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Abstract

The Steklov eigenvalue problem has been one of the central topics in spectral geometry

in the past decade. In particular, a lot of research has been focused on the asymptotic

distribution of Steklov eigenvalues. In this manuscript, we investigate asymptotics for Steklov

eigenvalues on surfaces with a boundary which is only smooth to finite order. In particular,

we obtain remainder estimates in Weyl’s law with a rate of decay depending on the order of

smoothness, which improve upon results that were previously available in the literature. The

proof uses pseudo-differential techniques for operators with non-smooth symbols inspired by

the methods developed by G. Rozenblum.



Résumé

Le problème aux valeurs propres de Steklov a été un sujet central en géométrie spectrale

dans la dernière décennie. En particulier, plusieurs activités de recherche concernent la dis-

tribution asymptotique des valeurs propres de Steklov. Dans cette thèse, nous investigons le

comportement asymptotique des valeurs propres de Steklov pour des surfaces dont la fron-

tière a une régularité finie. En particulier, nous obtenons des estimés sur le reste dans la loi

de Weyl avec un taux de décroissance qui dépend de l’ordre de la régularité, améliorant ainsi

les résultats disponibles précédemment. La preuve utilise des méthodes pseudodifférentielles

pour des opérateurs dont le symbole n’est pas lisse, inspirées des arguments développés par

G. Rozenblum.
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Contributions

The main results of this thesis are as follows: Theorem 1.2 and 1.3 generalize a known

result on asymptotics for Steklov eigenvalues on surfaces to Cr-smooth boundary, and The-

orem 1.4 gives a quantitative estimate on the difference of eigenvalues after perturbing an

operator, including Cr-smooth perturbations. The foundation for pseudo-differential oper-

ators with non-smooth symbols are given in the mapping properties of Proposition 2.2 and

2.3, and in the symbol decomposition of Lemma 2.4 and 2.5. Lemma 3.1 and 3.2 provide the

operator inverse needed to invert the diagonalization procedure in Proposition 3.3, which

yields the eigenvalue correspondence in Corollary 3.4.

These results are based on joint work with Jean Lagacé, who outlined the strategy for

Theorem 1.2 and provided the computations for Theorem 1.4. The work in Proposition

2.2, Proposition 2.3, Lemma 2.4, Lemma 2.5, Lemma 3.1, Lemma 3.2, Proposition 3.3, and

Corollary 3.4 was done solely by the author. In particular, the results Lemma 2.4, Lemma

2.5, Proposition 3.3 are previously known for the smooth case, but to best of the author’s

knowledge, are original contributions to knowledge for the non-smooth case.
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CHAPTER 1

Introduction and main results

Differential operators are useful because they represent movement and behaviour of nat-

ural objects in our physical world. When such an operator is elliptic, a door opens to find

an inverse and hence solve many of the known equations that describe physical phenomena.

The Laplacian is a natural operator, which, as the divergence of the gradient of a scalar

function on Euclidean space, represents the gradient flow of a function. By using it in a heat

equation, geometric properties of a shape can be recovered — in image processing, the heat

kernel signature can perform edge detection and shape matching [20].

Pseudo-differential operators, which generalize differential operators using the framework

of Fourier transforms, also play a key role in mathematical physics and geometric analysis.

The Dirichlet-to-Neumann operator arises in scattering theory and is often used in medical

imaging (to detect air and fluid flow) and geophysics (to detect the presence of stress fractures

and mineral deposits). Using the same procedure of shape analysis as the Laplacian, one

can capture the spatial embedding of a shape up to rigid motion [22].

In spectral geometry, one of the main goals is to relate the spectrum of an operator

acting on a manifold to the global geometry of that manifold. A way to do this is to observe

the asymptotic behaviour of the spectrum as it accumulates at infinity (or in some cases

as it accumulates to zero). For example, we know that for elliptic, self-adjoint, bounded

operators differing by a smoothing operator, eigenvalues converge to each other faster than

any algebraic order [6, Lemma 2.1]. Of particular interest are the eigenvalues of the Dirichlet-

to-Neumann operator, whose eigenvalues coincide with the eigenvalues from the Steklov

problem. As demonstrated by [15] and [6], it is known that for any Steklov surface with

smooth boundary, the eigenvalues will converge to those of a disjoint union of circles whose

lengths are those of the boundary components, regardless of any local structure on the

boundary (as well as the interior).

8



1. DIRICHLET-TO-NEUMANN OPERATOR 9

Spectral properties can be investigated using perturbation theory, which studies the

behavior of operators undergoing a small change. When it comes to perturbing a Riemannian

metric on a manifold or symbol of a pseudo-differential operator, it is often much simpler to

work under the assumption that the setting is smooth. The present manuscript is concerned

with eigenvalue asymptotics for a class of “rough” perturbations acting on elliptic, self-

adjoint, bounded operators. This class includes Cr perturbations, or more generally any

operator Q : Hβ → L2, where the error depends on r or β respectively.

Using this, we can tackle the asymptotic behaviour of Steklov eigenvalues of surfaces

with Cr boundary or with a Cr−1 weight function acting on the boundary. We generalize

the known result that eigenvalues of a Steklov surface converge to those of a circle, and we

capture the error term depending only on r.

One of the main ideas needed here is converting the asymptotics of Steklov eigenvalues

on surfaces with Cr boundary to weighted problems on unit disks by the use of conformal

maps. See the work of ([9], [10], [14]) for details on the symbol of the Dirichlet-to-Neumann

map, as well as the regularity of the coefficients using conformal maps.

1. Dirichlet-to-Neumann operator

Let Ω be a smooth surface with boundary ∂Ω and let 0 < ρ ∈ Lp(∂Ω), p > 1. The

Steklov problem on Ω with density ρ consists in finding the set of real numbers σ satisfying

the eigenvalue problem

(1)

∆u = 0 in Ω

∂νu = ρσu on ∂Ω.

The Dirichlet-to-Neumann map ΛΩ : H1(∂Ω) → L2(∂Ω) is defined as the map

(2) f 7→ Hf 7→ ∂νHf,

where Hf is the harmonic extension to the interior and ∂ν is the exterior normal derivative.

The eigenvalues of problem (1) are the eigenvalues of the operator ΛΩ,ρ = Mρ−1ΛΩ, where

for any function f , Mf is the operator of multiplication by f . From the work of Agranovich

[1], it is known that if ∂Ω is C1 except on a closed set of 0 measure, then problem (1) has a
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discrete set of eigenvalues

(3) 0 = σ0(Ω, ρ) < σ1(Ω, ρ) ≤ σ2(Ω, ρ) ≤ . . .↗ ∞,

satisfying a Weyl’s law

(4) σk = Cρk(1 + o (1)),

as k → ∞, where

(5) Cρ =
2π∫

∂Ω
ρ(x)dx

.

Our goal is to improve on the remainder estimate in (4) and to control it explicitly

with dependence on the regularity of boundary ∂Ω and density ρ. In some sense, we will

interpolate between this estimate and those obtained by Girouard, Parnovski, Polterovich

and Sher [6] in the case ρ ≡ 1 and ∂Ω smooth with J boundary components ∂Ωj, where

they obtain that

(6) σk =

(
J⋃

j=1

spec(ΛajD)

)
k

+O
(
k−∞) ,

with

(7) aj =
|∂Ωj|
2π

,

and Rozenblum [15] who obtained the result (6) for simply connected domains, which was

the first result of this kind.

Define N(σ) = #(σk < σ) as the eigenvalue counting function for Steklov eigenvalues.

The author in [8] obtained the sharp Weyl’s law for Steklov eigenvalues σk when Ω has a

smooth boundary ∂Ω,

(8) N(σ) = #(σk < σ) =
|∂Ω|
π

σ +O(1),

which is equivalent to

(9) σk =
πk

|∂Ω|
+O(1).



1. DIRICHLET-TO-NEUMANN OPERATOR 11

When the boundary is smooth, Rozenblum [15] and Edward [4] each showed that for a

bounded simply connected planar domain,

(10) σk =
πk

|∂Ω|
+O(k−∞).

In the non-smooth case, Sandgren [17] first obtained the result that for Euclidean do-

mains with C2 boundary,

(11) N(σ) =
|∂Ω|
π

σ + o(σ),

which Agranovich [1] later proved will hold for bounded planar domains with piecewise C1

boundary. Very recently, the authors in [11] showed that the same asymptotics will hold for

bounded domains with Lipschitz boundary.

Improving the error term, the authors in [5] showed that for a C2,α boundary, α > 0,

(12) N(σ) =
|∂Ω|
π

σ +O(1).

For a bounded planar domain Ω, the authors [5] also showed that for a C1,1 boundary,

(13) σk =
πk

|∂Ω|
+O(1),

where the method only needs the normal vector of ∂Ω to be Lipschitz.

As far as we are aware, there are no intermediate results which capture the regularity

needed to obtain a decaying error term as k → ∞.

Before stating our next theorem, let us fix some notation for the regularity of maps.

Definition 1.1. For n ∈ N, t ∈ [0, 1) and r = n + t we denote by Cr the space of n

times differentiable functions whose nth derivative is Hölder of exponent t.

We obtain the following result.

Theorem 1.2. Suppose that the boundary components of Ω are of class Cr(∂Ω) for r > 3.

Then, for any ε > 0, we have the estimate

(14) σk =

(
J⋃

j=1

spec(ΛajD)

)
k

+O
(
k⌈

3
2
− r

2
+ε⌉
)
.

Note that a decaying error term first appears with C5+t(∂Ω) regularity on the boundary.

In the case of a single boundary component, this can be written as
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Theorem 1.3. Let Ω be a simply connected planar domain with C5+t(∂Ω) boundary for

some t > 0. Then

(15) σ2k−1 = σ2k =
2πk

|∂Ω|
+O

(
k−1
)
.

We are most interested in the case when density ρ ≡ 1 and the boundary of Ω is Cr(∂Ω),

however the same result will hold if the density function ρ on the boundary is Cr−1(∂Ω) (see

section 3.1.1 for details about the conformal map on the boundary).

2. Eigenvalue problem

Let M be a smooth d-dimensional closed manifold and consider the eigenvalue problem

(16) Aφ = λφ,

where A is a self-adjoint, elliptic and semi-bounded below pseudo-differential operator with

rough symbol of order m. In other words, operator A has symbol a(x, ξ) ∈ CrSm
1,0 or Cr

∗S
m
1,0

for r ≥ 1 in the notation of Taylor in [21]. Since the resolvent is compact, the eigenvalue

problem (16) for m > 0 has a discrete set of eigenvalues

(17) λ1(A) ≤ λ2(A) ≤ . . .↗ ∞

accumulating only at infinity. Furthermore, they satisfy a Weyl’s law,

(18) λj(A) ≍ j
m
d .

Note that we say that an operator A acting onHs with inner product ⟨ , ⟩Hs is self-adjoint

if and only if

(19) ⟨Au, v⟩Hs = ⟨u,Av⟩Hs

for all u, v ∈ Hs. An operator A = a(x,D) of order m is called elliptic if, for some c <∞,

(20) |a(x, ξ)−1| ≤ C⟨ξ⟩−m

for |ξ| ≥ c. If there is a constant d > 0 such that

(21) ⟨u,Au⟩Hs ≥ d∥u∥2
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for all u ∈ Hs, then operator A is semi-bounded from below. We also note the case of a

smoothing operator, which is a bounded operator of order −∞.

2.1. Perturbations and eigenvalues.

Let B := A + Q be a perturbation of A by a relatively A-bounded operator Q. We are

interested in the effect of the perturbation on the eigenvalue distribution. It has been proven

in [6] (see also [4] and [15]) that if A is a classical operator with smooth coefficients and Q

is a smoothing operator, then

(22) |λj(A)− λj(B)| = O
(
j−∞) .

We are interested in the case where Q is of order β > −∞ and in obtaining quantitative

estimates on the size of the difference in (22), depending not only on β but also on m and d.

Theorem 1.4. Let M be a compact manifold of dimension d. Let A and Q be operators

acting on M , where A is an elliptic, semi-bounded below, self-adjoint, pseudo-differential

operator of order m > 0, and is Q an operator of order −∞ < β < m such that Q : Hβ → L2.

The eigenvalues of A and A+Q then satisfy

(23) |λk(A+Q)− λk(A)| = O
(
k

β
d

)
.

Note that we place no regularity restrictions on operator Q, and that it does not have

to be pseudo-differential. Hence, we can have a “rough” perturbation of A. Estimates for

operator A with symbol a(x, ξ) ∈ CrSm
1,0 or Cr

∗S
m
1,0 (and later for a(x, ξ) ∈ rΨ̃m, see section

2.2 for definition) when r ≥ 1 will follow from [21] (see also [3] and [19]).

3. Organization of the thesis

The proof of Theorem 1.2 contains three main steps. The first step in section 3.2 follows a

strategy similar to the one in [6] and isolates the boundary components, gluing a spherical cap

on each. Since the symbol of the Dirichlet-to-Neumann map is determined up to isometries

in the neighborhood of the boundary [13], the map acting on the union of the boundary

components will be the same.
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In the second step, we conformally map the problem to the unit disk in section 3.1.1,

see the work of [9] and [11] for details of that mapping. This will make the Dirichlet-to-

Neumann map into a pseudo-differential operator on the circle, with non-regular spatial

coefficients. The regularity of the coefficients will be recovered from the boundary behaviour

of conformal maps via the Kellogg-Warschawski theorem, see the monograph of Pommerenke

[14, Chapter 3].

Finally, we obtain general results for eigenvalue asymptotics of perturbations of elliptic

operators in Theorem 1.4, obtaining a quantitative version of [6, Lemma 2.1]. Combining

this with Proposition 3.3 — a diagonalization procedure similar to [15], where we now

keep track of dependence on regularity — we obtain precise eigenvalue asymptotics for the

Dirichlet-to-Neumann operator on the circle.

The proof of Theorem 1.4 makes use of Weyl’s law on relatively bounded operators.

The procedure uses the variational characterization of eigenvalues and Min-Max theorem to

arrive at a quantitative estimate on the difference of eigenvalues.

The overall outline of this manuscript is as follows: In Chapter 2 we cover the results

needed to work with pseudo-differential operators with non-smooth symbols. Chapter 3

contains the strategy, similar to Rozenblum [15] and Edward [4], where we reduce an operator

with rough symbol to be independent of the spatial variable. It also contains the main results

of this manuscript, including the full proof of Theorem 1.2 and Theorem 1.4.



CHAPTER 2

Pseudo-differential operators with non-smooth symbols

The purpose of this chapter is to develop the theory of non-smooth pseudo-differential

operators (ΨDOs). After a review of smooth ΨDOs, we introduce the operator space Cr
∗S

m
1,0

in the notation of Taylor in [21]. Although our operator space rΨ̃m mostly resembles the

symbols of Sm
1,0 which have a symbol decomposition, we introduce Cr

∗S
m
1,0 as a way to re-

cover mapping properties. In this section, we also detail two key lemmas which allow us to

decompose and reconstruct non-smooth symbols in rΨ̃m.

1. Classic ΨDOs

Consider the differential operator

(24) P (x,D) =
∑
|α|≤m

aα(x)D
α,

which has the symbol

(25) p(x, ξ) =
∑
|α|≤m

aα(x)ξ
α,

and can be written using a Fourier transform as

(26) Pu(x) =
1

(2π)d

∫
eix·ξp(x, ξ)û(ξ)dξ.

The Fourier transform is beneficial in differential equations because it can reformulate

problems in a format which is much easier to solve. Note that symbol p(x, ξ) is a polynomial

with respect to ξ. This theory can be generalized to operators defined by symbols which are

not necessarily polynomials with respect to ξ.

Using the Fourier integral representation in (26), operators p(x,D) are called pseudo-

differential operators, provided the following bound for symbol p(x, ξ) holds

(27) |Dα
xD

β
ξ p(x, ξ)| ≤ Cαβ⟨ξ⟩m−ρ|β|+δ|α|

15
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for all α and β in N. We say that p(x, ξ) ∈ Sm
ρ,δ, and that p(x,D) ∈ Ψm

ρ,δ.

Note that α can approach infinity in this definition, and hence the symbol p(x, ξ) is

smooth in x. We later introduce the case where p(x, ξ) is only Cr smooth in x, and hence

we need to impose α ≤ r.

Given a symbol a ∈ Sm
ρ,δ, one can use the formula (26) to define the map Op : Sm

ρ,δ → Ψm
ρ,δ,

defined as

(28) Op(a) = a(x,D) = Au(x) =
1

(2π)d

∫
eix·ξa(x, ξ)û(ξ)dξ.

Similarly, the symbol map σ : Ψm
ρ,δ → Sm

ρ,δ is defined as

(29) σ(A) = σ
(
a(x,D)

)
= a0(x, ξ),

where a0 is called the principal symbol of a(x,D) ∈ Ψm
ρ,δ.

If ρ, δ ∈ [0, 1], then p(x,D) : S(Rd) → S(Rd). Here, S is the Schwartz space of the set of

smooth functions Rd → C, such that for all α ∈ Nd and all N ≥ 0,

(30) |∂αxu(x)| ≤ CαN⟨x⟩−N , x ∈ Rd.

If we additionally restrict δ < 1, then p(x,D) : S ′(Rd) → S ′(Rd). S ′ is the space of tempered

distributions, the continuous dual space of Schwartz space S.

An important subclass of symbols are Sm
1,0, where the bound

(31) |Dα
xD

β
ξ p(x, ξ)| ≤ Cαβ⟨ξ⟩m−|β|

shows derivatives in x have no impact on the exponent of ⟨ξ⟩.

A symbol in Sm
1,0 is said to be classical if there are smooth pm−j(x, ξ), homogeneous in ξ

of degree m− j for |ξ| ≥ 1 (that is, pm−j(x, sξ) = sm−jpm−j(x, ξ) for s, |ξ| ≥ 1), and if

(32) p(x, ξ) ∼
∑
j≥0

pm−j(x, ξ)

in the sense that

(33) p(x, ξ)−
N∑
j=0

pm−j(x, ξ) ∈ Sm−N−1
1,0 ,

for all N . We write such classical symbols as Sm, and call pm(x, ξ) the principal symbol of

p(x,D).
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We denote S−∞ = ∩mS
m, and say two operators differ by a smoothing operator if their

difference represents a symbol in S−∞.

Given a ∈ Sm, the adjoint of a is the symbol a∗ ∈ Sm, where

(34) a∗(x, ξ) ∼
∑
|α|≥0

1

α!
Dα

x∂
α
ξ a(x, ξ).

Written as an operator, if A = Op(a) is a pseudo-differential operator of order m, then

A∗ = Op(a∗) is a pseudo-differential operator of order m.

Given two operators a1(x,D) ∈ Ψm1
ρ1,δ1

, a2(x,D) ∈ Ψm2
ρ2,δ2

, where 0 ≤ δ2 < ρ ≤ 1 with

ρ = min(ρ1, ρ2), their product is defined as

(35) p1(x,D)p2(x,D) = q(x,D) ∈ Ψm1+m2
ρ,δ ,

with δ = max(δ1, δ2), and

(36) q(x, ξ) ∼
∑
|α|≥0

i|α|

α!
Dα

ξ p1(x, ξ)D
α
xp2(x, ξ).

Note again that this product requires smoothness, particularly for the symbol p2(x, ξ).

The product in (36) captures the idea of Bony [2] who defined symbols of paradifferen-

tial operators where the regularity of each symbol term decreases provided the order also

decreases. This leads into the next section where will define the operator space rΨ̃m, which

represents non-smooth symbols behaving like Sm
1,0, but with a finite number of terms.

2. Notation and definitions

Recall that for n ∈ N, t ∈ [0, 1) and r = n + t, Cr is the space of n times differentiable

functions whose nth derivative is Hölder of exponent t.

Assuming that r ∈ (0,∞), m ∈ R, we define rTm
1,0(Ω) =

rTm(Ω) to consist of functions

a(x, ξ) : Ω× Rd → C which are Cr(Ω) in x and C∞(Rd) in ξ, satisfying

(37) |Dα
xD

β
ξ a(x, ξ)| ≤ Cαβ⟨ξ⟩m−|β|

for all β, and all |α| ≤ r, where ⟨ξ⟩ =
√

1 + |ξ|2.

We say that a(x, ξ) ∈ rS̃m(Ω) if a(x, ξ) =
n∑

j=0

aj(x, ξ), where each aj(x, ξ) ∈ r−jTm−j(Ω).
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We now define the quotient space

(38) rΨ̃m(Ω) = rΨm(Ω)
/˜

where

(39)
rΨm(Ω) = {Op

(
a(x, ξ)

)
+R

∣∣ a(x, ξ) ∈ rS̃m(Ω), R : Hm−r−ε(Ω) → L2(Ω), some ε > 0}

and A is equivalent to B if

(40) A−B : Hs+m−r−ε(Ω) → Hs(Ω)

for some ε > 0 and −r < s < r.

As was the case with smooth pseudo-differential operators in Ψm
ρ,δ, and symbols in Sm

ρ,δ,

we define the operator map Op : rS̃m → rΨ̃m using the Fourier transform as

(41) Op(a)f(x) =
∫
a(x, ξ)f̂(ξ)eixξdξ,

and define the symbol map σ : rΨ̃m → rS̃m for any operator A,

(42) σ(A) = σ
(
a(x,D)

)
= a0(x, ξ),

where a0(x, ξ) is now a principal symbol in rTm.

2.1. Besov and Zygmund spaces.

So far we only considered the space Cr of Hölder-continuous functions Cr, however a

slightly more general class of functions exists providing a framework useful to us. We will

define this space to be Cr
∗ below.

First, let us recall the Cr-norm for integer and non-integer values of r:

(43) ∥f(x)∥Cr = ∥f(x)∥Cn = max
|α|≤n

sup
x∈Ω

|Dαf(x)|, if r ∈ N,

(44)

∥f(x)∥Cr = ∥f(x)∥Cn+t = ∥f(x)∥Cn +max
|α|=n

sup
x ̸=y

|Dαf(x)−Dαf(y)|
∥x− y∥t

, if r = n+ t /∈ N.

Two common interpretations of Cr
∗ (and hence the Cr

∗ -norm) is to view them as Zygmund

spaces or L∞-based Besov spaces. Following Taylor [21] and Salo [16], we will first define

the Cr
∗ -norm using a Littlewood-Paley partition of unity.
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Define a smooth Littlewood-Paley partition of unity 1 =
∑∞

j=0 ψj(ξ), where ψ0 is sup-

ported in the annulus |ξ| ≤ 1, ψ1 is supported in 1
2

≤ |ξ| ≤ 2, and for all j > 1,

ψj(ξ) = ψ1(2
1−jξ). We now define the Cr

∗ -norm as

(45) ∥f(x)∥Cr
∗ = sup

k
2kr∥Op

(
ψk(ξ)

)
f(x)∥L∞ .

Given f(x) ∈ Cr, it is known that ∥f(x)∥Cr
∗ <∞. However, the converse breaks down if

r ∈ N. So we define the L∞-based Besov space Cr
∗ to consist of all functions f(x) such the

Cr
∗ -norm (45) is finite. In other words,

(46) Cr = Cr
∗ if r ∈ R+\N, Cr ⊂ Cr

∗ if r ∈ N.

Examples like the lacunary Fourier series g(x) =
∞∑
k=1

2−kei2
kx belong to C1

∗ but not C1,

so this inclusion is strict.

It is known that Zygmund spaces coincide with L∞-based Besov spaces (see [16]), so we

define Zygmund spaces using an equivalent Cr
∗ -norm for integer and non-integer values of r:

(47)

∥f(x)∥Cr
∗ = ∥f(x)∥Cn

∗ = ∥f(x)∥Cn−1+
∑

|α|=n−1

sup
x,h

|Dαf(x+ h)− 2Dαf(x) +Dαf(x− h)|
|h|

,

(48) ∥f(x)∥Cr
∗ = ∥f(x)∥Cn+t

∗
= ∥f(x)∥Cn+t = ∥f(x)∥Cn +max

|α|=n
sup
x̸=y

|Dαf(x)−Dαf(y)|
∥x− y∥t

.

We can now say that symbol a(x, ξ) ∈ Cr
∗S

m
1,0, provided

(49) |Dβ
ξ a(x, ξ)| ≤ Cβ⟨ξ⟩m−|β|, and

(50) ∥Dβ
ξ a(x, ξ)∥Cr

∗ ≤ Cβ⟨ξ⟩m−|β|.

We can also say that a(x, ξ) ∈ CrSm
1,0, provided we add the condition

(51) ∥Dβ
ξ a(x, ξ)∥Cj ≤ Cβ⟨ξ⟩m−|β|, where 0 ≤ j ≤ r.
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2.2. Mapping property.

We would like our operators in rΨ̃m(Ω) to have well behaved mapping properties. We

begin by recalling a property known for Cr
∗S

m
1,0.

Proposition 2.1. (Taylor [21, Proposition 9.10]): If a(x, ξ) ∈ Cr
∗S

m
1,0, then

(52) a(x,D) : Hs+m(Rd) → Hs(Rd), provided − r < s < r.

It would be useful to take advantage of the mapping properties above — i.e. if our space
rS̃m(Ω) was a subset of Cr

∗S
m
1,0 — hence, we will show the following inclusion.

Proposition 2.2. For all r ∈ (0,∞), we have that rS̃m(Ω) ⊂ Cr
∗S

m
1,0.

Proof :

Let a(x,D) ∈ rΨ̃m(Ω). In other words, let a(x, ξ) =
n∑

j=0

aj(x, ξ), where each aj(x, ξ) ∈
r−jTm−j(Ω).

We satisfy the first condition (49),

(53) |Dβ
ξ a(x, ξ)| ≤ Cβ⟨ξ⟩m−|β|,

of Cr
∗S

m
1,0 directly by the definition of r−jTm−j(Ω) (by taking no derivatives in x).

To satisfy the second condition (50),

(54) ∥Dβ
ξ a(x, ξ)∥Cr

∗ ≤ Cβ⟨ξ⟩m−|β|,

we observe the later two Cr
∗ -norms (47), (48) directly:

(55)
∥Dβ

ξ a(x, ξ)∥Cr
∗ =∥Dβ

ξ a(x, ξ)∥Cn
∗

=∥Dβ
ξ a(x, ξ)∥Cn−1 +

∑
|α|=n−1

sup
x,h

|Dα
xD

β
ξ a(x+ h, ξ)− 2Dα

xD
β
ξ a(x, ξ) +Dα

xD
β
ξ a(x− h, ξ)|

|h|

≤C(n−1)β⟨ξ⟩m−|β| + Cnβ⟨ξ⟩m−|β|,
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(56)

∥Dβ
ξ a(x, ξ)∥Cr

∗ =∥Dβ
ξ a(x, ξ)∥Cn+t

∗

=∥Dβ
ξ a(x, ξ)∥Cn+t

=∥Dβ
ξ a(x, ξ)∥Cn +max

|α|=n
sup
x ̸=y

|Dα
xD

β
ξ a(x, ξ)−Dα

xD
β
ξ a(y, ξ)|

∥x− y∥t

≤Cnβ⟨ξ⟩m−|β| + Cntβ⟨ξ⟩m−|β|.

We now have the following mapping property for operators in rΨ̃m(Ω).

Proposition 2.3. If a(x,D) ∈ rΨ̃m(Ω), then

(57) a(x,D) : Hs+m(Ω) → Hs(Ω), provided − r < s < r.

3. Symbol Calculus

In this section we present two lemmas which allow us to classify a symbol using a sum

of derivatives, and allow a symbol to be constructed from a sum of individual terms.

Lemma 2.4. Let A(x, y, ξ, η) in Ω×Ω×Rd×Rd be a function which is Cr−1 with respect

to (x, y) ∈ Ω × Ω and C∞ with respect to (ξ, η) ∈ Rd × Rd, and vanish if y ∈ Ω\K, where

K ⊂⊂ Ω. If

(58) |Dα
xD

α′

y D
β
ξD

β′

η A(x, y, ξ, η)| ≤ Cβ,β′,α,α′(1 + |ξ|)m−|β|(1 + |η|)m′−|β′|

for all β, β′ and all α + α′ ≤ r − 1, then we have that

(59) a(x, ξ) =
1

(2π)d

∫∫
A(x, y, ξ, η)ei(x−y)(η−ξ)dydη ∈ r−1S̃m+m′

(Ω)

and a(x, ξ)− aN(x, ξ) ∈ r−1−N S̃m+m′−N(Ω) for all N < r−1+m′−d
2

, where

(60) an(x, ξ) =
∑
|α|<N

1

α!
Dα

y ∂
α
ηA(x, y, ξ, η)

∣∣
y=x,η=ξ

.

Proof :

Assume that N < r−1+m′−d
2

and let

(61) a′N(x, ξ) =
1

(2π)d

∫∫ ∑
|α|<N

1

α!
(iDη)

αA(x, y, ξ, η)
∣∣
η=ξ

(η − ξ)αei(x−y)(η−ξ)dydη.
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By integrating by parts, we have that

(62)

a′N(x, ξ) =
1

(2π)d

∫∫ ∑
|α|<N

1

α!
∂αηA(x, y, ξ, η)

∣∣
η=ξ

(η − ξ)αei(x−y)(η−ξ)dydη

=
1

(2π)d

∫∫ ∑
|α|<N

1

α!
∂αηA(x, y, ξ, η)

∣∣
η=ξ

(−Dy)
αei(x−y)(η−ξ)dydη

=
1

(2π)d

∫∫ ∑
|α|<N

1

α!
Dα

y ∂
α
ηA(x, y, ξ, η)

∣∣
η=ξ

ei(x−y)(η−ξ)dydη

=
1

(2π)d

∫ ∫ ∑
|α|<N

1

α!
Dα

y ∂
α
ηA(x, y, ξ, η)

∣∣
η=ξ

e−iy(η−ξ)dy

 eix(η−ξ)dη.

Since the function A(x, y, ξ, ξ), as well as it’s derivatives up to α < N , has compact

support in y for fixed (x, ξ), the Fourier and inverse Fourier transform are well-defined.

Therefore, we have that

(63)

a′N(x, ξ) =
1

(2π)d

∫ ∑
|α|<N

1

α!
(η − ξ)α∂αηFy→η−ξ

(
A
)
(x, y, ξ, η)

∣∣
η=ξ

eix(η−ξ)dη

=
1

(2π)d

∫ ∑
|α|<N

1

α!
(η)α∂αηFy→η

(
A
)
(x, η, ξ, η)

∣∣
η=ξ

eixηdη

=
∑
|α|<N

1

α!
Dα

y ∂
α
ηA(x, y, ξ, η)

∣∣
y=x,η=ξ

= aN(x, ξ).

We know from the bound on the derivatives of A(x, y, ξ, η) that aN ∈ r−1S̃m+m′
(Ω).

Using integration by parts on a(x, ξ)− a′N(x, ξ), we now want to show that

(64) a(x, ξ)− aN(x, ξ) =
1

(2π)d

∫∫
rN(x, y, ξ, η)e

i(x−y)(η−ξ)dydη,

where

(65) rN(x, y, ξ, η) =
∑
|α|=N

N

α!
(η − ξ)α

∫ 1

0

(1− t)N−1∂αηA(x, y, ξ, η)
∣∣
η=ξ+t(η−ξ)

dt

also belongs to r−1S̃m+m′
(Ω).

Since

(66) (η − ξ)αei(x−y)(η−ξ) = (−Dy)
αei(x−y)(η−ξ),
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we can again integrate by parts to obtain

(67)

a(x, ξ)− aN(x, ξ) =
1

(2π)d

∑
|α|=N

N

α!

∫
dη

∫ 1

0

(1− t)N−1dt

×
∫
Dα

y ∂
α
ηA(x, y, ξ, η)

∣∣
η=ξ+t(η−ξ)

ei(x−y)(η−ξ)dy.

If k is a natural number, we can use

(68) ei(x−y)(η−ξ) = (1−∆y)
kei(x−y)(η−ξ)(1 + |η − ξ|2)−k

to show that

(69)

a(x, ξ)− aN(x, ξ) =
1

(2π)d

∑
|α|=N

N

α!

∫
(1+|η − ξ|2)−kdη

∫ 1

0

(1− t)N−1dt

×
∫
Bα(t, x, y, ξ, η)e

i(x−y)(η−ξ)dy,

where

(70) Bα(t, x, y, ξ, η) = (1−∆y)
kDα

y ∂
α
ηA(x, y, ξ, η)

∣∣
η=ξ+t(η−ξ)

.

We are permitted to use this identity as long as k ≤ r−1−N
2

.

Since the modulus of the integrand is not larger than

(71) C(1 + |ξ|)m(1 + |ξ + t(η − ξ)|)m′−N(1 + |η − ξ|2)−kh1(y),

where h1 ∈ C∞
0 (Rd), h1 ≥ 0, h1 = 1 in a neighborhood of the compact set K, the following

estimate

(72) |a(x, ξ)− aN(x, ξ)| ≤ C1

∫ ∫ 1

0

(1 + |ξ|)m(1 + |ξ + t(η − ξ)|)m′−N(1 + |η − ξ|2)−kdηdt

is true, provided that 2k > m′ − N + d. Combining this result with 2k + N ≤ r − 1 from

above, this process holds as long as d+m′ < r − 1.

We now divide the domain of integration into two:

(73)
Ω1 = {(t, η) : |t(η − ξ)| < |ξ

2
|},

Ω2 = {(t, η) : |t(η − ξ)| ≥ |ξ
2
|}.
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In the domain Ω1, the following inequality holds:

(74) |ξ| ≤ 2|ξ + t(η − ξ)| ≤ 3|ξ|.

We then have that the integral over Ω1 does not exceed

(75) C2

∫∫
Ω1

(1 + |ξ|)m+m′−N(1 + |η − ξ|2)−k+
|m′−N|

2 dtdη ≤ C3(1 + |ξ|)m+m′−N ,

provided that we have 2k > d+ |m′ −N |.

Note that the inequality 2k > d+ |m′−N | additionally tells us that d+2N −m′ < r−1.

For a Dirichlet-to-Neumann operator acting on the circle, where d = 1 and m′ = 1, this puts

a cap on how big N can be depending on the regularity r.

In the domain Ω2, the following inequalities hold:

(76)
|ξ| ≤ 2|η − ξ|,

1 + |ξ + t(η − ξ)| ≤ 1 + 3|ξ − η|.

We then have that the integral over Ω2 does not exceed

(77) C4

∫∫
Ω2

(1 + |ξ|)m+m′−N(1 + |η − ξ|2)−k+
|m′−N|

2 dtdη ≤ C5(1 + |ξ|)m+m′−N ,

provided that 2k > |m′ −N |+ d.

To see this, when m′ ≥ N , we have that

(78)
(1 + |ξ + t(η − ξ)|)m′−N ≤ 3m

′−N(1 + |η − ξ|)m′−N

≤ 3m
′−N(1 + |ξ|)m′−N(1 + |η − ξ|)m′−N .

And when m′ < N , we have that

(79) (1 + |ξ + t(η − ξ)|)m′−N ≤ 1 ≤ 2N−m′
(1 + |ξ|)m′−N(1 + |η − ξ|)N−m′

.

Therefore, we have that for all 2N < r − 1 +m′ − d,

(80) |a(x, ξ)− an(x, ξ)| ≤ C6(1 + |ξ|)m+m′−N .

If we differentiate both sides of (65) with respect to x, then we obtain

(81) |Dα
xD

β
ξ [a(x, ξ)− aN(x, ξ)]| ≤ C ′

αβ(1 + |ξ|)m+m′−N−|β|.

Observe that we cannot differentiate any more than (r − 1 +m′ − d − 2N) times in x.

Using that rS̃m(Ω) is a vector space, this concludes that a ∈ r−1S̃m+m′
(Ω).
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Lemma 2.5. Let aj(x, ξ) ∈ r−jS̃m−j(Ω) for all 0 ≤ j < r. Then there exists a symbol

a ∈ rS̃m(Ω), such that for any 0 < N < r − 1,

(82) a(x, ξ)−
N∑
j=0

aj(x, ξ) ∈ r−N−1S̃m−N−1(Ω).

The symbol a(x, ξ) is unique modulo an operator R : Hm−r−ε(Ω) → L2(Ω), some ε > 0.

Proof :

Let h ∈ C∞(Rd) so that h(ξ) = 0 for |ξ| ≤ 1 and h(ξ) = 1 for |ξ| ≥ 2. Let Ω′ be an open

set containing the closure of Ω. We use h to cut away the support near ξ = 0 as follows. Let

{tj} be a decreasing sequence of positive numbers such that tj → 0 and define

(83) a(x, ξ) =

⌊r⌋−2∑
j=0

h(ξtj)aj(x, ξ).

For any fixed ξ, h(ξtj) = 0 for all but a finite number of j, so this sum is well defined

and continuous for (x, ξ). For 0 < j ≤ r − 2 we have

(84) |aj(x, ξ)| ≤ Cj(1 + |ξ|)m−j = Cj
(1 + |ξ|)m

(1 + |ξ|)j
.

If |ξ| is large enough, Cj

(1+|ξ|)j is as small as we like and therefore, by passing to a subse-

quence of tj, we can assume that

(85)
∣∣h(ξtj)aj(x, ξ)∣∣ ≤ |aj(x, ξ)| ≤

(1 + |ξ|)m

2j
for 0 < j ≤ r − 2.

This implies that

(86) |a(x, ξ)| ≤
⌊r⌋−2∑
j=0

∣∣h(ξtj)aj(x, ξ)∣∣ ≤ ⌊r⌋−2∑
j=0

(1 + |ξ|)m

2j
≤ C(1 + |ξ|)m.

We can use a similar argument for the derivatives (provided we stay within regularity for

the finite number of terms), and use a diagonalization argument on the resulting subsequences

to conclude that a(x, ξ) ∈ rS̃m(Ω). For example, using that

(87) a(x, ξ) =

⌊r⌋−2∑
j=0

h(ξtj)aj(x, ξ),
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we have the derivative

(88) Dx

(
a(x, ξ)

)
=

⌊r⌋−2∑
j=0

h(ξtj)Dx

(
aj(x, ξ)

)
.

Note that for the term with lowest regularity, a⌊r⌋−2(x, ξ) belongs to 2S̃m−r+2(Ω), so

taking a derivative in x still yields a well defined and continuous sum for (x, ξ). For 0 < j ≤

r − 2 we again have that

(89)
∣∣Dx

(
aj(x, ξ)

)∣∣ ≤ Cj(1 + |ξ|)m−j = Cj
(1 + |ξ|)m

(1 + |ξ|)j
.

Using the same strategy as above, we arrive at

(90)
∣∣Dx

(
a(x, ξ)

)∣∣ ≤ ⌊r⌋−2∑
j=0

∣∣h(ξtj)Dx

(
aj(x, ξ)

)∣∣ ≤ ⌊r⌋−2∑
j=0

(1 + |ξ|)m

2j
≤ C(1 + |ξ|)m.

The supports of all aj(x, ξ) are contained compactly in Ω, so the support of a(x, ξ) is

contained in Ω which itself is contained in Ω′.

Now we can apply exactly the same arguments to the sum
∑N

j=1 aj(x, ξ) to show that it

belongs to r−1S̃m−1(Ω). We continue in this fashion and use a diagonal argument on the

resulting subsequences to conclude that

(91)
⌊r⌋−1∑
j=N+1

h(ξtj)aj(x, ξ) ∈ r−N−1S̃m−N−1(Ω).

Since

(92) aj(x,D)− h(Dtj)aj(x,D) : Hm−j+s(Ω) → Hs(Ω),

provided −(r − j) < s < r − j, this implies that

(93) a−
N∑
j=0

aj ∈ r−N−1S̃m−N−1(Ω),

and concludes the proof.



CHAPTER 3

Main results

1. Symbol of the Dirichlet-to-Neumann map

In this section we compute the symbol of the Dirichlet-to-Neumann map using the strat-

egy of Rozenblum/Edward on “near-similar” operators with non-smooth symbols acting on

the circle, and their relationships between eigenvalues.

1.1. Reduction to the disk.

Here we transform the Dirichlet-to-Neumann operator ΛΩ(∂Ω) into Λδ(S1) using a con-

formal map between Ω and the unit disk.

In the proof of Theorem 1.2, we will have to isolate boundary components and glue a

cap on each. Assume for now that Ω only has one boundary component. The strategy is to

glue a disk to the collar neighbourhood of this boundary component, and discard the rest of

the surface. Let ΩC be this topological disk. Since the symbol of both ΛΩ and ΛΩC
depend

solely on data obtained from a neighbourhood of the boundary, which they share, they have

the same symbol in rS̃1. The conformal map in question is between the unit disk D and ΩC .

Let φ be the conformal map (given by the Riemann mapping theorem) which maps D

onto Ω and maps S1 to ∂ΩC . As shown in [11, Theorem 1.6], the following two Steklov

problems are isospectral:

(94)

∆u = 0 in ΩC

∂νu = σu on ∂ΩC ,

∆u = 0 in D

∂νu = δσu on S1.

Here, we have that δ = |φ′| > 0 from our conformal map between D and ΩC .

Now, using ([14], Thm 3.6) and [9], we isolate each boundary component of Ω by cutting

a thin neighbourhood of the boundary and gluing on a topological disk, and then conformally

27
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mapping each topological disk Ωi to the unit disk D. Given the initial Cr regularity on the

boundary, and the derivative required from the conformal map, each Dirichlet-to-Neumann

operator ΛΩi
∈ rΨ̃1(∂Ωi) is transformed into Λδi ∈ r−1Ψ̃1(S1). More precisely, let φi be the

conformal map from D to Ωi, and let δi = |φ′
i|. We have that each Dirichlet-to-Neumann

operator is given by Λδi with symbol |ξ|
δi(x)

and corresponds to the weighted Steklov problem

(95)

∆u = 0 in D

∂νu = δiσu on S1.

1.2. Diagonalization of the symbol.

In this section, we diagonalize the symbol of operator Λδ(S1), which is motivated by [12].

The term diagonalize refers to the process of making the symbol independent of the spatial

variable x as far as regularity will allow.

The diagonalization is performed individually on each component, so let ΩC be our

topological disk. After our conformal map we have the following Steklov problem,

(96)

∆u = 0 in D

∂νu = δσu on S1.

where δ = |φ′| > 0 from the conformal map between D and ΩC .

Recalling the Dirichlet-to-Neumann map ΛD : H1(S1) → L2(S1), the eigenvalues of prob-

lem (96) are the eigenvalues of the operator 1
δ(x)

ΛD = Λδ. The total symbol of the operator

Λδ is given by |ξ|
δ(x)

, which is Cr−1(S1) in x (because δ(x) is Cr−1 from the conformal map

using the Kellogg-Warschawski theorem [14]).

We now compare δ(x) ∈ Cr−1(S1) to Example 1 in [15], where g(x) ∈ C∞(S1). We want

to show, using a procedure of near similarity, that we can diagonalize the symbol of Λδ to

depend only on ξ (up to a perturbation Hβ → L2 which depends on the regularity of δ(x)).

We define

(97) L =
1

2π

∫ 2π

0

δ(x)dx

and

(98) V (x, η) =
η

L

∫ x

0

δ(t)dt,
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and since V is a generating function for the canonical transformation (y, ξ) = T (x, η) given

by the relations ξ = ∂V (x,η)
∂x

, y = ∂V (x,η)
∂η

, we define the Fourier integral operator acting on S1,

(99) Φu(x) =

∫
eiV (x,ξ)û(ξ)dξ.

We will later require that Φ is invertible. For our choice of V (x, ξ) above, we can define

Φ−1 explicitly using the following two lemmas.

Lemma 3.1. The adjoint Φ∗ of operator Φ is defined as

Φ∗u(x) =

∫∫
u(y)e−iV (y,η)eixηdydη.

Proof :

By using the inner product ⟨u, v⟩L2(S1), we have

(100)

〈
Φ∗u(x), v(x)

〉
=
〈
u(x),Φv(x)

〉
=

〈
u(x),

∫
eiV (x,ξ)v̂(ξ)dξ

〉
=

∫
u(x)

∫
eiV (x,ξ)v̂(ξ)dξdx

=

∫∫∫
u(x)v(y)eiyξeiV (x,ξ)dydξdx

=

〈∫∫
u(x)eiyξeiV (x,ξ)dξdx, v(y)

〉
.

Lemma 3.2. The inverse Φ−1 of operator Φ is given by Φ−1 = Φ∗M , where M is the

operator of multiplication by δ(x)
L

.

Proof :

Given that Mu(x) = δ(x)
L
u(x) and Φv(x) =

∫
v̂(ξ)eiV (x,ξ)dξ, we have

(101)

MΦu(x) =M

(∫
û(ξ)eiV (x,ξ)dξ

)
=
δ(x)

L

(∫
û(ξ)eiV (x,ξ)dξ

)
=

∫
δ(x)

L
û(ξ)eiV (x,ξ)dξ.
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Now given Φ∗u(x) =
∫∫

u(y)e−iV (y,η)eixηdydη, we have

(102)

Φ∗MΦu(x) =Φ∗
(∫ δ(x)

L
û(ξ)eiV (x,ξ)dξ

)
=

∫∫ (∫ δ(y)

L
û(ξ)eiV (y,ξ)dξ

)
e−iV (y,η)eixηdydη

=

∫∫∫
δ(y)

L
û(ξ)eiV (y,ξ)e−iV (y,η)eixηdξdydη.

After the change of variable z = 1
L

∫ y

0
δ(t)dt, we have

(103)

Φ∗MΦu(x) =

∫∫∫
û(ξ)eizξe−izηeixηdξdzdη

=

∫∫
u(z)e−izηeixηdzdη

=

∫
û(η)eixηdη

=u(x).

We now wish to diagonalize the symbol |ξ|
δ(x)

of operator Λδ to depend only on ξ, as far

as the regularity from δ(x) ∈ Cr−1(S1) will allow.

Proposition 3.3. For all N < r−1
2

, there exists an operator BN ∈ r−1Ψ̃1(S1) such that

the principal symbol (and following N − 1 terms) of BN depends only on ξ, and where

(104) ΛδΦ− ΦBN ∈ r−1−NΨ̃1−N(S1).

Proof :

Our goal is to find

(105) b(x, ξ) =
N−1∑
j=0

b1−j(ξ) + b̃(x, ξ)

where each bj is homogeneous of order j in ξ. To do this, we will decompose the symbol of

both operators ΛδΦ and ΦBN acting in L2(S1) and relate terms of the same order.
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We first observe the symbol of ΛδΦ:

(106)

ΛδΦu(x) = Λδ

( ∫
eiV (x,ξ)û(ξ)dξ

)
=

∫∫∫
|η|
δ(x)

eiV (y,ξ)û(ξ)e−iyηeixηdξdydη

=

∫∫∫
|η|
δ(x)

ei(x−y)ηei
(
V (y,ξ)−V (x,ξ)

)
eiV (x,ξ)û(ξ)dξdydη

=

∫
a(x, ξ)eiV (x,ξ)û(ξ)dξ,

where

(107) a(x, ξ) =

∫∫
|η|
δ(x)

ei(x−y)ηei
(
V (y,ξ)−V (x,ξ)

)
dydη.

We localize our symbol a(x, ξ) by introducing cutoff functions h1(x, y) and h2(ξ, η) to

define a′(x, ξ).

(108) a′(x, ξ) =

∫∫
|η|
δ(x)

ei(x−y)ηei
(
V (y,ξ)−V (x,ξ)

)
h1(x, y)h2(ξ, η)dydη

Given the identity

(109) V (y, ξ)− V (x, ξ) =
ξ

L
(y − x) ·

∫ 1

0

δ(x+ t(y − x))dt,

we have that

(110)
a′(x, ξ) =

∫∫
|η|
δ(x)

ei(x−y)η− ξ
L

∫ 1
0 δ(x+t(y−x))dt·(y−x)h1(x, y)h2(ξ, η)dydη

=

∫∫
|η|
δ(x)

ei(x−y)(η− ξ
L

∫ 1
0 δ(x+t(y−x))dt)h1(x, y)h2(ξ, η)dydη.

Using the change of variable η̃ = η − ξ
L

∫ 1

0
δ(x+ t(y − x))dt+ ξ,

(111)

a′(x, ξ) =

∫∫ |η̃ + ξ
L

∫ 1

0
δ(x+ t(y − x))dt− ξ|

δ(x)
ei(x−y)(η̃−ξ)h1(x, y)

× h2

(
ξ, η̃ +

ξ

L

∫ 1

0

δ(x+ t(y − x))dt− ξ

)
dydη̃

=

∫∫
A(x, y, ξ, η̃)ei(x−y)(η̃−ξ)dydη̃,



32 3. MAIN RESULTS

where

(112)

A(x, y, ξ, η̃) =
|η̃ + ξ

L

∫ 1

0
δ(x+ t(y − x))dt− ξ|

δ(x)
h1(x, y)h2

(
ξ, η̃ +

ξ

L

∫ 1

0

δ(x+ t(y − x))dt− ξ

)
.

Hence, using Lemma 2.4, we have that for all N < r−1
2

,

(113) a′(x, ξ) =
∑
α<N

1

α!
∂αη̃D

α
yA(x, y, ξ, η̃)|y=x, η̃=ξ + p(x, ξ),

where Op
(
p(x, ξ)

)
∈ r−1−NΨ̃1−N(S1).

Since we want to compute the derivatives

(114) Dα
y ∂

α
η̃A(x, y, ξ, η̃))|y=x, η̃=ξ,

we let G′(x) = δ(x) and show the following in advance:

(115)

∫ 1

0

δ
(
x+ t(y − x)

)
dt
∣∣∣
y=x

= lim
y→x

∫ 1

0

δ
(
x+ t(y − x)

)
dt

= lim
y→x

∫ y

x

δ
(
s
)

y − x
ds

= lim
y→x

G(y)−G(x)

y − x

= G′(x)

= δ(x).

We would like to make precise the cut-off function h2(ξ, η) so that h2
(
ξ, ξ

L
δ(x)

)
≡ 1 for

any x. Since δ(x) > 0 is bounded above and below, we use the following:

(116) h2(ξ, η) =


1, min(δ(x))

L
ξ ≤ η ≤ max(δ(x))

L
ξ

0, η ≤ min(δ(x))
2L

ξ

0, 2max(δ(x))
L

ξ ≤ η.
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Case 1, when α = 0.

(117)∣∣η̃ + ξ
L

∫ 1

0
δ(x+ t(y − x))dt− ξ

∣∣
δ(x)

h1(x, y)h2

(
ξ, η̃ +

ξ

L

∫ 1

0

δ(x+ t(y − x))dt− ξ

) ∣∣∣
y=x, η̃=ξ

=

∣∣η̃ + ξ
L
δ(x)− ξ

∣∣
δ(x)

h2

(
ξ, η̃ +

ξ

L
δ(x)− ξ

) ∣∣∣
η̃=ξ

=

∣∣ ξ
L
δ(x)

∣∣
δ(x)

h2

(
ξ,
ξ

L
δ(x)

)
=

∣∣ ξ
L
δ(x)

∣∣
δ(x)

=
|ξ|
L
.

Case 2, when α ≥ 1.

Looking at the expression

(118)
1

α!
Dα

y ∂
α
η̃

(∣∣η̃ + ξ
L

∫ 1

0
δ(x+ t(y − x))dt− ξ

∣∣
δ(x)

h1h2

)∣∣∣
y=x, η̃=ξ

and using the fact that

(119)
∂

∂η̃
h2

(
ξ, η̃ +

ξ

L

∫ 1

0

δ(x+ t(y − x))dt− ξ

) ∣∣∣
y=x, η̃=ξ

=
∂

∂η̃
h2

(
ξ,
ξδ(x)

L

)
= 0,

we can see that when α ≥ 1, any number of derivatives will result in zero (provided η ̸= 0).

Any derivative on h1 and h2 will become zero after restricting to y = x and η̃ = ξ. And

regardless of the number of derivatives in y the term
∣∣η̃ + ξ

L

∫ 1

0
δ(x + t(y − x))dt − ξ

∣∣ sees,

adding a single derivative in η̃ will make that zero.

In other words, we have that

(120) a′(x, ξ) =
|ξ|
L

+ 0 + ...+ 0 + p(x, ξ),

where there are N − 1 zeros, and where Op
(
p(x, ξ)

)
∈ r−1−NΨ̃1−N(S1) for all N < r−1

2
.
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Now we want to observe the symbol of ΦBN :

(121)

ΦBNu(x) = Φ

(∫
bN(x, ξ)û(ξ)e

ixξdξ

)
=

∫∫∫
bN(y, ξ)û(ξ)e

iy(ξ−η)eiV (x,η)dydξdη

=

∫∫∫
bN(y, ξ)e

iy(ξ−η)ei
(
V (x,η)−V (x,ξ)

)
eiV (x,ξ)û(ξ)dξdydη

=

∫
g(x, ξ)eiV (x,ξ)û(ξ)dξ,

where

(122) g(x, ξ) =

∫∫
bN(y, ξ)e

iy(ξ−η)ei
(
V (x,η)−V (x,ξ)

)
dydη.

Following the same strategy as above, we look at g(x, ξ) as a symbol in S1 and localize

with cut-off functions h3(x, y) and h4(ξ, η) to define g′(x, ξ).

(123) g′(x, ξ) =

∫∫
bN(y, ξ)e

iy(ξ−η)ei
(
V (x,η)−V (x,ξ)

)
h3(x, y)h4(ξ, η)dydη.

Simplifying the expression V (x, η)− V (x, ξ) gives

(124) g′(x, ξ) =

∫∫
bN(y, ξ)e

i(η−ξ)( 1
L

∫ x
0 δ(t)dt−y)h3(x, y)h4(ξ, η)dydη.

Using the change of variable ỹ = y − 1
L

∫ x

0
δ(t)dt+ x, we have that

(125)

g′(x, ξ) =

∫∫
bN

(
1

L

∫ x

0

δ(t)dt+ ỹ − x, ξ

)
h3

(
x,

1

L

∫ x

0

δ(t)dt+ ỹ − x

)
h4(ξ, η)e

i(η−ξ)(x−ỹ)dỹdη

=

∫∫
G(x, ỹ, ξ, η)ei(η−ξ)(x−ỹ)dỹdη,

where

(126) G(x, ỹ, ξ, η) = bN

(
1

L

∫ x

0

δ(t)dt+ ỹ − x, ξ

)
h3

(
x,

1

L

∫ x

0

δ(t)dt+ ỹ − x

)
h4(ξ, η).

We can again use Lemma 2.4 to show that for all N < r−1
2

,

(127) g′(x, ξ) =
∑
α<N

1

α!
Dα

ỹ ∂
α
ηG(x, ỹ, ξ, η)

∣∣
ỹ=x, η=ξ

+ q(x, ξ),

where Op
(
q(x, ξ)

)
∈ r−1−NΨ̃1−N(S1).
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We again need to compute the derivativesDα
ỹ ∂

α
ηG(x, ỹ, ξ, η)

∣∣
ỹ=x, η=ξ

. This time, we would

like to make precise the cut-off function h3(x, y) so that h3
(
x, 1

L

∫ x

0
δ(t)dt

)
≡ 1 for any x.

We use the following:

(128) h3(x, y) =


1, min(δ(x))

L
x ≤ y ≤ max(δ(x))

L
x

0, y ≤ min(δ(x))
2L

x

0, 2max(δ(x))
L

x ≤ y.

Case 1, when α = 0.

(129)

bN

(
1

L

∫ x

0

δ(t)dt+ ỹ − x, ξ

)
h3

(
x,

1

L

∫ x

0

δ(t)dt+ ỹ − x

)
h4(ξ, η)

∣∣∣
ỹ=x, η=ξ

= bN

(
1

L

∫ x

0

δ(t)dt+ ỹ − x, ξ

)
h3

(
x,

1

L

∫ x

0

δ(t)dt+ ỹ − x

) ∣∣∣
ỹ=x

= bN

(
1

L

∫ x

0

δ(t)dt, ξ

)
h3

(
x,

1

L

∫ x

0

δ(t)dt

)
= bN

(
1

L

∫ x

0

δ(t)dt, ξ

)
.

Case 2, when α ≥ 1.

Observe that no term in the product of G(x, ỹ, ξ, η) is a function of both ỹ and η. We

therefore have that

(130) g′(x, ξ) = bN

(
1

L

∫ x

0

δ(t)dt, ξ

)
+ 0 + ...+ 0 + q(x, ξ),

where there are N − 1 zeros, and where Op
(
q(x, ξ)

)
∈ r−1−NΨ̃1−N(S1) for all N < r−1

2
.

By comparing terms of the same order from a′(x, ξ) and g′(x, ξ), we see that bN
(
1
L

∫ x

0
δ(t)dt, ξ

)
=

|ξ|
L

. The zeros also all match up to the error terms p and q, which we note that both are

order 1−N . Lemma 2.5 guarantees the existence of operator BN ∈ r−1Ψ̃1(S1).

Hence, we have that

(131)
(
ΛδΦ− ΦBN

)
u(x) =

∫ (
a(x, ξ)− g(x, ξ)

)
eiV (x,ξ)û(ξ)dξ,

where after setting h1 = h3 and h2 = h4, the localized symbol is

(132) a′(x, ξ)− g′(x, ξ) ∈ r−1−N S̃1−N(S1).
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We conclude that

(133) ΛδΦ− ΦBN ∈ r−1−NΨ̃1−N(S1).

Given the invertibility of Φ in Lemma 3.2, the following corollary immediately follows.

Corollary 3.4. The eigenvalues of Λδ and BN admit a one-to-one correspondence such

that

(134) |σk(Λδ)− σk(BN)| = O
(
k⌈

3
2
− r

2
+ε⌉
)
.

Proof :

Proposition 3.3 tells us that there is an operator R = ΛδΦ − ΦBN which belongs to
r−1−NΨ̃1−N(S1) for N < r−1

2
.

If we let N = ⌊ r−1
2

− ε⌋, we have that

(135)

(1−N) = 1− ⌊r − 1

2
− ε⌋

= 1 + ⌈−r − 1

2
+ ε⌉

= ⌈1− r − 1

2
+ ε⌉

= ⌈3
2
− r

2
+ ε⌉.

Hence, the operator R maps H⌈ 3
2
− r

2
+ε⌉(S1) → L2(S1).

The inverse of Φ is computed exactly as an operator of order 0 in Lemma 3.2. The

following computation,

(136)

ΛδΦ− ΦBN = R

Φ−1ΛδΦ− Φ−1ΦBN = Φ−1R

Φ−1ΛδΦ−BN = Φ−1R,

demonstrates that Φ−1R : H⌈ 3
2
− r

2
+ε⌉(S1) → L2(S1).

Combining this with the estimate in Theorem 1.4, we have

(137)
∣∣σk(Φ−1ΛδΦ)− σk(BN)

∣∣ = O
(
k⌈

3
2
− r

2
+ε⌉
)
.



2. PROOF OF THEOREM 1.2 37

It is known that for any invertable operator Φ, λ is an eigenvalue of A if and only if it is

an eigenvalue of Φ−1AΦ. Therefore,

(138)
∣∣σk(Λδ)− σk(BN)

∣∣ = O
(
k⌈

3
2
− r

2
+ε⌉
)
.

2. Proof of Theorem 1.2

We will first assume that there is only one boundary component.

Similar to [6], we glue a spherical cap to a collar neighbourhood of the boundary of Ω

and discard the rest of the surface. Let ΩC be this topological disk. Since Ω and ΩC are

isometric in a neighborhood of ∂Ω, we have that the structure of the problem is unchanged

because operators ΛΩ and ΛΩC
have the same symbol in rS̃1.

Note that when ∂Ω is smooth, Lee and Uhlmann [13] showed that operators ΛΩ and

ΛΩC
have the same full symbol. Our case is similar, except that symbols in rS̃1 have a finite

number of terms depending on the regularity. Taking into account the Cr boundary ∂Ω, we

use the same recursive argument as [13] until we have to stop.

We have that ΛΩ − ΛΩC
: H1−r−ε(∂Ω) → L2(∂Ω), for some ε > 0. Hence, Theorem 1.4

gives the estimate

(139)
∣∣σk(ΛΩ)− σk(ΛΩC

)
∣∣ = O(k1−r−ε).

Now, using [14] and [9], we conformally map the topological disk ΩC to the unit disk,

which makes it a Dirichlet-to-Neumann map an operator in r−1Ψ̃m(S1). More precisely, let

φ be the conformal map from D to ΩC , and let δ = |φ′|. As shown in [11, Theorem 1.6], the

Dirichlet-to-Neumann map is given by 1
δ
ΛD = Λδ and corresponds with the following two

isospectral Steklov problems:

(140)

∆u = 0 in ΩC

∂νu = σu on ∂ΩC ,

∆u = 0 in D

∂νu = δσu on S1.

Due to the conformal map, the operators ΛΩC
and Λδ have isospectral Steklov problems,

and hence the spectrum of both coincide.
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We now use a similar approach to Example 1 in [15], where instead of a smooth function,

we have that g(x) = δ(x) ∈ Cr−1(S1). Using near similarity on operator Λδ, we can diago-

nalize the symbol of Λδ to depend only on ξ (up to a finite number of steps which depend

only on the regularity of δ(x)).

Proposition 3.3 and Corollary 3.4 tell us that for a given operator Λδ, we can find an

operator BN ∈ r−1Ψ̃1(S1) such that

(141) ΛδΦ− ΦBN ∈ r−1−NΨ̃1−N(S1).

for integer N < r−1
2

, and that the eigenvalues of Λδ and BN admit a one-to-one correspon-

dence

(142)
∣∣σk(Λδ)− σk(BN)

∣∣ = O
(
k⌈

3
2
− r

2
+ε⌉
)
.

In other words, the eigenvalues of Λδ behave as

(143) σk(Λδ) = σk(BN) +O
(
k⌈

3
2
− r

2
+ε⌉
)
.

Recall that the symbol of BN is given explicitly as b(x, ξ) = |ξ|
L
+0+ ...+0+ r(x, ξ), and

that the spectrum of an operator acting on S1 with symbol |ξ|
L

is well known [7] as

(144) spec(BN) = {0, 2π
L
,
2π

L
,
4π

L
,
4π

L
,
6π

L
,
6π

L
, ...}.

Hence, after we combine that the symbols of ΛΩ and ΛΩC
coincide to yield

(145)
∣∣σk(ΛΩ)− σk(ΛΩC

)
∣∣ = O(k1−r−ε),

and that ΛΩC
and Λδ are isospectral to yield

(146) spec(ΛΩC
) = spec(Λδ),

and that Λδ can be diagonalized as BN to yield

(147)
∣∣σk(Λδ)− σk(BN)

∣∣ = O
(
k⌈

3
2
− r

2
+ε⌉
)
,

we conclude that

(148) σk(ΛΩ) = spec(BN)k +O
(
k⌈

3
2
− r

2
+ε⌉
)
.
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In other words, for one boundary component we have

(149) σk(ΛΩ) =
πk

|∂Ω|
+O

(
k⌈

3
2
− r

2
+ε⌉
)
.

Now let us consider multiple boundary components, where we will use that the Steklov

spectrum of a disjoint union of domains is the union of the spectra.

Let Ω be a domain which has J boundary components, and let Cr be the lowest regularity

of each of the boundary components ∂Ωi, i = 1, ..., J . For each boundary component, we

build a topological disk Ωi by keeping a neighborhood of the boundary ∂Ωi and gluing on a

spherical cap. Let Ω# be the disjoint union of the J topological disks Ωi. Since Ω and Ω# are

isometric in the neighborhoods of ∂Ω, we again have that Dirichlet-to-Neumann operators

ΛΩ and ΛΩ#
have the same symbol.

Using Theorem 1.4, we again have the eigenvalue estimate for operators ΛΩ and ΛΩ#
,

(150)
∣∣σk(ΛΩ)− σk(ΛΩ#

)
∣∣ = O(k1−r−ε).

It follows from [14] and [9] that each topological disk Ωi is conformally equivalent to the

unit disk D. Let ΛΩi
be the Dirichlet-to-Neumann operator acting on boundary ∂Ωi, and let

Λδ,i be the Dirichlet-to-Neumann operator acting on S1 after the conformal map. Finally, let

Bi,N be the diagonalized Dirichlet-to-Neumann operator of Λδ,i after applying Proposition

3.3.

For example, the spectrum of Bi,N is given by

(151) spec(Bi,N) =
{
0,

2π

Li

,
2π

Li

,
4π

Li

,
4π

Li

,
6π

Li

,
6π

Li

, ...
}
,

where Li = |∂Ωi| is the length of boundary component ∂Ωi.

By taking the union of all J spectra, we therefore have

(152) σk(ΛΩ) =
( J⋃

j=1

spec(Bi,N)
)
k
+O

(
k⌈

3
2
− r

2
+ε⌉
)
.
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3. Proof of Theorem 1.4

It follows from the spectral theorem that A has bounded below, discrete spectrum of

eigenvalues {λj(A)} accumulating at infinity, each with finite multiplicity, and there is a cor-

responding complete orthonormal basis {φj} of L2(M). Because we will be taking asymp-

totics as j → ∞, we can assume without loss of generality that the eigenvalues λj are

positive.

Let Ek ∈ L2(M) be the span of the first k eigenfunctions φ1, ..., φk, and denote ∥ · ∥2 to

be the L2 norm ∥ · ∥L2(M), and ∥ · ∥ to be the operator norm ∥ · ∥L2(M)→L2(M).

Case 1, where β ≤ 0.

Following the variational characterization of eigenvalues we have

(153) λk+1(A+Q) ≥ min
f⊥Ek

∥f∥2=1

(⟨Af, f⟩+ ⟨Qf, f⟩) ≥ λk+1(A)− max
f⊥Ek

∥f∥2=1

|⟨Qf, f⟩|.

Using Cauchy-Schwarz and the fact that ∥f∥2 = 1, we have

(154) λk+1(A)− λk+1(A+Q) ≤ max
f⊥Ek

∥f∥2=1

|⟨Qf, f⟩| ≤ max
f⊥Ek

∥f∥2=1

∥Qf∥2.

And also,

(155) max
f⊥Ek

∥f∥2=1

∥Qf∥2 = max
f⊥Ek

∥f∥2=1

∥QA
−β
m A

β
mf∥2 ≤ ∥QA

−β
m ∥ max

f⊥Ek

∥f∥2=1

∥A
β
mf∥2.

Since β ≤ 0, and hence β
m

≤ 0, the Min-Max theorem gives us

(156) λk+1(A)− λk+1(A+Q) ≤ CA,Q max
f⊥Ek

∥f∥2=1

∥A
β
mf∥2 = CA,Q

(
λk+1(A)

) β
m .

Therefore, Weyl’s law on A gives us

(157) λk+1(A)− λk+1(A+Q) ≤ CA,Q(k + 1)
β
d .

To show the reverse role, recall that Q is relatively bounded with respect to A. Hence, we

have that A+Q behaves similarly to A in that A+Q has bounded below, discrete spectrum

of eigenvalues which satisfy a Weyl’s law λj(A) ≍ jm/d. We repeat the same steps as above

to show that

(158) λk+1(A+Q)− λk+1(A) ≤ DA,Q(k + 1)
β
d .



3. PROOF OF THEOREM 1.4 41

Hence, when β ≤ 0, we conclude that

(159) |λk+1(A)− λk+1(A+Q)| ≍ (k + 1)
β
d .

Case 2, where 0 < β < m.

Following the variational characterization of eigenvalues, we again have

(160) λk(A+Q) ≤ max
f∈Ek

∥f∥2=1

(⟨Af, f⟩+ ⟨Qf, f⟩) ≤ λK(A) + max
f∈Ek

∥f∥2=1

|⟨Qf, f⟩|.

In other words,

(161) λk(A+Q)− λk(A) ≤ max
f∈Ek

∥f∥2=1

|⟨Qf, f⟩| ≤ max
f∈Ek

∥f∥2=1

∥Qf∥2.

And also,

(162) max
f∈Ek

∥f∥2=1

∥Qf∥2 = max
f∈Ek

∥f∥2=1

∥QA
−β
m A

β
mf∥2 ≤ ∥QA

−β
m ∥ max

f∈Ek

∥f∥2=1

∥A
β
mf∥2.

Since β > 0, and hence β
m
> 0, the Min-Max theorem now gives us

(163) λk(A+Q)− λk(A) ≤ CA,Q max
f∈Ek

∥f∥2=1

∥A
β
mf∥2 = CA,Q

(
λk(A)

) β
m .

Therefore, Weyl’s law on A gives

(164) λk(A+Q)− λk(A) ≤ CA,Qk
β
d .

For the reverse role, we use the same method of relative boundedness as in Case 1 to

realize that

(165) λk(A)− λk(A+Q) ≤ DA,Qk
β
d .

And so when 0 < β < m, we conclude that

(166)
∣∣λk(A+Q)− λk(A)

∣∣ ≍ k
β
d ,

this concludes the proof.
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4. Conclusion

In conclusion, we proved that for a surface with finitely smooth boundary, the Steklov

eigenvalues converge to those of a circle with a decay rate depending only on the order of

smoothness. Since many of the results in this manuscript hold for any dimension (for example

Theorem 1.4, Proposition 2.3, and Lemmas 2.4 and 2.5), further work in this direction may

include extending the asymptotics of Steklov eigenvalues to manifolds with finitely smooth

boundary of higher dimensions. It is the diagonalization theory of Rozenblum that appears

to work only if the boundary is dimension 1 — i.e. there are no known global coordinates

or simple canonical transformations in higher dimensions.

It is still an open question to determine the optimal regularity to ensure a decaying error

term for Steklov surfaces. A result by Shamma in [18] required a C4 boundary to obtain the

error term o(1). This makes our result of an O(k−1) error term requiring a C5+α boundary

not so unreasonable. It was also recently shown in [5] that such an estimate will not hold

for polygons.

One of the biggest impacts on our remainder term comes from the proof of Lemma 2.4,

where our current method essentially cuts the regularity in half (i.e. n < r−1
2

). None of the

methods tried so far could remove this factor of two. It would be interesting to see if an

alternative method exists where n < r − 1.
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