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 Abstract 

 

The development and yield of soybean (Glycine max) depend heavily on root system 

architecture (RSA), which is a key element for water and nutrient uptake. Traditional methods 

for studying RSA often rely on destructive sampling techniques, such as “shovelomics”, which 

hinder continuous observation and analysis. Spatial changes in RSA cannot be quantified with 

traditional 2D methods or 3D methods using artificial growing media, as these methods often 

fail to capture the spatial distribution of roots in their natural environment. In this master's 

thesis, an innovative framework is presented for non-destructive 3D phenotyping, using 

computed tomography (CT) combined with fractal dimension (FD) estimation, to more 

accurately capture and characterise the complexity of root systems in a sieved sandy soil. In a 

preliminary step, a classification analysis of 137 soybean cultivars was performed based on 

RSA trait measurements (excluding FD) made in a previous 2D study. This classification led 

to the selection of a representative subset of 30 cultivars for a 3D study and in-depth analysis 

in a subsequent step. Our results support that FD is a key parameter for understanding RSA in 

3D. In particular, 37.9% of the observed variation for this trait is accounted for by differences 

among cultivars (p-value = 0.0192), with the remaining 62.1% attributed to variation among 

replicate plants of the same cultivar and the experimental error. The transition from 2D to 3D 

phenotyping has significantly improved the underground perspective of the spatial distribution 

of soybean roots at an early stage of development in a natural environment, and FD replaced 

and integrated multiple RSA traits based on angles and root lengths. It now remains to extend 

the CT-FD combination to larger spatial and temporal scales, to identify cultivars with 

improved resilience and increased efficiency in varied and challenging environmental 

conditions. This advanced 3D phenotyping approach appears essential for the development of 

robust soybean cultivars, thus contributing to sustainable agriculture and food security. 
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Résumé  

 
Le développement et le rendement du soja (Glycine max) dépendent fortement de l'architecture 

du système racinaire (ASR), qui est un élément clé pour l'absorption de l'eau et des nutriments. 

Les méthodes traditionnelles d'étude de l’ASR reposent souvent sur des techniques 

d'échantillonnage destructives, telles que le “shovelomics”, qui entravent l'observation et 

l'analyse en continu. Les changements spatiaux dans l’ASR ne peuvent pas être quantifiés avec 

les méthodes traditionnelles en 2D, ni avec les méthodes 3D utilisant des milieux de croissance 

artificiels, car ces méthodes ne parviennent pas la plupart du temps à capturer la distribution 

spatiale des racines dans leur environnement naturel. Dans ce mémoire de maîtrise, un cadre 

novateur est présenté pour le phénotypage 3D non-destructif, utilisant la tomodensitométrie 

assistée par ordinateur (TAO) combinée à l'estimation de la dimension fractale (DF), afin de 

capturer et de caractériser plus précisément la complexité des systèmes racinaires dans un sol 

sablonneux tamisé. Dans une étape préliminaire, une analyse de classification de 137 cultivars 

de soja a été réalisée sur base de mesures de traits ASR (n’incluant pas la DF) prises dans une 

étude 2D antérieure. Cette classification a conduit à la sélection d'un sous-ensemble 

représentatif de 30 cultivars pour une étude 3D et une analyse approfondie dans une étape 

subséquente. Nos résultats montrent que la DF est un paramètre primordial pour comprendre 

l’ASR en 3D. En particulier, 37,9 % de la variation de ce trait est prise en compte par les 

différences entre cultivars (p-value = 0,0192), les 62,1% résiduels étant pour la variation entre 

plants-réplicats d’un même cultivar et l’erreur expérimentale. Le passage du phénotypage 2D 

au phénotypage 3D a considérablement amélioré la perspective souterraine de la distribution 

spatiale des racines d’un plant de soja en début de développement dans un milieu naturel, et la 

DF a remplacé en les intégrant plusieurs traits ASR basés sur des angles et des longueurs de 

racines. Il reste maintenant à étendre la combination TAO-DF à de plus grandes échelles 

spatiale et temporelle, afin d'identifier des cultivars à la résilience améliorée et à une efficacité 
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accrue dans des conditions environnementales variées, voire extrêmes. Cette approche avancée 

de phénotypage 3D apparaît essentielle pour le développement de cultivars de soja robustes, 

contribuant à une agriculture durable et à la sécurité alimentaire. 
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Chapter 1: Introduction 

                                                                                   

General Introduction 

In a world where sustainable agriculture intersects with the quest for nutritional security for 

both humans and animals, the soybean emerges as a protagonist in an unfolding narrative of 

innovation, resilience, and global impact. Soybean (Glycine max) is a legume widely grown 

around the world. It is known as the "golden bean" or "miracle bean" because it is a viable 

source of human nutrition and bioenergy in the twenty-first century (Islam et al., 2019; Singh 

et al., 2018). Originally from Asia, soybeans are now grown worldwide. This rapid expansion 

has led to new uses for soybeans in daily life, as they are considered the most acceptable plant 

protein source in the form of food products such as edamame, tofu, and soy milk. Soybeans 

yield more oil and protein seeds than wheat, rice, and maize. Soybeans constitute 35% protein, 

25-30% carbs, and a variety of polyunsaturated fatty acids (PUFAs), antioxidants, minerals, 

vitamins, and fibre (Bueno et al., 2018). The most recent revisions to Canada's Food Guide 

highlight the need to increase the percentage of protein in diets derived from plants, thus 

aligning with the global trend. Such a change in diet is especially important for Canada, the 

world's seventh-largest producer of soybeans, with an annual production of 6.5 million tonnes 

(Canada, 2022). 

Shifting from culinary prominence to agricultural significance, soybeans are pivotal in 

bolstering sustainability. Their unique nitrogen-fixing ability, together with soil bacteria, 

reduces the need for nitrogen fertilisers, thus addressing a significant environmental concern 

about nitrogen fertilisers, one of many significant contributors to greenhouse gas emissions. 

Intensive breeding efforts to develop ever-earlier maturing soybean varieties have led to a 

remarkable extension of soybean cultivation in Canada. Despite these achievements, the 

soybean industry faces pressing challenges, in particular those due to increasing abiotic 
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stresses. The looming changes in climate for Canada's soybean-growing regions pose a 

substantial threat. Drought stress is a critical issue, impacting yields even in non-drought years. 

All of this emphasizes the need for innovative approaches and the urgency of research to 

enhance soybean resilience for food security and environmental sustainability (Brevedan & 

Egli, 2003; Morrison et al., 2006). 

An avenue to address these challenges lies in developing soybean varieties with improved root 

systems. While roots are often considered the "hidden half" of the plant, their significance in 

nutrient and water acquisition cannot be understated (Atkinson et al., 2019). Root systems act 

as flexible and dynamic conduits, supplying nutrients and water to the plant and playing a 

pivotal role in crop adaptability to abiotic stressors such as drought and soil sub-optimal 

fertility. The ability of plants to mobilise nutrients in the soil through their root exudates is 

important. These exudates, which include organic compounds like sugars, amino acids, and 

organic acids, significantly influence soil pH and composition, thereby facilitating access to 

essential nutrients (Canarini et al., 2019; Lei et al., 2023). 

 As we investigate the complexity of soybean root systems, the specific focus on the Root 

System Architecture (RSA) becomes imperative. The search for soybean varieties with 

adaptable root systems that maximize crop growth and yield outputs, conserve resources, and 

withstand climatic change is intensifying (Hirai et al., 2004; Masclaux-Daubresse et al., 2014; 

Mochida & Shinozaki, 2010). The root systems of plants not only enable them to adapt to their 

surroundings and improve their uptake of nutrients and water (Alexandersson et al., 2014; 

Sriyudthsak et al., 2014), but they can also recognise and react to edaphic stressors, such as 

salinity, drought, and waterlogging, before other plant organs (Bylesjö et al., 2007; Casero et 

al., 1995; Furbank & Tester, 2011; Geigenberger et al., 2011; Lisec et al., 2006; Palmer et al., 

2014; Tohge et al., 2014; Usadel et al., 2012; Yu et al., 2014). The impact of competition for 

resources, such as mobile and immobile nutrients and water, on the RSA through the form and 
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spatial organization of the plant root system has been well-documented. This impact is 

contingent upon the composition of the soil (Fitter, 1987; Lynch, 1995). Crop adaptations to 

drought, infertile soil, and other edaphic stressors depend heavily on modifications to the RSA 

encountered during the root system development (Casero et al., 1995). Thus, screening for and 

breeding crop cultivars with higher RSA that are more edaphic stress-tolerant and have superior 

nutrient and water uptake efficiency is crucial (Hodge et al., 2009; Waidmann et al., 2020).  

The conventional approach to assessing RSA traits in plants grown in the field is known as 

"shovelomics." This method involves removing root systems from the soil and visually 

analysing them for characteristics that are relevant to the RSA (Trachsel et al., 2011). Non-

destructive methods have been designed to overcome the drawbacks of this strategy, especially 

in controlled indoor environments. They may involve rhizoboxes or enclosures with removable 

or clear viewing windows (Atkinson et al., 2019). Soilless methods such as hydroponics 

(Ayalew et al., 2018; Hargreaves et al., 2009), aeroponics (Lakhiar et al., 2018; Osvald et al., 

2001; Selvaraj et al., 2019), gel plates (Wojciechowski et al., 2009) and growth pouches 

(Adeleke et al., 2019; Adu et al., 2014; Hund et al., 2009) provide more contrast between the 

substrate and the roots. While these techniques allow direct imaging of the root system and the 

measurement of RSA traits in a given substrate, it must be noted that plants grown in an 

artificial substrate are likely to have different root systems than if they were grown in soil 

(Clark et al., 2013; Clark et al., 2011). 

Most of these methods, however, produce two-dimensional (2D) data. When soil is utilised, 

the many aspects of the plant’s RSA are not quantified and the three-dimensional (3D) 

structure, when the growth is happening in 3D space, fails to be captured (Topp et al., 2013). 

To overcome this restriction, advanced imaging methods such as X-ray computed tomography 

(CT) scanning (Han et al., 2008, 2009; Mooney et al., 2012; Rogers et al., 2016; Subramanian 

et al., 2015), magnetic resonance imaging (Jahnke et al., 2009), and positron emission 
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tomography (Garbout et al., 2012) can be used to phenotype roots non-destructively in soil in 

3D space. With the appropriate software for image processing and analysis, these cutting-edge 

technologies can offer a complete insight into the spatial organisation and structure of root 

systems within their native soil environments, enabling more precise and perceptive plant 

science studies by providing a thorough grasp of the RSA features. 

Our innovative approach combines CT scanning technology and the estimation of fractal 

dimension (FD) in a spatial context, thus providing a nuanced understanding of soybean root 

branching patterns. Fractal geometry concepts have been applied to soybean leaf canopies to 

assess the complexity of branching patterns above ground (Foroutan‐pour et al., 2001). As a 

complexity indicator, the FD is known to incorporate information from root length traits 

(Subramanian et al., 2015), adding to them information about the spatial distribution and 

roughness of roots; a root growing in a compact or dense soil tends to be less smooth or ‘rough’. 

With the use of soil in pots to grow soybean plants in an open space near a greenhouse, our 3D 

phenotyping framework seeks to be closer to field conditions in terms of plant growth starting 

with seed planting. The soybean plants in the reported experiment were watered as needed, so 

no water stress was applied. This notwithstanding, the results can be used for comparisons with 

a former study with vermiculite in rhizoboxes and 137 soybean cultivars the thirty here and a 

field experiment (with versus without irrigation), which is part of the same team research 

project. Accordingly, this Master’s thesis enhances plant phenotyping approaches, 

technologically and quantitatively, in the context of climate change. 
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Hypothesis  

The overarching hypothesis guiding our thesis is: "Applying a protocol including a soil 

environment and a 3D phenotyping platform uncovers hidden aspects in the variation of the 

RSA among cultivars of the same crop."  

 

 Objectives 

This hypothesis anchors three specific objectives:  

• To develop an appropriate 3D phenotyping framework for accurately measuring and   

            estimating RSA complexity in soybeans.  

• To assess the genetic component of variation in RSA complexity among 30 soybean  

            cultivars.  

• To validate the use of FD, estimated from the reconstructed 3D image of a root system  

            after CT scanning, for eventually applying it to identify climate-resilient soybean  

           cultivars. 
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Chapter 2: Literature Review 

                                             

2.1. Overview 

As the demand for soybeans (Glycine max) rises because of their nutritional content and 

adaptability, improving crop resilience and production becomes even more important. The 

RSA affects a plant's capacity to absorb water and nutrients, adapt to environmental challenges, 

and contribute to agricultural productivity and efficiency eventually. Advancements in 

agricultural technology have brought about new ways to study plant RSAs, particularly through 

the use of 3D phenotyping techniques, and gain a better knowledge of the intricate structure 

and operation of root systems that 2D approaches may overlook. 

Originally designed for medical diagnostics (Kalender, 2011), X-ray CT scanning technology 

has revolutionised how we can visualise and analyse the 3D structure of root systems in soils. 

This approach enables researchers to survey root growth and architecture graphically and 

quantitatively, offering key information for developing more resilient and productive crops. 

Furthermore, the application of mathematical models such as Fractal Geometry offers a unique 

way to describe the complexity of root systems. In particular, the FD aids in describing the 

complexities of root branching patterns and has the potential to help understand the plant’s 

nutrient intake and stress response. The purpose of this literature review is to examine the 

current state of research on soybean RSA, with a specific focus on 3D phenotyping 

technologies and FD-based analysis. The review aims to explain how innovative phenotyping 

methodologies can contribute to the development of soybean cultivars with optimised root 

systems, ultimately improving crop performance and sustainability. The details of soybean 

RSA are first explored below.  
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2.2. Significance and Complexity of Soybean Root System Architecture 

2.2.1. The soybean root system: An overview 

Soybean (Glycine max) is a dicot plant having allorhizic roots (Fitter, 1987; Osmont et al., 

2007). Allorhizic root systems are dominated by the main or primary root, from which lateral 

roots arise. Adventitious roots are rare in allorhizic systems, but occasionally emerge from the 

hypocotyl or stem in particular upon wounding. The main and lateral roots have an apex, which 

is their most active part and is essential for nutrient absorption. Usually, the roots are lined with 

root hairs, which have a lifespan of 1–2 weeks, in the mature area of the tip. After the root hairs 

die, new root hairs are generated in the elongation zone to supplement and change the position 

of roots in the soil to absorb nutrients (Piekarska-Stachowiak & Nakielski, 2013). Despite 

covering a very small portion (e.g., 3%) of the soil space, roots play a critical role in crop 

growth by actively seeking nutrients (Dayan et al., 2007; Kanase et al., 2019). The phenotypic 

categorisation of soybean varieties is primarily determined by their root morphology (Fried et 

al., 2019). The root morphology of soybean varieties exhibits, in fact, significant disparities 

that can be broadly categorised into three groups: (1) a well-developed primary root (taproot); 

(2) a non-prominent primary root; and (3) longer branched roots (Xiong et al., 2021). The root 

system structure of soybean seedlings mirrors the early bulging phase, with minor variations 

in the initial structure and the bulging stage's onset (Xiong et al., 2021). Gai et al. (2007) stress 

the importance of accurately and dynamically describing root morphology by considering the 

variability in elongation rates and root density. 

2.2.2. Factors influencing the soybean root system architecture 

Phenotypic plasticity and environmental adaptation: 

Phenotypic plasticity, the ability of an organism to alter its phenotype in response to 

environmental changes (Bradshaw, 1965; Des Marais et al., 2013; Palmer et al., 2012; Sultan 

& Spencer, 2002; Via et al., 1995). In soybean, it is posited as a key adaptive mechanism, 
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enhancing environmental tolerance and enabling the plants to maintain productivity in 

increasingly variable climates. It follows that genotypically identical soybean plants can differ 

in RSA, depending on their macro- and microenvironments. This adaptive capacity can 

manifest through changes in root-to-shoot ratios in drought conditions, for example (Huang & 

Fry, 1998; Verslues et al., 2006), underscoring the dynamic interplay between plant genetics, 

root morphology, and environmental stressors. 

Soil compaction and RSA modification: 

Soil compaction is a prominent factor, significantly affecting the RSA (Correa et al., 2019). 

Compacted soil conditions lead to various effects, including reduced root length (Bingham et 

al., 2010; Grzesiak et al., 2002; Pfeifer et al., 2014), thicker root diameter (Eavis, 1972; Goss, 

1977; Popova et al., 2016; Rich & Watt, 2013), less steep root angles (Colombi & Walter, 

2015), and deflected growth (Chen et al., 2014). Such changes facilitate the plant's ability to 

navigate compacted soil layers, which is crucial for accessing deeper soil moisture. Plants 

already resistant to compaction have adaptations such as increased root diameter and higher 

tortuosity, which improve their exploration of the soil and adjustment to environmental stresses 

(Correa et al., 2019). 

Internal and genetic factors:  

Apart from environmental interferences, the RSA is influenced by internal factors, including 

hormonal balance (Fukaki & Tasaka, 2009), plant maturity (Aulakh et al., 2001), the 

gravitropic set-point angle (Malamy, 2005), and the plant's intrinsic responsiveness to these 

changes (Malamy, 2005). Crosstalk has been observed between the pathways of phosphorus-

responsive gene transcription and phosphorus deficiency-induced root development (Sánchez-

Calderón et al., 2006). These processes involve intricate signalling mechanisms of synthesis, 

transduction, and sensitivity of signals across numerous developmental genes (Giehl et al., 

2014). Such internal factors introduce genetic variation that can mask the effects of individual 
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genes on specific RSA traits (Kuijken et al., 2015). The complexity in regulating root 

phenotypes is complicated by pleiotropy and genetic interactions such as crosstalk (mentioned 

above) and epistasis. For instance, the Root-ABA1 QTL (Quantitative Trait Loci), has been 

identified to contribute to root lodging resistance in tomato (Giuliani et al., 2005; Landi et al., 

2007). Similarly, a genome-wide association study in rice (Kadam et al., 2017) led to the 

identification of a gene (SCARECROW/SHORTROOT) known to influence the RSA. 

Moreover, a study using soybean cultivars found that QTL regions accounting for 15% –25% 

of the phenotypic variation in RSA traits (essentially root length-related) contain two putative 

candidate genes (Seck et al., 2020). These genes have homology to genes previously identified 

as influencing RSA in other species. Furthermore, reports of interacting QTLs for root traits in 

rice, maize, and Arabidopsis highlighted the complexity of epistasis (Bouteillé et al., 2012; 

Zhang et al., 2001; Zhu et al., 2006). Ultimately, the intricate web of genetic interactions, 

combined with environmental influences, complicates the understanding and breeding for 

specific root traits due to the obscured effects of individual genes. 

 

2.3. Current Methods and Challenges in Root System Architecture Analysis  

There have been recent advancements in phenotyping methods for root traits, including 2D 

image analysis, cross-sectional anatomy, shovelomics, 3D photography, and tomography 

technologies, and these methods hold significant promise for breeding purposes (Kuijken et 

al., 2015). The complexity of root systems and their dynamic interaction with the environment 

have led to the adoption of advanced imaging technologies, such as X-ray CT scanning, 

magnetic resonance imaging, and ground penetrating radar, to study roots in laboratory and 

field conditions (Fan et al., 2022; Lafond et al., 2015; Morris et al., 2017; Rellán-Álvarez et 

al., 2015). These technologies already enabled the development of detailed 3D models for 
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quantifying RSA (Dunbabin & Postma, 2013), significantly advancing our understanding of 

root distribution and function under varying environmental conditions. 

Focusing on the agronomic relevance of specific root traits, the soil is generally identified as 

the natural cultivation medium. Root systems developed hydroponically or in gellan gum 

exhibit significant differences compared with soil growth (Clark et al., 2011; Hargreaves et al., 

2009; Wojciechowski et al., 2009), highlighting that artificial growth media do not reproduce 

field conditions. Therefore, the integration of soil environments in studies involving high-

resolution imaging technologies is crucial for a realistic evaluation of root behaviour and the 

effective translation of laboratory findings to field applications, so that research remains 

relevant to actual agricultural practices. 

Often, plants used for root phenotyping in soil are grown in soil-filled tubes or pots, flat 

cartridges, or regular soil environments under greenhouse conditions (Bucksch et al., 2014; 

Burton et al., 2012; Dresbøll et al., 2013; Nagel et al., 2009; Nagel et al., 2012; Ytting et al., 

2014). One of the main challenges with these cultivation methods is soil heterogeneity, 

including composition and moisture, which can complicate the isolation of root systems from 

images considerably (Kuijken et al., 2015; Lontoc-Roy et al., 2006). Many researchers opt for 

artificial media used in indoor cultivation systems, which helps for higher throughput and more 

controlled conditions, thus reducing environmental noise. Common practices in these 

controlled environments include 2D rhizotron systems, such as growth pouches (Hund et al., 

2009), between paper (Adu et al., 2014), rhizoboxes (Seck et al., 2020), or between fabric 

cloths in bins (Chen et al., 2011; Le Marié et al., 2014). These methods provide a more 

standardised micro-environment, which is crucial for accurate phenotyping and complements 

the detailed insights gained from advanced imaging techniques used in real soil conditions. 

However, these methods can force roots into an unnatural growth conformation and utilise 

media with chemical and physical properties that may not be representative of natural soil 



18 
 

conditions, presenting a notable limitation in their agronomical applicability. As a result, there 

are trade-offs in achieving high resolution, processing data efficiently, mimicking the real 

cultivation system, and measuring the desired root parameters comprehensively. 

New high-throughput phenotyping platforms are designed to balance controlled environments 

with realistic root system modelling, and often utilise 2D imaging techniques with cameras 

(Clark et al., 2013; Le Marié et al., 2014; Nagel et al., 2009) or flatbed scanners (Adu et al., 

2014; Chen et al., 2011; Hund et al., 2009; Slovak et al., 2014), to facilitate the observation 

and measurement of roots. These methods are user-friendly and allow for rapid data collection, 

but they do not adequately capture the intricate 3D structure of root systems and the process of 

untangling and flattening roots for 2D imaging can be both tedious and potentially harmful to 

the roots. Therefore, alternative approaches involve growing root systems in a 3D medium and 

using 2D optical cameras for imaging roots, with the images later reconstructed into 3D models 

to provide a more comprehensive view of the RSA (Douarre et al., 2016; Huang et al., 2023). 

 

2.4. Computed Tomography Scanning in Plant Science 

2.4.1. Overview 

For root systems grown in soil, several 3D imaging techniques allow for the in-situ 

visualisation of roots without altering the bio- and physico-chemical properties, porosity, and 

mechanical resistance of the soil. The most notable among these methods is X-ray CT scanning, 

which provides detailed 3D and cross-sectional images of roots embedded in their soil 

environment, facilitating an accurate analysis of root structure and distribution without the 

disruptive process of extraction (Lafond et al., 2015; Mooney et al., 2012). Overall, these 

advancements in 3D imaging technologies provide valuable tools for overcoming the 

limitations of traditional 2D methods, enabling more precise and less invasive studies of root 

systems grown in soil environments mimicking the field reasonably well. 
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2.4.2. Basic Principles of X-ray CT Scanning 

X-ray CT scanning is a non-destructive and non-invasive imaging technology that enables the 

visualisation of the internal structure of objects in 3D, and by cross-sectioning, in 2D. Its 

potential for use in the plant and soil sciences, including root visualisation, was explored in the 

1980s-1990s (Aylmore, 1993; Crestana et al., 1986). In particular, the ability of X-ray CT 

scanning to detect both biotic and abiotic components effectively was demonstrated by 

(Tollner, 1991). Over the years, X-ray CT scanners have evolved significantly, improving 

functionality while maintaining the fundamental principles that define their operation. X-rays 

are generated in and emitted from a highly evacuated tube, usually called an “X-ray tube”, 

containing two electrodes: a cathode and an anode, typically made of platinum or tungsten. 

Upon application of a high voltage (e.g., 60 kV and above for a macro-CT scanner), electrons 

accelerate from the cathode to the anode, emitting X-rays upon collision. As X-rays pass 

through the sample installed on the couch, they are partly absorbed or scattered by the material. 

This interaction is quantitatively described by the Beer-Lambert Law: 

𝑰 = 𝑰𝟎 𝒆𝒙𝒑(𝝁 𝑩𝒅)                                                                                                   Equation (1) 

which relates the initial intensity (I₀) of the monochromatic radiation to the attenuated intensity 

(I) after passing through a sample with bulk density Bd; μ is the linear attenuation coefficient 

(Wildenschild et al., 2002). This law, through the derived CT numbers (see below), is 

fundamental in determining the density of the different parts of the sample based on the 

attenuation of the X-ray beam, providing detailed insight at a fine resolution into the internal 

structure of the sample without causing damage. 

In medical (macro-) CT scanners, the X-ray tube and the detectors, on opposite sides of the 

gantry, encircle the patient (object), capturing multiple projections while the patient (object) 

comes in or out of the gantry depending on the exam plan, in a type of scan called “helical” 

since the early 2000s. Conversely, in non-medical (micro-) CT scanning applications, the 
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sample installed on a plate rotates between a stationary X-ray source and the detectors. From 

the raw projection images, 2D arrays (matrices) of “CT numbers” are computed with the 

appropriate algorithms provided by the CT scanner company. Typically, the 2D array size is 

512 x 512 entries. Their packing without default, thanks to the helical scan, provides a 3D 

array, with a length (in entries) along the third axis equal to the physical length of the volume 

CT scanned, divided by the reconstruction interval length (usually in cm and a fraction of mm, 

respectively, for macro-CT scanners). The concept of pixel in 2D is thus extended to that of 

“voxel” in 3D; a voxel can be seen as a pixel with a certain depth equal to the reconstruction 

interval length. 

As mentioned above, the reconstruction process from projection images to “CT images” (i.e., 

the 2D arrays) involves computing CT numbers (CTN), expressed in Hounsfield units (HU) 

(Kalender, 2011): 

𝑪𝑻𝑵(𝑯𝑼) =  
𝝁 𝒗𝒐𝒙𝒆𝒍− 𝝁 𝒘𝒂𝒕𝒆𝒓

𝝁 𝒗𝒐𝒙𝒆𝒍− 𝝁 𝒂𝒊𝒓
 𝒕𝒊𝒎𝒆𝒔 𝟏𝟎𝟎𝟎                                                             Equation (2) 

where μ object denotes the linear attenuation coefficient for the voxel; μ water, the linear 

attenuation coefficient of pure water; and μ air, the linear attenuation coefficient of a 

standardized air sample; μ air is expected to be 0. 

One CTN is computed for each voxel, and its value is an indirect estimate of the material 

density of the corresponding part of the CT scanned volume. Traditionally, medical CT 

scanners are calibrated so that air CTN is equal to –1000 HU, water CTN to 0 HU, and bone 

CTN to +1000 HU. As a 512 x 512 grey-tone map of CTNs, a CT image has brighter and darker 

pixels, indicating higher X-ray attenuation (denser material) and lower X-ray attenuation 

(lighter material), respectively. 
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2.4.3. X-ray CT scanning for root growth visualisation in soil 

X-ray CT scanning offers great potential for examining undisturbed RSA in the soil, and is less 

affected by soil paramagnetic elements than magnetic resonance imaging (Tollner et al., 1994). 

In the past two decades, X-ray CT scanning has been increasingly utilised in a wide range of 

studies, highlighting its versatility and effectiveness in capturing detailed internal structures 

non-invasively. The use of low-dose X-rays with medical CT scanners has been proven 

adequate for studying the development of plant structures, presenting a significant advantage 

over industrial CT scanners, which do not allow the same level of contrast and are lethal to 

plants due to much higher X-ray doses. 

The effectiveness of the use of a macro-CT scanner with plants to study their structures, above 

ground (leaf canopies and branching patterns) and below ground (root systems) has been 

affirmed by the results of multiple studies, including (Dutilleul et al., 2008; Dutilleul et al., 

2005; Han et al., 2008, 2009; Lontoc-Roy et al., 2005). Zappala et al. (2013), while analysing 

rice root traits and exploring the associated microbial communities, demonstrated that X-ray 

CT scanning did not significantly affect the biological attributes of their samples. Jenneson et 

al. (1999) initially documented the capacity of a micro-CT system to generate 3D time-lapse 

images of growing wheat seeds (Triticum aestivum) with a resolution of 100 μm. Gregory et 

al. (2003) repeated these micro-CT results for wheat, and obtained similar micro-CT results for 

rape (Brassica napus), both grown in a sandy loam.  Lontoc-Roy et al. (2006) investigated the 

RSA of young maize seedlings grown in various soil conditions, using macro-CT. To identify 

the root material in the plant-soil CT scanning data, the authors applied an initial global CTN 

thresholding that was adjusted to the soil type and moisture content, underscoring the necessity 

of adaptive thresholding to achieve accurate image segmentation including root isolation.  

Han et al. (2008) made a significant advancement in RSA analysis by successfully extracting 

the architecture of first-order potato (Solanum tuberosum) roots from CT data. Their 
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methodology employed an interactive system that allowed a human operator to manually track 

the root through a series of CT slices. This hands-on approach involved the operator marking 

the centre of the root region in each slice, which provided a direct and intuitive means of tracing 

the root's structure. This manual tracking method proved effective in identifying architectural 

variations in potato roots, especially those influenced by external biological factors. The study 

was able to discern differences in the root structures of plants that had been inoculated with a 

scab-inducing bacterium (Streptomyces scabies EF-35). These procedures integrate the 

precision of automated systems with the nuanced understanding of human operators, providing 

a more reliable and comprehensive analysis of root architecture.  

CT scanning has revolutionised the visualisation and analysis of underground plant structures, 

but the inherent complexities of root architecture—such as overlapping roots, curves, and 

bends—often exceed the capabilities of conventional imaging techniques (Weihs et al., 2024). 

These complexities necessitate more sophisticated analytical approaches to understand root 

systems fully. Current techniques range from global or local thresholding to more advanced 

automated procedures that reduce operator bias, though these cannot entirely replace human 

judgment (Baveye et al., 2010). Technological advances, cost reductions in imaging and sensor 

platforms, and progress in AI subfields recently started to enhance plant breeding efforts by 

enabling faster, high-resolution sampling and analysis of root phenotypic data (Falk et al., 

2020). 

 

2.5. Fractal Dimension as Complexity Indicator in Root System Architecture Analysis 

Fractal geometry, introduced by Mandelbrot (1982), describes irregular and complex structures 

that do not fit traditional Euclidean geometry and its integer dimensions (i.e., 1 for straight 

lines, 2 for planes, and for volumes). Fractals allow for non-integer dimensions, providing a 

more nuanced measurement of spatial complexity and space occupancy for patterns recurring 
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over multiple scales (Tatsumi et al., 1989; Walk et al., 2004; Wang et al., 2009). This property 

of self-similarity, where the form or pattern is consistent across scales, is particularly useful for 

studying natural structures, such as root systems (Dutilleul et al., 2008; Hauck et al., 2015). 

The FD of structures meeting the fractal assumption can be estimated with a variety of methods, 

most notably the box-counting procedure for 2D images and the cube-counting procedure for 

3D images. In the former, a grid of square boxes of decreasing sizes (starting with half the side 

of the smallest square containing the structure, divided by 2, 4, etc.) is superimposed onto the 

image and the number of boxes intersecting the structure of interest is counted for each size. 

Eventually, FD is estimated as the slope of the log-log plot of the number of intersecting boxes 

against the inverse of the box size (Foroutan-pour et al., 1999 b). Analogously, the cube-

counting procedure is applied to 3D images, by using cubes instead of boxes to account for the 

volumetric intricacies of the structure (Dutilleul et al., 2015). 

 

Figure 2.1: Example of log-log plot in the cube counting procedure for a soybean plant 

from the OAC-CHAMPION 
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Fractal analysis has been applied to assess the complexity of plant structures (branching 

patterns, root systems) in crop plants. For example, Foroutan‐pour et al. (2001) explored the 

use of FD to quantify the complexity of soybean canopy architecture affected by population 

density and intercropping with corn. Estimated on soybean branching patterns from which 

leaves had been detached manually, Foroutan-pour et al. (2001) showed that FD correlated 

with changes in canopy architecture and increased over time as structural complexity was 

increasing during plant development. They also compared FD with traditional canopy growth 

metrics (e.g., leaf area), showing that FD provides new insights into the spatial distribution of 

leaves in the canopy for light interception and photosynthesis. The concept was similarly 

explored for root systems and confirmed by (Lontoc-Roy et al., 2006) and Subramanian et al. 

(2015), replacing leaf area above ground with root length underground and light interception 

with water and nutrient uptake. The root system FD in two rice cultivars was correlated with 

drought performance (Wang et al. (2009)), and observations of transgressive segregation in 

root system FD between maize recombinant populations suggest the presence of genetic 

variants in the parental inbreds that can either increase or decrease this characteristic (Grift et 

al., 2011).         
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Connecting Text 

 

A preliminary study was imperative to enhance our understanding of the genetic determinants 

influencing RSA in soybean. For this purpose, we focused on evaluating phenotypic variation 

within a diverse germplasm pool consisting of 137 soybean lines (Seck et al., 2020). From this 

extensive dataset, a strategic subset of 30 cultivars was meticulously selected by multivariate 

statistical analysis, primarily cluster analysis. This method allowed the identification of 

representative soybean lines exhibiting distinct RSA traits, which will provide a basis for 

detailed 3D phenotyping. In Chapter 3 and the derived publication (Sanghera et al., 2023), a 

robust framework is developed by applying cluster analysis with various criteria, to determine 

representative lines that can be used in the experimental work presented in Chapter 4. 
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3.1. Abstract 

 

The reported study was motivated by the necessity to select 30 soybean lines from a total of 

137 for a sophisticated 3-D phenotyping analysis of the Root System Architecture (RSA), 

which would not allow that all the lines be included and replicated. A representative subset of 

size 30 was found after performing four cluster analyses and comparing the results of two more 

particularly. These two cluster analyses are based on the data for 12 RSA-related traits 

previously collected in 2D on three replicates of the 137 soybean lines and the first six principal 

components representing 95% of the total dispersion after data standardization in a preliminary 

Principal Component Analysis (PCA). The two cluster analysis procedures provided 16 

soybean lines that were the closest to the centroid of their respective cluster in both cases. 

Fourteen more were found to be common and at a distance from the centroid below a pre-set 

threshold value without being the closest. The final selection of 30 excludes two soybean lines 

that were the second member selected from their cluster, and includes instead two soybean 

lines that are the closest and second closest to their respective centroid in the cluster analysis 

after PCA on standardized data, but are not well represented in the other cluster analysis. In 

conclusion, the 93.3% overlap between the two sets of results shows a robust clustering 

structure in RSA 2-D phenotyping in soybean. Our statistical approaches and procedures can 

be followed and applied in other biological frameworks than plant phenotyping. 

 

 

Keywords: Cluster analysis • Data standardization • Distance to the centroid • Plant 

phenotyping • Principal component analysis • Root system architecture 
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3.2. Introduction 

 

One of the main difficulties in experimental research of biological systems is the bidirectional 

relationship between genotype and phenotype [1-7]. Researchers in the omics sciences, 

including phenomics [8], are continuously developing new technologies that produce 

enormous amounts of data, which help improve our understanding of the complexity of living 

organisms provided they are analysed appropriately. To enable drawing biologically relevant 

conclusions, statistical methods, among others [9-12] must be optimized in parallel. To share 

raw data from omics experiments, they are presented in figures and visualized with meaningful 

representations. The primary goal of agricultural phenomics, or field omics [13], is to measure 

and compare phenotypes of crop plants. With the interpretation of dendrograms and proximity 

to centroids, cluster analysis represents a potential, very effective means to meet that objective. 

Different clustering algorithms exist that can, for given criteria, group individuals and identify 

them as cluster members [14]. 

Phenotypic variation in a germplasm pool is necessary for plant breeders to progress through 

selection. In this study, we have analysed phenotypic data for the Root System Architecture 

(RSA) of 137 soybean lines; source of data:[15]. The primary or tap root is the first organ 

formed by hypophysis in germinating seeds [16]. The thick soybean primary root produces 

primordia from the pericyclic cells, which grow into lateral roots [17]. Numerical variables, 

such as the quantity of secondary lateral roots, average root diameter, and root length, typically 

describe the size and abundance of the root system components. In other measured variables, 

the focus is on the topology or structure of the root system, like the type and angle of root 

connections [18]. Here, 12 RSA-related traits had previously been measured from 2-D images 

of the content of rhizoboxes in which soybean seedlings were grown: Total Length of Roots 

(TLR), Length of Primary Root (LPR), Length of Secondary Roots (LSR), Distribution of Total 

Root Length (DTLR), Total Number of Roots (TNR), Median number of roots (Med), 
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Maximum Number of Roots (Max), Depth of Root System (DRS), Width of Root System 

(WRS), Surface of Root System (SRS), Diameter of Primary Roots (DR), and Surface Area of 

primary Root (SAR) [15]. We first performed cluster analysis on the dataset introduced above 

in four ways: without vs. with data standardization, combined or not with the application of a 

Principal Component Analysis (PCA) to reduce data dimensionality, and then focused on two 

ways called “Approach 1” and “Approach 2”. In doing so, our motivation was to answer best 

the questions: How to analyse RSA multivariate data to objectively define a given number 

(e.g., 30) of clusters? How can a relevant member (i.e., a soybean line) be identified for each 

of the 30 clusters? These questions are addressed while keeping in mind that the resulting 30 

soybean lines would later be used for a sophisticated, time-consuming RSA phenotyping in 

3D. We used the SAS software, Version 9.4 for Windows (SAS Institute Inc.,Cary, NC, USA), 

to design and perform our cluster analyses. 

 

3.3. Materials and Methods 

Source of experimental data 

The dataset used in the multivariate analyses described below consists of the mean values of 

phenotypic data collected for three seedlings per line (N=3) from 137 lines of soybean grown 

in Canada. The seeds were first germinated in Petri dishes filled with fine vermiculite and then 

transplanted into custom-designed rhizoboxes filled with vermiculite. After 10 days of growth, 

images of the roots were taken using a camera. The Automatic Root Image Analysis (ARIA) 

software was used to extract the RSA-related traits from each 2-D image: TLR, LPR, LSR, 

DTLR, TNR, Med, Max, DRS, WRS, SRS, DR, and SAR [15]. 
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Cluster analysis 

This multivariate statistical method is aimed at identifying “clusters”, or groups of individuals, 

and their “members” for given criteria of proximity in the multidimensional space of a 

quantitative dataset. In the plethora of existing cluster analysis procedures, clustering depends 

on the definition of proximity and the type of distance or similarity involved; see, e.g.,[14]. In 

all cases, the basic principles of the method are the same: grouping individuals that are more 

similar in the same cluster around a “centroid”, in a way that maximizes the separation among 

clusters while minimizing the distances between members within clusters.We applied cluster 

analysis to obtain 30 clusters from 137 soybean lines (1 individual=1 soybean line). As a 

starting point in a given approach, we identified the soybean lines with greatest proximity to 

the centroid as representatives of the clusters. Our motivation is to select objectively 30 

soybean lines for future research work that is practically impossible to undertake with all the 

137 soybean lines (i.e., RSA phenotyping based on computed tomography scanning). In this 

study, we performed disjoint cluster analyses with the SAS procedure FASTCLUS, in which a 

nearest centroid sorting algorithm is implemented. We used it without the option of cluster 

seeds as first guess for centroids, so that the algorithm initially considered each individual as a 

separate cluster. Distances between two individuals, between one individual and the centroid 

of one cluster with more than one member, and between two centroids of clusters with several 

members were computed based on the values of the input variables (using means when 

centroids of non-singleton clusters are involved); see the VAR statement in SAS scripts A1 

and A3 in the appendix. By default, the Euclidean distance is used to assess the proximity 

among individuals and clusters. The algorithm merges the two closest clusters at each step until 

the desired number of clusters (MAXC) is reached. Unlike the SAS procedure CLUSTER, 

PROC FASTCLUS assigns each individual to a single cluster without organization in a 

hierarchical tree structure. We developed and followed two approaches for clustering. 
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Approach 1: Cluster analysis with the 12 RSA-related traits. In SAS script A1, "MAXC=30" 

specifies the requested number of clusters, and the final cluster assignments are saved as output 

in "work.fastclus_scores". 

Approach 2: Cluster analysis with 6 principal components (Prin1-Prin6). In this approach, 

results of a preliminary PCA are used; see the text below and SAS scripts A2 and A3. The 

input variables VAR in A3 are "Prin1-Prin6". These were chosen for cluster analysis after PCA 

(see below) showed that they accounted for 95% of the variability in the data table after column 

standardization. Prior to standardization, the data table (with 137 rows and 12 columns) 

contained the mean values (N=3) per soybean line for each of the 12 RSA-related traits. The 

other options in A3 (i.e., MAXC, OUT) are the same as in A1.  

Principal component analysis 

That multivariate statistical method can be performed on the same dataset as cluster analysis, 

but has a different aim than cluster analysis. PCA is used to examine the relationships among 

quantitative variables observed on a number of individuals in order to reduce dimensionality 

of the data space [14]. Matrix algebra tools applied to the sample correlation matrix (with ones 

as diagonal entries and standardized covariances off the diagonal) provides “principal 

components” based on eigenvalues and associated orthogonal eigenvectors. By performing 

PCA, we aimed to identify structural patterns in association of the 12 RSA-related traits over 

the 137 soybean lines and assess differences in cluster analysis results obtained with well-

defined principal components (Approach 2) vs. with no data standardization and no 

dimensionality reduction (Approach 1). In SAS script A2 in the appendix, the procedure 

PRINCOMP is called with "DATA=PCA_Seck_et_al_2020" to specify the input dataset and 

the option STANDARD to perform PCA on the 12 × 12 sample correlation matrix (i.e., after 

transforming the data for each variable to a sample variance of 1.0). The latter option facilitates 

the interpretation of results by focusing on associations among variables via correlations, while 
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avoiding scale effects related to data dispersion and measurement units if the 12 × 12 sample 

variance-covariance matrix was used. 

3.4. Results and Discussion 

 

The first 6 principal components (out of a maximum of 12; there are 12 variables provided by 

the 12 soybean root traits) explain about 95% of the variability in the data table (Figure 3.1, 

top left panel). Several of the RSA-related traits are redundant; see SAR, DRS, DTLR, LSR, 

TLR and WRS, RS in the PCA biplots (Figure 3.1, other panels). The latter result confirms the 

correlation analysis results reported in (Seck et al., 2020). 

 

Figure 3.1: Principal component analysis (PCA) results. 

 

Top left panel: Percentage of the variability in the data table explained by the 12 principal 

components, cumulatively and non-cumulatively. Other panels: Biplots of Prin2 against Prin1, 

Prin3 against Prin1, and Prin3  

against Prin2; Prin1, Prin2, Prin3 denote the first three principal components in descending 

order of the associated eigenvalues. 
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In a PCA with standardization of the data table, which is equivalent to performing the PCA on 

the sample correlation matrix [14], “variance”, “dispersion”, “variation”, and “variability” tend 

to mean the same thing. Using the criterion of greatest proximity or smallest distance to the 

centroid, 16 soybean lines are found to be common to the lists of 30 names obtained in the 

cluster analyses along Approach 1 and Approach 2; see the yellow highlights in Table 3.1.  

 

Table 3.1: A summary of the initial cluster analysis results obtained in Approach 1 and 

Approach 2 

 

Analysis with the 12 RSA-related traits Analysis with Prin1-Prin6 

Cluster Soybean line 

Distance 

to the centroid Cluster Soybean line 

Distance 

to the centroid 

1 4004P4J 1.232596 1 4004P4J 1.330548 

2 4005_24j 0.000000 2 4005_24j 0.000000 

3 PS44 0.969116 3 PS44 0.903904 

4 Jari 1.385713 4 OAC 7-26C 1.124655 

5 Tundra 0.000000 5 Gretna 1.020093 

6 Delta 0.000000 6 Madoc 0.844417 

7 OAC 7-26C 1.222566 7 OAC Prudence 1.121011 

8 Casino 1.379225 8 OAC Wallace 0.944889 

9 5055_43G 0.000000 9 5055_43G 1.239143 

10 Costaud 1.251672 10 Costaud 1.105240 

11 Madoc 1.357312 11 Mandarin 0.929683 

12 Maple Ambr 1.103940 12 Venus 0.000000 
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13 OAC 8-21C 0.898254 13 OAC 7-6C 0.000000 

14 Woodstock 0.000000 14 Maple Glen 1.025438 

15 S05-T6 1.191081 15 Bravor 1.111696 

16 Albinos 1.447583 16 Tundra 0.000000 

17 OAC 9-35C 1.088592 17 SECAN8-1 1.026367 

18 Clinton 1.169068 18 Woodstock 0.000000 

19 Maple Isle 1.057824 19 Jutra 0.775305 

20 OAC Oxford 1.118181 20 OT94-47 0.728379 

21 S14-P6 1.081495 21 Alta 0.651441 

22 McCall 1.275310 22 McCall 1.090354 

23 Gentleman 1.505267 23 4067P17j 1.107881 

24 Flambeau 1.091571 24 S03-W4 0.000000 

25 OAC 7-6C 0.000000 25 Roland 0.975369 

26 OAC Wallace 0.954529 26 Maple Belle 1.015101 

27 S03-W4 0.000000 27 OAC 7-4C 0.812049 

28 Venus 0.000000 28 S14-P6 1.002491 

29 Gaillard 0.844357 29 Mario 0.924578 

30 OAC 7-4C 0.998249 30 OT05-20 1.209572 

 

Approach 1 (Analysis with the 12 RSA-related traits) and Approach 2 (Analysis with Prin1-

Prin6). Only the soybean lines that are the closest to the centroid of the cluster that they are a 

member of are listed. Those that are highlighted in yellow appear in both lists. Complete results 

are archived in Appendix Tables B1 and B2. 
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Loosening the required proximity to a maximum difference of 0.15 with the smallest distance 

to the centroid on both sides, 14 more lines were found to be common and at a distance from 

the centroid below 0.15 without being the closest. The final selection of 30 (Table 3.2) excludes 

two soybean lines (Madoc, McCall) that were the second member selected from their cluster, 

and includes instead two soybean lines (Mandarin, Maple Arrow) that are the closest and 

second closest to their respective centroid in Approach 2, but are not well represented in 

Approach 1. 

Table 3.2: Final selection of 30 soybean lines 

Sno Genotype 

1 4004P4J  

2 4005_24J 

3 5055_43G 

4 AC2001 

5 Albinos 

6 Casino 

7 Clinton 

8 Costaud 

9 Delta 

10 Elora 

11 Gaillard 

12 Gentleman 

13 Mandarin 

14 Maple arrow 

15 OAC 7-26C 
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16 OAC 7-4C 

17 OAC7-6C  

18 OAC 8-21C 

19 OAC 9-22C 

20 OAC 9-35C 

21 OAC Oxford 

22 OAC Wallace 

23 PS44 

24 Proteus 

25 S03-W4 

26 S14-P6 

27 SECAN7-27 

28 Tundra 

29 Venus 

30 Woodstock 

 

 
Based on their membership of one of the 30 clusters identified in Approach 1 (Analysis with 

12 root traits) and Approach 2 (Analysis with Prin1-Prin6) and their distance from the centroid. 

The 14 soybean lines highlighted in yellow here were also highlighted in yellow in Table 3.1; 

see text and Appendix Tables B1 and B2 for the selection of the other 16 soybean lines. In 

particular, Madoc and McCall, which are highlighted in yellow in Table 3.1, were eventually 

discarded to keep not more than one member per cluster after merging the two sets of cluster 

analysis results. 
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The reported overlap of 93.3% [i.e., (16+14–2)/30=0.933] shows a robust clustering structure 

in RSA 2-D phenotyping in soybean. Thus, we compiled, in a rational way, a list of 30 

representative soybean lines with distinct RSA patterns that provide a good basis for 3-D 

investigation. Of course, germination tests with available seed banks as well as preliminary 

tests with growing media other than vermiculite justify adjustments to that list later. It is worth 

mentioning that OAC Bayfield readily provides a substitute to OAC 7-26C if required, as these 

soybean lines belong to the same cluster with two members in both approaches (Appendix 

Tables B1 and Table B2); they are therefore at equal distance from the centroid and either can 

be randomly picked. A comparison with genomic clustering results falls beyond the scope of a 

Brief Report, but could be the topic of another, broader study. 

3.5. Conclusion 

 

The selected 30 soybean lines will be used in RSA phenotyping with state-of-the-art 

equipment, followed by sophisticated 3-D data and image analyses. Selecting representative 

lines that showcase the diversity in root system architecture and possess biological relevance 

is crucial. The soybean lines in Table 3.2 are objective starting points for further investigation 

into the functionality of specific RSA-related traits on plant performance and adaptation. Our 

cluster analysis results provide insight into phenotypic variation within the germplasm pool. 

Understanding root system diversity is crucial for breeders aiming to progress through 

selection. Advanced 3-D phenotypic analyses, e.g., based on computed tomography scanning, 

is expected to deepen our understanding of the RSA and its impact on plant productivity and 

stress tolerance. 
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Connecting text 

 

After establishing the basis in Chapter 3 for selecting 30 diverse and representative soybean 

lines from 2D work with plants grown in vermiculite, the transition to a detailed exploration of 

these 30 lines (with a few substitutions) is performed in Chapter 4, using advanced 3D 

phenotyping techniques (CT scanning) and plants grown in sand. This phase of our research 

leverages (i) X-ray CT scanning technology to visualise the structural complexity of the 

soybean root systems in 3D and (ii) CT scanning data and reconstructed 3D images to quantify 

this complexity by an appropriate fractal analysis. In this framework, the estimation of FD for 

individual plants across the selected soybean lines is susceptible of highlighting phenotypic 

variation in RSA among and within lines, more than in previous 2D work. With FD as a metric 

incorporating several other root measurements (lengths, angles), we aim to advance our 

understanding of the RSA and its importance for developing climate-resilient soybeans.  
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4.1. Abstract 

Understanding differences in root system architecture (RSA) is crucial for improving the 

resource-use efficiency of crops and developing climate-resilient cultivars. When underground, 

which is generally the case in nature, roots are challenging to observe and characterise. Here, 

we assessed the potential of the fractal dimension (FD) as an indicator of structural complexity 

in the root systems of 30 soybean cultivars grown in pots filled with sand for ~3 weeks. We 

used computed tomography (CT) scanning technology for non-invasive observation. After 

processing CT images and constructing 3D images of the isolated root systems for 110 plants, 

FD was estimated with the cube-counting procedure for each root system individually. The 

one-way analysis of variance performed on the FD estimates revealed a statistically significant 

(P = 0.0192) variation among the 30 soybean cultivars, as well as an important portion (60.3%) 

of the total variation related to individual plant effects within cultivars. Pairwise comparisons 

of FD mean values between cultivars and visual graphical inspection completed the 

interpretation of the observed phenotypic diversity in the RSA of soybean. The 3D results 

obtained here are compared with the 2D results obtained in a former study, and similarities and 

dissimilarities are discussed. In conclusion, advancements from 2D to 3D RSA phenotyping 

are underscored and FD is validated as an integrative indicator of root system complexity, of 

which the estimation requires less computing time than the measurement of root lengths and 

angles of multiple types. Accordingly, the inclusion of FD can be recommended in analyses 

with genetic data to develop climate-resilient soybean cultivars, thus promoting agricultural 

sustainability. 

 

Keywords: root system architecture, soybean, phenotypic variation, 3D phenotyping, 

complexity, fractal dimension, stress resilience 
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4.2. Introduction 

Soybean (Glycine max), alias “golden bean”, has proved to be a prominent source of protein 

both for humans and animals, and is widely recognised for its substantial contributions to 

bioenergy (Islam et al., 2019; Singh et al., 2018). Originally from Asia, soybeans are now 

cultivated globally, valued for their high protein and oil contents surpassing wheat, rice, and 

maize, and pivotal in bolstering sustainability thanks to their unique nitrogen-fixing ability, 

which reduces the need for nitrogen fertilisation (Brevedan & Egli, 2003; Morrison et al., 

2006). They are emerging as protagonists in an unfolding narrative of global changes, 

resilience, and innovation. The soybean industry faces challenges, particularly abiotic stresses 

exacerbated by climate change (e.g., more frequent and longer droughts), which critically 

impact yields (Brevedan & Egli, 2003; Morrison et al., 2006). This situation underscores the 

urgency of research aimed at enhancing soybean resilience for food security and environmental 

sustainability. 

One promising avenue is the development of soybean varieties with improved root systems, as 

roots, often called the "hidden half" of a plant, play a crucial role in nutrient and water 

acquisition, thereby significantly influencing crop's ability to sustain abiotic stressors 

(Atkinson et al., 2019). Root systems are adaptable and dynamic, and can substantially enhance 

a crop's ability to withstand abiotic stressors such as drought and poor soil fertility. Therefore, 

focusing on the root system architecture (RSA) in research and understanding its genetic 

determinants is imperative. The conventional approach to assess RSA traits in plants grown in 

the field is known as “shovelomics”. This method involves removing root systems from the 

soil and visually analysing them for characteristics that are relevant to the RSA (Trachsel et 

al., 2011). Non-destructive methods have been designed to overcome the drawbacks of this 

strategy, including soilless methods such as hydroponics (Ayalew et al., 2018; Hargreaves et 

al., 2009), aeroponics (Lakhiar et al., 2018; Osvald et al., 2001; Selvaraj et al., 2019), gel plates 
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(Wojciechowski et al., 2009), and growth pouches (Adeleke et al., 2019; Adu et al., 2014; Hund 

et al., 2009), or they involve rhizoboxes (Seck et al., 2020) or enclosures with removable or 

clear viewing windows (Atkinson et al., 2019). 

The approaches above, however important, fall short of quantifying the RSA complexity in 3D. 

To overcome this limitation, we proceeded in two steps. First, we used the advanced imaging 

technology of computed tomography (CT) scanning (Han et al., 2008, 2009; Mooney et al., 

2012; Rogers et al., 2016; Subramanian et al., 2015), and then, from the CT images duly 

processed, we performed a fractal analysis that provided one fractal dimension (FD) per root 

system. Our research work targeted the RSA phenotypic variation in the diverse germplasm 

pool of 137 soybean lines presented by (Seck et al., 2020). On this extensive 2D dataset, we 

performed cluster analysis to select a strategic subset of 30 soybean cultivars identified as 

distinct and representative of the whole set (Sanghera et al., 2023).  In summary, our innovative 

approach combines CT scanning technology and the estimation of fractal dimension (FD) in a 

3D spatial context, thus providing a realistic and detailed understanding of soybean root 

branching patterns. With the use of soil in pots to grow soybean plants in an open space near a 

greenhouse, our 3D phenotyping framework seeks to be closer to field conditions in terms of 

plant growth, starting with sowing. Accordingly, an enhanced plant phenotyping approach is 

presented hereafter, technologically, and quantitatively. 

 

4.3. Materials and Methods 

4.3.1. Growing Plants 

Choice of Growing Medium: 

Artificial materials may distort root growth into unnatural shapes and their chemical and 

physical characteristics do not mirror those of natural soil, thus limiting their practical 

agricultural use. Alternatively, the use of soil as a growing medium generally presents 
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heterogeneity, including composition and moisture, which can complicate the isolation of root 

systems from CT images (Kuijken et al., 2015; Lontoc-Roy et al., 2006). Therefore, we chose 

sieved homogeneous sand for growing our plants because of two advantages: it more closely 

approximates natural soil conditions, though it is not entirely similar, and it enhances the 

contrast between the roots and the surrounding medium in CT images, thereby reducing the 

difficulty in root isolation. 

Sowing: 

The seeds of the 30 experimental soybean cultivars (Table 4.1) and more were sourced in the 

laboratory of Prof. François Belzile at Université Laval. The final selection of 30 cultivars was 

based on the results of germination tests, depending on the success rate of germination in a 

sand medium. So doing, the cultivars second closest to the centroid in Sanghera et al. (2023) 

were accepted as replacements for those showing shy germination; for example, cultivar Elora 

in Cluster 30 was replaced by Drayton, to ensure germination as uniform as possible and a 

sufficient sample size. 

The seeds were directly sown in sand-filled 15 cm diameter pots, 8 replicates per cultivar to 

begin with. Watering schedules were adjusted to lower the moisture content in the sand medium 

for CT scanning. This procedure enhances the contrast between the roots and the sand in the 

CT images, thereby improving their quality and optimising their analysis (Subramanian et al., 

2015). The four potted plants with the most vigorous apparent growth above ground, for a given 

cultivar, were singled out and brought by van to the Macdonald Campus of McGill University  

(Sainte-Anne-de-Bellevue, QC, Canada). 
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Table 4.1: The final list of 30 soybean cultivars retained for experimentation, following 

germination tests 

Cluster  Genotype 

1 4004P4J 

2 4005_24J 

3 PS44 

4 OAC 7-26C 

5 AC2001 

6 Casino 

7 Saska 

8 OAC Wallace 

9 505543G 

10 Costaud 

11 MapleDonovan 

12 Venus 

13 OAC 7-6C 

14 OAC Champion 

15 OAC 9-22C 

16 Tundra 

17 OAC 1-26C 

18 Woodstock 

19 Dundas 

20 OAC 8-21C 

21 ACGlengary 
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4.3.2. CT Scanning, Data Collection and Image Processing, Fractal Analysis 

CT Scanning: 

The plants were CT scanned at the Macdonald Campus of McGill University (Sainte-Anne-de-

Bellevue, QC, Canada) in the CT Scanning Laboratory for agricultural and environmental 

research, using a Canon Aquilion Prime SP CT scanner (Canon Medical Systems Corporation, 

Otawara, Tochigi, Japan). For the reported study, all the seedlings were CT scanned on 

September 27, 2023, that is, almost three weeks after the seeds had been planted in the pots. 

The four pots per soybean cultivar were CT scanned together, in stand-up position, aligned in 

a row on the couch. The Helical Scan mode was used with an image reconstruction interval 

length of 0.5 mm along the Z-axis. The X-ray source settings were: voltage, 120 kV, and 

current, 100 mA. The field of view SS (24 cm in diameter) was used, with a zoom factor of 

1.74, which provided a 0.27-mm resolution in the X-Y plane. About 300 cross-sectional CT 

images were reconstructed per potted plant. 

  

22 McCall 

23 Gentleman 

24 S03-W4 

25 OAC Oxford 

26 OAC Kent 

27 OAC 7-4C 

28 Walton 

29 Gaillard 

30 Drayton 
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Data Collection and Image Processing: 

The pack of ~300 CT images for one soybean plant was analysed using customised functions 

written in MATLAB R2022b (The MathWorks Inc., Natick, MA, USA). Voxels (3D extension 

of pixels), likely containing root, were isolated on the basis of their CT number (CTN; in 

Hounsfield units, HU), an indirect measure of material density. No definite range of CTN 

values corresponds to roots, even for plants of a given species in a specific growing medium. 

Therefore, histograms of CTNs for the content (sand, roots) of CT scanned pots were built and 

inspected, looking for an appropriate interval of CTNs for roots on the left of the dominant 

peak for sand (Han et al., 2008, 2009) It thus appeared that appropriate intervals of CTNs for 

roots varied from [–600, 600] to [–350, 600]. Thereafter, the 3D array of CTNs was binarised: 

1 = the voxel has a CTN in the interval and 0 = it does not, and the MATLAB function volume 

list was used to select the connected voxels considered to be parts of a root. Starting with the 

largest set of connected root voxels (likely the main part of the tap root, and parts of a few finer 

roots), 3D layers were added by decreasing the lower bound of the interval of root CTNs by 

multiples of 25 HU until no more root voxel could be attached. This procedure ensured that all 

the voxels considered to be part of the root system were connected horizontally, vertically, and 

diagonally. The final 3D image with the tap root and finer (generally lateral) roots was retained 

for further processing. 

The final 3D image of each isolated root system was skeletonised by reducing each root (tap 

or finer) in the image to a thickness of one voxel. Foroutan-pour et al. (1999 a) highlighted the 

importance of skeletonisation as an essential step in many image-processing tasks, including 

the quantification of pertinent information contained in the image. Skeletal images capture all 

the structural parameters that affect FD and therefore provide support for FD estimation with 

a box-counting procedure in 2D (Foroutan-pour et al., 1999 b). The skeletonisation in 3D was 

performed with the image analysis toolset ImageJ (National Institutes of Health, Bethesda, MD, 
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USA). Eventually, any noise or unwanted structure left or introduced by the ImageJ 

skeletonisation procedure was eliminated by a final cleaning in MATLAB (Figure C1). 

Fractal Analysis: 

The skeletal 3D images of root systems of CT scanned soybean plants were subjected to FD 

estimation when the quantity of roots justified a fractal analysis. A customised programme 

written in MATLAB ((Han et al., 2008); Subramanian et al. (2015) was used for FD estimation. 

In this MATLAB programme, a binary array representing the 3D skeletal image of a root 

system is read as input. The cube counting procedure for FD estimation (Mandelbrot, 1982) is 

based on the counting of the cubes intersecting the skeletal image for cubes with a side length 

decreasing from half of the side length of the smallest cube containing the whole skeletal root 

system, divided by 2, 4, …, down to 2 voxels. Then, the natural logarithm of the number of 

intersecting cubes counted for side length s, log[N(s)], is plotted against log(1/s), and a straight 

line with slope D and an intercept is fitted by ordinary least squares: 

𝒍𝒐𝒈 [𝑵(𝒔)] = 𝒍𝒐𝒈 𝑲 + 𝑫 𝒍𝒐𝒈 [
𝟏

𝒔
]                                                                            Equation (3) 

where K does not depend on s and the estimate of D is the estimated FD. 

 

4.4. Results  

A grand total of 110 FD estimates were analysed statistically. They were obtained for 30 

soybean cultivars with 4 individual plants as replicates (alias “POT1”, “POT2”, “POT3”, and 

“POT4”) per cultivar in general and only 2 or 3 plants for a few cultivars (Table 4.2), providing 

robust foundation for statistical analysis and ensuring good reliability of findings. While it is 

acknowledged that this dataset corresponds to an unbalanced completely randomized design, 

it is important to note that this is the only unbalanced design for which the treatment sample 

means can readily serve as the least-squares estimators of the treatment means. The objective 

of this analysis was twofold: assessing the phenotypic variation and validating FD as indicator 
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of the structural complexity of soybean root systems. The GLM procedure from the SAS 

software, Version 9.4 for Windows (SAS Institute Inc., Cary, NC, USA) was used for the one-

way analysis of variance (ANOVA) and subsequent pairwise comparisons of means among 

cultivars at the significance level of 5%. 

Table 4.2: Estimated FDs of root systems for the 30 experimental soybean cultivars 

No. Soybean Cultivars 

POT1 POT2 POT3 POT4 Mean 

FD SE  FD R2 FD R2 FD R2 FD R2 

1 4004P4J 1.398 0.998 1.214 0.997 1.0954 0.994 1.442 0.999 1.2873 0.081 

2 400524J 1.332 0.997 1.599 0.992 1.5399 0.999 1.453 0.993 1.4811 0.058 

3 PS44 1.219 0.982 1.459 0.998 1.3443 0.998 1.251 0.98 1.3182 0.054 

4 OAC726-C 1.384 0.996 1.168 0.992 1.3136 0.996 1.328 0.996 1.2985 0.046 

5 AC2001 1.358 0.999 1.376 0.983 1.3486 1 1.415 0.981 1.3743 0.015 

6 CASINO 1.487 0.999 1.211 0.997 1.223 0.99 1.288 1 1.3024 0.064 

7 SASKA     1.2773 0.992 1.29 0.988 1.2835 0.006 

8 OAC-WALLACE 1.441 0.999 1.39 1 1.4501 0.998   1.427 0.019 

9 505543G   1.498 0.995 1.3161 0.971 1.319 0.995 1.3777 0.06 

10 COSTAUD 1.417 0.999 1.431 1 1.3211 0.991   1.3898 0.035 

11 MAPLE DONOVAN 1.433 0.999 1.381 0.999 1.5286 0.997 1.443 0.999 1.4464 0.031 

12 VENUS 1.409 0.998 1.387 0.999 1.5939 0.997 1.654 0.992 1.5109 0.067 

13 OAC7-6C 1.327 0.994 1.356 0.999 1.3388 0.988 1.468 0.973 1.3726 0.032 

14 OAC-HAMPION 1.369 0.999 1.372 1 1.3937 1 1.437 0.967 1.393 0.016 

15 OAC9-22C 1.607 0.998 1.515 0.999 1.3148 1 1.469 0.998 1.4765 0.061 

16 TUNDRA 1.57 0.999 1.319 0.988     1.4446 0.126 

17 OAC1-26C 1.61 0.993 1.473 1 1.4725 0.99 1.614 0.997 1.5424 0.04 

18 WOODSTOCK 1.257 0.963 1.533 1 1.3863 0.998 1.444 0.999 1.4051 0.058 

19 DUNDAS 1.408 0.998 1.512 1 1.4774 0.988 1.389 0.987 1.4466 0.029 

20 OAC8-21C 1.429 0.978 1.454 0.998 1.3414 0.997 1.366 0.99 1.3975 0.026 

21 ACGLENGARRY 1.376 1 1.347 0.991 1.3188 0.999 1.314 1 1.3391 0.014 

22 McCALL     1.5308 1 1.281 0.992 1.406 0.125 

23 GENTLEMAN 1.332 1 1.423 0.998 1.5002 0.997 1.546 0.998 1.4502 0.047 

24 S03-W4 1.616 0.997 1.59 0.997 1.574 0.999 1.338 0.997 1.5294 0.064 

25 OAC-OXFORD 1.489 0.992 1.469 1 1.3587 0.999 1.35 0.996 1.4166 0.036 

26 OAC-KENT 1.541 0.983 1.368 0.993 1.5462 0.997 1.196 0.995 1.4127 0.083 

27 OAC7-4C   1.341 0.997 1.5543 0.998 1.261 0.998 1.3856 0.087 

28 WALTON 1.263 0.994 1.291 0.99 1.3188 0.997 1.433 0.984 1.3265 0.037 

29 GAILLARD 1.417 0.999 1.413 0.998 1.462 0.992 1.519 0.999 1.4527 0.025 

30 DRAYTON 1.519 0.999 1.5 0.999 1.3497 0.999 1.383 0.995 1.4378 0.042 
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One-way ANOVA: 

With an observed value of 1.82 for the ANOVA F-test statistic and an associated p-value of 

0.0192 < 0.05, there are statistically significant differences in FD estimates among the 30 

soybean cultivars. This result suggests that at least two soybean cultivars exhibit different 

levels of root system complexity. The R2 value of 0.397 for the model goodness-of-fit indicates 

that 39.7% of the total variation in FD estimates can be attributed to differences among 

cultivars, highlighting that the cultivar significantly impacts the root system FD but leaving a 

nonetheless important portion (60.3%) for variability among individual plants from the same 

cultivar and the experimental error. Two other statistics worth reporting are: an overall sample 

mean FD value of 1.406 and a coefficient of variation of 7.09%, indicating a low variability in 

FD values relative to their mean. The distribution of FD estimates across the 30 soybean 

cultivars is shown in Figure 4.1. It provides a first comparative view, illustrating how FD values 

are spread among and within cultivars. By visualising the distribution of FD, this figure helps 

identify patterns in root system complexity, highlighting cultivars with higher FD values that 

may indicate better adaptability to environmental stresses. Cultivars such as 17 (OAC1-26C), 

with mean FDs around 1.5, have a more complex RSA that is likely better suited to adapt to 

drought or poor soil conditions. Conversely, cultivars with lower mean FDs around 1.3, such 

as 21 (ACGLENGARRY), possess simpler root systems that may limit their adaptability to 

challenging environmental stresses. 
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Figure 4.1: Distribution of FD values and mean by cultivar 

Pairwise Comparisons: 

Following the results of the one-way ANOVA, the procedure of multiple pairwise comparisons 

of means based on the Least Significant Difference (LSD) was performed to identify pairs of 

soybean cultivars with statistically significant differences in root system FD at the 0.05 level 

values. Several comparisons showed significant differences, highlighting distinct degrees of 

root system complexity between cultivars, the cultivars with significant pairwise differences 

are reported in Table D1. For example, cultivars 17 (OAC1-26C) and 14 (OAC-CHAMPION) 

showed a significant difference in FD mean of 0.14942 (95% confidence interval: [0.00911, 

0.28974]), indicating a notable difference in root system complexity. Examples of cultivars 

exhibiting significant differences in FD mean values with several other soybean cultivars 

include: 12 (VENUS), 2 (400524J), 15 (OAC9-22C), 29 (GAILLARD), and 23 

(GENTLEMAN), further emphasizing the diversity in root system complexity within the 

population. These findings support the use of FD as a reliable metric for assessing root system 

complexity and provide a valuable foundation for future research.  
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Visual Representation:  

Results of the pairwise comparisons of FD means among the 30 soybean cultivars are plotted 

in Figure 4.2, where the dashed diagonal line represents equality in FD means, the red line 

segments identify the non-significant (p ≥ 0.05) pairwise comparisons, and the blue line 

segments highlight the pairs of cultivars with significant (p < 0.05) differences between FD 

means. Notably, among the 30*29/2 = 435 comparisons of 2 different soybean cultivars, 57 

produced a statistically significant result at 5%, and among them, cultivar 17 (OAC1-26C) is 

involved 14 times, and cultivar 24 (S03-W4), 10 times. It must be noted that in Table D1, each 

significant pair of cultivars is reported twice (e.g., 24-1 and 1-24). 

 

 

Figure 4.2: Pairwise Comparisons of FD Means between Cultivars 

 

4.5. Discussion 

This study aimed to enhance the understanding of soybean RSA in a growing medium that 

mimics a natural environment, using CT scanning technology and fractal analysis based on 

FDs estimated from reconstructed 3D images of root systems. The data collected, together with 

the results of our image analysis and statistical analysis, revealed substantial variability in root 
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system complexity among the 30 experimental soybean cultivars, thus highlighting the 

diversity in RSA. The variability that we observed aligns with and refines the variability 

reported in previous studies that followed a different approach (e.g., in 2D without a CT 

scanner) but already underscored the genetic diversity of soybean root systems. Such diversity 

is crucial for breeding programs aimed at developing cultivars with improved root systems for 

better nutrient and water uptake, especially in the context of climate change. For instance, 

Lynch (2022) and Freschet et al. (2021) highlighted the importance of root diversity in 

improving crop performance under varying environmental conditions. Developmental 

plasticity plays a crucial role in this variability, allowing plants to adapt to various 

environmental conditions. This adaptability is essential for survival in unpredictable 

environments.  

Roots can alter their growth direction and elongation rate in response to soil moisture gradients, 

a phenomenon known as “hydrotropism”. Unlike gravitropism which directs root growth 

downward, hydrotropism directs roots towards higher moisture levels(Dinneny, 2019; Gul et 

al., 2023; Watanabe et al., 2020). Studies on Arabidopsis have shown that hydrotropism can 

override gravitropism, with roots growing preferentially towards environments with higher 

relative water potential. Genes essential for a hydrotropic response have been identified by 

mutant screening, revealing the genetic basis of this adaptability (Cassab et al., 2013; Dietrich, 

2018; Mao et al., 2022). Moreover, it was noted by Bengough et al. (2016); Dietrich (2018) 

and Ruiz et al. (2015), that compacted soil layers can create physical barriers that roots must 

navigate through.  

During the experiment, a peculiar root growth pattern was observed in some plants, 

characterised by an initial downward growth, an upward turn, and then a resumption of 

downward growth, forming a “crooked J-shape”. The upward turn in crooked J-shaped roots 

might indicate an encounter with a compacted soil layer, prompting the roots to redirect their 
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growth path to find a less resistant route. This unusual root morphology could also be attributed 

to hydrotropism. Due to the presence of a non-uniform water gradient in some pots, these roots 

may have altered their growth direction to optimise water uptake. 

Seed age also has the potential to impact root morphology. Older accessions may exhibit altered 

root growth patterns due to reduced vigour and potency of the cotyledons (Ebone et al., 2020; 

Wang et al., 2023). The cotyledons' nutrient supply is crucial for early root development, and 

less vigorous cotyledons could influence the root's ability to penetrate the soil. This hypothesis 

aligns with findings that older seeds often produce seedlings with less robust root systems, 

affecting their overall growth and development. It may be what happened to the 10 soybean 

seedlings for which the root systems, too poorly developed, were finally discarded from the 

fractal analysis.  

The combination of CT scanning technology and fractal dimension (FD) as a metric provides 

a non-invasive, precise procedure for evaluating root system complexity, offering a robust 

framework for 3D phenotyping. The insights gained from this study have important 

implications for breeding programs and agricultural practices. As a measure of root system 

architecture (RSA) complexity, FD encompasses various root variables, including angles, 

curvatures, distances between branching nodes, and both total and individual root lengths. 

Although the exact function linking FD with these root variables is not fully understood, it is 

reasonable to assume that some root traits may correlate positively with FD, while some others 

negatively and the remaining ones not all. When the majority of FD-root trait relationships are 

positive, it is statistically expected that the variance of FD would increase as the overall 

variability rises. Without the variance aspect, this reasoning was initially applied in studies of 

above-ground branching patterns (Foroutan‐pour et al., 2001). 

While 60.3% of the variation unrelated to differences among cultivars might seem substantial, 

it must be noted that the error variance estimate is only 0.0099, or 1%. Very interestingly, the 
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FD estimates obtained in this study show statistically significant differences between cultivars, 

along with an important variability in root system complexity among individual plants within 

the same cultivar. Based on the mean FD values (Table 4.2), it can be hypothesized that the 

two soybean cultivars with the highest FD means (OAC1-26C and S03-W4) are likely to 

perform better under environmental stresses, whereas the cultivars with the lowest FD means 

(4004P4J and SASKA) may exhibit poorer performance under such conditions. Understanding 

the factors influencing RSA could thus aid in selecting soybean cultivars with superior root 

traits, leading to improved water and nutrient uptake and, consequently, enhanced crop 

performance in the field. Eventually, field studies incorporating a variety of soil profiles and 

environmental stresses would validate these findings, obtained under partially controlled 

growing conditions, and enhance their application to real-world agricultural settings. 

 

4.6. Conclusion 

This study successfully demonstrated the utility of a 3D phenotyping framework in assessing 

phenotypic variation in RSA among soybean cultivars at an early stage of development. The 

significant differences found in FD mean, using ANOVA and multiple pairwise comparisons, 

validate its use as an indicator of root system complexity, providing valuable insights for 

developing climate-resilient soybean cultivars. This work and the results obtained constitute 

an important advancement in methodology towards a comprehensive analysis of RSA traits. 

The transition from 2D to 3D RSA phenotyping represents a key step in the overarching goal 

of promoting agricultural sustainability through enhanced resource-use efficiency and stress 

tolerance, here, in soybean. 
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Chapter 5: General Discussion 

 

This study aimed to develop an appropriate 3D phenotyping framework for soybean root 

system architecture (RSA) and establish fractal dimension (FD) as a quantitative indicator of 

root system complexity. Conducted within the broader context of sustainable agriculture, this 

research harnessed state-of-the-art imaging technologies alongside rigorous statistical methods 

to tackle significant challenges in soybean cultivation. This general discussion provides a 

comprehensive synthesis of the key findings, critically evaluates the employed methodologies, 

and explores the broader implications of the results within the framework of existing literature, 

also proposing future research directions. 

 

In Chapter 3, a dataset on the RSA of 137 soybean cultivars grown in a 2D study, composed 

of traits such as root lengths, numbers, depth, diameter, and surface area, was analysed 

statistically after a significant genetic diversity had been formerly highlighted in it; such a 

diversity is essential for breeding programs aimed at improving soybean resilience and yield.  

 

To analyse the dataset, the multivariate statistical method of Principal Component Analysis 

(PCA) was performed to reduce the dimensionality of the data table while retaining most of 

the variability contained in it. With biplots of a small number of principal components, the 

PCA provided a clear understanding of the relationships among the RSA traits. The 

visualisation of principal components made it evident how certain traits grouped together and 

how they influenced the overall RSA.  

 

Following PCA, cluster analysis was applied to group the 137 soybean cultivars into 30 distinct 

clusters, using algorithms to classify cultivars into clusters where the members are more similar 
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to each other than to members of other clusters; similarity was based on the Euclidean distance 

in the multi-dimensional space of the RSA traits.  

 

From each of the 30 clusters, one representative soybean cultivar was chosen for its proximity 

to the centre of the cluster, for study in a 3D setup. This procedure ensured that the diversity 

of RSA traits observed in the former 2D study was captured and would be transferred to the 

next level of analysis.  

 

Available seeds from the representative cultivars were subjected to germination tests, before 

studying the RSA of the soybean seedlings in a more complex environment. This step was 

crucial because the seeds were going to be sown in soil (sand), whereas already germinated 

seeds had been transplanted in an artificial medium (vermiculite) in the 2D study. Thus, the 

genetic diversity expressed in the 3D setup was going to incorporate this important difference, 

which makes the growing medium in the 3D setup closer to that in the field. 

 

Chapter 4 makes the transition from 2D to 3D RSA phenotyping happen for 30 soybean 

cultivars, one per cluster identified in Chapter 3. X-ray computed tomography (CT) scanning 

was instrumental in the advancement to 3D  

RSA phenotyping, as this technology allows for non-destructive and high-resolution imaging 

of soybean root systems grown in soil, providing a realistic view in situ of their structure in 

3D. Aspects of the RSA that are not discernible in 2D images were thus revealed, including the 

3D spatial distribution of roots, the density of root networks, and intricate root branching 

patterns.  
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One of the significant contributions of this chapter concerns the fractal dimension as a measure 

of root system complexity. The FD is a mathematical metric that quantifies the complexity 

(tortuosity, branching) of a structure. In the context of RSA, a higher FD indicates a more 

complex root system, which is often associated with better adaptability to environmental 

stresses.  

 

The experimental results reported in Chapter 4 provide evidence in support of FD being a 

reliable and meaningful indicator of complexity for soybean root systems at an early stage of 

development. By analysing the 3D images reconstructed from CT scanning data, FD estimates 

were obtained, one per plant, and the one-way analysis of variance performed on FD estimates 

revealed soybean cultivars with significantly different root system complexity. Thus, the FD 

metric provides a sound basis for a practical assessment of differences in the structural 

complexity of root systems. 

 

The advancements presented in Chapter 4 lay a strong foundation for future research in plant 

phenotyping, emphasizing the importance of integrating advanced imaging technologies, 

mathematical metrics and statistical analyses with large sample sizes to address the challenges 

of sustainable agriculture. 

 

As part of the innovative 3D RSA phenotyping framework presented in this thesis, the ability 

to CT scan more than 100 individual plants in one day represents a significant advancement in 

the field of plant phenotyping. This high-throughput capability is facilitated by a modern tool 

like the Canon Aquilion Prime SP macro-CT scanner, which is part of the Eastern Canadian 

Plant Phenotyping Platform (ECP3). This CT scanner provides precision and efficiency, but its 

software, designed for medical applications, had to be replaced by programs written in 
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MATLAB (The MathWorks Inc.) for imaging plant root systems. The combination of 

advanced imaging technology and a sophisticated programming language enables the 

generation of detailed 3D models that quantify RSA, providing invaluable insight into the 

spatial distribution of roots in soil. This advancement addresses the inherent complexities of 

RSA, such as overlapping roots, curves, and bends, which often exceed the capabilities of 

conventional imaging techniques. 

 

This comprehensive approach ensures a reliable analysis of the RSA, which will eventually aid 

breeders in selecting soybean cultivars with desirable root traits. Such soybean cultivars should 

have enhanced resilience to abiotic stresses, such as drought and poor soil fertility, contributing 

to sustainable agricultural practices and crop improvement efforts. 

 

CT scanning technology is non-destructive and non-invasive, thus preserving the natural soil 

environment and root-soil interactions. This is key for maintaining realistic conditions for root 

growth studies, whereas artificial growing media, especially in 2D studies, likely do not 

reproduce field conditions. Plant CT scanning of soil-filled pots provides a more accurate 

evaluation of root behaviour. This realistic approach ensures an effective transition from 

laboratory findings to field applications, maintaining relevance to actual agricultural practices. 

By integrating soil environments in high-resolution imaging studies, this framework achieves 

a balance between conditions controlled up to a certain level and realistic 3D root system 

modelling, enhancing the agronomic applicability of RSA phenotyping research. 
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Chapter 6: General Conclusion 

 

This thesis provides a robust 3D phenotyping framework for understanding and quantifying 

the complexity of root system architecture (RSA) in soybean at an early stage of development. 

Through the integration of advanced imaging technologies, statistical analyses, and metrics 

such as fractal dimension (FD), the research has addressed critical challenges in soybean 

cultivation, particularly in the context of sustainable agriculture and climate change. 

Principal Component Analysis and cluster analysis were successfully used to identify 

representative soybean cultivars based on multiple RSA traits, ensuring that subsequent 

detailed phenotyping was both manageable and representative of the broad, genetic and 

phenotypic diversity within the soybean population. The transition from 2D to 3D RSA 

phenotyping, facilitated by X-ray computed tomography (CT) scanning, provided high-

resolution, non-destructive imaging that revealed structural details of root systems that are 

often missed in traditional 2D analyses. The results established FD as a reliable measure of 

root system complexity for the comparison and assessment of differences in RSA among 

soybean cultivars. FD offers a mathematical metric to quantify the structural complexity of 

root systems, providing breeders with a new tool for selecting root traits associated with 

improved water and nutrient uptake. This is particularly relevant for developing soybean 

varieties better adapted to varying environmental conditions, thus contributing to the goals of 

sustainable agriculture. 

 

Any research is not without limitations. We are not aware of the existence of a macro-CT 

scanner that could be brought to and be used in an agricultural field. The environment of pot-

grown plants does not reproduce the variability and heterogeneity of field conditions, 

emphasising the need for validation of our findings in field conditions. Therefore, our results 
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will soon be compared with results obtained by a collaborator on the FRQNT “Projet de 

recherche en équipe”, in a series of field experiments conducted at Agriculture and Agri-Food 

Canada. 

 

Future research should focus on several key areas to build on the findings of this thesis. More 

field trials are essential to validate our results under diverse environmental conditions. 

Integrating genomic data with RSA phenotyping could uncover the genetic determinants of 

root traits and their interactions with environmental factors, providing deeper insights into the 

genetic basis of root complexity. Extending the methodologies developed in this study to other 

crop species could enhance the generalisation and applicability of the findings, benefiting a 

wider range of agricultural practices. Developing cost-effective and scalable imaging 

technologies for root systems, and not only for leaf canopies, will be crucial for facilitating the 

broader adoption of advanced phenotyping methods in breeding programs. 

In conclusion, this thesis has laid a solid foundation for advancing our understanding of the 

RSA in soybean. The innovative use of 3D imaging and fractal analysis, in larger numbers of 

plants than ever before at the CT Scanning Laboratory for agricultural and environmental 

research, has provided new insights into root complexity, offering valuable tools for breeding 

resilient soybean varieties. Despite the remaining challenges, the methodologies and findings 

from this research have significant implications for sustainable agriculture and the ongoing 

efforts to enhance global food security.  
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Appendices 

Appendix A: SAS Scripts  

A1. Cluster analysis with the 12 RSA-related traits (Approach 1) 

PROC FASTCLUS DATA=work.soybean_scores MAXC=30 OUT=work.fastclus_scores; 

VAR TLR LPR LSR DTLR TNR MED MAX DRS WRS RS DR SAR; 

RUN; 

PROC PRINT DATA=work.fastclus_scores; 

RUN; 

A2. Principal component analysis (PCA) on the estimated correlation matrix of the 12 RSA-related 

variables  

      (Approach 2) 

PROC PRINCOMP DATA=PCA_Seck_et_al_2020 STANDARD OUT=work.soybean_scores 

PLOTS=ALL; 

VAR TLR LPR LSR DTLR TNR Med Max DRS WRS RS DR SAR; 

RUN; 

PROC PRINT DATA=work.soybean_scores; 

RUN; 

A3. Cluster analysis with the first 6 principal components accounting for 95% variability in the PCA          

     (Approach 2) 

PROC FASTCLUS DATA=work.soybean_scores MAXC=30 OUT=work.fastclus_scores; 

VAR Prin1-Prin6; 

RUN; 

PROC PRINT DATA=work.fastclus_scores; 

RUN;
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Appendix B: Supplementary Tables  

Table B 1: Numerical information presented in supplement to that in Table 3.1 (left half) 

Cluster analysis performed on the dataset for the 12 RSA-related traits, including the distance to the centroid and the 12 mean values for each of the 137 soybean 

lines. White and yellow colours are used to highlight lines that are members of different clusters from Cluster 1 to Cluster 30, while red is used to identify clusters 

with only one member. 

Distance Cluster Line TLR LPR LSR DTLR TNR Med Max DRS WRS RS DR SAR 

1.232596 1 4004P4J -0.3485 0.0848 -0.2872 -0.2995 -2.5140 0.2320 -1.0961 -0.1580 1.2019 1.1909 0.5750 -0.1815 

1.232596 1 5017_25B -0.4256 0.1719 -0.3576 -0.6252 -1.5277 -1.5012 -1.3444 -0.6144 0.3641 0.3062 0.8588 -0.5563 

0 2 4005_24j 0.2243 0.1719 0.1985 0.6775 -2.1757 -0.6182 -1.5354 0.8200 1.5242 1.7296 -2.0926 0.8152 

0.969116 3 PS44 0.0233 2.1743 -0.0557 0.3518 0.7545 -0.9453 -1.3444 0.5592 1.0730 1.1512 -0.2196 0.6234 

1.323891 3 SECAN9-3 0.3382 1.3908 0.2825 0.6775 1.4961 -1.1742 -1.2871 0.8852 0.3641 0.3062 -0.7872 0.8501 

1.421002 3 Phoenix 0.5426 2.6967 0.4550 1.0032 0.8985 -0.7491 -1.2107 1.1460 1.3308 1.3100 -0.9574 1.1029 

1.496352 3 OAC9-48C -0.1609 1.8696 -0.2362 0.0262 0.2938 -1.5993 -0.0648 0.2984 0.7508 0.7485 -0.9007 0.4752 

1.497452 3 Hercule 0.3751 0.9119 0.3313 0.6775 -0.3542 -0.5201 -0.9624 0.9504 0.8797 0.9640 -1.1845 0.9227 

1.385713 4 Jari -0.2960 2.1308 -0.3315 0.0262 -0.3254 0.4609 1.3866 0.1028 0.7508 0.8052 1.1426 0.0888 

1.566451 4 SECAN7-2 -0.2369 1.3037 -0.2498 0.0262 1.2297 0.5591 -0.0075 0.1680 1.0086 1.1115 2.1643 0.3648 



81 
 

1.696042 4 SECAN8-1 -0.3027 1.3037 -0.2736 0.0262 1.4457 0.7880 1.1384 0.0376 0.1063 0.0623 0.4048 0.0859 

1.852344 4 OACAyton -0.3117 1.2602 -0.2816 -0.2995 0.2938 2.1942 1.5585 -0.0276 0.9441 1.0888 2.1643 -0.0391 

2.020686 4 Misty -0.2592 0.9555 -0.2645 0.0262 0.0778 0.6899 -0.0648 0.1680 1.5242 1.7296 -0.2196 0.1701 

0 5 Tundra -0.0593 -0.3069 -0.0750 0.3518 1.8057 -0.4220 -1.3444 0.4288 3.1998 2.3875 -0.4466 0.5363 

0 6 Delta -0.2614 -1.4823 -0.2033 0.0262 -0.5414 2.8155 1.7113 0.1028 1.3308 1.3383 1.7102 0.1672 

1.222566 7 OAC7-26C 3.9909 1.1731 3.9801 3.2831 0.1066 -1.5993 -0.5232 2.3196 0.6219 0.6918 -0.6736 1.9456 

1.222566 7 OACBayfield 4.6777 -0.3505 4.7178 3.2831 0.3226 -0.5201 -0.5805 2.3848 -0.0870 -0.0738 -0.1628 2.2159 

1.379225 8 Casino -0.9058 0.3460 -0.9466 -1.9280 -0.6638 0.6899 1.0047 -1.4620 -0.6671 -2.4954 -0.9574 -3.0612 

1.379225 8 Colby -0.7695 -1.3952 -0.7628 -1.2766 -0.6134 0.4609 0.4317 -1.6576 -1.3760 -1.3498 -1.2980 -1.7390 

1.880963 8 Altona -0.7092 -1.7870 -0.7060 -1.2766 -0.7862 -0.1931 0.5081 -1.5924 -1.4404 -1.4462 -0.7304 -1.6373 

0 9 5055_43G -0.4044 -0.4375 -0.3644 -0.2995 -1.3837 1.5401 0.3744 -0.4188 -1.9560 -1.6334 -2.3764 -0.3035 

1.251672 10 Costaud 0.2076 -0.6552 0.2031 0.6775 -0.5918 -0.4220 -0.1412 0.8200 0.2352 0.1360 -0.6169 0.7920 

1.381823 10 5070_26j 0.3907 -2.4399 0.4346 1.0032 -1.3621 0.1339 -0.8287 1.0156 -0.3448 -0.2156 -0.4466 0.9344 

1.80892 10 KG-41 0.0378 -1.1776 0.0430 0.3518 -0.3038 0.8861 0.1262 0.5592 -0.8604 -0.6523 -1.4115 0.6380 

1.839598 10 DH618 -0.0627 -0.4375 -0.0750 0.3518 -0.5702 -0.6182 0.4699 0.3636 -0.6026 -0.6126 -1.2412 0.5305 

1.87685 10 5146_41j 0.4075 -1.0034 0.4141 1.0032 -1.1893 -1.1742 -1.0197 1.0156 -0.9893 -0.9018 0.6886 1.0506 

1.357312 11 Madoc -0.7316 -0.6987 -0.7571 -1.2766 -0.1598 0.3628 0.5654 -1.6576 -1.2471 -1.2080 0.4048 -1.6635 



82 
 

1.497941 11 OAC1-26 -0.5573 -0.8728 -0.5642 -0.6252 0.1066 -0.0950 1.4630 -0.9404 -1.1182 -0.9642 0.6318 -0.8062 

1.721228 11 Victoria -0.6791 -1.3081 -0.6879 -0.9509 1.9064 -0.4220 0.0498 -1.3968 -1.9560 -1.6447 0.4615 -1.5095 

1.766948 11 OT09-03 -0.5216 -1.3517 -0.5244 -0.6252 0.5097 -1.1742 -0.5805 -0.7448 -1.4404 -1.4633 -0.8439 -0.7394 

1.10394 12 MapleAmbr -0.0761 -0.2199 -0.0943 0.3518 -0.1382 -0.2912 -0.0648 0.3636 0.3641 0.2381 -0.2196 0.4956 

1.282034 12 OAC9-22C -0.2581 -0.0893 -0.2362 0.0262 0.2506 -1.2723 -1.0961 0.1680 0.5575 0.5273 -0.3899 0.1788 

1.326013 12 Naya 0.0825 0.0413 0.0578 0.6775 0.0778 -1.7301 -0.1412 0.7548 0.6863 0.7202 0.9724 0.6641 

1.397447 12 OT05-20 -0.3039 -0.0022 -0.2396 0.0262 0.5097 -0.5201 -0.3322 0.0376 -0.0870 -0.1248 0.5183 -0.0217 

1.400147 12 MapleRidge -0.2257 0.3460 -0.2135 0.0262 0.0346 -0.4220 -1.2871 0.2332 0.0419 -0.0114 -0.0493 0.3735 

1.426872 12 Katrina 0.1238 -0.0458 0.1020 0.6775 -0.1814 0.2320 0.1835 0.7548 0.8152 0.8052 0.6318 0.7397 

1.510466 12 OACChampion -0.2927 0.1284 -0.2770 0.0262 0.3442 -0.2912 -0.0648 0.1028 1.3953 1.4744 0.4615 0.1120 

1.567332 12 KORADA -0.2536 0.6507 -0.2498 0.0262 -0.2534 -0.7491 -0.5805 0.1680 1.2664 1.2533 1.3697 0.2515 

1.664315 12 Bloomfield -0.3117 -0.8728 -0.2248 0.0262 -0.7574 -0.4220 -0.0648 0.0376 0.4930 0.5217 -0.2196 -0.0362 

1.745247 12 OT11-03 0.3516 -1.1776 0.3619 0.6775 0.6105 -0.5201 -0.5805 0.8852 1.0086 1.1398 0.8021 0.8763 

2.011681 12 Bravor 0.2556 -0.0022 0.2348 0.6775 -0.7358 -1.8283 -1.7264 0.8200 0.2997 0.2041 0.5183 0.8298 

0.898254 13 OAC8-21C 3.2617 -0.3505 3.2775 2.3060 0.1786 -1.1742 -0.4468 1.8632 1.9753 1.9792 -0.2763 1.7654 

1.574772 13 OT94-47 3.8792 -1.0470 3.9245 2.9574 0.6321 -0.9453 -0.1985 2.2544 2.1042 2.1209 -0.2196 1.8148 

2.085458 13 MapleArrow 2.4867 -0.8293 2.5035 2.3060 -0.1382 -1.0761 -1.2871 1.8632 0.3641 0.3118 0.1777 1.6957 
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0 14 Woodstock 4.7804 -0.8293 4.8335 3.9344 4.5703 0.2320 2.2842 3.0367 2.2331 2.2797 0.2345 2.3641 

1.191081 15 S05-T6 0.0077 0.4766 -0.0273 0.3518 1.1577 0.0358 0.1835 0.4288 0.2997 0.2268 0.4048 0.5392 

1.23831 15 SECAN7-4 0.0122 -1.3952 0.0260 0.3518 1.2297 0.5591 0.8137 0.4288 0.5575 0.6011 1.0291 0.5508 

1.333946 15 Supra 0.2277 -1.0034 0.2314 0.6775 1.7625 1.2131 1.0811 0.8200 0.1063 0.0566 0.6318 0.8181 

1.443426 15 Ohgata -0.2424 0.6507 -0.2384 0.0262 0.6321 0.5591 1.3293 0.1680 0.4286 0.4139 0.0642 0.3154 

1.447583 16 Albinos -0.8108 -2.5705 -0.7741 -1.2766 -0.8078 -0.4220 -0.7142 -1.7228 -0.2159 -0.1816 0.1210 -1.7448 

1.508762 16 ACGlengarry -0.7394 -1.4387 -0.7310 -1.2766 -0.9518 -1.4031 -1.0961 -1.6576 -1.7627 -1.5653 0.6318 -1.7390 

1.67886 16 9004 -0.8778 -1.0034 -0.8831 -1.9280 -1.1893 -0.7491 -0.6951 -1.2012 -0.8604 -2.2969 0.4615 -1.9599 

1.780846 16 Dundas -0.8644 -2.1788 -0.8388 -1.6023 -0.4982 -0.5201 -0.0648 -1.7228 0.0419 0.0056 1.6535 -1.9366 

2.567814 16 4028P7j -0.6143 -0.5681 -0.6300 -0.9509 -1.8877 -0.7491 -0.0075 -1.1360 -1.9560 -1.8092 1.1426 -1.0503 

1.088592 17 OAC9-35C -0.6701 0.4766 -0.7253 -0.9509 0.2722 1.3439 1.4630 -1.2664 -0.4737 -0.5388 0.3480 -1.2741 

1.446458 17 OAC7-3C -0.5272 -0.7858 -0.5449 -0.6252 0.1066 2.7501 2.3415 -0.8100 -0.8604 -0.7544 0.3480 -0.7743 

1.800249 17 SECAN8-1 -0.6746 -1.1776 -0.6867 -0.9509 1.3737 1.4420 1.5776 -1.3316 -1.4404 -1.3612 0.2345 -1.3787 

1.854362 17 Amasa -0.6936 -0.0458 -0.7355 -1.2766 -0.7574 1.1150 1.0811 -1.4620 -1.4404 -1.3555 1.3697 -1.5327 

2.037467 17 90A07 -0.4758 -0.6552 -0.3871 -0.6252 -1.0237 2.3250 1.8450 -0.6796 -1.4404 -1.4633 -0.6736 -0.6319 

2.047961 17 PS36 -0.5339 0.4766 -0.5834 -0.6252 0.6825 1.3439 1.2720 -0.8100 0.2997 0.1814 0.9724 -0.7772 

1.169068 18 Clinton -0.4457 -0.7858 -0.3531 -0.6252 -0.6638 -0.2912 -0.5232 -0.6144 -1.1826 -0.9869 0.0642 -0.5796 
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1.174657 18 OT11-01 -0.5406 -0.9599 -0.5528 -0.6252 0.5385 -0.8472 -1.2871 -0.8100 -0.4093 -0.4424 -0.2196 -0.7859 

1.209177 18 Alta -0.6132 -0.5246 -0.6288 -0.9509 -0.7862 -0.6182 -0.5232 -1.0708 -0.9249 -0.7884 0.8021 -1.0358 

1.275985 18 OAC9-17C -0.5864 -0.7422 -0.5982 -0.9509 0.1786 -0.1931 -1.1534 -1.0056 -0.2159 -0.1872 0.8021 -0.8585 

1.443737 18 DH530 -0.5886 0.1719 -0.6232 -0.9509 -0.5702 -0.5201 -0.6378 -1.0708 -1.2471 -1.1457 0.7453 -0.9021 

1.487421 18 Madison -0.6433 -0.0458 -0.6833 -0.9509 -0.1598 -1.4031 -1.2107 -1.1360 -0.2159 -0.2042 0.9724 -1.1578 

1.58304 18 OAC8-22C -0.3385 -1.3952 -0.2396 -0.2995 0.1786 -1.5012 -1.2871 -0.0928 -0.8604 -0.7090 1.2562 -0.0565 

1.653653 18 Purdy -0.3865 -0.7422 -0.3383 -0.2995 1.0857 -0.0950 -1.2107 -0.3536 -0.9249 -0.8281 0.0642 -0.2628 

1.945617 18 90B11 -0.3385 -0.9599 -0.2498 -0.2995 -0.9734 -1.7301 -2.2420 -0.0928 -0.5382 -0.5559 0.0642 -0.0478 

1.057824 19 MapleIsle -0.4769 0.2154 -0.4109 -0.6252 -0.0374 0.3628 -0.3322 -0.6796 -1.2471 -1.0890 -0.0493 -0.6464 

1.263809 19 AC2001 -0.4044 -0.2199 -0.3701 -0.2995 -0.9518 0.7880 -0.3895 -0.3536 -0.9249 -0.8961 0.3480 -0.2803 

1.429133 19 Lotus -0.1978 -0.2199 -0.1703 0.0262 -0.1814 0.8861 0.3744 0.2332 -0.5382 -0.5956 -0.3331 0.4084 

1.467523 19 Heather -0.4088 0.6507 -0.3973 -0.6252 -0.3758 1.1150 0.8901 -0.4840 -0.6026 -0.6182 -0.7872 -0.3558 

1.487397 19 Gretna -0.6165 0.3460 -0.6549 -0.9509 -0.3974 0.6899 0.3744 -1.1360 -0.5382 -0.5729 -0.0493 -1.0561 

1.525628 19 OT11-02 -0.4602 1.4343 -0.4257 -0.6252 0.5817 0.2320 0.2407 -0.6144 -0.8604 -0.7544 0.4615 -0.5999 

1.614869 19 OAC9-44C -0.3429 0.3460 -0.2884 -0.2995 0.2722 2.0961 -0.9624 -0.1580 -0.7960 -0.6466 0.5183 -0.0798 

1.659508 19 OAC8-11C -0.4211 1.2602 -0.3814 -0.6252 0.1498 0.6899 -0.1030 -0.5492 0.1708 0.0793 -0.7872 -0.4314 

2.352987 19 Perth -0.1944 0.3460 -0.1817 0.0262 0.7545 0.2320 1.2720 0.2984 -1.1826 -1.0096 -0.9007 0.4258 
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1.118181 20 OACOxford -0.4166 0.3896 -0.3985 -0.6252 0.4665 -0.2912 -0.8287 -0.4840 -1.2471 -1.1116 -0.4466 -0.3704 

1.278577 20 Roland -0.6444 -0.2199 -0.6811 -0.9509 1.1145 -0.6182 -1.2871 -1.2012 -1.1826 -1.0719 0.1210 -1.1695 

1.377195 20 OAC7-23C -0.6243 0.3896 -0.6652 -0.9509 0.1066 -0.2912 -0.1985 -1.1360 -0.6026 -0.6353 -0.5034 -1.0649 

1.526821 20 OT11-09 -0.5451 0.7378 -0.6027 -0.6252 0.6321 -1.5993 -1.9746 -0.9404 -1.6982 -1.4973 -0.7304 -0.8004 

2.150815 20 Stratfor -0.5037 0.1719 -0.5449 -0.6252 1.7121 -0.4220 -0.1985 -0.7448 -0.4737 -0.5502 0.7453 -0.7191 

2.163745 20 ACOrford -0.6377 1.0860 -0.6969 -0.9509 -0.9302 -1.4031 -0.3704 -1.1360 -0.0870 -0.1135 0.3480 -1.0707 

1.081495 21 S14-P6 -0.3396 1.0860 -0.3043 -0.2995 1.2081 -0.0950 -0.7715 -0.0928 0.8152 0.9073 -0.3331 -0.0769 

1.282782 21 Walton -0.4926 0.8684 -0.4439 -0.6252 2.0216 -1.1742 -0.7142 -0.6796 0.8152 0.8960 -1.2412 -0.6813 

1.438648 21 S12-A5 -0.4055 2.2614 -0.4370 -0.2995 1.2081 -0.6182 -0.7142 -0.4188 -0.3448 -0.3063 -0.7304 -0.3413 

1.27531 22 McCall -0.3463 1.3472 -0.3190 -0.2995 0.0778 -0.5201 2.6089 -0.1580 1.3953 1.3497 0.5183 -0.1495 

1.306172 22 OACLakeview -0.3295 0.3460 -0.2759 -0.2995 0.4665 -0.0950 2.0360 -0.0276 0.5575 0.5444 -0.5034 -0.0478 

1.605831 22 Proteus -0.0091 -0.2634 -0.0262 0.3518 1.0425 0.1339 2.2842 0.4288 2.0398 2.1153 0.0642 0.5363 

2.579318 22 OACKent -0.5663 -0.4811 -0.5834 -0.9509 0.3946 1.3439 2.0360 -1.0056 0.9441 1.1058 0.2913 -0.8440 

1.449025 23 5091_50j -0.1230 -0.0893 -0.1465 0.3518 -1.2397 -0.6182 -0.7142 0.3636 -0.5382 -0.5956 -0.4466 0.4898 

1.505267 23 Gentleman -0.3619 1.3472 -0.3689 -0.2995 -0.4478 0.0358 -0.3322 -0.2232 0.1708 0.0963 0.4048 -0.2076 

1.509005 23 4067P17j -0.2480 0.6507 -0.2441 0.0262 -1.6717 0.7880 -0.1412 0.1680 -0.2159 -0.1929 0.6318 0.3067 

1.514055 23 Evans 0.0222 1.1731 -0.0319 0.3518 -0.4982 -0.1931 0.3744 0.4940 -0.0226 -0.0568 0.8588 0.6060 
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1.590677 23 ACProtei 0.0166 0.7813 -0.0273 0.3518 -0.8582 -0.3566 0.1262 0.4288 -1.2471 -1.1627 1.1994 0.5624 

1.591632 23 4042_6Bp -0.2849 1.1296 -0.2940 0.0262 -1.7941 -0.4220 -0.1985 0.1028 0.1063 0.0510 0.8588 0.1469 

1.612227 23 Carman -0.3776 0.9555 -0.3746 -0.2995 -0.6638 -0.9453 -1.1534 -0.2884 -0.3448 -0.3347 0.5183 -0.2541 

1.690578 23 90A01 0.0200 0.0413 -0.0035 0.3518 -1.0453 0.5591 0.3744 0.4940 -1.1182 -0.9245 -0.5601 0.6002 

1.711989 23 91M10 -0.4200 -0.6552 -0.3315 -0.6252 -0.9518 -0.0950 0.2407 -0.5492 -0.7315 -0.6409 0.8588 -0.3820 

1.741604 23 9063 -0.4959 1.0860 -0.5608 -0.6252 -1.1461 -1.0761 -0.3895 -0.6796 -0.4737 -0.4991 -0.1061 -0.7045 

1.74669 23 Brant -0.4602 1.1731 -0.4189 -0.6252 -0.7574 0.2320 0.0498 -0.6144 0.1708 0.0963 0.5750 -0.5970 

1.091571 24 Flambeau -0.5618 -0.9599 -0.5664 -0.6252 -0.4694 1.0169 0.1262 -1.0056 -0.3448 -0.2723 0.0642 -0.8121 

1.097031 24 Drayton -0.3496 -0.9599 -0.2963 -0.2995 -0.4982 1.1150 -0.0075 -0.1580 -0.0226 -0.0341 -0.1061 -0.2047 

1.266823 24 Elora -0.3742 -0.4811 -0.3326 -0.2995 -0.4982 0.5591 0.1262 -0.2232 -0.3448 -0.3007 0.8588 -0.2396 

1.284333 24 OAC7-48C -0.4836 -1.3517 -0.3758 -0.6252 0.1498 0.3628 -0.2558 -0.6796 0.4930 0.4309 -0.4466 -0.6726 

1.354878 24 OACMorris -0.5149 0.2154 -0.5573 -0.6252 0.4665 1.2131 0.5081 -0.7448 0.0419 0.0113 0.2913 -0.7249 

1.379223 24 Krios -0.3295 0.0413 -0.2668 -0.2995 -0.1814 1.1150 0.1835 -0.0928 0.6219 0.6124 -0.2196 -0.0478 

1.49045 24 OT10-02 -0.4647 0.0848 -0.3939 -0.6252 0.5385 0.2320 -0.3895 -0.6796 0.4930 0.5217 0.6318 -0.6203 

1.648873 24 5030_46B -0.3150 -0.2634 -0.2430 -0.2995 -1.4341 0.7226 0.3744 -0.0276 -0.2804 -0.2042 -0.6169 -0.0391 

1.70438 24 Jutra -0.6724 -1.3517 -0.6799 -0.9509 -0.3254 -0.0950 0.0498 -1.3316 -0.1515 -0.1645 0.4048 -1.3206 

1.919037 24 Altesse -0.6422 -1.4387 -0.6357 -0.9509 -0.7862 0.1339 -0.7142 -1.1360 -0.4093 -0.4595 -0.4466 -1.1433 
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1.924057 24 MapleBelle -0.5227 -0.1763 -0.5562 -0.6252 -0.1382 1.2131 1.5203 -0.7448 0.7508 0.7485 0.4048 -0.7394 

2.02974 24 SECAN8-1 -0.3496 -0.8293 -0.2986 -0.2995 1.4457 0.1339 0.0498 -0.1580 -0.4093 -0.4651 -0.3331 -0.1844 

2.367129 24 Dares -0.1274 -0.5246 -0.1397 0.0262 -0.5414 0.0358 1.5776 0.2984 0.0419 -0.0228 -1.0710 0.4869 

2.525529 24 4043P2j -0.6679 0.4331 -0.7230 -0.9509 -1.7437 0.0358 -0.3895 -1.2012 -0.6026 -0.6069 -1.0142 -1.2247 

0 25 OAC7-6C -0.8265 -1.3952 -0.8206 -1.6023 0.1498 -1.5012 -1.4781 -1.7880 -1.3115 -1.2364 -5.8955 -1.8349 

0.954529 26 OACWalla 0.0635 -0.7858 0.0601 0.6775 0.4881 -0.0950 0.1835 0.7548 1.7820 1.9054 0.3480 0.6525 

1.211037 26 MapleGlen 0.3025 0.3460 0.2723 0.6775 -0.0662 0.7880 0.3171 0.8852 1.3308 1.3383 0.2913 0.8472 

1.297784 26 DH420 0.6029 -0.9164 0.6116 1.0032 -0.5918 0.3628 -0.1985 1.2112 2.4264 2.3365 -0.3331 1.1116 

1.786338 26 Ginty -0.1721 -0.0458 -0.1976 0.0262 -0.4262 0.4609 -0.1412 0.2984 1.3308 1.2759 -0.6169 0.4404 

0 27 S03-W4 -0.1676 0.5201 -0.2078 0.0262 1.1361 -1.1742 -0.6378 0.2984 0.3641 0.3799 -4.7035 0.4723 

0 28 Venus 2.0903 2.2178 2.0201 1.9803 1.8057 0.2320 1.2720 1.7980 -1.3115 -1.3101 0.0075 1.6463 

0.844357 29 Gaillard -0.0649 0.9990 -0.1147 0.3518 -0.4694 2.6520 1.5776 0.3636 -0.0226 -0.0511 -0.7872 0.5246 

1.153577 29 Auriga -0.2547 1.2602 -0.2679 0.0262 -0.7574 2.0961 2.1506 0.1680 -0.4093 -0.3687 0.5183 0.2195 

1.374628 29 Mario 0.1897 1.0860 0.1395 0.6775 0.0346 2.7501 1.5776 0.8200 0.1063 0.0510 -0.1628 0.7775 

0.998249 30 OAC7-4C 0.8519 0.5201 0.8057 1.0032 0.1498 -0.4220 -0.1985 1.3416 0.1063 0.0113 -0.2763 1.3499 

1.081087 30 PRO25-53 1.6481 0.4766 1.6160 1.3289 0.6537 0.3628 0.3171 1.6024 0.4930 0.4536 0.2345 1.5969 

1.142876 30 Mandarin 0.9189 0.8684 0.8658 1.3289 -0.1382 0.2320 -0.2558 1.4720 0.6863 0.7428 -0.2196 1.4371 
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1.257739 30 OACPrudence 1.2573 -0.1328 1.2358 1.3289 0.4881 -0.6182 -1.0961 1.6024 0.6863 0.7031 -0.2196 1.5446 

1.55522 30 Kamichis 1.2014 -0.9164 1.1984 1.3289 -0.2102 0.1339 -0.1412 1.4720 0.8797 1.0661 0.2345 1.4603 

1.607012 30 MapleDonovan 0.7101 -0.0022 0.6956 1.0032 -0.1094 0.5591 0.8710 1.3416 0.6219 0.6181 -0.2763 1.2802 

1.755262 30 Toki 0.6420 0.0413 0.6264 1.0032 1.7841 -0.6182 -0.7142 1.2764 0.4286 0.3856 0.3480 1.2221 

1.882818 30 Saska 2.0713 -0.0458 2.0598 1.6546 1.5897 -0.1931 0.1262 1.6676 0.4930 0.4196 -0.1061 1.6434 

2.167402 30 MaplePresto 0.5057 1.1731 0.4584 1.0032 -0.0158 -0.6182 0.4317 1.0808 -0.4093 -0.3801 -0.5601 1.1000 

2.451485 30 SECAN8-2 0.8999 0.6072 0.8522 1.0032 1.4745 -0.5201 -0.0075 1.4068 -0.9893 -0.9188 0.8021 1.4255 

2.482569 30 5085_8Bp 1.2483 0.9990 1.1972 1.3289 -1.3333 -0.9453 -0.0075 1.5372 1.2664 1.2703 0.9156 1.5039 
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Table B 2: Numerical information presented in supplement to that in Table 3.1 (right half) 

Cluster analysis applied to the first six principal components from the preliminary PCA performed on the dataset for the 12 RSA-related traits after standardized, 

including the distance to the centroid and the Prin1-Prin6 scores for each of the 137 soybean lines. White and yellow colours are used to highlight lines that are 

members of different clusters from Cluster 1 to Cluster 30, while red is used to identify clusters with only one member. 

Distance Cluster Line Prin1 Prin2 Prin3 Prin4 Prin5 Prin6 

1.330548 1 4004P4J -0.20656 -0.15432 -2.04757 -1.67709 0.729894 -1.7157 

1.392867 1 5017_25B -0.959 -1.45933 -1.76732 -1.12985 0.965888 -0.0868 

1.436877 1 Bloomfield -0.07392 -0.33199 -0.59798 -0.86269 -0.59623 -0.6398 

0 2 4005_24j 1.770632 -1.68441 -1.91051 -0.19973 -0.53428 -3.00415 

0.903904 3 PS44 1.654187 -0.72875 -2.17273 1.57129 0.758509 0.345872 

0.964755 3 OAC9-48C 0.942252 -0.69559 -1.64217 1.770093 0.431012 -0.17159 

1.251096 3 SECAN9-3 1.862934 -1.39112 -0.77204 1.812982 0.172326 0.751896 

1.34092 3 Phoenix 2.931238 -0.71081 -1.87471 2.256634 0.712191 -0.19064 

1.488738 3 Hercule 1.914302 -0.97251 -1.06208 0.772799 0.040392 -1.13871 

1.124655 4 OAC7-26C 6.7597 -2.06606 1.649882 0.286508 0.972291 -0.28298 

1.124655 4 OACBayfield 6.82274 -1.88194 3.47351 -0.88718 0.548711 0.08972 
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1.020093 5 Gretna -2.16439 0.630564 0.07599 0.345438 0.186796 -0.20604 

1.090915 5 OAC7-23C -2.0634 -0.42744 -0.18394 0.837152 -0.0877 0.231784 

1.097175 5 MapleIsle -1.8243 -0.2931 0.738313 0.460852 0.483973 0.203445 

1.198203 5 AC2001 -1.4314 -0.05938 0.691225 -0.54135 0.739782 -0.4879 

1.341361 5 9063 -1.50845 -0.98326 -0.71424 0.455144 1.173753 -0.41458 

1.400791 5 4043P2j -2.49156 -0.70061 -0.29292 0.306708 0.343006 -1.4895 

1.49227 5 91M10 -1.53114 -0.01207 0.399357 -1.09618 0.562365 0.025838 

1.578476 5 Flambeau -1.84004 0.587904 0.277908 -0.71493 -0.59813 -0.30498 

1.712594 5 ACOrford -1.80092 -0.81489 -1.43354 0.250367 1.019184 0.127051 

1.748471 5 Heather -1.33331 0.953854 0.672347 0.976158 0.155887 -0.91943 

1.997445 5 OT11-02 -1.34319 0.512374 0.141019 1.230973 1.083498 0.817481 

0.844417 6 Madoc -3.27298 0.365985 0.817858 -0.31146 -0.16569 0.602869 

1.273004 6 Colby -3.54467 -0.34459 1.296343 -0.00344 -1.26405 -0.6403 

1.314424 6 Altona -3.50214 -0.6549 1.313351 -0.63567 -1.05128 -0.26649 

1.489835 6 Casino -4.3733 0.470132 0.960399 1.06709 -0.14135 -0.4645 

1.924092 6 Amasa -3.29733 1.37474 1.033897 -0.62224 1.030084 0.415849 



91 
 

1.121011 7 OACPrudence 3.286357 -1.1774 0.047875 -0.20711 -0.08967 0.045533 

1.390005 7 Saska 4.128291 -0.21712 1.317002 0.276166 -0.352 0.807936 

1.500751 7 MapleArrow 4.470498 -2.06206 1.262645 -1.34669 0.266108 0.0513 

0.944889 8 OACWallace 1.979215 0.758553 -1.48555 -0.90498 -1.18758 0.104095 

1.369858 8 OT11-03 1.907641 -0.25256 -0.73211 -1.2991 -0.72994 0.744836 

1.477678 8 Katrina 1.394601 0.651079 -0.55116 -0.66183 0.195316 -0.19687 

1.524441 8 DH420 3.002459 0.525476 -1.58467 -1.3401 -1.32931 -1.33768 

1.69266 8 Kamichis 3.090677 -0.04358 0.270452 -1.28362 -0.35887 -0.48238 

1.239143 9 5055_43G -2.11929 -0.31204 2.389781 0.88467 -0.33172 -2.4206 

1.239143 9 90A07 -2.34637 1.781666 2.380786 -0.00465 -0.14879 -1.48129 

1.10524 10 Costaud 1.066894 -0.711 0.213361 -0.44821 -0.29761 -0.87539 

1.366054 10 KG-41 -0.00345 -0.3005 1.694259 0.02242 -0.8619 -1.24762 

1.397004 10 DH618 0.005746 -0.81758 0.938972 0.329501 -0.25406 -1.00099 

1.410547 10 5070_26j 0.894363 -1.32447 1.261415 -2.07979 -0.71783 -1.33707 

0.929683 11 Mandarin 2.87362 0.017451 -0.06222 0.284094 0.630874 -0.76464 

0.929683 11 5085_8Bp 3.406451 -0.21081 -0.92999 -0.93938 1.563431 -0.80522 
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1.989973 11 MapleDonovan 2.319144 0.829031 0.497107 -0.10366 -0.08078 -0.85576 

0 12 Venus 3.504441 0.443113 3.07661 2.264172 1.865961 0.992531 

0 13 OAC7-6C -3.51238 -3.94506 0.694758 2.791207 -3.81182 -1.94384 

1.025438 14 MapleGlen 1.950515 1.212767 -0.87818 -0.29554 -0.05199 -0.57655 

1.133581 14 Misty 0.957905 1.125098 -1.93175 0.473249 -0.33819 -0.6243 

1.376547 14 Proteus 1.862329 2.421973 -1.29305 -0.01608 -1.58936 0.147437 

1.554006 14 Ginty 0.825602 0.481711 -1.31164 -0.13592 -0.74981 -1.10093 

1.561721 14 OACChampion 0.803258 0.570236 -1.82936 -0.28124 -0.47042 0.300974 

1.111696 15 Bravor 1.286329 -2.17981 -0.94501 -0.84149 0.940364 0.100996 

1.149608 15 MapleRidge 0.16274 -1.0078 -0.64594 0.215294 0.378599 0.086198 

1.403277 15 OAC9-22C 0.392876 -1.3315 -1.21992 0.127763 -0.42205 0.238089 

1.568972 15 Naya 1.448332 -0.66196 -1.08196 -0.65097 0.511245 0.759397 

1.907814 15 90B11 -0.85748 -2.8683 -0.50978 -1.08654 0.303269 0.071198 

2.06738 15 5146_41j 0.804575 -1.97405 1.088615 -1.53843 1.158925 -0.17975 

0 16 Tundra 2.392434 -0.00919 -3.11959 0.165908 -2.23717 0.720008 

1.026367 17 SECAN8-1 -2.82205 1.656586 1.940391 0.237208 -1.0961 1.254622 
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1.035492 17 OAC1-26 -2.06458 0.71528 1.119125 -0.44278 -0.12782 0.755036 

1.50557 17 OAC9-35C -2.24928 1.980036 0.392426 0.583123 0.026494 0.28567 

2.170144 17 OAC7-3C -2.02314 3.050042 1.847766 -0.2462 -0.55075 -0.29354 

2.555418 17 Victoria -2.94044 -0.50777 1.515473 0.249691 -0.86856 2.487679 

0 18 Woodstock 9.434811 1.821216 2.576142 0.148041 -2.45656 2.60001 

0.775305 19 Jutra -2.25111 0.019309 -0.27515 -1.10176 -0.86656 0.401377 

1.241702 19 Dundas -3.03428 0.057752 -0.82016 -2.42551 -0.91257 1.23992 

1.249249 19 Albinos -3.00033 -0.94026 -0.37114 -1.98963 -1.63841 0.19325 

1.345855 19 OAC9-17C -1.7492 -0.5939 -0.66762 -0.7842 -0.24144 0.999309 

1.486543 19 Altesse -2.3293 -0.75828 0.003871 -0.89567 -0.9591 -0.41837 

0.728379 20 OT94-47 7.153823 -0.95995 0.814329 -1.47658 -1.23569 0.056048 

0.728379 20 OAC8-21C 6.152977 -1.13569 0.116077 -1.04452 -0.65484 -0.22312 

0.651441 21 Alta -2.35283 -0.78953 -0.05158 -0.87575 0.539341 0.475198 

0.991284 21 DH530 -2.391 -0.8336 0.151482 -0.22234 1.057945 0.594303 

1.351991 21 Clinton -1.84107 -0.97596 0.685349 -0.57948 0.181966 0.008464 

1.418812 21 9004 -3.90855 -1.3628 0.397868 -0.96748 0.360247 0.33015 
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1.460741 21 ACGlengarry -3.62941 -2.08626 0.507335 -1.30224 0.226576 0.849288 

1.664939 21 4028P7j -3.1541 -0.97794 1.043664 -1.32752 1.585948 0.020585 

1.701912 21 Madison -1.88605 -1.2658 -1.2704 -0.54916 0.438511 1.191067 

2.058549 21 OAC8-22C -0.87265 -1.78016 0.123878 -1.40592 0.241705 1.52625 

1.090354 22 McCall 0.475332 2.283749 -1.54313 0.617624 0.181623 0.036456 

1.371486 22 SECAN7-2 0.94133 1.734751 -1.62682 0.013336 1.001819 1.648522 

1.374978 22 Jari 0.42858 2.092761 -1.22674 0.615443 1.582439 -0.10791 

1.46743 22 Ohgata 0.391732 1.576233 -0.18138 0.728714 -0.07183 0.077655 

1.916493 22 SECAN8-1 0.190037 1.766774 -0.0326 1.395136 0.323586 0.893865 

1.924913 22 KORADA 0.796046 0.138305 -2.16059 -0.71115 0.748024 0.503303 

2.183383 22 OACAyton 0.239793 3.639512 -0.91773 -0.30924 1.03602 0.492437 

1.107881 23 4067P17j -0.35706 0.419181 -0.10133 -0.60456 1.522713 -1.18046 

1.352671 23 Gentleman -0.44099 0.189333 -0.96034 0.480739 1.112223 -0.14512 

1.400772 23 4042_6Bp -0.208 -0.13436 -0.91994 -0.5139 1.894501 -0.85746 

1.42335 23 Evans 0.610755 0.41395 -0.22497 0.11068 1.564922 -0.06937 

1.456422 23 Brant -1.02616 0.581807 -0.95137 0.176985 1.040441 -0.2483 
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1.476966 23 ACProteina -0.19762 -0.28835 0.941623 -0.26989 2.229461 0.135455 

1.506418 23 5091_50j -0.10773 -1.35208 0.286443 -0.27505 0.703671 -0.99715 

1.614032 23 Carman -0.77737 -1.16541 -0.86105 0.110712 1.347852 0.188331 

1.695816 23 90A01 -0.20019 -0.1248 1.456272 0.107134 0.76088 -1.25805 

1.714167 23 5030_46B -0.80477 0.269737 0.3752 -0.34397 0.082361 -1.58965 

0 24 S03-W4 0.701144 -2.11331 -0.40465 3.411648 -2.53768 -1.61214 

0.975369 25 Roland -2.32112 -1.28779 0.111746 0.56415 -0.20373 1.62888 

1.059605 25 OACOxford -1.4738 -1.0613 0.539552 0.99529 0.337259 0.50819 

1.270806 25 OT09-03 -2.08124 -1.86289 1.097987 0.184749 -0.90676 0.731327 

1.41349 25 OT11-09 -2.05585 -2.73331 0.140375 1.497938 0.596295 1.056014 

1.429122 25 Purdy -1.05801 -1.01881 0.540989 0.119985 -0.42711 1.190377 

1.578908 25 OT11-01 -1.52352 -1.47635 -0.31697 -0.16788 -0.83495 0.888424 

1.015101 26 MapleBelle -0.95299 2.235698 -0.60345 -0.36073 -0.65182 -0.26621 

1.039663 26 OACKent -1.05662 2.771455 -0.68902 -0.26498 -1.3645 0.020862 

1.821556 26 Delta 0.303821 3.615807 -0.21025 -2.33322 -0.74948 -0.54365 

1.968453 26 PS36 -1.1232 2.320863 -0.30653 0.214177 -0.0081 0.710073 
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0.812049 27 OAC7-4C 2.272425 -0.59879 0.507522 0.389385 0.576357 -0.24987 

1.395186 27 MaplePresto 1.586797 -0.4355 0.734765 1.109277 1.026007 -0.44825 

1.465076 27 Toki 2.471991 -0.55593 -0.01277 0.371975 -0.18009 1.378587 

1.479554 27 PRO25-53 3.493394 0.404747 0.932426 0.10011 0.424079 0.095749 

1.524081 27 SECAN8-2 1.997174 -0.44931 1.592664 0.663056 1.201516 1.502396 

1.002491 28 S14-P6 0.366651 0.053917 -1.57329 1.268256 -0.36551 0.61092 

1.224986 28 Walton -0.18636 -0.71032 -1.81004 2.044111 -1.41811 1.160473 

1.432934 28 S12-A5 -0.49183 -0.6201 -0.78764 2.549722 0.707164 0.732004 

0.924578 29 Mario 1.025956 2.75571 1.076591 0.858192 0.535622 -1.19659 

1.152542 29 Gaillard 0.260606 2.470455 0.988941 1.000909 0.292871 -1.79438 

1.643582 29 Auriga -0.39575 2.785033 0.956169 0.476558 1.326183 -1.06425 

1.209572 30 OT05-20 -0.13876 -0.31209 -0.28224 -0.01688 0.184863 0.822197 

1.242202 30 OAC9-44C -0.9444 0.715403 0.627507 0.176825 0.639816 0.109285 

1.25876 30 Lotus -0.31278 0.448477 0.955385 0.134457 0.049093 -0.58529 

1.277664 30 OACMorris -1.23343 1.407253 -0.16387 0.310295 -0.25968 0.29335 

1.304901 30 SECAN8-1 -0.62958 0.001721 0.61987 0.442547 -1.121 0.988649 
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1.340199 30 Drayton -0.7802 0.535816 0.28064 -0.74783 -0.59344 -0.65564 

1.34577 30 Elora -0.93223 0.512442 0.225457 -0.88579 0.372077 0.058868 

1.349564 30 Krios -0.14737 1.03599 -0.56197 -0.00327 -0.44704 -0.67298 

1.376278 30 OT10-02 -0.73834 0.478623 -1.09659 -0.11302 -0.28274 0.781664 

1.459258 30 MapleAmbr 0.577359 -0.2273 -0.26634 -0.14262 -0.18475 -0.31502 

1.506564 30 OACLakeview 0.047398 1.480173 -0.2673 0.822498 -0.67953 -0.16291 

1.658561 30 S05-T6 0.906997 0.536344 -0.20045 0.562478 0.078445 0.863491 

1.709452 30 Dares 0.089725 0.599769 0.655969 0.157708 -0.69857 -1.21514 

1.711745 30 OAC8-11C -0.78862 0.486544 -0.63292 1.385123 0.051295 -0.4716 

1.747889 30 OAC7-48C -0.9968 0.07935 -0.48931 -0.61869 -1.60996 -0.0756 

2.027466 30 Perth -0.3454 0.439457 1.598644 1.439207 -0.00559 -0.03862 

2.101681 30 Stratford -1.23741 0.015423 -0.13725 0.664496 -0.11212 2.059081 

2.293443 30 SECAN7-4 0.912087 1.319651 0.220788 -1.02794 -1.03815 1.112695 

2.591547 30 Supra 1.26182 1.643742 1.186795 -0.22983 -0.90362 1.081433 
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Appendix C: Supplementary Figure  

Figure C1: Skeletal 3D images of root systems, as reconstructed from CT scanning data, for 30 soybean 

cultivars (n = 2, 3, or 4), with the corresponding FD estimates. 

Cultivar POT1 POT2 POT3 POT4

4004P4J

400524J

PS44

OAC726-C

FD = 1.3983 FD = 1.214 FD = 1.0954 FD = 1.4416

FD = 1.3326 FD = 1.5989 FD = 1.5989 FD = 1.4534

FD = 1.219 FD = 1.459 FD = 1.3443 FD = 1.2506

FD = 1.3848 FD = 1.1684 FD = 1.3136 FD = 1.2506
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Cultivar POT1 POT2 POT3 POT4

AC2001

CASINO

SASKA

OAC-WALLACE

FD = 1.3581 FD = 1.3757 FD = 1.3486 FD = 1.4149

FD = 1.4871 FD = 1.2114 FD = 1.223 FD = 1.4149

FD = 1.2773 FD = 1.2896

FD = 1.4414 FD = 1.39 FD = 1.4501
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Cultivar POT1 POT2 POT3 POT4

505543G

COSTAUD

MAPLE DONOVAN

VENUS

FD = 1.4975 FD = 1.3161 FD = 1.3194

FD = 1.4175 FD = 1.4313 FD = 1.3211

FD = 1.3808 FD = 1.5286

FD = 1.4095 FD = 1.3869 FD = 1.5939

FD = 1.4334 FD = 1.4431

FD = 1.6538
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Note: TUNDRA (POT1) is shown from the top to make lateral roots more visible. 

Cultivar POT1 POT2 POT3 POT4

OAC7-26C

OAC-CHAMPION

OAC9-22C

TUNDRA

FD = 1.3274 FD = 1.3562 FD = 1.3388 FD = 1.4682

FD = 1.3699 FD = 1.372 FD = 1.3937 FD = 1.4371

FD = 1.6078 FD = 1.5153 FD = 1.3148 FD = 1.4687

FD = 1.5706 FD = 1.3191
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Cultivar POT1 POT2 POT3 POT4

OAC1-26C

WOODSTOCK

DUNDAS

OAC8-21C

FD = 1.6108 FD = 1.4728 FD = 1.4725 FD = 1.6143

FD = 1.2575 FD = 1.5329 FD = 1.3863 FD = 1.4443

FD = 1.408 FD = 1.5117 FD = 1.4774 FD = 1.3894

FD = 1.4295 FD = 1.4535 FD = 1.3414 FD = 1.3662
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Cultivar POT1 POT2 POT3 POT4

ACGLENGARRY

McCALL

GENTLEMAN

S03-W4

FD = 1.3764 FD = 1.3188 FD = 1.3141

FD = 1.5308

FD = 1.4226 FD = 1.5002

FD = 1.6163 FD = 1.5896

FD = 1.3324 FD = 1.546

FD = 1.3473

FD = 1.2812

FD = 1.574 FD = 1.3381
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Cultivar POT1 POT2 POT3 POT4

OAC-OXFORD

OAC-KENT

OAC7-4C

WALTON

FD = 1.4892 FD = 1.4686 FD = 1.3587 FD = 1.3502

FD = 1.5415 FD = 1.3677 FD = 1.5462 FD = 1.1957

FD = 1.3412 FD = 1.5543 FD = 1.2613

FD = 1.263 FD = 1.2914 FD = 1.3188 FD = 1.4327
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Cultivar POT1 POT2 POT3 POT4

GAILLARD

DRAYTON

FD = 1.4177 FD = 1.462 FD = 1.5187

FD = 1.3497FD = 1.4996

FD = 1.4129

FD = 1.3828FD = 1.5193
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Appendix D: Supplementary Table  

Table D1: Summary of statistically significant (p < 0.05) pairwise comparisons between cultivars based on 

FD means 

 

Cultivars 

Difference between FD 

Means 95% Confidence Limits 

17-20 0.14495 0.00464 0.28526 

17-14 0.14942 0.00911 0.28974 

17-11 0.15263 0.00108 0.30419 

17-27 0.157 0.00545 0.30855 

17-9 0.16493 0.01338 0.31649 

17-5 0.16827 0.02796 0.30859 

17-13 0.16995 0.02964 0.31026 

17-21 0.20345 0.06314 0.34376 

17-28 0.21612 0.07581 0.35644 

17-3 0.22438 0.08406 0.36469 

17-6 0.24018 0.09986 0.38049 

17-4 0.24392 0.10361 0.38424 

17-1 0.25527 0.11496 0.39559 

17-7 0.25915 0.08731 0.43099 

24-9 0.15183 0.00028 0.30339 

24-5 0.15517 0.01486 0.29549 

24-13 0.15685 0.01654 0.29716 

24-21 0.19035 0.05004 0.33066 

24-28 0.20302 0.06271 0.34334 

24-13 0.21127 0.07096 0.35159 
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24-3 0.22707 0.08676 0.36739 

24-5 0.23082 0.09051 0.37114 

24-1 0.24217 0.10186 0.38249 

24-7 0.24605 0.07421 0.41789 

12-21 0.17188 0.03156 0.31219 

12-28 0.18455 0.04424 0.32486 

12-3 0.1928 0.05249 0.33311 

12-6 0.2086 0.06829 0.34891 

12-4 0.21235 0.07204 0.35266 

12-1 0.2237 0.08339 0.36401 

12-7 0.22757 0.05573 0.39942 

2-21 0.14205 0.00174 0.28236 

2-28 0.15473 0.01441 0.29504 

2-3 0.16298 0.02266 0.30329 

2-6 0.17878 0.03846 0.31909 

2-4 0.18252 0.04221 0.32284 

2-1 0.19388 0.05356 0.33419 

2-7 0.19775 0.02591 0.36959 

15-28 0.15017 0.00986 0.29049 

15-3 0.15843 0.01811 0.29874 

15-6 0.17423 0.03391 0.31454 

15-4 0.17797 0.03766 0.31829 

15-1 0.18932 0.04901 0.32964 

15-7 0.1932 0.02136 0.36504 
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29-6 0.1504 0.01009 0.29071 

29-4 0.15415 0.01384 0.29446 

29-1 0.1655 0.02519 0.30581 

23-6 0.14788 0.00756 0.28819 

23-4 0.15162 0.01131 0.29194 

23-1 0.16298 0.02266 0.30329 

19-6 0.1442 0.00389 0.28451 

19-4 0.14795 0.00764 0.28826 

19-1 0.1593 0.01899 0.29961 

11-6 0.14405 0.00374 0.28436 

11-4 0.1478 0.00749 0.28811 

11-1 0.15915 0.01884 0.29946 

30-1 0.15053 0.01021 0.29084 

20-17 -0.14495 -0.28526 0.00464 

14-17 -0.14942 -0.28974 0.00911 

10-17 -0.15263 -0.30419 0.00108 

27-17 -0.157 -0.30855 0.00545 

9-17 -0.16493 -0.31649 0.01338 

9-24 -0.15183 -0.30339 0.00028 

5-17 -0.16827 -0.30859 -0.02796 

5-24 -0.15517 -0.29549 -0.01486 

13-17 -0.16995 -0.31026 -0.02964 

13-24 -0.15685 -0.29716 -0.01654 

21-17 -0.20345 -0.34376 -0.06314 
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21-24 -0.19035 -0.33066 -0.05004 

21-12 -0.17188 -0.31219 -0.03156 

21-2 -0.14205 -0.28236 -0.00174 

28-17 -0.21612 -0.35644 -0.07581 

28 - 24 -0.20302 -0.34334 -0.06271 

28-12 -0.18455 -0.32486 -0.04424 

28-2 -0.15473 -0.29504 -0.01441 

28-15 -0.15017 -0.29049 -0.00986 

3-17 -0.22438 -0.36469 -0.08406 

3-24 -0.21127 -0.35159 -0.07096 

3-12 -0.1928 -0.33311 -0.05249 

3-2 -0.16298 -0.30329 -0.02266 

3-15 -0.15843 -0.29874 -0.01811 

5-17 -0.24018 -0.38049 -0.09986 

5-24 -0.22707 -0.36739 -0.08676 

6-17 -0.2086 -0.34891 -0.06829 

6-12 -0.17878 -0.31909 -0.03846 

6-2 -0.17423 -0.31454 -0.03391 

6-15 -0.1504 -0.29071 -0.01009 

6-29 -0.14788 -0.28819 -0.00756 

6-23 -0.1442 -0.28451 -0.00389 

6-19 -0.14405 -0.28436 -0.00374 

6-11 -0.24392 -0.38424 -0.10361 

4-17 -0.23082 -0.37114 -0.09051 
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4-24 -0.21235 -0.35266 -0.07204 

4-12 -0.18252 -0.32284 -0.04221 

4-2 -0.17797 -0.31829 -0.03766 

4-15 -0.15415 -0.29446 -0.01384 

429 -0.15162 -0.29194 -0.01131 

4-23 -0.14795 -0.28826 -0.00764 

4-19 -0.1478 -0.28811 -0.00749 

4-11 -0.25527 -0.39559 -0.11496 

1-24 -0.24217 -0.38249 -0.10186 

1-12 -0.2237 -0.36401 -0.08339 

1-2 -0.19388 -0.33419 -0.05356 

1-15 -0.18932 -0.32964 -0.04901 

1-29 -0.1655 -0.30581 -0.02519 

1-23 -0.16298 -0.30329 -0.02266 

1-19 -0.1593 -0.29961 -0.01899 

1-11 -0.15915 -0.29946 -0.01884 

1-30 -0.15053 -0.29084 -0.01021 

7-17 -0.25915 -0.43099 -0.08731 

7-24 -0.24605 -0.41789 -0.07421 

7-12 -0.22757 -0.39942 -0.05573 

7-2 -0.19775 -0.36959 -0.02591 

7-15 -0.1932 -0.36504 -0.02136 

 

 


