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Abstract 

The development of a new angioplasty balloon is a time consuming process. This thesis 

aims at reducing the amount of time and materials spent on the ex,perimental stage of the 

development of new angioplasty balloons. This can be achieved by building a nonlinear 

neural network model of the balloon forming process and implementing an off-line cycle­

to-cycle controller. The controller can learn from the previous experiments and provide 

better input parameters for improving the quality of the next balloons formed in the 

process. It is shown in the experimental test results that the neural network model can 

provide accurate estimates of the process outputs. The neural network model combined 

with a cycle-to-cycle control strategy has the potential to replace the trial-and-error 

· approach to balloon development that is commonly applied today. 
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Résumé 

Le développement d'un nouveau ballon pour l'angioplastie est un processus qui prend 

beaucoup de temps. Cette thèse a pour but de réduire le temps et la quantité de matière 

utilisés pour le stade expérimental du développement d'un nouveau ballon d'angioplastie. 

Ceci peut être fait en construisant un modèle nonlinéaire du procédé de formage du ballon 

à l'aide d'un réseau neuronique et en implantant une loi de commande cycle à cycle sur le 

modèle. Le contrôleur peut apprendre à partir des expériences passées et fournir de 

meilleurs paramètres d'entrée pour améliorer la qualité des ballons qui seront formés 

subséquemment dans le procédé. On montre par des résultats expérimentaux que le 

modèle à réseau neuronique peut fournir des estimations précises des sorties du procédé. 

Le modèle à réseau neuronique combiné à une stratégie de commande cycle à cycle a le 

potentiel pour remplacer l'approche courante par essai erreur pour le développement de 

nouveaux ballons d'angioplastie. 
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Chapter 1 

Introduction 

Heart is one of the most essential muscles in the human body. It pumps the blood to the 

lungs and to the rest of the body. Oxygenated blood, which is carried to the heart muscle 

by coronary arteries, is needed in the circulatory system. Therefore, it is important to 

maintain the cardiac and coronary artery function. But heart disease has now become one 

of the leading diseases all over the world. There are several causes of the heart diseases. 

One of them is due to the reduced amount of blood flow in the circulatory system, which 

results in coronary artery diseases (CAD). Millions of people from all over the world now 

suffer from coronary artery diseases due to artery blockage or narrowing, as shown in 

Figure 1-1 [1]. Much research is conducted to find treatments for CAD. Balloon 

angioplasty has become a standard and practical method for the treatment of the coronary 

artery diseases since the early 1980's. Balloon angioplasty, also known as percutaneous 

transluminal coronary angioplasty (PTCA), is a catheter-based technique used to open 

clogged arteries [2]. It has been proven to be a safer and more efficient treatment for 

coronary artery diseases than other methods, such as bypass surgery. 

Clot 
Diseased Artery 

Figure 1-1 The Diseased Coronary Artery (Permission to print granted by Image copyright 

Texas Heart Institute, www.texasheart.org) 
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1.1 Thesis Objective 

Nowadays, trial-and-error is the method commonly used for the development of an 

angioplasty balloon both in the experimental stage and in the industrial production of the 

balloon. With the trial-and-error method, an unpredicted number of experiments needs to 

be done in order to find the best process input parameters. Even the manufacturing 

companies have not found a better way to produce the balloons. For the trial-and-error 

method, tests are conducted by heuristically varying the input parameters and measuring 

the outputs, which depends greatly on the operators' knowledge and experience of the 

process. lt typically tak:es several months, or sometimes even years, to develop an 

angioplasty balloon without defect. lt is shown in [3] that, with the aid of an iterative 

learning control algorithm, the amount of time invested in the experimental development 

stages can be greatly reduced. However, based on the linear model of the angioplasty 

balloon forming process [3], iterative learning control can provide satisfactory results for 

one batch of tubing but fail on another batch. Tak:ing more process input parameters into 

consideration, a more efficient method including a nonlinear model will be introduced in 

this thesis, which can help reduce the amount of time spent on the experimental stage and 

provide a set of input parameters based on three batches of tubing if the desired output 

parameters are given. The approach in this thesis involves building a nonlinear model of 

the balloon forming process and implementing a cycle-to-cycle controller which can 

provide a set of input parameters to start with, and reduce the number of experiments be 

petformed. In addition, the approach in this thesis mak:es good use of the previous 

experimental data by implementing an off-line learning algorithm. 

2 
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Thus, this thesis aims at building a nonlinear model based on the previous experimental 

results with the input parameters and the output parameters of the balloon forming 

machine and applying an off-line leaming controller to find improved input parameters if 

the desired output parameters are given. 

1.2 Benefits to the lndustry 

The design of a nonlinear model and the implementation of an off-line controller on the 

angioplasty balloon forming machine will contribute to the development and production 

of the angioplasty balloon in many ways. With a trial-an-error method, the operator must 

vary the setting parameters on the balloon forming machine by experience after each 

cycle until the produced balloon meets the required specifications such as surface quality, 

minimal wall-thickness and high burst pressure [3]. This procedure is considered to be 

experience demand.ing and time consuming. After the off-line controller is applied, it 

gives the user the suggested input parameters with the desired output parameters. 

1.3 Background Review 

1.3.1 Coronary artery disease (CAO) 

Heart d.iseases has become the leading cause of death in the U.S. and also are a major 

cause of d.isability. Coronary artery disease affects almost 1.3 million Americans [1], 

making it the most common type of heart disease. CAD is an illness that occurs when the 

coronary arteries are narrowed or blocked due to the accumulation of cholesterol and 

other material, called plaque, on their inner walls [ 4]. As the plaque deposits grow in size, 

the coronary arteries becomes narrowed and clogged and not enough blood can flow 

through the arteries. As a result, the blood flow to the heart muscle is reduced, and the 
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heart muscle cannat get enough oxygenated blood. At frrst, this reduced blood flow may 

not cause obvious symptoms. But as the plaque deposits increase in size, it may result in 

angina, shortness of breath or heart attack. Angina is chest pain or discomfort that occurs 

due to the lack ofblood [4]. And most heart attacks happen when a blood clot develops at 

the site of plaque in a coronary artery and suddenly cuts off most or all the hearts' blood 

supply, which can cause permanent damage to the heart muscle. Over time, CAO can 

weaken the heart muscle and lead to heart failure or arrhythmias. Heart failure means the 

heart can't pump blood effectively to the rest of the body while arrhythmias are changes 

in the normal beating rhythm of the heart and it can be qui te serious in sorne cases [ 4]. ln 

the Figure 1-2 [5], it shows the difference among the healthy coronary arteries, the 

blocked coronary arteries and the coronary arteries after the balloon angioplasty. 

Figure 1-2 Coronary Arteries (Permission to print granted by Landhort and Dr. Abdulla M. 

Abd ulla) 
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1 .3.2 Factors causing CAO and Prevention 

It is important to maintain the health of coronary arteries. And it is always necessary to 

know the main causes to CAD and how to prevent them. There are many things one could 

do to reduce the risk of getting a CAD. 

It has been identified by clinical and statistical studies that several factors could 

contribute to the increase of the chances of getting CAD and heart attacks. CAD usually 

begins with damage or injury to the inner layer of a coronary artery. And this damage 

could be caused by many factors, sorne of which could be treated or controlled, for 

instance, by changing the lifestyle. These factors that could be controlled are smoking, 

high blood pressure, high cholesterol, certain diseases as diabetes, and radiation therapy 

to the chest, etc. The risk of getting CAD could be reduced by changing lifestyles or 

taking medicine. For instance, one should maintain a healthy lifestyle by quitting 

smoking, keeping track of the blood pressure and the cholesterollevels and getting them 

under control, exercising regularly and getting enough physical activity, eating a healthy 

diet and keeping a healthy weight, etc. Besides, medicine could also be an additi<mal 

treatment and relieve the symptoms of CAD, and the commonly used drugs are 

cholesterol medicine, aspirin, Beta blocker, etc. [4]. 

However, there are also sorne major risk factors that are out of control, such as the 

increase of age, the gender and the heredity (including race). It is shown that over 83% of 

the people who die of coronary heart disease are 65 or older, men have a greater risk of 

heart attack than women do, and children are more likely to develop heart diseases if their 

parents have it. In this situation, more aggressive treatments are needed to restore and 
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promote the blood flow if the change of lifestyle or medicine does not improve or the 

symptoms are getting worse. One of the treatments is called coronary artery bypass 

surgery. During this procedure, the doctor creates a graft to bypass clogged coronary 

arteries using a vessel from another part of your body, which allows the blood to flow 

around the clogged coronary artery. Bypass surgery can improve blood flow to the heart, 

relieve chest pain, and possibly prevent a heart attack [4]. But it requires an open heart 

surgery since the doctors need to open the patient' s chest to reroute the v es sels. So it is 

most often reserved for cases of multiple narrowed coronary arteries. [4] And another 

commonly used treatment is called balloon angioplasty, which is less invasive. 

1.3.3 History of Balloon Angioplasty 

Balloon angioplasty, also known as percutaneous transluminal coronary angioplasty 

(PTCA), is a widely used catheter-based technique for opening clogged arteries [2]. In 

1929, Werner Forssmann, a 25 year-old German physician, performed the first operation 

on himself to enter the heart with a catheter, for which he was awarded the Nobel Prize in 

1956. Later on, Dr. Porstmann developed a balloon catheter to open the iliac artery in 

1973. And Dr. Andreas Gruentzig had bee n working on a thin and flexible balloon 

catheter to open a clogged coronary artery throughout 1970s. In 1977, he successfully 

performed the f1fst balloon angioplasty. Then he brought his technology to the United· 

States in 1980 when he immigrated to the United States, where he taught others his 

techniques for performing the balloon angioplasty. lt has been extensively applied in the 

U.S. to relieve chest pain and prevent heart attacks for CAD since then [6]. It hàs been 

considered to be relatively inexpensive and commonly used in diagnosing and treating 
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CAD. Around 500,000 patients took the angioplasty treatment per year in the late 1900s 

[6]. The number has increased dramatically to 2 million worldwide in 2003 [3]. 

1.3.4 How does Balloon Arigioplasty work 

During a balloon angioplasty, the Interventional cardiologist uses a catheter to insert into 

the patient's artery, as shown in Figure 1-3 [8]. A small balloon is located at the tip of the 

catheter and inflated to pass through the artery and push the plaque back against the artery 

wall and clear up the blockage. Usually, a stent, as in shown in Figure 1-4 [1], which is a 

small metal tube-shaped deviee, is left in the artery when angioplasty is performed. When 

a stent is placed into the artery, it acts as a support to keep the artery open [ 1, 2, and 7]. 

Stenting 

Figure 1-3 Stent (Pennission granted by Image copyright Texas Heart lnstitute, 

www .texasheart.org) 

1.3.5 The future of Balloon Angioplasty 

Compared with the bypass surgery, the balloon angioplasty is a relatively more simple 

and safe procedure. There is, however, sorne drawback that exists, which is that sorne 30-

50% of patients taking the balloon angioplasty procedure need to repeat it because their 

arteries clog again. The angioplasty may not succeed in removing the blockage. Even if 
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relieved, the plague might be built up again. The initial clogging is known as stenosis in 

the academie terms, and it is called restenosis when it happens after angioplasty. At the 

beginning of the 21 st century, most research into angioplasty focused on the prevention of 

restenosis. Sorne angioplasty balloons are equipped with medicine as heparin, to prevent 

the inner arterial plaque accumulation. Such drugs are routinely given to patients after the 

procedure, but with coated balloons to be delivered directly to the artery. Sorne surgeons 

are. also experimenting with a stent, which can be placed in the artery during angioplasty 

to prevent it narrowing again. Stents are small metal tube-shaped deviees that may be 

either stainless steel or sorne kind of flexible steel mesh. At preset, the newest angioplasty 

technology is to combine the balloon with the stent for the best results for both the patient 

and the surgeon [8]. 

The goal of balloon angioplasty is to promote the blood to go through the artery by 

pushing the plaque against the wall of the coronary artery, which are the arteries that 

supply blood to the heart muscle [2]. 
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Chapter 2 

Background Review 

Medical balloons are made into a vâriety of shapes and sizes for different purposes and 

applications. The size of angioplasty balloons may vary from 1 to 25 millimeters in 

diameter and the double-wall thickness varies from 0.03 to 0.05 mm [3]. This thesis 

studies at the forming process of 3 x 15 mm angioplasty balloons. The specifications of 

the balloon size will be given in the following section. Figure 2-1 shows the length of 

each part for a 3 x 15 mm angioplasty balloon. 

21mm 

1 11 ~ 1 

........ ......... 
3mm 15mm 3mm 

Figure 2-1 The Size of Each Part of a 3 x 15 mm Angioplasty Balloon 

2.1 Angioplasty Balloon Description 

Basically, an angioplasty balloon is made of five parts consisting of the proximal neck, 

the proximal cone, the body, the distal cone and the distal neck, as shown in Figure 2-2 

[9]. Key characteristics for the balloons are the balloon diameter, the balloon length, the 

burst pressure, the balloon profile and the balloon compliance. 

The extreme ends of the balloon are called the necks, which are usually different in size. 

And the proximal neck is the one with relatively larger diameter while the distal neck is 

the end with smaller diameter. The body is the smooth cylindrical part of the main body 
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of the balloon. The cones are the conical parts of the balloons with the proximal cone 

connecting the proximal neck to the body while the distal cone connecting the distal neck 

to the body [3] . 

. t 
Proximal 

Neck Body 

Figure 2-2 A Typical Angioplasty Balloon (Permission to print granted by Advanced 

Polymers, Inc) 

The angioplasty balloon with size 3 x 15 mm means that the body of the balloon is 3 mm 

in diameter and 15 mm in length, which is shown in Figure 2-1. 

2.2 Different types of Medical Balloons 

There are two basic types of balloons used in the medical industry and the two share few 

similarities [9]. 

2.2.1 High-pressure medical balloons 

The frrst type of balloon is the high-pressure, non-elastic balloon used for applying 

pressure and angioplasty balloons fall into this category. High-pressure balloons are made 

from non-compliant or low-compliant materials. Compliance describes how much a 

balloon can expand compared with its original size when pressure is applied. A balloon 

that can expand several times its original size is said to be more compliant than the one 

that barely changes. High-pressure balloons maintain their original size and shape even 
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under high pressure. An important characteristic of angioplasty balloons is to be able to 

retain their original size and shape with high pressures without much stretching of the 

balloon walls. 

2.2.2 Low pressure medical balloons 

The other medical balloon type is the low-pressure, elastomeric balloon made of resilient 

materials like latex or silicon and mainly used in fixation and occlusion. Different from 

the high-pressure balloons, low-pressure balloons are more compliant because they 

usually expand to several times their original size. The low-pressure balloons usually go 

back to their original size once the pressùre is reduced. 

2.3 Raw materials for angioplasty balloons 

The raw materials used in the manufacture of angioplasty balloon tubing are essential to 

balloon development because strength and flexibility are two of the key requirements. 

Several plastic materials have been used to satisfy these requirements [8, 9]. In the 1970s, 

the frrst angioplasty balloons used by Dr. Gruentzig were made of flexible polyvinyl 

chloride (PVC). But it cannot be used in industry because the balloons made from PVC 

have thick in the walls and have relatively low rated burst pressure. Later on, cross-linked 

polyethylene was used instead of PVC in the balloon development. Then, in the late 

1980's, nylon became the material of choice for making angioplasty balloons. 

Polyurethane balloons came out in the 1990's. Now the materials commonly used are 

PET, Pebax®, or nylon. PET is somewhat stronger than nylon while nylon is more 

flexible. The material used in this project is Pebax® tubing of grade 7233. Pebax® has 

been selected because it is more kink resistant during the folding and assembly of the 

11 



balloons, has less recoil during sterilization and can be ordered in a range of hardness [9, 

10]. 
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Chapter 3 

ANGIOPLASTY BALLOON MANUFACTURING PROCESS 

3.1 Angioplasty balloon manufacturing Process Overview 

Generally speaking, the angioplasty balloon manufacturing process is a complicated one, 

which mainly consists of an extrusion process, a double end stretching process, and 

finally a balloon forming process. First, the raw material for making angioplasty balloons 

needs to be extruded into a tube shape. Then the tube will be double stretched at each end 

and formed into a balloon. 

3.1.1 Extrusion 

In order to produce angioplasty balloons for use in application, the first step is to extrude 

high-quality and highly concentric tubing that meets specifie requirements, such as 

uniform wall thickness, and excellent concentricity. 

At first, the raw material is put into a heated barrel. The raw material is mixed into a 

homogeneous blend by a rotating screw. Then, a gear pump is used to main tain a 

consistent output volume of the melt plastic, which is pumped through an extruder. The 

melt plastic cornes out of the extruder as a long tube, w~ich is pulled though a cooling 

bath by a mechanical priller to freeze the tubing dimensions. Finally, a cutter is used to 

eut the tube to a specified length [6]. 

The balloons used in this thesis are developed with a polymer compound, Pebax®, which 

is produced by the Technical Polymers Group of ATOFINA Chemicals Inc. Pebax® 

could provide the best compromise of a high-rated burst pressure and an average 

13 



compliance. This thesis aims at producing the 3 x 15 mm angioplasty balloons. The 

tubing used to mak:e 3 x 15 mm balloons cornes from Innovative Extrusions in California. 

The tubing specification is shown in the following table 3-1 [3]: 

Table 3-1 Tubing Specifications 

Tubing for 3 mm Balloons 

COMPANY NAME lnnovative Extrusions 

MATERIALS Pebax\!11 

DUROMETER 72D 

DIMENSIONS 0.036" x 0,00195" x 6' 

QUANTITY 304.8 rn 

LOTNUMBER FP030904-00 1 

PURCHASE ORDER 10396 

The durometer index value is a specification of the material hardness with the value 'A' 

meaning softer and value 'D' meaning harder [3]. 

3.1.2 Double end stretching 

The next step after extrusion is double end stretching, which is done on the computerized 

double end stretcher (DES). An overview of the DES is shown in Figure 3-1 [3, 11]. 

Figure 3-2 [3, 11] offers a doser view of the DES. 
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OMRON Temperature 
Controller 

HeaterJaw 

Rlght-51de Clamp 
Assembly 

Figure 3-1 The Double end stretcher (Pennission to print granted by Interface Associates) 

This step is designed to stretch tubing and prepare it for the next balloon forming process. 

Because the angioplasty balloon requires a very small neck diameter which may be 

smaller than the raw tubing, diameter reduction is done by stretching the tubing at each 

end. The DES stretches both ends of the tube and leaves an unstretched length in the 

middle, called a parison [6] shown in Figure 3-3 [3, 12]. The DES is mainly composed of 

a heater jaw, a temperature controller, a left-side clamp assembly, a right-side clamp 

assembly and air cooling vents. It offers a variety of selection of tubing stretching 

parameters by a touch screen display to input parameters such as stretch speed, 

temperature, distance and timing. 
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HeaterJaw 
Air Cooling Vents 

be Stretched 

Right & Left-Side Clamps 

Figure 3-2 DES Components (Pennission to print granted by Interface Associates) 

Parison 

Figure 3-3 Parison 

To start with, the machine is initialized to the start position by pressing SAFETY and 

RESET buttons simultaneously. Then, the tubing is loaded manually and clamped into 

place. The left-side air-powered clamp is activated automatically. Once this is done, the 

operator starts the sequence by pressing the SAFETY and START buttons 

simultaneously. The general stretch sequence is to heat the left side, to stretch the left 

side, to heat the right side, to stretch the right side and to complete the sequence. The 
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diagram in Figure 3-4, provided by Zoe Sarrat-Cave, illustrates the double stretch process 

[3, 13] 

Heat left side l l 
sssss 

Stretch left side 

Heat right side 

sssss 

Stretch right side 

Sequence Complete 

Figure 3-4 A general double end stretch operation sequence 

After the machine is initialized and moved to the home position, the right-side clamp 

assembly moves to the right to feed twice the heater width of tubing (146mm) plus the 

UNSTRETCHED LENGTH specified by the input parameter setting. Then the left-side 

clamp is activated and the sequence continues according to the left-side parameter 
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settings. Heater assembly moves in and its jaw closes. Heating lasts at the set temperature 

for the amount of time specified by the input parameters. The heating process is 

controlled by the OMRON temperature controllers installed on the double-end stretcher. 

The jaw heater opens and the heater assembly retracts away from the tubing. Then, the 

right-side clamp assembly moves to theleft side at the rate of the STRETCH SPEED and 

STRETCH DISTANCE as specified in the parameter setting, which creates the proximal 

side of the parison. The left-side assembly moves to the right to the distance according to 

the RELAX BEFORE COOL setting. Both the left-side and the right-side clamp 

assembly move synchronously left to position the parison for heating on the right (distal) 

side. At this time, air is blown across the parison for the specified COOLING TIME. 

Then, the left-side clamp assembly moves right and the right-side clamp assembly repeats 

what the left-side has done previously. Finally, when the cooling time has elapsed, the left 

air clamp releases and the sequences are complete. The operator manually opens the 

right-side clamp and tak:es the tubing out of the machine [3, 13]. 

3.1.3 Preparation for balloon forming process 

After creating the parison with DES, the balloon tubing is prepared for the balloon 

forming. Three steps would be done before the pre-formed tube goes to the balloon 

forming machine. First, centre the parison on "zero" line of the graduated cutting board 

with the proximal end on the left as shown in Figure 3-5. Secondly, trim the proximal end 

to 155 mm. Thirdly, roughen the smface of the proximal end with sand-paper to. 

guarantee the good grip in chuck, which is shown in Figure 3-5 [3]. 

18 



Centre parison 

3.1.4 Balloon forming process 

Cut proximal (left) 

side to 155mm 

Figure 3-5 Preparations 

Roughen proximal 

end (-1 inch) 

Finally, the balloon is formed through a specialized kind of blow molding process. The 

final step, the balloon forming process, is accomplished on the balloon forming machine 

(BFM). The machine used in this project is the computerized hot-mould balloon forming 

machine 9810H produced by Interface Associates, as shown in Figure 3-6 [3, 11] and a 

close overview is showri in Figure 3-7 [3, 11]. Figure 3-8 [3, 11] shows the center mold 

and end plugs for the BFM. Figure 3-9 shows what an angioplasty balloon looks like. 
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Touch Screen 

Left-Side End-Piug & Chuck 

Balloon Centre-Mould 

Right-Side End-Piug & Clamp 

Figure 3-6 Balloon Fonning Machine 9810H [12] (Permission to print granted by Interface 

Associa tes) 

Figure 3-7 A Close View ofBFM (Pennission to print granted by Interface Associates) 
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Figure 3-8 Moulds (Pennission to print granted by Interface Associates) 

Figure 3-9 Angioplasty Balloon 

The general forming process, provided by Zoe Sarrat-Cave, is shown in Figure 3-10 {3, 

12]. 
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Law Pressure Primary heating 

High pressure Primary stretch ..__ __ _ _ __ __.. 

High Pressure Balloon Formation ..__ ___ _ -----+ 
Second stretch to 

High Pressure 
form balloon canes 

Figure 3-10 General balloon fonning process 
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Figure 3-11 Overview BFM Inputs (Pennission to print granted by Interface Associates) 

Figure 3-11 [3, 11] shows the balloon is formed by a computer controlled balloon 

forming machine though 12 steps. Before a detailed description of the whole balloon 

forming process is given, a guide to the symbols is shown in Figure 3-12 [3, 12] and the 

BFM steps are shown in Figure 3-13 [3, 12]. The detailed process [3, 6, 12] is described 

as follows: the operator actuates the machine and loads the pre-form balloon tube into the 

centre-mould, which is called a glassform. The glassforms may vary according to the 

different requirement of the balloons to be produced. The proximal end of the tube is 

inserted into the chuck and the chuck is manually actuated. This end is connected to a 

supply of compressed air. The distal end of the tube is fed though the end-plugs and the 

mould-centre and welded up. Now, the tube is fully loaded in the balloon forming 
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machine and the forming process can be started. The first step is pre-forming. During this 

period, the compressed air at the proximal end is turned on, which keeps the pre-format a 

constant inner pressure. The heated jaws warm the piece for a defined time (warm-up 

time) to prepare the plastic for the next step. After the warm-up, the computer controlled 

system switches to a high pressure with a certain temperature mode that will again be 

held for a specified period (forming time). And both ends of the tube are axially pre­

stretched. This step is called primary heating with high pressure and pre-stretch. Usually, 

high pressure with the lowest possible temperature will yield good balloons. The next step 

is the primary stretch. Both ends of the heated, pressurized tube are axially stretched to 

thin out the material at a specified speed to a specified stretch length. During this time, 

the heated parison expands due to the pressure and forms the balloon body in the centre­

mould. Generàlly speaking, more stretch and higher stretch speed will yield better 

balloons with thinner wall-thickness. A secondary stretch usually cornes after the primary 

stretch, which also applies an axial stretch to both ends of the tube to a specified distance 

at a certain speed. The cones of the balloon are formed by pulling material into end-plugs. 

Finally, the centre-mould is cooled down by water and the water is purged from the 

mould with compressed air flow. Now the balloon is ready to be carefully removed from 

the mould and prepared for quality inspection and evaluation. 
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(un-actuated) (actuated) 

End-Piug 

- Step Action Pressurize Tube 

PC Data Acquisition SSSSS! Heat 

Figure 3-12 Guide to Symbols 

Step 1: tube loaded 
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sssss l 

Step 2 & 3: Pre-form, Primary heating with high pressure and pre-stretch 

sssss l 

Step 4 & 5: Primary Stretch 

sssss l 

Step 5: Secondary Stretch 
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Step 6: Cooling 

0 
Step 7: Balloon Removal 

Figure 3-13 Balloon Fonning Procedures 

3.2 Angioplasty balloon manufacture quality control 

Quality control is essential in m~dical deviees. Angioplasty balloons are manufactured 

one at a time and typically each balloon is evaluated once it is manufactured. In this 

project, the evaluation of an angioplasty balloon is followed by three steps and four 

properties are to be inspected in these three steps. The flrst one is qualitative analysis that 

is to scale the balloon from score 0 (the best quality) and score 4 (the worst quality) by 

the physical appearance [3]. The score standardisas given in Table 3-2 [3]. Figure 3-14 

below shows the two common defects of an angioplasty balloon. 
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Crow Feet Radial Rings 

Figure 3-14 The Angioplasty Balloon Common Defects 

Table 3-2 Angioplasty Balloon Score Standard 

The balloon has no visible defects. 

The balloon contains minor defects: crow feet may be visible 
but do not surpass more that 50% of the length of the co ne, no 
axiallines are visible. 

balloon contains some major defects: crow feet surpass 
more than 50% of the length of the co nes, no axial li nes are 
visilbe. 

balloon contains many major defects: crow feet are 
visible in the body of the balloon, and/or one or more axial !ines 
are present. 

No balloon was formed. The balloon forming sequence did not 
produce a balloon. 

The wall thickness is an important pararneter to decide whether the balloon is acceptable 

or not. A proper wall thickness can achieve good folding behavior and a small cross 

section. A thicker wall will lead to a different folded balloon profile, which is not 

acceptable. The balloon wall thickness is to be measured by micrometer as shown in 
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Figure 3-15 [3]. The measurements are taken at three different locations of the balloon: 

the proximal end, the middle and the distal end. 

Figure 3-15 The micrometer for measuring the wall thickness 

The last two characteristics, the burst pressure and the burst diameter also called the 

compliance, are measured bya deployment tester. 
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4.1 Problem description 

Chapter 4 

OBJECTIVE 

The balloon fabrication process is controlled by a complicated combination of 

manipulated variables, controlled ·variables, and uncontrolled variables. Balloon forming 

is considered to be a long trial and error process to find the right parameters to form a 

balloon that meets the performance specifications without defects. It is believed that most 

balloon manufacturing companies take months or even years before attaining a balloon 

suitable for PTCA surgery [3]. When a new balloon is to be developed, the process 

parameters are determined through a mixture of numerous trial-and-error experiments and 

experience. Among the requirements [3] for an angioplasty balloon are: 

• Balloon is free of visible defects; 

• The thinnest possible wall thickness, so as to make a minimum deflated balloon 

profile enabling the medical deviee to pass through the clogged coronary artery; 

• Burst pressure of more than 15 bar to dilàte hard and heavily calcified stenoses; 

• Defined burst diameter (balloon compliance) 

However, the former experiments and investigations showed that one cannot achieve all 

the desired balloon properties by optimizing the balloon forming process, because a very 

slight difference, such as the inner diameter, in the balloon tubes may result in a 

significant change on the parameters of the forming process. Therefore, the trial and error 

method poses a problem when a new batch of tubing replaces the old batch. The operator 
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may need to repeat many experiments to find the new setting parameters for the balloon 

forming machine. 

4.2 The objective 

Based on the problem described above, if given a desired balloon characteristics and 

performance, this thesis provides an approach to find out the balloon forming parameters 

based on a set of data from the experiments that were previously .done. To reduce the 

material and time invested in the research and development projects, a model of the 

angioplasty balloon fabrication process is also developed. 

4.3 Process parameters of balloon fabrication process 

It is known that a variety of parameters will· affect the performance of an angioplasty 

balloon, sorne of which are uncontrollable. In this thesis, only the controllable parameters 

are tak:en into consideration. These include parison length, primary heat temperature, heat 

time, heat forming pressure, primary stretch speed and distance. To evaluate the effect of 

the process parameters on the ultimate properties of the balloons, experiments were done 

in which the main process parameters were varied. Through the control of the process 

parameters, balloons with various wall thickness and different compliance characteristics 

can be produced. For instance, the wall thickness is mainly a function of the forming 

pressure, the heat temperature, and the heat time. And usually, forming with a high 

pressure at low temperatures results in a thick-walled balloon with high burst pressure 

and low compliance. 
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Figure 4-1 Input Parameters that Affect the Balloon Performance Parameters 

Figure 4-1 above shows the main input parameters that affect the balloon performance 

parameters. Let us start with the extrusion process. Since the balloon tubes are to be 

ordered from sorne company, the tube characteristics are considered to be uncontrollable, 

that is to say we cannot change parameters such as tube inner diameter, outer diameter 

and the original thickness. It is common that there is sorne slight difference between the 

tubes even if they are ordered from the same company with the same specifications. In 

this thesis, the tube characteristics rather than the process parameters for extrusion are 

going to be taken into consideration. Then, we take a look into the double-end stretching 

process, which can make different parison lengths. The double-end stretching process 

parameters include the stretch speed, the stretch distance, the cooling time, the 
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temperature, the heating time, the unstretched length, etc. In this thesis, the process 

parameters in the extrusion and double end stretching process are not included in the 

process modeling directly. Instead, the result from the double-end stretcher, i.e. the 

parison length, is to be considered as a controllable parameter. Finally, let us look at the 

balloon forming process parameters, which are the forming pressure, the heat 

temperature, the heatil).g time, the primary stretch speed, the primary stretch distance, the 

primary stretch force, as shown in Figure 4-2. 

Figure 4-2 BFM Input Parameters and Output Parameters 

In the following chapter, we will determine how the BFM process parameters affect the 

characteristic performance. 
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Chapter 5 

Experimental Data Preprocessing 

This chapter aims at reducing the time and number of experiments spent on research and 

development of angioplasty balloon production when a new batch of tubing has sorne 

slight differences from the previous batch. A few new experiments may be required in 

order to measure the charateristics of the new batch of tubing. Experimental data used for 

both modeling and process control is from the old experiment database and the new 

experiments done on the new tubing. The previous experiments were done with tubing 

batch #1 and #2 ordered before. The purpose is to find the suitable input parameters for 

the 3rd balloon tube batch if the desired balloon performance output parameters are given. 

5.1 Process Inputs and Outputs 

The quality, the wall-thickness, the burst pressure and the compliance are the most 

important quantities to be regulated and they are the outputs of the process. The parison 

length, the primary heat temperature, the heat time, the forming pressure, the balloon 

forming temperature, the primary stretch distance, the primary stretch speed, the tubing 

inner diameter, the tubing outer diameter and the tubing wall thickness can affect the 

outputs most directly, which is why they are considered as good candidates for control 

input parameters. Other variables, such as the room temperature, the room humidity, and 

material properties will be considered as disturbances. Therefore, the process can be 

modeled as an 8-input 3-output process with disturbance. Let us name the input-output 

variables as follows: 

The controllable input parameters are: 
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x;_ : the primary heat temperature; 

~ : the heat time; 

~ : the forming pressure; 

x4 : the balloon forming temperature; 

x5 : the primary stretch distance; 

x6 : the parison length; 

The uncontrollable input parameters are: 

~ : the tube inner diameter; 

Xg : the tube outer diameter; 

~ : the tube wall thickness; 

Table 5-1 below shows the differences among the three original batches of tubing in inner 

diameters, outer diameters and wall thicknesses. 

Table 5-1 Tube Specifications 

Tube Batch #3 Tube Batch #2 Tube Batch #1 

Inner Diameter 0.508 0.508 0.508 

(mm) 

Outer Diameter 0.86 0.9144 0.9144 

(mm) 

Wall Thickness 0.176 0.2032 0.20955 

(mm) 

The output parameters are: 
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y1 : the quality; 

y2 : the exit wall thickness; 

y3 : the burst pressure; 

y 4 : the compliance. 

In addition, there are also sorne disturbance variables such as the room temperature, the 

room humidity, the time the tube is exposed to the air, etc. 

The input variables and the output variables in the process are shown in Figure 5-l: 

Disturbances 

Primary 
temperature ... 
Pressure 

Quality .. 
Heat time 

Stretch distance 
Wall-Thickness 

r 

Forming 
temperature Process Burst Pressure 

r .. 
r 

Parison Length 

Compliahce 
Tubing ID .. 
Tubing OD 

Tubing thickness .. 

Figure 5-1 Original Input Variables and the Output Variables 

~·. 
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5.2 Chosen Inputs and Outputs 

Six input parameters and four output parameters will be analyzed in the following 

chapters and used to make the nonlinear model. The selected inputs are the primary heat 

temperature, the heat time, the forming pressure, the balloon forming temperature, the 

primary stretch distance, and the parison length. The four output parameters are the 

quality, the wall thickness, the burst pressure, the compliance. It is illustrated in Figu,re 5-

2. 

Figure 5-2 Chosen Inputs and Outputs 

5.3 Data Pre-processing 

5.3.1 Removing the outliers 

External disturbances always exist and these disturbances may cause significant errors in 

the output measurements. Sometimes, these disturbances come from certain extreme 

machine operating conditions or operation mistakes. The output measurement errors 

sometimes cause significant problem in modeling. Therefore, the experimental data with 
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outliers should be removed before modeling. The method used in this thesis to find the 

outliers in the experimental data base is the leave-one-out method [25]. The leave-one-out 

method is one of the simplest and commonly used method of cross-validation. 

Assume that the experimental dataset is of size N (N=81). In the experiment, the leave­

one-out method is performed N times. The whole dataset is classified into two groups: the 

training data and the test data. The leave-one-out method consists of using N -1 

experimental data points as the training data to build the process model with a radial basis 

function (RBF) neural network and the rest of the data for testing whether the error 

between the model output and the actual output is within tolerance. Finally, the 

experimental data points with the largest test errors are considered as outliers and are 

discarded. 

After repeating N times, n (n=17) experimental data points are considered to be outliers 

because their test error is very large. 

5.3.2 Normalization of the input matrix and the output matrix 

Given a set of input data and related output data, 'normalization' should be performed 

before modeling because each value of the inputs and the outputs are measured with 

different units and they differ greatly. Sorne numerical values may not be desirable 

because they can create a matrix that is nearly rank deficient. In order to allow both the 

input matrix and the output matrix to have a better condition number, they are pre­

multiplied by scaling matrices before training. The scaling matrices aim to put a limit on 

each value of the input matrix and the output matrix of 1. 
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N ow, bef ore moving to the next step of modeling, the input matrix XE lR6
xN and the 

output matrix Y e lR4
xN are obtained, where N is the number of experiments after 

removing the outliers, which is N=64 in this case. 
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Chapter 6 

System Modeling Based on RBF Neural Network 

This chapter aims at building a nonlinear relationship between the process input 

parameters and output parameters based on RBF neural network with the data collected 

and pre-processed from the tests described in the last chapter. 

6.1 System Identification 

Before implementing a controller, the process model should be identified. In the previous 

chapter, the six controllable input parameters selected for system modeling are the 

primary beat temperature TP ( oC) , the beat time t ( s) , the forming pressure P (atm) , the 

balloon forming temperature Tf (oc) , the primary stretch distance d (mm) , and the 

parison length l (mm) . The three measured output parameters are also identified as the 

wall thickness WTh (mm) , the burst pressure l!,urst (atm) , the compliance D max (mm) . 

Another one output parameter is to be observed, which is the balloon quality Q with a 

range from 0 to 4. The vector of input variables is 

Tp 

t 

p 
x·-i.-

Tf 

d 

l 

Equation 6-1 Vector of Input Signais 
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The vector of output signais is 

Y;:= 

Q 

WTh 

~urst 

Equation 6-2 Vector of Output Signais 

Assume that the number of experiments is N, the objective is to make a madel and find 

the relationship Y ~ F (X) , between the input matrix X = [ x1, x2 , • • ·,x N], Xe JR6
xN and the 

output matrix Y= [y 1, y 2 , ···,y N], Y e 1R4
xN based on the experimental data previous 

collected. 

The purpose of this chapter is to make a madel of the balloon fonning process based on 

process input matrix Xe lR6
xN and output matrix Y e 1R4

xN • Because the balloon 

fabrication process is a complicated process that is nonlinear, a radial basis function 

(RBF) neural network is utilized here to build the relationship between the inputs and the 

outputs. 

6.2 Introduction to neural_network 

Neural networks, as nonlinear models of real world systems, have been successfully 

· applied in many research and development areas such as signal processing, pattern 

recognition, system identification, prediction and estimation, and process monitoring and 

control [16]. In the past few decades, neural networks have seen a fast development due 

to both a number of break throughs in research and sorne distinct advances in the power 

of computer hardware that can implement complicated mathematical algorithms [17]. In 
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both academia and industry, neural networks have become an invaluable tool to represent 

nonlinearity, input-output mapping, adaptivity, VLSI implementability, fault tolerance, 

etc. [16] 

6.2.1 Neural Network Principles 

6.2.1.1 What is a Neural Network 

Generally speaking, a neural network consists of a number of node elements, called 

neurons (or processing elements), which are connected together to construct either a 

single layer or multiple layers. The weighted connections between each layer are decided 

by a weight updating procedure, which is generally a learning process called training. The 

weight updating process is carried out by passing a set of training data through the model 

and adjusting the weights to minimize the error between the desired output and the model 

output [16]. In sorne neural networks, a superviser is applied to supervise the learning 

process, which is referred to as 'supervised learning'. In contrast, a neural network that 

can realize self-organizing learning procedure can learn in an unsupervised way [17]. 

6.2.1.2 Models of a Neuron 

The neuron is the most fundamental process element (also called as an information­

processing unit) to the operation of a neural network [18]. The block diagram in Figure 6-

1 [18] shows how a neuron forms the basic foundation of a neural network. There are 

three basic elements of a neuron [18]: 

• a set of connections characterized by a set of weights; 
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• a summation that perfonns a linear operation and sums the weighted input 

signais; 

• an activation function used for squashing the amplitude range of the output 

signal usually to a closed unit interval [0,1] or [-1,1]. 

Input 
Signais 

Weights 

Bias Wko 

Summation 

Figure 6-1 Basic Neuron Model 

Activation 
Function 

From Figure 6-1, a neuron kin the above diagram can be described mathematically as the 

following equations: 

and 

m 

vk = L%Xi' 
i=O 

Equation 6-3 Linear Combination Output 

Equation 6-4 A Neuron Output 

where F(.) is· the activation function. 
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Here are sorne types of activation functions that are commonly applied [18]. 

• Threshold Fonction: 

F(v)={~ ifv~O 

ifv<O 

Equation 6-5 Activation Function: Threshold Fonction 

• Piecewise-Linear Fonction: 

ifv~0.5 

if -0.5<v<0.5 

if v ~-0.5 

Equation 6-6 Activation Function: Piecewise-Linear Fonction 

• Sigmoid Fonction: 

1 
F(v) --1--a-·v 

+e 

Equation 6-7 Activation Function: Sigmoid Fonction 

6.2.1.3 The Learning Process of Neural Networks 

The most significant property of neural networks is their learning capability, which 

enables them to learn from the environment and improve their performance [18]. The 

definition of learning from Mendel and McClaren ( 1970) is: 

Learning is a process by which the free parameters of a neural network are adapted 

through a process of stimulation by the environment in which the network is embedded. 

The type of learning is determined by the manner in which the parameter changes take 

place. 
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From the above definition, a learning algorithm is to be adopted in the learning process. 

There are five basic learning algorithms that are commonly adapted during the learning 

process: error-correction learning, memory-based learning, Hebbian learning, competitive 

learning and Boltzmann learning. Sorne of the algorithms require supervised learning 

such as error-correction learning and Boltzmann learning, while others require self­

organized learning rules such as Hebbian learning and competitive learning [18]. 

6.2.2 Neural Network Architectures 

There are several types of neural network architectures and the most commonly used 

structures for system identification and control include the single layer perceptron (SLP), 

multilayer perceptron (MLP), radial basis function neural networks, and recurrent neural 

networks. 

6.2.2.1 Single Layer Perceptrons 

The simplest form of layered neural networks is the single layer perceptron network. The 

single-layer perceptron network is a type of feedforward networks with an input layer of 

source signais projecting onto the output layer of neurons. Figure 6-2 shows the structure 

of a single layer perceptron. 
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Input M 
Output N 

Figure 6-2 Signal Layer Perceptron Structure 

6.2.2.2 Multi-layer Perceptrons (MLP) 

Another commonly used neural network but with a more complicated structure than the 

single layer perceptrons is the multilayer perceptron. MLPs assume that many neuron 

layers exist in the networks, but no connection exists between neurons in a particular 

layer. The architecture of MLP is a multiple-layer network, which is composed of one 

input layer, one output layer with several intermediate or hidden layers between them. 

The input layer requires a set of data or inputs and the output layer is fed with weighted 

inputs from the layer connected to it and produces an output that is summed by nonlinear 

functions [18]. Figure 6-3 [18] shows a two-hidden-layer MLP network. 
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Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer 

Input 1 Output 1 

Output N 
Input M . 

Figure 6-3 Multilayer Perceptron Network Structure 

6.2.2.3 Recurrent Neural Networks (RNN) 

The two types of neural network structures mentioned above belong to feedforward 

networks. In this section, a different architecture will be introduced. Recurrent neural 

network is a network of neurons with feedback connections. Unlike the feedforward 

neural networks, the structure of RNNs incorporates feedbacks. In general, the recurrent 

network is built as an MLP network architecture augmented with feedback loop. Usually, 

the output of every neuron is fed back with varying weights to the inputs of all neurons 

[17]. It is a good approach for modeling and analyzing dynamic systems. Elman network 

and Hopfield network are two examples of the RNNs. Figure 6-4 [19] shows a general 

recurrent neural network. 
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Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer 

Input 1 , Output 1 

Output N 
Input M 

Figure 6-4 Recurrent Neural Network Structure 

The above figure is a two hidden-layer RNN example with the output of the hidden 

neurons fed back as inputs to the network. 

6.2.2.4 Radial Basis Function Networks (RBFN) 

MLPs and ANNs, have been found, in practice, to perform poorly in several ways such as 

slow convergence of weights during learning, diffi.culty in modeling differentiai 

responses [ 17]. Therefore, radial basis function networks have become popular in 

practice. Radial basis function neural networks are a kind of relatively simple networks 

with only one hidden layer, the output layer of which is merely a linear combination of 

the hidden layer signais; RBF networks have the ability to model any nonlinear function 

in a relatively straightforward way [18]. Figure 6-5 [18] shows the structure of a RBF 

neural network. As described above, RBF networks have three different layers [18]: 

• the input layer made of input neurons; 
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• the hidden layer with proper number of neurons and each neuron performs a 

nonlinear radial basis fonction on the inputs; 

• the output layer, which is a linear combination of the outputs of hidden neurons. 

Input Layer Hidden Layer Output Layer 

Input 1 

Output 1 

Input 2 

Output N 

Input M 

Figure 6-5 Radial Basis Function Network Structure 

Because the output layer is merely a linear combination of the hidden layer signais, the 

weight updating procedure is much simpler for RBF networks [18]. 

6.2.3 RBF Neural Network and its Applications 

6.2.3.1 RBF Neural Networks 

In this thesis, the radial basis fonction network is chosen to find a relationship between 

the inputs signais and the output signais of the balloon forming process because of its 

features of relatively fast convergence and capability of modeling a nonlinear 

multivariable system. 
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6.2.3;2 RBF Neural Network Architecture 

RBF neural networks have only one hidden layer and each neuron of the hidden layer 

perfonns a radial activation function while the outputs perfonn a weighted summation of 

the hidden layer outputs. Figure 6-6 shows a general diagram of an RBF neural network 

with one output. 

Xm 

Input Layer 
Hidden Layer of n 

radial basis 
functions 

Bias 

b=wo 

Output Layer 

y 

Figure 6-6 A radial basis fonction network 

In mathematical terms, an RBF neural network can be described as follows: 

Assume the network consists of an input vector x with m input signals and a set of weight 

li{ ( i = 1, · · ·, n) with a bias termb = m0 , and n is the number of hidden layer neurons. The 

neural network output can be calculated by: 

n 

y= Lli{ F; (x) 
i=O 

Equation 6-8 The Neural Network Output 
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The F; (.)'sare the activation functions with the form of 

Equation 6-9 Activation Functions for RBF Networks 

where c; ( i = 1,. .. , n) are considered to be the radial basis function centers. <1> (-) is the 

radial basis function and there are many choices for this function. Here, sorne of the most 

commonly used radial basis functions [17] are given as follows: , 

• Gaussian: 

,z 

<1> ( r) = e-2a-2 , 0"> 0, rE IR 

Equation 6-10 Radial Basis Function: Gaussian 

• Piecewise linear approximation: 

<l>(r)= r, rE IR 

Equation 6-11 Radial Basis Function: Piecewise Linear Approximation 

• Cubic approximation: 

Equation 6-12 Radial Basis Function: Cubic Approximation 

• Thin plate spline 

<1> ( r) = r 2 log ( r) , r > 0 

Equation 6-13 Radial Basis Function: Thin Plate Spline 

• Multiquadrics: 
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Equation 6-14 Radial Basis Function: Multiquadrics 

• Inverse multiquadrics: 

1 
<P ( r) = ( 

2 2 
) 112 , c > 0, re R 

r +c 

Equation 6-15 Radial Basis Function: Inverse Multiquadrics 

where ris the Euclidean distance between the input x and the radial basis function center 

ci so that 

Equation 6-16 Euclidean Distance 

Among ail the radial basis functions listed above, the Gaussian function is the most 

intuitive one. And in practice, the thin plate spline function also works very well [17]. 

In the above Figure 6-6, only one output is shown, but it is possible for RBF neural 

networks to model multi-input and multi-output systems. To build a RBF neural network, 

the radial basis function centers are first selected. Then, the network weights can be 

updated and adjusted to minimize the errors between the desired outputs and the network 

outputs. 

6.2.3.3 RBF Neural Network Application 

Being one of the primary fields of research in numerical analysis, radial basis functions 

were first introduced in the field of the solutions to the real multivariate interpolation 

problem [16]. Due to their nonlinear approximation features, RBF neural networks have 
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been widely applied in many fields such as nonlinear system identification, pattern 

recognition, interpolation, data fusion, image processing, control, etc. 

6.3 System Identification Based on Neural Networks 

6.3.1 Objective 

Based on the experimental data, a system model describing the relationship between the 

inputs and the outputs of the balloon forming process is to be established, that is, we want 

to find a mapping F ( ·) such that 

Y~F(X). 

Equation 6-17 Relationship between Inputs X and Outputs Y 

Based on experience and previous experimental results, the following input parameters 

have been found to have significant effects on the outputs and are chosen as the input 

signais of the RBF neural network. 

• Primary heat temperature; 

• Heat time; 

• Form pressure; 

• Secondary heat temperature; 

• Primary stretch distance; 

• Parison length; 

And the output parameters for the RBF neural network are: 
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• Quality; 

• W ali Thickness; 

• Burst pressure; 

• Compliance. 

The experiments were done with the three batches of tubing ordered from the same 

company but having slight differences. The training data set is taken as 3/4 of the whole 

data set after preprocessing and removing the outliers; and the testing data set takes the 

rest 1/4 of the whole data set after preprocessing and removing the outliers. 

6.3.2 Approaches for System Modeling 

6.3.2.1 Approach 1: the RBF neural network 

To build and train the RBF neural network, % of the whole experimental data are taken as 

the training data and the rest 1.4 as test data. A Gaussian kernel is selected here as the 

radial basis function. In this thesis, a Matlab® function newrb is utilized to initialize, build 

and train the RBF neural network model. The newrb function provides an efficient way to 

build up a RBF neural network by adding one neuron in the hidden layer at a time until 

the sum-square error satisfies the requirement or a maximum number of neurons have 

been achieved [21]. The Figure 6-7 [21] is the architecture of a radial basis neuron. 
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a = radbas( ri w-p Il b) 

Figure 6-7 The Architecture of a Radial Basis Neuron 

And the Radial basis function is the Gaussian function shown in Figure 6-8 [21], 

a 

1.0 ·····~·~·"·. ·.~.-~ ...... . 
. ·• 

0.0 ----'--+-___:_-~ n 
·0.833 +0.833 

a = radbas(n) 

Radial Basls Function 

Figure 6-8 Gaussian Function as the RFB Kernel Function 

The radial basis network architecture is as shown in Figure 6-9 [21]: 
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Radial 8asis Network Architecture 

Input Radial Basis Layer Linear Layer 
r--\ rr---------------\ 

1 

\.!!....) \..._ _______ _,) '-.._ ______ 52 __ ) 

a/ = radbas ( Il ,IWI,I- p Il b/) a2 =pure/in (LW2.r a1 +b2) 

Where •.. 
R =' # elements 

in input 
vector 

sl = # Neurons 
in layer 1 

s2 =' # Neurons 
in layer2 

â 1 is i th .elemènt of a1 where . IWt.r is a vector made of the i th row of IWI,I 
i '· ' 1 

Figure 6-9 Radial Basis Function Architecture in Matlab® 

From the above diagram in figure 6-9, the following mathematical equations can be 

written: 

Equation 6-18 RBF Neural Network Neuron Output by Matlab® 

Equation 6-19 RBF Neural Network Output by Matlab® 

With the function newrb provided by Matlab®, a system model is built based on the 

training data set. With a maximum sum-square error set to be 0.1, the RBF neural 

network training process is as shown in Figure 6-10: 
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Figure 6-10 RBF Neural Network Training 

And the test error distribution is shown in Figure 6-11 
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Figure 6-11 the test error distribution of the RBF neural network model 

6.3.2.2 Approach Il: the Single Layer Feedforward network with Backpropagation 

In this part, a single-layer neural netwark is intraduced ta madel the ballaan farming 

pracess. The Netwark Structure is shawn in Figure 6-12. 

Input Layer 

-x. 
1 J 

x'· J 

Hidden layer Output Layer 

Figure 6-12 A Single Layer Feedforward Neural Network 

The backprapagatian learning algarithm [16], which is a papular learning algarithm used 

in neural netwarks, is applied here in the single layer feedfarward neural netwark. The 

algarithm diagram is shawn in Figure 6-13. 
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Figure 6-13 Backpropagation Learning Algorithm Diagram 

In the above figure, the network structure has M inputs, K hidden neurons, N outputs. The 

algorithm [16, 22, 23 and 24] is described as ft>llows: 

(1) Forward: to compute the network output 

The input of the hidden layer is x1 

X;= L~;X;. 
ï 

Equation 6-20 Hidden Layer Input 

The output of the hidden layer is 

x'. =!(x.)= 1 
_ . 

1 1 1+e-xi 

Equation 6-21 Hidden Layer Output 

The output of the network is 

y, = L OJJIX~ • 
j 

Equation 6-22 BP Neural Network Output 
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The error between the zth actual output and desired output is 

0 

er= Yt- Yz· 

Equation 6-23 Error between the Actual Output and the Desired Output 

The cost function for the pth experimental data is 

Equation 6-24 Cost Function 

(2) Backward: for weight update using backpropagation 

The algorithm for weight update between the hidden layer and the output layer is 

Equation 6-25 Weight Update Increment between the Hidden and the Output Layer 

where 17 E [ 0,1] is the leaming rate. 

The k+ 1 th weight update is 

Equation 6-26 Weight Update 

The algorithm for weight update between the input layer and the hidden layer is 

Equation 6-27 Weight Update Increment between the Hidden and the Input Layer 

The k+1th weight update is 
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Equation 6-28 Weight Update between the Hidden and the Input Layer 

Here, the momentum factor a E [ 0,1] is introduced and the weight update becomes 

mjt ( k + 1) = mjt ( k )+ llmjl +a( mj1 (k )-mjt ( k -1)) 

Equation 6-29 Weight Update with Momentwn between the Hidden and the Output Layer 

mij ( k + 1) = mij ( k) + llmij +a( mij ( k)- mij ( k -1)) 

Equation 6-30 Weight Update with Momentum between the Hidden and the Input Layer 

6.3.3 Comparing the Test Results from the RBF and BP neural networks 

After training the RBF neural network and the single layer BP neural network, to 

compare which one works better, certain tests are designed. The original models are built 

through a set of fixed training data from % of the whole experimental data set. And test is 

based on the remaining % of the experimental data. 

With fixed training data and test data (% of the whole as training and % as test), the test 

results are shawn as follows: 
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Figure 6-14 Quality from the RBF Model and BP Model 
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Figure 6-15 Wall Thickness from the RBF Model and BP Model 

!~ 
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Figure 6-16 Burst Pressure from the RBF Model and BP Model 
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Figure 6-17 Compliance from the RBF Model and BP model 
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Figure 6-18 shows the comparison of the test results from the RBF neural network model and the 

BP neural network model. 

Figure 6-18 Test Result Comparison between RBF Model and BP Model 

From the above test result comparisons, the system model built with the RBF neural 

network gives more accurate results. Thus, it is utilized in this thesis for modeling the 

balloon forrning process. 
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( Chapter 7 

Cycle-to-Cycle Off-line Control of BFM 

7.1 System Identification 

Before implementing an off-line controller on the BFM, the frrst step is the identification 

of the system in use. fu the previous chapter, the six input signais are given as the primary 

heat temperature TP ( oC) , the heat time t (sec) , the forming pressure P (atm) , the balloon 

forming temperature T1 (oc) , the primary stretch distance d (mm) , and the parison 

length l (mm) . The three measured output parameters are also identified as the wall 

thickness Wth( mm), the burst pressure P,urst (atm), the compliance Dmax (mm) . One output 

parameter is to be observed, which is the balloon quality Q with a range from 0 to 4. 

With Matlab<e', a neural network object net is obtained. The architecture of RBF neural 

network net after training consists of one input weight matrix net.IW , one layer weight 

matrix net.LW and two bias vectors net.b1 andnet.b2 

The relationship between input signais x and output y is 

y= net.LW ·exp{-(llnet.IW -xli· net.b1 )

2
} +net.b2 

Equation 7-1 System Model: Relationship between Model Input x and Output y 

And the weights and bias values are as follows: 
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/""', 0.8000 0.7500 0.4000 0.1300 0.1500 0.1300 

0.7000 0.7000 0.4200 0.1400 0.1050 0.1300 

0.7000 0.7000 0.3900 0.1340 0.1050 0.1300 

0.6000 0.6500 0.3500 0.1300 0.1350 0.1350 

0.5000 0.6000 0.3500 0.1300 0.1350 0.1350 

0.6000 0.6000 0.4100 0.1300 0.1350 0.1350 

0.6000 0.6000 0.3500 0.1300 0.0850 0.1350 

0.6000 0.6000 0.1000 0.1300 0.1350 0.1350 

0.8000 0.6000 0.3500 0.1300 0.1350 0.1350 

net.IW = 0.6000 0.8000 0.3500 0.1300 0.1350 0.1350 

0.8000 0.7000 0.3800 0.1300 0.1500 0.1300 

0.7600 0.7000 0.4000 0.1300 0.1500 0.1300 

0.8000 0.6750 0.4000 0.1300 0.1500 0.1300 

0.6000 0.6000 0.3500 0.1300 0.1750 0.1350 

0.3500 0.6000 0.3500 0.1300 0.1350 0.1350 

0.6200 0.5500 0.3600 0.1400 0.1050 0.1300 

0.7800 0.7000 0.4000 0.1300 0.1500 0.1300 

0.6000 0.6000 0.2000 0.1300 0.1350 0.1350 

0.8000 0.7000 0.3900 0.1300 0.1500 0.1300 

Equation 7-2 System Model-- Input Weight Matrix: net.IW 
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-0.2202 -0.0214 -0.0166 0.0070 T 

-0.0009 0.0000 -0.0000 0.0000 

0.0009 -0.0000 0.0000 -0.0000 

-0.1025 -0.0096 -0.0068 0.0035 

-0.1578 -0.0778 0.0806 0.0400 

0.1588 0.0559 -0.0453 -0.0269 

-0.0100 -0.0018 -0.0023 -0.0001 

-0.0644 -0.0223 0.0166 0.0103 

-0.0397 -0.0194 0.0203 0.0101 

net.LW =10u · 0.0258 0.0024 0.0017 -0.0009 

-2.1609 -0.7807 0.7310 0.4080 

1.4940 0.7169 -0.7810 -0.3869 

-0.4423 -0.0427 -0.0332 0.0140 

-0.0119 -0.0023 -0.0029 -0.0002 

0.0311 0.0156 -0.0161 -0.0079 

0.0006 -0.0000 0.0000 -0.0000 

-2.9895 -1.4337 1.5619 0.7739 

0.1707 0.0594 -0.0458 -0.0279 

4.3183 1.5616 -1.4621 -0.8159 

Equation 7-3 System Model-- Layer Weight Matrix: net.LW 
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0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

net.b1 = 0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

Equation 7-4 System Model-- Vector Basis 1: net.bt 

9.7894 

1.8294 
net.b2 = 104 

• 

2.2056 

0.1119 

Equation 7-5 System Model-- Vector Basis 2: net.b2 
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7.2 Off-line Control 

7.2. 1 Controller Design 

The main objective here is, given the desired outputs, to find out the closest inputs to start 

with based on the experiments previously done. A simple flow diagram of the off-line 

control algorithm based on the RBF neural network is illustrated in Figure 7-1. 

Ydes 

--7 Ymodinv .. 
Inverse 

X mad Process Y mad 
Model ... _ .. 

(Controller) 
Model 

Y err 

-
____. Find the __. Process 

+ ) 
closest input Y act 

Figure 7-1 Offline Cycle-to-Cycle Control Diagram 

In order to make good use of the previous experimental data and save time redoing new 

experiment, an off-line control algorithm is applied in this thesis. Mter the inverse model 

calculates the estimate inputs xmod ' a look-up table is used to find the closest inputs to the 

inputs given by the inverse model and take the related output parameters as the actual 

outputs y act in the algorithm. 

The controller applied in Figure 7-1 is a con troUer based on an RBF neural network, 

which is the inverse model of the process built by another RBF neural network. The 

inverse model is built based on the same training data as the system model. The neural 

network object netinv with one input weight matrix netinv.IW, one layer weight matrix 

/""·. 
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1 
1 

l 

netinv.LW and two bias vectors netinv.b1 andnetinv.b2 • The relationship between output 

y and input signais x is 

x= netinv.LW ·exp{ -(l!netinv.IW -yll· netinv.b1 )
2
}+netinv.b2 

Equation 7-6 Syem Inverse Model 

And the weights and bias values are as follows: 
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0.2000 0.2800 0.2619 0.3950 
('. 

0.2000 0.3300 0.2117 0.3600 

0.2000 0.3000 0.2417 0.3920 

0.2000 0.3200 0.2217 0.3840 

0.2000 0.3300 0.2127 0.3820 

0.2000 0.3100 0.2659 0.3750 

0.2000 0.3200 0.2344 0.3810 

0.2000 0.3300 0.2110 0.3890 

0.2000 0.3000 0.2410 0.3900 

0.2000 0.3300 0.2518 0.3950 

0.2000 0.2800 0.2447 0.3890 

0.2000 0.3500 0.2511 0.3850 

0.2000 0.3500 0.2415 0.3870 

0 0.3000 0.2270 0.3800 

0 0.3000 0.2320 0.3840 

0 0.3200 0.2150 0.3870 

netinv.IW = 0.1000 0.2800 0.2315 0.3940 

0.1000 0.2800 0.2099 0.3760 

0.1000 0.2800 0.2686 0.3830 

0.1000 0.2800 0.2315 0.3870 

0.3000 0.4100 0.1815 0.3460 

0.1000 0.2900 0.2774 0.3900 

0 0.3400 0.2205 0.3900 

0.4000 0.5000 0.1500 0.3000 

0.4000 0.5000 0.1500 0.3000 

0.1000 0.3300 0.2415 0.3900 

0.1000 0.3200 0.2414 0.3850 

0.1000 0.3100 0.2400 0.3800 

0.1000 0.2900 0.2210 0.3710 

0.3000 0.3700 0.1909 0.3480 

0.1000 0.3100 0.2440 0.3870 

0.1000 0.3000 0.2250 0.3770 

0 0.3000 0.2340 0.3810 

to be continued 

.. ~· 
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0.1000 0.3100 0.2420 0.3890 
~' 

0.1000 0.3100 0.2305 0.3860 

0.1000 0.3200 0.2918 0.3960 

0.1000 0.2900 0.2214 0.3740 

0 0.3500 0.2436 0.3880 

0.3000 0.3300 0.2201 0.3830 

0.1000 0.3300 0.2134 0.3960 

netinvlW = 0.1000 0.2900 0.2118 0.3790 

0.3000 0.3000 0.2576 0.3792 

0.1000 0.3300 0.2326 0.3790 

0.3000 0.3100 0.2617 0.3710 

0.3000 0.2900 0.2519 0.3670 

0.1000 0.3200 0.2250 0.3830 

0.1000 0.3400 0.2230 0.3780 

0.3000 0.3000 0.2571 0.3760 

Equation 7-7 System Inverse Model-- Input Weight Matrix: netinv.IW 
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0.3541 0.2785 0.4137 0.0906 -0.5972 -0.0486 T 

-2.0115 0.9122 -0.1695 0.0222 -0.5286 0.0113 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0.7067 -1.1526 -0.4944 -0.1645 1.2772 0.0710 

0 0 0 0 0 0 

0.6783 0.3931 0.2929 0.0923 -0.4942 -0.0471 

0 0 0 0 0 0 

0.7395 -1.1730 -0.7923 -0.2080 1.6423 0.0936 

0 0 0 0 0 0 

-0.6160 1.2174 0.8533 0.2233 -1.7281 -0.1023 

0 0 0 0 0 0 

0 0 0 0 0 0 

0.4066 -0.0940 0.0598 0.0117 0.0037 -0.0051 

0 0 0 0 0 0 

netinv.LW =107 * -0.5632 -0.2463 -0.2917 -0.0756 0.4181 0.0409 

0.5740 -0.2440 -0.0248 -0.0171 0.2315 0.0008 

-0.3835 0.6155 0.2641 0.0843 -0.6676 -0.0397 

0 0 0 0 0 0 

-0.2074 -0.3707 -0.3498 -0.0878 0.5808 0.0451 

0 0 0 0 0 0 

-1.1121 0.4798 0.0749 0.0324 -0.4631 -0.0073 

-0.0476 0.0744 0.0208 0.0092 -0.0703 -0.0036 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

1.2217 -0.1802 0.3991 0.0612 -0.2214 -0.0452 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

to be continued 
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0 0 0 0 0 0 
~. 0 0 0 0 0 0 

-0.4524 0.1025 -0.0668 -0.0061 -0.0347 0.0097 

0 0 0 0 0 0 

0.7011 -0.2996 -0.1231 -0.0348 0.3879 0.0088 

-0.9352 0.0655 -0.1459 -0.0326 0.0400 0.0233 

0 0 0 0 0 0 

netinv.LW = 0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

-0.0072 0.4576 0.1302 0.0567 -0.3838 -0.0292 

0.0717 -0.2784 -0.1109 -0.0347 0.2683 0.0206 

0 0 0 0 0 0 

0.8824 -0.5576 0.0602 -0.0228 0.3391 0.0029 

0 0 0 0 0 0 

Equation 7-8 System Inverse Model-- Layer Weight Matrix: netinv.LW 
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netinv.b1 = 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

to be continued 
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1 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 
net.b1 = 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

0.1041 

Equation 7-9 System Inverse Model-- Basis Vector 1: netinv.b1 

netinv.b2 = 105 * 

1.4494 

-1.2436 

1.4494 

0.1055 

-0.7041 

-0.0890 

Equation 7-10 System Inverse Model-- Basis Vector 2: netinv.b2 

7.2.2 Controller Test 

Both the process model and the inverse model are built based on the same training data 

trX & trY. Let us see how weil the original data can be recovered though the system 

inverse model and the system model. 

Test steps: 

78 



(1) Given the process madel 'net' and the inverse madel 'netinv', we can get the 

process madel output as y _mo del = sim( net, teX) 

(2) Then using the processs madel output y_model to test the inverse madel, 

x_invmodel =sim (netinv, y_model) 

(3) Compare the difference between teX and x_invmodel. 

(4) Calculate the error distribution for each input parameter: <2%, <5%, <8%, <10%, 

>10%, shawn in the following figure. 

Figure 7-2 Model Recover Error 

From the above figure, with the process madel and the inverse madel, the original data 

can be recovered with only a small error in most cases. For the balloon forming 
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temperature and parison length, the errors between the original data and the outputs from 

the process model and the inverse mode almost fall within 10%. 

7.3 Predicting the Input Parameters by the Inverse Model 

The inverse model may be used directly to predict the closest input parameters to the 

given output parameters. Figure 7-3 shows the error distributions between the actual 

values and the input parameters given by the inverse model. And the test results are as 

follows: 

Figure 7-3 Error Distribution for the Inverse Model 

In the above figure, it can be seen that the process inverse model works well in most cases 

and most of the test errors are within 10%. 
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7.41mplementing a Cycle-to-cycle Controller based on Offline Learning 

Assume that 

P : Process Madel 

--1 
P : Inverse Madel 

P: Process 

y des : the desired output 

y mod : the process madel output 

y modinv : the inverse madel input 

y act : the actual process output 

y err : the difference between the actual process output and the process madel 

output 

xmod : the process madel input 

net: the RBF neural network process madel 

netinv: the RBF neural network process inverse madel 

The purpose of implementing an offline controller is to increase the prediction accuracy 

while saving time to find out a set of input parameters to start with by making good use of 

the previous experimental data. The offline cycle-ta-cycle control algorithm implemented 

in this thesis is as follows: 

(1) use% of the whole experimental data as training data and lA as test data; 

(2) train both process madel P and inverse madel P-1 
based on the training data set; 
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--1 
(3) Given a desired output y des, put it into the inverse model P and get an input 

--1 

xmod = p y des 

Equation 7-11 Predicting the Input for a given output 

( 4) Put xmod into the process model p and calculate the process model output y mod : 

Y mod = Pxmod 

Equation 7-12 Predicting the output for a given input 

(5) Put xmod into the training dataset of actual process p and find out the closest input 

to xmod and the related output y act 

(6) Calculate the difference between the closest actual output y act and the process 

model output y mod : 

Yerr =Yact -Ymod 

Equation 7-13 Error between the Actual Closest Output and the Model Output 

(7) Add the difference y= to the desired output y des for the next iteration un til this 

difference is minimized. The optimization process is 

Repeat 

Ymodinv =ydes +k*Yerr 

--1 

xmod = p y modinv 

Ymod = Pxmod 

Yerr =y act -Ymod 
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- --~ --~ 
Yerr =Y act -Pxmod =y act -PP Ymodinv =y act -PP (Ydes +k*Yerr) 

---1 

=:> _ Y act -pp Y des 
Y err - ---1 

1+PP k 

Until y err is minimized. 

Equation 7-14 Algorithm for Minimizing the Error 

(8) Then, the process madel input xmod is the input we want to find out. 

Please note that in this method, the gain k is different from the gains that are commonly 

used in the conventional control methods. It should not be more than 1 because the each 

values of the input to the inverse neural network madel y modinv = y des + k *y err should be 

less than one, soif K*err is made to be more than 1, then the NN madel does not work 

well. Therefore, in this thesis, in arder to restrict the input values to the madel in a unit 

circle, that is less than 1, k is chosen to be 0.01 by experiments. 
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Figure 7-4 Input Prediction Error Distribution after lmplementing a Learning Algorithm 

In the above figure, it can be seen that most of the test errors fall within 10% due to the 

iterative offline cycle-ta-cycle control algorithm performed on the controller. Comparing 

Figure 7-4 (with the iterative learning algorithm) with Figure 7-3 (without the iterative 

learning algorithm), it is clear that the prediction accuracy is increased after implementing 

an iterative offline learning algorithm and sorne of them are kept even within 5%. 

84 



Chapter 8 

CONCLUSION 

The nonlinear madel of the balloon forming process introduced in this thesis works weil 

for building the relationship between the input parameters and output parameters for the 

three batches of tubing. Moreover, the inverse madel has a good performance as a 

controller in predicting the input parameters if the desired outputs are given. With an 

offline cycle-ta-cycle learning algorithm, the input prediction accuracy for recommending 

the input parameters is increased. The implementation of this offline cycle-ta-cycle 

controller can help reduce the time spent on the experiments and reduce the number of 

trials, and as a result, reduce the material consumption. 

There is, however, one problem that exists and needs to be solved. If the desired outputs 

are similar to the ones th at are in the database, the algorithm could work weiL But if there 

is a big difference between the desired outputs and the data in the database, then this 

algorithm may fail to work because both the system madel and the controller cannat find 

· a previous experiment in the database that can pro vide the new tubing' s information it 

requires. Another potential problem is that it may fail to work on a new batch of tubing 

because the new batch of tubing may have sorne difference from these three batches used 

for modeling and the system madel does not include much information about the original 

tube material. 
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8.1 Recommandations for Future Work 

The proposed model and controller based on the RBF neural network can produce 

satisfactory results when restricted to the three batches of tubing because the model does 

not consider the parameters about the original materials such as the tube inner diameter, 

tube outer diameter, etc. In order to improve this, many experiments need to be done to 

test the significance of these parameters affecting the outputs results. The material 

parameters with significant effects should be considered and included in the model of the 

balloon forming process. 
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Appendix A 

The following pages con tain the MA TLAB files used for angioplasty balloon modeling 

and control based on RBF neural networks. 

% Yan Chen 



~ 

• 
r 

!'· 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%% 
% This prograrn builds the process rnodel based on RBF neural 
% network and BP network 
% Calculate the training error and test error separately 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%% 

close all 
clear all 
load seedsfile 
x = [ 

70 70 39 134 10.5 130 18 90 14 0.508 0.2032; 
70 55 39 140 10.5 130 18 90 14 0.508 0.2032; 
70 55 39 128 10.5 130 18 90 14 0.508 0.2032; 
55 55 39 140 10.5 130 18 90 14 0.508 0.2032; 
62 55 42 140 10.5 130 18 90 14 0.508 0.2032; 
62 55 42 128 10.5 130 18 90 14 0.508 0.2032; 
62 55 36 140 10.5 130 18 90 14 0.508 0.2032; 
62 55 36 128 10.5 130 18 90 14 0.508 0.2032; 
62 55 39 134 10.5 130 18 90 14 0.508 0.2032; 
62 55 39 134 10.5 130 18 90 14 0.508 0.2032; 
62 55 39 134 10.5 130 18 90 14 0.508 0.2032; 
70 70 42 140 10.5 130 18 90 14 0.508 0.2032; 
60 60 10 130 13.5 135 18.5 100 15 0.4953 0.20955; 
60 60 15 130 13.5 135 18.5 100 15 0.4953 0.20955; 
60 60 20 130 13.5 135 18.5 100 15 0.4953 0.20955; 
60 60 25 130 13.5 135 18.5 100 15 0.4953 0.20955; 
60 60 27 130 13.5 135 18.5 100 15 0.4953 0.20955; 
60 60 29 130 13.5 135 18.5 100 15 0.4953 0.20955; 
60 60 31 130 13.5 135 18.5 100 15 0.4953 0.20955; 
60 60 33 130 13.5 135 18.5 100 15 0.4953 0.20955; 
60 60 35 130 13.5 135 18.5 100 15 0.4953 0.20955; 
60 60 37 130 13.5 135 18.5 100 15 0.4953 0. 20955; 
60 60 39 130 13.5 135 18.5 100 15 0.4953 0.20955; 
60 60 41 130 13.5 135 18.5 100 15 0.4953 0.20955; 
35 60 35 130 13.5 135 18.5 100 15 0.4953 0.20955; 
40 60 35 130 13.5 135 18.5 100 15 0.4953 0.20955; 
45 60 35 130 13.5 135 18.5 100 15 0.4953 0.20955; 
50 60 35 130 13.5 135 18.5 100 15 0.4953 0.20955; 
55 60 35 130 13.5 135 18.5 100 15 0.4953 0.20955; 
65 60 35 130 13.5 135 18.5 100 15 0.4953 0.20955; 
70 60 35 130 13.5 135 18.5 100 15 0.4953 0.20955; 
75 60 35 130 13.5 135 18.5 100 15 0.4953 0.20955; 
80 60 35 130 13.5 135 18.5 100 15 0.4953 0.20955; 
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r'· 85 60 35 130 13.5 135 18.5 100 15 0.4953 0.20955; 
60 35 35 130 13.5 135 18.5 100 15 0.4953 0.20955; 
60 40 35 130 13.5 135 18.5 100 15 0.4953 0.20955; 
60 45 35 130 13.5 135 18.5 100 15 0.4953 0.20955; 
60 50 35 130 13.5 135 18.5 100 15 0.4953 0.20955; 
60 55 35 130 13.5 135 18.5 100 15 0.4953 0.20955; 
60 65 35 130 13.5 135 18.5 100 15 0.4953 0.20955; 
60 70 35 130 13.5 135 18.5 100 15 0.4953 0.20955; 
60 75 35 130 13.5 135 18.5 100 15 0.4953 0.20955; 
60 80 35 130 13.5 135 18.5 100 15 0.4953 0.20955; 
60 60 35 130 8.5 135 18.5 100 15 0.4953 0.20955; 
60 60 35 130 9.5 135 18.5 100 15 0.4953 0.20955; 
60 60 35 130 10.5 135 18.5 100 15 0.4953 0.20955; 
60 60 35 130 11.5. 135 18.5 100 15 0.4953 0.20955; 
60 60 35 130 12.5 135 18.5 100 15 0.4953 0.20955; 
60 60 35 130 14.5 135 18.5 100 15 0.4953 0.20955; 
60 60 35 130 15.5 135 18.5 100 15 0.4953 0.20955; 
60 60 35 130 16.5 135 18.5 100 15 0.4953 0.20955; 
60 60 35 130 17.5 135 18.5 100 15 0.4953 0.20955; 
80 70 40 130 15 130 16 90 18 0.4953 0.20955; 
74 70 40 130 15 130 16 90 18 0.4953 0.20955; 
76 70 40 130 15 130 16 90 18 0.4953 0.20955; 
78 70 40 130 15 130 16 90 18 0.4953 0.20955; 

1 82 70 40 130 15 130 16 90 18 0.4953 0.20955; 
80 65 40 130 15 130 16 90 18 0.4953 0.20955; 
80 67.5 40 130 15 130 16 90 18 0.4953 0.20955; 
80 72.5 40 130 15 130 16 90 18 0.4953 0.20955; 
80 75 40 130 15 130 16 90 18 0.4953 0.20955; 
80 70 37 130 15 130 16 90 18 0.4953 0.20955; 
80 70 38 130 15 130 16 90 18 0.4953 0.20955; 
80 70 39 130 15 130 16 90 18 0.4953 0.20955; 
] i 
y [ 

2 32 23.44 3.81; 
1 32 21.34 3.84; 
1 33 23.26 3. 7 9; 
1 34 22.3 3.78; 
1 33 21.34 3. 96; 
1 34 23.61 3.71; 
2 33 21.27 3.82; 
0 35 24.36 3.88; 
0 32 21.5 3.87; 
1 32 22.17 3. 8 6; 
0 34 22.05 3. 9; 
2 33 21.1 3. 8 9; 
4 50 15 3; 

~ 
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4 50 15 3; 
4 50 15 3; 
3 41 18.15 3. 46; 
3 37 19.09 3.48; 
3 35 22.2 3.75; 
2 33 21.17 3. 6; 
1 31 24.2 3. 89; 
0 30 23.2 3.84; 
0 29 22.8 3. 79; 
1 28 23.15 3.94; 
1 28 23.15 3.87; 
3 33 22.01 3.83; 
2 33 22.34 3. 8; 
2 32 22.17 3.84; 
1 32 22.5 3.83; 
1 31 23.05 3. 8 6; 
1 31 23.7 3. 9; 
2 30 24.17 3.92; 
2 30 24.1 3. 9; 
2 28 24.47 3. 8 9; 
2 29 24.17 3.88; 
2 33 25.18 3.95; 
1 32 24.14 3.85; 
1 31 24 3.8; 
1 30 23.21 3.81; 
0 30 23.4 3.81; 
1 30 22.5 3.77; 
1 29 22.14 3.74; 
1 29 22.6 3.77; 
1 29 22.1 3.71; 
2 35 25.11 3.85; 
2 35 24.15 3.87; 
1 34 25.14 3. 8 9; 
1 33 24.15 3. 9; 
1 31 24.4 3.87; 
0 30 22.7 3. 8; 
1 29 21.1 3.77; 
1 29 21.18 3. 79; 
1 28 20.99 3. 7 6; 
3 30 25.76 3.792; 
2 30 25.10 3. 76; 
1 28 26.86 3.83; 
1 32 29.18 3. 96; 
3 29 25.19 3. 67; 
1 29 26.64 3.78; 
2 28 26.19 3.95; 
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2 
3 
2 
3 
1 
] ; 

31 26.59 
30 25.71 
30 27.70 
31 26.17 
29 27.74 

X X(:,1:6); 

3.75; 
3.76; 
3.87; 
3.71; 
3. 90; 

% Preprocess the data 
X(:,l) X(:,l)/10; 
X(:,2) X(:,2)/10; 
X(:,3) X(:,3)/10; 
X(:,4) X(:,4)/100; 
X(:,5) X(:,5)/10; 
X(:,6) X(:,6)/100; 
Y(:,l) Y(:,l)/10; 
Y(:,2) = Y(:,2)/100; 
Y(:,3) Y(:,3)/100; 
Y(:,4) Y(:,4)/10; 
[rowx,colx] = size(X); 

% Generate the training data -- 3/4 of the whole 
% Generate the test data -- 1/4 of the whole 

N rowx; 
trN = N*3; 
teN = N; 
k 0; 

rn rowx/4; 
ml m*3; 
m2 = rn; 

for i = 0 :m-l 
trX(i*3+1, :) 
trY(i*3+1, :) 
trX(i*3+2,:) 
trY (i*3+2,:) 
trX (i *3+3,:) 
trY(i*3+3, :) 

end; 

= X(i*4+4,:); 

= Y(i*4+4,:); 
= X(i*4+3,:); 

= Y(i*4+3,:); 

= X(i*4+1,:); 
= Y(i*4+1,:); 

for i = l:m 
teX ( i, : ) 
teY(i, :) 

x (i*4-2,:); 
Y(i*4-2,:); 

end; 
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[NS, INPUT] = size(trX); 
[NS, OUT] = size(trY); 

9-
0 

% RBF network 
9-
0 

P = trX' 
T = trY' 
SPREAD = 1; 
GOAL =.0.1; 
net= newrb(P,T,GOAL,SPREAD) 

9-
0 

% Feedforward network 
9-
0 

alfa 
xi te 

0.8; 
0.2; 

% define the number of neurons in the hidden layer 
HN = 6; 

% weight connection between the hidden layer and the output 
w2 = sw2; 
w2_1 w2; 
w2_2 = w2_1; 

% weight connection between the input and the hidden layer 
wl = swl; 
wl_l = wl; 
wl_2 = wl; 
dwl = O*wl; 

% initialize the input and output values for the hidden 
layer 
I = zeros(HN,1); 
Iout = zeros(HN,l); 
FI= zeros(HN,1); 

% initialize other parameters 
k = 0; 
E = 1; 
accuary = 0.1; 
while (E>=accuary) 

k = k+1; 
times(k) = k; 
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for s = 1:1:NS 
xs = trX; 
ys = trY; 
x=xs(s,:); 
for j = 1:1:HN 

I(j) = x*w1(:,j); 
Iout(j) = 1/(1+exp(-I(j))); 

end 

yl w2'*Iout; 
yl yl 1

; 

el 0; 
y=ys(s,:); 
for 1 = 1:1:0UT 

el= el+ 0.5*(y(l)-yl(l))A2; 
end 

E = 0; 
if s==NS 

for s 1:1:NS 
E E+el; 

end 
end 
el y -yl; 

w2 w2_1+xite*Iout*el+alfa*(w2_1-w2_2); 

for j = 1:1:HN 
S = 1/(1+exp(-I(j))); 
FI(j) = 8*(1-S); 

end 

for i 
for 

end 
end 

1:1:INPUT 
j = 1:1:HN 
tmp = 0; 
for n = 1:1:0UT 

tmp = tmp + el(n)*w2(j,n); 
end 
dwl(i,j) = xite*FI(j)*x(i)*tmp; 

w1 w1_1+dw1+alfa*(w1_1-w1_2); 

w1_2 w1_1; 
w1 1 w1; 
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r--··, 

w2_2 w2_1; 
w2 1 w2; 

end 
Ek(k) = E 

end 
figure(2); 
plot(times,Ek, 1 r 1

); 

xlabel( 1 times- k 1
); 

ylabel( 1 Error- E 1
); 

[NS, INPUT] = size(teX); 
[NS, OUT] = size(teY); 
% 
% RBF test 
% 
P = teX 1 ; 

T = teY 1
; 

Yd = sim(net,P); 
error = Yd-T; 
error_RBF = mse(error) 
% 
% feedforward test 
% define the number of neurons in the hidden layer 
% 
HN = 6; 
for i = 1:1:NS 

for j = 1:1:HN 
I ( i, j) = teX ( i, : ) *w1 ( : , j) ; 
Iout(i,j) = 1/(1+exp(-I(i,j))); 

end 
end 
y= w2 1 * Iout 1

; 

y = y 1; 

error = abs(y- teY); 
error_PB = mse(error) 

k = 0; 
Yd = Yd 1

; 

for i = 1:NS 
k = k+1; 
times(k) k; 

end 
figure(3); 
hold on 
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plot(times, teY(:,1)*10, 'r*', times, round(Yd(:,1)*10), 
'bo' , times, round (y ( : , 1) * 10) , 'k +' ) 
xlabel('# of experiment'); 
title('Quality'); 
ylabel('quality'); 
legend('Actual output', 'RBF output', 'BP output'); 

figure(4); 
hold on 
plot(times, teY(:,2)*100, 'r*', times, Yd(:,2)*100, 'bo', 
times, y ( : , 2) * 1 0 0, ' k + ' ) 
title('Wall-thickness'); 
xlabel('# of experiment'); 
ylabel('Wall-thickness'); 
legend('Actual output', 'RBF output', 'BP output'); 

figure(5); 
hold on 
plot(times, teY(:,3)*100, 'r*', times, Yd(:,3)*100, 'bo', 
times, y ( : , 3) * 1 0 0, ' k + ' ) 
title('Burst pressure'); 
xlabel('# of experiment'); 
ylabel('Burst pressure'); 
legend('Actual output', 'RBF output', 'BP output'); 

figure ( 6); 
hold on 
plot(times, teY(:,4)*10, 'r*', times, Yd(:,4)*10, 'bo', 
t ime s , y ( : , 4 ) * 1 0 , ' k + ' ) 
title('Compliance'); 
xlabel('# of experiment'); 
ylabel('Compliance'); 
legend('Actual output', 'RBF output', 'BP output'); 

for i = 1:1:NS 
for j = 1:1:0UT 

errorRBF_quality(i) = abs(round(Yd(i,1)*10)-
teY(i,1)*10); 

errorRBF_WT(i) 100*abs(Yd(i,2)-teY(i,2))/Yd(i,1); 
errorRBF_BP(i) 100*abs(Yd(i,3)-teY(i,3))/Yd(i,3); 
errorRBF_CP(i) 100*abs(Yd(i,4)-teY(i,4))/Yd(i,4); 
errorBP_quality(i) = abs(round(y(i,1)*10)-

teY(i,1)*10); · 
errorBP_WT(i) 
errorBP_BP(i) 
errorBP_CP(i) 

100*abs(y(i,2)-teY(i,2))/y(i,1); 
100*abs(y(i,3)-teY(i,3))/y(i,3); 
100*abs(y(i,4)-teY(i,4))/y(i,4); 
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end 

end 

errorRBF ( 1, :) 
errorRBF ( 2, : ) 
errorRBF ( 3, : ) 
errorRBF ( 4, : ) 
errorBP (1,:) 
errorBP (2,:) 
errorBP (3,:) 
errorBP ( 4, : ) 

errorRBF_qua1ity; 
errorRBF_WT; 
errorRBF_BP; 
errorRBF_CP; 

errorBP_qua1ity; 
errorBP_WT; 
errorBP_BP; 
errorBP_CP; 

EN = 6; 
count_RBF = zeros(OUT,EN); 
count_BP = zeros(OUT,EN); 
for i = 1:1:NS 

end 

for j = 2:1:0UT 

end 

if errorRBF(j,i) < 3 
count_RBF(j,1) = count_RBF(j,1)+1; 

e1seif errorRBF(j,i) < 5 
count_RBF(j,2) = count_RBF(j,2)+1; 

e1seif errorRBF(j,i) < 8 
count_RBF(j,3) = count_RBF(j,3)+1; 

e1seif (errorRBF(j,i) < 10) 
count_RBF(j,4) = count_RBF(j,4)+1; 

e1seif (errorRBF(j,i) < 15) 
count_RBF ( j, 5) count_RBF ( j, 5) + 1; 

e1se 
count_RBF(j,6) 

end; 
if (errorBP(j,i) < 2) 

count_RBF(j,6)+1; 

count_BP(j,1) = count_BP(j,1)+1; 
e1seif (errorRBF(j,i) < 5) 

count_BP(j,2) = count_BP(j,2)+1; 
e1seif (errorRBF(j,i) < 8) 

count_BP(j,3) = count_BP(j,3)+1; 
e1seif (errorRBF(j,i) < 10) 

count_BP(j,4) = count_BP(j,4)+1; 
e1seif (errorRBF(j,i) < 15) 

count_BP (j, 5) count_BP (j, 5) +1; 
el se 

count_BP(j,6) count_BP(j,6)+1; 
end; 
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for i = 1:1:NS 
if errorRBF_quality(i) == 0 

count_RBF(1,1) = count_RBF(1,1)+1; 
count_BP(1,1) = count_BP(1,1)+1; 

elseif errorRBF_quality(i) == 1 
count_RBF(1,2) = count_RBF(1,2)+1; 
count_BP(1,2) = count_BP(1,2)+1; 

elseif errorRBF_quality(i) == 2 
count_RBF(1,3) = count_RBF(1,3)+1; 
count_BP(1,3) = count_BP(1,3)+1; 

el se 
count_RBF(1,4) = count_RBF(1,4)+1; 
count_BP(1,4) = count_BP(1,4)+1; 

end; 
end 

errorquality(1, :) = count_RBF(1, :); 
errorquality(2, :) = count_BP(1, :); 
errorWT(1, :) = count_RBF(2, :); 
errorWT(2, :) = count_BP(2, :); 
errorBPr(1, :) = count_RBF(3, :); 
errorBPr(2, :) = count_BP(3, :); 
errorCP ( 1, :) count_RBF ( 4, :) ; 
errorCP(2, :) = count_BP(4, :); 

xaxis = [0.02 0.05 0.08 0.10 0.15 0.20] 
figure(7); 
subplot(2,2,1) 
bar(errorquality, 'group'); 
title('quality'); 
subplot(2,2,2) 
bar(errorWT, 'group'); 
title('Wall Thickness'); 
subplot(2,2,3) 
bar(errorBPr, 'group'); 
title('Burst Pressure'); 
subplot(2,2,4) 
bar(errorCP, 'group'); 
title('Compliance'); 

figure(S); 
subplot(4,2,1); 
bar(0:5, count_RBF(1, :)); 
title('RBF quality'); 
xl abel ( 'error') ; 
ylabel('# of experiments'); 
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subplot(4,2,2); 
bar(O:S, count_BP(l, :)); 
title('feedforward quality'); 
xlabel('error'); 
ylabel('# of experiments'); 

subplot(4,2,3); 
bar(xaxis, count_RBF(2, :)); 
title('RBF wall thickness'); 
xlabel('error'); 
ylabel('# of experiments'); 

subplot(4,2,4); 
bar(xaxis, count_BP(2, :)); 
title('feedforward wall thickness'); 
xlabel('error'); . 
ylabel('# of experiments'); 

subplot(4,2,5); 
bar(xaxis, count_RBF(3, :)); 
title('RBF burst pressure'); 
x label ( 'er.ror' ) ; 
ylabel('# of experiments'); 

subplot(4,2,6); 
bar(xaxis, count_BP(3, :)); 
title('feedforward burst pressure'); 
xlabel('error'); 
ylabel('# of experiments'); 

subplot(4,2,7); 
bar(xaxis, count_RBF(4, :)); 
title('RBF compliance'); 
xlabel('error'); 
ylabel('# of experiments'); 

subplot(4,2,8); 
bar(xaxis, count_BP(4, :)); 
title('feedforward compliance'); 
x label ( 'error') ; 
ylabel('# of experiments'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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/~\ 60 60 35 130 8.5 135 18.5 100 15 0.4953 0.20955; 
60 60 35 130 9.5 135 18.5 100 15 0.4953 0.20955; 
60 60 35 130 10.5 135 18.5 100 15 0.4953 0.20955; 
60 60 35 130 11.5 135 18.5 100 15 0.4953 0.20955; 
60 60 35 130 12.5 135 18.5 100 15 0.4953 0.20955; 
60 60 35 130 14.5 135 18.5 100 15 0.4953 0.20955; 
60 60 35 130 15.5 135 18.5 100 15 0.4953 0.20955; 
60 60 35 130 16.5 135 18.5 100 15 0.4953 0.20955; 
60 60 35 130 17.5 135 18.5 100 15 0.4953 0.20955; 
80 70 40 130 15 130 16 90 18 0.4953 0.20955; 
74 70 40 130 15 130 16 90 18 0.4953 0.20955; 
76 70 40 130 15 130 16 90 18 0.4953 0.20955; 
78 70 40 130 15 130 16 90 18 0.4953 0.20955; 
82 70 40 130 15 130 16 90 18 0.4953 0.20955; 
80 65 40 130 15 130 16 90 18 0.4953 0.20955; 
80 67.5 40 130 15 130 16 90 18 0.4953 0.20955; 
80 72.5 40 130 15 130 16 90 18 0.4953 0.20955; 
80 75 40 130 15 130 16 90 18 0.4953 0.20955; 
80 70 37 130 15 130 16 90 18 0.4953 0.20955; 
80 70 38 130 15 130 16 90 18 0.4953 0.20955; 
80 70 39 130 15 130 16 90 18 0.4953 0.20955; 
l ; 
y [ 

2 32 23.44 3.81; 
1 32 21.34 3.84; 
1 33 23.26 3. 79; 
1 34 22.3 3.78; 
1 33 21.34 3. 96; 
1 34 23.61 3. 71; 
2 33 21.27 3.82; 
0 3? 24.36 3.88; 
0 32 21.5 3.87; 
1 32 22.17 3. 86; 
0 34 22.05 3. 9; 
2 33 21.1 3. 89; 
4 50 15 3; 
4 50 15 3; 
4 50 15 3; 
3 41 18.15 3. 46; 
3 37 19.09 3.48; 
3 35 22.2 3.75; 
2 33 21.17 3.6; 
1 31 24.2 3. 89; 
0 30 23.2 3.84; 
0 29 22.8 3. 79; 
1 28 23.15 3.94; 
1 28 23.15 3.87; 
3 33 22.01 3. 83; 
2 33 22.34 3.8; 
2 32 22.17 3. 84; 
1 32 22.5 3.83; 
1 31 23.05 3.86; 
1 31 23.7 3.9; 
2 30 24.17 3.92; 
2 30 24.1 3. 9; 
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(' 2 28 24.47 3. 89; 
2 29 24.17 3.88; 
2 33 25.18 3. 95; 
1 32 24.14 3.85; 
1 31 24 3.8; 
1 30 23.21 3.81; 
0 30 23.4 3. 81; 
1 30 22.5 3.77; 
1 29 22.14 3.74; 
1 29 22.6 3.77; 
1 29 22.1 3. 71; 
2 35 25.11 3. 85; 
2 35 24.15 3.87; 
1 34 25.14 3.89; 
1 33 24.15 3.9; 
1 31 24.4 3.87; 
0 30 22.7 3. 8; 
1 29 21.1 3.77; 
1 29 21.18 3. 79; 
1 28 20.99 3.76; 
3 30 25.76 3.792; 
2 30 25.10 3.76; 
1 28 26.86 3.83; 
1 32 29.18 3. 96; 
3 29 25.19 3.67; 
1 29 26.64 3. 78; 
2 28 26.19 3. 95; 
2 31 26.59 3.75; 
3 30 25.71 3. 76; 
2 30 27.70 3.87; 
3 31 26.17 3. 71; 
1 29 27.74 3.90; 
l ; 

X= X(:,1:6); 
x (:' 1) X(:,l)/100; 
x (: '2) X(:,2)/100; 
x (: '3) X(:,3)/100; 
x (: '4) X(:,4)/1000; 
x (: '5) X(:,5)/100; 
x (:' 6) X(:,6)/1000; 

y (:' 1) Y(:,l)/10; 
y (: '2) Y(:,2)/100; 
y (:' 3) Y(:,3)/100; 
y (:' 4) Y(:,4)/10; 
save datasim X Y 

[rowx,colx] = size (X); 
rn = rowx/ 4; 
ml m*3; 
m2 = rn; 

for i = O:m-1 

~ 
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end; 

trX(i*3+1, :) 
trY(i*3t1, :) 
trX(i*3+2, :) 
trY(i*3+2, :) 
trX(i*3+3, :) 
trY(i*3+3, :) 

x (i*4+4,:); 
y (i*4+4,:); 
x (i*4+3,:); 
y (i*4+3,:); 
X(i*4+1,:); 
Y(i*4+1,:); 

for i = 1:m 
teX(i, :) 
teY(i,:) 

x (i*4-2,:); 
y (i*4-2,:); 

end; 

%% Build the process madel: net and inverse process madel: netinv 

[NS, INPUT] = size(trX); 
[NS, OUT] = size(trY); 
trX = trX'; 
trY = trY'; 
SPREAD = 8; 
GOAL = 0.1; 
net = network; 
net= newrb(trX,trY,GOAL,SPREAD); 
GOAL = 0.1; 
netinv = newrb(trY,trX,GOAL,SPREAD); 

[NS, INPUT] = size(teX); 
[NS, OUT] = size(teY); 
teX teX'; 
teY = teY'; 

Yd = sim(net,teX); 
error = Yd-teY; 

mse(error) 

%% Objective: Given a desired output, ta find out the related inputs 

eta = 0.00001; 
ite = 100; 
k = 0.01; 
ymod_final 
xmod_final 

for i 1:m 
ydes 
xmod 
ymod 
y err 

zeros(4,m); 
zeros(6,m); 

teY (:, i); 
sim(netinv,ydes); 
sim (net, xmod); 
ydes - ymod; 
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n = 0; 
while (sse(yerr) > eta) 

n = n+1; 
if (n > ite), break, end, 
ymodinv = ydes + k*yerr; 
if (ymodinv(1)>0.4) 

ymodinv(1) = 0.4; 
end 
if (ymodinv(1)<0) 

ymodinv ( 1) = 0; 
end 
if (ymodinv(2)>0.5) 

ymodinv(2) = 0.5; 
end 
if (ymodinv(2)<0.2) 

ymodinv(2) = 0.2; 
end 
if (ymodinv(3)>0.3) 

ymodinv(3) = 0.3; 
end 
if (ymodinv(3)<0.15) 

ymodinv(3) = 0.15; 
end 
if (ymodinv(4)>0.4) 

ymodinv(4) = 0.4; 
end 
if (ymodinv(4)<0.3) 

ymodinv(4) = 0.3; 
end 
xmod = sim(netinv, ymodinv); 
% to find the closest input in the database 
sum_error = 4; 
index = 1; 
for j = 1:46 

tx = trX (:, j) ; 
tmp = tx - xmod; 
if mse(tmp)<sum_error 

sum_error = mse(tmp); 
tmp_xmod = tx; 

end; 

index = j; 
end; 

end; 
ymod sim(net,xmod); 

trY (:,index) ; 
ymod - yact; 

y act 
y err 

end; 
ymod_final (:, i) 
xmod_final (:, i) 

ymod; 
xmod; 

%% bar chart for App I 
x_error = zeros(6,m); 
% <3%, <5%, <10%, >10% 
x_errcnt = zeros(6,5); 
x_error1 = teX - xmod_final; 
for i = 1:6 
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for j = 1:m 
x_error1(i,j} = abs(x_error1(i,j}}; 
x_error1(i,j} = x_error1(i,j}/teX(i,j}; 
if x_error1(i,j} < 0.03 

x_errcnt(i,1} = x_errcnt(i,1} + 1; 
e1se 

if x_error1(i,j} < 0.05 
x_errcnt(i,2} = x_errcnt(i,2} + 1; 

e1se 
if x_error1(i,j} < 0.08 

x~errcnt(i,3} = x_errcnt(i,3} + 1; 
e1se 

if x_error1(i,j} < 0.10 
x_errcnt(i,4} x_errcnt(i,4} + 1; 

el se 
x_errcnt(i,5} 

end 
end 

end 
end 

end 
end 

xaxis = [0.02 0.05 0.08 0.10 0.20]; 
xaxis2 = [0 1 2 3 4]; 
yaxis = [0 5 10 15 20]; 
figure(1}; 
subplot(3,2,1}; 
bar(xaxis,x_errcnt(1, :}}; 
title('Primary beat temperature'}; 
xlabel ( 'error'} ; 
ylabel('# of experiments'}; 
subplot(3,2,2}; 
bar(xaxis,x_errcnt(2, :}}; 
title('Primary beat time'}; 
xlabel ( 'error'} ; 
ylabel('# of experiments'}; 
subplot(3,2,3}; 
bar(xaxis,x_errcnt(3, :}}; 
title('Applied Pressure'}; 
xlabel('error'}; 
ylabel('# of experiments'}; 
subplot(3,2,4}; 
bar(xaxis,x_errcnt(4, :}}; 
title('Balloon forming temperature'}; 
xlabel('error'}; 
ylabel('# of experiments'}; 
subplot(3,2,5}; 
bar(xaxis,x_errcnt(5, :}}; 
title('Primary stretcb distance'}; 
xlabel('error'}; 
ylabel('# of experiments'}; 
subplot(3,2,6}; 
bar(xaxis,x_errcnt(6, :}}; 
title('Rarison lengtb'}; 

104 

x_errcnt(i,5} + 1; 



xlabel ('errer') ; 
ylabel('# of experirnents'); 

error1_Y = yrnod_final-teY; 
error1_X = xrnod_final-teX; 
xerror1 = zeros(1,rn); 
for i=1:rn 

xerror1(1,i) = rnse(xrnod_final(:,i)); 
end; 
xerror1 
rnse(error1_X) 

%% Control system - Approach II: direct control 

xrnod_final2 = zeros(6,rn); 
rn = rowx/4; 
for i=1:rn 

end; 

ydes = te Y ( : , i) ; 
xrnod2 = sirn(netinv,ydes); 
xrnod_final2(:,i) = xrnod2; 

error2_X = xrnod_final2-teX; 
xerror2 = zeros(1,rn); 
for i=1:rn 

xerror2(1,i) = rnse(xrnod_final2(:,i)); 
end; 
xerror2 
rnse(error2_X) 
%% Bar chart for the direct control 
%% bar chart for App II 
x_error = zeros(6,rn); 
% <3%, <5%, <10%, >10% 
x_errcnt = zeros(6,5); 
x_error = teX - xrnod_final2; 
for i = 1:6 

for j = 1:rn 
x_error(i,j) = abs(x_error(i,j)); 
x_error(i,j) = x_error(i,j)/teX(i,j); 
if x_error(i,j) < 0.03 

el se 
x_errcnt(i,1) = x_errcnt(i,1) + 1; 

if x_error(i,j) < 0.05 

el se 
x_errcnt(i,2) x_errcnt(i,2) + 1; 

if x_error(i,j) < 0.08 

el se 

end 

x_errcnt(i,3) x_errcnt(i,3) + 1; 

if x_error(i,j) < 0.10 
x_errcnt(i,4) x_errcnt(i,4) + 1; 

el se 
x_errcnt(i,5) 

end 
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end 
end 

end 
end 

xaxis = [0.02 0.05 0.08 0.10 0.20]; 
xaxis2 = [0 1 2 3 4]; 
figure(2); 
subplot(3,2,1); 
bar(xaxis,x_errcnt(1, :)); 
title('Primary heat temperature'); 
xlabel('error'); · 
ylabel('# of experiments'); 
subplot(3,2,2); 
bar(xaxis,x_errcnt(2, :)); 
title('Primary heat time'); 
xlabel ( 'error') ; 
ylabel('# of experiments'); 
subplot(3,2,3); 
bar(xaxis,x_errcnt(3, :)); 
title('Applied Pressure'); 
xlabel('error'); 
ylabel('# of experiments'); 
subplot(3,2,4); 
bar(xaxis,x_errcnt(4, :)); 
title('Balloon forming temperature'); 
xlabel ( 'error' ) ; 
ylabel('# of experiments'); 
subplot(3,2,5); 
bar(xaxis,x_errcnt(5, :)); 
title('Primary stretch distance'); 
xlabel('error'); 
ylabel('# of experiments'); 
subplot(3,2,6); 
bar(xaxis,x_errcnt(6, :)); 
title('Parison length'); 
xlabel('error'); 
ylabel('# of experiments'); 

%% calculate how much the inverse madel can recover the madel 
% input --> madel --> output ~-> inv_model --> input 

tempY sim(net, teX); 
tempX sim(netinv, tempY); 
Err= zeros(6,m); 
ErrRate = zeros(6,5); 
for i = 1:6 

for j = 1:m 
temp = abs(tempX(i,j)-teX(i,j)); 
Err(i,j) = temp/teX(i,j); 
if Err(i,j) < 0.02 

ErrRate(i,1) = ErrRate(i,1)+1; 
el. se 

if Err(i,j) < 0.05 
ErrRate(i,2) = ErrRate(i,2)+1; 
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el se 
if Err(i,j) < 0.10 

ErrRate(i,3) = ErrRate(i,3)+1; 
el se 

if Err(i,j) < 0.20 
ErrRate(i,4) ErrRate(i,4)+1; 

el se 
ErrRate(i,5) ErrRate(i,5)+1; 

end 
end 

end 
end 

end 
end 

xaxis = [0.02 0.05 0.10 0.20 0.30]; 
figure(3); 
subplot(3,2,1); 
bar(xaxis,ErrRate(l, :)); 
title('Primary heat temperature'); 
xlabel('error'); 
ylabel('# of experiments'); 
subplot(3,2,2); 
bar(xaxis,ErrRate(2, :)); 
title('Primary heat time'); 
xlabel('error'); 
ylabel('# of experiments'); 
subplot(3,2,3); 
bar(xaxis,ErrRate(3, :)); 
title('Applied Pressure'); 
xlabel('error'); 
ylabel('# of experiments'); 
subplot(3,2,4); 
bar(xaxis,ErrRate(4, :)); 
title('Balloon forming temperature'); 
xlabel('error'); 
ylabel('# of experiments'); 
subplot.(3, 2, 5); 
bar(xaxis,ErrRate(5, :)); 
title('Primary stretch distance'); 
xlabel('error'); 
ylabel('# of experiments'); 
subplot(3,2,6); 
bar(xaxis,ErrRate(6, :)); 
title('Parison length'); 
xlabel('error'); 
ylabel('# of experiments'); 
%% process madel validation 
% input --> madel --> output calculate the error 
tempY = sim(net, teX); 
Err= zeros(4,m); 
ErrRate = zeros(4,5); 
for i = 1:4 

for j = 1 :rn 
if i == 1 
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temp = round(abs(tempY(i,j)*10-teY(i,j)*10)); 
Err(i,j) = temp; 
if Err(i,j) == 0 

ErrRate(i,1) ErrRate(i,1) + 1; 
el se 

if Err(i,j) == 1 
ErrRate(i,2) ErrRate(i,2) + 1; 

el se 
if Err(i,j) == 2 

ErrRate(i,3) ErrRate(i,3) + 1; 
el se 

if Err(i,j) == 3 
ErrRate(i,4) ErrRate(i,4) + 1; 

el se 
if Err(i,j) == 4 

ErrRate(i,5) ErrRate(i,5) + 1; 
end 

end 
end 

end 
end 

el se 

end 
end 

end 

temp = abs(tempY(i,j)-teY(i,j)); 
Err(i,j) = temp/teX(i,j); 
if Err(i,j) < 0.02 

ErrRate(i,1) = ErrRate(i,1)+1; 
el se 

end 

if Err(i,j) < 0.05 

el se 

end 

ErrRate(i,2) = ErrRate(i,2)+1; 

if Err(i,j) < 0.10 

el se 

end 

ErrRate(i,3) = ErrRate(i,3)+1; 

if Err(i,j) < 0.20 
ErrRate(i,4) ErrRate(i,4)+1; 

el se 
ErrRate(i,5) ErrRate(i,5)+1; 

end 

xaxis = [0.02 0.05 0.10 0.20 0.30]; 
xaxis2 = [0 1 2 3 4]; 
figure (4); 
subplot(2,2,1); 
bar(xaxis2,ErrRate(1, :)); 
title('Quality'); 
xlabel('error'); 
ylabel('# of experiments'); 
subplot(2,2,2); 
bar(xaxis,ErrRate(2,:)); 
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~·. 
title('Wall Thickness'); 
xlabel('error'); 
ylabel('# of experiments'); 
subplot(2,2,3); 
bar(xaxis,ErrRate(3, :)); 
title('Burst Pressure'); 
xlabel('error'); 
ylabel('# of experiments'); 
subplot(2,2,4); 
bar(xaxis,ErrRate(4, :)); 
title('Compliance'); 
xlabel('error'); 
ylabel('# of experiments'); 
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