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ABSTRACT 

  While the impact of forage quality on dairy-milk production is clear, much work to 

date on such relationships as digestibility, fermentation characteristics and nutritional 

constituents with milk yield and composition have not easily been transferred to producers, 

given the complexity of analytical tests as well as their interpretation. With the growing 

interest in the field of precision dairy farming, the objective of this research was to provide 

better interpretability of the relationship between silage quality and milk production by 

performing an in-depth machine learning data analysis of forage variables such as digestibility, 

fermentation characteristics, and nutritional constituents.  

  Dairy production and forage data – characterized as either grass and legume silage or 

corn silage – were provided by Lactanet (Québec Dairy Herd Improvement). Since production 

data do not typically contain complete forage information, missing impact variables (like 

digestibility and fermentation characteristics) were predicted using supervised machine-

learning algorithms; multi-input and multi-output (MIMO) regression was performed using a 

Meta-estimator with the Extra Tree algorithm as a base regressor for grass and legume silage, 

and a regressor chain based AdaBoost algorithm with an Extra Tree algorithm as the base 

regressor was used for corn silage. Factorial analysis was used to extract key silage quality 

characteristics (e.g., neutral detergent fiber digestibility, heat damage, rumen protein 

degradability, legume proportion, homolactic fermentation, length of initial fermentation, soil 

contamination, bad fermentation pattern), and a linear mixed effects model was used to 

estimate the effects of silage quality on average herd milk production and composition (fat, 

protein, milk-urea nitrogen and somatic cell score). 

  Increases in fermentation length, as well as the proportion of grass and legume 

mixture and corn silage or concentrate from feed, were associated with higher milk 

production, while the proportion of corn silage from feed showed an increasing trend in 

somatic cell count and milk urea nitrogen. Results from the research support the importance 

of forage quality on milk production and provide a method for completing missing forage 

values relative to time of feeding. Through this demonstration of the impact of forage quality, 

it is hoped to encourage better attention to this important input resource. The possibility of 

developing a decision-support tool for silage quality evaluation seems reasonable, thereby 



x 

 

helping to provide consultants and producers with a practical guide to improved dairy 

profitability from forage. 
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RÉSUMÉ  

  Alors que l'impact de la qualité du fourrage sur la production laitière est clair, de 

nombreux travaux à ce jour sur des relations telles que la digestibilité, les caractéristiques de 

fermentation et les constituants nutritionnels avec le rendement et la composition du lait 

n'ont pas été facilement transférés aux producteurs, compte tenu de la complexité des tests 

analytiques ainsi comme leur interprétation. Avec l'intérêt croissant pour le domaine de 

l'élevage laitier de précision, l'objectif de cette recherche était de fournir une meilleure 

interprétabilité de la relation entre la qualité de l'ensilage et la production de lait en effectuant 

une analyse approfondie des données d'apprentissage automatique des variables d'impact du 

fourrage telles que la digestibilité, la fermentation caractéristiques et constituants 

nutritionnels. 

  Les données sur la production laitière et le fourrage – caractérisées comme ensilage 

de graminées et de légumineuses ou ensilage de maïs – ont été fournies par Lactanet 

(amélioration du troupeau laitier du Québec). Étant donné que les données de production ne 

contiennent généralement pas d'informations complètes sur le fourrage, les variables 

d'impact manquantes (comme la digestibilité et les caractéristiques de fermentation) ont été 

prédites à l'aide d'algorithmes d'apprentissage automatique supervisés; une régression multi-

entrées et multi-sorties (MIMO) a été réalisée à l'aide d'un méta-estimateur avec l'algorithme 

Extra Tree comme régresseur de base pour l'ensilage d'herbe et de légumineuses, et un 

algorithme AdaBoost basé sur une chaîne de régresseurs avec un algorithme Extra Tree 

comme régresseur de base a été utilisé pour l'ensilage de maïs. L'analyse factorielle a été 

utilisée pour extraire les principales caractéristiques de qualité de l'ensilage (p. ex. digestibilité 

des fibres au détergent neutre, dommages causés par la chaleur, dégradabilité des protéines 

du rumen, proportion de légumineuses, fermentation homolactique, durée de la 

fermentation initiale, contamination du sol, mauvais modèle de fermentation) et un modèle 

linéaire à effets mixtes a été utilisé pour estimer les effets de la qualité de l'ensilage sur la 

production et la composition moyennes du lait du troupeau (matières grasses, protéines, 

azote uréique du lait et score des cellules somatiques). 

  Augmentation de la durée de fermentation, ainsi que de la proportion de mélange 

d’ensilage d'herbes et de légumineuses et ensilage de maïs ou de concentré provenant des 

aliments pour animaux, étaient associées à une production laitière plus élevée, tandis que la 
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proportion d'ensilage de maïs provenant des aliments pour animaux montrait une tendance 

à la hausse du nombre de cellules somatiques et de l'azote uréique du lait. Les résultats de la 

recherche confirment l'importance de la qualité du fourrage sur la production de lait et 

fournissent une méthode pour compléter les valeurs fourragères manquantes par rapport au 

moment de l'alimentation. Grâce à cette démonstration de l'impact de la qualité du fourrage, 

on espère encourager une meilleure attention à cette importante ressource d'entrée. La 

possibilité de développer un outil d'aide à la décision pour l'évaluation de la qualité de 

l'ensilage semble raisonnable, contribuant ainsi à fournir aux consultants et aux producteurs 

un guide pratique pour améliorer la rentabilité laitière des fourrages. 
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1. General Introduction 

  With over 12,000 dairy farms across Canada (Dairy Farmers of Canada, 2019), the 

dairy industry is a key contributor to the Canadian economy, where it ranks 3rd within 

Canadian agricultural activities (Producteurs De Lait Du Québec, 2019). According to the 2019 

annual report of the Producteurs De Lait Du Québec 2019, Québec’s dairy industry is the major 

producer of dairy products with 3.331 billion liters of milk from 4,877 dairy. Québec’s high 

milk production is the result of multiple factors. Pluviometry and soil have always given 

Québec advantages in the production of grasses and pastures (Producteurs De Lait Du Québec, 

2019). Also, Québec’s abundant supply of high-quality silage has always been a key asset in its 

milk production (Producteurs De Lait Du Québec, 2019). It is also important to increase milk-

fat, milk protein, lactose and milk yield to maximize profit and grow dairy industry in Québec. 

Price paid for milk production varies, but approximate pricing is listed in Table 1.1. 

Table 1.1: Price for Milk Components 

 

   

 

SNF: Solid-Not-Fat 

 

  High quality silages are an important factor in cattle welfare and milk production. 

More specifically, silage quality is the key factor of cattle nutrition and feed intake, which 

affects their health condition, which then translates to the quality of milk production. 

Nutritive value, fermentation characteristics, pH, ammonia, and moisture all affect silage 

quality, and many of these factors have been discussed because they are modified by the 

ensiling process which in turn the ability of a cow to produce quality milk (Mertens et al., 

2009). The main determinants of high-quality silage are the concentrations of various 

nutritional constituents. Poor silage quality is usually due to ensiling crops with less-than-ideal 

ensiling management practices. This includes situations where crops are ensiled with 

improper moisture, maturity, packing, sealing, and feedlot management. Aerobically unstable 

or clostridial silages are the most common results when dealing with silage feeding problems, 

Milk Component Price ($) / kg 

Milk-fat $10.80/kg + premium of $0.0145/kg for SNF/milk-fat ration of less than 2.35 

Milk-protein $7.8/kg 

Lactose $1.5/kg 
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and butyric acid and nitrogenous proteolysis are the main result of clostridial activity. There 

are certain factors that are suggested as defining silage quality as illustrated in Table 1.2.  

 

Table 1.2: Ideal Ensiled Silage and High Moisture Corn (HMC) Sample Fermentation Values 
(Seglar, 2003) 

Test Corn Silage Grass Silage HMC 

* Nutritional    

Moisture 
Bunker / pile 
Stave / Bags 
Oxygen Free 

(See footnote) below 
63 – 72 
60 – 68 
50 - 60 

 
67 – 72 
63 – 68 
50 – 60 

 
26 – 32 
26 – 32 
22 - 28 

ADF, % DM 23 – 30 30 3 

NDF, % DM 46 – 50 55 9 

NE – L, (mcal/lb DM) 0.68 – 0.7 0.75 0.93 

NE – G, (Mcal/lb DM) 0.4 – 0.47  0.7 – 0.73 

Crude Protein, % DM 7.1 – 7.9 18 10 

Bound Protein % ADIN % TN Less than 10 – 12 Less than 10 – 12 ** N/A 

Ammonia Nitrogen, % TN Less than 10 Less than 15 Less than 10 

* Fermentation    

pH Less than 4 Less than 4.2 Less than 4.2 

Lactic Acid % DM Greater than 3 Greater than 3 Greater than 1 

Acetic Acid % DM Less than 3 Less than 3 Less than 1 

Propionic Acid % DM Less than 1 Less than 1 Less than 0.1 

Butyric Acid % DM Less than 0.1 Less than 0.1 Less than 0.1 

Alcohol % DM Less than 0.5  0 Less than 0.5 

Microbial (*** cfu/gm)    

Yeast Less than 100,000 Less than 100,000 Less than 100,000 

Mold Less than 100,000 Less than 1,000,000 Less than 100,000 

Bacillus Less than 100,000 Less than 100,000 Less than 100,000 

* Mycotoxin (****ppm)    

Vomitoxin 0 0 0 

All others 0 0 0 
CORN SILAGE FOOTNOTE: Moisture is dependent on if crop is processed or not. 

 Legend for Table Bunker Stave Sealed  Bag 

 Processed 67 – 72 % 63 – 68 % 55 – 65 % 60 – 68 % 
 Not Processed 63 – 72 % 60 – 68 % 55 – 65 % 60 – 68 % 

* All Values Expressed as Dry Matter Basis     
** N/A = Not Applicable     
*** cfu / gm = colony forming units per gram silage or grain     
**** ppm = parts per million of silage or grain     

 

  Generally, low pH leads to good preservation of silage, but is not enough, in itself, to 

measure true silage quality. The total mineral content of feedstuffs is called ash, where it is 

the inorganic material content. High ash levels may be indicative of excessive soil 

contamination coming in with the crop during harvest due to muddy or windy conditions 

(Seglar, 2003). Silage acids are also key indicators of silage quality. They consist of lactic acid, 

volatile fatty acids (VFAs) and ethanol. Lactic acid is critical for fermentation, and it is effective 
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at reducing pH. Ideal silages usually have about 3 times more lactic acid (1 ~ 3%) than VFAs 

(acetic, butyric and propionic) (Seglar, 2003). Therefore, high lactic acid concentration 

generally suggests good silage quality. Acetic acid is usually found at less than 3% in silages, 

and anything over 3% suggests inefficient heterofermentative fermentation (Seglar, 2003). 

Propionic acid is usually found at less than 1% in normal silages (Seglar, 2003). Butyric acid 

should be less than 0.1% (Seglar, 2003). Elevated level of butyric acid indicates silage 

deterioration from secondary fermentation, which, in the presence of unpalatable 

nitrogenous end products such as amines and amides, may lead to a significant reduction in 

dry matter intake (DMI) and energy level of the silage (Seglar, 2003). The daily variation in 

silage dry matter (DM) and nutrient concentration is essential and can contribute significantly 

to maximizing silage quality. If silages have greater than 55% of DM, fermentation has a minor 

impact on the quality of silage (Linn, 1988). However, lower pH is desired for wetter silages to 

reduce proteolytic activity, which is one of the causes for low silage quality (Linn, 1988). 

Decrease in pH can be achieved through fermentation with an anaerobic environment, 

adequate substrate, and enough lactic acid bacteria (Muck, 1988). Studies have shown that 

pH values around 4 could significantly reduce proteolytic activity (Muck, 1988). More 

specifically, pH values for corn silage should be around 4 or less and for legume silage, it should 

be around 4 or slightly greater (Seglar, 2003). Silages are also affected by seasonal changes. In 

the case of grass silages, pH, crude protein (CP) and DM are mainly affected. There could be 

DM losses during wilting (Smith, 1954). When material is dry, it could be problematic during 

the ensiling process when preventing the temperature of the mass in the silo from rising 

quickly and resulting in reduced feed product (Smith, 1954). There is also an increase in 

protein content during the wet season (e.g., Rainfall) compared to dry season since grass is 

leafier and more mature during wet season (Smith, 1954). This does not mean that wet 

material is ideal for ensiling process since it could lead to spoilage. Therefore, farmers must 

ensure that the material is not too dry nor too wet for optimal ensiling process. Optimal 

moisture content is presented in Table 1.2. 

  Maximizing feed intake is crucial for optimal milk production. Selection of appropriate 

silage for cattle depends on their nutritional needs and environmental requirements, optimal 

particle size and highly digestible silage as some of the ways to increase feed intake. Combs 

(2015) states that digested fiber produced about 25% of the energy for milk production.  
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  Despite extensive research efforts over the past 40 years, no generally accepted 

forage intake model has been developed (Huhtanen et al., 2008). Limited success in this field 

is, at least partly, due to complicated interactions between the animal and feed characteristics, 

and difficulties in distinguishing and quantifying these factors (Huhtanen et al., 2008). As a 

result, the objective of the present study was to conduct a data-driven analysis that would 

provide a general understanding of the relationships between the factors that define silage 

quality and its impact on milk production.  
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2. Literature Review 

 2.1 What Affects Milk Yield and Composition? 

 2.1.1 Environment 

  First, comfort of cattle is crucial for milk production. Discomfort can lead to reduced 

intake and health concerns. There are several ways to optimize cattle comfort. To list a few, 

using a stocking rate (the number of specific kinds and classes of animals grazing or using a 

unit of land for a specific time period) at 80 to 85% of capacity, keeping cattle in a fresh cow 

group for 14 to 21 days can help bring comfort for cattle (Litherland, 2018). In addition, 

providing 30 to 36 inches of bunk space per cow, reducing social stress (especially for the first 

calf heifers) and preventing cows from separating from the normal herd mates can 

significantly reduce cattle stress (Litherland, 2018). Setting an ideal temperature for dry and 

lactating cows is also essential. Climate change has increased the overall temperature causing 

an imbalance between metabolic heat production inside the animal body and its dissipation 

to the surroundings results in heat stress (HS) under high air temperature and humid climates 

(Das et al., 2016). The foremost reaction of animals under thermal weather is an increased 

respiration rate, rectal temperature, and heart rate (Das et al., 2016). It directly affects feed 

intake thereby, reduces growth rate, milk yield, reproductive performance, and can cause 

death in extreme cases (Das et al., 2016). Dairy breeds are typically more sensitive to HS than 

meat breeds, and higher producing animals are, furthermore, susceptible since they generate 

more metabolic heat. Heat stress suppresses the immune and endocrine system thereby 

enhances susceptibility of an animal to various diseases. Bouraoui et al. (2002) observed 

lower milk-fat and milk-protein in the summer season. Milk-fat in the summer tends to be 

lower in palmitic acid relative to stearic and octadecanoic acids than milk-fat from the same 

cows during the winter (Christie, 1979). Therefore, a cooling system is often necessary. 

 2.1.2 Health 

  Milk production is also directly related to the health of cattle since it results from 

reduced intake and diseases. Monitoring (Body Condition Score) BCS is important, where BCS 

is a simple technique to assess how thin or fat a cow is on a scale of 1 to 5 with increments of 

0.25, where 1 is extremely thin and 5 is extremely fat (Das et al., 2016). According to Das et 

al. (2016), other important part of cattle health is the hoof health. At the same time, attention 
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to subclinical milk fever is necessary. This is caused by low blood calcium, which is a result of 

multiple factors such as ketosis, high somatic cell count, delayed uterine involution, metritis, 

reduced feed intake and milk yield (Das et al., 2016). Mastitis (inflammation of the udder) is 

common for dairy cows and known to generally cause a decline in milk-fat percentage and a 

change in milk-fat composition (Kitchen, 1981). The general effect of mastitis is to impair milk 

synthesis and loosen the connections between cells, thereby increasing permeability of blood 

constituents (Jenness, 1985). As a result, milk-proteins synthesized in the mammary gland 

(caseins, beta-lactoglobulin, and alpha-lactalbumin) decrease (Kitchen, 1981), whereas blood 

serum proteins (whey proteins) increase (Kitchen, 1981). The decrease in fat percentage, 

however, is less (~10%) than that observed for lactose or casein (~15%) (Linn, 1988). The 

percentages of calcium and phosphorus in milk also decline with mastitis infections and 

lowers casein levels since both ions are complexed with casein micelles (Kitchen, 

1981). Kitchen (1981) also added that mastitis increases the percentages of sodium and 

chloride in milk and decreases the percentage of potassium. Bacterial infection of the udder 

results in damage to the ductal and secretory epithelium and increases the permeability of 

blood capillaries (Linn, 1988). Thus, sodium and chloride, which are higher in blood, pour into 

the lumen of the alveoli, and to maintain osmolality, potassium is decreased proportionally 

(Linn, 1988). 

  Growth hormone affects synthesis of fatty acids in the mammary gland and uptake of 

pre-formed fatty acids from the blood, depending on dose level and energy balance of the 

cow (Linn, 1988). The hormone requirement for milk synthesis and secretion is prolactin, 

adrenocorticotrophic hormone, and estrogens, and the relative absence of progesterone (Linn, 

1988). Administration of exogenous growth hormone has generally shown to increase in milk 

yield without significant changes in composition (Bauman et al., 1985). However, Bauman et 

al. (1985) observed a slight decrease in milk-protein percentage and an increase in alpha-

lactalbumin as a percentage of total milk-protein with increasing dosage levels (0 to 100 

IU/day) of bovine growth hormone. It is ideal to have feed additives such as rumen-protected 

choline to improve cattle health (Das et al., 2016).  
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 2.1.3 Genetics 

  Breeds differ in total milk-protein percentage and type of milk-protein produced (Linn, 

1988). Depending on the dairy breed, the milk yield and its composition varies significantly. 

According to the Canadian Dairy Information Centre’s milk recording by breed (Table 2.1, 

Canadian Dairy Information Centre, 2015), Holstein is the predominant breed in Canada (93%). 

  Jersey and Guernsey cattle have 

the highest percentages of total protein, 

casein, and whey (Linn, 1988). Variability 

of the major protein fractions within 

breeds has also been reported (Rolleri et 

al., 1956), with Holstein milk containing 

less of the major caseins and more 

gamma-casein than milk from other 

breeds. Therefore, genetic selection would increase the percentage of protein in milk 0.075 

percentage units, but decrease milk yield 231 pounds (Linn, 1988). Joint selection for milk 

yield, protein, and fat is recommended if the desired result is increased yield of protein and 

fat (Gaunt, 1980).  

 

 2.1.4 Nutrition 

  Without proper nutrition, dairy cows are not able to provide optimal milk production. 

Diets for today's high-producing dairy cows are typically higher in energy from readily 

fermentable carbohydrates than fats and feeding of these diets often causes a condition 

known as low-milk-fat syndrome (Linn, 1988). Characteristics of low-milk-fat syndrome are a 

reduction in milk-fat percentage (up to 60%) and changes in milk-fat composition (increase in 

C18 polyunsaturated and monounsaturated acids and decrease C160 and C180 fatty acids) 

(Christie, 1979).  

  Shaver et al. (1986) has shown that milk-fat percentages are higher from cows fed a 

60:40 silage to grain diet at 2.93% of body weight than at 3.75% of body weight. Declines in 

milk-fat percentage with high-grain feeding are accompanied by a change in milk-fatty acid 

composition from saturated fatty acids to more unsaturated acids, especially those containing 

Breed Records  Milk (Kg) Fat % Protein % 

Ayrshire 8146 7.78 4.11 3.37 

Brown Swiss 1731 8.40 4.20 3.49 

Canadienne 194 5.75 4.34 3.57 

Guernsey 370 6.76 4.69 3.43 

Holstein 287223 10.10 3.87 3.19 

Jersey 11334 6.61 5 3.80 

Milking Shorthorn 347 6.81 3.94 3.28 

Table 2.1: Average Milk Production by Breed in 
Canada Canadian Dairy Information Centre (2015). 
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16 carbons or less (Banks et al., 1983). The type of silage and its effect on milk-fat percentage 

are influenced by silage particle size, maturity, and fiber content (Linn, 1988). Finely ground 

silages result in higher levels of propionate being produced during rumen fermentation than 

silages of adequate particle size (Sutton, 1980). Woodford et al. (1986) has shown that a mean 

silage particle length of 0.64 cm or more is needed to keep rumen molar percentage of 

propionate below 25 and milk-fat above 3.6%. Stage of silage maturity is also an important 

factor in the supply of adequate fiber in the diet. More immature alfalfa hay was required in 

the diet to obtain maximum production of 4% fat-corrected milk than when mid- or late-

bloom alfalfa hay was fed (Kawas et al., 1983). Sutton (1985) reported that the lower ruminal 

degradability of corn compared with that of barley would result in the production of milk with 

a higher fat percentage. DePeters and Taylor (1985) confirmed that barley-based concentrates 

tend to depress fiber digestibility, resulting in lower ruminal acetate to propionate ratios and 

lower milk-fat percentages than those with corn-based concentrates. The higher digestion of 

barley in the rumen produces more propionate and results in less starch being presented to 

the lower digestive tract for conversion to glucose than with corn (Linn, 1988). However, the 

increased production of propionate in the rumen from barley appeared to stimulate milk yield 

more than glucose derived directly from corn in the lower digestive tract (Linn, 1988). Sutton 

(1980) suggests that processing of grains such as grinding, rolling, heating, steam flaking, and 

pelleting increases digestion of the starch in the rumen and produces effects like those 

reported above for barley.  

  Increasing butyric acid production in the rumen should also help to maintain or 

increase milk-fat percentages, and Sutton (1980) suggested that beet pulp is a promoter of 

butyric acid production in the rumen. Other carbohydrates such as whey (Casper and 

Schingoethe, 1986), sucrose, and lactose (Sutton, 1980) have been evaluated as sources of 

soluble carbohydrate to prevent milk-fat depression. Linn (1988) added that intraruminal 

infusions of acetic acid consistently increase milk yield, lactose yield, and milk-fat yield, 

whereas infusions of propionate reduce milk-fat yield. In addition, glucose infusions, either 

intraabdominal or intravenous, increase milk yield and decrease milk constituent percentages 

(Linn, 1988). 
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  Additives such as buffers and methionine hydroxy analog have been used to promote 

increases in milk-fat percentage (Linn, 1988). Lundquist et al. (1983) also states that cows in 

early lactation, fed with high-concentrate diets, were shown to benefit from the inclusion of 

the methionine hydroxy analog in their rations. Linn (1988) added that feeding of 25 grams of 

methionine hydroxy analog daily during the first 120 days of lactation increased milk-fat 0.35 

percentage units. Buffers are compounds used to raise rumen pH through the neutralization 

of volatile fatty acids. Protected polyunsaturated fatty acids appear to be the most promising 

for consistently increasing milk-fat percentage and altering milk-fat composition (Linn, 1988). 

However, other modes of action have been indicated for the group of compounds commonly 

alluded to as buffers (sodium bicarbonate, potassium bicarbonate, limestone, magnesium 

oxide, and bentonite) (Chalupa and Schneider, 1985). Chalupa and Schneider (1985) added 

that in general, bicarbonates have been effective in maintaining or increasing milk-fat 

percentages of cows fed high-grain diets, especially when corn silage was the main silage 

source. Magnesium oxide has also been shown to help prevent milk-fat percentage depression 

(Linn, 1988). Intake of digestible organic matter (OM) increased (P < 0.001) with crude protein 

(CP) concentrate supplementation, but the response tended to diminish at high levels of 

supplementation (Nousiainen and Rinne, 2009). 

  Linn (1988) mentioned that protected oilseeds or oils rich in linoleic acid (sunflower, 

corn, and soybean) produce rapid increases in the linoleic acid content of milk-fat when fed. 

The increases in linoleic acid content are generally associated with declines in myristic, 

palmitic, and oleic acids (Linn, 1988). Linn (1988) added that feeding of protected saturated 

fats – the most common source being tallow – generally invokes the same response in increase 

of milk-fat percentage as feeding of protected polyunsaturated fats. However, protected 

hydrogenated soybean oil has decreased the milk-fat percentage (Banks et al., 1983). 

  

 2.2 Impact of Silage Quality  

 2.2.1 Impact of Silage Quality on Feed Intake 

  Several studies have shown increased intake with corn silages compared to legume 

silages and legume silages compared to grass silages. (O’Mara et al., 1998). Some reasons that 

one type of silage increases intake compared to other are due to its fiber content and 
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digestibility, particle size and variability (Mertens et al., 2009). Fiber is a nutritional term that 

is defined as either the indigestible or slowly digesting fraction of feeds. Digested fiber 

produces about 25% of the energy for milk production (Combs, 2015). A simple summative 

equation demonstrates that fiber content and its digestibility are the major factors that affect 

the total DM digestibility of feeds (Mertens et al., 2009). Fiber digestibility is mainly 

dependent on lignin content due to its indigestibility in the rumen. Neutral detergent fiber 

(NDF) can separate feeds into almost completely digestible neutral detergent soluble fiber and 

NDF that varies in digestibility. In general, grasses have a higher proportion of NDF compared 

with legumes, but the proportion of lignin in total NDF is higher in legumes (Beever et al., 

2000). Intake is often the limiting Factor in dairy cow productivity and fiber can often limit the 

intake of silages. Particle size of silage also has an impact on feed intake. Optimizing silage 

particle size is important because excessively long particles increase the necessary chewing to 

swallow a bolus of feed, thereby increasing eating time (Grant et al., 2018). Under competitive 

feeding situations, excessively coarse or lower fiber digestibility silages may limit dry matter 

intake (DMI) of lactating dairy cows due to eating time requirements that exceed available 

time at the feed bunk (Grant et al., 2018). With grass silages, Van Soest (1994) observed the 

presence of higher proportion of indigestible NDF (iNDF) in regrowth silages, probably reflects 

warmer growing conditions. This has an impact of lower intake of regrowth silages compared 

to primary growth silages (Huhtanen, Rinne and Nousiainen, 2007). Pang (2019) added that 

the lower intake potential of regrowth silage could also be due to other factors such as silage 

microbiological quality, increased amount of decomposing and infected leaf material, which 

possibly contributed to the taste, smell or palatability of the silage. 

  There are several silage components that are known to reduce feed intake: for 

example, condensed tannins (Provenza et al., 1990) and glucosinolates (Duncan and Milne, 

1993). Impaired silages with high VFAs can result in less nutritious and, therefore, less 

desirable feed for animals. In the case of corn silages, production of butyric acid during 

clostridial activity is a primary concern. More specifically, butyric acid is known for reducing 

feed intake in ruminants (Muck, 1988). Mycotoxin-contaminated diets are known to reduce 

feed intake (Zain, 2011). High concentration of acetic acid is also know to reduce intake due 

to increased osmotic pressure of ruminal contents (Forbes et al., 1992). Buchanan-Smith 

(1990) added that reduced dry matter intake (DMI) due to acetate can be affected by 

https://onlinelibrary.wiley.com/doi/full/10.1111/gfs.12425#gfs12425-bib-0026
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/osmotic-pressure
https://www.sciencedirect.com/science/article/pii/S0022030218303291#bib27
https://www.sciencedirect.com/science/article/pii/S0022030218303291#bib11
https://www.sciencedirect.com/science/article/pii/S0022030218303291#bib11
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palatability. High concentrations of ammonia are also known to reduce feed intake (Huhtanen 

et al., 2007). Auerback et al. (1998) reported a lack of appetite in cattle herds fed silages 

containing 0.2 to 1.5 mg of roquefortine C/kg in northern Germany.  

  Minson (1990) suggested that, for feeds with a CP content of less than 62g of CP per 

kg DM, fiber digestion is inhibited, and he reports a number of trials in which intake of silages 

increased by 14 - 77% following provision of supplementary protein. It is also observed that 

changes in CP composition through protein degradation can reduce feed intake (Südekum and 

Eisner, 2009). Where ammonia N concentration limits microbial fermentation, supply of N to 

the microorganisms increases organic matter (OM) digestion in the rumen, which increases 

breakdown and rate of passage of a poor-quality silage, thereby removing the physical 

constraint and allowing the animal to consume more feed (Romney et al., 2000).  

 

 2.2.2 Impact of Silage Quality on Milk Production 

  Fermentation of silages has a direct influence in determining silage quality. When 

consumed by dairy cows, nutrients profile from the silage affects milk yield and composition. 

According to studies, corn and legume silages produce higher milk production and milk-

protein concentration compared to grass silage (O’Mara et al., 1998). This is potentially due 

to their higher digestibility. Milk-fat content decreased when there was an increase in lactic 

acid and volatile fatty acids (VFA). Increases in lactic acid concentration reduced the milk-fat 

content more at high than low concentrations compared to VFA which caused greater changes 

at low than high concentration (Huhtanen et al., 2003). Like milk-fat content, milk-protein 

content also decreased as lactic acid and VFA increases. Increases in individual or VFA had 

more impact on depressing milk-protein content than lactic acid (Huhtanen et al., 2003). 

Effects of silage fermentation characteristics on milk-fat yield has similar patterns as milk-fat 

content. Milk-fat yield decreased when lactic acid and VFA increases. Like milk-protein content, 

milk-protein yield decreased as lactic and VFA increases. Silage pH did not have an impact on 

milk-protein yield (Huhtanen et al., 2003). Using multiple regression, it was observed that VFA 

and lactic acid explained the variation of energy corrected milk (ECM), milk-fat content, milk-

fat yield, milk-protein content and milk-protein yield better than other components of silage 

https://www.sciencedirect.com/science/article/pii/S0377840115300390#bib0370
https://www.sciencedirect.com/science/article/pii/S0377840115300390#bib0370


12 

 

(Huhtanen et al., 2003). The models suggest in general, that propionic and butyric acid 

decreased milk yield more than acetic acid.  

  Milk-fat percentage is related positively to rumen molar percentages of acetic and 

butyric acids and negatively to that of propionic acid (Linn, 1988). Davis (1978) reported that 

rumen molar percentage of propionate must be above 25 before a highly significant negative 

relationship between milk-fat percentage and propionate exists. Sutton (1980) estimated that 

60 percent of the variations observed in milk-fat percentage could be accounted for by 

changes in the molar proportion of propionate in the rumen. A positive relationship exists 

between the molar ratio of acetate to propionate and milk-fat percentage. A linear increase 

in milk-fat percentage occurs as the ratio of acetate to propionate increases up to 2.2 (Davis, 

1978). Above a ratio of 2.2 there is little change in milk-fat percentage. Thus, diets that 

increase propionate production have the greatest effect on milk-fat percentage when 

considering total acids. 

  The daily amount of NDF needed was estimated to be 1.2% of body weight. Mertens 

(1985) recommended a minimum of 28 percent NDF and about 18% acid detergent fiber (ADF) 

in diets to maximize milk production and fat percentage. The average increase in milk and 

energy-corrected milk yield was 0.30 and 0.37 kg per 10-unit increase in silage organic matter 

digestibility (D-value), respectively (Pang et al., 2019). Milk-protein concentration increased, 

and fat concentration tended to increase with enhanced silage D-value (Pang et al., 2019). In 

the evaluation of Pang et al. (2019) evaluation, every 10-unit increase in silage D-value 

increased milk-protein yield by 12.9g/day, which was close to the 11.0g/day reported by Rinne 

(2000). The increase in milk-protein yield per unit increment in DMI was 52g/kg, which agreed 

with the 50g/kg in Kuoppala et al. (2008). These combined factors result in lower milk 

production in cows fed regrowth silages compared with cows fed primary growth silages 

(Kuoppala et al., 2008). 

  High ethanol content has been occasionally observed in high-dry-matter grass silages 

(Kalac, 2011). In such cases, lactic acid fermentation is limited, and ethanol is the main product 

of fermentation (Kalac, 2011). The milk acetone concentration was doubled when ethanol was 

fed (Kalac, 2011). High levels of ethanol in silages can decrease milk yield but increase milk-

fat and protein concentrations and induce milk off-flavor (Randby et al., 1999). 
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  The carotenoids contribute in the oxidative stability of milk (Kalac, 2011). Despite a 

higher antioxidative capacity of milks from cows fed grass silage, lipid oxidation was higher as 

compared to milks from cows fed corn silage (Kalac, 2011). To the contrary, the milk from cows 

fed corn silage was more vulnerable to protein oxidation (Havemose et al., 2004). Corn silages 

have been a poorer source of carotenoids than silages of other crops, especially if prepared 

from corn damaged by frost (Kalac, 2011). 

  Ensiled grasses and legume silages seem to contain higher levels of available 

tocopherols than corn silage (Kalac, 2011). The grass-red clover silage showed to be a richer 

source of available tocopherols than corn silage (Kalac, 2011). The concentrations of α-

tocopherol were 0.85 and 0.38 mg l−1 and those of γ-tocopherol 0.03 and 0.01 mg l−1 in the 

milk of dairy cows fed grass-clover silage or corn silage, respectively (Havemose et al., 2004). 

More rapid losses of α-tocopherol and formation of oxidative products were observed in milk 

from dairy cows fed diets based on red clover or lucerne silages than from those fed grass 

silages (Kalac, 2011). The increased oxidative deterioration of milk from cows fed red clover 

silage was avoided by vitamin E supplementation (Al-Mabruk et al., 2004). 

  Contamination of raw cow milk by Listeria monocytogenes has been linked to the 

occurrence of high levels of Listeria monocytogenes in silage (Sanaa et al., 1993). Listeria 

monocytogenes occurs at low numbers in raw cow milk (Driehuis et al., 2018). Surveys of the 

prevalence of Listeria monocytogenes in bulk tank milk from dairy farms in the United States, 

New Zealand, France, and Belgium showed that 2.9 to 6.3% of the samples were positive 

(tested for presence in samples of 25 g (Desmasures et al., 1997; de Reu et al., 2004; Van 

Kessel et al., 2011; Marshall et al., 2016). Driehuis et al. (2018) reported that Listeria 

monocytogenes is sensitive to heat inactivation and is effectively inactivated by the 

pasteurization of milk.  

  Feeding is an effective way to modify the sensory quality of dairy products, even in 

the case of milk bulk tanks mixtures (Kalac, 2011). Also, soil is a major source of B. 

cereus spores in silage. B. cereus can cause atypical appearance and small which then spores 

dairy products. Dairy plants could market different milks, which would be of specific 

composition (Agabriel et al., 2007). 

 

https://www.sciencedirect.com/science/article/pii/S0308814610011477?casa_token=w64HV6tHDAIAAAAA:RV3smIfMGu3ccjTAy6NRlEzP-uLM8cLiVyhPZ4_hoor3hSy69gnz8ASm_aWXsaxUAql6TLSxaZo#b0165
https://www.sciencedirect.com/science/article/pii/S0308814610011477?casa_token=w64HV6tHDAIAAAAA:RV3smIfMGu3ccjTAy6NRlEzP-uLM8cLiVyhPZ4_hoor3hSy69gnz8ASm_aWXsaxUAql6TLSxaZo#b0165
https://www.sciencedirect.com/science/article/pii/S0308814610011477?casa_token=w64HV6tHDAIAAAAA:RV3smIfMGu3ccjTAy6NRlEzP-uLM8cLiVyhPZ4_hoor3hSy69gnz8ASm_aWXsaxUAql6TLSxaZo#bb0010
https://www.sciencedirect.com/science/article/pii/S0308814610011477?casa_token=w64HV6tHDAIAAAAA:RV3smIfMGu3ccjTAy6NRlEzP-uLM8cLiVyhPZ4_hoor3hSy69gnz8ASm_aWXsaxUAql6TLSxaZo#b0005
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 2.2.3 Impact of Silage Quality on Cattle Health 

  Good health of dairy cows is crucial for optimal feed intake and milk production. There 

are multiple factors of silage characteristics that contribute to cattle health. To list some 

recommendations for cattle health improvement, it is suggested to maintain DMI of 12.7kg to 

14.5kg per day and avoid overfeeding energy (Das et al., 2016). There are over 400 mycotoxins 

and ZEA is one of the main mycotoxins formed in silage (Kalac, 2011). ZEA – a macrocyclic β-

resorcyclic acid lactone – is an estrogenic metabolite produced by several species 

of Fusarium such as F. graminearum, F. roseum, F. culmorum, and F. crookwellense (Kuiper-

Goodman et al., 1987; Saeger et al., 2003). It also leads to some serious health concerns such 

as infertility, and hyperestrogenism in cattle (Ogunade et al., 2018). A survey from Rodrigues 

and Naehrer, 2012 reported that approximately 45% of 7,049 livestock feed samples collected 

from the Americas, Europe, and Asia contained ZEA, with an average concentration of 233 

µg/kg. Its content can be reduced by the activity of both some lactic acid bacteria in silage 

and the rumen microflora (Kalac, 2011). The degradation products resulting 

from proteolysis may impair animal health (Hoedtke et al., 2010). Determining amine 

concentrations in silage may help to indicate undesirable changes in silages and could prevent 

possible toxicity for livestock (Křížek, 1991). Křížek 1991 discussed that many liver and kidney 

disorders related to the detoxification and catabolism of biogenic amines (Scherer et al., 2015). 

Microbial hazard such as clostridium botulinum concentrations in silage have been associated 

with botulism in cattle. A high initial concentration of clostridium botulinum spores in silage in 

combination with poor silage fermentation conditions can promote the growth of clostridium 

botulinum in silage. Generally, exposure to low numbers of C. botulinum or spores of this 

microorganism is not harmful (Driehuis et al., 2018). However, any factors that induce 

multiplication of C. botulinum must be avoided because of the extreme toxicity of the 

botulinum toxin (Driehuis et al., 2018). With the elevation of pH level, other microbial hazards 

such as L. monocytogenes, Shiga toxin-producing E. coli, and molds in silage may also 

encourage survival and growth of M. bovis, the bacterium that causes bovine tuberculosis 

(Driehuis et al., 2018). Listeriosis is often considered a food-borne disease of ruminants, with 

silage being the main feed source (Driehuis et al., 2018). A causal relationship has been shown 

between feeding poor-quality silage and the prevalence of listeriosis in cattle, sheep, and 

goats (Fenlon, 1988; Wiedmann et al., 1997; Ho et al., 2007). L. monocytogenes from silage 

https://www.sciencedirect.com/science/article/pii/S0022030218303254#bib228
https://www.sciencedirect.com/science/article/pii/S0022030218303254#bib228
https://www.sciencedirect.com/science/article/pii/S0377840115300390#bib0155
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survives passage through the animal's gastrointestinal tract and is shed in the feces (Driehuis 

et al., 2018). This has not only been observed for cattle, sheep, and goats, with clinical signs 

of listeriosis, but also for asymptomatic carriers of L. monocytogenes on farms with and 

without outbreaks (Unnerstad et al., 2000; Nightingale et al., 2004; Vilar et al., 2007). In these 

animals, L. monocytogenes primarily causes encephalitis and uterine infections, the latter 

causing late-term abortions (Driehuis et al., 2018). In addition, L. monocytogenes can cause 

eye infections in ruminants (silage eye) because of direct contact with silage (Erdogan, 2010). 

Important features of L. monocytogenes are that it can grow over a wide range of 

temperatures (0 – 45°C), salt concentrations (up to 12%), and pH (4.3 – 9.6) (Van der Veen et 

al., 2008; Gandhi and Chikindas, 2007). Due to its high tolerance to stressful conditions, L. 

monocytogenes is capable of survival for extended periods in environments in which it is 

unable to grow – e.g., well-preserved silage (Driehuis et al., 2018). Survival of L. 

monocytogenes in silage is determined to a great extent by the degree of anaerobiosis and 

the pH (Driehuis et al., 2018). Donald et al. 1995 showed that the population of L. 

monocytogenes rapidly declined under strictly anaerobic conditions when it was added to 

grass at ensiling, whereas oxygen tensions of 0.5% (vol/vol) and higher prolonged survival. 

Therefore, poor compaction before ensiling or air ingress during the fermentation can 

promote the growth or persistence of this pathogen. Growth of L. monocytogenes in silage is 

also associated with aerobic deterioration problems (Driehuis et al., 2018). The combination 

of the presence of oxygen and relatively high pH in aerobically deteriorated silage favors 

growth of L. monocytogenes. Silages with a greater likelihood of aerobic surface spoilage (e.g., 

silage with a low packing density or inadequate sealing and baled silages), are most 

susceptible to contamination by L. monocytogenes (Fenlon et al., 1989). Studies by Ryser et 

al. (1997) and Vilar et al. (2007) have shown that the incidence of L. monocytogenes in silage 

increases with increasing pH. L. monocytogenes was detected in concentrations in excess of 

106 cfu/g in moldy surface layers of big bale grass silages (Fenlon, 1986).  

  Mycotoxins from silage can also affect milk production. Fumonisin is another 

mycotoxin that has been identified to be harmful to dairy cows. Mathur et al. (2001) states 

that fumonisin could be nephrotoxic to calves when fed 1,000 µg/kg BW of the toxin. Similar 

results were observed in beef calves supplemented with 148 mg/kg of total fumonisin in the 

diet for 31 d (Osweiler et al., 1993). Zearalenon (ZEA) is also reported to decrease milk 
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production Coppock et al., 1990). Symptoms such as reproductive disorders and mastitis were 

detected in cattle herds fed silages containing 0.2 to 1.5 mg of roquefortine C/kg in northern 

Germany (Auerbach et al., 1998). Also, paralytic effects were reported in cows fed 4 to 8 mg 

of roquefortine C/kg (Haggblom, 1990). 

  Hazards from plant toxins include pyrrolizidine, tropane and tropolone alkaloids, 

phytoestrogens, prussic acid, and mimosine compounds that exist naturally in certain plant 

species that may contaminate silages at harvesting (Driehuis et al., 2018). Another group of 

toxins belonging to this category are ergot alkaloids, which are produced by endophytic fungal 

species in silages such as tall fescue grass (Festuca arundinacea), sorghum, and ryegrass 

(genus Lolium). Chemical and microbiological hazards are associated with poorly fermented 

silages, which can be avoided by using proper silage-making practices and creating conditions 

that promote a rapid and sufficient reduction of the silage pH and prevent aerobic 

deterioration (Driehuis et al., 2018). Aspergillus fumigatus is considered a health hazard not 

only because of the mycotoxins that are potentially produced by this mold in silage, but also 

because inhalation of spores of this mold can cause disease (aspergillosis) in humans and 

animals (Driehuis et al., 2018). Feeding silage or hay that is contaminated with A. fumigatus to 

cattle can cause bovine aspergillosis (Smith and Lynch, 1973; Sarfati et al., 1996). In immune-

compromised individuals, this mold can cause severe infections (invasive 

aspergillosis; Dagenais and Keller, 2009). Puntenney et al. (2002) suggested that A. 

fumigatus is a risk Factor for hemorrhagic bowel syndrome in dairy cows; Kallela et al. 

(1984) observed serious fertility problems in heifers fed ensiled red clover containing high 

levels of estrogenic isoflavone. In 1994, outbreaks of ergot toxicosis in Africa were reported in 

cattle that ingested diets contaminated with ergotized annual ryegrass seed; approximately 

2,646 dairy cows had reduced milk production, weight loss, and reduced fertility (Schneider 

et al., 1996). Two dairy herds in South Africa, that consumed corn silage, developed 

hyperthermia and experienced 30% loss of milk production; a novel endophyte, Claviceps 

cyperi, and up to 0.98 mg/kg of total ergot alkaloids were discovered in the corn silage (Naudè 

et al., 2005). In addition, Lean 2001 reported that lactating dairy cows consuming perennial 

ryegrass silage, containing 1.78 mg/kg of total ergovaline, experienced reduced reproductive 

performance, increased incidence of mastitis, and decreased milk yield. Blaney et al. 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/ergot
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(2000) summarized several cases and suggested that signs of ergot alkaloid toxicity include 

feed refusal and severe declines in milk yield.  

  Production of nitric oxide and nitrogen dioxide gases in silage is also a serious risk to 

livestock and human health and the respiratory hazard, known as silo-fillers' disease has been 

recognized for many years (Grayson, 1956). The reduction of NO3
− to nitric oxide, a colorless 

gas, is followed by its oxidation by exposure to air, which is then turned into nitrogen dioxide, 

a yellow to reddish-brown gas with an irritating odor that is heavier than air and stays close 

to the ground level or to the sides of the silo (Driehuis et al., 2018). Nitric oxide and nitrogen 

dioxide react with water in air to form nitrous and nitric acid gases, respectively (Driehuis et 

al., 2018). Inhalation of these gases damages lung tissue and causes respiratory distress 

leading to asphyxiation (Driehuis et al., 2018). O'Kiely et al. (1999) described an incident in 

which 10 calves and the farmer suffered severe respiratory distress 24h after an adjacent silo 

had been filled with grass. A brown haze of nitrogen dioxide gas was seen in the building next 

to the silo. O'Kiely et al. (1999) added that samples taken from the front of the silo beneath 

the polyethylene film covering revealed an intensely yellow colored layer beneath normal, 

green-colored silage. Features of the yellow silage were very high CP, extremely low pH, low 

concentrations of fermentation acids, low buffering capacity, and reduced digestibility in vitro, 

indicative of nitric acid contamination (O'Kiely et al., 1999). The growth of clostridia in silage 

can be also associated with significant livestock health issues as a result of absorption of 

butyric acid from rumen into blood can increase the risk of clinical ketosis (acetonaemia) 

(Oetzel, 2007). 

 

 2.2.4 Existing Literatures on the Relationship Between Silage Quality and Milk 

Production 

 Although various studies were conducted over the past 40 years and there is still an 

absence of a generally accepted feed intake model for dairy cows which optimizes milk 

production (Huhtanen et al., 2008). Huhtanen (2008) added that complicated interactions 

between the animal and feed characteristics, and difficulties in distinguishing and quantifying 

these factors are one of many reasons. Huhtanen (2003) performed an in-depth data analysis 

with the goal of understanding the relationships between fermentation characteristics and 
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milk production by comparing the dependencies between total acids and various milk 

components such as yield, fat, protein and ECM. This is an informative study on fermentation 

of the silage but does not translate to the overall quality of the silage in relation to milk 

production since fermentation is not the only Factor that defines the quality of silage. In 

addition, this study was conducted using grass silage and in reality, corn silage is as commonly 

used as grass silage. There are numerous examples of other studies that focus on a specific 

component of silage or milk variables. For examples, Kalac (2011) conducted research on 

ethanol and its relationship to milk production, and Havemose et al. I2004) studied the 

relationships between tocopherol and oxidative products of milk. In addition, Pang et al. (2019) 

focused their study on organic matter digestibility from different silages and how they affect 

milk production, while Kuoppala et al. 2008 conducted a study on how regrowth or primary 

silage can make differences in milk production. Individual analysis on specific components 

within silage or milk production does not validate true silage quality and therefore cannot be 

used to make decisive conclusions regarding the selection of silage type for optimal milk 

production. Tedeschi (2019) pointed out an interesting argument about how research in the 

past in agriculture and ruminant production lacks the adaptation of new technologies in the 

field of data analytics and artificial intelligence (AI) – such as machine learning – to fully take 

advantage of data-driven models. Tedeschi (2019) added that there is a need for novel data 

analytic methods that are developed for agriculture and ruminal production.  

 

 2.3 Application of Data Science in Dairy Science  

  With the rise of 

data-driven solutions, 

the application of data 

science in the field of 

dairy science is slowly 

gaining interest in 

academia. Big data is 

becoming more 

accessible to Figure 2.1: Number of published papers that use data science in 
dairy science (Lokhorst et al., 2019) 
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researchers due to the adaptation of laboratories 

and industry collaborators who are willing to 

provide large datasets to explore research 

interests in collaborative efforts. Figure 2.1 and 

Table 2.2 illustrates the rise of published papers 

that focus on the application of data science to       

dairy science and the details of machine learning 

approaches used in these papers, respectively.  

 

1The total exceeds the number of unique papers used in the review (n=142) since some papers cover more than one main 
category of level of Big Data analytics. 

 

  The international Precision Dairy Farming 2016 conference was a venue that presents 

numerous data-driven research (Kamphuis and Steeneveld, 2016). At that conference, Dias et 

al. (2016) addressed the creation of value with data from pasture-based farming systems, Van 

der Waaij et al. (2016) used machine learning to predict individual cow feed intake, Verhoosel 

and Spek (2016) examined the semantics for Big Data applications, Harty and Healy (2016) 

used Big Data advanced analytics to optimize health and fertility, and Bahr et al. (2016) 

discussed the field of data-driven smart feeding. During the European Conference on Precision 

Livestock Farming (Berckmans and Keita, 2017), there was an entire session specifically 

devoted to Big Data and its implication to the field of Data Science. The concept of data mining 

was used to find new insights and knowledge when data from several farms were brought 

together. Lokhorst et al. (1999) investigated the potential of data mining to benchmark dairy 

farms at the farm level. Although the development of new insights is also a promise of Big 

Data, the reviewed papers show a more structural analysis based on assumptions (and 

biological relevance) and supervised learning techniques. Currently, teams of multidisciplinary 

scientists at the university of Wisconsin-Madison led by Dr. Cabrera are very active in the field 

of data science and precision dairy farming. They developed an agricultural data hub called 

Dairy Brain which aims to perform various data science applications including nutritional 

grouping that provides a more accurate diet to lactating cows by automatically allocating cows 

to pens according to their nutritional requirements aggregating and analyzing data streams 

from management, feed, Dairy Herd Improvement (DHI), and milking parlor records (Cabrera 

Table 2.2: Number of different machine 
learning approaches used in dairy science 
(Lokhorst et al., 2019) 
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et al., 2020). van der Heide et al. (2019) reported that using genetic data, prediction of survival 

by second lactation was possible and comparing statistical versus machine learning based 

models, machine learning models performed better. There was also a study on predicting milk 

production based on animal and dietary parameters using various machine learning 

techniques [Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM)], 

(Nguyen et al., 2020). Gianola et al. (2011) conducted research on determining the 

relationship between wheat and milk production through Bayesian neural network (BNN). 

 

 2.4 Data Science 

 2.4.1 Defining a Data Science Problem 

  A Data Science problem is a problem that require data-driven solutions with the goal 

of understanding dependencies among data and predicting both known known and unknown 

outcome. Data science enables the transformation of big data into information, knowledge 

and action. Data science uses a combination of statistics and machine learning, which are also 

termed as statistical learning to gain insight and provide valuable solutions. Statistical 

techniques focus on determining the inference within datasets compared to machine learning, 

which focuses on prediction. 

  According to Lokhorst et al. (2019) supervised learning is a machine learning approach 

where the outcome of interest is known for each record used for model development. In other 

words, the data used for model development are labelled. Within this category, papers are 

classified into regression and classification. For regression, the outcome variable has a 

numerical value. Possible techniques involve linear regression, polynomial regression, use of 

radial basis functions, multivariate adaptive regression splines or multilinear interpolation. For 

classification, the outcome variable is categorical (e.g., binary yes/no). Possible techniques 

include neural networks, decision trees, naïve Bayes model or support vector machines. 

  Lokhorst et al. (2019) also defined unsupervised learning as a machine learning 

approach where the outcome of interest is unknown (unlabeled) for each record used for 

model development. Within this category, papers were classified 

on clustering and dimensionality reduction. Clustering techniques include K-means, Gaussian 

modelling, spectral or hierarchical clustering. Dimensionality-reduction techniques include, 
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for example, principal component analysis (PCA), linear discriminant analysis (LDA) or 

independent component analysis. 

 

 2.4.2 Data Outliers 

 2.4.2.1 Univariate Outliers 

  Outlier detection, also known as anomaly detection, refers to the identification of 

statistically unlike observations which differ from the general distribution of datasets. It is also 

a term used to detect outliers that are not statistically defined but determined to be out of 

norm within a given domain. Usually, popular algorithms for outlier detection are for 

univariate outliers. However, univariate outlier detection is not ideal for datasets that have 

highly dependent variables when applying machine learning models. This is often the case for 

biochemical datasets since they are treated as a sample that consists of various dependent 

variables. 

  

 2.4.2.2 Multivariate Outliers 

  Python is becoming one of the most used programming languages for applying 

machine learning in the field of data science. However, there are no robust techniques to 

perform multivariate outlier detection (Zhao 

et al., 2019). PyOD is an open-source Python 

toolbox for performing scalable outlier 

detection on multivariate data. This toolbox 

is rapidly gaining popularity in various fields 

of industries and research with interest in 

data science due to its state-of-the-art 

approach in multivariate outlier detection. 

Uniquely, it provides access to a wide range 

of outlier detection algorithms, including 

established outlier ensembles and more 

recent neural network-based approaches, 

under a single, well-documented Application 

Table 2.3: List of Outlier Detection Techniques 
used in PyOD (Zhao et al., 2019) 
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Programming Interface (API) designed for use by both practitioners and researchers. The key 

advantage of this toolbox is its capability of combining various outlier detection techniques 

listed in Table 2.3 through a single API.  

  

 2.4.3 Data Transformation 

 2.4.3.1 General Information of Data Transformation 

  Data transformation is becoming the norm for data pre-processing. With the rise of 

machine learning, the focus is on achieving the highest-performance accuracy, and various 

studies have proven that data transformation can raise performance accuracy if applied 

appropriately. This is achieved by transforming datasets to come closer to suggested 

assumptions of models. However, data transformation must be applied with caution since 

they are not fit for any dataset and changing the original dataset can have critical 

consequences. More specifically, thorough research on finding the suitable data 

transformation technique must be performed to avoid misinterpretation of data.   

  Among the transformations employed in biological fields, the most used 

transformations are logarithmic, square root and angular (Ribeiro-Oliveira et al., 2018). These 

transformations are usually associated with non-normal data (Zar, 2014). Under such 

circumstances, data transformation is the most appropriate remedial measure (Dey, 2020). 

With the help of these techniques, the original data can be converted to a new scale resulting 

in a new dataset, which is expected to satisfy the variance homogeneity principle 

(Montgomery et al., 2017). Among listed techniques, logarithmic and angular are mostly used 

for data with percentages as units. 

 

 2.4.3.2 Logarithmic Transformation 

  The logarithmic transformation is suitable for cases such as when the variance is 

proportional to square of the mean, the coefficient of variation is constant or where effects 

are multiplicative (Montgomery et al., 2017; Dey et al., 2020). When the data range is wide, 

these conditions are usually found (Dey et al., 2020). This transformation is effective 

specifically in case of normalizing a positively skewed distribution (Dey et al., 2020). It is also 
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helpful to achieve additivity (Zar, 2014; Rangaswamy, 2018). This transformation is commonly 

used for data with units of percentage, but it is not ideal for 0% and 100%.  

 

 2.4.3.3 Angular Transformation 

  Angular Transformation variables, expressed by a proportion or percentage, are best 

suited for the application of angular transformation (Zar, 2014) so that variance can be 

expressed as a quadratic function of the proportion (Warton et al., 2011). If the distribution 

of percentages is binomial (Dean, and Voss, 1999; Montgomery, 2013; Gupta, and Kapoor, 

2014; Montgomery et al., 2017), this transformation makes the distribution closer to normal. 

It is also known as ‘arcsine’ or ‘inverse sine’ transformation. In agronomical experiments, 

biochemical components of silages are converted to proportions or percentages of total DM. 

It should be noted that only the percentage data that are derived from original data should 

be transformed (Rangaswamy, 2018). 

 

 2.4.4 Regression Models 

 2.4.4.1 Linear Models 

  A linear model is a sum of a constant and a product of parameter and predictor 

variable. It is possible that there are multiple products of parameter and predictor variable. 

Y = b o + b1X1 + b2X2 + ... + bkXk 

Transforming the predictor variables in ways that produce curvature is also possible. For 

instance, you can include a squared variable to produce a U-shaped curve. 

Y = b o + b1X1 + b2X1
2 

This model is still linear in the parameters even though the predictor variable is squared. You 

can also use log and inverse functional forms that are linear in the parameters to produce 

different types of curves. 
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 2.4.4.2 Non - Linear Models 

  Non – Linear model can have more than one parameter per predictor variable. This 

allows flexibility of different curvatures to cover many shapes. Table 2.4 presents some 

examples of non-linear functions and their possible shapes. 

Table 2.4: Examples of Non-Linear Functions (The Minitab Blog, 2017) 

Nonlinear 

function 

Power (convex): 

Theta1 ∙  XTheta2 

Weibull growth: 

Theta1 + (Theta2 −

Theta1)  ∙

 e(−Theta3 ∙ XTheta4) 

Fourier: Theta1 ∙ cos(X 

+ Theta4) + (Theta2 ∙ 

cos(2X + Theta4)) + 

Theta3 

One 

possible 

shape 

   

 

 2.4.5 Multivariate Regression 

  Multivariate regression also known as multi-output, multi-target, multi-response 

regression aims to simultaneously predict multiple real-valued output/target variables 

(Borchani, 2015). When there are compound dependencies among feature/target variables, 

it has been proven that multivariate regression performs better than univariate regression 

(Borchani, 2015). The main advantage of multivariate regression is its capability to consider 

not only the underlying relationships among the features and the corresponding targets, but 

also the relationships among the targets, thereby guaranteeing a better representation and 

interpretability of real-world problems (Borchani, 2015). Other advantages include better 

computational efficiency and simpler models which tend to also have lower model training 

time. There are two common approaches to achieve multivariate regression.  

  First, the problem transformation methods (also known as local methods) transform 

the multi-output problem into independent single-output problems where each problem is 

solved using a single-output regression algorithm (Borchan, 2015). The key disadvantage of 

the problem transformation method is that it ignores the relationships among target variables. 
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Multi-Target Regressor Stacking (MTRS) is a popular problem transformation method that is 

commonly used. This method uses single output regression for each target variables and then 

builds another model based on the predicted target variables and corrects the errors made by 

the single output models. Regressor Chain (RC) is also a commonly used method that selects 

a random chain (order) of targets, and predicts targets based on the order of chain. The first 

model uses a single output regression to predict the first target variable and the following 

models will build a single output regression to predict the next target variable based on 

previous models which includes at least one target variable. Shortly after the development of 

this method, it evolved to Regressor Chain Corrected (RCC) and then Ensemble Regressor 

Chain Corrected (ERCC). The RCC is RC with cross validation and ERCC attempts to solve the 

problem of chain selection since depending on the order of the chain, predictions may vary. 

More specifically, ERCC with attempt every model if a combination of target variables results 

in distinct chains that are less than 10 and if they are more than 10, it will randomly choose 

10 distinct chains (Spyromitros-Xioufis et al., 2012). Unfortunately, there are not enough 

studies to validate that MTR and RC improve predictive accuracies significantly compared to 

single output regression. Another study on Support Vector Machine (SVR) presented a Multi-

Output SVR (MO-SVR) approach based on problem transformation (Zhang et al., 2012). It 

builds a multi-output model that considers the correlations among all the targets using the 

vector virtualization method (Zhang et al., 2012). Basically, it extends the original feature 

space and expresses the multi-output problem as an equivalent single-output problem, such 

that it can then be solved using the single output least squares SVR machines (LS-SVR) 

algorithm. It is at least as performant as a single output SVR and often faster in computations 

(Borchani, 2015). 

  Secondly, algorithm adaptation methods (also known as global or big-bang methods) 

adapt a specific single-output method (such as decision trees and support vector machines) 

to directly handle multi-output data sets (Borchani, 2015). Algorithm adaptation methods are 

deemed to be more challenging because they usually aim, not only to predict the multiple 

targets, but also to model and interpret the dependencies among those targets (Borchani, 

2015). Statistical methods use correlations among target variables to make a build a single 

model that predicts all target variables. There are various statistical methods to perform the 

algorithm adaptation methods, but they commonly use a matrix of estimated regression 
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coefficients. Various studies have also presented methods to use MO-SVR as part of algorithm 

adaptation methods by considering the correlations between target variables. To name a few, 

CoKriging method is a multi-output algorithm that exploits the correlations due to the 

proximity in the space of factors and outputs (Vasquez et al., 2003). In this way, with an 

appropriate choice of covariance and cross-covariances models, the authors showed that 

multi-output SVR yields better results than an independent prediction of the outputs 

(Vasquez et al., 2003). Other variant method is the multi-regressor SVR (M-SVR), which is 

based on an iterative reweighted least squares (IRWLS) procedure that iteratively estimates 

the weights W and the bias parameters b until convergence, i.e., until reaching a stationary 

point where there is no more improvement of the considered loss function (Sánchez-

Fernández et al., 2004). Kernel methods use vector-valued learning where there is an 

emphasis on analyzing the regularized least squares from the computational point of view 

(Borchani, 2015). This method also analyzes the theoretical aspects of reproducing kernel 

Hilbert spaces (RKHS) in the range-space of the estimator and generalizing the representer 

theorem for Tikhonov regularization to the vector-valued setting (Borchani, 2015). Next, there 

is the multivariate regression trees (MRTs), also known as multi-objective regression trees 

(MORTs). This method not only identifies dependencies among target variables, but also 

builds a much smaller single regression tree. This method also inherits characteristics of 

univariate regression trees: they are easy to construct, and the resulting groups are often 

simple to interpret; they are robust to the addition of pure noise response and/or feature 

variables; they automatically detect the interactions among variables; and they handle 

missing values in feature variables with minimal loss of information (De’ath, 2002). Lastly, 

there is Rule methods, also known as Fitted Rule Ensemble (FIRE) algorithm, that transcribes 

an ensemble of regression trees into a large collection of rules, followed by a gradient-

directed optimization procedure, to select the best (and much smaller) subset of these rules 

and determine their respective weights (Borchani, 2015).  
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 2.4.6 Evaluation Metrics for Regression Problems 

  When evaluating regression models, there are four common evaluation metrics that 

are used. First, Mean Squared Error (MSE) is the most used regression model evaluation 

metric due to its simplicity. 

𝑀𝑆𝐸 =  
1

𝑛
 ∑( 𝑦 −  𝑦̂ )2 

It is simply an average of the squared difference between target values and predicted values. 

As it squares the differences, it penalizes even a small error which leads to over-estimation of 

how bad the model is (Mishra 2019). It is preferred more than other metrics because it is 

differentiable and hence can be optimized better (Mishra, 2019). 

  Next, Root Mean Squared Error (RMSE) is the square root of the averaged squared 

difference between the target value and the predicted value.  

𝑅𝑀𝑆𝐸 =  √
∑ ( Predictedi −  Actuali )2N

i =1

𝑁
 

It is preferred more in some cases because the errors are first squared before averaging which 

poses a high penalty on large errors (Mishra, 2019). This implies that RMSE is useful when 

large errors are undesired. 

  Mean Absolute Error (MAE) is the absolute difference between the target value and 

the predicted value.  

𝑀𝐴𝐸 =  
1

𝑛
 ∑| 𝑦 −  𝑦̂ | 

The MAE is more robust to outliers and does not penalize the errors as extremely as MSE. 

MAE is a linear score which means all the individual differences are weighted equally. It is not 

suitable for applications where you want to pay more attention to the outliers (Mishra, 2019). 

  Lastly, R-Squared also known as Coefficient of Determination or R² is another metric 

used for evaluating the performance of a regression model.  

𝑅2 =  1 − 
MSE (model)

MSE (baseline)
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  These metrics help us to compare our current model with a constant baseline and 

tells us how much our model is better. The constant baseline is chosen by taking the mean of 

the data and drawing a line at the mean. R-Squared is a scale-free score that implies it does 

not matter whether the values are too large or too small, the R-Squared will always be less 

than or equal to 1. Sometime, R-Squared is a negative value and this is possible since the range 

of R-Squared is from negative infinity to 1 (Mishra, 2019). This is mainly due to the MSE of the 

model being greater than the MSE baseline. This is caused by multiple reasons which include 

the possibility of large amounts of outliers, a missing intercept, and a model that does not fit 

the trend of the data (Mishra, 2019). 

 2.5 Challenges in Understanding the Relationship Among Silage Qualities and 

 Milk Production 

  Extensive studies on attempting to improve the interpretability of the impact of silage 

quality on milk production is necessary to facilitate industry leaders on optimizing efficiency 

of milk production. Data-driven analysis using data science approaches including machine 

learning and statistics will generate insightful in information on the relationship among silage 

characteristics and milk production variables. 
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3. Materials and Methods 

  The research was divided into two main components: i) silage data imputation; and ii) 

predictive modelling for silage factor analysis and its impact on milk production.  

 3.1 Silage Data Imputation 

 3.1.1 General Information about Datasets 

  The data used in this research originated in Québec, and were provided by Lactanet, 

the Canadian milk-recording agency. File sources contained information on silage samples 

from grass and legume, and corn silage; and milk production data (18,378, 34,237 and 47,785 

observations, respectively). More specifically, the silage files consisted of chemical variables 

related to silage fermentation, digestibility, protein, fiber, carbohydrates and minerals, while 

the milk production file consisted of milk production and component variables from 2016 to 

2020 (Appendix 1). Silage fed consists of a mixed ration of grass, legume and corn silage. 

 3.1.2 Data Editing 

  Data editing was performed using the Anaconda toolkit, which is an open-source 

Python distribution platform with numerous data science and machine learning packages, and 

SAS (Statistical Analysis System). Variables were selected by considering the Committee of 

Animal Nutrition from the National Research Council (NRC) and the common variables 

between silages and milk production datasets that could impact silage quality and milk 

production. There are 24 grass and legume silage and 26 corn silage variables and 37 milk 

production variables without the management related variables (Appendix 1).  

  As an initial step of data correction, data were checked for duplicates as well as herds 

or years with a single sample. Since all variables except pH are in the unit of percentage, data 

with values less than 0 or greater than 100 were eliminated. In addition, pH values less than 

0 and greater than 14 were also eliminated. Other outliers were determined and eliminated 

as follows: for grass and legume silage, there were three values greater than 100 percent, one 

for acid detergent fiber with neutral detergent fiber percentage as the unit and two for neutral 

detergent insoluble crude protein with crude protein percentage as the units. For corn silage, 

two values were greater than 100 percent, one for rumen digestible neutral detergent fiber 

at 120 hours in vitro and one for rumen digestible Neutral Detergent Fiber at 240 hours in 
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vitro. Rules for biochemical outliers were set differently for the two silage types. For corn 

silage dataset, starch values less than 12 percent and greater than 47 percent, dry matter 

values less than 25 percent and greater than 54 percent and crude protein values greater than 

15 percent were considered outliers. Since there are dependencies among these variables, 

multivariate outlier detection, by looking at the entire sample, was also necessary. Isolation 

Forest algorithm is a multivariate outlier technique that uses a set of trees to perform data 

partitioning it provides an anomaly score looking at how isolated a point is in the structure. 

The anomaly score is then used to identify outlier samples from normal observations. Details 

of the changes in the number of variables and samples are shown in Figure 3.1.

 

*Note that the number of samples does not change after the univariate outlier detection since it only eliminates data 

values, not the entire sample. The number of variables only changes during variable selection, where only the variables that 

will be used in the project are selected. 

Figure 3.1: Variable Selection and Outlier Detection for Silage Datasets 

 

 3.1.3 Data Imputation 

  In order to study the relationships among the silage and milk production variables, 

these variables needed to be present in the same sample. It is not common in forage and dairy 

industries to have forage dataset and milk production dataset in a single database. The milk-

production dataset used for this research had both milk production and silage variables, but 

some important silage variables listed as target variables in Appendix 2 were not available. 

Therefore, it was necessary to predict numerical values of the target variables using the silage 

variables provided within the milk production dataset as an input to a machine learning model 

that was built using the training variables listed in Appendix 2.  
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 Throughout this research, various machine learning algorithms were explored to 

select the most performant regression algorithm. Since the datasets were all labelled with 

known silage and milk production variables, supervised learning used algorithms were 

explored. The imputation is a multi-input multi-output regression task since there are multiple 

variables to predict, and both the single-output and multi-output regression approaches were 

considered.  

  Prediction, using multi-output approaches such as multi-regressor and regressor 

chain, were also explored. As a result, Extra Tree (Extremely Randomized Trees)-based Meta-

estimator and regressor chain based AdaBoost were the best algorithms for grass and legume 

silage and corn silage datasets, respectively. For grass and legume silage dataset, 969 samples 

were used to train the model and to impute 21,031 samples. For the corn-silage dataset, 2,927 

samples were used to train the model and to impute 12,818 samples. Details of the data 

imputation process can be shown in Figure 3.2. Initially, linear models such as linear regression, 

robust (Huber) regression, partial least square (PLS) regression, Elastic-Net regression and k-

nearest neighbour regression were explored. Mean Absolute Error (MAE), MAE/Mean, Root 

Mean Square Error (RMSE) and R-square were all used to evaluate the accuracy of the models. 

Data normality was tested by observing the histograms of each variable and in general, silage 

variables did not show normal distribution. To bring the data closer to normality, we explored 

numerous data transformation techniques and settled with the arcsine square root 

transformation. This data transformation technique is for percentage data and was, therefore, 

applied to all variables except pH. The application of data transformation made small changes 

to the distribution of the data points, but slightly improved the R-Square at the expense of a 

slight decrease in MAE. 
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Figure 3.2: Data Imputation Process Through the use of Machine Learning Algorithms 

 

 3.2 Predictive Modelling for Silage Quality Factor Analysis and its Impact on 

 Milk Production 

 

 3.2.1 Factor Analysis for Silage Quality 

 Using the imputed silage variables, factor analysis was conducted to provide better 

interpretability and understand the impact of silage characteristics on milk production. By 

using the factor loadings (coefficients that explain the correlation between a factor and a 

variable) derived from Varimax rotation, factor scores were calculated and by doing a dot 

product between the factor loadings and silage values.  

 Factors for grass and legume silage are denoted as FxGL, where x represents 1 to 5. To 

facilitate interpretability, some factor variables needed their signs to be inverted by 

multiplying them by negative one to represent higher values as positive outcomes. In detail, 

F1GL represents neutral detergent fiber digestibility and the Factor loadings of neutral 

detergent fiber digestibility variables had negative values, which were converted to positive 

values to designate higher as better. F5GL, which represents soil contamination, had positive 

ash, which was converted to negative since lower the ash, less the soil contamination. In order 
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to have a truly complete dataset, additional multivariate outliers were required. Herds that 

had a single sample for an entire year were removed.  

  Factors for corn silage are denoted as FxC, where x represents 1 to 5. To facilitate 

interpretability, some factor variables needed their signs to be inverted by multiplying them 

by negative one to represent higher values as positive outcomes. In detail, F1C, which 

represents starch concentration, was converted from negative to positive values to emphasize 

higher starch concentration. In order to have a truly complete dataset, additional multivariate 

outliers were required. Herds that had a single sample for an entire year were removed. 

 

 3.2.2 Linear Models 

  Linear regression was used to understand the relationships between milk 

management variables and silage quality factors. More specifically, each factor was compared 

to test month and storage method, where the test month comes from the herd test period 

which is the milk recording date and not the month of the harvesting or the analysis of the 

sample.   

 

 3.2.3 Mixed Effects Models 

  Mixed effects models were used to understand the relationships among the silage 

characteristics, herd management and milk production variables. More specifically, five 

models were built to represent average daily milk, fat, protein milk urea nitrogen and somatic 

cell count score per cow. Input parameters are defined in Table 3.1.  
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Table 3.1: Information about the Selected Variables for Mixed Effects Model 

VARIABLE FIXED EFFECTS RANDOM EFFECTS OUTPUT UNITS 

SumPropFactorGL 1 X   N / A 

SumPropFactorGL 2 X   N / A 

SumPropFactorGL 3 X   N / A 

SumPropFactorGL 4 X   N / A 

SumPropFactorGL 5 X   N / A 

SumPropFactorC 1 X   N / A 

SumPropFactorC 2 X   N / A 

SumPropFactorC 3 X   N / A 

SumPropFactorC 4 X   N / A 

SumPropFactorC 5 X   N / A 

Average Daily Milk per Cow   X kg / day / cow 

Average Daily Fat per Cow   X kg / day / cow 

Average Daily Protein per Cow   X kg / day / cow 

Somatic Cell Count Score   X Cell count average 

Average Days in Milk   X Number of days 

Test Year X   Year 

Test Month X   Month 

Herd  X  ID 

Region X   Region 

Proportion of Concentrate X   % 

Milk Urea Nitrogen Average X   mg/dl 

Presence of Other Silage X   % 

N / A: Not Available 
SumPropFactorGL: Sum of the Interaction between Proportion of Grass and Legume Silage within Feed and Grass and Legume Silage Factor 
SumPropFactorC: Sum of the Interaction between Proportion of Corn Silage within Feed and Corn Silage Factor 

 

  Five variables were created for each grass and legume silage and corn silage that 

represent the herd level sum of the interactions between the proportion of the specific silage 

(grass and legume silage or corn) and the factors. More specifically, each factor score was 

multiplied by the proportion of its silage type within feed and summed within a herd. Grass 

and legume silage and corn silage had different models due to their different silage quality 

factors. 

The mixed effects models were formulated by the following equation: 

𝑌 =  ∑ ∑
Proportion of specific silage 

from feed (DM%)
∙𝑇𝑜𝑡𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑒𝐻𝑇𝑃

sample Factorx  + 5
𝑥 = 1   

Days in Milk + Test Year + Test Month + Region + Proportion of Concentrate from Feed 

(DM %) + Total Proportion of Other Silage from feed (DM %) + Random (Herd) 

TotalSampleHTP: Total Sample Count Within Herd Test Period  

Where Y is the following: 

• Average daily milk per cow (kg); 

• Average daily fat per cow (kg); 
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• Average daily protein per cow (kg); 

• Average daily milk urea nitrogen; 

• Average somatic cell score 

Specifically, silage is either predominantly grass and legume silage or predominantly corn 

silage. However, the proportion of the other silage is also included in the statistical model. 

Herd is a random effect. 

  Additional univariate outlier removal was necessary before applying the mixed effects 

model. In order to have a complete dataset, an entire set of samples that belong to the same 

herd test period had to be removed if a value was either missing or an outlier: proportion of 

total grass and legume silage less than 10%, proportion of total corn silage greater than 70%, 

average days in milk greater than 260, average daily milk per cow daily in a herd less than 15kg, 

average milk urea nitrogen that equal to 0, average somatic cell count that equals to 0 or 

greater than 800, proportion of concentrate in feed greater than 60%, proportion of total 

silage from total feed less than 30%, total daily silage intake per cow less than 10kg, average 

daily dry matter intake per cow less than 15 kg or greater than 35 kg and total milk produced 

from concentrate (kg) less than 2 or greater than 7 were considered univariate outliers in milk 

production dataset (Figure 3.3).  

 
*Note that the number of samples does not change after the univariate outlier detection since it only eliminates data 

values, not the entire sample. The number of variables only changes during variable selection, where only the variables that 

will be used in the project are selected. 

Figure 3.3: Variable Selection and Outlier Detection for Milk Production Datasets 
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4. Results and Discussion 

 4.1 Interpretation of Grass and Legume Silage Quality Imputation, Factors  

 and Relationship with Milk Production Management 

 4.1.1 Silage Quality Imputation Results 

  Within the milk production dataset, 5,812 grass and legume silage samples had 

missing input parameters and therefore did not impute the rest of the silage variables. As a 

result, final dataset includes 450 herds and 5,539 samples for the milk production dataset with 

mainly grass and legume silage (Figure 4.1). Various regression algorithms were explored to 

identify the algorithm with ideal prediction accuracy of grass and legume silage qualities. 

Despite having some algorithms perform better for silage particular variables with particular 

metrics, an algorithm that generally performs well for all silage variables was chosen for 

efficiency. Highest accuracy for data imputation was found using ensemble algorithms from 

supervised machine-learning with a performance of approximately 93 percent (Table 4.1). 

More specifically, Extra Tree (Extremely Randomized Trees)-based Meta-estimator was the 

best algorithm for grass and legume silage. The imputed silage dataset projected expected 

silage characteristics similar to the training dataset.  
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Figure 4.1: Data Preparation for the Mixed Effects Model 

 

  The accuracy metrics for the simple linear models were not high, especially the R-

square for Butyric acid of grass and legume silage dataset (Table 4.1). Various feature selection 

techniques were explored, but they did not improve the R-Square. Data transformation and 

ensemble models performed significantly better as shown in Table 4.1.  
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Table 4.1: Machine Learning Model Prediction Metrics for Grass and Legume Silage Dataset 

Variable Model 
Metric 

Mean MAE1 MAE / Mean RMSE2 R2 

Rumen Digestible Neutral 
Detergent Fiber at 30 Hour in Vitro 

Linear Regression 0.84 0.02 0.02 0.03 0.67 

Robust (Huber) Regression 0.84 0.02 0.02 0.02 0.89 

PLS (Partial Least Square) Regression 62.13 0.02 0.02 0.03 0.85 

ElasticNet Regression 0.84 0.02 0.02 0.02 0.89 

KNN (K Nearest Neighbour) 0.84 0.004 0.01 0.01 0.96 

SVR (Support Vector Regression) 62.13 1.93 0.03 2.76 0.83 

Meta (Bagging) Estimator 62.13 0.91 0.01 1.62 0.94 

Rumen Digestible Neutral 
Detergent Fiber at 120 Hour in 
Vitro 

Linear Regression 0.91 0.03 0.03 0.04 0.66 

Robust (Huber) Regression 0.91 0.02 0.03 0.03 0.85 

PLS (Partial Least Square) Regression 70.96 0.03 0.03 0.04 0.82 

ElasticNet Regression 0.91 0.02 0.03 0.03 0.86 

KNN (K Nearest Neighbour) 0.91 0.004 0.01 0.01 0.96 

SVR (Support Vector Regression) 70.96 2.72 0.03 3.91 0.76 

Meta (Bagging) Estimator 70.96 1.16 0.01 2.32 0.90 

Rumen Digestible Neutral 
Detergent Fiber at 240 Hour in 
Vitro 

Linear Regression 0.95 0.03 0.03 0.04 0.66 

Robust (Huber) Regression 0.95 0.02 0.02 0.03 0.87 

PLS (Partial Least Square) Regression 74.88 0.03 0.03 0.04 0.83 

ElasticNet Regression 0.95 0.02 0.02 0.03 0.87 

KNN (K Nearest Neighbour) 0.95 0.004 0.01 0.01 0.96 

SVR (Support Vector Regression) 74.88 2.44 0.03 3.56 0.79 

Meta (Bagging) Estimator 74.88 1.14 0.01 2.33 0.90 

pH Linear Regression 4.64 0.07 0.01 0.11 0.57 

Robust (Huber) Regression 4.64 0.17 0.03 0.23 0.67 

PLS (Partial Least Square) Regression 4.75 0.18 0.03 0.24 0.65 

ElasticNet Regression 4.64 0.17 0.03 0.23 0.67 

KNN (K Nearest Neighbour) 4.64 0.004 0.01 0.01 0.11 

SVR (Support Vector Regression) 4.75 0.16 0.03 0.21 0.68 

Meta (Bagging) Estimator 4.75 0.06 0.01 0.1 0.94 

Lactic Acid Linear Regression 0.20 0.02 0.13 0.03 0.70 

Robust (Huber) Regression 0.20 0.02 0.10 0.02 0.79 

PLS (Partial Least Square) Regression 3.83 0.02 0.11 0.03 0.75 

ElasticNet Regression 0.20 0.02 0.11 0.02 0.78 

KNN (K Nearest Neighbour) 0.20 0.00 0.22 0.01 0.66 

SVR (Support Vector Regression) 3.83 0.75 0.19 1.01 0.77 

Meta (Bagging) Estimator 3.83 0.29 0.07 0.50 0.95 

Acetic Acid Linear Regression 0.15 0.02 0.14 0.02 0.50 

Robust (Huber) Regression 0.15 0.02 0.13 0.02 0.83 

PLS (Partial Least Square) Regression 1.98 0.02 0.16 0.03 0.78 

ElasticNet Regression 0.15 0.02 0.14 0.02 0.82 

KNN (K Nearest Neighbour) 0.15 0.004 0.21 0.01 0.52 

SVR (Support Vector Regression) 1.98 0.63 0.31 0.88 0.57 

Meta (Bagging) Estimator 1.98 0.20 0.10 0.32 0.93 

Propionic Acid Linear Regression 0.01 0.01 0.18 0.01 0.47 

Robust (Huber) Regression 0.01 0.01 0.86 0.01 0.42 

PLS (Partial Least Square) Regression 0.33 0.01 1.15 0.01 0.40 

ElasticNet Regression 0.01 0.01 0.98 0.01 0.50 

KNN (K Nearest Neighbour) 0.01 0.004 0.06 0.01 0.32 

SVR (Support Vector Regression) 0.33 0.06 0.18 0.08 0.82 

Meta (Bagging) Estimator  0.33 0.02 0.06 0.03 0.96 

Butyric Acid Linear Regression 0.04 0.03 0.72 0.03 0.35 

Robust (Huber) Regression 0.04 0.02 0.71 0.03 0.32 

PLS (Partial Least Square) Regression 0.70 0.03 0.80 0.04 0.29 

ElasticNet Regression 0.04 0.01 0.98 0.01 0.50 

KNN (K Nearest Neighbour) 0.04 0.004 0.04 0.01 0.32 

SVR (Support Vector Regression) 0.70 0.18 0.26 0.34 0.19 

Meta (Bagging) Estimator 0.70 0.03 0.75 0.03 0.96 

1MSE: Mean Absolute Error 

2RMSE: Root Mean Squared Error 
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 4.1.2 Silage Quality Factor Analysis 

 Grass and legume silage variables were grouped into five factors:  

• F1GL: Neutral Detergent Fiber Digestibility and Heat Damage 

• F2GL: Protein Ruminal Degradability 

• F3GL: Legume Proportion 

• F4GL: Homolactic Fermentation 

• F5GL: Soil Contamination and Bad Fermentation Pattern 
 

  In order to understand the relationship among the silage characteristics and milk 

production, the initial step was to analyze the impact of test date, region and storage method 

on factors derived from the factor loadings (Table 4.2). JMP statistical software was used to 

perform statistical analysis. For each factor, Tukey results with least square means were 

generated to observe statistical differences among the variables. 

Table 4.2: Factor Loadings for Grass and Legume Silage 
Factor and Variable F1GL F2GL F3GL F4GL F5GL Communalities 

Dry Matter (%) 15.15 -39.07 21.40 -66.98 24.38 0.73 
Crude Protein (DM %)  5.67 -4.47 90.22 6.50 -25.63 0.89 
Soluble Protein (DM %)  -0.35 61.85 53.67 38.48 -24.89 0.88 
Soluble Protein (CP %) -4.98 82.34 -1.76 41.74 -13.60 0.87 
Acid Detergent Insoluble Crude Protein (DM %) -42.32 -78.76 16.17 -0.25 -9.43 0.83 
Acid Detergent Insoluble Crude Protein (CP %) -43.60 -73.28 -29.86 -4.29 5.38 0.82 
Neutral Detergent Insoluble Crude Protein (DM %) -1.08 -90.02 19.51 -11.39 -1.57 0.86 
Neutral Detergent Insoluble Crude Protein (CP %) -4.71 -89.43 -26.88 -14.63 13.99 0.92 
Rumen Degradable Protein (DM %) 3.15 28.99 81.75 23.79 -28.25 0.89 
Rumen Degradable Protein (CP %) -4.95 82.33 -1.73 41.75 -13.55 0.87 
Acid Detergent Fiber (DM %) -40.00 9.71 -78.72 13.98 -37.67 0.95 
Acid Detergent Fiber (NDF %) -79.44 23.75 9.64 17.75 -33.16 0.84 
Neutral Detergent Fiber (DM %) 5.21 -5.12 -91.57 3.46 -19.21 0.88 
Lignin (DM %) -86.80 -39.40 -15.11 -0.77 -12.67 0.95 
Lignin (NDF %) -86.27 -32.08 30.96 -5.19 -3.29 0.95 
Crude Fat (DM %) 38.43 3.90 15.65 58.56 -17.47 0.55 
Non-fibrous Carbohydrate (DM %) -7.46 -17.37 63.42 -10.91 55.30 0.76 
Ash (DM %) -14.23 18.65 17.11 -10.07 -44.27 0.29 
Rumen Digestible Neutral Detergent Fiber at 30 Hours in 
Vitro (NDF %) 

90.29 1.43 19.17 4.02 -5.05 0.86 

Rumen Digestible Neutral Detergent Fiber at 120 Hours in 
Vitro (NDF %) 

93.50 1.71 7.86 0.26 -1.37 0.88 

Rumen Digestible Neutral Detergent Fiber at 240 Hours in 
Vitro (NDF %) 

94.49 2.67 5.46 2.00 -0.37 0.90 

pH -2.59 -18.00 2.37 -89.03 -41.13 1.00 
Lactic Acid (DM %) -0.91 42.19 11.62 73.88 17.16 0.77 
Acetic Acid (DM %) -27.36 11.73 10.15 43.75 -41.11 0.46 
Propionic Acid (DM %) -11.74 40.06 -40.21 41.60 -59.71 0.87 
Butyric Acid (DM %) 3.84 -7.32 -4.77 -4.88 -54.89 0.31 
Eigenvalues 7.78 5.23 4.31 2.60 1.97 N / A 
Explained Variance 22.14 19.74 14.39 9.74 8.58 N / A 

F1GL: Neutral Detergent Fiber Digestibility and Heat Damage 
F2GL: Protein Ruminal Degradability 
F3GL: Legume Proportion 
F4GL: Homolactic Fermentation 
F5GL: Soil Contamination and Bad Fermentation Pattern 
N / A: Not Applicable 
Green and red colors represent positive and negative values, respectively. 
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Table 4.3: Grass and Legume Silage Variables Used in Mixed Effects Modelling and Their 
Effects 

Dependent Variables Independent Variables Estimates (+, - ) p-values 

Average Daily Milk per Cow (kg) 
 
 
 
 
 
 
 

Herd N/A < 0.05 
Test Year of Production N/A < 0.05 
Test Month of Production N/A < 0.05 
Region N/A < 0.05 
Average Days in Milk -0.05 < 0.05 
Proportion of Concentrate from Feed 2.99 < 0.05 
Total Proportion of Corn Silage 1.50 < 0.05 
F1GL 0.09 < 0.05 
F2GL 0.13 < 0.05 
F3GL 0.13 0.81 
F4GL -0.06 0.13 
F5GL -0.04 0.60 

Average Daily Fat per Cow (kg) Herd N/A < 0.05 
Test Year of Production N/A < 0.05 
Test Month of Production N/A < 0.05 
Region N/A < 0.05 
Average Days in Milk -0.001 < 0.05 
Proportion of Concentrate from Feed 0.11 < 0.05 
Total Proportion of Corn Silage 0.05 < 0.05 
F1GL 0.004 < 0.05 
F2GL 0.006 < 0.05 
F3GL -0.01 0.92 
F4GL -0.35 0.10 
F5GL -0.07 0.81 

Average Daily Protein per Cow (kg) 
 
 
 
 
 

Herd N/A < 0.05 
Test Year of Production N/A < 0.05 
Test Month of Production N/A < 0.05 
Region N/A < 0.05 
Average Days in Milk -0.001 < 0.05 
Proportion of Concentrate from Feed 0.10 < 0.05 
Total Proportion of Corn Silage 0.08 < 0.05 
F1GL 0.003 < 0.05 
F2GL 0.003 0.21 
F3GL -0.0006 0.95 
F4GL -0.001 0.31 
F5GL -0.007 0.78 

Average Somatic Cell Score 
 
 
 
 
 

Herd N/A < 0.05 
Test Year of Production N/A < 0.05 
Test Month of Production N/A < 0.05 
Region N/A < 0.05 
Average Days in Milk 0.001 < 0.05 
Proportion of Concentrate from Feed 0.08 0.50 
Total Proportion of Corn Silage 0.41 < 0.05 
F1GL -0.001 0.32 
F2GL -0.04 0.84 
F3GL -0.009 0.24 
F4GL 0.005 0.47 
F5GL 0.001 0.62 

Average Daily Milk Urea Nitrogen 
 
 
 
 
 

Herd N/A < 0.05 
Test Year of Production N/A < 0.05 
Test Month of Production N/A < 0.05 
Region N/A < 0.05 
Average Days in Milk -0.001 0.21 
Proportion of Concentrate from Feed 0.09 0.83 
Total Proportion of Corn Silage 1.87 < 0.05 
F1GL -0.07 < 0.05 
F2GL -0.05 0.38 
F3GL -0.04 0.12 
F4GL 0.09 < 0.05 
F5GL 0.13 0.11 

F1GL: Neutral Detergent Fiber Digestibility and Heat Damage 
F2GL: Protein Ruminal Degradability 
F3GL: Legume Proportion 
F4GL: Homolactic Fermentation 
F5GL: Soil Contamination and Bad Fermentation Pattern 
N/A: Not Available. 
Estimates are highlighted in green for positive values and red for negative values.  
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 4.1.2.1 Impact of Silage Management Variables on Neutral Detergent Fiber  

 Digestibility and Heat Damage with Grass and Legume Silage 

  The factor F1GL (Table 4.2) 

was defined as an index related to 

fiber digestibility and heat damage 

because the factor loadings 

(Table 4.2) for rumen digestible 

neutral detergent fiber digestibility 

(NDFD) in vitro (30, 120, 240 hours) 

were 90.29, 93.50 and 94.49 

respectively. The factor loadings for 

lignin (%DM and %NDF), ADF (%DM 

and %NDF) and CP bound to ADF 

(%DM and %CP) were the opposite of 

NDFD and significantly negative. The 

concentration of CP bound to ADF (Yu, 

1976) was recognized as an indicator 

of heat-damaged silage during feed-

out. 

  The results of the mixed 

model analysis for F1GL (Table 4.3) 

confirm the interpretation of the 

factor. A significative difference was 

observed between the test month of 

August (-0.87) and March (-2.01) 

(Figure 4.2). The difference is due to 

the higher risk of heat damage during 

feed-out in summer months 

compared to the winter month like 

observed by Bernardes et al. (2018). Also, the effect of storage methods on F1GL, showed that 

the round and large rectangular bales (Figure 4.3) had a value of 0.30 and -0.34, respectively, 
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compared to bunker silos and the oxygen-limiting silos with -3.54 and -3.55, respectively. Pile 

silos, bag silos and conventional tower silos have intermediated results. Similar results have 

been found where bales exhibit reduced heat damage compared to other storage methods 

(Corbett, 1996; Coblentz et al., 2009). The lower value for the oxygen-limited silos could be 

due to the improper management of this type of silos where a limited number of Quebec 

producers use dry ice for closing the silo or injecting CO2 during the summer (Leduc, 2019) 

leading to heat damage. 

 

  4.1.2.2 Impact of Silage Management Variables on Protein Ruminal   

  Degradability with Grass and Legume Silage 

  The factor F2GL (Table 4.2) was defined as an 

index related to protein ruminal degradability 

because the factor loadings (Table 4.2) for rumen 

degradable protein (%CP) and soluble protein (%DM 

and %CP) were 82.33, 61.85 and 82.34 respectively. 

Soluble protein fraction represents the portion of 

crude protein that is rapidly degraded or digested by 

rumen microbes. The factor loadings for ADICP 

(%DM and %CP) and NDICP (%DM and %CP) were the 

opposite of rumen degradable and soluble protein, 

and significantly negative. ADICP escapes ruminal 

breakdown and represents the portion of the protein 

that is not degradable, and NDICP is slowly degraded 

in the rumen and constitutes a major portion of the ruminal undegraded protein content 

(Sniffen et al., 1992; NRC 1996).  

  The results of the mixed model analysis for F2GL (Table 4.3) confirm the interpretation 

of the factor. Test month of production for F2GL (protein ruminal degradability) had no 

statistical differences among them, although it is known that protein degradability decreases 

before winter due to the increase of plant maturity (Hoffman et al., 1993). The effect of 

storage methods on F2GL, showed that the bunker silo (Figure 4.4) had a value of 3.49, 
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compared to conventional tower silo with 0.58. Additionally, round bales, large rectangle bales, 

oxygen-limiting silo and pile silo had a value of -0.97, -1.14, -1.29 and -1.89, respectively. 

 

  4.1.2.3 Impact of Silage Management Variables on Legume Proportion with 

  Grass and Legume Silage 

  The factor F3GL (Table 4.2) was defined as an index related to legume proportion 

because the factor loadings (Table 4.2) for rumen degradable, crude and soluble protein 

(%DM) were 81.75, 90.22 and 53.67 respectively. The factor loadings for ADF (%DM) and NDF 

(%DM) were the opposite of rumen degradable, crude and soluble protein, and significantly 

negative. The ADF and NDF (Telleng et al., 2017) were recognized as an indicator of legume 

proportion within silage. The factor loading for NFC (%DM) was 63.42 and Villalba et al. (2021) 

observed NFC as another indicator of legume proportion within silage. 

  The results of the mixed model analysis for F3GL (Table 4.3) confirm the interpretation 

of the factor. Test month of production and F3GL (legume proportion) showed no statistical 

difference. This is likely due to having evenly distributed legume proportion as part of mixture 

silage throughout the year in Québec. It is common to observe legume as part of grass silage 

to enhance crude protein amount.  

 

  4.1.2.4 Impact of Silage Management Variables on Homolactic Fermentation 

  with Grass and Legume Silage 

  The factor F4GL (Table 4.2) was defined as an index related to homolactic 

fermentation because the factor loadings (Table 4.2) for lactic, acetic and propionic acids were 

73.88, 43.75 and 41.60 respectively. The factor loadings for DM and pH were the opposite of 

lactic, acetic and propionic acids, and significantly negative. Factor loading (Table 4.2) of crude 
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fat was 58.56 and it (Solorzano et al., 2016) was recognized as an indicator of homolactic 

fermentation. 

   

  The results of the mixed model analysis for F4GL (Table 4.3) confirm the interpretation 

of the factor. A significative difference was observed in June (0.18) compared to September (-

0.52) and October (-0.62) (Figure 4.5). The difference is due to the higher risk of heat damage 

during feed-out in summer months compared to the winter month like observed by Bernardes 

et al. (2018). Also, the effect of storage methods on F4GL, showed that oxygen-limiting silos 

and round bales (Figure 4.6) had a value of -0.50 and -1.16, respectively, compared to other 

storage methods such as bunker silos, conventional tower silos, bag silos and large rectangle 

bales with 3.50, 1.47, 0.64 and -2.04, respectively. Pile silos has intermediated results. These 

results are likely due to bales having slower fermentation caused by being loosely packaged 

and having more oxygen (Schick, 2019). The higher values for bunker and conventional tower 

silo are likely due to the longer fermentation time on the two methods (Oney et al., 2018). 
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  4.1.2.5 Impact of Silage Management Variables on Soil Contamination and 

  Bad Fermentation Pattern with Grass and Legume Silage 

  The factor F5GL (Table 4.2) was defined as an index related to soil contamination 

because the factor loading (Table 4.2) for ash was -44.27. The factor loading for NFC was the 

opposite of ash and significantly negative. Low pH (-41.13), acetic acid (-41.11), propionic acid 

(-59.71) and butyric acid (-54.89) were observed (Table 4.2), and these variables (Danner et 

al., 2003) were recognized as an indicator of bad fermentation in silage. 

   

  The results of the mixed model analysis for F5GL (Table 4.3) confirm the interpretation 

of the factor. A significative difference was observed between the test month of June (-0.80) 

and August (-0.27) (Figure 4.7). The effect of storage methods on F5GL, showed that the round 

and large rectangular bales (Figure 4.8) had a value of 0.55 and 0.75, respectively, compared 

to bag silos, conventional tower silos and bunker silos, which individually showed statistical 

differences with -0.50, -1.43 and -2.81, respectively. Pile silos and oxygen-limiting silos bag 

silos have intermediated results. The statistical differences shown are likely due to the slower 
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fermentation of bales compared to silos, which could have an impact on improving 

fermentation profile.  

 

 4.1.3 Mixed Effects Models to Evaluate the Impact of Grass and Legume 

 Silage Quality on Milk Production 

  Using mixed effects models, the grass and legume silage quality factors and milk 

production and management related variables presented interesting relationships among 

dependent variables, which were key indicators for optimal milk production (Table 4.3). The 

threshold for p-value was set to 0.05 to signify the importance of independent variables.  

 

 

  4.1.3.1 Impact of Milk Production Variables and Silage Characteristics on  

  Average Daily Milk per Cow from Grass and Legume Silage 

  Table 4.3 shows that increasing the 

proportion of corn silage, concentrate or 

legume from total feed increased average 

daily milk per cow, which is likely due to the 

fact that concentrate or legume from total 

feed are known as high sources of crude 

protein, which could increase energy. Similar 

results were observed from multiple studies 

for proportion of corn silage (Benchaar et al., 

2014), proportion of concentrate (Dewhurst 

et al., 2003) and proportion of legume 

(Thomas et al., 1985 and Hoffman et al., 

1998) from total feed. Increase in days in milk 

resulted in decrease milk production (Table 4.3). A significative difference was observed for 

the test month of January (32.78), October (32.57) and November (32.67), compared to June 

(33.92) (Figure 4.9). 
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  4.1.3.2 Impact of Milk Production Variables and Silage Characteristics on  

  Average Daily Fat per Cow from Grass and Legume Silage  

  Similar to the increase in average 

daily milk per cow, an increase in the 

proportion of corn silage and 

concentrate from feed and homolactic 

fermentation increased fat (Table 4.3). 

This was reasonable given that an 

increase in milk production generally 

leads to an increase in fat. F1GL (Neutral 

detergent digestibility and heat 

damage), F2GL (Protein Ruminal 

Degradability) and F5GL (soil 

contamination and bad fermentation 

pattern) had no significant impact on fat. 

A significative difference was observed 

for the test month of January (1.35), 

compared to July (1.31) and August (1.31) (Figure 4.10). Similar to milk production, Average 

days in milk has a negative impact for fat (Table 4.3).  
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  4.1.3.3 Impact of Milk production Variables and Silage Characteristics on  

  Average Daily Protein per Cow from Grass and Legume Silage 

  Mixed effects model results 

(Table 4.3) showed that protein increases 

when proportion of corn silage, 

concentrate and legume silage from feed 

increased since these factors generally 

increase milk production. Benchaar et al. 

(2014) showed similar results with these 

factors. Unlike milk-fat production, F4GL 

(homolactic fermentation) showed no 

significant effect on protein. Moreover, 

F1GL (neutral detergent fiber digestibility 

and heat damage), F2GL (protein ruminal 

degradability) and F5GL (soil 

contamination and bad fermentation 

pattern) had no direct impact on protein. Average days in milk decreased average daily protein 

per cow (Table 4.3). A significative difference was observed for the test month of April (1.13) 

and May (1.14), compared to August (1.09) (Figure 4.11). 

 

  4.1.3.4 Impact of Milk production Variables and Silage Characteristics on  

  Average Milk Urea Nitrogen from Grass and Legume Silage 

  All silage factors: F1GL (neutral detergent fiber digestibility and heat damage), F2GL 

(protein ruminal degradability), F3GL (legume proportion), F4GL (homolactic fermentation) and 

F5GL (soil contamination and bad fermentation pattern) did not have significant impact on 

average daily milk urea nitrogen (Table 4.3). Average days in milk and proportion of 

concentrate in feed also had no impact (Table 4.3). Increase in proportion of corn silage from 

feed showed increase in average daily milk urea nitrogen (Table 4.3). A significative difference 

was observed for the test month of January (11.01) and November (11.04), compared to May 

CDE

BC
AB

A A

AB

EF
F

DEF
DEF

BCD

AB

1.04

1.06

1.08

1.1

1.12

1.14

1.16

Ja
n
u
a
ry

Fe
b
ru

a
ry

M
a
rc

h

A
p
ri
l

M
a
y

Ju
n
e

Ju
ly

A
u
g
u
st

S
e
p
te

m
b
e
r

O
ct

o
b
e
r

N
o
ve

m
b
e
r

D
e
ce

m
b
e
r

A
ve

ra
g
e
 D

a
ily

 P
ro

te
in

 P
e
r 

C
o
w

Test Month of Production
The letters represent statistical differences among test months

The bar represents a confidence interval

Figure 4.11: Effect of Test Month of Production 
for Average Daily Protein per Cow with Grass and 
Legume Silage 



50 

 

(11.71), June (11.63) and July (11.56) 

(Figure 4.12). This is likely due to the 

temperature, where it is known that average 

milk urea nitrogen tends to increase during the 

summer and decrease during winter (Fatehi et 

al., 2012).  

 

 

 

 

 

  4.1.3.5 Impact of Milk production Variables and Silage Characteristics on  

  Average Somatic Cell Score from Grass and Legume Silage 

  All silage factors: F1GL (neutral detergent fiber digestibility and heat damage), F2GL 

(protein ruminal degradability), F3GL (legume proportion), F4GL (homolactic fermentation) and 

F5GL (soil contamination and bad fermentation pattern) did not have a significant impact on 

average somatic cell score. Average days in milk and proportion of concentrate in feed also 

had no impact. Increase in proportion of corn silage from feed increased somatic cell score, 

which was reasonable considering it increases milk production and increase in milk production 

was known to increase somatic cell score (Zhong et al., 2018). A significative difference was 

observed for the test month of April (3.76) and May (3.76), compared to August (4.05) 

(Figure 4.13). 
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 4.2 Interpretation of Corn Silage Quality Imputation, Factors and Relationship 

 with Milk Production Management 

 4.2.1 Silage Quality Imputation Results 

  Within the milk production dataset, 7,782 corn silage samples had missing input 

parameters and therefore did not impute the rest of the silage variables. As a result, final 

datasets include 382 herds and 4,116 samples for the milk production dataset with mainly 

corn silage (Figure 4.1). The accuracy metrics for the models were not high, especially the R-

square for 1, 2 - Propanediol for corn silage dataset. Various feature selection techniques were 

explored, but they did not improve the R-Square. Various regression algorithms were explored 

to identify the algorithm with ideal prediction accuracy of corn silage qualities. Despite having 

some algorithms perform better for silage particular variables with particular metrics, an 

algorithm that generally performs well for all silage variables was chosen for efficiency.  

Highest accuracy for data imputation was found using ensemble algorithms from supervised 

machine-learning had a performance of approximately 99 percent average for corn silage, 

respectively (Table 4.4). More specifically, regressor chain based AdaBoost were the best 

algorithm for corn silage. The imputed silage dataset projected expected silage characteristics 

similar to the training dataset.  
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Table 4.4: Machine Learning Model Prediction Metrics for Corn Silage Dataset 

Variable Model 
Metric 

Mean MAE1 MAE / Mean RMSE2 R2 

Rumen Digestible Neutral 
Detergent Fiber at 30 Hour in 
Vitro 

Linear Regression 0.88 0.02 0.02 0.03 0.67 

Robust (Huber) Regression 0.88 0.01 0.02 0.03 0.51 

PLS (Partial Least Square) Regression 59.70 0.02 0.02 0.03 0.62 

ElasticNet Regression 0.88 0.02 0.02 0.03 0.66 

KNN (K Nearest Neighbour) 0.88 0.02 0.02 0.03 0.56 

SVR (Support Vector Regression) 59.70 1.86 0.03 3.45 0.53 

Meta (Bagging) Estimator 59.70 0.65 0.01 0.92 0.96 

Random Forest 59.70 1.27 0.02 1.74 0.88 

AdaBoost 0.88 0.01 0.0002 0.06 0.99 

Rumen Digestible Neutral 
Detergent Fiber at 120 Hour in 
Vitro 

Linear Regression 1.00 0.03 0.03 0.04 0.65 

Robust (Huber) Regression 1.00 0.02 0.02 0.04 0.53 

PLS (Partial Least Square) Regression 71.67 0.03 0.03 0.04 0.60 

ElasticNet Regression 1.00 0.03 0.03 0.04 0.64 

KNN (K Nearest Neighbour) 1.00 0.03 0.03 0.04 0.55 

SVR (Support Vector Regression) 71.67 2.38 0.03 4.32 0.53 

Meta (Bagging) Estimator 71.67 0.83 0.01 1.17 0.96 

Random Forest 71.67 1.64 0.02 2.25 0.87 

AdaBoost 1.00 0.01 0.0002 0.08 0.99 

Rumen Digestible Neutral 
Detergent Fiber at 240 Hour in 
Vitro 

Linear Regression 1.03 0.03 0.03 0.04 0.65 

Robust (Huber) Regression 1.03 0.02 0.02 0.05 0.54 

PLS (Partial Least Square) Regression 74.09 0.03 0.03 0.04 0.60 

ElasticNet Regression 1.03 0.03 0.03 0.04 0.64 

KNN (K Nearest Neighbour) 1.03 0.03 0.03 0.05 0.55 

SVR (Support Vector Regression) 74.09 2.44 0.03 4.48 0.52 

Meta (Bagging) Estimator 74.09 0.85 0.01 1.19 0.96 

Random Forest 74.09 1.68 0.02 2.30 0.87 

AdaBoost 1.03 0.01 0.0002 0.10 0.99 

pH Linear Regression 3.92 0.07 0.01 0.10 0.56 

Robust (Huber) Regression 3.92 0.07 0.01 0.09 0.56 

PLS (Partial Least Square) Regression 3.92 0.08 0.02 0.12 0.46 

ElasticNet Regression 3.92 0.07 0.01 0.11 0.55 

KNN (K Nearest Neighbour) 3.92 0.07 0.02 0.11 0.53 

SVR (Support Vector Regression) 3.92 0.08 0.02 0.11 0.49 

Meta (Bagging) Estimator 3.92 0.07 0.01 0.10 0.64 

Random Forest 3.92 0.06 0.01 0.09 0.65 

AdaBoost 3.92 0.0001 0.00003 0.003 0.99 

Lactic Acid Linear Regression 0.18 0.02 0.12 0.03 0.69 

Robust (Huber) Regression 0.18 0.02 0.11 0.02 0.61 

PLS (Partial Least Square) Regression 3.57 0.02 0.15 0.03 0.61 

ElasticNet Regression 0.18 0.02 0.13 0.03 0.68 

KNN (K Nearest Neighbour) 0.18 0.02 0.12 0.03 0.70 

SVR (Support Vector Regression) 3.57 0.78 0.22 1.01 0.62 

Meta (Bagging) Estimator 3.57 0.29 0.08 0.38 0.94 

Random Forest 3.57 0.61 0.17 0.82 0.75 

AdaBoost 0.18 0.003 0.0009 0.02 0.99 

Acetic Acid Linear Regression 0.14 0.02 0.15 0.02 0.49 

Robust (Huber) Regression 0.14 0.02 0.14 0.02 0.49 

PLS (Partial Least Square) Regression 2.22 0.02 0.15 0.02 0.45 

ElasticNet Regression 0.14 0.02 0.15 0.02 0.47 

KNN (K Nearest Neighbour) 0.14 0.02 0.16 0.02 0.44 

SVR (Support Vector Regression) 2.22 0.61 0.27 0.81 0.48 

Meta (Bagging) Estimator 2.22 0.62 0.27 0.81 0.48 

Random Forest 2.22 0.46 0.20 0.60 0.71 

AdaBoost 0.14 0.0006 0.0003 0.01 0.99 

Propionic Acid Linear Regression 0.05 0.009 0.18 0.01 0.48 

Robust (Huber) Regression 0.05 0.008 0.16 0.01 0.47 

PLS (Partial Least Square) Regression 0.27 0.01 0.20 0.01 0.39 

ElasticNet Regression 0.05 0.01 0.19 0.01 0.46 

KNN (K Nearest Neighbour) 0.05 0.01 0.21 0.01 0.34 

SVR (Support Vector Regression) 0.27 0.08 0.32 0.11 0.48 

Meta (Bagging) Estimator 0.27 0.08 0.31 0.11 0.51 

Random Forest 0.27 0.06 0.24 0.08 0.70 
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Variable Model 
Metric 

Mean MAE1 MAE / Mean RMSE2 R2 

AdaBoost 0.05 0.00001 0.0002 0.001 0.99 

Propanediol - 1, 2 Linear Regression 0.13 0.01 0.13 0.03 0.27 

Robust (Huber) Regression 0.13 0.01 0.12 0.03 0.12 

PLS (Partial Least Square) Regression 1.81 0.02 0.15 0.03 0.16 

ElasticNet Regression 0.13 0.01 0.14 0.03 0.23 

KNN (K Nearest Neighbour) 0.13 0.01 0.14 0.02 0.24 

SVR (Support Vector Regression) 1.81 0.45 0.25 0.67 0.20 

Meta (Bagging) Estimator 1.81 0.45 0.24 0.67 0.21 

Random Forest 1.81 0.41 0.23 0.57 0.41 

AdaBoost 0.13 0.0003 0.0002 0.003 0.99 

Starch Digestibility Linear Regression 1.00 0.02 0.02 0.03 0.78 

Robust (Huber) Regression 1.00 0.02 0.02 0.03 0.74 

PLS (Partial Least Square) Regression 70.12 0.03 0.03 0.04 0.69 

ElasticNet Regression 1.00 0.03 0.03 0.03 0.76 

KNN (K Nearest Neighbour) 1.00 0.04 0.04 0.05 0.60 

SVR (Support Vector Regression) 70.12 2.66 0.03 3.62 0.76 

Meta (Bagging) Estimator 70.12 2.64 0.03 3.61 0.77 

Random Forest 70.12 2.67 0.03 3.46 0.78 

AdaBoost 1.00 0.009 0.0001 0.17 0.99 
1MAE: Mean Absolute Error 
2RMSE: Root Mean Squared Error 

  

4.2.2 Silage Quality Factor Analysis 

Corn silage variables were grouped into five factors:  

• F1C: Starch Concentration and Maturity 

• F2C: Homolactic Fermentation, Starch Digestibility and Fermentation Length 

• F3C: Neutral Detergent Fiber Digestibility 

• F4C: Protein Rumen Degradability 

• F5C: Heterolactic and Other Secondary Fermentations 
 

  Similar to the steps taken for grass and legume silage, initial step was to analyze the 

impact of test date, region and storage method on factors derived from the factor loadings 

(Table 4.5). JMP statistical software was used to perform statistical analysis. For each factor, 

Tukey results with least square means were generated to observe statistical differences among 

the variables. 

 

 

 

 

Table 4.5: Factor Loadings for Corn Silage 

Factors F1C F2C F3C F4C F5C Communalities 

Dry Matter (%) 40.21 -20.98 -2.66 -7.84 -12.74 0.23 
Crude Protein (DM %)  32.99 -32.22 16.06 87.86 4.23 1.01 
Soluble Protein (DM %)  -1.59 71.38 -12.76 49.95 38.25 0.92 
Soluble Protein (CP %) 17.67 86.65 -19.90 -3.70 33.71 0.94 
Acid Detergent Insoluble Crude Protein (DM %) -64.14 -59.14 7.01 8.75 -5.75 0.78 
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Factors F1C F2C F3C F4C F5C Communalities 

Acid Detergent Insoluble Crude Protein (CP %) -37.89 -32.70 -7.08 -68.31 -11.78 0.74 
Neutral Detergent Insoluble Crude Protein (DM %) -59.86 -60.67 23.73 20.12 -16.35 0.85 
Neutral Detergent Insoluble Crude Protein (CP %) -51.72 -53.21 17.42 -38.41 -24.53 0.79 
Rumen Degradable Protein (DM %) -24.56 17.03 4.44 90.82 24.66 0.98 
Rumen Degradable Protein (CP %) 17.65 86.58 -19.83 -3.64 33.68 0.93 
Acid Detergent Fiber (DM %) -97.16 -3.33 -13.68 -7.57 3.35 0.97 
Acid Detergent Fiber (NDF %) -54.83 7.50 -45.31 -16.07 1.72 0.54 
Neutral Detergent Fiber (DM %) -95.45 -7.27 -0.03 -2.60 3.28 0.92 
Lignin (DM %) -73.44 -35.52 -39.71 3.98 10.84 0.84 
Lignin (NDF %) -18.05 -43.36 -55.18 6.79 10.85 0.54 
Crude Fat (DM %) -2.61 -0.98 14.69 25.33 55.26 0.39 
Non-fibrous Carbohydrate (DM %) 94.87 7.45 5.65 -15.82 -6.51 0.94 
Ash (DM %) -8.37 9.42 -43.59 0.03 -12.26 0.22 
Starch (DM %) 94.93 -2.56 -5.84 -15.68 -1.14 0.93 
Rumen Digestible Neutral Detergent Fiber at 30 Hour in Vitro 
(NDF %) 

-1.14 -7.83 97.73 6.38 1.60 0.97 

Rumen Digestible Neutral Detergent Fiber at 120 Hour in Vitro 
(NDF %) 

-3.74 -8.14 97.69 6.48 1.85 0.97 

Rumen Digestible Neutral Detergent Fiber at 240 Hour in Vitro 
(NDF %) 

-2.18 -7.36 97.79 6.66 1.63 0.97 

pH 0.07 -76.03 -5.92 5.25 10.27 0.59 
Starch Digestibility (DM %) -12.15 68.85 3.04 8.69 -1.19 0.50 
Lactic Acid (DM %) -5.10 88.45 -0.45 16.30 -24.63 0.87 
Acetic Acid (DM %) -22.46 18.13 16.84 5.36 88.62 0.90 
Propionic Acid (DM %) -11.53 6.53 3.08 -3.04 68.08 0.48 
1, 2 – Propanediol (DM %) 7.88 -2.35 -7.85 7.37 41.75 0.19 
Eigenvalues 7.78 5.23 4.31 2.60 1.97 N / A 
Explained Variance 22.14 19.74 14.39 9.74 8.58 N / A 

 
F1C: Starch Concentration and Plant Maturity 
F2C: Homolactic Fermentation, Starch Digestibility and Fermentation Length 
F3C: Neutral Detergent Fiber Digestibility 
F4C: Protein Rumen Degradability 
F5C: Heterolactic and Other Secondary Fermentations 
N / A: Not Applicable 

Green and red colors represent positive and negative values, respectively. 
 

 

 

 

 

 

 

 

 

 

 

Table 4.6: Corn Silage Variables Used in Mixed Effects Modelling and Their Effects 
Independent Variables Dependent Variables Estimates (+, -) p-values 

Average Daily Milk per Cow (kg) 
 
 
 
 
 
 

Herd N/A < 0.05 
Test Year of Production N/A < 0.05 
Test Month of Production N/A < 0.05 
Region N/A < 0.05 
Average Days in Milk -0.05 < 0.05 
Proportion of Concentrate from Feed 1.20 < 0.05 
Total Proportion of Grass and Legume Silage -1.31 < 0.05 
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Independent Variables Dependent Variables Estimates (+, -) p-values 
 F1C 0.04 0.15 

F2C -0.02 0.59 
F3C 0.001 0.96 
F4C -0.23 < 0.05 
F5C 0.37 < 0.05 

Average Daily Fat per Cow (kg) Herd N/A < 0.05 
Test Year of Production N/A < 0.05 
Test Month of Production N/A < 0.05 
Region N/A < 0.05 
Average Days in Milk -0.001 < 0.05 
Proportion of Concentrate from Feed 0.05 < 0.05 
Total Proportion of Grass and Legume Silage -0.013 0.58 
F1C 0.0004 0.73 
F2C -0.0001 0.92 
F3C 0.001 0.37 
F4C -0.004 0.17 
F5C 0.01 < 0.05 

Average Daily Protein per Cow (kg) 
 
 
 
 
 

Herd N/A < 0.05 
Test Year of Production N/A < 0.05 
Test Month of Production N/A < 0.05 
Region N/A < 0.05 
Average Days in Milk -0.001 < 0.05 
Proportion of Concentrate from Feed 0.0005 0.98 
Total Proportion of Grass and Legume Silage -0.06 < 0.05 
F1C 0.001 0.12 
F2C 0.0005 0.65 
F3C -0.0004 0.72 
F4C -0.006 < 0.05 
F5C 0.007 < 0.05 

Average Somatic Cell Score 
 
 
 
 
 

Herd N/A < 0.05 
Test Year of Production N/A < 0.05 
Test Month of Production N/A < 0.05 
Region N/A 0.19 
Average Days in Milk 0.001 < 0.05 
Proportion of Concentrate from Feed -0.34 0.06 
Total Proportion of Grass and Legume Silage -0.51 < 0.05 
F1C 0.005 0.58 
F2C 0.003 0.75 
F3C 0.005 0.61 
F4C 0.01 0.51 
F5C -0.02 0.25 

Average Daily Milk Urea Nitrogen 
 
 
 
 
 

Herd N/A < 0.05 
Test Year of Production N/A < 0.05 
Test Month of Production N/A < 0.05 
Region N/A < 0.05 
Average Days in Milk -0.001 0.42 
Proportion of Concentrate from Feed -1.38 < 0.05 
Total Proportion of Grass and Legume Silage -2.34 < 0.05 
F1C -0.03 0.26 
F2C 0.060 0.08 
F3C 0.004 0.91 
F4C -0.11 0.09 
F5C 0.01 0.80 

F1C: Starch Concentration and Maturity 
F2C: Homolactic Fermentation, Starch Digestibility and Fermentation Length 
F3C: Neutral Detergent Fiber Digestibility 
F4C: Protein Rumen Degradability 
F5C: Heterolactic and Other Secondary Fermentations 
N/A: Not Available. 
Estimates are highlighted in green for positive values and red for negative values.   
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 4.2.2.1 Impact of Silage Management Variables on Starch Concentration and  

 Maturity with Corn Silage  

  The factor F1C (Table 4.5) was 

defined as an index related to starch 

concentration because the factor 

loading (Table 4.5) for starch was 

94.93. The factor loadings for lignin 

(%DM), ADF (%DM and %NDF), CP 

bound to ADF (%DM), NDF (DM %) and 

CP bound to NDF (%DM and %CP) 

were the opposite of starch 

concentration and plant maturity and 

significantly negative. DM, ADF and CP 

bound to ADF (Bal et al., 1997) was 

recognized as an indicator of plant 

maturity. 

  The results of the mixed model analysis for F1C (Table 4.6) confirm the interpretation 

of the factor. The effect of storage methods on F1C, showed that the oxygen-limiting silos 

(Figure 4.14) had a value of 1.38, compared to pile silos and bag silos with -1.23 and -1.34, 

respectively. Round bales, bunker silos and conventional tower silos have intermediated 

results. The high plant maturity for oxygen-limiting silos is likely since it requires higher DM of 

silage. 
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Figure 4.14: Effect of Storage Method for F1C 
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  4.2.2.2 Impact of Silage Management Variables on Homolactic    

  Fermentation, Starch Digestibility and Fermentation Length with Corn Silage 

  The factor F2C (Table 4.5) was 

defined as an index related to 

homolactic fermentation and starch 

digestibility because the factor loadings 

(Table 4.5) for lactic acid and starch 

digestibility were 88.45 and 68.85, 

respectively. The factor loadings for 

lignin (%DM), CP bound to ADF (%DM) 

and CP bound to NDF (%DM and %CP) 

were the opposite of F2C and 

significantly negative. pH (Opinya, 2019) 

was recognized as an indicator of 

optimal acid production, which is 

related to fermentation length. In 

addition, soluble protein (Windle et al., 

2014) was recognized as an indicator for 

fermentation length. 

   The results of the mixed model 

analysis for F2C (Table 4.6) confirm the 

interpretation of the factor. A 

significative difference was observed in 

June (1.43), July (1.48), August (1.30) 

and September (1.30) compared to and 

November (-0.18) (Figure 4.15). Also, 

the effect of storage methods on F2C, 

showed that bunker silos (Figure 4.16) 

had a value of 2.46, compared to other 

storage methods such as bag silos, conventional tower silos, pile silos and round bales with 

0.47, 0.35, -0.38 and -0.25, respectively. Oxygen-limiting silos have intermediated results. The 
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Figure 4.16: Effect of Storage Method of Production 
for F2C 
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higher values for bunker silos are likely due to the longer fermentation time (Oney et al., 2018). 

In addition, the lower value of round bales is likely due to having slower fermentation caused 

by being loosely packaged and having more oxygen (Schick, 2019). 

 

  4.2.2.3 Impact of Silage Management Variables on Neutral Detergent Fiber 

  Digestibility with Corn Silage  

  The factor F3C (Table 4.5) was defined as an index related to neutral detergent fiber 

digestibility (NDFD) because the factor loadings (Table 4.5) for rumen digestible neutral 

detergent fiber digestibility (NDFD) in vitro (30, 120, 240 hours) were 97.73, 97.69 and 97.79 

respectively. The factor loadings for lignin (%NDF), ADF (%NDF) and ash (%DM) were the 

opposite of NDFD and significantly negative. 

 

  4.2.2.4 Impact of Silage Management Variables on Protein Ruminal   

  Degradability  with Corn Silage  

   The factor F4C (Table 4.5) was 

defined as an index related to protein 

ruminal degradability because the factor 

loadings (Table 4.5) for rumen degradable 

protein (%DM), crude protein (%DM) and 

soluble protein (%DM) were 90.82, 87.86 

and 49.95, respectively. The factor loading 

for CP bound to ADF (%CP) was the 

opposite of rumen degradable protein, 

crude protein and soluble protein and 

significantly negative.  

  The results of the mixed model 

analysis for F4C (Table 4.5) confirm the 

interpretation of the factor. The effect of storage methods on F4C, showed that bunker silos 

(Figure 4.17) had a value of 1.25, compared to other storage methods such as oxygen-limiting 

silos, conventional tower silos and bag silos with 0.32, 0.12 and 0.16, respectively. Pile silos 
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had a value of -0.66, which was statistically different from other storage methods. Round bales 

have intermediated results.  

 

  4.2.2.5 Impact of Silage Management Variables on Heterolactic and Other 

  Secondary Fermentations with Corn Silage  

  The factor F5C 

(Table 4.5) was defined as an 

index related to heterolactic 

and other secondary 

fermentations because the 

factor loadings (Table 4.5) for 

acetic acid (%DM), propionic 

acid (%DM), crude fat and 

propanediol 1, 2 (%DM) were 

88.62, 68.08, 55.26 and 41.75, 

respectively.  

  The results of the 

mixed model analysis for F5C 

(Table 4.5) confirm the 

interpretation of the factor. A 

significative difference was 

observed in January (-0.45) 

compared to August (0.28) 

(Figure 4.18). The effect of storage 

methods on F5C, showed that 

bunker silos (Figure 4.19) had a 

value of 1.97, compared to other 

storage methods such as bag silos, 

conventional tower silos, pile silos, 
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oxygen-limiting silos and round bales with 0.07, -0.21, -0.28, -0.19 and -0.91, respectively.  

 

 

 

 

 

 

 

 

  

 4.2.3 Mixed Effects Models to Evaluate the Impact of Corn Silage Quality on 

 Milk Production  

  Using mixed effects models, the corn silage quality factors and milk production and 

management related variables presented significant relationships among dependent variables, 

which were key indicators for optimal milk production (Table 4.6). The threshold for p-value 

was set to 0.05 to signify the importance of independent variables.  

 

Figure 4.19: Effect of Storage Method for F5C 
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  4.2.3.1 Impact of Milk production Variables and Silage Characteristics on  

  Average Daily Milk per Cow from Corn Silage 

  Mixed-effects model results indicated 

that the increase in F5C (heterolactic and other 

secondary fermentations) increase milk 

production (Table 4.6). There is a possibility 

that this is due to the creation of lactic, acetic 

and propionic acid that increases aerobic 

stability and other study has shown similar 

results (Oliveira et al., 2016). In addition, Table 

4.6 demonstrated that increase in proportion 

of concentrate from feed increases milk 

production. Similar behavior was observed 

from a study conducted by Dewhurst et al., 

(2003). However, an increase in F4C (protein 

ruminal degradability) and grass and proportion of legume silage from feed decreases milk 

production. Average days in milk had a negative impact on milk production. Proportion of 

concentrate from feed and F2C (homolactic fermentation, starch digestibility and fermentation 

length) have no direct impact on milk production from our results (Table 4.6). A significative 

difference was observed for the test month of October (32.57) and November (32.67), 

compared to May (34.00) and June (33.92) (Figure 4.20). The difference is due to the higher 

risk of heat damage during summer months compared to the winter month like observed by 

Bernardes et al. (2018). 
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  4.2.3.2 Impact of Milk production Variables and Silage Characteristics on  

  Average Daily Fat per Cow from Corn Silage 

  Table 4.6 demonstrated that 

increase in the proportion of concentrate, 

F5C (heterolactic and other secondary 

fermentations) increased milk-fat. There is a 

possibility that this is due to creation of lactic, 

acetic and propionic acids that promote 

aerobic stability. Similar results were 

observed by a study from Oliveira et al., 

(2016). Average days in milk negatively 

impacts fat. F1C (starch concentration and 

plant maturity), F2C (homolactic 

fermentation, fermentation length and 

starch digestibility) proportion of grass 

legume silage from feed, length, F3C (neutral 

detergent digestibility) and F4C (protein ruminal degradability) has little to no impact 

according to the results. A significative difference was observed for the test month of April 

(1.38) and December (1.38), compared and July (1.31) and August (1.31) (Figure 4.21). In 

addition, June (1.35) was statistically difference from the rest of the test months.  

 

  4.2.3.3 Impact of Milk production Variables and Silage Characteristics on  

  Average Daily Protein per Cow from Corn Silage 

  The results indicated that an increase in F5C (heterolactic and other secondary 

fermentations) increased protein (Table 4.6). In addition, increase in average days in milk and 

protein ruminal degradability was shown to decrease protein (Table 4.6). A study from Erdman 

et al. (1983) also showed that decrease in F4C (protein ruminal degradability) decreased 

protein. In addition, an increase in the proportion of grass and legume silage in feed decreased 

protein as expected. Proportion of concentrate from feed, F1C (starch concentration and plant 

maturity), F2C (homolactic fermentation, fermentation length and starch digestibility) and F3C 
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(neutral detergent digestibility) had no 

impact on protein. A significative 

difference was observed for the test 

month of April (1.14) and May (1.14), 

compared to August (1.09) (Figure 4.22). 

 

 

 

 

 

 

 

 

 

  4.2.3.4 Impact of Milk production Variables and Silage Characteristics on  

  Average Milk Urea Nitrogen from Corn Silage 

  Mixed-effects results 
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A significative difference was 
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of heat damage during summer months compared to the winter month like observed by 

Bernardes et al. (2018). 

 

  4.2.3.5 Impact of Milk production Variables and Silage Characteristics on  

  Average Somatic Cell Score from Corn Silage 

  Mixed-effects results 

show that increase in proportion 

of grass and legume silage 

decreases average somatic cell 

score (Table 4.6). Similar results 

were shown from a study that 

observed a decrease in crude 

protein led to increase in somatic 

cell count (Litwinczuk et al., 2011). 
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known to increase crude protein, 
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August (4.03) (Figure 4.24). This is likely due to higher risk of bacterial infection during 

summer, which increases somatic cell counts (Hammami et al., 2013).   
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5. Conclusion 

  The principal objective of this study was to introduce the relationship between silage 

characteristics and milk production. It is well known that silage quality has an impact on milk 

production, but there is a lack of comprehensive approaches to describe this impact. More 

specifically, individual studies have shown significant impacts of key silage quality factors 

(such as digestibility, fermentation characteristics and nutritional constituents) on milk yield 

and its composition, but the nature of those relationships requires domain knowledge, and is 

not easily disseminated to producers in a comprehensible fashion. In addition, simultaneous 

data analysis of digestibility, fermentation characteristics, nutritional constituents and their 

dependencies on milk, fat, and protein yield is necessary. In this research, a data-driven 

approach was proposed: a rigorous data analysis through the combination of machine 

learning and statistical models.  

  It is important to note that raw data are not to be used directly for data analysis. Data 

collected from different fields and herds need to undergo extensive data cleaning processes 

to ensure their validity. Multi-layer outlier detection is suggested to analyze outliers for both 

individual variables, and each sample that consists of all variables, in order to filter values that 

are numerically out of range, or statistically or biologically questionable.  

  Datasets that combine field and herd data are not easily available. Therefore, one 

approach to work with such datasets is to artificially generate field data within herd datasets. 

Machine learning is the preferred method if high numerical precision and accuracy is the 

priority, compared to statistical inference, which focuses more on understanding the 

relationships among variables. For the silage quality variable predictions, multi-input and 

multi-output (MIMO) regression was performed since generally, it is computationally less 

expensive, executes much faster, and also considers the whole sample as inputs and outputs 

(as opposed to individual variables). These reasons are important since silage consists of a 

combination of key variables, and low computational cost is necessary for potential extension 

of this research with more data and deployment in the industry. Ensemble methods such as 

meta-estimator with Extra Tree algorithm as base regressor and regressor chain based 

AdaBoost algorithm with Extra Tree algorithm as the base regressor were used for grass and 

legume silage and corn silage, respectively. However, deep learning algorithms could be 
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considered if a dataset is much larger and more complex (multi-dimensional variables, images, 

audio, etc.). 

  Clustering silage variables to define key silage factors would help the animal feed 

industry since, not only is the analysis of individual variable time consuming, but the results 

are frequently only interpretable by domain experts. Extensive research and development on 

the proposed approach would facilitate producers in understanding the quality of their silage 

and how it can impact milk production in their herds.     

  Finally, if the results of this preliminary research are deemed useful by the industry, 

the option exists to extend and promote them through the development of a decision-support 

tool for silage quality evaluation, thereby providing a practical guide to industry experts and 

producers for improved dairy profitability.  
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APPENDICES 

Appendix 1: General Information About Variables Used for Silage Variable Prediction and 
Mixed Effects Model 

Variable Unit Grass and 
Legume Silage 

Corn 
Silage 

Milk 
Production 

1, 2 – Propanediol DM %  X  

Acetic Acid DM % X X  

Acid Detergent Fiber (ADF) NDF % X X X 

Acid Detergent Fiber DM % X X X 

Acid Detergent Insoluble Crude Protein (ADICP) CP % X X X 

Acid Detergent Insoluble Crude Protein  DM % X X X 

Ash DM % X X X 

Average Daily Fat Per Cow Kg   X 

Average Daily Milk Per Cow Kg   X 

Average Daily Protein Per Cow Kg   X 

Average Days in Milk Number of days   X 

Average Somatic Cell Count Somatic cell count average of 
1000 cells per mL 

  X 

Butyric Acid DM % X   

Crude Fat DM % X X X 

Crude Protein (CP) DM % X X X 

Dry Matter (DM) DM % X X X 

Herd ID X X X 

Herd Test Period ID X X X 

Lactic acid DM % X X  

Lignin DM % X X X 

Lignin NDF % X X X 

Milk Urea Nitrogen % In milk-protein   X 

Neutral Detergent Fiber (NDF) DM % X X X 

Neutral Detergent Insoluble Crude Protein (NDICP) CP % X X X 

Neutral Detergent Insoluble Crude Protein  DM % X X X 

Nonfibrous Carbohydrate (NFC) DM % X X X 

pH N/A X X X 

Propionic Acid DM % X X  

Proportion of Concentrate in Feed DM % X X  

Proportion of Other Silage in Feed DM % X X  

Region Region   X 

Rumen Digestible Neutral Detergent Fiber at 30 
Hour in Vitro (NDFD30) 

NDF % X X  

Rumen Digestible Neutral Detergent Fiber at 120 
Hour in Vitro (NDFD120) 

NDF % X X  

Rumen Digestible Neutral Detergent Fiber at 240 
Hour in Vitro (NDFD240) 

NDF % X X  

Soluble Protein (SP) CP % X X X 

Soluble Protein DM % X X X 

Starch DM %  X X 

Starch Digestibility (StarchD) DM %  X X 

Storage Method Storage Method   X 

Test Month Month   X 

Test Year Year   X 

N/A: Not Applicable 

 

 

 

 

 



83 

 

Appendix 2: Feature and Target Variables for Silage Variables Imputation 

Variable Type Grass and Legume Silage Corn Silage 

1, 2 – Propanediol Target  X 

Acetic Acid Target X X 

Acid Detergent Fiber (ADF) Feature X X 

Acid Detergent Fiber Feature X X 

Acid Detergent Insoluble Crude Protein (ADICP) Feature X X 

Acid Detergent Insoluble Crude Protein  Feature X X 

Ash Feature X X 

Butyric Acid Target X  

Crude Fat Feature X X 

Crude Protein (CP) Feature X X 

Dry Matter (DM) Feature X X 

Lactic acid Target X X 

Lignin Feature X X 

Lignin Feature X X 

Neutral Detergent Fiber (NDF) Feature X X 

Neutral Detergent Insoluble Crude Protein (NDICP) Feature X X 

Neutral Detergent Insoluble Crude Protein  Feature X X 

Nonfibrous Carbohydrate (NFC) Feature X X 

pH Target X X 

Propionic Acid Target X X 

Rumen Digestible Neutral Detergent Fiber at 30 Hour in Vitro (NDFD30) Target X X 

Rumen Digestible Neutral Detergent Fiber at 120 Hour in Vitro (NDFD120) Target X X 

Rumen Digestible Neutral Detergent Fiber at 240 Hour in Vitro (NDFD240) Target X X 

Soluble Protein (SP) Feature X X 

Soluble Protein Feature X X 

Starch Feature  X 

Starch Digestibility (StarchD) Feature  X 

 


