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Abstract

The objective of this thesis is to solve model order sclection, and change-point
detection problems in real time using a form of predictive stochastic complexity. A
consistent method for finding the best model order for certain kinds of ARMA pro-
cesses is presented. An interesting fact is thal the estimator “badness”, obtained
when using fixed gain, increases the “badness” of overparametrizalion. Meodel or-
der selection simulations involving AR processes illustrate this fact very clearly. A
successful model order selection simulation for ARMA processes is presented.

A change-point detection method for certain kinds of ARMA processes is ob-
tained for time variant change-points. Also, the abrupt jump paramecter case, and
change-point detection using undermodeling are considered. A novel result is that
undermodeling could in many cases improve the performance of the change-point. de-
tection scheme. Some resulis of the analysis of the change-point deteclion: schieme
are obtained and extensive simulations show that the approach exhibits surprisingly
good detection capabilities.

Lastly, we prove that the original form of the adaplive controller for lincar time
invariant systems, as obtained in [Ger90a], can be computed in a much less expen-
sive manner. Simulations for an ARX system cxemplify the stability and tracking
capability of the adaptive controller. Moreover, the effect of dithering on closed loop

performance is illustrated.
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Résurné

Cetlc thése présente une méthode pour le choix de |’ ordre du modele et la
détection de point de changement en temps réel. On utilise une forme de compléxité
stochastique prédictive. Une méthode consistante pour trouver le meilleur ordre
du modeéle pour certains processus ARMA est élaborée. Il est particulicrement
intéressant de constater que le “mauvais-rendement” de P’estimateur & gain fixe aug-
mente le “mauvais-rendement” de la sur-paramétrization. Ce fait est clairement il-
lustré par des simulations de choix d’ordre du modéle, impliquant des processus AR.
Une simulation réussie du choix d’ordre du modéle pour processus ARMA est aussi
présentée.

Une méthode de détection de point de changement pour certains processus ARMA,
pour points de changement temporellement variants, est obtenue. Le cas paramétrique
d’un saut brusque ct la détection de point de changement, utilisant un modele de
degré inlérieur, sont également considérés. Quelques résultats partiels de 'analyse
de "algorithme de détection de point de changement sont obtenus et les simulations
montrent que I'approche bénéficie de trés bonnes capa.citéé de détection.

Finalement, nous montrons que la forme originale du contréleur adaptatif pour les
systémes linéaires en temps invariant, comme ceux obtenus dans [Ger90a], peuvent
étre calculés de manieére beaucoup plus efficace. Des simulations pour un systéme
ARX montrent la stabilité et la capacité de suivi du contréleur adaptatif. De plus

I’effet de perturbation sur les performances du systéme en boucle fermée est examinée.
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Claim of Originality

The following original contribulions were made:

o Successful implementation of the stochastic complexily based model order se-

lection results for ARMA systems.

s The use of predictive stochastic complexily to solve change-point delection prob-

lems: Work includes design, partial theorctical analysis, and extensive computer

experimentation.

¢ The capability of the change-point detection scheme to detect slowly timme vary-

ing change-points.

* Empirical investigation of the issue of undermodeling in change-point delection
problems showing that undermodeling could in fact improve the performace of

change-point detection methods.

o The reduction of the computational complexily of a Ljung scheme based adap-
tive controller: Work includes theoretical proof as well as computer simulations

of the controller.
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Chapter 1

Introduction

A crucial consideration when modeling phenomena from observed data, is the
rclationship and tradeofl between model complexity and model fit. For instance, a
complex model might be able to match the data with high precision. However, if the
description of the model itself (in some well specified sense) turns out to be as lengthy
as that of the data, then no overall reduction in the complexity of the original string of
data would be achieved. If this type of procedure is employed, it will certainly deleat
the modeling objective of striving to maximally reduce the complexity of events by
extracting their regular features using compact mathematical descriptions.

The stochastic complexity modeling theory (c.f., [Ris89]) takes both model com-
plexity and performance into account in a natural way. At present, this theory
provides one of the most respected methods for solving model selection problems.
Morcover, it has by now evolved from its original framework, and is being used as
a very important tool in change-point detection (c.f., [BG90], [GB91], [BG92a], and
[BG92b]) and adaptive control problems (c.f., [Ger91¢]).

The stochastic complezily of a set of data is the shortest code length that can be
achieved when encoding the data with models in a given model class. This theoretical

inlormation measurc is computed off-line making it impractical for a large class of real

g
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CHAPTER 1. INTRODUCTION 9

problems. A major innovation of the theory has been the introduction of the coneept
of predictive stochastic complexity in [Ris86] which is a rcal time approximation of
the stochastic complexity which depends on an estimation algorithm. The aim of this
thesis is to implement, test and refine stochastic complexity based model selection
and change-point detection methods in real time using a form of predictive stochastic
complexity. These methods make extensive use of the theorctical results developed by

Gerencsér and Rissanen (c.f., e.g., [Ris89], [GRI1], [GerSlc]) in the arca of stochastic

complexity.

1.1 Thesis Outline

We shall shortly recapitulate the salient features of this dissertation whose body
is divided into five chaptlers. Chapter 4, on model order sclection, Chapler 5, on
change-point detection, and Chapter 5 on the adaplive control of a lincar stochastic
system can be followed independently of each other. .

In Chapter 2, we shall present some preliminary malterial which we fecl is cssential
for an understanding of the stochastic complexity based mectlhod for model order
selection and change-point detection, to be developed in this dissertation. These
topics are the classical maximum likelihood method, the theory of information and
coding, and a class of weakly dependent processes known as L-mixing processes (c.f.,
{Ger89c]). These types of mixing processes are found to play a central role in the
asymptotic theory of a broad class of estimator processes.

Since the model selection, change-point detection, and adaptive control methods
to be presented in this thesis rely heavily on the prediction-error method for the
identification of parameters in stochastic systems (c.f., e.g., {L.ju87]), Chapter 3 will
present this estimation algorithm for the particular case of ARMA processes. Both ils

off-line and on-line versions will be introduced, as well as its variant, obtained when



CHAPTER 1. INTRODUCTION 3

using forgetting of past data with exponential rate. A simulatinn will be included to
illustrate this identification procedure.

Chapter 4 will be initiated by a short discussion around some of the foundations
of the modeling problem. The purpose is to place into perspective the stochastic com-
plexity modeling theory, claborated by Rissanen (c.f., [Ris89]). This theory serves as
inspiration and guidance Lo much of the material to be presented in this dissertation.
The stochastic complexity theory will be presented up to some extent, leading us
to the notion of stochastic complexity for a set of data. An on-line approximalion
of it called predictive stochastic complexity (c.f., [Ris86]) will be described in some
detail. It will be shown that predictive stochastic complexity is a mathematically
well understood criterion which can be used to solve model selection problems in real
time. (This on-line feature distinguishes the modeling methods derived using predic-
Live stochastic complexily from other modeling method such as AIC or BIC which
are inherently off-line.) Specifically, we will introduce a method for finding the best
model order for a set of data among ARMA models of different order. We shall show
by computer experiments that this modeling scheme is consistent for certain types
of ARMA models; thus validating the theoretical claim found in [GR91]. Moreover,
using fixed gain in the prediction-error estimation procedure, the sensitivity of the
criterion to overmodeling increases qualitatively. This fact will be demonstrated by
simulations which compute the best AR model for a given set of data. A model order
selection simulation involving ARMA models will also be presented. Furthermore,
we shall study the effect of parameter uncertainty versus model order uncertainty via
simulation.

In Chapter 5, we will be concerned with a general outline of the change-point de-
tection problem, and a number of frequently used change-point detection techniques
(c.f., e.g., [Bas88]). We will begin by reviewing some of the well-known work done in

the last 20 years in the area of change-point detection. One goal is to underline the



CHAPTER 1. INTRODUCTION 4

general problem formulation, and highlight some of its most essential features and
difficulties. The survey should also serve as a self-contained introduction to the topic
aiding readers unfamiliar with the arca in understanding the change-point detection
method in general, and our change-point detection scheme which is inspired by and
based on the stochastic complexity theory. The stochastic complexity based change-
point detection method to be developed in this thesis is intended for use with ARMA
systems under the assumption that they have a slow and non-decaying drilt after the
change-point occurs. A salient feature is that the resulting change-point detection
algorithm will be finally cxpressed in terms of fairly simple recursive equations. The
abrupt jump parameter case and change-point detection with undermeodeling will be
also investigated. A novel result is that undermodeling—which is nol treated in Lhe
literature of change-point detection—could in many cases improve the performance of
the change-point detection scheme. Some partial results on the analysis of the scheme
are obtained, showing that these methods are amenable to theoretical annlysis. More-
over, simulations will show that the approaches exhibit surprisingly good detection
capabilities. The simulations will include the issue of robustness of the change-poiut
detection method with respect to the fixed gain of the prediction error algorithm, the
improvement of performance when using undermodeling, and the comparison of the
method with a “naive” procedure based on unprocessed parameter estimates.

In Chapter 6, the adaptive control problem for finite dimensional Lime invariant
linear stochastic systems, as introduced in [Ger90a], will be described. One of the
main computationally expensive features when implementing the adaplive controller
of [Ger90a) is its dependence on the directional derivatives of the adaptive feedback
transfer function gain. In this thesis, we will prove that in fact there is no such de-
pendence, reducing considerably the computational complexity of the algorithm, We
will also extensively illustrate this adaptive control methodology for an ARX system,

showing the stability and tracking capability of the adaptive coniroller. Morcover,
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the eflect on the closed loop performance caused by the dither process, which is em-
bedded in the controller to guarantee identifiability of the closed loop system, will be

studied via simulations.

The final chaptler, Chapter 7, will end with some concluding remarks about the

contributions of this thesis along with an indication of possible areas of further re-

search,



Chapter 2

Preliminary Material

In this Chapter we shall present some basic topics which we feel are essential for an
understanding of the stochastic complexity based method for model order seleclion
and change-point detection, which will be developed in subsequent sections. Thus
in Section 2.1 the classical maximum likelihood method will be presented, while in
Section 2.2 one of its main limitations—its inability to deal with models of diffcrent,
complexity—will be described. This limitation is overcome by the stochastic com-
plexity theory in Chapter 4. Since one of the pillars of this theory is the theory
of information and coding, we shall shortly introduce it in Section 2.3. Lastly in
Section 2.4 a class of weakly dependent stochastic processes known as L-mixing pro-
cesses, which play a central role in the asymptotic theory of a broad class of estimator
processes, will be presented.

Some of these topics, such as the maximum likelihood method and the theory of
information and coding, are well known in the scientific community. Nevertheless,
the short introductions which follow will familiarize the reader with the notalion of

the thesis and help facilitate the understanding of the present dissertation.



CHAPTER 2. PRELIMINARY MATERIAL 7

2.1 The Classical Maximum Likelihood Method

The maximum likelihood (ML) method is unquestionably the most widespread
estimation technique in both the thcoretical and practical realms of the statistical
discipline (c.f., [III81}). Since a vast literature is definitely available, the purpose here,
beyond that of a bricf account of the methed itself, is to serve as an introduction to
some of the main ideas of the modeling strategies that are extensively employed in
subsequent sections.

Let the sequence of real numbers y,,...,yn~ represent a set of observed data
obtained from a certain experiment. QOften, sequences like y;,...,yn will be shortly
denoted yV. Now, based on physical considerations—or any other pertinent factor—

the following modeling assumption is usually made:

Let y1,...,y~ be a sequence of independent and identically distributed (i.i.d.)
real-valued random variables cach having density f (-,5), where § € D C R¥, D an
open domain, and IR* the k-dimensional Euclidean space. Then yV is assumed to be

a rcalization of the random variables yV.

What the above assumption says is that yV is an outcome of the joint density
., f (-,5), and that this density is the “true” density governing the set of data
Y1+, ¥ Hence I'[nNz, f(-,ﬁ) is the “true” mode] defining all the constraints expe-
ricnced by the data. (Note that the above modeling set-up falls into a parametric
type of modeling and the specification of 0 completely describes the “true” density.)
The role of any identification method is thus to provide a good estimate, in some
well specified sense, of the unknown “true” parameter 0. By doing so one obtains an
approximation of the “true” density.

Although this type of modeling assumption characterize by the notion of “true”
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models is of common practice in classical statistical inference, it is the source of oue

of its major weaknesses. This will mainly be addressed and discussed in Chapter .

The idea behind the ML method of estimation is to approximate the “true” density
by the density that makes the data string yV the most probable amoug the class of
joint densities {[T, f(+,8),0 € D}. This view is rooted in the belief that, at least
for large data samples, the data must be a “pood” representalive of its assumed
but unknown generating “true” density. More precisely, that the mass of the “Lrue”
density is predominately concentrated at the given observed data yV.

For a data set yV, define the likelihood function as

N
Hf(yn,O):DQ—)lR..f., (2.])

n=1

where Dy C D is compact. This function expresses the likelihood of gelting the dala

set yV if the true density were specified by 0. Now define the estimate

N
0y = arg max f(yn, 0).
N =arg m “I;Il (¥n:0)

O is called the ML estimator (MLE) of 0. The best approximation of the “truce”
density in the ML sense is then given by f(, 0 N)-

Note that the likelihood function, defined by (2.1), is a deterministic function of its
argument . Nevertheless, it is of common practice to consider the likelihood [unclion
to also be a function of all of the possible data sequences allowed by the assumed joint,
distribution. Thus one generally writes [T, f{yx,0), which is a random variable for
any fixed 0 € Dy. Under this framework, one could analyze various propertiecs of
the method itself independently of the actual data y". In the scélucl, only when we
would like to stress the fact that ¥V actually represents just a tentative model for the

observed data, shall the notation yV be alternatively used.

The analysis of the ML estimator is based on what we shall call the “up-bottom”

approach, an approach which has been shown to be a powerful tool for both the
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analysis and devclopment of identification methods (c.f., [Ger89¢]). It is named “up-
bottom™ since it is based on first finding a non-computable but analytically tractable
solution to the identification problem and then approximating this solution by a
computable one. More precisely, the approach consists of finding an asymptotic cost
function with the property of having an absolute minimum at the “true” parameter 9.
Then one “goes down” and finds a good computable approximation of that asymptotic
cost function. This is usually done by resorting to some kind of law of large numbers.

As will soon be clear, it is much more convenient to do the analysis of the ML

method using

N
L(y", 0) = - Z log f(yh 0),

n=1

which is called the negative log-likelihood function. Moreover, note that
IE L(¥n,0) = E L(ym,0) for n,me€[1,N],

by application of the independence hypothesis exhibited by the sequence V. Thus,
without loss of generality, we can work with L{y:,0).

For the first proposition of the ML method, we need the first partial derivatives
of L(mn,0) with respect to 0, i.e.,

La(w,0) & 2531, 0) = (8/00) /31, 0)/ S, ).

Henceforth, the partial derivate of any function with respect to one of its arguments
will be denoted as above, i.e., ho(z,y) = (8/0z)h(z,y).

Proposition 2.1.1 We have

IELa(yl,O) = 0.
9=0

Proor. Clearly

. fo(yr,0)
EL =k .
W) =B (22)
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The left hand side of (2.2) can be written as

folz,0)
/T

~~T

fla,0)dz = [ folz, )iz

L==T

a L}
= 7 [ f(=.0)dz,
and since [ f (m,a)dm = 1, we get the claim of the proposition. 1

Let us now introduce the asymptotic cost function

W(0) = IE L(y,, 0).
Then, based on Proposition 2.1.1 we get

I’VQ(O) . =q0.

a=0
Now, the partial derivative with respect to & of the gradient process Wj(0) is given
by
Woo(0) = E foly1,0) - f7 (11,0)/ I* (11, 0).

Proposition 2.1.2 Wgo(b.) is symmeltric and posilive semi-definile.

REMARK. 1(5) = ng(ﬁ) is called the Fisher information matrix. Since /{f) is the

slope of Wy(0) at 5, it provides information about the accuracy of the estimator Jy.

Propositions 2.1.1 and 2.1.2 imply that the cost function W(0) is locally mini-
mized at §. The so-called “up” part of the approach has thus been completed. What
remains is to find a computable solution of the deterministic [unction W(0). {Obscrve
that W(0) is not computable since it involves an expectation and in practice only y¥
is available. Note also that if we assume the validity of the modeling assumptions,
then y™ represents just one of the many possible realizations of the sequence of ran-
dom variables yV.) With the help of the law of large numbers we can arrive at a

computable approximation for the cost function W{#).
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Proposition 2.1.3 Under some suitable conditions, (c.f., [1I181]), we have

o1& o1&
n]rl_r.r‘}o Fg L(yn,0) = W(0), and 1\1,1_1;2:' N z: Lg(yn, 0) = Wy(0), (2.3)

n=1

with probabilily 1.

Propositons 2.1.1-2,1.3 provide a solid theoretical justification for the ML method.
Indeed, if the data is a realization of the assumed class of densities, then except on a

set of probability zero, we have

. N
0= lim argaelga.x% > L(yn,0).

—00
n=1

The asymplotic properties of the ML estimator are captured by the next two

propositions.

Proposition 2.1.4 Under some suitable conditions, (c.f., [[H81]), we have
O — b= =1 O)Lo(y",0) + On(1/N).

where Op(+) is defined in 2.4.1.

(Hints: Make a Taylor series expansion of (1/N)Lg(y",0) about On and evaluate
at 0. Use the i.i.d. assumption and the law of large numbers for the second term in
the Taylor expansion. Finally apply the central limit theorem.)

Combining Propositions 2.1.3 and 2.1.4, it is immediate that the MLE 5 con-
verges to the “true” parameter § with probability 1. Therefore, the ML method for

i.i.d random variables is strongly consistent.
The last proposition provides an estimate of the variance of the estimator.
Proposition 2.1.5 We have under some suitable condilions, (c.f., [[H81]),

E (fy ~ 0)(@n - 0)7 = .1%1-1(6) +O(1/N).
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Observe that the higher the Fisher information matrix, the lower the variance of
the MLE estimator, resulting in better estimation. Also Proposition 2.1.5 shows that
the MLE asymptotically achieves the well-known Cramer-Rao lower bound for the

variance of any estimator (c.f., [Cai88]).

For the sake of simplicity of exposition we have limited the scope of the ML
method to independent random variables. However all previous results can be prop-
erly generalized for certain types of dependent random variables like those generated
as outputs of Gaussian ARMA processes (c.[., [Cai88]). In this more general case
the joint density of the random variables y™ loses the pleasant structure—that of
being the direct product of the density of the simple random variables—and thus the

analysis becomes more involved.

2.2 A Major Limitation of the Classical Maxi-
mum Likelihood Method

The classical ML method admits the comparison of different parameter-values of a
given parametric model class (see Section 2.1). That is, its application is confined to
parametric models with known dimension. It is certainly advantageous to investigate
the applicability of the ML method to cases in which the parametric dimension of the
model is not assumed to be known a-priori. This shall be the main objective of this
section. It will be shown that a direct; or in other words naive, use of the classical
ML method is not fit to tackle these more complex modeling problems.

Let us continue with a similar set-up as to that of Section 2.1, but with the
distinction that the parametric dimension of the “true” model class is unknown. We

then need to first modify the notation slightly so as to cover this more general case.
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The “true” model order is denoted by k , the “truc” parameter by g , and the domain
where 0% belongs by D* . This type of notation will be used repeatedly in this thesis
when the dimension of the model is not known. Otherwise, when working in the
context of a known model order, the previous simpler notation will be maintained.
We shall only study the case of over-parametrization. Thus the classes considercd
will be of the form {f(-,0%),0% ¢ D¥ C R*,k > I:} (We only cover this case for
simplicity of exposition since otherwise the “true” model will not belong to the set of
tentative model classcs, and as a result the problem would become more complex.)
Note that a direct application of the ML method to the case of overparametrized
model classes indexed by k leads us to the following definition for the ML estimator:
0% = arg min L(y", 0%). (2.4)
gke Dk
What we shall then call the “naive” formulation of the ML method is the claim
that the “goodness” of a model class with respect to a given data set y™ can be
captured by the likelihood function.
Before introducing the next proposition, we would like to stress that the parameter

§* is obtained by adjoining k& — % zeros to the assumed true parameter 5’.‘ .

Proposition 2.2.1 We have

Jim B (L(yN, ik) — L(yN,J’*)) = —-;—dimﬁ".
(Hint: Make a Taylor series expansion about 5’,‘\; and used Proposition £.1.5.)

Since L(y", 0*) = L(y", gk ) is independent of the model order &, Proposition 2.2.1
implies that L(y™,8%) does not penalize over-parametrization. Indeed if k > &' > k

then

L(y™,0%) < Ly, 0%). (2.5)
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Therefore, in this case, the “naive” model selection approach will wrongly conclude
that the k-th model class would be preferred in the ML sense over the A-th maodel
class. Thus the ML method fails to be a proper choice for a universal model selection
criterion. Since modeling is basically concerned with finding data constraints that
will shorten the representation of the original data set, we are forced to reject this
“naive” approach since it contradicts the spirit of modeling,.

For the sake of clarity, let us illustrate Proposition 2.2.1 by a simple linear vegroes-
sion example. Assume that the “true” model for the random variables ¥V is given by
the regression model

Yn = :2:30-1 +en z, =0, (2.6)
where {e;) is an i.i.d. random process with density A (0,0). Consider the model
classes described by

o=z 0F+e, T =0, (2.7)
where dim0* = k > k. Note that by adjoining the proper number of zeros to the
vector §* one obtains G , which is the parameter value in the k-th model class which

makes (2.7} a “perfect” fit. For some 0% € D* define the prediction error process
€x(0%) = yn — x1 0F.

Then, it is straightforward to see that

LN, 0%) = 222( (0*) and  L{y",0%) L

= 20?

M=

(en)”.

n=l

Now let us compute the MLE of §%. Observe that in the regression casc the MLE 8%
coincides with the LSE (least square estimate). Now applying Proposition 2.2.1 one
gets

1., =«
Jim. n:— Z (( &)’ - (en)Z) = —dimd". (2.8)
According to (2.8) and since eN is independent of &, the more parameters we use,

the smaller the cumulative square prediction error process 1N ( < (%, )) , or the
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greater the likelihood of the data y™! Thus the “naive” ML method fails to penalize
over-paramelrization.

It is interesting Lo note however, that the second moment of the ML estimator is
sensitive Lo over-paramctrization. The next proposition shows that the covariance of

the MLE penalizes over-parametrization.
Proposition 2.2.2 We have for k 2 2
Cov(0% — O-k) > Cov(ﬁ,":, — ot )
(Hint: Apply the matrix inversion lemma to the matrix Cov(#% — 0%).)

The above proposition shows that it is not difficult to find other criteria that
will succeed in penalizing over-parametrization. However, this and other methods
usually lack the appealing interpretation of the classical ML method. We shall then
scek a method that will not fail the over-parametrization test, and for that matter
any existing test, but that will recaplure, in a sense, the essence of the ML method.
This shall be provided by the stochastic complexity theory which will be presented
in Chapter 4. In order to lay down the main concepts of this theory we need to look

at some of the basic clements of the information and coding theory.

2.3 Information and Coding Theory

The origin of information theory dates bhack to the pioneering work of-Shannon
in the late 40’s (c.f., [Abr63]). His initial motivation was the engineering problem of
how to transmit information through noisy channels. Nevertheless, he was quick to
realize the implications of his thcory much beyond his original problem formulation.

Since then, the theory of information has had an impact on a variety of fields such as
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linguistics, semantics, psychology, biology, cconomics, music and the arts, and even
philosophy. More recently, the theory of information has been used by Rissanen as
the starting point for the stochastic complexity theory (c.[., [Ris78]), a general theory
for extracting models from data. The natural link between the stochastic complexity
and information theories is the main reason that we are interested in understanding

the foundations of the latier theory.

In order to introduce the basic idecas of information theory, we first need to bring

forward some of the elementary notions of coding theory.

Definition 2.3.1 Let A be a finite alphabet, B a finile sel of words composed of
combinations of the binary symbols {0,1}, and C : A — B a onc-lu-onc mapping.
Then A is called the source alphabet, C(-) the code, B the code alphabet, and the

elements of B codewords.

Note that since C(-) is defined as a one-to-one mapping, the code is nonsingular
(i.e., all codes are different), and uniquely decodable. These are properties which are
clearly indispensable for any proper code.

Let [ : B — IN be the mapping associating cach element of B with the length of its
corresponding codeword as expressed by adding the number of the codeword binary

digit representation. Now define the composed mapping L = [oC, and let

Linax 2 max L(a).

Denote S(a) the set of all nodes which are extensions of ¢ at level L,ax.
To guarantee that codewords can be decoded as they are recieved withoul using

any bits from subscquent codewords, a further condition has to be imposed on the

code C(-).

Definition 2.3.2 A code C(:) is said to be a prejiz code if and only if for all ¢,d' €
Aa#d, S(e)n S(d) =0.
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The important fcature about prefix codes is that they can be instantancously
decoded while codewords are reccived, meaning that there is no need, for example,
Lo use separating commas between codewords. Unless otherwise specified, codes C(+)
will be considered to be prefix codes.

Prefix codes can be shown to be constrained in the size of their corresponding
codewords: they cannot be made arbitrarily small as expressed by the well-known

inequality due to Kralt in 1949.
Proposition 2.3.1 (Kraft Inequality) If C(-) is a prefiz code then
Yootlle <,

€A

(Hint: Use the disjoint property of prefix codes.)
The converse of Proposition 2.3.1 is also true.

Proposition 2.3.2 Given L(-) salisfying the Kraft inequalily, there ezists a prefiz
code C(+) with codelength L{-)

(Hint: Arrange L{a)’s in increasing order, and use lexicographic ordering (c.., [Abr63]).)

In general, it is not difficult to obtain many different types of code mappings C(:)
for any given source A even if they are constrained to be prefix codes. Therefore, a
criterion is needed to choose among the numerous available prefix codes. Obviously
one desires the prefix codes to have associated short codelengths. It is at this crucial
point that some sort of probabilistic model for the emission of the source symbols in
A is most useful. Doing so will allow for a meaningful definition of coding optimality.

The frequency of occurrence of each letter in the source alphabet can be assumed
to define a probability distribution for that alphabet. The jdea is then to assign
short codewords to letters with a high probability of occurrer;ce and conversely, long

codewords to letters with a low probability of occurrence. Let us assume that p(-)
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[ -

represents a “good” probabilistic model for the distribution of the letlers of an al-
phabet A with respect to a particular language. Based on this probabilistic model of

the source A, the optimal coding is defined as follows:

Definition 2.3.3 Let the average codelength of a prefix code C(-) be

L =73 pla)L(a).

Then, the optimel coding is defined as
Copr = arg min L.
C prefix
Note that Copi(+) strongly depends on the assumed underlying probability distribution
2()-

Shannon defined the informative value of a lettera € A as

I{a) = log (1/p(a)). (2.9)

Observe from (2.9) that if a letter is very unlikely, then its information content will
be high implying a large cost of removing uncertainty. This sort of connection gives
a meaningful physical interpretation to the information measure 7(-).

The main step in the search for the optimal coding Copi(-) is the following propo-

sition due to Shannon.

Proposition 2.3.3 Given any finile or counlable alphabet A, with probability dis-
tribution p(-) over A, we have for any prefiz code with codelength L(-) the Shannon

inequality

> pla)L(a) 2 = 3 pla)logpla) = 3 pla)!(a) (2.10)

a€EA a€A oA

Let us define the entropy of an information source A as

H{p) £ -3 p(e)log p(a).

acA
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{I(p) can be interpreted as a measure of the level of disorder of the symbols of A.
For example, ﬁne can show that if the probability distribution is evenly distributed—
that is, source symbols are equiprobable—then the resulting entropy is maximized
(c.l., [Abr63]). Note that from Shannon’s inequality, H(p) is the lower bound beyond

which no prefix code C(-) can exceed.

Remarx.  Although Proposition 2.3.3 is non-constructive, it does provide two very

important features:

i) a universal yardstick with the help of which, in principle, the information in-
herent in different sources can be compared by means of the asymptotic lower

bound H(p);

ii) aconncction between the information measure and the codelength since Cope () =
I(-), which provides an important interpretation for the information measure

itsell.

The proof of the Shannon inequality, is mainly based on the following important

incquality:

Proposition 2.3.4 (Kullback-Leibler inequality) Given any two distributions
J(z) and g(z) over a finite or countable set X, then

=Y f(z)logg(z) = = 3 f(z)log f(z).

TEX zeX

(Hint: Use the concave property of the log function ).

Remark. The Kullback-Leibler measure

M(g, f) == 3 f(z)logg(z) + 3 f(z)log f(z),

zEXN zed
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which computes a distance between two probability distributions, represents the main

contribution of the theory of information and coding to the ficld of statistics.

Note that the Kullback-Leibler inequality also holds for continuous variables. Let
¢ be a random variable over the set X' with density function f(z), then if g(a) is any

other density function for £ we have

~ [ f@)ogg(e)de 2 - [ f(z)log f(a)d.

Since —log f(z) achieves the lower bound of the Shannon inequality, it can be viewed
as a sort of optimal “codelength” in the continuous case. Is it possible to achieve the

lower bound H(p) in the discrete case? If we set

L(z) = [-log, f(=)] + 1,
where [b] denotes the integer part of b, then clearly L(z) satisfics the Kralt inequality.
Thus, there exists a prefix code with codelength L(z). Morcover, we have

2 f@)L(z) + 3 f(z)log, f(z) < 3 f(2)(L(z) +log, [(z))

zed zeX zeX

= EI(I)=1:

zeX
which says that the codelength L(z) differs by only one bit from the optimal code.
Henge for 2 large alphabet the lower bound H(p), in practice, can be assumed to have
been achieved.

An important observation is that if we have equality in the Kraft inequality,
then 2-2(=) is a probability distribution. The importance of this distribution is that
it can be taken to represent a constructive model for the emission of the symbols
z € X. Note, moreover, that a correspondence beiween codelengths and probability
distributions has been established. The consequences of this correspondence are of

paramount importance to the way we interpret modeling, for the optimal code has
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a corresponding distribution which can be viewed as the distribution that assigns
maximum probability to the observed data.

An illustrative example of this correspondance can be given by recalling that the
ML cstimator of the “true” parameter of a density governing a sequence of i.i.d.

random variables is

N
0n = arg min ) —log f(ys,0)- (2.11)
6eD

n=1

Notice that (2.11) also represents a means of finding the shortest description, i.e.
shortest codelength, for the data y¥. Therefore, the ML criterion and the search
for the shorlest codelength coincide when one model class—in this case a class of
densities—is given and what is thus left to determine is the value of the parameter
in that given class. As we have previously seen, the ML method cannot be directly
extended when different model classes are to be compared since we have proved that
the method does not penalize overparametrization. In Chapter 4 we will show how

to compare different model classes in a way that resembles the ML notion.

2.4 L-Mixing Processes

Any linear rational stable filter would produce a weakly dependent stochastic
process if driven by white noise. Since this is one of the most frequently used models
for the realization of stochastic processes, (c.f. [Cai88]), weakly dependent processes
appear naturally in system identification.

A type of weakly dependent process, known as L-mixing, has been shown to
play a fundamental role in the analysis of system identification methods [Ger89¢].
This is because all stochastic processes relevant to system identification are L-mixing
processes, and moreover they are invariant under the usual operations performedin

estimation. An early development of this kind of mixing, referred to as “exponential
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stability”, can be found in [Lju76] and [RC79]. Sce also [Cai88]. In this presentation
we will mainly follow [Ger89c].

The defining property of a weakly dependent process is thal its distant past con-
tributes a negligible information pattern to its process present. Therclore, weakly
dependent processes bechave much like independent processes when a subscquence
with an appropriate lag is extracted from the original weakly dependent sequence of
random variables. To clarily these ideas, we introduce the following definitions.

Consider the stochastic process (z,(f)) defined on Z x D, where Z denotes the

set of natural numbers, D C IR¥. We assume, unless otherwise specified, that n > 0.

Definition 2.4.1 The stochastic process (z,{(0)) is said to be M-bounded if for all
1<g<
M, (z) = sup E'Yz,(0)]" < co.
0ED
If (z.(9)) is M-bounded we write £,(0) = Op(1). Similarly, if ¢, is a posilive
sequence we write z,(0) = Op(cn) if (0} en = Om(1).
Definition 2.4.1 extends naturally to the particular case of stochastic processes

which do not depend on a parameter, or to those which degenerate into a random

variable.

Example 2.4.1 For any stable matrix A and M-bounded process (u,), the stochas-

tic process (z,) generated by the state space equation
Zn41 = AZq + Bu,, o =0 (2.12)
is M-bounded. (Hint: use the triangular inequality).

We say that a stochastic process (z,) tends to a random variable z in the M-sense
if for all ¢ 2 1 we have

lim IE”"I:zn —z|"=0.
N~ 00
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Similarly, we can define differentiation in the M-sense.

A stochastic process (z,) is Fn-adapted if the sets
{{w,m) : z(w) € B € B(R),m < n}

are F, x B(IR) mcasurable.
Let (F,) and (F}) be families of independent monotone increasing and monotone

decreasing o-algebras respectively. A typical example is provided by the o-algebras
Fo=o{ei:i<n} and  Ft=o{ei:i>n},
where (e;) is an i.i.d. sequence of random variables.

Definition 2.4.2 A stochastic process (z4(0)) is said to be L-mizing with respect
to (Fo, F1) uniformly in 0 if it is F,-adapted, M-bounded, and with 7 a positive
integer and

Ta(7,2) = sup I o)zn(0) — 1B (2 (0)1F)1,

we have for any 1l £ ¢ < o0

[y =Ty(z) = i Yo(Tyz) < 0.

=1

The phrase “uniformly in 0” in Definition 2.4.2 is omitted for stochastic processes
which do not depend on a parameter. We would like to recall that L-mixing process

were first introduced in [Ger89c].

Example 2.4.2 If the input process (u,) in Example 2.4.1 is an i.i.d. sequence,

then the output process (z,) is L-mixing,.
Proor. Iterating (2.12) we get form < n
Tp = A(""")mm + i A" By,
Clearly z,, — E(z.|F}) = TL,, A" By, and_ the result follows using the triangular

inequality and the fact that A is stable. §
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Example 2.4.3 Discrete time stationary Gaussian ARMA processes are L-mixing,

(Hint: Use a state space representation).

If (zn) is an L-mixing process, then by definition, taking m < =, (x,) can be
approximated by an F-measurable random variable with an crror decreasing ex-
ponentially with m. For this reason, it becomes convenient to decompose L-mixing
processes as Tn = z . + 23, where zt = B (z,|F).

One of the main reasons L-mixing processes are so usclul is that they are invariant

under the usual operations performed in system identification.

Theorem 2.4.1 Let (z,) and (y,) be L-mizing processes and ¢ € IR, then:
(¢) (czq) is L-mizing.
(b} (zn + yn) is L-mizing.
(c) (zn - yn) is L-mizing.

Proor. (a) and (b) are trivial. To prove {c) let m < n, then for any 1 £ ¢ < 0o we

have by the Cauchy-Schwarz and Jensen inequalities

"mﬂyﬂ - x:.my;'tm"? S "mn(yn - y;tm)"'? + "yrtm(m“ - I:,m)"'i

< MZq(m)'Y?q(y,n - m) + M2q(y)'f2q($:n - m)
Since (z4) and (yn) are L-mixing the result follows. I

Note that property (c) of Theorem 2.4.1 is not shared by other types of mixing
processes.
Based on a well known lemma, it is sufficient to find just one F} measurable

random variable which approximates z, {airly well to verify the L-mixing property.
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Lemma 2.4.1 Let £ be an M-bounded, F-measurable random variable, and let F'
be some o-subalgebra of F. Then for any F'-measurable random variable n, and for

all 1 € ¢ < oo, we have
Bl - B (gl < 2BME —nl".

If z, is L-mixing then a strengthened Hélder-inequality is obtained. Analogous
inequalitics for uniform mixing stationary sequences are given in [IL71], and for strong

mixing stationary scquences in [Dav68].

Lemma 2.4.2 Let z, be an L-mizing process such that Bz, =0,Vn > 0. Lelm < n
and consider an F,, measurable M-bounded random variable n. Then for1 < p < oo,

1 < ¢ < o0, such that (1/p) +(1/¢) =1
| znnf < 29, (t — s)M(n). (2.13)
Proor. Since z;,, is independent of F,,, we can write

Ez,7 = E(:z:,tm-’r:z:g'm)n

= Ez} En+Ez] n
Note that Bz} = -Ez] ., thus
IEzan| < [EahmlEg| +E|zg a0l (2.14)

Using the monotonicity of the L, norms for the first term of (2.14), and applying
Hélder’s inequality to the second term, we get (2.13).

Example 2.4.2 illustrates that L-mixing processes passed through certain types of
stable linear filters remain L-mixing. This property of L-mixing processes holds for

a general class of stable filters.
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Definition 2.4.3 Let a linear filter be described by
o= Y dn,m)un
m=0
where ¢(n,-) is locally in 1[0, 00) for all n > 0. Sct
P(l) = sup |¢(n,m)].

n=m={

Then the filter is said to be stable if
¢' = Z 1!)(!) < 0
=0
Example 2.4.4 The filter in Example 2.4.2 is stable. For the exponential smoothing
case,ie. A=B=A)€ER, weget ¢"=1.

Theorem 2.4.2 The oulput process of a linear stable filler, stable in lhe sense of
Definition 2.4.8, which salisfies
o0
==>1¢(l) < o
=0
and whose input process u, is L-mizing, is also L-mizing. Moreover, for 1 < ¢ < o

we have
M,(z) < ¢"M,(u), and  To(z) < ¢""M,(u) + ¢°Ty(u).
Proor. (A continuous-time version of this proof is given in [Ger89¢]). |

The next theorem is a moment inequality [or L-mixing processes which resembles

Burkholder’s inequality.

Theorem 2.4.3 ([Ger89c]) Let (z,),n 2 0 be an L-mizing process with Bz, =
0,V n 2 0, end let (f,) be a delerministic sequence. Then for all1 <m < o0
El/Zm su T m <C, ( 2) Ml,':,_z FI{:
1<N'2N|Zf n Zf 2 (2) Lo (),

where Cp, depends only on m.
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Corollary 2.4.1 Let (z,) be as in Theorem 2.4.3, then

1 N
T 2 T = On(NTE),

n=1
Corollary 2.4.2 Let (z,) be as in Theorem 2.4.5, and let 0 < A <1, then

%(1 — NV Az, = Opr(AV2),

n=]

Define the process Az/AO & |z, (0 + k) — 24(0)|/|k], where 0 # 0 + h € D.

Definition 2.4.4 The stochastic process z,(0) is M-Lipschitz-continuous in 0 if the

process Az/AQ is M-bounded, i.e. ifforall 1 £ ¢ < o0

M,(Az/A0) = sup Yz, (0 + k) — 2,(0)*/|h] < oo.
O#I;‘-I%?ED

Example 2.4.5 If (z,(0)) is absolutely continuous with respect to # a.s. and the
gradient of the process (z,(0)) is M-bounded, then (z,(0)) is M-Lipschitz-continuous.

Now let (z,(#)) be a measurable, separable, M-bounded stochastic process, and
also M-Lipschitz continuous in @ for 0§ € D. By Kolmogorov’s continuity theorem,
(c.f., [IH81]), the realizations of (z,(#)) are continuous in @ with probability 1. Thus

taking a compact domain Dg C intD
zp = max |z, (0)]

is well-defined for almost all w’s. As the realizations of z,(0) are continuous, z}, is
measurable with respect to F, that is z}, is a random variable. Let us estimate its

moments.
Theorem 2.4.4 For all positive integers q and s > g
My(2") < C(Mon(z) + Myu(Az/AD))

where C depends only on k,q,8 and Do, D.
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The following theorem is a very useful result which, among others Lhings, implies
the validity of a uniform strong law of large numbers for L-mixing processes.
Combining Theorems 2.4.3 and 2.4.4 and sctting f. = 1, we gel the following

corrolary.

Corollary 2.4.3 Let the assumptions of Theorems 2.4.8 and 2.4.4 hold, then

1 & -1/2
5g%§|ﬁ§$n(0)|—ou(1\’ )

and also for 0 < A < 1
N
max| 3 (1 = AN " Aza(0)] = On(N'/?).
0€Do n=1
The following inequality will prove useful when estimating tail-probabilites of L-

mixing process in Section 5.5.4.

Theorem 2.4.5 ([Ger89b]) Let (u,), n 2 0 be a zero-mean, bounded L-mizing
process such thal Too(u) < 0o, and let (f,.), n 2 0 be a measurable, locally square
summable funciion. Then
N N
exp (E_,; Fattn = 2Moo (1)l (u) “Z_%(f,.)*) <L

If (z) 's an L-mixing process and (f(z)) is an absolutely continuous function
which grows at most polynomially together with its first derivatives, then one can
show that the process f(z,) is also L-mixing. However, il we take a discontinuous
function g, say g(z) = lz5e, I the characteristic function of the set {z > ¢}, then one

cannot conclude that {¢(z,)) is L-mixing. Therelore, it is not true that the Jevel sct
Acp = {w:zn > ¢}

can be approximated by F}-measurable sets. These observations are the basis for

wuat are called Lo-mixing processes.
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Definition 2.4.5 A stochastic process (z,(0)}, n 2 0 is Lo-mixing uniformly in 0
(with respect to (Fu, F¥)) if for any ¢ 2 1 and any ¢ > 0
Poe = 2 75(7) < o0
=1
Obviously definition 2.4.5 also applics to processes which are not parameter de-

pendent. We summarize {our basic facts about Ly-mixing processes which can be

found in [Ger92b):
Theorem 2.4.6 [f a stochastic process (z,) is Ly-mizing then for all s > 1
Yo{Tz) S 4°Toayps(z)n™ (1.1)

Conversely, if for all s 2 1, y,(7,2) £ Con™?, then (z,) is Lo-mizing, and for any
e>0ands >0
I, o(z) € CMesf(s —e).

Theorem 2.4.7 Let (z,), n 2 0 be an Lo-mizing process, and let I C IR be a fized
nonemply open inlerval. Then there exists a sequence of real numbers 6§, € I such

that the process yn = lzss.(2n) 15 Lo-mizing, and foranyr 21 and ¢ >0

Peely) S 26T (a)

where Cy depends only on I and r.

Theorem 2.4.8 Let z = (z,10)) be as in Theorem 5.2 and assume that (z(0)) and
Az /A0 are Lo-mizing with respect to (Fn, FT). Then the process z° = (z3) is also

n

Lo-mizing with respect to (Fp, F¥) and for anyc> 0 andr > p

Tq.e(z*) € 2(Trq,e(2)) + Trg (A /AD)).

7

=
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Theorem 2.4.9 Let (u,) be an Ly-mizring process and define the process (x,) by
zp = (1= Nzuo1 + Auy,
with 0 < A < 1. Then (z,) is Lo-mizing, and forallg>2 1 and ¢ >0

Tpo(z) = O(A71¥e/2),



Chapter 3

Prediction Error Method for
ARMA Processes

The model sclection, change-point detection, and adaptive control methods to
be presented in this thesis rely heavily on the prediction-error method (PEM) for
the identification of parameters in stochastic systems. This scheme has been exten-
sively studied in such works as [And71], [LS84], [Lju87], [Cai88], and [HD88]). We
shall present the prediction-error method for autoregressive moving-average ARMA
processes, since this is the model on which the above problems will be formulated.
Observe that the PEM method coincides with the conditional maximum likelihood
method when the input is Gaussian white noise (c.f., {Cai88]). The conditions that
will be imposed in this section to ARMA systems will be assumed to hold thereafter

unless otherwise specified.

31
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3.1 PEM: Off-Line Case

Let (ya),n = 0,£1,42,... be a sccond order stationary ARMA (p,¢) process
described by

y'l‘l. + a;yn-—l + v + a;nyﬂ—p' = cn + CIC,;..; + Y + C;.t.‘n..qo.

In a shorthand notation A*y = C"e, where A*, C* are polynomials ol Lhe backward
shilt operator, i.e. A*(z7!) = T¥gaz~, and C*(2~!) = T, with ape # 0 and

¢ #0,and gy =g = 1.
Condition 3.1.1 The polynomials A*(z™') and C*(z™") are stable and relative printe.

To describe the noise process let us assume that we are given a probabilily space
(Q,F,P) and a pair of families of o-algebras (Fn, F¥), n 2 0 such that F,, ¢ F
is increasing and F} C F is decreasing. Morcover, F, and F¥ arc independent for

n

all n.

Condition 3.1.2 The inpul noise (e,) is a sccond order stalionary, L-mizing pro-

cess with respect to (Fn, F¥), and furthermore
E(eq]Fn-1} =0 and E ((en)?|Fum1) = 2,
for all n. (The concept of L-mixing is described in Section 2.4).

Let 0 denote the k £ p + g-dimensional vector composed of the coefficients of
the polynomials A(z~!) and C(z7!), and D C IR* be an open domain such that the
polynomials A(z™!) and C(2™1) corresponding to 0 € D are stable. Morcover, let
Doc D Be a compact domain with 0* € intDp, where intDg denotes the inlerior of

Dy. Tor 0 € D define an estimated noise process (¢e,(0)) by the dillerence equation

CE(O) = Ay,

RN
2
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'—e—>A/C > A/C—E@>

Figure 3.1: Generation of the prediction error process (en(0)).

where for n € 0 we set y, = €,(0) = 0.
Figure 3.1 illustrates the computation of the prediction error process (€.(f)).
The cost function associated with the off-line time-invariant predicition-error method

is given by

1 N
W(0) = 5 L (ealO)) @)

n=1
We shall define the off-line time-invariant estimator O 5 as the parameter 0 € D that

minimizes Vy(0). It can be shown that this minimization is equivalent to solving

%vw(o) =0, (3.2)

or equivalently

N
2 €0a(0) - €a(0) =0, (3.3)

n=1

where differentiation is taken both in the almost sure and M-sense (c.f., Defini-
tion 2.4.1). (The differentiation notation was introduced on page 9.) More precisely,
if (3.3) has a unique solution in Dy, then Ox is that solution. Otherwise, Oy is ar-
bitrarily subjected to the condition that fx € Dy. Note that the estimator Oy is
measurable by the measurable selection theorem.

The asymptotic cost function of the off-line prediction-error method is given by
. H 1 N 2
W(0) = lim =IE(en(0))"
It can be shown that

lim sup %VN(O)—W(O) =0 as (3.4)

N=rco deDy
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and that the same uniform law of large numbers holds for the gradient processes
OVn /80 and 8*Vin/D0?%. (Sce e.g. [Lju76], {IIan73)).

Under Conditions 3.1.1 and 3.1.2, the asymptotic equation dW(0)/90 = 0 has a
unique solution in Dy and the Hessian

R = -g;—zl'V(O) -

is non-singular (c.f., [AS74]). This fact and (3.4) imply that for almost all w, the
“likelihood equation™ (3.1) has a unique solution in Dg for N > ANy(w) whenever
0" € intDy. A precise statement about the uniqueness of a solution is given by Lhe

following theorem:

Theorem 3.1.1 ([Ger89e]) For each fized d > 0 end any m > 1 the equation

d
5 V(0) =0,

has o unique solution in Dy. Morcover, this solution is also in the sphere {0 : |0 —

0*| < d} with at least probability 1 — O(N—™).

A characterization of the estimation error of the off-line prediction-error identifi-

cation method is provided by the next theorem:

Theorem 3.1.2 ([Ger89e]) Under Conditions 3.1.2 and 3.1.1 we have

- 1 N -
On — 0" = —(R')—I—N-Zegn(ofv-l)cn + Om(N_l).

n=1
An immediate consequence of Theorem 3.1.2 is the following result:
Theorem 3.1.3 ([Ger90b]) Under the conditions of Theorem 9.1.2 we have
Oy — 0" = 0y(N72), (3.5)

Note that the right hand side of (3.5) gives an almost sure upper bound for the
Ly(Q,F, P) norm of the estimation error. For the latter, the law of the iterated
logarithm applies (c.f., [ACHS82]).
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3.1.1 Off-Line PEM with Fixed Gain

For the time variant ofl-line estimation case, we use the prediction error algorithms
with fixed gain given in [Ger89c¢], which “weighs down” past data with geometric rate.
In this case the cost-function associated with this estimation method is given by
N
VO =S (1 -0V e(®))?  0<A<],
n=1
where A is called the forgetting factor or gain of the algorithm. The off-line time

variant prediction error cstimator § 13 of 0} is given as the solution of

2

DVA0) = Vir(0) =o. (3.6)
More precisely, il a unique solution of (3.6) exists in D, then 8§ 13 is the D-valued
random variable representing such a solution. Unfortunately, the probability of the
“exceptional sets” of ©, for which (3.6) has no solution, does not tend to 0 as N — co.
But this difficully is dealt with in [Ger92b).

A characterization of the estimation error of the off-line small gain prediction-error

identification method is given by the following theorem:

Theorem 3.1.4 ([Ger92b]) Under Conditions 8.1.2 and 8.1.1 and (e,) Lo-mizing

we have

=)
z .

N
-0 = —(B)T L= Wm0y, 0en + T

n=1

= OM(’\llz)i

where ry = Op(A).
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3.2 PEM: On-Line Case

Numerous engineering problems—found in arcas such as robotics, power systeins,
aerospace—require sclutions that ought to be implemented in real time. Since the
dynamics of physical plants are frequently altered during operation due, for example,
to changes in their operating conditions, wearing out of their mechanical parts, failures
in their components, on-line identification methods are an esseutial component in the
synthesis of automatic supervisory systems of plants.

In the early stages of development of the theory of recursive estimation, quile a
few ad hoc methods, which are still very popular among practitioners in the field,
were discovered. For instance, we could mention the extended least square, the in-
strumental variable, and the recursive maximum likelihood methods.

Among one of the best and most power{ul is the recursive prediclion-crror method.
We will present tbis method for the special case of Lthe on-line cstimation of the
parameters of ARMA systems (c.f., [LS84], [Lju87], [Cai88], and [SS89]).

While recursive estimation of time invariant systems has attracted uch allen-
tion, the recursive estimation of time varying systems has been almost completely
neglected. However, a simple method for getting recursive estimators for the parame-
ters of a time variant system has been known for some time. While simulation results
show reasonable performance (e.g., [LS84] and Section 3.4), the lack of Lheorclical
analysis has apparently discouraged many practitioners in the arca from applying it.
However, this drawback has been eliminated since many of the important theoretical
aspects of the problem have been recently resolved. An off-line estimation meihod
was developed and analyzed in [Ger89c], while a general time varying Ljung’s scheme
was presented and analyzed in [Ger89f).

The recursive time-invariant prediction error algorithm is summarized as follows,
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. = N =0
Leb us assume that an initial guess 0;] of the true paramcter 0" is given. Let Ay_,
and 6‘,3_, denote the polynomials corr-sponding to 5;_1. Assuming that processes

(5:) and (€2) have been generated for n < N — 1, we define €}y by the equation

(Eae) = (ARawv) (37)

where the initial conditions are set to . = €2 = 0 for n < 0. The left hand side
of (3.7) mecans that the linear filter corresponding to the operator & N_y acts on the
process {€7) with the evaluation being performed at time N. The right hand side
of (3.7) is inlerpreted in a similar fashion.

It is casy to see that the gradient of €}, with respect to any # € D can be computed

by
2 a
C“J‘\:‘.r--l_"Eu =—¢n-1
( 80 Jy
where
¢N-1 = (—YN-1," " — UN-p» e?\’—n cer e?\l—q)T'

Now let 12213_1 denote the estimate of the Hessian (8%/30%)W(0), with initial guess

f?lo =cl,c>0. Then § 13 and RON are computed by the following recursion

= = E- 10,

0;_ 013_1 - ﬁ (RJS- ) agﬁN EN : N Z 1 (3-8)
= 0 a a 0 T = 0

RN— RN 1 '+‘ aoﬁN ‘a—gﬁN - RN-I N 2 2. (3.9)

The random variables i :,_ and 1’%,3_ ought to be adjusted if they violate the

boundedness conditions now described. Let Dy C D and Dy be compa.ct domains in
RP*9 and RP*? respectwely Define (0 N RN) ( N RN_) if (0 N RN_) € Dyx
Dp and (ON, RN) (0o , Ro) f(0 RN_ ) € Dy x Dg. Note that the time is not
reset!

The domain Dy C IRP* should be chosen in such a way as to guarantee the

exponential stability of the time varying filter given by (3.8) and (3.9), which is
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achieved by imposing Condition 3.2.1 below. Let the projection of Dy on IRY be
denoted by D.. For each c € D, there corresponds a polynomial C(=z7!), with which

we can assoclate a companion matrix

S]]
I

L_CI _C2 “as —‘Cq_

The set of these companion matrices will be denoted by D.

Condition 3.2.1 The truncation domain Dy is small enough in the sense that the
matrices G in Dz are joinlly slable, i.e. there ezisls a symmelric positive definile

matriz U such that CT U & < b U with some 0 < b < 1.

Remark. Although Condition 3.2.1 is certainly restriclive, it is inherent in Ljung's
scheme. Indeed, we have to assume a-priori that the time-varying filter given by (3.8)
and (3.9) is “slowly time-varying”, and hence cxponentially stable. Whether the
local analysis of Ljung’s scheme given in [Ger89(] can be “globalized” still remains an

interesting question.

Clearly, we should assume that 0* € Dy, but in any case this will be implied by
Condition 3.2.2. As for Dp we assume that it is an arbilrary compact domain of
symmetric positive definite matrices such that R* = (82/30*)W(0,0°)|p=¢- € intDp.
Other requirements on Dy and Dp will be imposed by Condition 3.2.2.

To further specify the properties of D)y and Dg, we consider the associated ordinary

differential equation

0(t) = —R(t)"%W(O(t)) (3.10)

R(t) = G(0(t)) - R(t) (3.11)
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where T
d d
G(0) = E (%e(ﬂ)) (556(0)).
‘The right hand side of this ordinary differential equation is defined in D x IR*(p x p)

where R*(p x p) denotes the set of symmetric positive definite p x p matrices. Now,

since the Jacobian matrix associated to (3.10) and (3.11) linearized at point (0%, R*)

-1 0
J= :
X -I

the eigenvalues of the matrix J are —1. Thus (3.10) and (3.11) have a locally station-

has the following structure

ary point (0%, ") and morcover this equilibrium point is asymptotically stable {c.f,,
[AST74], [Cai88]).

It is essential for the analysis (c.f, {Ger89f]) that the solution trajectories of (3.10)
and (3.11) starting from (b:: , 12200 } do not hit the boundary of Dy x Dg. This can be
ensured by the following condition which is a more explicit formulation of the usual

assumption that the initial guess must be “good enough”.

Condition 3.2.2 Dy x Dy is a domain of aliraction for (3.10) and (3.11) (i.e. for
any initial value (0(0), R(0)) € Dg X D the solution (0(t), R(t)) of (3.10) end (3.11)
converges to (0°, R*)). In addition, (0", B*) € intDyr, and (0, Bo) € intDs r where
Dyr is a compact domain invariant for (8.10) end (8.11), and Dy r C Dy X Dp.
Finally, the image of Do p under the flow, say ¢;, defined by (8.10) and (8.11), is in

intDg.p for any smallt > 0.

Condition 3.2.3 For the “memory” of the input process (en) given by v,(7,e) we
have that for any q > 1 there exists ¢ > 0 which may depend on q such that v,(7,e) =
O(r=1=°). In addilion, we have for some § > 0

sup [E exp(e?) < oo.
n20
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Theorem 3.2.1 ([Ger89f]) Under Conditions 3.1.2-8.1.1, and Conditions 3.2.1-

3.2.8 we have

5::} —_— 0“ = Ol\](N_lfz) and ﬁ]g_la- = O‘“(N-ll.“)_

3.2.1 On-Line PEM with Fixed Gain

The recursive prediction error algorithm with fixed gain is summarized as [ollows.
o e A I .
Let us assume that an initial guess 0 of the truc parameter 0%, is given. Assuming
A .
that processes (6 ) and (e}) have been generated for n < N — 1, we define ¢}y by the

equation
= A Iy Y . .
(Cw-ne )N = (AN-ly)N , (3.12)
where 2,’)_1, and 6’,3_1 denote the polynomials corresponding to ’3_‘. The initial

conditions in (3.12) are set to yn = ¢} = 0 for n < 0. It is casy Lo sce Lthal Lhe gradient

of e} with respect to any ¢ € D can be computed by

= A a A
Cn_13p¢€ ) = —¢N-1
(Ghg?)
where
¢N—1 = (_yN—I: = YN-p; E?V_]_: Tt E[AV...;)T-

Then 8 :,, I“i; are computed by the following recursion:

3% = 1 =y \"1d

0y = 0y - (-h—, +A) (RN_I) Eﬁc,*v-e,*v (3.13)
= = 1 9 g ,\" =

By = Ry + (ﬁ“) ((%eg) (%C}V) - R,:}_,) (3.14)

where 0 < A < 1is the fixed gain of the algorithm.
The recursive prediction error algorithm was written in a form which includes both
its time invariant and time variant versions. For if A = 0, the popular time invariant

prediction error algorithm version is obtained, whereas if A > 0, the algorithm has the
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capabilitics of tracking time variant parameters. The role of A, when A > 0, is similar
to that of the off-line counterpart, that is, Lo “weigh down” past data with geometric
rate. In (11) and (12) the choice of 1/N + A, as the fixed gain for the algorithm, is
chosen so as to reduce the uncertainty due to initial conditions at the start of the

recursive algorithm, and to track the time varying parameters afterwards.

3.3 On-Line and Off-Line PEM’s Link

A heuristic derivation of the RML method was obtained by considering an approx-
imate recursion of the solution of the likelihood equation. This all but forgotten
derivation nonetheless indicates that there should be an intimate relation between
the nonrecursive or off-line and the recursive or on-line maximum-likelihood estima-

tor.
Theorem 3.3.1 ([Ger91d], [Ger90b]) Under Condilions 8.1.1-9.2.3 we have

In — “:, = Opm(log N/N).

3.4 A Simulation of the Recursive PEM

Here, we shall illustrate the recursive prediction-error methods introduced in the
previous sections. A process (y) will be generated by appending in time a time
invariant and a time variant ARMA system. This is done so as to allow us to illustrate:
1) how the time invariant version of the PEM will give consistent parameter estimates
when the paramcters of the system are time invariant; ii) how the time variant version

of the PEM will provide tracking capabilities of the time variant parameters.

Let the time invariant ARMA(2,1) system then be given by

YN + a{YN-1 + aYN-2 = ex—1€N + CieN-1, (3.15)
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with
a; = —.7 a;=.8 c; =—u. (3.16)

Then {3.15) generates the process (y) for N < 500.
Now let the slowly time varying ARMA(2,1) system be given by

yn -+ a;\!.[yN—l + a;\f.zyN-2 =en+ CI\Y‘leN—h (S‘IT)

. . . . N .
where the time variant paramcters aj ;,a}y , and cj, arc obtained by linearly moving

{rom the time invariant parameters in (3.16) to the parameters
a.}'.',}’1 = -7 “IV,.z = .2 c’-\’hl = —.7. (3.18)

The process (y) is finally generated by (3.17) for N = 500,...,1000. (A rigorous
description of this type of time-variant system is given in Section §.5.) Both ARMA
processes are driven by a Gaussian white noise process (e) with mean 0 and variance 1.
We now run two recursive PEM’s in parallel. The time-invariant prediction error
method provides the estimates C:t?‘N, 52.,,, and %‘:'N of aj, a3, and ¢} respectively;
whereas the time-invariant prediction error method with fixed gain A = 0113 gives
the estimates Ei'N, 52,1\*: and %:.N of a] y, a3 n, and ¢f v, respectively. Both the

parameter estimates and the “true” parameters are plotted in Figures 3.2-3.4.

Next, is a similar simulation to the one just introduced with the only difference
that we now take the fixed gain A = .02. Morcover, instcad of having a slowly
time variant change in the dynamics we have an abrupt jump at N = 500, wilh Lthe
dynamics remaining constant after the jump. The initial values of the parameters of
the polynomials of the ARMA system before N = 500 are given by (3.16) whercas
the values of the parameters after N = 500 are given by (3.18). Paramecter estimates

and “true” parameters are now plotted in Figures 3.5-3.7.
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Figure 3.2: The true parameter a? y, and its time invariant and time variant estimates
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Figure 3.4: The true parameter ¢} y, and its time invariant and time variant estimates
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Figure 3.6: The true parameter a3 y, and its time invariant and time variant estimates
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Chapter 4

Model Order Selection

As far as the laws of mathemalics refer o realily, they
are not certain; and as far as they are cerlain, they do

nol refer to realily. Albert Einstein

4.1 Introduction

A major constituent of scientific rescarch is the construction of mathematical
models for elements of our perceivable world, which use as raw material, data pro-
vided by our ever more sophisticated instruments. Mathematical models (thereafter
simply called models) act as abstract and compact languages to assist us in the end-
less search for a better understanding of reality. Hence, the primary aim of such
intellectual produce is to attempt to unearth what could be referred to allegorically
as the mechanism that generated a particular set of data. By extracting the regular
fcatures of data in the form of models, the complexity of observable events would
tend to be reduced. Any such found regularities could be interpreted as reflections of
nature’s relative order.

Can models exactly match the particular reality they intend to explain, and thus

in some sense allow for a mirroring of the total “true” nature of physical phenomena?

49
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The first known affirmative answer dates back to Pythagoras who believed that nature
itself was numbers. Many centurics later, Galileo Galilei sustaiaed that the great book
of nature was written in terms of mathematical characters, like triangles, circles, and
other geometric figures. Numerous other great thinkers like Descarles, Leibniz, and
Kant also held the viewpoint of mathematical models as being ingrained in reality.
This perspective, although always somechow conlronted, began to be strongly chal-
lenged at the beginning of this century, a period in which firmly established theories,
like Newton's classical mechanics, began Lo be improved upon or cven abandoned,
As a result of this deeper look at reality through clever and claboraled experiments
in mainly the subatomic world, absolule certainly gave way to the notion of thi: per-
petual inherent imperfection of any theory or, in particular, any model of reality.
Although this conviction is constantly gaining furlther ground a definite answer lo

such a profound philosophical question cannot be provided with absolute certainty.

Statistics foremost mission lays in the construction of probability models for dala.
The prevalent tendency in this field has becn to assume that a given dala scl is
the outcome of a “trﬁe”, albeit almost never fully specified, distribulion. Thus,
that the data is actually considered as being gencrated by some sort ol mechanisin
governed by such a distribution. (One could assume that the distribution are of
Normal, Binomial, Exponential or Poisson type for example.} We would Lhen expect,
actually require, the field of statistics to offer well established mecthods by which to
identify from the data that “true” type distribution in some categorical and explicit,
way. Unfortunately this is not the case: no general applied rigorous data-dependent,
methodology is available by which to obtain that sort of “truc” Lype distribution.
Moreover, physical justifications for the existence of “true” models can, in a way,
be proven only applicable in a handful of cases. (One could mention, for example,

gambling games.) Therefore we could rightfully argue that the very initial steps of
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the statistical modeling process are in general dealt with in an ad-hoc manner.

After a “truc” type model has been assumed by any kind of dubious method, the
statistical discipline gives rigorous and involved techniques by which to determine
whatever has been left unspecified in those a-priori assumptions. Examples of such
techniques abound in the highly developed theory of estimation which incorporates
claborate procedures to allow for the making of decisions about the modeled phe-
nomenon in “optimal” ways. However, a note of caution must be raised since all
these a-posteriori claims are contingent on the correctness of the a-priori assump-
tions, assumptions that always contain some degree of subjectivity. As a result, we
could face the risk of making unfounded statements about the studied phenomenon,
while unsoundly making rigorous only the last phases of the modeling process.

Is it possible to choose a model in a wholly data-dependent manner? Tackling
this question requires a proper understanding of the relationship and tradeoff between
model complexity and model fit. For instance, a complex model might be capable
of matching data with high precision. However, if the description of the model itself
(in some well specified sense) turns out to be as lengthy as that of the data, then no
overall reduction in the complexity of the original string of data would be achieved.
A simple example is the polynomial fitting of data. Assume that the dimension of the
polynomial is taken to be equal to the number of data noints. Then we are guaranteed
to have a perfect fit, but with a model complexity matching or superseding that of the
raw data. If this type of procedure is employed, it will certainly defeat the modeling
objective of striving to maximally reduce the complexity of events by extracting their
regular features using compact mathematical descriptions. Hence a necessary tradeolf
between model complexity and model fit needs to be taken into account.

Even though the statistical discipline has notably enlarged our understanding of
numerous aspects of our perceivable reality, the bulk of this theory fails to answer

such preliminary questions as how to choose between models of different complexity.
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For example, the classical least square method (c.f., [Cai88]) succeeds in providing
the parameter values of a polynomial of fixed order in some optimal way, but breaks
down when the polynomial order nceds to be determined. Thus, most of the statistical
modeling methods either totally fail to consider the above complexity-fit tradeoll, or
they address it in a form not disassociated from what could be after-all subjective

considerations.

Let us look at the Minimum Prediction Error (MPE) modeling scheme, which
can encompass a wide vz.\.ricl.y of modeling selection theories. This method is defined
in terms of two scalar criterion functions, one which penalizes the lack of fit of the
model with respect to the data, while the other penalizes the complexily of the model.
(For a general and rigorous treatment of the MPE method the veader is referred Lo
[Cai88].) For instance take a family of functions {A(-,0),0 € D} (one could think, for
example, of the family of polynomials) and consider the predictor sequence 7y, ..., in

for a set of data yi,...,yn given by the predictor models
¥n = h(zy,0) l1<n<N,

with z,,...,zx; some known deterministic sequence. An MPE criterion can then be
constructed with the help of the loss functions: I{:,-), which penalizes the lack of fit
of the model with respect to the data, and (-}, which weighs the complexity of the
model itself. Finally one defines the criterion function as
N

Ln(g) = ; I(ys, ) + w(h), 1)
Although Ly(%) directly addresses the issue of model complexity vcréus model fit, il
does not provide in its general formulation any clue on how to properly balance these
two issues. Even if a subjectively chosen criterion based on (4.1) is found lo satisfy
properties like consistency and efficiency, it will hardly achieve what is of outmost

importance, that of a solid physical interpretation for such a criterion.
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Since any successful modeling method will in some form weigh the complexity-
fit tradeoll, and since the MPE is defined in such a generality so as to encompass
all rcasonable weigh types, one can certainly claim that all modeling methods are
just special cases of the MPE method. IHowever, this type of reasoning is in a sense
deceptive since the MPE method by itself fails to guide us towards concrete and
meaningful modeling theories, theories that should be entrenched with solid physical

interpretations outside of their internal logical consistencies,

It is essential to stress the basic recurring theme in all of the statistical modeling
methods, that is, the assumption of the existence of a “true” distribution for the
data. Under this category we can also include those methods addressing the issue
of model complexity, and even those which use an approximating family of models
not containing the “true” distribution. It is then not surprising that justifications for
these procedures are based on how well they succeed in providing an estimate, i.e.
an approximation, of the “4rue” model. The bottom line is that such a “true” model
is made accountable for all interpretations, predictions and decisions. Moreover, this
sort of rationale lacks any real base, since subjective features are necessarily associated
with the assumplion of a “true” model. As a result we could say that the classical
inference methods might all have the appearance of being objective techniques but
that in fact they hide the real issue behind the cloud of “true” models. These methods
therefore fail to be wholly data-dependent, which represents a serious drawback since

it could be argued that in very general terms the only available “truth” is the given

data.

Let us now bricfly show how the most renowned modeling procedures, derived
from the Kullback-Leibler distance between two pro})?.biiitjr, densities, are developed.
We shall use as an example the well-known AIC cri'ft‘:;eria. (c.f, [AkaT3]).

Assume that the data yV is a realization of an i.i.d. sequence of random variables
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with density function g(+). Let the family of density functions M(8) = {f(-,0); ¢ ¢ D}
be used to fit a model to the data yV. The “true” density g(-) is not necessarily
included in the model class M(0). Now recall that the Kullback-Leibler distance
belween two densities is given by

oo

Mf9)= = [ log S, Og(a)ds + [ loga(ely(a)i (4.2)

Since the second term in (4.2) is constant,
L(0) = -IE log [(-,0)

cau be used as a basis for model sclection. Note, however, that L{0) cannot be used
in its present form to solve the selection problem, since it requires the computation
of an expectation. Moreover, the expectation is with respect to the unknown densily
g(-). Therefore it is necessary to find some compulable approximalion of L(#). The
construction of practical modeling methods derived from cost functions like (4.2)
can then be carried out as follows. (Since here the purpose is only Lo introduce the
main ideas of how these types of modeling methods can be developed, we refer the

reader to [Aka73] for the list of technical conditions needed to apply this type of

methodology.)
(i) Let
0= arg min L(0)
oeb
and
In = arg min Ly(0).
oeD
where

- 1
Ly = —-A—,Zlogf(y.-,ﬂ)

i=1
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(ii)

That is, 0 5 corresponds to the maximum likclihood estimator of 0. Proceed by

performing a Taylor series expansion of Ly about 0 to get the crucial approxi-

malion result

o 1 1
L(0w) = L(0) + z5teT 'S, (4.3)

where matrix X is given by

0
P25t |
and the matrix ' by
gt
I'= 302L(0) e

Compute unbiased estimators for the terms of the right hand side of (4.3). For
L(ﬁ) one gets
LN = _Zlogf JuoN)

x=1

whercas for ¥ and T' one obtains

- 9~
= —Ln(0
=gt O |
and
-~ g2 0
I'n= '30—251\!( ) os’
respectively.
The final criterion subsequently reduces to
Iy = ——Zlog Flys, 0n) + —trr-‘z (4.4)

a-'l

It is interesting to note that if there exists a density f(-,#) which can compietely

match the “true” density g(-) then one can show that I' = . Thus ir[';1Z, = dim/,
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and the criterion function {4.4) simplifies to the well known Akaike’s eriterion (AIC)

given by
N

AIC(K) =Y —Yog f(yi, On) + .

t=1

Note that the assumption of the existence of a “true” distribution is used in an
essential way to arrive at a suitable utility function. This is because the above method
is derived as an approximation of the minimum Kullback-Leibler distance between
the “true™ density g(-) and the densities in M(0).

Many of the well-known modeling procedures are derived in a fashion similar
to the above. They moreover constitute what are generally agreed to be the most
rigorous techniques available for model selection. Onec could mention for example
the BIC (cf., [Sch78] and [Saw78]), the Pearson Chi-squared, and the Cramér-von
Mises criteria among others (c.i., [LZ86]). The first is based on an asymplotically
unbiased estimator for the Kullback-Leibler distance, whercas the other two use as a
starting point, different notions for the “distance” between models. For instance the

Cramér-von Mises distance 1s delined as

L(0) = E(g(") - S, 0))*,

and the steps which lead to its final criterion are done in a similar manner to thal
which leads to the AIC criterion.

What could be raised as another salient inadequacy in ali those modeling methods,
aside from their use of “true” models, is the absence of a solid physical interpretation
of their final criteria. As a consequence, the methods lack the intuitive appeal so
necessary when dealing with practical problems. Furthermore, and in particular for
the very popular AIC criterion, it generally fails to be consistent (c.f., [Ris89]).

A well-known modeling procedure which is wholly data-dependent is the cross-
validation method (c.f., [Sto74]). Its basic idea is the following: fit a model to a data

set of size N —m, and then perform a validation test. For example, use the lincar
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regression model given by (2.6) to mode! the data yV, and define the prediction error
process
&(0) = yn — 220,
For the sake of simplicity let m = 1 (usually relered to as the “one item out cross-
validation criterion”). Now compule the following sequence of least square estimators
N
0(j) = arg min{ > _(.fn(O))z} .
oeD i=1,ifj

Then the criterion is based on the cumulative sum of the squares of the off-sample

prediclion errors

1 & s
Ln(k) = N Z(enw(n)))z'

n=1

The degree of the polynomial is then taken as that value of & which corresponds to
the minimuin value of the criterion Ly(k). The main objections to the use of this
modeling method arc as follows. Firstly, it is a heuristic approach with no rigorous
indication of how to choose the crucial parameter m. Secondly, it was shown in [Sto77]
that the cross-validation method is asymptotically equivalent to the AIC method, and

thus Lhe crilicisms of the latter also hold for the former.

A possible way out of the modeling problem dilemma is to elaborat~ a modeling
theory which will a-priori grant some degree of imperfectness to any model. What
will then become meaningful is the ability to compare tentative model classes of
dilferent complexity in the light of available data, and give definite answers aliout the
goodness-of-fit of a model class only in relation to tentative competing mod‘els;""'

In the mid-scventies a novel modeling approach was initiated by Jorma Rissa-
nen [Ris78) which could in a sense be considered a natural outgrowth of the theory of
algorithmic complexity developed among others by Chaiti‘ﬁ‘,-'-Solomonoff, Kolmogorov
(c.f., [KA8T}, [Lev73], [ML74], and [ZL70]). This modeling endeavor, present,lj(:-kﬂown

as stochastic complexity, has constituted a major breakthrough n the way we view
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i
.

modeling and morcover it has had profound practical repercussions. It has become
by now one of the most respected methods for statistical inference. (For some carly
developments see [Ris78], [Sch78], and [Shi80]. Some recent surveys are given in
[Ris8T], [Ris89], and [GRI1].) As a radically different conceptual formulation with
respect to previcus modeling methods, the stochastic complexity is characterized by

the following distinguishable features:

(i) Not based on “true” model assumptions.

(ii) Subjective only in the selection of tentative bul nol necessarily forever definite

model classes.
(iii) Unique-type criterion [unction is defined for all modeling problems.
(iv) The criterion function weighs model complexity and model fit in a natural way.

(v) Universal in that any model classes—parametric or non-parametric—can be
compared irrespective of their distinct complexity through a common bench-

mark: the associated total code length.

(vi) Computable, unlike the theory of algorithm complexity.

Let us stress that aside from the suggestive choice of model classes, the slochas-
tic complexity modeling method is not subjected to arbitrary or subjeclive choices.
Moreover, it is totally data-dependent and provides us wilh a clear and concrete
physical justification outside of the intcrnal consistency of the theory.

In the following two sections we shall present the stochaslic complexity theory in

more detail.
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4.2 Stochastic Complexity

The art of modeling has a natural connection to the theory of information and coding
(refer to Scction 2.3 for a short introduction of this theory). The link is established
by the fact that finding data constraints (il one’s goal is to send the same amount
of informalion as that containcd in the original data sct) amounts to reducing the
number of bits to be transmitted. Conversely, obtaining shorter descriptions for the
daba gives rise to models which better represent the constraints of raw data.

As a simple example consider the case of a data y" such that y, > 0;Vn € [1, N].
Then, only the binary digit

t, ya20V¥ne[l,N];

B {0, 3 n € [1, N] such that y, < 0.

would be needed o represent a possible inherent constraint of the so-called generating
mechanism, instead of using a binary digit per datum as the representation. The
search for the shortest encoding of a set of data can be taken to be equivalent to the
scarch for best models, an issue which will be further elaborated. (Encoding of a set
of data means a more compact data representation with respect to the original data
sct, but that maintains the same amount of information as that which is contained
in the raw data.}

Under the assumplion that a set of data yV behaves according to a “true” prob-
ability model, say [ (,5) with § € D, Shannon proved that the shortest encoding in
“the mean per symbol codelength sense can be asymptotically attained by the entropy,
that is --IE log f(-, 0-) (see Section 2.3). If 2 modei deviates somehow from the “true”
distribution j(,ﬁ) then the Kullback-Leibler inequality {c.f., Proposition 2.3.4) can
be used, in principle, as a basie for measuring the resulting degradation in coding

performance. For instance let f € D be an estimator of the “true” parameter 6 then

E log f(-,0) - IE log f(-,0) > 0, (4.5)
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which vanishes if and only if § = f under proper identifiability conditions (e.g.,
E log f(-,01) — IE log f(+,02) = 0 implics 8, = 0, for all §,, 0, € D).

Observe that the left hand side of (4.5) corresponds for fix & to the log-likelihood
cquation which in Section 2.2 was shown to be an unsound model selection criterion
since it failed to penalize the complexity of models. Therclore, il we are to base
a theory of modeling upon the thecory of information and coding, some cssential
modifications must be performed. To begin with we should reinove the assumption
of a “true” model. Then we should associale to any tentative model class a certain
degree of uncertainty by properly weighing its complexity. However, this will require a
redefinition of the notion of Shannon’s information, more along the lines of algorithinic
complexity, which shall be discussed shortly.

Before doing so let us introduce Theorem 4.2.1 which gives a generalization of the
Kullback-Leibler inequality in that it will remain valid when modecls of dillerent com-
plexities are involved. This theorem will prove essential as a theorctical foundation
of the stochastic complexily theory.

First, the proof of Theorem 4.2.1 requires the following technical condition for the

smoothness of the tails of parametric densities.

Definition 4.2.1 Let {f(y",0);0 € D*}, where D* is a compact subsel of IR*
with nonempty interior, be a set of compatible probabilily density funclions (i.c.,
Tunat P(yN,yn41;0) = P(y";0) ) Then the fail-condition is salisfied if there exist
estimators O = 0 ~{y") such that for any real constant ¢ > 0

i P(NY}|0n — 0] > clog N) < oo

N=1

uniformly in 0.

The tail-condition imposes a constraint on the convergence of the parameter cs-

timates Ox's. It has by now been verified in many imporlant casc like for in the Alt
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case in [IIMP89] and [IID89], and for Gaussian ARMA processes in [Ger89¢]. (The
extension of this last result to multivariable linear stochastic systems is straightfor-

ward,)

Theorem 4.2.1 (c.f. [Ris86])) Assume that the lail-condilion is salisfied, and let
g(+) be any sct of compatible probabilily densily funclions defined on the data yV.
Then, for all 0 € D*,

L] e

lim 1 (log /(y",0) ~loggn(y")) /log N 2

N—oo

(4.6)

czcepl for a subset of D¥ with Lebesgue measure zero.

ReEManK. Theorem 4.2.1 provides an asymptotically sharp lower bound for the code-

length no matter what encoding procedure is used.

By comparing (4.6) with (4.5} we see that Theorem 4.2.1 does indeed genzralize
the Kullback-Ieibler inequality. According to this theorem, no matter of how well
we manage Lo provide an estimate gn(y") to approximate an assumed true density
vV, 0), the gencralized Kullback-Leibler distance between these two probability
densities cannot be made asymptotically smaller than the lower bound (k/2)log N.
This result follows the intuitive notion that complex models should be intrinsically
more difficult to estimate due to the increase of a-priori model uncertainty. In prin-
ciple, Theorem 4.2.1 reveals something about the merit of the estimation algorithm
when it. purformance is compared to the lower bound (k/2)log N. We shall later
show that this theorem can be taken as a theorctical foundation of the stochastic

complexity theory.

Can the information content of a data set be computed directly from the data

itself without turning to typically poorly justified a-priori “true” model assumptions?
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An affirmative answer to this question has been offered by the theory of algorithm
complexity (c.f., IKA87], [Lev73], [MLT4], and [ZL70)).

In the theory of algorithm complexity, the information of a sct of data is defined as
the length of the shortest computer program which succeeds in duplicating the original
data. The computer programs are those which can be obtained by a Universal Turning
Machine (UTM) (The salicnt property of a UTM is that of making any statements
in the theory independent of the lype of compuler.) An iinportant characteristic of
this set-up is that all partial recursive functions can be obtained with the help of the
UTM.

This innovative definition of information is a totally data-dependent concept. It
is the data which is imposing the shortest computer program and Lhus its associaled
algorithm information can be taken as an inherenl property of the data. This is in
sharp contrast to Shannon’s information which is based on an a-priori “true” model
class for the data. Unfortunately, the theory of algorithm complexity fails Lo provide a
methodology by which to construct those shortest programs. This non-computability
impairs its use as a practical modeling theory. Nevertheless, we should stress the con-
tribution of the theory of algorithm complexity—-aside from its paramount offerings
to the field of computer science—{or deepening the conceptual understanding of Lhe
modeling problem.

One could say that the stochastic complexity theory has flourished as a result of
the blending of the theories of algorithm complexity, and information and coding.
To paraphrase Rissanen, it successfully adds the missing components to cach of its
founding theories. It does so by replacing the UTM with probability model classes
on one side, and by computing the information in the data relative to the model class
chosen on the other. This emerging theory is now computable and detached from the
assumptions of “true” models, making the whole modeling process data-dependent.

The collection of models from which tentative explanalions of data are sought. arc
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of the form of parametrized conditional compatible k-dimensional distributions
My ={P(-,0);0 € D*}, ot My ={P(,0),7{0);0 € D*}.

- Model classcs of the type My = {P(-,0),7(0); 0 € D*} which are given in terms
of a probability distribution 7(0) associated to the parameters of the model, do not
have the connotation that one usually associate with them in the Bayesian framework.
They do not intent to represent data independent prior knowledge but just to provide
another possible way in which to encode the data with.

The utility function of the stochastic complexity theory by which models are
compared, is constructed in terms of the least code length needed to encode the data
with the help of a model class. Since the model itself—that is, its structure and
parameters—has to be conveyed so that the receiver can replicate the original data,
the encoding of the model is also counted as part of the overall cost of encoding
the data. The criterion function is then defined as the least number of binary digits
ncc_ded to encode the data with respect to the particular model class plus the number
of bits needed to represent model structure and parameters. What is fundamental
about the stochastic complexity utility function is that since both data and models
are encoded in a similar manner, both model complexity and model fit are measured
using the same benchmark: the codelength. Therefore, the competing issues of model
complexity and model fit are taken into account in a natural sort of way.

The first general modeling method based on this coding notion was developed by
J. Rissanen in [Ris78] . It rested on a two-part code construction and led to what is
called the Minimum Description Length (MDL) criterion. We shall shortly describe
it here, before intreducing its latest but more abstract version, so as to make the
ideas expressed above more transparent.

As a first step one computes the cost of encoding the data yN with respect to a par-

ticular model in My, which as seen previously can be taken as —log P(y",0). Then
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one needs to encode the model itsclf. This encoding can be done by first truncaling
the parameter 0 up to a precision § = 2-M4, where Ny is the truncated parameter’s
total number of digits in its binary digit representation, and then constructing a prefix
code for the truncated & with codelength —klogd. As a result, the overall codelength
ic given by
L(yN,0) £ —log P(y",0) — klogé. (4.7)
The two-part MDL modeling criterion is then derived by first solving the f[ollowing
optimization problem:
8gEGL(yN ,0). (4.8)
Note that this minimization involves two conflicting factors. For example, decreasing
the precision & decreases the length necessary for the encoding of the parameter ¢
(second term in (4.7), while increasing the cost of encoding the data yV (first term

in (4.7). This is so because
n(80) £ arg min{—log P(y",0),6 = &) (4.9)
deD*

will in general deviate from § which is the solution of (4.9) when no truncation is

involved (i.e., § — 0).

To solve the double minimization in (4.8), we procced by performing a Taylor

expansion of (4.7)

LN, 0) = L(y",08) + %ETEE —klogé (4.10)
where
L= -—aiL( )
B 802 I 0:6‘,\;

Now for the sale of simplicity assume £ = NI, where I is the identity matrix with .

dimension k. Then simply minimize the dominant §-term of the expansion (4.10), A
that is

&8 msin{]\’z—;-l?f[2 — klog 6},
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[rom which a simple computation gives §* = (N)~/2, Finally, substituting § in (4.10)

we arrive al what is known as the two-part codelength MDL criterion:
MDL(k) = — log P(y", EN)+§-log N. (4.11)

From the above construction we can conclude that the MDL criterion asymptotically
rcaches the minimum codelength among members of the model class M, relative to
this particular two-part coding strategy and the estimation method used to obtain On.
We will later show that the MDL criterion does indeed reach the minimum codelength
independently of, in this case, the particular two-part coding strategy.

Note that the MDL criterion asymptotically penalizes the increase of parametric
complexity more heavily than the way the AIC does.

The stochastic complexity is .. information theoretic measure of the complexity
of a string of data relative to a model class. The model which achieves the stochastic
complexity is the representative of all that can be kuown from the data about the
“mechanism” that generated the data relative to the given model class. This stems -
{rom the fact that by definition the stochastic complexity reaches the least possible
code length for the data and thus no more regular features can be extracted from it
with the given model class. Model classes can then be compared by their associated
stochastic complexity. We can loosely say that the length of the shortest encoding
for a set of data y" with respect to a model class My is a stochastic complezily of
the data relative to the given model class.

There are some asymptotically equivalent computations of stochastic complexity.
Their difference lies in whether the encoding is done in an on-line, batch or semi-batch

manner. The non-predictive stochastic complexity (c.f., [Ris89]) is defined as
15", My) = = log [ P(y",0)dn(0). (4.12)

It can be deduced by letting § — 0 in the two-part code construct (c.f., [Ris89]). If
a model class My = {P(:,0);0 € D*} is used then we can defined the conditional
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distribution
w(0,4") = P, 0) ([ P, 00)
to construct I{yN, M)
Notice that the non-predictive stochastic complexity, defined as a mapping 1 :
(YN, M) — Ry, is detached [rom any subjective considerations since it has no free
parameters to choose from. This is in sharp contrast to the MPE methods, like (1.1},

where there is a multiple choice of criterion functions depending on the weighting of

model fit and model complexity.

The main justifications for the stochastic complexily theory are as follows:

(i) For many important cases it can be proved that I(y", My) is asymptotically a

stochastic complexity of the data y¥ with respect to the model class M.

Those are the cases in which the tail-condilion is known to be salisfied, as for ex-
ample in a Gaussian ARMA set-up. The justification that in fact the non-predictive
stochastic complexity I{y", M) does correspond to a stochastic complexily of a scl
of data, at least {or models satisfying the tail-condition, can be casily derived [romn
Theorem 4.2.1. Indeed, by rewriting (4.6) as

| -

—Eyloggn(y™) = —Eglog fn(y",0) + 5

Slog N (1.13)

for all € > 0 and for 2 large cnough N, and comparing it with (4.11) we find that
the MDL criterion reaches asymptotically the lowest bound for the total codelength.
Also since the non-predictive stochastic complexity can be shown Lo be asymptoli-
cally equivalent to the MDL as the truncation precision tends to zero (c.f. [Ris89)),

I(yM, M,) also reaches the lower bound.
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(i1) The stochastic complexity theory can be taken as a generalization of the maxi-

mum likelihood method when models of different complexity are to be compared.

Let P(z) = 27/), Then P(z) is a probability function with the property of
globally maximizing the likelihood of the data.

(iii) To any type of prediction errors we can associate codelengths whose minimized

value is the stochastic complexity.

It is easy to show that up to a constant any prediction error measure can be
viewed as an equivalent codelength derived criterion [Ris89]. For example, let iy be

any predictor for a (yn) Gaussian ARMA (p, q) process. Now let ex = fiv—yw. Then
folunaalyN) = K(y")2ler?

with K(y"V) such that [ fo(z|y")dz = 1 defines a proper density function and thus

we can associate the codelength

—log fo(yN+1|yN) = ('fi\')2 — log K(EIN)-

Moreover, we can affirm the following theorem since the tail-condition is known to
be satisfied for Gaussian ARMA processes {(c.f., [GR86] and also [Kab8§] for a related

result).

Theorem 4.2.2 Let a Gaussian ARMA(p, q) satisfy Conditions 8.1.1 and 3.1.2. Let

(€n) be any prediction error process, then

N
lim B 3 (€~ ¢2)/o%(p+q)log N 2 1

N—eo n=1

except for a sel of ARMA parameters of measure 0.
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4.2.1 Predictive Stochastic Complexity

The non-predictive stochastic complexity given in (4.12) is computed ofl-line thus
making it impractical for a large class of important problems, like those involving
dynamical systems which frequently ought to be solved in real time. For this reason,
an approximation of the stochastic complexity which is computed on-line was intro-
duced by [Ris86] (see also [Daw84]). 1t is called prediclive stochastic complexity. It
is also an information theorctic measure of the complexity of a string of data, but in
this case it is not only relative to a model class but also to a particular estination
method. The on-line feature distinguishes the predictive stochastic complexity theory
from other modeling methods such as the AIC or BIC, (c.l. [Aka70}, [AkaT73], [Sch78],
[Saw78]) which are inherently ofl-line.

It will be shown that the predictive stochastic complexity is a mathematically well
understood criterion, which can be used in solving model sclection problems in real
time. It can also be used as a fundamental tool to solve olther important problems such
as adaptive control, the estimation of nonparametric transfer functions, and change-
point detection {c.f., [BG90], [GBI1], [GBI0], and [BG92aj). For some applications
in other areas of statistics the reader is referred to [QR89] and {WBGS].

Predictive stochastic complexity is defined in terms of predictlive encoding, which
can also be considered a universal coding procedure (for related works in this arca
see [LJ74], [Ris84], and [ZL78]). Let us first then introduce the predictive encoding
concept through an example of its implementation.

Suppose we pick a model class represented by the family of densitics {f(-,0),0 €
D} to model a set of data yV. Assume for the sake of simplicity thal k = 1. Now,
recall that for any trial parameter ¢ € D, a prefix code C(y;,0) withi=1,..., N can
be constructed (c.f., Section 2.3) such that for an observation y; we get the associaled

code length
L(y:, 0) = —log f(y:,0).
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The predictive encoding nrocceds as follows:

(i) Pick up any initial guess f; € D and encode the first observation y; with the

code c) = C(Y[,Og).
(ii) Compute the ML cstimator 0, of 9" using yi.
(iii) Use the estimator @, to encode the next datum y2 as c2 = C(y2,th)-

(iv) Go to item (ii) and rcpeat the procedure until the whole data sequence is

cncoded.

As an end result we get the generation of thie sequence of codes ¢y,...,cn.

Only if we can decode the sequence ¢y,...,cn, and get the original data yV sc-
quentially as the data is transmitted, could we then conclude that we had constructed
a predictive encoding procedure. Let us show that this is the case. As a first step
assume that the information about the model class {f(-,0),0 € D}, and the initial
condition & is known (i.e., it has already been transmitted to the decoder). The

decoding is done as follows:

(i) When the decoder receives the code ¢;, it can certainly compute y; by solving

the equation C(y1,0) = c1.
(ii) Then, it can compute #, by solving the ML equation.

(ii1) Once c; is received, the observation y2 can be recovered by solving C(ya, 7)) =

¢2. Again 52 is obtained form the ML equation.

~ (iv) The decoding is then repeated sequentially until the sequence ¢;,...,cy has

been exhausted.



CHAPTER 4. MODEL ORDER SELECTION 70

A very important consequence of the predictive encoding procedure is that

F(yN,00) = J(y1,00) (2. 01 (y1)) F (33, 02 (y)) - -+ F(y™, O (y™),

can easily be shown to define a density for the data yV. This shows that a density
F(yN,0p) for the data yi,...,yn is being learnt or constructed, as data becomes
available. Notice that this is done through = truly sequential construction.

One of the main features of the predictive encoding procedure is that it can be
employed as a methodology for choosing amongst different model classes. For in-
stance, take the case where two model classes M, = {f(-,0),0 € D}, and My =
{g(-,¥),¥ € D,}, are considered for 2 given data sequence. Then, the predictive
encoding procedure will provide us with coding scquences cf, ..., ch, f,..., ¢k, and
densities F(y", 0) and G(y", o). By comparing the total code lengths TN, ¢f and

i=1%

¥, ¢, the model class that associates the minimum total code length is theu chosen.

Moreover and for example, if the model class M is finally chosen then
F(yN,00) < G(yN, 0,). (4.14)

Therefore, according to (4.14), the best mode! corresponds to the constructed densiiy
that gives us the maximum probability with respect to the data. Clearly this resem-
bles the ML idea and represents one of the basic facts that serves as a foundation of

the theory of stochastic complexity.

Definition 4.2.2 For the model class described by the family of densities { f{:,0);0 €
D}, the predictive stochastic complezity is defined by

N -~
IP(YN: Mk) = Z = log I(Yru an-l)

n=l1

where 8, is an estimator obtained using only the data y¥=1 by means of some lype

of estimation algorithm.
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Since the predictive stochastic complexity can be shown to be asymptotically
equivalent to the non-predictive stochastic complexity (c.[., [Ris89]) then [, also

reaches the lower bound as specified in Theorem 4.2.1,

Example 4.2.1 TFor the lincar regression given by (2.6), define the prediction error
process

& (0) = yn — 33‘0.

Then it is easy to see that the predictive stochastic complexity is given by
N
~ 2
z (en(()n_;)) .
n=1
Note that the prediction error ¢, (7 n—1) is—using Rissanen’s terminology—“honest”
since for its compulalion we only use data which precedes the moment n. Compare

this Lo the AIC approach where ¢,(fy) is not computable at time n.

Let us now turn to the analysis of predictive stochastic complexity for the i.i.d.
case. Recall that at step n the code length is given by — log f(yx, 5n_1). Assume that
the data was actually generated by the density with parameter 0*. Then clearly the
optimal encoding will be - log f(y.,0"). We would like to investigate how much we
have to “pay” for not knowing 0*. The following thcorem was proved by Davisson for
the AR case (c.f., [Dav65]).

Theorem 4.2.3 (Davisson’s formula) Under certain regularity conditions (c.f.,
[Dav65]) imposed on the density f(-,0%),

o k
Eg-(—log f(£n, On-1) + log f(za,0%)) = 2—11.(1 + o(1)).
(Hint: Perform a second order Taylor-series expansion of the left hand side).

The above theorem can be interpreted as a statement about the difference between
two mecan per symbol code lengths: one based on the knowledge of 0, and the other

on the model class only,
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Example 4.2.2 The cummulative effect of parameter uncertainty for the linear re-

gression of Example 4.2.1, is given by
k
E- Z ) —eh) = =3z log N(1 + o(1)).

If instead of the “honest” estimators 8,_; we were Lo use § ny the cumulalive effect
of parameter uncertainty for the regression case would be
Es E(en(ON —el)= -——(1 + o1V (1.15)
n—l
Observe that the left hand side of (4.16) cannot be interpreted as a codelength,
since ﬁN is unknown to the decoder. However, if we transmit 51\', which increases
the length of the message by vk bits, ¢ > 1/2 a constant, then decoding becomes

possible. Let
JEE- Zc (On) + ck {4.16)

n=1

then models can be compared through their associated J(kj's values. Nole that for
¢ = 1, (4.16) corresponds to Akaike’s information criterion.

One main disadvantage of AIC type criteria is that they arc inherently ofl-line.
Therefore, for example, they are not suitable for use in real-time control systems.
This is a direct consequence of its definition since at each time n future values of ihe
data are needed to compute the estimate fy.

It is easy to sec that J(k) penalizes overparametrization. Indeed, let 9* = (4~,0)
be an extended parameter, say dimy* = &' > k. Then we have

E- 21 (Pn) — ¢2) = —K'(1 + o(1)). (4.17)
=

Substracting TN, e? from equation (4.17) we conclude that

E(J(K) = J(k)) = (&' = k)(1 + o(1)).
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Although the predictive stochastic complexity is computationally intensive in its
original form, a suitable modification for the ARMA case with great potential for
generalization is now available. The important fact is that it does not affect the
asymptotic propertics of the original predictive stochastic complexity (c.f., Theo-
rem 3.6 in [GR91]). Ongoing research’indicates that this important step can also be

carried out in the multivariable case.

4.3 Model Order Selection for ARMA Models us-
ing Predictive Stochastic Complexity

The present section will be limited to the specific but difficult problem of findirg
the best model order for a set of data among ARMA models of dilferent order. This
is an lmportant problem in the statistical theory on linear stochastic systeins. The
AR case was analyzed by [HMP89] and [HD89]. The latter work is based on the
work of [Wei87]. The analysis of the significantly more difficult ARMA case was
settled in [Ger89¢]. This work provides a computationally feasible version of predictive
slochastic complexity which will be used in the model order selection of ARMA
systems. Morcover, we shall show that the predictive stochastic complexity modeling
method is consistent for a certain types of ARMA models.

The main result of [Ger89¢] is that under certain not too restrictive conditions we

have
N

lim Y- ((en)? = (ea)))/o*(p+q)logN =1 as. (4.18)

n=

where (e,) is the input noise process, o2 = IE (e, )?, €, is an “honest” prediction error,
and p, ¢ are overestimated values of the true orders p*,¢* (but only one of them is
strictly greater than the true order).

While this result is certainly of great interest it may be criticized from‘a practical
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v . . vy " . y . . . .
point of view since the sensitivity of the criterion £ (?)? to overestimation is not

n=1
very marked. Using instead the fixed gain prediction-crror process ¢, the seusitivity
of the criterion to overmodeling is increased, as it will be described later. However,
fixed gain recursive estimation metheds are not as well understood as the traditional
estimation methods. llence, the asymptotlic properties of the predictive stochastic
complexity associated with a fixed gain recursive prediction error scems to be very
difficult at present. A less challenging project, which was undertaken in [Gerd2b], is

the analysis of predictive stochastic cemplexity associated with the off-line fixed-gain

estimator. Some of the result that foiiaw can be found in [GBY0] and [BGY24).

4.3.1 Technical Conditions and Main Theorems

Let us first introduce some of the technical conditions which are needed to solve
the modeling problem for ARMA classes. Lel (y.),n = 0,£1,%2,... be a second
order stationary ARMA(p, q) process salisfying the following dilference equation:

A’y =C"ec.

Condition 4.3.1 The inpul process (e,) is a discrele-time, sccond order slalionary,

Lo-mizing process, and satisfies Condilion 3.1.2.

Let
Dprge = {(p,q):p2p and g=¢"orp=p° and ¢ 2 ¢7}. (4.19)

denote the set of model orders describing overestimated structures. For cach (p, ) €
Dye 4o we define the “4rue” parameter by appropriately augmenting (p—p*}+(q—¢")
zeros to the parameter-vector (a7,... a5, cf,... €5 ).
Let G C RP*? denote the set of 0's such that the corresponding polynomials
A(z™!) and C(z™!) are stable. G is an open sct. Let ° and D be compactlrdomains
_such that 0° € D* C intD and D C G. Here int) denotes the interior of D.
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Let us define

N 2
Sxipa) = 3 ().

n=1}

(For the definition of €} refer to Section 3.2.) In the Gaussian case Sy(p,¢q) is 2
predictive stochastic complexity relative to the ARMA(p, ¢) model class and the re-
cursive fixed-gain olf-line prediction error estimation method. Note that e;\,(ﬁ“)‘_l) is
“honest” in the terminology of [Ris86], i.e. to gencrate the prediction error process
we only use data preceding the moment n.

Now let us denote

Api(p,q) = Si(p+1,9) — Si(p q),

and
Agi(p,g) = Sh(p g +1) — Sa(p, 9).
Morcover, denote Ax(p,q) whenever Ap(p, ¢) or Aqd{p,¢) can be considered. The

next theorem captures the excess of predictive stochastic complexity between consec-

utive ARMA(p, ¢} model classes when only one of the model orders is overestimated.

Theorem 4.3.1 ([Ger92b)) Under Conditions 3.1.2 and 3.1.1 and for (p,q) €
Dy o, we get
Jim INTIAN(p,g) — Ao?/2| =C)N?,  as. (4.20)

where C ts a nonrandom constant.

We recall (c.f., [Ger86]) that when the predictive stochastic complexity is taken
rclative to the recursive time invariant off-line prediction error estimation method,

we have for (p,q) € Dpe o
Jim (log N 'Ad(p,q) = ¢ as. (4.21)

Comparing (4.20) and (4.21) we can clearly see that the fixed-gain predictive stochas-

tic complexity S¥(p,q) is qualitatively much more sensitive to overparametrization
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Figure 4.1: The under-parametrization and over-parametrization regions.

than the time invariant predictive stochastic complexity S (p,¢). The startling fact
is that the “badness” of the estimator increases qualitatively the “badness” of over-

parametrization.

Let p®,4* be a-priori upper bouuds for the unknown true order medels p*, ¢*,

and let us consider the set of model order pairs
Fpege ={(p,g):p<pT and g< ¢" or p<p” and ¢ < ¢*}.

In Figure 4.1 the regions Dpe g+ and F. 0 are illusirated.
It is a well-known maxim that in the underparametrization region, more precisely

for (p, q) € Fpege\Dpe 4o we get for small X's

lim N7'AR(p,q) <6, <0 as.

Nesoo
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where §; is a constant (c.f., [D1I89]). Simulation studies show that a similar result

holds true for AN(p,q), i.c., for small A’s

lim N7'AX(p,q) < 82 <€ as. (4.22)

Nwroo

wlicre 62 is also a constant.

4.3.2 Selecting the Best ARMA(p,q) Model

We shall sce that the predictive stochastic complexity S¥(p, ¢) can be successfully
used for model order cstimation when A is small. The following theorem gives the

conceptual framework:

Theorem 4.3.2 ([GRO1]) Let the conditions of Theorem 4.3.1 and the validily of
(4.22) hold, and denote pn,qn the solution to the problem

min 93 .
(P-?)EFp',q' N(p’ q)

Then for sufficiently large N's, N > Ny(w), we have py = p* and Gy = ¢".

Remark.  S¥(p,y) provides ihe only real-time computable criterion of model order

cstimation for ARMA systems.

Let us now outline the scheme to find an optimal AILMA model in practice:

i) Compute Ap{(1,0). If ApJ(1,3) > 0 then stop the search. The optimal model
is AR(1). If instcad Apa(1,0) < 0 then the optimal model is not AR(1) and

thus continue with (ii).

ii) Compute Aga(0,1). If Ag(0,1) > G then stop the search. The optimal model
is MA(1). If instead Aq{(0,1) < 0 then set p =1 and ¢ = 1 and continue the

scarch according to the next item.
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ii1) Start moving from point (1,1} along the line {(p, ¢);» = q}, in the plane with
axis given by the tentative model orders p and ¢, as long as Apd(p,q) and
Aqi(p,q) are negative. That is, the decision to move along {(p,q)ip = ¢} is
done by comparing the ARMA({p+1, q) and ARMA(p, ¢+ 1) model classes with
the ARMA(p, g) model class. (Here we are applying (4.22) which characterizes
the behaviour of both Apd(p,q) and Aq(p,q) in Fye ge\Dpepr.) Now, when
at least Apj(p,q) or Agi(p,q) becomes positive then p = p* andfor ¢ = ¢".
That is, according to (4.20) we are comparing ARMA model classes along the
region Dpe oo, To determine where we actually hit the region Dy 4e, compute

Api(p — 1,q) and Agf(p,q — 1). Then onc of the following situations might

arise:

a) If Apj(p —1,q9) <0 and Aqfi(p,g—~1) <0 then p=p” and q = ¢".
b) If Anfi(p —1,9) <0 and Aqp(p,g—1) >0 then p=p° and ¢ > ¢".

¢) IFAp{(p—1,4) > 0 and Aql(p,qg — 1) <0 then g = ¢~ and p 2 p".

For cases (b) and (c) where the search is not cver, proceed as follows, For casc (b)
compute Ag(p, ¢ — 1) for decreasing values of ¢, and when ¢ is such that Ag(p, ¢ -

1) < 0 then set ¢ = ¢" and stop the search. Case (c) is done simiiarly.

Since the above heuristic description of the model order selection method leaves

many important details open, let us make the following comments:

i) Trouble may occur in Fye g0\ Dpsqe, the region where we underestimate the
model order. Although incicasing p or ¢ by 1 decrcases S¥(p,¢) due Lo un-
d2rmodeling by an amount proportional to N, it also increases S¥(p,¢q) duc
lo parameter uncertainty by an amount proportional to N. If A is nol small
eriough, then the effect of parameter uncertainty may dominate, causing the

excess of predictive stochast.z complexily to become posite and thus we may
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i)

stagnate in £pe qe\Dpe go. Thus, it is important to set A small in Fpe oo\ Dpe 40,
or try diffcrent A’s to ensure that this does not happen. This issue is illustrated

in Section 4.3.5

It would be important to choose N under the constraint of a desired lower

bound for
P(Af\‘l(ﬂ ‘1) <0 | (P’ ‘7) € Fp"q'\Dp‘.q'),
and

P(AN(pra) >0 | (prq) € Dpoge),

i.c. the probabilities of correct decisions.

Instead of fixing an a-priori value for N, we can take it as the minumum N
such that A} (p,q) has lincar trend with fixed probability. This should reduce

the computation search time.

All the results of this section are in terms of the off-line fixed gain prediction
crror method. The reason being that the asymptotic properties of the predictive
stochastic complexity associated with fixed-gain recursive prediction-error have
not yet been analysed. However, we applied this algorithm in the simulation
and it indicates that the proposed procedure works exceptionally well in real

time.
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4.3.3 AR Model Order Selection Simulations

In this section we will solve a model order sclection problem by applying AR
models. The purpose of starting with this simpler probleim—as opposed Lo applying
ARMA models to the order sclection problem—is that it is simplilies the illustration
of the effect of the fixed gain A on the model order selection procedure.

We start by generating 2000 data points by means of a computer simulation of
a time invariant AR(4) system, driven by a Gaussian white noisc inpul process with
mean 0 and variance 1.

The time invariant AR(4) system is given by

YN+ ajynv—1 + o F aiyN-a = en

with

ajy=.5 a; = —.3 ay = .2 ay = A.

The order selection strategy is based on comparing the AR(p) Lo Lthe model class
AR(p + 1) class. The comparison is done by computing the predictive stochaslic
complexity associated with cach AR model and calculating their dillerence. ‘Fhus,
define -

AX(p) = Sy(p +1) = Si(p).
which is the excess of predictive stochastic complexily belween the AR(p -+ 1) and
AR(p) model class, when applying the time .invariant prediclion erzar algorithin.

The model order selection scheme presented in Section 4.3.2 is simplificd signif-
icantly in the AR case since we now only have Lo search for order models on a line
instead of a plane (as in the ARMA case). Thus, we just have lo simply keep in-
creasing the order of the AR model until the difference of the stochastic complexitics

associated with the AR(p) minus the AR(p + 1) modcls is negative.
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Figure 4.2: The difference of predictive stochastic complexities of adjacent AR models
when using the time invariant prediction error estimation method.
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Note the sort of logarithmic drift of the excess of predictive stochastic complexity
in Step d of Figure 4.2, This is predicted by the theory when the time-invariant
recursive prediction error method is used—sce (4.18).

Figure 4.2 shows that there is not much point in increasing the order of the AR

model beyond p = 4. Thus the true model order, p* = 4, of the AR system was found.

Let us now repeat the previous experiment but instead use the ixed gain prediction

error algorithm to generate the prediction error process. Thus, in this case define

An(p) = Sh(p+ 1) - Sy(p),

which is the excess of predictive stochaslic complexity between the AR{p -+ 1) and
AR(p) model class, when applying the prediction crror algorithin with fixed gain A,

We set the value of the fixed gain A = .0125 and the results arve illustrated in
Figure 4.3. We then double the value of the fixed gain, that is we set A = .025, and
perform the experiment again. Figure 4.3 shows the results when using this value
of A. Similarly to the previous simulation, the same conclusion is drawn when using
fixed gain: The scheme finds the true model order, p* = 4, of the AR system.

The impoctant observations that can be raised from these last two simulations
are: 1) The difference of the associated predictive stochastic complexities of adjacent
AR models, when the mod:! is overparamelrized—see Step d of Figure 4.3 and
4.4—grows proportionally to the gain A. This fact confirms the theoretical statement
given in Theorem 4.3.1. Namely, the estimation “badness” increases the “badness”
of overparametrization; ii) In the over-parametrization region, the diffcrence of the
associated pfedictivc stochastic complexities of adjacent AR models have nearly linear
drifts as opposed to the logarithmic drilt obtained when the time invariant recursive

prediction error method is used (i.c., Step d of Figure 4.2).
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[igure 4.3: The difference of predictive stochastic complexities of adjacent AR models
when using the fixed gain prediction error estimation method with A = .0125,
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Figure 4.4: The difference of predictive stochastic complexities of adjacent AR modals
when using the fixed gain prediction error estimation method with A = 025,
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4.3.4 ARMA Model Order Selection Simulation

Let data be generated by the following ARMA(13) system
yn +aqyn—t + s aqyv—g = en Feihv ot CUNar F OjN -,

with

aj = .3 = . ay = .4 ay = .8,

and

¢ =.9 g =-~. ey = —.0.
The system is driven by a Gaussian white noise input process (¢) with mean 0 and
variance .5.

The simulation is run for 1000 data points, generating the realization y™ ol ™. In
what follows we shall apply the model sclection procedure presented in Section 4.3.2
to determine the best ARMA(p, g) model representation for the data yV. ‘The order
selection strategy is based on comparing the ARMA(p, ¢) model with the ARMA mod-
els ARMA(p+1,q) and ARMA(p, g+ 1). The comparison is done by computing the
predictive stochastic complexity associated with each ARMA model and calculating

their difference. Recall that

Apii(pa) = Sylp + 1,9) — Sylp. ),

is the excess of predictive stochastic complexity of the ARMA({p + 1, ¢) model class

when compared to the ARMA(p, q) model class, whereas

Aqi(p ) = Sh(p,a + 1) = Si(p,9),

is the excess of predictive stochastic complexity of the ARMA(p, ¢+ 1) model class
when compared to the ARMA{p, q) model class.
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et us follow the model order sclection outline of Scction 4.3.2: Start with an
AR(1) and MA(1) model classes and incrcase the orders of these models in the autore-
gressive and moving average directions until we hit the over-parametrization region.
Figure 4.5 illustrate the beliaviour of the difference of predictive stochastic complex-
ity of adjacent ARMA model classes in the under-parametrization region. Since all
the figures Figure 4.5 have negative drift we conclude that we should increase model

orders p and q.

Step a Step b
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S 2
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A S8
<1 500} - <
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0 500 1000 0 500 1000
N N
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0 0 ' 3
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Figure 4.5: The difference of predictive stochastic complexities with gain A = .01 for
neighboring ARMA models in the under-parametrization region,

The search in the (p, ¢) coordinate system corresponding to the under-parametrization
region is presented in Figure 4.6. The arrows in this figure have a one-to-one cor-
respondence to the figures in Figure 4.6. Lor instance, the arrow e in Figure 4.5
represents the excess of predictive stochastic complexity taken with respect Lo the

ARMA(3,2) and ARMA(2,2) model classes as plotted in Step e of Figure 4.5.
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A ————— - ; topﬂ'l ——
Le_, true model: ARMA(4.3)
i I

2 ITI
E“'“‘!! E : =
t 2 3 4 S5 p

Figurc 4.6: First scheme steps: To reach over-parametrization region. (Each arrow
corresponds to a figure in Figure 4.5.)

Now, we incrcase the model orders of the ARMA classes in both directions. The
results are illustrated in Figure 4.7. This figure shows that we actually did hit the
over-parametrization region since Apho(4,4) > 0, and Aqhe(4,4) > 0. Therefore,

we should decrease both model orders.

Step 1 Step j
2F
< <
N N
a <z
2. o
<] < 9 4
-0.5 — -
0 500 1000 o] 500 1000
N N

[igure 4.7: The difference of predictive stochastic complexities with gain A = .01 for
ncighboring ARMA modecls in the over-parametrization region.
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The scarch in the (p, q) planc is illustrated in Figure 1.3.
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Figure 4.8: Hit over-parametrization region. (Each arrow corresponds to a figure in

Figure 4.5.)

Finally, we decrease the model orders of the ARMA models classes until we get

a negative drift for both Ap(p,q) and Aqu(p,q). These last steps are shown in

Figure 4.9 and Figure 4.10.
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Figure 4.9: The difference of predictive stochastic complexities with gain A = .01 for
neighboring ARMA models around the boundary of the over-parametrization region.
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True model: ARMA(4,3)

['igure 4.10: Last scarch steps. True mode! order found.

The optimal model was found to be ARMA(4,3) which coincides with the order
of the original ARMA model.
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4.3.5 Simulation Example of Parameter Versus Model Or-

der Uncertainty

This section will show how the effect of parameter uncertainty may dominate over
model order uncertainly.

Let data be gencrated by the ARMA(2,1) Ay = C*e system with parameter
values

A'=[l =57 and C =[ .01,

driven by a Gaussian white noise input process with mecan 0 and variance .5, "T'he

gain of the fixed-gain recursive prediction error algorithm is set Lo \ = .01,

Aqk(2,0)

500 1000
N

Figure 4.11: The difference of predictive stochastic complexities with gain A = .01 of
an ARMA(2,1) and AR(2) models,

In Figure 4.11 the difference of predictive stochastic complexities of an ARMA(2,1)
mode] with an AR(2) model is illustrated. More precisely we compute Ag (2, 1).
Since Ag.(2,1) > 0 we conclude that (2,0) € D, 4 which does not correspond to
the order of the original ARMA model. This is caused by the predominant cffect
of parameter uncertainty over model order uncertainty. When this occurs one can

decrease A or use the time invariant recursive prediction error algorithm.



Chapter 5

Change-Point Detection

5.1 Introduction

Change-point detection is the problem that deals with the estimation of the time
or space location of quantitative and/or qualitative changes along the evolution of
processes. In more concrete terms, a change-point represents a crucial behavioral al-
teration of the properties or characteristics of a physical system or signal which ought
to be detected. The need for change-point detection procedures arises in both natu-
ral as well as human-made physical systems (referred to in the sequel as machineries
or mechanisms), or combinations of both. Failures occurring in physical plants, in
particular sensors and actuatoré, are typical examples of change-point type machine
disruptions, whereas earthquakes and the diagnosis of brain and sound signals rep-
resent illustrations of natural systems. The applications of change-point detection
techniques are currently being found in a variety of scientific activities such as math-
ematics, medicine, economics, and engineering,.

When dealing with mechanisms, the term failure or fault detection is most com-
monly employed, since it accurately describes the fact that a total or partial break-

down of a component of a monitored machinery has occurred. For this type of physical
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system, it is often the case that more than plain change-point detection schemes are
neecded as part of the overall supervisory strategy of physical plants. For example,
some systems will also require the isolation of faults, that is the specific system’s
physical location of them. Methods that can achieve these two types of diagunostics
are usually referred to as FDI (fault detection and isolation) methods. An even fur-
ther step in a supervisory scheme is to entrench it with accommodation capabilitics.
That is, after the isolation step is completed successlully, adjustment to a new and
acceptable configuration takes place. This could also include the on-line replace-
ment of a broken part if provision for hardware component copies has been made
beforehand. This more complete supervisory strategy is known as the FDIA (fault
detection, isolation, and accommodation) scheme.

In contrast, when deaiing with natural systems, the term change-point detection
is most frequently employed .” Clearly, there is a natural overlapping of the Lwo camps
since very often stochastic process signal models are used to monitor mechanisms. In
this thesis we will use both terms, that is fault detection and change-point detection,
indistinguishably.

Since modern machineries consist of interconnections of large numbers of compo-
nents, most of them crucial to the overall sysiem performance, the design ol fault
detection schemes is vital to any successful long-term system design. The role of
failure detection schemes is to reveal possible malfunctions of components by giving
some type of early warnings so that proper action can be taken. Successful imple-
mentations of these schemes will allow for the maintenance of an adequate level of

plant performance and security, and if need be, might even avoid a catastrophe.

Traditionally, change-point detection schemes were utilized in quality control (c.f.,
[Pagh4], [Tay68]), and the proposed solutions were known as control charts. Soon
after, théy were used to anticipate failures in physical systems. Typical examples are

failures in sensors and actuators, fatigue of structures, and failures in nuclear plants.
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These carlier applications have evolved to also include change-point detection in
the recognition of signals, and as one of the basic features in the modeling stages
of physical systems. For instance, they have been utilized for modeling variations
in the operating conditions of physical systems. The basic fact that makes these
schemes so uscful is their ability to successfully deal with many kinds of non-stationary
processes. Good illusirations are the modeling of speech, sequential segmentation
of images (c.f., [BEGB81]), and the diagnosis of ECG (electrocardiogram) and EEG
(electroencephalogram) signals. For example in {c.f., [GWW*78] the detection and
classification of cardiac arrhythmias from data coming from ECG signals has been
[avorably reported.

Other noteworthy examples of change-point detection applications are the des.ign
of fault detection in a robotic system [WF90], and the processing of geophysical sig-
nals [Bas86)], where the jumps occurred as a consequence to signals traveling through
different geological levels. Another example along this line is the study of earthquake
produced ground motion to assist in the design of structures being built in seismic
areas (c.f., [PD90]).

Fault detection has also entered the area of adaptive control. Since classical
adaptive control theory is mainly suited to time invariant uncertain systems, or time
variant systems with very small rates of variation, it became natural to extend the
applicability of adaptive controllers to systems which present abruptly or slowly time-
variant change-points (c.f., [RS73]). This can be attained by using the information

given by a change-point estimator in the reshaping of the current control law.

For the most part, we shall not attempt to give a comprehensive review of all the
work done in the last 20 years in the area of change-point detection. Although the
literature of fault detection is not as extensive as in other fields in systems and control,

a variety of survey papers and books have already been devoted to this area. The
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reader is referred to the survey papers of [Wil76], [Mir80], [iseS1], [Bas$8], [Lom8Y),
and [Nik91]. There are also some important books written on the subject and these
include {BB86], and [Tel86).

Our goal here is to underline the general problem formulation, and highlight some
of its most essential features and diflicultics. The presentation should also serve
as a self-contained introduction to the topic, assisting readers unfamiliar with the

area in understanding the change-point detection method which will be developed in

subscquent sections.

5.2 First Elementary Detection Methods

In the early stages of the devclopment of change-point detection procedures, a
naive approach was used to tackle the problem. It consislted of using unprocessed
measured signals, say y(t), until they surpassed some a-priori defined fixed thresh-
old A. This simply meant that the following trivial scheme was used:

< h noalarm;
y(t) = {

> h alarm on,
which has been generally known as limit checking. Surprisingly enough, this Lype of
procedure was still in use by parts of the Space Shuttle Columbia’s monitoring system
when it exploded in mid-air (c.f., [Cik86]).

Another earlier failure detection method which was implemented in machiner-
ies, consisted of processing the information given by exact hardware copies of the
monitored parts of a plant. This method is called hardware redundancy. A faulty
component will produce a different signal from that of the others and thus can be dis-

cerned using a simple memoryless voting system. For example, let (), (v2), and (v3)

be the signals produced by three identical system hardware components and consider
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for some ¢ > 0 the function

r(t) = Ly -w@pe T In@-w@be + Hun-nin>o

where 4 denotes the indicator function of the sct A. Then

< 2 no alarm;
r(l) =
> 2 alarm on.

Under the cvent {r(t) = 2}, discrete decision logic can be used to discard the faulty
component. A more involved voting system approach can be found in [Bro74]. An
intrinsic drawback of voling systems is that they have difficulties detecting what are
usually relerred to in the literature as solt faults, for instance small shifts in bias.
In [FG82), a procedure is given for the estimation of sudden jumps in bias vectors for
linear systems,

The hardware redundancy FDI procedure is still being used due to its simplicity
and to the {act that FDI methods have not yet matured to the level of providing
robust fault diagnosis schemes good enough to make voting systems obsolete. The
drawbacks of hardware redundancy are evident: cost, and depending on the situation,
also weight and physical space. Moreover, I'DI schemes in voting systems will have
an unacceptable long-term reliability. This is due to the fact that the component
copies used by a voting system will all wear at similar rates. (Note that wearing is
the main cause of hardware system’s faults.)

Consider a fault detection scheme which can detect a system fault based on the
signal produced l?y only one component. Manufacturing better hardware components
will then add to the overall system reliability but in general could be either too costly
or sometimes not possible to realize. As was just recently mentioned, using hardware
redundancy will not significantly improve the long-term reliability. Any consider-
able long-term improvement in the scheme’s reliability should then be obtained by
ameliorating the software (i.e. the failure detection algorithms) rather than the hard-

ware. An aeronautic example given in [DDDW77] shows that the number of hardware
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backup components can cven be effectively reduced, thus lowering the overall design
cost,

The intrinsic drawbacks found in the first available change-point detection tech-
niques, plus greater demands on safely, reliability and performance demaunded more
elaborate fatlure detection methods. The sophisticated and modern procedures orig-
inated in studies like the ones given in [Pagb4], and [Shi6l] in the beginning of the
60’s, coinciding with the advent and rapid spread of computer technology. This coin-
cidence was by no means accidental since the availability of digital computers opened
a real possibility for the creation of sophisticated supervision systems. Another fac-
tor that contributed to the growih of this field was the concurrent progress Lhat was

taking place in control systems and system identification.

5.3 Change-Point Detection for Signals

In this section we will focus our attention on stalistical methods for solving
change-point problems in a stochastic [ramework. We shall mainly be concerned

with the foundations of this problem.

5.3.1 The Off-Line Mathematical Formulation

Let us start with a formal mathematical statement of the problem. Let yy,...,yn
be a set of data, and M a class of models, then the off-line change-poini detection

problem is defined as the issue of choosing between the hypothesis

Ho: v1,...,y~ generated by Mg € M,

and

Vi,+++3 ¥re=1, generated by My € M;
Hy: 3 1<7"< N such that { b i ° '

Yroyeooy¥N,  Eeneraled by My € M,
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Hy represents the null hypothesis of no change-point in the data yV¥ and H,, the
alternative hypothesis indicating the presence of a change-point in the data sequence
y"¥. The assumplion that 7* is not known is the distinguishing feature of the change-
point problem. If 7* is known the result is the standard two-sample statistical problem
(c.f., [Tay68]) Other related questions are the estimation of the change-point and the
concurrent estimation of the models themselves.

Change-point detection problems for signals are always stated or transformed into
a stochastic framework, meaning that the data is assumed to be a realization of a
stochastic process, and the models are explicitly or implicitly described by probability
distributions. Thus, for example, the models can correspond to conditional densities
of the form

M = {P(yay",0);0 € Dy}

As can be clearly scen from the problem statement, change-point detection falls
into the more general topic of model selection. To choose between the multiple
models implicitly given by hypothesis Hy and Hj, is to decide which of these model
descriptions best represents the set of data y¥. This represents one of the intrinsic
dificulties of change-point detection problems since general model selection theories
are only recently achieving adequate success (c.f., [Ris89]).

We are not aware of any work in the field of parametric failure detection in which
the selection of the model class M was itself one of the central issues. The departing
point has been the a-priori assumption that the model class M was the “true” model
class representing the data. Therefore, no available technique had any provision for
the comparison of different model classes M in its change-point detection formula-
tion. We shall address this issue in Section 5.5 based on the ideas and tools provided
by the stochastic complexity theory. Let us only mention now that under this frame-
work the multitude of possible models represented by Hy and H; correspond to only
tentalive explanations of the data. Thus the change-point will explicitly depend on

/i
1/
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the particular model class, say M, chosen. Ilowever, for the sake of simplicity, in the
introductory exposition that follows let us assume that the data is actually generated
according to one of the models in the class specified in the hypothesis Hy and 1.
To further simplify the discussion we will assume that the data exhibits only one
change-point, and that without loss of gencrality Mg = M§. Clearly, there is no loss
of generality in imposing the first assumption if the change-point detection problem

is to be solved on-line.

5.3.2 Change-Point Detection and Model Complexity

The complexity of the change-point detection problem depends above all on the
assumption made about the model class M. It can be a parametric or a nonparametric
model class. In the nonparametric framework, we can mention the work of [BJGS] in
which tests for a shift in the level of a stochastic process were developed, and [Pic85)
for detecting a change in the spectrum of a time scries. (Sce also [Pel79] and [DP86).)
As an example of a non-parametric change-point detection metheod, let us present the

Kolmogorov-Smirnov test defined by the statistic

Sy") = sup [Fi(z) — Fn-j(2)|

where
. 1 . 1 ¥
Fi@)==) Iygz  Frn-j(z)= N7 2 fyige
J =1 — )izt
are empirical distributions. Then the hypothesis of change II; is chasen if there is a
k € [1, N] such that

S(yM) >k,
where the threshold & is set so as to guarantee a fixed false alarm probability. A

localized version of the Kolmogorov-Smirnov test can be found in [DW77]. Recent

works in the area of nonparametric fault detection include [Bha87) and [Car8g).
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In this dissertation, we will only look at the parametric case which is where the
bulk of the research was done. As a result, it is more appropriate to describe the
model class M as M(0), where the parameter 0 is in a domain D* C R¥, k the
dimension of the parametric model. Similarly, models My and M; will be denoted
by Mg, and My, respectively. In Sections 5.3.3, 5.3.7, and 5.3.8 we will discuss the
issuc of change-point detection and the complexity of the models used in situations

of increasing complexity.

5.3.3 Change-Point Detection with Known Models

Among parametric change-point detection problems there are varying degrees of
complexity. The simplest detection problem is realized when the models Mg, and My,
are complelely known in advance. This results from the fact that the only unknown
is the change-point 7*, thus limiting the selection to a finite set of possible models.
Not surprisingly, all the work on change-point detection within the first decade of
serious research in the area was carried out under this hypothesis. As unrealistic as
this assumption may be, that rescarch—as will be shown later when describing the
work of Shirayev—Ilaid many of the main foundations on how a proper change-point

detection problem should be stated.

Let us show, through a simple example, how this simplified change-point problem
is solved using one of the best known change-point detection methods: the likelihood
ratio approach. Assume that the data yV is a realization of an i.i.d. sequence of
random variables with densities f(-,00) and f(-,0;) before and after the change re-
spectively. For instance, 8y and 0; might represent two different known means. Let
us define the likelihood ratio between the hypothesis Hg and H; at 1 <7 < N by

H J(¥n,01)

Ly
Ho/H, (T n=7 f(Yng 00)
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Then, the likelihood ratio test, which provides an off-line solution, to the change-point

detection problem is given by
mimﬁl'lall'll(f) 2>2h>0, (5.1)

for some properly set threshold k. If incquality (5.1) is satisfied for sowme v € [1, N],
then the data is said to contain a change-point. Morcover, that particular value of
T represents the estimate of 7°. This test enjoys some of the asymptotic optimality
properties established by [Lor71] which will be described in Section 5.3.6.

Notice that even in this simple formulation the change-point detection problem is
a multiple hypothesis testing problem. This is so since {or cach tentative 7 we have
a different hypothesis H,. As a consequence, the change-poinl problem is a diflicult
problem to solve, since uniformly most powerful tests do notl exist (see Lhe discussion
on page 106). Finally, for a multivariate normal mean likelilhiood ratio test version of

the change-point problem, the reader is referred to [SW86].

5.3.4 On-Line Versus Off-Line Procedures

There are two general classes of change-point detection formulations: the ofl-
line or a-posteriori change-point detection, and the on-line, sequential, or sometimes
referred to as the quickest change-point detection problem. In the off-line formulation,
which was presented in Section 5.3:1, a finite set of data is assumed to be given a-priori
and the problem is to decide whether or not it contains a change-point. If it docs
then the scheme should estimate its time-location. Under this set up the generalized
likelihood ratio approach is considered to be one of the most powerful mecthods of
change-point detection (c.f., [Bas88]). Note that in the a-posteriori change-point
detection problem it is possible to have multiple change-points in a given dala sect.

Under this situation special care must be taken to solve the problem (c.f., [Mac74),
and [Fed75]).
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Note that the ofl-line set-up is in a sense simpler since one could in principle
scarch for a very large number of, for example, possible parameters §;. Thus, the
non-cxistence of time-constraints would avoid the need for more clever methods. Nev-
crtheless, such scarches could be computationally expensive up to the point of not
been realistically implementable.

The on-line set-up has reccived a great deal of attention in the literature, the first
picce of work dating back to [Paghd]. Under this set-up one does not have to worry
about multiple change-points since the decision of change versus no-change has to be
performed at the arrival of each new observation and its decision performed before the
arrival of the next one. Another point that has to be taken into consideration is the
very little time available between samples which excludes the possibility of intensive
search procedurecs.

An cxample of an on-line implementation of the likelihood ratio test based on the
statistic (5.1) is provided by the well-known and very much used cusum (cumulative
sum) stopping rules, first introduced by [Pag54], of which a possible form of the
stopping time is giving by

T
T= min{r >0;5(r) = ngl Jax AgH,(T) 2 h} ) (5.2)
where
Aytym, (7) = log Lyg, 1, (7)-
It is important to note that stopping rule (5.2) admits the recursive computation

S(r) = AHo/H;(T) ~ min AHo/H;(n)' (5.3)

1€<ngr
Another very important consideration when choosing among different detection
rules is the efficiency associated with each statistic. For instance, the optimal test

could be too computationally expensive. Thus a suboptimal rule might be preferred,

especially when on-line implementations are needed.
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In this thesis, we are particularly interested in providing on-line solutions to the
change-point detection problem. However, the off-line formulation will be extensively

used for the theoretical analysis of the chane-point scheme.

5.3.5 Bayesian Versus Non-Bayesian Formulations

Depending on how researchers treat the change-point time, we could find two
formulations for the change-point detection problem: the Bayesian and the uon-
Bayesian set-up. In the former set-up, the change-point time is assumed to follow
some a-priori given density (c.f., [Bat62], [Gar69], [Smi75], and [Shi78]). Shiryacv’s
work on Bayesian change-point detection will be briefly presented in the next section.

A common probability model for the change-point 7 is given by
P(r =0) = py, P(r > n|r 2 1) = exp{—An), (5.4)

for some known pp and A constants.

In the non-Bayesian set-up, the change-point + = 7* is assumed to be totally
unknown. We would follow the non-Bayesian approach since in most applications
it is not realistic and rather impossible to consider an a-priori distribution for the

change-point time.

5.3.6 Change-Point Detection and Optimality

An important issue in change-point detection problems is to provide solutions
which will exhibit some form of optimality. The first proper notion of optimality in
an on-line framework is found in the pioneer work of Shirayev (c.f., [Shi6l], [ShiG3],
and [Shi78]). Due to its importance and impact on the ficld of change-point detection
we shall provide a short summary of the mentioned papers.

The articles address the on-line change-point detection problem for a sequence of

i.i.d. random variables whose distributions are known before and after the change,
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and where the change-point has an a-priori geometrical distribution. The aim is to
find a stopping time which will consequently help solve the change-point problem in
the quickest possible way.

Consider then the probability space (2, F,P) and a filtration Fy, N = 0. Define
the stopping times T' as the class of functionals I' such that for each T' we have
{T < N} € Fy € F. Let 7 be a random variable defined in (2, F,P) which
represents the a-priori distribution of the change-point. In this framework we write
7* = 7(w}. (The distribution of 7 used by Shirayev was (5.4).)

Now define the following risk function
pPT)=P(T <)+ cE(T-7|IT27)P(T>27), . (5.5)

where ¢ > 0 is some given constant.

Note that the risk function p(T’) is given in terms of two conflicting terms
Td=]E(T-T'ITZT.) and R_f =P(T<T-).

These are known respectively as the probability of false alarms and the detection
delay.
Due to the nccessary tradeoff between Ty and Ry, Shiryaev solved the optimization

problem among the subclass of stopping times I, C I such that
P(T<77) =g,

that is, [, is the set of stopping times with an a-priori fixed probability of false alarm.
The optimal stopping rule, T can then be obtained by solving
T* = arg minTy.
T€l,
Shiryaev then showed that the optimal detection rule for the case of the change in

drift of a process (y) generated by

yv = aliy_r) +en, (5.6)
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where a is a constant and (en) is a Gaussian process with independent increments,

and I{A} the indicator function of the set A, is
T =min{N; P(r* < N|Fn) > (1 —a)(1 = P(r~ = 0))},

which is the conditional probability distribution of the change-point time giving the

observations up to the present time until they surpass the level (1-a)(1— P(r* = 0)).

The definitions of T3 and Ry introduced by Shirayev are not the only possible
ones, However others found in the literature differ only slightly. For example, when

7" is totally unknown but fixed, the delay time is frequently defined as
Tq = maxB(T - r|IT > 7).

In the case of two fixed models Mg, and Mg, describing the dynamics before and
after the change respectively, T; and R; represent, in a sense, the behavior of the
change-point detection criterion with respect to the parametric values fy and 0,.
Now, let us define

LO)=ET(0), 0¢c Dy,

where L(0) is known in the literature as the average run length (ARL) function. The
purpose of introducing L(0) is to be able to cover other, in principle, possible values
of the parametric models. It is easy to see that L(fl) and L(#,) are directly relaied to
R; and Ty. Therefore since L(0) captures for 8y and 0, the properties of the change-
point detection algorithm as defined by Shirayev, L({#} gencralizes those propertics
for all the possible 8 € Dg. The function L(#) is the direct counterpart of the power
function in hypothesis testing (c.f., [Nik91]).

In an off-line set-up, the notion of optimality of a change-point problem is generally
formulated in the context of classical hypothesis testing. Let $(y") be a given statistic

and h a level to be chosen optimally as follows: Under the constraint

P(S("™) > ki) S @
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known as the level (representing the probability of opting for a change when a change-

point did not occur) maximize the power of the test, that is
P(S(y") > h|H),

(the probability of deciding on a change when a change did occur). Note that since
11, is actually a multiple hypothesis, a Uniformly Most Powerful (UMP?) test is looked
for. However as shown in [DP86), if the change-point is totally unknown then no UMP
test exists in a non asymptotic framework even under known models before and after
the change-point. Nevertheless, UMP tests can be recaptured in certain asymptotic
formulations. For example, for fixed models Mg and M;, and under the assumption
that
lim 7*/n =+, 0<y<l

N0
the likelihood ratio test is found to be optimal for a level and a power of exponential

type.

There seems to be a slight confusion in the literature about the meaning of opti-
mality of a change-point detection procedure. Shirayev defined it as the detection rule
or functional, among a general class of functionals, which minimizes a well-defined risk
function. On the other hand, many researchers have employed the term optimality
as the optimization of an a-priori given sufficient statistic or criteria (i.e., likelihood
ratio) with respect to the design parameters of the problem. Clearly, Shirayev’s ap-
proach is much more involved, and for complex change-point detection situations it
might be almost impossible to implement. That is why the other notion of optimality
has been more frequently used. However, researchers have failed to point-out this
difference.

The optimality notion to be used in this thesis is based on minimizing a statistic

characterized by the stochastic complexity of the data with respect to tentative models
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over a threshold and a fixed gain related to the estimation of those models. Let us
then state the general optimality definition for a change-point detection scheme in

line with our future use. Let us mention that this is the most widely used definition.

Definition 5.3.1 An on-line change-point test or detection rule is called optimal
with respect to the statistic chosen to solve the problem, if and only if for By =, @

an a-priori given constant, the delay time Ty is minimized over all possible detection

rules.

Other possible definitions of optimality are certainly used. For example one could fix
a value for Ty and minimize Ry.

In an on-line framework [Lor71] proved the optimality of the Page-Hinkley’s test
for an i.i.d. sequence of random variables with known distribution beforc and aller
the change. More precisely, the smallest possible delay time Ty was cstablished for
the Page-Hinkley’s test stopping time given in (5.3) when the rate of [alse alarms
R; — o0, and the threshold A = Ry. Also, the following interesting asymplolic

relation was obtained in the mentioned paper

Aim_Ta = O(log(R,)/1(0)),

where I(0) is Kullback’s information measure.

The work of [DP86] provides the asymptotic distribution of the test statistic and
the change-point time in a GLR framework.

The exact formulas relating B; and Ty with the threshold k for the sequential
detection of a change in mean for Bernoulli random walks and brownian motions
were established by [Bas81). For a brownian motion whose drift changes from jq # 0

to py and fixed dispersion o,

1 02 Ho
Rr= L (2 (oo (222) 1) -4),
"™ o (2#0 AT
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and we refer the reader to [Bas81] for the expression Ty since it is too cumbersome
to be included here.

Note that the computation of the delay time Ty and the probability of false alarms
Ry are closely linked to the distribution of the detection rule, or stopping time T'. The
exact or approximate computation of such distributions has been the prevailing focus
of the mathematical statistical literature that deals with the change-point problem.
Some of the first results in this direction were the asymptotic distributions of the
change-point cstimate and its associated Page-Hinkley test statistics (c.f., [Hin70])
for an i.i.d. sequence with a simple change in mean. Even for this simple case the
asymptotic distribution is not given in an explicit form but in terms of double Laplace
transforms.

One of the most complete works for exact distributions of test'statistics for change-
point changes is [JJS87]. The authors’ results are valid for the detection of a change
in an i.i.d. normally distributed sequence with known or unknown variance and
whose constant mean could experience only a single change. The intricate nature of
the distribution of the test statistics for this very simple case shows the difficulty of

finding them in more involved situations.

5.3.7 Change-Point Detection with Unknown Model Pa-

rameters

When the parametric dimension k& of the model class M(f) is known but the
parametric-values §y and 0, are not, the change-point detection problem becomes
substantially more intricate. Note that in this case the likelihood ratio test, commonly

known as the GLR (generalized likelihood ratio) is given by

rr;jn n}i.;a,xm;ml:Hn/H1 (M=2h>0 (5.7)
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Evidently, solving inequality (5.7) instead of (5.1) is 2 much more diflicult task since
the search is no longer finite. One possible simplification for this problem is obtained
by using some of the classical statistical estimation methods, for example the least
square or the maximum likelihood estimation schemes. In most change-point detec-
tion problems, 85 could be properly estimated in advance by onc of these estimation
methods, the reason being that the assumption of having sufficient data belore the
change-point, can in general be made. Thercfore, for theoretical purposes, one can
assume that 0y is given. As a result one does not usually have to consider the min-
imization in inequality (5.7). Moreover, let us mention that in some simple cases,
like when using model (5.6), the maximization can be reduced to a single one (c.f.,
[Bas8sg)).

In view of the above observation, the actual challenge arises when 0, is not known,
which is the most typical case found in applications. The difficulty in solving Lhis
problem stems from the fact that model and change-point cstimation have to be
performed concurrently. This represents one of the main challenges in change-point
detection problems. One attempt at resolving this issue {c.[., [BEGS81]) involves the

assumption of a lower bound, say A0, for the jump magnitude
0o — 0] 2 20 V¥ 60,0, € D*

and designing the test under the worst-case scenario, that is, considering a jump of
magnitude Af. A related approach along those lines is the so-called local asymptotic

method (e.g., [DP86]). In [DP86] the assumptions used is
Jim 105(n) — 03} =

with 7* — co. The authors claim that this assumption is useful when little is known
about the models after the change but one is nonetheless interested in som sort, of

worst case optimize solution.
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In what are called the local approaches to the change-point detection problem,
the central idea is to construct the statistic for change-point detection from the dom-
inant terms of the asymptotic expansion of the likelihood ratio. In many important
situations, like Gaussian AR or ARMA models, the expansion is possible and one can

then show that the random variable

i}
pr = z5AH, /M, (7)

is asymptotically (+ — oo) distributed, for small |0, — 0, , according to the following

laws

N(0,1(60)) for < 7%,
N(I(Ol)(ﬂl - 00), I(01)) fOI’ T 2 T

where I(0) is the Fisher information matrix.
Another approach which deals with the case of unknown 0, is based on the as-
sumption that this parameter could take only one value out of a finite set of a-prion

given values, that is to say
0y = {01, 02,...,07m < o0}

Methods based on this assumptions can be accomplished as simple extension to pre-
vious approaches since filters could be run in parallel for each of the fixed §; values.
A similar type of solution can also be applied if working under the assumption that
the model Mg, could only be among a finite number of completely defined models’
structures and values, not necessarily sharing all the same dimension for example.
All these fault detection problem formulations fall into what is known as MM (mul-
tiple model) approaches. These were extensively studied by [WJ76] among others. A
successful implementation was reported by [WES*80] in which the MM method was

applied to the detection of incidents on freeways.
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Recently, some investigations were carried out in which the only knowledge as-
sumed about &, is that it is an unknown coustaut, i.c. corresponding to a time-
invariant model (c.f., [Bas88] and [Nik91]). The method has been called the two-model
approach. However, it is mainly based on heuristic arguments and unforbunately no
theoretical backing has yet been provided. The method that we shall propose in
Section 5.5 partially resembles the two-modcl approach. Thus, our proposed scheme

could be viewed as a first step towards a solid foundation of the two-model scheme.

5.3.8 Change-Point Detection in Very Complex Situations

In some applications, the change-point 7*, instead of being modcled by a jump,
is better represented by a slowly time-variant change. An illustration could be given
by the depth of sleep monitoring applied to patients undergoing surgery. IL also
finds application in equipment maintenance by providing [ast detection of worn down
components (c.f., [PFC89]). For this particular case the time variation is very slow
so these types of faults are known, in the literature, as incipient faults.

A possible modeling strategy for this case is to use time variant parametric models
Mg, (n), Where 7 represents time. This formulation of the change-point problem has
not, to the best of our knowledge, been previously investigated. In this thesis we shall
propose a solution in which the parameters 0;(n) are assumed Lo be unknown.

We now arrive at the case where the parametric dimension & of the chosen model
class M(8) is unknown. This sort of formulation has never been tackled by rescarchers
in the field, and in this dissertation we shall provide some promising direclions for
solving this problem. More precisely, we will look at the issue of underparameteriza-
tion when detecting change-points.

The most difficult change-point detection situation is obtlained when the model

class M(0) is itself unknown. However, there can be no hope of solving the detection
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problem unless a model class, containing models which could satisfactorily describe
the main features of data after the change-point, is given a-priori. This is because,
in gencral, change-point detection algorithms would have to be implemented on-line.
This constitutes a fundamental constraint in the design of change-point detection
algorithms since, as a consequence of an on-line implementation, there would not be
cnough time to make any extensive model searches, Nevertheless, to search among
model classes ol excessive complexity might be fruitless since the data set after a
change-point is usually very small due to the frequent desire for promptness of de-
tcction. For this rcason, model classes that are too complex would do, in general,
poorer jobs than simple classes. Therefore, il at least some a-priori knowledge about
the dynamics after the change-point is available, it seems reasonable to presume that
a non-necessarily restrictive model class is given for the description of the data after
the change-point. Therefore we will henceforth assume, that a rnbdel class will be

given for the implementation of the detection algorithm.

5.4 Failure Detection for Dynamical Systems

In this section we shall mainly deal with the deterministic approaches that have
been proposed in the literature to solve fault detection problems. Since the basically
simple methods under this framework were dealt with in the introduction, we shall
concentrate our efforts on the class of elaborate FDI methods which were introduced
in the early 70's, The origin of this class of techniques was the dissertations of [Bea71]
and [Jon73). The main feature of theses methods, as opposed to the previously mare
prominent ones (see Section 5.2), is the use of an explicit mathematical model of
the system or subsystems to be monitored. There are now a number of similar and

improved methods based on those original dissertations and these will be described
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in what follows.
The basic idea of those schemes is a simple one. Let us assume the availability of
a “good” model M of, say, an SISO system P, and morcover let us assumie that the

system’s input {u) is available.

P

Im

._._.._>M

Figure 5.1: Model based FDI mcthod.

Then the diflerence output model process (y,) and the measurcd output signal {y,)
(see Figure 5.1) generates the residual process (ea) which if properly designed should
give an indication of a fault when it exceeds some given threshold. Based on this
notion a variety of more elaborate and efficient methods were developed. Thesc pro-
cedures are usually referred to as analytical redundancy methods, since they compare
true measurements with artificial ones provided by the model. (Recall that carlicr
methods were based on comparing signals given by redundant physical components.)
The most well known methods of FDI for dynamical systems arc: the parity
space, the detection filter, and the Kalman filter based approach. We will now discuss
the basic ideas of each one of them. We will try to take the mosl simple scenario
to illustrate each approach since our goal is simply to convey the general idea of
the methods, and not to give the full in depth design steps needed in more general
situations. Relerences will be provided that cover many of the more complex cases.
Before presenting the different FDI methods let us introduce some of the basic

aspects involved in the steps taken when modeling failures in dynamical systems.

B \.
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5.4.1 Modeling of Failures for Dynamical Systems

A very gencral and compact description of dynamic systems that are subjected
to changes in time is found in the survey paper of Frank [Fra90]. Here, we will follow
a. similar formulation for the description of the models.

The class of stochastic lincar dynamical models given by

Tnpt = Azy+ Bu,+ Bw, (5.8)
Yn = Czn+ Dup + Fu,. (5.9)

provides a very general model representation for the normal operations of systems.
As it is well known, A models the dynamics of the system, B and E the way the
actuator signal (u,) and system noise (w,) enter the system respectively, C the way
mcasurements of the system are taken, and D and F the way the reference input (un)
and noise (v,) affects the measurements (y,) respectively (c.f., [Kai80]).

Since listing all of the model dimensions in (5.8)-(5.9) would be cumbersome and
would not add to the understanding of the main ideas, let us just say that as usual
uppercase letters denote matrices and lowercase letters denote vectors of appropriate
dimension. Let us in general denote the i-th column of a matrix M by mf, and the
i-th component of a vector v by v*.

Let faully system configurations be described by the class of models given by

Tpy1 = Azp+ Bu,+ FBw, + Kf, (5.10)
Yn = Cz,+ Dup + Fu, + Gg,. (5.11)

The normal and faulty model configurations described by (5.8-5.9) and (5.14~
5.15) respeclively can represent a wide variety of non-faulty and faulty situations.
Let us illustrate this through some simple examples.

In a deterministic set-up the non-faulty model is frequently given by the state
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space equations

Tnpr = A:r,,+Bun (5.12)

In = Cu,, (5.13)

Typical faulty confligurations are given as follows: Yor a model with acluator and

sensor faults, we have

Tnty = Az, + Bu,+ K/, (5. 1)
yp = Cz,+ Ggn. (5.15)

For instance, if the matrix K = b and fi is a step functlion, we get a Lypical actuator
bias failure; if fi = —ul a the total breakdown of an actuator; if G = ¢' and gi a step
function we get a sensor bias; and if g} = —z! a dead sensor. Model (5.14)~(5.15) can
also incorporate changes in its free dynamics. For example, il f, = z,, the Lransition
matrix equals A + K.

We have discussed only a [ew types of fault situations. However, with these simple
examples, the reader should be able to model, in a similar fashion, numerous fault

situations.

Finally let us add an example in a stochastic framework. For instance, a nominal

model can be given by

Tnpl = Aﬂ:" + B‘un + wy (5.[6)
yn = Czpton (5.17)

where w, and v, are the process and sensor noise respectively. Some particular

examples of faulty system operation can be given by

Inyl = Amu + Bun 4wy, + fn (5-18)
Yn = Contvntin {5.19)
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where f, and g, are two noise processes which give in this case increased process
noise and added sensor noise, respectively.

In general, we can say that the term £wy, is used to model unknown inputs to the
open-loop system and to the actuators, whereas K f, is used to model faults in the
plant and in the actuator dynamics. The term F'v, basically models unknown inputs
lo the sensors, whercas G'g, models faults in the sensors.

A terminology employed {requently in the literature is to refer to the fault terms
like £, K, F, and G as signatures, and to the time functions wy,, fa, vn, and g, as
modes. Note that in general, the modes will be functions of 1.5, but we did not write
it explicitly for brevity of notation.

In the design of fault detection algorithms, one is interested in maximizing the sen-
sitivity of the detector to sensor malfunctions while assuring that remains insensitive

to disturbances and noise (c.[., [PFC89)).

5.4.2 The Parity Space Approach

Let us assume that the true system to be monitored is represented, in its non-

faulty operation, by the standard deterministic state space equations:

Tyl = Azn-l-Bu,.,, .'I:o=0 (520)
yn = Cuz, (5.21)

From s-pairs of ini)ut-output data {(y;,%), ¢ € [n — s,n]} and by simply recursively
solving equations (5.20) and (5.21) starting from time n — s, we can obtain the
following input-output-state relations
Yn—s Un-s
-M| i | =0z(n-s), (5.22)

Yn Un
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where matrix A is a Hankel matrix formed with the first s Markov parameters of
system (5.20)-(5.21)

-0 ;
CB 0 0

M=| CAB CB 0

| CA*'B ... CAB CB 10|

and the vector O is i}
C ]

CA

CA’
which coincides with the observability matrix of system (5.20)~(5.21) if s = dimz,
(c.f., [Kai80]). Note that (5.23) can be used to check for consistency of the data sct
{(y:,), 1 € [n — s,n]} with respect to the mathematical model (5.20-5.21). This
is so since under any deviation from the ideal situation—presence of disturbances,
modeling errors, noise, failures, etc.—(5.23) will cease to hold. Nole that in the idecal
case any of the scalar equations, which are extracted from the dynamic equalions and
are contained in (5.23), will suffice to check for consistency. However, the redundant
scalar equations in (5.23) can be exploited for FDI purposes when they deviate from
the ideal situation. Let us see how:

Define the parity space of order s as
P= {v;vT-O =0}.

Then one can define the residuals
Yn=s Up—s

, (5.23)
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and get the following situations:
{ =0 when system is operating under (5.20)-(5.21);
" #0 at the presence of a fault.

Clearly, in a rcal situation, r, should exceed a certain level belore signaling an alarm.
The space P can be then interpreted as the invariant unreachable manifold of vectors
of input-output data generated by the left hand side of (5.23). The frcedom thus
obtained for choosing the vectors v can be used to try to make each signal (r,)
sensitive Lo a specific type of failure.

In practice, modeling errors, disturbances, and noise have to be taken into ac-
count. However, in general, there is not enough freedom to satisfy all of the numerous
specifications. Thus some optimal solution based on the minimization of a certain

appropriate cost function must be employed.

5.4.3 The Kalman Filter Based Approach

Let us assume that the true system to be monitored is now represented by

Zoy1 = Az, + Bu, +w, (5.24)
yﬂ — Czﬂ + vﬂ (5.25)

The stochastic processes w, and v, are second order stationary and uncorrelated with
Ew, =LEv, =0, IEwkw}r = Réy;, and lEvkaT = Sbi;, where §; is the Kronecker
delta operator.

The most simple I'DI design, under this category of methods, is based on the
construction of one Kalman filter. Let Zpn_1 = (za|H}™?), that is, the orthogonal
projection of the state z, onto the Hilbert space H}~?, which is the space generated
by the random variables yo,...,%5-1. Then the Kalman filter corresponding to the

non-faulty model is given by

Eu+1|n = Ainln—l + -Kk(yk - Caﬂ]n-l): EO]—] =0, (5'26)
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where K, is the Kalman filter gain calculated by selving the well-known Riceati
equation (c.f., [Cai88]}).
Now one can compute the difference between the measured output and the esti-

mated output to generate the residual process
€n =UYn— Can]n—h

and use it as a basis for fault detection. Under the non-fault operation the residual
corresponds to the innovation process which is Gaussian while noise with known
variance. If a fault occurs these convenient propertics will be lost, and thus statistical
tests for a change in the probability distribution of the residuals can be used. Tor
example, in some particular situations a change in mean test will suffice to detect a
change from the normal operation (c.f., [MP71]).

A well-known approach, which is based on the use of a single Kalman filler, is lo
apply the GLR test to this particular case. {Sce for example the article of Willsky
in [BB86].) It is also based on computing the innovations based on a Kalman filter
designed under a non-faulty operation. Since different types of faults will be rellected
in a different manner onto the innovations, the GLR actually computes the likelihood
of events by calculating the correlations of the residuals with certain abrupt change
signatures which are related to the dynamic profile of each change.

A drawback of the methods based on one Kalman filter is that parametric changes
cannot be accounted for. In order to generalize these kinds of methods to more
complex fault situations, a bank of Kalman filters is used.

Suppose that in the time interval [1, N], an unknown number of change-points oc-
curred, and that every change-point is represented by a jump to a model M; belonging
to a class of models M £ {Myi € [1,],] < 00}. A method has been proposed Lo
solve this multiple change-point problem using a bank of Kalman filters. In order to

account for any possible structural changes at each point in time, a growing bank of
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Kalman filters are employed. That is, at each time n, I Kalman filters are started
in parallel in order to asscss each possible type of change. The method is based on

recursively computing the conditional probability densities

P(Znlys -y Yni Mi), (5.27)

for each possible model M; € M. The densities (5.27) can be computed via the
innovation processes of an exponentially growing bank of Kalman filters. Under the
assumption that zo, (wn), and (v,) are jointly Gaussian with IEw, = [Ev, = 0, the

Kalman filters give the conditional densities
N(Enht—h Vk)v Vk =k (3k - anln—l)(xk == inlﬂ.—l):r

of the state process (z,) for each hypothetical model M; (c.f., [Cai88]). It can be
casily seen that the conditional densities given by the Kalman filters form the bulk
of the computations of the conditional probabilities (5.27).

Under the assumption that only one change-point needs to be detected—meaning
that in practice the change-points occur at ample respective distances in time—the
bank of Kalman filters will grow linearly in time. This bank is related to all possible
blended models constructed as follows: a non-faulty model for n € [0, k), and a faulty
model for n € [k, N]. Since the faulty model could be any of the possible ! fault-
models, one gets that the total number of possible blended models are IN — 1 + 1.
Therefore, under the assumption of a single change-point, the method is simplified
considerably.

One of the main drawbacks of the above procedures is that the classical Kalman
filter has infinite memory, and thus will respond too slowly to any abrupt change in
the dynamics of the system if it happens much beyond the time constant of the filter.
Numerous modifications are possible to overcome this problem. For example we could

mention the exponential age-weighting of data, and limited memory filters, some of
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which fix the filter gain. However, to the best of our knowledge, all the techniques
for improving the response of Kalman filters which are applied to the detection of
abrupt changes, are ad-hoc, in that they are derived only from practical experience.
Unfortunately, no theoretical analysis for the possible increase of FDI petformance
has been done.

Note that in all these methods Kalman filters are used to gencrate state estimates
from incorrect models, models which might deviate considerably from the hypothetical
model for which the Kalman filter was originally designed. No theorctical work has
been performed to analyse possible filter instability and degraded performance. An
informal discussion of this issue can be found in the paper of Willsky [BBS6)].

Another important point is that the Kalman filters are constructed on the basis
of an exact knowledge of system models. Again no robustness analysis accounting for

model uncertainty has yet been incorporated in this class of FDI methods.

5.4.4 The Detection Filter Approach

The detection filter approach has normally been carried out for a continuous-time
LTI. In order to maintain the homogeneity of this survey we will present this method
for discrete-time LTI systems.

Let us assume that the true system to be monitored is again given by (5.20-5.21).

Then for FDI purposes we design the full-order observer
:‘En-{-l = (A - HC)E,; -+ Buu, Ip — 0 (528)
o = CZy. (5.29)

Now, define the residuals as

Tp =yp — CZ,.

Then the idea is to choose the matrix H such that, under the nominal model, the
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residual r, decays to zero, while under the faulty model, r, increases in such a way
as to reflect the fault in a unique and appreciable way.

Now, let us define the error process as
€y = Ty — T
Then combining (5.20) and (5.28)), we get the following difference equation
€ngpl = (A - IIC)E,, - Lfn.H. (530‘)
It is well-known that the solution of (5.30) is given by
n
e = (A= HC) e+ LS (A= HC) fis1. (5.31)
k=1
We sce from (5.31) that the first requirement needed to be imposed on the matrix H
is that A — HC must be stable. This in turn will satisfy the first requirement for 7y,
which is limp=. 7 ~— 0 under the nominal model.
Now assume that n is large enough so that the first term in (5.30) can be neglected,

and moreover assume that only the #*® actuator fault is affecting the operation of the

system. Then (5.30) can be simplified as

&=Ly (A~ HC)Y i, (5.32)
k=1

Now assume that one can find a matrix H such that the subspaces
$;=CR[; LA-HC) ... L{A-HC)*,

are mutually independent. (Here R[D] denotes the range of the matrix D.)
If a matrix H satis{ying the above two conditions exists, then the FDI problem is

solved by monitoring the signals

U:'.l = (‘-"NIS,‘),
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where (+|S) denotes projection onto the subspace S, that is
; [=0 when system is operating under (5.20)-(5.21) ;
{ # 0 at the presence of a fault.

In practical situations a threshold has to be used before selting an alarm signal.

Note that the effect of the fault on the residuals »i depends not on the Lime
functions f! but on the signatures l;. Therefore this method has the advantage of
only needing knowledge of the direction, that is the signature, in which the fault
affects the system. We stress that this is the main advantage of this mecthod as
opposed to other FDI techniques.

The main drawback is that up to now no robustness analysis has been performed.
Therefore the method requires precise modeling if salisfactory resulls are to be ex-

pected.

5.5 Predictive Stochastic Complexity Applied to
Change-Point Detection for ARMA Systems

In this section, we shall present a change-point detection method for ARMA
systems under the assumption that they have a slow and non-decaying drift after
the change occurs. Also the abrupt jump parameter case, and change-point detection
with undermodeling will be considered. The general detection scheme to be developed
is inspired by the stochastic complexity theory. A salient feature is that the resulting
change-point detection algorithm will ultimately be expressed in terms of fairly simple
recursive equations. Some results on the analysis of the scheme are obtained, showing
that the method is amenable to theoretical analysis. Morecover, simulations show that
the approach exhibits surprisingly good detection capabilities. Some of these results

can be found in [BG90], {GB91], and [BG92a).
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5.5.1 The Mathematical Model

We shall now specify the modeling conditions to be imposed on the change-point
detection problem, which is divided into two parts. The first part corresponds to the
time belore the change-point, where the system is considered to be time invariant.
The sccond part is valid for the time after the change-point, where the system is
considered time varying. In contrast to the time invariant system, we will see that
the description of the time variant system is not a standard one.

We now describe the dynamics before the change-point. Let (y,) for 0 € n <
T* < 09, be the output of an ARMA(p*, ¢*) system generated by the equation

A-y = O-C, (5.33)

where (e,) is the input process. The values of e, and y, for n < 0 are assumed to
be 0. (Recall that 7* is the actual location of the change-point.)

The time-invariant ARMA(p", ¢"} system given by (5.33) satisfies Conditions 3.1.1
and 3.1.2.

The dynamics after the change-point is described by the time varying ARMA(p", ¢%)
system
(A2)n=(Cre)n, T Sn<N<oo (5.34)
The interpretation of the left hand side of (5.34) is as follows: the difference operator
A> acts on the process (y) and the evaluation is done at time n to get y,. The right
hand side is interpreted similarly.

We impose on the so-called “frozen time system” (frozen at time n) described by
Ary=C’e, (5.35)
the following condition.

Condition 5.5.1 The frozen time system given by (5.95) satisfies Condition 8.1.1
foreachn, 7* <n<N.
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Let 8 denote the k = p-+ g-dimensional vector composed of the coeflicients of the

polynomials A}, and C;.

Condition 5.5.2 We have sup,5,« |05y — Ol = S < oo, where S is an upper bound
for the rate of change of the lime varying ARMA(p*,q%), and where |- | denoles the

Euclidean norm.

We denote by M. the model class described by appending in time the models
given by (5.33) and (5.34).

We say that a system is slowly time varying il Condition 5.5.2 holds. (A more
general definition and a theory of slowly time varying systems is given in [ZW91].)
This definition of time varying systems is particularly uselul for identificalion pur-
poses. For example, it is well-known that if S is sufliciently small then the ARMA
system described by (5.35) is stable (also inverse stable).

We would like to point out a certain drawback with the slowly time varying defini-
tion expressed by Condition 5.5.2. The drawback is that this definition does not scem
to capture the “true rate of change” of the system in all cascs. In the following three
simple examples we will come across systems which are rapidly changing according to
our definition but very slowly changing according to the definition given in [ZW91].

The first example is given by considering the case where 0;, = 0 for all n except
for n = 7, and where § = 0 — 0~ is large. The next illustration is obtained by Lle

time varying ARMA system described by the equation

¥n = QplYn-1 + €n, (536)

where the parafrfeter a, typically alternates between only two values, say o) and ay,
and § = |ay — | is large. The drawback of our slowly time variant definition is even

more apparent, in continuous-time, 2s we shall see by the final example which follows.
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Suppose we have a continuous-time process modeled by a parametric model whose
true parameclier is given by

0; = 0" + esin{wt), (5.37)
where ew is large but € is small. Then S = ew is large, but there is no reason to
expect that the time variant estimation method will track 8;.

The difficulty in defining the proper rate of change did not emerge in earlier
change-point delection publications hecause it was generally assumed that the changes
in the paramecters were instantancous, i.e, the jump parameter case. In spite of
these shortcomings, our definition has the advantage that the standard identifica-
tion procedures applied to this type of time varying ARMA model are theoretically
tractable. A [airly complete analysis of this kind of time varying system is available

in (c.f., [Ger89(]).

5.5.2 The Encoding Procedure

In this section we will encode the data process (y.) by means of a predictive
cncoding procedure. This procedure makes extensive use of the off-line and on-line
prediction error estimation methods introduced in Sections 3.1, and 3.2 respectively.

Let us describe the predictive encoding procedure. Let §,(0) denote the one-step
ahead prediction of y,, using 0 € D as the system parameter vector. It is easy to see
that the prediction error is €,(#). Now, let 7, with 0 < 7 € N, represent a possible
location for the change-point. In order to get “good” prediction, it is clear that we
should use the estimators 5:_1 for0<n<r,and 5:_1 forr<n<N,at timen. It
then follows that the optimal predictive code length for y, with respect to the model
M;, 7 fixed, with the off-line time invariant and small gain prediction error method
is given by
(en(af_l))z , ifn<T
(en(f»” 1))2 , ifn>r.

=

C(yn,7) = (5.38)
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Thus we associate to the obscrvation y, the code length C(yn,7). Note that the
prediction errors e"(ﬁn"_l) and cn(ﬁnk_l) are, in the terminology of [Ris86], “honest”,
i.e. to predict y, only data preceding the moment n is used.

A weak point about the codelengths C(y,, 7) is that they are obtained using a
computationally intensive procedure. Namely, in order to obiain the prediction errors
e“(ﬁno_l), and en(a:_l) we have to start the computation at time 0 for cach time n,
Moreover, we also have to compute at time n — 1 prediction error processes from time
0 until time n — 1, for cach iteration along the scarch for the cstimators 6:_1, and
6“"_1. Since the ultimate objective is to obtain a change-point detection method that
will be computable in real timc, we nerd to modify the encoding procndure so as to
make it on-line. It can be obtained by :uoking at recursive estimation melitods. The
off-line encoding procedure will nonetheless prove very useful in the analysis of the
change-point detection method.

Let us now state the on-line predictive encoding procedure for the data process
(yn). As in the off-line case, the optimal predictive code length for y, with respect
to the model M., 7 fixed, with respect to the on-line time invariant and small gain

prediction error method is given

032 .

€ ifn <7

Clym,7) = {( " ‘ (5.39)
(E;\‘)Z, if T 2 T.

The codelengths for the process (yn) could be computed by running two recursive

prediction error algorithms in parallel for the whole time interval [1, N].

5.5.3 Change-Point Detection as Model Selection

According to the i:;revious section, for each possible 7, where 1 <7 < N, we have

"~ a model class M, with the help of which the sequence (y,.) is encoded. Let us define
":" '

!
Tt
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the associated total codeleagth for M, by

N =1 N
Sn(r) = 2. Clym) = 2len)* + 2(en)”

The use of the word codelength is justified since in the Gaussian case, (i.e., when (e,)
is Gaussian while noise), Sy(r) is identical to what Rissanen defined as predictive
stochastic complexitly.

Observe that Sy(7) serves as a basis for comparison between different model
classes, i.e. different M,’s. According to the stochastic complexity theory, the best
model class description of the data process (y,), is the one whose associated total
codelength is minimum. This model class implicitly gives an estimate for the change-
point, showing that the change-point detection method has been reduced to a model
sclection problem.

Set

my = lgz'iSnN Sn(7),

then the estimator of 7* is defined by
T= {T; Sn(r) = mN}.
Let us denote the increments of Sy(7) with respect to T by
u, = Sy(r + 1) — Sn(7).
It is straightforward to sce that
ur = (&) = (&),

and hence the increments of Sy(r) with respect to 7 are independent of N. If we

now rewrite Sy(r) as

Su(r) = Su(1) + 2 (Sw(E+1) = Sw(B) = Sn() + e, (640
=1 k=1
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then the minimization of Sn(7) with respect to T is equivalent to the minimization

of
=1
S'(r) = .
k=1
since Sy(1) is constant. With this obscrvation, a formal correspondence between
cumulative sum methods and our stochastic complexity based method is established.
Now let N represent the present time and say that we wish to signal the preseuce
of a change-point as quick as possible as dala becomes available Lo us sequentially.
It is important to observe that there is an intrinsic difference between finding the
minimum of Sy(7) when all the data sequence is given and signaling this minimum

on-line. For the on-line alarm signal of the change-point we use the so-called Page-

Hinkley test (c.f., [Hin70]). Let

A : :
m'y = l‘r_gnrlanS (),

and
d{(N)= S'(N) —m'n. (5.41)
Then define the stopping time, or alarm time, as

T =min{N > 0;d(N) > h >0}, (5.12)

where k is some constant level. The need to use a threshold £ is, in a sense, what makes
the off-line and the on-line change-point detection problems intrinsically different.
Observe that at present time N, only two prediction crrors have to be computed in
order to know whether or not we have an alarm. Note that for

F = max {1'; S'r(r) = m’T}.

we have T = 7,
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5.5.4 Analysis of the Change-Point Detection Method

In the pioncering work of [Shi63], the first statements about desirable properties of
on-line change-point detection methods for i.i.d. random variables were given. Those
were the minimization of the rate of false alarms and the delay time, i.e. the time
elapsed between the change-point and the alarm signal. Since these arc conflicting
requirements, and thus cannot be minimized simultancously, he proposed to fix the
probability of false alarms and find, among a very general class of statistics, the one
that minimizes the delay time. In our case the statistic for solving the change-point
detection problem for ARMA systems is at first obtained without consideration for
these requirements. What we do instead is to construct the change-point statistic
based primarily on stochastic complexity ideas. Then we analyze the effect of param-
cters, such as the threshold & and the fixed gain A, on the false alarm rate and the
delay time. Although a complete analysis of the change-point detection method still
needs further research, we nevertheless have some very encouraging results.

As a first step in the analysis we need to replace the recursive prediction error
process (€}) with its off-line version (e,,(b‘n"_l)), and consider the off-line associated
total codelength Sn(r) £ TN, C(yn, 7). Now, define the increments of Sy{r) with
respect to T by

T, = Sn(7 + 1) = Sn(7).

0

Then clearly %, = (67(5, I))2 - (67(5:‘_1))2, and hence the increments of Sy(7) are

independent of N. Similarly to the on-line case, we get that the minimization of

Sn(7) is equivalent to minimizing
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Theorem 5.5.1 ([Ger91a}) Undcr Conditions 8.1.1, 8.1.2, and under the assumnp-
tion of no-change, i.e. T < 1°, for any A > 0 the process @, is L-miring, and moreover
- + r
ET, = 4\% + 00 + 0(c),
Jor all T such that v < 7*, and with some 0 < ¢p < 1.

Theorem 5.5.2 ([Ger91b)) Under suitable conditions, and under the assumplion

of change, i.e. 7> T, we have

(€7) — €}

r

< Bir + 62r + 0(1), (5.43)

where (8;,) is L-mizing and such that 6, = Op(AV?), and (8;,) is a deterministic

process such that 8, = Op(S/X). Moreover, letting A = §%/® we get

E |(7) —e7

< O(SY?) + o(1).

Remark. With this choice of A = $2/3 the order of magnitude of the upper bound
of the tracking error in inequality (5.43) is minimized. We denote this choice of A by

Aopt-

Theorem 5.5.8 Under the conditions of Theorem 5.5.1, and the ussumplion thal

the change-point is a jump, i.c.

0, =

T

{01‘, ifr<r*
03, ifrzr.’
we have

B, = (02 — 0)" Wao(03,03) (02 = 0,) + O(A?) + o(1).

Proor. First note that

we= (@ - ) = (@7 - 2).
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A particular case of Theorem 5.5.2 is obtained by sctiing S =0, getting
E ()" - ) = 0() + o(1). (5.44)

Let us now compute IE ({2(03,07)])? — (e,)?). Based on [Ger88a] we can write

(005, 00))F = (€2(03,0))7 + 2¢3, (05, 03)2(05, 05) (05 — 05) +
T L} L
(05 = 07)7 (e, (03, 05)e- + €6,(03,05) (e6,(03,09)) ") (05 — 07),

to get

E (2005, 0) — (er)?) = (05 — 0 E &, (05, 05) (3,005, 05))" (05 - 05),
= (05 — 0;)"Waa(03,03)(03 — 05). (5.45)

Combining equations (5.44) and (5.45) we get
Eu, = (02 — 0,)TWoe(05,05)(02 — 0,) + O(N/?) + o(1).
which proves the claim. I
Using the previous theorems, the next corollary gives a rigorous theoretical justi-
fication for the change-point detection method in the case of an abrupt change-point.

Corollary 5.5.1 If A is small enough, end the effect of the “nonstationary initial

condilions” arc neglected, then
(a) Under the conditions of Theorem 5.5.1 we get
E(%Z;) = —a; <0 TS T, (5.46)
(b) Under the conditions of Theorem 5.5.8 we get

E(u,)=a; >0 T>T" (5.47)
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Now let us consider the problem of false alarms. For this purpose we shall work
under the assumption of no-change, i.e. N < r*. Let us rewrite the stopping time 7'
given by (5.42), in its off-line version and in a form more suitable to analysis. ‘That

is, let

N
1 =mm{N >0;l$;1€:N Z > h >0}.

=" k=m

Letting Uy = T — IE (%), we get T = Uy — a;. Now define
N
Unlar) =  max, Y Ur—ay. (5.48)
=7="" k=m
Then, to arrive at an expression for the false alarm rate, we observe that the frequency
of the event {U;v(al) > h}, is, say
1 N

Fl = N z I{U;q(ﬂ'l))h}

n=1
where Ig is the indicator funclion of the set B, and F rvepresenls an upper bound
for the frequency of false alarms. Since Un{e;) is an L-mixing process in a restricted

sense, we have by the law of large numbers

—1 & e
llmﬁgl{ﬁ;‘(“‘b"} S Ml (I{U—;.r(&:)>h}) =P (UN(QI) > h)

The next theorem shows that an upper bound for the probability of the sct
{U;v(al) > h} can actually be computed.

Theorem 5.5.4 If Uy is a zero-mean L-mizing process such thai Mo, (U) < 00

and T (U) < o0, then setling f = ayf (ZMW(U)FM(U)), and v = e1f3/2 we have
P (U;V(al) > h) < C—ﬂh
where ¢; = e”(1 —e™")"1.

Remark: Theorem 5.5.4 shows that with & large enough, the rate of false alarms

F) can be made as small as desired.
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Proor. (Thecorem 5.5.4} Using (5.48) we get that
N N o
P(Uym)>H) < TP (Z (T a)) > h) : (5.49)
m=1 k=m
Since (Uk) is a bounded, zero-mean L-mixing process we have by Theorem 2.4.5 with
ur = U and fi = B, that

]Ecxp( (ZU,,) —B2(N — m+1)) 1

k=m

with & = 2Me (U)'(U), for which

12 exp (ﬂ Z ( k — a.)) < e8P n=Pon )(N-m+1), (5.50)

k=m
Choosing 8 = a1/2« the right hand-side of (5.50) becomes exp (—%(N -m+ 1))
Now for the m-th term in the left hand side of 5.49 we get

P (fj (U - ) > h) =P (exp[ﬂ $ Ui — ) > expﬁhD

k=m k=m
o2
< exp (—Z-E(N—m+1)) ICa

by Markov’s inequality. Let v = & 8/2, then summation over m from 1 to NV gives

N
P (—U-;V(al) > h) < Y e (Nmm) gbh

m=1

< e l- e"’)'le'ﬁh
Setting ¢; = e~7(1 — e™")"! we get the claim of the theorem. I

The present form of the analysis is thus far not very practical since the process
(e,(O a_t? ))2 is obtained through a computationally intensive procedure as was
pointed out in the previous section. A similar deficiency was overcome in [Ger89a]
by using a strong approximation result which relates off-line and on-line estimators.
It is conjectured that a similar result holds for fixed gain estimators. For the time

being, however, we must be satisfied with the above results.
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The next aspect to be analyzed is the performance of our change-point detection
method as measured by the so called detection delay. That is, the time clapsed
between the change-point and the alarm time. More precisely, we would like to

analyze the probability
F,=P{T -7 <l >0}

For this matier, we need to understand the nature of the stochastic process T' — 7,
or equivalently the nature of the process F"r_.. ur. A first step in the vight direction
is provided by Theorem 5.5.2

What is actually left by the analysis is a lower bound for the tracking crror (¢y)* =
e% in terms of S. As was illustrated by the various examples given previously, our
definition for slowly time variant systems does not scem to capture the “true rate
of change”. It is therelore very difficult to obtain a lower bound for the tracking

error. Nevertheless, Theorem 5.5.2 scems to be an important step towards oblaining

an expression for the delay time.

5.5.5 Change-Point Detection and Undermodeling

One of the main goals of real-time change-point detection algorithms is Lo detect
change-points as quickly as possible. Hence, these algorithms should use the minimum
number of data samples after the change-point. As was shown in previous seclions,
change-point detection problems are particular types of model selection problems.
This connection implies that the issue of quickest detection translates nalurally to
the question of how to choose “good” models for systems when only few data are
available, It is intuitively clear that knowledge of only the parametric structure of
a “good” model of a complex system might be of little help when only a short data
sequence coming from this system is available. This is simply because of the fact thal

the effect of uncertainty about the parametric values of a complex structure might
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be much more undesirable than the uncertainty due to the undermodeling of this
system. Note that in change-point detection problems which occur in practice the
parametric values of the system after the change (and sometimes even the structure)
arc unknown. This makes it rcasonable to investigate whether undermodeling could
improve the performance of change-point detection algorithms. To the very best of
our knowledge, this issuc has not been previously investigated. In the present section
we shall give a partial theoretical justification that undermodeling could in principle
improve the effectivencss of change-point detection algorithms, We will also support
this claim via simulations in Section 5.6.

The recent results obtained in [Ger92a] provide us with important guidelines on
how to theoretically tackle the issue of undermodeling in change-point detection. We
shall consider here the specific problem of undermodeling of ARMA processes by using
the simpler AR model structure. Thus, we shall explore the possibility of using AR
models classes as the tentative descriptions of the data after the change-point, instead
of the more complex ARMA models—even though the data is actually generated by
an ARMA system.

Let (y) be the ARMA(p, ¢) process given by

Ay =Cre, (5.51)

satisfying Conditions 3.1.1 and 3.1.2. Now consider AR(k) model classes which fit
the data produced by (5.51). Let A* denote any stable k-th order polynomial with

constant term 1, and lei the k-th order predictor error process be defined as
e(A*) = AFy.
Then the optimal k-th order predictor error process is given by

4] <] R
e* = Ay, A= H},in]E' |£"‘(A")[2,‘
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and the effect of model uncertainty is quantified as the excess of mean-square predic-

tion error
p(k) = E(ey)’ — E(en)™.

1]
Since A* is generally not known in practice, let us apply the time invariant recursive
least square method to obtain the estimator sequence (;1,3'*) of A*. Then the effect

of parameter uncertainty is given by
m(A%) = B(§) - B(eh), & = (ANw)
N

Note that p(k) + m(4*) = E ((e'};")’ - (eN)z) is the excess of predictive stochaslic
complexity between the model class AR(k) and the ideal codelength that would be
obtained if the parameters of the ARMA(p, g) model were known withoul uncertainty.

In [Ger92a)] the following result was established

E (&4 - (en)?) = (o7 + o) 1+ (1) (5.52)

under some suitable conditions on k = k(N).

For change-point detection purposes, we would like to compare the difference of
predictive stochastic complexities which are obtained with the help of AR(%) and
ARMA(p, ) model classes. Let us then apply the time invariant PEM as described

in Section 3.2 to get the prediction error

) =0
(8re) = (i),

Then in [Ger89d] the [ollowing result was derived:

2

= ((c?\}P+Q)2 — (CN)z) = (fﬁ(p + q)) (1 -+ 0(1)) . (553)

Now combining (5.52) and (5.53) we get

E (77 - @) = (Fo+a-H- H0) @ro). 650
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This says that in principle it is possible to achicve a lower predictive stochastic com-
plexity with an AR{k) model class than with the original ARMA(p, ¢) model class

for small sample scts.

It is conjectured that a similar result also holds if we compute the predictive
stochastic complexitics relative to the recursive algorithms with small gain A. Namely,

that

B (P - () = (30 +0- = i) 1+00). (559

Therefore, for example, if p + ¢ > & and the contribution of the model uncertainty
p(k) is small enough so that o23(p + ¢ — k) — p(k) > 0, then the encoding using the
AR(k) model class gives shorler codelength than the one obtained if we instead use
an ARMA(p, q) model class. In this case, we should then expect a decrease in the
probability of false alarms.

In the coming simulation we shall show how the change-point detection perfor-

mance is actually improved using the just described undermodeling ideas.

5.6 Change-Point Detection Simulations

What follows are a sequence of simulations to illustrate the change-point detection
problem b means of the stochastic complexity approach which was presented in
previous sections. In Section 5.6.1 an example of the detection of a slowly time
variant change-point is presented, followed in Section 5.6.2 by illustrations of the
cffect that the fixed gain A has on the performance of tl;he change-point detection
algorithm. In Section 5.6.4 the issue of undermodeling in change-point detection will

be investigated. Lastly, in Section 5.6.5, the stochastic complexity based change-point
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detection method will be compared to what could be thought of as a naive change-
point detection procedure obtained by simply monitoring the time variant parameter

estimates.

5.6.1 Slowly Time Variant Change-Point Simulation

Let data yV be genecrated by a computer program that simulates a time invari-
ant ARMA(p®, ¢*) system until a chosen change-point 7*, and a slowly time varying
ARMA(p®, ¢*) system after and including time 7°. More preciscly, we simulate a
model in the model class M;.. (This model class is described in Scction 5.5.1.) Ouly
a computer realization yV of the process y™ generated by M., plus the orders p* and
g* of the ARMA systems, are assumed to be given a-priori to the user for the imple-
mentation of the change-point detection algorithm. In Scction 5.6.4 we will illustrate
that the correct knowledge of the model orders alter the change-point is not crucial
and that undermodeling actually can improve the performance of the change-point
detection scheme.

The present simulation is run until N = Ny = 1000, and the change-point is
chosen at N = 7* = 500. The input process (e} is Gaussian whitle noise with mean {
and variance 1. Let p* = 2 and ¢" = 1, and consider the time invariant ARMA(2,1)
system as described in (3.15). Then (3.15) generates the process (y) until the change-
point T°.

From N = 7* until N = Ny, the process (y) is generated by the slowly time
varying ARMA(2,1) system described in (3.17). Note that the poles of this ARMA
system move linearly {rom an initial location .35 & .82: at N = 7° {0 a final location
35 £ .28{ at N = Ny, as illustrated in Figure 5.2.

In Figure 5.3 the realization of the process (y) used in the simulation is shown.
Note that the change in the dynamics of the data process yV is hardly noticeable.

As the data yV becomes available, we run two recursive prediction error algorithms
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Figure 5.2: The time history of the pole-zero locations of the slowly time variant model

M.
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Figure 5.3: The data process y¥ generated by model M,+ which has a slowly time
variant change-point at 7* = 500.
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in parallel for the on-line computation of the prediction errors ¢, and ¢. The fixed
gain A of the time varying prediction error algorithm is set Lo its A = A, value given
by Agpt = $3 = 0113. (Refer to the remark on Theorem 5.5.2.) The parameter
estimates &1'1\‘N, é;.Na and %:,N of ai v, a3y, and c] y are shown in Figures 3.2-3.1,
respectively.

The computations €%, and €} allow us to compute the detector d{N) given in
(5.41). (See Figure 5.4b.) This detector is used to turn an alarm on when it ex-
ceeds some given threshold A. The prediction errors also allow us to compute the
stochastic complexity M.« Sy, (7) for cach model class M, = 1,...,1000 (as defined
in (5.40)) once all the observations y¥ have been obtained, that is when N = N,

(See Figure 5.4a.)

ﬁ 1-11+] 38 —

> S

[ =
T . . N
(a) (b)

Figure 5.4: a) Predictive stochastic complexity with respect to model classes M;; b)
The on-line detector,

The off-line estimate of the change point 7* is 7 = 628, which corresponds to the
value of 7 which minimizes Sy, (7) in thcﬁ'intcrvél (0, Ny). The estimation crror of the

change-point is ‘then 7 — 77 = 128,
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h

Figure 5.5: The detection delay Ty = T — 7* as a function of the threshold A,

The behaviour of the deteclion delay Ty with respect to the threshold k is shown
in Figure 5.5. The values of & range from its minimum value which allows no false
alarms to occur in [0, 7"}, Lo its maximum value which acheives detection in the time

interval {7°, Ny].

We shall see that the delay time for the abrupt change-point case to be presented
in Section 5.6.3 is much smaller than the delay time of the slowly time variant change-
point just described for fixed k. This shows that the delay time, Ty = T — 7", is greatly
affected by the rate of change of the system $. That is, we should expect to obtain
smaller Ty with greater S. Therefore, the delay time and also the off-line change-
point detection estimate must be viewed relative to the change in magnitude of the

parameter vector in the time interval [7°, T']. (Refer to Figure 5.22 of Section 5.6.5.)
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5.6.2 Performance of the Change-Point Detection Algorithm

with Respect to the Fixed Gain \

We shall now repeat the simulation of Scction §.6.1 for different values of the
fixed gain A. The purpose is to study the cllect fixed gain on change-point detection
performance. Since we plan to use values of A as small as A, /10, we need to have
a larger value for the final time Ny, This is so since for A, /10 the time invariant
and time variant recursive prediction crror algorithms described in (3.13-3.14) will
coincide until time N = 10/A,p = 886. Thus, both algorithms would produce the
same prediclion errors until this particular time . Therefore let us set Ny = 4000
and 7* = 3500, with the rest of the parameters remaining at their previously assigned

values. In Figure 5.6 the realization of the process (y) is presented.

5 L) . L)
Pl m ‘ :
0 |
i
-5 ) L . N L
3200 3300 3400 3500 3600 3700 3800
N

ARMA process before change

e
BTE
'

g ARMA process after change

Figure 5.6: The data process yV generated by model M,. whick has a slowly time
variant chanpge-point at r* = 3500.

Figure 5.7 shows the behaviour of the stochastic complexitics and the detector

d(N). The change-point estimate is ¥ = 3567, and the estimation error 7 — 7° = (7.

W,
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Figure 5.7: a) Predictive stochastic complexity with respect to model classes M, b)
The on-line detector.

In Figure 5.8 we display the detector d(NV) for values of the fixed gain A ranging
from 10Agp: to Agpi/10.
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Figure 5.8: The on-line detector d(N) with different values of the fixed gain A.
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In order to make the comparison of the behaviour of the detectors d(N) {or dif-

ferent values of A more clear, we plot them together alter the change-point r* in
Figure 5.9 and Figure 5.10.

60 T r Y T r v
5O
401
=
St 30k
=
20}
{0
0 P . A . ﬂ
3500 3560 3600 3650 3700 3760 3800 3850 3900 3950 4000
N
20 L3 L] ¥ T Ll L] Li T L)
~
2 10t
B
0 Lt ! v AR ; PR VR
3500 3550 3600 3650 3700 3750 3800 3850 3300 3950 4000
N

Figure 5.9: The on-line detector d(N) for deercasing values of the fixed gain A
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[Figure 5.10: The on-line detector d(N) for increasing values of the fixed gain A,

In Figures 5.11 and 5.12 the detection delay Ty is plotted with respect to the
threshold h for the different values of A that are being considered. This is done so
as to best appreciate the varied performance of the change-point detection method
with respect to A. Notie that the best performance is obtained for A = Ay, which
shows that the a-priori chosen value of A was indeed a good choice. The beginning of
cach of these plots marks the minimum threshold h under which no false alarms are
obtained for the particular realization yV of y™ that we are looking at. Hence, for
values of % less than this minimum the change-point is not detected since for these

values of & we have " < 7",
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Figure 5.11: The detection delay Ty = 7' — r* as a function of the threshold k& for
decrecasing values of the fixed gain A.

Another observation that can be drawn from Figures 5.11 and 5.12 is that, the delay
time Ty is not drastically affected when values of A which differ from Ay, by about
100% are used. Moreover, for the values of A being considered which diller by more
than 100% from A, the change-point detection algorithm slill provides reasonable
performance with the exception of A < Agpi/4. This illustrales the robusiness ol the

change-point detection method with respect to the fixed gain A.
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Figure 5.12: The detection delay Ty = T — r* as a function of the threshold & for

incrensing values of the fixed gain A

5.6.3 Jump Change-Point Detection Simulation

The simulation in this section will differ from the one introduced in Section 5.6.1 in
that the change-point, instead ol being slowly time variant will be a jump. Therefore
the poles and the zero of the ARMA(2,1) system will jump from their initial condition
to their final condition as exhibited in Figure 5.13. The only other difference is that
the gain A is set to A = .02. The parameter estimates 2':'”, EQ,N, and E’I\‘N of ai v,
a; ny and ¢] y are shown in Figures 3.5-3.7, respectively.

In Figure 5.14 the realization of the process (y) with the abrupt change-point is
presented. Again note that the change in the dynamiés of the data process yV is
hardly noticcable. _

Figure 5.15 shows the behaviour of the predictive stochasitic complexities Sy, (7)

and the detector d(N). The off-line estimate of the change point 7 is 7 = 503, and
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Figure 5.13: Jump case: The initial and final pole-zero locations of the time variant ARMA(2,1)
system.
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Figure 5.14: The data process yV¥ generated by model M. which has an abrupt change-point at
T* = 500.
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Iigure 5.15: a) Predictive stochastic complexity with respect to model classes M, ; b) The on-line
detector.

thus the estimation crror of the change-point is only ¥ — 7 = 3.
The relationship between those thresholds A for which no false alarms occur, and

the detection delay Ty 1s depicted in Figure 5.16.
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5.6.4 Change-Point Detection and Undermodeling

Here, the issue of undermodeling in change-point detection will be considered
via simulations. The idea will be to detect the slowly time variant change-point
introduced in Section 5.6.1 and the abrupt change-point of Section 5.6.3 using AR
models instead of ARMA models to gencrate the prediction errovs ¢y, Thus the model
classes M, will correspond to time-invariant ARMA models until time 7 and time-
variant AR models after 7. We will see that an increase in change-point detection
performance is obtained for both types of change-points being considered.

Let us start with the slowly time variant change-point case. In Figure 5.17 the
detectors d(N), when AR(%), k= 1,...,4, model classes are used, are displayed.

To help discern the increase of performance of the change-point detection algo-
rithm when using an AR(2) model insicad of the more complex ARMA(2, 1) model
employed in Section 5.6.1, the detectors d(V) which result in cach ol these cases are

plotted in Figure 5.18.
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Figure 3.17: The on-line slowly time variant change-point detector ¢(N) with model
classes: o) AR(1); b) AR(2); ¢) AR(3); d) ALR{4).
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Figure 5.18: Comparison of the on-line slowly time variant change-point detectors
d(N) obtained when not using undermodeling (that is when cmploying ARMA(2,1)
models) and when using undermodeling with an AR(2).



CHAPTER 5. CHANGE-POINT DETECTION 156

I.ct us now move to the case of the abrupt change-point when using undermodeling.
As with the slowly time variant case, AR(k), &£ = 1,...,1, model classes are applied

to construct the detectors d{N'). These are shown in Figure 5.19.
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Figure 5.19: The on-line abrupt change-point detector d(N) with model classes: a)
AR(1); b) AR(2); ¢) AR(3); d) AR(4).
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Figure 5.20: Comparison of the on-line abrupt change-point detectors d{N}) obtained
when not using undermodeling (that is when employing ARMA(2,1) models) and when
using undermodeling with an AR(2).

Again, the performance enhancement of the change-point detection algorithm,
when using an AR(2) model (note that this is the model that performs best among
the AR models being considered) instead of the ARMA(2,1) model, can be clearly
observed when the detectors d(N) for these two cases are plotted together as in

Figure 5.20.

5.6.5 The Detector d(IN) Versus a “naive” Detector Based
on Monitoring Parameter Estimates
Since the recursive prediction crror algorithm with fixed gain has the ability to

track time variant parameters, one might think of using Lhe parameter estimates ol

the system, without further processing, as a change-point detection scheme. We shall
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illustrate here that this “naive” change-point detection technique is out-performed by

the stochastic complexily based change-point delection method,

k=2
z
gﬁﬁ ~ 1c}
gw X0 0 A00 4RO B0g B30
N N
(a) (b)

Figure 5.21: The abrupt change-point case: a) The “naive” detector; b) The stochastic
complexity based detector.

From Figures 3.5-3.7, we can observe that the estimator EQ'N of a3 5 best tracks
its corresponding “true” time variant parameter if it is compared to the tracking
performance of the estimates ﬁ;\‘N and 76'1\|N. Therefore, in Figure 5.21, the estimator
gi'n and the detector d(N) (for the abrupt change-point of Section 5.6.1) are plotted
side by side so as to appreciate the improvement obtained by using d(N') as opposed

22 T .
to @, y for the alarm signal.

i
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In Figure 5.22 the same comparison is represented (as that displayed in Fig-
ure 5.21) but in this case for the slowly time variant change-point of Section 5.6.3.
Once again a similar conclusion is drawn: the stochastic complexiiy based change-
point scheme using undermodeling outperforms the “naive” change-point method

based on monitoring the parameter estimates.
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Figure 5.22: The slowly time variant change-point case: a) The “naive” detector; b)
The stochastic complexity based detector.



Chapter 6

Adaptive Control of an LSS

Even though the use of a properly designed fixed {eedback controller would reduce
the eflect of plant uncertainty on closed loop system performance, it would not be
well suited Lo the control of physical systems with little a-priori knowledge of their
dynamics. Since the beginning of the 50’s a new area of control, known as adaptive
control, emerged. It was triggered by the need to tackle the control of physical
systems whose dynamics experiences major alterations. For example, we can mention
the control of aircrafts and ships whose dynamics is greatly affected by the different
conditions under which these physical systems ought to operate. Another situation in
which adaptive control is deecmed necessary is when experimentation with the physical
system is not possible in advance. For instance, this applies to many control problems
found in process control, in particular in chemical engineering, and in economics.
(For applications in the arca of adaptive control the reader is referred to [NMS0]
and [Ast83].)

The theory of adaptive control has at present time gained certain level of maturity;
results on stability, both local and global, as well as performance of some adaptive

schemes are available. Recent books on adaptive control amongst the now extensive

literature are: [IK83], [GS84], [KV86] [Cai88], [AWS9], [SB8Y], and [CGI1).

160
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The main current approaches of adaptive control are: 1) the model reference adap-
tive systems (c.f., e.g., [Par66] for an carlier work and [Lan79] for a book dedicated to
this approach); ii) self-tunning controllers (c.l[., c.g., [Kal5§] for an carlier work and
[Alo87] for #« summary of results when using ARMAX models). The first approach is
based on updating the parameters of the controller directly from information of the
error generated between measured and model outputs. The second approach—which
is generally formulated in a stochastic framework—estimates the parameters of the
plant and uses these new estimates to recompute the control law. This approach
is much more involved than the simple model matching approach. Moreover, the
model reference approach can be viewed as a particular case of the latler method
(c.f., [SB89]). In this chapter, the adaptive controller to be presented falls in the

category of self-tunning regulators.

In the work of {Ger90a], an adaptive control problem for finite dimensional time
invariant linear stochastic systems was considercd. The structure of the adaptive
controller was based on the certainty equivalence principle which consists of using the
latest estimates given by an identification scheme to the design of an appropriate con-
troller, as if the parameter estimates were the true parameters of the system. A very
important feature of the identification scheme is that since it is formulated for the
closed loop system, the parameter estimates are the ones giving optimal performance
for the controlled system.

In the cited work a link was established between open loop and closed loop iden-
tifiability. More precisely, closed loop parametric identifiability of a sysiem driven
by a suboptimal adaptive controller was proven under the assumption of open loop
identifiability of the corresponding open loop system driven by a persistently exciting
open loop control signal.

As usual the identification scheme was formulaled as that of finding the root
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of the gradient of an appropriate cost function. It was shown that this problem
could be solved successfully via Ljung’s scheme, arriving at an on-line computable
adaptlive controller. When implementing the adaptive controller, one of the main
computationally expensive features was its dependence on the directional derivatives
of the adaptive feedback transfer function gain. In this chapter, we will prove that in
fact there is no such dependence, reducing considerably the computational complexity
of the algorithm.

We will also extensively illustirate the adaptive control methodology for an ARX
system, showing the stability and tracking capability of the adaptive controller. More-
over, we will show the effect of the dither process (c.f., [Cai88]) on the closed loop
performance, a process which is embe”-'~d in the coniroller Lo guarantee identifiability

of the clsed loop system.

6.1 Closed Loop Identifiability fromm Open Loop
Identifiability

In this section a self contained summary of [Ger90a] will be presented. Consider

the parametrized sets of transfer functions
H*(0) = (E*(0,c™)  and  H“(0) = (H*(0,™)),

which are m x m and m x r matrices respectively, defined over § € Dy C. IR¥,
where Dj is a compact domain. Let 0* € intDy, and consider the cutput processes

¥(0") = (¥a(07)), defined by the discrete-time linear stochastic system
y(0°) = HY(0")w + H*(0%)u, (6.1)

where w = (w,) is an m-dimensional noise process, and u = (u,) an r-dimensional

input process, satisfying the following condition:
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Condition 6.1.1 The process (u,w) is defined over some probability space (2, F, I’)
and is jointly second-order stationary with zere mean. Let (F,) be a monotone in-
creasing o-algebra of F, then (u,,wy) is F, adapted. The noise process (w,) is itsclf
an orthogonal process with Bw,wl = A > 0, for all n. The inpul process can be
decomposed as u = ul + u~ such that (w,ut,u”) is wide sense stationary, u* is

orthegonal to w, and u™ is prediclable with respect lo w (i.e. u € Sp{wisi < n—1}).
Further conditions imposcd on the stochastic system (6.1) are as [ollows:

Condition 6.1.2 HY(0,e™%), (H'”(D,c""\))_l, and 11'(0,¢~™), are boundary func-

tions of H=-functions on the unit disc D.

Let the analytic extension onto the unit disc D of a transfer function /{0, ¢™™)

be denoted by H (9, z).

Condition 6.1.3 The malriz funclions H“(0,z), and I1*(0,2), are smooth with re-
spect to 0 in the strong topology of H*(0). Moreover, H(0,0) = I, where I denoles

the m x m identily matriz.

The parameter §* of system (6.1) is identified as follows. First, choosc a trial

parameter 0 € D,, and compute the residuals
€(0,07) = (H™(0))" (y(0*) — H*(0)u),

where €(0,0%) = (ea(0,0%)) is often called the prediction error process. Define the cost
function

W(0,07) = lim & Blea(0,0°)%
Then, a necessary condition to identify system (6.1) is to assure W(0,0") a local
minimum at # = 0*. However, this condition is not sufficient since there could exist

a manifold of global minima. To avoid this situation, let the following definitions he

introduced:
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Definition 6.1.1 A sccond-order stationary process z is said to be persistently ex-
citing if its spectral density matrix ¢(+) for some constant ¢ > 0 satisfics ¢(e™™) > cf,

forall -r <A<

Definition 6.1.2 System (6.1) is said to be locally identifiable under persistent ez-
citation if for all persistently exciting input processes (w, u) satisfying Condition 6.1.1
the lessian matrix

92

—=W/(0,0"
a0 6.7) 0=0"

is positive definite.

System (6.1) can then be said to be identifiable if it is locally identifiable under
persistent excitation, and its associated cost function W (0,0") has a root at 0 = §*.

For example, it is easy to show that in the case of an open loop system,
y°(0") = HY(0")w + H (0" ). (6.2)

where (u°) is an open loop input such that (u®)~ = 0, the associated cost function
denoted W°(0,07) has a global minimum at ¢ = 0°. Therefore, if the open loop
system (6.2) is locally identifiable under persistent excitation the system’s paiameter
0* can be identified.

Let us introduce the closed loop system associated with the open loop system (6.2).
Observe that condition 6.1.1 allows closed loop control inputs v = «*, formed as
combinations of a causal feedback and an external dither. Therefore, define the

closed loop system associated with the open loop system (6.2) as
y°(0,0%) = HY(0")w + H*u®(0,07), (6.3)
with the closed loop control input given by

w(0,0%) = K(0)(~y¥(0,0%) +u°) + v, (6.4)



CHAPTER 6. ADAPTIVE CONTROL OF AN LSS 165

where K(0) is a designed p x m {cedback transfer function gain, and v = (v,) is a
dither. Note that the dependence of the feedback gain is with respect to 0 and not 0*
since the latter corresponds to the true system’s parameter which is assumed to be
unknown. The use of an external dither process will prove essential to achieving closed
loop identifiability. This type of controller is sometimes referred to as continuously
disturbed control (c.f., [CaiS8]). The following condilious are imposed on the closed

loop system (6.4):

Condition 6.1.4 The transfer functions K(0), and ({+H*(0*YN(0))~! arein (D),

for all 0 € Dy. Moreover, K(0) is smooth with respect to 0 in the strong lopology of
H>(D).

Condition 6.1.5 The dither v is a second-order stationary persisiently crciling pro-

cess orthogonal to the noise process w.
The prediction-error process for the closed loop case is given by
€(0,0%) = (H*(0))™ (y°(0,07) — H*(0)u(0,0°)) (6.5)
and the associated cost [unction by
We(0,0%) = lim } Bles(0,0)p.

In [Ger90a] closed loop identifiability was achieved under the assumption of open loop

identifiability.

Theorem 6.1.1 Under Condilions 6.1.1-6.1.5, and the ussumplion thal the open-
loop system (6.2) is locally identificble under persisient excilalion, the closed loop
system (6.8-6.4) is also locally identificble under persisient ezcitution, i.e.

o

—We(0,0°

a0? ( ' ) 0=0',

is positive definite.
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Using Theorem 6.1.1 we can show that the cost-function W¢(#,0") has a local
minimum at & = 0°. Indced,

9 w0, 0) = imE (2,0 T-ec(o- 0) (6.6)
86" 0 g T ame s \Bg™ 7o '

T
= lmE (-—c?—ec(O‘,D")) * Wp,

and since it is casy to show that 8/80¢°(0°,0") is Fu—1 we get the claim. Therefore,
the parameter 0* of the closed loop system (6.3-6.4) can be in principle identified.
However as shown in the next section there are some limitations to this selution which

will have to be overcome.

6.2 Closed Loop Identification via Ljung’s Scheme

A process r is said to be computable if it can be obtained by a known transfor-
mation of a known monitored process. This monitored process will usually be the
output of an unknown physical system driven by a partially or completely unknown
input. For example ¢(0,0") is computable. In this case y°(#,0") is the monitored
process, and (6.5) describes its known transformation.

The identification of §* is based on finding the roots of the equation

Qe
25,0 =o. (6.7)

It is important to note that (6.7} actually represents the simultaneous identification
and control of system (6.3-6.4)
~ An important drawback of (6.7) is that it is not computable, and thus cannot be

solved in practice. Toc prove this claim, note that

—a-‘W"OO‘ =IE a"00' ! “(0,0" 6.8
a0 (t )"' -a_oen(i ) 'en(: ): ()
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requires the computation of process 8/00¢%(0,0%) which in turn, by {6.5), requires
the computation of process d/00y°(9,0"). To now show that a/d0y°(8,0%) is not
computable, first combine (6.3) and (6.4) to get

ye(0,0%) = HY(0")w + HU(07)K(0)(—y°(0,0%) + v°) + H (0o, (6.9}
and differentiate {6.9) in the dircction (»,0), where v € IR¥, v £ 0, to obtain
¥eg(0,0%) = [ + H*O)K(OI  HYOVE(O) (50, 0) + ). (6.10)

Since in (6.10) H"(0*) is unknown, then y£4(8,0") is not computable and thus cannot
be generated by the user.

As noted in [Ger90a), in practice, a stochastic approximation scheme—-performed
via Ljung’s scheme—is used to identify 0°. However, Ljung’s scheme cannot be applied
directly to the solution of (6.7) since W¢(0,0") is nol compulable. Thus, we need
first to find a computable approximation, say U(0,0*), of the cost function W<e(0,0%),
which would not destroy the desirable properties of We(0,0%).

In [Ger90a) the computable approximation process U(#,0%) was given in terms ol
the derivative of the feedback gain K(#). This dependence is at first hand obvious
since the directional derivatives (v, 0) of the process y°(#, 0*) are expressed in terms of
K,(0) as shown by (6.10). This dependence dramatically increases the computalional
complexity of the adaptive control algorithm. In fact, it is of common practice to de-
sign the feedback gain K (0) by solving an optimal control problem, assuming that the
trial parameter @ is the true parameter. It is well-known that this optimal controller
is obtained via the solution of a Ricatti equation. Thus, the compulalion of K,(#)
involves, in this case, the differentiation of the Ricatti equation. This process has
to be repeated at each time interval since new estimates of ° are computed. Forlu-
nately, as it will be shown, there is actually no dependence of Lhe adaptive controller
presented in [Ger90a] on the term X, (), thus aveiding the nced of dilferentialing

Ricatti equationa.
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Recall that in order Lo estimate 0°, (6.8) must be solved, and since 8/80€%(8,0%)

is not computable, 2 computable approximation of 3/90e*(8, 0*) is sought, which will

be denoted by 9/309°(0,0%).

Lemma 6.2.1 A compulable function U(0,0*) which approzimates W(0,0%) is given
by

U{0,0%) = E8/80r(0,97)ex(0,07),
where the directional derivative of ¥°(0,0%} in the direclion (v,0) is
* Yua(0,0°) = (H(0))™" [HJ(0)u®(0,0%) — H(0)e°(0,07))]. (6.11)
Remark.  Note that 9,9 is independent of K,(0).

Proor. Rewrite (6.5) as
HY(0)e*(0,07) = y°(0,07) — H*(0)[— K (0)y%(0, 0) + K (0)u® + v] (6.12)
Then, the process € 4(0,0") is simply obtained by differentiating (6.12) and thus we
gel
HY(0)(0,07) + H*(0)€,0(0,07) = 3;,4(0,07) — Hy(0) (K(0)(—v°(0,07) +u°) + v)
—HH0)[—K,(0)5°(0,0%) — K(0)y5a(0,0°)
+K,(0)u°]
(6.13)

Recall that the process y¢ (8, 0%) was not computable since the term H*(0") in (6.10)

is unknown. Let us rewrite (6.10) as
(I + H'(O)K(0)Eo(0,07) = —H*(0) K, (0)(0,0) —w).  (6.14)

The first approximation step is to substitute H*(0*) by H*(0) in (6.14) to get the

approximation process z{4(0,0*) of y54(0,0") computed by

(T + H¥(0)K(0)) 25,0(0,07) + HY(0)K, (0)(y°(0,07) — w°) = 0. (6.15)
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Substituting yo(0,0%) by z£4(0,0%) in (6.13) the computable approximation process
YEa(0,0%) of € 4(0,0%) is obtained. Thus we get

H2(0)e5(0,0%) + HU(OW5(0,0%) = [+ HYO)K(0)] 55,(0,0°) -
H(0)[-K(0)y°(0,0°) + K{(0)° + v] +
HY(0Y K, (0)(y°(0,0%) — u®).

Observe that since (6.15) holds, the first and third terms of the sccond part of (6.16)

cancel each other. Therelore,
HY(0)€(0,0°) + H*(0)50(0,0%) = HE(O)(—K (@) (0,0°) + K(0)u® +v)  (6.16)
which finally gives

$o0(0,0%) = [H(O)]™ [H2(O)(—K(0)y°(0,0°) + K (03 +v) = H2(0)c"(0,0°)] 1

Corollary 6.2.1 We ﬂave
Puo(07,07) = €,0(07,07). (6.17)

Proor. If § = 0*, equation (6.14) can be used directly to cancel the first and last
two terms of equation (6.13) leading to the staled cquality. 1

Based on the above corollary the following thcorem is established:

Theorem 6.2.1 The computable function U(0,0%) salisfies the following propertics

U,y l = o, (6.18)
o=0"
and
7]
NIUN
aaU('l ) 9=0

is positive definite.
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Proor. Simply note that from Corollary (6.2.1) we have

U(on,0%) = we(or,0%). i

Now the computable cquation (6.18) can be solved via Ljung’s scheme under
~ertain addilional conditions imposed on the input noise process w (c.f., [Ger88b)).
Note hat the crucial stability condition needed when applying Ljung’s scheme is
satisfied. Indeed,

0(t) = -U(0(1), 0%),

which is the associated ODE to equation (6.18), is asymptotically exponentially stable
atl 0 = 0*, since the gradient of U(0",0") is positive definite.

Let us finish with some remarks: Since the addition of a dither makes the controller
suboptimal, the variance of the dither becomes an important design parameter. In
Lhis respect some promising directions of research are opened by the use of predictive
stochastic complexity in the optimization of the performance of continually perturbed
adaptive controllers. More precisely, when using fixed gain, the size of the dither could
be optimized so as to minimize the variance of the estimation error. The result of
Theorem 10.8 in [Ger91c] can be taken as the first steps on the study of the effect of

parameter uncertainty on Lhe closed loop performance.

6.3 An Application: Adaptive Control of an ARX
System

In this section, the adaptive control methodolbgy introduced for finite dimensional
time-invariant linear stochastic systems will be illustrated by an autoregressive system

with an exogenous input, or ARX system. Extensive simulations of this particular



CHAPTER 6. ADAPTIVE CONTROL OF AN LSS 171

system will be provided which demonstrate the stability and tracking eapability of
the adaptive controller. We will also show the effect of the dither on closed loop
performance.

Consider the following open loop ARX system

Thg1(0°) = a2 (0°) + Du}y + eny1s (6.19)

where 0* € intDy, Dy C R? denotes the vector composed of the cocflicients a® and b,
the process (ey) is the input noise process, and the process (ug) is a deterministic
reference input.
Let us pick a § € ) and assnciate Lo the open loop system (6.19) the closed loop
system
TR (0°) = a5 (0°) + bufy + enqa,s (6.20)
with feedback law
un(0,07) = —k(0)z5(0,0°) 4+ v}y + vn, (6.21)
where vy is a dither. The gain () is designed ~s the optimazl gain found by solving
the optimal stochastic quadratic control problem, taking ¢ as the “Lrue” paramecler

of the system. The cost function to be minimized is
E (m{zf(0,07))" + U[ui(0,07)]%), (6:22)

for some m > 0 and [ > 0. As is well-known %(0) is found by solving the Ricalti
equation
P4 a?P —aPb(l4+ 6 P) ' bPa+m=0,
and computing k(0) = [l + v*P]~'bPa.
We assume that Conditions 6.1.1-6.1.5 hold for systern {6.20). Therefore, using
Theorem 6.2.1, the adaptive control problem can be solved via Ljung’s scheme by

finding the root of the following stochastic equation

-

E /0050, 0°)e,(0,0°) = 0.
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In this case, the prediction error process associated with system (6.20) is
v1(0,0%) = 23y 14(0,07) = (a — bk(0))a%(0,07) — b(uy + vN)

Applying (6.11), the approximaling process for the derivative of the prediction
crror process is given by
. . —z$,(0,0%)
¢N(0, 0 ) = .
k(0)z5(0,07) — uf —vn
Now we are ready to apply Ljung’s scheme, which in this case coincides with the

recursive least square algorithm, given by the following equations

= = 1 72 -1 c X

Oy = Oy~ N (RN—I) Yy eN {6.23)
= = 1 c . =

Ry = Ry, + N (1/)1\.' (W) - RN-]) ; (6.24)

with initial conditions ﬁo and R,.

6.3.1 Simulation of the Adaptive Control of an ARX Sys-

tem

Let us now perform a simulation of the adaptive control problem introduced in Sec-

tion 6.3. The parameter values of the ARX system (6.20) are
@ =ay=.98 and b =b=.0L

The input process {(ey) is Gaussian white noise with mean 0 variance 1. Set the
reference input u$y = 3sin([x/50)N), and m = 10, I = .01 for the parameters of the
cost function 6.22. The dither (vy) is also Gaussian white noise with mean 0 and
variance o2 = .04 uncorrelated to the input noise (e).

We ran the simulation for 200 iterations, with initial conditions 02(J = [.70], 12?0 =

.01 x I(2), where I(2) is the identity matrix of dimension 2, and y§ = y§ = —4.
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The initial conditions of all other variables are set to 0. The correlation cocflicient
between the process (en) and (vn), N =1,...,200, is .05.
In Figure 6.1 the performance of the adaptive controller is illustrated by simul-

tancously plotting the reference input u$y, and the open and close loop outputs yi,

and y&-
10 Y Y v v
ES
=
oz
-8 A 2 . s . N . N N
0 20 40 60 80 100 120 140 160 180 200

Figure 6.1: The reference input uf;, and the open loop and close loop outputs yj, and
¥, respectively.
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In Figure 6.2 one can sce that parameter estimates @y and by give consistent

estimates of ajy, and by, respectively.
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u.14 . . .
0.12}- < by 1
e il
ASEAS H t *
0.08} ;
A
*
0.06} by .
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0.04| .
0.02H -
ol . . . . . . . . .
0O 20 40 60 BO 100 120 140 160 180 200
N
)

Figure 6.2: The true paramcters and the parameter estimates of the ARX system 6.20:

a) The autoregressive parameter ajy, and dy; b) The exogenous paramecter by, and by.
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The gain of the adaptive cortrol algorithm kN(aN_l) is shown in Figure G6.3.

10

8 HW

~ Sf .
¢S
=

=< 4} o

2H J

0 'Y L i i L 'l L L L
0 20 40 60 80 100 120 140 160 180 200

N

Figure 6.3: The gain of the adaptive controller.

6.3.2 The Effect of the Dither

In this section we will study, by means of a simulation, the effect of the dither on
the overall adaptive control methodology. Here we make a slight modification to the
simulation given in Section 6.3.1 by setiing the refererice input v, = 0 and the initial
condition y§ = y§.

The importance of the dither vy in this case becomes very clear. Indeed, if the

dither is extracted from the control law given in (6.21) then

i1 (07) = (a* = 5" k(0))z3(07) + ena,

which shows that the parameters ¢* and b* cannot be identified simultaneously.
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In order to test the effect of the covariance of the dither, we ran three simulations
with the dither covariance values: 62 = 1 x 107", 62 = 0 x 107, and o2 =25 > 1071
In Figure 6.4 the reference input u%, and the open loop and close loop outputs

¥%, and y§ are plotted together for the value of 0} = 25 x 10,

6 v v v T v v v
S ;1‘ -
I|
l‘l
l:l "]
noy
|I 'l’" \,"'\' :.:E
' “:'\‘::‘:‘"u:}
a Ca NI “”' AR
-~ T s ut
o
yN g >: a
3 i . “N )
o 20 40 60 80 100 120 140 160 180 200
N

Figure 6.4: The reference input uy, and the open loop and close loop cutputs yi, and
yg for o2 =25 x 1074..

Figure 6.5a and Figure 6.5b characterize the cffect of the dither on the estimation
of the parameters in (6.20). Obscrve the crucial role of the dither ir consistently

estimating the parameters of the system.
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Figure 6.5: The truec parameters and the paramcter estimatos of the ARX sys-
tem (6.20): a) The autoregressive paramecter ajy, and dy; b) The exogenous parnmeter

by, and EN.



Chapter 7

Conclusion

The objective of this thesis has been to implement, test and refine model selection
and change-point detection problems in real time using a form of predictive stochastic
complexity. Morcover, in this dissertation we proved that the original form of the
adaptive controller developed in [Ger90a] can be computed in a much less expensive
manner.

In Chapter 4 we showed that predictive stochastic complexity is a mathematically
well understood criterion which can be used to solve model selection problems in
real lime. A consistenl method for finding the best model order for a set of data
among certain classes of ARMA models of different order was validated by extensive
computer experimentation. The use of fixed gain in the prediction error estimation
procedure had the effect of increasing the qualitative performance of the algorithm;
thus showing that the “badness” of the estimator increased the “badness” of over-
parametrization. The model order simulations involving AR models illustrated this
fact very clearly. A successful ﬁfc;del order selection simulation involving ARMA
wodels was also presented. [Finally, a simulation indicated that in some cases, the
predominant effect of parameter uncertainty over model order uncertainty can result

in misleading answers about the order of the system for large values of the fixed gain

- 180
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of the recursive prediction error algorithm.

In Chapter 5 a change-point detection method for ARMA systems was oblained,
which assumcs 2 slaw and non-decaying drift alter the change-point. Also, the abrupt
jump parameter case, and change-point detection with undermodeling were consid-
ered. Some partial results on the analysis of the scheme were obtained, showing that
the methods were amenable Lo theoretical analysis. The extensive simulations showed
that the approach exhibited surprisingly good detection capabilities. Morcover, they
illustrated the robustness of the change-point detection procedure with respect to
the fixed gain of the prediction error algorithm. In addition, we showed—mainly
empirically—that it is possible to improve the performance of the change-point de-
tection when using undermodeling. This fact opens the way to furlther research since
the issue of undermodeling in change-point detection has, Lo the best of our knowl-
edge, not been previously studied. Finally the comparison of the stochastic com-
plexity change point detection method to a “naive” procedure based on unprocessed
parameter estimates showed that the former outperformed the latter.

What was left in the analysis of the change-point delection method was finding
lower bound for the tracking error (¢})? — (en)? in terms of the rate of change S.
Nevertheless, Theorem 5.5.2 seems to be an important step lowards obtaining an
expression for the delay time. Also, the process (E,(ﬁf'\_l, l)‘))2 was oblained througl
a computationally intensive procedure, However there is hope to overcome Lhis deli-
ciency using Theorem 3.3.1.

In Chapter 6, the adaptive control problem for finite dimensional time invariant,
linear stochastic systems, as introduced in [Ger90a], was described. We proved Lhal
the original form of the adaptive controller as found in [Ger90a] can be computed in
a much less expensive manner. The simulations of the adaptive control methodology
for an ARX system, illustrated the stability and tracking capability of tlic adaptive

controller. Moreover, the effcct of the dither process an the closed loop perlormance
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was illustrated. It was shown that in some cases the use of a dither process is necessary
to guarantee identifiability. An open arca of research is to use predictive stochastic
complexity in the optimization of the performance of continually perturbed adaptive

controllers.
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