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Abstract

The Steklov eigenvalue problem has been one of the central topics in spectral geometry
in the past decade. In particular, a lot of research has been focused on the asymptotic
distribution of Steklov eigenvalues. In this manuscript, we investigate asymptotics for Steklov
eigenvalues on surfaces with a boundary which is only smooth to finite order. In particular,
we obtain remainder estimates in Weyl’s law with a rate of decay depending on the order of
smoothness, which improve upon results that were previously available in the literature. The
proof uses pseudo-differential techniques for operators with non-smooth symbols inspired by

the methods developed by G. Rozenblum.



Résumé

Le probléme aux valeurs propres de Steklov a été un sujet central en géométrie spectrale
dans la derniére décennie. En particulier, plusieurs activités de recherche concernent la dis-
tribution asymptotique des valeurs propres de Steklov. Dans cette théese, nous investigons le
comportement asymptotique des valeurs propres de Steklov pour des surfaces dont la fron-
tiére a une régularité finie. En particulier, nous obtenons des estimés sur le reste dans la loi
de Weyl avec un taux de décroissance qui dépend de 'ordre de la régularité, améliorant ainsi
les résultats disponibles précédemment. La preuve utilise des méthodes pseudodiftférentielles
pour des opérateurs dont le symbole n’est pas lisse, inspirées des arguments développés par

G. Rozenblum.
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Contributions

The main results of this thesis are as follows: Theorem and generalize a known
result on asymptotics for Steklov eigenvalues on surfaces to C"-smooth boundary, and The-
orem [I.4] gives a quantitative estimate on the difference of eigenvalues after perturbing an
operator, including C"-smooth perturbations. The foundation for pseudo-differential oper-
ators with non-smooth symbols are given in the mapping properties of Proposition and
2.3 and in the symbol decomposition of Lemma [2.4] and 2.5 Lemma [3.1] and [3.2] provide the
operator inverse needed to invert the diagonalization procedure in Proposition [3.3] which
yields the eigenvalue correspondence in Corollary [3.4]

These results are based on joint work with Jean Lagacé, who outlined the strategy for
Theorem [I.2] and provided the computations for Theorem [1.4, The work in Proposition
2.2 Proposition 2.3] Lemma [2.4) Lemma [2.5, Lemma [3.1, Lemma [3.2] Proposition [3.3] and
Corollary was done solely by the author. In particular, the results Lemma [2.4] Lemma
2.5 Proposition [3.3] are previously known for the smooth case, but to best of the author’s

knowledge, are original contributions to knowledge for the non-smooth case.



CHAPTER 1

Introduction and main results

Differential operators are useful because they represent movement and behaviour of nat-
ural objects in our physical world. When such an operator is elliptic, a door opens to find
an inverse and hence solve many of the known equations that describe physical phenomena.
The Laplacian is a natural operator, which, as the divergence of the gradient of a scalar
function on Euclidean space, represents the gradient flow of a function. By using it in a heat
equation, geometric properties of a shape can be recovered — in image processing, the heat
kernel signature can perform edge detection and shape matching [20].

Pseudo-differential operators, which generalize differential operators using the framework
of Fourier transforms, also play a key role in mathematical physics and geometric analysis.
The Dirichlet-to-Neumann operator arises in scattering theory and is often used in medical
imaging (to detect air and fluid flow) and geophysics (to detect the presence of stress fractures
and mineral deposits). Using the same procedure of shape analysis as the Laplacian, one
can capture the spatial embedding of a shape up to rigid motion [22].

In spectral geometry, one of the main goals is to relate the spectrum of an operator
acting on a manifold to the global geometry of that manifold. A way to do this is to observe
the asymptotic behaviour of the spectrum as it accumulates at infinity (or in some cases
as it accumulates to zero). For example, we know that for elliptic, self-adjoint, bounded
operators differing by a smoothing operator, eigenvalues converge to each other faster than
any algebraic order |6, Lemma 2.1]. Of particular interest are the eigenvalues of the Dirichlet-
to-Neumann operator, whose eigenvalues coincide with the eigenvalues from the Steklov
problem. As demonstrated by [I5] and [6], it is known that for any Steklov surface with
smooth boundary, the eigenvalues will converge to those of a disjoint union of circles whose
lengths are those of the boundary components, regardless of any local structure on the

boundary (as well as the interior).
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Spectral properties can be investigated using perturbation theory, which studies the
behavior of operators undergoing a small change. When it comes to perturbing a Riemannian
metric on a manifold or symbol of a pseudo-differential operator, it is often much simpler to
work under the assumption that the setting is smooth. The present manuscript is concerned
with eigenvalue asymptotics for a class of “rough” perturbations acting on elliptic, self-
adjoint, bounded operators. This class includes C” perturbations, or more generally any
operator @ : H? — L?, where the error depends on 7 or /3 respectively.

Using this, we can tackle the asymptotic behaviour of Steklov eigenvalues of surfaces
with C" boundary or with a C"~! weight function acting on the boundary. We generalize
the known result that eigenvalues of a Steklov surface converge to those of a circle, and we
capture the error term depending only on 7.

One of the main ideas needed here is converting the asymptotics of Steklov eigenvalues
on surfaces with C” boundary to weighted problems on unit disks by the use of conformal
maps. See the work of (|9], [10], [14]) for details on the symbol of the Dirichlet-to-Neumann

map, as well as the regularity of the coefficients using conformal maps.

1. Dirichlet-to-Neumann operator

Let Q be a smooth surface with boundary 092 and let 0 < p € LP(9€2), p > 1. The
Steklov problem on €2 with density p consists in finding the set of real numbers ¢ satistying

the eigenvalue problem

Au=10 in 2
(1)

d,u = pou on Of).

The Dirichlet-to-Neumann map Aq : H'(9Q) — L*(09) is defined as the map
(2) f—=Hf—=OHS,

where H f is the harmonic extension to the interior and 0, is the exterior normal derivative.
The eigenvalues of problem are the eigenvalues of the operator Aq, = M,-1Aq, where
for any function f, M; is the operator of multiplication by f. From the work of Agranovich
[1], it is known that if 92 is C'! except on a closed set of 0 measure, then problem has a
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discrete set of eigenvalues

(3) 0=00((% p) <01, p) < 02(Q,p) < ... /0,
satisfying a Weyl’s law

(4) or = Cpk(1+0(1)),

as k — oo, where

B 2w
N fasz p(z)dx’

Our goal is to improve on the remainder estimate in (4) and to control it explicitly

(5) Cp

with dependence on the regularity of boundary 02 and density p. In some sense, we will
interpolate between this estimate and those obtained by Girouard, Parnovski, Polterovich
and Sher [6] in the case p = 1 and 092 smooth with J boundary components 0f2;, where
they obtain that

(6) o = (U spec(Aajw) +0 (k)

k

(292

o’

(7) a; =

and Rozenblum [15] who obtained the result @ for simply connected domains, which was
the first result of this kind.

Define N(o) = #(0r < o) as the eigenvalue counting function for Steklov eigenvalues.
The author in [8] obtained the sharp Weyl’s law for Steklov eigenvalues oy when 2 has a
smooth boundary 052,

) N(o) = #(ox <o) = 2o 1 o),

™

which is equivalent to

(9) op = W+0(1).
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When the boundary is smooth, Rozenblum [15] and Edward [4] each showed that for a

bounded simply connected planar domain,

LI
- o9

In the non-smooth case, Sandgren [17] first obtained the result that for Euclidean do-

(10) ok O(k™).

mains with C? boundary,
(11) N(o) = —0 + o(0),

which Agranovich [I] later proved will hold for bounded planar domains with piecewise C*
boundary. Very recently, the authors in [11] showed that the same asymptotics will hold for
bounded domains with Lipschitz boundary.

Improving the error term, the authors in [5] showed that for a C** boundary, «a > 0,

(12) V(o) = 1245 4 ony.

7r
For a bounded planar domain €2, the authors [5] also showed that for a C'! boundary,

B 7k
~ o9

where the method only needs the normal vector of 02 to be Lipschitz.

(13) Ok +0(1),

As far as we are aware, there are no intermediate results which capture the regularity
needed to obtain a decaying error term as k — co.

Before stating our next theorem, let us fix some notation for the regularity of maps.

DEFINITION 1.1. For n € N, t € [0,1) and r = n + t we denote by C" the space of n

times differentiable functions whose nth derivative is Holder of exponent t¢.
We obtain the following result.

THEOREM 1.2. Suppose that the boundary components of 2 are of class C™(02) forr > 3.
Then, for any € > 0, we have the estimate
J
3_r
(14) o = <U spec(Aaj]D))) +0 (k[T?*d) :
Jj=1 k
Note that a decaying error term first appears with C°**(9Q) regularity on the boundary.

In the case of a single boundary component, this can be written as
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THEOREM 1.3. Let 2 be a simply connected planar domain with C°T(0Q) boundary for

somet > 0. Then

2k
(15) O9k—1 — O9r — ‘87T_Q| + O (k’il) .

We are most interested in the case when density p = 1 and the boundary of Q is C"(092),
however the same result will hold if the density function p on the boundary is C"~1(9) (see
section 3[1.1] for details about the conformal map on the boundary).

2. Eigenvalue problem

Let M be a smooth d-dimensional closed manifold and consider the eigenvalue problem
(16) Ap = Ap,

where A is a self-adjoint, elliptic and semi-bounded below pseudo-differential operator with
rough symbol of order m. In other words, operator A has symbol a(x,§) € C"ST}, or CLST
for > 1 in the notation of Taylor in [2I]. Since the resolvent is compact, the eigenvalue

problem for m > 0 has a discrete set of eigenvalues
(1) M(A) € do(A) < . oo

accumulating only at infinity. Furthermore, they satisfy a Weyl’s law,

a3

(18) Ai(A) =

Note that we say that an operator A acting on H® with inner product (, )gs is self-adjoint

if and only if

(19) (Au,v)gs = (u, Av)ys

for all w,v € H®. An operator A = a(x, D) of order m is called elliptic if, for some ¢ < oo,
(20) la(z, &)~ < CE)™™

for |£] > c. If there is a constant d > 0 such that

(21) (u, Au)pe > dfjul®
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for all w € H?, then operator A is semi-bounded from below. We also note the case of a

smoothing operator, which is a bounded operator of order —oo.

2.1. Perturbations and eigenvalues.

Let B := A+ @ be a perturbation of A by a relatively A-bounded operator (). We are
interested in the effect of the perturbation on the eigenvalue distribution. It has been proven
in [6] (see also [4] and [15]) that if A is a classical operator with smooth coefficients and @

is a smoothing operator, then
(22) (\(A) = X(B) =0 (7).

We are interested in the case where () is of order 8 > —oo and in obtaining quantitative

estimates on the size of the difference in , depending not only on 3 but also on m and d.

THEOREM 1.4. Let M be a compact manifold of dimension d. Let A and () be operators
acting on M, where A is an elliptic, semi-bounded below, self-adjoint, pseudo-differential
operator of order m > 0, and is Q an operator of order —oo < 3 < m such that Q : H® — L?.
The eigenvalues of A and A+ Q then satisfy

(23) (A +Q) = M(A) =0 (k).

Note that we place no regularity restrictions on operator (), and that it does not have
to be pseudo-differential. Hence, we can have a “rough” perturbation of A. Estimates for
operator A with symbol a(x,§) € C"ST, or CLST}, (and later for a(z,§) € "™ see section
22| for definition) when r > 1 will follow from [21] (see also [3] and [19]).

3. Organization of the thesis

The proof of Theorem contains three main steps. The first step in section 3]2|follows a
strategy similar to the one in [6] and isolates the boundary components, gluing a spherical cap
on each. Since the symbol of the Dirichlet-to-Neumann map is determined up to isometries
in the neighborhood of the boundary [13], the map acting on the union of the boundary

components will be the same.
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In the second step, we conformally map the problem to the unit disk in section 3J1.1]
see the work of [9] and [11] for details of that mapping. This will make the Dirichlet-to-
Neumann map into a pseudo-differential operator on the circle, with non-regular spatial
coefficients. The regularity of the coefficients will be recovered from the boundary behaviour
of conformal maps via the Kellogg-Warschawski theorem, see the monograph of Pommerenke
[14] Chapter 3].

Finally, we obtain general results for eigenvalue asymptotics of perturbations of elliptic
operators in Theorem , obtaining a quantitative version of [6, Lemma 2.1]. Combining
this with Proposition — a diagonalization procedure similar to [15], where we now
keep track of dependence on regularity — we obtain precise eigenvalue asymptotics for the
Dirichlet-to-Neumann operator on the circle.

The proof of Theorem makes use of Weyl’s law on relatively bounded operators.
The procedure uses the variational characterization of eigenvalues and Min-Max theorem to
arrive at a quantitative estimate on the difference of eigenvalues.

The overall outline of this manuscript is as follows: In Chapter 2 we cover the results
needed to work with pseudo-differential operators with non-smooth symbols. Chapter 3
contains the strategy, similar to Rozenblum [15] and Edward [4], where we reduce an operator
with rough symbol to be independent of the spatial variable. It also contains the main results

of this manuscript, including the full proof of Theorem [I.2] and Theorem [I.4]



CHAPTER 2

Pseudo-differential operators with non-smooth symbols

The purpose of this chapter is to develop the theory of non-smooth pseudo-differential
operators (VDOs). After a review of smooth WDOs, we introduce the operator space C7 ST,
in the notation of Taylor in [2I]. Although our operator space "™ mostly resembles the
symbols of ST which have a symbol decomposition, we introduce C} ST}, as a way to re-
cover mapping properties. In this section, we also detail two key lemmas which allow us to

decompose and reconstruct non-smooth symbols in "¥™,

1. Classic YDOs
Consider the differential operator
(24) P(z,D) = > an(x)D",
which has the symbol
(25) p(z,6) = ) aa(2)E",
laj<m

and can be written using a Fourier transform as

1

o / e Ep(x, €)A(E)de.

(26) Pu(x) =

The Fourier transform is beneficial in differential equations because it can reformulate
problems in a format which is much easier to solve. Note that symbol p(x, &) is a polynomial
with respect to £&. This theory can be generalized to operators defined by symbols which are
not necessarily polynomials with respect to &.

Using the Fourier integral representation in , operators p(z, D) are called pseudo-
differential operators, provided the following bound for symbol p(x, ) holds

(27) DeD¢p(a,€)] < Caple)™ #1701

15
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for all @ and 8 in N. We say that p(z,§) € S5, and that p(z, D) € V7.
Note that o can approach infinity in this definition, and hence the symbol p(z,¢) is
smooth in z. We later introduce the case where p(z,€) is only C” smooth in x, and hence
we need to impose a < r.
Given a symbol a € ST, one can use the formula to define the map Op : 57 — U7y,
defined as

1
(2m)

Similarly, the symbol map o : UJl; — ST is defined as

(28) Op(a) = a(z, D) = Au(z) =

[ e=atm.patee

(29) o(A) = a(a(a:, D)) = ap(z,§),

where ag is called the principal symbol of a(z, D) € s
If p,0 € [0,1], then p(z, D) : S(R?) — S(R?). Here, S is the Schwartz space of the set of
smooth functions R? — C, such that for all & € N? and all N > 0,

(30) |0gu(z)] < Can(z) ™, z € R

If we additionally restrict § < 1, then p(z, D) : §'(R?) — S'(R?). &' is the space of tempered
distributions, the continuous dual space of Schwartz space S.

An important subclass of symbols are ST, where the bound
(31) D3 D¢p(,€)] < Cap(§)™

shows derivatives in x have no impact on the exponent of (§).
A symbol in ST is said to be classical if there are smooth p,,—;(z,§), homogeneous in §
of degree m — j for |£] > 1 (that is, pp—;(x, s§) = ™ Ipy_j(x,§) for s, [] > 1), and if
(32) p(l', 6) ~ me,j(l', ’S)
Jj=0

in the sense that

N
(33) p(z,6) =Y pm—j(.€) € 75,

j=0
for all N. We write such classical symbols as S™, and call p,,(x, &) the principal symbol of
p(z, D).
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We denote 5™ = N,,S™, and say two operators differ by a smoothing operator if their
difference represents a symbol in S™%°.
Given a € S™, the adjoint of a is the symbol a* € S™, where

(34) w(r,6) ~ Y DRzl €).

|o|>0
Written as an operator, if A = Op(a) is a pseudo-differential operator of order m, then
A* = Op(a*) is a pseudo-differential operator of order m.
Given two operators ai(z, D) € W | as(z, D) € W%, where 0 < 0y < p < 1 with
p = min(py, pa), their product is defined as

(35) pi(, D)pa(x, D) = q(x, D) € Uim2,

with 0 = max(dq,d2), and
(30 0.6 ~ Y T DE 0. ) Dl )
|a|>0
Note again that this product requires smoothness, particularly for the symbol po(z, £).
The product in captures the idea of Bony [2] who defined symbols of paradifferen-
tial operators where the regularity of each symbol term decreases provided the order also

decreases. This leads into the next section where will define the operator space ’"\Tfm, which

represents non-smooth symbols behaving like ST, but with a finite number of terms.

2. Notation and definitions

Recall that for n € N, ¢t € [0,1) and r = n + ¢, C” is the space of n times differentiable
functions whose nth derivative is Holder of exponent t.

Assuming that r € (0,00), m € R, we define "T74(Q2) = "1™ () to consist of functions
a(z,€) : Q x R — C which are C™(Q) in x and C*(R?) in ¢, satisfying

(37) |DgDfa(x,€)] < Cap(€)™

for all 8, and all |a] < r, where (§) = /1 + [£|%
We say that a(z,€) € "S™(Q) if a(z,€) = 3. a;(z,£), where each a;(z,£) € "IT™ ().
j=0
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We now define the quotient space
(38) Q) = T\I/m(Q)/~

where
(39)
"g™(Q) = {Op(a(z,€)) + R | a(z,€) € "S™Q), R: H™"~5(Q) — L*(Q), some ¢ > 0}

and A is equivalent to B if
(40) A—B:H™ 7" 5(Q) — H*(Q)

for some e >0 and —r < s <r.

m

As was the case with smooth pseudo-differential operators in W 5

and symbols in ST,

we define the operator map Op : rgm _y rgm using the Fourier transform as

-~

(41) OpaOfm»=:/lw%5><@aﬁda

and define the symbol map o : rgm s TSM for any operator A,
(42) o(A) = o(a(z, D)) = ag(z, ),
where ag(z, ) is now a principal symbol in "T".

2.1. Besov and Zygmund spaces.

So far we only considered the space C" of Hdélder-continuous functions C”, however a
slightly more general class of functions exists providing a framework useful to us. We will
define this space to be C] below.

First, let us recall the C"-norm for integer and non-integer values of 7:

(43) If@ler = If(@)llon = maxsup |Df(z)], ifr €N,
QSN pe
(44)
|Df(x) — D*f(y)]
1 (@)ller = [1f (@)llense = || f(z) ] cn + max sup

if r = t ¢ N.
maxsup ——p g 0 Hr=ntie

Two common interpretations of C (and hence the CI-norm) is to view them as Zygmund
spaces or L>®-based Besov spaces. Following Taylor [21] and Salo [16], we will first define

the C7-norm using a Littlewood-Paley partition of unity.
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Define a smooth Littlewood-Paley partition of unity 1 = Z;‘io 1;(€), where 9y is sup-
ported in the annulus |£| < 1, v is supported in % < €] < 2, and for all 7 > 1,
;i (&) = 1 (2179¢). We now define the C7-norm as

(45) 1/ ()

: = sup 240D (44(6) 1 (¢) =

Given f(z) € C", it is known that || f(x)||cr < co. However, the converse breaks down if
r € N. So we define the L>-based Besov space C to consist of all functions f(x) such the
CT-norm (45)) is finite. In other words,

(46) Cr=Crif reRN\N, C"CC" if reN.

Examples like the lacunary Fourier series g(z) = i 27%¢2" belong to C! but not C*,
so this inclusion is strict. =

It is known that Zygmund spaces coincide with L>°-based Besov spaces (see [16]), so we
define Zygmund spaces using an equivalent C]-norm for integer and non-integer values of 7:
(47)

1f (@) llor = [1(x)

|D*f(x + h) — 2D*f(x) + D*f(x — h)|
z)||on-1+ Z Silh ] ;

|a|l=n—1

oot = [f@)onse = | F@)llen + maxsup 2D = DU W
* an sy llz— oIl

48)  f@)ller = [1f(x)

We can now say that symbol a(z,&) € C7ST), provided

(49) [Da(z,€)] < Cp(&)™ ", and

(50) IDZa(z,&)lle; < C(&)™ 1.
We can also say that a(z,§) € C" ST}, provided we add the condition

(51) HD?a(x,f)ch < C’ﬁ(@m"ﬁ‘, where 0 <j <r.
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2.2. Mapping property.

We would like our operators in T\Tfm(Q) to have well behaved mapping properties. We
begin by recalling a property known for C7ST%.

PROPOSITION 2.1. (Taylor [2I, Proposition 9.10]): If a(z,§) € CLST}, then
(52) a(x,D) : H™™(RY) — H*(RY), provided —r < s <.

It would be useful to take advantage of the mapping properties above — i.e. if our space

Tgm(Q) was a subset of C] ST, — hence, we will show the following inclusion.
PROPOSITION 2.2. For all 7 € (0, 00), we have that "S™(Q) C Cr ST

Proof:
Let a(z, D) € "U™(Q). In other words, let a(z,§) =

aj(x,§), where each a;(z,§) €
=0

J

TIT™I(Q).
We satisfy the first condition (49)),

(53) |D{a(x,€)] < Cpe)™ 7,

of C7 S} directly by the definition of "7~/ (€2) (by taking no derivatives in x).
To satisfy the second condition (50J),

(54) ID{a(z, E)lle; < Ca(&)™ 7,
we observe the later two C-norms , directly:

(55)
| Dfa(z,€)]

or =||Dfa(z,€)]

o

DeDYa(x + h,€) — 2D2Dla(x,€) + DDl a(x — h,
_Dfa(e,Ollens + 3 sup IPEer S 720 |2|( €) + D3Dfa(x — h€)|
z,h

|o|=n—1

<Claenp{&)™ 1P+ Cpp (&)™,
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1DZa(z,€)]

cr = Dfalw, &) nt
=||Dla(x, €)||ns
56 a B a b
" :||Dﬁa(x &)||cn + max sup |D$D£a(x’§) — DD a(y, &)
N jal=n gy o —ylf*

Scn6<§>m—lﬂ\ + Cfnw(@m—lﬂ\'

We now have the following mapping property for operators in T{Iv/m(Q)
PROPOSITION 2.3. If a(z, D) € "U™(12), then
(57) a(z,D) : H*"™(Q) — H*(Q), provided —r < s <.
3. Symbol Calculus

In this section we present two lemmas which allow us to classify a symbol using a sum

of derivatives, and allow a symbol to be constructed from a sum of individual terms.

LEMMA 2.4. Let A(z,y,&,n) in Q x 2 x R x R? be a function which is C"~! with respect
to (x,y) € Q x Q and C* with respect to (§,7) € R x R, and vanish if y € Q\K, where
KccQ If

(58) D3 Dy DDy Al y, &m)| < Cpraar (14 €)™ (1 + [~
for all 5, " and all a + o/ < r — 1, then we have that
1 - ~ /
5) e =g [[ Ay s Odydy € 5 (@)
T
and a(z,€) — an(z,€) € NS N(Q) for all N < = where

(60) w6 = Y DAy, E)

lo| <N

y=z,n=¢§"

Proof:

Assume that N < % and let

1 1 ,
(61)  ay(z,§) = 2n) // Z a(iDn)aA(x,y,@an:g(n — &) @VI=9 dydp.

laj<N
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By integrating by parts, we have that

/ ZOA OcZCC )(n—=¢)
dy(z,§ @y //Z 05 A@,y,&m)],_ (0 = )V dydy

|ex |<N
(2m)d // Z Ay, & m)|,_ (=Dy)* e dydy
|ex |<N '
(62) |
DaﬁaA (x,y,&,1m) ’nzgel(ﬂffy)(nfé)dydn
|ex |<N '
/ / Z Dﬂéaa fL’ NS 77)} (n—f)dy eix(n—g)dn.
||<N :

Since the function A(z,y,&,&), as well as it’s derivatives up to @ < N, has compact
support in y for fixed (z,€), the Fourier and inverse Fourier transform are well-defined.

Therefore, we have that

([Ef 77 5 afy—m E( )(xygn”ng nS)dn
lof < PN |
By / Z (1) 0y Fyn (A) (2, m, €, )|,y
(63) ja<n |
= Z _Daaa ZL‘ yaf»ﬁ)‘y:xng
\oz|<N :
- CLN(ZL', 5)

We know from the bound on the derivatives of A(z,y,&,n) that ay € 7"_lgw”r””‘/(Q).

Using integration by parts on a(z, &) — a},(:v, €), we now want to show that

(64) a(z, &) — (z,y, &,m)e' V0= dydp,

where

1
) ey En) = Y -6 / (1= N 1Ay &1,y o

also belongs to "~15™™(Q).

Since

(66) (77 _ g)ocei(x—y)(n—ﬁ) — (_Dy)aei(x—y)(n—f)’
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we can again integrate by parts to obtain

(67)
a(x, &) —an(x,§&) = (271T)d Z g/dn /0 (1—t)N"'dt

jo=N

"oy i(z—y)(n—¢)
X /DyanA(xayagan)ln:£+t(n5)6 v dy
If k is a natural number, we can use
(68) ei(xfy)(fifﬁ) — (1 _ Ay)k’ei(ajfy)(nff)(l + "]’] _ 6'2)7]6
to show that

e, —an(r.6) = g 3 o [ (=€) tan [ (-0

(69) =N
X /Ba(t,x,y,f,n)e"(xy)(”’dy,
where
_ k na qo
(70) Bo(t,2,y,6,1) = (1~ A D305 A 1. 60)],_er e

r—1—N

We are permitted to use this identity as long as k < ==

Since the modulus of the integrand is not larger than

(71) CA+E)™A+ e+t —ON)™ N+ n— &) (),

where hy € C°(R%), hy > 0,h; = 1 in a neighborhood of the compact set K, the following

estimate

(72) la(z.€) — an(x.€)] < Cy / / (L4 €)™ (L4 1€+t — )™ N (L + |n— €P) *dndt

is true, provided that 2k > m’ — N + d. Combining this result with 2k + N < r — 1 from
above, this process holds as long as d +m' < r — 1.

We now divide the domain of integration into two:
0 _ | ¢
v=Atn) = Ol <1511

(73) .
= {(t,n) : 1tt1 = ©)] = 3]},
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In the domain €2, the following inequality holds:

(74) €1 < 216 +t(n — )] < 3[¢l.

We then have that the integral over 2; does not exceed

(1) G // (1+ €)™ =N (1 4 [ — €)™+=5  dedn < Cy(1 + ¢y,
Q1

provided that we have 2k > d + |m/ — N|.

Note that the inequality 2k > d+ |m’ — N| additionally tells us that d4+2N —m/ < r —1.
For a Dirichlet-to-Neumann operator acting on the circle, where d = 1 and m’ = 1, this puts
a cap on how big N can be depending on the regularity 7.

In the domain €2,, the following inequalities hold:

€1 < 2ln—¢l,

L+ +tn =8 <1+3[§ —nl

(76)

We then have that the integral over {2y does not exceed

() G // (14 )™ N (1 4 1 = €2)++ =5 drdy < Cu1 4 )™,
Q2

provided that 2k > |m' — N| + d.

To see this, when m’ > N, we have that

- L+ 1€+t =)™ N <3™ N1+ p—¢)™ N
<3N )N (L + g =),

And when m’ < N, we have that

(79) L+ €+t =)™ N <1 <2V (14 1™ N (1 + Ip — YN
Therefore, we have that for all 2N <r —1+m’ —d,

(80) la(z,€) = an(x,€)| < Co(L+ €)™ N,
If we differentiate both sides of with respect to x, then we obtain

(81) Dy D a(w,€) — an(w,€)]| < Chg(1 +[gl)mrm =NV,

Observe that we cannot differentiate any more than (r — 1 +m’ — d — 2N) times in z.

Using that "S™(Q) is a vector space, this concludes that a € "~15m+m'(().
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LEMMA 2.5. Let a;(z,€) € r=i§m=i(Q) for all 0 < j < r. Then there exists a symbol
a € Tgm(Q), such that for any 0 < N <r —1,

(82) a(w,. &) =Y aj(z,&) € TNSN(Q),

J=0

The symbol a(x, ) is unique modulo an operator R : H™"¢(Q) — L?*({), some € > 0.

Proof:
Let h € C°(R?) so that h(£) = 0 for |¢| < 1 and h(£) =1 for |£] > 2. Let €' be an open
set containing the closure of 2. We use h to cut away the support near £ = 0 as follows. Let

{t;} be a decreasing sequence of positive numbers such that ¢; — 0 and define

-2

lr)-
(83) = ) h(éty)a;(x,€).
7=0

For any fixed &, h(£t;) = 0 for all but a finite number of j, so this sum is well defined

and continuous for (z,¢). For 0 < j <r — 2 we have

( +!£I)

If |£] is large enough, is as small as we like and therefore, by passing to a subse-

1+\5l)'
quence of ¢;, we can assume that

(59 ety (e,6)| < lay .0 < LT foro << a
This implies that
' 5 R
(86) la x£|<2}h§t Ja;(z,€) SZ <C(1+ g™

7=0

We can use a similar argument for the derivatives (provided we stay within regularity for
the finite number of terms), and use a diagonalization argument on the resulting subsequences

to conclude that a(z,&) € "S™(Q). For example, using that

-2

Lr)—
(87) =) h(éty)ai(x,€),
7=0
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we have the derivative
[r]-2
(88) h(¢ a] x f))

7=0
Note that for the term with lowest regularity, a|,j—2(z, &) belongs to 2Gm=r+2(Q)) | 50
taking a derivative in x still yields a well defined and continuous sum for (z,&). For 0 < j <

r — 2 we again have that

(1+¢h™
(89) | D, (a;(z,€))| < Ci(1+ €)™ C(1+|€|)
Using the same strategy as above, we arrive at
[r]—2 r)—2
60 |Palae )] < 3 [hiet)Dlasta:6) <3 L™ g

=0
The supports of all aj(x,f) are contained compactly in €2, so the support of a(x,§) is
contained in © which itself is contained in €.
Now we can apply exactly the same arguments to the sum Zjvzl aj(z,&) to show that it
belongs to 7”_1§m_1(§2). We continue in this fashion and use a diagonal argument on the

resulting subsequences to conclude that

(91) Z h(étj)a;(x,€) € TNTISTTNTH(Q).
Since
(92) a;j(z, D) — h(Dt;)a;(x, D) : H™5(Q) — H(Q),

provided —(r — j) < s < r — j, this implies that

N
(93) a—> aje "TNISmNTHQ),

Jj=0

and concludes the proof.



CHAPTER 3

Main results

1. Symbol of the Dirichlet-to-Neumann map

In this section we compute the symbol of the Dirichlet-to-Neumann map using the strat-
egy of Rozenblum/Edward on “near-similar” operators with non-smooth symbols acting on

the circle, and their relationships between eigenvalues.

1.1. Reduction to the disk.

Here we transform the Dirichlet-to-Neumann operator Ag(92) into As(S') using a con-
formal map between () and the unit disk.

In the proof of Theorem [I.2] we will have to isolate boundary components and glue a
cap on each. Assume for now that 2 only has one boundary component. The strategy is to
glue a disk to the collar neighbourhood of this boundary component, and discard the rest of
the surface. Let Q¢ be this topological disk. Since the symbol of both Ag and Aq. depend
solely on data obtained from a neighbourhood of the boundary, which they share, they have
the same symbol in S, The conformal map in question is between the unit disk D and €¢.

Let ¢ be the conformal map (given by the Riemann mapping theorem) which maps D
onto 2 and maps S' to 9Q¢. As shown in [I1, Theorem 1.6], the following two Steklov

problems are isospectral:

Au=0 in Q¢ Au=0 inD

d,u=ou on 0Q¢, O,u=dou onS'.

Here, we have that § = |¢| > 0 from our conformal map between D and Qc.
Now, using ([14], Thm 3.6) and [9], we isolate each boundary component of 2 by cutting
a thin neighbourhood of the boundary and gluing on a topological disk, and then conformally

27
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mapping each topological disk €2; to the unit disk . Given the initial C" regularity on the

boundary, and the derivative required from the conformal map, each Dirichlet-to-Neumann

operator Ag, € "W(d€;) is transformed into A5, € ""1WL(S). More precisely, let o; be the

conformal map from D to Q;, and let §; = |¢;|. We have that each Dirichlet-to-Neumann
4]

operator is given by As, with symbol 50 and corresponds to the weighted Steklov problem

Au=0 inD
(95)

d,u = d;ou on S
1.2. Diagonalization of the symbol.

In this section, we diagonalize the symbol of operator As(S'), which is motivated by [12].
The term diagonalize refers to the process of making the symbol independent of the spatial
variable x as far as regularity will allow.

The diagonalization is performed individually on each component, so let Q¢ be our
topological disk. After our conformal map we have the following Steklov problem,

Au =0 inD
(96)

O,u = dou on Sh.
where 0 = |¢'| > 0 from the conformal map between D and Q.

Recalling the Dirichlet-to-Neumann map Ap : H*(S') — L*(S!), the eigenvalues of prob-
lem are the eigenvalues of the operator ﬁAD = As. The total symbol of the operator
As is given by %, which is C"71(S!) in = (because §(x) is C"! from the conformal map
using the Kellogg-Warschawski theorem [14]).

We now compare 6(z) € C"1(S') to Example 1 in [15], where g(z) € C>°(S!). We want
to show, using a procedure of near similarity, that we can diagonalize the symbol of As to

depend only on ¢ (up to a perturbation H” — L? which depends on the regularity of 6(z)).
We define

(97) L= L " 6(z)dx

2 Jo

and

(98) vmm:%l3@w
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and since V' is a generating function for the canonical transformation (y,&) = T'(z,n) given

oV(zm) , _ 9V(zn)
B) -~ On

e, , we define the Fourier integral operator acting on S*,

by the relations £ =

(99) Qu(z) = /eiv(x’g)ﬂ(f)df.
We will later require that & is invertible. For our choice of V (x, &) above, we can define

d~1 explicitly using the following two lemmas.

LEMMA 3.1. The adjoint ®* of operator ® is defined as
O u(z) = // u(y)e™ VWM e dydn.
Proof:
By using the inner product (u,v) 21y, we have
(P u(z),v(z))
= (u(z), Pv(z))

= (uta), [ veon(e)ac)

~ [ utw) [V eoni)dgas

_ / / / w(@)o(y)e e @O dyde da
— < / / u(x)eiyfew@f)dgdx,v(y)>.

LEMMA 3.2. The inverse ®~! of operator ® is given by &' = ®*M, where M is the

operator of multiplication by @.

(100)

Proof:
Given that Mu(x) = &E)u(x) and ®v(z) = [T(€)e?V @9 d¢, we have

(101) _9@) (
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Now given ®*u(z) = [[ u(y)e™V ¥ e dydn, we have

o* Mdu(z) :@*( / ?ﬁ(f)ew(’”@c&)

(102) // / eV, §)d£> —iV(y,n) e dydn
/// eV (W:8) o=V (y:m) m”df’dydn

After the change of variable z = fo t)dt, we have

O* M bu(x /// £)e* e e e d 2 dn
/ / e "N d 2 dn
(103)
~ [atmeay

=u(x).

We now wish to diagonalize the symbol % of operator As to depend only on £, as far

as the regularity from ¢(z) € C"1(S') will allow.

PROPOSITION 3.3. For all N < "1, there exists an operator By € "~'W!(S') such that

the principal symbol (and following N — 1 terms) of By depends only on &, and where

(104) As® — BBy € "NEIN(Sh),
Proof:
Our goal is to find
N-1 N
(105) b(x,8) = ) b1-;(§) +b(x,8)

I
=)

J

where each b; is homogeneous of order j in . To do this, we will decompose the symbol of

both operators A;® and ® By acting in L*(S') and relate terms of the same order.
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We first observe the symbol of As®:
Astula) = Aol [ eV #9a¢)a¢)
= // %eiv(y{)ﬂ({)e_iy”em"dﬁdydn

(106)
B / / / ;(L:!)ei(”)nei(v(y’ﬂv‘w) !V () dedydn
- / a(w, )¢’ (g de,

where

107 _ [ 11 e i (vwo-vieo) g g

(107) a(z, ) s e ydn.

31

We localize our symbol a(z, &) by introducing cutoff functions hy(z,y) and ho(€,n) to

define d'(z,§).
(108) d(x,6) = / / %e“’”y)"ei(v(y’@‘v(x’@) hu(, y)ha(€, 1) dydn
Given the identity

(109) V(y,&) = V(x,&) = >(y — x) /51:—1—15 —x))dt,

we have that

. 1
0= / / gt § 3 ettt =211, (0, )y (€, )y

(110) | | x))d dyd
Ui etlz— 1
//' i(z—y)( (a:th(y ) t)h (LU, y)hg (é, 7]) yarn.

Using the change of variable n =n — > fo r+ty—x))dt+ ¢,

0+ & [ —x
€)=/ I+ Jo o ;(;gy ))dt 5‘wy>(n Ohy(z,y)

6 1
(111) x hy (g,ﬁ+ f/o §(x + tly — z))dt — 5) dydi
~ [[ Ay et Ty,
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where
(112)

R R T —o))dt — 1
Alwy ) = LR AR Z DALy (548 [ o+ttt ).

Hence, using Lemma we have that for all N < %,

1
(113) @ @,6) = 3 08D A5, € My, 7o + p(2,6),

a<N

where Op(p(z,€)) € " =NEI-N(Sh),

Since we want to compute the derivatives

(114) Dy oz A, 4, §,1)ly=s, 7=¢

we let G'(x) = d(z) and show the following in advance:

1
=lim [ §(z+ty—x))dt

y=x Yy—x 0

/Olé(x—l—t(y—x))dt

= lim ’ 5(8) ds
y—=z J, Yy—2x
(115 . Gl - C)
y—z y—x
- '@
= 0(x).

We would like to make precise the cut-off function ho(€,n) so that hs (€, %5 (z)) =1 for

any x. Since d(x) > 0 is bounded above and below, we use the following:

1, min(L(S(ac))g < n < max(5(ac))f

L
(116) ha(§,m) = 40, 5 < 2RO e

0, Zmml)e <
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Case 1, when o = 0.

(117)

~ £ 1 T y—z . 1
e bt (67 [ ate 1ty ona )

RO, (s o ) |

n=¢

y=z, N=€

Case 2, when o > 1.

Looking at the expression

~ £l _ _
(118) iD;}ag('"“fo 5(‘75;(;()‘” z))dt dhlhz)

y=z, N=¢€

and using the fact that

(119) a%hQ <§,ﬁ+%/015(x+t(y—x))dt—§>

e 07 —hz (5»55( )) =0,

y:x7 77:

we can see that when a > 1, any number of derivatives will result in zero (provided n # 0).
Any derivative on h; and hy will become zero after restricting to y = x and 7 = £. And
regardless of the number of derivatives in y the term |77 + £ fol §(x + t(y — x))dt — & sees,
adding a single derivative in 77 will make that zero.

In other words, we have that

|€\

(120) ad(x,8)==+0+..+0+p(z9),

where there are N — 1 zeros, and where Op(p(z,£)) € rel=NGL-N(S for all N < =
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Now we want to observe the symbol of ®By:
dByu(r) = ® ( / bN(x,g)a(g)eixfdg)
= by (y, E)u(§)eE e @D dydedn
. I
///bN y, e (Ve VD) V56 dedydy
~ [oa e

where

(122 9.6 = [ [ oty e vt en=ved) gyay

Following the same strategy as above, we look at g(z,€) as a symbol in S! and localize

with cut-off functions hs(x,y) and hy(&,n) to define ¢'(x,§).

(123) §(2,6) = / / bar(y, €)M (VEMVEO) b0 b€, m)dydn.

Simplifying the expression V(z,n) — V(x,&) gives

(124) §(2,€) = / / by, €)1 I3 5OW) b (0 N (€, )y,

Using the change of variable § =y — ¢ [7 0(t)dt 4 x, we have that

(125)
(z,€) = // by ( / S(t)dt + 9 — x g) (m%/ 5(t)dt+@“—a;) ha(€, 1)@= dydn
0
- [[ Gt gemetroeagay,

(126)  G(z,5,6,7) = by (% /Oxé(t)dt - x,f) h (x % /Ox(S(t)dt - x) ha(€,n).

where

We can again use Lemma to show that for all N < %,

(127) J(0.6) = 3 D8RG &, a6,

a<N

y=z, n=€

where Op(q(z,€)) € " =Nwl-N(sh).
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We again need to compute the derivatives Dg0,G (z,9,&, 7])‘ . This time, we would

g:;p, n=¢

like to make precise the cut-off function hs(x,y) so that hy(x, T [ 6(t)dt) = 1 for any .

We use the following:

1’ mm([(f(av))‘r < y < max([z/?(:p))x

(128) hs(x,y) = 0, y< %x

O, 2max(d(x))

N z < y.

Case 1, when a = 0.

by (% /U 5(t)dt + 7 — x,f) s (x = /0 5(t)dt+ 5 — x) ha(€m)
—tw ([ 056 (o] [ oan+7-a)
e fanma o)

— by (% | st 5) |

Case 2, when o > 1.

y=z, n=§

y=x

(129)

Observe that no term in the product of G(z,y,&,n) is a function of both 3 and 7. We
therefore have that

1

(130) g (x,€) = by (E /0z d(t)dt, §> +0+ ...+ 0+ q(z,¢),

where there are N — 1 zeros, and where Op(q(z,€)) € rl=NGI=N(S) for all N < =

By comparing terms of the same order from a'(z, £) and ¢'(x, €), we see that by (1 [, 6(t)dt, &) =

1l
T

order 1 — N. Lemma [2.5 guarantees the existence of operator By € "~1W!(S1).

The zeros also all match up to the error terms p and ¢, which we note that both are

Hence, we have that

(131) (As® — ©By)u(x) = / (a(z, &) — g(x,€)) eV “9u(¢)de,
where after setting h; = hs and hy = hy, the localized symbol is

(132) d(z,6) — ¢ (v,6) € "TINSIEN(S),
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We conclude that
(133) As® — BBy € "NEIN(Sh),
Given the invertibility of ® in Lemma [3.2] the following corollary immediately follows.

COROLLARY 3.4. The eigenvalues of Ay and By admit a one-to-one correspondence such

that

N

(134) 0x(As) — on(By)| = O (kf

—g—i-a]) )

Proof:
Proposition tells us that there is an operator R = As® — ®By which belongs to
NN (S for N o< 5L

If we let N = |5 —¢], we have that

(135)

Hence, the operator R maps HI2—57<1(S!) — L2(SY).
The inverse of ® is computed exactly as an operator of order 0 in Lemma [3.2l The

following computation,
As® —PBy =R
(136) P 'A;® - P 'dBy =P 'R
¢ 'Ns® — By = PR,
demonstrates that @R : H2-2+I(S!) — L2(SY).
Combining this with the estimate in Theorem we have

3_ 7T

(137) |0’k(q)71A5<D) — O'k(BN)’ =0 (k[§7§+51> .
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It is known that for any invertable operator ®, A is an eigenvalue of A if and only if it is

an eigenvalue of ®~1A®. Therefore,

(138) |o(Ag) — o(By)| = O (k[%’%m) .

2. Proof of Theorem 1.2

We will first assume that there is only one boundary component.

Similar to [6], we glue a spherical cap to a collar neighbourhood of the boundary of Q
and discard the rest of the surface. Let ()¢ be this topological disk. Since 2 and Q¢ are
isometric in a neighborhood of 92, we have that the structure of the problem is unchanged
because operators Ag and Ag,. have the same symbol in rot,

Note that when 0 is smooth, Lee and Uhlmann [13] showed that operators Aq and
Aq. have the same full symbol. Our case is similar, except that symbols in 51 have a finite
number of terms depending on the regularity. Taking into account the C" boundary 02, we
use the same recursive argument as [13] until we have to stop.

We have that Aqg — Aq. : H7"75(02) — L*(09), for some £ > 0. Hence, Theorem

gives the estimate
(139) |0k(AQ> — Uk(AQC)’ = O(k'779).

Now, using [14] and [9], we conformally map the topological disk Q¢ to the unit disk,
which makes it a Dirichlet-to-Neumann map an operator in "~ U™ (S!). More precisely, let
¢ be the conformal map from D to Q¢, and let § = |¢/|. As shown in |11, Theorem 1.6], the
Dirichlet-to-Neumann map is given by %AD = As and corresponds with the following two

isospectral Steklov problems:

Au =0 in Q¢ Au=0 inD
(140)

O,u = ou on 0¥, O,u=dou onS'.

Due to the conformal map, the operators Aq. and As have isospectral Steklov problems,

and hence the spectrum of both coincide.
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We now use a similar approach to Example 1 in [15], where instead of a smooth function,
we have that g(z) = §(x) € C"1(S'). Using near similarity on operator As, we can diago-
nalize the symbol of As to depend only on £ (up to a finite number of steps which depend
only on the regularity of 6(z)).

Proposition [3.3] and Corollary [3.4] tell us that for a given operator A, we can find an
operator By € "LWL(S!) such that

(141) As® — OBy € TN EIN(SY).

for integer N < %, and that the eigenvalues of Ay and By admit a one-to-one correspon-

dence

(142) |ok(As) — ow(Bw)| = O (k[%_%Jrﬂ) :
In other words, the eigenvalues of A; behave as

(143) o1(As) = on(By) + O (kf%—%d) .

Recall that the symbol of By is given explicitly as b(z,§) = % +0+...4+0+7r(z,§), and

that the spectrum of an operator acting on S! with symbol % is well known [7] as

(144) spec(By) = {0,2%,2%,4%,4%,6%,6%,...}.
Hence, after we combine that the symbols of Ag and Aq, coincide to yield
(145) |0k (A) — ok (Aag)| = O(K ™77,
and that Aq. and Aj are isospectral to yield
(146) spec(Aq.) = spec(As),
and that As can be diagonalized as By to yield
(147) |o(As) — o(By)| = O (k %*%M) ,

we conclude that

(148) o1(Aq) = spec(By )i + O (kf%*%m) .
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In other words, for one boundary component we have

(149) or(Aq) = % o) (k(%*%m) .

Now let us consider multiple boundary components, where we will use that the Steklov
spectrum of a disjoint union of domains is the union of the spectra.

Let 2 be a domain which has .J boundary components, and let C" be the lowest regularity
of each of the boundary components 0€);, i = 1,...,J. For each boundary component, we
build a topological disk €2; by keeping a neighborhood of the boundary 0€2; and gluing on a
spherical cap. Let €04 be the disjoint union of the J topological disks €2;. Since €2 and 4 are
isometric in the neighborhoods of 02, we again have that Dirichlet-to-Neumann operators
Ag and Ag, have the same symbol.

Using Theorem we again have the eigenvalue estimate for operators Ag and Agq,,
(150) ‘Uk(AQ) — O-k(AQ#)} == O(k)l_r_s).

It follows from [14] and [9] that each topological disk €2; is conformally equivalent to the
unit disk . Let Ag, be the Dirichlet-to-Neumann operator acting on boundary 0€2;, and let
As,; be the Dirichlet-to-Neumann operator acting on S! after the conformal map. Finally, let
B, n be the diagonalized Dirichlet-to-Neumann operator of As; after applying Proposition
3.3

For example, the spectrum of B; y is given by

2 2w Am 4Am 61 6m
(151) SpeC(Bi’N) = {O’E’E’E’E’E’E""}’

where L; = [0€);] is the length of boundary component 0);.

By taking the union of all J spectra, we therefore have

(152) o1(Ag) = ( LJJ speC(Bi,N))k +0 <k:(3*5+€1) .



40 3. MAIN RESULTS

3. Proof of Theorem 1.4

It follows from the spectral theorem that A has bounded below, discrete spectrum of
eigenvalues {);(A)} accumulating at infinity, each with finite multiplicity, and there is a cor-
responding complete orthonormal basis {¢;} of L?(M). Because we will be taking asymp-
totics as j — oo, we can assume without loss of generality that the eigenvalues A; are
positive.

Let Ey € L*(M) be the span of the first k eigenfunctions ¢, ..., %, and denote || - || to
be the L? norm | - [|z2(ar), and || - || to be the operator norm || - || L2(ar)—r2(an)-

Case 1, where g < 0.

Following the variational characterization of eigenvalues we have

(153) Meyt(A+ Q) = min ((Af, f) +(QF /) = Ara(A) — max [(QF, f).
fLE fLE
I fll2=1 [l fll2=1
Using Cauchy-Schwarz and the fact that || f|l2 = 1, we have

(154) M1 (A) = A (A+ Q) < max (Qf, )l < max 1Qf]]2-
[l £ll2=1 [ £llz=1
And also,
=8 B =8 B
(155) max |Qf[l; = max [[QA™ Anfl, < [[QA™ | max [|A= f]]..
[ fll2=1 I fllz=1 I £ll2=1
Since S < 0, and hence % < 0, the Min-Max theorem gives us
B B
(156) Ak (A) = Ae1(A+ Q) < Cag max [A™ fll2 = Caq (Arr1(A))™
k
[£ll2=1
Therefore, Weyl’s law on A gives us
8
(157) M1 (A) = AMer1(A+ Q) < Caglk+1)4.

To show the reverse role, recall that () is relatively bounded with respect to A. Hence, we

have that A+ ) behaves similarly to A in that A 4 ) has bounded below, discrete spectrum

m/d

of eigenvalues which satisfy a Weyl’s law \;(A) < j™/ . We repeat the same steps as above

to show that

aw

(158) Aii1(A + Q) = Ais1(A) < Dag(k + 1)1
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Hence, when 8 < 0, we conclude that

B
d .

(159) Ak (A) = A (A+ Q) < (k+1)

Case 2, where 0 < 5 < m.

Following the variational characterization of eigenvalues, we again have

(160)  M(A+Q) < max (ALS)+(QF ) < M(4)+ max|(QF. £l

fEE
lIfll2=1 [l fll2=1
In other words,
— < < .
(161) MA+Q) = N(A) € max|(QF A < max [QFl
I fll2=1 [£ll2=1
And also,
-8 B -8 8
162 = Am Am < A A flo.
(162 maxQfls = max|QAT ARl < QAT | max |47 £l
I £ll2=1 lflla=1 Il fllz=1
Since # > 0, and hence % > (, the Min-Max theorem now gives us
B B
(163) )\k(A + Q) — )\k(A) < CAQ ?%%X HA'mf |2 = CAQ ()\k(A)) m
k
lIfll2=1

Therefore, Weyl’s law on A gives
(164) Me(A + Q) — Mu(A) < Cughd.

For the reverse role, we use the same method of relative boundedness as in Case 1 to

realize that

(165) M(A) = M(A+ Q) < Dok
And so when 0 < 8 < m, we conclude that

8

d

(166) Ae(A+ Q) — M(A)] < ke,

this concludes the proof.
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4. Conclusion

In conclusion, we proved that for a surface with finitely smooth boundary, the Steklov
eigenvalues converge to those of a circle with a decay rate depending only on the order of
smoothness. Since many of the results in this manuscript hold for any dimension (for example
Theorem Proposition and Lemmas and 7 further work in this direction may
include extending the asymptotics of Steklov eigenvalues to manifolds with finitely smooth
boundary of higher dimensions. It is the diagonalization theory of Rozenblum that appears
to work only if the boundary is dimension 1 — i.e. there are no known global coordinates
or simple canonical transformations in higher dimensions.

It is still an open question to determine the optimal regularity to ensure a decaying error
term for Steklov surfaces. A result by Shamma in [18] required a C* boundary to obtain the
error term o(1). This makes our result of an O(k™!) error term requiring a C°*® boundary
not so unreasonable. It was also recently shown in [5] that such an estimate will not hold
for polygons.

One of the biggest impacts on our remainder term comes from the proof of Lemma [2.4]
where our current method essentially cuts the regularity in half (i.e. n < %) None of the
methods tried so far could remove this factor of two. It would be interesting to see if an

alternative method exists where n < r — 1.
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