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ABSTRACT

In survival analysis, the accelerated failure time (AFT) model provides an important

alternative framework to the well-known Cox proportional hazards (PH) model. However,

it is often difficult in real-life studies to correctly specify an appropriate distribution for the

event time, which is required in a parametric AFT model. Moreover, accurate estimations

of the covariate effects and survival probabilities require that the assumptions underlying a

chosen regression model are consistent with the way each covariate affects survival. Methods

for relaxing the PH and linearity assumptions in the Cox model have been well-studied. In

contrast, there is sparse literature on addressing possible violation of the constant-over-time

time ratios, and linearity of the covariate effects assumptions in the AFT model.

Therefore, the overall objectives of this thesis are (1) to enhance the conventional AFT

model by avoiding the need to pre-specify the parametric distribution of the event time; (2) to

relax the constant time ratio and linearity assumptions, regarding the covariate effects in the

AFT model proposed in (1), and (3) to assess the potential improvements in the accuracy of

the estimated survival probabilities, conditional on baseline prognostic factors, resulting from

the developments proposed in point (2) above. This thesis aims to achieve these objectives in

three corresponding manuscripts.

The first manuscript focuses on the development of a flexible spline-based AFT model

that avoids the specification of the parametric family of the event time distribution. Spline

smoothing techniques are used to model the baseline hazard function, allowing for the estima-

tion of a variety of smooth and flexible shapes. Similarly, a recent semiparametric AFT model
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developed by Komárek et al. also does not require such specification. Using comprehensive

simulations, I evaluate the performance of the proposed method and compare it with the results

from both (i) parametric AFT models and (ii) the alternative flexible approach proposed by

Komárek et al. It is shown that both the proposed spline-based and the Komárek et al.’s AFT

models provide accurate estimates of covariate effects, baseline hazards, and survival curves,

while the proposed method yield more stable estimates of the hazard function. As expected,

the mis-specified parametric AFT models result in biased estimates. The application of the

proposed flexible AFT model is illustrated in a study of mortality in colon cancer.

In the second manuscript, a further flexible extension of the AFT model is developed to

simultaneously model (i) the baseline hazard function of arbitrary shape, (ii) the non-linear

effects (NL) of continuous covariates on the logarithm of the survival time, and (iii) the time-

dependent (TD) time-ratios, that relax the AFT assumption regarding the covariate effects.

Iterative alternating conditional (full) maximum likelihood estimation (MLE) algorithm is

adapted to estimate the parameters in the flexible AFT model. In simulations, the proposed

estimators are shown to accurately recover various plausible shapes of both the NL and TD

curves, in multivariable settings. In addition, the survival curves, conditional on covariate

vectors, can be accurately estimated, even in the presence of complex relationships between

the covariates and the hazard. Furthermore, I apply the proposed method to re-assess the

effects of prognostic factors on mortality after septic shock. Some continuous covariates are

shown to have important NL and/or TD effects, which illustrate the additional insights offered

by the flexible AFT model in real-life clinical studies.

In the third manuscript, both the new models developed in the first two manuscripts, and

existing ‘conventional’ survival analytical models, are used to study the effects of baseline

prognostic factors on survival in non-small cell lung cancer (NSCLC) patients, and to predict

1-year risk of death. To reduce model overfitting, backward selection based on the Akaike

information criterion (AIC) is used to identify potential NL and/or TD effects in the flexible

multivariable AFT model. Several other survival models, including the parametric Weibull
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AFT model, the conventional Cox PH model and a flexible extension of the Cox model, are

fit to the same data. Alternative models are then compared based on both goodness-of-fit and

the prediction performance criteria. This study illustrates analytical challenges encountered

when deciding about modeling strategy in complex, multivariable real-life survival analyses

and shows the potential practical usefulness of the proposed flexible extensions of the AFT

model.
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RÉSUMÉ

En analyse de survie, les modèles de vie accélérée (AFT) représentent une alternative au

modèle des risques proportionnels (PH) de Cox. Cependant, dans la pratique, il est souvent

difficile de spécifier correctement la distribution du temps d’évènement, requise dans ces

modèles AFT paramétriques. De plus, l’estimation avec précision de l’effet des covariables et

de la probabilité de survie nécessite que les hypothèses sous-jacentes au modèle choisi soient en

accord avec la manière dont chaque covariable affecte la survie. Beaucoup de développements

ont été effectués permettant d’assouplir les hypothèses des risques proportionnels (PH) et de

linéarité des effets du modèle de Cox. À l’inverse, très peu d’études portant sur la non-constance

au cours du temps du rapport des temps ou sur la non-linéarité des effets des covariables, dans

le cadre des modèles de vie accélérée, sont disponibles dans la littérature.

Par conséquent, les objectifs de cette thèse sont (1) d’améliorer le modèle AFT convention-

nel en enlevant la nécessité de spécifier la distribution paramétrique du temps d’évènement;

(2) d’assouplir l’hypothèse du rapport constant des temps et l’hypothèse de linéarité du modèle

AFT proposé dans la premier objectif, et (3) d’évaluer les potentielles améliorations dans la

précision de l’estimation de la probabilité de survie à partir des développements effectués dans

le point (2) mentionné ci-dessus. Cette thèse a pour but d’accomplir ces trois objectifs en

faisant l’objet de trois manuscrits, chacun référant à un objectif en particulier.

Le premier manuscrit se concentre sur le développement d’un modèle AFT flexible reposant

sur l’utilisation des splines. Les techniques de lissage par fonctions splines sont utilisées pour

modéliser le risque instantané de base, permettant l’estimation d’une variété de formes lisses

iv



et flexibles. Un modèle AFT semi-paramétrique a récemment été développé par Komárek et

al. À l’aide d’une étude de simulations, la performance de la méthode proposée est évaluée et

comparée avec celle (i) des modèles AFT paramétriques et (ii) de l’approche alternative flexible

proposée par Komárek et al. Il est montré que la méthode proposée ainsi que la méthode de

Komárek et al fournissent des estimations non biaisées des effets des covariables, des risques

instantanés de base et des courbes de survie. La méthode que nous proposons fournit cependant

des estimations plus stables de la fonction du risque instantané. L’application de la méthode

proposée est illustrée sur une étude de la mortalité suite à un cancer du côlon.

Dans le second manuscrit, une autre extension flexible du modèle AFT est développée

afin de modéliser simultanément (i) le risque instantané de base, peu importe la forme, (ii)

les effets non-linéaires des covariables continues, et (iii) les rapports des temps dépendant du

temps (TD), ce qui permettrait d’assouplir les hypothèses sur les effets des covariables des

modèles AFT conventionnels. L’algorithme itératif et alternatif de l’estimation du maximum

de vraisemblance conditionnelle est adapté afin d’estimer les paramètres du modèle AFT

flexible. À l’aide d’une étude de simulations, il a été montré que la méthode proposée permet

l’estimation de façon précise d’une grande variété de formes pour les effets NL et TD, dans le

cadre de modèles multivariés. De plus, les courbes de survie, conditionnelles aux covariables,

sont estimées de façon précise, même en présence de relations complexes entre les covariables

et le risque instantané. La méthode proposée a été appliquée afin de réévaluer les effets de

facteurs pronostiques sur la mortalité après un choc septique.

Dans le troisième manuscrit, les modèles développés dans les deux précédents manuscrits

sont utilisés pour étudier les effets des facteurs prognostiques au début du suivi sur la survie

des patients atteints du cancer du poumon non à petites cellules, ainsi que pour prédire le

risque de décès un an après le diagnostic. Pour réduire les problèmes de surajustement, la

méthode de sélection descendante reposant sur le critère d’Akaike est utilisée pour identifier

les potentiels effets NL et/ou TD dans le modèle AFT multivarié flexible. Plusieurs autres

modèles de survie, incluant le modèle AFT paramétrique de Weibull, le modèle conventionnel

v



de Cox et une extension flexible du modèle de Cox, sont utilisés sur les mêmes données. Les

différents modèles sont ensuite comparés en termes de qualité de l’ajustement mais aussi sur

les critères de performance liés à la prédiction. Cette étude illustre les défis analytiques qui

peuvent être rencontrés dans le choix des stratégies de modélisation dans le cadre d’analyses

de survie complexes multivariées.
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PREFACE

Statement of Originality
The work presented in this thesis constitutes an original contribution to the advancement

of the statistical methodology in time-to-event analyses, focusing on the accelerated failure

time (AFT) model. Although this method is relatively less frequently used in survival analysis

comparing to the well-known Cox proportional hazards (PH) model, it merits further investi-

gation given its utility for real-life studies, especially when the crucial assumptions of the Cox

model are violated. The three manuscripts in this thesis address methodological gaps of the

AFT model regarding its inherent assumptions and demonstrate the model applications and

comparisons in real-life analyses.

Up to now, numerous semiparametric AFT models have been established to accurately

estimate the covariate effects represented by the time ratio, while avoiding the parametric

assumption about the event time or the error distribution. However, similar to the Cox PH

model, most of the existing methods treat the baseline hazard function as a nuisance parameter,

and thus the associated survival estimates are not available. The first manuscript addresses

this limitation by developing a new semiparametric AFT model that uses flexible modeling

for the baseline hazard. Full maximum likelihood with an alternating conditional estimation

(ACE) algorithm is proposed to estimate the parameters that characterize the baseline hazard

and the regression parameters for the covariate effects. Furthermore, using both simulation

and real-life studies, I have systematically evaluated the performance of this new method and
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compared it with the flexible smoothed error AFT model, an existing semiparametric approach

that also facilitates the estimation of baseline hazard and survival functions.

In the second manuscript, I have further extended the spline-based AFT model developed in

manuscript 1 to simultaneously relax the linearity and constant time ratio assumptions imposed

by the AFT model. This challenge, to my knowledge, has not been addressed in the current

literature, as these two assumptions are not widely recognized, and formulation and estimation

of the model become increasingly difficult in complex multivariable settings. This developed

comprehensive flexible AFT model is the first to accommodate the estimation of (i) non-linear

(NL) effect of the continuous covariate, (ii) time-dependent (TD) time-ratio for all covariates,

and (iii) individual survive curve, conditional on the estimated NL and TD effects, for specific

covariate patterns. To validate this complex model, I have designed novel simulation studies

with different scenarios that involve various plausible shapes of both the NL and TD functions.

To reduce model overfitting, a data-adaptive procedure is proposed to select the relevant NL

and TD effects.

Given several alternative models in time-to-event analysis, little guidance is available for

analysts to decide on a model building strategy in practice. Real-life studies are included in

each of the three manuscripts to demonstrate the applications of the developed methods. In

the third manuscript, I compare the results of the new AFT methods developed in the first

two manuscripts with the flexible Cox and other conventional survival models in a cancer

prognostic study, where unknown but potentially complicate baseline hazards as well as NL

and TD effects likely occur. This study illustrates the process of building flexible multivariable

models in real-life studies, when different modeling approaches are being considered.

In summary, this research enhances the methodological development in the AFT models

by incorporating estimations of complex covariate effects and baseline hazard and illustrates

the importance of considering multiple analysis strategies when prior substantive knowledge

is not available.
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CHAPTER 1

Introduction
In epidemiological and clinical analyses of time-to-event data, the Cox Proportional Haz-

ards (PH) model allows an efficient way to estimate the hazard ratio’s (HR) for the covariate

effects without the need to specify the baseline hazard function [1]. Because in many real-life

studies, the underlying baseline hazard function is unknown, this probably is one of the main

reasons for the predominant use of the Cox PH model in real-life survival analyses. However,

an unintended side effect of the use of the Cox PH model is a lack of emphasis on the hazard

function, which can be informative [2, 3]. Moreover, the estimation of the hazard function

could further facilitates the estimation of individual-specific survival curve, which provides

essential information for physicians and patients about prognosis and treatment options [4, 5].

The accelerated failure time (AFT) model was proposed as an alternative to the PH model

for survival analysis [6]. In contrast to the PH model, where the HR represents the covariate

effect on the instantaneous risk, the AFT model postulates a direct relationship between the

covariate values and the event times [7]. It is similar to the classical linear regression in that it

implies modeling the natural logarithm of the event time as the response variable. However, in

contrast to linear regression, the AFT model accounts for censoring of time-to-event outcomes.

The regression parameter in the AFT model is the time ratio, which is a multiplicative factor

that quantifies the acceleration or deceleration of the event time associated with a given change

in the covariate value. If the model is correctly specified, the estimation of the time ratio can
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offer a clinically meaningful interpretation of the effects of treatment and prognostic factors

[6, 8, 9].

In contrast to the Cox PH model, parametric AFT model requires that the event time dis-

tribution to be specified and provides estimation of the hazard and survival function according

to the parametric assumption [7]. Weibull, exponential, log-normal, log-logistic, and gamma

distributions are common choices. However, misspecification may lead to biased estimates

of covariate effects and survival [10, 11]. Additionally, in most complex real-life studies,

substantive knowledge is often insufficient to identify an appropriate event time distribution,

and the fact that observed survival is affected by several covariates makes it even more difficult

to assess the baseline hazard, corresponding to a specific (reference) covariate vector.

Several different semiparametric approaches have been proposed for the estimation of

the covariate effects in the AFT model while avoiding the need to pre-specify the event

time distribution. Classical semiparametric approaches include least squares regression-based

[12, 13, 14], and linear-rank-test-based estimators [15, 16, 17]. However, these semiparametric

estimating equations have potentially multiple solutions, leading to computational problems,

especially with a large number of covariates [6, 18, 19]. Other semiparametric AFT approaches

include a weighted least-absolute-deviations method [20], and a semiparametric AFT mixture

cure model [21, 22, 23]. However, none of these aforementioned methods facilitates the

estimation of the hazard function and the survival curves.

On the other hand, among the few other methods that did allow for these estimations,

Etezadi-Amoli and Ciampi have proposed a more general extended hazard regression (EHR)

[24, 25] that includes both the PH and AFT models as special cases. However, to ensure

that the baseline hazard is nonnegative, complex constrained optimization is required for

parameter estimation, leading to inefficiency of the estimation algorithm [25]. Furthermore, no

statistical software is available to implement their method [25]. Komárek et al. have developed

a semiparametric AFT model for arbitrarily censored data [26]. A mixture of numerous

Gaussian densities is used to approximate the error distribution, and thus a large number of
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parameters are involved in the estimation procedure of this method. To control the smoothness

of the fitted error distribution and to reduce model overfitting, a penalty term is applied to

the log-likelihood and is selected based on cross-validation [26]. Simulation studies, under

two settings with respect to the true error distribution, have shown satisfactory performance

regarding the accuracy of the covariate effect estimates and the fitted error distribution [26].

It would be useful to extend the simulation studies in more scenarios considering a variety of

different data generating mechanisms and, at the same time, evaluate the resulting hazard and

survival estimation.

Although the aforementioned semiparametric AFT models attempt to relax the parametric

assumption about the event time distribution, they rely on two other important implicit as-

sumptions. First, similar to the PH assumption imposed in the Cox PH model, the time ratio

in the AFT model is also restricted to be constant across the follow-up (constant time ratio

assumption) [3]. Second, the formulation of the conventional AFT model also assumes that

the continuous covariates affect the logarithm of the event time linearly (linearity assumption)

[27]. It is essential to test these assumptions and account for their possible violations in epi-

demiological and clinical studies. Indeed, misspecification of the functional form and violation

of the PH assumption in the Cox model can yield inaccurate estimates and invalid inference

[28, 29, 30]. Moreover, important non-linear (NL) effects and time-dependent (TD) HRs have

been already revealed for different prognostic factors and treatments, in many real-life studies

of mortality of coronary heart disease [31, 32], colon cancer [33], non-small cell lung cancer

(NSCLC) [34, 35], primary biliary cirrhosis [36], or prognosis of breast cancer [37, 38].

Several extensions of the Cox model have been developed to relax the PH and/or the lin-

earity assumptions. For example, Sauerbrei et al. have carried out a multivariable fractional

polynomial procedure [39], and Abrahamowicz and MacKenzie have proposed a regression B-

spline approach [40] to select and simultaneously model the TD and NL effects. Furthermore,

Wynant and Abrahamowicz have developed an extended flexible Cox model for the full max-

imum likelihood estimation (MLE) of individual survival curve conditional on the potential
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NL and TD effects [41]. Since the linearity and the constant time ratio assumptions imposed

by the conventional AFT model are as arbitrary as the linearity and constant HR assumptions

imposed in the Cox PH model, it is necessary to check the corresponding assumptions and

account for possible NL and TD effects in the AFT framework.

AFT partial linear models, based on spline smoothing, have been proposed to relax the

linearity assumption. In particular, Orbe et al. [27] have adopted natural splines, Zou et al. [42]

have used penalized splines, and Xue et al. [43] piecewise linear function to approximate the

NL functional form of the continuous covariate. No specification of the event time distribution

is needed; however, all these methods rely on a priori (implicit) constant time ratio AFT

assumption. Indeed, to the best of my knowledge, the extended linear hazard regression

proposed by Elsayed et al. [44] is the only method that can incorporate potentially time-

dependent time ratios, by including an interaction between the covariate and follow-up time in

the regression model. However, their approach seems to impose linear changes in log hazard

ratio, whereas more flexible shapes of the TD effects may be often required, based on evidence

from real-life studies [45, 46]. Moreover, Elsayed et al. do not discuss how the hazard and

survival estimates, conditional on covariates, can be estimated [44].

In conclusion, whereas the AFT model starts to receive increasing attention in statistical

literature, several methodological challenges remain to be addressed in order to allow accurate

AFT analyses of complex multivariable time-to-event data encountered in most real-life appli-

cations. In particular, it is important to develop flexible extensions of the multivariable AFT

model to (i) relax the parametric assumptions about the event time distribution, (ii) allow for the

modeling of both the TD and the NL effects of continuous variables, and (iii) provide accurate

individual hazard and survival estimation conditional on relevant, potentially NL and/or TD,

covariate effects.

Furthermore, in real-life time-to-event analyses, it is challenging to decide which of the

alternative regression models is most consistent with the empirical data. For example, except

when event times follow a Weibull or exponential distribution, the Cox’s PH and AFT constant
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time ratio assumptions cannot be both correct, and it is possible that neither of them is fully

satisfied. However, it is far from clear what empirical criteria can be used to provide a reliable

comparison of the AFT vs. PH models, or their flexible extensions. Furthermore, there is little

insights or guidance regarding the model building strategy in the context of AFT modeling

of complex multivariable survival data, possibly including NL and/or TD covariate effects.

Finally, there is little empirical evidence on head-to-head comparisons of alternative models

for survival analysis.
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CHAPTER 2

Literature Review

2.1 Survival analysis: general formulation

In epidemiological and medical research, the time to a specific event is commonly defined

as the outcome of interest, such as the time from heart attack to death, or time from diagnosis

of cancer to relapse [47, 48, 49, 50]. Let 𝑇 denote the random variable for the time to event; the

distribution of 𝑇 can be specified in many intercorrelated ways. The survival function, hazard

function, and the probability density functions are particularly useful in survival applications

[7]. The survival function, which is defined as the probability that the event occurs later than

some specific 𝑡, is given by:

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) =
∫ ∞

𝑡
𝑓 (𝑢)𝑑𝑢 (2.1.1)

where 𝑓 (·) is the probability density function of𝑇 [7]. The survival function is a non-increasing

function of 𝑡 and 𝑆(0) = 1 assuming everyone is alive at time zero where the follow-up begins,

and the event does not occur immediately. 𝑆(𝑡) = 0 as 𝑡 → ∞, assuming the event would

occur eventually if the follow-up time is long enough. The cumulative density function is

given by 𝐹 (𝑡) = 𝑃(𝑇 ≤ 𝑡) = 1 − 𝑆(𝑡). The instantaneous risk of the event at any given point

in time is defined by the hazard function, denoted 𝜆(𝑡), which describes the event rate at time
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𝑡 conditional on event-free survival up to 𝑡:

𝜆(𝑡) = lim
�𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + �𝑡 |𝑇 ≥ 𝑡)

�𝑡
=

𝑓 (𝑡)

𝑆(𝑡)
. (2.1.2)

The cumulative hazard function, denoted by Λ(𝑡), represents the total amount of risk that

has been accumulated up to time 𝑡 [51], and is defined as:

Λ(𝑡) =
∫ 𝑡

0
𝜆(𝑢)𝑑𝑢. (2.1.3)

The hazard function is always non-negative, 𝜆(𝑡) ≥ 0 for any 𝑡 ≥ 0, and Λ(𝑡) = ∞ as 𝑡 → ∞.

The hazard function can take various shapes that reflect different the underlying mechanism

of the occurrence of the event and describe how the chance of experiencing the event changes

with time. Several generic shapes of hazard function are depicted in Figure 2.4 (page 28) of

Klein and Moeschberger [52]. For instance, it can be a non-monotonic function when there is

an increased risk of death soon after the surgery of removing a tumor, but once patients survive

up to a certain time point, the risk of death is decreasing afterward.

Figure 2-1: Shapes of hazard functions
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There is a one-to-one relationship linking the hazard function with the probability density

function and the survival function, as shown in (2.1.2). It also follows that:

𝜆(𝑡) =
𝐹′(𝑡)

𝑆(𝑡)
= −

𝑆′(𝑡)

𝑆(𝑡)
= −

𝑑 log(𝑆(𝑡))
𝑑𝑡

, (2.1.4)

and

𝑆(𝑡) = exp (−Λ(𝑡)). (2.1.5)

Censoring occurs when the subject’s event is not observable, and the event time cannot

be accurately measured. There are three types of censoring in time-to-event data, i.e., (i) left

censoring, when the event is not observed but is known to occur before a certain time point,

(ii) interval censoring, when the event is known to occur between a time interval, and (iii) right

censoring, when the event is unobserved but potentially occurs after a certain time point [7].

Right censoring is the most common type of censoring in healthcare research and can occur

for several reasons, such as loss to follow-up, termination of the study before everyone has the

event or competing risks where the subject can experience the event caused by other reason

rather than the one under study. For example, if death from lung cancer is the outcome of

interest, dying from a stroke is a competing event that may be considered as censoring. This

thesis focuses on developing new survival models for data subject to right censoring.

In the presence of right-censoring, we observe the survival time as a pair of data 𝑡𝑖, 𝛿𝑖 for

subject 𝑖, where 𝑡𝑖 = min (𝑇𝑖, 𝐶𝑖) is the observed time that occurs first between the event time

and the censoring time and 𝛿𝑖 = 𝐼 (𝑇𝑖 ≤ 𝐶𝑖) is the indicator whether the event has occurred

or not before censoring. The likelihood of the given observed data can be constructed using

the density function and the survival function. For the individual who had the event, the

observation contributes to the likelihood as the density of the event at 𝑡𝑖, i.e., 𝑃(𝑇 = 𝑡𝑖) = 𝑓 (𝑡𝑖);

while for the individual who was censored at 𝑡𝑖, the only information we have is that the event

time exceeds 𝑡𝑖; therefore the observation contributes to the likelihood as the survival function

at 𝑡𝑖, i.e., 𝑃(𝑇 > 𝑡𝑖) = 𝑆(𝑡𝑖) [3, 7]. For a random sample of 𝑛 subjects who are assumed to be
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independent and identically distributed, the likelihood is expressed by:

𝐿(𝜽) =
𝑛∏

𝑖=1
𝑓 (𝑡𝑖; 𝜽 , 𝑿𝑖)

𝛿𝑖𝑆(𝑡𝑖; 𝜽 , 𝑿𝑖)
1−𝛿𝑖 = 𝜆(𝑡𝑖; 𝜽 , 𝑿𝑖)

𝛿𝑖𝑆(𝑡𝑖; 𝜽 , 𝑿𝑖) (2.1.6)

where 𝜽 is the vector of the parameters in the density function, and 𝑿𝑖 is a vector of observed

covariates associated with the 𝑖th subject. Another assumption we make throughout this thesis

is independent censoring, which means that conditional on the covariates being included in

the model, the distribution of the unobserved event time among those who are censored is the

same as those who remained in the study [7, 53].

The Kaplan-Meier curve is a non-parametric estimator for estimating the survival function

for the time-to-event data. The Kaplan-Meier estimator, also called the product-limit estimator,

is given by [54]:

𝑆𝐾𝑀 (𝑡) =
∏
𝑖:𝑡𝑖≤𝑡

(1 −
𝑑𝑖
𝑛𝑖
) (2.1.7)

where 𝑡𝑖 is the 𝑖th distinct uncensored event time, 𝑑𝑖 is the number of events occur at 𝑡𝑖, and 𝑛𝑖

is the number of subjects that are still at risk of experiencing the event (subjects who have not

yet had the event or been censored) at 𝑡𝑖. The cumulative hazard, using the same notation, can

be estimated by the Nelson-Aalen estimator [54],

Λ̂𝑁𝐴 (𝑡) =
∏
𝑖:𝑡𝑖≤𝑡

𝑑𝑖
𝑛𝑖

=
∏
𝑖:𝑡𝑖≤𝑡

�̂�𝑖 (2.1.8)

which is a non-parametric step function with increments being the empirical hazard estimate

of �̂�. The survival estimate based on the Nelson-Aalen estimator of the cumulative hazard

function is an alternative non-parametric estimator of the survival function:

𝑆𝑁𝐴 (𝑡) = exp
(
− Λ̂𝑁𝐴 (𝑡)

)
. (2.1.9)

Note that both the Kaplan-Meier estimator and the Nelson-Aalen estimator are discrete right-

continuous step functions that jump at the observed event times. Both estimators of the survival

function or the cumulative hazard function are consistent and asymptotically equivalent [52].

9



Before introducing the accelerated failure time (AFT) model, I will first review the Cox

Proportional Hazards (PH) model, which is the most commonly used model for survival data

in biomedical research.

2.2 The conventional Cox proportional hazards (PH) model

The Cox PH model [1] is the de facto default method to analyze time-to-event data in

medical research. This model allows us to estimate and make inferences about the effect of

covariates without assuming any form for the baseline hazard function or the distribution of

the event time. The Cox PH model is specified as:

𝜆(𝑡 |𝑿) = 𝜆0(𝑡) exp (𝜷∗𝑇𝑿) (2.2.1)

where 𝜆(𝑡 |𝑿) is the hazard function at time 𝑡 given the covariate vector 𝑿, 𝜆0(𝑡) is the baseline

hazard function when 𝑿 = 0 and 𝜷∗ is a vector of regression coefficients associated the

covariate vector 𝑿, representing the logarithm of hazard ratio (HR) for one unit increase in

covariate 𝑥 while holding the other covariates constant. It follows that the survival function

conditional on covariate 𝑿 can be expressed as:

𝑆(𝑡 |𝑿) = exp
[
−

∫ 𝑡

0
𝜆0(𝑢) exp (𝜷∗𝑇𝑿)𝑑𝑢

]
= 𝑆0(𝑡)

exp (𝜷∗𝑇 𝑿) (2.2.2)

where 𝑆0(𝑡) = exp
[
−
∫ 𝑡

0 𝜆0(𝑢)𝑑𝑢
]
.

2.2.1 Partial likelihood estimation for the Cox model

Let 𝑡1 ≤ · · · ≤ 𝑡𝑘 denote 𝑘 uncensored event time (assuming no ties), and 𝑗 denote the

individual that has the event at 𝑡 𝑗 , the partial likelihood is given by [1]:

𝐿 (𝜷∗) =
𝑘∏
𝑗=1

𝐿 𝑗 (𝜷
∗) =

𝑘∏
𝑗=1

𝜆0(𝑡 𝑗 ) exp (𝜷∗𝑇𝑿 𝑗 )∑
𝑖∈𝑅𝑡 𝑗

exp (𝜷∗𝑇𝑿𝑖)
(2.2.3)
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where 𝑅𝑡 𝑗 denotes the risk set at 𝑡 𝑗 that consists of individuals who are still at risk of having the

event at 𝑡 𝑗 . Maximizing the partial likelihood can provide estimation of 𝜷∗. Since the baseline

hazard 𝜆0(𝑡 𝑗 ) cancels out in the numerator and the denominator at each time 𝑡 𝑗 , 𝑗 = 1,· · · , 𝑘 , in

the partial likelihood, no specification of the baseline hazard function is necessary to estimate

𝜷∗ for the Cox model.

2.2.2 Estimation of the survival functions under the Cox model

The partial likelihood estimation provides an efficient way to estimate HR. However, it is

not adequate to draw a conclusion about the effect of a covariate without knowing the absolute

risk. On the other hand, the survival probabilities over time provide a different perspective on

the event under study. Therefore, the survival function and HR can complement each other in

delivering a better understanding of the substantive implication of the results [5, 55]. Because

the baseline hazard function 𝜆0(𝑡 𝑗 ) is left unspecified as a nuisance parameter, the Cox PH

model does not provide a direct estimate of the baseline survival function 𝑆0(𝑡) when all

covariates are equal to 0 or the conditional survival function 𝑆(𝑡 |𝑿) for subjects with specific

covariate value 𝑿. Breslow in 1972 has proposed an estimator of the baseline cumulative

hazard function Λ0(𝑡) and the regression parameter 𝜷∗ by maximizing the full likelihood

function under the PH assumption [56, 57]:

𝐿 (𝜷∗,Λ0) =
𝑛∏

𝑖=1

{
𝜆0(𝑡𝑖) exp (𝜷∗𝑇𝑿)

}𝛿𝑖 exp
{
−

∫ 𝑡

0
𝜆0(𝑢) exp (𝜷∗𝑇𝑿)𝑑𝑢

}
(2.2.4)

where 𝜆0(𝑡) was treated as a piecewise constant between uncensored event times. It has been

shown that the maximum likelihood estimation (MLE) of 𝜷∗ is equivalent to that from Cox’s

partial likelihood estimation, and the Breslow estimator of Λ0(𝑡) is given by:

Λ̂0(𝑡) =
∑
𝑖:𝑡𝑖≤𝑡

𝑑𝑖∑
𝑙∈𝑅𝑡𝑖

exp (𝜷∗𝑇𝑿 𝑙)
. (2.2.5)
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The corresponding estimator for the conditional survival function associated with the covariate

vector 𝑿 is:

𝑆(𝑡 |𝑿) = exp
{
− Λ̂0(𝑡) exp (𝜷∗𝑇𝑿)

}
. (2.2.6)

The Breslow estimators ofΛ0(𝑡) and 𝑆(𝑡 |𝑿) have been implemented in most of the statistical

packages, facilitating the estimation of survival functions in real-life applications. However,

these functions, which contain intrinsic information about patient’s diagnostic information, are

rarely reported in studies published in the major general medical journals [5]. This may be

because investigators tend to neglect other important characteristics in survival beyond the HR

from the Cox model, where the baseline hazard is considered a nuisance parameter. Moreover,

the resulting Λ0(𝑡) and 𝑆(𝑡 |𝑿) are estimated as step functions that jump at each distinctive

event time, and this may seem less clinically plausible than functions that are smooth in time.

2.2.3 The assumptions of the Cox PH model

The conventional Cox PH model imposes two assumptions. First, the effect of each con-

tinuous covariate on the logarithm of the hazard is assumed to be linear (linearity assumption).

Martingale residuals and cumulative martingale residuals can help in investigating the func-

tional forms of the continuous variables included in the model [52, 58]. However, this approach

is ad hoc, and the linearity assumption is often taken for granted in many real-life applications.

Secondly, the association between the covariates and the hazard of the event is measured by

a hazard ratio (HR): exp
(
𝜷∗𝑇 (𝑿𝑖 − 𝑿 𝑗 )

)
, comparing two vectors of covariate values, 𝑿𝑖 and

𝑿 𝑗 . The hazard ratio does not depend on time. This constraint is referred to as the propor-

tional hazards (PH) assumption of the Cox model, implying the effect of each covariate on

survival does not change over time. Several graphical methods and statistical tests can be used

to assess the PH assumption [59, 60, 61], such as the log-log curve, the Schoenfeld residual

plot, Schoenfeld residual test, and tests based on interactions between time and the covariates.

However, the graphical assessments rely on subjective decisions, whereas the statistical tests
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depend on the choice of time dependence and maybe underpowered to detect PH violation with

heavy censoring [62]. Moreover, in practice, this assumption is rarely tested in applications

using the Cox model [63], although the violation of the PH assumption (constant hazard ratio

over time) implies important limitations. In situations where the PH assumption does not hold,

the Cox model-based HR estimate averages the effects across the follow-up duration and thus

may lead to misleading conclusions [29]. On the other hand, time-specific HRs, estimated

among those who survived until a given time, are subject to built-in selection bias [29]. This

bias is due to the differential depletion of susceptible between exposure groups when a risk

factor associated with the susceptibility is not accounted for in the Cox model. This problem

can also be explained by using a causal diagram [64, 65]; in the presence of an unobserved

risk factor, conditioning on survivors opens a non-causal pathway between the exposure and

the risk factor, and thus induces a specific form of collider bias.

Another limitation of the Cox model concerns the difference between conditional and

marginal HRs. When omitting a covariate, like the odds ratio, the HR is subject to non-

collapsibility due to the non-linearity of the partial likelihood with respect to covariates [66,

67, 68, 69]. This leads to difficulty in a direct comparison between the conditional and marginal

effects, even in the absence of confounding.

2.3 Overview of the accelerated failure time (AFT) model

The AFT model has been suggested as a useful alternative to the Cox PH model [6, 70].

In a typical AFT model, the natural logarithm of the event time, log𝑇 , is modeled as a linear

function of the covariate vector 𝑿 [7]:

log𝑇 = −𝜷𝑇𝑿 +𝑊 (2.3.1)

where𝑊 , independent of the covariate, is a random error term, and 𝜷 is the vector of regression

parameters. A positive value of 𝛽 indicates that an increase in the covariate 𝑋 would accelerate
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or shorten the time to the event, corresponding to a harmful effect from a positive log HR

obtained by the Cox model. On the other hand, a negative value of 𝛽 implies a prolongation of

the time to event. A slightly different parameterization can be found [7, 52],

log𝑇 = 𝜇 + 𝜽𝑇𝑿 + 𝜎𝜀 (2.3.2)

where 𝜽 = −𝜷, 𝜇 is the intercept, 𝜎 is a scale parameter such that the error 𝜀 has a standard

distribution when it belongs to a location-scale family. Although the parameterization (2.3.2)

is implemented by most of the statistical packages (e.g., the ‘survreg’ function within the

R ‘survival’ package) for fitting the parametric AFT model [71], modeling the additional

parameter 𝜇 and 𝜎 does not provide additional information regarding the event time distribution

or baseline hazard. Hence, we consider the random error term 𝑊 = 𝜇 + 𝜎𝜀 without scaling in

the AFT model throughout this thesis.

According to the one-to-one relationship between the probability density function and haz-

ard function, we can derive the specification of the AFT model with respect to the specification

of the hazard function. Exponentiating both sides of the equation (2.3.1) gives:

𝑇 = exp (−𝜷𝑇𝑿)𝑇0 (2.3.3)

where 𝑇0 = exp (𝑊) is the random variable that represents the baseline event time distribution

with the probability density function 𝑓0(𝑡), cumulative density function 𝐹0(𝑡), survival function

𝑆0(𝑡), and baseline hazard function 𝜆0(𝑡). Using a transformation, 𝑇0 = exp (𝜷𝑇𝑿)𝑇 , the

density function of 𝑇 conditional on 𝑿 is given by:

𝑓 (𝑡 |𝑿) = 𝑓0
(
exp (𝜷𝑇𝑿)𝑡

)
exp (𝜷𝑇𝑿). (2.3.4)

The corresponding cumulative density function and the survival function of 𝑇 are:

𝐹 (𝑡 |𝑿) =
∫ 𝑡

0
𝑓0
(
exp (𝜷𝑇𝑿)𝑢

)
exp (𝜷𝑇𝑿)𝑑𝑢 = 𝐹0

(
exp (𝜷𝑇𝑿)𝑡

)
, (2.3.5)
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and

𝑆(𝑡 |𝑿) = 1 − 𝐹 (𝑡 |𝑿) = 𝑆0
(
exp (𝜷𝑇𝑿)𝑡

)
. (2.3.6)

Therefore, it follows that the hazard function of the failure time 𝑇 given the covariate vector 𝑿

can be expressed by:

𝜆(𝑡 |𝑿) =
𝑓 (𝑡 |𝑿)

𝑆(𝑡 |𝑿)
=

𝑓0
(
exp (𝜷𝑇𝑿)𝑡

)
exp (𝜷𝑇𝑿)

𝑆0
(
exp (𝜷𝑇𝑿)𝑡

)
= exp (𝜷𝑇𝑿)𝜆0

(
exp (𝜷𝑇𝑿)𝑡

)
. (2.3.7)

In the AFT model, for example, for a binary treatment variable, it is supposed that the time

to event for a subject is accelerated or decelerated by the time ratio 𝑒𝛽 comparing 𝑋 = 0 vs.

𝑋 = 1 (control vs. treated). Equivalently, the expressions equations (2.3.3) and (2.3.6) indicate

that the median or any other quantiles of the survival time distribution in the treatment group

is 𝑒−𝛽 times the equivalent quantile in the control group.

2.4 Comparison between the Cox PH and AFT model

The difference between the Cox PH model (2.2.1) and the AFT model (2.3.1) is immedi-

ately reflected by the way covariates affect the hazard function. The effect of a covariate is

multiplicative on the hazard scale in the PH model, whereas it is multiplicative on the time

scale in the AFT model. Figure 2-2 illustrates the comparison of the Cox PH and the AFT

model for the effect of a binary treatment 𝑋 on the hazard (left panel) scale and the log hazard

(right panel) scale, respectively [7]. The gray curves represent the baseline hazard in the

control group, while the red and blue curves show the hazards for the lower-risk treatment

group implied by, respectively, the PH model and the AFT model. The treatment is assumed

to have a protective effect on survival under both models with an HR and a time ratio both

equal to 2
3 . This Figure shows clearly that under the PH model, the covariate decreases the

baseline hazard by the constant log HR, as reflected by a vertical shift. In contrast, under the
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AFT model, the covariate not only decreases the baseline risk by the log time ratio vertically

but also acts on the time scale by shifting the hazard towards the right. It is important to note

that for a given covariate, the PH model and AFT model cannot both be correct unless the

event time distribution is Weibull or exponential, the only special cases where the PH model

and AFT model coincide [7, 72]. In other words, the AFT model implies non-proportional

hazards, whereas the PH model implies a non-constant time ratio. Nevertheless, because of

the common effect in the vertical direction on the log hazard, no large disparity would be

expected between the resulting HR and time ratio assuming that the same covariates with the

same functional forms are included in both models.

Figure 2-2: Comparison of PH and AFT model with respect to the hazard functions

Figure 2-3 shows the corresponding comparison with respect to the survival functions

using the same example as in Figure 2-2. The difference between the PH and AFT models

has important implications. If the data generating mechanism indeed follows the AFT model

(the blue curves in Figure 2-2), where the HR is clearly not constant over time, the single

estimated HR by the default Cox PH model would yield inaccurate effect estimates. Moreover,

the survival probabilities are underestimated before 𝑡 = 0.5 and are overestimated afterward.
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Vice versa, the time ratio from the AFT model may provide a misleading conclusion if the

covariate effect truly conforms to a PH model where a constant time ratio is unlikely. Therefore,

one should be careful about the assumptions implied by both models in order to deliver valid

prognostic information on survival. The violation of the constant time ratio assumption in the

AFT model is explained in section 2.5.2. It has also been suggested that investigators should

apply both the PH and AFT models and choose the most appropriate approach for the particular

dataset under study [73].

Figure 2-3: Comparison of PH and AFT model with respect to the survival functions

As previously noted in section 2.3, the effects of the covariates in the AFT model are

interpreted based on the time scale. Due to the different mechanisms regarding how covariates

alter the underlying hazard function, the HR and time ratio of the same covariate from the

PH and AFT models when analyzing the same dataset are not generally comparable except

for a Weibull or exponential baseline hazard. The time ratio resulting from the AFT model

postulates a direct relationship between the covariates and event time and thus has arguably

more intuitive interpretation compared to the HR from the Cox model [9, 73, 74]. Indeed, in

his conversation with Nancy Reid in 1994, Sir David Cox remarked that “of course, another
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issue is the physical or substantive basis for the proportional hazards model. I think that’s one

of its weaknesses, that accelerated life models are in many ways more appealing because of

their quite direct physical interpretation, particularly in an engineering context” [75].

2.5 Assumptions in the AFT model

While there is growing literature regarding the assessment of the linearity and PH as-

sumptions and strategies for relaxing these assumptions in the context of the Cox model, the

discussion about the assumptions imposed by the AFT model is minimal. Similar to the Cox

PH model, two assumptions are imposed by the conventional AFT model, namely the linearity

assumption and the constant time ratio assumption.

2.5.1 The linearity assumption in the AFT model

The log-linear form of the AFT model (2.3.1) suggests that continuous covariates affect

the logarithm of the event time linearly. This would imply that, for example, the time ratio

comparing median survival times for a 10-year age difference is the same when comparing

(a) subgroups that are 70-year old vs. 60-year-old, and (b) subgroups that are 30-year old

vs. 20-year old. In most clinical and epidemiological studies, continuous variables are often

categorized, or the linearity assumption is often accepted a priori [76, 77, 78]. While cate-

gorization may introduce a loss of efficiency and residual confounding [76, 79, 80], imposing

an incorrect log-linear relationship may lead to important biases and misleading conclusions

[34, 77, 81]. Indeed, the violation of the linearity assumption has been found for many prog-

nostic and risk factors in several studies using the Cox model [31, 36, 37, 46, 82]. Moreover,

it has been suggested that this violation of the effect of a given variable may induce biased

estimates for other prognostic factors included in the model [83]. Thus, it is important to

check the linearity assumption in the AFT model and develop a method to allow for non-linear

relationships consistent with the empirical data.
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Semiparametric AFT partial linear models have been proposed to incorporate the non-linear

function of a continuous covariate [27, 42] with the following specification:

log𝑇 = 𝜷𝑇𝑿 + 𝑓 (𝑍) + 𝜀 (2.5.1)

where 𝑍 is a 1-dimensional covariate, and the function 𝑓 (·) is an unknown function that

represents a smooth, potentially non-linear relationship between the covariate 𝑍 and the log

event time.

The concept of partial linear models was firstly introduced in classic linear regression.

Heckman and Rice proposed to estimate 𝑓 (·) using splines, and Speckman [84] using kernel

smoothing techniques. Orbe et al. and Zou et al. have further extended the partial linear model

in the context of AFT model that estimates 𝑓 (·) with natural cubic splines and penalized splines

[27, 42], based on weighted least squares estimation and rank-based estimation, respectively.

The error distribution is left unspecified in both approaches. Nevertheless, the estimation of the

baseline hazard, as well as the associated survival probability, was not discussed. Moreover,

both of the methods only studied the case where the covariate is a univariate component

while assuming the time ratio is constant over time. Methods that can incorporate non-linear

structures for all possible continuous variables are desirable for real-life multivariate analysis.

2.5.2 The constant time ratio assumption in the AFT model

The conventional AFT model assumes that the time ratio is constant over the study duration.

The relationship between the conditional survival function and the baseline survival function,

𝑆(𝑡 |𝑿) = 𝑆0
(
exp (𝜷𝑇𝑿)𝑡

)
, implies that the ratio of two survival times is constant for any

given survival probabilities [3, 8]. Specifically, for a binary treatment covariate, the proportion

of patients who have survived in the treatment group at any time point 𝑡1 is the same as the

proportion of those who have survived in the control group at any time 𝑡0, where 𝑡0 = exp (𝛽)𝑡1.

For instance, if the estimated time ratio is 0.8, the median time for the control group is 0.8 times

the median time for the treatment group, and this relative ratio holds true for any percentile

19



of the survival distribution [72]. This assumption can be violated if the time ratio varies over

time, depending on what percentile of the survival time is being evaluated.

The literature on time-dependent time ratios from the AFT model is limited. To the best of

my knowledge, it is only briefly discussed by Orbe when comparing PH and AFT models for

survival analysis [9]. In addition, only one single paper that proposes a method of modeling

the time-dependent time ratio is identified. This method is developed by Elsayed, Liao and

Wang [44] based on Etezadi-Amoli and Ciampi’s extended hazard regression (EHR) model

with the following specification:

𝜆(𝑡 |𝑿) = exp
(
(𝛼0 + 𝛼1𝑡)𝑿

)
𝜆0

(
exp

(
(𝛽0 + 𝛽1𝑡)𝑿

)
𝑡
)

(2.5.2)

where the baseline hazard function 𝜆0(·) is a quadratic function:

𝜆0(·) = 𝛾0 + 𝛾1𝑡 + 𝛾2𝑡
2. (2.5.3)

This model has a very generic form that encompasses both Cox PH and AFT models, as well

as their extensions for time-dependent effects, as special cases. However, it assumes that

the time ratio is changing linearly with time, and the baseline hazard has a quadratic shape,

two assumptions that are not always realistic in real-world applications. Moreover, further

development is required to take into account the possible non-linear functions of all continuous

covariate effects and to accommodate more flexible functions for the time-dependent time

ratios for all covariates included in the AFT model.

2.5.3 Diagnostics for AFT models

Several graphic methods can be used to assess whether the AFT model is appropriate

concerning the constant time ratio assumption and whether a particular parametric event time

distribution fits the observed data well.

Quantile-quantile (QQ) plot
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The AFT constant time ratio assumption can be checked by the so-called quantile-quantile

(QQ) plots for variables with two levels. It follows that for any quantile 𝑞 of the survival

time distribution, where 0 < 𝑞 < 1 and 1 − 𝑞 = 𝑆0(𝑡0) = 𝑆1(𝑡1), we have that 𝑡
(𝑞)
0

𝑡
(𝑞)
1

= 𝑒𝛽.

For a univariate setting with a binary covariate, we can compute the Kaplan-Meier curves to

estimate the quantiles for the two groups (e.g., treated vs. control), i.e., 𝑡 (𝑞)0 , 𝑡 (𝑞)1 , for various

values of 𝑞. If the constant time ratio assumption holds, plotting the estimated percentiles in

the control group (𝑡 (𝑞)0 ) against the estimated values (𝑡 (𝑞)1 ) in the treatment group would yield

an approximately straight line through the origin [3, 52]. The slope of this straight line should

be close to the estimate of 𝑒𝛽.

Cox-Snell residual plot

Cox and Snell proposed a type of residual for censored data that can be used to assess

the goodness-of-fit of a general survival model [85]. For the 𝑖th individual, the residuals are

defined as:

𝑟𝑖 = − log
(
𝑆(𝑇𝑖 |𝑿𝑖)

)
= �̂� (𝑇𝑖 |𝑿𝑖). (2.5.4)

The general idea behind the Cox-Snell residual is that the survival function 𝑆(𝑇𝑖 |𝑿𝑖) follows

a uniform 𝑈 [0, 1] distribution, and thus − log
(
𝑆(𝑇𝑖 |𝑿𝑖)

)
has a unit exponential distribution.

When the 𝑖th individual is censored, the corresponding residual is censored too. If the model

being assessed is correct, the Cox-Snell 𝑟𝑖’s should represent a censored sample from a unit

exponential distribution. We can then plot the Nelson-Aalen estimator of the cumulative hazard

function of the residuals �̂� (𝑟𝑖) against 𝑟𝑖. A straight line through the origin with a slope of 1

indicates an adequate fit to the data.

Statistical criteria

To compare the goodness-of-fit of a variety of candidate models for survival data, the

Akaike information criterion (AIC) can be used [86]. The AIC for a particular model is

21



calculated as follows:

𝐴𝐼𝐶 = 2(𝑑𝑓 − ℓ̂) (2.5.5)

where 𝑑𝑓 is the number of estimated parameters in the model, and ℓ̂ is the maximum likelihood

of the model. While AIC rewards goodness-of-fit, the number of degrees of freedom (𝑑𝑓 )

including the number of covariates in the model and the number of additional ‘ancillary’

parameters in the parametric or semiparametric model, is considered as a penalty for model

complexity. Although there is no formal test to compare different AIC values, the model with

a lower value is generally preferable.

Similar to AIC, the Bayesian Information Criteria (BIC) for survival data is defined as [87]:

𝐵𝐼𝐶 = log(𝑛) × (𝑑𝑓 − ℓ̂) (2.5.6)

where 𝑛 is the number of uncensored events. BIC places a larger penalty for model complexity

compared to the AIC, which discourages overfitting more strictly. It has been suggested that

BIC is more appropriate for model selection when the ‘true model’ is in the candidate set,

whereas AIC tends to have better practical performance over BIC to find the best-approximating

model if the ‘true model’ is not in the candidate set [88, 89].

2.6 Parametric AFT models

The parametric AFT model requires the complete specification of the event time (𝑇)

distribution. Common parametric choices include the exponential, Weibull, log-logistic, log-

normal, and gamma distributions, etc. The event time distribution inherently determines the

distribution of the random term 𝑊 in equation (2.3.1), as summarized in Table 2-1. The

estimations and inferences of these parametric AFT models and the corresponding proprieties

are discussed in [3, 7, 54], and their survival functions, hazard rates, probability density
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functions are summarized in Table 2.2 (page 38) of the book by Klein and Moeschberger [52].

Table 2-1: Common parametric AFT models with corresponding distributions of 𝑇 and 𝑊

Distribution of 𝑇 Distribution of 𝑊
Exponential Extreme value
Weibull Extreme value
Log-logistic Logistic
Log-normal Normal
Gamma Log-gamma

As mentioned in section 2.4, the Weibull distribution, which reduces to the exponential

distribution as a special case, is the only continuous distribution that yields both a PH and AFT

model. Specifically, when the event distribution is Weibull, the baseline hazard function in

(2.3.7) is given by 𝜆0(𝑡) = 𝛼𝜆𝛼−1, where 𝛼 denotes the shape parameter. This specification is

equivalent to the parameterization that sets 𝜆 = exp (−
𝜇
𝜎 ) and 𝛼 = 1

𝜎 in (2.3.2) with 𝜀 follows a

standard extreme value distribution with the probability density function 𝑓 (𝜀) = exp (𝜀 − 𝑒𝜀).

For a given individual with covariate vector 𝑿, the hazard function is given by,

𝜆(𝑡 |𝑿) = exp (𝜷𝑇𝑿)𝜆0
(
exp (𝜷𝑇𝑿)𝑡

)
= exp (𝜷𝑇𝑿)

(
𝛼𝜆

(
exp (𝜷𝑇𝑿)𝑡

)𝛼−1
)
. (2.6.1)

Rescaling 𝜷 = 𝜷∗

𝛼 = 𝜷∗𝜎 leads to the following PH model:

𝜆(𝑡 |𝑿) = exp (𝜷∗𝑇𝑿)𝜆0(𝑡) = exp (𝜷∗𝑇𝑿) (𝛼𝜆𝑡𝛼−1). (2.6.2)

The relationship between (2.6.1) and (2.6.2) facilitates the translation of the covariate effect

from the time ratio to the HR in the Weibull AFT model [52]. Specifically, if we model the

time ratios, 𝑒𝜷, in the Weibull AFT model, the PH-based hazard ratio can be derived from

the same model corresponding to HR=exp (
𝜷
𝜎 ). In real-life analyses, if a large discrepancy

is revealed between the HR converted from the Weibull AFT model and the one estimated

directly from the Cox PH model, the underlying event time distribution is likely not Weibull.
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On the other hand, if the event times indeed follow a Weibull distribution, we would gain power

by modeling the data with the correct parametric assumption.

It is also interesting to note that the log-logistic model is the only parametric model that

can be represented as both an AFT and a proportional odds (PO) model [52]. The baseline

survival function from a log-logistic distribution is given by:

𝑆0(𝑡) =
1

1 + 𝜆𝑡𝛼
. (2.6.3)

The specification is equivalent to parametrizing 𝜆 = exp (−
𝜇
𝜎 ), and 𝛼 = 1

𝜎 in (2.3.2) with

𝜀 follows a standard logistic distribution with probability density function, 𝑓 (𝜀) = 𝑒𝜀

(1+𝑒𝜀)2 .

Under the AFT model, the conditional survival function given 𝑿 is,

𝑆(𝑡 |𝑿) = 𝑆0
(
exp (𝜷𝑇𝑿)𝑡

)
=

1
1 + 𝜆

(
exp (𝜷𝑇𝑿)𝑡

)𝛼 . (2.6.4)

Rescaling 𝜷 = 𝜷∗

𝛼 yields:

𝑆(𝑡 |𝑿) =
1

1 + 𝜆 exp (𝜷𝑇𝑿)𝑡𝛼
. (2.6.5)

such that for a binary treatment covariate 𝑋 , we have the odds of survival beyond time 𝑡

following a specification of a logistic model:

𝑆(𝑡 |𝑋 = 1)
1 − 𝑆(𝑡 |𝑋 = 1)

= exp (−𝛽∗)
𝑆(𝑡 |𝑋 = 0)

1 − 𝑆(𝑡 |𝑋 = 0)
. (2.6.6)

This relationship allows us to translate the covariate effect from the time ratio to the odds ratio,

and 𝑒−𝛽∗ is the relative odds of having the event comparing the treated and control groups.

Diagnostic plots for parametric AFT models

The fit of a parametric AFT model can be assessed through properties implied by the

parametric distributional form of the event time. Some useful properties are summarized

in the books by Cox and Oakes, and Klein and Moeschberger comparing different paramet-

ric families [3, 52]. For example, we can plot (a) log �̂� (𝑡), (b) log
(
exp (�̂� (𝑡) − 1)

)
, or

(c) Φ−1
(
1 − exp (�̂� (𝑡))

)
respectively against log 𝑡 to check if (a) Weibull, (b) log-logistic

AFT, or (c) log-normal model fit the data adequately. An approximate straight line indicates
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a reasonable fit. Φ−1 is the inverse of the standard normal cumulative distribution function,

and �̂� (𝑡) can be obtained by the Nelson-Aalen estimator described in section 2.1. Similarly, a

straight line plotting �̂� (𝑡) against 𝑡 indicates that the observed event time follows an exponential

distribution.

It is also noted that a graphical assessment of goodness-of-fit can be made by plotting

𝑆(−1) (𝑆𝐾𝑀 (𝑡)) against log 𝑡 and checking for linearity [61]. 𝑆(·) is the analytical func-

tion form of the survival distribution being assessed, and 𝑆𝐾𝑀 (𝑡) is the Kaplan-Meier es-

timator of survival. Therefore, we can also plot (a) log(− log(𝑆𝐾𝑀 (𝑡)), (b) logit(𝑆𝐾𝑀 (𝑡)),

or (c) Φ̂−1(𝑆𝐾𝑀 (𝑡)) respectively to check for the distributional assumptions imposed by

(a) Weibull, (b) log-logistic AFT, or (c) log-normal AFT models. These diagnostic plots

allow a visual assessment for the parametric assumptions; however, they are restricted in

checking for the adequacy of a given model in the univariate setting [52].

2.7 Semiparametric AFT models

Indeed, an appropriate event time distribution might be difficult to identify in complex real-

life studies, as prior substantive knowledge about the prognosis of the disease under study over

time is usually limited. Two classical semiparametric approaches include the least-squares-

regression-based estimator introduced by Buckley and James [12, 13] and the linear-rank-test-

based estimator proposed by Tsiatis [14, 16, 17], where the event time distribution is completely

unspecified. However, these semiparametric estimating equations have potentially multiple

solutions, leading to computational problems, especially with a large number of covariates

[6, 18, 19]. In addition, most of these estimators focus on the inference about the covariate

effects, providing little theories and tools for the estimations of the hazard or survivor functions

that describe the temporal behavior of the event times. Park and Wei [90] derived an estimator

of subject-specific survival functions based on the covariate effect estimates from the rank based

methods and the Nelson-Aalen estimator of the cumulative hazard function, nevertheless the
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implementation of this procedure is not available in standard statistical software. A single

summary of the relative covariate effect, e.g., HR or time ratio, does not provide adequate

information regarding the impact of the treatment or prognostic factor on survival, as the

same relative risk implies different absolute risk difference depending on the baseline hazard

rate [55]. Cox and Oakes [3] noted that “it may be physically enlightening to consider the

immediate ‘risk’ attaching to an individual known to be alive at age 𝑡; comparisons of groups

of individuals are sometimes most incisively made via the hazard.” Therefore, the hazard

function and the associated time-specific survival probabilities are important quantities to be

considered in survival analysis. A few methods, briefly described in the following subsections,

have been developed to accommodate these estimates without making an assumption about the

event time or error distribution.

2.7.1 Smoothed error AFT model developed by Komárek et al.

Komárek et al. [26] developed a semiparametric approach for fitting AFT models of the

form (2.3.2) with respect to the error distribution 𝜀. In their model, the probability density

function for 𝜀 is approximated by a mixture (or a linear combination) of a large but fixed

number of basis Gaussian densities with pre-fixed mean and variance parameters. Specifically,

the error density function is expressed as:

𝑓 (𝜀 |𝒄) =
𝑔∑

𝑖=1
𝑐𝑖𝜑𝜇𝑖 ,𝜎

2
0
(𝜀) (2.7.1)

where 𝜑𝜇𝑖 ,𝜎
2
0
(𝜀) is the 𝑖th mixture component formed by a basis Gaussian density function

with mean 𝜇𝑖 and common variance 𝜎2
0 , and 𝒄 = (𝑐1, · · · , 𝑐𝑔) are the mixture coefficients. To

ensure that 𝑓 (𝜀 |𝒄) is a valid density function, the constraint
∑𝑔

𝑖=1 𝑐𝑖 = 1 must be imposed. The

coefficients 𝒄 are then reparametrized by coefficients 𝒂, where 𝑐𝑖 (𝒂) =
exp (𝑎𝑖)∑𝑔
𝑙=1 exp (𝑎𝑙)

, 𝑖 = 1, · · · , 𝑔,

to avoid such constraint. Values of 𝜇𝑖 and 𝜎2
0 are empirically fixed a priori, but the parameter

vector 𝒂 and the regression coefficient (𝜷) are estimated jointly using the penalized maximum
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likelihood (2.7.2),

ℓ𝑃 (𝑦 |𝜽 , 𝜆) = ℓ(𝜽) − 𝑞{𝒂; 𝝀} (2.7.2)

where 𝜽 is the vector of all estimable parameters, and ℓ𝑃 (𝑦 |𝜽 , 𝜆) and ℓ(𝜽) are the penalized

log-likelihood and the ordinary log-likelihood, respectively. Penalization with a smoothing

parameter 𝜆 is applied to the squared difference of the transformed coefficients (𝒂) of two

adjacent basis Gaussian densities. This tuning parameter 𝜆 is used to control the smoothness

of the fitted error distribution and is selected by minimizing a cross-validation score given by:

𝐶𝑉 (𝜆) = −
{
ℓ(�̂�) − 𝑡𝑟𝑎𝑐𝑒(�̂�

−1
�̂�)
}

(2.7.3)

where �̂� = −𝜕2ℓ𝑃 (�̂�)/𝜕𝜽𝜕𝜽
𝑇 , �̂� = −𝜕2ℓ(�̂�)/𝜕𝜽𝜕𝜽𝑇 , and 𝑡𝑟𝑎𝑐𝑒(�̂�

−1
�̂�) is called the effective

degrees of freedom. This approach is considered as an approximation of cross-validation with

reduced computation cost. More details on the parameterization and the penalty function are

described in Komárek et al. [26]. Two types of variance estimates, i.e., pseudo-variance and

asymptotic variance, are derived for making inference for the penalized MLE. Previous studies

showed that the pseudo-variance estimate yielded better coverage compared to the asymptotic

variance estimate. This method has been implemented in the R package ‘smoothSurv’ [91].

Once the parameters of the error distribution are estimated, the corresponding hazard and

survival function can be reconstructed using their known analytical relationships. However,

simulation studies are needed to systematically evaluate the performance of this approach with

respect to the accuracy and stability of the corresponding hazard and survival estimations.

2.7.2 Extended hazard regression developed by Ciampi et al.

A general extended hazard regression (EHR) was proposed by Etezadi-Amoli and Ciampi

[24, 25], assuming that the covariate affects the hazard function according to:

𝜆(𝑡 |𝑿) = exp (𝜶𝑇𝑿)𝜆0
(
exp (𝜷𝑇𝑿)𝑡

)
. (2.7.4)
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The model in (2.7.4) is a generalization of the PH and the AFT model. When 𝜷 = 0 it

reduces to a PH model, while when 𝜶 = 𝜷 it corresponds to an AFT model. This approach is

appealing because a less restrictive assumption is made concerning the relationship between

the covariate and the hazard, yet, in case the generalized form is not needed, the likelihood

ratio test (LRT) could be used to selected either PH or AFT model nested within the EHR. In

the EHR, instead of eliminating the baseline hazard in the estimation procedure as in Cox’s

approach, or assuming an explicit parametric function as in parametric AFT models, 𝜆0(·) is

approximated by a function defined by a parameter of dimensionality to be determined by data.

For instance, a polynomial of degree 2 [24] and quadratic splines [25] have been considered for

this approximation. Maximization of the full likelihood, derived from (2.7.4), can be employed

to obtain the estimation for 𝜶, 𝜷, and the parameters used to define 𝜆0(·). However, constraints

must be imposed to ensure that 𝜆0(·) remains nonnegative for all 𝑡, resulting in a numerically

complicated estimation algorithm required by constrained optimization. In addition, both

approaches may not offer sufficient flexibility for shapes of hazard function that correspond to

complex disease prognosis in health care research. This might be the reason why the authors

have suggested fit polynomials of higher degrees and increase the number of knots until no

improvement in the fit is obtained [24, 25]. Furthermore, the performance of this method has

not been validated through simulation studies, and the statistical package for implementing the

method is not available.
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2.8 Flexible survival models in alternative modeling frame-

works

2.8.1 Flexible extension of the Cox model developed by Wynant and Abra-

hamowicz

Wynant and Abrahamowicz proposed a flexible extension of the Cox model for estimation

of individual-specific survival curves while taking into account potential non-linear (NL) and

time-dependent (TD) covariate effects [41]. This method involves a two-stage procedure. In

the first stage, a ‘product model’ (2.8.1) is employed to estimate the NL and TD effects using

partial likelihood estimation:

𝜆(𝑡 |𝑿) = 𝜆0(𝑡) exp
(∑

𝑗

𝛽 𝑗 (𝑡) ∗ 𝑔 𝑗 (𝑋𝑗 )
)
. (2.8.1)

𝛽𝑗 (𝑡) and 𝑔 𝑗 (𝑋𝑗 ) are included in the model to relax the PH and linearity assumptions imposed

by the conventional Cox model for the covariate 𝑋𝑗 . Both 𝛽𝑗 (𝑡) and 𝑔 𝑗 (𝑋𝑗 ) are modeled with

low-dimension un-penalized quadratic regression B-splines, whereas the baseline hazard is

again treated as a nuisance parameter in this stage as in the conventional Cox PH model:

𝛽𝑗 (𝑡) =
𝑄∑
𝑞=1

𝑏𝑞, 𝑗 𝐵𝑞 (𝑡), (2.8.2)

and

𝑔 𝑗 (𝑋𝑗 ) =
𝐿∑
𝑙=1

𝑎𝑙, 𝑗 𝐴𝑙, 𝑗 (𝑋𝑗 ). (2.8.3)

In the second stage, the estimated TD and NL covariate effects are substituted into the full

likelihood function, in which the logarithm of the baseline hazard is approximated by cubic

regression splines (2.8.4), to accommodate more complex shapes than the NL and TD covariate

effects.

𝜆0(𝑡) =
𝐾∑
𝑘=1

𝛾𝑘𝐵𝑘 (𝑡). (2.8.4)
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The spline coefficients 𝜸 are the only parameters to be estimated in this stage, as 𝛽𝑗 (𝑡) and

𝑔 𝑗 (𝑋𝑗 ) are considered as known fixed functions obtained from the first stage. Maximizing the

full likelihood function yields the estimates of 𝜸. Subsequently, the survival probability at

time 𝑡 for any given covariate pattern can be calculated by the plugging in �̂�0(𝑡) as well as the

NL and TD estimates.

𝑆(𝑡 |𝑿) = exp
{
−

∫ 𝑡

0
exp

( 𝐾∑
𝑘=1

�̂�𝑘 𝐵𝑘 (𝑢)
)
exp

{∑
𝑗

[ 𝑄∑
𝑞=1

𝑏𝑞, 𝑗 𝐵𝑞 (𝑢)
] [ 𝐿∑

𝑙=1
𝑎𝑙, 𝑗 𝐴𝑙, 𝑗 (𝑋𝑗 )

]}
𝑑𝑢

}
(2.8.5)

The regression B-splines have been intensively exploited in this method. A regression

B-spline over a closed interval [𝑎, 𝑏] is represented by a linear combination of the splines of

a B-spline basis [92, 93]. These splines are a series of piecewise polynomials of degree 𝑝,

defined over a set of mutually exclusive intervals. The points that divide the mutually exclusive

intervals over [𝑎, 𝑏] are referred to as interior knots, and there are 𝑝 + 1 exterior knots on each

side of the interval [𝑎, 𝑏]. With 𝑚 interior knots and degree 𝑝, there are 𝑚 + 𝑝 + 1 splines. For

𝑗 = 1, · · · , 𝑚 + 𝑝 + 1, each spline basis 𝐵𝑗,𝑝 (𝑥) is defined recursively as [94]:

𝐵𝑗,0(𝑥) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if 𝑘 𝑗 ≤ 𝑥 < 𝑘 𝑗+1

0 otherwise
, (2.8.6)

and

𝐵𝑗,𝑝 (𝑥) =
𝑥 − 𝑘 𝑗

𝑘 𝑗+𝑝 − 𝑘 𝑗
𝐵 𝑗,𝑝−1(𝑥) +

𝑘 𝑗+𝑝+1 − 𝑥

𝑘 𝑗+𝑝+1 − 𝑘 𝑗+1
𝐵𝑗+1,𝑝−1(𝑥) (2.8.7)

where the locations of the knots are placed at: 𝑎 = 𝑘1 = · · · = 𝑘𝑝+1 < 𝑘𝑝+2 < · · · < 𝑘𝑚+𝑝+1 <

𝑘𝑚+𝑝+2 = · · · = 𝑏. The regression B-spline function 𝑓 (𝑥) over the interval [𝑎, 𝑏] is constructed

as:

𝑓 (𝑥) =
𝑚+𝑝+1∑
𝑗=1

𝛼𝑗𝐵 𝑗 (𝑥) (2.8.8)

where 𝛼𝑗 are the spline coefficients to be estimated from the data.
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The smoothness of the resulting B-spline function depends on the degree 𝑝, the number,

and location of the knots, which should be fixed in advance. For example, 𝑝 = 0 represents

step functions that are not continuous at the knots, 𝑝 = 1 represents linear splines which are

continuous but not smooth, whereas 𝑝 = 2 and 𝑝 = 3 result in quadratic and cubic splines that

are both continuous and smooth [93]. Simulations show that quadratic and cubic regression

splines are flexible enough to capture a variety of clinically plausible shapes with realistic

complexity [36, 40, 95]. On the other hand, real-life studies have suggested that splines with

even one or two knots can be sufficient to represent biologically plausible function forms

[96, 97]. The interior knots can be placed at positions where more curvature of the function

is expected according to prior information [92]. Nevertheless, when such information is not

available, the interior knots may be placed at quantiles of the variable [93, 98, 99]. Alternatively,

the number and the location of the knots can be considered as hyperparameters and estimated

and compared using goodness-of-fit criteria [99, 100]. However, such an approach can be very

complex and computationally intensive [92]. The advantage of regression B-splines is that the

estimated curves are only locally affected by outliers, as a B-spline basis is only ‘active’ over

a limited interval (it takes the zero value outside the interval) [94]. In other words, B-splines

are less sensitive to local bias compared to other flexible techniques that have global control

over the entire range of the data [82].

2.8.2 The Hazard Regression (HARE) model of Kooperberg and col-

leagues

Kooperberg, Stone and Truong proposed to estimate the conditional log-hazard function

directly using polynomial splines [101]:

log
(
𝜆(𝑡 |𝑿; 𝜷)

)
= 𝛼(𝑡 |𝑿; 𝜷) =

𝑝∑
𝑗=1

𝛽𝑗 𝐵 𝑗 (𝑡 |𝑿). (2.8.9)
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The corresponding log-likelihood can be derived as:
𝑛∑

𝑖=1
𝛿𝑖

( 𝑝∑
𝑗=1

𝛽𝑗 𝐵 𝑗 (𝑡 |𝑿)
)
−

∫ 𝑡𝑖

0
exp

( 𝑝∑
𝑗=1

𝛽𝑗 𝐵 𝑗 (𝑡 |𝑿)
)
𝑑𝑢. (2.8.10)

The MLE of 𝜷 is obtained by the Newton-Raphson method, and the estimates of the hazard

and survival functions can be computed correspondingly. 𝐵𝑗 (𝑡 |𝑿), 𝑗 = 1, · · · , 𝑝 is the 𝑗 th

spline basis function of the event time, covariates and potentially their tensor products over

a 𝑝-dimensional (1 ≤ 𝑝 < ∞) linear space 𝐺 on [0,∞] × 𝜒 such that 𝑔(·|𝑥) is bounded on

[0,∞] for 𝑔 ∈ 𝐺 and 𝑥 ∈ 𝜒. For example, for two covariates, the following six basis functions

(𝑝 = 6) may be considered as an allowable space 𝐺 : 𝐵1 = 1, 𝐵2 = (1 − 𝑡)+, 𝐵3 = 𝑥1, 𝐵4 =

(𝑥1−6)+, 𝐵5 = 𝑥1𝑥2, and 𝐵6 = 𝑥1(1− 𝑡)+, where (𝑡)+ = max(𝑡, 0). The dimension and the basis

functions are selected adaptively via stepwise addition and deletion. In the stepwise addition,

at each step, a new basis function is chosen among various candidates including (i) linear

terms for variables that are not yet in the model, (ii) tensor product of two basis functions for

variables already in the model, (iii) basis functions that based upon a new knot in time, and

(iv) basis functions that based upon a new knot in variables already in the model. Subsequently,

a stepwise deletion algorithm is applied, and the basis function corresponding to the smallest

Wald statistic is deleted at each step. Finally, the BIC is used to select the final model among

the sequence of models obtained during the stepwise addition and stepwise deletion process.

In this method, the inclusion of the tensor product of covariate and time yields a non-

proportional hazard model, while the tensor product of two covariates allows interactions

between them. The conditional hazard function and survival function can be estimated directly

without any assumption about the relationship between the covariate and the baseline hazard.

However, linear splines used in HARE may yield clinically implausible broken-line estimates,

and the robustness of the complex model selection procedure is questioned [102]. In addition,

unlike the hazard ratio from the Cox model and time ratio from the AFT model, it is unclear

how to interpret the fitted coefficient from the HARE model.

32



2.8.3 Flexible parametric proportional-hazards (PH) and proportional-

odds (PO) models of Royston and Parmar

Royston and Parmar proposed flexible parametric models that are extensions of the Weibull

PH and log-logistic PO models [103, 104]. For the PH model,

log[− log
(
𝑆(𝑡; 𝑿)

)
] = logΛ(𝑡; 𝑿) = logΛ0(𝑡) + 𝜷𝑇𝑿, (2.8.11)

and for the PO model,

log[𝑆(𝑡; 𝑿)−1 − 1] = log𝑂 (𝑡; 𝑿) = log𝑂0(𝑡) + 𝜷𝑇𝑿 . (2.8.12)

The baseline log cumulative hazard logΛ0(𝑡) and the baseline cumulative odds of failure

function log𝑂0(𝑡; 𝑿) are modeled using natural cubic splines 𝑠(𝑡; 𝜸), which are cubic splines

constrained to be linear beyond boundary knots. Maximizing the full likelihood gives the

estimates for the covariate coefficient 𝜷 and the spline coefficient 𝜸. The interpretation of 𝜷

under the PH model aligns with the hazard ratio as in the Cox PH model, and under the PO model

lines up with the odds ratio as in the log-logistic AFT model. Interactions between the spline

basis function as a function of 𝑡 and the covariate are further introduced to allow hazard ratio

and odds ratio be to time-varying. No assumption is made for the baseline cumulative hazard

or the baseline cumulative odds, so this spline-based approach can potentially accommodate

any ‘arbitrary’ event time distribution. However, this method is proposed within the PH and

PO framework, and thus the accelerated failure time interpretation is lost. Simulation studies

are needed to assess the performance of this method in terms of covariate effects and hazard

functions.

2.9 Model performance in survival prediction

Besides investigating the importance of the effects of the relevant risk factors, one of the

primary goals of building a survival model in a prognostic study is to predict survival or risk
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at a given follow-up time and to inform patients on their prognosis based their characteristics.

Before the implementation of the prediction model in clinical practice, it is important to validate

the model and assess the model performance. When several alternative prediction models

are considered in the model building process, we may compare the model performance to

establish the final model, supplemented by diagnostics of the model assumption and goodness-

of-fit discussed in section 2.5.3 and section 2.6. Indexes of survival model’s predictive

performance can be summarized into three main aspects: (1) overall predictive performance,

(2) discrimination, and (3) calibration.

Overall predictive performance

The overall model performance measures how well the model predicts the observed out-

come. The prediction error (𝑌 − 𝑌 ) is one of the most common indexes for continuous

outcomes, whereas the Brier score is used for binary outcomes calculated by the squared

differences between the observed binary outcomes and the predicted probability 𝑝: (𝑌 − 𝑝)2.

For time-to-event outcomes, the Brier score is defined based on the time-dependent predictive

errors [105]:

𝐵𝑆(𝑡) =
1
𝑛

𝑛∑
𝑖=1

(
𝐼 (𝑡𝑖 > 𝑡) − 𝑆(𝑡 |𝑿𝑖)

)2 (2.9.1)

where 𝐼 (𝑡𝑖 > 𝑡) is the observed event status, and 𝑆(𝑡 |𝑿𝑖) is the predicted event-free probability

at time 𝑡 conditional on covariate vector 𝑋 . For survival probability predicted at fixed time

points, the Brier scores can be calculated correspondingly. It is also possible to incorporate the

inverse probability of censoring weights in the Brier score to account for informative censoring

[106]. The Brier score can range from 0 for a perfect prediction to 0.25 for a random prediction

with a 50% outcome incidence.

In addition, the global likelihood ratio statistic, defined as 𝐿𝑅 = −2(ℓ0 − ℓ), can be useful

for assessing whether the predictors are associated with the response. ℓ0 and ℓ denote the

log-likelihood of the null model and the fitted model, respectively. Analogous to 𝑅2 in an

34



ordinary model, this quantity can be considered as the -2 log-likelihood ‘explained’ by the

model. In the survival model, for a sample size 𝑛, Nagelkerke’s 𝑅2, ranging from 0 to 1, is

defined based on the likelihood ratio statistics [107]:

𝑅2
𝑁 =

1 − exp (− 𝐿𝑅
𝑛 )

1 − exp (1 −
2ℓ0
𝑛 )

. (2.9.2)

This index is easy to calculate and has been shown to perform well to measure the predictive

ability of a Cox PH model [108, 109].

Discrimination performance

Discrimination describes how well the prediction from the model discriminates those with

and those without the outcome. The C-statistic, analogous to the area under the ‘receiver

operating characteristic’ (ROC) curve (AUC), is the most commonly used discrimination per-

formance index for a binary outcome. It is a probability of concordance between predicted and

observed outcome, with 𝑐 = 0.5 for random prediction and 𝑐 = 1 for a perfectly discriminating

model. Harrell et al. proposed a 𝑐-statistic for censored survival data [110, 111]:∑
𝑖≠ 𝑗 𝛿𝑖 𝐼 (𝑡𝑖 < 𝑡 𝑗 )𝐼 ( �̂�𝑿𝒊 > �̂�𝑿 𝒋)∑

𝑖≠ 𝑗 𝛿𝑖 𝐼 (𝑡𝑖 < 𝑡 𝑗 )
. (2.9.3)

It measures the fraction of all pairs of subjects such that the subject with the higher prognostic

score (e.g., the linear predictor �̂�𝑿 from the survival fitted model) is the one who survived

longer. This calculation is based only on the ‘useable’ pairs whose survival time can be ordered.

For example, if both subjects in a pair are censored or if one has censored, but the censoring

time is less than the even time of the other, they do not contribute to the Harrell’s 𝑐-statistics.

Therefore, this index may depend on study-specific censoring distribution. To address this

limitation, Uno et al. derived an estimate of 𝑐-statistics truncated at a pre-specified time point

𝜏 [112]:

𝑐𝜏 =

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝛿𝑖 (𝑆𝑘𝑚 (𝑡𝑖))

−2𝐼 (𝑡𝑖 < 𝑡 𝑗 , 𝑡𝑖 < 𝜏)𝐼 ( �̂�𝑿𝒊 > �̂�𝑿 𝒋)∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝛿𝑖 (𝑆𝑘𝑚 (𝑡𝑖))−2𝐼 (𝑡𝑖 < 𝑡 𝑗 , 𝑡𝑖 < 𝜏)

(2.9.4)
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where 𝐼 (·) is the indicator function, and 𝑆𝑘𝑚 (·) is the Kaplan-Meier estimator for the censoring

distribution. This formulation involves weighting the uncensored probability in the estima-

tion, therefore making the estimates censoring independent. A related statistic, Somer’s 𝐷𝑥𝑦

correlation, is defined as 2(𝑐 − 0.5).

Both Harrell’s and Uno’s 𝑐-statistics provide a global summary of the overall discrimination

of risk prediction from a fitted survival model. For the prediction of 𝑡-year survival, Uno et al.

proposed a time-dependent AUC that can be used to assess the model discrimination at specific

time points [113]. A working model: 𝑃(𝑇 ≤ 𝑡) = 𝑔(𝜷𝑿) is considered, where 𝑔(·) is the

cumulative density function of the event time distribution associated with the covariate vector

𝑋 . For a binary prediction rule indexed by a threshold w: 𝐼 (𝑔( �̂�𝑿) > 𝑤), the time-specific

sensitivity and specificity can be estimated respectively by:

𝑆𝐸𝑡 (𝑤) =

∑𝑛
𝑖=1 𝛿𝑖 𝐼 (𝑔( �̂�𝑿𝒊) > 𝑤, 𝑡𝑖 < 𝑡)/𝑆𝑘𝑚 (𝑡𝑖)∑𝑛

𝑖=1 𝛿𝑖 𝐼 (𝑡𝑖 < 𝑡)/𝑆𝑘𝑚 (𝑡𝑖)
, (2.9.5)

and

𝑆𝑃𝑡 (𝑤) =

∑𝑛
𝑖=1 𝛿𝑖 𝐼 (𝑔( �̂�𝑿𝒊) ≤ 𝑤, 𝑡𝑖 > 𝑡)∑𝑛

𝑖=1 𝛿𝑖 𝐼 (𝑡𝑖 > 𝑡)
. (2.9.6)

The ROC at time 𝑡 can be constructed based on {[1 − 𝑆𝑃𝑡 (𝑤), 𝑆𝐸𝑡 (𝑤)], 0 ≤ 𝑤 ≤ 1}, and

subsequently, the Uno’s AUC(𝑡) is calculated by integrating the area under the ROC(𝑡) curve.

Other similar time-dependent AUC statistics include methods based on conditional Kaplan-

Meier estimator and Nearest neighbor methods [114]. However, they are derived under the

assumption that the working model is correctly specified, whereas Uno’s approach does not

require this assumption [113].

The G-index is another measure of a model’s discrimination performance. It computes the

mean absolute difference of the prognostic score over all possible pair of subjects:

𝑔 =
1

𝑛𝑖≠ 𝑗

∑
𝑖≠ 𝑗

| �̂�𝑿𝒊 − �̂�𝑿 𝒋 | (2.9.7)
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Since the G-index is based on the linear predictor only, it can be applied generally to both

parametric and semiparametric survival models and is independent of censoring and other

complexities [61].

Calibration performance

Calibration refers to the agreement between observed outcomes and predictions [115]. A

simple calibration measure is calibration-in-the-large, which compares the average predicted

outcome with the average observed outcome. In the survival context, to study the calibration of

a prognostic model for a fixed time point 𝑡, we can group subjects with similar predicted 𝑡-year

survival probabilities and compare the average prediction to the observed probability obtained

from Kaplan-Meier estimates within each group [61]. Harrell suggests using at least 50 subjects

per group, although such grouping is arbitrary and may be inaccurate [116]. Calibration curves

can be constructed with the prediction from the model on the 𝑥-axis and the observed outcome

on the 𝑦-axis, with a 45° line indicating perfect prediction. This plot can also be considered as a

graphical illustration of the Hosmer-Lemeshow goodness-of-fit test, which is another common

measure of model calibration for a binary outcome [116]. The Greenwood-Nam-D’Agostino

(GND) statistic has been proposed to extend the Hosmer-Lemeshow goodness-of-fit test for

survival data without making any specific assumptions for the prediction model [117]. The

subjects are split into groups based on the prognostic scores or the predicted values, and the

𝜒2
𝐺𝑁𝐷 statistic is defined to test whether the average of the predicted survival probabilities

agrees with the observed Kaplan-Meier estimates across the groups.

2.10 Model validation

Validation is an essential aspect in the process of developing a predictive model to assess

potential overfit of the model, because the objective is to provide valid outcome predictions on

future subjects who have not been used to develop the model [115]. Internal validation, also
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being referred to as reproducibility, usually involves assessing the validity of the model using

subjects in the underlying population that the developed data originated from. On the other

hand, external validation is a more stringent process to assess whether the prediction can be

generalized to populations that are ‘plausibly related’ [115]. In the third manuscript of this

thesis, we focus on the internal validation to determine the likely performance of the predictive

model on new subjects, considering all the relevant calibration and discrimination indexes.

Cross-validation and bootstrap resampling are the two most commonly used techniques for

internal validation [61]. Cross-validation requires splitting the data randomly into several

subsets. One subset is omitted from the model building process and is used as the testing

sample to assess the model performance. The remaining subsets are the training sample in

which the model is developed. This process is then repeated for all consecutive subsets, and

the performance index is estimated as the average of all assessments. Bootstrap validation

involves repeatedly building the model in a bootstrap sample (training sample), and evaluating

the performance of the model on the original sample (testing sample). Optimism is a measure

of model overfitting, calculated as the difference in the index between the bootstrap sample

and the original sample. We can then obtain a bias-corrected or overfitting-corrected estimate

of predictive performance by subtracting the average optimism from the final model’s apparent

performance index [61, 118]. Both techniques provide a useful tool to estimate the likely

performance of the final predicted model on future data. The advantage of bootstrap validation

over cross-validation is that the optimism-corrected performance estimates are more stable;

therefore it is preferable when the study sample size is small [118]. In practice, 100-200

bootstrap is sufficient to obtain robust estimates [115].
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CHAPTER 3

Objectives of the thesis
In my PhD thesis, I will try to address the challenges in the introduction. The primary objective

of the thesis is to propose and validate a new flexible extension of the conventional accelerated

failure time (AFT) model for time-to-event data that avoids some of its restrictive assumptions.

Specifically, to fill the gaps identified in the above literature review, the overall goal is to

develop a comprehensive multivariable modeling approach, which addresses three challenges

in the AFT framework: (i) how to avoid pre-specification of the event time distribution while

providing accurate estimates of covariate effects, baseline hazard function and individual

survival curve, (ii) how to simultaneously relax the linearity and constant time ratio assumptions

implied in the conventional AFT model, and (iii) how to make model building strategies and

perform prediction in survival analyses by comparing different modeling approaches, while

considering the potential violation of the respective underlying assumptions.

To achieve the above overall goal, the specific methodological objectives of my thesis

include:

(i) To develop a new multivariable semiparametric AFT model that allows estimation of

arbitrary shapes of the baseline hazard function,

(ii) To extend the method developed in (i) to account for potential time-dependent effects

and non-linear effects of continuous variables,
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(iii) To validate the above two methods in simulations regarding their performance in the

estimation of covariate effects, baseline hazard function, and survival curves, conditional

on possibly complex covariate effects.

The substantive objective of the thesis is to illustrate the practical usefulness and the potential

insights we could gain from the proposed novel models. To this end, I have applied the

proposed AFT models, as well as alternative survival models, including the Cox PH model and

its flexible extension, to three different real-life clinical studies, re-assessing the associations

between the respective prognostic factors and mortality in patients with, (i) colon cancer,

(ii) septic shock, and (iii) non-small cell lung cancer.
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CHAPTER 4

4.1 Preamble to Manuscript 1

Conventional accelerated failure time (AFT) model requires specifying the distribution for

the event time. An elegant semiparametric approach proposed by Komárek et al. can estimate

covariate effects while leaving the event distribution unspecified and permitting the estimation

of the error distribution, and the inter-related hazard and survival functions. Nevertheless,

the accuracy of these estimators has not been systematically evaluated. This manuscript

proposes a new spline-based semiparametric AFT model, as an alternative to the Komárek et

al. smoothed error method, and compares their performances in comprehensive simulation

studies under various data generating mechanisms for the event time distribution. It extends the

conventional AFT model by approximating the baseline hazard using regression B-splines. The

methodological development in Manuscript 1 provides foundations for the method proposed

in Manuscript 2, which aims to account for non-linear and time-dependent effects in the AFT

framework, in addition to flexible hazard estimation. The spline-based AFT model developed

in Manuscript 1 is also applied as one of the alternative modeling strategies compared in

Manuscripts 2 and 3 for survival analysis in real-life prognostic studies.

In this manuscript, I adapt a two-step alternating conditional estimation (ACE) algorithm

to maximize the full log-likelihood for estimating the parameters in the proposed spline-based

AFT model. Moreover, I develop a dedicated statistical program to implement this new

estimation algorithm. Simulation studies are then designed to evaluate this approach under
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two scenarios, including a simple setting where the true hazard function follows parametric

distributions and another setting where a more complex shape of the true hazard is present.

The results show that it provides accurate estimates of the covariate effects, hazard function,

and survival curves in both scenarios and yields more stable hazard estimates comparing to

the Komárek et al. method. Based on the satisfactory performance validated in Manuscript

1, the ACE algorithm and its implementation are further extended for estimation of the more

complex model developed in Manuscript 2.

The main results of Manuscript 1 have been presented at the 39th Annual Conference of

the International Society for Clinical Biostatistics in Melbourne, Australia, 2018, and the Joint

Statistical Meetings in Vancouver, Canada, 2018. This article is currently under revision at

Statistics in Medicine. The publications cited in Manuscript 1 are listed in the reference section

at the end of this thesis. Appendix A provides additional information, originally included in

the online supporting information of the article submitted to Statistics in Medicine, including

more details on the estimation algorithm and additional results of the simulation studies and

real-life analyses.
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Abstract

The accelerated failure time (AFT) model has been suggested as an alternative to the Cox

proportional hazards model. However, a parametric AFT model requires the specification of

an appropriate distribution for the event time, which is often difficult to identify in real-life

studies and may limit applications. A semiparametric AFT model was developed by Komárek

et al. based on smoothed error distribution that does not require such specification. In this

article, we develop a spline-based AFT model that also does not require specification of the

parametric family of event time distribution. The baseline hazard function is modeled by

regression B-splines, allowing for the estimation of a variety of smooth and flexible shapes. In

comprehensive simulations, we validate the performance of our approach and compare with the

results from parametric AFT models and the approach of Komárek. Both the proposed spline-

based AFT model and the approach of Komárek provided unbiased estimates of covariate

effects, baseline hazards, and survival curves for a variety of scenarios in which the event

time followed different distributions, including both simple and complex cases. However,

our proposed spline-based AFT model yielded more stable estimates of the hazard function.

As expected, the baseline hazard and survival probabilities estimated by the mis-specified

parametric AFT models deviated from the truth. We illustrated the application of the proposed

model in a study of colon cancer.

Key words: accelerated failure time model, spline-based method, model misspecification,

survival analysis, simulations

4.2 Introduction

Time-to-event analyses are essential to assess the effects of covariates, exposures or inter-

ventions on clinical outcomes. Such studies often aim to estimate the survival probability over

time for subjects with different values of prognostic factors. However, to accurately estimate
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conditional survival functions, the data analyst has to correctly specify both (i) the baseline

hazard and (ii) the way particular covariates affect the hazard.

The Cox proportional hazards (PH) model [1] is the most widely used model for survival

analysis, with more than 50,000 citations to date. This model permits assessing covariate

effects without any assumptions about the distribution of the event time, thus, avoiding the

challenges in point (i). However, the PH assumption restricts the estimated HR’s to remain

constant during the entire follow-up period. If the PH assumption does not hold, the Cox

model may lead to misleading conclusions [29] and biased estimates [33]. Indeed, violations

of the PH assumption have been frequently reported [35, 45, 119].

The Accelerated Failure Time (AFT) model provides an alternative to the PH model

[6, 9, 70]. In the AFT model, the covariates act directly on the time scale, so that the

time to event is accelerated or decelerated depending on the covariate value [7, 52]. Yet,

parametric AFT models require complete specification of the event time distribution [54],

which may affect the estimates of both survival function and covariate effects [10, 11]. Common

parametric choices include the log-normal, log-logistic, exponential and Weibull distributions

[7, 52]. In the two latter cases, the AFT and the PH models are both valid [54, 120].

However, in many applications, an appropriate event time distribution may be difficult to

identify. Whereas one may choose one among a pre-specified set of parametric distributions,

using e.g., the Akaike information criterion (AIC) and/or diagnostic plots [52, 72], such

data-dependent choices complicate inference. Furthermore, the true baseline hazard function

may not follow conventional parametric distributions, including for example non-monotone,

asymmetric shapes reflecting abrupt changes in mortality after cancer diagnosis [97]. To avoid

difficulties in specifying the parametric baseline hazard model, different semiparametric AFT

models were proposed, including least squares regression [12, 13, 14], rank-based estimators

[15, 16, 17], weighted least-absolute-deviations method [20], and semiparametric median

regressions [121, 122]. Some of these methods are prone to computational problems, especially

with many covariates [6]. Furthermore, the aforementioned methods primarily focus on
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estimating covariate effects without explicitly deriving the estimators of the hazard or survivor

function, although they could be potentially derived by incorporating the estimated error

distribution from the Kaplan-Meier method or the Nelson-Aalen estimator of the cumulative

hazard function [90].

We identified a few flexible approaches for modeling hazard functions within the AFT

framework. In 1980’s Etezadi-Amoli and Ciampi [24, 25] proposed a general flexible model

for survival analysis, that included both PH and AFT models as special cases. However,

complex constrained optimization is required to ensure that the baseline hazard is nonnegative,

resulting in numerical problems in the estimation [25]. Moreover, software implementation was

not discussed [24, 25]. More recently, Komárek et al. proposed a semiparametric smoothed

error AFT model, which relies on a linear combination of a large number of gaussian densities

with penalization [26]. This approach does not require specifying the event time distribution,

while allowing for the estimation of the hazard and survival functions conditional on any

covariate pattern [26]. However, to the best of our knowledge, the resulting hazard and

survival estimators has not been yet systematically evaluated, through simulations.

In this article, we propose an alternative flexible AFT model, that employs low-dimension

un-penalized regression splines to estimate the baseline hazards of arbitrary shapes, covariate

effects, and the survival curves, conditional on covariates. Simulation studies are conducted

to validate the proposed spline-based model and compare its performance with conventional

parametric AFT models and the semiparametric approach by Komárek et al. [26], under

different event time distribution. The spline-based AFT model is then applied to re-assess

mortality in colon cancer.
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4.3 Methods

4.3.1 General framework of the accelerated failure time model

In the AFT model, the natural logarithm of the event time, log𝑇 , is modeled as a linear

function of the covariates 𝑋1, 𝑋2, · · · , 𝑋𝐽 [7]:

log𝑇 = −(𝛽1𝑋1 + 𝛽1𝑋1 + · · · + 𝛽𝐽𝑋𝐽) +𝑊 (4.3.1)

where 𝑊 is a random error term. Parametric AFT models are usually defined by the distri-

bution of the event times, typically assumed to follow Weibull, log-normal, and log-logistic

distribution [7]. The specification of the event time distribution inherently determines the error

distribution and the hazard function [7].

The parameters 𝜷 = (𝛽1, · · · , 𝛽𝐽) are the adjusted log time ratios, that are assumed to

remain constant across the follow-up time. Exponentiating equation (4.3.1) gives,

𝑇 =
1

exp (
∑𝐽

𝑗=1 𝛽𝑗 𝑋𝑗 )
𝑇0 (4.3.2)

with 𝑇0 = 𝑒𝑊 representing the distribution of the survival times of a hypothetical reference

group with 0 values for all measured covariates.

In the AFT model, the hazard function conditional on covariates equals [7]:

𝜆(𝑡 |𝑿) = exp (

𝐽∑
𝑗=1

𝛽𝑗 𝑋𝑗 )𝜆0
(
exp (

𝐽∑
𝑗=1

𝛽𝑗 𝑋𝑗 )𝑡
)

(4.3.3)

where 𝜆0(𝑡) is the baseline hazard function, corresponding to 𝑋1 = 𝑋2 = · · · = 𝑋𝐽 = 0.

Accordingly, the survival function at time 𝑡, conditional on covariates, is given by:

𝑆(𝑡 |𝑿) = 𝑆0
(
exp (

𝐽∑
𝑗=1

𝛽𝑗 𝑋𝑗 )𝑡
)

(4.3.4)

Equation (4.3.4) implies that for one unit increase in the value of 𝑋𝑗 the time to event is

accelerated or decelerated by a multiplicative factor 𝑒𝛽 [7]. Therefore, the covariate effects

estimated from AFT models can be interpreted as the relative prolongation or shortening of

the survival time.
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4.3.2 Smoothed error AFT model of Komárek et al.

Komárek et al. [26] developed an elegant semiparametric approach for fitting AFT model

(4.3.1) without specifying the distributions of event times or errors. They express the density

function for the error distribution 𝑓 (𝑤 |𝑐) by a mixture of a large number 𝑔 of the basis Gaussian

densities [26]:

𝑓 (𝑤 |𝒄) =
𝑔∑

𝑖=1
𝑐𝑖𝜑𝜇𝑖 ,𝜎

2
0
(𝑤) (4.3.5)

where 𝜑𝜇𝑖 ,𝜎
2
0
(𝑤) is the 𝑖th Gaussian density function with mean 𝜇𝑖 and common variance

𝜎2
0 , and 𝒄 = 𝑐(𝑐1, · · · , 𝑐𝑔) are the mixture coefficients. To avoid the need for constrained

optimization, and ensure that 𝑤 meets the conditions for density, the mixture coefficients are

reparametrized: 𝑐𝑖 (𝒂) = exp (𝑎𝑖)∑𝑔
𝑙=1 exp (𝑎𝑙)

, 𝑖 = 1, · · · , 𝑔 so that 𝑐𝑖 (𝒂) = 1 and 𝑐𝑖 (𝒂) > 0 [26].

Values of 𝜇𝑖 and 𝜎2
0 are fixed a priori, but the vector 𝒂 is estimated jointly with the regression

coefficients vector (𝜷) in (4.3.1), using penalized maximum likelihood:

ℓ𝑃 (𝑦 |𝜽 , 𝜆) = ℓ(𝜽) − 𝑞{𝒂; 𝝀} (4.3.6)

where 𝜽 is the vector of all estimable parameters, including 𝒂,𝜷 and a scale parameter 𝜎, and

ℓ𝑃 (𝑦 |𝜽 , 𝜆) and ℓ(𝜽) denote the penalized and ordinary log-likelihood function, respectively.

The penalty term 𝑞{𝒂;𝜆} is applied to the squared difference of the transformed coefficients

(𝒂) of adjacent Gaussian densities 𝜑𝜇𝑖 ,𝜎
2
0
(𝑤). The tuning parameter 𝜆, selected by cross-

validation, controls the smoothness of the fitted error distribution [26]. Variance of the

penalized maximum likelihood estimator is approximated by the pseudo-variance [26]. The

Komárek et al.’s smoothed error AFT model is implemented in the R package ‘smoothSurv’

[91].
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4.3.3 Proposed spline-based AFT model

Modeling baseline log hazard by regression splines

We propose an alternative flexible AFT model which does not require penalization. Because

the baseline hazard is usually unknown and may be complex, we employ un-penalized low-

dimension polynomial regression B-splines that avoid a priori parametric assumptions, and

approximate well a wide range of functional shapes [92, 93], including density or (log) hazard

functions for event times [123, 124]. Therefore, in the proposed flexible AFT model, the log

hazard function is modeled as a linear expansion of a basis of 𝐾 = 𝑝 + 𝑚 + 1 polynomial

regression splines of degree 𝑝 with 𝑚 interior knots:

𝜆0
(
exp (

𝐽∑
𝑗=1

𝛽𝑗 𝑋𝑗 )𝑡
)
= exp

( 𝐾∑
𝑘=1

𝛾𝑘𝑆𝑘 (𝑤)
)

(4.3.7)

where 𝑤 = exp (
∑𝐽

𝑗=1 𝛽𝑗 𝑋𝑗 )𝑡, 𝑆𝑘 (·) is the 𝑘 th B-spline in the basis, and 𝜸 = (𝛾1, · · · , 𝛾𝐾) are

the estimable spline coefficients. Modeling the log hazard ensures that the baseline hazard is

always positive, and the log-likelihood function is concave, which ensures convergence to a

global maximum (second derivatives are shown in Appendix A.1).

Using standard notation {𝑡𝑖, 𝛿𝑖, 𝑋𝑖1, · · · , 𝑋𝑖𝐽}
𝑛
𝑖=1 where 𝑡𝑖 = min(𝑇𝑖, 𝐶𝑖) is the observed time

and 𝛿𝑖 = 𝐼 (𝑇𝑖 ≤ 𝐶𝑖) is the event indicator, the full likelihood for right censored data is given

by:

𝐿 =
𝑛∏

𝑖=1
𝑓 (𝑡𝑖)

𝛿𝑖𝑆(𝑡𝑖)
1−𝛿𝑖 =

𝑛∏
𝑖=1

𝜆(𝑡𝑖)
𝛿𝑖𝑆(𝑡𝑖) (4.3.8)

and the full log-likelihood can be expressed in terms of hazard function as follows:

log 𝐿 =
𝑛∑

𝑖=1

[
𝛿𝑖 log

(
𝜆(𝑡𝑖 |𝑋𝑖1, · · · , 𝑋𝑖𝐽)

)
−

∫ 𝑡𝑖

0
𝜆(𝑢 |𝑋𝑖1, · · · , 𝑋𝑖𝐽)𝑑𝑢

]
. (4.3.9)

Substituting (4.3.3) and (4.3.7) in (4.3.9), we obtain:

log 𝐿 =
𝑛∑

𝑖=1

[
𝛿𝑖

( 𝐽∑
𝑗=1

𝛽𝑗 𝑋𝑖 𝑗 +

𝐾∑
𝑘=1

𝛾𝑘𝑆𝑘 (𝑤𝑖)
)
−

∫ 𝑡𝑖

0
exp (

𝐽∑
𝑗=1

𝛽𝑗 𝑋𝑖 𝑗 ) exp
( 𝐾∑
𝑘=1

𝛾𝑘𝑆𝑘 (𝑤𝑖)
)
𝑑𝑢

]
.

(4.3.10)
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Estimates of 𝛽𝑗 and 𝛾𝑘 are obtained by maximizing the full log-likelihood in (4.3.10), and permit

estimating the hazard and survival functions, conditional on covariate vectors. Specifically,

conditional survival functions can be computed as:

𝑆(𝑡 |𝑋1, · · · , 𝑋𝐽) = exp
{
−

∫ 𝑡

0
exp (

𝐽∑
𝑗=1

𝛽𝑗 𝑋𝑗 ) exp
( 𝐾∑
𝑘=1

�̂�𝑘 𝑆𝑘 (exp (

𝐽∑
𝑗=1

𝛽𝑗 𝑋𝑗 )𝑢)
)
𝑑𝑢

}
(4.3.11)

Alternating conditional estimation

Estimating the parameters of the spline-based AFT model is challenging because the

covariates affect the hazard in two different ways: (i) by changing the hazard multiplicatively

and (ii) by redefining the baseline hazard function in the time scale, as shown in (4.3.3). (This

complication is avoided in the Cox PH model, where the covariate effects are independent of

the baseline hazard [1]). Since the same parameter vector 𝜷 (i) needs to be estimated to assess

covariate effects on the survival time but also (ii) must be considered as known when estimating

spline coefficients 𝜸 that define the log baseline hazard, we cannot estimate 𝜷 and 𝜸 in a single

step. Specifically, it is impossible to derive the score function for the joint log-likelihood, due

to the difficulty in obtaining the first derivative with respect to 𝜷 in [7], when it is considered

as an unknown parameter in the spline-basis function 𝑆𝑘 (·) that needs to be calculated using

recursive formulae. To address this complexity, we adapt an iterative alternating conditional

estimation (ACE) algorithm [33]. Briefly, the parameter space is divided into two subsets: (i)

the 𝜷 vector, and (ii) the 𝜸 vector. Each ACE iteration involves two steps, and in each step only

one of the two subsets of parameters is estimated (i.e. updated) conditional on the most recently

estimated values of the other subset, considered at the current step as ‘known’. The iterations

stop when the difference between the log-likelihoods from two consecutive iterations is less

than 10−5. Appendix A.1 provides details of our ACE algorithm. A dedicated R program is

also provided for estimating the parameters.
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Bootstrap confidence intervals

Standard large-sample inference, based on the covariance matrix of all estimated param-

eters, does not accurately quantify the sampling variance of the ACE-based estimates [41].

Therefore, we rely on bootstrap [118] to estimate both the 95% confidence intervals (CI) for

the covariate effects and the 95% pointwise confidence bands around the survival curves,

conditional on covariates. For each of the 𝑀 bootstrap resamples, we use ACE to estimate the

spline-based AFT model (4.3.7). The 2.5th and 97.5th percentiles of the resulting distribution

of the 𝑀 estimates of 𝜷 defines the corresponding 95% CI for the covariate effects. For a given

specific covariate pattern, the estimates for both 𝜷 and 𝜸 are then plugged into equation (4.3.11)

to estimate the conditional survival curves 𝑆(𝑡 |𝑋1, · · · , 𝑋𝐽), and 95% pointwise confidence

bands are obtained by connecting the 2.5th and 97.5th percentiles of the 𝑀 corresponding

estimates, for each 𝑡.

4.4 Simulation Studies

Two simulation studies helped assess the performance of the proposed method under

different assumptions about the true hazard. Baseline hazard in simulation B follows a log-

normal distribution, but in simulation A represents a mixture of two Weibull distributions,

implying a more complex shape than any conventional parametric hazard functions. (Details

are described in Appendix A.2).

In both simulations, we generated random samples with 𝑁 = 500. We generated two

independent binary covariates (𝑋1, 𝑋2) from a Bernoulli distribution with probability 0.5, and

two continuous, strongly correlated covariates: 𝑋3 ∼ N(0, 1), and 𝑋4 = 𝑋2
3 . Individual event

times were then generated from the following AFT model:

log𝑇 = −(𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽3𝑋3 + 𝛽4𝑋4) +𝑊 (4.4.1)
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where 𝛽1 = 1, 𝛽2 = −1, 𝛽3 = 𝛽4 = 1. We assumed a combination of random, uniformly

distributed censoring due to losses to follow-up (𝐶1), and administrative right censoring at

𝐶2 = 3 years. 𝐶1 was selected to achieve approximately 25% overall censoring rate in the

simulations. The observed time was determined as min(𝑇, 𝐶1, 𝐶2).

For each simulated scenario, 100 simulated datasets were independently generated and

analyzed with each of the following seven alternative models: (i) four conventional parametric

AFT models, with different pre-specified baseline distribution: Weibull, exponential, log-

normal or log-logistic, (ii) the conventional Cox PH model, (iii) the smoothed error AFT

model developed by Komárek et al. [26], and (iv) the proposed spline-based AFT model

(4.3.7). In model (4.3.7), un-penalized cubic (𝑝 = 3) regression B-splines with two (𝑚 = 2)

interior knots, placed at the terciles of the observed follow-up time, were used to estimate the

log baseline hazard. In the smoothed error AFT model (iii), we used the default option in the

‘smoothSurv’ package to select the tuning parameter 𝜆 from a grid of values, from exp (2)

to exp (−9), through cross-validation [26]. In additional analyses, we also forced a priori

different values of 𝜆 = {exp (2), exp (−4), exp (−8)}, in order to assess how the estimates are

affected by increasing penalty.

Appendix A.2 describes criteria used to evaluate and compare the performance of different

models.

4.5 Simulation Results

4.5.1 Baseline hazard estimates

Figures 4-1 and 4-2 compare the baseline hazard estimates (gray curves) obtained with

different estimation models against the true hazard (black dashed curve) for simulations A and

B, respectively. Both the proposed spline-based (Figure 4-1(a) and 4-2(a)) and the smoothed

error-based (Figure 4-1(b) and 4-2(b)) estimators are free of bias, as the corresponding mean
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estimates (white curves) coincide with the true hazard across the follow-up time, with only slight

over-estimation in the upper tail where events are sparse. However, individual smoothed error

estimates (gray curves in Figures 4-1(b) and 4-2(b)) exhibit large variability, with excessive

fluctuation even between 𝑡 = 0 and 𝑡 = 2, when many events occurred. In contrast, spline-based

estimates are more stable and accurately reflect the unimodal true shape (Figures 4-1(a) and

4-2(a)).

Figure 4-1: Estimated baseline hazard functions using 100 samples in simulation A when the
mixture hazard is the true data generating model. The gray curves are the estimated individual
baseline hazard functions from 100 samples, and the pointwise mean is shown by the white
curve. The black dashed curve represents the true baseline hazard function. The empirical
distribution of the observed uncensored event times (75% quantile: 0.88, 90% quantile: 1.58),
from one random sample, is shown by rug plot at the bottom of the figures.

As expected, given the complex shape of the true hazard in simulation A, all parametric

AFT models yield seriously biased estimates (Figures 4-1(c-f)). In simulation B, the correctly

specified log-normal AFT model (Figure 4-2(e)), unsurprisingly, produces unbiased estimates

with very good stability. In contrast, all other parametric AFT models, especially the Weibull
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and exponential, yield large bias, as they impose constraints inconsistent with the ‘true’ non-

monotone baseline hazard (Figures 4-2 (c-d)).

Figure 4-2: Estimated baseline hazard functions using 100 samples in simulation B when the
log-normal distribution is the true data generating model. The gray curves are the estimated
individual baseline hazard functions from 100 samples, and the pointwise mean is shown by
the white curve. The black dashed curve represents the true baseline hazard function. The
empirical distribution of the observed uncensored event times, from one random sample (75%
quantile: 1.31, 90% quantile: 2.08), is shown by rug plot at the bottom of the figures.

Figure 4-3 summarizes the results of additional analyses that help assess how the smoothed

error estimates are affected by the user-specified tuning parameter 𝜆 in (4.3.6). In simulation

A, with complex true hazard, a weak penalization (𝜆 = exp (−8)), similar to the default

option, offers unbiased estimates but induces large variance, whereas a strong penalization

(𝜆 = exp (2)) yields more stable but seriously biased estimates (Figure 4-3(a)). For simulation

B, with a simple true log-normal baseline hazard function, there is no bias, regardless of 𝜆,

but the estimates become increasingly unstable with lower 𝜆 (Figure 4-3(e-f)). Overall, none

of the additional 𝜆 values we considered performs uniformly better than the default option.
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Figure 4-3: Estimated baseline hazard functions using 100 samples in simulation A and B
considering different values for the tuning parameter 𝜆 in the smoothed error AFT model by
Komárek et al. The gray curves are the estimated individual baseline hazard functions from
100 samples, and the pointwise mean is shown by the white curve. The black dashed curve
represents the true baseline hazard function.

4.5.2 Estimated covariate effects and AIC comparisons

Table 4-1 compares the accuracy and variability of the estimated covariate effects from the

two flexible AFT models. It compares also the AIC from all alternative estimation models,

except for the smoothed error model where the effective degrees of freedom are not comparable

due to penalization [26]. In simulation A, both smoothed error and spline-based AFT models

estimates of the covariate effects are free of noticeable biases and yield consistently smaller

root mean squared error (rMSE) than all parametric AFT models (shown in Tables A-1 in

the Appendix). As expected, the proposed spline-based AFT model yields much smaller AIC

than any of the (mis-specified) parametric models (Table 4-1). In simulation B, the correctly

specified log-normal model, as expected, provides unbiased estimates with the smallest rMSE,

and the best AIC (Table 4-1). Still, both the proposed spline-based and Komárek et al.’s

smoothed error AFT models yield similarly small bias and rMSE and, for the spline-based

AFT model, AIC is close to the log-normal model. In contrast, mis-specified Weibull and
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exponential models yield somewhat biased covariate effects (shown in Tables A-4 in the

Appendix) and the worst AIC’s.

Table 4-1: Results of the estimated covariate effects from alternative methods in simulation A and B

Covariate Relative Bias† (%) SD rMSE AIC

Si
m

ul
at

io
n

A

Spline-based AFT

𝑋1 -1.1 0.05 0.05 290.25
𝑋2 -0.1 0.04 0.04
𝑋3 0.2 0.02 0.02
𝑋4 0.1 0.02 0.02

Smoothed error AFT

𝑋1 -0.4 0.04 0.04 299.08*
𝑋2 0.3 0.04 0.04
𝑋3 0.5 0.02 0.02
𝑋4 0.2 0.01 0.01

AIC
Weibull Exponential Log-logistic Log-normal
375.14 424.62 449.52 461.18

Si
m

ul
at

io
n

B

Spline-based AFT

𝑋1 -0.9 0.10 0.10 142.17
𝑋2 -1.8 0.12 0.12
𝑋3 0.2 0.05 0.05
𝑋4 0.5 0.04 0.04

Smoothed error AFT

𝑋1 -0.8 0.11 0.11 137.68*
𝑋2 -1.0 0.11 0.11
𝑋3 0.3 0.05 0.05
𝑋4 0.3 0.03 0.03

Log-normal

𝑋1 -0.9 0.09 0.09 137.89
𝑋2 -0.6 0.10 0.10
𝑋3 0.1 0.04 0.04
𝑋4 0.2 0.03 0.03

AIC
Weibull Exponential Log-logistic
193.38 198.47 143.95

†relative bias is defined as 𝛽 𝑗−𝛽 𝑗

𝛽 𝑗
× 100%

*not comparable to other methods.
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4.5.3 Survival curve estimates

Figures 4-4 and 4-5 compare survival curves, estimated with alternative models for an

arbitrary covariate pattern (𝑋1 = 1, 𝑋2 = 𝑋3 = 𝑋4 = 0), in simulations A and B, respectively.

The spline-based and the smoothed error AFT models (Figures 4-4(a-b), Figures 4-5(a-b))

survival estimates are unbiased across the follow-up, reflecting accurate estimation of both the

covariate effects (Table 4-1) and the baseline hazard (Figures 4-1 and 4-2). In contrast, most

survival curves estimates based on parametric AFT models and PH model (Figure 4-4(c-g),

Figure 4-5(c-d, g)) are seriously biased, except for the log-normal AFT model (Figure 4-5(e))

in simulation B where it corresponds to the data-generating model. PH model-based estimates

are biased because the underlying assumption is not satisfied. The log-logistic AFT model

performs reasonably well in Simulation B (Figure 4-5(f)) because it accommodates the non-

monotonic hazard (Figure 4-2(f)). However, the estimated survival probabilities are biased at

later times (Table 4-2).

Table 4-2: Relative bias and standard error of the estimated survival probabilities from all the
alternative model for different time points in simulation A and B (The results for later time
points, e.g., 𝑡=2, 2.5, are not provided for simulation A, given that the corresponding true
survival probabilities are nearly zero)

Spline-based AFT Smoothed error AFT Weibull AFT Exponential AFT Log-normal AFT Log-logistic AFT Cox
True
Survival

Relative
Bias† (%) SD Relative

Bias† (%) SD Relative
Bias† (%) SD Relative

Bias† (%) SD Relative
Bias† (%) SD Relative

Bias† (%) SD Relative
Bias† (%) SD

Simulation A
𝑡=0.5 0.65 0.70 0.02 -0.23 0.02 4.28 0.03 -9.84 0.02 -6.48 0.03 1.23 0.03 3.59 0.03
𝑡 =1 0.45 -0.77 0.02 -2.58 0.02 -19.84 0.03 -24.03 0.02 -22.47 0.02 -17.80 0.03 -17.19 0.03
𝑡 =1.5 0.17 5.38 0.03 -4.78 0.02 0.03 0.02 19.29 0.02 30.97 0.02 35.55 0.02 4.50 0.03

Simulation B
𝑡=0.5 0.38 1.96 0.04 1.03 0.04 18.31 0.04 13.13 0.04 0.70 0.04 -1.46 0.04 14.29 0.05
𝑡 =1 0.16 1.23 0.03 1.13 0.03 15.08 0.04 17.20 0.04 1.35 0.03 -3.90 0.02 6.82 0.04
𝑡 =1.5 0.08 2.08 0.02 1.19 0.02 -9.80 0.02 1.64 0.02 1.99 0.02 2.38 0.01 -11.21 0.03
𝑡=2 0.05 4.78 0.01 1.44 0.01 -37.62 0.01 -20.81 0.01 2.65 0.01 13.63 0.01 -31.62 0.01
𝑡 =2.5 0.03 2.20 0.01 1.92 0.01 -60.08 0.01 -42.48 0.01 3.31 0.01 28.31 0.01 -48.47 0.01
𝑡=0.5 0.38 1.96 0.04 1.03 0.04 18.31 0.04 13.13 0.04 0.70 0.04 -1.46 0.04 14.29 0.05

†relative bias is defined as 𝛽 𝑗−𝛽 𝑗

𝛽 𝑗
× 100%

Table 4-2 shows the relative bias and empirical standard deviations of the 100 estimates

of the probability of survival, for three equidistant time points. Consistent with Figures 4-4

and 4-5, both the spline-based AFT and the smoothed error models perform consistently well.
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Figure 4-4: Comparison of the survival curve estimates, associated with a specific covariate
vector (𝑋1 = 1, 𝑋2 = 𝑋3 = 𝑋4 = 0), obtained with alternative estimation models (7 panels) in
simulation A when the mixture hazard is the true data generating model. The white curve is
the pointwise mean of the estimated individual survival curves from 100 simulated samples
(gray curves). The true survival function is represented by the black dashed curve.

In contrast, the PH model and all parametric AFT models, except for the log-normal model

in simulation B, yield biased survival estimates for at least some time points. Finally, the

variance of the corresponding 𝑆(𝑡) estimates is similar for all models (Table 4-2). Similar

results were obtained for other covariate vectors (Appendix A.3 and A.4), and similar findings

were observed when event times were generated from exponential, Weibull, log-logistic, and

gamma distribution (results not shown).
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Figure 4-5: Comparison of the survival curve estimates, associated with a specific covariate
vector (𝑋1 = 1, 𝑋2 = 𝑋3 = 𝑋4 = 0), obtained with alternative estimation models (7 panels) in
simulation B when the log-normal distribution is the true data generating model. The white
curve is the pointwise mean of the estimated individual survival curves from 100 simulated
samples (gray curves). The true survival function is represented by the black dashed curve.

4.6 Application: Survival in colon cancer

Methods

To illustrate a real-life application of the proposed model, we re-analyzed data from a trial of

adjuvant chemotherapy in colon cancer. Data are publicly available in the ‘survival’ R package

[71], and described by Moertel et al. [125, 126]. Patients recently diagnosed with stage III
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colon cancer, in 1984-87, were enrolled soon after their surgeries, and randomized to: (i)

observation only, (ii) levamisole alone, or (iii) levamisole plus fluorouracil (levamisole+5FU).

The outcome was time to death of any cause [125, 126]. Baseline covariates included: age,

gender, treatment, time since surgery, and several cancer pathological variables: obstruction,

perforation, adhesion to nearby organs, histologic differentiation, depth of invasion, and the

number of lymph nodes involved. Table A-7 in the Appendix summarizes the covariate

distributions. During the median follow-up of 5.4 years, 430 (48%) of the 888 participants

died.

All models discussed in Section 4.4 were used to assess the associations of the baseline

covariates with all-cause mortality. Un-penalized cubic B-splines, with two interior knots at

the terciles of the observed follow-up distribution (3.1 and 6.1 years), were used to implement

the proposed spline-based AFT model. The penalization parameter in the smoothed error AFT

model was determined by cross-validation [26]. Age was transformed into 𝑧-scores, so that

the baseline hazard corresponded to the mean age.

Results

The baseline hazards, corresponding to mean age and 0 values of all binary covariates,

estimated by different AFT models, are compared in Figure 4-6. The estimates from the

parametric AFT models are monotonic, reflecting the underlying distributional assumptions,

whereas both more flexible AFT models suggest non-monotone hazards. However, the estimate

from the smoothed error AFT model using the default option for the penalty (dashed black

curve) seems excessively wiggly, consistent with the simulation results (Figures 4-1 and 4-2).

(With increasing penalty, the smoothed error estimates are more similar to the spline-based

estimates (Figure A-6 in the Appendix), but the model fit is worse than the penalty chosen by the

default option using cross-validation (AIC are shown in Table A-8). In contrast, the proposed

spline-based AFT model (solid black curve) yields a much smoother estimate with hazard

increasing before 3 years, reaching a plateau from 3 to 4 years and slightly declining thereafter.
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The spline-based AFT model fits the data better than all parametric AFT models (Table 4-3),

even if the log-normal AFT model has only slightly higher AIC. In the Cox model, the

Figure 4-6: The estimated baseline hazards of all-cause mortality in the stage III colon cancer,
estimated from different modeling approaches.

Table 4-3: Model fit of alternative analysis methods in the colon cancer study

Spline-based AFT Smoothed error AFT* Weibull Exponential Log-normal Log-logistic
Log-likelihood -1292.19 -1280.18 -1325.12 -1326.18 -1296.28 -1304.09
𝑑𝑓 20 24.69* 16 15 16 16
AIC 2624.38 2609.74* 2682.25 2682.36 2624.57 2640.19

*not comparable to other methods.

global test rejects the PH assumption (𝑝 < 0.001), which seems violated for obstruction, poor

tumor differentiation, and the indicator of positive lymph nodes>4, according to Schoenfeld

residuals plot and test (data not shown). On the other hand, the QQ plot (Figure A-7 in the

Appendix) does not reveal strong violation of the constant time ratio assumption underlying

the AFT models. Furthermore, the Cox-Snell residuals [85] in Figure A-8 suggest that the

proposed spline-based and the Komárek’s smoothed error AFT models fit the data well, as the
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cumulative hazards of the residuals follow the diagonal line, in contrast to important deviations

seen in the upper tail for all parametric AFT models and the Cox PH model.

Figure 4-7 shows that alternative AFT models produced generally similar covariate effects

(time ratios). (Cox PH model-based hazard ratios are shown in Figure A-9). Based on (i)

Cox-Snell residuals in Figure A-8 and AIC comparisons (Table 4-3), below we focus on the

results of our proposed spline-based AFT model (the first model in the left panel of Figure 4-7).

Levamisole alone and observation only groups have similar survival, but treatment with both

levamisole and fluorouracil extends median survival time by about 51.5% (The estimated time

ratio (control vs. Levamisole+5FU) is 0.66). Consistent with literature, obstruction, invasion to

serosa and contiguous structures, and increased number of lymph nodes involved are associated

with higher mortality [125, 126]. However, our spline-based AFT model suggests also that

initiating the treatment within 1-3 weeks after the surgery may be associated with 30% longer

survival time, although the confidence interval is wide (Figure 4-7). This finding, not reported

in the previous analyses of the same data [125, 126], suggests that starting treatment early

may maximize the therapeutic benefits. The estimated 5 years survival rates, at mean age

and reference values of all binary variables, are 82%, 84% and 90%, respectively, for the

observation only, Levamisole and Levamisole+5FU groups. The corresponding survival curve

estimates are shown in A-10 in the Appendix.
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Figure 4-7: Estimated covariate effects in time ratio from alternative AFT models in the colon cancer study.



4.7 Discussion

We proposed a flexible spline-based AFT model, that avoids a priori parametric assump-

tions about the event time distribution. Comprehensive simulations, under different assump-

tions about the shape of the baseline hazard, indicated that the proposed model yields unbiased

estimates of baseline hazard, covariate effects and survival functions, conditional on covariates.

Simulations allowed us also to compare the performance of our model with both the conven-

tional parametric AFT models and the semiparametric approach developed by Komárek et al

[26].

An accurate assessment of both (i) relative risks, associated with patient characteristics

and treatments, and (ii) absolute risks i.e. the probability of survival for patients with different

characteristics, are essential for disease prognosis and treatment decisions. One reason why, in

clinical and epidemiological applications, AFT models are used considerably less frequently

than the Cox PH model, may be related to the difficulties in specifying the distribution of the

event times. Indeed, our simulation results confirm that misspecification of this distribution

in the AFT analyses may produce biased estimates of both the baseline hazard and survival

curves, conditional on covariates. In some AFT-based analyses, this issue was addressed by

using regression diagnostics based on comparing the AIC’s of alternative parametric models

and/or residual plots [127, 128, 129, 130]. However, in complex real-life studies, the baseline

hazard may not follow any of the common parametric distributions, implying that more flexible

AFT models may be necessary to avoid biased estimates and inaccurate conclusions.

In the last three decades, several flexible extensions of the Cox PH model were proposed

to allow assumption-free modeling of both relative risks [40, 81, 101] and absolute risks

[41, 103]. In contrast, we found only a few flexible extensions of the AFT model. Whereas

some authors used splines to model non-linear effects of continuous covariates on log event

time [27, 42, 43], or to relax the variance homogeneity assumption [131], they did not describe

flexible modeling of the baseline hazard. Indeed, to our knowledge, Komárek et al.’s smoothed
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error semiparametric model [26] may be the only frequentist AFT model, that can be easily

implemented to estimate the baseline hazard without parametric assumptions. The spline-

based AFT model we propose offers a flexible alternative to their elegant model. In our

simulations, both the smoothed error [26] and our spline-based AFT models yielded unbiased

estimates of the baseline hazard regardless of whether (i) it was more complex than allowed

by the common conventional parametric models or (ii) followed a conventional parametric

distribution. However, both for simulated and real-life data analyses, our spline-based estimates

were more stable than those based on the smoothed error model, with default option for the

penalty.

We recognize that a fair comparison of these two flexible AFT models is complicated

by their different approaches to control the smoothness of the estimates. The penalization

parameter that controls the smoothness of the Komárek et al.’s estimates is chosen through

cross-validation, i.e. based on data-dependent criteria [26], although the user may select a

different value of the penalization parameter [91]. In contrast, the number of knots (𝑚 = 2)

and degree (𝑝 = 3) of the splines in our proposed model are specified a priori, based on

previous experience with regression spline modeling of survival data, that favors relatively

parsimonious models [41, 97]. Thus, to further ensure a fair comparison of the two methods,

in simulations we re-fitted the smoothed error AFT model with arbitrary variations of the

penalization parameter. The results suggest that whereas a strong penalization improves

estimation of relatively simple hazards, it produces restrictively inflexible and, thus, seriously

biased estimates if the true hazard is complex. On the other hand, a weak penalization increases

instability of the estimates. Yet, in most real-life applications, the true shape of the baseline

hazard remains unknown. Thus, our limited simulation results suggest that the default cross-

validation-based approach seems preferable for most practical implementations of the Komárek

et al.’s model. Whereas in sensitivity analyses the users may vary the penalty, this will require

further research to justify the choice of the final model. Moreover, further comparisons of the
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two flexible AFT models, using both simulated and real-life data, will be necessary, to more

systematically assess their relative advantages and weaknesses.

We applied the proposed spline-based AFT model to re-assess survival in stage III colon

cancer. The PH assumption was violated for three covariates and rejected by the omnibus

test. On the other hand, diagnostics plots did not suggest important deviations from the AFT

assumption. Our proposed spline-based AFT model fit these data better than most of the

conventional un-penalized AFT parametric models, which were too constrained to recover the

non-monotone baseline hazard. Although the log-normal AFT model fit these data almost

equally well, the advantage of our flexible spline-based model was that it avoided the need to

‘guess’ the shape of the baseline hazard. Moreover, our non-monotone spline estimate was

quite smooth and ‘regular’, in contrast to a wiggly estimate yielded by the Komárek et al.’s

smoothed error AFT model.

Some limitations of the proposed model, and our simulations, should be recognized. Firstly,

the hyper-parameters: the degree of the splines, as well as the number and the location of interior

knots, are chosen a priori. Further research may assess the potential benefits of considering

alternative hyperparameter values and selecting their values a posteriori, based on goodness-

of-fit or cross-validation, similar to the approach of Komárek et al [26]. Secondly, because we

rely on a two-step alternating conditional estimation (ACE) of (i) the regression coefficients

and (ii) the spline coefficients that define the baseline hazard, the covariance matrix of all

estimable parameters cannot be approximated using standard large-sample inference. Thus,

a non-parametric bootstrap is necessary to correctly quantify the sampling variance of the

ACE-based estimates and obtain accurate 95% CI’s [33, 41]. Thirdly, given the computational

effort required to fit our spline-based model in multivariable analyses, our simulations were

limited to a few scenarios, with an arbitrary combination of sample size, censoring levels,

covariate effects, but with different event time distributions. We were encouraged to observe

that the proposed method performed well across all scenarios considered. Nonetheless, further

evaluations, under a wider range of assumptions and parameter values, will be necessary
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to assess the robustness of our results and conclusions. Finally, our model relies on the

constant time ratio assumption, essential for the AFT modeling, which is as arbitrary as the

constant hazard ratio assumption imposed by the PH model. Because the AFT assumption was

used to generate data in our simulations, the PH assumption was usually violated, except for

exponential or Weibull distributions of event times. Accordingly, our simulations do not permit

a fair comparison of the AFT vs. PH models. In real-life applications, researchers should

attempt to compare whether the AFT or the PH model seems more appropriate for a given

dataset, as illustrated in our colon cancer analysis, where regression diagnostics suggested a

better fit of the two flexible AFT models. Yet, the issue will be more complex if different

covariates affect the survival according to either the PH or the AFT assumption. Arguably,

when the AFT constant time ratio assumption holds for most covariates but a few other

behave consistently with the PH assumption, flexible time-dependent extensions of the Cox

model could accommodate the resulting non-proportional hazards [41, 132, 133, 134, 135].

However, this would require estimating more parameters, and more complex interpretation,

than the AFT model. In contrast, to the best of our knowledge, no currently available AFT

model can accommodate time-dependent time ratios. To address this challenge, in future work,

we plan to develop an even more flexible version of the AFT model that will allow for time-

dependent covariate effects, in order to relax the constant time ratio assumption. Furthermore,

more formal tests of the constant time ratio assumption, underlying the AFT model, should be

developed and validated.

In summary, we believe that our findings demonstrate both the good performance of

our flexible AFT model with spline-based estimation of the baseline hazard and its potential

benefits in real-life time-to-event analyses. Therefore, we suggest our model may be considered,

together with alternative models, such as the smoothed error method of Komárek et al [26],

in future applications, especially when the PH assumption may be questionable and the event

time distribution is difficult to specify. We also hope our work will stimulate both wider use

of the AFT modeling and further methodological developments.
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CHAPTER 5

5.1 Preamble to Manuscript 2

This manuscript further extends the research initiated in the first manuscript of my thesis, by

addressing additional methodological challenges encountered in the context of AFT modeling

of multivariable survival data. Specifically, it identifies two implicit assumptions imposed in

the conventional AFT model and proposes a flexible method for relaxing these assumptions.

The spline-based AFT model developed in Manuscript 1 relaxes the parametric assumption

for the event time distribution. However, it accepts a priori that (i) the time ratio is a constant

at any given time point during the follow-up, and (ii) the relationship between the continuous

covariates and the log event time is linear. Manuscript 2 further extends the model proposed

and validated in Manuscript 1, to simultaneously incorporate time-dependent (TD) covariate

effects and non-linear (NL) functional forms of continuous covariates. This methodological

challenge, to my knowledge, has not been addressed in the current literature on AFT modeling.

In this manuscript, flexible modeling with un-penalized regression B-splines is used to

model both the TD and NL effects, as well as the baseline hazard function. The two-step alter-

nating conditional estimation (ACE) algorithm, employed in the first manuscript, is expanded

to three steps to estimate all the parameters in the flexible model developed in the second

manuscript. Correspondingly, the statistical program developed for manuscript 1 is extended

to implement this new method. Simulation studies are conducted to assess its performance

under combinations of various plausible shapes of the TD and NL functions, and to compare
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the results to those from conventional parametric AFT models. These methods, together with

the spline-based AFT model developed in Manuscript 1, are then applied to re-assess the

association between the prognostic factors and mortality after septic shock. The application

of the flexible model developed in Manuscript 2, is also included in Manuscript 3, where it is

compared to alternative models in real-life analyses of survival in a cancer prognostic study. To

reduce overfitting in multivariable settings, I propose to use an iterative backward elimination

procedure to select the relevant TD and NL effects into the final flexible AFT model based on

the Akaike information criterion (AIC). This strategy is employed in real-life applications in

both Manuscripts 2 and 3.

This article is in submitted to Biometrics. The publications cited in Manuscript 2 are listed

in the reference section at the end of this thesis. Appendix B provides additional information,

including the elaboration of the model assumptions, details of the estimation algorithm, as

well as additional results of the simulation studies and real-life application.
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Abstract

The accelerated failure time (AFT) model is considered an useful alternative to the Cox

proportional hazards (PH) model in survival analysis. However, the validity of conclusions

regarding the associations of prognostic factors with event times depends on whether the

underlying modeling assumptions are met. Flexible methods for relaxing the PH and linearity

assumptions in the Cox model have been extensively studied. In contrast, formal investigation of

the corresponding assumptions of constant-over-time time ratio and linearity in the AFT model

has been limited. Yet, many prognostic factors may have time-dependent and/or non-linear

effects. Furthermore, parametric AFT models require correct specification of the baseline

hazard function, which is treated as a nuisance parameter in the Cox PH model, and is

rarely known in practice. To address these challenges, we propose a flexible AFT model

where un-penalized regression B-splines are used to model (i) the baseline hazard function

of arbitrary shape, (ii) the time-dependent covariate effects, and (iii) non-linear effects of

continuous covariates. Maximum likelihood estimates of all functions are obtained through an

iterative alternating conditional estimation algorithm. The accuracy of the estimated functions

in multivariable settings is evaluated by simulation studies. To illustrate potential insights that

offered by the proposed model, we apply it to re-assess the effects of prognostic factors on

mortality after septic shock.

Key words: Accelerated failure time model, time-dependent effect, non-linear effect, regression

splines, simulations

5.2 Introduction

The accelerated failure time (AFT) model provides an alternative to the proportional hazards

(PH) model to analyze time-to-event data [6, 7]. Instead of the log hazard ratios estimated in the

PH model, in the AFT model the covariate effects are expressed directly on the event time scale
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and estimated by the log time ratios. For example, a time ratio of 1.25 (treated vs. control),

indicates that the time corresponding to any given survival probability is 25% longer for the

treated than the control subjects. In contrast to Cox PH model, parametric AFT models requires

specification of the event time distribution [7, 54]. Because in many real-life applications it is

difficult to select a priori an appropriate parametric distribution, several semiparametric AFT

models were proposed [12, 15, 19, 26, 136, 137] to avoid such pre-specification, including our

recent spline-based model (under revision at Statistics in Medicine).

However, all the aforementioned semiparametric AFT models implicitly accept a priori the

conventional assumptions regarding the way covariates affect survival. Indeed, just as the Cox

PH model implies that effects of covariates on the log hazard are both (i) constant-over-time

and (ii) linear, the conventional AFT model also implicitly assumes (i) constant time ratios,

for all covariates, and (ii) linear relationships between continuous covariates and the logarithm

of event time [3]. (Appendix B.1 provides more details about these two AFT assumptions).

Yet, both assumptions may be violated in some real-life settings. Accordingly, several flexible

extensions of the Cox model have been proposed to relax the constant hazard ratio (HR) and/or

linearity assumptions [39, 40, 101, 138, 139]. Real-life applications of such flexible models

reported violations of (i) the PH [45, 140] and (ii) linearity assumptions [141] or even both

assumptions, for the same continuous covariate [35, 46].

In contrast, relatively little work has been done on flexible modeling of covariate effects in

the AFT framework. Specifically, alternative AFT partial linear models have been proposed

to estimate non-linear (NL) effects of a continuous covariate on log event time, through spline

smoothing or piecewise linear function [27, 42, 43]. However, these non-linear AFT models

either require additional assumptions about the error distribution [27] or seem restricted to the

univariate setting [42, 43]. We also found a single reference that relaxes the constant log time

ratio assumption, but allows it to be only a linear function 𝛽𝑡 of the follow-up time 𝑡 [44].

Furthermore, to the best of our knowledge, no published AFT model permits estimating both

TD and NL effects of continuous covariates on the log event time. Yet, simulations suggest that,
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under the Cox model framework, the relevant TD and NL effects of all continuous covariates

should be simultaneously accounted for to avoid biased estimates and possibly inaccurate

conclusions [34, 40].

To address these challenges and offer a more accurate assessment of the role of prognostic

factors, we propose a flexible AFT model that incorporates both TD and NL covariate effects

while leaving the distribution of the event time free of any parametric assumptions. In section

5.3, we define our model and describe the estimation algorithm. Simulation studies are reported

in section 5.4. In section 5.5, we apply our flexible AFT model to illustrate a study of mortality

after septic shock, and report TD and/or NL effects of some prognostic factors. The paper

concludes with a discussion of our results and their implications.

5.3 Methods

In the conventional AFT model, the natural logarithm of the event time, log𝑇 , is modeled

as a linear function of the covariate vector 𝑿 [6, 7]:

log𝑇 = −𝜷𝑿 +𝑊 (5.3.1)

where𝑊 , independent of the covariates, is a random error term, and 𝜷 is the vector of regression

parameters representing the logarithms of time ratios, which describe how the covariate values

are associated with either accelerated or decelerated event time.

Equivalently, the hazard function in the AFT model can be specified as [7]:

𝜆(𝑡 |𝑿) = exp (𝜷𝑿)𝜆0
(
exp (𝜷𝑿)𝑡

)
(5.3.2)

where 𝜆0(𝑡) is the baseline hazard function corresponding to 𝑿 = 0, and 𝜷 in (5.3.2) is the

vector of the same constant-over-time log(time ratio) parameters as in equation (5.3.1). AFT
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models (5.3.1) and (5.3.2) imply that there is a linear relationship between each continuous

covariate and the log event time, and the log time ratios 𝜷 for all covariates are constant

during the follow-up. In this article, we extend the AFT model to simultaneously relax both

conventional assumptions above and to account for possible TD effects and/or NL effects of

continuous variables, in right-censored data.

5.3.1 Joint flexible modeling of NL and TD effects in the AFT model

First, to relax the linearity assumption, the AFT model (5.3.1) can be generalized to:

log𝑇 = −
∑
𝑗

𝑔 𝑗 (𝑋𝑗 ) +𝑊 (5.3.3)

Model (5.3.3) is referred to as the AFT partial linear model [27, 42]. The function 𝑔 𝑗 (𝑋𝑗 ) is a

possibly NL transformation of a continuous covariate 𝑋𝑗 that estimates how the logarithm of

event time changes with increasing covariate value. An equivalent NL extension of the hazard

function (5.3.2) is:

𝜆(𝑡 |𝑿) = exp
(∑

𝑗

𝑔 𝑗 (𝑋𝑗 )
)
𝜆0

(
exp

(∑
𝑗

𝑔 𝑗 (𝑋𝑗 )
)
𝑡

)
(5.3.4)

However both models (5.3.3) and (5.3.4), as well as other published flexible versions of the

AFT model [26, 27, 42], restrict the covariate effects 𝑔 𝑗 (𝑋𝑗 ) to be constant during the follow-

up. To relax this assumption, we propose to further extend the non-linear AFT model (5.3.4),

to allow for the covariate effect 𝑔 𝑗 (𝑋𝑗 ) to vary over time, by incorporating a flexible function

𝛽𝑗 (𝑡) that depends on 𝑡. Accordingly, we propose the following flexible extension of the AFT

model (5.3.5) that allows for both TD effects of all covariates and NL effects of continuous

covariates:

𝜆(𝑡 |𝑿) = exp
(∑

𝑗

𝛽 𝑗 (𝑡)𝑔 𝑗 (𝑋𝑗 )
)
𝜆0

(
exp

(∑
𝑗

𝛽 𝑗 (𝑡)𝑔 𝑗 (𝑋𝑗 )
)
𝑡

)
(5.3.5)
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This extension involves modifying model (5.3.4) rather than equivalent model (5.3.3) because

modeling the hazard function avoids complex constrains that are required in modeling the

density function of the event time or the survival function [101]. In the resulting flexible

multiplicative AFT model (5.3.5), the effect of a continuous variable 𝑋𝑗 on the log hazard, at

time 𝑡, is modeled as a product of two covariate-specific estimable functions: 𝛽𝑗 (𝑡) and 𝑔 𝑗 (𝑋𝑗 ).

Non-linear effects of 𝑋𝑗 are expressed through 𝑔 𝑗 (𝑋𝑗 ). The time-dependent function 𝛽𝑗 (𝑡),

allows for the ratios of event times associated with different covariate values to vary overtime

and reflects the dynamic changes in the strength of the covariate effect 𝑔 𝑗 (𝑋𝑗 ) on the log hazard.

For a binary covariate, 𝑔 𝑗 (𝑋𝑗 ) = 𝑋𝑗 , so that only the TD effect 𝛽𝑗 (𝑡) needs to be considered. The

function 𝜆0
(
exp

( ∑
𝑗 𝛽 𝑗 (𝑡)𝑔 𝑗 (𝑋𝑗 )

)
𝑡
)

describes how covariates alter the baseline hazard 𝜆0(𝑡).

Specifically, in model (5.3.5), the covariate affects the hazard function by not only shifting the

baseline hazard 𝜆0(𝑡) in the time scale horizontally, as reflected by 𝜆0
(
exp

( ∑
𝑗 𝛽 𝑗 (𝑡)𝑔 𝑗 (𝑋𝑗 )

)
𝑡
)
,

but also shifting it vertically by a multiplicative factor exp
( ∑

𝑗 𝛽 𝑗 (𝑡)𝑔 𝑗 (𝑋𝑗 )
)
.

We propose to model 𝛽𝑗 (𝑡) for each covariate 𝑋𝑗 , and 𝑔 𝑗 (𝑋𝑗 ), for each continuous covariate

𝑋𝑗 , as well as the unknown baseline log-hazard, using low-dimension un-penalized regression

B-splines with degree 𝑝 and 𝑚 interior knots:

𝑔 𝑗 (𝑋𝑗 ) =
𝐿∑
𝑙=1

𝑎𝑙, 𝑗 𝐴𝑙, 𝑗 (𝑋𝑗 ) (5.3.6)

𝛽𝑗 (𝑡) =
𝑄∑
𝑞=1

𝑏𝑞, 𝑗 𝐵𝑞 (𝑡) (5.3.7)

𝜆0
(
exp

(∑
𝑗

𝛽 𝑗 (𝑡)𝑔 𝑗 (𝑋𝑗 )
)
𝑡
)
= exp

{ 𝐾∑
𝑘=1

𝛾𝑘𝑆𝑘
(
exp

(∑
𝑗

𝛽 𝑗 (𝑡)𝑔 𝑗 (𝑋𝑗 )
)
𝑡
)}

(5.3.8)

where 𝐴𝑙, 𝑗 (𝑋𝑗 ), 𝐵𝑞 (𝑡) and 𝑆𝑘
(
exp

( ∑
𝑗 𝛽 𝑗 (𝑡)𝑔 𝑗 (𝑋𝑗 )

)
𝑡
)

are the B-spline basis functions,

and 𝑎𝑙, 𝑗 , 𝑏𝑞, 𝑗 and 𝛾𝑘 are the spline coefficients to be estimated for 𝑔 𝑗 (𝑋𝑗 ), 𝛽𝑗 (𝑡) and
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𝜆0
(
exp

( ∑
𝑗 𝛽 𝑗 (𝑡)𝑔 𝑗 (𝑋𝑗 )

)
𝑡
)
, respectively. To achieve parsimony in the multivariable flexi-

ble AFT model, we consider quadratic splines (𝑝 = 2) with one interior knot (𝑚 = 1), implying

𝐿 = 𝑄 = 𝑝 +𝑚 +1 = 4 for estimating 𝛽𝑗 (𝑡) and 𝑔 𝑗 (𝑋𝑗 ). In the context of flexible extensions of

the Cox PH model, such 4 degrees-of-freedom (𝑑𝑓 ) spline estimates have been shown to offer

sufficient flexibility to accommodate a variety of NL and TD covariate effects in both simula-

tion and applications [34, 35]. The interior knots for the NL effects are fixed at the median of

the sample distributions of respective continuous covariates, whereas the knot for all TD effects

is fixed at the median of the distribution of the observed follow-up times. In contrast to the

NL and TD effects, to allow for more flexibility in estimating the hazard functions, which may

often have more complex shapes than the NL and TD covariate effects, we considered cubic

splines (degree 𝑝 = 3) with 2 interior knots (𝑚 = 2) in (5.3.8). Simulations in our previous

work (under revision at Statistics in Medicine) have shown that this approach yields accurate

approximation of baseline hazard with a variety of shapes. In practice, our method allows

other choice regarding both the knot number and their locations in Equations (5.3.6)–(5.3.8),

as well as the degree of the splines. In addition, one can specify linear and/or time-invariant

effects for some covariates if a simpler model is expected, or impose monotonic functions of

time or specific functions of covariates if suggested by substantive prior knowledge.

The full log-likelihood based on model (5.3.5) for right-censored data is derived as:

log 𝐿 =
𝑛∑

𝑖=1
𝛿𝑖 log

(
𝜆(𝑡𝑖 |𝑿𝑖)

)
+ log(𝑆(𝑡𝑖 |𝑿𝑖))

=
𝑛∑

𝑖=1

[
𝛿𝑖

( 𝐽∑
𝑗=1

𝛽𝑗 (𝑡)𝑔 𝑗 (𝑋𝑖 𝑗 ) +

𝐾∑
𝑘=1

𝛾𝑘𝑆𝑘 (exp
(∑

𝑗

𝛽 𝑗 (𝑡)𝑔 𝑗 (𝑋𝑖 𝑗 )
)
𝑡)
)

−

∫ 𝑡𝑖

0
exp (

𝐽∑
𝑗=1

𝛽𝑗 (𝑢)𝑔 𝑗 (𝑋𝑖 𝑗 )) exp
( 𝐾∑
𝑘=1

𝛾𝑘𝑆𝑘 (exp
(∑

𝑗

𝛽 𝑗 (𝑢)𝑔 𝑗 (𝑋𝑖 𝑗 )
)
𝑢)
)
𝑑𝑢

]
(5.3.9)

where 𝑡𝑖 is the observed follow-up time for subject 𝑖, and 𝛿𝑖 is an indicator of whether the

subject 𝑖 experiences the event (𝛿𝑖 = 1) or is censored (𝛿𝑖 = 0) at that time.
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We can estimate the three sets of spline coefficients 𝒂, 𝒃 and 𝜸 by maximizing the above

full log-likelihood in (5.3.9). Substituting �̂� and �̂� into (5.3.6) and (5.3.7), the estimates for

the NL effect �̂� 𝑗 (𝑋𝑗 ) and TD effect 𝛽𝑗 (𝑡) can be obtained. Moreover, the hazard and survival

functions, conditional on an arbitrary given covariate vector 𝑿, can be computed as (5.3.10)

and (5.3.11):

�̂�(𝑡 |𝑿) = exp
( 𝐽∑

𝑗=1
𝛽𝑗 (𝑢)�̂� 𝑗 (𝑋𝑗 )

)
exp

( 𝐾∑
𝑘=1

�̂�𝑘 𝑆𝑘 (exp
(∑

𝑗

𝛽 𝑗 (𝑡)�̂� 𝑗 (𝑋𝑗 )
)
𝑡)
)

(5.3.10)

where 𝛽𝑗 (𝑡) =
∑𝑄

𝑞=1 �̂�𝑞, 𝑗 𝐵𝑞 (𝑡) and �̂� 𝑗 (𝑋𝑗 ) =
∑𝐿

𝑙=1 𝑎𝑙, 𝑗 𝐴𝑙, 𝑗 (𝑋𝑗 ).

𝑆(𝑡 |𝑿) = exp
(
−

∫ 𝑡

0
�̂�(𝑢 |𝑿)𝑑𝑢

)
(5.3.11)

5.3.2 Alternating conditional estimation

Estimating the parameters 𝒂, 𝒃 and 𝜸 simultaneously, by maximizing the complex likeli-

hood function in (5.3.9) would be challenging. First, 𝛽𝑗 (𝑡) and 𝑔 𝑗 (𝑋𝑗 ) for the same continuous

covariate are multiplied by each other in model (5.3.5), inducing non-identifiability [40]. Fur-

thermore, whereas both 𝒂 and 𝒃 need to be estimated to capture the NL and TD effects, both

vectors must be considered as fixed ‘known’ values when estimating coefficients in 𝜸 that

define the log hazard function. To address these challenges, we rely on an iterative alternating

conditional estimation (ACE) algorithm [33]. The algorithm iterates across the three consec-

utive steps, each involving estimating only one of the above coefficient vectors, conditional on

the previous estimates of the two other vectors.

Details of the ACE algorithm are provided in Appendix B.2.1, and Appendix B.2.2 discusses

bootstrap-based pointwise 95% confidence bands around the estimates.
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5.3.3 Converting 𝛽(𝑡) to time-dependent time ratio estimates

The time-dependent effect 𝛽𝑗 (𝑡) in model (5.3.5) describes the potential changes over time

in the effect of 𝑋𝑗 , on the hazard scale. However, in contrast to the constant 𝛽 in the conven-

tional AFT model (5.3.2), 𝛽(𝑡) in our proposed flexible AFT model (5.3.5) does not represent

time-dependent changes in the log of the time ratio. Given a specific value 𝛽𝑗 (𝑡) estimated

from model (5.3.5), the corresponding time-dependent time ratio vary not only across time 𝑡

but also depend on the covariate patterns being compared. We define the time-dependent time

ratio, 𝜓(𝑞), as a function of the quantiles of the event time distribution 𝑞 (or the corresponding

survival probabilities 1−𝑞). In general, to reconstruct the time-dependent time ratio comparing

survival for subjects with two specific covariate patterns, one needs the inverse of the survival

function in (5.3.11) that involves a complex transformation of 𝛽(𝑡) and 𝑔(𝑋), and does not

have a straightforward analytic expression. Thus, we rely on a grid search approach to find

the 𝑞-quantile of the survival time. For example, for a setting with two continuous covariates

that both have TD and NL effects, to reconstruct the time-dependent time ratio comparing two

subgroups 𝑋1 = 𝑥1 + 1 vs. 𝑋1 = 𝑥1 but the same value of 𝑋2 = 𝑥2 in both groups, we need

three steps. The first step (1) is to calculate

𝑆(𝑡 |𝑥1 + 1, 𝑥2) = exp
{
−

∫ 𝑡

0
�̂�(𝑢 |𝑥1 + 1, 𝑥2)𝑑𝑢

}

= exp
{
−

∫ 𝑡

0
exp

(
𝛽1(𝑢)�̂�1(𝑥1 + 1) + 𝛽2(𝑢)�̂�2(𝑥2)

)

exp
( 𝐾∑
𝑘=1

𝛾𝑘𝑆𝑘
(
exp

(
𝛽1(𝑢)�̂�1(𝑥1 + 1) + 𝛽2(𝑢)�̂�2(𝑥2)

)
𝑢
) )
𝑑𝑢

}
,
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and

𝑆(𝑡 |𝑥1, 𝑥2) = exp
{
−

∫ 𝑡

0
exp

(
𝛽1(𝑢)�̂�1(𝑥) + 𝛽2(𝑢)�̂�2(𝑥2)

)

exp
( 𝐾∑
𝑘=1

𝛾𝑘𝑆𝑘
(
exp

(
𝛽1(𝑢)�̂�1(𝑥) + 𝛽2(𝑢)�̂�2(𝑥2)

)
𝑢
) )
𝑑𝑢

}

for discrete times 𝑡 with extremely small increments. The following two steps are: (2) search,

separately, for the times 𝑡𝑞1 and 𝑡𝑞0 such that 𝑆(𝑡𝑞1 |𝑥1 + 1, 𝑥2) = 𝑆(𝑡𝑞0 |𝑥1, 𝑥2) = 1 − 𝑞; (3)

calculate 𝜓(𝑞) =
𝑡𝑞0
𝑡𝑞1

. These calculations are repeated across the relevant range of 𝑞 values and

the resulting function 𝜓(𝑞) is plotted to describe the time-dependent time ratio for this specific

contrast (here: increasing 𝑋1 from 𝑥1 to (𝑥1 + 1)). Similar calculations can be performed for

any contrast of interest, but the results will vary depending on the values of all covariates in

the model.

5.4 Simulation Studies

5.4.1 Simulations design

To evaluate the performance of the proposed model in multivariable AFT analyses, we

simulated a hypothetical cohort study that followed 𝑁 = 1, 000 subjects until the occurrence of

the event or administrative censoring, at 6 years. Event times were generated from the extended

AFT model, conditional on a binary variable 𝑋1 and two continuous variables 𝑋2 and 𝑋3:

𝜆(𝑡 |𝑿) = exp
(
𝛽1(𝑡)𝑋1 + 𝛽2(𝑡)𝑔2(𝑋2) + 𝛽3(𝑡)𝑔3(𝑋3)

)
×

𝜆0

(
exp

(
𝛽1(𝑡)𝑋1 + 𝛽2(𝑡)𝑔2(𝑋2) + 𝛽3(𝑡)𝑔3(𝑋3)

)
𝑡

)
(5.4.1)

The baseline hazard 𝜆0(𝑧) = 𝛼
𝜌 (

𝑧
𝜌 )

𝛼−1 followed the Weibull distribution with pre-specified

shape (𝛼) and scale (𝜌) parameters. Two simulated scenarios differed with respect to selected
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covariate effects and shape parameters of the increasing baseline Weibull hazard (𝜌 = 3 vs.

𝜌 = 6), with a common scale 𝛼 = 1.5. Both scenarios assumed a TD effect of, binary 𝑋1 and

both TD and NL effects of continuous 𝑋2. 𝑋3 had a TD effect but linear effect in scenario 1,

but a constant-over-time NL effect in scenario 2. The true TD and NL covariate effects for

Scenarios 1 and 2 are shown in Figures 5-1 and 5-2 , respectively. Appendix B.3.1 provides

details of data generation.

5.4.2 Simulation results

For both scenarios, three multivariable AFT models were fit to each of the 100 simulated

samples: (i) the ‘conventional’ parametric Weibull AFT model with linear covariate effects;

(ii) the ‘extended’ Weibull AFT model with non-linear effects for 𝑋2 and 𝑋3; and (iii) our

proposed flexible AFT model (5.3.5) with all possible TD and NL effects. For both models

(ii) and (iii), non-linear effects were estimated with quadratic splines with one interior knot at

the median of the follow-up time distribution. Models (i) and (ii) rely on a Weibull baseline

hazard, and force constant time ratios for all covariates. In contrast, our model (iii) estimates

TD effects for all three covariates, and NL effects for 𝑋2 and 𝑋3.

Estimation of the TD and NL functions

We first assess whether our model could accurately recover the true shapes of the TD and NL

effects of each covariate on the hazard. Figures 5-1 and 5-2 compare the TD and NL estimates

(gray curves) from the 100 independent samples against the corresponding true effects (black

dashed curves), respectively for scenarios 1 and 2. (The estimates are rescaled, as explained

in Appendix B.2.3). In scenario 1, the vast majority of the estimates correctly recover all the

TD effects, regardless of their different true shapes (Figures 5-1(a,b,d)). The NL estimates for

𝑋2 and 𝑋3 in Figures 5-1(c) and 5-1(e) are also quite accurate. The TD estimates show more

variability in the tails of the time axis, where the events are less frequent and regression splines
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are less stable [81]. Yet, the mean values of all the TD and NL spline-based estimates (white

curves) trace fairly close the corresponding true functions (black dashed curves), indicating

lack of under- or over-fit bias, even for the truly linear effect of 𝑋3 in Figure 5-1(e).

Figure 5-1: Results of the estimated TD and NL effects by the flexible AFT model using
100 samples in simulation scenario 1. The gray curves are the individual estimates from
100 samples, and the pointwise mean is shown by the white curve. The black dashed curve
represents the true rescaled NL and TD functions.

Figure 5-2 shows similarly encouraging results for scenario 2. The only exception is that

our TD estimates do not recover a decreasing effect of the binary covariate 𝑋1 in the later phase

of follow-up, where there are relatively few events (Figure 5-2(a)). All other spline-based TD

and NL estimates in Figure 5-2 are reasonably unbiased, including TD estimates of the (truly

constant-over-time) effect for 𝑋3 (Figure 5-2(d)).
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Figure 5-2: Results of the estimated TD and NL effects by the flexible AFT model using
100 samples in simulation scenario 2. The gray curves are the individual estimates from
100 samples, and the pointwise mean is shown by the white curve. The black dashed curve
represents the true NL and TD functions.

Appendix B.3.2 provides additional simulation results for scenario 1, with different sample

sizes (𝑁 = 650, 1, 500) and event rate (40%). Appendix B.3.3 summarizes results from the

more constrained AFT models (i) and (ii), that illustrate the impact of misspecification of the

covariate effects.

Evaluation of the estimated hazard functions and survival curves

Figure 5-3 compares model-specific estimates of the conditional hazard and survival func-

tions (gray curves) in scenario 1, for the specific covariate vector 𝑋1 = 𝑋2 = 𝑋3 = 0, against the

corresponding true functions (black dashed curves). Appendix B.3.4 shows similar results for
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other selected covariate patterns). For the two Weibull AFT models (i) and (ii), both the hazard

(Figures 5-3(a-b)) and the survival function (Figures 5-3(d-e)) estimates are systematically

biased, even though event times were generated assuming Weibull baseline distribution. This

illustrates the impact of ignoring TD and - for model (i) - NL covariate effects. In contrast, the

hazard and survival estimates based on the proposed flexible AFT model (5.3.5), that accounts

for the TD and NL covariate effects, do not show any systematic bias (Figures 5-3(c) and 5-

3(f)). This further demonstrates the potential advantages of the flexible spline-based modeling

in multivariable settings with complex covariate effects. Figure B-11 in the Appendix shows

similar results for scenario 2.

Figure 5-3: Estimated baseline hazard functions (first and third row) and survival curves
(second and fourth row) by the three alternative models using 100 samples in simulation
scenarios 1. The gray curves are the individual estimates from 100 samples, and the point-
wise mean is shown by the white curve. The black dashed curve represents the true baseline
hazard and survival functions.

Evaluation of the time-dependent time ratio

Figure 5-4 shows the estimates of the adjusted time-dependent time ratios (gray curves),

reconstructed as explained in section 5.3.3, in scenario 1 for specific contrasts between selected
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values of each covariate (see Figure 5-4 for details), against the corresponding true time

ratios (black dashed curves). The shapes of the time-dependent time ratio estimates for 𝑋1

and 𝑋3 (Figures 5-4(a) and 5-4(c)) generally agree with the corresponding 𝛽(𝑡) estimates of

the TD effects in model (5.3.5) (monotonically decreasing in Figure 5-1(a) and U-shaped

in Figure 5-1(d), respectively). The contrast for 𝑋2 has been deliberately chosen so that

𝑔(𝑋2 = 1) = 𝑔(𝑋2 = 0), implying the true time ratio of 1 across the entire follow-up period,

and our flexible estimates (gray curves in Figure 5-4(b)) recover well this constant null effect.

However, in some situations, the pattern of TD changes in the adjusted time ratios for specific

contrasts in the value of a given covariate may (a) substantially diverge from the estimated

shape of 𝛽(𝑡) for the same covariate; and/or (b) vary considerably depending on the values of

other covariates. These phenomena are illustrated in Appendix B.5, using selected results of

simulation scenarios 1 and 2.

Figure 5-4: Results of the estimated log time ratios by the flexible AFT model using 100
samples in simulation scenario 1, comparing two covariate patterns for each covariate. The
two covariate patterns are shown in the labels on the top of each panel, along with the true
survival times in both groups corresponding to specific 𝑞-quantile of the survival time. The
gray curves are the individual estimates from 100 samples, and the pointwise mean is shown
by the white curve. The black dashed curve represents the perspective true time ratios.
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Comparison of goodness-of-fit

Table 5-1 shows that, as expected, the proposed flexible AFT model fit the simulated data

for both scenarios much better than the more constrained AFT models (i) and (ii), with AIC

differences between 44 and 125 points. In contrast, in additional simulations, where data were

generated from the conventional AFT model (5.3.1), i.e. assuming both constant time ratios

and linear effects, our flexible AFT model (iii) yielded AIC worse by 10 and 13 points than the

two simpler AFT models (Appendix B.3.6), which correctly suggested the lack of systematic

TD and NL effects. Overall, this pattern of results confirms the usefulness of goodness-of-fit

comparisons for ‘model diagnostics’.

Table 5-1: Comparison of mean akaike information criterion (AIC) in simulation studies from
three alternative models

Flexible AFT model
(𝑑𝑓 =26)

Conventional Weibull
AFT model (𝑑𝑓 =5)

Non-linear Weibull
AFT model (𝑑𝑓 =9)

Scenario 1 2516.16 2641.49 2600.69
Scenario 2 2255.64 2331.04 2299.25

5.5 Real-life Application

5.5.1 Data source

We applied the proposed flexible AFT model to re-analyze 3-month mortality, to investigate

the potential TD and NL effects of important prognostic factors, among consecutive adult

patients admitted with septic shock to 14 intensive care units (ICUs) in France, between 2009

and 2011 [142, 143]. Time zero corresponded to initiation of vasopressors in response to septic

shock, and death of any cause in the next 90 days was the event of interest. Patients alive at 90

days after the septic shock were censored [143]. Details on baseline covariates, measured at

admission, were reported elsewhere [142, 143]. Our analyses included 858 patients who had
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appropriate antibiotics therapy and complete covariate data. There were 433 (50.5%) deaths

during the 1, 478 patient-months of follow-up (median duration: 63.5 days).

5.5.2 Flexible AFT analyses

The multivariable analyses included five important baseline prognostic factors, selected

a priori, based on the published results [142]. Age and the Sepsis-related Organ Failure

Assessment (SOFA) score, with higher scores indicating a worse organ dysfunction, were

modeled as continuous variables. Binary variables included: immunosuppression (yes vs.

no), infection site (urinary tract vs. other), and Knaus score of activity limitations due to

chronic health status, dichotomized at normal or moderate (A/B) vs. severe or bedridden

(C/D) [142]. Three additional binary covariates, considered for inclusion if they improved

the model’s fit to data, included: whether or not the germ was identified, infection type

(community-acquired vs. nosocomial), and cirrhosis status (yes vs. no).

Appendix B.4.1 describes the 3-stage procedure used to select specific TD and/or NL

effects, as well as some of the additional covariates, into the final multivariable flexible

AFT model. The pointwise 95% confidence bands for the hazard function, and the TD and

NL functions selected in the final model, were estimated through bootstrap, based on 300

resamples.

5.5.3 Alternative models

To assess the impact of the modeling strategy on the results, three additional multivariable

AFT models were estimated: (i) the ‘conventional’ Weibull AFT model, that a priori imposed

constant time ratios and linear effects of continuous covariates, (ii) the ‘extended’ Weibull AFT

model that allowed for NL effects (see section 5.4 for details), and (iii) the AFT model that

imposed linearity but modeled baseline hazard in 5.3.2 with splines, to avoid distributional

assumptions (spline-based AFT model developed in manuscript 1). To enhance comparability
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of the results, models (i)-(iii) included the same covariates, that were selected into our final

flexible AFT model (model (iv)). Notice that models (i)-(iii) could not accommodate potential

TD effects and only model (ii) allowed for NL effects.

5.5.4 Results

The spline-based estimate in Figure 5-5(a) indicates that the baseline hazard of all-cause

mortality is highest right after septic shock, decreases sharply in the first 10 days, and stabilizes

afterwards. This monotonically decreasing hazard could be characterized by a Weibull distri-

bution. For each prognostic factor (row), Table 5-2 compares the effects estimated with the four

AFT models (columns). The last column indicates which TD and/or NL effects were selected

into our final flexible AFT model 5.3.5. (Table B-2 in the Appendix shows details of model

building). For variables for which no TD effects were selected, the estimated constant-over-

time time ratios are generally similar across the four models, with shorter survival associated

with immunosuppression, non-urinary infections and more severe Knauss scores.

Table 5-2: The estimated covariate effects and akaike information criterion (AIC) values from
alternative models in study on mortality after septic shock

Covariates Conventional Weibull
AFT model (𝑑𝑓 =9)

Non-linear Weibull
AFT model (𝑑𝑓 =13)

Spline-Based AFT
model (𝑑𝑓 =13)

Flexible AFT
model†(𝑑𝑓 =33)

Age 1.05 (1.03, 1.06) NL 1.01 (0.96, 1.04) NL+TD
SOFA score 1.51 (1.42, 1.59) NL 1.32 (1.17, 1.44) NL+TD
Immunosuppression 2.68 (1.88, 3.81) 2.72 (1.88, 3.81) 2.19 (1.23, 3.11) 2.31 (1.58, 3.25)
Cirrhosis 1.53 (0.90, 2.61) 1.57 (0.98, 2.58) 1.42 (0.84, 2.05) TD
Knaus score (C/D) 1.79 (1.27, 2.53) 1.70 (1.31, 2.33) 1.75 (1.06, 2.43) 1.51 (1.11, 2.34)
Infection site (Urinary) 0.40 (0.25, 0.63) 0.38 (0.23, 0.67) 0.46 (0.28, 0.80) 0.49 (0.30, 0.69)
Infection type (nosocomial) 1.40 (0.99, 1.98) 1.40 (0.99, 2.00) 1.30 (0.77, 1.61) TD
AIC 4191.217 4187.541 4195.138 4157.036

Abbreviation: SOFA= Sepsis-related Organ Failure Assessment
†The 95% bootstrap confidence intervals are reported for the spline-based based on 300 bootstrap resamples
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Figure 5-5: Results of the flexible AFT model in study on mortality after septic shock. (a) baseline hazard function (for
individuals with all binary covariates equal 0, age equals to the minimal age of 20 years old, and SOFA score equals to the
minimal value of 3); (b) TD effects of the cirrhosis status and nosocomial infection; (c) NL effect of age relative to the mean age
of 66 years old; (d) TD effect of age; (e) NL effect of SOFA score relative to the mean score of 11; (f) TD effect of SOFA score.
Estimates are represented by the black curve, and the shaded grey areas correspond to the 95% pointwise confidence bands,
based on 300 bootstrap resamples. The NL effects are constrained to equal 0 at the reference value corresponding to the mean
covariate value, and thus the estimates at the reference value show no variation. The empirical distributions of the observed
event times (panel a, b, d, f), age (panel c) and SOFA score (panel e) are shown by rug plots at the bottoms of the respective
graphs.



Yet, the final multivariable flexible AFT model (iv) included some TD and NL effects

(last column of Table 5-2). Specifically, TD effects of nosocomial infection and cirrhosis

imply violations of the conventional AFT assumption of constant time ratio. TD estimates in

Figure 5-5(b) show how the strength of the two relationships vary over the first 60 days after

the septic shock. Nosocomial infection is associated with a higher mortality hazard, and this

associations becomes gradually stronger with longer follow-up (dashed curve). This trend is

reflected in the time ratios in the first column of Table 5-3. For example, for an ‘average’

patient who has a community-acquired, rather than a nosocomial infection, the estimated time

to reach 85% probability of survival (𝑞=0.15 i.e. 𝑆(𝑡)=0.85) increases by only 7% (time ratio

= 1.07) but the time to 𝑆(𝑡)=0.7 doubles (time ratio = 1.99). On the other hand, the impact

of cirrhosis increases rapidly during the first 10 days and then remains relatively constant

(solid curve in Figure 5-5(b)). The fact that both TD effects substantially improve the model’s

deviance (3-𝑑𝑓 likelihood ratio test(LRT) statistics of 8.93 for nosocomial infection and 22.24

for cirrhosis), imply also rejection of the corresponding null hypotheses of no association with

survival [95]. Indeed, the 95% confidence bands around both TD effects exclude 0 for some

portions of the follow-up (Figure 5-5(b)). In contrast, in all simpler models (i-iii), that did not

allow for TD effects, the constant-over-time effects of both factors were statistically marginally

non-significant (Table 5-2) and their long-term impact seemed to be under-estimated, relative

to our TD time ratio estimates in Table 5-3.

Our final flexible model included also NL and TD effects for both age and the SOFA score

(last column of Table 5-2). The non-monotone J-shaped NL effect of age (Figure 5-5(c))

suggests mortality is lowest at about 45 years and increases for both younger and older patients.

The TD effect of age in Figure 5-5(d) indicates that the impact of age gradually become

stronger over time. In contrast, increasing SOFA score has an almost linear effect (Figure

5-5(e)), and the NL effect improves only marginally the model’s deviance (4-𝑑𝑓 LRT=9.256,

p=0.055). Whereas this association weakens steadily with increasing follow-up (TD effect

in Figure 5-5(f)), a higher SOFA at the time of septic shock is associated with a significant
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Table 5-3: Time-dependent time ratios estimated for infection, cirrhosis, SOFA score and age
for specific quantiles of the survival time, comparing two subgroups with different values in
each of them while having SOFA score and age at the population mean in absence of other
binary risk factors.

Quantile
(𝑞)

Infection
(0 vs. 1)

Cirrhosis
(0 vs. 1)

SOFA
(11 vs. 12)

Age
(65 vs. 70)

0.05 0.95 0.51 1.46 1.21
0.10 0.99 0.84 1.55 1.25
0.15 1.07 1.21 1.61 1.29
0.20 1.20 1.54 1.64 1.36
0.25 1.43 1.89 1.74 1.51
0.30 1.99 2.56 2.07 1.94

Abbreviation: SOFA= Sepsis-related Organ Failure Assessment

risk increase even two months later when the 95% pointwise confidence still excludes 0. The

decreasing impact of SOFA score implies that the three other AFT models, constrained by

the conventional assumption of constant time ratio, may yield inaccurate estimates of this

association. (To further illustrate the changes in the estimated effects of age and SOFA over

time, Figure B-15 in the Appendix shows their NL effects estimated at different follow-up

times. The NL effects of age and SOFA score estimated by the ‘extended’ Weibull model (ii)

are presented in Figure B-16).

The proposed flexible TD/NL AFT model (iv) offers the best fit to the data, with AIC

improved by at least 30 points relative to simpler models (i-iii) (bottom of Table 5-2), even

after accounting for the additional 20 𝑑𝑓 ’s. This highlights the importance of accounting for

the effects NL and/or TD effects of selected prognostic factors. (The Cox-Snell residual plots

in Figure B-17 in the Appendix also suggest a better fit of our flexible TD/NL model 5.3.5).
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5.6 Discussions

We propose a flexible extension of the AFT model that simultaneously incorporates both

the non-linear (NL) and time-dependent (TD) effects of continuous variables on the logarithm

of hazard function along with TD effects for categorical variables. The NL and TD effects,

as well as the hazard function, are modeled using low-dimension un-penalized regression B-

splines. Flexible modeling of the NL effects allows for an arbitrary shape of the dose-response

curve, describing how the hazard varies with an increasing value of a continuous covariate. On

the other hand, the TD effect permits relaxing the assumption that the coefficient associated

with a given covariate is constant and describes how the strength of the covariate effect varies

over the follow-up interval. To the best of our knowledge, no previous study has simultaneously

investigated both TD and NL covariate effects in the AFT model. Our simulation studies show

that the proposed spline-based estimates can accurately recover various plausible shapes of

both the NL and TD curves. In addition, the survival curves, as well as the associated time-

dependent time ratios, conditional on specific covariate vectors, can be accurately estimated,

even in the presence of complex relationships between the covariates and the hazard.

Unlike several flexible models for the time-dependent hazard ratio in the extended Cox

model [46, 95, 101, 144], to the best of our knowledge, TD covariate effects in terms of time-

dependent time ratios have not yet been addressed in the AFT model literature. One reason

may be related to a complex relationship of time-dependent time ratio with the inverse survival

function, as outlined in section 5.3.3. In the PH framework, the time-dependent hazard ratio

for a given covariate at time 𝑡 is independent of the baseline hazard, or other covariates. In

contrast, in the AFT framework, assessing the time-dependent time ratio for covariate 𝑋𝑗 at

time 𝑡 requires inversing the survival probability at time 𝑡, 𝑆(𝑡 |𝑋), which depends on both (i)

the underlying baseline hazard and (ii) specific values of all variables included in the model.

Therefore, to facilitate separating possibly TD covariate effects from the baseline hazard, and

to avoid difficulties in modeling survival and/or density functions [101], we have implemented
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our flexible AFT model (5.3.5), by extending the classic AFT model (5.3.2), based on the

hazard specification, to replace the constant 𝛽 by the TD function 𝛽(𝑡). Our time-dependent

AFT model (5.3.5) implies that the instantaneous impact of the covariate 𝑋𝑗 on the current

hazard, at time 𝑡, estimated by 𝛽𝑗 (𝑡), is common to all subjects, regardless of their values of

other covariates, which seems clinically plausible in many real-life applications [95, 140, 145].

However, the complex relationship between covariate effects on the hazard and survival in the

AFT model, implies also that the pattern of the resulting time-dependent changes in the event

time ratio 𝜓𝑗 (𝑞) for 𝑋𝑗 might not be consistent with the TD effect of 𝑋𝑗 (𝛽𝑗 (𝑡)) on the hazard

scale, estimated in equation (5.3.5). Indeed, in section 5.3.3, we show how the numerical

transformations necessary to convert the 𝛽𝑗 (𝑡) estimates into time-dependent event time ratios

𝜓𝑗 (𝑞), for a specific contrast in the values of covariate 𝑋𝑗 , may yield quite different results

for subjects with different vectors of other covariates. Figure 5-5 and Table 5-3 illustrate

such discrepancies, for the estimated TD effect of the baseline SOFA score on mortality after

septic shock. Furthermore, the Figure B-18 and B-19 in the Appendix, provide two artificial

analytical examples where the behaviors of (i) 𝛽𝑗 (𝑡) estimated in equation (5.3.5) vs. (ii)

the corresponding reconstructed time-dependent time ratio 𝜓𝑗 (𝑞) differ substantially. These

discrepancies reflect the fact that the time ratio at time 𝑡, for a specific contrast in values of 𝑋𝑗 ,

depend partly on the survival before time 𝑡 and, thus, cannot be interpreted as a reflection of

the current impact of 𝑋𝑗 , on the instantaneous risk.

Flexible smoothing techniques have been previously adopted in AFT partial linear models

to relax the linearity assumption. For example, Orbe et al. uses natural splines to model a

non-linear function of a continuous covariate using weighted least squares estimation [27].

However, their approach relies on an additional assumption that the expectation of the error

distribution is zero, which is avoided in our model (5.3.5). Zou et al. used penalized splines to

model the non-parametric smooth NL function using rank estimation [42]; whereas Xue and

et al. proposed to approximate 𝑔(𝑋) by a piecewise linear function [43]. However, both Zou

et al’s and Xue et al’s methods are restricted to modeling NL effect of only a single continuous
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covariate, in the univariate setting. Moreover, all aforementioned models impose a priori

the constant time ratio assumption [27, 42, 43]. On the other hand, Elsayed et al. proposed

a flexible AFT model with time-dependent coefficients, as a special case of the extended

linear hazard regression model, but imposed linearity for the effects of continuous covariates

[44]. Our proposed flexible AFT model (5.3.5) is more general than these earlier models as

it: (a) relaxes both the linearity and the constant time ratio assumptions, simultaneously, (b)

is applicable in multivariable settings. In addition, our method permits estimating survival

functions, conditional on possibly NL and/or TD covariate effects, for subjects with any specific

covariate vector.

The analyses of mortality after septic shock illustrate the ability of our flexible TD/NL

estimates to provide new insights into the role of different prognostic factors. The NL estimate

for age suggests a non-monotone relationship between age and hazard, whereas the TD estimate

indicates that its strength increases over time. One reason for the increasing TD effect of age

may be that mortality soon after a septic shock depends mostly on the severity of the patient’s

initial condition, largely accounted by clinical indicators (e.g., SOFA and Knaus scores) rather

than by age. In contrast, among those who survive this critical early period, older patients are

more vulnerable and, thus, more likely to die. Furthermore, TD estimates for both nosocomial

infection and cirrhosis suggest that their impact on mortality increases with time since the

septic shock (Figure 5-5(b)). In contrast, all simpler AFT models, constrained to constant-

over-time event time ratios, suggested that both factors are not associated with survival (Table

5-2).

Some limitations of our proposed method have to be recognized. First, the risk of potential

overfit bias is common to most flexible models [39, 81, 92]. In all our analyses of the simulated

data, we have a priori decided to estimate all potential NL and TD effects, regardless of whether

such effects were present or absent in the ‘true’ data-generating model. We were encouraged

to observe that for covariates assumed not to have the non-linear or time-dependent effects,

most of the TD estimates were close to constant-in-time effects and the NL estimates generally
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approximated well a straight line. Thus, overfit bias was not a major issue in our simulations,

with at least ∼ 250 un-censored events and three covariates. Additional simulations, with

different event frequency and different numbers of covariates, may be, however, necessary to

further explore this issue.

Furthermore, due to the complexity of the likelihood function and the iterative ACE

procedure, the computation time can be quite long, especially when the dataset is large and

TD and/or NL effects of several covariates need to be estimated. For example, the average run

time for the 100 simulations for scenario 1 was 1.5 hours on computers with Ubuntu operating

system with 3.20 GHz Intel Core i7-8700 CPU and 16 GB memory; whereas it took 6.7 hours

to run the final model, with 7 covariates, for the septic shock application on a Mac computer

with 2.7 GHz Intel Core i5 CPU and 8 GB memory. Despite the computational burden,

we have validated our estimates in simulations, in a relatively complex multivariable setting,

under different assumptions about ‘true’ TD and NL effects. With rapid improvement of the

computational power, future real-life analyses of a single, even large, multivariable datasets

will become increasingly efficient.

Lastly, further work is needed to systematically compare the proposed flexible TD/NL AFT

model with the Cox PH model, and its flexible extensions. Our simulations were designed

to evaluate the performance of the proposed model under the AFT framework, therefore the

data were generated accordingly. However, in many real-life applications, the ‘true’ data

generating model may be more consistent with the PH model. If so, then the assumption of the

constant time ratio underlying the conventional AFT model will be violated, leading to biased

estimates, unless the baseline hazard has a relatively simple (exponential or Weibull) form.

We expect that, in such situations, by allowing the time ratios to vary during the follow-up,

our proposed flexible AFT model with TD effects may still reasonably capture the underlying

relationships between the covariates and the hazard, but will require more parameters than

the Cox PH model, that will estimate a single hazard ratio for each covariate. A reverse

situation will occur if the (unknown) data structure is more consistent with the AFT model.

94



Therefore, further simulation studies comparing the PH and AFT models, along with their

flexible extensions, under a broader range of assumptions concerning ‘true’ data generating

mechanisms, are necessary. For the same reasons, in complex real-life studies with multiple

covariates, it is possible that neither the PH nor the AFT assumption is fully satisfied for

all covariates. Therefore, we recommend implementing alternative modeling strategies and

using goodness-of-fit criteria, supplemented by residual diagnostics, to help choose the final

model, or alternative models. However, further simulations may be necessary to systematically

evaluate the performance of such criteria and diagnostic tools.

Overall, we have shown that our proposed flexible AFT model yielded reasonably accurate

estimates of complex effects of covariates in multivariable analyses. It is readily implemented

by our R programs, provided in supporting information. Moreover, our real-life application

suggests that the flexible AFT model may offer potential new insights into the role of prognostic

factors in clinical studies. Lastly, we hope that our work may help to disseminate and encourage

use of AFT modeling in time-to-event analyses.
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CHAPTER 6

6.1 Preamble to Manuscript 3

This article compares alternative modeling strategies in survival analysis and illustrates

the practice usage of the methods proposed in Manuscript 1 and 2 for survival analysis in

a multivariable problem. It illustrates the application of the newly developed complex AFT

models in a real-life analysis. It is also motivated by the lack of guidance regarding the choice

of the appropriate model in multivariable analysis for time-to-event data.

The method developed in Manuscript 1 can be used to accurately estimate the covariate

effects, hazard function, and individual survival curves without imposing parametric assump-

tion for the event time distribution, but imposes conventional linearity and constant time ratio

assumptions. Furthermore, Manuscript 2 builds on Manuscript 1 to allow for potential non-

linear effects and time-dependent time ratios. On the other hand, the extension of the Cox

model by Wynant and Abrahamowicz achieves, within the alternative PH framework, similar

flexibility to the new AFT model developed in Manuscript 2. Both models impose only very

few assumptions on covariate effects and can accommodate the estimation of hazard function

of arbitrary shape. Nevertheless, it is unknown which method fits the empirical data better

and provides more reliable predictions for survival, given that usually little prior knowledge is

available regarding the way the covariates affect survival. Therefore, both methods, together

with other conventional AFT and Cox models, are included in the analysis of the same data in

this manuscript.
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This research illustrates the real-life usage of the proposed flexible AFT models, which

complement the dominant Cox model in the analysis of time-to-event data. It highlights

the importance of considering alternative analysis approaches in real-life applications with

unknown and potentially complex covariate effects. Moreover, the results in this manuscript

re-assess how the prognostic factors affect mortality in non-small cell lung cancer and addresses

practical issues regarding the comparison of the performance of different models for survival

analysis.

This article is in preparation for submission to the International Journal of Epidemiology.

The publications cited in Manuscript 3 are listed in the reference section at the end of this

thesis. Appendix C provides additional results and interpretations of the real-life application.
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Abstract

Background: Advanced non-small cell lung cancer (NSCLC) has poor prognosis with

short survival time. It is very important to understand the impact of the prognostic factors

and identify high risk patients based on their characteristics. Yet, the accuracy of such results

depends on whether the model used for the analysis is consistent with the data structure. Most

previous studies of survival rely on the conventional Cox proportional hazards (PH) model

without checking the crucial PH and linearity assumptions. Violation of these assumptions

may lead to important bias and misleading conclusions about the covariate effects and survival

estimation. Other survival methods, such as the accelerated failure time (AFT) model, pro-

vide alternative frameworks to assess the role of the prognostic factors and perform survival

prediction, but also rely on specific assumptions.

Methods: We applied alternative survival models, under either PH or AFT frameworks,

to re-assess the associations between several prognostic factors and mortality in non-small cell

lung cancer (NSCLC) and used their results to predict individual 1-year survival. Multivariable

flexible extensions of Cox PH and AFT models were used to account for potential time-

dependent and non-linear effects of continuous covariates, and to estimate the hazard functions

and survival curves conditional on these effects.

Results: Flexible survival models suggested short-term prognostic values for several

biomarkers, measured from blood test taken at the cohort entry, including albumin, lactate

dehydrogenase, absolute neutrophil counts, initial chemotherapy regimen, and C-reactive pro-

tein (CRP), as well as non-linear relationships of CRP and age with the mortality hazard. The

conclusions regarding the covariate effects were similar between flexible PH and AFT mod-

els, both of which yielded slightly better fits to the NSCLC data comparing the conventional

methods.
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Conclusions: Our study reveals important time-dependent effects of several biomarker on

NSCLC mortality. The analyses show the robustness of the results from alternative modeling

strategies and demonstrate the importance of flexible modeling in survival analyses.

Key words: Accelerated failure time model, flexible modeling, non-small cell lung cancer,

model comparison, survival prediction.

6.2 Introduction

Accurate estimates of individual patients’ survival probability are important in clinical

research. Non-Small Cell Lung Cancer (NSCLC) is the most common type of lung cancer,

comprising 75% to 80% of lung cancer diagnoses, with many patients presenting with advanced

stage at their initial diagnosis [146]. Advanced NSCLC has a very poor prognosis with a short

median survival time of just four months, and most patients die in less than a year [147, 148].

Identifying patients at a higher risk of early death will allow clinicians to make appropriate

treatment decisions [4]. Moreover, it is also important to inform patients of their prognosis,

as some patients might decide not to receive treatment at all but instead opt for palliative care

[149]. Besides patients’ demographic characteristics, relevant prognostic factors are often

measured at baseline, including clinical variables that reflect disease severity and important

biological or inflammatory markers [35].

To ensure accurate assessment of the relationship between prognostic factors and survival,

prognostic studies should rely on statistical methods that represent the true complexity of the

baseline hazard function and account for how the prognostic factors affect survival [41]. Yet,

popular statistical models for survival analysis, such as PH and AFT models, impose important a

priori assumptions. More specifically, in the conventional Cox model, the proportional hazards

(PH) assumption implies a constant hazard ratio (HR) over time for all covariates, as well as a

linear relationship between each continuous covariate and the log hazard [1, 28]. Similarly, in

conventional AFT models, the linearity assumption is imposed between continuous covariates
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and the log event time [27], and the constant time ratio assumption restricts the log event time

to be accelerated or decelerated by a constant covariate effect at any time during the follow-up

[3, 72]. In real-life clinical studies, it is not an easy task to check whether the corresponding

assumptions for each covariate are consistent with the empirical data, especially when there

are many prognostic factors. Diagnostic plots, such as log-log curves and QQ plots, are

available for checking the Cox PH and AFT constant time ratio assumptions [52]. However,

interpretations of the results of such visual assessment tools heavily depend on subjective

judgment and are only applicable to univariate settings, with categorical variables. Moreover,

to the best of our knowledge, no statistical test is available to check the AFT constant time ratio

assumption, while the Schoenfeld residual test and the omnibus test for detecting the violations

of the PH hypothesis are sometimes under powered, especially with heavy censoring [62].

Although we could still use these diagnostic tools as supplementary assessments to explore

the data, it is difficult to decide how to choose the final model. Furthermore, once violations

have been detected, the data analysts face challenges regarding how to re-model the data to

accurately represent complex effects of multiple covariates.

Several flexible extensions of the Cox model have been developed to relax the assumptions

[39, 41, 101]. For example, Abrahamowicz and Mackenzie et al. developed a flexible Cox

model to allow for time-dependent (TD) effect and non-linear (NL) effects [40], and Wynant

and Abrahamowicz [41] proposed a more efficient estimation and extended the model to allow

full maximum likelihood estimation (MLE) of the baseline hazard:

𝜆(𝑡 |𝑿) = exp
(∑

𝑗

𝛽∗𝑗 𝑔
∗
𝑗 (𝑋𝑗 )

)
𝜆0(𝑡) (6.2.1)

Similar models were suggested by e.g. Sauerbrei et al.[39] and Remontet et al [46].

On the other hand, whereas much less work has been done on flexible extensions of the

AFT model, Orbe et al. [27] and Zou et al. [42] proposed some methods to incorporate

non-linear covariate effects in the AFT framework. To the best of our knowledge, our recent

101



work (developed in Manuscript 2) is the first model that accounts for both NL and TD effects

within the AFT framework:

𝜆(𝑡 |𝑿) = exp
(∑

𝑗

𝛽 𝑗𝑔 𝑗 (𝑋𝑗 )
)
𝜆0

(
exp (

∑
𝑗

𝛽 𝑗𝑔 𝑗 (𝑋𝑗 ))𝑡) (6.2.2)

In the application of both flexible models (6.2.1) and (6.2.2), data-adaptive approaches are

applied to select relevant TD and NL effects of particular variables, using either likelihood

ratio tests or goodness-of-fit criteria. This analysis strategy aims to account for TD and NL

effects only for those covariates where there is empirical evidence of a meaningful violation

of the corresponding assumptions, while reducing overfitting when flexible modeling is not

necessary for some other covariates. Moreover, the baseline hazard is estimated in both models,

which, combined with the estimated covariate effects, facilitates the estimation of individual

survival probability based on subjects’ characteristics. The fact that both models (6.2.1) and

(6.2.2) are estimated using full MLE facilitates a direct comparison of their goodness-of-fit.

Notice that this is not possible for comparing AFT models with conventional Cox PH model,

due to partial MLE estimation of the latter [1].

Most previous prognostic studies in NSCLC relied on the Cox model without testing the

crucial PH assumption [150, 151, 152]. Yet, results obtained based on fitting the flexible Cox

model have suggested potentially important violations of the PH and/or linearity assumptions

for several covariates [34, 35]. On the other hand, the AFT model, that avoids the PH

assumption, has not been frequently applied in real-life prognostic studies. Thus, it remains

unclear if the AFT model and its flexible extensions may yield new insights regarding the role

of specific prognostic factors on mortality and predicting 1-year survival in advanced NSCLC

patients.

The overall aim of this paper is to re-assess the effects of prognostic factors on survival in

NSCLC patients using alternative statistical models, in both the PH and the AFT frameworks,

and compare the corresponding results, as well as the 1-year survival prediction.
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6.3 Data Source

The study cohort consisted of all patients who were diagnosed with advanced NSCLC and

treated with chemotherapy between April 9, 2002 and September 18, 2008 at the Jewish General

Hospital Pulmonary Oncology Clinic (POC) in Montreal, Quebec, Canada [35]. The date of the

first chemotherapy treatment was the cohort entry date, denoted by 𝑡0, and death from any cause

was the event of interest. The follow-up was terminated on March 15, 2009 or at 3 years after 𝑡0,

whichever comes first, when patients still alive were administrative censored. Several baseline

characteristics were collected within 3 days before the start of the chemotherapy, including

demographic characteristics, clinical data, and several quantitative biomarkers measured from

blood tests. These covariates were considered as potential prognostic factors for NSCLC

mortality in the previous study of the same data [35]. After excluding missing data on some

of these prognostic factors, we included 269 patients in our study. Descriptive statistics for the

baseline characteristics were summarized in the original study [35] and presented in Table C-1

in the Appendix. There were 206 (76.6%) deaths during the follow-up (median duration: 8.8

months). No patients were lost to follow-up.

6.4 Statistical Analysis

6.4.1 Statistical models

We considered six alternative modeling strategies in the analysis, including (i) the con-

ventional Cox PH model [1], (ii) the flexible TD/NL Cox PH model (6.2.1) [41], (iii) the

conventional Weibull AFT model [7], (iv) the smoothed error AFT model [26], (v) the spline-

based AFT model (developed in Manuscript 1), and (vi) the flexible TD/NL AFT model (6.2.2)

(developed in Manuscript 2). Model (i) imposed a priori constant HRs and linear effects of

continuous covariates in the Cox PH model, whereas model (ii) allowed for the estimation

of both TD and NL effects for those covariates for which these assumptions were violated.
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Model (iii-v) were all AFT models that imposed a priori constant time ratios and linearity

assumptions while using different approaches for modeling the baseline hazard. In contrast to

model (iii), which assumed a Weibull-based hazard function, model (iv) and (v) used Gaussian

mixture [26] and regression B-spline smoothing methods, respectively, to approximate the

baseline hazard without specifying the event time distribution. On the other hand, model (vi)

additionally incorporated time-dependent time ratio and NL effects of continuous variables, by

extending the spline-based AFT model (v). All six models included the same set of baseline

prognostic factors, including four categorical variables, i.e., sex, stage (IIIA and IIIB without

pleural effusion vs. IIIB with pleural effusion and IV), smoking status (ever vs. never), type of

first-line chemotherapy regimen (single vs. double agents), and six continuous variables, i.e.,

age and C-reactive protein (CRP), lactate dehydrogenase (LDH), albumin, absolute neutrophil

counts (ANC) and lymphocytes. Logarithm transformation with base 2 was applied to two

continuous variables with highly positively skewed distributions: CRP and LDH.

6.4.2 Model building strategy for the flexible extensions of the PH and

AFT models

To alleviate the potential overfitting of the flexible extensions of the multivariable PH

and AFT models (ii) and (vi), we adopted an iterative backward elimination procedure to

achieve parsimonious final models [34]. The goal of the procedure was to exclude those TD

and/or NL effects for which there was little empirical evidence. In contrast, all the initially

selected covariates were forced in the final model. At the first iteration, an initial full flexible

multivariable model was built to estimate all possible TD and NL effects. At each consecutive

step, one among the remaining TD effects of all the covariates or NL effects of all the continuous

covariates was excluded. In particular, the TD or NL effect resulting in the largest reduction

in Akaike information criterion (AIC) [86] was eliminated. This procedure stopped until

there was no further improvement in AIC. The final multivariable models included all the 10
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covariates listed in section 6.4.1, but only those TD and NL effects which were not eliminated

in the backward selection procedure. Non-parametric bootstrap [118], based on 300 resamples,

was used to obtain the 95% confidence interval (CI) for the estimates from the final flexible

Cox PH (ii) and AFT (vi) models.

6.4.3 Assessment of prediction performance

Prediction of the survival probability at 1 year was performed based on all the six alternative

methods. The overall predictive performance was compared by Nagelkerke’s 𝑅2 [61] and the

Brier score [61, 115]. Discrimination was assessed by Uno’s area under the curve (AUC)

statistics [113], while calibration performance was evaluated by the calibration slope and

intercept [61]. Bootstrap resampling with 300 replications was used for internal validation and

prediction performance comparison. The difference in the measures between the bootstrap

resamples and the original sample were considered to reflect the optimism level of the original

predictive model [61]. Subsequently, for each model, the optimism-corrected measures were

obtained, for each index, by subtracting the average optimism from the model’s apparent

performance [61].

6.5 Results

6.5.1 Association between the prognostic factors and NSCLC mortality

For each prognostic factor, Table 6-1 summarizes its effects estimated with the six alterna-

tive survival models. The covariate effects are represented by the adjusted HRs for the Cox

PH models (i-ii), and by the adjusted time ratios for the AFT models (iii-vi). The second and

the last columns of Table 6-1 indicate which TD or NL effects have been selected into the final

flexible TD/NL extensions of the Cox PH model (ii) and AFT model (vi), respectively. (Tables

C-2 and C-3 in Appendix C show the results of each step of the backward elimination proce-
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dure for these two flexible models). For variables for which no TD effects were selected, the

estimated covariate effects are generally consistent across the conventional Cox PH model (i)

and its flexible extension (ii), indicating that shorter survival is associated with more advanced

tumor stage, smoking, single-agent chemotherapy regimen, and lower value of lymphocytes.

Similar effects are indicated by the alternative AFT models (iii-vi).
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Table 6-1: Adjusted covariate effects estimated with the alternative multivariable survival models

Variables Model (i)a

Cox PH
Model (ii)a

Flexible TD/NL Cox PH
Model (iii)b

Weibull AFT
Model (iv)b

Smoothed error AFT
Model (v)b

Spline-based AFT
Model (vi)b

Flexible TD/NL AFT
Stage
(IIIB+/IV vs. IIIA/IIIB) 1.78 (1.25, 2.55) 1.85 (1.43, 2.75) 1.60 (1.23, 2.06) 1.54 (1.18, 2.02) 1.54 (1.03, 2.04) 1.58 (1.11, 2.25)
Smoking
(ever vs. never) 2.13 (1.35, 3.36) 2.06 (1.39, 3.41) 1.83 (1.32, 2.55) 1.75 (1.25, 2.46) 1.81 (1.25, 2.75) 1.8 (1.21, 2.85)
Chemotherapy
(double vs. single) 0.62 (0.43, 0.89) 0.61 (0.41, 0.86) 0.70 (0.54, 0.91) 0.64 (0.48, 0.85) 0.60 (0.47, 0.93) TD
Sex
(female vs. male) 0.99 (0.73, 1.33) 1.05 (0.84, 1.29) 1.00 (0.80, 1.24) 1.08 (0.86, 1.37) 1.06 (0.77, 1.28) 1.02 (0.70, 1.56)
log2CRP (per doubling
of CRP values) 1.12 (1.04, 1.21) NL 1.09 (1.03, 1.15) 1.10 (1.04, 1.18) 1.06 (1.00, 1.13) TD

Albumin
(per ↑ d of 1 gl-1) 0.98 (0.94, 1.02) TD 0.98 (0.95, 1.01) 0.98 (0.95, 1.02) 0.95 (0.91, 0.97) TD
log2LDH (per doubling
of LDH values) 2.33 (1.85, 2.94) TD 1.87 (1.59, 2.19) 1.86 (1.53, 2.26) 1.41 (1.15, 1.71) TD

ANC
(per ↑ of 3.55 × 109 l-1) 1.33 (1.27, 1.39) TD 1.20 (1.17, 1.24) 1.22 (1.08, 1.37) 1.15 (1.03, 1.33) TD
Lymphocytesocytes
(per ↑ of 1 × 109 l-1) 0.78 (0.62, 0.97) 0.76 (0.61, 0.95) 0.83 (0.71, 0.98) 0.80 (0.68, 0.96) 0.77 (0.61, 0.92) 0.82 (0.66, 0.93)

Age 1.00 (0.99, 1.02) 1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 1.00 (0.99, 1.01) 1.00 (0.98, 1.01) NL
log-likelihood -694.62 -680.57 -697.78 -692.83 -694.69 -673.11
𝑑𝑓 16 27 12 12.99 16 34
AIC 1421.24 1415.14 1419.56 1411.64∗ 1421.38 1414.22
Abbreviations: CRP=C-reactive protein; LDH=lactate dehydrogenase; ANC=Absolute neutrophil counts; degrees of freedom (𝑑 𝑓 ); AIC=Akaike information criterion;
aHazard ratio (HR) and 95% confidence interval (95% CI); bTime ratio and 95% confidence interval (95% CI); d↑: increase. ∗Not comparable to the other methods.



The final flexible TD/NL extensions of the Cox PH model (model (ii)) and AFT model

(model (vi)) are consistent in including TD effects for three common prognostic factors:

albumin, log2LDH, and ANC, indicating that the underlying PH and constant time ratio

assumptions are both violated. Figure 6-1 shows how the strength of these covariate effects

changes during the follow-up time according to the results from both models (upper panels for

the flexible TD/NL Cox PH model (ii) and lower panels for the flexible TD/NL AFT model

(vi)). (To avoid very unstable estimates, the graphs are truncated at 18 months of follow-up,

after which only 21 deaths were observed.) A higher baseline albumin value is associated with

a lower mortality hazard at the cohort entry (Cox’s TD effect: HR=0.81 for 1 gl−1 with 95%

CI: (0.71, 0.95), AFT TD effect: 𝑒𝛽 (𝑡) = 0.88 with 95% CI: (0.72, 0.93)). This association

becomes gradually weaker and becomes practically null after 6 months, according to both

flexible models (ii) and (vi) (Figures 6-1(a)) and 6-1(d)). In contrast, the two estimates of

the TD effects of log2LDH diverge after the first year of follow-up. The time-dependent HR

estimated from the flexible model (ii) (Figure 6-1(b)) increases rapidly after 1 year, reaching

rather implausibly high values after 15-18 months. On the other hand, the TD effect estimated

from the flexible TD/NL AFT model (Figure 6-1(e)) decreases gradually until about 12 months,

remaining stable afterwards, which seems more clinically plausible. Nevertheless, both models

suggest that the baseline value of this biomarker is a very important predictor of early mortality

(Cox’s TD effect: HR=2.38 with 95% CI: (1.31, 6.59), AFT TD effect: 𝑒𝛽 (𝑡) = 2.20 with

95% CI: (1.23, 3.73) at 𝑡0) and its prediction ability gradually diminishes over the first 12

months. Figure 6-1(c) and (f) show the corresponding TD effects for ANC (for an increase of

one standard deviation, i.e., 3.55 × 109l−1). Both flexible models suggest that ANC measured

at baseline has a lagged effect on the mortality at the beginning of the follow-up. The impact

is initially weak, but it increases over the first 6 months and then gradually declines.

In addition, TD effects are identified by the flexible TD/NL AFT model (vi) for two other

prognostic factors: chemotherapy regimen and log2CRP (Figures 6-2 (b) and (c)). The estimate

in Figure 6-2 (b) shows that patients who received double-agents chemotherapy regimen at
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Figure 6-1: The time-dependent effects of albumin, lactate dehydrogenase and absolute
neutrophil counts, estimated by the flexible TD/NL Cox PH (upper panels) and flexible TD/NL
AFT (lower panels) models.

baseline have considerably lower mortality risk than those who received single-agent regimen.

Moreover, a higher value of CRP measured at 𝑡0 is associated with short-term higher mortality

risk. Yet, the strengths of these two TD effects also decrease over time, gradually degenerating

to nil after about 12 months and 6 months, respectively. In contrast, the TD effects for these

two factors were not selected in the flexible extension of the Cox PH model (ii). For all the

aforementioned factors, simpler models (i, and iii-v) a priori constrained their HR’s or time

ratios to be constant over time, by imposing the corresponding conventional PH and AFT

assumptions. The results from these simpler models represent the average effect over time,

and thus fail to reflect the gradually attenuated effects of albumin, log2LDH, chemotherapy

regimen, and log2CRP, as well as the lagged effect of ANC revealed by the flexible TD/NL

models (ii) and (vi).

In addition to TD effects of several covariates, the flexible TD/NL models (ii) and (vi)

identified non-linear (NL) effects of some continuous variables. Model (ii), that extended

109



Figure 6-2: The non-linear effect of C-reactive protein (panel (a)) estimated by the flexible
TD/NL Cox PH model, and the time-dependent effects of chemotherapy type (panel (b)) and
C-reactive protein (panel (c)), as well as the non-linear effect of age (panel (d)), estimated by
the flexible TD/NL AFT (lower panels) model.

the Cox PH model, has included NL effect of log2CRP (Figure 6-2(a)), whereas the flexible

TD/NL AFT model (vi) has included NL effect of age (Figure 6-2(d)). (Notice that both NL

effects are estimated relative to the mean values of the covariate; therefore, there is no variation

at the respective mean (3.8 mgl−1 for log2CRP and 64 years for age). The S-shaped NL effect

of log2CRP, shown in Figure 6-2(a) has been reported in earlier studies [34], and indicates

that the mortality hazard increases steeply when log2CRP at baseline increases from 2 to 6

mgl−1. Some non-monotonicity is exhibited for values outside of this interval but likely reflects

numerical instability of the estimate in the regions where data are sparse, as reflected by the

wide 95% CI bands in both tails. Figure 6-2(d) implies that mortality is lower for patients

diagnosed with NSCLC at younger ages (30-50 years), but remains similar for older patients,
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whether 50 or 80 years old at diagnosis. In contrast, all other models (i-v) impose the linearity

assumption for age, and, thus, may under-estimate the protective effect of young age.

Some diagnostic plots are presented in Appendix C, providing visual assessment for check-

ing the corresponding PH and AFT constant time ratio assumptions.

6.5.2 Goodness-of-fit of alternative models

Table 6-1 shows that the flexible TD/NL AFT model (vi) fit the data slightly better than

the more constrained AFT models (iii and v). The differences in AIC are 5 and 7, after having

accounted for 18 and 22 additional degrees of freedom (𝑑𝑓 ’s) for the TD and NL effects.

Similarly, the flexible TD/NL extension of the Cox PH model (ii) has a slightly better fit than

the conventional Cox PH model (i), with AIC reduction of 6.1 points. Interestingly, the two

flexible TD/NL models (ii and vi) fit the data comparably under both PH and AFT framework,

although the latter included 7 more 𝑑𝑓 ’s (Table 6-1). Similarly, the AIC values (with the same

𝑑𝑓 ’s) are almost identical, comparing the conventional Cox PH model (i) and the spline-based

AFT model (v). (Details of the calculation of the full log-likelihood for model (i) are provided

in Appendix C). The small difference in the AIC goodness-of-fit across the six alternative

modeling strategies is also confirmed by the similarly good performance of the corresponding

Cox-Snell residual plots (Figure 6-3), in which the two flexible TD/NL models appear to

perform slightly better than their more constrained alternatives.
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Figure 6-3: Cox-Snell residual plots from alternative survival models

6.5.3 Hazard estimation and survival prediction at one year

Figure 6-4 compares the estimates of the hazard function (left panel) and the corresponding

survival curve (right panel) from each of the six alternative survival models for a hypothetical

reference group of patients, who are non-smoking men, diagnosed with stage IIIA/IIIB NSCLC,

and treated with single-agent chemotherapy regimen at the cohort entry, and mean values of all

continuous covariates. For all the models (i) and (iii-v) that do not allow for flexible modeling

of the TD and NL effects, the hazard (Figure 6-4(a)) of all-cause mortality steadily increases

with increasing time since diagnosis, In contrast, the flexible TD/NL extension of the Cox PH

model (ii) shows a temporary decrease in hazard from 6 to 10 months, possibly resulting from

the instability of flexible modeling. On the other hand, the flexible TD/NL AFT model (vi)

suggests a relatively lower hazard comparing to all other methods, after 1 year. Accordingly,

model (vi) suggests higher probability of survival after 1 years since diagnosis (Figure 6-4(b))

than the other models, whereas all methods yield very similar survival curves for the first 6

months of follow-up.
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Figure 6-4: The estimated hazard and survival curve by alternative survival models for
a reference group with patients who are who are non-smoking men, diagnosed with stage
IIIA/IIIB NSCLC, and treated with single-agent chemotherapy regimen at the cohort entry.

Table 6-2 suggests that all the alternative survival model (i-vi) have comparable overall

performance on predicting 1-year survival in the NSCLC patients (all Brier scores are ap-

proximately 0.2, and Nagelkerke’s 𝑅2 ranges from 0.28-0.34). Discrimination is moderately

high across all the models, as evidenced by the Uno AUC statistic of approximately 0.74. The

flexible TD/NL Cox PH and AFT models (ii and vi) have slightly better calibration than the

simpler models (calibration slopes 0.81 and 0.78, and calibration intercepts 0.08 and 0.09,

respectively).

Table 6-2: Performance of one-year survival prediction from the alternative multivariable
survival models with optimism-corrected measures based on 300 bootstrap validation

Cox Flexible TD/NL
Cox PH Weibull Spline-based

AFT
Smoothed error

AFT
Flexible TD/NL

AFT
Overall model performance

Brier score 0.208 0.203 0.209 0.210 0.210 0.206
Nagelkerke’s 𝑅2 0.340 0.278 0.329 0.340 0.277 0.326

Discrimination
Uno AUC statistic 0.744 0.750 0.743 0.738 0.743 0.745

Calibration
Calibration slope 0.775 0.811 0.754 0.745 0.747 0.778
Intercept 0.097 0.084 0.094 0.115 0.105 0.089
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6.6 Discussion

Most of the previous studies of NSCLC mortality relied on the conventional Cox PH

model and, thus, imposed crucial constant HR and linearity assumptions [153, 154, 155]. We

performed comprehensive survival analyses to re-assess mortality in advanced NSCLC using

alternative analysis strategies, under both the PH and the AFT frameworks. In particular,

the flexible TD/NL extensions of Cox PH and AFT models allow us to simultaneously relax

the corresponding constant-over-time effects and linearity assumptions. The results for each

of the models, were compared from several angles, including the estimated covariate effects,

hazard and survival functions, model’s goodness-of-fit, and the prediction of 1-year survival,

supplemented by diagnostic plots.

The results from the two flexible models demonstrate their advantages to reveal important

TD and NL effects of prognostic factors. Both methods suggest that three baseline biomarkers

from blood tests, i.e., lower albumin, and higher LDH and ANC are associated with increased

short-term mortality but gradually lose their clinical importance for longer term survival.

Short-term unfavorable prognosis associated with low albumin has also been observed in

clinical studies [156, 157]. Moreover, similar TD effects of albumin and ANC have been

shown in two previous studies that employed the flexible extension of the Cox model in the

same data [34, 35], but the effect of LDH has been revealed to remain constantly strong

during the entire follow-up period [35]. However, one study [34] has included only four

prognostic factors (albumin, log2CRP, ANC, and smoking), whereas the other one [35] has

not adjusted for age and sex, in contrast to our more comprehensive multivariable modeling

that revealed important effects of some other prognostic factors. Our flexible TD/NL AFT

model also suggests temporary benefit (TD effect) from double-agent regimen at the initiation

of the chemotherapy, as well as the protective effect of younger age (NL effect) during the

entire follow-up. These flexible TD effects offer more accurate assessments of the prognostic

information over time, and the non-linear relationships of both log2CRP and age with the
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hazard may help clinicians to more accurately identify high-risk subgroups. In contrast, all the

other conventional methods are unable to capture the dynamic changes of the effects during the

follow-up and failed to identify albumin and age as prognostic factors for NSCLC mortality.

On the other hand, many conclusions are robust across all the models we considered.

For example, our flexible AFT model (6.2.2) confirmed linear relationships with hazard for 5

of the 6 continuous prognostic factors. Moreover, when both the PH and the constant time

ratio assumptions are satisfied, as was the case for many covariates, the estimated effects

are generally consistent across the alternative methods. Finally, the estimates of hazard and

survival function for a hypothetical reference group, with specific baseline characteristics,

are also generally comparable across the alternative models, regardless of different ways to

represent covariate effects. These findings, together with the similarity in all models’ goodness-

of-fit and uniformly good prediction performance, indicate that many conclusions regarding

the survival of NSCLC are quite robust. On the other hand, flexible models generated new

hypotheses regarding the effects of a few prognostic factors, that should be replicated in further

studies, based on independent cohorts.

Our study has some limitations. First, smoothing techniques with regression B-splines are

intensively used in the two flexible models (ii) and (vi), which may induce the risk of instability

and overfit bias [81, 93] especially given the moderate number of events in our study. Although

we have attempted to alleviate this problem by using stepwise backward elimination to reduce

the number of parameters in the flexible models, the estimates of the TD effects and the hazard

functions exhibit high variability after 18 months of the follow-up, when the number of deaths

gradually decreases. Therefore, we only present the results for up to 18 months. Second, it is

conceptually challenging to draw final conclusions for the role of each of the prognostic factors

in this study, given that the flexible TD/NL extensions of the Cox PH and AFT models fit the

data almost identically well but partly diverge regarding selection of TD and/or NL effects

of specific covariates. The two modeling frameworks also provide different measures for the

relative effects, i.e., HR vs. time ratio, and assume different underlying mechanisms regarding
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how the covariates affect the survival [7, 8]. This multiplicity of equally well-fitting models,

relying on different assumptions, is common in real-life analysis and has been well recognized

[158]. Nevertheless, we argue that it is still better to consider a few alternative analysis strategies

and evaluate carefully which model seems more appropriate for the empirical dataset at hand,

rather than merely rely on one single model [73]. In the case of similar goodness-of-fit, we

demonstrate that our conclusions regarding several prognostic factors are robust across different

modeling techniques. Instead of limiting the final interpretation to a single flexible model, we

report results from both methods and hope they contribute additional, partly complementary,

insights to the current clinical knowledge of NSCLC mortality. Finally, we have not taken

into account time-dependent covariates in our analyses due to the unavailability of such data

for our cohort [35] and inability of our complex flexible AFT model (6.2.2) to handle them.

Time-dependent measures, if available, carry direct information on the time to event [7].

For example, the type and frequency of the chemotherapy regimen may change during the

course of the follow-up, and measurements of the biomarkers may be collected regularly over

time. These time-dependent measures may be likely associated with the observed event time.

Without incorporating such repeated measurements in our analyses, caution is required when

interpreting our findings, that are limited to the effects of the baseline values.

In conclusion, our study reflects the analytical and conceptual challenges that investigators

would encounter in multivariable analysis of time-to-event data, when considering several

alternative survival methods. It illustrates the importance of using flexible survival models to

account for the complex effects of prognostic factors that may change over time and/or have

potentially non-linear relationships with the hazard. We hope that our results have added new

clinical insights into NSCLC mortality and will encourage more widespread applications of

flexible modeling of survival data in clinical and epidemiological studies.

116



CHAPTER 7

Discussion
In epidemiological and medical research with time-to-event outcome, multivariable model-

ing is essential to assess the covariate effects and to estimate survival probability conditional on

individual’s characteristics. These estimates, in turn, provide physicians and/or their patients

with scientific evidence useful for both prognosis and choice of treatment options. For the

past few decades, the Cox proportional hazards (PH) model [1] has dominated the applications

of multivariable survival analyses in human health studies [63]. In contrast, the accelerated

failure time (AFT) model has been less frequently investigated in theoretical research and

applied in real-life analyses. This is perhaps due to the reluctance by investigators to specify a

parametric event time distribution, as required by the conventional AFT model [7], in contrast

to the Cox PH model that that treats the baseline distribution simply as a nuisance parameter.

Indeed, the event time distribution is seldom known in real-life analysis, and its misspecifi-

cation may lead to biased estimates and misleading conclusions about covariate effects and

survival [10, 11]. Several semiparametric AFT approaches have been proposed to tackle this

problem, typically deriving ingenious estimation methods that avoid such pre-specification

[12, 14, 16, 17, 20, 21]. Nevertheless, most of these methods consider the baseline hazard as

a nuisance parameter and, thus, are unable to accommodate estimation of individual survival

curves, conditional on covariates. Park and Wei [90] extended the rank procedures [14, 16, 17]

to estimate subject-specific survival functions using the Nelson-Aalen estimator of the cu-

mulative hazard function, however, no standard statistical software is available to implement
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this estimation. Furthermore, regardless of which model is employed, both the accuracy of

model-based estimates and the validity of the inference also depend on whether the underlying

assumptions are satisfied. From this perspective, two important implicit assumptions underlie

the conventional AFT model: (i) the effect of covariates does not vary over time (constant time

ratio assumption) [3], and (ii) the relationship between a continuous covariate and the logarithm

of the event time is linear (linearity assumption) [27]. These two AFT assumptions, which

are as arbitrary as the PH and linearity of the covariate effects on the log hazard assumptions

in the Cox model, have rarely been examined in the statistical literature. Indeed, to the best

of my knowledge, no published method allows data analysts to relax both these assumptions

simultaneously, in the context of the AFT modeling. Furthermore, in real-life applications,

little guideline is available for analysts to decide the analysis strategy considering alternative

survival models, including both PH and AFT models or their flexible extensions. Based on

these considerations, I have attempted to advance the methodology of AFT modeling to avoid

the restrictive assumptions of the conventional model, and to illustrate the practical usefulness

of such developments in real-life analyses.

To this end, in this thesis, I have developed and validated novel flexible extensions of the

AFT model that do not require pre-specifying the baseline event time distribution and account

for potential violations of the constant time ratio and/or linearity assumptions. In other words,

the new methods, developed within the AFT framework, aim to (i) provide accurate estimates

of the baseline hazard of arbitrary shape, (ii) incorporate the time-dependent (TD) effects

and non-linear (NL) effects of continuous covariates simultaneously, and (iii) facilitate the

estimation of individual survival curves, conditional on these effects.

The first thesis manuscript focuses on relaxing the parametric assumption about the event

time distribution. I have proposed a flexible modeling approach to approximate the baseline

hazard of arbitrary shape by using un-penalized low-dimension cubic regression B-spines

[92, 93, 94]. To this end, I have derived the close form expression for the full log-likelihood

function of the resulting spline-based AFT model. However, estimation of this model’s
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parameters is not a trivial task, as the covariate effects need to be estimated but, at the same

time, must be treated as known ‘fixed’ values when estimating the spline coefficients that define

the baseline hazard. This complication is induced by the way that covariates affect the hazard

function in the AFT model. In contrast to the Cox PH model, where the covariate effects can

be specified independent of event time distribution (1), covariates (in terms of time ratios)

inherently affect the baseline hazard on the time scale in the AFT model (3,12). To address the

resulting computational challenge, I have adapted an iterative alternating conditional estimation

(ACE) algorithm to estimate parameters of the proposed spline-based AFT model. ACE iterates

between the estimation of (i) the covariate effects and (ii) the spline coefficients that define the

baseline hazard. In each of the two steps (i) and (ii), only one set of parameters is estimated,

conditional on the fixed values of the other parameters, set to their most recent estimates [33].

Simulation studies demonstrated that the proposed spline-based AFT model yielded accurate

estimates of covariate effects, baseline hazard, and survival curve, under scenarios with both

simple and complex data generating mechanisms.

The second manuscript further advances the methodological developments of Manuscript

1, to relax the constant time ratio and linearity assumptions in the AFT model. The TD and

NL functions are incorporated as a product term, and allow for, respectively, the covariate

effects to change over time and flexible modeling of possibly non-linear dose-response curves

for continuous covariates. Both effects are modeled using quadratic regression B-splines

with one interior knot to achieve a parsimonious multivariable flexible TD/NL AFT model,

while allowing for baseline hazards of arbitrary shapes. The ACE algorithm employed in

Manuscript 1 is expanded to three steps, in order to iteratively estimate three sets of spline

coefficients that define the baseline hazard, and the TD and NL functions, respectively. It

also avoids a non-identifiability problem that occurs in the formulation of the product model,

where the estimation of the TD and NL effects are non-separable using a joint likelihood

estimation [33, 40]. To validate this new flexible TD/NL AFT model, I have designed a series

of novel simulations, assuming complex relationships between the covariates and the hazard,
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in multivariable settings. The proposed method and the estimation algorithm yielded overall

satisfactory performance. In particular, the flexible estimates yielded reasonably accurate

estimates of various, clinically plausible, shapes of both the TD and NL curves, as well as of

the individual survival curves, conditional on the multiple covariates and their estimated TD

and/or NL effects.

Prior methodological developments on flexible modeling of the AFT model have mostly

focused on the challenges addressed in my Manuscript 1. In particular, the extended hazard

regression of Etezadi-Amoli and Ciampi [24, 25], that incorporates both the AFT and the PH

models, and the smoothed error AFT model of Komárek et al. [26] have shown promising

results for covariate effects estimation without the specification of the event time distribution.

However, no statistical software is available to implement the extended hazard regression,

and the performance of the estimates of baseline hazard and survival functions from both

methods have not been investigated in simulation studies. To address this gap in knowledge,

in Manuscript 1, I have systematically compared, through a series of simulations, the perfor-

mance of the smoothed error AFT model [26], my new spline-based AFT model, and several

commonly used parametric AFT models. The results indicate that the mis-specified parametric

AFT models yield considerable bias in survival estimates, and suggest that, the smoothed error

AFT model, with the default option for the penalty of smoothness [26], may provide excessively

fluctuating estimates of the baseline hazard. These results help assess the existing methods

systematically and support the usage of the proposed spline-based AFT model, which appears

to yield uniformly unbiased and numerically stable estimates. On the other hand, a few other

existing methods in the current literature have attempted to relax the linearity assumption of

the AFT model using flexible smoothing techniques [27, 42, 43]. Yet, most of these methods

seem only applicable in the univariate setting. Finally, to the best of my knowledge, only

one published paper proposed to relax the constant time ratio assumption, but it restricts the

estimated time ratio to be a simple linear function of the follow-up time (25). Moreover, all the

aforementioned extensions of the AFT model address only either the linearity or the constant
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time ratio assumptions, while imposing a priori the other assumption [27, 42, 43, 44]. From

this perspective, the flexible TD/NL AFT model developed in Manuscript 2 is more general

than these earlier methods and, to my best knowledge, is the first to relax both assumptions

simultaneously. The practical importance of such flexible modeling of the covariate effects on

time ratio is illustrated by the real-life applications in the analyses of mortality after a septic

shock or lung cancer diagnosis that suggest that both TD and/or NL effects are important to

accurately describe the role of different prognostic factors (Manuscripts 2 and 3).

The Cox PH model is usually the first choice in the real-life analysis of time-to-event data

[63], and the underlying PH and linearity assumptions are often taken for granted [63, 78, 159].

On the other hand, very few real-life studies have explored carefully whether the AFT model

could be more appropriate for a given empirical dataset. Given that there is usually little

substantive knowledge about the way how covariates affect the survival, it is important for

investigators to compare the two models and focus more on interpretation of the results of

the model that fits the data at hand better [73]. For example, the results in Manuscript 1

imply that the AFT model is more consistent with the way covariates are associated with

survival in colon cancer, where the PH assumption is violated for three prognostic factors.

Moreover, in the same analyses, the proposed spline-based AFT model fits the data better

than the conventional parametric AFT models. On the other hand, the real-life analyses,

based on the proposed flexible AFT model, in Manuscript 2 reveal important TD effects of

infection type and Cirrhosis, as well as both TD and NL effects of age and Sepsis-related Organ

Failure Assessment (SOFA) score, on mortality after septic shock. Finally, in manuscript 3,

the flexible TD/NL AFT model suggests that several biomarkers from blood tests, and the

initial type of chemotherapy, have only short-term prognostic utility for predicting mortality

in patients diagnosed with non-small cell lung cancer. These new insights offered by the

proposed NL/TD flexible AFT model demonstrate its practical usefulness for multivariable

real-life analyses of time-to-event data.
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On the other hand, the proposed methods and simulation studies have several important

limitations. The methods proposed in both Manuscript 1 and 2 involve extensive flexible

modeling using un-penalized regression B-splines, which may yield unstable estimates at

follow-up times close to the beginning and the end of the study, where only a few events are

observed [81]. Furthermore, even if – on average – the estimates are reasonably unbiased, some

overfitting bias would likely occur, especially when the number of NL and TD effects included

in the final multivariable AFT model is large [93, 160], or in studies with small numbers of

events. Thus, to achieve model parsimony and a reasonable bias/variance trade-off, I relied

on low-dimension polynomial regression B-splines. Specifically, quadratic splines with one

interior knot are used to model the NL and TD curves, whereas cubic splines with two interior

knots (that allow more complex shapes [41, 46]) are used to approximate the baseline hazard

function. This approach offers sufficient flexibility to recover various clinically plausible

functional forms, as indicated by both published simulation studies of spline-based extensions

of the PH model [40, 41, 95, 96] and the simulation results presented in Manuscript 1 and

2 of this thesis. However, this a priori choice of the model’s degrees of freedom should be

further assessed, in additional simulations, with an even broader range of true data-generating

functions. On the other hand, the existing flexible method by Komárek et al. relies on

generalized cross-validation to control the smoothness of the estimates [26]. Given that my

dedicated R program allows for arbitrary choice of the number of interior knots and/or the

degree of the splines, in future research these hyper-parameters can be selected in a data-

adaptive approach, based, for example, on cross-validation. This may be useful for further

comparisons with the Komárek et al.’s smoothed error AFT model, that selects the penalty

term by cross-validation [26]. One challenge in the development of the proposed methods

in this thesis concerns the complexity of the mathematical formulation of the TD and NL

effects in the AFT framework. The TD effect is incorporated in the proposed flexible AFT

model in Manuscript 2 by replacing the constant covariate effect 𝛽 with the TD function 𝛽(𝑡)

based on the hazard specification. This approach is adopted to avoid difficulty in modeling

122



survival or density functions [101], and to facilitate a clinically plausible interpretation of the

estimated, possibly time-varying, relationships between the covariate and the instantaneous

risk in real-life applications [95, 145]. The resulting TD effect estimate provides a meaningful

measure that captures the dynamic change in the strength of the covariate effect during the

follow-up. However, it does not provide a straightforward estimate for the time-dependent

time ratio. Instead, a complex numerical transformation is required to reconstruct the time-

dependent time ratio by inversing the resulting survival probability estimates at specific times,

as described in section 5.3.3. Moreover, the time-dependent time ratio, by definition, depends

on the underlying baseline hazard, as well as on the specific values of all covariates included in

the model, and on their estimated, possibly TD and/or NL effects. This conceptual challenge

requires more attention when interpreting the results from the flexible AFT model, relative to

the conventional alternatives or the flexible extensions of the PH model.

Furthermore, both the analytical and the computational properties of the ACE algorithm,

implemented to maximize the complex log-likelihood functions in Manuscript 1 and 2, require

careful consideration. It is an iterative conditional procedure; therefore, standard large-sample

theory based on the information matrix of the joint log-likelihood cannot correctly quantify the

sampling variance of the ACE estimates [41]. Thus, a formal investigation of the asymptotic

properties of the proposed estimators is difficult and large-scale, computationally expensive

simulations have to be relied upon, as presented in sections 4.4 and 5.4 of my thesis. In

addition, the time to convergence can be long, especially with large sample size, and/or large

number of covariates with TD and/or NL effects. This computational burden has restricted the

number of repetitions to 100 in my simulation studies, and the number of bootstrap resamples

to 300 in the real-life applications in each of the three manuscripts. Yet, rapid advances in the

computational capacity will improve the efficiency of ACE in future simulation and real-life

studies, even with large multivariable datasets.

The main objective of the simulation studies in both Manuscripts 1 and 2 was to assess the

proposed flexible extensions of the AFT model. Therefore, the data were generated from the
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AFT model or its proposed extensions. Accordingly, it remains unknown how the proposed

methods would perform, and how they would compare with alternative survival models if the

‘true’ data structure is not consistent with AFT specification. Further investigation, based

on a series of carefully designed simulation studies, is necessary to systematically evaluate

and compare alternative regression models for survival analyses, including PH [82], AFT

[7, 26], additive hazard [101, 161], and proportional odds (PO) models [103, 104], and,

where available, their flexible extensions. In complex real-life studies with many covariates,

it is difficult to determine which regression model is most consistent with a given empirical

data, and it is plausible that the effects of different covariates may be better accounted for

by different models. Therefore, the real-life study presented in each of the three manuscripts

includes alternative modeling approaches, including e.g. PH model and/or its extensions in

Manuscript 1 and 3, and compares their goodness-of-fit. Nevertheless, the issue of model

selection becomes increasingly challenging if we consider an even broader range of survival

models, such as other extensions of the PH model [82], flexible parametric PH or PO models

[103, 104], or additive hazard models [81, 101, 161]. Another limitation of the methods

developed in this thesis is that they do not account for dependent or informative censoring that

occurs when the censoring probability or censoring time distribution potentially depends on

the event time distribution [7]. The real-life example in each of the three manuscripts assumes

independent censoring conditional on the covariates included in the corresponding model.

However, additional sensitivity analyses, using inverse probability of censoring weights [162]

and non-parametric multiple imputation [163], can be attempted to account for informative

censoring, when it may be suspected, based on substantive considerations, data structure and/or

study design.

The methods proposed in Manuscript 1 and 2 are mainly developed for clinical or prognostic

studies with time-invariant exposure(s) and covariates, measured at the study baseline. They

cannot be easily adapted to accommodate time-dependent covariates. In contrast to the PH

model, accommodating time-dependent covariates in the AFT framework will demand new
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complex re-formulation of the formal model [3, 7]. Furthermore, my research is restricted to

time-to-event data with right censoring, although extending to left or interval censoring should

be possible by using the corresponding likelihood functions [7]. Thus, interesting directions

for future research in this area could involve attempts to generalize further the proposed flexible

methods to handle time-dependent data and other types of censoring.

In summary, I have developed, validated and illustrated in real-life applications, new

methods to advance the methodology for survival analysis. These methods add to the existing

literature on the AFT model to analyze time-to-event data, and their real-life applications may

provide new insights in future clinical studies. I hope that my research will stimulate a more

widespread use of the AFT model and further methodological developments in this field.
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Appendix A: Appendix to Manuscript 1

A.1 Details of the proposed alternating conditional algo-

rithm (ACE) algorithm

Algorithm: The ACE algorithm for estimating the parameters in the proposed spline-based AFT model

Step 1 Initialize �̂�
(0)

= 0 and �̂�(0) = 1
For iterations l=1, 2, . . . .,

Step 2 Set �̂�(𝑙) = �̂�
(𝑙−1) , then estimate 𝜸(0) conditional on �̂�

(𝑙−1) , and �̂�(𝑙)

Step 3 Estimate �̂�
(𝑙) , conditional on �̂�(𝑙) and 𝜸(𝑙)

Step 4 Iterate the steps 2 and 3 until the convergence criteria are met

In steps 2 and 3, the Newton-Raphson method is used to obtain, 𝜷(𝑙) and 𝜸(𝑙) using the

corresponding derivatives. The first and second derivative with respective to 𝛽𝑟 and 𝛽𝑠 are

given by:

𝜕 log 𝐿

𝜕𝛽(𝑙)𝑟

=
𝑛∑

𝑖=1

{
𝛿𝑖𝑋𝑖 𝑗 −

∫ 𝑡𝑖

0
exp (

𝐽∑
𝑗=1

𝛽(𝑙)𝑗 𝑋𝑖 𝑗 ) exp
( 𝐾∑
𝑘=1

�̂� (𝑙)
𝑘 𝑆𝑘 (�̂�

′
𝑖)
)
𝑋𝑖𝑟𝑑𝑢

}
,

and
𝜕 log 𝐿

𝜕𝛽(𝑙)𝑟 𝛽(𝑙)𝑠

= −

𝑛∑
𝑖=1

∫ 𝑡𝑖

0
exp (

𝐽∑
𝑗=1

𝛽(𝑙)𝑗 𝑋𝑖 𝑗 ) exp
( 𝐾∑
𝑘=1

�̂� (𝑙)
𝑘 𝑆𝑘 (�̂�

′
𝑖)
)
𝑋𝑖𝑟 𝑋𝑖𝑠𝑑𝑢

where �̂�′
𝑖 = exp (

∑𝐽
𝑗=1 𝜂

(𝑙)
𝑗 𝑋𝑖 𝑗 )𝑢.

126



The first and second derivative with respective to 𝛾𝑟 and 𝛾𝑠 are given by:

𝜕 log 𝐿

𝜕𝛾 (𝑙)
𝑟

=
𝑛∑

𝑖=1

{
𝛿𝑖𝑆𝑟 (�̂�𝑖) −

∫ 𝑡𝑖

0
exp (

𝐽∑
𝑗=1

𝛽(𝑙−1)
𝑗 𝑋𝑖 𝑗 ) exp

( 𝐾∑
𝑘=1

�̂� (𝑙)
𝑘 𝑆𝑘 (�̂�

′
𝑖)
)
𝑆𝑟 (�̂�

′
𝑖)𝑑𝑢

}
,

where �̂�𝑖 = exp (
∑𝐽

𝑗=1 𝜂
(𝑙)
𝑗 𝑋𝑖 𝑗 )𝑡𝑖 and

𝜕 log 𝐿

𝜕𝛾 (𝑙)
𝑟 𝛾 (𝑙)

𝑠

= −

𝑛∑
𝑖=1

∫ 𝑡𝑖

0
exp (

𝐽∑
𝑗=1

𝛽(𝑙−1)
𝑗 𝑋𝑖 𝑗 ) exp

( 𝐾∑
𝑘=1

�̂� (𝑙)
𝑘 𝑆𝑘 (�̂�

′
𝑖)
)
𝑋𝑖𝑟𝑆𝑟 (�̂�

′
𝑖)𝑆𝑠 (�̂�

′
𝑖)𝑑𝑢.

A.2 Details of the simulation studies

In simulation A, a complex baseline hazard was defined through a mixture of two Weibull

distributions with different shape (𝛼) and scale (𝜌) parameters. First, we generated a binary

covariate 𝑍 with 𝑃(𝑍 = 1) = 0.5. Then, we assumed (i) 𝛼 = 5 and 𝜌 = 4 for subgroup

𝑍 = 0, versus (ii) 𝛼 = 1.5 and 𝜌 = 1.2 for subgroup 𝑍 = 1. Figure A-1 shows the subgroup-

specific baseline hazards and the resulting non-monotonic mixture hazard. The latter generally

resembles the all-cause mortality patterns observed in prognostic studies of many cancers,

where early high mortality, due to post-surgical complications, is followed by the hazard that

first decreases in the next few years and then gradually increases due to aging of the cohort.

Figure A-1: Two ‘component’ baseline hazard functions and the resulting overall mixture
hazard (rightmost panel) in simulation A.
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In contrast to simulation A, simulation B aimed at assessing and comparing the performance

of the alternative methods in situations where the flexibility of the smoothed error model and

spline-based model were not necessary as the baseline hazard followed one of the classic

parametric models. Specifically, individual event times were generated assuming the log-

normal baseline distribution with 𝑊 ∼ N(0, 1). All the other assumptions and the parameter

values were identical to simulation A.

For each simulated scenario, the 100 baseline hazards estimated with alternative AFT

models, were plotted against the true hazard. Accuracy of the covariate effect estimates was

evaluated by relative bias as 𝛽 𝑗−𝛽 𝑗

𝛽 𝑗
× 100%, empirical standard deviation (SD), and root mean

squared error (rMSE). The mean AIC (−2 log 𝐿 + 2𝑑𝑓 ), across 100 simulated samples, was

used to compare the goodness-of-fit of alternative estimation models. (Notice that the number

of parameters 𝑑𝑓 varies across models, with 𝑑𝑓 = 6, 5, 6, 6, and 10 for Weibull, exponential,

log-normal, log-logistic, and the proposed spline-based AFT models, respectively. For the

smoothed error distribution model, to reflect the shrinkage of the estimates by penalization,

Komárek et al. defined the effective degrees of freedom (𝑑𝑓 ) calculated as the trace of the

ratio of two information matrixes of the ordinary likelihood and the penalized likelihood. In

our simulations, the resulting AIC values were not comparable to those calculated for the other

(un-penalized) AFT models. Therefore, we do not use AIC to compare the fit of the smoothed

error vs. the un-penalized AFT models.)

Survival curves for an arbitrarily selected covariate pattern, 𝑋1 = 1, 𝑋2 = 𝑋3 = 𝑋4 = 0,

were estimated based on the results of each model. Specifically, using existing R packages

[71], survival curves were estimated based on equation (4.3.4) for parametric AFT models,

the Breslow estimator for the Cox model, and the fitted error distribution for the smoothed

error AFT model [26]. For the proposed spline-based AFT model (4.3.7), the survival curves

were computed with our R program using equation (4.3.11). For each estimation model, the

corresponding estimated survival curves from the 100 samples were plotted against the true
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survival function. The average relative bias 𝑆(𝑡 |𝑋)−𝑆(𝑡 |𝑋)
𝑆(𝑡 |𝑋) × 100% and the empirical standard

deviations were calculated at different time points.

A.3 Additional simulation results from simulation A

Table A-1: The relative bias (%) in covariate effects estimates by parametric AFT models
in simulation A based on 500 samples. (Mixture baseline hazard is the true data generating
model)

Weibull Exponential Log-normal Log-logistic
𝛽1 𝛽2 𝛽3 𝛽4 𝑋1 𝑋2 𝑋3 𝑋4 𝑋1 𝑋2 𝑋3 𝑋4 𝑋1 𝑋2 𝑋3 𝑋4 𝑋1 𝑋2 𝑋3 𝑋4

0 0 0 0 n=200 -1.05 0.24 -0.05 -0.66 -1.23 0.29 -0.08 -0.79 -0.8 -0.14 -0.19 -0.88 -1.07 -0.01 -0.16 -0.79
n=500 -0.8 -0.83 -0.14 0.01 -0.9 -0.95 -0.17 -0.04 -0.83 -0.82 -0.34 -0.27 -0.86 -0.86 -0.23 -0.12
n=1000 0.36 -0.1 -0.07 -0.01 0.37 -0.12 -0.08 -0.02 0.43 -0.09 -0.11 -0.14 0.41 -0.08 -0.09 -0.08

0.5 -0.5 0.5 0.5 n=200 7 6.7 2.6 4.5 21.3 20.7 8.3 9.3 10.4 11 3 5.3 5.2 5.5 0.6 3.7
n=500 6.6 7.2 4.4 3.7 19.9 20.8 10 8.2 10.2 10.6 5.9 4.5 4.9 5.6 3.3 2.6
n=1000 5.7 5.8 4.2 3.5 19 19.1 9.8 7.9 8.7 9.2 5.6 4.7 3.6 3.9 2.9 2.6

0.75 -0.75 0.75 0.75 n=200 3 3.5 1.9 2.3 13.9 14.6 6 5.5 5.3 6.5 2.9 2.7 1.6 2.2 1.1 1.6
n=500 3 3.3 1.9 2.1 13.8 14.1 5.9 5.4 5.7 5.5 2.9 3 1.5 1.7 1.2 1.7
n=1000 3 2.6 1.9 1.7 13.7 13.2 5.9 4.9 5.6 4.9 3.2 2.6 1.5 1 1.4 1.2

1 -1 1 1 n=200 1.7 1.6 1.5 1.5 10.6 10.5 4.8 4.1 3.8 3.6 2.5 1.9 0.7 0.5 1.2 1.2
n=500 2.4 1.5 1.3 1.3 11.2 10.1 4.4 3.7 4.3 3.5 2.3 1.8 1.2 0.3 1 0.9
n=1000 1.5 1.8 1.3 1.2 10 10.4 4.3 3.6 3.2 3.7 2.1 2 0 0.6 0.9 1

*The results are presented as bias in the setting where the true covariate effects are null.

Table A-1 shows the relative bias when the true event time is generated from the mixture

distribution under different parameter settings for the covariate effects. All the parametric AFT

models provide unbiased estimates when the true effects are null. However, they yield biased

estimates (relative bias>5%) in at least one of the parameter settings when the true effects are

moderate to large. Remarkably, the exponential AFT model always provides large relative bias

across all the settings. The standard errors from all the models are comparable.
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Estimated survival curve for two alternative covariate patterns in simulation A

The white curve is the pointwise mean of the estimated individual survival curves from 100

simulated samples (gray curves). The true survival function is represented by the black dashed

curve.

Figure A-2: Comparison of the baseline survival curve estimates, obtained with alternative
estimation models (7 panels) in simulation A when the mixture hazard is the true data generating
model.

Table A-2: Relative bias (%) and standard error of the estimated baseline survival probabilities
from all the alternative model for different time points in simulation A when the mixture hazard
is the true data generating model

Spline-based
AFT

Smoothed Error
AFT Weibull AFT Exponential AFT Log-normal AFT Log-logistic AFT Cox

True Survival Relative
Bias (%) SD Relative

Bias (%) SD Relative
Bias (%) SD Relative

Bias (%) SD Relative
Bias (%) SD Relative

Bias (%) SD Relative
Bias (%) SD

t=0.5 0.88 -0.6 0.01 1.1 0.01 2.7 0.01 -5.5 0.01 0.9 0.02 3.1 0.02 2.5 0.01
t =1 0.73 -1.2 0.02 0.4 0.02 5.5 0.02 -5.3 0.02 -2.4 0.03 3 0.03 6.2 0.02

t =1.5 0.62 -2.1 0.03 -0.5 0.02 2.9 0.03 -6.6 0.02 -7.5 0.04 -2 0.04 3.7 0.03
t =2 0.54 -5.4 0.03 -1 0.02 -5.6 0.03 -11.1 0.03 -14.4 0.04 -10.3 0.04 -6.2 0.03

t =2.5 0.48 10.5- 0.03 -2 0.02 -16 0.03 -16 0.03 -20.3 0.03 -17.8 0.04 -15.6 0.03
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Figure A-3: Comparison of the survival curve estimates, associated with a specific covariate
vector (𝑋1 = 0, 𝑋2 = 1, 𝑋3 = 𝑋4 = 0), obtained with alternative estimation models (7 panels)
in simulation A when the mixture hazard is the true data generating model.

Table A-3: Relative bias (%) and standard error of the estimated survival probabilities for
covariate pattern 𝑋1=0, 𝑋2=1, 𝑋3=𝑋4=0 from all the alternative model for different time points
in simulation A when the mixture hazard is the true data generating model

Spline-based AFT Smoothed Error AFT Weibull AFT Exponential AFT Log-normal AFT Log-logistic AFT Cox

True Survival Relative
Bias (%) SD Relative

Bias (%) SD Relative
Bias (%) SD Relative

Bias (%) SD Relative
Bias (%) SD Relative

Bias (%) SD Relative
Bias (%) SD

t=0.5 0.97 -0.7 0.01 0.6 0.01 0.5 0 -3 0.01 1.6 0 1.2 0 0.5 0
t =1 0.92 -0.4 0.01 1 0.01 1.8 0.01 -3.9 0.01 1.9 0.01 2.5 0.01 2 0.01
t =1.5 0.87 -0.2 0.02 1.1 0.02 3.4 0.01 -3.7 0.01 1.4 0.02 3.4 0.02 3.5 0.01
t =2 0.81 -0.1 0.02 0.9 0.02 4.9 0.02 -2.9 0.02 0.7 0.03 3.8 0.02 4.6 0.02
t =2.5 0.76 -0.3 0.02 0.6 0.02 5.9 0.02 -2.1 0.02 -0.3 0.03 3.5 0.03 5.9 0.02
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A.4 Additional simulation results from simulation B

Table A-4 shows the relative bias when the true event time is generated from the log-normal

distribution under different parameter settings for the covariate effects. All the parametric

AFT models provided unbiased estimates when the true effects are null. The mis-specified

log-logistic parametric AFT models has good performance across all the settings. On the other

hand, the mis-specified Weibull AFT model shows relative noticeable bias, especially when

the true effects are small and moderate, and this bias does not diminish with the increase of the

sample size. The standard errors from all the models are comparable. Table A-5 summarizes

the mis-specified AFT model that produced biased covariate effects estimates (relative bias

>5%) under other true event time distributions in at least one of the simulation setting.

Table A-4: The relative bias (%) in covariate effects estimates by parametric AFT models
with different event time distribution in simulation B based on 500 samples. (Log-normal is
the true data generating model)

True covariate effects Weibull Exponential Log-logistic Log-normal
𝛽1 𝛽2 𝛽3 𝛽4 𝑋1 𝑋2 𝑋3 𝑋4 𝑋1 𝑋2 𝑋3 𝑋4 𝑋1 𝑋2 𝑋3 𝑋4 𝑋1 𝑋2 𝑋3 𝑋4

0 0 0 0 n=200 0.01 0 0 0 0 0 0 0 0 0.01 0 0 0 0.01 0 0
n=500 0 0 0 0 0 -0.01 0 0 0 0 0 0 0 0 0 0
n=1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.5 -0.5 0.5 0.5 n=200 -9.0 -6.5 -5.1 -2.4 -4.9 -2.4 -3.1 -0.9 -1.0 1.9 -0.4 -0.4 -1.0 1.8 -0.6 -0.4
n=500 -6.7 -8.1 -4.6 -3.3 -3.1 -4.5 -2.6 -1.7 0.2 -0.8 0.8 0.1 0.1 -0.7 0.7 0.1
n=1000 -6.6 -7.6 -4.6 -4.4 -3.1 -4.1 -2.7 -2.8 0.6 0.0 0.4 -0.3 0.5 0.0 0.5 -0.4

0.75 -0.75 0.75 0.75 n=200 -5.3 -6.8 -2.6 -2.1 -2.0 -3.6 -1.3 -1.0 0.1 -0.7 0.1 -0.5 0.2 -0.8 0.1 -0.6
n=500 -6.3 -6.7 -3.2 -2.5 -3.6 -4.0 -2.0 -1.6 -0.4 -0.8 -0.2 -0.2 -0.4 -0.7 -0.2 -0.2
n=1000 -6.0 -5.2 -3.6 -2.4 -3.3 -2.5 -2.4 -1.4 0.1 0.5 -0.3 0.1 0.2 0.7 -0.3 0.2

1 -1 1 1 n=200 -2.9 -4.0 -2.3 -1.3 -0.2 -1.4 -1.3 -0.6 0.8 -0.1 -0.2 -0.4 1.1 0.0 -0.1 -0.3
n=500 -3.8 -4.3 -2.5 -1.6 -1.6 -2.0 -1.6 -0.9 0.1 0.1 -0.3 0.0 0.4 0.2 -0.2 0.1
n=1000 -5.0 -4.1 2.1 -1.9 -2.8 -2.0 -1.3 -1.3 -0.9 -0.1 0.1 -0.2 -0.7 0.1 0.1 -0.2

These results indicate that parametric AFT models are robust to certain misspecification

in terms of covariate effects estimates for right censor data with random censoring. This

is because that except for exponential distribution, the other parametric distributions have

two additional parameters (shape or location and scale), which can be estimated in a way to
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Table A-5: Misspecification in AFT models with biased covariate effect estimation

True event time distribution Mis-specified AFT model that yielded
biased estimates of covariate effects

Exponential Log-normal

Weibull Exponential; Log-normal

Log-normal Weibull

Log-logistic Exponential; Weibull

Gamma Exponential; Log-normal

accommodate the unbiased estimate for the regression coefficients. However, since we rarely

know the true event time distribution in practice and not all misspecification have no impact

on the covariate effects estimates, it is not recommended to blindly choose a parametric AFT

model without strong knowledge about the shape of the hazard. Moreover, these findings were

drawn only from the scenarios in which the true event time distribution from one of the classic

parametric distribution, and there is no guarantee that mis-specified parametric AFT models

would always yield the unbiased estimated under unknown but possibly more complex hazard

in practice.
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Estimated survival curve for two alternative covariate patterns in simulation B (Data

generating model: log-normal)

Figure A-4: Comparison of the baseline survival curve estimates, obtained with alternative
estimation models (7 panels) in simulation B when the log-normal distribution is the true data
generating model.

[Relative bias (%) and standard error of the estimated baseline survival probabilities in simu-
lation B]Relative bias (%) and standard error of the estimated baseline survival probabilities
from all the alternative model for different time points in simulation B when the log-normal
distribution is the true data generating model

Spline-based AFT Smoothed Error
AFT Weibull AFT Exponential AFT Log-normal AFT Log-logistic AFT Cox

True Survival Relative
Bias (%) SD Relative

Bias (%) SD Relative
Bias (%) SD Relative

Bias (%) SD Relative
Bias (%) SD Relative

Bias (%) SD Relative
Bias (%) SD

t=0.5 0.76 0.3 0.03 0.2 0.03 -0.5 0.02 -4.3 0.02 -0.2 0.03 1.4 0.03 -2.1 0.02
t =1 0.50 -0.5 0.03 0.0 0.04 8.6 0.03 4.8 0.03 -0.3 0.03 -0.6 0.03 4.6 0.03
t =1.5 0.34 -0.0 0.03 0.1 0.03 12.6 0.03 10.9 0.03 -0.4 0.03 -4.0 0.03 10.2 0.04
t =2 0.24 0.3 0.03 -0.2 0.03 11.1 0.03 12.9 0.03 -0.4 0.03 -6.0 0.03 13.3 0.04
t =2.5 0.18 0.5 0.02 -0.3 0.03 5.3 0.03 11.3 0.03 -0.4 0.02 -6.4 0.02 13.9 0.04
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Figure A-5: Comparison of the survival curve estimates, associated with a specific covariate
vector (𝑋1 = 0, 𝑋2 = 1, 𝑋3 = 𝑋4 = 0), obtained with alternative estimation models (7 panels)
in simulation B when the log-normal distribution is the true data generating model.

Table A-6: Relative bias (%) and standard error of the estimated survival probabilities for
covariate pattern 𝑋1=0, 𝑋2=1, 𝑋3=𝑋4=0 from all the alternative model for different time points
in simulation B when the log-normal distribution is the true data generating model

Spline-based AFT Smoothed Error
AFT Weibull AFT Exponential AFT Log-normal AFT Log-logistic AFT Cox

True Survival Relative
Bias (%) SD Relative

Bias (%) SD Relative
Bias (%) SD Relative

Bias (%) SD Relative
Bias (%) SD Relative

Bias (%) SD Relative
Bias (%) SD

t=0.5 0.95 -0.3 0.01 -0.2 0.01 -5.4 0.01 -7.5 0.01 -0.2 0.01 -0.7 0.01 -6.1 0.02
t =1 0.84 0.5 0.03 -0.4 0.03 -4.5 0.02 -7.2 0.02 -0.4 0.02 0.6 0.02 -5.9 0.03
t =1.5 0.72 -0.7 0.04 -0.4 0.04 -1.8 0.03 -4.7 0.03 -0.6 0.03 1.1 0.03 -2.8 0.03
t =2 0.62 -1.4 0.04 -0.5 0.04 1.0 0.04 -1.8 0.03 -0.7 0.04 0.5 0.04 1.3 0.04
t =2.5 0.53 -1.7 0.04 -0.8 0.04 3.2 0.04 1.0 0.04 -0.8 0.04 -0.6 0.04 5.7 0.04
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A.5 Additional Results from the colon cancer study

Table A-7: Distribution of baseline characteristics and pathological variables in the stage III
colon cancer study

Continuous Variables (mean (sd))
Age 59.81 (11.91)
Categorial Variables (N (%))
Male 460 (51.8)
Treatment

Observation 305 (34.3)
Levamisole 294 (33.1)
Levamisole+5FU 289 (32.5)

Obstruction 171 (19.3)
Perforation 27 (2.0)
Adherence to nearby organs 128 (14.4)
Histologic differentiation

Well 90 (10.1)
Moderately well 653 (73.5)
Poor 145 (16.3)

Depth of invasion
Submucosa 19 (2.14)
Muscle 120 (11.5)
Serosa 730 (82.2)
Contiguous structures 37 (4.2)

Days from surgery to cohort entry=21-35 238 (26.8)
Positive lymph nodes >4 235 (26.5)
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Figure A-6: The baseline hazard of all-cause mortality in the stage III colon cancer, comparing
the spline-based AFT model to the smooth error AFT model with increasing penalty.

Table A-8: Models fit of the smoothed error AFT model based on increasing penalty

log(𝜆) Log likelihood Effective degrees
of freedom AIC Penalized log-

likelihood
-8 -1280.18 24.688 2609.74 -1283.93
-4 -1287.67 20.421 2616.17 -1288.34
2 -1293.89 16.204 2620.18 -1294.85

𝜆 = 𝑒−8 is chosen by the default option using cross-validation; number of parameters is 54 for all the three models
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Figure A-7: QQ plots for checking the AFT constant time ratio assumptions for each covariate
in the colon cancer study.

Figure A-8: Cox-Snell residual plots for alternative models in the colon cancer study.
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Figure A-9: Estimated covariate effects from the Cox PH model in the colon cancer study.

The survival curves estimated from the proposed spline-based AFT model are shown in

Figure A-10 for the control, Levamisole and Levamisole+5FU groups, assuming mean age and

all other covariates are at the reference level.

Figure A-10: Survival curves estimated from the spline-based AFT model comparing patients
at mean age treated with Levamisole alone, Levamisole+5FU and untreated control group. All
other covariates are assumed to be the reference level.
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In Figure A-11, we show the survival curve, using the results from the spline-based AFT

model, for four random selected patients in this study. Characteristics of these four patients are

provided in Table A-9. This allows us to estimate/predict the survival curve for new patients

with their covariate information measured at the baseline. Time-specific survival probability,

as shown in Table A-10, can be calculated for each treatment option for patients who have the

same covariate pattern with Patient A-D. This, as well as the survival curves, can potentially

help inform treatment decision. For example, given limited health care source, clinician may

decide which patient should receive the treatment with Levamisole+5FU with priority.

Figure A-11: Survival curves estimated from the spline-based AFT model for four random
selected patients in the stage III colon cancer study. (Characteristics of the four patients are
listed in Table A-9). The cross symbol (+) represents the observed censoring time and the dot
symbol (•) represents the observed time of death. The survival curve in which the symbol is
located represents the estimated survival for the treatment actually received, while the other
curve corresponds to the survival had the patient received the alternative treatments.
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Table A-9: Characteristics of the four random selected patients in the stage III colon cancer
study

Patient A Patient B Patient C Patient D
Age 58 61 70 42
Sex Female Male Male Female
Treatment Observation Levamisole Levamisole+5FU Levamisole+5FU
Obstruction No No No No
Perforation No No No No
Adherence to
nearby organs No No No No

Histologic
differentiation

Moderately
well

Moderately
well

Moderately
well Poor

Depth of invasion Serosa Contiguous
structures Muscle Serosa

Days from surgery
to cohort entry 7-20 7-20 21-35 21-35

Positive lymph
nodes >4 No No No Yes

Table A-10: Five-year survival probability under different treatment for new patients who
have the same covariate pattern with Patient A-D

Covariate Pattern Observation only Levamisole alone Levamisole+5FU
Patient A 0.67 0.69 0.78
Patient B 0.50 0.52 0.62
Patient C 0.72 0.73 0.81
Patient D 0.28 0.29 0.35
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Appendix B: Appendix to Manuscript 2

B.1 Assumptions under the AFT model

B.1.1 Demonstration of the constant time ratio assumption

For simplicity, Figure B-1 is generated with a constant baseline hazard function (𝜆0 = 1) for

the subgroup with 𝑋 = 0. 𝑋 is a protective factor that decelerates the event course by a constant

time ratio, i.e., 𝑒𝛽 = 2
3 (𝑇 (𝑋 = 1) = 1.5𝑇 (𝑋 = 0)). The event times follow the exponential

distributions with the corresponding rates. Therefore, the hazard function and the survival

function when 𝑋 = 0 are given by, respectively, 𝜆(𝑡 |𝑋 = 0) = 𝜆0 and 𝑆(𝑡 |𝑋 = 0) = exp (−𝜆0𝑡).

Under the AFT model, the hazard function and the survival function when 𝑋 = 1 are

given by, respectively, 𝜆(𝑡 |𝑋 = 0) = 𝜆0𝑒
𝛽 and 𝑆(𝑡 |𝑋 = 1) = exp (−𝜆0𝑒

𝛽𝑡). Now we calculate

the event times for any given value of a survival probability 𝑠 in both groups. The times for

attaining this probability when 𝑋 = 0 and 𝑋 = 1 are expressed as, 𝑇 (𝑠 |𝑋 = 0) = − 1
𝜆0

log(𝑠)

and 𝑇 (𝑠 |𝑋 = 1) = − 1
𝜆0𝑒𝛽

log(𝑠). Thus, we have 𝑇 (𝑠 |𝑇=1)
𝑇 (𝑠 |𝑋=0) = 𝑒−𝛽 = 1.5. It clearly demonstrates

that the time ratio is a constant during the entire follow-up, such that any quantiles of survival

time are prolonged by 1.5 times in the subgroup with 𝑋 = 1.

142



Figure B-1: Survival curves (left panel) and time ratio (right panel) under the constant time
ratio assumption for a protective binary covariate 𝑋 under an exponential AFT model (𝑒𝛽 = 2

3).
The dashed lines in the left panel show the corresponding median and 80% percentile of the
survival times in both subgroups.

B.1.2 Demonstration of the violation of the constant time ratio assump-

tion

Figure B-2 is again generated with a constant baseline hazard function (𝜆0) for the subgroup

with 𝑋 = 0, so the event time for this subgroup is again assumed to follow the exponential

distribution. In this setting, 𝑋 is a protective factor, however, to relax the constant time ratio

assumption, we assume that 𝑋 = 1 decelerates the event time by a time-dependent time ratio,

i.e., 𝑒𝛽𝑡 = 1
1.5𝑡 . The hazard function and the survival function when 𝑋 = 0 remain the same in

the previous setting B.1.1 with constant time ratio. However, under this AFT model, the event

time in the subgroup with 𝑋 = 1 does not follow exponential distribution. The hazard function

and the survival function when 𝑋 = 1 are respectively derived as,

𝜆(𝑡 |𝑋 = 1) = 𝜆0𝑒
𝛽𝑡 ,
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and

𝑆(𝑡 |𝑋 = 1) = exp
(
−

∫ 𝑡

0
𝜆0𝑒

𝛽𝑢𝑑𝑢
)
= exp

(
−

𝜆0
𝛽
(𝑒𝛽𝑡 − 1)

)
.

It follows that for any given value of a survival probability 𝑠, the times for attaining this

probability when 𝑋 = 0 and 𝑋 = 1 are given by, 𝑇 (𝑠 |𝑋 = 0) = − 1
𝜆0

log(𝑠) and 𝑇 (𝑠 |𝑋 = 1) =
1
𝛽 log

(
1 −

𝛽
𝜆0

log(𝑠)
)
.

Apparently, the time ratio 𝑇 (𝑠 |𝑋=1)
𝑇 (𝑠 |𝑋=0) is not a constant and depends on the survival probability

being evaluated. When there are only 20% subjects who had event in both groups, the time

ratio is 1.05 (treated vs. control), whereas when there are 50% subjects who had event in both

groups, the time ratio is 1.17.

Figure B-2: Survival curves (left panel) and time ratio (right panel) for a protective binary
covariate 𝑋 under an exponential hazard function with time-dependent time ratio. The dashed
lines in the left panel show the corresponding median and 80% percentile of the survival times
in both subgroups.
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B.1.3 Violation of the linearity assumption under AFT models

Violation of linearity assumption implies that the time ratio for one unit increase in 𝑋

depends on the value of 𝑋 . For example, the ratio of survival times, associated with a 10-year

increase in age, may differ when comparing two subgroups who are aged (a) 70-year old vs.

60-year-old, and (b) 30-year old vs. 20-year old.

B.2 Details of methods

B.2.1 Alternating conditional estimation (ACE) algorithm

We adapt an iterative alternating conditional estimation (ACE) algorithm [33, 97] to es-

timate the parameters of our flexible extension of the AFT model (5.3.5). In particular, our

ACE algorithm divides the parameter space into three mutually exclusive subsets, consisting

of the spline coefficients for, respectively: (i) the baseline hazard 𝛾𝑘, 𝑘 = 1, · · · , 𝐾 , (ii) the

TD effects: 𝑏𝑞, 𝑗 , 𝑞 = 1, · · · , 𝑄, for all covariates, and (iii) the NL effects: 𝑎𝑙, 𝑗 , 𝑙 = 1, · · · , 𝐿,

for continuous covariates. The algorithm then iterates across the following three consecutive

steps, each involving estimating only one of the above subsets:

(1) Estimate 𝜸 for the log hazard function 𝜆0
(
exp

( ∑
𝑗 𝛽 𝑗 (𝑡)𝑔 𝑗 (𝑋𝑗 )

)
𝑡
)

in equation (5.3.8) of

the main manuscript, conditional on the estimates, obtained from the previous iteration,

of both time-dependent effect 𝛽𝑗 (𝑡) in equation (5.3.6) and non-linear function 𝑔 𝑗 (𝑋𝑗 )

in equation (5.3.7);

(2) Estimate 𝒃 for the time-dependent effect 𝛽𝑗 (𝑡), conditional on the estimates of 𝜸 from

step (1) of the same iteration and 𝑔 𝑗 (𝑋𝑗 ) from step (3) of the previous iteration;

(3) Estimate 𝒂 for the non-linear function 𝑔 𝑗 (𝑋𝑗 ), conditional on the estimates of 𝜸 and 𝒃

from steps (1) and (2) of the same iteration.
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In the step (1) of the first iteration, we fit a ‘naïve’ multivariable exponential AFT model,

assuming a constant baseline hazard �̂�(0) , constant time ratio (𝛽(0)𝑗 ) over time for variable 𝑋𝑗

and linear effects for all continuous variables. We then set initial values in equation (5.3.8) of

the main manuscript to the estimated hazard rate: 𝛾 (0)
𝑘 = �̂�(0) , 𝑘 = 1, · · · , 𝐾 , and set initial

values in equation (5.3.7) for each covariate 𝑋𝑗 to the estimated constant time ratio: 𝑏 (0)
𝑞, 𝑗 = 𝛽(0)𝑗 ,

𝑞 = 1, · · · , 𝑄, 𝑗 = 1, · · · , 𝐽. For a continuous covariate 𝑋𝑗 , we fit a linear regression using the

𝑋𝑗 as the dependent variable and the spline basis in equation (5.3.6), 𝐴𝑙, 𝑗 (𝑋𝑗 ), as independent

variables. The coefficients obtained from this linear regression are used as initial values for

𝑎 (0)
𝑙, 𝑗 . The normalization property of B-splines ensures that

∑𝐾
𝑘=1 𝑆𝑘 (·) =

∑𝐿
𝑙=1 𝐴𝑙, 𝑗 (𝑋𝑗 ) =∑𝑄

𝑞=1 𝐵𝑞 (𝑡) = 1, thus these initial values imply 𝜆0
(
exp

( ∑
𝑗 𝛽 𝑗 (𝑡)𝑔 𝑗 (𝑋𝑗 )

)
𝑡
)
= �̂�(0) , 𝛽𝑗 (𝑡) =

𝛽(0)𝑗 and 𝑔 𝑗 (𝑋𝑗 ) = �̂� 𝑗 . In the step (2) of the first iteration, the initial value of 𝑏𝑞, 𝑗 is again set

to be 𝑏𝑞, 𝑗 = 𝛽(0)𝑗 , 𝑞 = 1, · · · , 𝑄, 𝑗 = 1, · · · , 𝐽, while conditional on the initial value 𝑎 (0)
𝑙, 𝑗 and

�̂� estimated from step (1). Likewise, in the step (3) of the first iteration, the initial value of

𝑎𝑙, 𝑗 is set to be 𝑎 (0)
𝑙, 𝑗 while conditional on �̂�𝑞, 𝑗 estimated from step (2) and �̂� estimated from

step (1). In the subsequent iterations of the algorithm, the initial values for the parameters

being estimated at each step are set to be the corresponding estimates obtained at the previous

iteration.

The estimation process is repeated iteratively until the difference between the log-likelihood

from two consecutive iterations is less than a pre-specified threshold, set to be 10−5 in our

simulation and analyses reported in this article. R programs for implementing the complex log-

likelihood function in equation (5.3.9) of the manuscript and the ACE algorithm are provided

to achieve the estimation of the hazard function, NL and TD effects. For the estimation in each

step, our program employs the BFGS quasi-Newton method implemented by ‘optim’ function

in R, using the first derivatives of the log-likelihood function in equation (5.3.9), with respect

to each of the three subsets of the parameters. Appendix B.2.3 describes why and how, the final

TD and NL estimates for the same continuous covariate are re-scaled to facilitate interpretation

of result.
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The first derivative of the log-likelihood with respect to 𝜸

For the 𝑟 th spline coefficient in the estimation of the hazard, the first derivative of the log-

likelihood is given by:

𝜕 log 𝐿

𝜕𝛾𝑟
=

𝑛∑
𝑖=1

[
𝛿𝑖𝑆𝑟 (𝑤𝑖) −

∫ 𝑡𝑖

0
exp (

𝐽∑
𝑗=1

𝛽𝑗 (𝑢)𝑔 𝑗 (𝑋𝑖 𝑗 )) exp
( 𝐾∑
𝑘=1

𝛾𝑘𝑆𝑘 (𝑤
′
𝑖)
)
𝑆𝑟 (𝑤

′
𝑖)𝑑𝑢

]

where𝑤𝑖 = exp
( ∑𝐽

𝑗=1 𝛽𝑗 (𝑡𝑖)𝑔 𝑗 (𝑋𝑖 𝑗 )
)
𝑡𝑖, 𝑤′

𝑖 = exp
( ∑𝐽

𝑗=1 𝛽𝑗 (𝑢)𝑔 𝑗 (𝑋𝑖 𝑗 )
)
𝑢, 𝛽𝑗 (𝑢) =

∑𝑄
𝑞=1 𝑏𝑞, 𝑗 𝐵𝑞 (𝑢),

and 𝑔 𝑗 (𝑋𝑖 𝑗 ) =
∑𝐿

𝑙=1 𝑎𝑙, 𝑗 𝐴𝑙, 𝑗 (𝑋𝑖 𝑗 ); 𝑆𝑟 (·), 𝐴𝑙, 𝑗 (𝑋𝑖 𝑗 ) and 𝐵𝑞 (𝑢) are B-spline basis for the modeling

of the hazard, NL and TD effects, respectively.

The first derivative of the log-likelihood with respect to 𝒃

For the 𝑟 th spline coefficient for the estimation of the TD effect of covariate 𝑗 , the first derivative

of the log-likelihood is given by:

𝜕 log 𝐿

𝜕𝑏𝑟, 𝑗
=

𝑛∑
𝑖=1

[
𝛿𝑖𝐵𝑟 (𝑡𝑖)𝑔 𝑗 (𝑋𝑖 𝑗 )−

∫ 𝑡𝑖

0
exp (

𝐽∑
𝑗=1

𝛽𝑗 (𝑢)𝑔 𝑗 (𝑋𝑖 𝑗 )) exp
( 𝐾∑
𝑘=1

𝛾𝑘𝑆𝑘 (𝑤
′
𝑖)
)
𝐵𝑟 (𝑢)𝑔 𝑗 (𝑋𝑖 𝑗 )𝑑𝑢

]

The first derivative of the log-likelihood with respect to 𝒂

For the 𝑟 th spline coefficient for the estimation of the NL effect of covariate 𝑗 , the first derivative

of the log-likelihood is given by:

𝜕 log 𝐿

𝜕𝑎𝑟, 𝑗
=

𝑛∑
𝑖=1

[
𝛿𝑖𝛽 𝑗 (𝑡𝑖)𝐴𝑟, 𝑗 (𝑋𝑖 𝑗 )−

∫ 𝑡𝑖

0
exp (

𝐽∑
𝑗=1

𝛽𝑗 (𝑢)𝑔 𝑗 (𝑋𝑖 𝑗 )) exp
( 𝐾∑
𝑘=1

𝛾𝑘𝑆𝑘 (𝑤
′
𝑖)
)
𝛽𝑗 (𝑢)𝐴𝑟, 𝑗 (𝑋𝑖 𝑗 )𝑑𝑢

]

B.2.2 Bootstrap-based confidence intervals

Standard large-sample inference may not accurately quantify the sampling variance of the

estimates, which resulted from the three-step iterative conditional estimation of parameters in

the complex modeling that consist of (i) hazard functions, (ii) TD effects and (iii) NL effects
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[41]. Therefore, we rely on non-parametric bootstrap procedure [118] to assess the stability

of the flexible AFT model. In each of 𝑀 bootstrap resamples, we use the proposed ACE

algorithm to estimate the proposed flexible AFT model, adjusting for potential TD and NL

effects. The pointwise 95% confidence bands around the estimated TD and NL functions for

covariate 𝑗 , 𝛽𝑗 (𝑡) and 𝑔 𝑗 (𝑋𝑗 ), are obtained by connecting the 2.5th and 97.5th percentiles of

the empirical distribution of the corresponding estimates across the 𝑀 resamples, for each 𝑡

and for each specific value of the covariate 𝑋𝑗 , respectively. The confidence interval bands for

the hazard function, survival curve conditional on individual covariate pattern as well as the

time-dependent time ratio can be obtained likewise.

B.2.3 Rescaling of the NL and TD effects

The ACE algorithm ensures that the TD and NL functions, 𝛽𝑗 (𝑡) and 𝑔 𝑗 (𝑋𝑗 ), that are multi-

plied by each other in equation (5.3.5) of the manuscript, are estimated separately, respectively,

in steps (2) and (3) of each iteration of ACE. However, the two functions may share an arbitrary

scale factor, i.e., for any 𝜉 𝑗 ≠ 0, 𝛽𝑗 (𝑡)𝑔 𝑗 (𝑋𝑗 ) can be represented as 𝜉 𝑗 𝛽 𝑗 (𝑡)
𝑔 𝑗 (𝑋 𝑗 )

𝜉 𝑗
. In the final

estimates, where we may obtain 𝛽𝑗 (𝑡) as the estimate of 𝜉 𝑗 𝛽 𝑗 (𝑡) and �̃� 𝑗 (𝑋𝑗 ) as the estimate of
𝑔 𝑗 (𝑋 𝑗 )

𝜉 𝑗
, it is infeasible to disentangle such scale factor 𝜉 𝑗 . To describe the TD and NL effects

in a meaningful manner and evaluate the estimation of 𝛽𝑗 (𝑡) and 𝑔 𝑗 (𝑋𝑗 ) in simulation studies

using their corresponding true functions as benchmarks, we propose to present the scaled

version of the TD and NL effects using the range of the NL effect. Specifically, we present

the estimated TD effect using 𝛽𝑗 (𝑡) = 𝛽𝑗 (𝑡) ×
[
max(�̃� 𝑗 (𝑋𝑗 )) − min(�̃� 𝑗 (𝑋𝑗 ))

]
. 𝛽𝑗 (𝑡) can be

interpreted as the adjusted log TD effect, at time 𝑡, between the values of 𝑋𝑗 corresponding

to, respectively, the highest and the lowest risks. Accordingly, we present the NL effect using

�̂� 𝑗 (𝑋𝑗 ) = �̃� 𝑗 (𝑋𝑗 )/
[
max(�̃� 𝑗 (𝑋𝑗 )) − min(�̃� 𝑗 (𝑋𝑗 ))

]
. 𝛽𝑗 (𝑡), so that the NL effect is constrained

to be between 0 and 1. 𝜉 𝑗 may be negative, in which case, we rely on some prior knowledge

about the NL effect of 𝑋𝑗 to obtain the correct direction of both effects. For example, we may
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know a priori that the risk of event associated with 𝑋𝑗 , such as age and SOFA in our septic

shock study, at 90% percentile is larger than that at 10% percentile. If this is true from the

results obtained with ACE, i.e., �̃� 𝑗 (𝑋𝑗 (0.9)) > �̃� 𝑗 (𝑋𝑗 (0.1)), implying 𝜉 𝑗 > 0, then we present

𝛽𝑗 (𝑡) and �̂� 𝑗 (𝑋𝑗 ), otherwise, we present −𝛽𝑗 (𝑡) and −�̂� 𝑗 (𝑋𝑗 ). Note that the overall effect of 𝑋𝑗

at a given time 𝑡 on the log hazard is the product of 𝛽𝑗 (𝑡) and 𝑔 𝑗 (𝑋𝑗 ) jointly. Both 𝛽𝑗 (𝑡)�̂� 𝑗 (𝑋𝑗 )

and 𝛽𝑗 (𝑡)�̃� 𝑗 (𝑋𝑗 ) give the same estimation of 𝛽𝑗 (𝑡)𝑔 𝑗 (𝑋𝑗 ).

B.3 Details of the simulation studies

B.3.1 Data generation procedure

For each scenario, we simulated 100 independent random samples. For each random

sample, data were generated by the following steps:

(1) Generate 𝑁 covariate vectors. In both scenarios, 𝑋1 was generated from a Bernoulli

distribution with probability 0.5. In scenario 1, both 𝑋2 and 𝑋3 were generated from a

standard normal distribution (N(0, 1)), whereas in scenario 2, they were generated from

a uniform distribution (𝑈 [−1, 1]). The three covariates were independently generated in

both scenarios.

(2) Generate hypothetical event times, conditional on covariate vectors generated in step

(1). For each covariate vector, we first calculated the values of the true survival function

𝑆(𝑡 |𝑋1, 𝑋2, 𝑋3) consistent with the true model expressed in equation (5.4.1). Due to the

complexity of our model, no closed form could be derived for 𝑆(𝑡 |𝑋1, 𝑋2, 𝑋3). Therefore,

we adopted a numerical grid search approach similar to that employed in simulations

evaluating full maximum likelihood estimation of a flexible extension of the PH model

[41]. Specifically, we first calculated the consecutive survival probabilities correspond-

ing to discrete times 𝑡, increased in increments of 3 × 10−4 year, from 0 to 6 years of

follow-up, using numerical integration 𝑆(𝑡 |𝑋1, 𝑋2, 𝑋3) = exp (−
∫ 𝑡

0 𝜆(𝑢 |𝑋1, 𝑋2, 𝑋3)𝑑𝑢).
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We then generated a random value 𝑢 from a uniform distribution 𝑈 [0, 1], and searched

for the time 𝑡 such that the difference between the corresponding true 𝑆(𝑡 |𝑋1, 𝑋2, 𝑋3) and

𝑢 was less than a threshold set to be 10−3. The resulting 𝑡 was considered to represent

the expected event time for a subject with the corresponding covariate vector.

(3) Generate censoring times and the observed times. Administrative right censoring at

𝐶1 = 6 years was imposed by the simulation design. Additionally, uniformly distributed

random censoring times (𝐶2) were generated to mimic losses to follow-up, so as to

achieve about 80% overall event rate (20% censoring) in both scenarios. An individual’s

observed time was then determined as min(𝑡, 𝐶1, 𝐶2), and the subject’s status was defined

as (𝛿𝑖 = 1) if it corresponded to the event time 𝑡 generated in step (2).
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B.3.2 Results of the estimated TD and NL effects in alternative simulation

scenarios

The gray curves are the individual estimates from 100 samples, and the pointwise mean is

shown by the white curve. The black dashed curve represents the true rescaled NL and TD

functions.

Alternative simulation 1: sample size: 𝑵 = 1, 000, event rate: 40%

Figure B-3: Results of the estimated TD and NL effects using 100 samples in alternative
simulation 1 (sample size: 𝑁 = 1, 000, event rate: 40%).
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Alternative simulation 2: sample size: 𝑵 = 650, event rate: 80%

Figure B-4: Results of the estimated TD and NL effects using 100 samples in alternative
simulation 2 (sample size: 𝑁 = 650, event rate: 80%).
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Alternative simulation 3: sample size: 𝑵 = 650, event rate: 40%

Figure B-5: Results of the estimated TD and NL effects using 100 samples in alternative
simulation 3 (sample size: 𝑁 = 650, event rate: 40%).
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Alternative simulation 4: sample size: 𝑵 = 1, 500, event rate: 80%

Figure B-6: Results of the estimated TD and NL effects using 100 samples in alternative
simulation 4 (sample size: 𝑁 = 1, 500, event rate: 80%).
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Alternative simulation 5: sample size: 𝑵 = 1, 500, event rate: 40%

Figure B-7: Results of the estimated TD and NL effects using 100 samples in alternative
simulation 5 (sample size: 𝑁 = 1, 500, event rate: 40%).
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B.3.3 Results from model (i) and (ii) in the main simulation scenarios 1

and 2

Figure B-8 attempts to provide some insights regarding the implications of model mis-

specification, with respect to covariate effects. In particular, it permits assessing the impact of

ignoring both TD and NL effects by the ‘conventional’ Weibull AFT model (i), and ignoring

the TD effects by the ‘extended’ Weibull AFT model (ii).

Figure B-8 shows the estimated constant time ratios from the ‘conventional’ Weibull AFT

model (i) for scenarios 1 and 2, and the constant-over-time effects of 𝑋1 and the NL effects

of 𝑋2 and 𝑋3 estimated from the ‘extended’ Weibull AFT model (ii). Notice that in model

(ii) that incorporates non-linear covariate effects, the effect of 𝑋2 and 𝑋3 are represented by

𝑔2(𝑋2) and 𝑔3(𝑋3) only, which are a priori constrained to be constant over time. In this case,

conventional regression coefficients are used as the spline coefficients to construct the estimated

NL functions. However, the TD effects can be characterized by neither (i) the ‘conventional’

Weibull AFT nor (ii) the ‘extended’ Weibull AFT models. Biased constant time ratios for all

the three covariates are resulted from model (i) in both scenarios, while none of the NL effects

are being estimated (the first and third row in Figure B-8). On the other hand, most of the

estimated NL effects by model (ii) are biased (second and fourth row 4), although surprisingly,

the NL functions are accurately recovered for 𝑋2 in scenario 1. Overall, both models (i) and

(ii) provide unsatisfactory results in terms of the estimation of the covariate effects.
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Figure B-8: Results of the estimated constant effects for all three covariates using 100 samples
in simulation scenarios 1 and 2, provided by the ‘conventional’ Weibull AFT model (i) (first
and third row) and the constant effect for 𝑋1 and NL effects for 𝑋2 and 𝑋3 provided by the
‘extended’ Weibull AFT model (ii) (second and fourth row).The gray curves are the individual
estimates from 100 samples, and the pointwise mean is shown by the white curve. The black
dashed curve represents the true NL and TD functions.

B.3.4 Results of the estimated hazard function and survival curve in the

main simulation scenarios 1 and 2

The hazard function and survival curve conditional on any given covariate pattern can be

derived from all the three alternative models for both main scenarios. In addition to the setting

(𝑋1 = 𝑋2 = 𝑋3 = 0) presented in the main manuscript, the results of two more covariate

patterns are shown in this section.
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Figure B-9: The comparison of the estimation of hazard function and survival curve in the
main simulation scenario 1, conditioning on the covariate pattern 𝑋1 = 1, 𝑋2 = 𝑋3 = 0.

Figure B-10: The comparison of the estimation of hazard function and survival curve in the
main simulation scenario 1, conditioning on the covariate pattern 𝑋1 = 1, 𝑋2 = 𝑋3 = 0.5.

158



Figure B-11: The comparison of the estimation of hazard function and survival curve in the
main simulation scenario 2, conditioning on the covariate pattern 𝑋1 = 𝑋2 = 𝑋3 = 0.
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B.3.5 Additional results of the estimated log time ratios in the main

simulation scenarios 1 and 2

Two covariate patterns are shown in the labels on the top of each panel, along with the true

survival times in both groups corresponding to specific 𝑞-quantile of the survival time.

Figure B-12: Results of the estimated log time ratios by the flexible AFT model using 100
samples in simulation scenario 1, comparing two covariate patterns for each covariate.

Figure B-13: Results of the estimated log time ratios by the flexible AFT model using 100
samples in simulation scenario 2, comparing two covariate patterns for each covariate.
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B.3.6 Alternative simulation in univariate setting with constant time ra-

tio and linear effect: 𝜷(𝒕)𝒈(𝑿) = 0.8 ∗ 𝑿

Figure B-14: Results of the estimated TD and NL effects in univariate setting with constant
time ratio and linear effect.

Table B-1: Comparison of mean akaike information criterion (AIC) from three alternative
models in simulation where constant time ratio and linear function are the true effects

Flexible AFT model
(𝑑𝑓 =14)

Conventional Weibull
AFT model (𝑑𝑓 =3)

Non-linear Weibull
AFT model (𝑑𝑓 =5)

Log-likelihood -1355.071 -1359.705 -1358.772
AIC 2738.142 2725.411 2727.543

B.4 Details of the real-life application

B.4.1 Modeling strategy in the septic shock main analysis

In our main analyses we used a modeling strategy based on the proposed flexible AFT

model, consisted of three stages. In stage (1), we considered the five aforementioned important
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baseline prognostic factors, i.e, age, Sepsis-related Organ Failure Assessment (SOFA) score,

immunosuppression, infection site and Knaus score. The initial flexible multivariable AFT

model, estimated at stage (1), included the TD effects for all the five covariates, and the NL

effects for both continuous variables: age and SOFA score. In stage (2), stepwise variable

addition was performed to check if adding other prognostic factors (whether or not the germ

was identified, infection type (community-acquired vs. nosocomial), cirrhosis status (yes vs.

no) in the mode would improve the goodness-of-fit. In the first step, the TD effect of each

of the three prognostic factors were added, one at a time to the initial model, the effect with

the minimum AIC value was added. In the consecutive steps, we compared the models when

adding the remaining TD effects. The stepwise addition continued until no further additions

could improve the AIC. In stage (3), stepwise backward variable deletion was employed based

on the model resulted from stage (2). In each step, the TD or the NL effect of each covariate

was excluded, one at a time, and the effect whose deletion resulted in the largest reduction in

AIC value was eliminated until no improvement in AIC was achieved. If a TD or NL effect

was eliminated in one step, the covariate was still included in the model but conform with the

constant time ratio or linearity assumption. The model resulted from stage (3) was the final

flexible AFT model.
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Table B-2: Results of each stage in building the final flexible AFT model in the septic shock
study

Covariates Log-
likelihood

Degree of
freedom AIC

Stage 1 -2065.971 34 4199.942
Selected covariates/
Initial Model

Immunosuppression (TD); Knaus score (TD); Infection site (TD);
Age (TD+NL); SOFA(TD+NL)

Stage 2 Stage 2
Step 1 Addition

Germ +TD -2062.404 38 4200.808
Cirrhosis +TD -2046.147 38 4168.294
Infection type (nosocomial) +TD -2052.234 38 4180.468

Step 2 Addition
Germ +TD -2046.776 42 4177.551
Infection type (nosocomial) +TD -2041.292 42 4166.584

Step 3 Addition
Germ +TD -2041.243 46 4174.487

Selected covariates Immunosuppression (TD); Knaus score (TD); Infection site (TD);
Cirrhosis (TD); Infection type (TD); Age (TD+NL); SOFA(TD+NL)

Stage 3
Step 1 Deletion

Immunosuppression -TD -2052.812 39 4183.623
Knaus score -TD -2041.937 39 4161.874
Infection site (urinary) -TD -2041.828 39 4161.657
Cirrhosis -TD -2059.237 39 4196.474
Infection type (nosocomial) -TD -2049.263 39 4176.527
Age -TD -2153.189 38 4382.379
SOFA score -TD -2060.938 38 4197.875
Age -NL -2044.731 38 4165.461
SOFA score -NL -2044.293 38 4164.586

Step 2 Deletion
Immunosuppression -TD -2045.444 36 4162.888
Knaus score -TD -2043.001 36 4158.002
Cirrhosis -TD -2060.006 36 4192.013
Infection type (nosocomial) -TD -2045.215 36 4162.431
Age -TD -2153.198 35 4376.397
SOFA score -TD -2064.232 35 4198.465
Age -NL -2052.281 35 4174.561
SOFA score -NL -2046.978 35 4163.956

Step 3 Deletion
Immunosuppression -TD -2045.518 33 4157.036
Cirrhosis -TD -2055.391 33 4174.781
Infection type (nosocomial) -TD -2052.475 33 4168.950
Age -TD -2153.225 32 4368.449
SOFA score -TD -2070.349 32 4202.697
Age -NL -2056.141 32 4174.282
SOFA score -NL 2048.335 32 4158.670

Step 4 Deletion
Cirrhosis -TD -2056.636 30 4173.271
Infection type (nosocomial) -TD -2049.984 30 4159.969
Age -TD -2153.198 29 4364.397
SOFA score -TD -2070.484 29 4198.968
Age -NL -2052.821 29 4163.641
SOFA score -NL -2050.143 29 4158.287

Selected covariates/ Immunosuppression (constant); Knaus score (constant); Infection site (constant);
Cirrhosis (TD); Infection type (TD); Age (TD+NL); SOFA(TD+NL)Final Model
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B.4.2 Results of the estimated NL effect of age and SOFA

Figure B-15: Estimated NL effects of age and SOFA score, relative to the mean values, at
baseline, 20 days and 50 days, respectively, from the flexible AFT model in the septic shock
study.

Figure B-16: Estimated NL effects of age and SOFA score, relative to the mean values, from
the non-linear extended AFT model in the septic shock study.
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Figure B-17: Cox-Snell residual plots from alternative models in the septic shock study.
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B.5 Analytical examples for TD effect and time-dependent

time ratio

Figure B-18: Analytical example 1 that shows different patterns for TD effect 𝛽(𝑡) and
time-dependent time ratio 𝜓(𝑞). (a) baseline hazard function; (b) TD effect 𝛽(𝑡) of a binary
covariate; (c) time-dependent time ratio in the log scale log𝜓(𝑞), as a function of the quantiles
of survival times, derived from inversing the survival functions in (d) for 𝑋 = 0 vs. 𝑋 = 1.

Figure B-19: Analytical example 2 that shows different patterns for TD effect 𝛽(𝑡) and
time-dependent time ratio 𝜓(𝑞). (a) baseline hazard function; (b) TD effect 𝛽(𝑡) of a binary
covariate; (c) time-dependent time ratio in the log scale log𝜓(𝑞), as a function of the quantiles
of survival times, derived from inversing the survival functions in (d) for 𝑋 = 0 vs. 𝑋 = 1.
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Appendix C: Appendix to Manuscript 3

C.1 Supplementary Materials for the non-small cell lung

cancer (NSCLC) study

Table C-1: Baseline characteristics of patients in the NSCLC study (𝑁 = 269)

Variables Descriptive statistics
Stage: IIIA/IIIB 𝑛 (%) 70 (26.0)

IIIB+/IV 𝑛 (%) 199 (74.0)
Smoking status: Never 𝑛 (%) 41 (15.2)

Ever 𝑛 (%) 228 (84.8)
Chemotherapy type: Single-agent 𝑛 (%) 66 (24.55)

Double-agent 𝑛 (%) 203 (75.5)
CRP

Mean (sd) 36.2 (53.6)
Median {quartile} (range) 13.1 {4.9, 39.9} (0.3, 316.8)

log2CRP
Mean (sd) 3.8 (2.2)
Median {quartile} (range) 3.7 {2.3, 5.3} (-1.7, 8.3)

Albumin mean (sd) 40.2 (4.1)
LDH

Mean (sd) 248.8 (199.4)
Median {quartile} (range) 211 {169, 263} (98, 2500)

log2LDH
Mean (sd) 7.8 (0.6)
Median {quartile} (range) 7.7 {7.4, 8.0} (6.6, 11.3)

ANC 7.09 (3.55)
Lymphocytes 1.59 (0.70)
Age: mean (sd) 64.3 (11.0)
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Table C-2: Results of the backwards elimination procedure in building the final flexible
TD/NL Cox PH model

Covariates Log-
likelihood

Degree of
freedom AIC

Stage 1 10 covariates -904.8782 58 1925.756
Selected covariates/
Initial Model

Stage(TD), Smoking(TD), Chemotherapy(TD), Sex (TD),
log2CRP(TD+NL), Albumin(TD+NL), log2LDH (TD+NL),
ANC (TD+NL), Lymphocytes(TD+NL), Age (TD+NL)

Stage 2 Stage 2
Step 1 Deletion

Stage -TD -906.5334 55 1923.067
Smoking -TD -907.5901 55 1925.180
Chemotherapy -TD -907.2901 55 1924.580
Sex -TD -905.5291 55 1921.058
log2CRP -TD 905.8750 54 1919.750
Albumin -TD -914.8705 54 1937.741
log2LDH -TD -912.6976 54 1933.395
ANC -TD -909.8859 54 1927.772
Lymphocytes -TD -909.1636 54 1926.327
Age -TD -911.0809 54 1930.162
log2CRP -NL -906.8110 55 1923.622
Albumin -NL -905.4212 55 1920.842
log2LDH -NL -906.0528 55 1922.106
ANC -NL -906.0443 55 1922.089
Lymphocytes -NL -906.8788 55 1923.758
Age -NL -911.2044 55 1932.409

Step 2 Deletion
Stage -TD -907.7092 51 1917.418
Smoking -TD -909.8439 51 1921.688
Chemotherapy -TD -907.9737 51 1917.947
Sex -TD -906.5915 51 1915.183
Albumin -TD -916.5361 50 1933.072
log2LDH -TD -913.8720 50 1927.744
ANC -TD -911.0939 50 1922.188
Lymphocytes -TD -910.1748 50 1920.350
Age -TD -913.4862 50 1926.972
log2CRP -NL -907.6509 52 1919.302
Albumin -NL -906.4229 51 1914.846
log2LDH -NL -906.9582 51 1915.916
ANC -NL -907.1764 51 1916.353
Lymphocytes -NL -907.9335 51 1917.867
Age -NL -912.2185 51 1926.437

Step 3 Deletion
Stage -TD -908.7579 48 1913.516
Smoking -TD -910.1212 48 1916.242
Chemotherapy -TD -908.5231 48 1913.046
Sex -TD -907.1501 48 1910.300
Albumin -TD -916.7148 48 1929.430
log2LDH -TD -914.3635 47 1922.727
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ANC -TD -917.2551 47 1928.510
Lymphocytes -TD -910.4376 47 1914.875
Age -TD -913.5826 47 1921.165
log2CRP -NL -908.0399 49 1914.080
log2LDH -NL -907.7230 48 1911.446
ANC -NL -907.9190 48 1911.838
Lymphocytes -NL -908.2558 48 1912.512
Age -NL -912.4233 48 1920.847

Step 4 Deletion
Stage -TD -910.1098 45 1910.220
Smoking -TD -913.4796 45 1916.959
Chemotherapy -TD -909.2689 45 1908.538
Albumin -TD -917.6396 45 1925.279
log2LDH -TD -915.1598 44 1918.320
ANC -TD -911.8240 44 1911.648
Lymphocytes -TD -911.7530 44 1911.506
Age -TD -914.1130 44 1916.226
log2CRP -NL -908.7433 46 1909.487
log2LDH -NL -908.7059 45 1907.412
ANC -NL -908.7219 45 1907.444
Lymphocytes -NL -909.2475 45 1908.495
Age -NL -912.7979 45 1915.596

Step 5 Deletion
Stage -TD -910.5987 42 1905.197
Smoking -TD -914.5138 42 1913.028
Chemotherapy -TD -910.2454 42 1904.491
Albumin -TD -918.1411 42 1920.282
log2LDH -TD -915.2628 42 1914.526
ANC -TD -912.7823 41 1907.565
Lymphocytes -TD -912.2793 41 1906.559
Age -TD -914.5741 41 1911.148
log2CRP -NL -909.5354 43 1905.071
ANC -NL -909.9271 42 1903.854
Lymphocytes -NL -910.1732 42 1904.346
Age -NL -911.1712 42 1906.342

Step 6 Deletion
Stage -TD -912.2870 39 1902.574
Smoking -TD -916.5047 39 1911.009
Chemotherapy -TD -912.2094 39 1902.419
Albumin -TD -919.4016 39 1916.803
log2LDH -TD -916.7141 39 1911.428
ANC -TD -913.5680 39 1905.136
Lymphocytes -TD -914.4134 38 1904.827
Age -TD -916.1569 38 1908.314
log2CRP -NL -911.6018 40 1903.204
Lymphocytes -NL -912.5404 39 1903.081
Age -NL -913.0323 39 1904.065

Step 7 Deletion
Stage -TD -914.6833 36 1901.367
Smoking -TD -918.7299 36 1909.460
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Albumin -TD -923.1595 36 1918.319
log2LDH -TD -919.4506 36 1910.901
ANC -TD -915.6525 36 1903.305
Lymphocytes -TD -916.8842 35 1903.768
Age -TD -918.1633 35 1906.327
log2CRP -NL -913.9551 37 1901.910
Lymphocytes -NL -915.1749 36 1902.350
Age -NL -915.0727 36 1902.145

Step 8 Deletion
Smoking -TD -921.6972 33 1909.394
Albumin -TD -924.6746 33 1915.349
log2LDH -TD -920.4553 33 1906.911
ANC -TD -918.278 33 1902.556
Lymphocytes -TD -917.3820 32 1898.764
Age -TD -919.4050 32 1902.810
log2CRP -NL -915.9682 34 1899.936
Lymphocytes -NL -915.9785 33 1897.957
Age -NL -916.4058 33 1898.812

Step 9 Deletion
Smoking -TD -922.4666 30 1904.933
Albumin -TD -926.2143 30 1912.429
log2LDH -TD -921.4425 30 1902.885
ANC -TD -920.6660 30 1901.332
Lymphocytes -TD -918.0590 30 1896.118
Age -TD -920.4081 29 1898.816
log2CRP -NL -918.2958 31 1898.592
Age -NL -919.8491 30 1899.698

Step 10 Deletion
Smoking -TD -923.3304 27 1900.661
Albumin -TD -927.9397 27 1909.879
log2LDH -TD -922.9626 27 1899.925
ANC -TD -922.5874 27 1899.175
Age -TD -921.1334 26 1894.267
log2CRP -NL -920.4000 28 1896.800
Age -NL -920.3759 27 1894.752

Step 11 Deletion
Smoking -TD -924.0146 23 1894.029
Albumin -TD -931.5921 23 1909.184
log2LDH -TD -926.1222 23 1898.244
ANC -TD -924.6809 23 1895.362
log2CRP -NL -922.7632 24 1893.526
Age -NL -922.1241 24 1892.248

Step 12 Deletion
Smoking -TD -924.9843 21 1891.969
Albumin -TD -932.8248 21 1907.650
log2LDH -TD -926.7726 21 1895.545
ANC -TD -925.6975 21 1893.395
log2CRP -NL -924.6073 22 1893.215
Albumin -TD -935.2750 18 1906.550
log2LDH -TD -928.8652 18 1893.730
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ANC -TD -929.1288 18 1894.258
log2CRP -NL -927.3040 19 1892.608

Selected covariates/
Final Model

Stage(constant), Smoking (constant), Chemotherapy(constant),
sex (constant), log2CRP(NL), Albumin(TD), log2LDH (TD),
ANC (TD), Lymphocytes(PH+LL), Age (PH+LL)

Abbreviations: CRP=C-reactive protein; LDH=lactate dehydrogenase; ANC=Absolute neutrophil counts;
AIC=Akaike information criterion
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Table C-3: Results of the backwards elimination procedure in building the final flexible
TD/NL AFT model

Covariates Log-
likelihood

Degree of
freedom AIC

Stage 1 10 covariates -665.0755 70 1470.151
Selected covariates/
Initial Model

Stage (TD), Smoking (TD), Chemotherpay (TD), Sex (TD),
log2CRP(TD+NL), Albumin(TD+NL), log2LDH (TD+NL),
ANC (TD+NL), Lymphocytes(TD+NL), Age (TD+NL)

Stage 2 Stage 2
Step 1 Deletion

Stage -TD -662.4757 67 1458.951
Smoking -TD -665.7818 67 1465.564
Chemotherapy -TD -668.3102 67 1470.620
Sex -TD -664.7320 67 1463.464
log2CRP -TD -664.7395 66 1461.479
Albumin -TD -686.7901 66 1505.580
log2LDH -TD -678.0230 66 1488.046
ANC -TD -704.5850 66 1541.170
Lymphocytes -TD -694.1479 66 1520.296
Age -TD -662.5518 66 1457.104
log2CRP -NL -665.4292 66 1462.858
Albumin -NL -662.9892 66 1457.978
log2LDH -NL -668.6128 66 1469.226
ANC -NL -665.1000 66 1462.200
Lymphocytes -NL -666.3311 66 1464.662
Age -NL -666.9560 66 1465.912

Step 2 Deletion
Stage -TD -700.3301 63 1526.660
Smoking -TD -667.9859 63 1461.972
Chemotherapy -TD -678.0407 63 1482.081
Sex -TD -666.7105 63 1459.421
log2CRP -TD -772.5718 62 1669.144
Albumin -TD -881.1686 62 1886.337
log2LDH -TD -693.7866 62 1511.573
ANC -TD -766.3042 62 1656.608
Lymphocytes -TD -682.9132 62 1489.826
log2CRP -NL -672.5273 62 1469.055
Albumin -NL -667.7165 62 1459.433
log2LDH -NL -688.7646 62 1501.529
ANC -NL -657.5223 62 1439.045
Lymphocytes -NL -666.9404 62 1457.881
Age -NL -668.1827 63 1462.365

Step 3 Deletion
Stage -TD -682.8068 59 1483.614
Smoking -TD -676.7660 59 1471.532
Chemotherapy -TD -667.0727 59 1452.145
Sex -TD -671.3725 59 1460.745
log2CRP -TD -743.6007 58 1603.201
Albumin -TD -677.8076 58 1471.615
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log2LDH -TD -672.6906 58 1461.381
ANC -TD -668.7434 59 1455.487
Lymphocytes -TD -675.8479 58 1467.696
log2CRP -NL -704.8040 58 1525.608
Albumin -NL -660.3191 58 1436.638
log2LDH -NL -677.0087 58 1470.017
Lymphocytes -NL -663.0342 58 1442.068
Age -NL -661.3590 59 1440.718

Step 4 Deletion
Stage TD -662.0972 55 1434.194
Smoking TD -663.7005 55 1437.401
Chemotherapy TD -667.0983 55 1444.197
Sex TD -665.7052 55 1441.410
log2CRP TD -673.4709 54 1454.942
Albumin TD -680.8528 55 1471.706
log2LDH TD -679.8092 54 1467.618
ANC TD -682.0629 55 1474.126
Lymphocytes TD -680.6855 54 1469.371
log2CRP NL -676.3803 54 1460.761
log2LDH NL -689.6708 54 1487.342
Lymphocytes NL -664.7590 54 1437.518
Age NL -668.6763 55 1447.353

Step 5 Deletion
Smoking TD -665.4570 52 1434.914
Chemotherapy TD -665.3920 52 1434.784
Sex TD -665.4737 52 1434.947
log2CRP TD -688.9909 51 1479.982
Albumin TD -675.4861 52 1454.972
log2LDH TD -681.8193 51 1465.639
ANC TD -668.1680 52 1440.336
Lymphocytes TD -664.9544 51 1431.909
log2CRP NL -665.8842 51 1433.768
log2LDH NL -678.9901 51 1459.980
Lymphocytes NL -665.3980 51 1432.796
Age NL -681.2766 52 1466.553

Step 6 Deletion
Smoking TD -666.0313 48 1428.063
Chemotherapy TD -684.9225 48 1465.845
Sex TD -678.2013 48 1452.403
log2CRP TD -669.7692 47 1433.538
Albumin TD -670.8707 48 1437.741
log2LDH TD -682.0652 47 1458.130
ANC TD -677.7420 48 1451.484
log2CRP NL -675.0278 47 1444.056
log2LDH NL -668.0166 47 1430.033
Lymphocytes NL -665.9606 48 1427.921
Age NL -666.7439 48 1429.488

Step 7 Deletion
Smoking TD -675.5571 45 1441.114
Chemotherapy TD -668.6806 45 1427.361
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Sex TD -666.8228 45 1423.645
log2CRP TD -686.8774 44 1461.755
Albumin TD -678.2320 45 1446.464
log2LDH TD -678.2117 44 1444.423
ANC TD -680.1667 45 1450.333
log2CRP NL -676.0199 44 1440.040
log2LDH NL -669.4303 44 1426.861
Age NL -667.9330 45 1425.866

Step 8 Deletion
Smoking TD -719.9066 42 1523.813
Chemotherapy TD -669.7488 42 1423.498
log2CRP TD -680.8230 41 1443.646
Albumin TD -685.9158 42 1455.832
log2LDH TD -678.1219 41 1438.244
ANC TD -693.8110 42 1471.622
log2CRP NL -675.4547 41 1432.909
log2LDH NL -669.6709 41 1421.342
Age NL -670.3024 42 1424.605

Step 9 Deletion
Smoking TD -671.4910 38 1418.982
Chemotherapy TD -671.8274 38 1419.655
log2CRP TD -734.3446 37 1542.689
Albumin TD -678.4693 38 1432.939
log2LDH TD -703.4496 38 1482.899
ANC TD -788.3677 38 1652.735
log2CRP NL -671.9115 37 1417.823
Age NL -672.1038 38 1420.208

Step 10 Deletion
Smoking TD -673.1075 34 1414.215
Chemotherapy TD -674.006 34 1416.012
log2CRP TD -730.0440 34 1528.088
Albumin TD -680.2790 34 1428.558
log2LDH TD -878.0193 34 1824.039
ANC TD -828.8082 34 1725.616
Age NL -676.8697 34 1421.739

Step 11 Chemotherapy TD -695.3668 31 1452.733
log2CRP TD -680.8642 31 1423.728
Albumin TD -680.5861 31 1423.172
log2LDH TD -703.5252 31 1469.050
ANC TD -745.0766 31 1552.153
Age NL -686.4954 31 1434.991

Selected covariates/
Final Model

Stage (constant), Smoking (constant), Chemotherapy (TD),
sex (constant), log2CRP(TD), Albumin(TD), log2LDH (TD),
ANC (TD), Lymphocytes(constant+LL), Age (NL)

Abbreviations: CRP=C-reactive protein; LDH=lactate dehydrogenase; ANC=Absolute neutrophil counts;
AIC=Akaike information criterion
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Figure C-1: Schoenfeld residual plots for checking the Cox PH assumption

Figure C-2: Log-log curves for checking the Cox PH assumption
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Figure C-3: QQ plots for checking the AFT constant time ratio assumption

The calculation of the full log-likelihood for the PH model (i)

We reply on a spline-based PH model to obtain the full log-likelihood of model (i). This

model extends the conventional Cox PH model to model the baseline hazard function with

regression B-spline. Therefore, it can be considered as a special case of the flexible TD/NL

Cox PH model (6.2.1) with a priori linearity and constant effects. The full log-likelihood

is calculated by two estimation steps. In the first step, the hazard ratios are estimated by

maximizing the partial likelihood of the conventional Cox PH model. Then, in the second step,

we plug the estimated hazard ratios into the spline-based full likelihood, which is maximized in

order to estimate the baseline hazard function. The maximized full log-likelihood is reported

in Table 6-1 to facilitate the comparison between the conventional Cox PH (i) and the other
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alternative models (ii-vi). The resulting estimated hazard and survival curve for the hypothetical

reference group are reported in Figure 6-4.
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