ill' l'llnsi,kred

via simulations. The idea will be to detecl the sloll'ly time variant ,·han.l\e-point

introduced in Seclion 5.6.1 and the abrupt change-point of Sect.ion ii.G.:! nsing AIt

models instead of ARMA modcls to generate the prcdict.ion enors l;~. Thns the modd

classes MT will correspond to time-invariant ARl\IA models until Lime T allli lime­

variant AR models after T. WC will sce that an increase in change-l'Di ut. dct.ect.ion

performance is obtained for both types of change.points being considered.

Let us start with the slowly time variant change-point case. In Figure 5.17 t.he

deteclors d(N), when AR(k), k = 1, ... ,4, modcl classes arc used, ;cre displayed.

1'0 help discern the increase of performance of the change-point. dclcct.ion algo­

rithm when using an AR(2) model insLead of t.he Illore cOlllplcx AltMA(2, 1) Illodcl

employed in Section 5.6.1, the dcteclors d(N) which rcsult in each of thesc C,L"~S arc

plotted in Figure 5.18.
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Figure 5.17: The on-Hne slowly time variant change-point detector d(N) wi'h mode!
classes: a) AR(l); h) AR(2); cl AR(3); d) AR(4) .
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Figure 5.1S: Comparison of the on-line slowly time variant chanl;e-point deteclors
deN) obtained when not using undermodeling (that is when cmployinl; ARMA(2,1)
models) and when using undermodeling with an AR(2).
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LeL us naw mave ta the case of the abrupt change-point when using undermodeling.

'\5 with the 510wly time variant case, AR(k), k = 1, ... ,.1, modcl classes are applied

to con5truct the detectors d(N). These are shown in Figure 5.19.
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Figure 5.19: Thc on-\inc abrupt change-point detector d(N) with mode! classcs: a)
AR(l); h) AR(2); c) AR(3); d) AR(4) .
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Figure 5.20: Compnrison of the on-line nbrupt chuuge-point dctcctol'S d(N) obtuinc<1
when not using undermodeling (thnt is when employiug ARMA(2,1) models) und when
using undermodeling with nn AR(2).

Again, the performance enhancement of the change-point detection algorithm,

when using an AR(2) model (note that this is the model that performs hest <unong

the AR models being considered) instead of the ARMA(2, 1) model, can he clearly

observed when the detectors d(N) for these two cases arc plotted togcther as in

Figure 5.20.

5.6.5 The Detector deN) Versus a "naive" Detector Based

on Monitoring Parameter Estimates

•
Since the recursive prediction error algorithm with fixed gain ha.~ the ability to

track time variant parameters, one might think of using the parameter estimates of

the system, without further processing, as a change-point detection scheme. Wc shall
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illusLraLe here LhaL this "naive" change-point detedion technique is out-performed by

the stochastic complexity based change-point de~ection method.
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•
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•

Figure 5.21: The abr..pt change-point case: a) The "naive" detector; b) The stochastic
complexity based deteetor.

From Figures 3.5-3.7, we can observe that the estimator â;,N of a:;,N best tracks

iLs corresponding "true" time variant parameter if it is compared to the tracking

performance of the estimates â~,N and â~.N' Therefore, in Figure 5.21, the estimator
"'~
â2,n and the detector d(N) (for the abrupt change-point of Section 5.6.1) are plotted

side by side 50 as to apprcciate the improvement obtained by using d(N) as opposed
-~ , ,-

to â2,N for the alarm signal.
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In Figure 5.22 the same companson is represented (as that displayed in Fig­

ure 5.21) but in this case for the slowly time variant change-point of Section 5.6.3.

Once again a similar conclusion is drawn: the stochasl.ic complexii.y basc<l change­

point scheme using undermodcling outperforms the "naive" change-point mdhOtI

based on monitoring the parameter estimates.
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Figure 5.22: The slowly time variant change.point case: a) The "naive" deleclor; h)
The stochastic complexity based detector.
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Chapter 6

Adaptive Control of an LSS

Even though the use of a properly designed fixed feedback controller would reduce

the effed of plant uncertainty on closed loop system performance, it would not be

weil suited to the control of physical systems with little a-priori knowledge of their

dynamics. Since the beginning of the 50's a new area of control, known as adaptive

control, emetged. IL was triggered by the need to tackle the control of physical

systems whose dynamics experiences major alterations. For example, we can mention

the control of aircrafts and ships whose dynamics is greatly affected by the different

conditions under which these physical systems ought to operate. Another situation in

which adaptive control is deemed necessary is when experimentation with the physical

system is not possible in advance. For instance, this applies to many control problems

found in proccss control, in particular in chemical engineering, and in economics.

(For applications in the area of adaptive control the reader is referred to [NMSO]

and [ÂstS3].)

The theory of adaptive control has at present time gained certain level of maturitYi

results on stability, both local and global, as weil as performance of sorne adaptive

schemes are available. Recent books on adaptive control amongst the now extensive

literature are: [IKS3], [OSSI/j, [KVS6] [CaiSS], [AWS9], [SBS9], and [C091] .

160
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•

The main current approaches of adaptive cont.rol are: i) the modd rcferellce mlap­

tive systems (c.f., e.g., [Pm'66] for an earlier \York and [Lani9] for a book dedicated t.o

this approach)j ii) self-tunning contrQl\ers (d., e.g., [l\al58) for an earlier work allli

[Al08i) for 1. summary of results when using ARMAX modcls). The first approach is

base.d on updating the parameters of the control\er direetly from informat.ion of the

error generated between measured and Il\odcl outputs. The second approach-which

is general\y formulated in a stochastic framework-estimates the paramcters of the

plant and uses these new estimates to recompute the control law. This appmach

is much more involved than the simple modcl matching approach. Moreover, I.he

model reference approach can be viewed as a l'articulaI' ca.<e of the latl.er mel,holl

(d., (SB89]). In this chapter, the adaptive control\er to be presented falls in t.he

category of self-tunning regulators.

In the work of (Ger90a], an adaptive control problem for fillite dimensiollal t.illie

invariant !inear stochastic systems was considered. The struclure of t.11C atiapl,ive

controller was based on the certainty equivalence principle which consists of usillg t.he

latest estimates given by an identification scheme to the design of an appropriate con­

troller, as if the parameter estimates were the true parameters of the system. A very

important feature of the identification scheme is that since it is formulated for l,he

closed loop system, the parameter estimates are the ones giving optimal performance

for the controlled system.

In the cited work a link was established between open 1001' and closed 1001' idell­

tifiability. More precisely, closed 1001' parametric identifiability of a system drivell

by a suboptimal adaptive controller wa>< proven under the assumption of open 1001'

identifiability of the corresponding open 1001' system driven by a persistent1y exciting

open 1001' control signal.

As usual the identification scheme was formulated as that of fin ding the root
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of the gradient of an appropriate cost function. 1t was shown that this problem

cou!d be solved succcssfully via Ljung's scheme, arriving at an on·line computable

adaptive controller. When imp!ementing the adaptive control1er, one of the main

computational1y expensive features was its dependencc on the directiona! derivatives

of the adaptive feedback transfer function gain. In this chapter, we will prove that in

fact there is no such dependence, reducing considerably the computationa! comp!exity

of the a!gorithm.

Wc will also extensivc1y illustrate the adaptive control methodology for an ARX

system, showing the stability and tracking capability of the adaptive controller. More·

over, wc will show the errect of the dither process (d., [Cai88J) on the closed Joop

performance, a process which is embe"-'~d in the cont~ollerto guarantee identifiability

of the cl )sed loop system.

6.1 Closed Loop Identifiability from Open Loop

Identifiability

In this section a self contained summary of [Ger90aJ will be presented. Consider

the parametrized sets of transfer functions

and

which are m x m and m x r matrices respective!y, defined over 0 E Do c. IR\

where Do is a compact domain. Let O· E intDo, and consider the output processes

y(O·) = (Yn(O·)), defined by the discrete-time linear stochastic system

where w = (wn ) is an m·dimensional noise process, and u = (un) an r-dimensiona!

input process, satisfying the fol1owing condition:•
y(O·) = IJW(O")w +W(O')u, (6.1)
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•

Condition 6.1.1 The pl'ocess(lt,w) is defined OllcrSOIllC pl'obllbilityspllcc (n,F, l')

and is jointly second-ol'del' stationlll'Y with ZC!"O !/lClln. Lei (F.. ) be Il 1Il01l0/01le ill­

el'easing u-algebra of F, then (u.. ,w.. ) is F.. (lIlllpted. Thc noise 1)!"Oeess (w .. ) is itsdf

an orthogonal pl'oeess with IEw..w~ = A > 0, fOl' IIIlIL Thc inp"t l'''ocess CClIt be

deeomposed as u = u L +u- sueh that (10, u.L, u-) is widc sense sllllinlllll'Y, u.L is

orthogonal ta 10, and u- is pl'edietable with l'espeet to 10 (i.e, u~ E Sp{ U!i; i ::; Il - 1)).

Further conditions imposed on the stochastic system (G.1) arc as follows:

Condition 6.1.2 IIW(0, e- i •I), (IIW(0, e- i '\)) -l, nndl/"(0, e- i .I), II/'e 1101Llldm'y Iltl/c­

tians of IICO -funetions on the unit dise D.

Let the analytic extension onto the unit disc D of a tmnsfer fUllction 1/(0, c-i,l)

be denoted by H(O, z).

Condition 6.1.3 The matl'ix functions IIW(O, z), and J/U(O, z), (LI'e smooth with l'C­

speet ta °in the strong topology of IICO(O). MOI'eover, J/W(O, O) = l, whel'c 1 dcltolcs

the m x m identity matrix.

The parameter O· of system (G.l) is identified as follows. First, chooHe a trial

parameter°E Do, and compute the residuals

e(O, O·) = (IIW(O)fl (y(O·) - W(O)u) ,

where e(0, O·) = (en ( 0, O·)) is often ealled the prediction error process. Define the COHt

function

W(O,O·) = Hm -2
1 IEle..(O,O·W .

..-co

Then, a necessary condition to identify system (G.l) is to assure W(O,O") a local

minimum at °= O·. However, this condition is not sufficient since there could exist

a manifold of global minima. To avoid this situation, let the fol1owing definitions he

introduced:
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Definition 6.1.1 A second-order stationary process x is said to be persistently ex­

citing if its spectral density matrix,pO for sorne constant c > 0 satisfies ,p(e-i.l) > cl,

for ail -11" ~ ,\ ~ 11".

Definition 6.1.2 System (6.1) is said to be locally identifiable under persistent ex­

citation if for ail persistently exciting input processes (w, u) satisfying Condition 6.1.1

the llessian matrix

is positive definite.

System (6.1) can then be said to be identifiable if it is locally identifiable under

persistent excitation, and its associated cost funetion W(O,O") has a root at 0 = O'.

For example, it is easy to show that in the case of an open loop system,

yO(O") = JlIU(O")w + JlU(O")uo. (6.2)

where (UO) is an open loop input such that (UO)- == 0, the associated cost function

denoted WO(O,O") has a global minimum at 0 = 0". Therefore, if the open loop

system (6.2) is locally identifiable under persistent excitation the system's palameter

0" can be identified.

Let us introduce t,he closed loop system associated with the open loop system (6.2).

Observe t.hat condition 6.1.1 allows closed loop control inputs u = uC
, formed as

combinations of a causal feedback and an external dither. Therefore, define the

closed loop system associated with the open loop system (6.2) as

•
yC(O, O') =JI'"(O")w +IlV(O, 0"),

with the closed loop control input given by

UC(O,O") = I«O)(_yC(O, O') +UO) +v,

(6.3)

(6.4)
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where K(O) is a designed p x m feedback transfer fundion gain, and tl = (vu) is a

dither. Note that the dependencc of the feedback gain is with respect to °and not 0"

since the latter corresponds to the truc system's paramcter which is assnmed to be

unknown. The use of an extel'llal dither proccss will pro\'e essentia! to achic\'ing dos,',l

loop identifiabiHty. This type of control1er is somctimes referrcd 1.0 as conl.innonsly

disturbed control (c.f., [Cai88]). The fol1owing condil.ions arc imposed 011 I.he close,l

loop system (6.4):

Condition 6.1.4 The transJer Junctions [((0), and (I+//"(0") [{(O)t l urc in //""( D),

Jar ail°EDo. Moreover, K(O) is smooth with 7'es/Jcet ta 0 in the st1'Ong t0I'0logy oJ

Condition 6.1.5 The dUher v is a second-arder stcltionll7'y /JC7'sislcnliy cxci/.ing /11''''

cess orthogonal ta the noise process w.

The prediction-error process for the closed loop case is given by

fC(O, 0") = (II"(O)fl (yC(O,O") - Il"(O)UC(O,O"))

and the associated cost fnnction by

WC(O 0") = Hm ! JE IfC(O 0")12
•, n_co 2 n 1

(6.5)

•

In [Ger90a] closed loop identifiability was achieved under the assumption of open loop

identifiability.

Theorem 6.1.1 Under Conditions 6.1.1-6.1.5, and the assumption t/lllt the oprm­

loop system (6.2) is locally identifiable under IJersistent excitation, t/L(] closed 100/)

system (6.9-6.4) is also locally identifiable under persistent excilfLtion, i.e.

:;2WC(O, 0") 10=0.'

is positive definite.
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Using Theorem 6.1.1 wc can show that the cost·function We(O,O") has a local

minimum at °= O·. Indeed,

~we(o,o·) 1

BO 0=0'
= Ji~1E (:o€~(o.,o·)r· €~(O·,O·)

- Ji~1E (:o€~(o.,o·)r·wn'

(6.6)

and since it is easy to show that a/ ao€e(O·, O·) is J'"n-I we get the daim. Thercfore,

the parameter O· of the dosed loop system (6.3-6.4) can be in principle identified.

However as shown in the next section there are sorne iimitations to this solution IV hich

will have to be overcome.

6.2 Closed Loop Identification via Ljung's Scheme

A process x is saie! to be computable if it can be obtained by a known transfor­

mation of a known monitored process. This monitored process will usually be the

output of an unknown physical system driven by a partially or completely unknown

input. For example €~(O, O·) is computable. In this case Ve(O, O·) is the monitored

process, and (6.5) describes its known transformation.

The identification of O· is based on finding the roots of the equation

:0 WC(O, O·) = O. (6.7)

It is important to note that (6.7) actually represents the simultaneous identification

and control of system (6.3-6.4)

An important drawback of (6.7) is that it is not computable, and thus cannot be

solved in praetice. Tc prove this daim, note that

•
(6.8)
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requires the computation of process 8/80fC(0,0") which in \.lll'n, by (G.;», rc'qnin'"

the computation of process 8/80yC(0, 0"). 1'0 now show tha\. iJ/DOyC(O,O") i" no\.

computable, first combine (6.3) and (6.4) to get

yC(O, 0") = UW(O")tv + IJ"(O")K(O)( _yC(O, 0") + 11
0

) +1/"(0")11, (CUl)

and di!ferentiate (6.9) in the direction (v,O), where v E IRk
, Il i 0, \.0 ob\.ain

y~,o(O, 0") = [1 + II"(O")[((O)]-l II"(0")[(0(0)( _yC(O, 0") + 11
0

). (G.IO)

•

Since in ~6.10) Il''(O") is unknown, then y~,o(O,O") is no\. compuLable and Lhus cannoL

be generated by the user.

As noted in [Ger90a], in practice, a stochasLic approximaLion scheme--performed

via Ljung's scheme-is used to idenLify 0". However, Ljung's scheme cannoL be applied

directly to the solution of (6.7) since WC(O,O") is noL comput.able. Thus, wc necd

first to find a computable approximation, say U(O, 0"), of the cost funeLion WC(O,O"),

which would not destroy the desirable properties of WC(O,O").

In [Ger90a] the computable approximation process U(O,O") was given in tenl1S of

the derivative of the feedback gain [((0). This dependence is at first hand obvions

since the directional derivatives (v, 0) of the process yC(O, 0") arc expressed in tenns of

[(0(0) as shown by (6.10). This dependence dramatically increases the computal,ional

complexity of the adaptive control algorithm. In fact, it is of common practicc t.o de­

sign the feedback gain [((0) by soIving an optimal control problem, assuming thaL Lhe

trial parameter 0 is the true parameter. It is well-known that t.his optimal contl'Oller

is obtained via the solution of a Ricatti equation. Thus, t.he computation of [(0(0)

involves, in this case, the di!ferentiation of the Ricatti equation. This process has

to be repeated at each time interval since new est.imal;es of 0" arc computed. Fort.u­

nately, as it will be shown, there is actually no dependencc of the adaptive cont.l'oller

presented in [Ger90a] on the term [(0(0), thus avoiding the need of dilferenLiating

Ricatti equation•.
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Recalllhat in order to cslimale 0", (6.8) musl be solved, and since 8/âOë(0,0")

is not compulable, a computable approximation of â/âOë(O, 0") is sought, which will

be denoled by 8/80l/>C(0, 0").

Lemma 6.2.1 A computable Junclion U(O,O") which approximates W(O, 0") is given

by

where the directional derivative oJI/>C(O,O") in the direclion (v,O) is

" I/>v,o(O, 0") = (W(O)t1 [IJ:(O)UC(O, 0") - IJ::(O)'C(O, 0")]. (6.11)

REMARI<. Note that I/>v,o is independent of /(v(O).

PROOF. Rewrite (6.5) as

W(O),C(O,O") = yC(O, 0") - HU(O)[-/((O)yC(O, 0") + /((O)UO +v] (6.12)

Then, the process ':;,0(0,0") is simply obtained by differentiating (6.12) and thus we

get

JI::(O)'C(O,O") + W(O)'~,o(O,O") _ y~,o(O,O") - H:(O)(/((O)(-yC(O,O") +ua) +v)

-HU(O)[-/(v(O)yC(O,O") - /((O)y~,o(O, 0")

+/(v(O)UO]

(6.13)

Recall that the process y~,o(O, 0") was not computable since the term HU(O") in (6.10)

is unknown. Let us rewrite (6.10) as

(I +W(O")J((O))y~,o(O, 0") = -W(O")/(v(O)(yC(O, 0") - ua). (6.14)

The first approximation step is to substitute H"(O") by HU(O) in (6.14) to get the

approximation process Z:;,o(O, 0") of y:;,o(O,O") computed by

• (1 +W(O)/((O)) z~,o(O, 0") +W(O)/(v(O)(yC(O, 0") - ua) =O. (6.15)
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Substituting y~,o(O,O') by z~,o(O,O') in (6.13) the computa!>I,' approximat.ion pl"lll'l'"

"'~,o(O,O·) of f~,O(O,O') is obtained. Thus we get

H:(O)fC(O, O') + IIW(O)"'~,o(O, O') = [I + [[U(O)[{(O)] z~,o(O, O') -

II: (0) [-[{(O)yC(O,O') + 1\(O)UO + v] +
II"(O)[(v(O)(yC(O, O') _UO).

Observe that since (6.15) holds, the lirst and third tenns of the second lm'" of (6.16)

cancel each other, Therefore,

which finally gives

"'v,o(O,O') = [Il"'(O)tl [II:(O)(-[(O)yC(O, O') + [{(O)UO +v) - H:;'(O){C(O, O')] 1

Corollary 6.2.1 We have

"'v,o(O', O') = f~,O(O', O'). (6.17)

PROOF. If 0 = O', equation (6.14) can be used directly to cancel the lirst and hL'!.

two terms of equation (6.13) leading to the stated equality. 1

Based on the above corollary the following theorem is esLablished:

Theorem 6.2.1 The computable function U(O, O') satisfies the following In'operties

(6.18)

•
and

:OU(O,O') 10=0'
is positive definite.
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l'I\OOF. Simply note that from Corollary (6.2.1) we have

U(O',O') = WC(O·,O·). 1

liO

•

Now the computable equation (6.18) can be solved via Ljung's scheme under

'_~rtain additional conditions imposed on the input noise process w (c.e., [Ger88b]).

Nok .hat the crucial stability condition needed when applying Ljung's scheme is

satisfied. Illdeed,

O(t) = -U(O(t), O'),

which is the associated ODE to equation (6.18), is asymptotically exponentially stable

at °= O', since the gradicnt of U(O·,O·) is positive definite.

Let us finish with sorne remarks: Since the addition of a dither makes the cOlltroller

suboptimal, the variance of the dither becomes an important design paramete'·. In

this respect sorne promising directions of research are opened by the use of predictive

stochastic complexity in the optimization of the performance of continually perturbed

adaptive controllers. More precisc1y, when using fixed gain, the size of the dither could

be optimized so as to minimize the variance of the estimation error. The result of

Theorcm 10.8 in [Ger91c] can he taken as the first steps on the study of the effect of

parameter uncertainty on the closed 100p performance.

6.3 An Application: Adaptive Control of an ARX

System

In this section, the adaptive control :nethodoIogy introduced for fini te dimensional

time-invariant linéal' stochastic systems will he ilIustrated hy an autoregressive system

with an extigenous input, or ARX system. Extensive simulations of this particulaI'
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system will he provided which demonstrate the stabilit.y and tracking cnpnbilit.y of

the adaptive controller. Wc will also show the effecl of the dither on c10scd lonp

performance.

Consider the following open 1001' ARX system

(G.I!!)

where O· E intDo, Do c m? denotes the vector composed of thc coefficient.s u- and b-,

the process (eN) is the input noise proccss, and the proccss (uN) is il dct.cl'lninist.ic

reference input.

Let us pick a 0 E Do and assnc;.ate t.> the open 1001' system (6.19) t.he c\'JsCll 1001'

system

(6.20)

with feedhack law

(6.21 )

where UN is a dither. The gain k(O) is designed ru; the optim~1 gain found by solving

the optimal stochastic quadratic control prohlem, taking 0 as the "true" pnramel.cr

of the system. The cost function to he minimizeù is

lE (m[xN(O,O·W + l[uN(O,O-W), (6.22)

•

for sorne m > 0 and 1 > O. As is well-known k(O) is found by solving the Rienl.t.i

equation

P +a2 P - aPb(l +b2 Pt' bPa +m = 0,

and computing k(O) = [1+b2Pt1bPa.

We assume that Conditions 6.1.1-6.1.5 hold for system (6.20). Thereforc, IIsing

Theorem 6.2.1, the adaptive control prohlem can he solved via Ljung's scheme by

finding the root of the fol1owing stochastic equation
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ln this case, the prediction error proccss associated \Vith system (6.20) is

172

App!ying (6.11), the approximating process for the derivative of the prediction

error process is given by

[

-XC (0 0*) ]
tPr,(O, 0*) = N , •

k(O)x~(O, 0*) - uN - UN

Now wc arc rcady to apply Ljung's scheme, which in this case coincides \Vith the

recursive (cast square algorithm, given by the following equations

(6.23)

(6.24)

- -
with initial conditions Ôoand Ra.

6.3.1 Simulation of the Adaptive Control of an ARX Sys­

tem

Let us now perform a simulation of the adaptive control problem introduced in Sec­

tion 6.3. The parameter values of the ARX system (6.20) are

a* = aN = .98, and b* = bN= .01.

•

The input process (eN) is Gaussian white noise with mean 0 variance 1. Set the

reference input UN = 3 sin([1l"f50JN), and m = 10, 1= .01 for the parameters of the

cost function 6.22. The dither (UN) is also Gaussian white noise with mean 0 and

variance .,.~ = .04 uncorrelated t,) the input noise (e).
- -

Wc ran the simulation for 200 iterations, with initial conditions Ôo = [.70], Ra =

.01 x 1(2), where 1(2) is the identity matrix of dimension 2, and yg = Y5 = -4.
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6

8

•
l'1

The initial conditions of ail other variables arc sel to O. The correlatioll codTiciellt

bclween the process (eN) and (VN), N = 1, ... ,200, is .05.

In Figure 6.1 the performance of the adaplive cOlllroller is illllslraled b.: simili·

taneously plotting the reference input UN, and the opell alld close 1001' Olltpllts !I~"

and y'}v.
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N

Figure 6.1: The rcfcrcncc input uN' and the open loop und close loop oullJuLH UN' and
Vh rcspcctivc\y.
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III Figure 6.2 olle cali see tbat parameter estimates âN and bN give consistent

estimates of UN. and bN• respectivcly.

::::: *<; aN fJN
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Figure 6.2: The truc pararneters and the pararneter estimates of the ARX system 0,:0:

a) The autoregrcssivc pnramctcr aN' and âNt b) The cxogcuous pnrmllctcl' bN, und 'EN .
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Tite gain of the adaptive cOI'trol aJ!l0rithm kN(ÔN-l) is shown in Figure 6.3.

10.----,--~--.__- .......-~--.__- .......- .......--.____,

2

oll...-_~_~__,--_~_~__,--_~_-,-__'--_...J

o 20 40 60 BO 100 120 140 160 IBO 200

N

Figure 6.3: The gain of the adaptive control1er.

6.3.2 The Effect of the Dither

lï6

•

In this section we will study, by means of a simulation, the effect of the dither on

the overal1 adaptive control mcthodology. Hcre we make a slight modification to the

simulation givcn in Scction 6.3.1 by setting the refcrerice input UN == aand the initial

dOt' 0 <con 1 Ion Yo = Yo'

Thc importance of the dither VN in this case bccomes very c1ear. Indecd, if the

dithcr is cxtractcd from the controllaw given in (6.21) then

XN+I(O") = (a· - b·k(O))xN(O·) +eN+1>

which shows that the paramctcrs a· and b· cannot be identified simultaneously.
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In order to test the effect of the cO\'ariallcc of t.he ,lit.her, wc l'iIlI t1m'" simlll,lI.iolls

with the dither covariance values: a~ = 1 x 10-", a~ = ~) x 10-", alld a~ = ~5 ~. Ill-·'.

In Figure 6.'1 the rcference input uN' alld the OpCII 1001' alld close 1001' OIlt.pUt.S

YN> and YN are plotted together for the value of a~ = 25 x 10-".

6~-~----,.--~--.--~--~--.--~-~~--,

4

5

y~ ---;.--;>! •/IN
-3'----'--~---':---'----:"--~-_:"_:-~-~'_:______=_'

o 20 40 60 80 100 120 140 160 180 200

-2

.",
::

N

Figure 6.4: The relcrence input UN' and the open 1001' und close 1001' outpnts y'f." nnd
Yh for lT~ = 25 X 10-4••

Figure 6.5a and Figure 6.5b charactelize the cffecl of t.he dither on t.he est.illlal.ioll

of the parameters in (6.20). Observe the crucial l'ole of the dither i,~ consisl.cntly

ostimating the paramoters of the system.

•
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Figure 6.5: The truc pnrnmcters and the paralUeter estilUates of the ARX sys­
tem (6.20): a) The autorcgrcssivc pnrarnctcr u'iv, unù ~N; h) The exogcnolls pm'IlIIwtm'

biv. and 'lN. .
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Chapter 7

Conclusion

The objecLive of this thesis has been to implement, test and refine model se1ecLion

and change-point detection problems in l'cal time using a form of predictive stochastic

complexity. Moreover, in this dissertation we proveà that the original form of the

adaptive controller developed in [Ger90a] can be computed in a much less expensive

manner.

In Chapter 4 we showed that predictive stochastic complexity is a mathematically

well understood critel'ion which can be used to solve model selection problems in

l'cal time. A consistent method for finding the best mode! order for a set of data

among certain classes of ARMA mode1s of different order was validated by extensive

computer experimentation. The use of fixed gain in the prediction erro.' estimation

procedure had the eITect of increasing the qualitative performance of the algorithmj

thus showing that the "badness" of the estima.tor increased the "badness" of over­

parametl'ization. The mode! order simulations involving AR mode!s illustrated this..
faet vel'y clearly. A successful model order selection simulation involving ARMA

Ir odels was also presented. Finally, a simulation indicated that in sorne cases, the

predominant eITect of parameter uncertainty over model order uncertainty can result

in misleading answers'about the order of the system for large values of the fixed gain
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of the recursive prediction error algorithm.

In Chapter 5 a change-point detection method for AH l\ [A systems was ohtai nl'd,

which assumes 0. ,1olV and non-decaying drift after the change-point. Also, tl", ahrupt

jump parameter case, and change-point detection with undermodding Wl're mnsid­

ered. Sorne partial results on the analysis of the scheme were obtaillell, showing that

the methods were amenable to theoretical analysis. The extensÏ\'e simulations showcd

that the approach exhibited surprisingly good detection capabilities. Moreoyer, they

illustrated the robustness of the change-point detection procedure with respect to

the fixed gain of the prediction error algorithm. In addition, wc sholVell-·mainly

empirically-that it is possible to improve the performance of l.he change-point de­

t.ection IVhen using undermode!ing. This fact opens the IV,,-y to furt.her research sillcc

the issue of undermodeling in change-point detection lms, to the best of our \molVl­

edge, not been previously studied. Finally the comparison of the stochastic cOln­

plexity change point detection method to a "naive" procedure hased on uuprocessed

parameter estimates sholVed that the former outperformed the latter.

What lVas left in the analysis of the change-point dctection mcthod lVas finding

10IVer bound for the tracking error (,~)2 - (eN? in term" of the rat.e of change oS',

Nevertheless, Theorem 5.5.2 secms to be an important step tOlVards obl.aining an

expression for the delay time, AIso, the process (f',(Ô'''_l'O')) 2 lVas obtained thl'Ough

a computationally intensive procedure. Howevcr therc is hope to overcome t.his defi­

ciency using Theorem 3.3.1.

In Chapter 6, the adaptive control problem for finite dimensional time invariant.

!inear stochastic systems, as introduced in [Ger90a], was described, We pl'Oved that.

the original form of the adaptive controller as found in [Ger90a] can be computed in

a much less expensive manner. The simulations of the aJapl.ivli control methodology

for an ARX system, illustrated the stability and tracking capability of the aciapt.ive

controller. Moreover, the e[ect of the dither proccss on the c10sed 1001' performancc

-' /
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\Vas illustrated. It was shown that in some cases t.he lise of a dit.h,'r prllCl'SS is IH'Cl'ss"r)'

to guarantee identifiability. An open area of research is to lise predictive st.,wh"sl.;,·

complexity in the optimization of the performancc of cont.inll"lIy pertlll'lll'd adapt.;vl'

controllers.
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