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Abstract

Integrated software development environments are assuming considerable importance in the
task _of developing and maintaining medium to large scale software. Central to such environments
Is an editor which has knowledge of the syntax and semantics of a particular programming

language.

This thesis presents the design of an editor within an lnt;grar,ed environment that allows
programming in fragments. Fragments are independent structural components of software and
their usage is an attempt to promote software reusablility. Two primary implementation issues
directed the design presented in this thesis - portability and adaptability. A system architecture is
presented that encapsulates the potentially non-portable components within well-defined modules.
Each editing operation requires enforcing the language rules. A structure classification scheme is
presented for a table-driven implementation with quick resolution of the syntax rules and adapta-
bllity. The importance of incremental handling of semantics within such editors is documented

and a simpie to implement approach is presented, along with the special support for fragments.
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Résumé
. Les environnements intégrés pour le développement de logiciel ont une importance grandis-
‘ sante dans le domaine du développement et de I’entretient de logiciel de moyenne A grande échelle.

L'él€ément essentiel d’un tel environdement est un éditeur ayant connaissance de la syntaxe et de
la sémantique d'un langage de programmadtion donné.

Cette thése présente le “design” d’un éditeur pour un environnement intégré qui permet la
programmation en fragments. Les fragments sont des éléments structurels indépendents de logi-
ciel, et leur utilisation \est un essal pour promouvoir la®réutilisation de logiciel. Deux points
d’ifnportance ayant trait' A 1'tmplémentation ont guidé le “design™ présenté dans cette thise: la
portabilité—®t I'adaptabilité. Une architecture du sysitme qul isole les éléments potentiellement
non-ponabié A I'int “erieur de certains modules précis, est présentéde. Chaque opération de 1'éditeur
nécessite une stricte adhérence aux régles du langage. Une meéthode de classification des structures
pour une implémentation utilisant des tables pour une résolution rapide des régles de syntaxe et
pour faciliter 1’'adaptabilité est présentée. L'importance de manipuler la sémantique du langage de

facon incrémentale pour de tels éditeurs est documentée, et une méthode d’implémentation simple,
avec le support spécial nécessaire pour les fragments est présentée.
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- Chapter 1: Introduction

; Programming methodology in recent ycars has seen a large number of research
* efforts and its importance in the industry has increased considerably. This has risen from
the fact that software systems are evolving into increasingly larger and more complex
entities than their predecessors. Consequently, the tools and techniques_for programming
of a decade ago do not provide the levels of software productivity that are expected in
developing today's systems. An approach to improve software productivity is the reuse of

-~

software within a particular application area.

o

Concurrent to the changing nature of software systems, there have been new
developments in Software Development Environments. The primary emphasis has been
that tpey _should provide increased support to the evolving nature of programming
methodologies. As a result, such environments are providing, among others, language
support through all phases of software development, and an integrated concept in the
user-computer commuffitation. A very familiar tool to the software developer is the Edi-
tor. Thus the editor has been the focus of attention for evolution, or even revolution, in

the advanced environments.

The purpose of this thesis is to discuss the issues involved in the design 'and imple--
mentation of a Fragment-based Program Editor and to present some original research
contributions in this area. This Fragment-based Program Editor is an attempt to
address the increased demand on software produccivnﬁ—a\le to the incfease in size and
complexity in the requirements of present-day software systems. It combines recent
developments in language-based program editors with the methodology of software reusa-
bility. A system architecture for such an editor is presented in this thesis that is derived

»

from adaptability and portability requirements. Another major contribution of Ll(ls thesis

is a structure classification scheme for encoding language knowledge in editors.
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Incremental semantic checking algorithms are studied and a new approach, made neces-
sary by the interface control properties of Modula-2, is presented.

g

1.1. Language Knowledge in Editors

In a typical conventional programming environment, there are two major tools that
a software developer utilizes most of the time. One is the text editor that is used to enter
and modify programs written in a programming language, and the other is the compiler,
which translates the user's specification to the ,abstracc machine, the program, into a
form that can be executed. In many cases, the environment would provide a number of
compilers, and thus allow programs to be written in a number of programming languages.
A common editor is used for entering and modifying programs written in the many
languages for which compilers are available in' the environment. Consequently the
i(ht,era.ctive editor is language independent, and it is the role of the compi‘lér to inform the

user of any language errors in the program. _

However, the independence between these two major tools leads to less than desir-
able user support in softwaré development. In particular, this is due to the presence of
what has been termed as the ‘edit-compile’ cycle. It becomes necessary to repeatedly edit,
scan and parse a complete program, if only to obtain an indication ofﬁ absence of
syntax/semantic errors. Such a situation can be avoided by incorporating language rules
lﬂ the editor and in effect integrating the compiler functions with that of the editor’s.
Thus each user’s editing operation is carried out in concordance with, or post-validated

BY the language rules. This makes it possible for the user to be aware, within the editor,

if there is any conflict between the program being edited and the rules of the language.

Further beneflts also arise with such an integrated interactive tool. It becomes possi-
ble to utilize unused computer time to.incrementally generate code for the program being
edited. It is also possible to provide instructions to the user by indicating what changes
are permitted at different parts of the program. Further, the editor can provide immedi-

ate program formatting while in the editor, which results in a feedback to the user for

program semantics. In particular, for languages with the ‘dangling else’ problem, this
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feedback can be helpful. In general, in a highly integrated programming environment,
the ‘editor’ provides all the interface. This results lr; an uniform user interface, a ‘mode-
less’ envlrbnmenc and consequently an environment which can potentially be easy to
learn and simple to use. ¢ A {

©
J

1.2. Software Reusability and Prc:gram Fragments.

~ Software reusability holds the potential of providing signmcan& improvements in
software productivity, as well as software quality. The reusability in software applies not
only to reusability in pleces of program code, bu\t, also to reusability in development
knowledge, domain knowledge, among others. However to accomplish these many goal;
of software reusability requires increased support to the user It is expected that the con-

cept of program fragments will provide a foundation on which an environment promo't,ing

software reusability can be construgted.

Program fragments are building blocks of a software system. These blocks can exist
in a number of forms. They could be a few program statements developed and used by a
single individual. They could be a set of data structures that are used to implement a fre-
quently used data type. They could be program ‘modules’ };hat operate as servefs of
resources within a software system. Thus prégram l‘ragmdents offer a multitude of
interpretations and are different from the prevalent concept of modules. A sol‘t,wa.re.
module arises from the need of the designer to decompose a system into functional units, *
to impose hierarchical ordering on function usage, to isolate machine dependencies, or to
ease debugging, testing, integration, tuning, and modification of the system Modulariza-
tion Is directed at being a top-down development The criteria used for modulaﬁzablon

include information hidiné, loose coupling among the modules, matching the modular

structure of the system with that of the problem.

On the other hand, software development through exclusive usage of large granular-
ity objects, such as modules, does not extend to providing an improved software develop-
ment methodology to the individual programmer. A requirement for the individual pro-

grammer in exercising software reusability is the support of incomplete program

(2
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fragments. Such program fragments are typically language structures of fine granularity,
or are in an ‘uprefined’ form. Thus the incompleteness of these program fragments arises
because they may consist of only data declarations, without a program body, or a frag-

_ment representing only informal program specifications. None of these types of fragments

~ 13 strictly the ‘compilation unit’ that a programming language recognizes as an individual

it

entity. ‘

’

However in the software development process, it often becomes ngcessary to apply a
mixture of iop-down and bottom-up approaches A fiagment of data declarations may
first be built and then seccessively tested with different algorithms before the program-
mer chooses one for the application being developed. The partiai systems that are
developed in this process are likely to be usefil for some other applications. It would be
to the programmer’s béneflt if:it were possible to store the software components with
some amount of design information to make the process of s{xbsequenb interconnection
easjer. Furthermore, the software development environment should ‘be aware of the

‘incompleteness’ of the partial systems and also possess language knowledge in providing

an integrated environment, as mentioned earlier. ¢

-

A Fragment-based Program Editor allows such an environment to be provided to
the individual programmer. The editor possesses knowledge of the language rules and can
thus gusde the development of programs that abide by these rules, within the editor. The
editor promotes software reusability by recognizing software components of a wn.de spec-
trum of granularity in the language, as individual entities. It treats structures of all
granularity in an uniform manner and it is driven by a set of Fragment Construction
Rules that maintains the construction of fragments to be valid structures as per the
language’s syntax rules.
o .
7 o , - ‘C\.j

1.3. Issues in Implementation.

In the design of complex software systenis, it is evident that‘ such systems may
require transfering to different software and hardware en¥ironments. A system that

allows easy transfer is referred to as a portable system. A Fragment-based Program

»
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Editor is one'such system for which the portability goal is very relevant.

In a system - like an editor, the functionality of the system is concentrated in a set of
tools that are speciflc to the system. Thus, it becomes possible to isolate design decisiong
in separate subsystems which do not affect the specific tools, and consequently, the func-
tional behavior of the system. Replacing such system components, as when the underly-
i;xg hardware changes, would not affect the other system cuuiponents It thus becomes
nece?sa.ry to develop a layered design in which lower layers provide facilities to the imple-
mentation of the functional tools at the upper laye]rs. Two main components can be

identified in the Editor to provide the desired tool independent facilittes One is'the user

interface system, and the other is the internal-representation manipulation system

The user I1nterface system 1s responsible for the display of programs on the screen,
the display of any menus, and the interpretation of input from the keyboard and any
pointing devices. In many recent workstation éomputer systems such capabilities are
offered within a window management system. However, these systems are not standard-
ized and easy portability of the editor across such workstations should be aimed for A
user interface system that encapsulates the window manager and input devices depen-
dent features is a component at the lower layers of the design. Thus in pi)rtlng the editor
among a variety of display terminals and input devices, the necessary modifications are

restricted to such an user interface system. %

The Fragment-based Program Editor allows editing of structures These structures
are elements of the language. Thus to permit efficlent structure editing, the program
fragments are maintained in structured form, mostly in tree forms. In such a case, the
structure editing operations can directly translate to primitive operations like grafting
and pruning on a tree. However the method of maintaining the structures 1s often
dependent on the characteristics of the underlying system on which the implementation
is being carried out. For example, in a system with an eflficient data base system, such
structures may be maintained by the data base management system. Thus the specific
tools of the editor should be independent of the method of the internal representation of

the structures. The internal representdtion manipulation system provides the needed

v
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independence. It abstracts the structural information needed in deriving the contextual
information necessary for driving the Editor, it provides the structure editing facilities,

and it also provides the textual representation from the structures.

Apart from portability, another considerably important aspect to consider in any
design is adaptability. Adaptability, and synonymously, extensibility, is concerned with
the ability to make modifications of a system according to changing requirements. Within
the functionality of a program editor, the foreseeable nmodifications are in changes to the
language's rules, or changes arising with increased usage of the system, mainly with the

user interface model.

The formalism inherent in language rules translates well to a concept that is partic-
ularly attractive for adaptability. This is the concept of fable-driven implementation. and
has been popular for generation of compilers. The application of the language rules 1n the
Editor takes place at every editing operation. This results in indicating wbethe‘r a struc-
ture editing operation is valid according to the language’s rules. In a table-driven imple-
mentation, such validation can I)e performed by accessing a table with the editing com-
mand and the operands of the operation to obtain the truth value on the validity of the
operation. Thus changes to the language rules can be accommodated by changing the
contents of the tables, changing the range values on one dimension, or even chﬁf;ing the

dimensionality of the table. Furthermore, it is possible to partition the tables so that

i

changes in command semantics have localized effects.

Adaptability in the user interface design allows potential users to tailor the interface

" to their requirements without affecting the functionality of the system. This applies to

adjusting the screen layout, or the color coding scheme in a graphics based interface; in a
textual interface it could be the facility to slias ‘and chain commands. The user interface
system, as explained earlier for portability requirements, provides the basis for this adap-

: <
tability requirement.
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1.4. Related Work.

The improvement of the programming process has been the object of study by
many research groups. Such efforts have resulted in the development of programming
environments that support programmers in the process of transforming specifications into
working programs. This process involves creation and modification of programs, checking
their consistency, generation of an executable form, and monitoring of the program's
behavior. An integrated programming environment seeks to provide a set of tools that
share the program’s representation, present a consistent user interface, and in cases, even

»provide the functionality of the environment encapsulated as a single tool

The early research in the area of programming environments 1s best represented by
the Cornell Program Synthesizer[TeiRe81], Mentor{Donze80| and Interlisp {TeiMaBl]| The
éyntheslzer supports syntax-directed editing, execution, and debugging of programs in a
subset of -the PL/1 language. It is a well-integrated programming environment and it is
primarily designed as a teaching tool. The original Mentor editor is a language-based edi-
tor for Pascal. While the Synthesizer mainly used templates to build programs, prognm{s
in the Mentor editor were entered as text, ghen parsed, and subsequently allowed struc-
ture oriented manipulations. Int.erlis:p is an advanced programming environment for
LISP. The system includes a number of highly integrated tools. It has been used in exper-
imental systems characterized by prototyping and desxg; iterations

Among the more recent rZsea.rch projects in language based environments are
GANDALF[Notki85], Pecan|[Reiss84a], Syned [Gasne83], and Magpie(DelMS84] Wahile the
functionalities of these systems are not too different from those of the earlier generation,
they have, in some cases, approached the idea of generating environments for different
languages from a language independent generator that accepts the language rules. In oth-

ers, the emphasis had been in extending the systems formerly suitable for, and sometimes

restricted to, teaching purposes, to deal with realistically large software systems

The question of providing reusability within an integrated prc;gramming endiron-
ment that is addressed in this thesis finds correspondence with very few research pro-

jects. The Programming System Generator{BahSn85) considers the basic unit of editing




aqd interpreting to be fragments that are arbitrary parts of a program. However, it does
not consider i;he typing of fragments to derive the rules‘ E>r editing, as has been done in
the system considered in this thesis. The IOTA Programming System|{Nak Yu83] sup-
ports type-parameterized modules as’ the basic unit of programming. While this appears
to be the closest to the conéept of typegl fragments, the granularity of the modules in

IOTA do not offer the same level of fineness.

This thesis consists of flve chapters. The following chapce;' intr‘oduces the MUPE-2
system for which the Fragment-based Editor has been developed. Chapter 3 describes the
architecture of the Edlt,qr paying attention to the requirements of portability and adap-
tability. The next chapter is the description of the scheme adopted to derive an adapt-
able language based editor. Chapter 5 discusses the handling of the language's contextual

issues within the language based editor. - i
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Chapter 2 : The MUPE-2 System

s, -

The MUPE-2 (McGill University Programming Environment) project aims to pro-

vide the programmer with a system which will simplify the programming and mainte-

t

nance processes of medium to large scale software projects. Towards this end the

MUPE-2 project seeks to improve on the command language,-feedback response, and pro-

&

tection issues, among others.

The primary feature of MUPE-2 is in providing the user the ability to program in

fragments. Fragments are structural components of a program that exist independently

 in the environment. The scope of fragments is enlarged by considering documentation

issues in addition to purely programs. Thus 1t is possible to have fragments L‘hac hold
natural language descriptions - abstracts. The contents of a fragment decide the type lof
the fragment. This type, denoted the fragtype, determines the availability of. operations,
specification of options to commands, and the applicability of other fragments for an
operation on a fragment. The fragtype of a fragment could potentially change in the
development process. Such a feature practically allows the user to develop software in a

uniform bottom-up and top-down manner. -

The use of typed fragments in MUPE-2 allows an unification of the cradit.ionaily
two distinct activities: programming in the large, and programming in the small Pro-
gramming in the large normally refers to programs that,'are large, developed by a large
group of people, and are meant to be usell for a long duration of time To tackle the
accompanying complexities in debugging, testing and modification, the large program Is
decomposed into modules. Thus programming-tn-the-large activities are normally con-
cerned with program units or modules, and the interrelationships between them
[DeReK76|. However such activities have been strongly separated from programming in

the small activities for which the use of syntax directed editors have normally been aimed
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at. As a result such edlt.or.s were restricted to activities like introducing variables, control-

ling the flow of control, and maintaining the basic internal static semantic consistencies.

The MUPE-2 system providesr an uniform view of programming to the user. The
above two activities are not distinguished because there oxs a common set of commands.
The system allows the user to consider all activities alike, whether an activity involves
operating on a single fragment or multiple fragments. The applicability of a command 1s
decided upon by the structure on which the operatio'n applies Further discussions on the

programming view presented in MUPE-2 can be found in [Madha85|.

2.1. Software Development and Modula-2

! In designing a programming environment to support a prograr:nming language, it is
evident that many of the environment’s features are decided by the language and the
model of software development ‘that it encourages. The language for which MUPE-2 is
designed is Modula-2 [Wirth85], and this section examines the model that is behind 1t

and the facilities the system provides to the user. .

Modula-2 is one of the more modern programming languageé that has been designed
with the intention of tackling the ‘crisis in the software industry’. The language provides
a reasonable balance between simplicity and functionality, although it is not wii&?out its
criticisms [Powel83, MadPT86]. Nevertheless, it is a close member of the popular ‘Algol
family’, which should prove the language to be easy to learn and use among the program-
ming community. Nonetheless, Modula-2 includes many features that are beyond the
scope of many of the earlier langpages. The language’s particular attraction lies in it
being usable for both ‘low-level’ programming - for which assembly language was the

only resort - and for developing large scale software systems.
The most distinctive features of Modula-2 are:

° Strong typing with static checking. As with its predecessor Pascal, Modula-2

employs a strong type checking for operand compatibility during compilation time. -

. Separate specification of interfaces and their implementation. Each unit of compila-

tion is composed of a deflnition and implementadipn module-pair. The definition
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module specifies the interface of the compilation unit and the implementation
module provides the implementation. The two modules exist as distinct textual enti-

ties.

e Data apstraction. It is possible to hide the type specification of user defined types
Such types are accessible as opaque types, and are only relevant vlé, the operations

that are availuble to be applied on them.

® Systems programming. Access to machine specific details are possible due to the

facility of allocating space for a variable at specific addresses in the memory map

-

/ ° Concurrency Single processor quasi-concurrent operations are permissible by the

_concept of co-routines. . . . ‘

»

Another language with similar features that has attracted a lot of research interest
recently has been the Ada programming language [Unite82]. It s particularly ;ncerestlng
, to note the specifications of the Ada Programming Support Environment [BuxtD81] The
primary reason for developing such specifications 1s that not only the language, but the
environment for software development should also be portable. However no such
development has been noted with Modula~-2 and it is apparent that research n slmllaf
directions for Modula-2 is urgently needed. Languages such as Ada and Modula-2 are
intended for implementing software systems that are large and complex.' Such systems
are normally composed of a large number of modules and as a .result the support for

developing these systems require tools that are different and beyond the (text) editors,

compilers and debuggers that have so far been used in systems development

\ N

The design of complex systems often require a subdivision of the task into more
manageable components that are within the scope and knowledge of a single speclz}list..

Many issues are relevant in the decomposition, but the dominant theme is that the

’ decomposition results in a systern with components that are tightly cdntained within

themselves and minimize the interaction with other components As a result the develop-
ment_of individual components can be handled in an independent manner Interactions
between components is restricted to the functional usages of the components among

themselves. This has also been interpreted as the individual components being producers

2
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and consumers of resources. Any single component is composed of resources, and it is
participating in the development of the total system by providiﬁg some or all of these
resources for use by the other components. This is the basic idea behind decomposition of

systems and the resulting notion of modules, or components.

Modula-2 addresses the software development process in the ahove discipline. A
primary aspect in Modula-2's programming model is the concept of interface
specification. Every module that is playing the role of a component, as explained in the
previous paragraph;-specifles its interface vi:}_ ‘import’ and ‘export’ lists. A module's
export list enumerates, in a purely syntactic manner what the rpodule provides as
resources contained within that may be accessed by others. In a similar manner, ;
module obtains access privileges to another module’s exported resources by an import
declaration. Since the export list of a module constitutes the interface specification that
is of interest to other modules, Modula-2 allows this specification to be textually separate,
that Is to reside in separate files, from the rest of the module which describes its imple-
mentation. This means that it is possible to have independent developmer-lr, of modules
since the interface control mechanism is directed only at the interface specifications The

-

complete implementation of the modules are necessary only during the linkage editing
phase for system integration

With such a model of software development in Modula-2, it is apparent very soon
that it does not get good help from conventional operating systems’ tool-kit and file-
oriented approach. Many of the command languages, for reasons of uniformity among
multiple languiges, are designed to work on a uniform structure, the file. However to
consistently provide access to the structure embedded in any program written in
Modula-2, the programmer should be provided with an environment that understands
such a structure. MUPE-2 follows the recent trend in programming environments in pro-
viding ah internal representation of programs structured by the rules of the language in
which the progr)am is written. These structural rules now dictate the scop‘e and applica-
billt& of the user’'s operations within the environment However, what MUPE-2 seeks to

improve upon similar environments that involve the usage of a language’s structure, is to

provide a better environment for the development of medium to large scale software
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systems using Modula-2. The following section introduces the concept of fragments and

their relevance in programming environments.

2.2. Programming in Fragments

3

The unit of program that is supported in MUPE-2 Is termed a fragment. It Is
different {rom a program because it is more close to being a building block for a complete
Modula-2 program, than what is achievable with the compilation units, or modules
However it should be understood thac‘fragments are not some form of sub-compilaflon
units. Fragments can consist of a compilation unit and car; also consist of a collection of
such units. This provides for an integration of the distinct activities of programming with
small structures and the activities associated 1n ‘integration’, or programming in the
large. Consequently, the concept of fragments allows the introduction of a software

development discipline that 1s uniform throughout the development process.

The primary eleme‘nt in this discipline of software development with the& use of frag-
ments is the concept of fragment types, or fragtypes. A fragtype associates the syntactic
information content of a fragment with a scalar value that is used for providing the
necessary rigor inherent in the language rules. The concept of fragtypes is general enough
to be é,ppl_it_:a.ble to a wide variety of languages, but this thesis will discuss only its appli-

cation to the programming language Modula-2.

-In a program written in a high level programming language, one can identify com-
ponent parts that combine to make up the whole program. It is pgssible to assoclate

these component parts, as building blocks in a software development process Fufther-

8
]

more, it is evident that there is a hierarchical structure in any program, as is apparent

from the production rules defining the syntax of the language. Moreover, there 13 a finite

number of classes which these building blocks can be classifled into The classification

values form the set of fragtype values, The fragtype values that MUPE-2 provides for

programming in Modula-2 in its environment are as shown below.

The deflnition of fragtypes is conseqgently based on the concept of software building

blockE In the following, a BNF-like notation is used to deflne fragtypes in terms of an




Expression Def-Imp Module

Declarations Program Module

Statements Unit Subsystem
Abstract Procedure Subsystem
Unit Module Subslyst,em
’ Procedure Def-Imp Module Subsystem
Module Program Module Subsystem

System-Layer

extended Modula-2 construct set. The gymbol /I\ means root-of, and <..> means
tnserted-around. The rules are meant to be used in conjunction with the language rules of
Modula-2, as found in [Wirth85). There are loose clas:ses among the various fragtypes
representing structures of similar characteristics, and the f{ragtype definitions are

N~
presented by these classes for purposes of clarity. .

1

Procedure Subsystem Procedure /|\ {Int;ernal—node}1

I

Module Subsystem n=, Module /|\ {Inlsema.l-node}1

Def-Imp Module Subsystem Def-Imp Module /|\ {Int;ema.l-node}1

Program Module Subsystemm :=  Program Module /|\ {Int:ernal-nodé}1

Unit Subsystem Unit /|\ {Internal-node}l

The above are the deﬂniclon§ for the several subsystem fragtypes. Each of these is
identified by the type of construct that forms the root node of the subsystem. For exam-
ple, Program Module Subsystem is the fragtype of a fragment that has a Program
Module construct as the root of subtrees of Internal-nodes. Internal-nodes, for notational
purposes, is deflned as v

Internal-node = Unit | Procedure | Module.

Procedure and Module relate to Modula-2 primitive constructs, whi_le Unit is an unrefined
construct of the previous two. Its us:age is to allow deferring a choice between Procedure

and Modulé. mainly in the early stages of system design. Thus a subsystem of




15

configuration A/|\(B,C,D) represents A as the root node of internal nodes B, C and D.

v

‘System-layer ::= {Incernal-node}2

A System-layer is defined as the fragtype of a fragment with at least two structures of

type Internal-node. An example conflguration is.(C,D), where C and D are Internal-nodes,

Procedure ;= Procedure-template<<..>Template-contents
Module :=  Module-template<..>Template-contents
Unit == Unit-template<<..>Template-contents

Def-Imp Module Def-Imp Module-template<<..>Template-contents

i

Program Module

i

Program Module-template<..>Template-contents

The above are the definitions for procedure and module fragtypes. Each of these is
identified by the type of template that is inserlted around its contents For example,
Module is the fragtype of a fragment that has Module-template inserted around
Template-contents. For notational purposes, Template-contents is deflned as,

Template-contents = {Declaration | Phrase} {Statement | Phrase}

Declaration and Statement relate to Modula-2 primitive constructs, while Phrase is simi-
lar to a comment that can be refined to primitive constructs, depending on its context.
Its usage is again similar to that of Unit, allowing system design at higher levels of
reflnement. As an example, Procedure-template<<..> Declaration Statement is a frag-

ment of fragtype Procedure.

Statements =  {Statement} 1 .

Declarations = {Declaran(:n } 1

Expression = Expression ) | . .
Abstract = {Phrase} 1

The above are the definitions of lower-level fragtypes. The associated fragments represent

'

homogenous constructs. For example,
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b:=28§

Is a fragment of fragtype Statements. Fragments of fragtype Abstract undergo changes
in fragtype value as the first Phrase in them is refined to any primitive construct of the

language.

2.3. The User Interface

Significant advances in computer graphics technology have allowed system designers
to experiment with new approaches to the computer-human interface. The most prom-
inent developments have been the use of pop-up menus, pointing devices and windows.
Menus have provided an effective interface because the user does not have to memorize
command words. Fast and easy selection by pointing has opened a new era in command
languages. The concept of windows has allowed the user to deal with several program
‘views’ on the screen at the same time. Windows also allow several jobs to be imtiated
and monitored simultan%ously, thus leading to more effective usages of a multitasking

computing environment.

The user interface for MUPE-2 has been particularly designed to take advantage of
these new developments. Furthermore, the MUPE-2 research seeks to utilize colour as a
mode of communication between the system and the user. A preliminary sketch of the

MUPE-2 user interface is shown in Figure 2.1.

The screen is partitioned into three non-overlapping windows, or ‘tiles’. These con-
stitute the Module Screen, the Scratch Pald and the Procedure Screen. The
Module Screen is used to view and edit in the hierarchy of ﬁ\odes at the procedure or
module level. The Procedure Screen allows the user to edit within 2 node. The nodes that
are internally viewed and edited in this screen are the ones present in the node hierarchy
viewed in the Module Screen. Multiple nodes from the Module Screen can be opened for
editing in possibly overlapping windowé within the Procedure Screen. The editing in
these two screens are done in context of each other. In fact, the structures edited in these

two screens are part of the compilation unit structure whose node hierarchy is viewed on
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Figure 2.1 - The MUPE-2 Structured User Interface.
t - /‘J
the Module Screen and individual nodes are viewed in the Px;{)cedu‘re Screen. Thus the

‘eﬂects of editing in one of the screens is apparent in the other screen. R

Unlike the previous two screens, the Scratch Pad allows the user to edit in a
context-free setting. Within this screen it is possible to deal with program fragments such
that they can be developed, reflned and assembled out of context of a main program. The
program fragments are of a wide spectrum of program granularity, from 'expressions to
systém layers. Multiple rragmen"cs can be open for editing in b\he Scratch Pad via the use:

of windows.

\

* ‘The top-most portion° of the user interface on a graphics display provides a set of
labeled ‘buttons’ that are selectable to invoke commands. It is a common set for the
three screens. Since at any instant there is only a single active fragmengt, only the appli-
cable subset of the commancis' for the designated sti‘ucéure within that fragment will be

available. These are the commands that are available to the user at the editing cursor in

-
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the active fragment. The available commands’ associated buttons are ?ﬁghlighted at all
times. The Scratch Pad region is also available to .provide a view of the library of frag-
ments, “called Fraglib. This library is accessible from the three screens and access to and

operations in the library are done with the same set of commands as used 1n editing.

.In the GANDALF project [Notki85], similar ideas to the above’may be found in

_their use of scenes. A scene works in cwrdinamn\h multiple unparsing schemes and

the window manager, to provide a better abstraction of the program tree. When a scene
node is entered, a new window is Kopened up and the scene node becomes the root of that
window. Procedure bodies elided via one unparsing scheme, are then focussed on Vl; a
different unparsing scheme, without being distracted by the remainder of the program.
However the MUPE-2 design is closer to the three-screen user interface as has been used
in the Spatial Data Management System [Herot80]. In that system, one screen provides a
world view of the data base, which 1s a coarse index to the whole system. On the other
two screens, the user can obpa.in an exploded view of a portion that is highlighted on the
world-view screen.

™

2.4. The Command and Response Language

Y

The human-con;puter interface design of a computer system is a difficult and com-
plex undercaklné which involves a wide range of cgnsidera.tions. The language of com-
munication between tﬁe users and the computer system is often referred to as the Com-
mand and Response Language (Cﬁ’.L). The user communicates with the qompﬁter system
by means of commands to utilize the set of services that are available in the system.
Commands are accepted as input by the system and can cause the information stored by
the system to .be updated, or to produce output in the form of responses. Responses
could provide the information requested by the command, or could be an indicé.i'ion‘of

the state of the system. ¢

A wide variety of CRLs are in use in present-day computer systems. While the more

traditional ones are based on textual form, recent developments in menu-based systems
.
appear to provide new directions in CRL design. Menu-based command languages free



19

the user from having to direct any effort to conform to a syntax in specifying commands.
The developments in using pop-up menus now allow the user to apply commands in the
visual context of the operands. As well, they provide l‘eatur;s like previous command
invocation, and c‘ommand chaining that were possible mainly with the more sophisticated

textual command languages.

The CRL for MUPE-2 is aimed to provide the user with a versatile command set
and the feature of applying sophisticated combinations and forms of the commands. The
command menus of MUPE-2 are designed for better understandability and faster usage,
Thus only a small set of options are present {or all commands and they are usuallyv avall-
able in a single pop-up menu. The versatile commands are driven by the context of the

operation, thus providing uniformity in the CRL [MadCR8S5|.

The possibility of using colour in }:he user interface has also shown new directions in
designing the CRL for such environments. In systems like MUPE-2 that are used for
development purposes, the ‘product’ developed has to conform to certain constraints dur-
ing this process. To facilitate a cooperative effort between the user and the system, the
latter normally provides responses to LhLe) user, on the consistency of the user's input, In
ang\inc:emental manner. Thus the major responses of the system to a user’'s action would
be t;o indicate if the action, the editing operation, resulted in a normal state, an errone-
ous state, or a state that is open to interpretation, i.e. not fully specified. Such responses
in MUPE-2 are indicated with colour in the display. The object of an operation is, in
almost all cases, displayed on the screen. Thus by colouring the object in an easily under-
stood colour, it is possible to indicate quickly the conflicts with any pre-defined con-

straints that may have resulted from the user’s action. The present scheme uses a pre-

defined set of colours to indicate errors, cautions and frozen operations.

The specification of commands in MUPE-2 follows the model of Star [Smith82].
Most commands take the form of noun-verb pairs. The object of interest (the noun) Is
first specified and then a command is invoked to manipulate it (the verb). The objects in
MUPE-2 are Modula~-2 language structures, or constructs, and an Sabject. is specified by

making a selection. The selected object becomes the ‘cursor’. Cursor movements are
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possible in a n;lmber of ways,

() With the pointing device, or the mouse - The tracking object is placed over the

object to be selected and the Select mouse button is clicked.

(if) With the cursor movement keys - There are four types of cursor movements, in,
out, next and previous that are directly driven from the keyboard. The cursor move-
ments have been designed to provide their response depending on the context. The
i and out movements take the cursor down and up the hierarchy of structures,
respectively. The nezt and previous movements take the cursor to adjacent struc-
tures that allow editxf:g operations. Editing operations not permissible on a particu-

lar structure would make the associated commands non-selectable by the user.

The commands of MUPE-2 are generic and perform in the same way regardless of
the type of language structure selected. The basic nature of these commands provide for
applicacion-lnrdef)endent semantics and resuilt in a command set that. is easy to learn and
understand. Some example commands are INSERT, REPLACE, MOVE and
DELETE.

The INSERT command is used to insert new structures in the vicinity of the
selected structure. The original structure does not undergo any changes. This command
is always qualified by an option that specifies. whether the insertion is to be before, after,
around or inside the current structure. While the meaning of before and after are
straightforvard, INSERT qualified by arounfl means that the new structure should
introduce a new _level in the hierarchy of structureés bétween the current structure and its
parent, if any. INSERT qualified by inside int’roduces the new stm;cture at the level of
the children of the current structure. However aﬁ the commands and options are not
applicable for all structures. The new structure that is to be inserted can be identifled
either to be a template of Modula-2 structures, or to be ;épliéa. of an existing structure,

p;Zvided that the language rules are maintained in the resulting structure.

The REPLACE command operates similarly, but it replaces the current structure

'by a new structure. The MOVE command is used for moving existing structures to the

]
vicinity of the current structure. But this command is much more powerful than the
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INSERT command singe it introduces changes at the place where the moved structure
is brought from. However it is useful for moving entire program fragments in integration

purposes in the building block model of software development. The DELETE command

—

deletes the current structure.

o

I

- — 4
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The architecture of the system has been designed with the primary goals of porta-
bility and adaptability. The present implementation is being targeted to the state-of-the-
art graphics based ;dmputer workstations [BecBP82, Nicke84]. While these systems pro-
vide s;i;nllar functional capabilities, their application interfaces are far from being stan-
dard. The application interface referred to here includes the interface to the graphics

,library. The UNIX(tm) program development support is the de facto standard for these

workstations. -

As evident from the previous chapter, there is a considerable amount of graphics
processing that need% to be carried out frequently, in order to keep the user-interface
view consistent with ‘the internal states of the program fragments. Thus, dchieving por-
tability in the face of non-standard graphics interface determines the primary dichotomy
In the system architecture. The Screen Manager (SM) represents the interface of MUPE-2
with the workstation’s intelligent graphics support. It can also be termed as the Pseudo
Workstation Graphics Support because of 1ts independence from workst.a‘r,ion specific
details. The support by the Screen Manager could. in principle, also be extended to
alphanumeric terminals because of the presence of window managers for such terminals

[Engin85]. However, this will not be considered here because of the performance degrada-

tion that is anticipated.

The major component of MUPE-2 is the General Manager (GM). In object-oriented
terminology it is the ‘client’ that a user would be associated with. Most of the GM's
activities would be performed by requesting services from the diverse ‘servers’ present in
the system. While the system implementation work {8 not being carried out in a true
object-oriented environment, the information hiding concept present in Modula-2 is very

‘close’ to the object model by its facility of hidden types,



Figure 3.1- The MUPE-2 System Architecture

4

The GM receives user input from the SM. If the user input is with regard to editing
operations, the command or partial operation speciflication thus received is passed on to
t‘.he Edit-compile module. In the present implementation the Edit-compile module does
not exist as a separate process. Communication with the GM is carried out strictly via
the parameters of the procedures of the Edit-compile module that are visible to the GM.
The communication is hence synchronous with control returning to the GM only when
the Editor completes the execution of the procedure that the former had called. This
mode of communication is different from the one between the SM and GM which is asyn-
chronous with a message passing model: The SM-GM communication is examined in

Lol

detail in a later section.

3.1. The Screen Manager

A el

The SM is designed so as to provide the GM with a uniform interface to the display

handling mechanism in a workstation independent way. It offers features like: s

wi
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. Simple Graphics Editor.

) Mouse Position Reporting.
° Keyboard Input Reporting.
° Easy to use pop-up and pull-down menus. . s
L Specialized Window Manager.

It should be noted that the SM is functionally similar to the Brown Support Environ-
ment that has been used in the PECAN syscem‘ [Reiss84b]. Mpreover, similarities can be
found between the SM and the Presentation Component of the Seeheim UIMS model
[PfarH8S5|.

The SM runs as a separate process from the GM. In the presené implementation
with Modula-2, one of the two is arbitrarily started with a TRANSFER call while the
other is soa.rsted next by a standard procedure call. This takes place in the initialization of

/
the MUPE-2 driver routine. As will be explained in the section on communication, the

two managers operate as coroutines and transfer of control takes place each time a mes-

sage is passed between the two.

The SM provides a top-level drawing of non-overlapping windows and a winciow
hierarchy for overlapping windows, wicfx\in the non-ove}lapping windows. The SM sends
mouse clicks as the window in which the click occurs and the relative coordinate position
within the window where the click took place For pop-up menu selection it sends the
item number that was selected. For pull-down menus it sends the command number
with which the menu is associated as well as the item that was selected. Keyboard input
is handled depending on the nature of the key depressed. For cursor control keys, e.g.
the up-arrow and the down-arrow, there is no buffering and the key values are passed to
nl;; GM immediately. For the other keys, local buffering is performed and on receiving
the string.cermlnacion character, the string received is transmitted to the GM. Local
echoing is done at the current active window to provide the user with the necessary feed-
back. The textual input would be checked for correctness, as per the language rules,

away from the SM. Thus correct textual input would affect the internal representation of

some 'program fragment.- The display and the associated screen maps are updated by the

5

°
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unparsing routines that are called when the internal structures are modified. This may
result in text being drawn twice on the screen, once in echo to the input, and the second
time the unparsed output. This is unavoidable since the editor allows for entire program

fragments to be typed )in before validation, and immediate echoing has to be done.

Each message received by the SM from the GM communicates a screen updating.
The size of the windows and their relative positions on the screen are however handled
by the SM. The GM assumes a standard size for all windows. Activities local to the SM
allow the user to alter the window’s maximum x and y coordinate values, keeping the
corresponding minimum set constant. Note that the effect of this, while similar to scrol-
ling, does not constitute proper gcrolling. The difficulty in providing scrolling is in the
maintenance of screen maps. These maps allow the GM to 1dentify mouse clicks with

the program structure(s) associated with that region. Allowing scrolling would entail a

communication overhead that would have a degrading effect on the response time.

To summarize, the Screen Manager presents a workstation-independent interface for
input and output functions for the system. The motivation for such a design was to meet
one of the major requirements - portability. The SM is essentially a lower layer on which
the rest of tﬁe system depends on to communicate with the user. The other parts of the
system represent implementations that can be ported easily depeng_ing on the avallability

of the language compiler and the operating system interface.

3.2. The General Manager.

The GM has been designed to ease adaptability and extensibility of MUPE-2. While
the present thesis 1s primarily concerned with the design ofjan editor, it is the GM design
that supports the object-oriented Editor design. The Edit-compile module is just one
resource thg.c the GM could use. The use of such a scheme is helpful for extending or
adapting the MUPE-2 system to new and additional features. Thus it Is possible to
change the Editor’s server modules easily if an environment for a different language is
required. The modular nature of the design enables changes for the system to be local-

ized if the interface specifications can be maintained.
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The editing model that is assumed by the GM is that an op’era.tion consists of the

following sequence ~

<operation> ;1= <destination> <command> [<option>] [<source>]
\ .

\

The destination of the op%raclon is always at the current structure of interest as indi-
cated by the active cursor.\\ The tokens for the above are identified with the help df/t?he
screen maps available to the GM. Once identified, the tokens are sent to the Edit-compile
module. Basically, the GM does not check for operation specification completeness. This
was necessary in the design because of MUPP—TS feature of user interruptible operations.
It essentially allows the user to have an inco‘mpletely specified operation and initiate the
specification of another operation. The incompletely specified operation is then inter-
rupted and can be resumed at a later instant. This feature 1S specific to the Edit-compile
module and hence i; is handled there. The mechanism for handling interrupts and the

features available will not be discussed further in this thesis, but can be found in

[MadhP8S5).

In the initialization of the GM process, performed at MUPE-2 start-up, the com-
mands that are active at this time are enabled and the initial screen is drawn. :I‘he avail-
able command set is always made known to the user via the display. The availability
does not remain constant over time because it depends on the context of the user’s opera-

tion, l.e. the active cursor.

At initialization the drawing of the entire screen is performed by the GM. The

drawing is achieved by calls to the graphics editor primitives available in the SM. The

 calls are implemented by a message passing scheme and the calls are non-blocking. The

) detalled design of the communication is provided in a later section. There would be a

considerable communication overhead in this initialization, but because the full screen

e

need be drawn from scratch only once, the payoffs in using message passing are still

‘attractive. What the message passing scheme tries to achieve is to enable the two

processes to work independently with a minimum of coupling. With such a scheme the

extensions to a distributed environment will be done in a natural way.
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“In using the Modula-2 PROCESSES facility to achieve process independence to

some degree, it is necessary to devise a procedure which would perform the functions
described above. The GM procedure (process) body consists of a loop as below.

LoOOP
GetSMMessage();
AnalyzeAndAct()

END

GetSMMessage fetches a message from the buffer (or mailbox) associated with the SM
to GM communication. It blocks if the buffer is empty. AnalyzeAndAct analyzes the
«-—message received from the SM for the event reported by the SM. Essentially the SM pryp-
" vides lexical tokens to the GM as the input from user to the system (and it Is also true
that the SM receives’ lexical tokens from the system to communicate to the user). The
tokens received from the SM are then handled by the GM at the syntactic level to build
the structure of the opera;ion. Once the operation structure is complete, edltor-serﬁantic
routines are called to perform the operation. Some of the token types and the
corresponding GM actions are as follows: .

(a) Keyboard_Event »
(1) Cursor_Control_Key
*Update value of the structured cursor so that it points to the
new structure,
(1) String
If there is an incomplete operat,i:)n at the current cursor position
» awaiting the specification of a <sgpurce>, parse the input string,
check for operand compatibility and i{f compatible, perform the
command with the parsed structure at the destination structure.
Otherwise do not accept input.
(b) Screen_{temn_Selection N
(i) Menu_Jtem ‘
Derive the partial specification for the operation.
(i1) Window_Item ,
Derive the associated structure from the screen maps. If no
incomplete operation specification at current cursor, then update
structured cursor, else check operand compatibility for the
operation.
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The text and graphles displayed within the windows are essentially (partial) views
of the structures operated upon by the Editor. ’i‘heae views are obtained by unparsing
the internal represenuauio}l of the program fragments. The unparsing is an incremental \
process. It has been apparent for sqmetime [Fritz84] that non-incremental schemes for
unparsing are too slow when the rragménc being edited exceeds flve pages. The more
recent schemes, as in R" [CapHo88|, adopt forward and backward incremental unparsing.
In MUPE-2’s editor, unparsing is criggerbed ei her by a modification in the internal tree
structure, or by a cursor movement which takes the focus of attention, the cursor, to a
structure that is not currently &isplayed. The incremental unparsing algorithm displays
the cursor in the centre of the window and unparses in both directions of the cursor, till

"o

each of the screen halves are filled up.

During the unparsing process, screen maps are constructed to map between internal
structures and window relative coordinater. When a user clicks at some element, textual
or graphical, within a window, the screen maps are accessed to provide the structure
identification from relative \yindow coordinates. However, the screen maps are dynamic

) N
since the window contents continually change.

While the internal representation of program fragments is out of the scope _of this
thesis, it is appropriate to consider them }n the context of the implementation of the
screen maps. The MUPE-2 syscém_gnamra:ins program fragments in’ a variation of the
abstract syntax tree representation. Abstract syntax trees have proved to be popular
with many implementations because they provide a representation somewhere in between
concrete syntax and actual semantics. The unparser generates the concrete representation
of a syntax tree from its internal representation. The concrete representation is communi-
cated to the SM for display. The screen map is generated (updated) during the unpars-

Ing process. The unparser is aware of the location within the window where the display

takes place with each call to the SM display routines.

’

In systems of the type of MUPE-2, the text that is displayed is often derived
dynamically from structured interrnial representations. Thus to allow the user to ‘pick’

internal structures from their textual representations underscores the need for
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maintaining mappings between screen coordinates and internal structures. This 'picking’
facility is available in systems like IPSEN [N@}:\a:nd PECAN among others. The gen-
eral method for identifying the internal struc/tures ha;\been to use a table with ;nt‘.rllles of
the pair (Screen Coordinates, Pointer to Internal Structures). However such a method is
“ space consuming and the structure resolution process is complicated. The scheme that is
used in the present implementation eliminates a major part of the space consumption

with limited effect on the performance.

This method saves on the space requirements because it does not use a table to
identify the structures. Since in the display of a program fragment, the current cursor is
always in the associated window, any structure ‘picked’ must be in the neighbourhood of
the current cursor. Instead of using a table, the nodes of the internal rep'resenmt.lon can
- be attributed} with the coordinates of the rectangular region within which the §ubcree

below the node is displayed. The attribution of the structure nodes 1s done at all times of

the unparser traversals.

Figure 3.2 18 an illustration of a contrived example of a portion of a program frag-
ment with its display and internal representation. The scheme to identify a selected
structure is now explained. Let the cursor be the procedure call within the sequence of
statements as shown in the flgure. Let the mouse click occur at the position indlcated by
#. The rectangles associated with each of the nodes is as indicated by the dashed lines

in the figure.

4
B

The search for the associated structure starts at the noée numbered 3, and whose
rectangle limits indicate that the click did not take place within the subtree rooted at
this node. Next the search continues by following the sibling pointer to node 4, then to 1,
stopping v‘vitb success at 2. To obtain finer resolution the search continues to the children
nodes of 2. It continues in this manner to finally return the Finegrain structure, which Is

the appropriate structure,

The searching algbrithm in pseudo-code is as follows.

‘ W
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) Figure 3.2- Structure Selection in a Program Fragment.
PROCEDURE SearchStructure(CurrentPolnter:NodePolinter;Click:Coordinates):NodePointer;
VAR
SearchPointer: Node>‘ol&cer;
BEGIN
SearchPointer := CurrentPointer;
LOOP
IF (Click in, SearchPointer’s region) THEN -
RETURN ObtainStructure(SearchPointer,Click)
ELSE | :
) SearchPointer := SearchPointer ~.Parent
ENDIF
ENDLOOP bl
END

S /
PROCEDURE ObtainStruc ture(PS:NodePointer;Click:Coordinates):NodePointer;

VAR
S1Ptr,S2Ptr: NodePointer;,

v

BEGIN )
. SIPtr 1= PS*.FirstChild; N ‘ '
S3Ptr :== S1Ptr; ; . ",
REPEAT
IF (Click in S1Ptr's region) THEN 0 ’
, o | .
- %
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RETURN ObtainStructure(S1Ptr,Click)
ELSE p
S1Ptr :== S1Ptr".NextSibling
ENDIF S .
UNTIL S1Ptr = S2Ptr; ’
RETURN PS @
END
‘\’.

The loop in SearchStructure has to halt since the reported click is-always within the

root’s region. The sibling nodes form a circular list structure and the search at a level

ends when the circle is completed. There is a small amount of redundant work done in™

examining a néde again after the search has climbed to the parent. This can be avoided
at the cost of a ‘marking’ bit.

3.3. Single Processor GM-SM Communication

The GM and SM are two cooperating sequential processes. The synchronization and
communication of such processes are of primary impoitance for effective utilization of
available resources. Among the many approaches proposed to achieve synchronization
and communication among such processes, the popular ones have been monitors
[Hanse75] and message passing [Hoare78, Gentl81]. The resulting process structuring in
programming via these two approaches are distinct in nature and 18 one of the criteria

] . ¢ .
used for selecting one over another. An advantage of using message passing is that it is

easily related to distributed systems implementation. The process structuring from the .

object-message viewpoint is easy and natural, and the resulting structure translates
. a

directly into code. .

MUPE-2’s stréng emphasis on adaptability in the design requires it to be adaptable

to the recent trends in distributed operating systems. The design phild‘sophy of these sys-

' tems is that a "workétation should 'be more than an intelligent terminal. Consequently,

the workstation should have a larger role by offering its résources to the overall system.
The state-of-the-art workstations in the distributed systems are of the power of the SUN

and IRIS variety. The generic features of such distributed systemé' are presented in the

next section where extensions to the present "MUPE-2 sinéle processor implementation
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would be examined. a

The single processor implementation for the SM-GM model is baseod on the support
provided b‘y the SYSTEM module in the standard Modgl&2tww. The _S%(STEM
module is an encapsulation of the low-level facilities that are provided by the particular
compiler lllnplemeulltaulon. However, the SYSTEM module facilities are for single processor
implementations alone and do not provide the abstraction necessary for adapting to mul-
tiprocessor configurations. Formulation of processes and their interaction, via Modula-2
can be achieved at a higher level of abstraction which hides the underlying system

w

conflguration. In a single processor conflguration, there is only one process that is execut-

ing at any instant and the processor is time-multiplexed between the processes.

To achieve this higher level of abstraction, [Wfrthssl has introduced a module called

PROCESSES This module ‘prov1des a small and simple facility for dealing with con-

. current, cooperating ‘threads of control’ (processes). The module PROCESSES provides

the folloyving.

N

1. Procedure StartProcess(P:PROC; n:CARDINAL)

L

Starts a process P with worksize of size n.

‘2.- Procedure Send(VAR S:signal)

Reactivates a process waiting for signal S.

3. Procedure Walt(VAR S:signal) .

Wait for some process to send signal S. . /
/ L J

4. Procedure Awaited(S:signal)

Returns true if any processes are waiting on signal S.
s

5. Procedure Init(VAR S:signal)

Initializes the signal S.

8. Type SIGNAL
Opaque type SIGNAL.

'

The call to procedure StartProcess is to start the g"xecubion of a process gxpressed
. 1y

by the parameterless procedure P in its argument list. The distinction between genuine

*

concurrency and quasi-concurrency in the execution of P and the calling body is
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dependent on the implementation of the PROCESSES module. The communication
between processes for purposes of conveying data among one another is achieved by com-
mon, shared variables. Apart from such cor;xmunlca.cion. processes also need to interact In
such a way as to force a particular sequence on their executions -. that is to synchronize.
Such communication for purposes of synchronization is handled by signals. The data
t&pe SIGNAL exported from the PROCESSES module carry no data as such. Every sig-
nal is used to denote some condition in the 'program's variables. Sending the signal
implies that such a condition has taken place. For processes waking up to a signal, the

.

subsequent operations are based on the assumptions that the condition has been met

The i}rlplementablon of the PROCESSES module for single processor Modula~2 com-
pilers is based on the previously mentioned SYSTEM module, which provides the low-
level facilities that enable Modula-2 programs to consider machine-dependent
specifications. Central to the implementation of the PROCESSES module via the SYS-
TEM module is the notion of co-routines. Coroutines a/re sequential programs that can
be executed quasi-co.ncurrent,ly. In sIlch a situation, the processor is switched from one

coroutine to another by explicit transfer statements. The SYSTEM module provides a

TRANSFER procedure to achieve exactly this.

In the implementation of the PROCESSES module provided in [Wirth85], each pro-
cess started by a StartProcess call is represented by a process descriptor in a process
ring. The ring contains desc;ipcions of all processes created up to that time. Processes
operating on the same signal are further threaded together within this ring. Send(S)
takes the first element off the thread associated with S and transfers control to 1t from
the calling process. Wait(S) places the calling process at the end of the S thread and
control is passed to the next ready to run process from the ring. Thus a fair queuing pol-
lcy is implemented by the use of the threads.

G

For the implementation to reflect a message passing scheme in process communica-

tion, the monitor approach for mutual exclusion has been followed. Messages are the

shared variables (buffers) whose access is protected by the synchronization facilities pro-

ikt

vided by PROCESSES. The message passing scheme designed is fairly simple because of
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the presence of only two processes, the GM and SM. The ob]eqts in this message passing
scheme are quasi-concurrent processes that deposit messages in the named buffers to com-
municate with other objects. When an object is free it fetches messages from the buffer

»
assoclated with it. Since there are only two such objects, the identification of the sender

O

of the message IS not necessary to be part of the message.

The buffers are flnite in size. Any attempt to deposit messages into 2 full buffer or
to fetch from an empty buffer results in the process being put to ‘sleep’ with a Wait for
the appropriate signal. It is thus an implementation of- the ‘well-known Producer-
Consumer problem. However, we have decided to approach thé problem from the
message-passing point of view beca.u_se it offers us a methodology for adapting to (con-
current) distributed systems. The duality between monitors and message—pas‘;ing for com-

munication and synchronization has been apparent for some time [LaueN79].

The PROCESSES module, while adequate for the present implementation, has some
limitations that precludes it from general acceptance. A major difficulty with Wirth’s
PROCESSES implementation, is its awkward semantics when a process or the main pro-
gram terminates. As soon as such a termination takes place, the entire program ter-
minates. Thus it does not support a dynamic multiprocessing L environment where
processes are regularly initiated and terminated. This problem has also been addressed in
[Sewry84], where in a modified implementation of PROCESSES, all processes call a stan-
dard procedure as the last statement. This procedure would remove the corresponding
Process Descriptor from the schedule ring maintained by PROCESSES, and transfer the
control to the next ready to run process from the ring. While this is a major improve-
ment in concurrency control via Modula-2, it does’' not unduly influence the modeling of
SM and GM as processes. For our implementation, SM and GM are static processes and
the two do not exist seﬁaracely. The SM could not ex\ist ‘meaningfully’ without the GM
becﬁu’se the onl”y intelligence that the SM has is in the area of ‘terminal’ management.
The GM's communication with the user | is handled by the SM. Without SM, GM is iso-
lated from any interaction with the user. The final te;rminabion is brought about by the

user communicating a qust signal to the GM which takes it out of the main loop in its
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3.4. Extensions to a Distributed System

With the growing popularity of powerful workstations and high speed local area
networks, there has been a lot of research on the structure of_applications in distributed
systems. In many of the present workstation/ applications, the workstation is either

treated as a remote terminal for a powerful mainframe, or it is treated as a stand-alone
N

personal computer. However, the present day workstations are better utilized If they are

Jto be treated as a multifunction component of a distributed system. The reason for this

is that the power of the workstation will not be wasted in treating 1t merely as a termi-

nal. Furthermore, using it standalone isolates it from the beneflts of the computation

power available in the larger range of computers

One of the most important functions for the workstation in such a distributed sys-

tem is in providing the user interface support. The workstation acts as a fron,\t-end for
. |

the resources, which could be local or remote. Tasks down-loaded from a mainframe

frees it.to concentrate on the computation intensive tasks it 1s best at

For a distributed implementation of MUPE-2, it is intended to use the workstation
as such a component. The present design is adaptable to such a configuration because of
the layered approach that has been adopted in the design of MUPE-2. The model of dis-
tributed computing that attention is focussed on is based on the V-System [LantN84|
The V-System is an environment consisting of workstations, standard time-sharing sy;-
tems and dedicated server machines, interconnected by various local area networks
including the Ethernet [MetcB76]. It is representative of the recent workstation-based
distributed systems. The fundamental software architecture is that the system is func-
tionally decomposed ipto modules such as workstation agents or managers A module
could act as a server of a particular resource, or as a client for some, other resource, or
both. The clients and servers may be distributed throughout the network with the same

-

semantics for local or remote access, or communication.

)

In such an implementation of MUPE-2, the SM is the ‘terminal’ server. Futher-
more, the SM is designed in an application independent manner and can be used for

applications other than the MUPE-2 system. The main changes that are roreseer{ in a
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transition to a distributed implementation would be in process scheduling, and process
communication. The syntax and semantics of message passing have been designed so that
they can remain virtually unchanged. The structure and capabilities of the SM would
undergo minor modifications with its adapting some role in communicating with a distri-
buted kernel in the identification of remote servers. The present system architecture has

been designed so that the partitioning of tasks is the appropriate one to achieve the best

performance in the distributed setting.

In the distributed implementation, the SM would be the only component that would
be present in the local workstation to the user. The GM and the Editor modules would
exist in a remote and more powerful computing system. The SM design is based on the
Virtual Graphics Terminal Service (VGTS) that 1s present in the V-System. VGTS sup-

ports a wide variety of structured graphics in an application and device independent way

Thus in conclusion, this sectjon has presented the case for distributed systems based
on the power of present day workstations. The structure of a similar recent system, the
V-System, was examined to understand and appreciate the performance of such systems.
The adaptability requirement of MUPE-2 guided the design of the SM-GM communica-
tion. The transition of MUPE-2 from a ceptralized implementation to a distributed one
should be a simple one. Consideration of SM-GM communication in such a light would

provide major benefits at such transition time.

h



37

)

Chapter 4: A Scheme for Enforcing Syntax Rules.

A major part ofdthe design of a language based editor is concerned with incorporat-
ing the context-free syntax rules of the language. Being context-free, these rules signify
conditions that are to be enforced in localized language constructs. In a conventional
compiler, these rules are the basis on which the parser is constructed. However, in a tem-
plate driven language based editor environment, the front end of a conventional compiler,
f.e. the parser, is not necessary. Here the role of the parser is played by the mechanism
that decides the set of templates and the structure types that are available for a particu-

lar operation on a particular stpgcture. This set is selected to maintain the program in a

K75

consistent state by the conté®¥ifree rules of the language. Whether anything else takes
4
the program to an inconsistent state is the subject of the next chapter.

- -

This chapter aims to present a scheme to enforce the language's syntactic rules in a
template driven language based editor. An introduction is provided to a taxonomy in
language based editors, and the model of the MUPE-2 editor is presented within su‘ch a
classification. The prirr;ary concerns in developing the scheme have been that the imple-
mentation should prove to be adaptable and portable. Actemp*t,s to meet the adaptabll-
ity goal have been made by utilizing a table-driven approach in the specification of the
larguage rules. However to design an eflicient table organization requires a classification
model of language structures on which the editor operates, and doing so, to develop a

‘general model for edit::;r operations. Such a model is derived in this chapter. Portability
in the editor’s implementation across a wide variety of issues is essential. As an example,
this editor has been designed to be portable across the internal representation of the pro-
gram structures. This is achieved by the use of a structured value to represent the ‘cur-
.;xor" 1n the editing operations. Thus the structured value of the cursor provides an

abstraction of the program structures that the editor operates on. The tradeoffs in mak-

ing these implementation choices are flnally noted.




4.1. Types of Language Based Editors

Language based editors are usually of two types. In the first type there is an incre-
mental parser which Is invoked at various points during the course of editing. Thus, as a
program Is being built with such an editor, parsing is carried out (perhaps for each line
that Is typed in) to maintain the syntactic correctness of the program. The incremental
parser is normally able to notify the user immediately that the (previous) input was
incorrect. However, there are some editors, such as the one in COPE [ArchC81], which
would perform error repair on the input such that no error messages need to be indi-
cated. This: is part of a philosophy of cooperative programming‘ between the system and
the user. There could exist on-line help facilities to provide the user with the syntaxes

that are acceptable at any point within the developing program.

The other type of editors to incorporate language rules are the template driven edi-
tors. These editors are usually associated with a ménu based command language for the
editor. In such systems, the user is provided with a choice of language constructs that are
apprqpriat.e for replacing a non-terminal of the language. Here once s—uch a construct is
chosen, 1ts expansion is included in the program being developed. Thus the user is saved

from the bother of having to remember the correct spelling of keywords, or to match

begin-ends, among others.

The process of such a selection is equivalent to applying a particular production of
the grammar at a non-terminal. As a production of the. grammar may have non-terminals
on its right hand side, the language constructs could have portions that need further
expansion Thus the language constructs chosen could appear as templates with place-
holders for the portions that are not fully expanded. ‘For the scanner, the only require-
ment could be to identify identifiers and constants. However, a few editors, like the CPS
[TeiRe81], use an expression parser which could be seen as freeing the user from the

lengthy process of inserting an expression by the step by step expansion of term, faclors

and others that are included in the language rules to enforce operator precedence.

In the MUPE-2 editor, textual input and templates are used through all levels of the

grammar. This is similar to the approach taken by editors llke SYNED [Gasne83] and
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PECAN [Relss84a] in offering bimodality. The main reason for this is that the editor
should be convenient to users with a wide_spectrum of familiarity with the language.
While the template driven mode provides a strict adherence to the language rules, users
fairly familiar with the language normally find it restrictive. For such persons the tem-
plate driven mode is useful to construct the overall structure of the program. but would
prefer textual input for the rest of the program body. To provide the textual input facll-
ity at all points in the prégram require constructing a novel parser of the type described
in [Wegma80|, which uses a Set of heu::isttcs in its parsing. This thesis will not deal
further with such a pa.rsrer since it is still under design. The editor Is currently being

developed with only a parser for elementary structures in the Finegrain domain Such

structures will be introduced in a later section.

4.2, Editing Operations s

In the present editor.“templaceg are chosen as part of the operation specification.
The specification starts with the selection of a command like INSERT or REPLACE,
and the specification completes, in most cases, when the source operand for the operation
is specified. Once the operation 1s fully specified, the ‘action routines’ to carry out the
operations are triggered. These commands are implemented by combining the primitive
tree operations of grafting and pruning. As described 1n an- eariier chapter, the target of

these operations is always at the location of the current cursor.

The following is an example illustrating the specification of an operation.

Consider the current cursor to be located at the while statement in the diagram shown.
The user selects the command INSERT. This command has to be further qualified by
an option from a subset of {Before, After, InsideFirst, InsideLast, AroundFirst,
AroundLast.}. The options available are presented to the user in a menu of options.
The available options depend on the structure that the cursor is on, and the command
that has been selected. In the above selection of the insert operation, the available option

set is the full set as shown above. -

-
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<designator> := <expression>;

WHILE | >= 0 DO
Subtotal(i] :== Credit[i] - Debit[i];
DEC(i)

END;

A short explanation on the significance of the options for the insert operation fol-
lows. InsideFirst and InsideLast distinguishes whether the insertion is to the first state-
ment or the last .scatement of the white loop in the example. On the other hand,
AroundFirst and AroundLast are meant to distinguish in the insertion of an existing

structure around the target source structure. Since such an existing structure has to be of

. & ‘container’ type, AroundFirst places the destination structure as the first structure in

the container. Similarly, AroundLast makes it to be the last.

The necessary option sets for a command is derived from the cursor information and
the command. In this editor a table represéntacion has been used to store the appropri-
ate option sets. The prime motivation for the use of table representation is that it allows
for flexibity and adaptability in the editor. Modification in a table entry is, in general, a

simpler process than modiflcation of logic incorporated as code in a program.

The design of the tables for accessing the option sets is decided by the mechanism
used for Incorporating the cursor informaciqn. However cursor information has a larger
role to play in the further specification of the operations. Hence description of the tables
for accessing option sets will be postponed until the operation specification description is

completed.
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In typical operations involving tree structures, portions of the tree are replaced by
an already existing subtree (by c;py or transfer), or by the application of a|productlon
from the language rules. This requires a further step in the specification of the operation.
In this step the source of the operation is specified. As already described, the entire

operation could be seen as:

<operation> ::= <destination> <command > [<option > ][ <source >|

For operations that do not have a source operand, the specification is in post,'ﬂx
form. However such a specification method applies only to ong operand operations. For
operations with source as the second operand, the specification is in infix form. This is in
contrast to a specification scheme which would have allowed ‘selection’ of a number of
structures and then ‘appiying the single command on the selected structures Such
schemes are present in many of the recent graphics-based editors, but are not appropriate
when language rules have to be obeyed, which essentially is to maintain a larger overall

structural rigor.

The source can be specified either as an existing program structure, as textual input
which is typed in at cha.c'point;‘, or as a language template. In essence they both imply
the application of a production of the language’s underlying grammar. The Fource being
an existing program structure implies the application of a production of the grammar
where some of the right hand side nonterminals could be already expanded. A language

template is necessarily a production where none of its nonterminals are expanded.

Since protection is a major rMment for the editor, the candidacy of a program
structure in an operation needs to be first validated before the routine ‘lmplemenclng the
operation is called with the structure chosen as the source. The scheme used for this vali-
dation depends upon a hierarchical classification of the porogram structures. Using such a

scheme enables the validation routine to make quick decisions since a coarse filter is

sufficient to discard many of the non-permissible program- structures.

Language structures that are identiflable in any given segment of a program can be
seen to belong to classes that are easily distiiguishable from each other. Thus a language

structure like an assignment statement is easily distinguished from one that is a constant
P

v
~)
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declaration, which in turn is again different from an expression. Elements of one such
class €éan, In general, be seen to be composed of elements of other classes, and elements
of a particular class when ordered with elgments of another class can form elements of a
third class. Thus. the editing operations that a software developmé'nn environment like
MUPE-2 pl"ovides, are essentially going by rules that maintain these class distinctions.
Moreover, these editing operatiors truly reflect a bottom-up, top,-down, or ‘same-level’
nature of software development. As a result, the editing opera.tion\rules specify a map-
ping from a set of Cl&SS.e:; to another set of classes. Since in an ediﬂhg operation, there

are the destination and source operands, and a resulting structure, a signature of a gen-

eralized editing operation EditOp, is as,

EditOp, - Class; X Class; — Class,

This means that ché editing operation EditOp, is applicable to structures as are specified
above in the signature. Class, is the class of the destination operand, Class; is the class of

the source operand, and Class; is the class of the resulting-structure.

The interest then is to be able to formulate the editing operations by such map-
pings, and thus to drive the editing machinery. Thus for every editing operaﬁon, a set of
tuples or a relation, defines the rules for applying the operation. To achieve‘ this, the
classification scheme of language structures is the topic of the next section.

4.3. Structure Qlassiﬁcation

The invariant of an editing opération is bhat,,.a.t the syntactic level, the resulting
structure is still a sentence of the context-free grammar rules describing the sirntax of the
language. However these grammar rules are presented in such a way that to derive the
rules for editing operations requires an initial analysis phase. As an example, consider the
editing operation INSERT-Around on a structure which is a statement of the
language. It is possible to use a proéedure as the source for this operation if the state-
ment is the only lz}nguage structure of the fragment. In any other situations such an
opcraclgn would not be possible. Thus the language structure classification scheme that

should be adopted to denote the allowable set of editing operation@ake such

—
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distinctions. Furthermore, many of the editfng operations apply for a wé;ie range of

—— —

classes. For example, the INSERT-After operation applies for all classes of statements
k\_l

whenever the destination operand is of any statement Ly DR,

Thus, t;he classification scheme that 1s most suitable for this purpose Is a hlerarchi-
cal one. This is so because it is then possible to incorporate the rules of such language
dependent editing as combﬁtibxlicy in the different levels in the hierarchy. This results in
situations where the satisflability requirements are limited to examining the classification
values in the higher levels c'>f the hierarchy This introduces the aspect of preciston in
structure specification. In other words(;. the editor does not require the same amount of

information of the language structures, when it derives the validity of language based

editingw operations.

The classification model that is used in the editor 1s presented in this section in a
formal notational basis. The application of this model to some actual Modula-2 structures

is also illustrated in this section.

1 ¢

A program (ragment (F) 1s composed of (—) a sequence of well-formed program

structures or language constructs (5;'s).

F—’Sl Sgss-.. Sm

'Each of the program structures (S;’'s) can either be a compound structure, in which case

it is composed of inner program structures, or it can be an atomic or Finegrain struc-

ture. Thus for a compound structure S, ,

8

S = 5,8, ..5.

The classification of a structure derives a structured value for that structure as

class(S;) = (D, Day v By).

This classification of a structure exhilbits the hierarchical classification value. That s,
among all possible structures in a classification tree, the structured value of class (5;)
denotés che; path from the root of the classification tree to its leaf nod#, E, Thus for the
structure S;, D,; above denotes the top-level domaln value, the sybsequent elements the

p
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2
sub-domain values,'and finally E, the actual structure (generally 2 pointer to an internal

representation, or ‘opaque’ type). Note that «this classification is independent of the

v  internal representation that is used to store the structures. The function cla.ss(.) is
(%)

available at the m‘cerl’ace of the internal representations to provide the classification
value. Thus-the internal representation could be of any structural form like abstract

@/y b
syntax trees, directed a.cycllcs’;éraphs, or parse trees.

The top-most classification of language structures is by the primary domains. Pri-
mary domains identify the granularity of a language structure. While the Fragtypes of
MUPE-2, as introduced in chapter 2, are based on such a granularity concept, there are
d;malns to classify inner structures that are not allowed to exist as[/ia fragment of their
oxn. These structures are not well-formed in the sense that it is not possible to identify
themn as building blocks, but are more appropriate in considering phe user itnterface of the
editor vis a vis cursor movement. While the concepts behind, and the facilities of, cursor
movement will not be dealt with in the thesis, considerable attention has been paid to the
ease of cursor movements in MUPE-2's structure editor. In the following the primary

domain categories in stpucture classification and the possible subdomain constituents

within such domains are discussed.

°

> Independent to the primary domain value of a structure, every‘scructure also holds
contextual information as to whether it is solitary and whether it is/grouped. A true
value. for solitary applies only when the cursor structure is the only structure in the frag-
ment. A grouped structure indicates a pseudo-structure obtained by GROUPing adja-
cent structures. The primary domainé are Finegrain, Scatemer;ts, Partial Statements,

Declaration, Types, Partial Types, Record Fields, Nodes, and Fragment Level.

e

Finegrain structures are essentially textual structures and are desiéned to provide
uniformity amo-ng the flne granularity scrucﬁmlaﬁguage like expression,
Identifier lists and parameter lists. The textual mode of editing is the only way such
structures may be modjfied. The role of determining whether the text obeys the language

rules in the context it appe“ars, is played by the Finegrain parser. Such a parser deter-

mines the acceptable nonterminals from the internal representation where the text has

>

>
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been.input, and parses the structure based on the collected information.

vl 4 o
Structures with Statements as their primary domain are the statements-level struc-

tures of Modula-2. The structures within such a domain are further classified as belong-

ing to one of Containers, Composite Containers, or Textual subdomains. Belonging to the

8

Containers subdomain are the lopping constructs and the WITH statements. Composite
Containers apply to the IF and CASE statements. These statements need to be dis-
tinguished from the previous type because the nature of their cells differ from those of
Containers. An IF statement contains a THEN-part, possibly more t,ha.n: one ELSIF-

4

parts, and possibly one ELSE-part. Similary, a CASE S&tatement contains one or more
CASE-¢lements. The cells of the IF statements are of identical classification and the dis-
tinction among the different ‘parts’ is made by the unparsing routine (similar to
‘guards'). Statements in the Textual subdomain do not p\oésess a structural compaosition

and thus prohibit operations with Inside as an option. The assignment statement, the

RETURN statement, and the EXIT statement belong to this subdomain. N

Partial Statements subdomain designates the contents of IF and CASE statements.
They are structurally composed of an expression and a single body 6r statements. There
is no further classification among these structures for the purposes of synca'ctic distinc-

tion. An example illustrating Partial Statements is the boxed structure shown below,

3 : b n
IF ¢ch >= " " THEN ~ 9 . ",
X == ch;
EXIT T ‘
\
7
R Py . ,
ELSIF ch = LF THEN | °
X="" - ’ .-
"eoln := TRUE; ) ' o
EXIT

=

%)




‘e s .

46

ELSIF ch = FS THEN

Yx="",

-eoln :== TRUE; 5

eof ;== TRUE; \

EXIT | o ,
END : L 5o

i -
)

The Declarations domain designates structures that represent declarations of con-

¢

stants, types and variables in Modula-2. Procedure and Module declarations are not
included in this domain because the graphical interface allowed displaying the static
scoping tree, and editor operations in-such a view and hence need to be treated

differently. Procedures and Modules are included in the Nodes domain.

L

The domain of Types is an example of a2 domain covering structures that are not
g
permitted to exist independently as a fragment. However such structures can replace
existing or unrefilned type deflnitions. These appear on the right-hand side of type and

-

variable declarations. An example structure is shown boxed below.

VAR ’ :

\
\

a : |ARRAY [0..N-1] OF CARDINAL/; |

Substructures of structured Types structures as shown above belong to the d9main
of Partial Types. These too are strictly inner scruct;ures that do not exist as independent
fragments. Operations on these structures permit modifications to the sorucPural class of
a Type wlt.hlout chapging the base type. The boxed structure below, is an example of such

-Structure.

VAR

. . ,
[ A . o [
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a : [ARRAY] [0..N-1] OF CARDINAL;
et
Record declarations in Modula-2 involve structures within it that are different from
~

those found in other type declarations. Thus the domain of Record Fields cover the fleld
structures to be found in a record declaration. "The full classification of the struCtures in__
this domain re;:xuires distinction between variant and non- variant flelds, between ELSE
flelds’ and non-ELSE flelds, among others. The boxed structure shown below is an exam-

ple.

Person = RECORD

. -

lastname, firstname . Name;

CASE male : BOOLEAN OF
TRUE : MilitaryRank : CARDINAL | .
FALSE : MaidenName : Name

END |

END; - ' :

The Nodes domain cover Procedure ar;d Module declarations either individually,
with their children P}ocedure and Modules, or when-GROUPed with sibling declara-
tions. In addition, MUPE-2 environment rules permit declaratigns of UNITs, which are
unrefined structures that can subsequently be refined to either a Procedure ora Module
declaration. Nodes with their children are referred to as Subsystems, and collections of

sibling nodes are referred to as System-layers. The classification. within this domain
3
Includes differentiating between internal nodes and root nodes, between ‘compilation-unit’

nodes and others, between the screen on which bhe’ editing is being performed, among

?
s

others.

S

Fragments are the entities that are providgd with independent existence in MUPE-

2. However, editing operations are permitted on Fragments in the same way as structures

]
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within a Fragment. But there is difference bec‘weep a Fragment as a &hole and the con-
tents of Fragment. Thus it is possible to delete ﬂe entire contents of a Fragment and
result with an empty fragment. Deleting a Fragment however removes all traces of the
Fragment from the environment. Furthermore, there are Fragments in Ehe subdomain
Abstracts, that do not obey the language rules on whigh the environment is based. These

have been designed mainly for documentation purposes.

The following Is the classiflcation tree for structures applicable for editing, expressed in
EBNF notation.

(Solitary |Nonsolitary)(Grouped |[Nongrouped) Domain

Finegrain [Types|PartialTypes|RecordFlds|Declarations|
Statements|PartialStmts|Nodes|Fragments
Finegrain HEH Cont.alnerFlnegralnINonconcalnerFlnegraln

Cursor
Domalin

%]

Types = Textual|Structured
Textual = LlscSLruccuf;d|NonList,St,ruc tured
Structured = Procedure Type[RecordType|ArrayType|PointerType|Set Type
PartialTypes ;= PolnterToText|PointerToStruc{SetOfText|

ArrayOfStruct|Array OfText —
RecordFlds = (VariantFld|NonVariantFld)(LastFid|NonLastFld)

(CasePart|NonCasePart)(ElseF1d|NonElseF1d)
Declarations == ProcedureType[NonProcedureType

.

Statements = (ComamerlSt,ruct.uredStmr,|TexbualScmc)(IrSomt.|Nonlrs\imt.)

PartialStmts i==  (CaseElem|IfElem)(LastOne|NonLastOne)(ElsePart|NonElsePart)

Nodes i=  (SubtreeRoot|Subtree|ChildlessRoot|TheRoot)(CompUnit|NonCompUnit)
(UniqueNonUnitjNonUnigNonUnit)(ScratchPad |ModScreen|ProcScreen)

CompUnit = (ProgModule{DefImpModule|DefMod |ImpMod{Unit)

NonComﬁUnit. ;= (InternalNode|NonInternalNode)

Fragments = (Expressions|SingleStmt|Stmts|SingleDecln|Abstracts|ProcModule|

) ProgDefs|CompUnit|NonCompUnit|UnitSubSystem|UnitLayer|
CompUnitLayer]NonCompUnitLayer) B

0 - N

- The classification information for a structure is a hierarchy of information and it
allows a range of precisibn in specification. KHowever to maintain such a x:lassiﬂcatibl:
information at every structure would greatly increase the storage requirements for frag-
ments. This can be avoided if the'structure classification can be demand-driven. This
means that the classification information for a structure is evaluated only when the com-

patibility of operands (structures) for an operation is to be determined,
’ )

*
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The process of classifying structures is carried out in at most two separate instances
during an editing operation. At any time during editing a fragment there {s a current
structure of interest. Any edici’ng operation that is performed, always takes the current
structure as the destination. Fl\lrthermore, the avajlable editing commands and their
options, if any, aré derived from the attributes of the current structure. Thus the current
structure needs to be fully specifled at all times. The specification of the current struc-
ture forms the structured value known as the cursor information. This Is the first
instance of structure classification, and it is performed any time that the current struc-
turtawol‘ interest changes. The other instance of structure classification is when an editing
oper'ation is initiated and the source for the operation is indicated as a structure. Then to
check whether the indicated structure is compatible for the command specified on the

current structure, the structure is classifled accordingly.

4.4. Table-driven Menu Generation and Compatibility Checking

Having illustrated the cursor classification scheme, this section presents the table

driven implementation for the display of menu items. Another [:\aspect, of the“ggitor that

will be examined in this section is the design of an eflicient scheme for compatibility

t

checking in editing operations.

Menus appear ’a.t. two instances in the spepgﬂcation of the operation Firstly, menus
—

are presented for comma.nds, that need to i)e further specified by an option. An examgl_e_
of this is the INSER'T command. It is to be further qualified by one of the options that
are available for the application of INSERT at the structure where the cursor is
currently positioned. The decisions involved in making the appropriate display of menu
items are done using the current value of the structured cursor. It should be noted that
the structured cursor is determined or evaluated whenever it is moved to a new struc-
ture. Thus when it comes to displaying menu items no time need be spent in first deter-
mining the cursor value. This Is critical since fast response is necessary when displaying

pull-down menus. While such a scheme may slow down the response in cursor motion the

trade-off is justifled.
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There are only two commands, INSERT and MOVE, where option menus need to
be shown. Thus it is not feasible in this case to have Command as a table dimension
since a single conditional statement is sufficiently quick to make the decision. In addition,

these two commands have no differences in option set values at all cursor positions.

The \.second instance where menus are used during operation specification is in
operations that allow language templates as the ‘source’ in an operation. As indicated in
an earlier section, specifying a language template to be installed at a particular position
in the program tree is equivalent to the application of the corresponding production of
the language. In the present editor the commands that permit template specification are
INSERT and REPLACE. The templates that are available for a particular operation
are decided by the combination of the command, the option(if applicable) and the cursor.
It should be noted, however, that the user is allowed to choose an item from the menu of
temnplates, or select an existing program structure as the candidate for the operation.

Thus the user actions undergo the following sequence:

(1) + select a command from the commands that are available at that context,

(2) |if the command requires further specification of an option, select such an option

from the menu that is presented, and

(3) If the command selected was either INSERT or REPLACE, a menu of templates
Is available for selection; the user can select the ‘source’ of the operation to be a
lé.nguage template from the corresponding menu, type in text at that point, or select

an existing program structure.

Since the REPLACE command does not require an option specification, the menu
table for it can be separated from that.for the INSERT command. For both the com-
mands the number o(“ menu tables are roughly equal to the number of primary domains
\in the cursor classification. The tables u;ed have a maximum of three dimensions. As
before, the small size of the tables allovy )’é‘r modifications to be localized to small data

a

structures.
If the user instead selects an existing program structure, the necessary test before

calling the editing action routine is to check for compatibility. This test could be

4

i
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performed in two ways. In one method, the tables that were constructed to supply the
choices from the available language structure templates could be “Sfd- This is apparently
possible because these structures are of the forms that are applicable for the operation of
intleresc at that point. For example, for an INSERT-Around operation on a statement,
the menu items would include the templates for all statements of the container type.
Thus if instead a langua.ge’g structure s chosen to be inserted around, it may be checked
for compatibility by testing whether the form of the structure is included in the set of
the available templates. Il/l/ a different approach, compatibility can be checked by examin-
ing the structured cursor/values of the source and destination structures at varying levels
of precision, as determ'x/ned by the situation. For example, with an INSERT-After
operation, if the dom:la.lin of the destination is Statements, then compat;lbllityl test
require.s testing only that the domain of the source is also Statementa. However, il the
operation were to be INSERT-Around, then the test also requires checking that the
further specification of the source operand shows it to be of Container-Statement
type. In the implementation for the present editor the second method vas chosen even
though the first méghod may have meant savings in space and time by possibly using a
simple set membership test. The reason for this is the existence of grouped structures. It
is not possible to represent such structures as templates because they could be of 1 vari-
able number of language structures. However their behavior is generally similar to those
templates that act as containers. Thus to avoid incorporating ‘invisible’ templates the
'compacibilicy checking scheme using cursor specification of both the operands has been
adppted. The performance is not necessarily compromised because structures with widely

flering cursor /ya.lues can be rouncli to be non-compatible with a superflicial, or low-

precision check.

[
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Chapter 5: Contextual Issues in a Fragment-Based Program Editor

“

Programming language definition includes many aspects that are not described fully
by a context-free grammar. Among these are the contextual constraints of a program-
ming language’s syntax. These are also termed as the semantics, or the static semantic
rules of the language. These terms will be used interchangeably in this chapter. Exam-
ple contextual constraintsrol‘ a language are the scope rules and the type rules. In a regu-
lar compiler, these aspects of a programming language are enforced by a mechanism that
is different from the context-free parser that is used in the syntax analysis phase. In a
similar manner, in a language based program editor, the contextual constraints in the
language rules will be enforced by mechanisms apart from those used for enforcing the
context-free grammar. This chapter provides a description of the tasks involved in the
implementation of su{gh a mechaqism, as well as providing a survey of some of the recent

research contributions in this area.

65.1. The Incremental Nature of the Problem

In editing via a structure editor like the one for MUPE-2, the editor operates on an
intermediate representation between the text of a program and the code that executes on
a computer system. The intermediate representation used in this editor is the Abstract
Syntax Tree. The user operates on this representation via some view. This view is
representative of the internal structures and could be a ‘prettyprinted’ unparsed display
or the static scoping display of the structures. The internal structures accessed by the
Editor provide complete information on the adherence or otherwise to the language rules.
The user is notified of any conflicts of the structures with the language rules, in the view

that is extracted from the internal representation.
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During the course of editing the user operates on the internal structures that, as a
result, continually undergo changes. Thus, the mechanisms for enforcing the contextual
constraints have to deal with dynamic structures. In a conventional editor-compiler sys-
tem the editing and compiling are strictly disjoint activities in the whole. This implies
that the activities deal with the structures as a whole and do not take advantaée of the
fact that the modifications are mainly small changes and hence may not require redoing
most of the parsing. However this is not possible in the text editors because the products
of parsing, namely th; derived structures, are not handled by such editors. To illustrate

the nature of the problem that arises in such language editors, presented below is an

example that best represents the problem.

For programming languages from the Algol family, deflnitions and usages of
identiflers are located in productions that are remote to each other in the derivation tree.
The conventional muilti-pass compiler would use an earlier pass to set up the contexts
that are needed for performing the contextual analysis in the usages of r.hew identiflers
Since in a language based editor it 1s possible to modify the deflnitions, and hence the
context, at any instance of time, the identifler usages should also be correspondingly
rechecked for consistency with the modified context. The simplistic approach would be to
reparse the program f{ragment to obtain the new context, as is done in disjoint editor-
compiler activities. However, 1n an 1nteractive editor such reparsing would have degrad-
iog effects on the response of the\edlcor. Here, prior to the editing operation the seman-
tic consistency or otherwise can be readily identifled Thus after a structural modification
due to editing it is only required to identify where and if any of the program (ragment’s
existing structures are affected. This amounts to major savings in time by avoiding”’ a

complete reanalysis for semantic consistency[.

Thus the need for an incremental semantic checking mechanism is of utmost impor-
tance in language based editors. The problem can be better stated as the following. The
internal representation is a semantic structure that is obtained by ‘decorating’ the

' derivation tree with semantic (contextual) information. (The resulting structure may not
strictly be a tree any lon;\;er.) At any time, the semantic structure should either satisfy all

the semantic constraints, or if it does not, it should notify the user of such a condition, if

¢
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a view of the structure is available. After an editing operation, the contextual analyzer
attempts to reestablish the consistency of the semantic information in an incremental
manner. Those values of semantic information that indicate violation of the contextual
constraints are used for indicating semantic errors or cautions (re’fer section 5.4) in the
i)rogram displéy In some situations the contextual analyzer could als¢ be used to per-

“

form structural modifications to revert the structures back to a consistent earlier state.

The addition of contextual constrainis in language' based editors has been a popular
topic of research in recent years. This popularity has been mainly due to research in edi-
tor generators like the Synthesizer Generator[Reps84], Editor Allen Poe(Johns84],
PECAN[Reiss84b] and ALOE[AmbKES4|. These systems allow the user to specify the
syntactic and semantic constraints of a language in order to generate an editor based on
the language. While MUPE-2 does not support an editor generator, it is instructive to
note the specification schemes as well as the implementation techniques used in editor

generator systems.

5.2. The Attribute Grammar Approach.

The attribute grammar (AG) approach .for specifying language rules has been used
in a number of compiler-writing systems like MUG2{GanRW77], and GAG[KasHZ82].
AGs have the power as well as the simplicity in its ability to assign the context-
sensitiveness, or static semantics to context-free descriptions of languages. The use of
AGs In specifying the static semantics of a language in the generation of language-based

editors was first made in the Synthesizer Generator.

An AG Is an extension of a context-free grammar G = (Vy, Vr, P, S) consisting of
nonterminals, terminals, productions, and 1nitial nonterminal, respectively. To each sym-
bol F of Vy there is associated a finite set IN[F) of f'nherited attributes and a finite set
SY(F) of synthesized attributcs. The sets IN(F) and SY(F) are usually assumed to be dis-
joint, and that S has no m;xeﬂted attributes. The inherited attributes of F' are those
attritutes that are defined when F appears in the right-hand side of a production. Simi-

larly, the synthesized attributes are defined with F on the left-hand side of a production.
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For each production p € P,
piFo —voF v, ... i Fawy, F;EVY, v; € VR for 0S5<K,

there is associated a set of semantic functions. For each « in SY{F,) there is a semantic
function [, of functionmality D,X..XD,, — D, Similarly for each a in IMF,)

0<j<k, there is a semantic function f,, of the same functionality. m and a, depend on

Ny

semantic functions are used to assign meanings to derivation trees. Consider a derivation

tree ¥ and a node nin ¢ Let s

!

D Fo —voF vy oo U Fiyvg,

be the production applied at n. For each « in SY(F,) the function f o ' D, X..XD o —
D, associated with p can be used to determine the value of o at n when the values of all
the attributes a,..,@,, have been determined. Similarly, for a in IMF,)(1<)<k) the
function f;, associated with p is used to determine the value of o at the jth child of n.
If it is possible to determine the values of all attributes of any node in ¢ then the mean-

z';zg of ¢ will be ¢ decorated with these values.

An AG is now presented as an example. The underlying grammar has five nonterminals

with attributes '

IN(S)== IN(defs)=§ IN(typedecin)==§ IN(dent)=90 IN(uses)=={symtab}
SY(S)=8 SY(defs)={symtadb} SY(typedecln)=={typeval} SY(ldent)m={siringrep} SY(uses)m{typecinsh}

The grammar with the semantic functions is as below. The notation sym.attr répresents
attribute attr of symbol sym, and Func(.) denotes a function over attribute values.

S—defs’;'uses uses.symtab=defs.symtab
. defs—typedecin ident’;'defs defs,.symnab=Decln(ders.,.symté.b,Lypedecln.bypeyal.idenb.snrmzrep)

defs—¢ defs.symtab=—empty
typedecin—CHAR typedecin.typeval=character
typedecin—INT typedecin.typeval=integer

uses—+ident’:=="ident’;'uses uses,.sy mtab==uses,.symtab
) uses,.typeclash=(Type(uses, symtab,.ident,.stringrep)
94Type(uses,.symtab,ident,.stringrep))
uses—r¢
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I A derivation tree node of a program fragment describes instances of the attributes
of the symbol at that node. A derivation tree ‘decorated’ with attribute values at i,t,s
nodes is termed a semantic tree. ‘The notion of consistency of a semantic tree is pri-
mary to the operation of the incremental semantic checking procedure as used in the
Synthesizer Generator. A semantic tree is consistent if for all attribute instances, its
arguments are available and the value of each attyibute instance is equal to the semantic

function applied to the arguments.

The basic idea of the AG-based incremental semantic checker is as follows. The
semantic checking routine is executed every time a tree editing operation takes place. A
tree editing operation always takes place at a single node because any insertion, deletion
or replacement in a tree is basically an application of a pruning or grafting operation at
a node in the tree, Thus after an editing operation, if any change in contextual con-
straints took place then the attribute instances at the node of editing would be tncon-
sistent. ‘The incremental semantic checker starts at the node where the editing took
place and proceeds by examining those nodes whose attribute instances depend on the
initial and subsequent inconsistent attribute instances that arose due to the editing. The
major part of the work of the semantic checker is spent in ordering the dependencies of

the attribute instances for reevaluation of their values.

Al lncremental semantic checking scheme is optimal in time ii‘ it validates the con-
textual constraints of only those nodes in the treg that are affected by any non-local
changes. The scheme formulated by Reps [Reps84] is optimal in this sense. However for
ordering the nodes for reevaluation, the semantic checking scheme has to maintain
dependency graphs among the ‘attribute instances at all nodes of the tree. The resulting
storage requirements, however optimized, are enormous and in most cases exceed those
for the attribute instances at all nodes of the tree. Furthermore, the implementation of
the depepdency graphs and the operations on the graphs require an enormous amount of
code. For use in a non-generator environment, we have found that the payoffs to using

such a scheme are discouraging.

o



Among the criticisms of AGs for handling incremental semantics are:

() They are limited to checking. To handle anything that requires side-effects like
using default values, or forcing recompilation, extensions are necessary that go
beyond the formal applicative nature of the AGs. They are Jalso limited to handling

internal, static semantics.

(ii) They are a low-level description of the language’s semantics. The description of the
Dsemant{c functions involves writing a substantial amount of code The AG method
is dependent on the derivation tree produced by the context-free grammar. As a
result the symbol tables ‘percolates’ up from the deflnitions and then ‘trickles’ down
to the usages. Hence for a single change In a declaration, the entire symbol table

may have to be recomputed.

Thus while the AG approach is attractive in a limited sense, and given its popularity n
compiler-wrwg systems, it did not appear as a vlabl:e alternative for implementation In

our Editor The next section presents the scheme that was adoptéd for MUPE-2.

5.3. The Identifier Map Approach

The above has been so termed after the use of [dentifier Maps in the incremental
compilation model of Magpie[SchDB84] While the basics of the method developed for
MUPE-2 are inspired by the scheme u;:ad in Magpie, there are slgniﬂqant differences in
the two incremental semantic checki’ng schemes. The M;;gpie scheme of semantic check-

ing is closely related to the incremental parsing that is used for the purely textual mode

of editing that Magpie supports. The incremental parsing is achieved by LL(1) tech-

niques and it makes use of fragmenting the program into major syntactic units This has
been done because with the LL(1) parsing technique static semantic checking cannot be
performed beyond the first syntax error. Thus by analyzing each fragment separately,

that is the program in smaller parts, the above disadvantage has reduced erreco{;

However the scheme employed to deal with the proiram fragments during editing
was inspiring to our implementation because MUPE-2 deals with program fragments. But

while in Magpie the fragmenting was done by the editor/compiler without, perhaps, the
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user being aware it was done, the r;'agments for MUPE-2 are xﬁresenc because of the
user's ability to develop program fragments. To avoid any possible confusion between
chue term fragment as used in Magpie, with that being used in MUPE-2, the former type
will be termed node. ) \ N

The nodes in a program fragment are basi;:ally the procedure elements that make
up the static scoping l}lerarchy in a program fragment. Every no‘de has associated with it
an Identifler Map that holds entries for all identifiers referenced within the node. It does

not matter whether or not the identifier is declared within the node. In the case that the

1"/‘

program fragment is of granularity equal to or smaller than a node, e.g. a sequence of
= {
statements, the fragment has a single Identifler Map. For fragments of larger granularity,

there would be a collection of Identifier Maps, one for each node.

The Identifier Map at a node represents the binding of symbols to objects and it

contains the following information about all identifiers appearing within that node:

v

(i) Identifier Name.

(i1) Where the identifier is defined. If the declaration occurs within the node, it referred

v

to as a local declaration. If not, it is a non-local declaration and it contains a pointer

to the defining node, if any.
(iii) The category of the identifier - whether it is a procedure, varia.bfe, type etc.

(iv) The representation and value attributes of the identifier as would be found in a nor-

ma] symbol table.

(v) The references of the identifier. It contains pointers to the places within the node
where the identifier has been referenced. If the identifier is declared locally, it also

contains pointers to those no&les that ref'erenée the identifler within its body.

There i3 a significant diference in MUPE-2’s Identifler Maps.from those used in Magpie,

‘because of the presence of import and export facilities in Modula-2. Each module name

imported into a module, say A, has the effect of making the imported Symbols locally
defined in A. Thus ghere would be encrges in some other modules that treat some symbols

to be defined in A, even though they might have been imported into it. Symbols that are

not declared locally either point to the node where it is defined, or to an ancestor node




= where it is imported.

MODULE ModDemo; -
IMPORT InOut;
VAR v;xlue. count: INTEGER;
- MODULE NumberGenerator;
FROM InOut IMPORT )
WriteString, WriteInt, WriteLn;
v EXPORT WriteVz\xl. NextVal;
! . VAR Curval: INTEGER;

PROCEDURE WriteVal(val: INTEGER);
" ¢ BEGIN
- ert.eSbrlng("Value’ 1s:");
WriteInt(val, 3);
o * ' WriteLn
- . END WriteVal;
‘ . *  PROCEDURE NextVal(): INTEGER;
’ . BEGIN
- ‘ INC(CurVal);
\ RETURN (CurVal) (* Ax)
END NextVal;

o - BEGIN
CurVal =0
- END NumberGenerator;

BEGIN ¥
v "'FOR count :==1 TO 10 DO
value := NextVal();
) WriteVal(value); s
[ e END '
- END ModDemo.

o Figure 5.1- Program Module ModDemo._
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r Identifier How deflned I Category Where referenced
- Y
( ROOT environment
Modula-2 Ids Local
InOut ‘ Local ¢ def module Heading of Inout
Body of ModDemo
ModDemo Local prog module module heading
ModDemo environment B
NumberGenerator Local Module Heading of NumberGenerator
value Local Variable Body of ModDemo
count Local Varniable ~ Body of ModDemo
' NextVal Nonlocal@NumberGenerator Procedure \ Body of ModDemo
WriteVal Nonlocal®@NumberGenerator Procedure \  Body of ModDemo
InOut Nonlocal@QROOT Def module Import hist of ModDemo
WriteString NonlecalGROOT Procedure Body of NumberGenerator
Writelnt Nonlocal@ROOT Procedure Body of NumberGenerator
WriteLn Nonlocal@QROOT Procedure Body of NumberGenerator
INTEGER Nonlocal@ROOT Type Decln of ModDemo
NumberGenerator environment . .
InOut Nonlocal@ModDemo Def module Import list of NumberGenerator
WriteString Nonlocal@ModDemo Procedure Import list of NumberGenerator
Writelnt Nonlocal@h)iodDemo Procedure Import list of NumberGenerator
WriteLn Nonlocal@ModDemo Procedure Import list of NumberGenerator
WriteVal ~ Local Procedure Body of ModDemo
Export list of NumberGenerator
NextVal Local Procedure Body of ModDemo
Export list of NumberGenerator
CurVal Local Variable Decin of NumberGenerator
- Body of NumberGenerator
Body of NextVval
INTEGER Nonlocal@ROOT Type Decln of NumberGenerator
WriteVal environment
val Local Variable Param. list of WriteVal
Body of WriteVal
o WriteString Nonlocal@NumberGenerator Procedure Body of WriteVal
Writelnt Nonlocal@NumberGenerator Procedurs a Body of WriteVal
WriteLn Nonlocal@NumberGenerator Procedure Body of WriteVal
INTEGER Nonlocsl@ROOT Type Param list of WriteVal

-

e
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NextVal environment

INC Nonfocal@ROOT Procedure Body of NextVal

C al Nonlocal@NumberGenerator Variable Body of NextVal

RE*U—RN Nonlocal @QROOT Procedure Body of NextVal
INTEGER Nonlocal@ROOT Type Proc heading of NextVal

Figure 5.2- The Identifler Maps of the Program Module ModDemo
¢

'

An example of a program fragment's associated Identifier Maps is shown in Figure 5.2.
The figure shows the Identifier Maps at each of the no&es of the program fragment
shown in Figure 5.1. The columns in the maps show the values of the information items
i, i, iii and v, as enumerated above. The ROOT environment for this fragment hold the
declarations of the standard identifiers of the language, the modules that are imported by -
the program fragment, and the program fragment itself. Within a module, the effect of
an import list is to make available the identifiers that are now visible to the module and
the nodes that inherit the identiflers either implicitly, or via import lists in them. How-
ever the entry for ‘where-deflned’ shows such identifiers to be 'non-'lpca.l' For nested
modules that import identifiers defined in the ROOT environment, the ‘where-defined’
entry points only to its immediate parent module. This is because nested modules do not,

strictly, have access to the ROOT environment (except for the standard identifiers, which

-are unalterable).

The reference entries in the Identifler Maps enable the incremental semantic check-
i_ng routine to be performed in an efficient manner. Whenever the definition of an
lgenéiﬂer changes, the reference list identifles the usages of the identifier that require,
reevaluation of the contextual constraint consistency. While such checking of changes to
definitions appears to have an advantage over the ‘transport’ of symbol tables with the
pure attribute grammar approach, there is a price to be paid in keeping the reference list

consistent.

-

An example of such a situation is illustrated with reference to the module shown in
Figure 5.1. Suppose the statement at (*As+) which uses Curval is deleted (perhaps as a

prelude to some modi{,ﬂc'a.tions to the procedure body of NextVal). This means that the
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reference list that is maintained at NumberGenerator has to be u;?dated to rt;,ﬂect. the
change. Without the use of back pointers that have a premium on spz;ce requirements, it
Is necqgsary for the semantic checking routine to first locate th¢ nearest definition and
t\raverse the reference list to make the necessary deletions in it. Such a task is not
required in the AG approach because usage nodes do not have any semantically depen-
dent nodes that need updating. Another situation where reference list updating is
required is when the scope of an identifler is modified by an inner declaration that hides
some outer declaration in the inner nodes. However with the use of the local Identifter
Maps the situation is not as bad as it might originally seem. Whenever a new declaration
lbf‘a.n identifler is made, a search is done for any occurrence of the identifier in the( nodgs

that are within the static scope of the new declaration. For any identiflers found whose

definitions occur outside this scope, their references at those nodes need to be transferred

A
to the new declaration’s reference list. The presence of Identifier Maps helps in identify- .

Ing quickly the references in the inner nodes that need contextual copstraint reevaluation.

Otherwise all the inner nddes would have fo be semantically analyzed in their entirety.

Thus the adoption of the Identifler Maips helps in implementing an incremental
semantic checker which is ver; essential for an interactive language based editor such as
the one in MUPE-2. The next section looks at the problem of incomplete information
"that arises when the editor has to operate with fragments that are not compzilation units

. in the usual sense.

4
A

5.4, incomplete Information in Frag‘ments 3

The fragments that are found in MUPE-2 are arbitrary, but well-formed by environ-
ment rules, parts of a proéram. For anmplé, s fragment could be a seduence of state-
ments, a progedure declaration or a whole _program. In general, it is a sentential form of
some non-terminal of the language. The fragments could contain incomplete components

by the presence of templates that are not fully expanded. The use of fragments in

MUPE-2 allows bottom-up system development by combining fragments. The fragments

* themselves can be constructed top-down by reflnement of templates.

[
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- The realization of a program specification is achieved by the use of declarations and
the. main program body. The use of fragments allows the user to build and essentlally
st}ud/y_individual components of a program in isolation. As a result these components
present a situation where the contextual constraint analyzer has to be necessarily 'pe_r-
missive’ in enforcing the constraints. In essence, this means that the proifftyping nature
of the e?vironment should allow incompletely developed program fragments to be con-

veniently used in building blocks manner, without swamping the user with error mes-

sages during the development.

To our knowledge only one existing system has addressed the proplem of allowing
the use of program fragménts as a normal programming activity in lang;mge.ba.sed edl-
tors. It is the Programming System Generator PSG [BahSn85] that generates language-
based interactive programming environments from formal language definitions. Presented
below are the requiréments for the contextual constraint analyzer as formulated by the

authors of PSG.

1. The checking algorithm of the context conditions must be applicable to each frag-

ment of the language.
2. The checking algorithm must detect error situations immediately.

8. The algorithm must compute g.ll the type information, which is valid for all exten-

sions to correct programs.

4. The type information of a composed fragment@én be evaluated from the type infor-

- mation of the sub-fragments.

Requirement ], esséntia.lly deals with the new situation that arises when fragments
are used as programming en)l;it.ies. The checking algorithm should now be capable of han-
dling incomplete information in fragments that cover the wide spectrum of non-terminals
of the language. Error situations arise in a program fragment if, firstly, the fragment is a
complete program with semantic errors in the usual sense; or, if it I8 a fragment of
“sma,lleljl granularity that shows inherent contextual conflicts that would prevent em?ed'
ding the fragment in a correct program. As-an example of the latter case, consider a frag-

ment that contains statements without any accompanying declarations. In such a

¢
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fragment, it should not be possible to use an identifier both as a procedure call and as a
variable that is assigned.a value. Thus requirement 2 addresses the need for such a
checker that provides error notifications even with incomplete information. Requirement
3 is in the domain of type inreren—;ing. While it is useful for composing fragments from
exist’ing ones, it could also be used to aid the user in selecting declarations from the pos-
sible set based on the usages of the identiflers. Type inferencing mechanisms have been
used In programming environments like PSG and Ape [Levy84]. Requirement 4 guaran-
tees syntax oriented eflicient evaluation in the contextual constraints. The subfragments
_in the composition of a larger fragment contain all the relevant information in their indi-
vidual property lists (or Identifier Maps). It should not be necessary to parse the i:esillcing
fragment to derive its property list. Hence the information extraction should be done in

an incremental manner.

-~

The use of Identifier Maps has enabled the design of the Editor’s contextual con-
straint analyzer, which meets the above requirements except for third one. We do not
yet use any: type inferencing because of the complexities involved in dealing with such a
wide spectrum of fragment types. Incomplete information for contextual analysis in any
fragment has to be handled by the Editor in a way which makes a distinction between an
incomplete program fragment and a complete program f{ragment. This is necessary
because the notification of an error in one case may not imply the same in the other.
Tliis ;lbuacion arises in checking whether a symbol is declared or not. In a complete pro-
gram fragment, any usage of symbols without their declarations is an error and the user
Is notified as such. However when dealing with incomplete program fragments, symbols
should be allowed for use without declaring since the complete context is not necessarily

available. The way this is being handled in our Editor is in distinguishing the Identifier

Map at the outermost scope.

In the contextual analysis when a symbol usage is encountered, an entry is made in
the local scope (Identifler Map) for the symbol's declaration. If it was tge first usage of
the symbol in that scope, there would be no reference to that symbol’s deflnition. This
initiates a search, up the environment tree, to locate the definition. If the search is suc-

cessful, the subsequent action Is dependent on the type of the proéf‘am fragment.
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If the fragment is complete, i.e. a regular compilation unit, then the earlier usage of
the symbol was an error and the user is notified as such. However if the fragment is not
complete, then the current context is not the complete context. Hence it is inappropriate
to ixidica.te a semantic error for such an occurrence. Instead, it is better to indicate a
semantic caution. Internally, thi§ is handled by making a local definition of the symbol
in the scope it was used. It is assigned an open type. Such a Lyp? always passes the type
compatibility test. If the symbol is any form of procedure then the formal parameter list_ 5
is another ‘open’ interpretation. Note that such assignments are not similar to the default
types like integer that are assigned to undeclared symbols in conventional combllers. Ir
we were to use such a scheme, then the bottom-up fragment construction method would
not hold because of possible conflicts with the ‘default’ assignments. The open type

assignments are also used in instances of declarations that are not fully expanded, as in

VAR foo - <type>

The use of open is perhaps less restrictive and, as a result, less safe than in using type
schemas. However use of the category attribute meets requirement 3 ‘partly’. There is an

"investigation in progress for using type inferencing in MUPE-2.

5.5. Interfragment Operations and Dependencies

This section examines some of the issues that arise with operations that involve
more than one fragment. In the discussions so far, it had been tacitly assumed that the
Editor operated on only one fragment. However in MUPE-2 ir,he more general situation Is
with more than a single fragment for multi-operand operations. The ability to handle
multiple fragments by the Editor also arises due to the ability to make use of separale

compslation facility with strong type checking across modules

The requirement for the Editor to be able to operate with multiple fragments makes
it necessary to transfer structures between fragments. Such a transfer coulB\pgcur as
either a copy, where there is a no deletion of structures, or it could be as a move, where
there is a deletion of a structure in one fragment and its insertion in another fragment

There does not seem to be any existing system that provide such features in an editor.
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What has normally been available in textual editors was some form of clipboard facility,
which provides a temporary repoéibory for moving objects. However su'ch transfer
mechanisms do not provide the ease of opera.tilon or the protection that the MUPE-2 Edi-
tor seeks to provide. The main reason why such features are attractive for the MUPE-2
context is because of the possibility of having displays of many fragments at a time. This
has mainly arisen due to the emergence of windows in display technology [Hopgo86]. Such
a user interface makes it possible toxt.h‘e user to operate on multiple fragments that are
open on the screen. However to accommodate such features requires the Editor to be\
designed to keep tra‘ck of the ‘last cursor’ and ‘last operation’ with each fragment. This is '
an additional requirement to what are normally supported in present window managers

and it entails providing the editor with window management features.

To fexpla.in the working of the contextual analyzer in such a situation, we first show
the user actions to achieve such a transfer. A scenario for such an operation ’is sketched
in Figure 5.3. Initially, the actixf fragment is Fragment $#68. Its cursor- is the while
structure denoted A. The user sel\evlc'ts the MOVE command, which 1s qualified further by
Before. The menu of templates for this operation is presented for selection, but the user
instead decides to move a structure from a different fragment, #102. To achieve this the
user selects, via the pointing device, Fragment #102 to be the active fragment. Fragment
#68 loses its active fragment status and the incomplete operation initiated at structure A
is frozen. The user makes the cursor in the current active fragment (#102) to be the
desired structure B by grouping the two statements as such. Having done this, the user
selects the frozen operation in Fragment #68. This makes the last structure in Fragment
#102 to be a candidate for the operation resumed in Fragment #68. The candidacy vali-
dation is carried out as explained in Chapter 4. After the validation, the designated
structure at Fragment 7102 has to be extracted, its ’Identiﬂer Map information con-
structed and the modified Fragment #102 should have its Identifier Maps updated.
With the temporary fragment thus formed, it is inserted in Fragment #68. The Identifler
Maps in this fragment are now updated. Thus the contextual analyzer has to work at

two fragments to affect the single operation initiated by the user.
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* *
)
‘Fragment * 68 : STATEMENTS )
WHILE <bexp» DO
END; @ @
n:=2%n + 1, )
. W .
m:= 7%m +2; Fragment * 102 : PROCEDURE
1=1;
, J=2;
K:=n,
IFk <200 THEN °
) ) m:= 7%+ q
ELSE
m:=7™1-q
. . END;
) hY

Figure 5.3- Scenario of Interfragment Operations.

What is of prime consideration in the implementation of the above operation is the

process of deriving the Identifler Map values of a chosen structure from its parent struc-
ture and its Identifier Map. It is however advantageous to extract the required informa-
tion from the existing Identifier Maps and hence avoid a contextual analysis for the struc-
ture extracted. Incremental operations are always better {or response time considerations
in interactive systems. With the usage of Identifler Maps it is necessary to i@enti[y the
symbols that occur in the subtree that is the object of transfer. These can be identified
by traversing the leaves of the concerned subtree. The corresponding entries in the
Identifler Map will provide information about the symbol’s category, its type and others.

v

But extracting them in their entirety ‘may 'not reflect the true status of the derived
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fragment from the subtree. This is mainly for definitions that are not present in the
extracted subtree. Such a case Is especially true when considering types that are subtypes
(subranges) of a larger type. In Figure 5.3, consider the variables i and j to have the
CARDINAL data type in fragment #102. However,’ﬂiu is probable that fragment #2868
already has these identifiers declared as variables of INTEGER data type. Retaining the __
more restrictive CARDINAL type would create a conflict while inserting that structure in
fragment #68. In such a situation the symbol’s type loses its resolution and takes on the
open type as was explained earlier. Thus when the extracted structure is inserted in the
destination poéltion, it is not necessarily tied to the earlier types of the symbols, but it

utilizes such invariant information like the category, since it is based on the syntactic

usage.

5.8. Issues in Interface Control

Another point that arises in such an editor is in the support of modularity and data
abstraction. Languag‘es like Modula-2 and Ada offer the concept of a module or pack-
age to encourage modularity and data abstraction. However these languages have been
designed for textual processing, and the normal declaratory syntax has been extended to
support vxsiBility control for the above features. As a result the emphasis on the complex-
ities introduced in the syntax distracts the programmer from the primary issue of visibil-
fty control. The structured editor can provide substantial help to the ﬁser by providing
editing operations that are meant specifically for such aspects. The need for such facili-
tles is particularly felt for programming teams where the user and the deﬁger of a
module are not the same. The responsibilities for syntactic correctness is now distributed.
In the [ollowing are descriptions of the MUPE-2 Editor with regard to extending the
scope of a structured editor for such pur;;oses It should be noted that the editor
Yggdrasil {Capli8s] provides similar extensions to structured editors. However, the edit-
ing operations in that editor are basically carried out in ‘name deflnition’ windows,
without the textual context of the program body. This isolation could prove to be too
powerful to control. Furthermore the Yggdrasil editor has been designed for extending

existing conventional languages with data abstraction and modularity without changing
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their syntax. The MUPE-2 Editor is designed for Modula-2 where modularity and data
abstraction are part of the language and the Editor operations introduced here help using

these features.

Modula-2 motivates the partitioning of a proéram lnu’) modules. Each module can
contain constants, variables, procedures and perhaps types. Objects such as these that
are declared in Mo/dule A can be referred to by another Module B if there is a provision
(export) in, say, Module A, and a requisition (import) in Module B. Interface control
constitutes this specification and control of the interactions among entities in different
.modules. Modula~2 supports separate compilation. This means that a program can
import objects from modules that do not need to be compiled together with the main
program. At the compilation time of this importing program the description of the
imported objects should be avallable. However the details of such objects are not essen-
tial and each module provides an abstraction. It is also a means of protection by the
ability to hide, via the abstractions. Thus Modula-2 provides a textual separation of the
esseilcials from the details. The essentials provide the descriptions of the objects that are
used by other modules; the details constitute the parts that are hidden and hence
private. This divides modules into two parts: a definition module, which describes
the objects that can be used by other modules, and an implementation module, which
contains the bodies of the objects, as well as other objects that can be used only by the
implementation modules. The objects visible outside the module are enumerated expli-
ciniy by an export list. The two parts are compiled separately and are called compila-
tion units.

— The above concepts having been developed for the traditional batch compllers do
not provide the same freedom and advantages when used with structured editors. These
editors operate on an intermediate representation of a program that is usually some form
of a program tree. However the definition modules do not reflect any such tree structure.
In a batch compiler the result of compiling a definition module is a symbol file, which s
used for cross-modtle type-checking, etc. So to use a common structure editor for ail pro-
gram fragments means having to implant some form of tree representation on the

definition modules. Since it distorts the ‘natural’ view of the definition modules, the

L3
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MUPE-2 design breaks away from the dichotomy between deflnition and implementation

, modules present in the textual models. S~ \
The MUPE-2 representation of a deﬂnitlon/ahd implementation module pair is as a
single structure, a capsule. This structure is representative of any program module. It
follows the scructural—aspects of any single module. However sinée the purpose of the tex-
tual separation wﬁs to provide a separation between the external description of a module

(the ‘abstraction) from the inner details (the implementation), the user interface for the

Editor maintains it. Figure 5.4 is an illustration of such a view.

DEF INIT ION~-IMPLEMENT ATION CAPSULE THE INTERFACE VIEWS
Module M DEFINITION VIEY °
MODULE M,
TYPE T,

Proc P1 PROCEDUREPI() : T1;
END M. o
IMPLEMENT AT ION VIEW

M
Proc P3 ~
P1 ~ P2
P3

E 3

Figure 5.4- Interface Views of Deflnition and Implementation Module Pair.

' The view that is presented to the us?r depends on the user’s access privileges to the
views of the module. For users with access to only the deflnition, they are provided with
a window of the descriptions of the exported objects. There is no corresponding view of '
the implementation of the module. There is no editing cursor in the deflnition view. For
the more general situation where the user possesses implementat’.lon access, the Editor
provides two views of the module. One is the definition view as described above, and the
other view is of the implementation.- The editifxg operations are available in the capsule

as 8 whole. : R -

9
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The present implementation of visibillty control reflects the updated Modula-2
language report where all oP'jectsbdeﬂned in the definition module are ex;;ort.ed; in the
earlier language repoit,xétly‘ictly only those that appeéar in the export list were exported.
Each object declaration in the main body of the module has an associated attribute thab
indicates t.he visibility status. The status can be one of the following: hidden, opaque
export or full export. The visibility attribute is recorded in the module’s outermost
Identifier Map. This map is accessible {[rom other modules for purposes of cross-module
checking. At the user interface, exported objects are displayed in the definition view
Since the editing operations are present only in the implementation view, the éxporced
objects are shown in there too, but distinguished from the non-exported objects by some
means of high-lighting. All the objects in the level from where objects can be exported,

allow'editing operations on the objects that can change their visibility status values

among the three permissible values.

Thus designing an editor knowledgeable in the interface control properties provides

i L] -
. freedom to the user from the restrictive nature of language extensions in declaratory syn-

v < &

tax. The visipility or interface control is normally a distinct part from the computation
that the rest o}\the program is concerned with. Hence the availability of visibility control
features in the editor operations are necessary to improve the- programming process. The
decision to ma'inta.in a single structure for the definition and implementation parts of a

module was influenced by the editing operations that are possible with structures of tree

h types. As well, the requirements: for cross-module type checking for languages like

&

Modula-2, decided that the intermediate representation for the deflnition-part-of a

module shpuld be nochixig more than a symbé)l table. 5

<
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bhapur 6: Conclusions

¢

This thesis has examined the issues involved in designing a Fragment-based Pro-
gram Edlt,or.’s‘uch an editor is the central part of a progr\amming environment that sup-
ports editing, compi-ling, e{écuning and debugging of program fragments. This thesis has
concentrated on the fzdlting aspects of such an environment that is undgr development,
the McGill University Programming Environment (MUPE-2). Within a highly integrated
env’ironn\lenu the editor provides the user interface and consequently decides many of the

system's architectural issues.

The MUPE-2 environment has been designed to program with {ragments of the pro-

B gramming language Modula~2. The concept of Fragtypes that is central to this environ-

ment, and the relevant fragtypes for Modula-2, were presented in this thesis. While
Modula-2° provides for-the development of software,through inodules, it has been found
inadequate in the degree of reusability that an individual programmer would be
interested in. MUPE-2's typed fragments a.ddress\es this shortcoming and proposes I';‘ha.b
an integrated environment that is built on the concept of fragmenté would be ‘an answer

in increa.sing progra.mmer productivity.

MUPE-2 has been aimed to be operational with graphics and a pomting device at
the lnr.erta.ce, in- addition to the normadl keyboard Consequently, the command and
response language ‘offers signmcant differences from those found in systems based on text

and lines. The model that is used in the speciﬂcation of operations with such an {nterface

has been presented and it plays a significant role in the implemencauion of the editing

rules. A

Portability and adaptability were set as important design goals in ‘MUPE-2. In ‘the

editor dedign that has b;.en presented in this thesis, these goals influenced many of the

‘deelzn decisions. Powerful present-day engineering workstations are the target systems
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for MUPE-2. However these workstations feature many non-standardized utilities that
are essential for impl;antation. As a result, the arckitecture of tgls)envlrém;lent
includes a layer, called the Screen Manager, that encapsulates the terrx;lnal' and other
workstation dependencies. The présenc design of the Screen Manager also makes it possi-
“ble to achleve a distributed 1mplemennaci6n of vhe eavironment. In such a scheme, the
Screen Manager which is responsible for the display z;nd user input, could be physically

separated from the rest of the system that performs the tasks of menu generation, com-

patibility‘ checking, incremental compilation and others.

User input in language-based editors can be in two basic models. One is the tem-
pla.i:e model where the input 1s via templaceé of the language. In the other model, bfxe

userqinputs text that has to be subsequently parsed. While the MUPE-2 editor's goal is to

3

allow both forms of input, this thesis has con/centra.ced only on the template form of user
i ~

s

input. In such a case, the role of the parser is played in Qer.ermining what are the tem-
plates that are allowable to be inpl;t at an arbitrary point in the program. The scheme.
that has been presented in this thesis sh'oi‘»vs how the language’'s syntax Tules can be used
to allow a table-driven implementation, that derives the set of legal templates at arbitrary

points of the prografn. A classification model of language structures is shown that per-

=4

.-mits‘an efficient organization of tables. Table driven implementations have been favored

%
at all stages of MUPE-2's implementation because of the degree of adaptability possible

»

from them. ~

Apart from mailitainlngb‘;;he developed‘ sot‘t’wa.re in a.ccord;nce to the language’s syn-
tax rules, a language based editor also has to,enforce the contextual constraints in the
language g;ules. Such constraints are typically the scope and t.‘ype rules of the language.

The distinctive features of these rules are that they allow editing operations to affect the

validity ofAscructure?s that may not be in the ’lmn{ediabe ne"ighborhood of the location of
the editing operation. .:&t,trlbuce grammars has been applied to solve this ‘inheritance’
‘probleml in an incremental manner within language based editors. However the solutions,
while optimal in time, have enorfnogs space requirements. The scheme presented in this
thesis for use in the MUPE-2 editor, ;mploys a model that also promises to be useful In

“conisidering the visibility control features of Modula-2, and the rﬁulti-fragment operations

¢
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permitted in MUPE-2. ,,E':D

Modularity and data abstraction are perhaps the most important features of

&

Modula-2. However in a structure based editing environment, the specified compilation

model of the language for textual environment does not provide a desirable user inter-
\\_

face. Visibility control within a structure based environment is better achieved by appli-

cation of vislbilicy control operations on objects rather than being affected by declaratory

program elements. ‘Dhe usage of such operations, and the user interface adopted for this

purpose, has been presented in this thesis. ’

7

The goal of MUPE-2 is to provide a well integrated environment for the develop-

¢

ment of software. Within this environment it would be possible to specify, edit, compile,

execute, debug and document software. This thesis has presented the implementation

scheme for the language oriented language editor that is at the heart of the system. The

[
implementation is not yet complete and consequently, it is difficult to evaluate the design
so presented.

" Interactive systems gre meant to be cxperienced, not talked about.” - Anon.

P

-~
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