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ABSTRACT

o

ating Topography

An experimental technique called Optical Gr
(OGT) has been developed to provide measurements of relatively
rough anisotropic surfaces. Using the principle of Schmaltz
microscopy, this techniqde employs multiple scanning to obtain
Aéaéa for subsequent computation of surface parameters: The
éomputational procedure is based on Quantitative Stereology,
and permits one to determine not only the conventional surfacé
roughness parameters, but also the mean 'individual bearing
area' (IBA). The latter is obtained from the IBA \distribution
determined from the‘joint exponential density distribution of
%t he intergept ("cut") length for the X-Y directions. The
knowledge of the mdan IBA which is a new concepé introduced in
the present work, is essential for ;he‘analys?s of the
functional behaviour of the interface in contact problems.
Applying the Gaussian Random Proceés theory, the IBA
density distribution i; also determined analytically. The
comparison with values determined from measurements reveals
close agreement for heights of asperities at Ra level and above
it. 1t is shown that this IBA can be®irectly obtained from
spectral analysis of the given surface. It,is found that the
initial portion of the Auto-covariance function for the CI
machined ground surface is of Gaussian form. Using this result

along with the density of IBA, the possible determination of

cut-off relevant to contact theory is discussed.
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o ) ' RESUME

ﬁne technigque expérimentale ippelée OGT ('Optical Grating
Topography') a &té& développée afin d'obtenir des mesures sur
des surfaces relativement rugeuses et anistropiques. Utilisant
le principe de la microscopie de Schmaltz, cette technique
consiste en des balayages-multiples fournissant des donnees
d'8u sont extraits les param2tres de surface. La méthodé\ge
calcul est basée sur la Stéréologie Quantitative et permet ae
déterminer non seulement les param&tres de rugosité conven-
tionnels, mais aussi le IBA moyen ('Individual Bearing Area').
; Ce dernier s'obtient de lé'distribution IBA 3 partir de la
densité de digpribution jointexexponentielle dans les
directions X, Y. Une coqpaissance du IBA moyen, qui est
nouveau concept introduit dans le pré&sent ouvrage, est
essehtielle pour l'analyse du comportement fonctionnel de
l'interface dans les problémes de ‘tontact.

) En appliéuant la thé&orie GRP ('Gaussian Random Process'),
la distribution de densité IBA est &galement déterminée
analytiquement. Comparant cetté derni®re aux valeurs mesurées,
on obtinent un bon accord pour la hauteur des aspérités au
niYeau R, et au-dessus.” Il est montr& que ce IBA peut &tre
obteng directement par 1l'analyse spectrale de la surface en

question. ’

On' trouve que la portion initiale de la fonction 4d'auto-

covariance pour la surface polie a la meule de la fonte est de

fﬁrme Gaussienne. Utilisant ce résultat combing& 2 la densité

o IBA, la détermination possible du 'cut-off' dans le cadre de‘ la
i théorié'de contact est discutée.
. o 11

e

.
Widss: .



& ° -
. ) e
STATEMENT OF ORIGINALITY AND CONTRIBUTIONXTO THE KNOWLEDGE

v i ‘ . o »
The author of this ‘thesis claims okiginality for the following
.- 4 ! ,

contributions to the characterizidtion of surfaces for the

e

description of their functional behaviour of surfaces in

contact: Yy

1. The development of an experimental technique called Opticai
Grating Topography (OGT) baseé on the principle of Schmaltz
Microscopy with the purpose of obtaining the profile
measurements free from tﬁe error caused by stylus
profilometer. The machined ground surface of R, 20.76um

for which this technique was developed are too rough for

the application of laser based interferometric technique.

2. The development of Ehe computational procedure for 3-D
surface characterization leading to the individual bearing
areas and their distribution. The procedureyis based on
the principles of Quantitative Stereology and Digital
Signal Processing. It involves the determination of the
joint exponential density distribution e£ intercept length

-

which is obtained from OGT. .

" i

3. The analyfﬁcal determination of the '3-D density

‘distribution of IBA based on Gaussian Random Process. It

is found that this density distribution is of the form a¥*

Ko (a') where a* is the normalized IBA and Ko the

modified Bessel function. This density function will

allow, in conjunction with the local stress, the
M
formulation of the stochastic qﬁeory of deformation.
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3.

Glossarx

Abbott curve [17]: ‘ .
Bearing area fractions plotted as a
—Eunction of heightﬁ\

Baire guncteon [20] ¢
The set 1y of all real numbers 'x' such that g(x) < vy
ghould be a countable union or intersection of intervals
for any y; only then {¥Y <y} is an event. If g(x) has
this property, it is called a Baire function.

Functional filtgring:

It is the confinement of the measurement of the profile

to the portion of the spectrum that takes part in the

functional behaviour of surface. It involves the

a

determination of low éass and high pass cut-off.
High-p;ss cut-off: The cut-off which rejects the long
wavelengths.

Low-pass cut-off: The cut-off which rejects the short
wavelengths.

Lay: The direction of the predominant surface pattern,
originarily determined by the production method used.
Cut-off or meter cut-off [17];

In a profile meter ihstrument, the conventionallyidefined
wavelength separating the transmitted from the attenuatin%
components of the effective profile.

Pass band: The frequency of the surface considered between

the high and low pass cut-off.

xvii
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9.

10.

Point spread function: Consider an object with an
irradiance distribution 1g5(Y,2) followed by an optical
system which creates an image Ii(y.2z). The object
information is transformed into the image by a process
which can be represented'mathematically as

[+ o}

1ij(Y,2) = [ff Ig(y,2)S(Y-y,2-2z) dy dz

where S(Y-y,2-2) is called point spread functions.

In the case of perfect lens system, for example, S would be
any pattern (similar to Newton's ring).

Roughness [17]:

The irrnglarities in the surface texture which are
inherent in the production process, but excluding waviness
and erro:; of form.
Waviness [(17]¢ T~

The component of surface texture upon which roughness is

super imposed. Waviness may result from such factors as

“machine or workpiece deflections, vibration, chatter, heat

~,

treatment or warping strains.

| { xviii
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3 CHAPTER 1

INTRODUCTION

* 1.1 Importance of surface characterization ‘)

]

Topography can be considered as a narrow bandwidth of
irreqularities covering the form or shape of the surface. Due
-——" to these irregularities which is the characteristic of the

basic machining précess, the surface is random in nature.

. Therefore, the surface irregularities may be considered to
& LrTy

exist in the form of roughness or waviness. Moreover,

A4

depending on the presence of ?ée preferred orientation of these

irregularities (direction of lay), the surface becomes either

anisotropic or isotropic. From this it is evident that the
characteristics of the surface are so complex that their

precise definition with a single parameter is not possible. It

becomes necessary, therefore, to characterize the surface in
Cay

terms of parameters relevant to the problem so as to permit

its use as indices to performance under actual operating

P

conditions.

It is known from the experimental work of Abrams and
Kops [1] that éhe surface texture (roughness angger waviness,
isotropic or anisotropiq) influences the manner in which two

metallic rofigh surfaces in contact interact. 1In addition to

s clear that the tribological qualities (wear,

friction, 1lubrication, fatigue, strength, etc.) are also

- » - 5 [
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directly related to the surface texture [2]. Hence, the need
arises to characterize the surface texture in such a way that
it can be used éo describe the functional behaviour of surface.

Many studies have been done to characterize the sur face
in terms of the center line average (CLA), root mean square
(RMS), height density curves, correlati;n function and spectral
densities [3). This random process analysis, however, rests on

two assumptions whiqﬁ are unnecessary: .(l) the statistics of

N 7/

tAL surface are the same as the statistics o% the profile of
the surface, and (2) the asperities have spherical (regular
geometrical) céps (4]. Osman and Sankar [5] realized the
inadequacy of these parameters and, using the concept of
st;chastic excursion obtain parameters in the form of the
mean infercept length at the mean level. This analysis was
based on the assu%ption of an isotropic Gaussiaa process with
the statistics of the surface being the same as that of the
profile. g \\\3

In maﬁy engineering applicatiokgﬁinvolving contact it is
;ufficient to kpow the bearing area, its grxowth at different
levels of irrea&iarities, height and its distribution on the
surfaQe. This is due to the fact that it is through these
discreet areas that the electric or thermal heat flux passes in
problems related to electric or thermal contact resistance.
Moreover, if this local bearing area and their corresponding
probability density function togetheé with the well defined

local stress is employed, it is p?ssible to formulate a

stochastic theory of deformation fqr/%ﬂb solution of an elastic

1
&, kT
. %.\5'.?.“-!-3}5
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contact problem. This suggests the necessity of extended

e

/’-surface characterization in terms of individual bearing areas
and its distribution for the surface. It is proposed ﬁhat such
an abproach of characterizi&b the surface in terms of
individual bearing area and its distribution, and also in terms
of the parameters like CLA, RMS, mean slope and curvature,

should be sufficient to describe the fu%ctional behaviour of

surface in contact problems.

) l.2 Review of methods used in the measurement of surface

topography: .

£

.There are various methods available to measure the surface

irregularities. Each one of them possesses iti own advantages

and disadvantages. inherent in the basic design and principles

involved. The choice of any one of the methods degends'on the
following conditions:
l. Expected height variations in asperities.
Z.J-Height sensitivity required.
3.' Type of surface; i.e., specular or diffusive,
4. Cost and complexity involved in the analysis
following the measurements made using this techniqge.
5. Resolution of-the awvailable methodi

-

The available techniques can be broadly categorized into:
[ -

“ l. Contact methods.

2. Non-contact metlods.

i

)
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l.2.1 Contact methqds:

e s

Among the contact methods the main instrument still used
extensively is the stylus profilometer. In this instrument a
narrow diamond stylus of finite dimensions traces lightly
across the surface contour to produce a time varying voltage
output whose magnitude is di}ectly proportional to the height
of the surface contour. This voltage output is of a high pass
frequency, f{ltered 80 as to include only surface spatial
frequency components above a certain cut-off frequency. The

period of the cut-off is defined as the 'roughness width' cut-

off. The average absolute deviation of the filtered signal ~

from its mean vaiue is then used to defineythe roughness of

surface.
The other contact methods described in [6] are mentioned

mainly for their historical significance. They are no longer

used as measurement techniques.

»

l.2.2 Non-contact methods.

As shown in Table 1, the first and foremost technique used
falls into the category of light section microscopy. This
method is essentially a non-destructive, non-contacting

procedure that is“quicker and easier to set up. This principle

i

has also been employed in the Optical Grating Topography to be

discussed subsequently.

Before discussing the interferometry method a few

—_—

remarks as to the use of speckle in application of a laser

light sogxge»to the meaBurement of surface topography should
f 7 ’

be made.’ Thz\use of specular reflection measurements for the

!

N

R
’ Rhs!
N R 2 g



i TR T,
" e

LA
1
@

U
1

7

Table 1

Technigues for Measuring the Roughness of Ground, Polished and Machined-Surfaces;

. Roughness Greater Than 100 A rms (6] »
Technique . Comments TTen T
Light section microscopy " Light section microscope for heights
1-400 m with a sensitivity of +0,5:m
Fringe contrast ratio, Twyman- Laser 1lluminations; end mirrors are reference e
Green interferometer and test surface respectively; roughness in

range 10 A toXQ/S obtained from from fringe
contrast ratio

Single wavelength holographic Interference between hologram and light

interferometer reflected from test specimen; roughness 1in
range 0.05 - 0.80umobtained from contrast ratio
Two wavelength holographic Extension of above method for measurement of
interferometry rougher surfaces using coherent light of two

3 different wavelengths; theory only

Two-beam and multiple-beam Interference microscopes of different designs;
Frizeau fringes in inter- general roughness rangeAQ/ZO tolg/Z but can be
ference microscope rougher for surfaces with regular profiles or

1solated scratches; lateral resolution depends
on magnification and numerical aperture
Stylus instrument Surface profiles of bead blasted aluminium and
machined steels; data digitized to yield height
- ‘ distribution function; roughness range ’
0.01 - 1.1 um



I

Stylus instrument

Stylus instrument

Light scattering

Light scattering

Light scattering
{

Light scattering

Optical profilometer
£

White light speckle

Surface profiles of ground and sand blasted
metals; data digitized to yield height and

slope distribution functions; roughness range
0.5 - 3.0 \m

Surface profile of ground steel surface; data
digitized to yi1eld height and slope
distributions and other surface statistics;

roughness 0.5um

Specular reflectance of aluminized ground glass
and ground steel; roughness range 0.16 - 1,3um

Specular reflectance at two angles of
1ncidence; machined metals, ground glass,

silicon 1n roughness range 0.1 - 10im

Specular reflectance of polished aluminium and
steel; roughness range 0.09 - 0.08HM

Total 1ntegrated scatter to detect scratches,
di1gs, and microroughness on mirrors and
transparent domes

Small laser beam scanned over reflecting
surface to detect 1solated surface defects;

height sensitivity 0.05um

Moving rough surface; correlation between
speckle contrast 1n broadband 1i1llumination and
roughness when roughness 1s comparable to
coherence length of light; ground, polished,
sanded, and machined metal surfaces, 1n
roughness range 0.1 - 6.4 um

p——
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Laser speckle pattern

Polychromatic laser

Laser speckle pattern

Mov,ing rough surface illuminated with diverging
beam; roughness and correlation length deter-
mined from degree of coherence of transmitted
beam; roughness range 0.4 - 0.9 mfor gzxound
glass surfaces; upper limit of roughness
related to magnitude of beam spread

Speckle patterns of scatfered light from ground
glass correlated with rogghnéss; roughness
range 1 - 3um; no correlation for l0Mmroughness

Contrast in monochromatic speckle pattern from
ground glass determined by scanning detector;

roughness range 0.2 ~ 0.5un; maximum roughness
measurable 0.5um

—-—



determination of surface roughness has been 1nvestigated
earlier 1n reference [7]. The reéults show a significant
cogrelation of the specular reflection measurement with the
roughness measurements obtained by stylus profilometer. However,

this correlation is constrained due to two assumptions:

1. The roughness must be 1less than 15% of the
wavelength of the employed illumination.
2. The height distribution should be a Gaussian

distributaion.

It should be noted that when any rough surface 1is
1lluminated with spatially coherent light and observed with
a finite aperture optical system, speckle can be observed.
Such speckles are produced because the light is received at
each point in the image from several different points on the
object, due to the limited resolution of the system. The path
length of the light from each point on the surface depends on
the height of the surface at that pa:tiEGIar point., If the
height varies significantly across the width of the point
spread function, interferencé effects will occur known as
speckles. The size of the speckles is known to be related to

.t
the Numerical Aperture (NA) of the observing system. These
speckles arg the main reason for not using the coherent laser
1ight sou}ce in the case of optical section microscopy.
Furthermore, these speckles mix with the grating image and

hence cause reduction in contrast which is not favourable for a

faithful reproduction of profiles.

*/



Most of the holographic interferometric technigues reported
.80 far have been for measuring the depth contour of large
surfaces, i.e., generation of contours of constant depth or
for the measurement of the ropt mean square (RMS) roughness
only., Even for polished ggecimens no good agreement could be
reach;d {8)]. Moreover, the rgguirement of parallel wavefronts
in the holographic interferometry is the main draw-back, as
this involves expensive devices not necessary for the ra;ge of
measurements encountered in the rough ground'surface. The
other interferometry method like the Mirau interferometry [14]
is a good means of measuring surface topography as it gives
sharp lineq with good contrast (unlike ﬁélography), but is
limited in measuring surfaces having specular reflection
characteristics.

The three beam interferometry [9]) is perhaps the
mogt sensitive for the case under consideration, since it
depends upon the intensity changes in the interference bands,
which-is a measure of the irregularities on the surfacé. The
principle in this technique is based on the common path three
beam shearing interferometer in which the outer beams act as a
reference while the middle beam scans the surface. Though one
of the best ways when employed éé measure film thicknesses, it
has limitations as far as measuiemen of surface roughness is
concerned. It requires two refsren surfaces having the same
intensity of reflection as that of the surface under study and
using the same source of light. In spite of this it has a low

‘

NA.
Another method developed by Sato and Hori (10] aims at

9 .
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determining the profile of the surface roughness by integrating
the intensity of back scattered electronic signals. The
disadvantages are:

l. It requires Scanning Electron Microscope (SEM) for
observation equipped with two or probably three
integrators.

2. The sample must be supplied with a conductive
coating.

3. It is very time-consuming.

Although light scattering methods represent simple and
straight-forward implementation of surface characteristics,
they do not measure the surface structure directly. The
simplest instrument of this type is the glossmeter (£802812 or
ASTM D523), which measures the specular reflectaSEe of the
surface [ll]). Specular reflectance, however, increases with an
increase in the refractive index and is also influenced by the
smoothness of the test surface. Hence the gloss data obtained
are not a sole function of the surface topography; at best they
can give only an average surface topography.

- Clarke and Thomson [l1] have developed a laser scanning
analyser [LSA] system, whereby a laser beam is reflected from a
polygonal mirror rotating at high speed down onto the surface
of a workpiece. It is then reflected into a fixed"
photoconductor receiver with a wide aperture that is.used to
measure defects. It also comes with a narrow slit for the

measurement of surface roughness. Considering a minimum spot

~
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size on the surface of 200um, LSA method measures the angular
reflectance or scattering from the test surface over an angular
range of 300, Unfértunately, this sca@ning technique measures
a specific angular reflectance at different locations on the
surface and tﬁus represents only an average angular reflectance’
of the test surface over the scanning range. It is from this
that the RMS roughness and other informations like CLA can be
deduced.
“&’

It is seen that these techniques inhergntly avergge over
a region of the test surface, and thus cannot directly obtain
the actual surface profiles. The accurate measurement of
scattered light over many orders of magnitude from the sgecular
direction is quite difficult and time;consuming. Further, a
sur face preparation is important for the ﬁeasurement of very
smooth surfaces. For very rough surfaces, a more complicated
vector diffraggioﬁﬁtheory must be used in order to predict the
actual surface ;tructure.

Bennet [6] has deyeloped an interferometry system
employiﬁg multiple beam fringes of equal chromatic order
(FECO). FECO are formed when a collimated beam of white light
undergoes multiple reflections between tw? partially silvered
surfaces, one of which is the surface whose profile is being
measured and the other is a super-smooth reference surface.
Using a TV camera for the detection of the positional
displacement of the fringes, this. technique yielded accuracies

P
of the order of 0.8 nm RMS for the measurement of surface

profiles. Lateral’ resolution of this system hps been reported

11 ' _
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to be between 2 and 4um over a lmm profile length. Signal
averaging in the system increases -the measurement time, and
thgqrefore severe environmental precautionﬁﬁmtgt e taken to
ensure the accuracy of measurement. Also, the éystem requires
that the surfaces being analysed have high reflectivity.

Both the "Differential Interference Contrast" (DIC) and
the "Nomarksi polafization interferometer" techniques {12] are
useful for qualitative assessments of surface topography;
however, quantitative results may be difficult to obtain.
While interferometers of this type are easy to opergie, and
essentially insensitive to vibration, they.have the

M

disadvantage that they measure the slope of the surface

l.,,

1rregularities only, rather tﬁan the irregularigies themgélves.
Furthermoi?, since they measure surface slope irregularities in
one direction only, the sample orientation is—important.

. Recent advances in the field of electrical engineering
have resulted in the development of a topogrgfiner [3]. 1It.
consists of a servo controlled non-&ontacting field emission
which maintains a constant current between a conducting
specimen and itself. The motion of the probe is amplified and
displayed forming an isometric picture as the surface is
scanned in a series of parallel traverses. This instrument has
a high resolution, but is restricted to very small specimens
and has the added disadyantage of requiring conducting
specimens in a high vacuum.

Another class of measurement technique belongs to the

ﬁ&ategory of focus error detection developed by Mitsui, Ozawa

.12
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and ‘Kohno. Herein the chan?e in focus of the optical system
due to change in height of sﬁtface irreqularities is detected
by the principle of astigmatism [15]. While this method can
give ﬁ}gh resolution (0.0lum), it can be used only on
specular surfaces like diamond machined surfaces. The other
disadvantage is in the effect of diffraction figure which is

. . . iy
inherent in any focus error detection technique.

1.3 Evaluation of available methods.

Various methods for the measurement of surface and the brief
description of its qgvantages and disadvantages was discussed
in the last section 6f this chapter. From this it is evident
that not a single instrument can be universally accepted to
measure all the types of surfaceé encountered during machining.
Stylus profilometers have very good sensitivity (0.0lym), but
have disadvantages due to the effect of stylus size and load.

Distortion of the profile due to finite dimensions of the

stylus tip [16] is as shown in Figure l.1. The effect of stylus

tip radius on measured roughness [16] as shown in Figure 1.2

also shows hqw the stylus profilometer can give results
deviating from the actual value. The other sources of error,
like filtering due to skid and the effect of stylus geometry on
its dynamic response, are discussed in reference [17].
Recently De Vries and Chenu-~Lih ﬁ] (18] ha&% tried to solve
this problem due to stylus gecmeéry by developing suitable
algorithms covering the range of lé.S - 2.,5um stylus radius

size. They developed kinematic and geometric algorithms to
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compensaté’fof stylus geometry so as to present a better
picture of the true surface profile. The extent to which the
compensation could be achieved is as shown in Figure 1.3.

The optical method employing the principle of Schmaltz
microscopy is perhaps the simplest and most elegant [19].
Observable detail with the Schmaltz projection method depends
on the resolving power of the microscope 6bjective. The major
source of error in this technique arises from the diffraction
that takes place at the edge of the shadow. However, the
height of shadow can be estimated to a very small error for
irreqularities of maximum depth greater than .76 um ([19],
Moreover, by using a concept similar to Biernawski's mult?ple
shade topography ([20], one can apply multiple scanning of the
surface for 3-6 surface characterization as discussed in the
next chapter,

v

1.4 Outline of the thesis:

The main purpose of this thesis is to characterize the surface
in terms of parameters necessary to describe the functional
behaviour of surfaces in contact. In many engineering
applications like the determination of electric and thezle
contact resistance and the analysis of deformation of interface
formed by two surfaces in contact, it is sufficient to
determine the local bearing area and its distribution on the
surface. Foriit is through these discreet areas that most of

the electric or heat flux passes. The subsequent computation

14
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of the digitized data obtained by using OGT leads to the
determination of not only the conventional parameters like CLA,
RMS, mean slopg and e:}vature, but also the individual
bearing area and its distribution. This procedure of 3-D
characterization is described in three steps.

In order to statistically determine the individual bearing
area and its distribution the OGT was developed. The first
step, therefore, is the literature review of the measurement
technique ayailable for profile description of surfaces. This
was already'described in the last section of this chapter.

The second step is in the descriptian of the Optical
Grating Topography technique for measuring the surface. Having
obtained the profiles of the surface, they have to be digitized
and processed to obtain the parameters. The technique and
computational procedure is described in Chapter 2.

Review ofL@he existing models describing the surface
characterization forms the main content of the Chapter 3. This
chapter discusses the Yarious models that have been develoézg\«
in the past to obtain parameters. Finally, as a last step, the
extended characterization of surfaces and the proposed
application to contact problem is discussed in Chapter 4. The
analytical determination of the parameters in terms of the
moments of the statistical function forms the main part of this
chapter. Its correlation with the experimental results
obtained by using OGT is also discussed.

Finally, Chapter 5 states the conclusions and

recommendations which arise from this study.

15
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OPTICAL GRATING TOPOGRAPY

2.1 Introduction

The characterization of surfaces for gie descriptioh of their
functional behaviour in contact problems, like those in machine
tool joints, requires a measurement method which could be free
from the error caused by the stylus of a profi)ometer. The
relatively high surface roughness of machined ground surfaces
in the case under study precludes the application of —
profilometers which use a laser based optical inteiferome;er
technique. Other optical techniques, which rely on the
specular reflection of the surface or use special coatings to
enhance the intensity of reflection, are also not suitable¢ for
the surface’s which are the subject of the présent
investigitipn. To obtain a detailed description of the surface

to Bb\gfudied, perhaps the best way is to obtain a profile

section or a contour section of the surface. Although this

“sounds logistically feasible, difficulties can be visualized in

doing it. While the fhtioduction of distortion in the:profile
when taking sections can in no way be ignored, the destruction
of the surface in doing so discourages us in adopting methods
underlying this. principle. To circumvent this difficulty a
German scientist, G. Schmaltz, cited in (19]) developed a purely
optical means of dbthéning a profile curverbased on the

principle of optical cut. This is illustrated in Pigure 2.1.
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The optical system ysed is also shown in Figure 2.2. The --~

" illuminator projects an image of a straight edge, oraslit, on
the surface in the field of view of the microscope. Both
objectives in microscope for observation and illumination are

alike. The 45° angle between the observation and illimination

> 2 gystem results in:
) (, l. maximum intensity of light entering microscope
- objective. ,

2, correct focus over the entire illuminated band.

. *
3. magnification in the direction of height and depth.

—_—— e ——

Since it is intended to multiple scan the surface, a
concept similar to Biernawski's multiple shade topography, some
modifications were made to the set-up ofiginally used by
Schmaltz. These modifications were in replacing:

1%“ a slit by a transparent grating of 330 lines/mm
2. fixed illuminating objective by a" movable objeétivg
which permits adjustment for obtimum brightness and
, contrast of grating lines,

- r
and, 3. a fixed observation objective by an epiplan objective

(with greater working distance than conventional’
objective) mounted on a focussing gear.’ This permits
obsérvation of other grating lines on the surface

without moving the workpiece or set-up.

Subsequent profile computation both across and along
4 machined lay direction leads to the determination of surface

el parameters for the surface. In particular, the OGT method was

‘@: .- ‘ NN | .
, -
. ‘
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used to define parameters of the bearing area, essential in the

contact problem. Both the analysis and the computational

{ .
procedure is presented in this chapter along with the

description of the measuring technique.

2.2, Description of the OGT system

Referring to the diagrammat;c sketch of the OGT given in Figure
2.3, it can be seen that the apparatus consists essentially of
two obtical arrangements: 1illumination and observation. The
various components that makes the OGT system are:
1. Light source: Light used for this technique was
ordinary white light. This type of light was necesdary
since, as discussed‘beEOte, the coherent light source
like 'Laser' causes gpeckle which distorts the grating
liAe image and inteffers with the edge of, these lines.
ﬂ%. Collecting lens: The system of lenses (convex)
collects the light from the source and lets it pass
;hrough the microscope body #r the illumination of tpe
grating. ’ * ‘ /
3. Transparent grating: The transparent grating-plate
! consisting of 330 lines/mm was placed behind the movabie
objective; The lines from this grating were projected
on the surface of the sample to obtain the profiles for
\measure@ent.

4. Traversing objective mount: This is a movable

(x,y) mount which carries the illuminating objective on
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one side and a grating pléle on the other side.

5. OBjective for 1llumination: This objective is fl0,
.25 NA used for projecting the grating lines on to the
surface of the sample. d %

6. Specimen mount: This mount is an x,y positioner for
holding the specimen or workpiece. The workpiece could
be moved along x,y axis for measurements gt,d1fferent
locations on the surface. ¢ .

7. Objective for observation: This consisted of an
epiplan objective fl6, 0.35 NA with greater working
distance than the conventional objective of the same
class. This obJectivells used for both transmission as
well as reflecting microscopes. )

8. PFocus control: The entire microscope was mounted
on a precision focussing gear to observe the grating
line images.

9. Binocular phototube: This was meant for manual

observation of the grating line image prior to using

camera. This facilitated the control of the focus.

. 10. High eye point eyepiece 10X.

ll. ACM microscope: The microscope body was used as it
could carry all the above mentioned components and also
the polaroid camera. &

12, Camera with automatic exposure control.

[}
13, Collecting lens tube: This tube was necessary for
two reasons: (l) to carry the system of collecting

lens, (2) to maintain alignment of the axis of
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collecting lens and the objective forming the

illuminating arrangement.

2.3 Operation of the OGT system.

The operation of the OGT 1s schematically(éhown in Fig. 2.5,
It 1s evident from thas fxgure‘shat it essentially consists of
two main procedures:
1. Establishing the geometry of the optical system and
observing the effect of the grating lines on an
optically flat mirror.
2. Maintaining the same geometry and repeating the

procedure on sample surfaces for measurements.
o

\
2.3.1 Establishing the optical geometry:

From Figure 2.1 1t is clear that the parameters which 1influence
the observation of the topography of surface are:
1. the angle of q&fervation and,
i1. the angle of incidence of lines on the
surface of the sample.
Moreover, the amount of delineation of the grating line depends

on:

i. the above two parameters describing the geometry of

OGT and,

ii. the amount of variation_in depth of surfaces.
Therefore, by knowing the amount of delineation in the grating
line %mage due to the known step height or depth which is
obtained from the photograph, it is possible to get the two

parameters describing the geometry of the OGT. Once this

20




( geometry of OGT is established, it is now ready to measure the
surface irregularities that might exist 1n the form of either

roughness or waviness.

2.3.2 Measurement Procedures:

Without disturbing the projecting part of the system, the
grating lines are now made to fall on the surface to be
examined. It is possible that in the first attempt the grating
lines on the surface of the sample may not be sharp. The
éharpness 18 obtained by adjusting the workpiece distance from -
the illuminating - objective and observation objective. After
this adjustment for maximum brightness and contrast, the
grating line image obtained on the surface of the sample is
photographed for further processing. The effect of the
optically flat mirror on the grating line image photograph
obtained from OGT is shown in Figure 2.6. When compared with
Figure 2.7, which is the grating line image photograph obtained
by applying OGT on the machined ground surface, it ié clear
that the delineation of the grating 1ine as seen in this figure
is due to the effect of surface irregularities. Measurement of
this delineation in the grating line with respect to that

/ obtained from optically flat mirror gives the heights of the
surface irregularities. .

Some more examples of the application of the OGT are

- given in Figure 2.8, The measurement of the one thousandth of

an inéﬂ"step obtained on the sample by surface grinding is g\

shown in Figure 2.8a. It can be seen that the measurement
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accuracy is of the order of 0.lum. Figures 2.8b and 2.8c show
the surface irregularities obtained by applying OGT technique
on belt grounded surface and thi ground surface obtained by
surface grinder respectively. The difference in heights of
irregularities is clearly noticeabléz Figure 2.8b not only
shows surface irregularities in the form of roughngss, but also

the waviness which is not observable on the ground surface in

Figure 2.8c.

2.4 Specification of OGT

The specifications of the OGT employed to measure the surface
topography are:
l. Resolution: The limit of resolution 18 the minimum
distance, 'd', of two structural elements, e.qg.,
two adjacent hairs if they“arJ/to be imaged as two
separate elements instead of one. There are two types
of resolution relevant to the present technique. The
+axial resolution is 1l.6pym [21] and the lateral
resolution for the objectives used is 0.65um L14].
2. Limit of useful magnification: When the smallest
object detail of magnitude 'd', resolved in the image
formed by an objective of given NA, has been magnified
by the combined performance of the objective and the
occular (eye piece) so that its image has the same
magnitude as that of the smallest detail which the eye
can resolve, the limit of useful magnification (L.U.M.)

y

has been reached. Thé L.U.M. (L,) for OGT is £666.
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2.5 Computational Procedure.

For the determination of the syrface characteristics reqpired
»in the description of the surface irregdlarities ;hich includes -’
the concept/of individual bearing areas (IBA), it may be
instructive to discuss first the computational flow chart to be
used in conjunction with the obtained observation by the OGT
.technique. This flow chart is ;hown in.Figure 2.9, The
observed delineated grating line obtained due to surface
irregularities present,on the surface is magnified 1000X. This
is as shown in Figure 2.10. The magnified photograph is then
digitized in 640 KB IBM—¥PC with HIPAD DT 114-S digitizer and a
D7-11-1109 stylus with O.lmm resolution. Dig}tizagion of the
contour lineg of the grating and the subsequent processing of
the digitized data is achieved through the interface with
AMDAHS 5850. The processing of the digitized data consisted of
statistical and power spectral analysis. The latter leads to

r———

the determination of parameters like variance of height slope
and curvature, -

Since the surface under consideration is highly
anisotropic, the concept of Quantitative Stereology is used to
extract the somcalled '"lineal fraction' of the profile in the
direction of scanning, i.e., in the machining direction 'X' or
transverse to it in the 'Y' direction. If not all scanning
lines have been included, the program is sent back for the

above outlined computation. If the digitizion and Quantitative




Stereological principles have been completed for all tne
scanning lines of the test sample the program is concluded by
the calculation of the probability distribution function of the
area (IBA). The detailed scanning and computational procedure

is discussed below. Cow

2,5.1 Statistical Analysis.

The statistical lanalysis involves the determination of the
density distribution of heights of the irregularities of the
surface. This analysis is necessary in order to check the type
of distribution of surface heights. ;ge density digtribution
was plotted for both along the direction of grinding and
perpendicular to the direction of grinding. The density
distribution as obtained from the measurements taken from OGT
for a typical profile is as shown in Figures 2,11 and 2.,12.
The éensity distribution looks slightly skewed because of the
efﬂ@ct of the sampling [22]. It can be shown that even a
rangom sample from Gaussian population when sampled and
histograms plotted would give a statistical scatter and could
give skewness. In order to check the gype of distribution the
chi-squared goodness of fit [23] was employed and the null-
hypothesis was accepted as true. The difference between the
observed and expé\ted values was not the least significant, and
could have occurred with a probability of greater than 10% by
chance alone. The Gaussian model was therefore accepted. Six
profiles were checked and almost all showed typically similar

results. One of the tabluated results is shown below as an

example,.
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A chi-squaré& test yiéﬁds a quantitative measure in
terms of the probability of the differences between observed
and expected values being explained by chance. Chi-squared is

found by using the equation:

x2 ZE  ememamoee - ‘« (2.1)

whefe 0 - observed frequencies

E - expected frequencies
Clearly, close agreement between observed and expected values
§

result in small values of x2. At the outset the null hypothesis
was assumed that both observed and theoretical results come
from the Gagssian distribution. 1In calculating the theoretical
frequencies the mean and the total frequency of the observed
resdlts were‘empibyed, thus imposing two conditions or
restrictions. The number of degrees of freedom was thus
n=9 -2 =_7

Referring to standard {ables the value of xz for 7 degrees of
freedom was 12,02 at probability fevel of 0.1.

The tables sﬁown below are self-explanatogy. Here (z/D)

is the standardized height of asperities and other symbols have

the usual meaning as discussed earlier.
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' Table 2 -

Determiniation of goodness of fit for measurements

obtained perpendicular to the direction of grinding

R z/D | 0 E 0-E (0-E) /E
EY
-1.06 36 30° 6 1 1.2
i . -0.83 15 12 3. 0.75
-0.606 17 12 5 2.0
-0.378 | 11 16 -5 1.56
-0.151 24 18 6 2.00 .
0.075 | 13 " 12 1 very small )
//’""’////F—ST;\\\* 25 24 1 "
\\\\< 0.53 10 16 -6 2.2
i ) 0.757 49 50 -1 "
\

o 2
0 = 200 and x = 9.61

As calculated value of 9.61 is less than 12.03, the null

hypothesis is accepted as true.

4
[

Applying similar procedure for data obtained
from OGT for profiles along the-direction of grinding we

get,

" v 1
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Table 3

Determination of goodness of fit for measurements

obtained along the direction of grinding.

" z/D 0 E 0-E (0-E) /E
)

-0.8 16 21 25 1
-0.5 15 9 36 4

~0.2 12 12 0 0
0.175 16 14 4 0.3
0.4 13 12 1 very small
0.7 7 10 9 0.9
1.0 9 11 . 4 0.3
1.9 6 11 25 2.3
2.2 6 3.4 6.76 2.0

Here again the value of y2 is less than 12.03 and therefore the

2
0 = 100 and x = 10.86

‘t

hypothesis is accepted as true.

This is an important experimental observation because
the derivation of parameters as described later is based on
this finding.

of heights of asperities have been determined for a C.I. ground

surface.

type A—24-M4Vi,

The other properties of the C.I class 35 are:

*
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It is to be noted that the density distribution

The grinding was done using the grinding wheel of
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(1) Brinel Hardness B.H. = 200
(2) Modulus of Elasticity E # 105 GPa
(3) Poisson's ratio = 0,29

2.5.2 Spectral Analysis

Nayak ([24] has shown that useful statistical parameters can be
obtained to characterize the surface if tgéi: power spectral
density or amplitude function is known. It 1s well known from
the observation of the grouhd surface that the irregularities
are more closely packed in the direction perpendicular to the
lay than along the direction of grinding. For lack of a more
precise mathematical description it‘can be said that the first
one 1s closer than the second one. This leads to the questi§6,
is there any other way that we can get more gquantitative
description? The answer t; this guestion can be given by auto-
correlation function. To construct this function a pair of
ordinates separated by a horizontal distance ')' is considered
as shown in Figure 2.13. If 'A' is large it is unlikely that

these ordinates will l1lie on the same peak or valley.

Therefore, the product of the ordinates at two points on the

profile separated by a distance '\' is equally likely to be

positive or negative., And if their sums are obtained, the mean
value will tend to zero. If on the other hand, a pair of

ordinates whose separation is small is considered they are very

‘likely to lie on the same peak or valley. Moreover, their

product will be positive and the mean value of a large number
of such products would be finite and positive. Therefore, one

can define a statistic for a signal length 'L', i.e.,

28

»



L
Y 1.
G(x) = lim --- jfZ(x) Z(x+) )dx (2.2)
L
0

L 9

2, ¥, § ~

# > v
in which 2(x) = z(x) - <z(x)> , which can be considered as a
figure of merit of geometrical relationship. It will vary

continuously with 'A', falling gradually to zero from an

initial positive value at X = 0. Its value at any given

separatién will be a measure of the aveyage physical
relationship of pairs of points on the profile with that
separation. The length"which it takes to decay to

%
insignificance will be a measure of the average size of a peak.

From the Figure 2.14 it is clearly evident that the“auto-
. correlation function dies down faster for across the lay than
~for along the grains (lay).

It is a familiar concept that any profile, however

- ) complex its waveform, can in principle be represented by
Fourier analysis as the sum of the number of pure ginusoids.

Because of the h?rge number of term@}(Fourier) needed in

- practise to describe the random surface, the graph obtained
‘"with amplitude against its frequency would be ?ontinuous. BQ
¢ J : analogy with other frequency distribution (light, sound) it is
called an amplitude spectrum. Since the amount of laboué
involved in calculating the largé number of Fourier terms (even

)
y for a computer) is very great, it is desirable to consider the

power over a small range of frequencies from f to Af and with

e | ,
:
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the limit S6f tending to df. This function can be defined as

Power spectrum A(f). Therefore, ghis.function gives the
information about the frequency distribﬁtion on the surface
considered. The area under the power sbectrum between two
- given frequencies is the total power present in that frequency

band and is statistically known as variance. Mathematically,

¥ X
it can be written as !
A(f) = (2n) __TG(x) expl-t2m £x)dx, (2.3)
2T
in which £ = e radial frequency.
In general, higﬁer moments can be expressed by:
n oo ‘n )
m ={(2)7} [ £ A(f)df. (2.4)

« ®©

In the present stud§1w§ significant parameter (24] is

™~

deflined’ by:

(2.5) »

This defines the width of the power spectrum Jf the random

- process %6rming the surface from which the profile is taken.
| 8 .
~ ’1’
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2.5.3 Practical Computations.~

" The estimation of the roughness spectrum A(f) for the random
. prccess Z(x) was done by computing first the ACF and then
1ts Fourler transform. This procedure was adopted because of
the following reasons: x
(1) The'computation of the ACF as an inter&ediéte

result allows the incorporation of a lag window W(x)

which corresponds to a spectral window w(f) in the

-~

- x

4

spectral domain.
fy o (11) 1It'1s possible to perform an arbitrary amount of \

smoothing in the spectral estimate.

GX Referring to Figure 2.15, the method ,[25] can be described as

follows:

(a) The{sequence z(j) (supposed to be a power of 2) is
[4

spli4 in N/M sequences of length M.

g , \
: (b) The sequences z;(j), i=1,2, ... , q is considered of
? length 2M‘overlapping by M.
. (c) At each sequénce z;(j), the sequence zio(j) is
associated, i.e.,‘
0 ]
— z2i(3) = z;(j) for j = 0,1, ... , M-1. '
i: 0 fOI j 2 M" s ZM-lc
] . e e o]
: (d) 2M discreet Fournier transforms (DFT's) Z;(f) and Z; (£)
¥ are computed. ’ J -
i=q ' 0
(e) X(f) = ¢ z;(f) z;(f) is formed.
i=1
‘ .
31
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(f) By using the FFT algorithm

Gep(m) = DFT™! (X(f)], m = 0,1, ... , 2M-1 (2.6)

is compuied.
(39 To obtain M auto-correlation points the

last half of Gppm is discarded.

In order to estimate ghe roughness spectrum A(f) from
G(x), a smoothing window W(x) [26]) must be used to reduce the
undesirable effects of J;;ng a finite length record (i.e., M
values of ACF) instead of the infinite correlatioh 'sequence.
To make a selection from among the collection of possible
windows, it is necessary to apply some goodness criterion or
figure of merit for windows. Unfortunately, no single figure
of meFit could ‘suffice for all possible underlying spectra and

|

no sihgle window can be best with respect to all the possible

» criteria. In practice it has been found that when the sampag

size is large enough to achieve adequate resolution with good
stability most of the windows yield comparable estimators when
properly matched for resolution and'stability. After many

attempts the.simplest of windows, namely, the Bartlett window

was chosen, ’
l - IXI/M, |x|§'M '

wix) = | ™ (2.7)
0, |x[>M :

which yields in the spectral domain,

, 2
w(f) M{sin(fM/2)/(fM/2)]
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In order to determine the number of lags M fdr which the
ACF's have to be computed, the variation in the spectral
estiqftes was examined as the truncation point was increased.
If only minor changes occur in the estyfates when M is”changed
beyond certain value M* then it c4n be concluded that the
window closing procedure has revealed most of the detail in the
specprum, Figure 2.16 shows the spectral density obtained by
using M = N/4 which is perfectly suitable according to Jenkins
and wWatts [27]. The parameters obtained from this spectrum are
as shown 1n Table 4 which 1s presented in Section 2.6.2.

¢

2.6 Determination of mean intercept length and 1ts distribution.

In order to obtain the mean 1ntercept length and its
distribution, a ‘test section of 200 x 500 m;:?khszwas selected.
This section was considered as best to represent the whole
surface on the assumption of statistical homogeneity. Before
going into its experimental determination! it would be
worthwhile to consider Figure 2.17, This figure shows a small
test section‘scanned by eight lines using OGT technique.
Another increment along 'X'-direction results in the total scan
of 16 lines. It is to be notéd tpat this procedure is
6ecessary as a single line cannot represent the whole surface.
It is evident from the {igure that the asperities are more
closely packed along Y-direction than along X-directionn, this
shows that thepsurface is anisotropic in character. 1In order

to analyse this type of surface to yield paramefe;s,

Quantitative Stereological principles are invoked.

33 V
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2.6.1 Application of Quantitative Stereology:

The principles of quantitative sterology (28] involves the
determination of 3-D characterlsti;{ from two dimensional

measurements. It determines the relationship between the point

¥

fraction, Jlineal fraction, areal fraction and volume fraction.

L

— -
7

In the study of surfaces the relation between the lineal
fraction and areal fraction 1s important. This 1s because the
lineal fraction 1s determined for a test section using OGT and
using the proper relationship with the areal fraction, the mean
beari1ng area could be determined. Therefore, before
proceeding with the determination of areal fraction 1t 1s
necessary to dgtermine the relation between lineal fraction and
areal fraction.

Consfder a cube containing asperities on the surface, and
let 1t be cut by a plane pass1ng across these 1rregularities atV
any height from tne mean line. The Figure 2,18 represents the
square cross-section of Area h = L2 parallel to the x-y plane
which contains the irrequlariy shaped areas, and a thin strip
of width 'éx' across the section parallel to the y-axis. The

area of contact in the thin strip 1s given by
sAc = L x & x (Apalc

and, for '6x' sufficiently small by

6Ac = 1, (x) Ox ' (2.8)
where iy(x) is the length of bearing intercepted by strips as a

function of strip position 'x', i,(x) may vary with 'x' as
indicated 1n Figure 2.18, and the average value between '0' and |,

'Ll 1S
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<iy> = -3- f iy (x) dx =i (2.9)

In the 1imit, the total bearing area in the test section

1s given by

L L/_/
Ac = [dl\c =/? 1x (x) dx (2.10)

which becomes,

Ac = L1y (2.11)
dividing both sides by Ap we get,

A 1
C X
-_——— = — - or AA = EL = A (2.12)

y T -
Thus, it caf: be seen that the fractional length of lines
through the irregularities gives an estimate of areal .fraction
of the sﬁrfa\ce.

An example [29] demonstrating this relationship can be
given (as referring to Figure 20):

line density of contact along 'X'-direction

= (0 + 0.5 + 0.25 + 0.5)/4 = 5/16

line)density along 'Y' direction

(0 + 0,75 + 0.5 + 0)/4 =5/16

5/16 = Ap-
-

The deviation of the lineal fraction can be given by the
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equation [28]): e v

2 2
D(x), 1 D(1)
ey = oo —eme 41 (2.13)
A N. 1
_ 1
where 1 = meaP intercept length
1
D(i) = standard deviation of the intercept length
N, = No. of intercept length
i
D()X) = deviation of the lineal fraction ' '
A = lineal length fraction.

—

Depending on the degree of orientation of the irregularities
which determines the degree of anisotropy, the parameters like
the areal fraction and deviation would change. Incorporation
of this term or factor 1s also possible and is discussed in
reference ([28). -

Thus the characterization of surface however anisotropic
may> be done using the theory of gquantitative stereology. Even
though this does not give the nature of distribution of the
bearing length, the parameters determlnedﬁﬁb far could give
enowugh desc&iption about the moiphology of surface for valid

comparison and probably provide the type of information needed

in surface systems.

2,6.2 Density distribution of intercept length and bearing

—

area.
Having discussed the concept of quantitative stereology, its
relevance in the characterization of surface would be clear

when the intercept length and lineal fraction is defined.
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Referring to Figure 2.19, the intercept length is the length of
the line intercepted by the crest of the profile at any height
'2' from the mean line of the profile. The sum of all the
intercept 1lengths divided by the total length of line scanning

the surface is the lineal fraction i.e.,

i i
X
e (2.14)
L L

Using the principle of quantitative stereology,%one gets

Ay or Ay 2 Af (Areal ‘fraction). -

The distribution of the intercept length along 'x' and 'y

direction is as shown in Figure ?.20. The intercept length
distribution has been obtained at the mean level. Referring to
the Figure 2.29 it can be seen that the lineal length fraction

along 'X' or 'Y' direction is given as:

) i
Ay = - / (2.15)

L xn
where
L = length of prbfile along 'x' direction
= 200 microns
n = number of lines scanning the surface
= 16
g 2176 :
/ e Ay W mmmmmeo = 0.68
200 x 16
Similarly, ‘
A I 4

e
|
>
=]
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500 x 16

-

Therefore, the areal fraction can be given as,

s AA 2B em——— = 0.67 (2016)
On the assumption of the standard Gaussian Process, it has
been shown by Papoulis [30] that the number of intercepts/unit

length 'N;,% can be expressed 1n the following form:

\
- '
Nix = px(Z) E {12'(x)]} (2.17)

Niy =py(z) E (12" (y) ] /
in which p, (2), Py (Z) are the probability density function of
the 'Z'-coordinate heights, 2'(x) and 2Z'(y) are the first 1
derivatives of the variation in heights of the random profile
and 'E' their expected values. Knowing the number of intercept
length it is possible to determine the mean\'kntercept length 1
along 'X' and 'Y' direction. This can be used to determine the

mean individual bearing area. Thus, for any surface the mean

individual bearing area can be given as:

8p = cl iy . iy) (2.18)

where 'c' = shape factor depending on the shape of individual
bearing area. For example, for an isotropic surface it would
be m/4 with <ip> =<iy> .

From the Figure 2.20, the mean intercept length along 'X'
axis 1is equél to 28um and that along 'Y'axis is equal to 13 um.
Therefore, ap= /4 x 13 x 28 = 285.7um2. It is seen from the

same Figure 2.20 that the intercept lengths 'i,' and 'iy' are

38



Y
. F

random variables and hence its density distribution have been
obtained. The density distribution of intercept length at

various scan levels is shownq:n Figure 2.21. In order to

tae cdensity

arrive at a single density function 1n teras o

function of '1,' and %y' and the shape factor, 1t 1s necessar

to obtain the jJoint density of py(14) and oy(1y)s 1.8.,
Pxy (1, _dg) = P2(1x) . Py (1y) (2.19)

The calculation procedure of the joint density and hence
tne density distribution of 1nd:vi1dual bearing area 1s given 1n
Append{x A. The density distribution of i1ndividual bearing
area 4 as shown in Figuré 2.22. From this figure one can

observe that the mean value ¢f the IBA is equal to 301um?2.

Using equation 2.16, the total IBA is given by,

T ap Af x 500 x 200.

0.668 x 500 x 200

66800um2

The total bearing area can also be obtained from Figure 2.22.

Since the mean IBA is equal to 30lpm2, the total number of IBA

o

isgiven by

66800
n T e mm--
301
n = 222,

Other parameters like the CLA, RMS, mean slope and curvature as
obtained usiqg spectral analysis is shown in Table No. 4. The

Table No. 5 shows the-statistical value obtained for the

—
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Table 4

Numerical values of surface parameters of a casting 1ron gound surface.
Dimensions in micrometers( ).

- . Variance Variance Variance CLA Mean Mean Bandwidth
of height* of slope of curvature Ra* slope curvature”
&~
(=]
X
Scan 3.371 0.03 0.00394 ‘ 1.46 0.123 0.09 14.75
Y
Scan 5.682 0.0692 0.0052 1.78 0.209 0.16 6.17
%,

PR &
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Table S

Comparison of values obtained from the

- OGT technique and the Talysurf profilometer.

Description OGT Talysurf
Sampling length, um \ 250.0 250.0
CLA 1.78 1.27
RMS 2.23 1.56
Mean intercept length 11,37 12,25
Mean slope 0.209 0.217
- No. of crossings/ um 6.031 0.22
No. of IBA/mm2 2220.0
Me\v IBA, m? 3010.0
—~

R
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surface using Taylor-Hobson suxrftronic 7 machine. The
methodology adopted in using the OGT technique was not applied
using Talysurf profilometer, and hence the last two values have

not been determined.

¢

2.7 Error Analysis of OGT. -

The errors introduced in the measurement of OGT were mainly due

to:
(i) the effect of diffraction at the straight edge of

the shadow;

(11) the effect of digitization due to 0.lmm resolution
stylus of HIPAD DT 114S;

(1ii) the effect of calibration,

i

2.7.1 Effect of diffraction at the straight edge of the

[<al

shadow.

It is well known that, due to diffraction, when a ray of light
passes through a slit or a hole, it Pends at the edges of the
slit causing a gradual variation in tge intensity of light from
the light band to the dark region of the screen. This region,
also called the grey region, is formed dque to.the wave nature
of 1ight. The extent to which the grey region exists depends
on the wavelength of light used, width of the slit and the
distance of the slit from the image on the screen. Therefore,
this grey region is the cause of loss of sharpnéss Qt the
straight edge of the shadow. While doing the profilgmetric

4
trace of the delineated grating profile obtained from OGT,
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tnere 1s an uncertainty 1in the reproduction of the profile due
@7
to the grey region. The amount of uncertainty can be determined

referring to e F13 2.23 obta:ned from reference [19 ]. It
can te seen that for 1rregularities .76 .o deep, the blurring of
the edge of tne shadow from this cause Qcgurs over a region

.

some .76 .awlce, However, the he:gat of the shacdow can,be

-

estimated to a cons:deraoly smaller error (5." = 0.127.m), as

will Dbe seen I:zcm Figure 2.23. Thereiore, tne diffraction at,

the edge would seem to limit the use of this techn.que to the
s;ady of the shace of 1rregularities of depth greater than 30u”

(0.762_m) [19;.

/

2.7.2 Effect of digitization using O.lmm, resolution stylus.

The photograph of the delineated grating profile obtained by
using OGT is magnified 1000x. This photograph is then
considered for the digitization of the delineated grating
profile. The digitization procedure involves the use of stylus

of 0.1lmm resolution. Since the magnif1cation‘¥s 1000x, the

t
A

error due to stylus is 0.lym, which corresponds to 2% (for a

maximum height of rough ground surface = 5uim). The errors due
to digitization and diffraction can be further minimized by the
proper use of filters (either optical or in the image
processiﬁ?‘t@cQEiEEf)/’ The use of filters (digital) in the
image prgcesging of such photographs has been discussed in
reference [31]). The technique employed by Kaneko 5. et al
could be useful in the automated digitization of grating line
image and also in the minimization of errors due ¢to

diffraction.
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2.7.3 Effect of calibration.

As'discussed earlier, the delineation of grating line is
obtained due to the effect of observing the grating line at an
angle to the incident 1light. Therefore, the‘accuracy of
measurement of the del ineated grating profile depends on the
accuracy of measuring the incident and observation angles of
light ray. In order to accurately assess these angles, known
steps in the form of hidhly accyrate reflection type
diffraction grating and slip gauges were used. 'The angles
determined this way were then used to determine the unknown
steps. The accuracy with which these measurements were made
were, of the order of 0.lum. One typical example i§ as shown

J
in Figure 2.8.a. Calibration error is caused by difftaction

.

and as such it is included in the error due to the latter. »

2.7.4 Results of error analysis.

To summarize for the types of error inkroduced and their effect
on profile measurements, the following can be stated:
1. Diffraction at straight edge limits the measurement to
the surfaces of Rm >0.76pum (30p "). The error introduced
into the profile measurements is of the order of 0.25um

1

max (5-1Qu").

a

2. Digitization introduces an error of about 2% or 0.1 um
for Rm = 5 um.
3. The combined inaccuracies amount to 0.35um (0.25+0.1)

which is the maximum range of measurement error.”

S , y
. )
o) . 44 -
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2.8 Discussion of results obtained from OGT.

The density distribuytion of heights determined using OGT
technique yielded Gaussian type of éistribution. This
was confir’m_e{ for both along the‘diiect{ion of grinding and
perpendicular to it., This substantiates the earlier claims
[32) (33] made in this context, However, based on this
distribution many other useful parameters have been otained
using the spectral analysis., Referring to Table 4, it can be
seen that the characteristics for X-direction are different
comparea to those along Y-ciirection. The bandwidth parameter
for X-scan is almost double compared to the value for y-scan.
. ‘ This suégests the degree of openness of irregular‘iéies along x-
scan as compared to thwat.along y~-scan. Moreover from the
spectrum obtained along }:hese two directions, it can be seen
that ti)e hig_her frequencies and larger amount of power exists
ir; 'Y'direction as compared to that along 'X'qirection. This
'is'obv‘iousrf.rom the anisotropic character of the surface. The
characterization of surfa'ces in terms of the pai:?ameters like
CLA, RMS, mean slope, mean curvaturé and correlation function
is not:sufficient for its use in the functional behaviour of
surface. This is due to the fact that it is possible to
generate millions of types of profiles having similar

¥ characteristics. Therefore, the characteriza}’tion of surface in

terms of intercept length and its distribution is necessary.

From this it is quite obvious that the potential contact areas

can be easily assessed for the desciiption of functional

":;!“‘ TRNRTTIT R T
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behaviour in contact problems. The intercept length
distribution as shown in Figure 2.20 shnds that it is of an
exponential type. The exact nature of tne d:stribution will be
determined later when the nature of distr:ibus:on is determined
analyt1ifll)u Referring to élgure 2,20, it can be seen that
the mean 1ntercept length along 'X' axis is approximately twice
~ as large cdompared to that along 'Y' direction.-
The density distribution of ind1Jidual bearing areas -

obtained bynu51ng the exponential dens:ty distribution of

intercept length along 'X' and 'Y' direction again shows the

I

exponential characteristics with mean arounéd 300.m . Thus,
the results so obtained exper]mentally can be used for the

description of functional .behaviour of gurface in contact

problems. The computational procedure described in this

chapter is quite general in nature, and can be used for both

Gaussian as well: as non-Gaussian sur faces. ¢

2.9 Summary. . .
The OGT technique was described along with its advantages and

limitations. ‘{ijgﬁs found that this techniqde was best suited

o

a

to surfaces hakjng average height of irreqularities greater

|
l

|

‘
than 30 p " (0.762 pmy, Subséquent computation o%mthe digitized . ‘
data obtained by this technique yielded not only the |

conventionalAparameters like CLA, RMS, and correlation : |
function, but also the deﬁsity.distrjbution of individual

bearing areas. Thellatter waq_deteriinmi using éhe principle

| , |
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( of Quantitative Stereology. Other parameters can be obtained
using this principle for the study of morphology of surfaces.
Thi; is not discussed here as it is irrelevant to the
characterization of surfates for the description of functional
behaviour of surfaces in contact.

Having obtained these parameters, it is now necessary
to review the earlier approaches to characterization of

- surfaces. This literature survey will now be the main

substance of the next chapter.
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i{, CHAPTER 3

REVIEW Of SURFACE CHARACTERIZATION MODELS

3.1 Introduction.

Recognizing the i?aracteristlcs of the surface and assessing
them numerically in the form of paramaters is essential to
describing the functional behaviour of surface. Since the
surface is considered to be random, the number of parameters
required to describe the surface completely is very large.
Therefore, it is essentﬁal that the characterization be done
taking into consideratlén its relevance to the application.'
Here an attempt will be made to describe previous models which

characterizes the surface to describe its functional behaviour

in contact problems. The characterization is achieved by
numerical assessment of two main types of descriptors:
l. Profile descriptors.

2. Surface descriptors.
A\

3.1.1 Profile descriptors.

It is well known that the profile can be characterized by means
of two components; one of them varying vertically about the
mean line called vertical descriptors, and the other
horizontally which describes the openness and closeness of the
profile, called as horizontal descriptors.

A. Vertical descriptors: The two most widely used

parameters belonging to this category are the root mean
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( square (RMS) and arithmetic or centre line average (CLA) or

Ra. The RMS Jhlch involves minimAzing the sum of the
squares defines the same mean as the R, condition of equal
areas or volumes of surface and void, above and below the
mean {22]. Of these two parameters, the RMS roughness is
not as extensively used as the R value. The Ry Value may

be defined mathematically as:

L
1
Ry = --- /|Zidx (3.1)
L
. 0
where'Z' is measured from the mean line and 'L' is the

profile sample length in 'X' direction. This parameter can’.

also be considered as the first moment of the probability
- density dystribution of heights of the profile to be

’ IN]
discussed later. It can very well be seen that one can

describe millions of different types of profile having the

same average roughness value viz. R or CLA. Therefore,
its usage in the contact problem and surface

characterization is highly restricted.

B. Horizontal descriptors: In order to study the openness

or closeness of the texture, it is necessary to describe
the profile in terms of horizontal descriptors. The most
common approach is to study the number of peaks/unit length
of Erofile or the zero crossing density of the profile.

Unfortunately, neither of them is the intrinsid property of

!
| & the profife. It is because they are the function of the
e -0 TR
o
49.




measuring instrument. Therefore, to circumvent this
difficulty an average wavelength as a parameter [34] was
introduced. Average wavelength for some typical surfaces
are shown in Figure 3.1. It is interesting to note that
this corresponds to feed mark of the tool used in the
manufacturing process and is particularly noticeable in
turned surfaces [(22]. It can be shown that these
parameters are not truly representative of the surface and
are not sufficient to describe functional behaviour of
surface. Thus, statistical methods were introduced [24] to
obtain more useful information about the profile. The
statistical methods to evaluate the profiles in terms of
vertical and horizontal descriptors are:

1. Probability distribution functions. The probability
function P(h) associated with the random variable '2'
which could take any value between - and « is defined
as the probability of the event z(y) & z(x)< h and'is

written: .
P(h) = Prob [(Z2<h] ¥ (3.2)

P(-») = 0 and P(») = 1
2. Probability density function: If the probability
‘function P(h) is . differentiated, the probability

density function is obtained. Thus,

p(2) = ———=—- (3.3)

Obtaining the distribution of heights of the profile in

the probabilistic sense gives the following information.
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a. the mean value of the’ptofile heights as the
first moment of the density.

b. the measure of the spread of the distribution
and therefore of the data by means of the variance
which is the second moment of the density.

c. the measure of the skewness and the peakedness
of the distribution (Kurtosis) which are the third
and the fourth moment of the density respectively.
The skewness and Kurtosis effect obtained from
density distribution could be attributed to the
sampl ing process itself ([35]. Therefore, its
usage as the significant property of the profile
is restricted.

d. the bearing length curve or the Abbott curve,

as shown in Figure 3.2.
wr

The probability distribution curve can be used to get
the bearing length fraction for the profil® as first
suggested by Abbotit and Firestone [36]. The-
information obtained from this curve gives some
description of the profile horizontally, but its usage
is still restricted as it cannot give information about

deviation to arrive at the nature of distribution of

the bearing line fraction.

¢

3. Auto- covariance or Auto-correlation functions: The
description of the profile by means of correlation

’ e function has been the mmost popular way of representing

n
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spatial variation., Whitehouse and Archand [37] derived
their significance from the distance over which it
decays. Peklenik [38] used this decay length (auto
covariance length) to classify typology. It will be
seen in the next chapter how this function was used to
determine the cut-offs relevant to the contact problem.
Another significant use of parameter called auto-
covariance length and the rms also obtained from this
function is 1n the experiments related to the theory of
scattering and its conversion to surface plasma
oscillation of photons normally incident upon rough
surface [39]. The mathematical properties of ACF a«i\\\_ﬂ
their usage in the analytical determination of
intercept length will be discussed in the next chapter.
Usually, in order to obtain the useful parameters
characterizing the profile, power épectral density
(PSD) is used which is the Fourier transform of the
ACF.

Power Spectral Density Function (PSDF): The spectrum

is another form of spatial representation which is

o

‘useful when the aim is to use the infotmation as the

]

harmonic input to a physical system ([40]. The
parameters fike mean slope and mean curvature are
obtained from this PSDF in the form of second and
fourth moment of this function. This significance of a

various moments of PSDF in surface studies was obtained
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by Nayak [4]. The cross correlation analysis [24] is
applied in the context of surface description 'which
will be described later.

3.1.2 Surface descriptors.

The statistical parameters obtained for a profile annot
actually represent the surface. This is evident in the case of
anisotropic surface. Moreover, a profile will more often than
not pass over the shoulder of an asperity on the gufrace
instead of its summit. The shoulder will, neverthelgss, appear
as a peak on the profile, though one of reduced height. Thus
the profile indicates the presence ofafar fewer high peaks than
are actually existing on the surface. A similar error occurs
in the determination of the mean surface gradient. Therefore,
most of the existing models are based on two assumptions:

(i) The statistics of the surface are the same as the

. statistics of the profile of the surface, and
(ii) The asperities have regular geometry (asperity
models).

Based on the second assumption, there are various modéls
wherein the surface is replaced by spheroids, paraboloids,
elliptic paraboloids and hyperboloids.

Replacing the irregularities (asperities) with simple
geometric shapes facilitates easy solution for an elastic
contact problem. The derivation of bearing area corresponding

to each load acting between two surfaces in contact is based on

. bagic solutions for the governing elastic equations existing

P
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for these shapes. Therefore, the description of the surface in
terms of population of these simple shapes has been the most
popular approach.

The most important contribution was made by J.A. Greenwood
and J.B.P. Williamson [41]. In their model the rough surface
is represented by a population of identical paraboloids having
a Gaussian distribution of peak heigpts. For the contact
between this surface and a smooth flat, composed entirely of
elastic micro-contact, they derived an express{on for the total
normal load and contact area. This expression was the function
of the distance 'd' between the flat énd the mean peak level
and in terms of three topographical parameters:

a. peak radius of curvature

b. standard deviation of peak heights, and

c. number of pea%s/unit area.

/
Greenwood and Tripp [42]) extended the model to take into

w

N

account the random misalignment of each pair of contacting
peaks, and derived contact area and-loads as functions of
distance betwegn the mean peak levels of the two surfaces.

The si%g:jfications in the above two theories of using a
constant radius of curvatu;e was removed by Whitehouse and
Arhard (43]. Experimentally, it was .found that on an average
higher summits are sharper than the lower ones. This was
incorporated into the surface statistics. The@r theory was

based on the assumption that surface profiles have an

exponential auto-correlation function.
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For an isotropic random Gaussian surface defining each peak
by its height and its two principal curvatures, Bush et 41 [44]
derived, in effect, the joint probability density distribution
of these variables. Each peak was replaced by elliptic
paraboloids having the same height and two radius of
curvatures. The elastic contact of the population of the
elastic elliptic paraboloid with a smooth flat was
investigated. The resylting functions 'a ' contact area and
'W' load were expressed in terms of the standard deviation of
height, slope and curvature. Finally, they even investigated
the elastic contact with fla; surface for an anistropic
surface. This investigation is mathematically attractive, but
they come into the category of asperity models where in the
peak shape is a de}erministic function.

\Higakado and T. Tsukizoe [45] attempted to resolve this
problem by working backgards from a Gaussian surface height to
derive the peak height probability density function, given a
deterministic peak shape function- either paraboloid or
conical. It was assumed that both the paraboloid radius and
the cone slope are independent of height. However, this
approach resulted in an unrealistic probability density
function of height distribution which is strongly dependent on
the peak shape. The distribution was negatively skewed for
heights lesg than zero with paraboloids and for heights less
than the standard deviation of heights with cones. This shows
that the basic assumption of having asperity models does not

validate the true representation of the surface.
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Perhaps the most remarkable effort made in the surface

profile characterization was by Nayak [24]. He discussed the
importance of structure function or ACF in surface studies. He
proposed the model of surface roughness based on the theory of

N

statistical geometry developed by Longuet-Higgins [(46] for the
aLalysIs of ocean surfaces. The validity of this theory is
dependent on one assumption, namely that the surface heights,
slopes and curvature possess a multi-Gaussian probability
density. In order to assess the non-Gaussian and/or anistropic
surface, he:suggested the cross-correlation technique, which is
discussed later.
e
Osman and Sankar [5)] employed the theory of
stochastic excursion to characterize the surface texture in
terms of vertical descriptors and mean intercept length. This

was a good step in the characterization of-surface, but the

analysis fails for non-Gaussian surfaces.

Later on, Elgabry, Osman, and San kar [47] proposed a

simplified probabilistic model to represent the intercept
length of crest and valleys for surfaces machines by grinding
or lapping processses. This procedure is based on three
assumptions. i
1. The probability density distribution of heights is
Gaussian..
2. The surface profile is considéred to be a series of

attached linear segments whose slopes w.r.t. the 'X'

direction could be positive or negative.
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3. The stylus faithfully follows the asperities on the

surface.

Having obtained mean intercept length and its deviation by the
procedure developed by Osman and Saukar (5], they d;termined
the scale and shape parameter of Weibull distribution. They
assumed that the distribution could be of Weibull type. It is
interesting to note that the distribution developed
ahalytically in terms of moments of PSDF in the next chapter
was of Weibull type for heights of asperities close to the
peak. Their usage in surface studies is restricted because
profile statistics does not give surface statistics,‘which will
be evident later on in this chapter.

In order to characterize the surface which is
anisotropic and non-Gaussian, Nayak [24) proposed a cross-
correlation technique to obtain useful parameters. The method
involves the determination of correlation function for p:;files
obtained at various angles to each other. The resulting

jnoments from the PSDF then gives parameters, as in the case of

isotropic Gaussian surfaces.

3.2 Surface and profile characterization based on PSDF

A simple example of an isotropic surface shows that the profile
PSD can seriously distort the spectral content of the surface
roughness by giving undue weight to long wavelength at the

expense of short wavelength. The relation between the surface

and profile PSD is due to Nayak [24].
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Auto covariance function may be define&”as [24]):

G(r) = lim ----- Z(x) ,x2)Z(x3+ X1,x2+ Ap)dx; dxp
4L, L2

-Ly -Ljy (3.4)
N V\fhen Ll + w®,
Lz + w
1/2

where r = (A1+ xz)

Z2(xy,x2) is the height of the surface at x1 and x5 position in
the cartesian plane and < Z(xj,x2)> - 0.

The PSDF of the profile

Ap(wl) = ee—- -I- G(r) exp(-tw; r)dr ) (3.5)

and that for the surface:

1
As(wllwz) = ;—;i— f/G(xl,xz)exp[(-r (U)lx +wox3 )]dxldx2
P ' 4 (3.6)

If the auto covariance function is considered as

o

- B(r)
e (37) (3.7)
B
Ap(wl) = ‘——---;;-- and, (3.8)
1(82¢w1)
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8
' Ag( W) m ——eeozmmcmnos (3.9)
\ s 2 m1(82+w2)3/2 \
e Where,
7 w? o wd ol (3.10)
-
In general, the PSD for these two cases lying in the range
(lw0|,|w0+ dwo|) will ‘be given by:
w\ 28 du
A(W) = commmmmmmam and, (3.11)
P (82+w2 )
- 0
A (W 2 mem e ————— 3.12
Y M REZ o
/ ’ 0
\ Therefore,
o
m/2 as wo-’ ®
Agl( ) T Wy .
R A = U, 1/2 § (3.13)
o AAP(‘”) 2(g "'wo) 0as wg > O
- \
' //, From this relation it is clear that the profile distorts the

surface in such a way as to give undue weight to long
wavelengths at the ejxpense of short wavelengths. All the

3
models discussed so far, -thus, pmphasize the profile

characterization rather than the surface characterization. In
‘order to characterize the anisotropic surface it is necessary
?‘ to examine the cross-covariance of parallel prdfilés. This

will be the subject of investigation in the next chapter.
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3.3 Summérz.
’ »

It was observed that the characterization of ﬁutface is

diff%fent from that of the profile. Most of the existing _
-

models deal with either profile characterizatioch or asperity

models for the surface. Nayak has shown that crss-covariance
of the parallel profile should be examined in order to obtain

useful parameters for surface chaiacterizatton.

Experimentally, it is difficult to determine the two-

dimensional ACF. Therefore, it is possible to deal with one

dimensional ACF in which co-variance is determined over a line

Y

inst@ad of an area. This is consistent with our assumption of
’iso;ﬁopig surface statistics. If surface statistics are not
i_sgi:ropic, valid results\g_:\an be obtained by averagirfg over a
large numbgr of lines scannfﬁg the surface. It is.this method
which has been adopted to characterize the anisotropic surface
wh;ch will be the substance of the next chabterxl .

The eiperi@ental determination of intercept kength and, its

»

distribution have been otained uéing the OGT technique. The

oéher conventional pprameters'ha;e also peen determined using
the éoncebts already disc;ssed. But tﬁe exact nature of the
distribution o£°1nterbept leygth and individual bearing érea
have not béen'aetermined. ?herefdre, the next chapter.will be
concernedywith the detefmination of these parameters. Their
v

application in determining the high and low pass cut-off and

hence, its usage in contact problems, will also be discussed.

{ . ’ &
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CHAPTER 4

3-D Characterization of Surfaces Based on Individual Bearing

Ar ea. T

4.1 1Introduction. / 4

In recent years an extended surface characterization of
machined surfaces has been the subject of considerable interest
due te itsxpossible applications in the description of
surface functional behaviour. In generai in thé
phenomenological approach to the functional behaviour,
parameters like area of contact, curvature and slopes of the
surface asperities become significant. However, these
quantities are random in naturé,.;nd hence must be determined
from.the pro%ability density distributions in terms of their
well-defined local values. This chapter considers the required
parameters for the surface characterization in form of the
probability density distribution of heights, eurvatures,
slopes, bearing lengths and bearing areas. The latter is

P

referred to as local bearing areas or iqdividual bearing areas
.(IBA), It has been shown that these pa:imeters can be obtained
experimentally by using "Optical Grating Topography." It was
established on the basig of statistical ana}ysis of the made
‘observations that the p:obébility density distribution of
heights are Gaussiaﬁ; Hence, it is possible to define a
"Bandwidth" parameter and interéept lengths between peaks of
the profile by employing the multiplé scanning metﬁoq of the

\
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OGT technique. The determination of these parameters and their
significance for their subsequent surface characterization is
discussed.

2

4.2 Auto-covariance Function (ACF) of the surface A

™

It is evident that tgg/hachined ground surface considered has a
topography as indicated schematigally in Figure 4.l. Any point
on the surface chosen at random can be analytically
characterized by its surface co-ordinates (x,y) and its
position as a function of height co-ordinates 'z' measured from
a chosen datum surface. It has been discussed in the previous
chapter how, by double scanning procedure, it is possible to
characterize surface asperities with reference to a mean va}ue
of the height co-ordinates. Thus in the double scanning
procedure an 'X' or 'Y' scan is performed at a certain scan
level (z;) indicated in Figure 4.l. It is also apparent that’
the scanning which is performed in a discreet manner leads to al
surface characterization in terms of "adjacent points AA' " on
the surface. Considering that z{(A) is a random function, the
auto-covariance function G( AA' ) can be given as

G(|AA'|) = <z (A)z(A"')>-<Z(A)¥ <z (A')> (4.1)
or in terms of (x.,y) coordinates by:

Gl(x2+y2)1/2] & <z(x}i)z(x+x',y+§)>-<z(x3i)><(z(x+x',y+y')?‘ 2)

The variance of the surface height function z(A)bcan be
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expressed in terms of G-function by
S

G(0,0) = [z(x',y')]2 --(z(x‘,y.)>2 (4.3)

in which z(A) is taken w.r.t, an ideal in¥inite plane "Aq" at

the level <z(x,y)> = 0 or for the height function:
(] ] 1) [} ' 1 ]
Z(x,y) = z(x,y) - <z(x,y)> (4.4)

'The above auto-covarxkiance function with respect to the ideal

surface 'Ap' (extending to ® ) can also be written as:

G(X,y) = <Z(X,y)Z(x+x',y+y')>

.

1
G(x,y) = lim --- /[Z(x,y)Z(x+x',y+y')dx dy (4.5)
Aq
AT—>00

'Mere 'AT' is the area of test sample considered.

e

It was mentioned earlier that 2-dimensional ACF is difficult to
\

obtalin experimental ly. Therefore, a given sample of surface is

scanned by 16 lines which corresponds to double scan of OGT

technique. This test sample surface then is assumed to be

statistically homogeneous over the entire sample surface. This
suggests the application of the parameters so obtained for
surface studies as more representative than those obtained by
profile characterization. Hence by ust‘ﬁ\& equation (4.5), the
‘auto-covarian*:;e for a profile if considered to be a continuous

function over the sample length or when datum line is taken to

i & be infinite along x-direction is given by:
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. Due to the finiteness of the test sample and,

e
L
- . 1 .
r G(x') = lim ——i/~ Z(x)Z(x+x")dx"'
) L
0
L d oo ks
,in which Z(x) = z(x)- <z(k)>

(4.6)

(4.7)

hence, of a

finite datum area A, the calcullations have to be performed

from discreet data as obtained f#om OGT.
(3=1, ... , N) the mean height wil X\ be:
) N\
s '=N
AV 1 Jf
KZz> = === % 3.
N J
J=1
and the discreet form of equation 1s,
N-M
1
GmA ) = ===== z ZJ Zj+m
N-M
-1

Hence fo

each line
S 7

(4.8) ™~

(4.9)

where 'A' denotes a chosen digitizing distance and the number

of correlated points ism = 0,1,2,

" Mo

The ACF is then

calculated for several regularly spaced lines on the

anisotropic surface. On the application of the OGT method to

the surface under consideration, the total number of points

were 200 with a digitizing distance of lum,

?

The

ACF for the
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surface 1s as gshown 1n Figure 4.2. The dashed curve 1s the

Gaussian function:

G(x) G(0) exp(-x2/:2) (4.10)

This 1s an “tmportant fi1nding aand is useful 1n surface studies

to determine the cut-cffs relevant to tne application which 1s

?igscussed later. The validity of the observation is also

\
discussed separately in this section.

For the further characterization of surfaces it becomes
necessary to find the variance of the slopes of the profile

which leads to the so-called intercept lengths that form the N

bearing areas. Thus considering the first and second
derivative of G(x) denoted by G'(x) and G"(x) these, quantitugs

. Y X
can be obtailned from equation (4.6) as follows: ) N

AN

N
1 e 1
G'(x) = lim ---~ J[ Z(x"')2'(x+x')dx . (4.11)
L
0
L -+
dG (x) dZ (x+x"')
ifh which G'"(X) = =-—we- and Z2' (x+x') = —=-—o—--- (4.12)
dx dx

L4

Letting O = x+x', one obtains the ACF along the x-direction:

L
1
G '(x)a= lim ---"j[’Z'(O )Z2(8-x")do (4.13)
A 0 .
L »
t»g’a
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A second differentiation and introducing anothai change

of variables, i.e., x =0 - x' yields
L
1
G"(x) = -lim‘——-./‘ Z'(x)2' (x+x"')dx. (4.14)
~ ‘ L
L +» > 0

in which GY(x) represents the ACF of the slopes of the profile.
The variance of the slopes being given by G" (0). In an
analagous manner the ACF of heights and slopes of the profile

along 'y' direction can be obtained.

4.3 Power Spectral Density Function (Amplitude spectrum) of the

surface.

The significance of this functian in surface studies and
the computational procedure of determining this function was
already discussed in Chapter 2. In this chapter the changes
observed in the- PSDF of the surfiée loaded axially is
considered. 1In this ntext it i\s(wﬁ’;thwhl le to consider the

«*

amplitude spectrum as:

o0

A(f) = (21r)n./b(x) exp(-t 2m fx)dx , (4.15)
in which £ = %?LL , w= radial frequency.

and, the higher moment can be expressed by

on

m, = (27 )nfan(f)df. (4.16)
[

- 0
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The amplitude spectrum for various loads 1s as snaown in Figure
T

4.3. The corresponding density distribution of he:gats fo

different loads 1s sasown 1n Figures 4.9.

4.4 Determination of intercept lenath ané 1ts distribution.

The computa:t:onal procedure of determin:iag the
distributfion of :nd:ividual bearing areas has been discussed
previously. However, it might be i1nstructive to briefly
mention the lineal fraction, its deviation and number of
intercepts/unit length, which leads to the density distribution

of intercept length in terms of conventional parameters. Using

the concept -of Quantitative Stereology, the lineal fraction (K‘

. g{“and its deviation can be éxp:essed<ffj;\

i
A= Ll X A= Y (4.17)

(4.18)

>
>
(o}
[a
>
l<
11
>
>

wheij> ‘aAp ' is the area fraction.

In accordance with the assumed Gaussian process, the

-

lineal fraction can also be written as [48]:

. @ 1 Z
A f e [leerf( —meeee
x = py (2)dZ = [l-erf( )] (4.19)
; . 2 1/26x(o) ,
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°’ <1,> =1/2(l-erf ====c 1/p4(2)E (27 ()|}

-

W
1 yA
\\ = (2)dZ2 = -=- [l-erf( _—===- )]
¢ ny ~
—~ . 2 1/‘cG},(o) (4.20)
Tne deviation of the lineal fraction :s given oy
{D(,\)}Z 1 { i’D(x)Tz }
D(Ay) = ¢---- = —-- TS | (4.21)
P ’ A Nyx ’{- o
where 'le' 1s the number of 1ntercept/scanning line.’
Nix = px(2) E 2! (x) (4.22)
= - e s - - exp ————————
i Gy (0) 2G4 (0)

In terms of these functions which are obtainable from the
A®F or the amplitude spectrum as already discussed, the average

intercept length in x, y scannjng direction will b:

5

(4.23)

and correspondingly for the 'y'\ direction,

<iy> ~1/2(l-erf z===- 1/px(Z)E ( ]2' (y) |} (4.24)

\lzcy (0)
%

In order?to extablish a distribution of the intercept length’
required for the definintion of individual bearing areas, it is
to be recognized that the Oth monent and second moment as
obtained from the power spectrum are now designated for the
(x,y) scanning direction as by mg, = G, (0), may = Gy (0), moy *

GY(O) and may ™ GY(O)'
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When 'Z' is veryalarge, the length of the intercept made
by the profile 2Z(x) at any level '2'. i.e., Z(x)>Z is very
short. The intercept length starting at x = x) is to a second

degree of approximation,
R (4.25)

The joint probability density of Z(x) , 'Z'(x) and Z" (x) can be

e

given as [49],

P(Z(x),2'(x),2"(x)) =

=-== (m2x (moymgx-may )1/ exp ---

1 . 1 My ymg « z2(x) Z"(x)
(2m 3/2 2

+ mfeee $ mmcccmm e -

z‘(x) 2Z(x)Z" (x) .m2x }
(4.26)

M2 x moxMix = M2y

Since 2"(x) is a random varjable whose mean value -m;2 is large

compared to the standard deiation, we may put, using equation
Ny

4.25,

x = mmmeme—- (4.27)

The probability that Z(x) will pass upwards through the value 2

o

in the interval x;, xj + dx with a slope between 2' and 2'+d2z’
is equal to the probability that, at x3 » Z(x) lies between Z
and 2Z-2'dx and has a slope in 2', 2' + dZ'. This probability

is:

. TR

N
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Z2'éx (dz") 1 72 o2 .
D(2,%% (x)) = —-mc-—-e-- exp ———(—-—- t - ] (4.28)
. 2_\/"’2:< M0 x 2 MO x M2y
Zxgress:ng 2' :n terms of :, shows that tne prcbaz:lity of Z(x)
passing up taorfTugn I ornoZy, x)y+dx and start:ing at Z(x)»> o
1ntervzi wnose lsngtn lizs tetween 1y, and 1y + C.( S
3/2
m2x 22 lx dlx:ﬁx —Zz m2x ZZ 12
----------------- exp( === - -ZT-oan) (4.29)
3 - ‘ 2:nox 8

The prcbability density for the’ intercept length :y 0 the I(x}

) -
)

=2 '2' very large 1s ootained by:

3/2
Moy z2 ly di,.dx -22 myy 22 12
e - exp(-——- B )
g 2:n0x 8
a — .
, 1/2
myy’% 22 . 1, di, dx -22
,|  ememmme e mmemiaa- exp ----
27 . 2mg (4.30)
2
2 2
1 myxy 2° 1 =Z° mpy 1y
p('lx) 2 emmem————— exp ( ----------- ) .
. 4mg 8mgy

(4.31)

The density distribltion of the intercept length obtained

experimentally is compared with thé density distribution of

0 -



,W“r?wrz;f'wiyﬂ%r— e S S S, R 2 G TR e (TR P Free 7 a7 - T - = ‘-mﬂ:@
B . . - - [

L

intercept length obtained analytically in terms of the moments

of PSD in Figures 4.4, 4.5, 4.6.

4.5 Determination of 1ndividual bearing area and 1:ts

distribut:ion.

Having obtained the distribution of the random variables ix and
1y, it 1s now necessary to determine the density of the

function 9lig,iy), Y.e.,

’

Gliy,iy) = cu iy. iy .= ap 432

Since iy and iy is a random variable, ap = g(iy,iy) is also a
random variable and the function is'a Baire function (see

Glossary).

*

Its value ab(Z)’=\g(ix(Z),iy(Z) (4.33)

Inorder to determine Pzp(a) for a given a, it is necessary to

determine the probability of the event { apia }. Denoting by

D2 the region of the (ix,iy) plane s.t.

"
It is easy to see that
lapgal = (ig,iy) €Dy - (4.35)
é;: M P(abéa)a P (ig, iy).ﬁoz}
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The density p(ap) can be found by differentiating P(ap) or

directly, by determining the region D, of the iy iy plane

s.t.
a <g(iXIiy)<a+da (4'37)
! 3
Since, '
\
a<a%<a+da = (ig,iy)E D, ‘ (4.38)
therefore, ; .
. sn
p(a)da = P{ a< ap< a+tda} = (ix,fy)e D2 v

therefore,

p(a)da = P{ac< ay < (atda) }

1]

=/—/ pxy(i)(lly)dlx diy' ' (4.39)
- 2

/ A[b
For the sake of simplicity, assuming the aréa to be of
elliptical shape, let
».ab’ = 7 /4 ix . iy. (4.40)
The distribution of ap is now obtained by using the

transformation given by equation (4.40) in the distribution in

equations 4.30 and 4.31, i.e., A
16ab (4ab)
gy = gteee kol 2] (400
m<(K1K2) nK1K2
-
. b 72 -~
LN
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where K; = 4mqy2 K2 = 4mgy

where Ko 18 the second order modified binel function. The
derivation is shown in the appendix [(50] [51). Normalizing the

area yields

2
A,.2% /{ Mo, mgy }
a* = et v 2xM0y ‘ (4.42)
T Mo xMQy .
- f(a") = a* Ky(a™) (4.43)

where a* is the normalized individual bearing area. It can be
seen that this is a density since the total area = 1. -

The norm@alizeﬁ’aensity distribution of individual bearing
area is as shown in Figure 4.7.

&
. )
4,6 Determination of mean intercept length and density

distribution of bearing areas for different loads.

There are a number of factors to be considered when dealing

with surfaces in contact. The two moSt important of them are

(i) the effect of surface film a (ii) the effect of size on

strength properties. h these factors may have a"pronounced
effect on the real situation as will be discussed later.

The simplest model one can consider to describe_ the

—

—

d,efofmation of the irregularities (asperities) is when the

plastic flow occurs. It turns out that the local plastic yield

" pressure 'Y' is very nearly constant (52], and is comparable to

" the indentation hardness of the metal. Under these conditions,
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the total area of contact formed for two surfaces in contact

can be givem as:

P

Ae = W/H [52] (4.44)
where A; = total area of contact )
W = total pnormal load O

H = hardness of the metal surface. p - 4

o o

It is to be noted that this is a very simple model assuming’

ideal physical properties that extend to ‘the outermast surface
ce »
.Layers. The sample having a nominal CSA of 4IOQmm~2 was loaded

up to 77.3MPa. Knowing the distribution of the individuai

bearing area at various scan levels of the surface, it is

poséible to get the cohtqgt area growth with load applied. To

&

2

arrive at the contact area, one can consider two distinct ways

. of deformation [Sél. oo
n \\\\\\\\\\\\ (1) The number of asperities in contagt remains constant;

(2) The average area of each asperity remains constant and
'on1§ the numSér of regions of contact increases 'with

load appreciation,

Referring to the Figure 4.8, it is seen th;t: the gtowt.t; of the
number of crossings is fairly flat over a wide range'excebt the
initial portion. This suggests the applicabilitf of the first
pase as sugg;sted by Tabor. For example, the mean contact

— - i

area

o ——

. ac“- (W/H) x nx A (4,45)
F ere, ? ’

I3
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A = nominal CSA in mm< ;7 n = number of contacts/mmz. For W =

-

10.5MPa , H = 200BHN , n = 221 and A = 400mm2, ao = 23.7uf
which corresppnds”to a scan level of 0.8 um.

The zero scan level cc;rresponds to the level of point
contact ’between two surfaces 1n contact. Therefore, the mean

plastic deformatibn is equal to 0.8,m. Similarly, the

N\

variation of the 1ntercept length with various scan levels*and

hence load is shown 1n Figure 4,10. The probability density

distribution of IBA correspond}ing to these l1oads 1s shown in

. Figure 4.11 and the variation of ap in Figure 4.12.

[
v
L]
4

- 4.7 Determination of cut-offs.

=3

It was shown by Attia [53], and then by Abrams [54), that it is

necessary to confine measurement to the portion of the spectrum

o

of wavelengths which is relevant to the deformation of the

- interface. .For example, at very high loads it is obvious that
Al
the 1rregu1ar1t1es havmg short wavele?gths, and hence higher

- frequencies, will be flattened out and will disappear from the

~

spectrum. - This is evident from the Figure 4.3. Moreover,

/
/investigations of machine tool joints when subjected to many
!

’/_Kaad reversal$ (see Archard (55)) have shown that whilst an
L-

/ \ . )
inftial plastic defor:@on in the contact surface will occur,

the material response nevertheless will be an elastic one as
long as the initial load is not exceeded. Therefore, from)he
-

o ) point of view of present analysis it is impoftant to recognize

—
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a certain frequency of the occurring asperities below which the
contact problem between two surfaces can be analyzed in terms
of, elasticity theory. Thus individual bearing areas as defined

~

earlier which depend on the frequencies of the ocoeurring
asperitie@s will have to be consid;red as contact area thgzgygh
which a cdntact force can be tradtmitted. This particular
frequency for a given load is known cs a cut-off frequency, and
therefore the problem reduces to the determination of thé/cut-
of£fs which define the pass-band. \ﬂ

\ The cut-off.which rejects the long wavelengths is the easier

)
one to select, as it clearly must be related to the largest

horizontal dimension of the sugface interaction. In maky
contact problems, psually the h;gh pass cut-oﬁf is set by the
dimensions of the normal contact area of the size of spectrum.
On the other hand, the ldw pass cut-off is rather difficult to
determihe. In the context of the contac¢t problem one can
obtain such a cut-off by assuming a certain initial plastic
contact. The knowledge of the distribution of bearing area
permits the_determination of the extent of the plastic
deformation that can take place for a given load. It can be
further assumed that all asperities with dimensions of a
foearing area smalley than that corresponding to an area capable
of holding the parS{cula: load will be deformed pfést}cally

with reference to the interface in the contacting bodies.

Hence, it will disappear Afrom the power spectrum.

;
S

v
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4.7.1 Low pass cut-Off: ™~

7

As discussed earlier, the high pass cut-off can be 5iven by
t

[56], ’ ° . \

w ——— (4.46)
dg
=

where dg = diameter of specimen.

=
1

" Instead of considering the bandwidth between wy and Wi, (low

pass-cut-off) of a spectrum of unknown constants, by fil}:eting
at wy the problem is reddced to that of a bandwidth between 0
and W g of the spectrum when constants are known or can be
determined provided that G(x) function continues to hold.

Before proceeding to the determination of low pass cut-off,
it is net’essary to determine the density of contact spots for
that particular load. This relation between the hardness
H(BHN), and the yield strength of the material given by Tabor
[(57] is,

H= 2.7Y (4.47)

. . total area supported by load 'Ww'

= W x 2,7/H ~ T (4.48)

e
¢ e
4

The knowledge of the distributionof individual bearing area

permits the determination of height of asperities at which the

total bearing area is equal to that given by equation (4.48).
»

Knowing this height of asperity 'ZC', one can calcutate the

density of contact spots N from equation (4.22).

1 My, m 172 z.2 Z
2
N = /:,{/_5 __.)S-_ZX_) e)sp(- —-E- - —-S--) (4.49)
/4 m mg mOy 2mg 2m¢,y
. 77
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" Having calculated the density of contact spots corresponding to
a particular load, it is now necessary to determine the moments

of the PSDF valid between limits '0' and wp. According to the

equation (4.10), the ACF is given as:

o~

Y -x2
G(x) =G(0) exp( — ) =02 exp ( — ) (4.50)
2 2
B B
¢
where 'B ' is the auto-covariance length. D = total RMS
/

L]

Eoughness of the surface.
Taking the Fourier tran;;%rm of the equation (4.50), )

A(f) = D2 ./m ,B exp(-f2 B2 / 4) (4.51)

=

[
where f = frequency inu m-l, Therefore the moments of the A(f)

can be given as:, :
’

, L
'mn = /wnA(f)dw (4.52)
0

Us.ing equations (4.51), '(4.52), mgyx, m2x can be determined
knowing G(y), and can be used in the equation 4.49 to determine °
the unknown wp. Therefore, corresponding to this pass band of
-wH and wp, the moments so %btained can be used to determine
the individual bearing area distribution. This distribution
can be employed together with the well defined local stress to
formulate a solution foy the elastic contact problem using the

concept of probabilistic mechanics (58] to take care of other

factors like the effect of size and surface film.
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-4,8 Discussion of results.

Referring to the Figure 4.2, it can be seen that the initial

L]

pori:ion' o/f,,tfe ACF for the surface is <of the form ©
. .
G(x) = G(0) exp(-x2/B2) (4.53)
This curve is the most représentative of the entire surface and
this determines the beha'yiour of A(f). For 1(: is the initial
portion of the ACF (G(x) curve that determines the shape and
magnitude of A(f). Most of the difficulties associated with
the exponential ACF [3) do not exist with this form of the
initial portion of ACF. This can be proved by jconsidering the

Gaussian or more gederally, a Gaussian curve ACF model,

G(x) = D2 exp(-x2/ g2) cos(o x) 4>0. (4.54)
The F.T. of this equation gives: .
vy
A(f) = [nl/2. D2.g .exp (-£282)]) + w[Gp(f-0) + Sp(f0)]
3 4
. %
= 13/2 D2, g{ exp(- (£ +5 )28 2) + exp-[(f-c?)] (4.55)

In this case, it can be verified that £2Af -+ 0 as f - o ,

Now, if we consider the general cosine ACF, i.e.,

G(x) = Ag e PfX)| cos(ox) . (4.56)
nr

and obtain its F.T., /

A(f) =4mAag, b [£2 + (b2+02)]/[£442(b%-02)£2 + (b2402)2) (4.57)

It can be seeh that £2A(f) does not approach zero for large K.

Therefore, G"(0) which is the variance of slope given by -
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G"(0) =---—f £2°A(£) .df, tends to large value .
(4.58)

0

In both cases, the mocdels give similar results when ' ' and

is equal to zero, which rcl-:‘presents| the true Gaussian and
exponential ACF reségctlvely. Simi lar observation was made by
Mayak [4 ]. It can be shown that by introducing eguation
, (4.56) into equation (4.5‘2)~ for a random process wilth
exponential ACF, the moments mp and my4 are Unde £ ined (theory of
Markoff Process). It is to be noted that this result was
obtained using OGT whose resolution is of the order of 0.5_m
and wavelength range of irregularities of the order_ of 4 ms.
According to Nayak, it i; clear that the Whitehouse and

—Archand's model does not allow slopes and curvature to exist,

though they proceed to obtain these data from profiles. The

reason why this does not amount to a contradictifm in practise
is that their sampling interval is finite; the effect of finite
sampling interval is to filter out small wavelength components,
and to change the behaviour of the ACF at the origin [4].

Considering Figure 4.9 for different loadif\gs, it can be
seen that as the load increases beyond 10.5MPa, the density
distribution of heights tends to be more and more exponential,.
This suggests the range of application of the Gaussian model
for the surface characterization in contact problems. Since,
the sta;tic loads usually encountered in the engineering
(!, application rarely exceeds 8MPa [54]), the Gaussian assumption
- is valid for all practical purposes.

y
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The intercept length distribution obtained analytically is
compared with the distribution obt®mined experimentally in
Figures 4.4. It is interesting to note that the distribution
is exponential, and the experimental as well as theoretical
resul ts obtained matches fairly well for higher value of levels
from thé mean line (CLA), The disparity between the two
which results at:. lower value is due to the assumption made in
the analytical development of the distribution (i.e., for large
value of Z(x) and for Gaussian random process). This does not
‘ restrict its usage in contact prablems. This is due to the

fact that at loads less than 10MPa, the first encounter between
asperities takes plac:at its peak, and the knc;wledge of IBA

distribution near to peak is mdre relevant than that much

below. - Since the moments of the PSD of the profiles scanning

. , the surface can be easily computed, the iptercept length and
g IBA distribution can be directly obtained from the equation
(4.30).

If one 1o0oks carefully at the equation (4.30), it is clear

that it can also be represented as

= . (Y =11 =(vi,)
pliy) = & By iy e ig>0  (4.59)
/ v . = 0 elsewher®
where, parameters ¢ , and B , of Weibull distribution are greater
than zero. From the equatio;x (4.30), 1is equal to '22'. It is
.interesting to note that similar observation was made by
Elgabry, Sankar and Osman [(47]. It is, therefore, quite
o » evident that in spite of using a better resolutién t.echnique of

, R A
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optical methods, the results obtained by them us%ng Talysurf
profilometer is similar, and hénce,.intetcept length -
distribution in general can be given by equation (4.30). This
is an important finding as this facilitates the determination
of individual bearing area distribution.

The area distribution as shown in Figure 4.7 is of the type
a*kg(a”) which has been derived in Appendix A. It 'is
interesting to note that one c3gn again arrive at this
distribution by simply determining the moments mg and my. This
is again an important finding useful in contact mechaniéé.

The mean intercept length, mean bearing area and its
distribution calculated for'different loads shows that the’
contact area approaches the nominal area as the load increases.
However, as the load increases the deformation at the interface
might be so large that the asperities might overlap with the
neighbouring asperities, distorting completely original

¢ profiles obtained before loading. Even though this case is

rarely encounteéred in practise, it is not difficult to find

such large plastic flow in contact problems ;élated to high

heat transfer rates (nuclear industry)} In that case it is to

y ~ be noted that the model developed here is not valid.

The two factors discussed in context to the simplified model

y presented to obtain the mean intercept length and mean bearing

area greatly affec; the contact between solid surfaceé. The

g}rst factor is concerned with the presence of surface films

- (oxide layer, for example). These may undergo large

¢ -
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deformation at.the regign of contact. If the surface film is

ductile they will deform with the metal and retain their
integrity. In case of brittle surface, they will crack and
metél will tend to flow tﬂrough the cracks. These films are
especially important in adhesion and frictipon but
unfortunately, it is not easy to specify or quantify their
strength and\yield properties, A

.The second factor is concerned with the effect of sizq of
the asperi}ﬁes on local materialjproperties. Size hasllittle
effect on elastic properties, but it can have a marked
influence on brittle strength and plastic yielding [5{]. If
the volume being deformed is very small, it may not conéain any
mobile dislocations; and, in that case, Gane [59] has shown,
the plastic yield stress may reach very high valu?s
representakive of the "ideal" crystal lattice. This implies
that asperities may undergo much larger elastic deformation
before plastic fl\ow occurs, and the area of true contoact may be
appreciably less than that calculated from bulk values of 'Y",
Moreover, from the PSD curve obtained for different loadings it
is apparent that the amount of plastic deformation is\ very
small. This shows that the disappearance of asééiities Jgf
higher frequencies at higher load is rather small and could be
attributed to the statistical scatter inhere?t in the samplkng
process. This gives furthér credence to-ihe och;rencé”of
elggtic contact at loads less than ldﬁpa.

There are no theoretical models of contact between solids

\'
that take these factors into account.

-~
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It Has.béen shown that the distribution of the intercept lehgth
determined analytically on the basiskf Gaussian Ramdon Process

‘ig i*2 _exp(-i*z), where i* is the normalized intercept length -
obtainea from QGf/for heights of asperities at or above the R, )
value. Using the joint exponential 8ensity distribution of
intercept length along 'X' and 'Y' direction, the IBA
‘distribution was also determined analytfcally) It was found
-~

that it was of the form a* Kg(a*), where a* is the normalized
IBA and Ky the modified benel function. From equation (4.30)
it is clear that the IBA éistribution and hence the mean IBA,
can be determined at various ;gvels, knowing the 'zero' and
'second' moment of the PSDF. The moments of \the PSDF are the
average of the moments of all the\profilé PSDFs scanning the

———

test area of the surface.

The determination of ACF of th/snféace leads to thg
evaluation of cut-offs whicl.specifies the pass bandﬁtafing‘
part in the phenomenon "und; )investigation. The dependence of
application of load on cut-off reveals that as the 1load
increases, the importance of considering the waviness increases.
This suggests that there id an upper and lower bound of
frequencies of PSD which will hégg to be considere? to desdribeﬁesﬁ
the functional behaviour of surface. It is well known that as
the length or area of the sample is iﬂé}eased, one observes

longer wdvelength'features. As a random process, this type of

structure represents a form of non-stationarity that is termed
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~/h\‘stationary within an interval® [25]. This shows that
»

depending on-the upper and lower frequencies of PSDF, the

’ °

moments of PSDF would also change. Therefore, "to determine
these moments corré:ponding to lhe pass band defined by the
application of load, the higher and lower pass cut-offsrarqw

w P ;
determined using the initial portion of ACF which is found to
. \

be of the Gaussian form.
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QOHC$SIONS, AND RECOMMENDAT IONS

v

5.1 Conclusions

>

% [ 4
On the basis of the present study, the fol}owing conclusions

can be made: '

p A .

On Surface Characterization: .
L) ~

r @ .
/',)1. /;I'he characterization of gurface in terms of R,, RMS, -

mean slope, mean curvature and in terms of correlation
function is not sufficient to describe its functional

¢ behaviour. Extended characterization in terms of IRJ
b4

*
and its distribution, and not by simple geometric

shapes (l1like spheroids, paraboloids, etc:) is

necessary. The latter models give statistically .- ?

&

unsound results as the peak shape function is

deterministic.

d o

2. It was proved that the statistics obtained from a

K ' profile cannot represent the surface and that for

-

effective characterization a ,representative test area

be scanned by series of parallel profiles. )rhe surface

and prgfile PSDF showed that the profile distorts the

-
' __ surface in such a way as to give undue webdght to long
wavelengths at the expense of short wavelengths.
- T \ On Optical Grating Topography: -
WJ 3. The OGT technigue can be used to determine the
© o
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-

* - . kN at
parameters like R,, RMS, mean slope and curvature of

"#he surg‘a_ce irregularities. The characterization of

surface in terms of Yorrelation function is also
s,

possible(as the basic requirement of series of parallel

-

profiles with a.common origin .and can be obtained by
-

\

Pl

this technique. 3 .

1
~
~

4. The profile measurements can be obtained for surfaces
‘ — =
having R_> 0.76um(30u"). The maximum resolution

obtained using objective of NA 0.35 was 0,8um.

On Computational Procedure:

)

5. Compu;atioﬁ‘of the digitized data obtained by using O0GT
yielded parameteés in the form of: /f
(i) the mean intFrcept length and'its
distribution;
(ii) the mean individual bearing area and ith
<~ distribution. , -
6. The coﬁputational procedure is quit? general in nature.
It Eg applicable to surfaces showinﬂ: .

(i) isotropic or non-isotropic;

(ii) Gaussian or non-Gaussian characteristics.

7. The intercept length distribution obtained from profile

measurements showed that it is of exponential type.

8.. Theé application @f principles of Quantitative
‘stereology also yielded the areal fraction and'iﬁs

deviation. The areal fraction gives the fraction of
\
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the nominal cross-section-area which is the total
bearing area at the chosen:level, bt
9. The Auto-covariance Function (AFC) of the surface

determined by scanning and then averaging over the test

"y area of the surface yielded a Gaussian form, i.e.,

G(x) = G(0) exp(------- ) -

It was shown that this function is the true
representation of the surface. It did not display any
of the basis limitations possessed by the exponential

\

ocurve. ) -

On Analytical Procedures:

0. The analytical determination of disf}ibutron of
intercept length showeé that it is of the form i” exp (-
- - '

i*2), where 'i*' is the normalized intercept length.

This was observed to match yell with the measured

values obtained from OGT for heights of irregularities

=Ra' s .

* 1ll. From the density distribution of intercept length, the

distribition of IBA was determined. It was founé:thqt L
it was of a" Ko(a'), where ‘'a™' is‘tﬁe ndrmalizéd :
, beaging area. Moreover, it was found that this
ﬁ distrigution can be easily determined from the mﬁmenﬁs ,
! 4 \ of the spectrum. LT . )
? : ‘88




bearing area. Moreover, it was found¥ that this
distribution can be easily determined from the moments

LR ‘ 4 < N /
of the spectrum. U .

On Application to Contact Problems.

12, wWith the knowledge of thé densi1ty of IBA and 1nithal
portion of ACF, the low pass cut-off relgvant to the
contact problem can be determined. By knowing this
cut-off, it 1s possible to determine the wavelength of

\ surface asperities which actually contributes to the

formation of contact area on the application of load.

13. It was shown using a simplified model that as the load
increases the contact area increases as it tends to the
nominal area. The spectral analysis reveals the
persistence of asperities and importance of waviness

with the increase of load. /

i

14. The density distribution of heights obtained for the
surface subjected to increasing loads showed i{hat the

' distribution exhibits the deviati%n from Gaussian
characteristics and becomes more skewed (exponential).

Therefore, the theoretical investigation of intercept

(\ length and Bearing area which is based on Gaussian

Random Process is not valid for very heavy loading

(greater than 10MPa).

15. Using the individual be;ring areas (IBA) and their

89




-)‘ '}
corresponding probability dens{ty function, together

with the well-defined local stress, a stochastic theory

of deformation can be formulated for the solution of an

elastic contact problem,

Recommendations

It is recommended that OGT technique be automated to

gi1ve the direct computerized read-out of pargmeters.

In the present study the density distraibution of IBA
can be used to predict the deformation of the interface
formed by two surfaces in contagct., It 1s recommended
that the properties of the interface, for example

stiffness and damping, be investigated using the

concept of IBA and its distribution.

There is no theoretical model which takes into-
consideration the effect of size of asperities on the
material properties. It is recommended that by
defining a local stress with local material properties
a étochastic theory/of deformation be formulated for

the solution of contact problems.

It is recommended that theoretical study be undertaken
to characterize the surface which is anistropic and
non-Gaussian., The effectiveness of cross-correlation
techniques to agrive at useful parameters for such a
type of surface shoulé be verified through OGT

measurement.
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Using the 3-D characterization of surface developed in
this work with the concept of IBA, the gtudy of the

interfacial behaviour relating to the following is

recommended : .

l. the thermal contact resistence -
2. the frictional behaviour of surface

3. the bonding properties of the interface.
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Fig. 1.1 Distortion of profile reading due to finite dimension

of stylus tip (exaggerated) ([17]).
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Fig. 1.2 Effect of stylus tip radius on measured roughnéss of
various stfrfaces [17].
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Simulated profile with RMS = 10 ym, L = 100 ym and

Fig. 1.3
radius of stylus tip = 25 ym, illus;ratihg:
1. measured profile 2. compensated profile 3. Using
further compenéation [17). l r
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Fig.2.4 General arrangement of OGT set up
/
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2.6

Grating lines on optically flat mirror.
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Fig. 2.7 Grating lines on machined ground surface
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f1g9. 2.8
1)
b)

c)

Examples of application of OGT
OGY photograph o€ 0.001" step

0CGT photoyraph of the belt ground sulface .

oGt photoyraph of the surface, obtained on the

surface grinder
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2.9 Computational flow chart.
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Fig. 2.11 Density distribution of heights of thhe profile

obtained along the direction of grinding.
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Concept‘of auto-correlation function.
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F1g. 2.17 3-D surface reprecsentation by means of parallel

scanning 1 .nes.
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Fi1g. 2.23 Effect of diffraction at straight edge [19].
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APPENDIX A
From equation 4.30 we get,
L™ N
!
X £(iy,2) = mpy2%iy - -2%my iy
----- 3~ exP I . . . Al

This is the probability density distribution of bearing lengths

'ly," along the direction perpendicular to the direction of

grinding.

————— so that --z-- = 2K3

. . equation A.1 becomes

1 -i,2
f(ix’z) 2D e—- P ix . exp _———— Y . . - ‘A.Z
1 2K
Similarly, letting 'Ky' = ------ so that -=----- = 2Ka
may2? z2may ;
we get,
i 1 -iy2
f(iy,z) B —-——, iy . exp ( m——— ) . » . A.3
Ko 2K» -

as the probability density distribution of bearing lengths

‘iy' along the direction of grinding.

Considering the bearing area to be elliptical given by
A'i
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[Ny

ab = ___TT_ ix . iy 1 L] . . A-4

the distribution of 'ap' is now obtained by using the
transformation given by equations A.4 on the distributions in
equations A.2 and A.3. This is obtained by substituting =1y

so that 14 = 4ap/™w , therefore,

4

iJ“-‘--ﬂ-w— . .« « « A.S

Now, after proper substitution, we get the distribution of

bearing area as,

16 ap -16ap2 K
f(ap) = 3o . . exp( ==e3TT5oc C ——--) dw « + « AL
il KlKZ w 2 ™ weK,y 2K,
0

letting y = w? so that dy = 2 wdw we get,

considering the generalized inverse Gaussian distribution
whose probability density function is

w mbt
(dx) =

u
o1 2 K¢( Ty )

Coxel e =l/2(T x4y x)

which has the property of infinite divisibility, > 0, > 0.
¥
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For ¢ = 0 (in this case) and T = ->--, Y= ---
2

1 K2

we get the solution of A,7 as
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APPENDIX B

The distribution of heights '2' and curvatures R, and Ry is
given by Gaussian distribution. Therefore, the joint:
distribution of these two variables are given by:
: | Ry | 1 5 » ,
f£(Z/Ry) = —=cemeee exp ----  (m4y2°+2my, ZRy+mgyxR<y)

1/2
(2 ™2 my) 24
x 4 x Ld L] - B.l

where Ay = moymgy-mpy

The distribution of the curvatures of peaks in conbtact for

different values of Z/ /ngy can be given by:

[+ ] * *

£(Ry/Z<H) = [£(Z , Ry) dz
H

0 * *
J £(Z , Ry) dz 4Ry

TS &

where 2 = 2//mgy

expressing B.l as 5‘

equation B.3 can be written as,
A.dlv
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CRACCR,
1 T CZ

f(R Z >H) = ¢ R X --- — €
(Ry > 1 |Ry| 2 o rerfc(C,H-CR ) )
2 o

/C2 .

er fc(H) « o « B.S5 .

Similarly we can get the distribution of curvature at any

height along the direction of grinding from B.2.
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