
o

5

A FRAGMEN-~Pd3ED PROGRAM EDITOR

Surajlt Choudhury
School of Compu ter Science
McGIll University. Montreal

August Ig86

A thesis submltted to the Faculty of Graduate
Studles and Research in partla.l rulftllment

..

or the requlrements ror the degree or
Master or Science:

© Sura.jlt Choudhury, 1086 ..

,
•

f

(
\

'-

" "

, '

• 1

ijF\

, 1

Abstract

Intell'at.ed sof't,ware development envlronments are assuming considerable Importance ln the

tuk_oC developlng and malntalnln, medium ta larce scale soCtware. Central to such envlronments

ta an edltor whlch has knowledge or the Synt~ and semanttcs or a partlcular programmlng

language.

This thesLs presents the design or an edltor wlthln an Integrated envlronment that allows

programmlng ln rragments. Fragments are lndependent structural components or softwar.e and

thelr U8age Is an attempt to promote sortware reusabtUty. Two prtmary Implementation Issues

dlrected the design. presented ln thLs thesls - portabtltty and adaptabUlty. A system architecture 15

presented that encapsulates the potentlally non-portable components wlthtn well-defined modules.

Each edltlng operation requlres enforclng the langu~e rules. A structure classification scheme 15

presented ror a table-drlven Implementation wlth qulck resolutlon or the syntax rules and adapta­

bUlty. The Importance of Incrementai handltng or semantlcs wlthln such edlters ls documented

and a .!SImple to Implement approach Is presented. alons wlth the special support ror rragments.

"

o

" ,

1 l, .. ,\'

•

0

1

L.

\

Les envIronnements Inté~és pour le ~t!veloppement de loelclel ont une Importânèe erandls­

sante dans le domaine du développement et de l'entretlènt de loelclel de moyenne à erande t!chelle.

L'élément essentiel d'un tel environnement est un éditeur ayant connabsance de la syntaxe et de

la sémantique d'un langaee de pro!P'ammatlon donné.

Cette thèse présente le "design" d'un éditeur pour un environnement Intégrt Qui permet la

programmation en rr~(nts. Les fragments sont des éléments structurels Indépenden~ de loct­

ciel, et leur utilisation Jst un essai pour promOUVOir la. réutilisation ?e logiciel. Deux points

d'tjilportance ayant trait à l'Implémentation ont guidé le "deslen" présenté dans cette th~se: la

portablllté:n- l'adaptablllté. Une architecture du système qui Isole les élt!men~ potentiellement

non-portabl~ ~ l'Int' erleur de certains modules précis, est présentée. Chaque opération de l'éditeur ~
nécessite une stricte adhérence aux règles du langage. Une méthode de classification des structures

pour une Implémentation utilisant des tables pour une résolution rapide des règles de syntaxe et

pour Caclllter l'adaptablllté est présentée. L'Importance de manipuler la sémantique du lanlaire de

racon Incrémentale pour de tels éditeurs est documentée, et une méthode d'Implémentation Simple,

avec le support spt!clal nécessaire pour les fragments est présentée.

o

r ,

1 lJ

/
\
\~

~J
.

,.~',
l 'Il

c'

'.

,
\\Acknowledgementa

1;
"

- -

This f,hes1s has been comPlete~ wlf,h the support. ~ he!p rrom numerous Indlvlduals and

ol'lanlzatlona. 1 wou Id lIk: to thank m~ supervlsor Dr. Nazim MadhavJI Cor hls academlc guidance

throuChout the course or thls researchSl1 am graf,eCul ror the numerous tlmes that 1 had turned to

hlm ror support, and he wa,s wllllnc ~ help. It Ls a pleasure ta acknowledge the company or the

other members or the research proJect -l,Luc Plnsonneault, Rob Robson and Kamel Toubache. Part.

or thls research had been made possible through the fl.Ilanclal support or an NSERC, Canada .
research crant. Flnanclal support durtng my graduate studles had also been olTered by the School

1
oC Compuf,er Science throuih teachini asslstantshlps. 1 il'ateCully acknowledge the support rrom

both these organizations. Flnally, none or thls would have been pOSSible had It not been Cor the ,.
lov8 and encouragement rrom my parents.

Hi

......
\
1

o

o

Table or C'8ntents

Abstract .. :

Résume! ,

Âcknowledgements ~ ; ... '

. ,
Chapter 1: Introduction ... : ; .. < ••

1.1 Language Knowledge ln Edltors : .. .

1.2 Software Reusabl11ty and Program Fragments .. .

1.3 Issues ln Implementation
1.4 Related Work

Chapter 2: The MUPE-2 System

2.1 Software Development and Modula-2 .. .

2.2 Proi!'amming ln Fragments

2.3 The User Interface .. .

2.4 The Command and Response Langu&jte :

,J
Chapter 3: Architecture of the Editor .. .

3.1 The Screen Manager

3.2 The General Manager .. .

3.3 Single Processor GM-SM Communication

3.4 Extensions ta a Distrlbuted System :
\

Chapter 4: A Seheme for Enforeing Syntax Rules

4.1 Types of Language Based Edltors
\

4.2 Editing Operations .. :

4.3 Structure ClassifIcation

4.4 Table-driven Menu Generation and Compatlbillty Checklng

Chapter 5: Contenuatlssues in a Fragment-based Program Editor :

5.1 The Incrementai Nature of the Problem

5.2 The Attribute Grammar Approach , ... '

f.3 The Identifter Map Approach .. _

5.4

5.5

5.6

Incomplete Information ln Fragments ... '\.\ ;

Interfragment Operations and Dependencles .. .

Issues ln Interface Control .. .

Conclusions , .. : .. ~

Iv

? .'

1

11

III

1

2

3

4

6

9

10

13

16

18

22

23

25

31

35

37

38

39

42

~9 ,

52

52

5 ..

57

62

65

68

12
~\

'\111

f."
1

...

o

~ ;~ ..
',Mn:.:

-

.. _60 ••••• J •• 75

o

v

- -< ---------------------'."".

o

,0

o

'!
"

'"

Chapter 1: Introduction

\.

Programming methodology in recent yt..l.rs has seen a large number of research

. efforts a.nd I~ importance in the Ind ustry has Increased considerably. This has rlsen from

the fact that software systems are evolving Into Increasingly larger and more complex

entltles than their preèlecessors. Consequently, the tools and techniques,for programmlng
. -

of a decade ago do not provide the levels of software prod uctlvlty that are expected ln

developing today's systems. An approach to Improve software prod uctlvity Is the reuse of

software wlthln a particular application area.

Concurrent to the changlng nature of software systems, there have been new

developments in Software Development Environments. The primary emphasls has been

that they _should provide Increased support to the evolving nature of programmlng

methb<lologles. As a result, such envlronments ~re provldlng, among others. language

support through ail phases of software development, and an Integrated concept ln tbe

user-computer commuttRation. A very famllIar ~ool to the software developer Is the Bdl­

tor. Thus the editor has been the focus of attention for evolutlon, or even revohttlon, ln

) the advanced envlronments.

The ,purpose of thls thesls ls to discuss the Issues Involved in the design and imple-·

mentatlon of a Fragment-based Program Editor and to present sorne original research

contributions in thls area. This Fragment-,based Program Edltor la an attempt to

address the Increased demand on software productivltYd\te to the inSIease in size and

complexity ln the requirements of present-day software systems. It combines recent

developments in language-based program editors with the methodology of soCtware reusa-

bllity. A system architecture for such an edltor is presented in this thesis that ilf derived -from adaptabllity and portability re,qulrements. Another major contribution oC t~ls thesi.s

is a structure classification scheme for encoding language knowledge in edltors.

"

(

r
)

--.-

,.__--- 2
~~

Incrementai semantlc checklng algorlthms are studled and a new approach, made neces­

sary by the interface control propertles of Modula--2, Is presented.

1.1. Language Knowledge in Editors

ln a typical conventional programming environment, there are two major tools that

a sOrtware developer utilizes most oC the time. One Is the text editor that is used to enter

and modlCy programs wrltten ln a programmlng language, and the other is the compiler,

whlch translates the user's specification to the abstract machine, the program, into a

form that can be executed. In many cases, -the environment would provlde a number of

compllers, and thus allow programs to be wrltten in a number of programming languages.

<> A common editor Is used Cor enterlng and modifylng programs written in the many

languages Cor whlch compilers are available ln' the envlronment. Consequently the

interactive edltor Is language Independen t, and it Is the role of the compiler to lnform the

user of any language errors ln the program.

However, the Independence between these two major tools Ieads to less than deslr-

able user support in 80ftwarë development. In partlcular, this is due to the presence of

what has been termed as the 'edit-compile' cycle. It becomes necessary to repeatedly edit,
.~

scan and parse a complete program, if only to obtain an Indication of absence oC

syntax/semantlc errora. Such a situation can be avoldèd by Incorporatlng language rules

ln the edltor and in effect Integratlng the compiler functions with that of the editor's.

ThuB eacb user's edlting operation la carried out ln concordance with, or post-validated

t)y the language rules. This makes lt possible for the user to be aware, wlthin the editor.

If there la any con filet between the program belng edited and the rules of the language.

Further beneftts also arise with such an integrated in teractive too!. It becomes possl- ,,1

ble to utlllze unused computer time toJncrementally generate code for the program being

edlted. lt lB also possible to provide Instructions to the user by indicating what changes

are permltted at dlfJerent parts of the program. Further, the editor can provide immedi­

ate program formatting whlle in the editar, which results in a Ceedback to the user for

program ~mantlcs. In partlcular, for languages wlth the 'dangling else' problem, this

/

•

•
o

''0

o

3

feedback cao be helpful. 10 general, in a hlgh)y Integrated programmlog en'vlronment .

the 'edltor' provldes aIl the iAterfa.ce. This results ln an unlform user Interface. a 'mode-

less' envirooment aod consequently an environ ment whlch can potentlally be easy to

learo and simple to use. ~J

1.2. Software Reusability and Program Fragments.

Soft,ware reusability holds the potentlal of provlding slgnlftcant Improvements ln
'"

software productlvity, as weil as software qUil-lity. The reusabillty ln software applles not

ooly to reusablllty in pleces of program code, but also to reusabillty ln development

koowledge, domaln koowledge, among others. However to accompllsh these many goals

of software reusability requires Increased support to the user It 15 expected that the con­

cept of program fragments will provide a foundatlon on which an environment promoting

software reusablllty can be constru~ted.

Program fragments are building blocks of a software system. These blocks can exlst

in a number of fOms. They could be a few program statements developed and used by a

single Individual. They could be a set of data structures that are used to implement a fre-
1 -
1

queotly used data type. They could be program 'modules' }hat operate as servers of
~

resources witbin a software system. Thus program fragmenta ofTer a multitude of

interpretations and are dltrerent from the prevalent concept of modules. A software

module arises from 'tbe need of the designer to decompose a system into functlonal units ...

to impose hierarchical orderlng on functlon usage, to lsolate machine dependencies. or to

ease debugglng, testing, Integration, tuning, and modlftcation of the system Modularlza-

tion Is dlrected at b~ing a top-down development The critena used for modularlzatlon

-
Include information hiding, loose coupling among the modules, matching the modular

structure of the system wlth that of the problem.

On the other hand, software developmen t through exclusive usage of large granular-
1

Ity objects, such as modules, does not extend to providlng an Improved software develop-

ment methodology to the Indivldual programmer . ..,/.. requlrement for the indlvldual pro­

grammer in exercising software reusabillty is tbe support of in complete program

) ,

c

c

4

fragments. Such program fragments are typically language structures of fine granularity,

or are in a.n 'uDrefined' Corm. ThU$\ the incompleteness oC these program fragments arises ..
because they ma.y consist oC only data declarations, without a program body, or a frag­

..ment representlng only informaI program specifications. None of these types qf fragments

lB strlctly the 'compilation unit' that a programmlng language recognizes as an individu al

entlty.

~
However in the soCtware development process, it often becomes n@cessary to apply a

mixture or top-down and bottom-up approaches A flagment of data declarations rnay

first be bullt and then s.tccesslvely tested wlth different algorithms before the program-

mer chooses one Cor the application bemg developed. The parti ai systems that are

developed in this process are Iikely to be usenll for sorne other applicatlOns. It would be

to the programrner's ~neflt if' it were possible to store the software components with
,

sorne amount of deslgn information to make the process of subsequent interconnection

easier. Furthermore, the software development envlronment should be aware of the

'lncompleteness' of the partial systems and also possess language knowledge ID provldlng

an lntegrated environment, as mentioned earHer.

A Fragment-based Program Editor allows such an enVlronment to be provided to

the lndlvidual programmer. The editor possesses knowledge of the language rules and can

th us guide the development oC programs that abide by these rules, within the editor. The

edltor promotes software reusabillty by recognizing' software components of a wlde spec-

trum oC granularity ln the language, as individual entities. It treats structures of aIl

granularity ln an uniform manner and it is drlven by a set of Fragment Construction

Ru/es th~t main tains the construction of fragments to be vaUd structures as per the

language's syntax rules.

o

1.3. Iasues in Implementation.

ln the design of complex software systems, lt 18 evldent that su ch systems may

requlre transCertng -00 dltrerent sortware and hardware env1ronments. A system that

a.llows easy transfer lB rererred to as a portable system. A Fragment-based Program

\
1

1
1

'1
i

•

o

"

/

o

5

Edltor ls one'such system for which the portabllity goal ls very relevant .

In a system 'like an edltor. the functlonality of the system ls concentrated ln a set or

tools that are specifie to the system. Thus, It becomes possible ta Isolate design declslon,;'l

ln separate su bsystems whlch do not affect the specifie tools, and consequen tly, the fune-

tlonal behavlor of the system. Replaclng sueh system eomponents, as when the underly-

Ing hardware changes, would not affect the other system Cu!.~ponents It thus becomes

necerary to develop a layered design in whlch lower layers provlde faclllties to the tmple-
1

mentation of the functlonal tools at the upper layers. Two mam components can be

IdentUled ln the Edltor to provide the desired tool Independen t facilitles One Is "the user

interface system, and the other 15 the mternal -representation mampulatlOn system

The user lDterface system 15 responslble for the dlsplay of programs on the sereen.

the display of any menus, and the mterpretatlon of mpu t from the keyboard and any

pointing devices. In many recent workstation computer systems such capabilities are

otrered wlthin a window management system. However, these systems are not standard-

ized and easy portability of the editor across su ch workstations should be aimed for A

user interface system that encapsulates the wlDdow ma-nager and Input devices depen-
v

dent features Is a component at the lower layers of the design. Thus ln portlng the edltor

among a variety of display terminais and input devices, the necessary modifications are

restrlcted to such an user Interface system.

The Fragment-based Program Editor allows edlting of structures These structures

are element~ of the language. Thus to permit etrlclent structu re edlting, the program

fragments are maintained in structurèd form, mostly ln tree forms. In such a case, the

structure editing operations ean directly translate to primitive operations like grafting

and pruning on a tree. However the method of main tainlng thl} structu res IS orten

dependent on the characterlstics of the underlying system on whlch the Implementation

is being carried out. For example. in a system with an etricien t data base system, such

structures may be maintalned by the data base management system. Thus the specifie

tools of tbe edltor should be independent of the method or the internai representatlon or

the structures. Tbe internaI representâtlon manipulation system provides the needed .

(

,)

(

. _-

(

6

Independence. It abstra.cts tbe structural Information needed in derivlng the contextual

Information necessary ror drlvlng tbe Editor, it provldes tbe structure editing facilities,

and it also provldes the textual representa.tion Crom the structures.

Apart Crom portabillty, another considerably important aspect to conslder ln any

design Is adaptablllty. Adaptability, and synonymously, extensibility, ia concerned with

the ablllty to make modifications of a system according to changing requirements. Within

the functionality of a program editor, the foreseeable nrodîflcations are in changes to the

language's ru les, or changes arismg with increased usage of the system, mainly \Vith the

user ln terrace mode!.

The rormalism Inherent in language rules translates weil to a concept that is partic­

ularly attr~tive for adaptability. This is the concept of table-driven Implementation. and

has been popular for generatlon of compilers. The applicatIon of the language rules In the

• Editor takes place at every editmg operation. This results in indicating whether a struc-

ture edltlng operation is valld according to the language's rules. In a table-driven imple-

mentation, such validation can be performed by accessing a table with the editmg com-

mand and the operands of the operation to obtam the truth value on the valldity of the

operation. Thus changes to the language rules can be a.ccommodated by changing the

contents oC the tables, changlng the range values on one dimension, or even châr}ging the

dlmensionallty or the table. Furthermore, It is possible to partition the tables 50 that

changes ln command semantics have localized effects.

Adaptability in the user in terface design allows potentlal users to tailor the ln terface

. to tbelr requlrements without affecting the functlonality of the system. This a,pplies to

adjusting the sereen layout, or the color coding scheme in a graphies based interface; in a

• textual interCace it could be the Cacllity to allas and chain commands. The user ln terface

system, as explalned earlier Cor portablllty requlrements, provldes the basis ror this adap-

'" tablUty requlrement .

o

---1

,\,

o

o

1

1.4. Related Work.

Tbe improvement of tbe programming process bas been the object of study by

many research groups. Such efforts have resulted ln the development of progrnmmlng

environments that support programmers in the process of transformlng specifications Into

worklng programs. This process Involves creation and modification of progrn.ms. chl'cklng

t.heir consistency, generation of an executable furm. and mOnitoring of the program's

behavior. An integrated programming environment seeks to provlde a set of tools that

share the program's representatlon, present a consistent user mterface. and ln ('~.,e5. t'ven

.,rprovide the functionality of the environment encapsulated as a single tool

Tbe early research in the area of programming environments 15 best rl'presented by

the Corne Il Program Synthesizer[TeiRe81], Mentor[Donze80] and InterUsp [Tel1\,.la811 The

Synthesizer supports syntax-dlrected edltmg, execution, an-d-debugging of programs ln a

subset of ·the PL/l language. It is a well-integrated programming envlronment and It 15

prlmarlly designed as a teaching tool. The original Mentor edltor is a language-based edl­

tor for Pasçal. While the Syntheslzer mainly used templates to build programs. progrnm's

in the Mentor editor were entered as text, ,.then parsed. and subsequently allowed struc-
-

ture oriented manipulations. Interlisp is an advanced programmlng envlronm~nt for

LISP. The system includes a number of hlghly integrated tools. It has been used ln exper-

imental systems characterized by prototyping and deSign Iterations
')

Among the more recent research projects in language based envlronments are

GANDALF[Notki85]. Pecan[Relss84aj, Syned [Gasne83]. and Magpie[DeIMS84] Whlle the

functionalities of these systems are not too dlfferen t from those of the earlier generation.

they have, ln sorne cases, approached the idea of generating envlronments for dllTerent

languages from a language Independent generator that accepts the language rules. In oth-

ers, the emphasis had been in extending the systems formerly suitable for, and sometlmes

restrlcted to, teachlng purposes, to deal with reallstically large software systems

The Question of providing reusabillty within an Integrated programmin g e",liron~

ment that is addressed in this thesls ftnds correspondence with very few research pro-

jects. The Programming System GeneratoriBahSn85J considers the basic unit of edltln,

,

(

8

al~d Interprettng to be rragments that are arbltrary parts or a program. However, it does

not conslder 'the typlng or rragments to derlve the rules or editing, as has been done in

tbe syètem consldered in this thesis. The IOTA Programming System!NakYu83] sup­

ports type-parameterized modules a/the basic unit of programming. While this appears

to be the clœest to the concept or typed fragments, the granularity of the modules in

IOTA. do Dot otrer the same level of IIneness.

This thesis conslsts of live chapters. The following chapter introduces the MUPE-2

system for whlch the Fragment-based Editor has been developed. Chapter 3 describes the

architecture or the Edltar paying attention to the requirements of portabllity and adap-.
tabUlty. Tbe next chapter ls the description of the scheme adopted to derive an adapt-

able language based editor. Chapter 5 discusses the handling of the language's contextual

Issues wlthin the language based editor.

i
~ 1

J
1

o

o

o

i -

1

o

Chapter 2 : The.MUPE-2 System
, ,

Tbe MUPE-2 (McGill University Programming Envlronment) proJect al ms to pro­

vide tbe programmer with a system wbich will simpUfy the programmlng and malnte-

nance processes of medium to large scale software projects. Towards thls end the
, ,

MUPE-2 project seeks to Improve on the command languager-feedback response. and pro-

,tection issues. among others.

The primary feature of MUPE-2 is ln providing the user the abillty to program ln
,

fragments. Fragments are structural components of a program that exlst independently

in tbe environment. The scope of fragments is enlarged by consldering documentation

issues in addition to purely programs. Thus lt is possible to have fragments that hold

natural language descriptions - abstracts. The contents of a fragment decide the type of

the fragment. This type. denoted the jragtype, determines the availability of., operations.

specification of options to commands, and the applicability of other fragments for an

operation on a fragment. The fragtype of a fragment could potentially change in the

development process. Such a feature practically allows the user to develop software ln a

uniform bottom-up and top-down manner.

The use of typed fragments in MUPE-2 allows an unification of the traditionally

two distinct activities: programming in the large, and programming in the small Pro-

gramming in the large normally refers to programs that are large, developed by a large

group of people, and are meant to be useét for a long duratlon of tlme To tackle the

accompanying complexities in debugging, testing and modification. the large program Is

decomposed into modules. Thus programming-in-the-Iarge activitles are normally con-

cerned with program units or modules, and the interrelationshlps between them

IDeReK16]. However such activities have been strongly separated from programming ln

the small activitles for whlch the use of syntax directed editors have normally been almed
"

(

(

, "

1

" / --/
10

at. As a re~JUlt sucb editors were restricted to activltfes like Introducing variables, control-

Ung the Dow of control, and malntalning the basic Internai statie semantic consistencles.

The MUPE-2 system provldes an' unlform vlew of programming to the user. The
o

above two activities are not distlnguished because there lS a common set of commands.

The system aHows the user to consider ail activitles alike, wh ether an activlty involves

operating on a single fragment or multiple fragments. The applicablllty of a command lS

decided upon by the structure on which the operation applies Further discussions on the

programming vlew presented in MUPE-2 can be found in [Madha85].

2.1. Sortware Development and Modula-2

In designing a programming environment to support a programming language. It is

evident that many of the environment's features are decided by the language and the

model of software developme~t 'that it encourages. The language for which MUPE-2 is

designed is Modula-2 [Wirth85]. and this section examines the model that is behind It

and the facilitles the system provides to the user.

Modula-2 is one of the more modern programming languages that has been deslgned

with the intention of tackllng the 'crisls ln the software industry'. The language provides
le

a reasonable balance between simpliclty and functlonality, although It is not wit.lrout its

critlclsms [Powel83, ,.MadPT86]. Nevertheless, It is IL close member of the popular 'Algol

family', which should prove tbe language to be easy to learn and use among the program-

mlng community. Nonetheless, Modula-2 Includes many features that are beyond the

scope of many of the earller lang.uages. The language's particular attraction lies in It

being usable for both 'low-Ievel' programmlng - for which ~embly language was the

only resort - and for developing large scale software systems.

The most distinctive features of Modula-2 are:

• Strong typlng wlth stat1c checklng. A:s wlth its predece~r Pascal, Modula-2

employs a strong type checklng for operand compatibility during compilation tlme ..

• Separate specification of interfaces and their Implementation. Each unit of compila-

tion is composed or a deftnitlon and impJementa~n module-pair. The deftnltion

o
o

o

1

!

o

•

11

module specUles tbe interface of the compilation unit and the Implementation

modu}e provldes the implementatlon. The two modules exlst as distinct textual entl-

ties.

0;)8"""tl ••. It is possible to hide the type specification of user defined types

Such types are accessible as opaque types, and are only relevant via the operations

tbat are av ~llu.ble to be applied on them.

• Systems programming. Access to machine specifie details are possible due to the

facility of allocatmg space for a variable at speclfic addresses in the memory map

1. Concurrency Single processor quasi-concurrent operations are permlssible by the

concept of co-routines.
-, ~~

Another language with similar features that has attracted a lot of ,research Interest

recently has been the Ada programmmg language [Unite82j. It IS particularly interesting .
to note the specifications of the Ada Programming Support Environment [BuxtD81j The

v ,

primary reason for developing such specifications 15 that not only the language, but the

~nvlronment for software development should, also be portable. However no such

development has been noted wlth Modula-2 and It is apparent that research ln slmllar ~

directions for Modula-2 is urgently needed. Languages such as Ada and Modula-2 are

intended for implementing software systems that are large and complex.' Such systems

are, normall~ composed of a large number of modules and as a result the support Cor

developing these systems require tools that arc different and beyond the (text) edltors,

compllers and debuggers that have so Car been used in systems development

\
The design of complex systems often require a subdivision of the task mto more

manageable components that are wlthil'l the scope and knowledge of a single speclalist.

~any issues are relevant in the decomposltlon, , but the dominant theme 15 that the

decomposltlon results in a system with components that are tightly cdntalned wlthln

themselves and minimlze the Interaction with other components As a result the develop-

mentJ of Indlvldual components can be handled in an Independent manner In teractions

between çomponents is testricted to the functlonal usages of the components among

themselves. This has aIso been interpreted as the Individual cQmponents belng producers

I11III-------------------------------'--------

<

c

-1;

12

and consumera of resources. A.ny single componen t ls composed of resources, and lt lB ,
, -

particlpatlng in tbe development oC tbe total system by provlding sorne or aU of these

resources Cor use by tbe other components. Tbis is the basic idea behind decomposition of

systems and tbe resultlng notion of modules, or components.

Modul~2 addresses the software developmen t process in the above d.iscipline. A.

primary aspect in Modul~2's programmlng model is tbe concept of interface

speclflcation. Every module that is playing tbe role of a component, as explamed in the

previous paragrapb, specifles Its int~rface via 'lmport' and 'export' lists. A module's

export list enumerates, ln a purely syntactic manner what the module provldes as

resources contained withln that may be access~d by others. In a similar manner, a

module ob tains access privileges to another module's exported l'esources by an import

d~laration. Slnce the export list of a module constitutes the mterface specification that

lB or interest to other modules, Modula-2 allows this specification to be textually separate,

t'bat is to reside in separate flles, from the rest of the module which describes its imple-

mentatlon. This means that it Is possible to have independent development of modules

slnce the interface control mechanism is directed only at the interface specifications The

complete Implementation of fhe modules are nec~ssary only during the linkage editing

phase for system Integration)

Wltb such a model of software development in Modula-2, it is apparent very soon

that it does not get good help from conventlonal operating systems' tool-kit and fi le­

orlented approach. Many or the command languages, for reasons of uniformity among

multiple languàges, are deslgned to work on a uniform structure, the file. However to

conslstently provide access to the structure embedded in any program written in

Modula-2, the programmer should be provided with aïl environment that understands

such a structure. MUPE-2 Collows the recent trend in program'ming environments in pro-

vldlng ab internai representatlon of programs structured by the ru les of the language in
,

which the program is wrltten. These structural rules now dictate the scope and applica-
, .

bllity of the user's operations within the environment However, what MUPE-2 seeks to

improve upon similar environments that in volve the usage of a language's structure, is to

provide a better environment for the developmen t of medium to large sc ale software

'j

o
"

.-
13

"

systems using Modula.-2. The followlng section introduces the concept oC fra.gments and

their relevance in programming environments.

2.2. Programming in Fragments

The unit or program that Is ,supported in MU?E-2 15 termed a. rragment. It IS

difl'erent from a program because it is more close to being a building block -for a complete

Modula-2 program, than what Is achievable with the compilation units, or modules .
However It should be understood that fragments are not sorne form of sub-compilation

units. Fragments can consist of a compilation unit and can a\so consist of a collection of

such unlts. This provides for an integratlon of the distinct actlvltles of programmlng wlth

small structures and the activities associated ln 'jntegratlon', or programmlng ln the

large. Consequently, the, concept of fragments allows the mtroductlon of a software

development discipline that IS uniform throughou t the developmen t process.

The primary element in this discipline of software development with the- use of frag-

ments is the concept of fragment types, or Iragtypes. A fragtype associates the syntactlc

information content of a fragment with a scalar value that is used for provldlng the

necessary rigor inherent in the language rules. The concept of fragtypes Is general enough

to be a.pplicable to a wide variety of languages, but this thesis will dlscuss only Its appli-

cation to the programming language Modula-2.

-In a program written in a high lev el programmmg language, one can identify com-

ponent parts that combine to make up the whole program. It is Possible to assoclate

these componen.t parts" as building blocks ln a software development process Fufther­

" more, It Is evident that there Is a hlerarchlcal structure in any program. as lS apparent

from the production rules deftning the syntax of the language. Moreover. there 1S a flnite

number of classes which these building blocks can be classifted into The classification

values rorm tbe set or' fragtype values, The fragtype values that MUPE-2 provides ror

programming ln Modula-2 in its environment are as shown below.

The detlnition of fragtypes is conseqently based on the concept of software buildlni

bloc" In the followlng, a BNF-llke notation Is used to detlne fragtypes in terma of an

" =

(

)

o

t

14

Expression Def-Imp Module

Declarations ProlP'am Module

Statements UnIt Subsystem

Abstract Procedure Subsystem

Unit Module Subsystem

Procedure Def-Imp Module Subsystem

Module Program Module Subsystem

System-Layer

extended Mod ular2 conatruct set. The aym bol 11\ means root-of, and < .. > means
QI

in8erted-around. The rules are meant to be used in conjunction wlth the language rules of

,Modula.-2. as found in [Wirth851. There are loose clas:ses among the various fragtypes

representing structures of simllar characteristlcs, and the fragtype deftnitions are
~

presented by these classes Cor purposes oC clarity.

Procedure Subsystem

Module Su bsystem

Def-Imp Module Subeyetem

Program Module Subsystem

Unit Subsystem

.. -
"­... -')

.. -

Procedure 11\ {Internal-node} 1

Module 11\ {Internai-node}l

Def-Imp Module 11\ {Internal-node}l

Program Module 11\ {Internal-nod~}l

Unit 11\ {Internal-node} 1

The above are the deftnltlons for the several subsystem Cragtypelil. Each of these ls

IdentiOe~ by the type of construct that forms the root node oC the subsystem. For exam­

pie, Program Module Subsystem is the Cragtype of a Cragment that has a Program

Module construct as the root of subtrees oC Internal-nodes. Internal-nodes, Cor notational

purposes, Is deftned as
o

Internal-node = Unit 1 Procedure 1 Module.
1

Procedure and Module relate to Modula-2 primitive cqnstructs, whl}e Unit is an unrefined

construct or the previous two. Its usage Is ta allow deferrlng a cholce between Procedure
1

and Module. malnly ln the early stages of system design. Thus a subsystem of

o

,

o

--~-

15

conftguration A/I\(B,C,D) represents A as the root node of internal nodes B, C and D.

, 2
System-layer ::= {Internal-node}

A System-layer is deflned as the fragtype of a fragment with at least two structures of

type Internal-node. An example configuration Is.(C,D), where C and D are Internal-nodes.

Procedure .. - Procedute-template< .. >Template-contents .. -
Module .. - Mod ule-tem plate < .. > Template-con ten ts

Unit .. - Unit-template < .. >Template-conten ts

Def-Imp Module .. - Def-Imp Module-template< .. >Template-contents

Program Module .. - Program Module-template< .. >Template-contents

The above are the definitions for procedure and module fragtypea. Each of these lB

identifted by the type of template that la Inserted around Its contents For example,

Module is the fragtype of a fragment that has Mod ule-template Inserted around

Template-contents. For notatlonal purposes, Template-contents Is deftned as,

Template-contents = {Declaration 1 Phrase} {Statement 1 Phrase}

\ Declaration and Statement relate to Modula-2'prlmitive constructs, while Phrase lB simi­

lar to a comment that can be reftned ~o primitive constructs, dependlng on its context.

Its usage is again simllar to that of Unit, allowing system design at hlgher levels of

reftnement. As an example, Procedure-template< .. > Declaration Statement is a frag-

ment of fragtype Procedure.

Statements .. - {Statemen t} 1

{Declaratron} 1
' .

Declarations .. -.. -

Expression .. - Expression (,

Abstract .'- {Phrase}l .. -

The above are the deftnitions of lower-Ievel fragtypes. The associated fra.gments represe~t

bomogenous constructs. For example,

16

a:== 5; •

b :=6

la..! rragment of fragtype Statementa. Fragments of fragtype Abstract undergo changes

in' rragtype value 38 the ftrst Phrase ln them Is reftned to any primitive construct or the

language.

2.3. The User Interface

Slgnlftcant adva,nces in compu ter graphies technology have allowed system designers

to experlment with new approaches to the compu ter-human Interface. The most prom-

Inent developments have been the use of pop-up menus, polntlng devices and windows.

Menus have provided an effective interface because the user does not have to memorize

command words, Fast and easy,selectlon by polnting has opened a new era in command

languages. The concept of windows has allowed the user to deal with several program

'vie~s' on the screen at the same time. Windows also allow several jobs to be IDltiated

and monltored simultan-eously. thus leading to more etrecttve usages of a multltasking

compu ting environ men t.

The user interface for MUPE-2 has been particularly designed to' take'advantage or

these new developments. Furthermore, the MUPE-2 researçh seeks to utilize colour as a

-
mode of communication between the system and the user. A prellminary sketch of the

MUPE-2 user Interface ls shown in Figure 2.1.

The screen is partitioned in to three non-overlapping windows, or 'tUes'. These con-

stitute the Module Screen, the Scratch Pad and the Procedure Screen. The

Module Screen is used to vlew and edit in the hierarchy of .rodes at the procedure or

module level. The Procedure Screen allows the user to edit withln a node. The nodes that

are Internally viewed and edited in this screen are .the ones present in the node hlerarchy

vlewed ln the Module Screen. Multiple nodes from the Module Screen can be opened for'

edltln, in possibly ov~rlapping windows withln the Procedure Screen. The editing in

these two screens are done in context or each other. In f~t, the -structures ed ited ln these

two screens are part ot the compilation unit structure whœe node hierarchy ts viewed on

o

1

o

, ' ,

Figure' 2.1 - The MUPE-2 Structured User IIJterface.
)

17

the Module Screen and indlvidual nodes are viewed in the prbcedùre Screen. Thus the ,

eft'ects of editing in one of the screens is apparen t in the other !!Creen.

Unlike the previous two screens, the Scratch Pad allows the user to edit ln a

context-free setting. W!thin this screen it 15 possible to deal with prograrn fragments such

that they can be developed, reOned and assembled out of context of a mam program. Thel

program fragments are of a wide spectrum of program granularity, from expressions to

systém layera. Multiple fragments can be open for editing ln the Scratch Pad via the use l
l-

of windows.

, The top-most portion· of tbe user interface on a graphies d15play provldes a set oC

labeled 'but~(i)na' that arè selectable to Invoke commands. It 15 a corn mon set for the

tbree screens. S!nce at any Instant there Is only a Single active fragmenp. only the appl1-
r •

câble subaet of the commands for the deslgnated structure wlthin that rragment wlll be

avai1able. These a.re the commanda that are avallable to the user at the editlng cursor ln

• 'f

f ''-...

\,--- ~
18

tbe ,active rraKmen t. The avallable commands' assoclated buttons are frtrhllgh ted at aU

tlm~. Tbe Scratch POO reglon Is also avallable to',provide a view of the Iibrary of frag-
\

ments, 'c.a!led Fraglib. This library is accessible from the three screens and access to and

operations in the library are done with the same set of commands as used ln editing.

, In the GANDALF project [Notki85], similar ideas to the above/may be found in

, thelr use of scenes. A scene works ln coordina~ multiple unparslng schemes and

tJle wlndow manager, to provide a better abstraction of the program tree. When a scene

node ls entered, a new window ls opened up and the scene node becomes the root of that

wlndow. Procedure bodies elided via one unparsing scheme, are then focussed on VIa a

difl'erent unparsing scheme, without belng distracted by the remainder of the program.

However the MUPE-2 design Is cloS'èr to the three-screen user interface as bas been used

ln the Spatial Data Management System [Herot80]. In that system, one screen provides a

world view of the data base, which IS a coarse index to the whole system. On the other

two screens, the user can ob tain an exploded view of a portion that is highlighted on the ..f
f

world-view sereen.

r'

2.4. The Command and Response Language

The human-computer interface ,deSign of a computer system is a dUl1cult and com-

plex undertaking which in volves a wide range of considerations. The language of com-

municatlon between the users a.nd the computer system Is often referred to as the Com-
\)

mand and Response Language (CRL). The user communicates with the ~omputer system

by means of commands to utilize the set of services that are available in the system .

Commands are accepted as inpu t by the system and can cause the information stored by

the system to be upda.ted, or to produee output in the form of responses. Responses

could provide the informatIon requested by the command, or could be an indicà.tion of
r

the state of the system.

A wide variety of CRLs are in use in present-day computer systems. While the more

tradition al ones are base(! on textu.al form, recent developments in menu-based systems
l:"

appear to provide new directions in CRL design. Menu-based command languages free

- -

o

o

lQ

the user from ha.vlng to direct any effort to conform to a syntax ln spec\fyini commands.

The developments ln using pop-up menus now allow the user to apply commands ln the

vlsual context of the operands. As weIl, they provlde features llke previous command ,

Invocation, and command chaining that were possible mainly with the more sophlstlcated

textual command languages.

The CRL for MUPE-2 is aimed to provide the user with a versatile command set

and the feature of applying sophisticated comblnations and forms of the commands. The

command menus of MUPE-2 are, designed for better understandabllity and faster usage.

Thus only a small set of options are present for ail commands and they are usually avail-

able in a single pop-up menu. The versatile commands are drlven by the context of the

operation, thus provlding uniformity in the CRL [MadCR85].

The possibility of using colour in the user interface has also shown new directions ln

designing the CRL for such environments. In systems like MUPE-2 that are used for

development purposes, the 'product' developed has to conform to certain constrain ts dur-

Ing this process. To facilitate a cooperative effort between the user and the system. th.e

latter normally provides responses to the user. on the conslstency of the user's input, ln u

an~ncI:emental manner. Thus the major responses of the system to a user's action would

be to lndicate if tbe action, the editlng operation. resulted in a normal state, an errone­
?

ous state, or astate that is open to Interpretation, i.e. not fully spec\fied. Such responses

ln MUPE-2 are Indicated with colour in the display. The obJect of an operation Is, in

almost aIl cases, dlsplayed on the screen. Thus by colouring the object in an easlly under­

stood colour. it Is possible to indlcate quickly the confticts with any pre-deHned con­

straints tbat may have resulted from the user's action. The present scheme uses a pre-

defined set of colours to indlcate errors, cautions and frozen operations.

The specification of commands ln MUPE-2 follows the model of Star [Smith82].

Most commands take the form of noun-verb pairs. The object of interest (the noun) Is

ftrst specifted a.nd then a command Is invoked to manipulate it (the verb). The objects ln

MUPE-2 are ModuIlv2 language structures. or constructs, and a.n object lB specUled by '"""
o

maklng a selection. The selected object becomes the ·cursor'. Cursor movements are

3

c

.-

5

20

poealble ln a number of ways.

(1) Wlth the polnting devlce, or the mouse - The trackln~ obJect Is placed over the

object to be selected and the Select mouse button Is clicked.

(11) Wlth the cursor movemenn keys - There are four types of cursor movements, in,

out, next and previous that are directly driven from the keyboard. The cursor move-

ments have been deslgned to provide thelr response depending on the context. The

in and out movements take the cursor down and up the hierarchy of structures,

respectlvely. The next and previous movements take the cursor to adjacent struc-

tures that allow editmg 0IJerations. Editing operations not permlssible on a particu­

lar structure would make the associated commands non-selectable by the user.

The commands of MUPE-2 are generic and perform in the same way regardless of

tbe type of language structure selected. The basic nature of these commands provide for
,

application-Independent semantics artd result ln a command set thatJs easy to learn and

understand. Sorne example commands are INSER T, REPLACE, MOYE and

DELETE.

The INSERT command is used to insert new structures in the vicinity of the

selected structure. The original structure does not undergo any changes. This command

lB always Qualifled by an option tbat speci~es,whether the insertion i5 to be berore, after,

around or Inside the current structure., While the meaning of berore and arter are

stra.ightforward, INSERT qualifled by around rijeans that the new structure should

Introduce a new level in the hlerarchy of struc,turés bétween the current structure and Its

parent, If any. INSERT qualifled by inside introduces the new structure at the level of

the children of the current structure. However ah the commands and options are not

applicable for ail structures. The new structure tha,t is to be inserted can be id'en tifled
, .

elther to be a template of Modula-2 structures, or to be replica of an existing structure,

p~Vlded that the language rules are maintained in the resulting structure.

The REPLACE cornmand operates similarly, but it replaces the current structure

,j)y a new structure. The MOVE command Is used for moving existing structures to the
1

viclnlty of the current structure. But thls commaQd ls much more powerful than the

o

"

o

21

IN'SERT command sinpe it Introduces changes at the place where the moved structure

ls brought from. However it is useful for moving entire program fragments ln Integration

purp08es in the building block model of software development. The DELETE command

deletes the current structure.

" .\

c

•

22

Chapter 3: Architecture of the Editor

t,

The arcbltecture or tbe system bas been deslgned witb tbe primary goals of porta­

bUlty and adaptability. Tbe present Implementation Is being targeted to the state-of-tbe-
,.

art graphies based computer workstations [BeeBP82, Nieke84]. While these systems pro-

vide simllar functional capabllities, their application interfaces are far from being stan-

dard. The application mterface referred to here Ineludes the interface to tne graphies

Ubrary. The UNIX(tm) program development support \s the de facto standard for these

workstatlons.

As evident from the previous cbapter, there \s a considerable amount of graphies

proeesslng that needf to be carrled out frequently, in order to keep the user-interface

view consistent with Ithe Internai states of the program fragments. Thus, àchieving por­

tabillty in the face Orl non-standard graphies interface determines the primary dichotomy

ln the system architecture. The Screen Manager (SM) represents the interface of MUPE-2

witb the workstatio.n '5 intelllgent graphics support. lt can also be termed as the Pseudo

Workstation Graphies Support because of lts independence from workstation specifie
\

details. The support by the Screen Manager could. in prineiple, also be extended to

alpbanumeric terminais because of the presence of window managers for sueh terminais

[Engin851. However, this will not be considered here because of the performance degrada­

tion that is anticipated.

The major component of MUPE-2 is the General Manager (GM). In objeet-orlented

termlnology It Is the 'client' that a user wou Id be associated with. Most of the GM's

a.ctivities would be performed by requesting services from the diverse 'servers' present in

the system. While the system Implementation work iB not being carried out in a true

object-oriented envlfonment, the information hiding concept present in Modula-2 is very

'close' to the object model by Its facility of hidden types.

\ . -

· -

23

o

" \

Figure 3.1- The MUPE-2 System Architecture
~

The GM receives user Input from the SM. If the user input is wlth regard to edltlng

operations, the command or partial operation specification th us recelved Is passed on to

the Edit-compile module. In the present Implementation the Edit-compile module does

Dot exist as a separate process. Communication with the GM Is carried out strlctly via

the parameters of the procedures of the Edit-compile module that are visible to the GM.

The communication is hence synchronous wlth control returnlng to the GM only when

the Editor completes the execution of the procedure that the former had called. This

mode of communication is dlfferent from the one between the SM and GM whlch Is asyn-

chronous with a message passing model. The SM-GM communication is examined in

detail in a later section. c,

3.1. ~The Screen Manager

The SM ls deslgned 50 as to provlde the GM wlth a unlform Interface to the dlsplay

o handling mechanism in a workstation Independent way. It oJ!'ers features lIke:

(

24

• Simple Graphies Edltor.

• Mouse Position Reportlng.

• Keyboard Input Reportlng.

• Easy to use pop-u,P and pull-down menus. '"

• Speclalized Wlndow Manager.

lt should be noted that the SM is functionally simllar to the Brown Support Environ­

ment that has been used in the PECAN system [Reiss84bj. Moreover, similaritles can be

round between the SM and the Presentation Component of the Seeheim UIMS model

[prafH85j.

The SM runs as a separate process rrom the GM. In the present Implementation

wlth Modula-2. one of the 'two is arbitrarlly started wlth a TRANSFER cali while the

other Is sta~ted next by a standard procedure calI. This takes place ln the inltiallzation of
1

the MUPE-2 driver routme. As will be explained in the section on communication, the

two managers operate as coroutines and transfer of cbntrol takes place each time a mes- '

sage is passed between the two.

The SM provldes a top-Ievel drawing ,of non-overlapping windows and a window

~ "
hierarchy ror overlapping windows, within the non-overlapplng windows. The SM sends

mouse clicks as the wlndow in which the cllck occurs and the relative coordinate position

wltbin the window where the click took place For pop-up menu selection it sends the

Item number that was selected. For pull-down menus lt sends the command num\ler

witb which the menu is associated as well as the item that was selected. ~eyboard input

Is bandled de pen ding on the nature of the key depressed. For cursor control keys, e.g.

the up-arrow and the down-arrow, there is no buffering and the key values are passed to

tbe GM immediately. For the other keys, local bUfferlng \s performed and on receiving

tbe string termlnatlon character, the string received is transmitted to the GM. Local

echoing Is done at the current active wmdow to provlde the user with the necessary feed-

back. The textual Input would be checked for correctness, as per the language rules,

away from the SM. Th us correct textual Input would affect the ln ternal represen tation of

some 'program fragment.-The display and the associated sereen maps are updated by the

-------- .~-----------'-----

o

o

l'

25

unparslng routines that are called when the internai structures are modlfted. This may

result in text being drawn twice on the sereen. once in echo to the Input. and the second

tirne the unparsed output. This is unavoidable since the edltor allows Cor enUre program

fragments to be typed ln beCore validation. and Immediate echolng has to be done.

~ach message received by the SM Crom the GM communicates a screen updating.

The size oC the windows and their relative positions on the screen are however handled

by the SM. The GM assumes a standard size Cor ail windows. Activitles local to the SM

allow the user to alter the wlndow's maximum x and y coordlnate values. keeplng the

corresponding minimum set constant. Note that the effect of this. while slmllar to sc rol-

ling. does not constitute proper scrolling. The dlfficulty in ,providing scrolling is in the

maintenance oC screen maps. These maps allow the GM to IdentiCy mouse clicks wlth

the program structure(s) assoclated wlth that reglon. Allowing scrolling would entall a

,communication overhead that would have a degrading effect on the response time.

To summarize. the Screen Manager presents a workstatton-independent in terCace Cor

input and output functions for the system. The motivation for such a design was to meet

one of the major requirements - portability. The SM is essentlally a lower layer on which

the rest of the system depends on to communicate with the user. The other parts oC the

system represent Implementations that can be ported easily depending on the av ail ab III t y

or the language compiler and the operating system in terface.

3.2. The General Manager.

The GM has been designed to ease adaptability and extensibllity of MUPE-2. While

the present thesis \S primarily concerned with the design of an editor. It is the GM deSign
3

that supports the obJect-oriented Editor design. The Edit-compile module is just one

resource that the GM could use. The use of such a scheme lB helpful Cor extendlng or

adaptlng the MUPE-2 system to new and additlonal reatures. ~hus it Is possible to

change the Edltor's server modules easily if an environment for a ditrerent language lB

requlred . The modular nature of the design enables changes for the system to be local­

jzed If the interface specifications can be maintalned.

c

..

26

J
The editing model that lB assumed by the GM is that an oÇleration consists of the

followlng sequence

<operation> :: \ <destination> <command> [<option>] [<source>]
\

\
The destination of the ophatlon ls always at the eurrent structure of interest as indi­

\

cated by the active cursor. \ The tokens for the above are identifled with the help ~he

screen maps avaUable to the GM. Once identified, the tokens are sent to the Edit-compile

module. Baslcally, the GM does not check for operation specification completeness: This

was necessary ln the design because of MUP~2's feature of user interruptible operations.

It essentially allows the user to have an incompletely specified operation and initiate the

specification of another operation. The ineompletely specified operation Is then in ter-

rupted and can be resumed at, a later instant. ThIS feature IS specifie to the Edit-compile

module and hence it Is handled there. The mechanism for handling Interrupts and the

reatures avallable will not be discussed further in this thesis, but can be found in .
[MadhP85J.

In the inltiallzation of the GM process, performed at MUPE-2 start-up, the com-

mands that are active at thlS time are enabled and the initial screen is drawn. The avail-

able command set is always made known to the user via the display. The availability

does not remaln constant over tlme because it depends on the context of the user's opera-

tlon, Le. the active cursor.

At lnitlalization the drawing of the entlre screen. Is performed by the GM. The

drawing ls achiev~d by calls to the graphies edltor .primitives available III the SM. The

calls are implemented by a message passing scheme and the caUs are non-blocking. The

detalled design of the communication is provided in a later section. There would be a

considerable communication overhead ln, this initiallzation, but because the full screen

need be drawn from scratch only once, the payotrs in using message passing are still

attractive. What the message passing scheme tries to achieve is to enable the two

processes to work independently with a minimum of coupling. Wlth such a scheme the

extensions to a distributed environ ment will be done in a natural way.

o

o

27

In using tbe Modula.-2 PROCESSES faclllty to acbieve process independence to

some degree. lt is necessary to devise a procedure whlch would perform the functions

described above. The GM procedure (process) body consista of a loop as below.

LOOP
GetSMMessageO;

AnalyzeAndActO

END

GetSMMessage fetches a message from the butl'er (or mallbox) assoclated wlth the SM

to GM, communic~tion. lt blocks if the butfer Is empty. AnalyzeAndAct analyzes the

·--message received from the SM for the event reported by the SM. Essentlally the SM pr,p­

vides lexical tokens to the GM as the input from user to the system (and it 15 also true

that tbe SM receives' lexical tokens from the system to communicate to the user). The

tokens~réceived from the SM are then handled by the GM at the syn tactlc level to bulld
,

the structure of the operation. Once the operation structure ls complete. edltor·semantic

routines are called to perform the operation. Some of the token types and the

correspondlng GM actions ar.e as follows: _

(a) Keyboard_Event

(1) Curser_Control_Key

, Update value oC the structured cursor sa that It points to the

new structure.
(il) String

Ir there 15 an Incomplete operat1~n at the current cursor position

, awaltlng the specltlcatlon oC a <5S)urce >. parse the Input string.

check Cor operand compatlbllIty and IC compatible. per(orm the

command wlth the parsed structure at the destination structure.

OtherwIse do not accept Input.

(b) Screen Jtem_Selectlon

(1) MenuJtem
Derive the partial specification Cor the operation.

(il) Wlndow _Item

Derive the assoclated structure Crom the screen maps. Ir no

lncomplete operation specification at cunent curser. then update

structured cursor. eIse check operand compatlbll1ty Cor the

operation.

c

•

28

Tbe text and graphies d18played withln the windows are essenttally (partial) vtews

of tbe structures operated upon by the Editor. Theoe views are obtained by unparslng

the Internai representatlon of the program fragments. The unparslng i.s an Incrementai

process. It has been apparent for so.metime [Fritz84] chat non-incremental schemes for

unparslng are too slow when the fragment belng edited exceeds flve pages. The more

recent schemes, as in RD [CapH086], adopt forward and backward incremental unparsing.

[n MUPE-2's edltor. unparslng ls trlggered ei !ler by a modification in the InternaI tree
'b

structure. or by a cursor movement which takes the focus of attention. the cur30r, to a

structure that is not currently dlsplayed. The Incrementai unparsing algorithm dlsplays

the cursor in the cen tre of the window and unparses in both directions of the cursor. tUl •

eacb of the screen halves are fIlled up.

Durlng the unparsing process, screen rnaps are constructed to map between internaI

structures and wlndow relative coordinate:~. When a user clicks at sorne element, textual

or graphical, wlthln a wlndow, the screen maps are accessed to provide the structure

Identification from relative window coordlnat~s. However. thè screen maps are dynamlc

slnce the window contents continually chang~

While the Internai representation of program fragments 18 out of the scope.of thls

thesls. It 18 appropriate to conslder them ln the context of the Implementation of the
f

screen maps. The MUPE-2 systém_r:natnrtÙns program fragments ln a variation of the

abstract syntax tree representation. Abstract syntax trees have proved to be popular

with ma,ny Implementations beeause they provide a representation somewhere ln between

conerete syntax and actual semantics. The unparser generates tbe conerete representatlon

of a syntax tree from Its InternaI representatlon. The eoncrete representatlon Is communl-

cated to the SM for display. The sere en map Is generated (updated) during the unpars-

Ing process. The unparser Is aware of the location wtthin the _window where the display

takes place with e~h cali to the SM dlsplay routines.

In system~ of the type of MUPE-2, the text tbat Is displayed 18 orten dertved

dynamlcally from structured Internai representatlons. Thus to aIlow the user to 'plck'

internai structures trom their textual representations underscores the need for

o

o

malntaining mapplngs between screen coordinates and inter;nal structures. This 'plcking'

racllity is avallable ln systems llke IPSEN [N..tiS3~~nd PECAN among others. The gen-j" , '"

eral method for Identifying the Internai stru/tures has been to use a table with ;n;~lea of
~-.-/

the pair (Screen Coordinates. PJ>inter to Internai Structures). However such a method ls

. space consuming and the structure resolution process is compllcated. The scheme that is

used ln the present Implementation ellmlnates a major part of the space consumptlon

with lImited etrect on the performance.

This method saves on the space requirements because It does not use a table to

IdentiCy the structures. Since in the dlsplay of a program fragment. the current cursor ls

always ln the associated window, any structure 'picked' must be ln the nelghbourhood of

the current cursor. Instead of using a table. the nodes of the Internai representatlon can
- l

. be attributed with the coordlnates of the rectangular reglon within which the ~ubtree

below the node is displayed. The attribution of the structure nodes 1S done at ail tlmes of

the unparser traversais.

Figure 3.2 1S an illustration of a contrlved example of a portion of a program frag-

ment with Its display and internai representation. The scheme to Identlfy a selected

str~cture is now explained. Let the cursor be the procedure caU wlthin the sequence of

statements as shown in the figure. Let the mouse click occur at the position indlcated by

#. The rectangles associated with each of the nodes Is as indicated by the dashed lines

in the figure.

The search ror the associated structure starts at the node numbered 3. and whose

rectangle limits indicate that the click did not take place wlthln the subtree rooted at

this node. Next the search continues by followlng the sibllng pointer to node 4. then to 1.
~

stopping with success at 2. To ob tain flner resolution the search continues to the chlldren

nodes oC 2. It continues ln chis manner to finally return the Flnegrain structure. which ls

the appropriate structure.

The searching alJrithm in pseudo-code is as follows.
p

,~

o

)

) Figure 3.2- Structure Selection ln a Program Fragment.

PROCEDURE SearchStruc~ure(CurrentPolnter:NodePo1nter;Cllck:Coordlnates}:NodePolnter;

VAR
SearchPolnt~r: Nod~1!!.ter;

BEGIN \

SearchPolnter := CurrentPolnter;

LOOP

IF (Clh:k In,SearchPolnter's rerlon) THEN

RETURN 0 btalnStructure(SearchPolnter ,Cllck)
ELSE \.

SearchPoln~er :== SearchPolnter- .Parent

ENDIF

ENDLOOP

END

, f

PROCEDURE Obt.aJnStructure(PS:NodePolnter;Cllck:Coordlnates):NodePolnter;

VAR
SlP~r,S2Ptr: NodePolnter;,

BEGIN ,
SlPtr :- PS· .FirstChlld;

,S3Ptr :- SlPtr:

REPEAT

IF (Click ln SlPtr's rel1on) THEN lÎ

1

li
.y

30

\

o

, ~ .

o

RETURN ObtalnStructure(SlPtr,Cllck)

ELSE
SlPtr := SlPtr~ .NextSlbllng

ENDIF

UNTn. SlPtr = S2Ptr;

RETURN PS

END

31

• \,

Thq loop in SearchStructure has to hait since th'e reported click 15 'alwaYà withln the
, ~

root's region. The sibUng nodes form a circulaI' IIst structure and the search a.t a. level

ends wh'en the circle is completed. There Is a small amount of redundant work done ln'

" examinlng anode again after the search has climbed to the parent. This can be avolded

at the cost of a 'marking' bit.
u

3.3. Single Processor GM-SM Communication

The GM and SM are two cooperating sequentlal processes. The synchronlzatlon a.nd

communication of such processes are of primary Importance for effective utlllzation of

available resources. Among the many approaches proposed to achieve synchronlzatlon

and communication among such processes., the popular ones have been monitors

(Hanse75] and message passing [Hoare78. GentlSl]. The resultlng process structurlng ln

programming via these two approaches are distinct in nature and 1S one of the criteria
o

used for selectlng one over another. An advantage of uslng message p3$Sing Is that It is

easily r,elated to distributed systems Implementation. The process structurlng from the

object-message viewpoint 15 easy' and natural, and the resultlOg structure translates
•

directly Into code. "

MUPE-2's strong emphasis on adaptability ln the desIgn requires it to be adaptable

to the recen t trends in distribu ted operatlng systems. The design ph i1~phy of th ese sys­

tems ls that a Iwork~tation should \ be more than an in telligen t terminal. Conseql,lently.

the workstation shojlld have a larger l'ole by offerlng Its résources to the overall system.

The state-of-the-art workstations ln the dlstributed systems are of the power of the SUN

and IRIS variety. The generic features of such distributed systems' are presented ln the

next section where extensions to the present~PE-2 single processor Implementation

•

c

o

.. ' •

32

would be examlned.

The single processor Implementation for the SM-GM model is based on the support
,-'

provided b,Y the SYSTEM module ln the standard Mod~Ia.-2\:"~ry. The §YSTEM

... module is an encapsulation of the low-Ievel facUities that are provided by the particular

" compiler Implementation. However, the SYSTEM module facillties are for single processor

Implementations alone and do not provide the abstraction necessary for adapting to mul-

tiprocessor configurations. Formulation of processes and thelr interaction, via Modula-2

can be achieved at a higher level of abstraction whlch hides the underlymg system

configuration, In a single processor configuration, there Is only one process that Is execut-

lng at any instant and the processor is time-multiplexed between the processes.

To achieve thls lùgher level of abstraction, [W(rth85! bas introduced"a module called

PROCESSES This module provldes a small and simple facllity for dealing with con-

. ',-current. cooperating 'threads of control' (processes). The module PROCESSES 1>rovides

the follo~lng, ,.

1. Procedure StartProcess(P:PROC; n:CARDINAL)

Starts a process' P with workslze of size n.

'2 .. Procedure Send(V AR S:slgnal)

Reactlvates a process waitlng for signal S.

3. Procedure Walt(V AR S:slgnal)

Wa.it for sorne process to send signal S.

4. Procedure Awalted(S:signal)

Returns true If any processes are waiting on signal S .
./

5. Procedure Init(VAR S:slgnal)

Initiallzes the signal S.

6. Type SIGNAL

Opaque type SIGNAL.

()

The ca.ll to procedure Sta.rtPrOceS5 is to sta.rt the J~cutlon of a process ~XP~\Fed

by tbe para.meterless procedure P ln Its argument llst. Th\' distinction between genuine ..
concurrency a.nd quasl-concurrency tn the executlon or P a.nd tihe ca.l11ng body is

--"

, .
--------- ----------------=----

o

o

33

dependent on the implementatlon of tbe PROCESSES module. Tbe communication

between processes for purposes or conveying data among one another Is achleved by com-

mon, shared variables. Apart from such communication. processes also need to Interact ln

such a way as to force a particular sequence on thelr executlons - that Is to synchronlze.

Such corqmunlcatlon for purposes of synchronlzatlon ls handled by signais. The data.

type SIGNAL exported from the PROCESSES module carry, no data as such .. Every sig­

nal Is used to denote sorne condition ln the program's variables. Sendlng the signal

.\ lmplies that su ch a condition has taken place. For processes wakmg up to a. signal. the

subsequent operations are based on the assumptlons that the condition has been met

,
The ImplementatIon of the PROCESSES module for single processor Modula.-2 com-

pilers ls based on ~he prevlously mentlOned SYSTEM module, which provides the low-

level facilities that enable Modula-2 programs to consider machine-dependent

speCifications. Central to the Implementation of the PROCESSES ''ffiod ule via. the SYS-

1
TEM module ls the notion of co-routines. Coroutines are sequentlal programs that can . ~

be executed quasi-concurrently. In such a situation, the processor Is swltched from one

coroutine to another by explicit transfer statements. The SYSTEM module provides a

TRANSFER procedure to achieve exactly this.

In the Implementation of the PROCESSES module provided ln [Wlrth85], each pro-

cess started by a StartProcess call is represented by a process descriptor in a process

ring. The ring contains descriptions of ail processes created up to that tlme. Processes

operating on the same signal are further threaded together withln this ring. Send(S)

takes the first element off the thread assoclated wlth Sand transrers control to It from

the call1ng process. Wait(S) places the calling process at th~ end or the S thread and

control is passed to the next ready to run process from the ring. Thus a fair queuing pol-

lcy is lmplemented by the use of the tl)reads.

For the Implementation to retlect a message passing scheme ln process communica,­

tion, the monitor approach for mutual exclusion has been followed. Messages are the

shared va.riables (butfers) whose access Is protected by the synchronlzatlon raclllties pro-

vided by PROCESSES. The message passlng scheme designed ls falrly simple because of

(

(

34

- the presenc.e or only two processes, the GM and SM. The obJe~ts in this message plIlSSing

scheJme are Quasi-concurrent processes that deposit messages ln the named buffers to com-

• municate with other objects. When an object is free it fetches messages from the buffer

associated with lt. Since there are only two such objectl, the identitlcatlon of the sender

of the message \s not necessary to be part of the message.

The buffers are flnite in slze. Any attempt to deposit messages into a full buffer or

to fetch rrom an empty buffer results in the process being put to 'sleep' wlth a Wait for

the appropriate signal. lt is thus an implementation of· the 'well-known Producer-

Consull}er problem. However, we have decided to approach the problem from the

, messo.ge-passing point of view because it offers us a methodology for adapting to (con-

'" current) dlstributed systems. The duality between monitors and message-passing for com-

municatlon and synchronization has been apparent for sorne time [LaueN7g].

The PROCESSES module, whlle adequate for the present implementation, has sorne

limitations that precludes it from general acceptance. A major difficulty wlth Wirth's

PROCESSES Implementation, Is Its awkward semantics when a process or the main pro­

gram termlnates: As soon as such a termination takes place, the en tire program ter-

mlnates. Thus lt does not support a dynamlc multiprocessing environment where

processes are regularly inltiated and terminated. This problem has also been addressed in

[Sewry84), where in a modifled implementation or PROCESSES, ail processes caB a stan-

dard procedure as the last statement. This procedure would remove the corresponding

Process Descrlptor from the schedule ring maintained by PROCESSES, and transfer the

control te the next ready to run process rrom the ring. While thls is a major improve-

ment in concurrency control via Modula-Z, it does' not unduly influence the modeling of

SM and GM as process6S. For our implementation, SM and GM are static processes and

the two do not exist separately. The SM could not exist 'meaningfully' without the GM

becaUse the onry intelllgence that the SM has Is in the area of 't~rminal' management.

The GM's communication wlth the user Is handled by the SM. Without SM, GM is iso­

----lated from any Interaction with the user. The Hnal termination ls btought about by the
)

user communicatlng a quit signal to the GM which takes It out of the main loop in its

"body a.nd on to the procedure end and hence to the end or th't entire program.

()

o

o

35

3.4. Extensions to a Diatributed System

Witb tbe growing popularity of powerful workstations an~ high speed local area

networks, there has been a lot of research on the struc,ture of.J!:pplicatlons in dis'tribu ted

syste~s. In many of the present workstatio4cations, the workstation la elther

treated as a remote terminal for a powerful mainframe, or lt Is treated as a stand-alone
•

personal computer. However, the present day workstatlons are better utlllzed If they are

to be treated as a multifunction component of a distributed system. The reason for thls

lB that the power of the workstation will not be wasted ID treating lt merely as a termi-

nal. Furthermore, using it standalone isolates It from the benefits of the computation

power available in the larger range of computers

One of the most importan t functions for the workstation in such a. distribu ted sys-

tem is in providing the user in terface support. The workstation acts as a fron.t-end for

\ ..
the resources, which could be local or remote. Tasks down-lo'aded from a mainframe

frees it\.to concentrate on the computation Intensive tasks lt lS best at

For a distributed implementation of MUPE-2, it is intended to use the workstation

as such a component. The present design 15 adaptable to such a configuration because of

the layered approach that has been adopted in the design of MUPE-2. The model of dis­

tributed computing th!'-t attention Is focussed on is based on the V-System [LantN841

The V-System is an environment consisting of workstations, standard time-sharing sys-

tems and dedicated server machines, interconnected by various local area networks

including the Ethernet [MetcB76). It is representatiye of the recent workstatlon-based

distributed systems. The fundamental software architecture is that the system Is func-

tionally decomposed into modules such as workstation agents or managùs A module

could act as a server of a particular resource, or as a client for sorne, other resource, or

both. The clients and servers may be distrlbuted throughout the network wlth the same

semantlcs for local or remote access, or communication.

In sucb an Implementation of MUPE-2, tbe SM Is the 'terminal' server. Futher-

more, the SM is deslgned ln an application Independent manner and can be used for

appl1catlons other tban the MUPE-2 system. Tbe main changes that are foreseen ln a

38-

transition to a. dlstribu ted Implementation would be in proceSS schedullng, and process

communication. The synta.x and semantics of message passing have been designed 50 that

they can remaln virtually unchanged. The structure and capablUtles of the SM would

• undergo mlnor modifications with its adapting sorne role in communicating with a distri-

buted kernel ln the identification of remote servers. The present system architecture has

been designed 50 that the partitioning of tasks is the appropriate one to achieve the best

performance in the distributed setting.

ln the dlstributed implementatlon, the SM would be the only component that would

be present ln the local workstation to the user. The GM and the Editor modules would

exist in a remote and more powerful computing system. The SM design is based on the

Vlrtual Graphies Terminal Service(VGTS) that IS present in the V-System. VGTS sup­

ports a wlde variety of structured graphies in an application and device independent way

Thus ln conclusion, thls secUon has presented the case for distributed systems based

on the power of present day workstatlons. The structure of a similar recent system, the

V-System. was examined to understand and appreciate the performance of such systems.

The adaptabllity requirement of MUPE-2 guided the design of the SM-GM communica­

tion. The transition of MUPE-2 from a centralized Implementation to a distributed one

should be a simple one. Consideration of SM-GM communication in such a IIght would

('J provide major beneftts at such transition time.

•

o

o

37

Chapter 4: A Scheme for Enforcing Syntax Rules.

....
A major part of the design of a language based editor 15 concerned wlth Incorporat-

Ing the context-rree syntax rules or the language. Belng context-free, these rules slgnlfy

conditions that are to be enforced in locallzed language constructs. In a conventlonal

compiler, these rules are the basis on which the parser is constructed. However. In a tem-

plate drlven language based editor environment, the front end of a conventional compiler.

i.e. the parser. is not necessary. Here the role of the parser is played by the mechantsm

that decides the set of templates and the structure types that are avallable for a partlcu-

lar operation on a particular~cture. This set is selected to malntain the program ln a

con~istent state by the cont~ee rules of the language. Whether anything else takes
J ..

the program to an inconslstent state is the subject of the next chapter.

This chapter aims to present a scheme to enforce the language's syntactlc rules ln a

template driven language based editor. An introduction is provlded to a taxonomy in

language based editors, and the model of the MUPE-2 edltor is presented wlthln such a

classification. The primary concerns in developing the scheme have been that the imple-
--.

mentatlon should prove to be adaptable and portable. Attempts to meet the adaptabil-

ity goal have been made by utillzlng a table-driven approach ln the specification of the

largUage rules. However to design an efficient table organlzation requlres Il classification

model of language structures on which the editor operates, and domg 50. to develop a

. general model for editor operations. Such a model is denved in this chapter. Portabillty

in the editor's Implementation acrœs a wide variety of lSSues is essentiaL As an example,

this editor has been designed to be portable across the internai representatlon of the pro-

gram structures. This Is achieved by the use of a structured value to represent the 'eur-

sor'. ln the editing operations. Thus the structured value of the cursor providee an

abstraction of the program structures that the edltor operates on. The tradeofl's in male-

ing these Implementation cholces are ftnally noted.

c

"

38

4.1. Types of Language Based Editors

Language based edltors are usually of two types. In the Orst type there is an Incre--

menta.l parser which I.s Invoked at various points during tbe CO\lrse or editing. Thus. 'as a

program I.s belng bullt wlth su ch an editor. parsing is c:arried out (perhaps for each !ine

that Is typed ln) to main tain the syntactic correctness of the program. The Incremen tal

par,ser 15 normally able to notlfy the user immediately that the (previous) input was

Incorrect. However. there are sorne editors. such as the one in COPE [ArchC8l]. which

would perform error repair on the input such that no error messages need to be mdi-

cated. This' is part of a philosophy of cooperative programming between the system and

the user. There could exlst on-Hne help facilities to provide the user witt} the syntaxes

that are acceptable at any point wlthin the developing program.

The other type of llditors to mcorporate language rules are the template driven edi-
1

tors. These edltors are usually associated with a menu based command language for the

editor. In such systems. the user is provided with a choice of language constructs that are

appr<?prlate for replaclng a non-terminal of the language. Here once such a construct Is

chosen. Its expansion is Included in the program being developed. Thus the user is saved

from the bother of havlng to remember the correct spelllng of keywords. or to match

begin.~nd8, among others.

The process of such a selection is equivalent to applying a partlcular production of

the grammar at a non-terminal. As a production of th"Q. grammar may have non-terminais
\

on lts righ t hand sid-e. the language constructs could have portions that need further

expa.nslon Thus the language consbi'ucts chosen could appear as templates wlth place-

holders for the portions that are not fully expanded. 'For the scanner. the only reQUlre-

ment could be to Identify identlfiers and constants. However, a few editors. hke the CPS

[TeIRe81). use an expression parser which could be seen as freelng the user from the

lengthy process of msertmg an expression by the step by step expansion of term, factors

and others that are mcluded ln tbe language rules to enforce operator precedence.

In the MUPE-2 edltor, textual input and templates are used through allievels of the

grammar. This Is similar to the approach taken by edltors like SYNED [Gasne83] and

o

o

30

PECAN [Relss84a] ln otrerlng bimoda/ity. The main reason for thls lB that the edltor

should be convenlen't to users with a. widEl-spectrum of famlllarity with the language.

Whlle the template driven mode provldes a. strict adherence to the language rules. users

fairly famlliar with the language normally find It restrictive. For such persons the tem­

plate driven mode Is useful to construct the overall structure of the program. but would

prefer textual input for the rest of the program body. To provlde the textual Input facll­

Ity at aIl points ln the program requlre constructing a novel parser of the type descrlbed

in [WegmaSo]. whlch uses a set of heuristics in its parsing. This thesis will not deal

further wlth such a parser sin ce it lB still under design. The editor lB currently belng

developed with only a parser for elementary structures ln the Flnegraln domain Such

structures will be in trod uced in a later section.

4.2. Editing Operations

In the, present editor. template~ are chosen as part of the operation specification.

The specific~tion starts with the selection of a command like INSERT or REPLACE,

and t,he specification completes. in most cases, when the source operand for the operation

Is specified. Once the operation IS fully specltled, the 'action routmes' to carry out the

operations are tJ;1ggered. These commands are implemented by combining the primitive

tree operations of graftmg and pruning. As descnbed ID an- earller chapter. the target of

these operations lB always at the location of the current cursor.

The following is an example iIlustrating the specification of an operation.

Consider the current cursor to be located at the while statement in the dlagram shown.

The user selects the command INSERT. ThiS command has to be further qualltled by

an option from a subset of {Before, After, InsideFirst, InsideLast,. AroundFirst,

AroundLast}. The options available are presented to the user ln a menu of options.

The available options depend on the structure that the cursor is on, and the command

that has been selected. In the above selection of the Insert operation. the available option

set Is the full set as shown above.

>

<designator> := <expression>;

WHILE 1 >= 0 DO

Subt~tal[i] := Credit[i] - Debit[i];

DEC(i)

END;

40

A. short explanation on the signiftcance of the options for the Insert operation fol­

Iowa. InsideFirst and InsideLast dlstlngu ishes whether the insertion is tO the ftrst state-

ment or the last statement of the while loop in the example. On the other hand,

AroundFlrst and AroundLast are' meanli to dlstinguish in the insertion oC an existing

structure around the target source structure. Since such an existing structure has to be of

iL 'container' type, AroundFlrst places the destination structure as the ftrst structure ln

the container. Similarly, AroundLast makes it to be the last.

The necessary option sets for a command is derived from the cursor informati2n and

the commando In this editor a table represèntation has been used to store the appropri-

ate option sets. The prime motivation ror the use of table representation is that It allows

for ftexlblty and adaptabillty ln the edltor. Modification in a table entry Is, ln general, a

slmpler process than modification or loglc incorporated as code ln a program.

The design or the tables ror accessing the option sets is decided by the mechanism

used for Incorporating the cursor Information. However cursor Information -., has a. larger

role to play in the rurther specification of the operations. Hence description or the tables

for accessing option sets WIll be postponed until the operation specification description is

completed.

o

o

41

In typical operations involving tree structures, portions of the tree are replaced by

an already existing subtree (by copy or transfer), or by the applica.tion of a production
1

rrom the language mies. Tbis requires a further step in the speciflca.tion of the operation.

In this step the source of the operation ls specified. As already descrlbed, the entire

operation could be seen as:

<operatIQ~ > ::= < destination> < command > [< option> 1 [<source> 1

For operations tbat do not have a source opqand. the speci/lcatlon is ln post/lx

rorm. However sucb a specification method a'tJplles only to on' operand operations. For

operations with source as the second operand. the specification Is ln In/lx form. This Is in

contrast to a specification scheme which would have allowed 'selection' of a number of

structures and then ,applylng the slOgle command on the selected structures Such

schemes are present in many of the recent graphlcs-based edltors, but are not approprlate

when language rules have to be obeyed, which essentlally is to main tain a larger overall

structural rigor.

The source can be specifled elther as an existlng program structure, as textual Input

which Is typed in at that point, or as a language template. In essence they both Imply . ,

the application of a production of the language's underlying grammar. The source belng .
an existlng program structure implies the applicatlon of a production of the grammar

where sorne of tbe right band side nontermmals could be already expanded. A language

template Is necessarily a prod uctlon wbere none of its non terminais are expanded.

Since protection is a major r~ment for the editor, the candidacy of a program

structure ln an operation needs to be first validated before the routine Implementlng the

operation Is called wlth the structure chosen as the source. The scheme used for this vall-
~

dation depends upon a hierarchlcal classification of the program structures. Uslng such ~

scheme enables tbe validation routine to make qUlck decisions aince a coarse /lIter is

sutl1cient to discard many of the non-permisslble program· structures.

Language structures tbat are Identifiable in any given segment of a program can be

seen to belong to classes that are easily dlstfIïgulsbable rrom eacb other. Thus a language

structure like an assignmen t statemen t is easily distinguished from one that ls a constan t

,\~

1

l'"

("

1

42

declaratlon, 'which ln turn ls agaln dlrl'erent from an' expression. Elements of one such

cla.ss fan, ln ,eneral, be seen to be composed of elements of other classes, and elements

of a particular class wh en ordered with el~ments of another class can form elements of a

thlrd class. Thus, the edltlng operations that a software developmènt environment lIke
r

MUPE-2 provides, are essentlally going by rules that main tain these class distinctions.
)

Moreover, these editing operatloTlC! truly retlect a bottom-up, top-down, or ·same-Ievel'

nature of software development. As a result, the editlng operation 'ru les specify a map-
4-

ping from a set of classes to another set of classes. Since in an edititlg operation, there
/'

are the destlnatl6n and source operands, and a resulting structure, a signature of a gen-

erallzed edlting operation EditOP;r is as,

This means that the edlting operation EditOP;r Is applicable to structures as are specifted

above in the sIgnature. Clau, is the class of the destination operand, Clallili is the class of

the source operand, and Clallilk Is the class of the resultTn'g-5t~ucture.

The Interest then Is to be able to formulate the editing operations by such map-

pings, and thus to drive the edlting machinery. Thus for every editing operation, a set of -
tuples or a relation, defines the rules for applying the operation. To achieve this, the

classification scheme of language structures is the topic of the next section.

4.3. Structure Classification , ,

The invariant of an editlng operation is that, at the syntactic level, the resulting

structure is still a sentence of the context-free grammar rules describing the syntax of the

language. However these grammar rules are presented in su ch a way that to derive the

rules ror editlng operations requires an initial analysis phase. A,c3 an example, consider the

editing operation INSERT-Around on a structur~ whlch 1s a statement of the
,

lansuage. It is pOSSible to use a procedure as the Bource for tl\ls operation if the state-

ment lB the only language structure of the frQ,.gment. In any other situations such an

op~ratlon would not be possible. Thus the language structure classification scheme that

should be adopted to den ote the allowable set or edlting operatlon~ake such

-J,

)
/

1

o

o

43

,
distinctions. Furthermore, mapy of the edltlni operations ~pply for a yt!pe ranie or

classes. FÇ>r example, the INSERT-After operation applies for a.H classes of,~tatements
'j

whenever the destination operand is of any statement tYgi;.

Thus, the classiflcatlon scheme that IS most sultable for this purpose Is a hlerarchl- 0

cal one. This Is 50 because It Is then possible to incorporate the ruies of such language

dependent editing as compatibllity in the dltrerent levels ln the hlerarchy. This results ln

situations where the satisftability requirement"s are limited to examming the classification

values in the higher levels of the hierarchy Th is ln trod uces the aspect of precIsIon ln

structure specification. In other words. the editor does not reQuire the same am~unt or

information of the language structures, when it derives the valldity of language based

editing operations.

The classification model that Is used" in the edltor IS presented ln this section ln a

formai notational basis. The application of this model to sorne actual Modula-2 structures

18 also illustrated in this section.

A program fragment (F) 1S composed of (-) a sequence of well-formed/program

structures or language constructs (Si 's).

Each of the program structures (Si 's) can either be a compound structure. In whlch c'ase
,,'

lt is composed of inner program structures, or it can be an a.tomlc or Finegrain struc-

ture. Thus for a compound structure Sil ,

1)

Sil - S. S, ... S,,

The classification of a structure derives a structured va.lue for that stru:cture as

Class(Si) = (D 1.' D'lI , ... ,E2).

1

This classification of a structure exhiblts the hlerarcbical classification value. That Is,

among aU possible structures in a classification tree, the structured value or class (Si)

denotés the path from the root of the classifica.tlon tree te les lea.f nocW!, E. Thus for the

structure Si, Dl" ab ove denotes tbe top-Ievel domaln value, the s4bsequentelements the

l'

(

o

44

J
sub-domaln values,' and flnally E~ the actual ~tructure (generally 2. pointer to an internaI

representatlon, or 'opaque' type). Note that <>this classification is independent of the
',;

19 Internai r.epresentatlon that is used to store the structures. The function elass(.) is

".

""' .
a.vallable at the Interface of the internaI representations to provide the classification

value. Thus' the Internai' representatlon could be of any stru,=tural form like abstract
{,l}fl ,>ï .

syntax trees, directed acyéUct.:graphs, or parse trees.

The top-most classification of language structures is by the primary doma.ins. Pri-

mary domains ldentify the granularity of a language structure. While the Fragtypes of

MUPE-2, as Introduced in chapter 2, are based on sucb a granularity concept, there are
" 1/

domains to classlfy Inner structures that are not allowed to exist as a fragment of their

oJlll. These structures are not well-Jormed ln the sense that lt is not possible to identlfy

them as building blocks, but are more approprlate in considenng the user mterface of the

edltor vis a vis cursor movement. While the concepts behind, and the racllities of: cursor

movement will not be dealt with in the thesis, considera.ble attention has been paid to the

esse or cursor movements in lYruPE-2's structure editor. In the following the primary

domain categories in stw,lcture classification and the possible subdomain constituents

wlthin such domams are' dlscussed.

Independent tp the prim~ry domain value of a structure, every structure also holds

contextual Information as to whether it is solitary and whether it is ~rouped. A true

(/ value, for soUtary applies only when the cursor structure is the only structure in the frag­

ment. A grouped structure indicates a pseudo-structure obtalned by GROUPlng adja-

cent structures. The primary domains are Flnegrain, Statements, Partial Statements,

Declaration, Types, Partial Types, Record Fields, t'lodes, and Fragment Level.
~ - Il

,
Flnegraln structures are essentlally tex tuai structures and are deslgned to provlde

unl(ormlty among the fine granularity structUres of the laflguage like expression,

Identifier lists and parameter lists. The textual mode of editing is the only w.ay such

structures may be mod!fled. The role of determlning whether the text obeys the lan~uage

rules ln the context It appe'ars, Is played by the Flnegrain parser. Such a parser deter-

mines the acceptable nontermlnals rrom the internai representation where the ~ext .has

,)

o
"

o

J ..

J '

olS ..

been, Input, and parses the s~ructure based on the collected Information.

1 ! ~ (l

Structures wlth Statements as thelr prlmary domain are the statements-Ievel struc-

tures e(Mod~Ia-2'~ The structures within such a domain are further c1asslfted as belong-

lng to one of COntainers, Composite Containers. or Textual subdomalns. Belonglng to the

Containers subçlomaln are the lopping constructs and the WITH statements. Composite

Containers apply to the IF and CASE statements. These statements Qeed to be dis-

tlnguisbed from tbe prevlous type becausa the nature of thelr cells dltrer from those of
1

Containers. An IF statement con tains a THEN-part. posslbly more than one ELSIF-

parts, and posslbly one ELSE-part. Similary. a CASE statement con tains one or more

CASE-elements. The cells of the IF statements are or identlcal classification and the dis-

tlnctlon among the dlfferent 'parts' is made by the unparslng rou tlne (simllar to

\ '
'guards')o Stàtiements in the Textual subdomain do not possess a structural composition

and thus prohlblt operations wlth Inside as an option. The Mslgnment sLatement, the

RETURN statement, and the EXIT statement belong to this subdomaln.

Partial Statements subdomain deslgnates the con tents of IF and CASE statements.

'-~ They are structurally composed of an expression and a single body of statements. There
-

ls no further classification among these struct'lfes for the purposes of syntactic dlstlnc-

tion. A:n example illustratlng Partial Statemen ts Is the boxed structure shown below.
0,

IF ch >= " H THEN

x:= ch;

EXIT

ELSIF ch = LF THEN

'0

X '- H H. ,- ,

"eoln := TRUE;

EXIT

'~\I

,

.'

,'{

:l

a

" 0'

.'

c
.,

~.>:~
:r>~ -~
i~.lr:~ _~"

/

ELSIF ch = FS THEN

, x:=" ";

END

-eoln := TRUE;

eot :=TRUE;

1
o

.'

),'
1,-1
1

46

,1

The Declarations domaln deslgnates structures that represent declarations of con-

stants, types and variables ln Modula-2. Procedure and Module declarations are not

Included ln thls domain because the, graphical Interface allowed dlsplaying the static

scoping tree, and editor operations ln -such a view and hence need to be treated

dl1J'erently. Procedures and Modules are included ln the Nodes domain.

The domain of Types is an example of ,a domain covering structures that are not

permitted to exist Independently as a fragmen~. However such structures can replace

existlng or unreftned type deftnitions. These appear on the right-hand side of type and

variable declarations. An example structure Is shown boxed below.

VAR

a: [ARRAY [O .• N-II OF C:ARDINAL!;

Substructures of structured ,Types structures ~ shown above belong to the domain
..J, \

of Partial Types. These too are strictly inner structures that do not exist as independent

fragments. Operations on these structures permit modifications to the structural class of

a Type wlthout changing the base type. The boxed structure" belo~ is an example of such

..structure.

VAR

'II

,)

o

o

47

a : 1 ARRAY 1 [OnN-II OF CARDINAL;

..
Record declaratlons in Modula.-2 ln volve structures wlthin lt that are dlft'erent from ..

those round in other type declarations. Thus the domain of Record Fields cover the fteld

structures to be round in a record declaration. The full classlflcation of the structures ln

this domain requires distinction between variant and non- variant ftelds, bel.ween ELSE

ftelds' and non-ELSE flelds, among others. The boxed structure shown below ls an exam-

pie.

Person = RECORD

lastname, flrstname . Name;

CASE male : BOOLEAN OF

TRUE: MllitaryRank : CARDINAL 1

F ALSE : MaidenName : Name

END

'"

END;

The Nodes domain cover Procedure and Module declarations either indlvid ually.

wlth their chlldren Procedure and Modules, or when -GROUPed wlth sibllng declara-

tions. In addition, MUPE-2 envlronment rules permit declaratiçns of UNITs. which are

unreflned str:uctures that can subsequently be reftned to either a Procedure or, a Module

declaration. Nodes with their children are referred to as Subsystems. and collections of-

sibl1ng nodes are rererred to as System-Iayers. The classiftcation. wlthln thls domaln
,\

Includes dlft'erentiating between internai nodes and root nodes. between 'compilation-unit'

nodes and others, between the screen on which the editlng ls belng perrormed. among

others.
~

Fragments are the entlties that are provided wlth independent e~tence in MUPE-. ~

2. However, edlting operations are permltted on Fragments ln the sarrie way as structures

,

è-

---\

48

wlthln a Fragment. But there is dlfference be~'ween a Fragment as a ~hole ani:l the con­

tents oC Fragment. Thus It lB possible to delete the entire contents of a. Fragment and

result wlth an empty fragment. Deletlng a Fragment however removes al1 traces of tbe
-,

Fragment from the environment. Furthermore, there are Fragments ln the subdomain

Abstracts, tha.t do not obey the language rules on whlcb the environment is based. These

bave been designed malnly Cor documentation purp05es.

The following 15 the classiftcation tree for structures applicable for edltlng, expressed ln

EBNF notation.

CUl'8Or

Domain

Flnecraln
Types

Textual

Structured

Partial Types

RecordFlds

Declarations

Statements

PartlalStmts

Nodes

CompUnlt

NonCompUnlt

Fracments

::=
"-,,-

::==

::=

::=

::=

::=

::=

::=

::=

::==

::=

::==

::=
"-,,-

L~

(SoUtary INonsoUtary)(Grouped INonirouped) Domain

Flneiraln ITypeslPartlalTypeslRecordF~dslDeclaratlonsl

StatementslPartlalStmtslNodeslFraiments

ContalnerFlnegralnlNoncontalnerFlnegraln

TextuallStru<:tured
,<,

~lstStruc t ured IN onLlstS truc t ur.ed

ProcedureTypelRecordTypelArrayTypelPolnterTypelSetType

PolnterToTextlPolnterToStruc ISetOrTextl

ArrayOfStructlArrayOfText

(VarlantFldINonVarlantFld)(LastFldINonLastFld)

(CasePartlNonCasePart)(ElseFldINonElseFld)

ProcedureTypelNonProcedureType

(ContainerIStructuredStmtITextualStmt)(IrstmtINonlrs~mt)
(CaseElemIIŒlem)(LastOneINonLastOne)(ElsePartINonElsePart)

(SubtreeRootISubtreeIChlidlessRootITheRoot)(CompUnltINônCompUnit)

(UnlqueNonUnltINonUnlqNonUnlt)(ScratchPadIModScreenlprocScreen)

(ProiModuleIDeClmpModuleIDefMoGlIImpModIUnlt)

(IntemalNodeINonInternaINode)

(ExpresslonsISlngle~tmtIStmtsISlngleDeclnIAbstract.sIProcModulel

ProiDefslCompUnltlNonCompUnltlUnltSubSystemlUnltLayerl

CompUnltLayerlNonCompUnltLayer) .
~, ,

Tbe classlftcation information for a structure Is a hierarcby of Information a.nd It
, \

allows a range of precision ln specification. However to malntaln sucb a :classlftcation

Information at every structure would greatly Increase the storage requirements ror rrag­

ments. This can be a.voided if the l'structure classiftcation can be demand-driven. Tilts

rnea.ns that the classiftcation Information for a structure Is evaluated only when tbe corn-

patibllity of ope rands (structures) for an operation Is to be determined.
{,)

,-,

•

o

40

The process or classlfying structures Is carried out in at most two separate Instances

durlng an editing operation. At any tlme during edlting a rragment there 15 a current

structure of interest. Any edit~ng operation that 15 pcrformed. always takes the current

structure as the destination. F~rtherrnore. the available edltlng commands and thelr

options, if any, are derived from the attrlbutes of the current structure. Thus the current

structure needs to be fully specitled at ail times. The specification of the current struc-

ture forms the structured value known as the cursor information. This Is the ftrst

instance of structure classification. and it \s performed any tlme that the current struc-

ture of int~test changes. The other instance of structure classification Is when an edlting
l,'

operation Is inItlated and the source for the operation Is Indlcated as a structure. Then to

check whether the indi'cated structure Is compatible for the command specUled on the

current structure, the structure \s classltled accordingly.

4.4. Table-driven Menu Generation and Compatibility Cbecking

Having illustrated the cursor classiftcatlon scheme. thls section presents the table

driven Implementation for the display of men u items. Another l~pect of the'I~.Itor that

will be examined in thls section \s the design of an efficient scheme for compa~lblllty

checking in edltlng operations.

Men us appear at two IDstances it:t the specification of the operation Flrstly. men us

are presented for commands that need to be further speclfied by an optIon. An example

of thls Is 1he INSER T commando It is to be further quallfted by one of the options that

are avallable for the application of INSERT at the structure where the cursor is

currently posltioned. The decislons IDvolved in making the appropriate display of menu

items are done using the current value of the structured cursor. It should be noted that
,/

the structured cursor Is determlned or evaluated whenever le is moved to a new struc-

ture. Thus when it cornes to dlsplaying menu Items no tlme need be spent ln nrst deter­

mining the cursor value. 1his Is crltical slnce fast response Is neCessary wh en dlsplaylng

pull-down menus. While such a scheme may slow down the response ln cursor motion the

trade-off is justitled.

50

There are only two commanda, INSERT and MOVE, where option menus need to

be shown. Thus It lB not feasible in this case to have Command as a table slimension

slnce a single conditional statement is sufficiently qUick to make the decision. In addition,

these two commands have no differences in option set values at all cursor positions.

The \econd instance where menus are used during operation specification Is in

operations that allow language Jemplates as the 'source' in an operation. As indicated in

an earlier section, speclfying a language template to be installed at a particular position

in the program tree Is eqUlvalent to the application of the corresponding prod uction of

the language. In the present editor the commands that permit template specification are

INSERT and REPLACE. The templates that are available for a particular operation
L

are decided by the combination of the command, the option(if applicable) and the cursor.

It ,should be noted. however, that the user is allowed to choose an item from the menu of

templates, or select an existing program structure as the candidate for the operation.

Thus the user actions undergo the following sequence:

(l). select a command from the commands that are available at that context,

(2) if the command requires further specification of an option, select such an option

from the menu that Is presented, and

(3) if the command selected was either INSERT or REPLACE, a m:'enu of templates
"

is available for selection; the user can select the 'source' of the operation to be a

language template from the corresponding menu, type in text at that point, or select

an existtng program structure.

Since the REPLACE command does not require an option specification, the menu

table for It can be separated from that.for the INSERT" commando For both the com­

mands the number of menu tables are roughly equal to the number of primary domains

in the cursor classification. The tables used have a maximum of three dimensions. As
,

berore, the small size of the tables allo,for modifications to be loc~lized to small data

structures.

Ir the user instead selects an eXisting program structure, the necessary test before

ca.ll1ng the editing action routine is to check for compatibillty. This test could be

•

o

51

perCormed in two ways. In one method, the tables that were constructed to supply the

choices Crom the avaUable language structure templates could be used. This Is apparently
-1.

possible because these structures are oC the Corms that are applicable for the operation of
,

interest at that point. For example, for an INSERT-Around operation on a statement,

the menu Items would include the templates for a11 statemen ts of the container type.

Thus Ir instead a language'structure ls chosen to be Inserted around, It may be checked

Cor compatlbllity by testing whether the Corm oC the structure Is Included ln the set of
1

the available templates. In a diffef"ent approach, compatibility can be checked by examm-
1
1

ing the structured cursorj values oC the source and destination structures at varylng levels
1

oC precision, as determmed by the situation. For example, with an INSERT-After
1
1

operation, if the domain of the destination Is Statements, then corn patlbility test

requires testing only that the domain of the source Is also Statements. However, If the

operation were to be INSERT-Around, then the test also requires checking that the

Curther specification oC the source operand shows it to be of Container-Statement

type. In the Implementation for the present editor the second method ~as chosen ev en

though the first method may have meant savings ln space and tlme by possibly uslng a

simple set membership test. The reason for thls is the existence oC grouped structures. It
1

is not possible to represent such structures as templates because they could be of li varl-

able number of language structures. However their behavior Is generally slmilar to those

templates that act as containers. Thus to avoid incorporatlng 'invisible' templates the
.
compatlbility checking scheme using cursor specification oC both the operands has been

aa, pted. The perCormance Is not necessarily compromised because structures with widely
1

can be Cound to be non-compatible wlth a superftcial, or low-

"

(

52

Chapter 5: Contextuai Issues in a Fragment-Based Program Editor

Programmlng language definitlon Includes many aspects that are not described fully

by a context-free grammar. Among these are the contextual constralnts of a program-

mlng language's syntax. These are also termed as the semantlcs, or the static semantic

rules of the language. These terms will be used interchangeably ln this chapter. Exam-
-

pIe con textual constrain ts of a language are the scope ru les and the type ru les. In a regu-

lar compiler, these aspects of a programming language are enforced by a mechanism that

Is dltferent from the context-free parser that ls used in the syntax analysis phase. In a

slmllar manner, ln a language based program editor, the contextual constraints m the

language rules will be enforced by mechanisms apart from those used for enforcing the

context-Cree grammar. Thlso chapter provides a description of the tasks involved in the

Implementation of such a mechanlsm, as weil as providing a survey of sorne of the recent
(~ .

research contributions in this area.

5.1. The IncrementaI Nature of the Problem

In editlng via a structure editor like the one for MUPE-2, the editor operates on an

intermedlate representation between the text of a program and the code that executes on

a computer system. 'l'he intermediate representation used in this editor is the Abstract

Syntax Tree. The user operates on this representation via sorne view. This view ls

represen~!1otive of the mternal structures and could be a 'prettyprinted' unparsed dlsplay

or the static scoping display of the structures. The internai structures accessed by the

Editor provide complete information on the adherence or otherwise to the language rules.

The user ls notlfied of any conflicts of the structures with the language ruIes, in the view

that 15 extracted from the internai representation.

o

53

During the course of editing the user operates on the internai structures that: as a

result, continually undergo changes. Thus, the m,echanisms for enforcing the contextual

constraints have to deal with dynamic structures. In a conven tlonal editor-compller sys-

tem the editmg and compiling are strictly disjoint activitles ln the whole. This Implles

that the activities deal wlth the structures as a whole and do not take advantage of the

fact ~hat the modifications are mainly small changes and hence may not requlre redolng

mœt of the parslng. I;Iowever this is not possible ln the text editors because the products
'1

of parslng, namely the denved structures, are not handled by such editors, To Illustrate

the nature of the problem that arises in su ch language editors, presen ted below Is an

example that best represents the problem.

For programmmg languages from the Algol famlly, definitions and usages of

identifiers are located in prod uctlons that are remote to each other in the derivation tree.

The cOl)ventional multi-pass compiler would use an earlier pass to set up the contexts

that are needed for performing the contextual analysls ln the usages of the Identlfiers

Since in a language based editor it IS possible to modify the definitions, and hence the

context, at any instance of time, the identiflèr usages should also be correspondlngly

rechecked for conslstency wlth the modified context. The simplistlc approach would be to

reparsc the program fragment to obtain the new con text, as is done ln disjoln t edltor-

compiler activitles. However, ln an mteractive editor such reparsing would have degrad-

iOi; effects on the response of the edltor. Here, prlor to the editmg operation the seman-

tic consistency or otherwise can be readlly Identlfled Thus arter a structural modltlcatlon

due to editing it Is only required to ldentlfy where and If any of the program fragment's

existing structures are affected. ThIS amounts to major savings ln tlme by avoiding" a

complete reanalysis for semantic consistency. ,

Thus the need for an incremental semantic checking mechanlsm is of utmost impor-

tance in language based editors. The problem can be better stated as the rollowing. The

internai representation is a scmantic structure that is obtamed by 'decoratmg' the

'derivation tree with semantic (co,ntextual) information. (The resulting structure may not

strictly be a tree any longer.) At any time, the semantic structure should elther satisey ail
\

the semantic constraints, or if it does not, it should notify the user of such a condition, If

54

a vlew of the structure Is avallable. After an editing operation. the contextual analyzer

a~tempts to reestablish the consistency of the semantic information in an incremental

manner. Those values of semantic information tha:t indicate violation of the contextual

constraints are used for indicating semantic errors or cautions (refer section 5.4) in the

program display In sorne situations the contextual analyzer could a1s9 be used to per-

form structural moditlcations to revert the structures back to a consistent earlier state.

The addition of contextual constralnts in language based editors has been a popqlar

topie of research in recent years. This popularity has been mainly due to research in edi-

tor generators like the Synthesizer Generator[Reps84], Editor Allen Poe[Johns84],

PECAN[Reiss84b] and ALOE[AmbKE84]. These systems ~llow the user to specify the

syntactic and semantic constraints of a language in order to generate an editor based on

the language. Whlle MUPE-2 does not support an editor generator, it is instructive to

note the specification schemes as well as the imple.mentation techniques used in editor

generator systems.

5.2. The Attribute Grammar Approach.

The attribute grammar (AG) approach ,for speclfylng language rules has been used

in a number of compiler-writing systems like MUG2[GanRW77], and GAG[KasHZ82].

AGs have the power as well as the simplicity in its ability to assign the context-

sensitlveness, or statlc semn.nt1cs to context-free descriptions of languages. The use of

AGs ln specifying the static semantics of a language in the generatlon of language-based

edltors wa.s tlrst, made ln the Synthesizer Generator.

An AG Is an extension of a context-free grammar G = (VN, VTt P, S) consisting of

non terminais, terminais, productions, and mitial non terminal, respectively. To each sym-

bol F of v N there is associated a tlnite set IN(F) of inherited attributes and a flnlte set ,

SY(F) of synthesized atlribufc3. The sets IN(F) and SY(F) are usually assumed to be dis­

joint, and that S has no mlletited attributes. The inherited attributes of Fare those

a.ttrltutes that are deJlned when F appears in the right-hand side of a production. Simi­

larly, the synthesized attributes are defined with F on the left-hand side of a production.

o

o

55

For each production p E P,

there is associated a set or semantic functions. For each a in SY{F 0) there is a semantic

function 1 Ga of funetionality D olX",XD am - Da. Similarly for each a ln !N(FJ)

O<j<k, there is a semantle funetion 1 JO or the same functionality. m and (l', depend on

a a.nd j. Each a, Is an attribute oC either IN(Fo) or SY{F,) Cor sorne J, l~J<f;", The

semantie Cunetions are used to assign meanings to derivatlon trees. Consider a. derivatlon

tree t and anode n ln t. Let
f\(/

be the production applied at n. For each a ln SY(F 0) the funetlon f oa . D a.X ... XD am -+

Da associated with pean be used to de termine the value of a at n when the va.lues of ail

the attributes a., .. ,am have been determlned. Similarly, for a ID IN(FJ)(l~)<k) the

Cunction lia assoclated with p Is used to determlne the value oC a at the Jth child oC n.

Ir it is possible to determine the values of aIl attrlbutes of any node ln t then the mean-
-

ing or t will be t decorated with these values.

An AG is now presented as an example. The underlylng grammar has flve non terminais

wlth attributes

IN(S)=0 IN(defs)=0 IN(typedecln)=0 , IN(ldent)=0 IN(uses) ... {symtab}

SY(S)-e SY(del'll)-{symtab} SY(typedecln)-{typeval} SY(ldent}-{mlnirep} SY(usea)-{~ypecluh}

The grammar with the semantie functlons Is as below. The notation sym.attr rèpresents

attribute attr of symbol sym, and Fune(.) denotes a Cunction over attrlbute values.

S-defs';'uses

defs-tYpedecln Ident';'deCs

deCS-E

typedecln-CHAR

typedecln-INT

uses-Ident':='ldent.';'uses

uses.syrntab=defs.symtab .

deCs •. symtab=Decln(dec~.Symt~b, typedecln.typeyal,ldent.strlnirep)

deCs.symtab=empty

typedecln.typeval=character

typedecln.typeval=lnteier

use~.symtab=uses •. symtab

USe5 •• typeclash=(Type(use5 •. 5ymtab ,ldent •. strtnirep)

"Type(usesl·symtab,tden~.strtnlP'ep »

(

, 1,\

:(1

56

A derlvatlon tree node oC a program fragment describes instances oC the attributes

of tbe aymbol at that node. A derlvation tree 'decorated' wlth attrlbute values at its

nodes is termed a seÏnantic tree. The notion of consistency of a semantic tree Is pri-

mary to the operation oC the IncrementaI semantlc chee king procedure as used in the

Syntheslzer Generator. A semantlc tree lB consistent if Cor aU attribute instances, its

arguments are avallable and the value of each attillbute instance is equal to the sernântlc

functlon applied to the argumen ta.

The basic Idea of the AG-based Incrementai semanttc checker lB as follows. The

semantlc checklng rou tine Is executed every time a tree editlng operation takes place. A

tree editlng operation always takes place at a single node because any insertion, deletion

or replacement ln a tree is basically an application of a pruning or grafting operation at

a node ln the tree. Thus after an edltlng operation, if any ch~nge 10 contextual con-

stralnts took place th en the attribute Instances at the node of editing would be incon-

sistent. The -IncrementaI semantlc checker s~~rts at the node where the edlting took
• r

place and proceeds by examlning those nodes whose attribute instances depend on the

Initial and subsequent inconsistent attribute Instances that arose due to the edlting. The

major pa.rt oC the work of the sernantic checker is spent in orderlng the dependencies of

the attrlbute Instances for reevaluatlon of their values.

An IncrementaI semantlc checklng scheme is optimal ln time If it validates the con-

textual constralnts of only those nodes ln the tree that are atfected by any non-local

changes. The scheme formulated by Reps [Reps84] lB optimal in this sense. However for ,

orderlng the nodes for reevaluatlon. the semantic checking scheme has to maint~in

dependency graphs among the' attribute instances at aU nodes of the tree. The resulting

storage requirements. however optimized, are enormous and in most cases exceed those

for the attrlbute Instances at aU nodes of the tree. Furthermore, the Implementation of

tbe dependency graphs and the operations on the graphs require an enormous amount of

code. For use ln a. non-genera.tor environment, we have round tha.t the payolJ's to using

su ch a. scbeme are discouraging.

G

o

,--

-
Among the criticisms of AGs for handl1ng Incremen tal seman tics are:

(1) They are limlted to checking. To handle anything that requires side-efJ'ects Ilke ,

using derault values, or forcing recompllatlon, extensions are necessa.ry that go
,

beyond the formai appllcative nature of the AGs. They are also llmlted to handllng

internai, static semantics.

(li) They are a low-level description of the language's semantlcs. The description of the

"semantic functions involves writing a substantial amount of code The AG method

is dependen t on the derivation tree produced by th-e context-free grammar. As a.

result the symbol tables 'percoIates' up from the deflnitions and then 'trickles' down

to the usages. Hence for a single change ln a declaration, the entlre symbol table

may have to be recomputed.

Thus while the AG approach is attractive in a IImited sense, and given Its popularity ID

"
compiler-wr.g systems, it did not appear as a vIable al~ernative for Implementation ln

our Editor The next section presents the scheme that was adopted for MUPE-2.

5.3. The Identifier Map Approach

The above has been 50 termed after the use of Identifier Maps in the incremen tal
~';'

" compilation model of Magple!SchDB84] While the basics of the method develoPlld for
if

MUPE-2 are Inspired by tbe scheme used in Magpie, there are slgnitlcant difJ'erences ln
"

the two Incrementai semantic checking schernes. The Magpie scheme of sema.ntlc check-

Ing is closely related to the Incrementai parsing that Is used for the purely textual mode

of editing that Magpie supports. The Incrementai parsing is achieved by LLO) tech- ,

niques and it makes use of fragmentmg the program Into major syntactlc units This has

been done because ~ith the LL(l) parslng technique statlc sernantlc checklng cannot be

performed beyond the flrst syntax error. Thus by analyzing each fragment separately,

that is the p,rogram ln smaller parts, the above disadvantage has reduced etrec~

However the scheme employed to deal wit.h the proiram fragments durlng editlni

was Inspiring to our Implementation because MUPE-2 deais wlth program fragments. But

while in Magpie the fragmentlng was done by the edltor/compiler without, perhaps, tbe

l ... ,",\
58

u

user belng aware It wu done, the fragments for MUPE-2 are present because of the

user's a.bllity to develop program fragments. To avoid any possible confusion between
o

the term fragmen t as used in ~agpie, with that 'being used in MUPE-2, the former type

w1ll be termed node.

The nodes in a pro gram fragment are basically the procedure elements that make

up the static scoping hierarchy in a program fragment. Every node has associated with lt

an Identifier Map that holds entrles for a11 identifters referenced within the node. It does

not matter whether or not the identifier Is declared wlthin the node. In the case that the .-program fragment is of granularity equal to or sm aller than anode, e.g. a sequence of - {

statements, the fragment has a single Identifier Map. For fragments of larger granularity,

there would be a collection of Identifier Maps, one for each node.

The Identifier Map at anode represents the binding of symbols to objects and it

, con tains the rollowing information about a11 identifters appearing within that node:

(1) Iden tlfter Name.

(il) !Vhere the identifier is defi~ed. If the declaration occurs within the node, it referred

to as a local declaration. If not, lt Is a non-local declaration and lt contains a poil!ter

to the defining node, if a.ny.

(Ui) The category of the identifier - whether it Is a procedure, variable, type etc.

(lv) The represen tation and value attributes of the identifier as 'would be found in a" nor-

mal symbol table.

(v) The references of the identifier. It con tains pointers to the plaèes withil! the node

where the identifier has been referenced. If the identifier IS decla:red locally, it also

contains pointers to those nodes that reference the Identifier wlthin Its body.
r~

There Is a slgniftcant ditrerence ln MUPE-2's Identifier Maps from those used in Magpie,

'because of the presence of Jmport and export racllities in Modula-2. Each module name

imported into a module, say A, has the etrect of making the Imported symbols locally

deftned in A. Thus 4here would be entr~es ln sorne other modJ,lles that treat sorne symbols

te be deftned ln A, even though they mlght have been imported into lt. Symbols that are

not declared locally eltber pol~t to tbe node where -1t is deftned, or to an ancestor node

o

\

-

, 0

o

where it Is imported.

MODULE ModDemo;

IMPORT InOut;

VAR value. count: INTEGER;

MODULE NumberGenerator:

FROM InOut IMPORT

- WnteString. WriteInt. Wnt~Ln;

EXPORT WrlteVal. NextVal;
" \

VAR CurVal: INTEGER;

-
PROCEDURE WnteVal(val: INTEGER);

t BEGIN

-- WrlteStrlngrValue 18:");

WnteInt(val. 3);

WnteLn

END WnteVal;

PROCEDURE NextValO: INTEGER;'

BEGIN

INC(CurVal);

RETURN (CurVal)

END NextVal;

BEGIN

CurVal:= 0

END NumberGeneratQr;

BEGIN

FOR count := 1 TO 10 DO

value :=' NextValO;

WnteVal(value);

END

END ModDemo.

Flaure 5.1- Procram Module ModDemo.

50"

:

1

•

u

Identlfter How deftned Category Where referenced

ROOT envlronment

Modula.-2 Ids Local \

InOut Local
()

def module Heading of Inout

Body of ModDemo

ModDemo Local prog module module headmg

ModDemo envlronment)"

NumberGenerator Local Module Heading of NumberGenerator

value Local Variable Body of ModDemo

count Local Van ab le "'\. Body of ModDemo

NextVal NonlocalCNumberGenerator Procedure '\ Body of ModDemo

WrlteVal NonlocalONumberGenerator Procedure \ Body of ModDemo

InOut NoniocalOROOT Def module Import lIst 01 ModDemo

WriteString NonlC'CaICROOT Procedure Body of Num berGenerator

Wrrlelnt NoniocalOROOT Procedure Body of Num berGenerator

WriteLn NoniocalOROOT Procedure Body ot Num berGenerator

INTEGER NonlocalCROOT Type Decln of ModDemo

NumberGenerator envlronment

InOut NonlocalCModDemo Def module Import IIst of NumberGenerator

WrlteStrlng NonlocalCModDemo Procedure Import Hst of NumberGenerator
-

Wrltelnt NonlocalOModDemo Procedure Import IIst of NumberGenerator

WrlteLn NonlocalCModDemo Procedure Import IIst ot NumberGenerator

WrlteVal , Local Procedure Body of ModDemo

Export list of NumberGenerator

NextVal Local Procedure Body of ModDemo

Export IIst of NumberGenerator

CurVal Local Van able Decln of NumberGenerator

- Body of Num berGenerator

Body of NextVal

INTEGER NoniocalOROOT Type Decln of NumberGenerator

WrlteVal environment

,
val Local Variable Param. Iist of WriteVal

Body of WriteVal

WriteStrln& NonlocalONumberGenerator Procedure Body of WriteVai

Writelnt NonlocalONumberGenerator Procedure , Body of WriteVai

WriteLn NonlocalONumberGenerator Procedure Body of WriteVai

INTEGER NonlocalOROOT Type - param list of WriteVal

, ,

=

61

• NextVai envlronment

INC Non90caIOROOT ProcedUre Body of NextVal

o

C»!Val Nonloca.lONumberGenerator Variable Body of NextVal

RE~ NonlocalOROOT Procedure Body of NextVal

INTEGER NonloealCROOT Type Proe beadloll of NextVal

tJ

"
Figure 5.2- The Identifier Maps of the Program Module ModDemo

1

An example of a program fragment's associated Identifier Maps is shown ln Figure 5.2.

The tlgure shows the Identifier Maps at each of the nodes of the program fragment

shown in Figure 5.1. The columns in the maps show the values of the Information items,

i, U, Ui and v, as enumerated above. The ROOT envlronment for this fragment hold the

declarations of the standard iden tlfiers of the language, the modules that are imported by

the program fragment, and the program fragment Itself. Within a module, the' effect of

an import list is to make avallable the identifiers that are now visible to the module and

the nodes that inherit the identiflers either implicitly, or via import IIsts in them. How­

ever the entry for 'where-defined' shows such identltlers to be 'non~l?cal' For nested

modules that lm port identitlers defined ln the ROOT envlronment, tl~e 'where-deflned'

entry points only to Its Immedia.te parent module. This is because ne~ted modules do not,

strictly, have access to the ROOT envlronment (except for tpe standard Identiflers, which

,-1lore unalterable).
{~

The reference entries in the Identlfter Maps enable the IncrementaI semantic check­

Ing routine to be performed in an efflcienCt manner. Whenever the definition of an
,

Identifier changes, the reference list identitle's the usages of the identifier that require,
o?

reevaluation of the contextual constraint consistency. While such checking of changes to

deo.nitions appears to have an advantage over the 'transport' of symbol tables wlth the

pure a.ttribute grammar approach, there is a priee to be pa.id ln keeping the reference list

consisten t.

An exa.m p le' of 5uch a situation Is lllustra.ted with rererence to the module shown ln

Figure 5.1. Suppose the statement at (*A*) which uses Curval is deleted (perha.ps as a

prelude te some mOdi#lcations to the procedure body of NextVal). This means that the , , ,

R

62

reCerellce llst that Is maintained at NumberGenerator has to be updated to retlect the
• 1

change. Without tbe use of back pointers that have a premium on sp~e requ'irements, lt

Is nec.ary for the semantic checking routine to flrst locate thè" nearest definition and ,
traverse the reference llst tQ......lJlake the necessary deletions in It. Such a task is not

requlred ln the AG approach because usage nodes do not have any seman tically depen-

dent nodes that need u·pdating. Another situation where reference list updating Is

requlred is wben the scope oC an identifier is modifled by an inner declaration that hides

sorne ou ter declaration in the inner nodes. However- with the use of the local Iden titler

Maps the situation is not as bad as it might originally seem. Whenever a new geclaration
• 1

'of an identifier Is made, a se arch is done for any occurrence of the identifier in the nodes

that are witbin the statlc scope of the new declaratlon. For an'y identifiers found whose

deOnltions occur outside this scope, their references at th ose nodes need to be transferred
"-

to tbe new declaration's reCerence list. The p~esence of Identifier Maps helps in identify .. "

lng qUickly the references ln the inner nodes tbat need contextual copstraint reevaluation.

Otberwlse ail the inner nôdes would bave 1:0 be seman tically analyzed in their entirety.
1

ThUB the adoption of tbe Identifier Maps helps in implementing an incremental

semantic checker wbich i.s very essential for an interactive language based editor such as

the one in MUPE-2. The next section looks at the problem of incomplete information

that arises when the editor has to operate wlth fragments that are not compilation units

ln the usual sense.

5.4. Incomplete Information in Fragments

The Cragmen ts that are round in MUPE-2 are arbitrary, but well-formed by environ-
, ,

ment ruIes, parts of a program. For /'xample, a fragment could be a sequence of state-

ments, a proçedure declaratlon or a wbole _progr~m. In generaI, it is a sentential form of

sorne non-terminal of the language. The fragments could contain incomplete components

by the presence of templates that are not Cully expanded. The use of fragments in

MUPE-2 allows bottom-up system development by combining fragments .. The fragments

.~ themselves can be constructed top-down by reOnement oC templates.

o

o

o

63

The reallzation of a program specification Is achleved by the use of declaratlons and

the, main program body. The use of fragments allows the user to build and essentlally

study Indlvldual components of a program ln Isolation. As a ~esult these components

pres~t a' situation where the contextual constralnt analyzer has to be necessartly 'per­

missive' ln enforcing the constraints. In essence, this means that the proj{jtyping nature

of the e\vlronment should allow incompletely developed program fragments to be con­

veniently used ln building blocks manner, wlthout swamplng the user wlth error mes-

sages during the development.

To o~r knowledge on1y one existing system has addressed the problem of allowing ,
"

the use of program fragm~nts as, a normal programming activlty in langua~e-based edl­

tors. It is the Programming System Generator PSG !BahSn85! that generates language-

based interactive programming environments from formai language deftnitlons. Presented

below are the requirements for the contextual constralOt analyzer as rormulated by the

authors of PSG.

1. The checking algorithm of the context conditions must be appllca.ble to each frag-

ment of the language.

2. 'L1he checking algorithm must detect error situations immediately.

8. The algorithm must compute aIl the type information, which is vaUd for ail exten-

sions to correct programs.

4. The type information of a composed fragment'an be evaluated from the type infor-

u mation of the sub-fragments.

Requlrement JI essentially deals with the new sltuation that arises when fragments

are used as programming entities. The checking algorithm should now be capable of han-

dUng incomp,lete information in fragments that coyer the wide spectrum of n_on-terminais

of the language. Error situations arise in a program fragment ,ïf, ftrstly, the fragment is a

complete program with semantic errors in the usual sense; or, If It is a fragment of

smaller granularity that shows inherent contextual confiicts that wou Id prevent embed-
, '1

ding the fragment in a correct program. As 'an example oC the latter case, conslder a fra,,- 1
ment that containe statements wlthout any accompanylng declaratlons. In !luch a

•
" \1

c

64

Cragment, lt should not be possible to use an identifier both as a procedure call and as a

varia.ble that la assigned - a value. Thus requirement 2 addresses the need for such a

checker that provides error notifications even with incomplete inCormation. Requirement

,3 la in the domain oC type Inferenclng. WhiIe It is useful for composing fragmen ts from

eXistlng ones, it could also be used to aid the user ln selecti~g declarations from the pos­

sible set based on the usages of the identlfiers. Type Inferencing mechanisms have been

used ln programmlng envlronments llke PSG and Ape [Levy841. Requirement 4 guaran-

tees syntax orlented efficient evaluation ln the contextual constraints. The subfragments

Jn the composition of a larger fragment contain ail the relevant InformatlOn in their indi­

vldual property lists' (or Identifier Maps). It should not be necessary to parse the resulting <

fragment to derlve Its property list. Hence the Information extraction should be done in

an Incremen tal manner.

The use of IdentltIer Maps has enabled the design of the Editor's contextual con-

straint analyzer, which meets the above r~uirements except for third one. We do not

yet use any' type inferencing because of the complexlties involved ln dealing with such a

wide spectrum of fragment types. Incomplete informatlon for contextual analysis in any

Cragment has to be handled by the Editor ln a way which makes a distinction between an

Incomplete program fragment and a complete program fragment. This Is necessary

because the notification of an error in one case may not Imply the same in the other.

This situation arises in checklng whether a symbol Is declared or not. In a complete pro-

gram fragment, any usage oC symbols without their declarations is an error and the user

Is notlned as such. However when deallng with incomplete program fragments, symbois

should be allowed for use without declaring since the complete context Is not necessarily

available. The way thls lB being handled ln our Editor is ID dIstinguishing_the Identifier

Map at the outermœt scope.

In the, contextual analysis wh en a symbol usage is encountered, an entry is made in

the local scope (Identifier Map) for the symbol's declaration. If it was the ftrst usage of
~

the symbol ln that scope, there would be no reference to tha.t symbol's den'nition. This

Inltlates a searcb, up the environment tree, to locate the definition. If the search is suc-

'. cessful. the subsequent action is dependent on the type of the progr'am fragment.

o

o

65

If the fragment ls complete, I.e. a regular compilation unit, th en the earller usage of

the symbol was an error and the user ls notifled as such. However If the fragment is not

complete, then the c!lrrent context ls not the complete context. Hence lt ls Inapproprlate

to Indicate a semantic error for such an occurrence. lnstead, It is better to lndlcate ,8.

semantic caution. lnternally, thi~ is handled by maklng a local deflnltlon of the symbol

ln the scope It was used. lt is asslgned an open type. Such a type always passes the type

compatibility test. Ir the symbol Is any form of procedure then the formai parameter llst_

is another 'open' interpretation. Note that such assignments are not similar to the default

types like integer that are assigned to undeclared symbols in conventional compilers. If

we were to use such a scheme, then the bottom-up fragment construction method would

not hold because of posslble confllcts with the 'derault' assignmen ts. The open type

assignments are also used in instances of declarations that are not fully expanded. as ln

VAR foo . <type>

The use of open ls perhaps less restrictive and, as a result, less sare than in usmg type

schemas. However use of the category attribute meets requirement 3 ·partly'. There Is an

C investigation in progress for uslng type inferenclng in MUPE-2.

5.5. Interfragment Operations and Dependencies

This section exammes sorne of the Issues that arise wlth operations that Involve

more than one fragment. In the discussions 50 far, it had bè,en tacltly assumed that the ~

Edltor operated on only one fragment. However ln MUPE-2 ~he more general situation is

with more than a single fragment for multl-operand operatIOns. The abihty to handle

multiple fragments by the Editor aIso arlses due to the abillty to make use of separate

compilation facility with strong type checking across modules

The requirement for the Editor to be able to operate with multiple fragments 'makes

it necessary to transfer structures between fragments. Su ch a transfer coul~ \~cur as

elther a copy, where there ls a no deletlon of structures, or it could be as a move, where

there is a deletion of a structure ln one fragment and its insertion ln another fragment

There does not seem to be any exlstlng system that provide 8uch features in an edltor.

(

66

What has normally been avaUable ln textual editors was sorne form oC clipboard facility,

whleh provides a temporary repœitory for' moving objects. However such transfer

meehanlsms do not provlde the ease of operation or the protection that the MUPE-2 Edi-

tor seeks to provide. The main reason why such features are attractive for the MUPE-2

context ls because oC the possibility of having displays of many fragments at a time. This

has mainly arisen due to the emergence of windows in display technology [Hopg086J. Such

a user interface makes it possible to the user to operate on multiple fragments that are

open on the sereen. However to accommodate such features reqUlres the Editor to be

designed to keep track of the 'Iast cursor' and 'last operation' with each fragment. This is

an additional requlrement to what are normally s'!.J>ported in present window managers

and it entails provlding the editor with window management features.

To explain the working of the contextual analyzer ln such a situation, we first show

the user actions to achieve slJch a transrer. A scenario for such an operation is sketched

in Figure 5.3. Inltlally, the active fragment is Fragment #68. lts cursor-Is the wbile
~,
~'

structure denoted A. The user selects the MOVE command, WhlCh 1S qualifteà further by

Berore. The menu of templates for thls operation is presented for selection, but the user

instead decldes to move a structure from a dlfferent fragment, #102. To achieve this the

user selects, via the pointing device, Fragment #102 to be the active fragment. Fragment

#68 los es lts actlve fragment status and the Incomplete operation imtlated at structure A

18 Irozen. The user makes the cursor in the current active fragment (#102) to be the

deslred structure B by grouping the two statements as such. Having done this, the user

selects the frozen operatIon ln Fragment #68. This makes the last structure in Fragment

#102 to be a candidate for the operation resumed in Fragment #68. The candidacy vali-

dation is carned out as explained ln Chapter 4. Arter the validation, the designated

structure at Fragment #102 has to be extracted, Its Identifier Map information con-

structed and the modHled Fragment #102 should have lts Identifier Maps updated.

Wlth the temporary fragment thus formed, It is inserted ln Fragment #68. The Identifier

Maps in this fragment are now updated. Thus the contextual analyzer hai to work at

two fragments to affect the single operation Inltlated by the user.

o

'f
"'"­, .

I~

o

'Fragment • 68 : ST A TEMENTS

•

I
WHILE <beKp> DO 1 fA'.
ENO' 'Cl
n:= 2*n + 1;
m:= 7*m +2;

Fragment tir 102 : PROCEDURE

Ir~~~ 1 ®
IF k < 200 THEN

m:= 7-' + q
ELSE

m: = 7*1 - Q
END;

Figure 5.3- Scenario oC In terCragmen t OperatIOns.

67

What is oC prime consideration in the implemen tatlon oC the above operation Is the

process or derivlng the Identifier Map values oC a chosen structure from its parent struc­

ture and its IdentIfier Map. It is however advantageous to extract the requlred informa...

tion Crom the existing Identifier Maps and hence avoid a contextual analysis for the struc-
, 0

~ ture extracted. Incrementai operatlons are always better for response time consider[\.tlons

in interactive systems. Wi'th the usage of Identifier Maps It Is necessary to Id,entley .the

symbois that occur in the subtree that is the object of traosfer. These cao be Identlfied

by traversing the leaves of the concerned subtree. The correspondlng entnes ln the

Iden tifier Map will provide information abou t the sym bol's category. its type and others.
v

But extracting them in their en tiret y 'may '1 not retlect the true status of the derlved

68

Cragment Crom the subtree. This ls mainly for detlnitions that are not present in the

extracted subtree. Such a case ls especially true when considering types that are subtypes

(subranges) or a larger type. In Figure 5.3, consider the variables i and j to have the

CARDINAL data type in fragment #102. However,"it Is probable that fragment #68

already has these identlfiers declared as variables of INTEGER data type. Retainlng the __

more restrictive CARDINAL type would create a contlict while inserting that structure in

Cragment #68. In such a situation the symbol's type loses its resolution and takes on the

open type as was explained earller. Thus when the extracted structure is inserted in the

destination position, It Is not necessarily tied to the earlier types of the symbols, but it

utlllzes such Invanant Information like the category, since it is based, on the syntactic

usage.

5.6. Issues in Interface Control

Another point that arises ln such an editor Is ln the support of modularity and data
\

abstraction. Languages lIke Modula-2 and Ada otrer the concept of a module or pack-

age to encourage modularity and data abstraction. However these languages have been

designed for textual processing, and the normal declaratory syntax has been extended to

support vlSibility control for the above features. As a result the emphasis on the complex-

1

ities introduced in the syntax dlstracts the programmer from the pnmary lSSue of visibll-
1

ity control. The structured editor can provide substantial help to the user by providing

editing operations that are meant speclfically for such aspects. The need for such facili-

tles is particularly. felt for programming teams where the user and the defiJ.1er of a

module are not the same. The responslbllities for syntactlc correctness is now distributed.

In the following are descriptions of the MUPE-2 Editor wlth regard to extendmg the

scope of a structured editor for such purposes It should be noted that the editor

Yggdrasil [Cap1185) provldes similar extensions to structured editors. However. the edit-

ing operations in that editor are basically carried out in 'name definition' windows.

without the textual context of the program body. This isolation could prove to be too

power fui to control. Furthermore the Yggdrasil editor has been designed for extending

existlng convention al languages wlth data abstraction and modularlty without changing

/

o

o

o

60

their syntax. The MUPE-2 Editor is' designed for Modula-2 where modula.'rlty and data

abstraction are part oC the language and the Edltor operations ln trod uced here help uslng

these features.

Modula-2 motivates the partitioning of a program into modules. Each module ca.n

contain constants, variables, procedures and perhaps types. Objects such as these tha.t

are declared in Module A can be referred to by another Module B if there \s a provision

C.!lxpoit) ln, say, Module A, and a requisition (import) in Module B. Interface control

constitutes this specification and control of the interactions among entities in different

modules. Modula-2 supports separate compilation. This means that a program can

import objects from modules that do not need to be compiled together with the main

progra.m. At the compilation time of this Importing program the description of the

imported objects should be avallabie. However the details of such objects are not essen-

tial and each modu\e provides an abstraction. lt Is also a me ans of protection by the

abllity to hide, via the abstractions. Thus Modula-2 provldes a. textual separation of the

essentials from the details. The essentials provide the descriptions of the objects that are

used by other modules; the details constitute the parts that are hlddp.n and hence

private. This divldes modules into two parts: a definition module, which describes

the objects that can be used by other modules, and an implementation module, which

con tains the bodies of the objects, as weil as other objects that can be used only by the

Implementation modules. The objects visible outside the module are enumerated expli-

cit~y by an export liste The two parts are compiled separately and are called compila­

tion units.

. ,
The above concepts havmg been developed for tne tradltional batch compilers do

not provide the same freedom and advantages wh en used with structured editors. These

editors operate on an intermediate representation oC a program that ls usually sorne Corm

or a. program tree. However the definltion modules do not retlect any such tree structure.

In a. batch compiler the result of compiling a deflnition module is ~ symbol file, WhlCh·1s

used Cor cross-module type-checkmg, etc. So to use a common structure editor for ail pro-

gram Cragmen ts means having to implan t sorne form oC tree represen Cation on the

definitlon mod ules. Sin ce lt dlstorts the 'natural' view oC the deftnitlon modules, the

(
'"

(

1
1

" 70

MUPE-2 design I;>reaks away from the diehotomy between deflnition and implementatlon

modules present ln the textual models.
~

.,./,
The MUPE-2, representation of a deflnitlon and Implementation module pair 1s as a

single structure, a capsule. This structure is representative of any program module. It
,>

follow8 the structural Mpects of any single module. However sinee the purpose of the tex-

tuai separation was to provide a separation between the external description of a module

(the 'abstr~ction) from the inner details (the Implementation), the user interface for the

Edltor malntalns It. F:!gure 5.4 Is an illustration of such a view .•

OEFINITION-IMPLEMENT ATION CAPSULE THE INTERF ACE V IEVS

Proo Pl

Proc P3 0

DEFINITION V lEV

MOOULE M,
TYPE Tl ;

PROCEDURE Pt () : T1 ;

END M.

IMPLEMENTATION VIEY(

P3

P2

Figure 5.4- Interface, Views of Deflnitlon and Implementation Module Pair.

The view that is presented to the user depends on the user's access privileges to the

views of the module. For users with access to only the deflnition, they are provided with

a window of the descriptions of the exported objects. There is no corresponding view of

the Implementation of the mo<1ule. There Is no editing eursor in the deflnitlon view. For

the more general situatIon where the user possesses Implementation access, the Editor

provides two views of the module. One is the deflnition view as descrlbed above, a~d the

other ,view is of the Implementation.' The edltlng operations are available in the capsule

as a. whole.

\

1

.0

."

71

The present lmplementation of visibUlty control .reftects the upda.ted Modula-2

langua.ge report where aU obJects)deftned in the deftnltlon module are ex~orted; ln the

earller language report, ,strictly only those that appéar ln the export list were exported.
l, \'

Each object declaration in the main body of the module has an assoclated attrlbute tha~

indicates the visibillty status. The status can be one "of the following: hldden, opaque •
export or full export. The visibiIity attribute is recorded ln the module's outermost

Identlfter M~p. This map is accessible from other modules for purposes of cross-module

checking. At the user interface, exported objects are dlsplayed 10 the definltlon vlew

Since the editing operations are present only in the implementation view, the exported

objects are shown in there too, bu t distinguished from the non-exported objects by sorne

means of high-lighting. AlI the objects in the level from where objects cau be exported,

allow editing operaFions on the objects that can change thelr visibiIity status values

among the three permissible Values. ,

Thus deslgning an editor knowledgeable ln the interface control propertles provldes
, ..

freedom to thle user from the restrictive nature of language extensions in declaratory syn-
< ~

tax. The visi~ility or interface control Is normally a distinct part from the computation

that the rest ot-t-he program is concerned with. Hence the av ail ab illt y of vlslblllty control

features in the editor operations are necessary to lmprove the", programmlng process. The

decision to main tain a smgle structure for the detl!11tion and Implementation parts of a

module was intluenced by the edlting operations that are possible wlth structures of tree

types. As weIl, the requirements:> for cross-module type checking for languages Iike
& ~

Modula-2, declded that the intermedlate representatlon for the definition-part'" of a

module should be nothing more than a symbol table. , .

...

/
1

72

.
Chapter 6: Conclusions

t>
This thesls bas examined the issues involved in deslgntng a Fragment-based P,ro-

gram Edttor,' S,uch an editor is the .èentral part of a programming environment that sup- \

ports editlng, compÙlng, efecutlng and debugging of progr~m fragments. This thesis has

concentrated on the edlting aspects of such an environment that is under development, . .

the McGlll University Programming Envlronment' (MUPE-2). Wlthin a highly integrated

environment the edltor provides the user Interface and consequently decides many of th.e
,

system's architectural issues.

The MUPE-2 envlronment has b~en designed to program wlth fragments of the pro­

. grammlng language Modul~2. The concept of Fragtypes that is central to this envlron-

ment, a.nd the relevant fragtypes for Modula.-2, were presented ln this thesis. WhUe
1 ..

Modula-2" provides forothe development of software::. through modules, it has been found

Inadequate ln the degree of reusabillty that a.n Individu al programmer would be

Interested ln. MUPE-2's typed fragments addresses this shortcoming and proposes t,hat

an integrated envlronment that is bu'Ut on the concept of fragments would be a.n answe,r

ln increaslng programmer productivity.

MUPE-2 has been aimed to be opêrational with graphies and a pointing device at
"

the Interface, in- addition to the normâl keyboard. Consequently, thè command and

response language bfl'ers signUlcant difl'erences from those round in systems based on text
-"

a.nd Unes. The' model that 'is used in the specitlcation of operations wlth such an ,Interface
"

has been presented and lt plays a sittniflca.nt role in thé Implementa.tion or the editlng

ru les.

PortabiUty and ~aptabllity were set as important ~esign goals ln 'MUPE-2. In 'the

edltor de4lgn tha.t has been presented ln this thesis, these goals influenced many of the
,~

deslln declstons. Powerful present-da.y engineering)Vorkstations a.re the ta.rget systems
",

, ,

. ,

o
•

o

- t: .

73

for MUPE-2. However these workstatlons feature many non-standardlzed utlllties that

are essentlal for Implementation. As a result, the arclriteeture of this 'envlrônment . (,.

" . lncludes a layer, called the Screen Manager, that encapsulates the terminai and other
~ ... , -

workstation dependencies. The present design of the Screen Manager also makes it possl-

ble to achleve a distributed Implementation of till~ environment. I~ such a scheme, the

Scteen Manager which Is responsible for the display and user Input, could be physically
,

separated from the rest of the system that performs the tasks of menu generation. com-

patibHity. checking, incremental compilation and others.

User Input in language-based edi(ors can be in two basic models. One'ls the tem­

plate model where the Input IS via templates of the language. In the other model, the
Q Q

user inputs text that has to be subsequently parsed. While the MUP-E-2 edltor's goal Is to

allow both forms of input, thlS thesis lias concentrated only on the template form of user
l

J •

Input. In such a case, the role of the parser ,is played ln ~etermining what are the tem-

plates that are allowable to be input at an arbitrary point in the program. The scheme.
,

~ that has been presented ln thls thesis shows how the language's syntax l"ules can be used

to allow a table-drlven Implèmentation. that dUlves the set .of legal templates ât arbitrary

points of the program. A classification model of language structures Is shoWn that per-

, ,mita 'an e~cient organization of t~~les. Table driven)mplementations have b.een favored
~

at 8011 stages of MUP.E-2's Implementation because of ,the degree of adàptablUty possible

from them.

Apart from main:tainin~he developed. software in accordance to the language's syn­

tax ruIes, a language based e~itor also has to~enforce the contextual constralnts in the

language jules. Such c<;mstraints are typically the scope- and type rules of the language.

The distinctive features of these. rul'es are that they allow e'dlting operations to all'ect the
.., • l ' 1

, . .
validity of struct1,lres that may not be ln the 'lmmediate neighborhood of the location of

.
the editing operation. Attrlbute grammars has been applied to solve this 'inheritance'

problem in an Incrementai manner within language based editors. flowever the solutions,

_ while optima.l ln time, have enorÏno~s space requirementa. The scheme presented in thls

thesis ro~ use ln the MUPE-2 editor, employa a. model tha.t also promises to be useCul in
,

:·considerlng the VÙflbllity control features oC Modula.-2, a.nd the multl-rragment opera.tlons

C·
;

'.

14

permltted ln MUPE-2.

Modularlty and da~a abstraction are perhaps the most Important features of

Modula-2. However ln a structure based editing environment, the specifled compilation

model of the language ror textual environment does not provide a desirable user inter­
t

face. V1s1blllty control withln a structure based environment is better achieved by appli-

ca.tion or vislbiUty control operations on objects rather than being alfected by declaratory

progra.m elements. 'Dhe usage or 8uch operations, and the user interface adopted for this

purpose, has been presented in this thesis . ..
The goa.l or MUPE-2 is to provide a. weIl integrated environment for the develop-

ment or software. Within thlS environment it would be possible to 8pecify, edit, compile,

execute, debug and document software. This thesis has presented the implementation

scheme ror the language oriented language editor that is at the heart of the system. The

Implementation Is not yet complete and consequently, it i8/ dUl1cult to evaluate the design

50 pre~ented.

(1

~ I,:,teractive systems ,pre meant to be experienced, not talked about." - Anon.

. ,

'O ••

, .

....

.,
t

1

\
"-

/
\

." ,

G

o

" '\

: t 1.~,.-. ~ , . ',ij

i\

1S

References

[AmbKE84] V. Ambiola, G. E. Kaiser, and R. J. E:!tSOD. Au Action koutine Model f~r

ALOE, Tech. Report CMU-CS-84-1-56, Carnegie-Mellon University, August

"1984.

[ArchCSl] J'. Archer, and R. Conway, COPE: A Cooperative Programming Environ­

ment" Tech. Report 81-459, Cornell University, 1981.

[BahSN85] R. Bahlke,. and G. Snelting, The PSG - Programmlng QSystem Generator,

Proceedlngs of the SIGPLAN 85 Symposium on Language Issues ln Program-

ming Environments, ACM SIGPLAN Notices, Vol. 20, No. 7, July 1985,

pp.28-33.

[BecBP82j' A. BechtoIsheim, F. Baskett, and V. Pratt, The SUN Workstation ir~hltec-

' ',..,. ture, Tech. Report 229, CSL, EECS, Stanford University, March 1982.

[BuxtD81) J. N. Buxton, and L. E. Druffel, Requirements Cor an Ada Programmlng Sup-
~,'... l Q-

port Environment: Ratlonale Cor STONEMAN" Software Engineering
o •

'-

Environments, ed. H. Hunke, North-Holland, 1~81, PP.319-330.

{CapH086] M. Caplinger, and,R. Hood, An Incrementai Unparser Cor Structured Editors,

Proceedings of the 19th Annual Hawaii International Conference. on System

Sciences, 1986, pp.65-74. ~

o
~ .

1
-1

..

r

76 Q

1
[Cap1l85j M. Ca.pllnger, Structured Editor Support Cor Modularity and Data. Abstrac-

C. tion, Proceeding8 of the SIGPLAN 85 Symp08ium on La·nguage Issues in Pro­

gramming Environments, ACM SIGPL.AN Notices, Vol. 20, No. 7, July 10S5,

(

pp. 140-147.

[DelMSS4j N. M. Delisle, D .E. Menicosy, and M. D. Schwartz, Viewing a Programming

Envlronment as a. Single Taol, Proceedings of the ACM SIGPLAN/SIGSOFT
1-

Software Engineering' Symposium on Practical Environments, ~CM SIG-

PLAN ~otices, Vol. 10, No. 5, 10S4, ppAO-56. l' , \

)

[DeReK76j F. DeRem~r, and H. Kron, Programmiog-io-the-Large Versus Programming­

In-the-Small. IEEE Transactions on Software Engineering, Vol. S&2, No. 2,

June 1076, pp. 80-S6.

[DonzeSOj V. Donzeau-Gouge, et al., Programmlng Environments Based on Structure

Editors: The Mentor Experience, Tech. Report 26, INRIA, May 1980.

[Engln85j Engineering Computer Center, Arizona State University, Wlndow Manage­

ment System, September 1985 .

• ' [FisPSS4j C. No' Fisher, G. F. Johnson, J. Mauney, A. Paî,"and D .L. Stock, The POE

[Frltz~4j

'.

,
Language-Based . Editor Project, Proceedings of the ACM

SIGPLAN/SIGSOFT Software Engineering Symposium on Praclical

Environments, ACM SIGPLAN Notices, Vol. 19, No. 5, 1984, pp.21-29.

P. Fritzson, Towards a 'Distributed Programming' Envlronment ~a.sed on

Incrementai Compilation, Research Report, Department of Computer and

Informa.tion Sciences. Llnk~ping Univ 0,: Sweden, 1084.

("

77
, .

[Gasne83] E. R. Gasner, et a~YNED • A Language-Based Edlt.or ror an Interactive o Programmlng Environment, Digest of Papers Spring Compcon 89. 1083.

pp.406-41O.

o

o

G

•
[GanRW77] H. Ganzinger, K. Ropken, and R. Wilhelm, Automat1c Generation of Optlm-

[Gent181)

[Hanse75]

lzing Multipass Compilers, Proceedings of the IFIP Congr,ess 77. Eisiever

North-Holland, 1077, pp. 535-540.

W. M. Gentleman, Message passlng Between Sequentlal Processes: The

Reply Primitive and the Adminstrator Concept, Software Practice and

Experience, Vol. 11, 10S1, pp.435-466.

P .. Brinch Hansen, The Programming Language Concurrent Pascal, IEEE

Transactions on Software Engineering, Vol l, No. 2. June 1075, pp.lOO-207

[HenhS84] W. Henhapl, and G. Sneltmg, Context Relatlons - a Concept for Incrementai

Context Analysis in Program Fragments, Proc. 8. GI·Fachtagung Program.
'"

mie.J'8prachen und Programmentwlcklung, lnformatik Fachberichte 77,

Springer-Verlag, 1084.

o

[Herot80] C. F. Herot, et aL, A Prototype Spatial Data,Management System, SIG·

GRAPH 80 Proceedings of the ACM/SIGGRAPH- COl1ference', 1080, pp.63-

70.

J '

[Hoare1S] C. A. R. Hoare, Communicating Sequential Processes, Communication8 of

the ACM, Vol. 22, No. 6, June 1078, pp.353-368.

[Hopg086) F. R. A. Hopgood, et al,(eds.), Methodology of Window Management, Euro­

graphies Semlnars, Springer-Verlag, 1086.

,

(

o

78

(Johns84] G. F. Johnson, An Approach to Incrementai Semantlcs, Computer Sclences­

Technlcal Report No. 547, University of Wisconsin - Madison, July 1984.

(KasHZ82] U. Kastens, B. Hutt, and E. Zimmermann, GAG, a Practical Compiler Gen-
.

!rator, Lecture Notes in Computer Science, Vol. 141, Springer-Verlag, 1982.

(LantN84] K. A. Lantz, and W. I. Nowlcki, Structured Graphies for Distributed Sys­

tems, ACM Transactions on Graphics, Vol. 3, No. 1, 'Ja1nuary 1984, pp.23-51.

[LaueN7gj H. E. Lauer, and R. M. Needham,' On Ithe Duality of Operating System

[Levy84j

,-

,Structures, Operating System Review, Vol. 13, No. 2, 1979, PP.3-19.

M. R. Levy, Type Checking, Separate Compilation and Reusability, Proceed­

ings of the ACM SIGPLAN 84 Symposium on Compiler Construction, SIG-
.,;(1

PLAN Notices, Vol. 19, No. 6, June 1984, pp.285-289.

[Madha85] N. H. Madhavji, Operations for Programming in the Ail, Proceedings of
(~1 ~ \

IEEE 8th International qonference on Software Engineering, 1985, pp.15-25.
. \ t

[MadCR85] N. H. Madhavji, S. Choudhury, R. Robson, and N. Friedman, On Com-

mands for an Integrated Programming Environment. Foundation for

Human-Computer CommunicatIOns, (eds.) K.Hopper and LA.Newman, North

Holla.nd, 1986, pp. 407-423.

[MadhP85j N. H MadhavJi, and L. Pinsonneault, A Colour Coded Scheme for Handling

User Interrupts ln Non-atomle Programmin{bperations, Proceedings, COM-

PINT 85, September 1985, pp.Ill-1I3.
,\

--~~------------_.::..-_---

o

o

o

70

[MadPT86] N. H. MadhavJi. L. Plnsonneault, a.nd K. Toubache. Modula-2/MUPE-2:

Language and Envlronment Interactions. To appear ln IEEE Software Spe­

cial Issue on Modula-E, November 1986.

[MetcB76] R. M. Metcalfe. and D. R. Boggs. Ethernet: Distrlbuted Packet Swltchlng fpr

Local Computer Networks. Communications of the A CM, Vol. 10, No. ï,

[Nag183]

-
July Ig76, pp.3g5-404.

M. Nagl, An Incrementai Programming Support Envlronment. Tech. Report

OSM-I-ll, University of Osnabruech, Ig83.
'::0

o

[NakYu83] R. Nakajima. and T. Yuasa (eds.), The IOTA Programming System, Lecture
• 1

Notes in Computer Science, No. 160, Springer-Verlag. Ig83.

[Nlcke84] R. Nickel. The IRIS Workstation. IEEE Computer Grap/ucs a1ld Applica-

tiom, Vol. 4, No. 8, August 1 g84, pp.3Q-34.

[Notki8S] D. Notkin, et al., Special Issue on the GANDALF Project, Journal of Sy8-

tems and Software, Vol. 5, No. 2, May 1085.
'. .

-
[Pfa!H8S] G. Pfatr, and P. J. W. ten Hagan, Seeheim Workshop on User Interface

Management Systems, Sprmger-Verlag, Berlin, 1985.

"

[powe183] M. Powell, Modula-2: Good News and Bad News, Digest of Papers, Spring

Compcon 1989, pp.438-441.

[ReissS4a] S. P. Reiss, Graphlcal Program Development wlth PECAN Program

Development Systems, Proceedings of the ACM SIGPLAN/SIGSOFT

Software Engineering Symposium on Practical Environments, ACM

o ,.

"
80

SIGPLAN Notices, Vol. 10, No. 5, 1084, pp.3D-41.

[ReIss84b] S. P. Relss, PECAN: Program Development Systems that Support MultiplCl':'

Views, Proceedings of IEEE 7th International Co~ference on Software

Engineering, 1084, pp.324-333.

[Reps84]· T. Reps, Generating Language-Based Environmenis, The MIT pre~, 1084.

(,;1

[SchDB84j M. D. Schwartz, N. D. Delisle, and V. S. Begwalll, IncrementaI Compilation

in Magpie, Proceedings of th~ ACM SIGPLAN 84 Symposium on Compiler

Construction, SIGPLAN Notices, Vol. 10, No. 6, June 1084, pp.122-131.
l'

i,'JP

[Sewry84j D. A. Sewry, Modula-2 and the Monitor Concept, SIGPLAN Notices, Vol.
\

10, No. lI, November 1084, pp.33-41.

) 0

[Smith82] D. C. Smith, et al., Designing the Star; User Interface, Byte, April 1082.

[TeiMaSlj 1 W. Teltelman, and L. Masinter, The Interlisp Programmlng En:vlronment,

Computer, Vol. 14, No. 4, April 1081, pp.25-33 .
• .t '

[TelRe81j

[Unlte82]

\

T. Teltelbaum, and T. Reps, The Cornell Program Synthesizer: A Syntax-

Dlrected Programmlng EnVlronment. Communications of the ACM, Vol. 24.

No. 0, September 1081, pp.563-573

United States Department of Defense. Reference Manual for the Ada Pro­

gramming Language, 108:a-; AdaTEC Special Publication . . ,

, ,

1 l'

\
--~----- ----------------

,'.

o

1)

SI

[Wegma.80] lt1. N. Wegman. Parslng ror Structured Edltors. Proceedings of the etst

Annual Symposium on Foundation8 of Computer Science, October 1 gSO, pp.

32G-327.

i:/
~) .

[WirtbS5) N. Wlrth, Programming in Modula-t, Springer-Verlag. 10S5 . ..
,

u ,
'r
\

()

,

o

1 ,
)
, ,

<,

, \, . :1' ' IJ 1#,'

Il;
, .

" , J

..

