
Kernel Adaptive Filtering Algorithms with
Improved Tracking Ability

Jad Kabbara

Department of Electrical & Computer Engineering
McGill University
Montreal, Canada

April 2014

A thesis submitted to McGill University in partial fulfillment of the requirements for the
degree of Master of Engineering.

c⃝ 2014 Jad Kabbara

In the Name of Allah, the Most Gracious, the Most Merciful

i

Abstract

In recent years, there has been an increasing interest in kernel methods in areas such as

machine learning and signal processing as these methods show strong performance in clas-

sification and regression problems. Interesting “kernelized” extensions of many well-known

algorithms in artificial intelligence and signal processing have been presented, particularly,

kernel versions of the popular online recursive least squares (RLS) adaptive algorithm,

namely kernel RLS (KRLS). These algorithms have been receiving significant attention

over the past decade in statistical estimation problems, among which those problems in-

volving tracking time-varying systems. KRLS algorithms obtain a non-linear least squares

(LS) regressor as a linear combination of kernel functions evaluated at the elements of a

carefully chosen subset, called a dictionary, of the received input vectors. As such, the

number of coefficients in that linear combination, i.e., the weights, is equal to the size of

the dictionary. This coupling between the number of weights and the dictionary size intro-

duces a trade-off. On one hand, a large dictionary would accurately capture the dynamics

of the input-output relationship over time. On the other, it has a detrimental effect on the

algorithms ability to track changes in that relationship because having to adjust a large

number of weights can significantly slow down adaptation. In this thesis, we present a new

KRLS algorithm designed specifically for the tracking of time-varying systems. The key

idea behind the proposed algorithm is to break the dependency of the number of weights

on the dictionary size. In the proposed method, the number of weights K is fixed and is

independent from the dictionary size.

Particularly, we use a novel hybrid approach for the construction of the dictionary that

employs the so-called surprise criterion for admitting data samples along with a simple

pruning method (“remove-the-oldest”) that imposes a hard limit on the dictionary size.

Then, we propose to construct aK-sparse LS regressor tracking the relationship of the most

recent training input-output pairs using the K dictionary elements that provide the best

approximation of the output values. Identifying those dictionary elements is a combinatorial

optimization problem with a prohibitive computational complexity. To overcome this, we

extend the Subspace Pursuit algorithm (SP) which, in essence, is a low complexity method

to obtain LS solutions with a pre-specified sparsity level, to non-linear regression problems

and introduce a kernel version of SP, which we call Kernel SP (KSP). The standard KRLS is

used to recursively update the weights until a new dictionary element selection is triggered

ii

by the admission of a new input vector to the dictionary. Simulations show that that the

proposed algorithm outperforms existing KRLS-type algorithms in tracking time-varying

systems and highly chaotic time series.

iii

Sommaire

Au cours des dernières années, il y a eu un intérêt accru pour les méthodes à noyau dans

des domaines tels que l’apprentissage automatique et le traitement du signal, puisque ces

méthodes démontrent une performance supérieure dans la résolution des problèmes de

classification et de régression. D’intéressantes extensions à noyau de plusieurs algorithmes

connus en intelligence artificielle et en traitement du signal ont été introduites, partic-

ulièrement, les versions à noyau du fameux algorithme d’apprentissage incrémental des

moindres carrés récursifs (en anglais, Recursive Least Squares (RLS)), nommées KRLS.

Ces algorithmes ont reçu une attention considérable durant la dernière décennie dans les

problèmes d’estimation statistique, particulièrement ceux de suivi des systèmes variant dans

le temps. Les algorithmes KRLS forment le régresseur aux moindres carrés non-linéaires

en utilisant une combinaison linéaire de noyaux évalués aux membres d’un sous-ensemble,

appelé dictionnaire, des données d’entrée. Le nombre des coefficients dans la combinaison

linéaire, c’est à dire les poids, est égal à la taille du dictionnaire. Ce couplage entre le nom-

bre de poids et la taille du dictionnaire introduit un compromis. D’une part, un dictionnaire

de grande taille reflète avec précision la dynamique de la relation entre les données d’entrée

et les sorties à travers le temps. De l’autre part, un tel dictionnaire diminue la capacité

de l’algorithme à suivre les variations dans cette relation, car ajuster un grand nombre

de poids ralentit considérablement l’adaptation de l’algorithme aux variations du système.

Dans cette thèse, nous présentons un nouvel algorithme KRLS conçu précisément pour

suivre les systèmes variant dans le temps. L’idée principale de l’algorithme est d’enlever

la dépendance du nombre de poids sur la taille du dictionnaire. Ainsi, nous proposons de

fixer le nombre de poids indépendamment de la taille du dictionnaire.

Particulièrement, nous présentons une nouvelle approche hybride pour la construction

du dictionnaire qui emploie le test de la surprise pour l’admission des données d’entrées avec

une méthode simple d’élagage (l’élimination du membre le plus ancien du dictionnaire) qui

impose une limite stricte sur la taille du dictionnaire. Nous proposons ainsi de construire

un régresseur K-creux (en anglais, K-sparse) aux moindres carrés qui suit la relation des

paires de données d’entrées et sorties les plus récentes en utilisant les K membres du dictio-

nnaire qui approximent le mieux possible les sorties. L’identification de ces membres est un

problème d’optimisation combinatoire ayant une complexité prohibitive. Pour surmonter

cet obstacle, nous étendons l’algorithme Subspace Pursuit (SP), qui est une méthode à

iv

complexité réduite pour le calcul des solutions aux moindres carrés ayant un niveau préfixé

de parcimonie, aux problèmes de régression non-linéaire. Ainsi, nous introduisons une ver-

sion à noyau de SP qu’on appelle Kernel Subspace Pursuit (KSP). L’algorithme standard

KRLS est utilisé pour l’ajustement récursif des poids jusqu’à ce qu’un nouveau vecteur

de donnée soit admis au dictionnaire. Les simulations démontrent que la performance de

notre algorithme dans le cadre du suivi des systèmes variant dans le temps surpasse celle

d’autres algorithmes KRLS.

v

Acknowledgments

First and foremost, all praise is due to God. It is only through His immense bounty and

constant guidance that I was able to go on through my journey at McGill. I thank Him

for blessing me with the opportunity to attend McGill and for giving me the strength and

drive to finish my graduate studies.

I have also been blessed and very fortunate to have had the opportunity to work under

the supervision of Professor Ioannis Psaromiligkos. In my two years at McGill, I got to

know Prof. Psaromiligkos as an instructor, advisor and older brother. His dedication and

hard work are simply inspiring. His advice and mentoring helped shaping me not only as a

researcher, but as a well-rounded individual. His cheerful spirit and amiable character were

always a source of comfort and optimism. I can go on talking about Prof. Psaromiligkos,

but I am certain that words would fall short of expressing how grateful I am to have been

able to work with him. He is simply an inspiring advisor and a great individual. Learning

from him and with him was truly an enjoyable experience that I shall forever remember.

I would like to thank Professor Mark Coates for reviewing my thesis and for his insightful

feedback and valuable comments.

I would like to thank my lab mates Ahmad, Ardavan, Dinos, François, Ivan, Mahmoud,

Stefanos and Saeed for their wonderful company. I am particularly grateful for Saeed’s

immense support throughout all the stages of my graduate studies. I am also grateful to

Ardavan and François for all the instrumental discussions we had and for sharing with me

their insight into the intricacies of machine learning. I want to also thank Ahmad for all

the good times we spent in the lab, for all the valuable conversations we shared and for

being a source of support and motivation.

I am truly blessed to have been able to share my journey at McGill with my best friend

Fadel. Despite the distance, Fadel was always there to provide me with all the support

I needed and to motivate me to always outdo myself. His unwavering support, constant

motivation and dedication in his own work were a source of continued inspiration. His

friendship has always been a source of happiness, and it is one that I will always cherish

dearly.

I was also fortunate to share those two past years with amazing friends that really

made Montreal embody the meaning of home away from home. I would like to first thank

Mohamad and Moataz for making my stay in Montreal enjoyable and unique, for supporting

vi

me at all times, for sharing with me those happy moments and for being there for me

in those other frustrating moments. I would also like to thank Ahmed Youssef for his

friendship and particular support in the last two months leading up to the culmination of

this thesis. I am also grateful to Fawzi and Seif for being great friends; I thank Fawzi for

sharing with me many memorable moments that I will always remember, and I thank Seif

for sparking conversations and debates that range from engineering to psychology and that

feed the mind, soul and heart. I also thank Amir, Hani, Mohamed Abdelghany, Mohamed

Khairy, Muhammad Elhusseini and Nazem for their friendships. I am thankful to Alaa for

truly being an older brother to me. I am grateful to Ahmed Masmoudi, Chris, Dung Ho,

Gowdemy, Jules, Ishaan, Rawan and Yue for all the good times we spent in my first year.

I would also like to thank Mahvish for being a great friend, for her light spirit and warm

company, and for her continuous support.

Finally, I cannot genuinely express my gratitude towards my parents Ezzat and Ghiwa,

and my brothers Nouhad and Abdallah. Without my parents, I wouldn’t be where I am

today. Their endless sacrifices and tremendous encouragement have always been a source

of inspiration, and making them proud was and will always be an incentive for my hard

work. I will always be indebted to them, and it is to them that my heartfelt appreciation

and unconditional love go.

vii

Contents

1 Introduction 1

1.1 From Linear Methods to Kernel Methods 1

1.2 KRLS, Sparsification and Pruning . 2

1.3 Tracking Time-Varying Systems . 4

1.4 Contributions . 5

1.5 Thesis Organization . 5

2 A Primer on Kernel Methods 6

2.1 Mathematical Prerequisites . 6

2.2 Kernels and Their Properties . 9

2.2.1 Definition . 9

2.2.2 Positive Definite Kernels . 10

2.2.3 Properties of Kernels . 11

2.3 Reproducing Kernel Hilbert Spaces . 14

2.3.1 Construction of the RKHS . 14

2.4 Kernel Methods . 17

2.5 The Representer Theorem . 17

2.6 Summary . 19

3 Literature Review 21

3.1 Recursive Least-Squares . 21

3.2 Kernel Recursive Least-Squares . 22

3.3 Sparsification Techniques . 25

3.3.1 Approximate Linear Dependence 25

3.3.2 Surprise Criterion . 30

Contents viii

3.3.3 Quantization Technique . 33

3.3.4 Novelty Sparsification Rule . 34

3.3.5 Significance Criterion . 34

3.3.6 Mutual Information Criterion . 35

3.3.7 Coherence Criterion . 37

3.3.8 Prediction Error Criterion . 37

3.4 Pruning Strategies . 39

3.4.1 Remove-the-Oldest Strategy . 39

3.4.2 Optimal Brain Damage . 39

3.4.3 Optimal Brain Surgeon . 40

3.4.4 Minimal Introduced Error Criterion 41

3.4.5 Minimal Dependence Strategy . 44

3.4.6 Soft Pruning for Kernel-based Anomaly Detection 45

3.5 Conclusion . 46

4 Proposed Method 48

4.1 Background . 48

4.1.1 Subspace Pursuit . 48

4.1.2 Kernel Matching Pursuit . 51

4.1.3 Kernel Basis Pursuit . 53

4.2 Motivation . 54

4.3 Kernel Subspace Pursuit . 56

4.3.1 Problem Formulation . 56

4.3.2 The KSP Procedure . 57

4.3.3 KSP versus KMP and KBP . 59

4.4 Proposed Algorithm . 60

4.4.1 Dictionary Construction . 60

4.4.2 Imposing a hard limit on the size of the dictionary 62

4.4.3 Choosing the best K elements for tracking using KSP 62

4.4.4 Effect of the parameter α . 64

4.4.5 Summary of Proposed Algorithm 64

4.4.6 Computational Considerations . 66

4.5 Conclusion . 66

Contents ix

5 Simulations 67

5.1 Performance of KSP . 67

5.2 Tracking of a Time-Varying System . 69

5.3 Prediction of the Mackey-Glass Time Series 71

5.4 Effect of changing K on the performance of SP-KRLS 72

5.5 Effect of changing α on the performance of SP-KRLS 74

6 Conclusions and Future Research 77

6.1 Concluding Remarks . 77

6.2 Future Research . 78

References 80

x

List of Figures

4.1 Effect of changing the dictionary size/weight vector size on the tracking

performance of SW-KRLS and FB-KRLS on a time-varying system. 56

5.1 Performance of SP-KRLS vs other KRLS algorithms on a time-varyingWiener

system. 71

5.2 Performance of SP-KRLS vs other KRLS algorithms in predicting a Mackey-

Glass time series. 73

5.3 Effect of changing K on the performance of SP-KRLS. 74

5.4 Effect of changing α on the performance of SP-KRLS. 76

xi

List of Tables

3.1 Different Sparsification Criteria . 38

3.2 Different Pruning Strategies . 46

5.1 MSE Performance of KSP, KMP and KBP in learning synthetic data using

a Gaussian kernel . 69

5.2 Performance comparison of average MSE values 72

xii

List of Acronyms

ALD Approximate Linear Dependence

ANN Artificial Neural Networks

BP Basis Pursuit

FB Fixed Budget

KBP Kernel Basis Pursuit

KLMS Kernel Least Mean Square

KMP Kernel Matching Pursuit

KRLS Kernel Recursive Least Squares

KSP Kernel Subspace Pursuit

LARS Least Angle Regression

LASSO Least Absolute Shrinkage and Selection Operator

LMS Least Mean Square

LS Least Squares

LS-SVM Least Squares-Support Vector Machine

MAP Maximum A Posteriori

OBD Optimal Brain Damage

OBS Optimal Brain Surgeon

PCA Principal Component Analysis

RKHS Reproducing Kernel Hilbert Space

RLS Recursive Least Squares

SC Surprise Criterion

SP Subspace Pursuit

SVM Support Vector Machine

SW Sliding Window

1

Chapter 1

Introduction

Over the past few decades, the area of machine learning has attracted widespread interest

from researchers: On one hand, the area showed a promising prospect for a vital role in

many areas of science (e.g., biology and medicine), finance, and industry as many recurring

problems in those areas involve making predictions about new data given past data. Ex-

amples include diagnosing prostate cancer volume and stage from various measurements,

studying patterns in DNA datasets in an attempt to link them to certain disorders, fore-

casting stock market movements and identifying people and recognizing faces. On the other

hand, it lies at the intersection of the fields of engineering, computer science and statistics

- thus drawing the interest of researchers from all those fields. This multitude and diversity

of the problems in context made machine learning appealing to researchers from different

areas and backgrounds.

1.1 From Linear Methods to Kernel Methods

Many problems in machine learning can be expressed as a simple classification or regres-

sion problem. In classification, data is typically represented by points in a given space, and

classes are ideally different regions of that space grouping data points that have similar

characteristics. The simplest form of classes is that of linearly separable classes, i.e., those

that can be separated by hyperplanes (or, lines in the case of 2-dimensional spaces). Regres-

sion is more general in the sense that the desired output consists of one or more continuous

variables (as opposed to discrete labels in the case of classification). The simplest of regres-

sion models are linear models that can be represented in the form of linear functions of the

1 Introduction 2

input vectors. Due to their inherent simplicity, such problems have been studied first, and

as a result, linear classifiers and linear regression models were the mainstay of statistical

learning for much of that period. However, in most real problems, data patterns are more

complex. Classes may not be easily separated by hyperplanes and data cannot be always

fitted by simple linear regression models. Hence, more sophisticated models were needed to

learn complex data. These include non-linear models which are models that involve a non-

linear transformation of data into a high-dimensional space where the transformed data

is more likely to be separable. As such, non-linear learning methods became increasingly

popular and were studied extensively in the past two decades. Examples include Artificial

Neural Networks (ANNs) [1], Decision Trees [1] and Support Vector Machines (SVMs) [2].

In recent years, kernel methods [3] have received major attention as they presented

non-linear versions of conventional linear supervised and unsupervised learning algorithms,

yielding impressive classification and regression performance. Simply put, a kernel function,

applied to pairs of input vectors, can be interpreted as an inner product between the pair

of vectors mapped to a high dimensional Hilbert space, the map being the non-linear

transformation mentioned earlier. In the computer science, signal processing and machine

learning literature, the substitution of inner products by kernels has been referred to as the

kernel trick, and has led to interesting kernelized extensions of many well-known algorithms.

These include kernel SVMs [3], kernel Principle Component Analysis (PCA) [4] and kernel

Fisher discriminant analysis [5]. In the field of adaptive filtering, several algorithms were

kernelized, e.g., the Recursive Least-Square (RLS) algorithm [6], the Least-Mean Square

(LMS) algorithm [7] and the Affine Projection algorithm [8].

1.2 KRLS, Sparsification and Pruning

The RLS algorithm is a well-known and widely-used algorithm in adaptive signal processing

and communications. This extension of the classical least-square (LS) approach addresses

the issue that, in many applications, data arrives sequentially to the system, and so, the

solution of the LS problem needs to be recomputed with each new data sample. RLS, an

online algorithm, is presented as an answer to that need. It recursively finds linear LS

predictors by updating the LS solution at each instance when a new data sample arrives.

By virtue of the kernel trick, Engel et al. present in [9] an online kernel version of

the RLS algorithm, namely KRLS, which is able to efficiently and recursively solve non-

1 Introduction 3

linear LS prediction problems. The algorithm solves linear regression problems in a high-

dimensional feature space (induced by the kernel) where regression models of the trans-

formed data are expected to be more accurate. As is typical with kernel-based regression

methods, the number of parameters that need to be calculated to obtain the LS solution

is equal to the number of input vectors, and this number grows without bound as the it-

erations progress, which burdens the algorithm with an increasing complexity and a need

for an increasing amount of computational resources. To address this issue, a selection

procedure, referred to as “sparsification”, is commonly used in conjunction with KRLS to

form the LS regressor using a carefully chosen subset, termed dictionary, of the input vec-

tors. In the past two decades, sparsification has been well studied in the fields of machine

learning (specifically LS-SVMs [10] and neural networks [1]) and image processing, and has

been increasingly popular in kernel adaptive filtering algorithms. Examples of sparsifica-

tion techniques used with KRLS include the Approximate Linear Dependence technique

(ALD) [9] and the Surprise Criterion (SC) [11]: In ALD, an incoming input is added to

the dictionary only if its feature representation can’t be written as an approximate linear

combination of the feature representations of the input vectors already admitted to the

dictionary. In SC, Liu et al. approach the sparsification issue from an information the-

oretic perspective by adopting as the admission criterion the “surprise” which measures

how relevant the information that a new input-output pair can contribute to the already

accumulated “knowledge” of the learning system is.

Despite the improvement in computational consumption and memory usage, sparsifica-

tion techniques often fall short of satisfying the need to impose a limit on the number of

samples that can be stored in the dictionary. This is indeed crucial for practical consid-

erations when algorithms need to be implemented, for example, on DSP chips with finite

memory and limited computational resources. The family of Fixed-Budget (FB) algorithms

addresses this requirement: when the number of dictionary samples reaches the predefined

limit, one sample is removed from the dictionary to accommodate the newest incoming

sample. This process, known as pruning, has been well studied in the context of neural

networks [1] and has been recently receiving attention in the field of kernel adaptive filtering

algorithms (e.g., [12] and [13]).

1 Introduction 4

1.3 Tracking Time-Varying Systems

One of the key advantages of sparsification and pruning is that they enable tracking of

non-stationary systems. In many applications, such as mobile communications and acoustic

echo cancellation, the statistics of signals change across time, thus, it is important to design

algorithms that possess the ability to effectively track time-varying systems.

In standard KRLS problems, the LS solution is given in the form of a weighted linear

combination of kernels evaluated at the input vectors. As a result, in all KRLS algorithms

to this date, the vector consisting of those weights is of equal size to that of the dictionary.

This coupling of the parameter vector length to the dictionary size introduces an interesting

trade-off. While a large dictionary is favorable as it would represent all the dynamics of the

input-output relationship over time, it has a detrimental effect on the algorithm’s ability to

track changes in that relationship; it is well known that having to adjust a large number of

weights significantly slows down convergence and adaptation as the algorithm would need

an increasing time to react to the changes in the inputs/outputs. This trade-off highlights

the need to decouple the size of the weight vector from the dictionary size and motivates

the work presented in this thesis.

In this thesis, we introduce a new KRLS algorithm designed for the specific purpose

of tracking time-varying systems. Data samples are admitted to the dictionary only after

passing the SC test, however, the maximum size K of the weight vector is fixed and

independent from the dictionary size. As such, we gain the best of both worlds: on one

hand, we are allowed to have a large dictionary that can accurately represent the dynamics

of the input-output relationship; on the other, the weight vector retains a limited size

which leads to an improved tracking ability. Our algorithm, when the dictionary size is less

than K, is identical to SC-KRLS [11]. However, when the dictionary size exceeds K, we

choose, from the dictionary elements, theK elements that will track best the N most recent

received data samples. To this end, we extend the Subspace Pursuit (SP) algorithm [14]

to non-linear regression problems and introduce the Kernel Subspace Pursuit (KSP) used

as a building block of the proposed KRLS algorithm termed SP-KRLS.

KSP is, in essence, a method that learns a regression function by means of sparse ap-

proximation using a finite subset of elements selected from a kernel-based dictionary. KSP

is an iterative method whereby the subset of selected dictionary elements is initialized in

the first iteration of the method and then refined throughout a limited number of iterations

1 Introduction 5

to minimize the approximation error. The selected dictionary subset from the last KSP

iteration specifies the dictionary elements that will be used in the KRLS computations

(until a new subset has been selected in future iterations of SP-KRLS).

1.4 Contributions

The contributions of the work presented in this thesis are three-fold:

• First, we present an online algorithm that is capable of tracking efficiently time-

varying systems, by decoupling the dictionary size and weight vector size, the equality

between which was encountered in all previous KRLS algorithms.

• Second, to the best of our knowledge, our work is the first to present a kernel version

of the Subspace Pursuit algorithm and to use it in the context of tracking of time-

varying systems.

• Third, we present a KRLS algorithm that employs a sparsification criterion for ad-

mitting data samples to the dictionary along with imposing a hard limit on the size

of the dictionary. Previous KRLS algorithms only considered one of sparsification or

pruning in their algorithm design.

1.5 Thesis Organization

This thesis is organized as follows: In Chapter 2, a primer on kernel methods is presented:

Kernels are defined and their most important properties are presented, as well as relevant

theory on reproducing kernel Hilbert spaces and the Representer theorem. In Chapter 3,

we review the related work on sparsification techniques and pruning strategies. In Chapter

4, we motivate the need for decoupling the size of the weight vector from the dictionary size,

then introduce the Kernel Subspace Pursuit algorithm that will be used as a building block

of the KRLS algorithm proposed subsequently in the chapter. The results of simulation

studies are presented in Chapter 5. Finally, Chapter 6 concludes the thesis and outlines

promising directions for future research.

6

Chapter 2

A Primer on Kernel Methods

In this chapter, we present a review of kernels which are at the heart of one of the most

popular classes of non-linear methods used in machine learning, namely the class of kernel

methods.

We begin by reviewing some of the relevant mathematical structures and notations.

Then we define kernels and present their most important properties. Next, we introduce

reproducing kernel Hilbert spaces. Afterwards, we define kernel methods before presenting

finally one of the main theorems for kernel methods, the representer theorem.

2.1 Mathematical Prerequisites

In this section, we review basic mathematical definitions that will be needed later in this

thesis. We start by defining the inner product space, the general form of a more special

space, the Hilbert space, which, as we will see later in this chapter, is at the core of the

research presented in this thesis.

Definition 1. (Inner Product Space [15]) An inner product space is a vector space

that admits a structure called inner product. Let V be a vector space and C the space of

complex numbers. An inner product is a mapping ⟨·, ·⟩ : V2 7→ C that satisfies the following

conditions:

1. Conjugate Symmetry:

⟨x, x′⟩ = ⟨x′, x⟩∗ ∀x, x′ ∈ V (2.1)

2 A Primer on Kernel Methods 7

where (·)∗ denotes the complex conjugation operation. Note that if the inner product

maps to the real space R, this property becomes symmetry.

2. Linearity:

⟨αx+ βx′, x′′⟩ = α ⟨x, x′′⟩+ β ⟨x′, x′′⟩ ∀x, x′, x′′ ∈ V , ∀α, β ∈ C (2.2)

i.e., the inner product is linear in its first argument. Note that if the inner product

maps to R, this property becomes bilinearity. An inner product is said to be bilinear

if it is linear in each argument, that is,

⟨x, αx′ + βx′′⟩ = α ⟨x, x′⟩+ β ⟨x, x′′⟩ ∀x, x′, x′′ ∈ V , ∀α, β ∈ R. (2.3)

3. Positive definiteness:

⟨x, x⟩ ≥ 0, ∀x ∈ V (2.4)

i.e., the inner product of an element with itself is positive with the equality holding

only when x = 0.

Next, we introduce the metric space.

Definition 2. (Metric Space [16]) A metric spaceM is a set such that any two elements

x and x′ ofM can be associated with a real number d(x, x′), called the distance from x to

x′, that satisfies the following properties:

d(x, x′) ≥ 0 ,∀x ̸= x′ (2.5)

d(x, x) = 0 (2.6)

d(x, x′) = d(x′, x) (2.7)

d(x, x′) ≤ d(x, x′′) + d(x′′, x), ∀x′′ ∈M (2.8)

Any function satisfying the aforementioned properties is called a distance function, or

simply a metric. One example of a metric space is the two-dimensional Euclidean space

R
2 where the distance function between elements of R2 is:

d(x, x′) = ||x− x′||, ∀x, x′ ∈ R2 (2.9)

2 A Primer on Kernel Methods 8

where || · || is the Euclidean distance, also called Euclidean norm, defined for a vector

x = [x1, x2] ∈ R2 as:

||x|| =
√

x2
1 + x2

2. (2.10)

In addition to the aforementioned definitions, we need to define the Cauchy sequence

and notion of completeness to be able to define the Hilbert space.

Definition 3. (Cauchy Sequence [16]) A sequence pn (with n = 1, . . .) in a metric

spaceM is said to be a Cauchy sequence if, as the sequence progresses, its elements become

arbitrarily close to each other (in a way that the sequence converges eventually to a limit),

that is, if for every ε > 0, there is an integer N such that d(pn, pm) < ε if n,m ≥ N .

For a better understanding of the notion of a Cauchy sequence, consider a sequence of

real numbers x1, x2, The absolute value |xn − xm|, ∀n,m ∈ {1, . . . , }, reflects how far

from each other the two real numbers xn and xm are so it can be thought of as a distance

metric.1 For this sequence to be Cauchy, there must exist a positive integer N for every

positive real number ε such that for all natural numbers n,m > N , |xn−xm| < ε (∀n,m ∈
{1, . . .}).

The definition of a Cauchy sequence allows us to define the notion of complete space as

follows.

Definition 4. (Complete Space [16]) A metric spaceM in which every Cauchy sequence

converges to a point inM is called a complete space.

Having defined all the necessary structures and notions, we finally define the Hilbert

space.

Consider an inner product space H as defined in Definition 1. The norm induced by

the inner product of H is:

∥x∥ =
√
⟨x, x⟩ (2.11)

The norm allows then the definition of a distance metric d such that, if x and y are two

elements in H, their distance is given by:

d(x, y) := ||x− y||. (2.12)

1The absolute value |xn − xm| does indeed satisfy all 4 properties for a distance metric that were
introduced in Definition 2.

2 A Primer on Kernel Methods 9

Definition 5. (Hilbert Space [15]) A Hilbert space H is an inner product space that is

complete with respect to the norm induced by the inner product of H.

To better understand the meaning of completeness with respect to the norm in this

context, first note that an inner product space as defined in Definition 1 (without any

further assumptions about completeness) is called a pre-Hilbert space. To turn it into a

Hilbert space, one completes it in the norm (2.11) corresponding to its inner product. This

is done by adding to the space all limit points of those Cauchy sequences that are convergent

in that norm but outside the space. Accordingly, by including in that pre-Hilbert space H
the aforementioned limit points, all Cauchy sequences in H will converge inside H, thus
turning it into a complete space.

The following are two examples of Hilbert spaces:

1. The vector space Rn with ⟨x, y⟩ = xTy, the vector dot product of x and y.

2. The space ℓ2 of square summable sequences2 with inner product ⟨x, y⟩ =
∑∞

i=1 xkyk

where x = [xk]k∈N and y = [yk]k∈N.

2.2 Kernels and Their Properties

In this section, we define kernels and present their most important properties. We focus

on the class of positive definite kernels as this class allows the use of the kernel trick.

2.2.1 Definition

Consider a training set

(x1, y1), (x2, y2), ..., (xn, yn) ∈ X × Y (2.13)

with X a non-empty domain containing the inputs xi, called the input domain, and Y the

target domain, i.e., the domain containing the targets yi.

The objective of a learning algorithm is to be able to predict what a target yn+1 is for a

new input xn+1 given what this algorithm has learned from the training set. This objective

2A square summable sequence is a sequence such that the series of the squares of its terms converges
to a finite sum.

2 A Primer on Kernel Methods 10

can also be expressed as being able to choose yn+1 in a way that the pair (xn+1, yn+1) is

in some sense similar to the training examples. In 1964, Aizman et al. introduced the

concept of a kernel to the field of pattern recognition in [17] as a tool to solve binary

classification problems. In such problems, the objective is to assign to a new input xn+1 a

label yn+1 ∈ {±1}. For this purpose, similarity measures in each of X and Y = {±1} are
required. In Y , this is rather simple as two target values can be either equal or non-equal.

However, the former requires a function, say k, that, given two inputs x and x′, returns a

real number characterizing their similarity [3], that is,

k : X × X 7→ R, (x,x′) 7→ k(x,x′). (2.14)

This function k is referred to as kernel. One particular class of kernels is the class of positive

definite kernels which is introduced in the next section.

2.2.2 Positive Definite Kernels

Before defining positive definite kernels, we first need to define the Gram matrix of a kernel

and recall the definition of positive definite matrices.

Definition 6. (Gram Matrix) Consider a kernel k and inputs x1,x2, ...,xn ∈ X . The

n× n matrix K with entries

Kij = k(xi,xj) (2.15)

is called the Gram matrix (also referred to as the kernel matrix) of k with respect to

x1,x2, ...,xn.

Definition 7. (Positive Definite Matrix) A real n×n symmetric matrix K with entries

Kij satisfying ∑
i,j

cicjKij ≥ 0 (2.16)

for all ci ∈ R is called positive definite. The matrix is called strictly positive definite if the

equality in (2.16) only holds for c1 = ... = cn = 0.

Definition 8. (Positive Definite Kernel) Consider a non-empty set X and a kernel

k : X × X 7→ R. The kernel k is called a positive definite kernel if, for all n ∈ N and

xi ∈ X , i = 1, . . . , n, k leads to the creation of a positive definite Gram matrix. Moreover,

2 A Primer on Kernel Methods 11

if for all n ∈ N and distinct xi ∈ X , i = 1, . . . , n, k leads to the creation of a strictly

positive definite Gram matrix, then k is called a strictly positive definite kernel. Following

the definition of a positive definite matrix, a positive definite kernel is symmetric.

The class of positive definite kernels has particularly gained a lot of attention in the area

of machine learning because kernels belonging to this class can be written in the following

form [18]:

k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩ ∀x,x′ ∈ X (2.17)

where X is the input space (as defined in Section 2.2.1) and ϕ : X 7→ H maps input vectors

from X into a Hilbert space H, sometimes referred to as the feature space.3 Since ϕ(·)
maps the input space to the feature space, it is called the feature map. As we will see in

the next section, (2.17) constitutes the foundation of kernel-based algorithms, hence the

aforementioned interest in positive definite kernels.

It is important to note that not all kernels are positive definite; these kernels which are

not, cannot be written in the form (2.17). An example is the Sigmoid kernel [3] defined as:

k(x,x′) = tanh(α ⟨x,x′⟩+ β), α > 0, β < 0. (2.18)

The Sigmoid kernel is not positive definite for certain values of its parameters, but is quite

popular nonetheless. Since positive definite kernels are the kernels of interest in the work

presented in this thesis, they will, henceforth, simply be referred to as kernels.

2.2.3 Properties of Kernels

The following are some of the properties of kernels [19]:

1. A linear combination of kernels is also a kernel, i.e., given two kernels k1(x,x
′) and

k2(x,x
′), the following is a kernel:

k(x,x′) = αk1(x,x
′) + βk2(x,x

′), α, β ≥ 0. (2.19)

Proof Both k1(·, ·) and k2(·, ·) are kernels, so using (2.17), we can write them as

k1(x,x
′) = ⟨ϕ1(x), ϕ1(x

′)⟩ and k2(x,x
′) = ⟨ϕ2(x), ϕ2(x

′)⟩. By multiplying k1(·, ·) and
3We will specify the map ϕ(·) later in Section 2.3.1.

2 A Primer on Kernel Methods 12

k2(·, ·) by α and β respectively, we get:

αk1(x,x
′) = ⟨

√
αϕ1(x),

√
αϕ1(x

′)⟩ and βk2(x,x
′) = ⟨

√
βϕ2(x),

√
βϕ2(x

′)⟩.

Thus, we get the following:

k(x,x′) = αk1(x,x
′) + βk2(x,x

′)

= ⟨
√
αϕ1(x),

√
αϕ1(x

′)⟩+ ⟨
√
βϕ2(x),

√
βϕ2(x

′)⟩

=
⟨[√

αϕ1(x)
√

βϕ2(x)
]
,
[√

αϕ1(x
′)

√
βϕ2(x

′)
]⟩

where the notation [u v] denotes the concatenation of the elements u and v. This

shows that k(x,x′) can also be expressed as an inner dot product in the form (2.17),

and, thus, is a (positive definite) kernel. �

2. The product of two kernels is also a kernel, i.e., given two kernels k1(x,x
′) and

k2(x,x
′), the following is a kernel:

k(x,x′) = k1(x,x
′)k2(x,x

′) (2.20)

3. Consider a function f : X 7→ X and kernel k1(x,x
′), then the following is a kernel:

k(x,x′) = k1(f(x), f(x
′)) (2.21)

Proof Using (2.17), the kernel k1(·, ·) can be written as:

k1(f(x), f(x
′)) = ⟨ϕ(f(x)), ϕ(f(x′))⟩ .

Since f is a transformation in the same space X , then k(·, ·) can be simply thought

of as a different kernel in the same space, i.e.:

k(x,x′) = k1(f(x), f(x
′)) = ⟨ϕ(f(x)), ϕ(f(x′))⟩ = ⟨ϕf (x), ϕf (x

′)⟩

where ϕf : X 7→ H′ is a new feature map that maps input vectors from X into a

Hilbert space H′. Accordingly, k(x,x′) can also be expressed as an inner dot product

in the form (2.17), and, thus, is a (positive definite) kernel. �

2 A Primer on Kernel Methods 13

4. Consider a function g : X 7→ R, then the following is a kernel:

k(x,x′) = g(x)g(x′) (2.22)

5. Consider a polynomial function f with positive coefficients and a kernel k1, then the

following is a kernel:

k(x,x′) = f(k1(x,x
′)) (2.23)

Proof Since each polynomial term is a product of kernels with a positive coefficient,

the proof follows by applying properties 1 (2.19) and 2 (2.20). �

6. Consider a kernel k1, then the following is a kernel:

k(x,x′) = exp(k1(x,x
′)) (2.24)

Proof By definition,

exp(x) =
∞∑
n=0

xn

n!
= 1 + x+

x2

2!
+

x3

3!
+

x4

4!
+ · · · (2.25)

From this we see that exp(x) is a sum of polynomial functions. Accordingly,

exp(k1(x,x
′)) = 1 + k1(x,x

′) +
k1(x,x

′)2

2!
+

k1(x,x
′)3

3!
+

k1(x,x
′)4

4!
+ · · · (2.26)

is a sum of polynomial functions of k1(x,x
′). By properties 1 (2.19) and 5 (2.23),

k(x,x′) is a kernel. �

7. (Cauchy-Schwartz inequality) If k is a positive definite kernel then

k(x,x′)2 ≤ k(x,x)k(x′,x′) (2.27)

Proof In what follows, we will modify the notation for more simplicity and use

x1 and x2 to denote x and x′ respectively. Since k is a positive definite kernel, the

2× 2 Gram matrix with entries Kij = k(xi,xj) is positive definite. This implies that

both its eigenvalues are non-negative, and so is their product, the determinant of the

2 A Primer on Kernel Methods 14

Gram matrix K, i.e.:

0 ≤ K11K22 −K12K21

Next, substitute Kij by k(xi,xj) to get:

0 ≤ k(x1,x1)k(x2,x2)− k(x1,x2)k(x2,x1)

Since k(·, ·) is symmetric (see Section 2.2.2), k(x1,x2) = k(x2,x1), thus:

0 ≤ k(x1,x1)k(x2,x2)− k(x1,x2)k(x1,x2)

By rearranging terms, we get the Cauchy-Schwartz inequality (2.27). �

2.3 Reproducing Kernel Hilbert Spaces

Having formally defined the Hilbert space, we now introduce the Reproducing Kernel

Hilbert Space (RKHS) [18] which is widely used in the area of statistical learning.

2.3.1 Construction of the RKHS

Consider a non-empty input space X and a map

ϕ : X 7→ R
X

from X into the space of functions mapping X into R, denoted as RX . Here, ϕ(·) = k(·,x)
denotes the function that assigns the value k(x′,x) to x′ ∈ X where k is a symmetric

positive definite kernel. Assume that k is real-valued (although the discussion can be

extended for complex-valued k as well). In the remainder of this section, we will show how

to construct a feature space associated with ϕ by proceeding as follows: First, construct a

vector space containing the images of the inputs under ϕ. Second, define an inner product.

Finally, show that this inner product satisfies (2.17): ⟨ϕ(x), ϕ(x′)⟩ = k(x,x′), ∀x,x′ ∈ X .
Step 1. We begin by defining a vector space containing the following linear combinations:

f(·) =
n∑

i=1

αik(·,xi) (2.28)

2 A Primer on Kernel Methods 15

where n ∈ N, αi ∈ R and x1, . . . ,xn ∈ X are arbitrary.

Step 2. Next, consider the function g(·) =
∑n′

j=1 βjk(·,x′
j) with n′ ∈ N, βi ∈ R and

x′
1, . . . ,x

′
n ∈ X and define an inner product between f and g as:

⟨f, g⟩ :=
n∑

i=1

n′∑
j=1

αiβjk(xi,x
′
j) (2.29)

Notice that

⟨f, g⟩ =
n∑

i=1

αig(xi) (2.30)

and that

⟨f, g⟩ =
n′∑
j=1

βjf(x
′
j). (2.31)

We can see by the last two equations that ⟨f, g⟩ can be written as a linear combination

of both its arguments, which proves that the defined product ⟨·, ·⟩ is bilinear. Moreover,

since the kernel k(·, ·) in (2.29) is symmetric, we have that ⟨f, g⟩ =
∑

i,j αiβjk(xi,x
′
j) =∑

i,j βjαik(x
′
j,xi) = ⟨g, f⟩, which proves that the defined product is symmetric. In addition,

we have by assumption that k is a positive definite kernel which implies that, for any

function f of the form (2.28), we have:

⟨f, f⟩ =
n∑

i=1

n∑
j=1

αiαjk(xi,xj) ≥ 0 (2.32)

(see Section 2.2.2 Definition 2). This proves that the defined product ⟨·, ·⟩ is positive

definite.

Using (2.30) with g(·) = k(·,x), we have:

⟨k(.,x), f⟩ =
n∑

i=1

αig(xi) =
n∑

i=1

αik(x,xi) = f(x)

where the last equality resulted from (2.28). This elegant property

⟨k(·,x), f⟩ = f(x) (2.33)

2 A Primer on Kernel Methods 16

is known as the reproducing property. Using (2.33) with f(·) = k(·,x′), we get:

⟨k(·,x), k(·,x′)⟩ = k(x,x′) (2.34)

By virtue of what preceded, k is called a reproducing kernel, a term that was coined by

Aronszajin in 1950 [20].

We have proved so far that the defined product ⟨·, ·⟩ is 1) bilinear, 2) symmetric and

3) positive definite but still have to prove that the equality in (2.4) holds only for f = 0

(to be able to prove that the defined product is indeed an inner product). To this end, we

note that, using (2.33) along with the Cauchy-Schwartz inequality (2.27), we have:

|f(x)|2 = |⟨k(·,x), f⟩|2 ≤ k(x,x) · ⟨f, f⟩ (2.35)

which shows that ⟨f, f⟩ = 0 directly implies that f = 0. By this, we have proved that

all properties required for an inner product (according to Definition 1) are satisfied by the

defined product ⟨·, ·⟩.
Step 3. The above reasoning, particularly (2.34), illustrates what we already mentioned

in Section 2.2.2, that a positive definite kernel k can be thought of as an inner product in

another space. Using the definition of ϕ, (2.34) can be written as:

k(x,x′) = ⟨ϕ(x), ϕ(x′)⟩ (2.36)

which is the property of positive definite kernels that we saw in Section 2.2.2. Accordingly,

the inner product space constructed in this way is a feature space associated with the kernel

k. Given that k is a reproducing kernel, the feature space is called a Reproducing Kernel

Hilbert Space (RKHS), defined formally next.

Definition 9. (Reproducing Kernel Hilbert Space [3]) Let X be a nonempty set and

H a Hilbert space of functions f : X 7→ R. Then H is called a reproducing kernel Hilbert

space endowed with the inner product ⟨·, ·⟩ (and the norm ∥f∥ :=
√
⟨f, f⟩) if there exists a

function k : X × X 7→ R with the following properties:

1. k has the reproducing property

⟨k(·,x), f⟩ = f(x), ∀f ∈ H, (2.37)

2 A Primer on Kernel Methods 17

in particular,

⟨k(·,x), k(·,x′)⟩ = k(x,x′) (2.38)

2. k spans H, i.e., H = span{k(·,x)|x ∈ X} where A denotes the completion of the

space A.

2.4 Kernel Methods

Kernel methods, that is, techniques and algorithms that utilize kernels, are powerful non-

linear techniques based on a non-linear transformation (namely ϕ(·)) of data x into a

high-dimensional RKHS (the feature space) in which the transformed data ϕ(x) is more

likely to be linearly separable. In the computer science and machine learning literature, the

substitution of a high-dimensional dot product, ⟨ϕ(x), ϕ(x′)⟩, by k(x,x′), allowed by (2.36),

has been referred to as the “kernel trick”. By making use of this property, we have the ability

to run inner product-based algorithms implicitly in the feature space by substituting the

inner products by the corresponding kernels. This has far-reaching consequences as there

are examples of positive definite kernels which can be evaluated efficiently even though,

via (2.17), they correspond to inner products in infinite-dimensional feature spaces. One

example is the Gaussian kernel [3]:

k(x,x′) = exp

(
−∥x− x′∥2

2σ2

)
, σ > 0 (2.39)

Using the kernel trick, “kernelized” extensions of many well-known algorithms were

presented. These include kernel SVMs [3], kernel PCA [4] and kernel Fisher discriminant

analysis [5], etc. The general idea is that, if we have an algorithm formulated in such

a way that the input vector x enters only in the form of scalar products, then we can

replace that scalar product with a kernel. Thus, we have the ability to develop non-linear

generalizations of any algorithm that can be cast in terms of inner products.

2.5 The Representer Theorem

The Representer Theorem was first introduced by Kimeldorf and Wahba in 1971 [21] as

an approach to solving optimization problems using kernels. Simply put, the theorem

2 A Primer on Kernel Methods 18

shows that the solution of a certain class of optimization problems can be expressed as

a finite linear combination of kernels evaluated at the input vectors. As we will see, this

theorem proves to be quite useful from a practical standpoint as it dramatically simplifies

the regularized risk minimization problem by providing a theoretical basis for the reduction

of such problems to simple algorithms that we are able to solve efficiently. In this thesis, a

more generalized version of the Representer Theorem is presented [22].

Theorem 1. (The Representer Theorem) Let Ω : [0,∞) 7→ R be a strictly monotonic

increasing function, X be a non-empty set, c : (X ×R2)n 7→ R ∪ {∞} be an arbitrary loss

function and H be the RKHS associated with a kernel k. Then any minimizer f ∈ H of

the regularized cost function

c((x1, y1, f(x1)), (x2, y2, f(x2)), ..., (xn, yn, f(xn))) + Ω(∥f∥2H) (2.40)

admits a representation of the form

f(x) =
n∑

i=1

αik(x,xi), αi ∈ R (2.41)

Proof We begin by projecting f on the subspace:

span{k(·,xi)|1 ≤ i ≤ n}. (2.42)

This results in a decomposition of f into two parts: one contained in the span of the kernel

functions k(·,x1), k(·,x2), . . . , k(·,xn) and one in its orthogonal complement, i.e.,

f(x) = f∥(x) + f⊥(x) =
n∑

i=1

αik(x,xi) + f⊥(x). (2.43)

This leads to

∥f∥2 = ∥f∥∥2 + ∥f⊥∥2 ≥ ∥f∥∥2. (2.44)

Since Ω is strictly monotonic increasing, we have that

Ω(∥f∥2) ≥ Ω(∥f∥∥2) (2.45)

2 A Primer on Kernel Methods 19

which implies that the second term in the cost function (2.40) will be minimized if the

function f lies in the subspace (2.42) (i.e., the span of the kernels).

Next, we note that, since f⊥ is the part of f contained in the orthogonal complement

to the span of the kernels, then we have:

⟨f⊥, k(·,xi)⟩ = 0, ∀f⊥ ∈ H,∀i ∈ {1, ..., n}. (2.46)

Using (2.33), we can write f(xj) for all j ∈ {1, ..., n} as:

f(xj) = ⟨f(·), k(·,xj)⟩ =
⟨(
f∥(·) + f⊥(·)

)
, k(·,xj)

⟩
(2.47)

where the second equality holds from (2.43). Since the inner product is linear in its first

argument, we have:

f(xj) = f∥(xj) + ⟨f⊥(·), k(·,xj)⟩ = f∥(xj) (2.48)

where the second equality is obtained using (2.46). This implies that the first term of the

cost function (2.40) depends only on the component of f lying in the subspace (2.42) (i.e.,

the span of the kernels). And as already shown, the second term in the cost function (2.40)

is minimized if the function f lies in that same subspace. Hence, the cost function in (2.40)

will be minimized if the function f lies in that subspace as well which allows expressing

the minimizer as the form in (2.41). This concludes the proof. �

2.6 Summary

In this chapter, we presented a review of kernels which are at the heart of one of the

popular classes of non-linear methods used in machine learning, namely the class of kernel

methods. We began by reviewing some of the relevant mathematical background. Then we

defined kernels as functions that measure the similarity of any two input vectors, and we

presented their most important properties. We focused on the class of positive kernels as

it allows using the kernel trick, which we defined as the substitution of a high-dimensional

dot product by a kernel. Next, we introduced the reproducing kernel Hilbert space (RKHS)

and showed how to construct it. We then defined kernel methods as techniques based on a

non-linear transformation of data to a high-dimensional RKHS. In many learning problems,

data patterns are complex, and so, simple classification or regression techniques perform

2 A Primer on Kernel Methods 20

poorly in such learning problems. Kernel methods are thus presented as powerful tools to

solve such problems. Finally, we presented the representer theorem which is widely used in

conjunction with kernel methods as it shows that the solution to certain learning problems

can be expressed as a finite linear combination of kernels evaluated at the input vectors.

As such, the representer theorem presents a theoretical basis for the reduction of complex

learning problems to simple algorithms that we are able to solve efficiently.

21

Chapter 3

Literature Review

In this chapter, we first review the classical Recursive Least Squares (RLS) algorithm.

Then, we introduce its kernel extension, the kernel RLS (KRLS) algorithm presented by

Engel et al. in [9]. KRLS obtains a non-linear least squares (LS) regressor as a linear

combination of kernel functions evaluated at the elements of a carefully chosen subset,

termed dictionary, of the received input vectors. Next, we review sparsification techniques

which are the techniques by which we construct our dictionary, and which are widely used in

conjunction with kernel adaptive filtering algorithms. Finally, we review pruning strategies

which impose a hard limit on the size of the dictionary.

3.1 Recursive Least-Squares

This section presents the classical Recursive Least-Squares (RLS) algorithm [6]. Consider

an online prediction setup where input-output pairs {(x1, y1), (x2, y2), . . . }, are sequentially
given, where we assume the inputs xi ∈ RM , and the desired outputs yi ∈ R. The objective

is to predict the desired output using a function f(x) = wT
nx. The weight vector wn ∈ RM

is obtained by minimizing the cost function:

En =
n∑

i=1

λn−i|ei|2 =
n∑

i=1

λn−i|yi −wT
nxi|2. (3.1)

The constant λ, 0 < λ ≤ 1, is called the forgetting factor, and it provides the filter with

the ability to follow the statistical variations of the observed data when it operates in a

3 Literature Review 22

non-stationary environment, by putting more emphasized on recent data, thus ensuring

that data in the distant past are forgotten. Let Rn be the M -by-M correlation matrix

defined by

Rn ,
n∑

i=0

λn−ixix
H
i , (3.2)

and, assuming Rn is invertible, define Qn , R−1
n . Thus [6], given Qn−1 and wn−1, and

with a new sample {xn, yn}, the matrices Qn and wn can be computed using the following

recursive procedure:

kn =
λ−1Qn−1xn

1 + λ−1xH
n Qn−1xn

(3.3)

ξn = yn −wH
n−1xn (3.4)

wn = wn−1 + knξ
∗
n (3.5)

Qn = λ−1Qn−1 − λ−1knx
H
n Qn−1 (3.6)

The vector kn is called the gain vector and ξn is called the a priori estimation error. The

procedure, given collectively by equations (3.3) to (3.6), constitutes the RLS algorithm.

3.2 Kernel Recursive Least-Squares

By virtue of the kernel trick, Engel et al. present in [9] an online kernel version of the RLS

algorithm, namely kernel RLS (KRLS), which is able to efficiently and recursively solve

non-linear LS prediction problems. The algorithm solves linear1 regression problems in a

high-dimensional feature space induced by the kernel where linear regression models of the

transformed data are expected to be more accurate.

Consider again the prediction setup from Section 3.1. At each time step n, KRLS

minimizes the sum of squared errors given by:

L =
n∑

i=1

(f(xi)− yi)
2. (3.7)

Let k be a kernel and H the RKHS associated with it. According to the Representer

1Linear in the high-dimensional space, but non-linear in the original input space.

3 Literature Review 23

Theorem [22], any minimizer f ∈ H of L in (3.7) admits a representation of the form

f(x) =
n∑

i=1

αik(x,xi), αi ∈ R. (3.8)

The importance of this theorem is that it ensures that the minimizer of (3.7) can be

expressed as a finite linear combination of kernels evaluated at the input vectors, and

therefore, identifying f ∈ H reduces to identifying the coefficients αi, i = 1, . . . , n. Indeed,

substituting (3.8) in (3.7), L can be written as

L = ∥Knαn − yn∥2 (3.9)

where yn = [y1, . . . , yn]
T , Kn is the Gram matrix of the kernel k with entries [Kn]i,j =

k(xi,xj) and αn = [α1, . . . , αn]
T is a weight vector. Minimizing the loss function (3.9)

gives the optimal vector

αn = K†
nyn (3.10)

where

K†
n = (KT

nKn)
−1KT

n (3.11)

denotes the Moore-Penrose pseudo-inverse of Kn. For a large number n of input vectors,

storing Kn in memory and carrying out computations on it could prove cumbersome.

Moreover, the size of the vector αn will be equal to the number of training samples, which

would lead to severe overfitting [9]. Finally, inverting Kn might cause numerical instability

given that the eigenvalues of Kn often decay rapidly to 0 as the number of received samples

increases [9].

To overcome these shortcomings, one approach would be to limit the size of the matrix

Kn. Indeed, naively storing every received input vector in memory leads to an ever-growing

kernel matrix and algorithm complexity as more input vectors points are received. For that,

a sparsification procedure is commonly employed in conjunction with KRLS, that limits

the size of Kn by forming it using a carefully chosen subset, termed dictionary, of the input

vectors. This curbs its growth and helps in alleviating the aforementioned issues.

In the past two decades, sparsification techniques have received substantial attention in

the fields of machine learning (specifically LS-SVMs [10] and neural networks [1]) and image

3 Literature Review 24

processing [23–26]. Sparsification techniques are also common in kernel adaptive filtering

algorithms other than KRLS (e.g., KLMS [27] and [28]). In Section 3.3, we review recent

work on sparsification techniques in kernel adaptive filtering algorithms. These techniques

are also summarized in Table 3.1.

While these sparsification techniques curb the growth of the kernel matrix, they fall

short of satisfying the often-arising need to fix the size of the kernel matrix, or in other

words, to fix the number of input vectors that can be stored in the dictionary. This is im-

portant from a practical standpoint, e.g., when algorithms need to be implemented on DSP

chips with finite memory and limited computational resources. Fixed-budget algorithms

were presented as an answer to this need. In this type of algorithms, when the number of

dictionary samples reaches a predefined limit, one sample is removed to accommodate the

newest incoming sample. This process, known as pruning, requires selecting the specific

sample for removal from the dictionary. Section 3.4 reviews pruning strategies used in

different areas in machine learning, and Table 3.2 outlines those strategies. It is interesting

to note that in all of the cited papers, the newest incoming sample is always added to the

dictionary without any further verification about whether it would be useful to add this

sample (e.g., in case a very similar sample is already stored in memory). This motivates

the need for pre-processing incoming samples (e.g., by means of a sparsification method),

a need that will be addressed in this research.

While sparsification and pruning techniques are important for the aforementioned rea-

sons, they are also vital for equipping adaptive filtering algorithms, particularly KRLS

algorithms, with the ability to track non-stationary systems. To describe well the varia-

tions of the input-output relationship over time, a large dictionary is appealing. However,

since in all previous KRLS algorithms, the size of the weight vector was equal to that of the

dictionary, allowing the dictionary to be large damages substantially the algorithm’s ability

to track changes in that input-output relationship. We can understand that from the fact

that having to adjust a large number of weights significantly slows down adaptation [6],

which weakens the algorithm’s tracking ability. Accordingly, techniques such as sparsifi-

cation and pruning that curb down the growth of the dictionary are useful for equipping

adaptive filtering algorithms with a tracking ability. However, on their own, they might

not be sufficient for obtaining a superior tracking ability as we will see later in this thesis.

3 Literature Review 25

3.3 Sparsification Techniques

Sparsification techniques are very popular in kernel adaptive filtering algorithms, especially

in online prediction problems as they provide a solution to the problem of the growing size

of the kernel matrix. In this section, we will review recent work on sparsification techniques

in kernel adaptive filtering algorithms.

3.3.1 Approximate Linear Dependence

Consider again the online prediction setup from Section 2.2.1 where input-output pairs

{(x1, y1), (x2, y2), . . . }, xi ∈ X , yi ∈ R, are sequentially given. Assume that at time step

n, after having received n−1 training pairs {(xi, yi)}n−1
i=1 , a dictionary Dn−1 = {x̃i}mn−1

i=1 has

been constructed from a subset (of size mn−1) of the received input vectors2. We emphasize

that x̃i should not be confused with xi as x̃i denotes the specific input vectors that have

been admitted (to the dictionary) from all the received input vectors, xi.

The online sparsification method in [9] examines the relation between a new input vector

and input vectors that were admitted to the dictionary. Particularly, when given a new

input vector xn, we are presented with two cases:

1. If ϕ(xn) can be written approximately as a linear combination of {ϕ(x̃i)}mn−1

i=1 , then

the new sample xn is not admitted to the dictionary, with the weights corresponding

to those previous samples being updated appropriately to reflect the dependence of

the new sample on them.

2. If ϕ(xn) cannot be written approximately as a linear combination of {ϕ(x̃i)}mn−1

i=1 , the

sample xn is is added to the dictionary. The weight vector grows to include a new

weight corresponding to xn.

For a new sample xn, we decide whether it should be added to the dictionary of samples

by calculating:

δn , min
a

wwwww
mn−1∑
i=1

aiϕ(x̃i)− ϕ(xn)

wwwww
2

(3.12)

2In this thesis, the terms “sample” and “input vector” will be used interchangeably. This flexibility
in the terminology is particularly useful when we want to talk about the input vectors that were already
admitted to the dictionary, and which can be simply referred to as “dictionary samples”.

3 Literature Review 26

where a = [ai, . . . , amn−1]
T and determining whether xn satisfies the Approximate Linear

Dependence (ALD) condition:

δn ≤ ν (3.13)

where ν is an accuracy parameter determining the level of sparsity. Indeed, the smaller ν

is, the smaller the tolerable error in approximating the samples, thus the more accurate

the KRLS prediction of the real outputs. Expanding (3.12) and making use of the kernel

trick, we obtain:

δn = min
a

{
aT K̃n−1a− 2aT k̃n−1 + knn

}
(3.14)

where knn = k(xn,xn), and K̃n−1 and k̃n−1 are the matrices whose entries are respectively

given by:

[K̃n−1]i,j = k(x̃i, x̃j) (3.15)

and

[k̃n−1]i = k(x̃i,xn) (3.16)

with i, j = 1, . . . ,mn−1. Solving (3.14) yields the optimal vector an given by:

an = K̃−1
n−1k̃n−1. (3.17)

By substituting (3.17) in (3.14), the ALD condition δn can be expressed as:

δn = knn − k̃T
n−1an ≤ ν. (3.18)

KRLS and Sparsification

Define the matrix Pn , (AT
nAn)

−1 where An is the matrix formed by the row-by-row

concatenation of coefficient vectors an (3.17) found at specific iterations (as will be discussed

in the two cases below). We note that it is very important that the coefficients an are not

confused with the weights αn (which are also referred to as coefficients in the literature).

For a given dictionary sample x̃i, the value ai is the coefficient associated with ϕ(x̃i), that

is, the coefficient that is attributed to that dictionary sample in the approximate linear

combination that is checked for a new input vector xn (to determine whether it should be

admitted to the dictionary or not). On the other hand, the weight vector αn is the solution

to the KRLS minimization problem (3.7).

3 Literature Review 27

Recall that an = K̃−1
n−1k̃n−1 with [K̃n−1]i,j = k(x̃i, x̃j) and [k̃n−1]i = k(x̃i,xn) for i, j =

1, . . . ,mn−1. Since the matrix An is formed by the vectors an, and given the expression

of an, we can see that the matrix Pn is analogous –in the feature space– to the inverse

correlation matrix Qn (3.6) seen in the classical RLS. We note that in the actual algorithm,

the matrix An is never computed explicitly, it is the matrix Pn that we actually calculate.

In Section 3.2, we expressed the solution of the KRLS minimization problem (3.9)

L = ∥Knαn − yn∥2 as αn = (Kn)
†yn. Making use of the kernel trick, we have: Kn = ΦT

nΦn

where Φn = [ϕ(x1), . . . , ϕ(xn)]. Thus, we can express (3.9) as:

L =
wwΦT

nwn − yn

ww2
(3.19)

where wn = Φnαn.

As a result of applying the sparsifcation rule, the KRLS computations are in fact being

carried out on a smaller mn×mn kernel matrix K̃n (to which corresponds Φ̃n) and we are

solving for a vector α̃n of mn weights (i.e., the weights resulting from having admitted only

mn samples). In [9], it is shown that

Φn = Φ̃nA
T
n . (3.20)

Accordingly,

wn = Φnα = Φ̃nA
T
nα = Φ̃nα̃n, (3.21)

where we define α̃n := AT
nαn. The vector α̃n is the “reduced” weight vector introduced

earlier. Plugging (3.21) in (3.19), the loss becomes:

L =
wwwΦT

n Φ̃nα̃n − yn

www2

. (3.22)

Plugging (3.20) in (3.22) and making use of the kernel trick, the loss can be expressed as:

L =
wwwAnK̃nα̃n − yn

www2

, (3.23)

and its minimizer is

α̃n = (AnK̃n)
†yn = K̃−1

n (AT
nAn)

−1AT
nyn. (3.24)

3 Literature Review 28

Formulation of ALD-KRLS

At each time step n, a new input vector xn is observed along with the corresponding target

value yn. After calculating an using (3.17) and δn using (3.18), the ALD condition is

checked and we are presented with one of two cases:

CASE 1: δn > ν, that is, ϕ(xn) is not ALD on Dn−1.

In this case, xn is added to the dictionary so Dn = Dn−1 ∪ {xn}, mn = mn−1 +1 and

K̃n gets “upsized”, that is, a new row and a new column corresponding to the newly

admitted dictionary sample are added to K̃n. A recursive formula for its inverse K̃−1
n

is derived as:

K̃−1
n =

1

δn

[
δnK̃

−1
n−1 + ana

T
n −an

−aT
n 1

]
. (3.25)

Since xn has just been admitted to the dictionary, no other dictionary sample is ALD

on it. In other words, ϕ(xn) is exactly represented by itself, and at this stage, is

not expressed as an approximate linear combination of any other dictionary samples

(except itself). Therefore, the corresponding coefficient an to ϕ(xn) is equal to 1.

Accordingly, the matrix An of coefficients is expanded by adding a coefficient of 1 for

the newly admitted sample at the (n,n)-th entry of matrix An, and setting the other

entries in the new row and column to zero, i.e.,

An =

[
An−1 0

0T 1

]
=⇒ AT

nAn =

[
AT

n−1An−1 0

0T 1

]
. (3.26)

A recursive formula for Pn is thus given by:

Pn = (AT
nAn)

−1 =

[
Pn−1 0

0T 1

]
(3.27)

where 0 is a vector of zeros of appropriate length. By adding an element to the

dictionary, the weight vector α̃n also grows, and its recursive update rule is derived

as:

α̃n =

α̃n−1 − an

δn

(
yn − k̃T

n−1α̃n−1

)
1
δn

(
yn − k̃T

n−1α̃n−1

)  . (3.28)

3 Literature Review 29

CASE 2: δn ≤ ν, that is, ϕ(xn) is ALD on Dn−1.

In this case, the sample is not added to the dictionary so Dn = Dn−1, mn = mn−1

and K̃n = K̃n−1. Being the matrix of coefficients, An changes as follows:

An = [AT
n−1,an]

T , (3.29)

thus leading to a change in Pn = (AT
nAn)

−1. Using the matrix inversion lemma

(See [6]: Page 745, Lemma A.1), a recursive formula for Pn is obtained:

Pn = Pn−1 −
Pn−1ana

T
nPn−1

1 + aT
nPn−1an

. (3.30)

Defining qn , Pn−1an

1+aT
nPn−1an

, we also obtain a recursive update rule for α̃n:

α̃n = α̃n−1 + K̃−1
n qn

(
yn − k̃T

n−1α̃n−1

)
. (3.31)

Algorithm 1 presents the complete algorithm denoted by ALD-KRLS.

3 Literature Review 30

Algorithm 1 ALD-KRLS
Parameter: ν

Initialize: k̃1 = [k11], k̃
−1
1 = [1/k11], α̃n = (y1/k11), P1 = [1], m = 1.

for n = 2, 3, . . . do

1. Get new sample: (xn, yn)

2. Compute: k̃n−1 using (3.16)

3. ALD Test:

an = K̃−1
n−1k̃n−1

δn = knn − k̃T
n−1an

if δn > ν then {Add xn to dictionary}
Dn = Dn−1 ∪ {xn}
Compute K̃−1

n using (3.25)

Compute Pn using (3.27)

Compute α̃n using (3.28)

m := m+ 1

else {dictionary unchanged}
Dn = Dn−1

qn = Pn−1an

1+aT
nPn−1an

Compute Pn using (3.30)

Compute α̃n using (3.31)

end if

end for

Output: Dt, α̃n

3.3.2 Surprise Criterion

In [11], Liu et al. approach the issue of the growing size of the kernel matrix from an

information theoretic perspective. They propose a criterion that measures the information

a point can contribute to the knowledge of the learning system, based on Gaussian processes

theory.

The criterion, called the “surprise,” quantifies how much information a new sample

point contains relatively to the already accumulated knowledge of the learning system. If,

for example, that information is redundant, the new sample point leads to little surprise,

3 Literature Review 31

and so, it is not admitted into the dictionary.

Definition of Surprise

Surprise, denoted by ST (x, y), is a subjective information measure of a pair {x, y} with

respect to a learning system T which consists of the dictionary of admitted inputs and the

dictionary of their corresponding outputs. Surprise is defined as:

ST (x, y) = − ln p(x, y|T) (3.32)

where p(x, y|T) is the posterior probability distribution of {x, y} given T .
Intuitively, if the probability of an incoming sample given the dictionary is very high,

the sample is not “surprising” for the learning system (the value of the surprise is small).

However, if that probability is low, then the surprise is high, which suggests that the new

sample point has new information for the system or that it’s abnormal (an outlier) if the

surprise is too high. Accordingly, based on the measure of surprise, we can define three

categories for the sample points:

− abnormal: ST (x, y) > T1

− learnable: T1 ≥ ST (x, y) ≥ T2

− redundant: ST (x, y) < T2

where T1 and T2 are problem-dependent parameters.

Evaluation of Surprise

In Gaussian Processes Regression [29], the predicted outputs, f(xi), i = 1, . . . , n (with n

denoting the current iteration), are assumed to have a jointly Gaussian prior distribution,

that is,

[f(x1), . . . , f(xn)]
T ∼ N (0, σ2I+Gn), ∀n (3.33)

where

Gn =


k(x1,x1) · · · k(xn,x1)

...
. . .

...

k(x1,xn) · · · k(xn,xn)

 , (3.34)

3 Literature Review 32

and σ2 is the variance of the noise contained in the samples. With this assumption, the

posterior probability distribution p(yn|xn, Tn−1) of the predicted output yn given xn and

Tn−1 is also normally distributed with mean

ȳn = hT
n [σ

2I+Gn−1]
−1yn−1 (3.35)

and variance

σ2
n = σ2 + k(xn,xn)− hT

n [σ
2I+Gn−1]

−1hn (3.36)

where hn = [k(xn,x1), . . . , k(xn,xn−1)]
T and yn−1 = [y1, . . . , yn−1]

T . The posterior joint

probability distribution p(xn, yn|Tn−1) from (3.32) becomes:

p(xn, yn|Tn−1) = p(yn|xn, Tn−1)p(xn|Tn−1)

=
1√
2πσn

exp

(
−(yn − ȳn)

2

2σ2
n

)
p(xn|Tn−1). (3.37)

Taking the negative logarithm of (3.37), the surprise is given by:

STn−1(xn, yn) = ln(
√
2π) + ln(σn) +

(yn − ȳn)
2

2σ2
n

− ln p(xn|Tn−1). (3.38)

For simplicity, STn−1(xn, yn) will be denoted as Sn henceforth. The distribution p(xn|Tn−1)

is problem-dependent. In the regression literature, it is often assumed that p(xn|Tn−1) =

p(xn), i.e., the distribution of xn is independent of the previous inputs and corresponding

outputs. In general, we can assume the distribution xn is uniform if no a priori information

is available [9].

We can see from equation (3.38) why a “rare” observation leads to a high value for

the surprise. This is due to (the negative of the logarithm of) the small p(xn|Tn−1) that

leads to a larger Sn. Also, en = yn − ȳn can be seen as the prediction error since ȳn is the

maximum a posteriori (MAP) estimate of yn by the current learning system [11]. Predicting

yn well means e2n is small, which explains, in light of (3.38), why we get a little surprise

when the system is predicting well near xn. On the other hand, for a small variance and a

large prediction error, the third term in (3.38) becomes very large and dominates Sn which

becomes consequently very large. This can be understood as an abnormality which leads

to the corresponding sample being discarded.

3 Literature Review 33

KRLS with Surprise Criterion

It can be verified that ȳn in (3.35) and σ2
n in (3.36) are in fact equal to f(xn) = k̃T

n α̃n (see

(3.16) and (3.28)) and to δn (see (3.18)), respectively. Therefore, from (3.38), we see that

the surprise criterion for KRLS is given by:

Sn =
1

2
ln δn +

(yn − k̃T
n α̃n)

2

2δn
− ln p(xn|Tn−1) (3.39)

where p(xn|Tn−1) can be assumed to be constant if no a priori information is available.

Note that the first (constant) term in (3.38) was ignored since the thresholds, T1 and T2,

against which Sn is compared can be adjusted accordingly.

As a result, the algorithm for KRLS with Surprise Criterion, denoted as SC-KRLS, is

the same as Algorithm 1 with the only change being the condition for deciding whether

to add a sample to the dictionary or not. Specifically, here, Sn will be used instead of δn

to determine whether the sample is learnable, abnormal or redundant. If the sample is

abnormal, it is discarded and no update is carried out for the algorithm variables since we

have no interest in extracting information from an abnormal sample. If it is redundant, the

sample is not added to the dictionary but the update rules (3.30)-(3.31) are executed. If

the sample is learnable, it is is added to the dictionary and the corresponding update rules

(3.25), (3.27) and (3.28) are executed.

3.3.3 Quantization Technique

In [28], a quantization approach is presented to reduce the growth of the kernel matrix

of the KLMS algorithm, but can be used in conjunction with KRLS as well. The basic

idea behind the quantization method is to quantize and hence compress the input space

by selecting specific samples to be admitted to the dictionary: a sample is admitted to the

dictionary only if it is not close enough to the dictionary samples.

Given a new sample xn, the sparsification technique is carried out by first computing the

distance between xn and every sample in the dictionary Dn−1. Denote by x̃q the element

in Dn−1 that has the smallest distance to xn, and call dmin that distance, i.e.,

dmin = ||xn − x̃q|| = min
1≤i≤mn−1

||xn − x̃i|| (3.40)

3 Literature Review 34

where || · || denotes the Euclidean distance. Then, dmin is checked against a quantization

parameter ε. If dmin is larger than ε, then the new sample xn is added to the dictionary

(and, obviously, a new coefficient is appended in the weight vector for that newest entry

to Dn). If that distance is smaller than ε, i.e., the new sample xn is close enough to x̃q,

the new sample is not added to the dictionary and the coefficient of x̃q (that contributes

to the KLMS solution) is updated to reflect that a new sample has been quantized to it as

follows:

αq = αq + µen (3.41)

where µ is an algorithm parameter (learning step) and en = yn− ŷn, yn being the real value

of the output and ŷn the KLMS-predicted value of the output.

3.3.4 Novelty Sparsification Rule

In [30], a two-fold sparsification rule is presented to determine if a sample is “novel” enough

to be added to the dictionary. Given a new input-output pair {xn, yn}, first, we determine

the distance between xn and the dictionary as defined in (3.40). Second, we measure

the difference between the real output yn and the predicted output ŷn for that sample.

Accordingly, the incoming sample is added to the dictionary if the two following conditions

are satisfied:

min
1≤i≤mn−1

||xn − x̃i|| > εx and |yn − ŷn| > εy (3.42)

where εx and εy are sparsification thresholds that determine the level of sparsity of the

dictionary. If at least one of the two conditions in (3.42) is not satisfied, the sample is

discarded.

3.3.5 Significance Criterion

In [31], Fan and Song consider the “significance” of each incoming input sample xi by

evaluating the impact of a sample on the loss function (that is minimized in the KRLS

problem). They consider a modified version of the loss function (3.19) (used in ALD-

KRLS [9]) by including a forgetting factor β as follows:

Ln =
n∑

i=1

βn−i
∣∣yi −wT

nϕ(xi)
∣∣2. (3.43)

3 Literature Review 35

The sparsification criterion they adopt is the change in Ln which would occur if a new

sample added to the dictionary, and which can be expressed at iteration n as:

∆Ln =
1

2
∆αT

nHn∆αn (3.44)

where Hn is the Hessian matrix of the loss function (3.43) at iteration n and ∆αn is the

difference in the value of the weight vector α in the two cases: (1) when the sample is not

added and (2) if the sample is added. The difference ∆αn is derived as:

∆αn =

[
−Pnk̃n

zn
en

1
zn
en

]
(3.45)

where en is the prediction error en = yn − ŷ = yn − k̃T
n α̃n and zn = 1 − k̃T

nPnk̃n, with k̃n

and α̃n as defined in Section 3.3.1. Here, Pn is a modified version of the matrix considered

in the ALD-KRLS case [9] in which a forgetting factor was not considered in the initial

minimization problem (3.19). Hence, Pn becomes (AT
nΛnAn)

−1 where Λn is the diagonal

matrix with diagonal entries: βn, βn−1, . . . , 1. By taking the second derivative of the loss

function (3.43) with respect to the kernel weight αn, the Hn matrix can be obtained as:

Hn =
∂2Ln

∂2αn

= Rn (3.46)

where Rn = k̃nyn. The change in the loss function ∆Ln measures the impact, or signifi-

cance, of an incoming input sample on the loss function. Accordingly, if the significance of

a specific input sample exceeds a predefined threshold, the contribution of such sample is

substantial enough, and it is added to the dictionary. Otherwise, the sample is discarded.

3.3.6 Mutual Information Criterion

In [32], Fan et al. propose a sparsification method based on the estimated instantaneous

mutual information between the incoming input sample and the corresponding predicted

output. The instantaneous mutual information is a measure of the amount of information

shared between the input xn and the predicted output ŷn. It is formally defined as:

I(xn; ŷn|Tn) = H(ŷn|Tn)−H(ŷn|xn, Tn) (3.47)

3 Literature Review 36

where Tn is the learning system, which consists, as before, of the dictionary of admitted

inputs and the dictionary of their corresponding outputs, at iteration n and the entropies

H(ŷn|Tn) and H(ŷn|xn, Tn) are respectively given by:

H(ŷn|Tn) = − log p(ŷn|Tn)

H(ŷn|xn, Tn) = − log p(ŷn|xn, Tn),
(3.48)

with p(ŷn|Tn) being the system output probability density and p(ŷn|xn, Tn) being the con-

ditional probability density of system output ŷn given the input xn and the dictionary

Tn.
Kernel density estimators [33] are non-parametric probability density function estima-

tion methods that exhibit fast convergence in the mean-square sense. The kernel density

estimator with Gaussian kernel was used in [32] to estimate p(ŷn|Tn) and p(ŷn|xn, Tn).
Accordingly, the entropies can be obtained as:

H(ŷn|Tn) = − log(
1

mn−1

mn−1∑
i=1

k(ŷn, ŷi))

H(ŷn|xn, Tn) = − log(
1

b

b∑
i=1

k(en, ei))

(3.49)

where k(·, ·) is the Gaussian kernel defined in (2.39), the ŷi’s are the predicted outputs

of the samples {x̃i, yi} stored in the dictionary with mn−1 being the number of samples

stored in the dictionary, and ei = yi − ŷi is the prediction error (between the real output

and the predicted output) computed for the b nearest input samples. Similarly to the

Surprise Criterion test (Section 3.3.2), the usefulness of incoming samples is determined

by measuring the value of a sample’s mutual information using (3.47) and (3.49) and

comparing that value to pre-specified thresholds. Accordingly, incoming samples can be

characterized as redundant if the mutual information is very high (exceeding a certain

threshold) and abnormal if the mutual information is too small (in that case, the input xn

and the estimated output ŷn are almost irrelevant to the former training samples). If the

mutual information lies within a certain range between the two former cases, the incoming

sample is deemed to be informative and thus added to the dictionary.

3 Literature Review 37

3.3.7 Coherence Criterion

In [34], Richard et al. present a coherence-based sparsification rule in the context of online

prediction of time series using kernels. They define coherence as:

µ = max
i̸=j
|k(x̃i, x̃j)|, ∀x̃i, x̃j ∈ Dn (3.50)

where | · | denotes absolute value and k(·, ·) is a unit-norm kernel, i.e., k(x,x) = 1 for

all x. By observing the definition, it can be seen that µ is the largest absolute value of

the off-diagonal entries in the Gram matrix. Thus, coherence reflects the largest cross-

correlations in the dictionary. A dictionary is said to be incoherent when µ is small. Based

on this definition of coherence, when an incoming sample {xn, yn} is received, the following
sparsification rule is checked:

max
i
|k(xn, x̃i)| ≤ µ0, ∀x̃i ∈ Dn−1 (3.51)

where µ0 ∈ [0, 1) is a parameter that determines the level of sparsity and coherence of

the dictionary. Accordingly, if the incoming sample has a small enough coherence with

the dictionary (satisfying condition (3.51)), it is added to the dictionary. Otherwise, it is

discarded with the weight coefficients being updated appropriately.

3.3.8 Prediction Error Criterion

In [35], a sparsification rule based on the prediction error is presented. When an incoming

sample {xn, yn} is received, its predicted output ŷn is computed. Let the prediction error

en be the error between the real output yn and the predicted output ŷ. Based on this

definition, the sparsification rule is as follows:

|en| = |yn − ŷn| ≤ δ, (3.52)

that is, if the absolute of value of the error |en| is less than a given threshold δ, then the

system is accurate enough and does not need to be improved. Thus, the sample is discarded

with the weight coefficients being updated appropriately. Otherwise, the sample is added.

Table 3.1 summarizes the sparsification techniques presented in Section 3.3.

3 Literature Review 38

Table 3.1 Different Sparsification Criteria

Notation: xn Input sample at iteration n
yn Real output at iteration n
ŷn Predicted output at iteration n
Dn Dictionary of samples at iteration n
x̃i i-th entry in the dictionary at iteration n
αn Weight vector at iteration n
mn−1 Size of dictionary at iteration n− 1

Criterion Expression Adopted in

Approximate Linear δn = min
a
∥
∑mn−1

i=1 aiϕ(x̃i)− ϕ(xn)∥2 [9], [36], [37]

Dependence where ai: coefficients

Surprise Criterion SD(x, y) = − ln p(x, y|D) [11]

Quantization Criterion dmin = min
1≤i≤mn−1

||xn − x̃i|| [28]

Novelty Criterion dmin = min
1≤i≤mn−1

||xn − x̃i|| and ||yn − ŷn|| [30]

Significance Criterion ∆Ln = 1
2
∆αT

nHn∆αn [31]

where Hn = ∂2Ln

∂2αn

Mutual Information I(xn; ŷn|Dn) = H(ŷn|Dn)−H(ŷn|xn,Dn) [32]
Criterion where H(U |V) = − log p(U |V)

Coherence Criterion µ = max
1≤i≤mn−1

|k(xn, x̃i)| [34]

Prediction Error Criterion |en| = |yn − ŷn| [35]

3 Literature Review 39

3.4 Pruning Strategies

The sparsification techniques presented in Section 3.3 are quite useful in curbing the growth

of the dictionary and the corresponding Gram matrix. However, often, a more aggressive

approach is needed particularly when practical considerations are taken into account. For

example, algorithm implementations on DSP processors would impose more restrictive lim-

itations, e.g., limited memory size and computational resources. Fixed-budget algorithms

provide a solution to this problem as they entail a more constraining approach than the

sparsification approach: A bound, namely M , is imposed on the number of samples that

can be stored in the dictionary of samples at any point in time. This is also particularly

important for tracking time-varying systems as a large size of the dictionary has a detri-

mental effect on the algorithm’s tracking ability. As a result of imposing this hard bound

in fixed-budget algorithms, whenever the number of dictionary samples exceeds the limit,

a sample must be discarded. This is known as pruning and in this section, we will be

reviewing pruning strategies from different areas in machine learning.

3.4.1 Remove-the-Oldest Strategy

One of the simplest pruning approaches is to remove the oldest sample in the dictionary.

This means that when the number of dictionary samples reaches the limit M , the oldest

sample is removed from the dictionary. This criterion was first used in the sliding-window

KRLS algorithm [12] and later in the Forgetron algorithm [38] which presents a kernel

version of the Perceptron algorithm on a fixed budget.

3.4.2 Optimal Brain Damage

One of the earliest pruning techniques for neural networks is proposed by Le Cun et al.

in [39]. The technique, called Optimal Brain Damage (OBD), consists in removing elements

from the network with small saliency, i.e., those whose removal from the network will affect

the least the training error.

Saliency is formally defined as the change in the error function E, i.e., the objective

function of the learning (minimization) problem. Let u be the parameter vector from which

elements will be removed. Using the Taylor series expansion, a change ∆u in the parameter

3 Literature Review 40

vector will lead to the following change in the objective function:

∆E =
∑
i

gi∆ui +
1

2

∑
i

hii∆u2
i +

1

2

∑
i̸=j

hij∆ui∆uj +O(||∆u||3) (3.53)

where O(·) denotes the big O notation, the ∆ui’s are the components of ∆u, the gi’s are

the components of the gradient G of E with respect to u and the hij’s are the elements of

the Hessian matrix H of E with respect to u, i.e.,

gi =
∂E

∂ui

and hij =
∂2E

∂ui∂uj

. (3.54)

The goal is to find a set of parameters from u whose removal will lead to the least increase

of E. With some approximations and assumptions, particularly that the Hessian matrix

H is assumed to be diagonal, (3.53) reduces to

∆E =
1

2

∑
i

hiiδu
2
i (3.55)

with one of the approximations implying that the ∆E caused by the removal of several

parameters is the sum of the ∆E’s caused by the removal of each parameter individually.

This leads to the following definition of the saliency of a given parameter:

si = hiiu
2
i /2. (3.56)

Accordingly, a predefined number of parameters with the lowest saliency is removed. For

the KRLS problem, (3.56) amounts to si = kiiα
2
i /2 where kii = k(x̃i, x̃i) and the αi’s are

the weights to be solved for (see (3.10)).

3.4.3 Optimal Brain Surgeon

In [40], Hassibi et al. consider the same problem as that in OBD [39]. However, while

OBD assumes that the Hessian matrix H of the error function E is diagonal, which would

lead OBD to sometimes prune the wrong weights, the method in [40], namely Optimal

Brain Surgeon (OBS), makes no assumptions about the form of the Hessian matrix. Ac-

cordingly, without any assumptions on H and following a Lagrangian approach, we obtain

3 Literature Review 41

the following definition of the saliency of a given parameter ui:

Li =
1

2

u2
i

[H−1]ii
. (3.57)

Elements with the smallest saliencies (3.57) will be removed. For the KRLS problem, (3.57)

amounts to: Li =
1
2

α2
i

[K−1]ii
where the αi’s are the weights to be solved for (see (3.10)) and

[K−1]ii is the i-th element along the diagonal of the inverse of the Kernel matrix.

3.4.4 Minimal Introduced Error Criterion

In this section, we present the Fixed-Budget KRLS algorithm [13], denoted as FB-KRLS,

which employs the minimal introduced error criterion [41] as the pruning strategy. The

algorithm consists of adding a new sample point to the dictionary at each iteration, then

determining the sample to be discarded when the limit M is reached, and subsequently

removing that point from the dictionary. Similarly to ALD-KRLS, the goal is to find a

recursive solution α to a regularized version of the minimization problem (3.9) given by:

argmin
α
∥y −Kα∥2 + λαTKα (3.58)

where λ is a regularization parameter that penalizes the solutions of the minimization

problem argminα ∥y −Kα∥2 that have large norms. The solution of (3.58) is given by:

α = (K+ λI)−1y. (3.59)

Adding a New Sample Point to the Dictionary

When a new sample point (xn, yn) is received, it is first added to the dictionary. This

corresponds to adding a new row and a new column to the kernel matrix Kn−1. The result

of this operation –termed matrix “upsizing”– is denoted by K̆n and given by:

K̆n =

[
Kn−1 b

bT d

]
(3.60)

where Kn−1 is the matrix whose entries are given by [Kn−1]i,j = k(x̃i, x̃j), b = kn−1 where

kn−1 is the matrix whose entries are given by [kn−1]i = k(x̃i,xn) and d = k(xn,xn) + λ.

3 Literature Review 42

Given the inverse matrix K−1
n−1, the inverse of the upsized matrix K̆−1

n can be obtained as

follows:

K̆−1
n =

[
K−1

n−1 + geeT −ge
−geT g

]
(3.61)

where e = K−1
n−1b and g = (d− bTe)−1.

Selecting a Sample Point for Pruning

With the addition of a new sample point, the dictionary of samples may now consist of

M +1 stored samples. In the next step, we determine the point that needs to be discarded

in order to preserve only M sample points in the dictionary.

The adopted pruning technique was introduced by De Kruif and De Vries in [41] for

least-squares support vector machines (LS-SVMs) with the underlying goal of minimizing

the approximation error of LSSVM by discarding the sample which would introduce the

smallest additional approximation error after its removal from the dataset. It is closely

related to the OBS technique (3.57) which was derived for neural networks. The increase

in the error when sample x̃i is discarded was derived as:

di =
|αi|

[K̆−1
n]i,i

. (3.62)

This is easy to evaluate given that αn and K̆−1
n are quantities that would be calculated

in the previous iteration. The minimal introduced error criterion (3.62) was also used in

other KRLS-type algorithms (e.g., [42]), KLMS-type algorithms (e.g., [43]), kernel-based

perceptron algorithms (e.g., [36]) in addition to other kernel algorithms (e.g., [35]).

Discarding the Selected Sample

In this step, the selected dictionary sample, say the i-th one, will be removed from the

dictionary along with the corresponding i-th row and column in the (upsized) kernel matrix.

This is done by first exchanging the first and i-th row and column of the kernel matrix,

removing the new first row and column, computing the inverse of the “downsized” kernel

matrix and finally, moving back the (i−1)-th row and column back to their initial position.

3 Literature Review 43

To this end, consider the following matrices:

Πi =


0 0 1 0

0 Ii−2 0 0

1 0 0 0

0 0 0 IM−i+1

 , Ψi =

0 Ii−1 0

1 0 0

0 0 IM−i

 (3.63)

where Ij is the unit matrix of size j and 0 is the all-zeros matrix of appropriate dimensions.

In the first step, pre- and post-multiplying by Πi corresponds to an exchange of the first

and i-th row and column. Now, we introduce the matrix operations for removing the first

row and column of the upsized kernel matrix K̆n which results in the downsized matrix Kn

whose inverse can be computed with the knowledge of K̆−1
n as follows:

K̆n =

[
q uT

u Kn

]
, K̆−1

n =

[
r vT

v G

]
⇒ K−1

n = G− vvT/r (3.64)

where the are no underlying assumptions regarding the vectors u and v, the scalar values

q and r and the matrix G. In the last step, pre- and post-multiplying by Ψi corresponds

to moving the (i− 1)-th row and column back to the first position. Algorithm (2) presents

the steps to compute the inverse of the downsized matrix.

Algorithm 2 Procedure to obtain the inverse of a matrix K̆n whose i-th row and column

are removed

Compute K̆i
n = ΠiK̆nΠi and (K̆i

n)
−1 = ΠiK̆

−1
n Πi.

Remove the first row and column of K̆i
n to obtain Ki

n.

Calculate the inverse (Ki
n)

−1 using (3.64).

Obtain K−1
n = Ψi(K

i
n)

−1Ψi.

Memory Update for Tracking Time-Varying Mappings

In what preceded, it was assumed that the goal is to model a static non-linear mapping that

allows predicting labels for incoming inputs. However, if the non-linear mapping changes

over time, it is likely that the stored samples do not reflect well the current mapping. To

3 Literature Review 44

achieve tracking capability, with each incoming sample (xn, yn), the update

yi ← yi − µ(yi − yn)k(x̃i,xn), ∀i, (3.65)

where µ ∈ [0, 1] is a step-size parameter, is proposed for all labels yi. The update rule in

(3.65) considers the similarities in both the inputs and outputs, measured respectively by

the kernel and the difference yi − yn. The update rule affects mostly pairs whose input

vector x̃i is similar to xn, that is, if x̃i is similar to xn, the value of k(x̃i,xn) will be large

and so the update on the output will be more significant. At the same time, the update will

also be proportional to yi−yn. Hence, the update rule balances between the similarities (or

lack thereof) in the input space and those in the output space. FB-KRLS is summarized

in Algorithm 3.

Algorithm 3 Fixed-Budget KRLS

initialize: Memory = {(x̃1, y1)}.
Calculate K−1

1 and α with (3.59).

for n = 2, 3, . . . do

Update all stored labels yi with (3.65).

Add (xn, yn) to memory and obtain K̆−1
n with (3.61).

if memory size > M then

Determine least significant point (x̃L, yL) using (3.62).

Prune (x̃L, yL) from memory and obtain K−1
n (Algorithm 2).

end if

Get KRLS solution based on updated memory using (3.59).

end for

3.4.5 Minimal Dependence Strategy

In [37], Nguyen-Tuong et al. propose a pruning strategy based on the dependency of a

given sample on other samples in the dictionary. Recall the ALD criterion (3.12) from

Section 3.3.1:

δn , min
a

wwwww
mn−1∑
i=1

aiϕ(x̃i)− ϕ(xn)

wwwww
2

(3.66)

3 Literature Review 45

which we also expressed as:

δn = knn − k̃T
n−1an. (3.67)

The pruning strategy consists in selecting for removal the element with the largest depen-

dence on other samples, i.e., we want to remove samples that are more dependent on other

dictionary samples. To that end, Nguyen-Tuong et al. consider the following adaptation

of (3.67):

δi = kii − k̃T
n−1an. (3.68)

Accordingly, when a new sample {xn, yn} is received, k̃T
n−1 and an are computed as in Sec-

tion 3.3.1; however, the linear independence measure δi is computed for each element in the

dictionary using (3.68). Moreover, in the proposed pruning strategy, temporal considera-

tions are also taken in account by imposing a time-dependent forgetting factor λi ∈ [0, 1].

Consequently, the pruning strategy considers the independence value δi weighted by the

forgetting factor λi as a criterion for removal. Thus, the proposed strategy will lead to the

removal of the dictionary sample with the smallest λiδi. The forgetting factor λi is defined

to be:

λi = e−
(n−i)2

2h (3.69)

where n is the current iteration, i is the iteration at which that specific point (being

considered for pruning) was introduced to the dictionary and h is a parameter representing

the intensity of the forgetting factor.

3.4.6 Soft Pruning for Kernel-based Anomaly Detection

In [44], Ahmed et al. use a form of soft pruning to remove elements from the dictionary.

While the technique does not impose a hard limit on the dictionary size, it aims at limiting

the dictionary size by removing elements that become “obsolete” after a certain number of

iterations. More specifically, at iteration n, the usefulness of each dictionary element over

the previous L measurements is evaluated by checking the following criterion:

ζi =
n∑

j=n−L+1

1{k(x̃i, x̃j) > d}, i = n− L+ 1, . . . , n, (3.70)

where 1{·} denotes the indicator function and d is a threshold parameter. If criterion (3.70)

evaluates to 0 for a vector x̃i, then x̃i is deemed obsolete and is subsequently removed from

3 Literature Review 46

the dictionary.

Table 3.2 outlines the different pruning strategies presented in Section 3.4.

Table 3.2 Different Pruning Strategies

n Current iteration
x̃i Input sample stored at index i in the dictionary
xn Incoming input sample at iteration n
αi Weight corresponding to input sample x̃i

K−1
n Inverse of kernel matrix at iteration n

Strategy Expression Adopted in

Optimal Brain si = kiiα
2
i /2 [39]

Damage where kii = k(x̃i, x̃i)

Optimal Brain Surgeon Li =
1
2

α2
i

[K−1
n]i,i

[40]

Minimal Introduced di =
|αi|

[K−1
n]i,i

[41], [13], [42],

Error [43], [36], [35]

Remove-the-Oldest – [12], [38]

Minimal Dependence λiδi [37]

Strategy where λi = exp(− (n−i)2

2h
)

h: intensity of forgetting factor λ
δi = kii − kT

n−1K
−1
n−1kn−1

with [kn−1]i = k(x̃i,xn)

Soft Pruning ζ =
n∑

j=n−L+1

1{k(x̃i, x̃j) > d}, i = n− L+ 1, . . . , n [44]

for Kernel-based where 1{·}: the indicator function
Anomaly Detection d: threshold parameter

3.5 Conclusion

In this chapter, we first presented an overview of the classical Recursive Least Squares

(RLS) algorithm. Engel et al. presented in [9] an online kernel version of the RLS algo-

rithm, namely Kernel RLS (KRLS), which is able to recursively solve non-linear regression

problems. KRLS is sequentially presented with input-output pairs and iteratively calcu-

lates a linear LS regressor in the high-dimensional feature space induced by the employed

3 Literature Review 47

kernel. As is typical with kernel-based regression methods, the number of parameters that

need to be calculated to obtain the LS solution is equal to the number of input vectors

that grows without bound as the iterations progress. To address this issue, a “sparsifica-

tion” procedure is proposed in [9] to be used in conjunction with KRLS, that forms the LS

regressor using a carefully chosen subset, termed dictionary, of the input vectors. Sparsifi-

cation techniques have been increasingly used in conjunction with kernel adaptive filtering

algorithms as they are quite useful in curbing the growth of the dictionary and the Gram

matrix. However, often, a more aggressive approach is needed, particularly when practical

considerations are taken into account, e.g., algorithm implementations on DSP processors

with limited memory size and computational resources. Fixed-budget algorithms provide

a solution to this problem by imposing a hard limit on the number of samples that can be

stored in the dictionary. As a result, reaching that limit necessitates the removal, known as

pruning, of a sample from the dictionary. While sparsification and pruning techniques are

useful in curbing the growth of the dictionary, which is crucial for equipping an adaptive

filtering algorithm with the tracking ability, they are not, on their own, sufficient for the

algorithm to have a good tracking ability.

48

Chapter 4

Proposed Method

4.1 Background

In this section, we first present the Subspace Pursuit (SP) algorithm [14] which was intro-

duced in the context of compressive sensing as a method to reconstruct unknown sparse

signals. Then, we extend SP to non-linear regression problems in the spirit of two ker-

nel methods, Kernel Matching Pursuit (KMP) [45] and Kernel Basis Pursuit (KBP) [46]

which we present subsequently in the section. KMP and KBP are of particular interest to

our work as they attempt to solve a similar problem to ours, that of learning a regression

function by means of sparse approximation.

4.1.1 Subspace Pursuit

Subspace Pursuit (SP) was first introduced by Dai et al. in [14] in the context of compressive

sensing (see also [47] for a similar method). It was originally proposed as an iterative

method for the reconstruction of an unknown signal u = [u1, . . . , uN] from a possibly noisy

observation, v ∈ RN ′
, of u via N ′ ≪ N linear measurements, that is,

v = Φu (4.1)

where Φ ∈ RN ′×N is referred to as the sampling matrix and v as the measurement vector.

The unknown signal u, having K ≪ N non-zero elements, is said to be K-sparse.

4 Proposed Method 49

SP as an ℓ1-minimization technique

In compressive sensing, we are mainly interested in sparse signals as sparsity encapsu-

lates the idea that the signal contains far less information than what its actual dimension

suggests. Thus, in reconstructing signals in the compressive sensing context, SP seeks

to find the sparsest vector u that satisfies (4.1). This amounts to solving the following

ℓ0-minimization problem

min ||u||0 subject to v = Φu (4.2)

as the ℓ0-norm of a vector is the number of non-zero elements in that vector, which is the

sparsity of the vector. However, as solving the minimization problem (4.2) is NP-hard [14],

it is relaxed to the following ℓ1-minimization problem that can be solved efficiently by linear

programming techniques:

min ||u||1 subject to v = Φu (4.3)

where ||u||1 =
∑N

i=1 |ui| denotes the ℓ1-norm of the vector u.

SP from a least-squares perspective

In practice, the measurement vector v contains noise. To handle the case of noisy linear

measurements, the minimization problem (4.3) is written in the form of a least-squares

constrained minimization problem as follows:

min
u
∥Φu− v∥2 s.t. u is K-sparse. (4.4)

Preliminaries

Before discussing the details of the SP algorithm, we first need to define the notions of

projection and residue. Let I ⊂ {1, . . . , N}. The matrix ΦI consists the columns of Φ with

indices i ∈ I. The space spanned by the columns of ΦI is denoted by span(ΦI). Suppose

ΦI is full-rank, i.e., ΦT
I ΦI is invertible.

Definition 10. (Projection) The projection of v onto span(ΦI) is defined as:

vp = proj(v,ΦI) := ΦIΦ
†
Iv (4.5)

where Φ†
I denotes the Moore-Penrose pseudo-inverse of ΦI .

4 Proposed Method 50

Definition 11. (Residue) The residue vector of the projection is defined as

r = resid(v,ΦI) := v − vp. (4.6)

Summary of SP algorithm

To reconstruct the unknown K-sparse signal u, SP identifies the set of K columns of the

sampling matrix Φ that approximate best the signal u. This set of K columns of Φ is

referred to as the support set.

SP starts by computing the correlation vector between the sampling matrix Φ and the

measurement vector v. The support set T is initialized to be T0 given by

T0 = {Indices of the K largest magnitude entries in the correlation vector ΦTv}, (4.7)

with the resulting residue being initialized to

r0 = resid(v,ΦT0) = v − proj(v,ΦT0). (4.8)

The support set T is then iteratively refined by discarding and adding columns according to

the value of their correlation with the residue. Specifically, at iteration ℓ, we compute the

correlation vector between the sampling matrix Φ and the residue of the previous iteration,

and then identify the vector’s K largest magnitude entries. The set of newly identified

indices is then merged with the support set of the previous iteration, i.e.,

T̃ℓ = Tℓ−1 ∪ {Indices of the K largest magnitude entries in the vector ΦT rℓ−1}. (4.9)

Using the merged set (4.9), we project the measurement vector v onto span(ΦT̃ℓ
). The

resulting projection coefficients are then used to produce a new support set

Tℓ = {Indices of the K largest magnitude entries in the vector Φ†
T̃ℓ
v}. (4.10)

Finally, we compute the new residue

rℓ = resid(v,ΦTℓ
) = v − proj(v,ΦTℓ

). (4.11)

4 Proposed Method 51

This procedure is repeated until the stopping condition

||rℓ||2 > ||rℓ−1||2 (4.12)

is met, in which case we quit the iterative process and set Tℓ=Tℓ−1.

4.1.2 Kernel Matching Pursuit

Vincent et al. presented in [45] a method, the Kernel Matching Pursuit (KMP), that

constructs a regression function as a linear combination of functions selected from a kernel-

based dictionary. Particularly, we are given L noisy observations {y1, . . . , yL} of a target

function f ∈ H at the input vectors {x1, . . . ,xL} where xi ∈ Rd (for a given d) and

yi ∈ R,∀i. We are also given a finite dictionary centered on the input vectors, that is,

G = {gi = k(·,xi)|i = 1, . . . , L} (4.13)

of L functions in a Hilbert spaceH where k is a kernel. The goal is to approximate f using a

finite number B of functions, called basis functions, selected from G. Given that B is finite,

we talk of a sparse approximation of f . In other words, we are interested in constructing

a sparse approximation, also referred to as expansion, fB of f as a linear combination of

functions gγi , i = 1, . . . , B selected from G:

fB(x) =
B∑
i=1

αigγi(x) =
B∑
i=1

αik(x,xγi) (4.14)

where B is the number of basis functions in the approximation, {γ1, . . . , γB} are the indices
of the B functions selected from G and {α1, . . . , αB} is the set of coefficients corresponding

to those functions.

The approximation vector ŷB is the vector consisting of the evaluation of fB on the L

input vectors, i.e., ŷB = [fB(x1), . . . , fB(xL)]
T . We define the residue as the approximation

error between the target vector y = [y1, . . . , yL]
T and the approximation vector ŷB, i.e.,

rB = y − ŷB. (4.15)

Theoretically, the B selected functions {gγ1 , . . . , gγB} and their corresponding coefficients

4 Proposed Method 52

{α1, . . . , αB} should be chosen such that they minimize the squared norm of the residue

||rB||2 = ||y − ŷB||2. (4.16)

However, finding the optimal set of functions {gγ1 , . . . , gγB} requires an exhaustive

search over all K!
B!(K−B)!

possible choices of B basis functions among the K dictionary func-

tions. As carrying out such search would be computationally prohibitive, Vincent et al.

propose a suboptimal, greedy, iterative approach in which, at each iteration, the optimal

function is first selected, then the corresponding weight is computed based on the selected

function. Particularly, KMP starts with the expansion being initialized to zero, and then

builds it by adding to it, at each iteration, one new function from the dictionary G.
At iteration n < B, the approximation of f is not fully constructed yet, and it is given

by:

fn(x) =
n∑

i=1

αik(x,xγi). (4.17)

The corresponding approximation vector is ŷn = [fn(x1), . . . , fn(xL)]
T . The coefficient αn

that minimizes the residue at iteration n, that is,

||rn||2 = ||y − ŷn||2 = ||y − (ŷn−1 + αngn)||2 = ||rn−1 − αngn||2 (4.18)

where gn = [gγn(x1), . . . , gγn(xL)]
T , is given by:

αn =
⟨gn, rn−1⟩
||gn||2

. (4.19)

Plugging (4.19) in (4.18), we get:

||rn||2 = ||rn−1||2 −
(
⟨gn, rn−1⟩
||gn||

)2

(4.20)

So the function gγn ∈ G that minimizes (4.18) is the one that maximizes
∣∣∣ ⟨gn,rn−1⟩

||gn||

∣∣∣. Accord-
ingly, at iteration n, KMP selects from G the function that maximizes

∣∣∣ ⟨gn,rn−1⟩
||gn||

∣∣∣ and then

computes the corresponding coefficient using (4.19). KMP is summarized in Algorithm 4.

4 Proposed Method 53

Algorithm 4 Kernel Matching Pursuit Algorithm
Input:

Dataset {(x1, y1), . . . , (xL, yL)}
B: Number of basis functions desired in the expansion

Dictionary G of functions with Gij = gj(xi) = k(xi,xj), i = 1, . . . , L, j = 1, . . . , K

with gj = [gj(x1), . . . , gj(xL)]
T .

Initialization:

r = [y1, . . . , yL]
T

For n = 1, . . . , B

γn = arg max
k=1,...K

∣∣∣∣⟨gk, r⟩
||gk||

∣∣∣∣
αn =

⟨gγn , r⟩
||gγn ||2

r = r− αngγn

Output:

fB(x) =
B∑
i=1

αigγi(x) =
B∑
i=1

αik(x,xγi)

4.1.3 Kernel Basis Pursuit

Consider again the setup from Section 4.1.2. Kernel Basis Pursuit (KBP) [46] addresses the

same problem as KMP [45], that is, building a sparse approximation of the target function

f using a finite number of functions selected from a kernel-based dictionary. However, there

are several key differences between the two approaches.

While KMP attempts to minimize the mean squared error (4.16) with respect to both

the basis function and the corresponding coefficient, KBP solves a regularized version of

the problem with respect to the coefficient vector α only:

min
α
||y −Gα||2 s.t. ||α||1 ≤ K (4.21)

where K is a regularization parameter and G is the Gram matrix. Essentially, both KBP

and KMP attempt to solve the same problem but they address the question of the sparsity

of the solution in different ways. Indeed, KMP guarantees that the solution is K-sparse

by constructing it using a finite number K of basis functions. On the other hand, KBP

uses a regularization term (in the minimization problem) that imposes the sparsity of the

4 Proposed Method 54

solution.

Problem (4.21) corresponds to the well-known Least Absolute Shrinkage and Selection

Operator (LASSO) formulation [48] (in the feature space) which combines an ℓ2-loss func-

tion (squared error) and ℓ1-regularization. The original Basis Pursuit (BP) algorithm [49]

finds the optimal solution to the minimization problem as a linear combination of all the

dictionary functions using costly and complex linear programming techniques [46]. Instead,

KBP uses the Least Angle Regression (LARS) technique [50] which also finds the exact

solution of the LASSO but in an iterative and efficient way.

4.2 Motivation

In designing an adaptive filtering algorithm for tracking purposes, the choice of the weight

vector length should be carefully considered. In principle, the weight vector length should

be chosen to be as short as possible to improve the algorithm’s tracking ability, but long

enough to adequately model the system.

In all KRLS algorithms to this date, the weight vector α that is the solution of the

minimization problem (3.9) is of equal size to that of the dictionary. This coupling of the

weight vector length to the dictionary size introduces a trade-off. While a large dictionary is

favorable as it would represent all the dynamics of the input-output relationship over time,

it has a detrimental effect on the algorithm’s ability to track changes in that relationship; it

is well known [6] that having to adjust a large number of weights significantly slows down

adaptation. This trade-off highlights the need to decouple the size of the weight vector

from the dictionary size and motivates the proposed method presented in this thesis. We

illustrate this by the following experiment.

In this experiment, we investigate the effect of changing the size of the weight vector on

the tracking performance of the Fixed-Budget KRLS (FB-KRLS) algorithm [13] and the

Sliding-Window KRLS (SW-KRLS) algorithm [12]. Particularly, two versions of each of

FB-KRLS and SW-KRLS are run along 3000 iterations, one with a budget of M = 2000,

the other with a budget of M = 200.

We consider a system composed of a time-varying linear filter followed by a static non-

linearity. The input signal, whose elements xi are drawn i.i.d. from a normal distribution

with mean 0 and variance 0.5, is passed through a linear filter that varies in time as follows:

4 Proposed Method 55

During the first 1500 iterations, its impulse response is given by:

h1(n) = δ(n)− 0.37δ(n− 1)− 0.48δ(n− 2) + 0.81δ(n− 3),

where δ(n) is the unit impulse (also known as Kronecker delta). On iteration 1501, the

filter is abruptly changed. Its impulse response becomes

h2(n) = δ(n)− 0.83δ(n− 1) + 0.67δ(n− 2) + 0.72δ(n− 3)

which remains constant for the next 1500 iterations. The output of the linear filter is then

passed through the static non-linear function

f(x) = tanh(x). (4.22)

The resulting signal is finally corrupted with 20 dB1 of white Gaussian noise. We use 400

sample points as a test set (different in each phase of the scenario according to the linear

filter) and a time embedding of 4, i.e., xn = [xn, xn−1, xn−2, xn−3]
T . For FB-KRLS, the

step-size parameter is set to µ = 0.01, and the regularization parameter is set to λ = 0.001.

For both algorithms, a Gaussian kernel is used with a width σ = 0.8. The values of the

parameters were chosen via 5-fold cross-validation.

The results, averaged over 15 Monte-Carlo simulations, are shown in Figure 4.1. Each

version of the two algorithms with a budget of M = 200 outperforms the version with

M = 2000 in tracking the system changes. Indeed, following changes in the filter (depicted

by the vertical blue line), the MSE curve of each of the algorithms with M = 200 is faster

to change and converge, thus capturing faster the change in the system. As in FB-KRLS

and SW-KRLS the dictionary size is equal to the weight vector size, we can conclude that

a large dictionary size has indeed a detrimental effect on the tracking ability. We note

however that the algorithms with a smaller budget do converge to a worse steady-state

value. This is expected since, as we discussed earlier, a larger dictionary represents better

the dynamics of the input-output relationship over time, and as such, it is expected that

an algorithm with a larger dictionary would converge to a smaller steady-state error.

1This value represents the SNR equal to 10 log10(
Signal Power
Noise Power) where the signal power is assumed to be

equal to 1.

4 Proposed Method 56

0 500 1000 1500 2000 2500 3000

10
−1

10
0

iteration n

M
S

E

SW−KRLS (M=2000)
SW−KRLS (M=200)
FB−KRLS (M=2000)
FB−KRLS (M=200)

Fig. 4.1 Effect of changing the dictionary size/weight vector size on the
tracking performance of SW-KRLS and FB-KRLS on a time-varying system.

4.3 Kernel Subspace Pursuit

In this section, we extend SP to non-linear regression problems and introduce Kernel SP

(KSP) in the spirit of KMP [45] and KBP [46] which were presented in Section 4.1. In

Section 4.4, we will use KSP in conjunction with KRLS to improve the latter’s performance

in tracking time-varying systems.

4.3.1 Problem Formulation

Consider again the setup introduced in Section 3.1. Let Dn = [x̃1, . . . , x̃mn] be the dictio-

nary containing a subset of input vectors up to time n. As in KRLS, we are interested in

4 Proposed Method 57

obtaining a minimizer of (3.7) of the form

f(x) =
mn∑
i=1

αik(x, x̃i) (4.23)

but we now add the constraint that the vector of coefficientsα = [α1, . . . , αmn]
T isK-sparse,

i.e., it contains exactly K non-zero coefficients.

Let Gn be the mn × n Gram matrix obtained by evaluating the functions k(·, x̃i),

i = 1, . . . ,mn at the input vectors x1, . . . ,xn, i.e.,

[Gn]i,j = k(xi, x̃j). (4.24)

Using Gn, we can formulate the constrained minimization of (3.7) considered here as:

min
α
∥Gnα− yn∥2 s.t. α is K − sparse. (4.25)

To simplify presentation, for the rest of this section we will drop the subscript n of Gn.

Denote by GT , with T being a set of column indices, the matrix consisting of the columns

of G with indices in T . Then (4.25) can be rewritten as

min
α∈RK ,T

∥GTα− yn∥2 s.t. cardinality of T is K. (4.26)

4.3.2 The KSP Procedure

KSP solves (4.26) by, initially selecting the K columns of G that exhibit the highest

correlation with the vector yn, and then iteratively refining this set by discarding and

adding columns. The refinement process is carried out by retaining “informative” columns

of G, i.e., the columns of G that better approximate yn, and discarding the less informative

ones.

Particularly, KSP starts by computing the correlation vector between the matrix G

and the vector yn, then identifies the K elements of the correlation vector with the largest

magnitudes. An initial estimate, T0, of the support set is thus obtained:

T0 = {Indices of the K largest magnitude entries in the correlation vector Gyn}. (4.27)

4 Proposed Method 58

Given T0, we obtain an initial estimate, ŷn, of yn by projecting the vector yn onto the span

of the columns of GT0 :

ŷn = proj(yn,GT0).
2 (4.28)

The approximation error of yn, also referred to as residue, is then computed:

r0 = yn − ŷ0. (4.29)

At a given iteration3 ℓ, we begin by computing the correlation vector GT rℓ−1 between

G and the approximation error of yn from the previous iteration, and then identify the

columns of G that correspond to that vector’s K elements with the largest magnitudes.

The new set of K columns is then merged with the set Tℓ−1 of columns of the previous

iteration’s approximation:

T̃ℓ = Tℓ−1 ∪ {Indices of the K largest magnitude entries in the vector GT rℓ−1}. (4.30)

We then project yn onto the span of the columns of G in the merged set:

proj(yn,GT̃ℓ
) = GT̃ℓ

G†
T̃ℓ
yn (4.31)

and use the projection coefficients to obtain a new set of indiced, Tℓ, by identifying the

columns corresponding to those K coefficients having the largest magnitude:

Tℓ = {Indices of the K largest magnitude entries in the vector G†
T̃ℓ
yn}. (4.32)

Finally, a new LS estimate of yn, ŷn, is acquired by projecting the vector yn onto the span

of the columns of Tℓ:

ŷn = proj(yn,GT̃) = GTℓ
G†

Tℓ
yn (4.33)

and a new residue rℓ = yn− ŷn is obtained. This procedure is repeated until the maximum

2See (4.5) for a definition of projection.
3We note that iteration ℓ should not be confused with iteration n. Indeed, as mentioned in the setup

introduced in Section 3.1, training pairs are sequentially received. At iteration n, after having received the
n-th training pair (xn, yn), we run up to ℓmax iterations of KSP, indexed by ℓ.

4 Proposed Method 59

number ℓmax of iterations is reached or until the stopping condition

||rℓ||2 > ||rℓ−1||2 (4.34)

is met, in which case we quit the iterative process and set Tℓ=Tℓ−1. Algorithm 5 summarizes

KSP.

Algorithm 5 Kernel Subspace Pursuit Algorithm
Input: K, yn, D.
Initialization:

Compute G using (4.24).

T0 = {Indices of the K largest magnitude entries in the vector Gy}
r0 = yn − proj(yn,GT0)

Loop: At iteration ℓ (1 ≤ ℓ ≤ ℓmax), execute the following:

T̃ℓ = Tℓ−1 ∪ {Indices of the K largest magnitude entries in the vector GT rℓ−1}
Tℓ = {Indices of the K largest magnitude entries in G†

T̃ℓ
yn}

rℓ = yn − proj(yn,GTℓ
)

If ||rℓ||2 > ||rℓ−1||2, let Tℓ = Tℓ−1 and exit the loop.

Output: Tℓ

4.3.3 KSP versus KMP and KBP

While KSP, KMP and KBP are all methods that learn a regression function by means of

sparse approximation, there exists a substantial difference in the reconstruction method

that each employs. Indeed, both KMP and KBP start by intializing the regression function

to zero, then iteratively build it by selecting, at each iteration, one new entry from the

dictionary of functions. To build the regression function, KMP needs a number of iterations

equal to the desired number of basis functions in the expansion, and KBP needs a number

of iterations equal to the number of dictionary functions.4 KSP, on the other hand, always

maintains an estimate of the regression function built using a pre-specified number of basis

functions, and refines the estimate through a usually limited number of iterations. Thus,

KSP would normally require a smaller number of iterations than that required by KMP

4Using the LARS implementation, KBP will require a number of iterations equal to the desired number
of basis functions in the expansion only.

4 Proposed Method 60

and KBP.

In Chapter 5, we present simulation results that show that KSP outperforms both

KMP and KBP in learning non-linear functions. We also provide a comparison of the

computational burden of each of these algorithms. This comparison will show that KSP is

indeed less computationally expensive than both KMP and KBP.

4.4 Proposed Algorithm

In this section, we present a new KRLS algorithm that is able to efficiently track time-

varying systems. In our proposed method, we are particularly interested in learning a

regression function that approximates the most recent N target values in order to track

the changes of a time-varying system. As such, we consider constructing a K-sparse ap-

proximation of the target function (representing the input-output relationship of the most

recent N training pairs) using the K dictionary elements that track best those N target

values. To that end, we propose the use of KSP in conjunction with KRLS. KSP selects the

K dictionary elements that will be used to form the LS regressor. The proposed algorithm,

called Subspace Pursuit(SP)-KRLS, decouples the weight vector length from the dictionary

size. Thus, the weight vector α has a fixed maximum size K, which is independent from

the size of the dictionary.

4.4.1 Dictionary Construction

For constructing our sparse dictionary, we adopt the surprise criterion introduced in Section

3.3.2. In what follows, we will modify the notation previously used to denote the dictionary

(at iteration n) in order to distinguish between the dictionary of inputs, henceforth denoted

as Dx
n, and the dictionary of corresponding real outputs, henceforth denoted as Dy

n.

We begin by recalling that in Section 3.3.1, the ALD measure was given by:

δn = knn − kT
n−1K

−1
n−1kn−1 (4.35)

where knn = k(xn,xn) and Kn−1 and kn−1 are the matrices whose entries are respectively

given by:

[Kn−1]i,j = k(x̃i, x̃j) (4.36)

4 Proposed Method 61

and

[kn−1]i = k(x̃i,xn) (4.37)

with i, j = 1, . . . ,mn−1.

When we receive a new training pair xn, yn, we compute the value of the surprise given

by:

Sn =
1

2
ln δn +

(yn − kT
n−1αn−1)

2

2δn
(4.38)

where αn−1 is the KRLS weight vector from the previous iteration. Based on the value of

Sn, there are two possible scenarios for the evolution of the dictionary:

• If Sn falls within the range of the pre-specified thresholds T1 and T2, that is,

T1 ≥ Sn ≥ T2, (4.39)

then the elements of the training pair are admitted to the respective dictionaries:

Dx
n = Dx

n−1 ∪ {xn} and Dy
n = Dy

n−1 ∪ {yn}. (4.40)

• Otherwise, the dictionary remains unchanged:

Dx
n = Dx

n−1 and Dy
n = Dy

n−1. (4.41)

Unlike other sparsification techniques, the surprise criterion not only examines the rela-

tion between the inputs of the incoming data samples and those of the dictionary samples,

but it also takes into account how close the predicted output is to the real output (by con-

sidering the approximation error). Accordingly, in the very likely scenario where the input

samples continue to arrive according to a specific distribution while the corresponding real

outputs undergo a sudden change in their statistical properties, the SC will still admit new

samples into the dictionary. ALD, for example, falls short of doing so because we would

be still able to write the corresponding inputs in terms of previously admitted dictionary

elements as there was no change in the statistical distribution of the inputs.

4 Proposed Method 62

4.4.2 Imposing a hard limit on the size of the dictionary

As discussed in the previous section, in our algorithm, we employ the surprise criterion

for admitting data samples to the dictionary. Unlike all previous KRLS algorithms which

only considered one of sparsification or pruning, we also impose a hard limit on the size

of the dictionary. Indeed, when the dictionary size exceeds αK (α > 1), we start pruning

dictionary elements using the remove-the-oldest criterion (see Section 3.4.1), that is, at

each iteration after the dictionary size has exceeded αK, the oldest entry in each of Dx
n

and Dy
n are removed. That way, on one hand, we are equipping our algorithm with a

sparsification technique for building the dictionary, thus reducing the redundancy by not

admitting training pairs that do not add to the knowledge of the system. On the other

hand, we are reinforcing the algorithm’s tracking ability by imposing a hard limit on the

number of dictionary elements from which we will select the best dictionary elements for

tracking as we will see in the next section.

To prune elements from the dictionary, we could have chosen a pruning criterion among

other existing alternatives such as those we presented in Section 3.4. In a time-varying sce-

nario, recent samples have more relevant information about the input-output relationship.

Given that such relationship is constantly changing, older samples become less represen-

tative of it. The remove-the-oldest criterion is intuitively an appropriate pruning criterion

to forget this old information and track changes in the input-output relationship. The

criteria presented in Sections 3.4.2, 3.4.3 and 3.4.4 allow older dictionary elements to stay

in the dictionary, which has a counteractive effect on our main goal, that is, the tracking of

time-varying systems. Another alternative is to remove the oldest element under the condi-

tion that it is not among the K dictionary elements that were selected to approximate the

regression function. However, we believe that for tracking purposes the remove-the-oldest

criterion is a more appropriate criterion for the best representation of the time-varying

dynamics of the inputs and outputs. We are motivated by our observation that the K

selected elements can vary drastically between iterations, and even change completely from

iteration to iteration in certain cases.

4.4.3 Choosing the best K elements for tracking using KSP

If, at the nth iteration, the input sample passes the SC test and is admitted to the dictionary

Dx
n and the dictionary size exceeds K, we use KSP to select K elements in order to form

4 Proposed Method 63

the LS regressor.

More specifically, we consider the αK (α > 1) most recent entries in the dictionary

Dx
n = [x̃1, . . . , x̃αK],

5 from which we want to select the K elements that will lead to the

best approximation of the most recent N received target values. In this context, the KSP

gram matrix Gn is obtained by evaluating k(·, x̃i), i = 1, . . . , αK at the N most recent

inputs xn−N+1, . . . ,xn. The vector yn consists of the most recent N target values, i.e.,

yn = [yn−N+1, . . . , yn]
T . (4.42)

The set T of indices obtained from KSP determines which subset of the dictionary is used

to carry out the KRLS computations:

D̆x
n = {Dx

n entries with indices given by T} (4.43)

D̆y
n = {Dy

n entries with indices given by T}. (4.44)

It is important to emphasize that KSP does not need be run at every iteration after

the dictionary size has exceeded K. Indeed, KSP is only “triggered” when a new element

is added to the dictionary. We view the admission of a new element in the dictionary

as an indication of a possible change in the input-output relationship being tracked, thus,

requiring an update to theK-sized subset of the dictionary used in the KRLS computations.

Using D̆x
n, we compute the new kernel matrix Kn and its inverse K−1

n where

[Kn]i,j = k(xi,xj), ∀xi,xj ∈ D̆x
n, i, j = 1, . . . , K.

Finally, we compute the weight vector:

αn = K−1
n y̆D

n (4.45)

where y̆D
n is the vector y̆D

n = [y1, . . . , yi, . . . , yK]
T , yi

1≤i≤K
∈ D̆y

n. The computed weight vector

αn will be used in future KRLS iterations until a new subset of Dx
n has been selected

by KSP, thus requiring the update of the weight vector α. Accordingly, following the

admission of a new input-output pair (xn, yn), SP-KRLS will find the best K dictionary

5We assume that the elements of the dictionary are sorted by the time they were admitted to the
dictionary - oldest first.

4 Proposed Method 64

elements to track the most recent received data samples.

4.4.4 Effect of the parameter α

It is interesting to note that we can leverage the parameter α to have control over the

number of dictionary elements from which we can choose the best K dictionary elements

for tracking. Indeed, we might be presented with scenarios (resulting from specific changes

in the system itself or changes in the statistics of the received data) where a large α is

needed to be able to capture better the dynamics of the input-output relationship in the

set of elements from which the subset will be selected by KSP. On the other hand, in other

scenarios, the tracking performance of the algorithm might actually improve when using a

smaller α if, for instance, recently received input-output pairs are not very different (despite

being admitted by the SC criterion). This implies that there would be no need for a large

α, instead, focusing on a smaller subset αK of the most recent dictionary entries, which

would result in a better tracking in such scenarios.

4.4.5 Summary of Proposed Algorithm

SP-KRLS is summarized in Algorithm 6. When the system receives a new pair (xn, yn), it

is checked against the SC test (4.35). We are presented with two possible scenarios:

1. If it does not pass the SC test, the input vector is not added to the dictionary and

the weight vector is updated appropriately via the KRLS recursions [9].

2. If the input vector is admitted to the dictionary, we are further presented with two

cases:

(a) If the size of the dictionary is less than or equal to αK the weight vector is

updated appropriately via the KRLS recursions .

(b) If the size of the dictionary is larger than αK, we use KSP (Algorithm 5) to

identify the K input vectors that will be used by the KRLS.

Thus, by using KSP as a building block of SP-KRLS, we decouple the size of the weight

vector from the dictionary size and equip KRLS with the ability to predict well the most

recent N target values in order to efficiently track the changes of a time-varying system.

4 Proposed Method 65

Algorithm 6 SP-KRLS
Parameters: T1, T2, K, N , α.

Initialize: k1 = [k11], k
−1
1 = [1/k11], αn = (y1/k11), P1 = [1], m = 1.

for n = 2, 3, . . . do

Get new sample: (xn, yn)

kn−1 with [kn−1]i = k(x̃i,xn), i = 1, . . . ,m.

knn = k(xn,xn)

SC Test:

an = K−1
n−1kn−1

δn = knn − kT
n−1an

Sn = 1
2
ln δn +

(yn−kT
n−1αn−1)2

2δn

if (T1 ≥ Sn ≥ T2) then {Add xn to dictionary}
Dx

n = Dx
n−1 ∪ {xn}, Dy

n = Dy
n−1 ∪ {yn}

m = m+ 1

if m ≤ K then {SC-KRLS approach}

K−1
n = 1

δn

[
δnK

−1
n−1 + ana

T
n −an

−aT
n 1

]

Pn =

[
Pn−1 0

0T 1

]

αn =

[
αn−1 − an

δn

(
yn − kT

n−1αn−1

)
1
δn

(
yn − kT

n−1αn−1

)]
else {KSP approach}
if (m > αK), remove the oldest element in Dx

n and Dy
n.

Find the set, T , of indices of the best K elements in Dx
n using Algorithm 5.

D̆x
n = {Dx

n entries with indices given by T}.
D̆y

n = {Dy
n entries with indices given by T}.

Find K−1
n where [Kn]i,j = k(xi,xj), ∀xi,xj ∈ D̆x

n, i, j = 1, . . . , K.

αn = K−1
n y̆D

n where y̆D
n = [y1, . . . , yi, . . . , yK]

T , yi
1≤i≤K

∈ D̆y
n.

end if

else {SC-KRLS approach: Case “dictionary unchanged”}
Dx

n = Dx
n−1, Dy

n = Dy
n−1

qn = Pn−1an

1+aT
nPn−1an

Pn = Pn−1 − qna
T
nPn−1

αn = αn−1 +K−1
n qn

(
yn − kT

n−1αn−1

)
end if

end for

Output: Dx
n, Dy

n, αn.

4 Proposed Method 66

4.4.6 Computational Considerations

Given that SP-KRLS does not need to run at every iteration, the computational complexity

of SP-KRLS is significantly reduced. Indeed, in Cases 1 and 2a of the algorithm (see Section

4.4.5), we only need to update the KRLS matrices using operations (addition, subtraction

and multiplication) of order O(m2
n), without having to perform any matrix inversion that

would be of order O(m3
n). We do emphasize, however, that even in Case 2b of SP-KRLS

(see Section 4.4.5) where KSP is executed, the matrix inversion is of order O(K3) with

K ≪ mn. Other KRLS-type algorithms have a complexity of O(m2
n) (e.g., ALD-KRLS [9],

SW-KRLS [12] and FB-KRLS [13]). Given the computational considerations that we just

stated, we believe that a general order of complexity that would take into account which

cases of SP-KRLS are actually being executed at each iteration would depend on the nature

of the scenarios being considered and the data that is being used and would be very difficult

to obtain.

4.5 Conclusion

In this chapter, we first presented the Subspace Pursuit algorithm which was introduced in

the context of compressive sensing as a method to reconstruct unknown sparse signals. We

also introduced the Kernel Matching Pursuit and Kernel Basis Pursuit algorithms which

are of particular interest to our work as they attempt to solve a similar problem to ours,

that of learning a regression function by means of sparse approximation. We argued that,

unlike all previous KRLS algorithms, we need to decouple the weight vector size from the

dictionary size to design an algorithm that can track well non-stationary systems. This

motivated us to propose the Kernel Subspace Pursuit (KSP) algorithm. We presented KSP

as a tool to learn a regression function by means of sparse approximation using a finite

number of basis functions selected from a kernel-based dictionary. Finally, we use KSP

in conjunction with KRLS to propose a new KRLS algorithm for tracking time-varying

changes. KSP allows us to approximate the most recent N target values by constructing a

K-sparse approximation of the target function (representing the input-output relationship

of the most recent N training pairs) using the K dictionary elements that track best those

N target values.

67

Chapter 5

Simulations

In this chapter, we first experimentally compare the performance of KSP in learning non-

linear functions to that of KMP [45] and KBP [46]. Then, we test SP-KRLS and compare

its performance in tracking a time-varying system having a normally distributed input to

that of the following algorithms: ALD-KRLS [9], SW-KRLS [12] and FB-KRLS [13]. Next,

we test the performance of SP-KRLS in predicting the highly chaotic Mackey-Glass time

series [51]. Finally, we investigate the effect of the algorithm parameters on the performance

of SP-KRLS.

5.1 Performance of KSP

In this experiment, we test KSP in learning different non-linear functions and compare its

performance to that of KMP and KBP. Given a function g(x) that is corrupted by noise,

our aim is to learn g(x) from a function h(x) as follows:

h(x) = g(x) +N (0, σ2) (5.1)

where N represents white Gaussian noise with variance σ2. In this experiment, we consider

the following functions:

1. g(x) = cos(exp(ωx)),

2. g(x) = sin(exp(ωx)),

3. g(x) = tanh(ωx),

5 Simulations 68

4. g(x) = tan(ωx),

where ω is a pre-specified real parameter. We also test our method using synthetic data

described by Donoho and Johnstone [52]. These data were generated using the following

functions:

1. Doppler function: g(x) = [x(1− x)]0.5 sin(2π 1+ϵ
x+ϵ

) with ϵ = 0.5,

2. Blocks function: g(x) =
∑11

j=1 ajp(x− bj) where:

• p(x) = {1 + sgn((x)}/2,

• aj is the j-th element of [4,−5, 3,−4, 5,−4.2, 2.1, 4.3,−3.1, 2.1,−4.2] and

• bj is the j-th element of [0.1, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65, 0.76, 0.78, 0.81].

The input is formed as follows: Each input xi is drawn i.i.d. from the interval [0, 1] according

to a uniform distribution. The input is then passed through one of the non-linear functions

mentioned above. The result is finally corrupted with 20 dB of white Gaussian noise. We

use a training set of size 400 and a test set of size 100. A Gaussian kernel is used with width

σ = 3 for all of the testing scenarios and ω = 0.3 for the corresponding functions g(x).

The parameters ω and σ are chosen via 10-fold cross-validation. The results, averaged out

over 50 Monte-Carlo simulations, are shown in Table 5.1 where, following each function,

we identify the number B of basis functions used in the construction of the approximation

function. We use the same value for B that was used in [46]. Results show that KSP

outperforms both KMP and KBP in learning 5 of the 6 functions shown in Table 5.1 with

only KBP performing better than KSP in the case of the Doppler function. It is interesting

to note that in all of the first 4 cases, KSP has an error that is at least 9 times smaller

than one of the two other algorithms.

To understand better the computational burden of these algorithms, we note that both

KSP and KMP are of order O(mnn) per iteration and KBP using the LARS implementation

is of order O(mnK) per iteration. Our simulations showed that, for all the different learning

scenarios presented above, increasing the maximum number, ℓmax, of KSP iterations beyond

5 iterations (we considered values of ℓmax up to 50) led to a very minimal improvement in

the MSE performance of KSP, and such an improvement was practically negligible. Hence,

the number of KSP iterations that were executed in order to build the regression function

was fixed at 5. Since, by design, both KMP and KBP need a number of iterations equal

5 Simulations 69

to the desired number of basis functions in the expansion, KMP and KBP required 95

iterations in each of the first 4 learning scenarios and 50 and 70 respectively in the last

two scenarios. Given the comparable complexity per iteration of the three algorithms, the

computational burden ensuing from running KSP for this small number of iterations is

much smaller than that resulting from running KMP and KBP for the corresponding large

number of iterations.

Table 5.1 MSE Performance of KSP, KMP and KBP in learning synthetic
data using a Gaussian kernel

Algorithms
Functions KSP KMP KBP

cos(exp(ωx)), B=95 0.01 0.0896 0.0237
sin(exp(ωx)), B=95 0.00974 0.0115 0.0913
tanh(ωx), B=95 0.00981 0.0394 0.114
tan(ωx), B=95 0.00976 0.0661 0.159
Doppler, B=50 0.0861 0.0941 0.0841
Blocks, B=70 0.294 0.366 0.524

5.2 Tracking of a Time-Varying System

In this experiment, we experimentally test SP-KRLS and compare its tracking performance

to that of the following algorithms: ALD-KRLS [9], SW-KRLS [12] and FB-KRLS [13]. For

this purpose, we consider a time-varying system composed of a time-varying linear filter

followed by a static non-linearity.

The input signal, whose elements xi are drawn i.i.d. from a normal distribution with

mean 0 and variance 0.5, is passed through a linear filter that varies in time along 3200

iterations as follows: During the first 1500 iterations, its impulse response is given by:

h1(n) = δ(n)− 0.37δ(n− 1)− 0.48δ(n− 2) + 0.81δ(n− 3). (5.2)

On iteration 1501, the filter is abruptly changed and its impulse response becomes

h2(n) = δ(n)− 0.83δ(n− 1) + 0.67δ(n− 2) + 0.72δ(n− 3) (5.3)

which remains constant for 1200 iterations. At iteration 2701, the filter starts linearly

5 Simulations 70

changing, throughout 500 iterations, from h2(n) to

h3(n) = δ(n)− 0.5δ(n− 1)− 0.25δ(n− 2) + 0.4δ(n− 3).1 (5.4)

The output of the linear filter is then passed through the static non-linear function

f(x) = tanh(x). (5.5)

The resulting signal is finally corrupted with 20 dB of white Gaussian noise. We use 400

sample points as a test set (different in each phase of the scenario according to the linear

filter) and a time embedding of 4 , i.e., xn = [xn, xn−1, xn−2, xn−3]
T . The input signal is

normally distributed with mean 0 and variance 0.5.

For SP-KRLS, the thresholds for learnable data are set to T1 = 3 and T2 = −3. For

SP-KRLS, FB-KRLS and SW-KRLS, the parameters M and K are set to M = K = 200.

In addition for SP-KRLS, N = 10 and α = 1.5. For FB-KRLS, the step-size parameter

is set to µ = 0.01. The regularization parameter for SP-KRLS and FB-KRLS is set to

λ = 0.001. The accuracy parameter for ALD-KRLS is set to ν = 0.001. For all algorithms,

a Gaussian kernel is used with a width σ = 0.8. Algorithm parameters were chosen via

5-fold cross-validation.

The results, averaged over 50 Monte-Carlo simulations, are shown in Figure 5.1. The

performance of ALD-KRLS is the worst as it is not designed to be a tracking algorithm.

SP-KRLS outperforms both SW-KRLS and FB-KRLS in tracking the system: Following

changes in the linear filter (indicated by the vertical lines in the plot), the MSE curve of

SP-KRLS is the fastest to change, thus capturing the fastest the change in the system.

Moreover, the MSE of SP-KRLS converges in each phase to the smallest value among all

three algorithms. Finally, Table 5.2 displays the MSE values averaged out over the last two

phases. SP-KRLS achieves 15.6% improvement over FB-KRLS and 17.6% improvement

over SW-KRLS.

1The linear transition occurs at the rate 1/500 as follows. Denote by (ρk)
499
k=0 the sequence given by

ρ0 = 1 and ρk+1 = ρk − 0.002 for 0 ≤ k ≤ 498. Thus, at iteration n (2701 ≤ n ≤ 3200), the filter is given
by: ρn−2701 h2(n) + (1− ρn−2701)h3(n).

5 Simulations 71

0 500 1000 1500 2000 2500 3000

10
−0.9

10
−0.7

10
−0.5

10
−0.3

10
−0.1

iteration n

M
S

E

ALD−KRLS
SP−KRLS
SW−KRLS
FB−KRLS

Fig. 5.1 Performance of SP-KRLS vs other KRLS algorithms on a time-
varying Wiener system.

5.3 Prediction of the Mackey-Glass Time Series

In this experiment, we perform one-step prediction on the highly chaotic Mackey-Glass time

series [51]. The algorithm is trained online on 800 sample points, and the MSE performance

is calculated at each iteration on a test set of 200 sample points. The Gaussian kernel used

in this experiment has a width2 σ = 8. For SP-KRLS, the thresholds for learnable data are

set to T1 = 200 and T2 = −4. A large T1 was used to disable abnormality detection, T2 was

chosen via 5-fold cross-validation. The rest of the algorithm parameters are the same as in

2In this experiment, we had to use a σ with a large width as all algorithms performed very poorly if
the width was small (e.g., as in the previous experiment).

5 Simulations 72

Table 5.2 Performance comparison of average MSE values

Algorithm MSE

ALD-KRLS 0.677
SP-KRLS 0.431
SW-KRLS 0.523
FB-KRLS 0.511

the first experiment. In Figure 5.2, we can clearly see that our algorithm outperforms the

other algorithms in predicting a Mackey-Glass time series as the MSE curve for SP-KRLS

converges to a lower steady-state value.

5.4 Effect of changing K on the performance of SP-KRLS

In this section, we investigate the effect of changing K on the performance of SP-KRLS. We

consider again the time-varying system from Section 5.2. The first three phases (iterations

1 to 3200) are the same, but we add a 4-th phase where the impulse response of the filter

remains constant at h3(n) for the last 800 iterations. We run SP-KRLS for 4 different

values of K: 20, 50, 100 and 200. The rest of the algorithm parameters are the same as in

Section 5.2. The results, averaged over 50 Monte-Carlo simulations, are shown in Figure

5.3.

Following the first change in the linear filter, all 4 algorithms start adapting (tracking)

to the change at roughly the same rate with the rates being ordered from fastest to slowest

according to the following order of K: 20, 50, 100 and 200. This can be particularly seen

for the blue (K = 50), green (K = 100), black (K = 200) curves as the line where the

curve represents the tracking phase is steepest for K = 50, less steep for K = 100 and least

steep for K = 200 (notice how the green and black lines intersect due to the difference in

slopes).

We do note, however, that the larger K is, the lowest the steady-state MSE to which

the algorithms converge. This goes in line with the trade-off that we already discussed in

Chapter 4, specifically, when we mentioned that a larger dictionary represents better the

input-output relationship and, thus, leads the algorithm to converge to a smaller steady-

state MSE. We do emphasize though that, here, the notion of dictionary is thought of in

terms of the “subset” of the dictionary chosen by KSP and which is of equal size to K, that

5 Simulations 73

0 100 200 300 400 500 600 700 800
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

iteration n

M
S

E

ALD−KRLS
SP−KRLS
SW−KRLS
FB−KRLS

Fig. 5.2 Performance of SP-KRLS vs other KRLS algorithms in predicting
a Mackey-Glass time series.

is, the larger the K, the larger the subset of the dictionary, thus, the better representation

of the system and the lower the steady-state MSE to which the algorithm converges.

Following the second change, the algorithms exhibit a similar behavior in terms of speed

of tracking to that seen following the first change. Finally, we note that, following the final

change, the MSE curve of each of the 4 algorithms becomes almost flat. This implies

that following that last change, the rate of adaptation (tracking speed) of the algorithms

became slower following yet another change, thus the algorithms needed more time to start

converging.

5 Simulations 74

0 500 1000 1500 2000 2500 3000 3500 4000

10
−0.4

10
−0.3

10
−0.2

iteration n

M
S

E

SP−KRLS−200
SP−KRLS−100
SP−KRLS−50
SP−KRLS−20

Fig. 5.3 Effect of changing K on the performance of SP-KRLS.

5.5 Effect of changing α on the performance of SP-KRLS

In this section, we investigate the effect of changing α on the performance of SP-KRLS.

We consider again the system from Section 5.2. In this experiment, we fix K = 200 and

run SP-KRLS for 4 different values of α: 1.25, 1.5, 2 and 5. The rest of the algorithm

parameters are not changed from Section 5.2. The results, averaged out over 25 Monte-

Carlo simulations, are shown in Figure 5.4.

In this experiment, by changing α, we control the number of dictionary elements that we

consider in choosing the best K elements for tracking (via KSP). Accordingly, for example,

for α = 1.25, KSP will choose the best K elements from the most recent αK = 250

dictionary elements, while for α = 5, the choice is done among the most recent αK = 1000

5 Simulations 75

dictionary elements.

Following the first change, we can see that the algorithm with the smallest α tracks

the change the fastest (steepest line) and converges to the smallest steady-state MSE. On

the other hand, the algorithm with α = 5 is the slowest in tracking and by the time the

second filter change takes place, it hasn’t converged yet to a steady-state MSE. This can be

understood from the fact that for a larger α, the number of dictionary elements from which

KSP selects the K-sized support set becomes larger, and thus, contains a larger number of

older elements (as opposed to a small α which leads the support set being chosen from a

smaller number of more recent dictionary elements). As the algorithm is sub-optimal, some

of the elements selected by KSP might be older elements. This results in slowing down the

tracking performance of the algorithm for an increasing α. Finally, we note that, following

the second change, the algorithms exhibit a similar behavior in terms of speed of tracking

to that seen following the first change.

It is important to note that we ran this experiment for different values of ℓmax, the

maximum number of KSP iterations, going up to 50. Results showed that increasing the

number of iterations beyond ℓmax = 5 iterations led to a very minimal improvement in the

MSE performance, and such an improvement was practically negligible. Thus, we decided

to adopt ℓmax = 5.

5 Simulations 76

0 500 1000 1500 2000 2500 3000

10
−0.4

10
−0.3

10
−0.2

iteration n

M
S

E

α = 1.25

α = 1.5

α = 2

α = 5

Fig. 5.4 Effect of changing α on the performance of SP-KRLS.

77

Chapter 6

Conclusions and Future Research

6.1 Concluding Remarks

In this thesis, we presented a new KRLS algorithm, SP-KRLS, that is able to efficiently

track time-varying systems. Indeed, in many applications, the statistics of signals change

across time, thus, it is important to design algorithms that retain the ability to effectively

track time-varying systems.

In designing our algorithm, we considered both a sparsification technique and a pruning

strategy to construct our dictionary unlike all previous KRLS algorithms which considered

one of the two. Among the various various sparsification and pruning techniques discussed

in the literature and which we presented in this thesis, we adopted the surprise criterion as

the sparsification and the remove-the-oldest criterion as the pruning criterion.

Previous KRLS algorithms also suffered from the coupling between the weight vector

size and the dictionary size. If we were to limit the size of the weight vector to favor

the algorithm’s tracking ability, the dictionary, thus small-sized, would model poorly the

dynamics of the input-output relationship over time. On the other hand, if we were to

allow a large dictionary, the size of the weight vector would be large. As such the algorithm

would need to adapt a large number of weights, which slows down adaptation and damages

the algorithm’s tracking ability. To address this hindering trade-off, we decoupled in our

algorithm the dictionary size from the weight vector size, which we fix independently from

the dictionary size.

Motivated by the need to decouple the dictionary size from the weight vector size, we

introduced Kernel Subspace Pursuit (KSP) as a tool to construct a regression function

6 Conclusions and Future Research 78

by means of a sparse approximation using a finite number of functions selected from a

kernel-based dictionary. We were particularly interested in predicting well the most recent

N target values in order to efficiently track the changes of a time-varying system. As such,

we considered constructing a K-sparse approximation of the target function (representing

the input-output relationship of the most recent N training pairs) using the K dictionary

elements that track best those N target values.

To that end, we adopted KSP in conjunction with KRLS in our proposed method.

KSP selects the K dictionary elements that will be used to form the LS regressor. Those

elements are used in the subsequent KRLS computations until a new training pair has been

added to the dictionary which which we regard as an indication of a potential change in the

input-output relationship being tracked, thus, requiring an update to the K-sized subset

of the dictionary used in the KRLS computations.

Simulation results presented showed that our algorithm outperformed other well-known

KRLS algorithms in both tracking time-varying systems and predicting highly chaotic time

series.

6.2 Future Research

The research presented in this thesis can be further extended in several directions.

In the algorithm presented in Chapter 4, KSP needs not be run at every iteration.

Instead, it is triggered only when a new element is added to the dictionary after having

passed the surprise criterion test. As future work, we intend to examine further the changes

in the dictionary subsets between KSP iterations in order to possibly reduce even more the

number of times KSP needs to be run.

Another promising direction for future work is investigating the merits of the convex

combination of adaptive filters which has been extensively studied for classical adaptive

filtering algorithms (e.g., [53] and [54]). This theory considers the problem of combining

the outputs of different adaptive filtering algorithms or the same algorithms but with

varying algorithms parameters in order to obtain adaptive filtering algorithms with superior

tracking capability. As such, it would be interesting to investigate the tracking performance

of combined versions of SP-KRLS with varying weight vector sizes or varying values of the

algorithm parameter α.

Finally, SP-KRLS could be further extended by adapting the size of the subset of the

6 Conclusions and Future Research 79

dictionary that is selected by KSP (which is equal to the effective size of the weight vector),

instead of fixing that size. This might prove to be particularly beneficial for scenarios with

substantial and frequent changes. It would be indeed interesting to study the possible

gains that could be achieved, for instance, by adapting the size of the selected subset of the

dictionary following consecutive changes in the system that lead to the algorithm’s inability

to track well with the given size of the weight vector.

80

References

[1] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, vol. 1.
Springer New York, 2001.

[2] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20,
pp. 273–297, Sept. 1995.

[3] A. Smola and B. Schölkopf, Learning with kernels. MIT Press, Cambridge, MA, 1 ed.,
2002.

[4] B. Schölkopf, A. Smola, and K.-R. Müller, “Kernel principal component analysis,” in
International Conference on Artificial Neural Networks, pp. 583–588, 1997.

[5] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. Muller, “Fisher discriminant anal-
ysis with kernels,” in IEEE Signal Processing Society Workshop on Neural Networks
for Signal Processing, pp. 41–48, 1999.

[6] D. Manolakis, V. Ingle, and S. Kogon, Statistical and Adaptive Signal Processing: Spec-
tral Estimation, Signal Modeling, Adaptive Filtering, and Array Processing, vol. 46.
Artech House, 2005.

[7] B. Widrow and M. Hoff, “Adaptive switching circuits,” The IRE Western Electronic
Show and Convention Records, pp. 96–104, Aug. 1960.

[8] K. Ozeki and T. Umeda, “An adaptive filtering algorithm using an orthogonal pro-
jection to an affine subspace and its properties,” The IEICE Transactions, vol. 67,
pp. 126–132, May 1984.

[9] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares algorithm,”
IEEE Transactions on Signal Processing, vol. 52, pp. 2275–2285, Aug. 2004.

[10] J. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,”
Neural Processing Letters, vol. 9, pp. 293–300, June 1999.

References 81

[11] W. Liu, I. Park, and J. Pŕıncipe, “An information theoretic approach of design-
ing sparse kernel adaptive filters,” IEEE Transactions on Neural Networks, vol. 20,
pp. 1950–1961, Dec. 2009.

[12] S. Van Vaerenbergh, J. Via, and I. Santamana, “A sliding-window kernel rls algo-
rithm and its application to nonlinear channel identification,” in IEEE International
Conference on Acoustics Speech and Signal Processing, vol. 5, p. V, 2006.

[13] S. Van Vaerenbergh, I. Santamaŕıa, W. Liu, and J. Pŕıncipe, “Fixed-budget kernel
recursive least-squares,” in IEEE International Conference on Acoustics Speech and
Signal Processing, pp. 1882–1885, 2010.

[14] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing signal recon-
struction,” IEEE Transactions on Information Theory, vol. 55, pp. 2230–2249, May
2009.

[15] A. Friedman, Foundations of Modern Analysis. Dover publications, 2010.

[16] W. Rudin, Principles of Mathematical Analysis, vol. 3. McGraw-Hill New York, 1964.

[17] M. Aizerman, E. Braverman, and L. Rozonoer, “Theoretical foundations of the po-
tential function method in pattern recognition learning,” Automation and Remote
Control, vol. 25, pp. 821–837, 1964.

[18] T. Hofmann, B. Schölkopf, and A. Smola, “Kernel methods in machine learning,” The
Annals of Statistics, vol. 36, pp. 1171–1220, June 2008.

[19] A. Berlinet and C. Thomas-Agnan, Reproducing Kernel Hilbert Spaces in Probability
and Statistics. Kluwer Academic, 1 ed., 2004.

[20] N. Aronszajn, “Theory of reproducing kernels,” Transactions of the American Math-
ematical Society, vol. 68, pp. 337–404, May 1950.

[21] G. Kimeldorf and G. Wahba, “Some results on tchebycheffian spline functions,” Jour-
nal of Mathematical Analysis and Applications, vol. 33, pp. 82–95, Jan. 1971.

[22] B. Schölkopf, R. Herbrich, and A. Smola, “A generalized representer theorem,” in
Computational Learning Theory, pp. 416–426, 2001.

[23] L. Fatone, M. C. Recchioni, and F. Zirilli, “Wavelet bases made of piecewise polynomial
functions: Theory and applications,” Applied Mathematics, vol. 2, no. 2, pp. 196–216,
2011.

[24] M. Bronstein, A. Bronstein, M. Zibulevsky, and Y. Zeevi, “Blind deconvolution of
images using optimal sparse representations,” IEEE Transactions on Image Processing,
vol. 14, pp. 726–736, June 2005.

References 82

[25] J. M. Duarte-Carvajalino and G. Sapiro, “Learning to sense sparse signals: Simulta-
neous sensing matrix and sparsifying dictionary optimization,” IEEE Transactions on
Image Processing, vol. 18, pp. 1395–1408, July 2009.

[26] S. Ravishankar and Y. Bresler, “Mr image reconstruction from highly undersampled
k-space data by dictionary learning,” IEEE Transactions on Medical Imaging, vol. 30,
pp. 1028–1041, May 2011.

[27] W. Liu, P. P. Pokharel, and J. C. Principe, “The kernel least-mean-square algorithm,”
IEEE Transactions on Signal Processing, vol. 56, pp. 543–554, Feb. 2008.

[28] B. Chen, S. Zhao, P. Zhu, and J. Pŕıncipe, “Quantized kernel least mean square
algorithm,” IEEE Transactions on Neural Networks and Learning Systems, vol. 23,
pp. 22–32, Jan. 2012.

[29] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning. MIT Press,
Cambridge, MA, 2006.

[30] J. Platt, “A resource-allocating network for function interpolation,” Neural computa-
tion, vol. 3, pp. 213–225, Mar. 1991.

[31] H. Fan and Q. Song, “A sparse kernel algorithm for online time series data prediction,”
Expert Systems with Applications, vol. 40, pp. 2174–2181, May 2013.

[32] H. Fan, Q. Song, and Z. Xu, “An information theoretic kernel algorithm for robust
online learning,” in IEEE International Joint Conference on Neural Networks, pp. 1–8,
2012.

[33] Y.-I. Moon, B. Rajagopalan, and U. Lall, “Estimation of mutual information using
kernel density estimators,” Physical Review E, vol. 52, p. 2318, Sept. 1995.

[34] C. Richard, J. Bermudez, and P. Honeine, “Online prediction of time series data with
kernels,” IEEE Transactions on Signal Processing, vol. 57, pp. 1058–1067, Mar. 2009.

[35] Y. Liu, H. Wang, J. Yu, and P. Li, “Selective recursive kernel learning for online
identification of nonlinear systems with narx form,” Journal of Process Control, vol. 20,
no. 2, pp. 181–194, 2010.

[36] W. He and S. Wu, “A kernel-based perceptron with dynamic memory,” Neural Net-
works, vol. 25, pp. 106–113, Jan. 2012.

[37] D. Nguyen-Tuong and J. Peters, “Incremental online sparsification for model learning
in real-time robot control,” Neurocomputing, vol. 74, pp. 1859–1867, May 2011.

References 83

[38] O. Dekel, S. Shalev-Shwartz, and Y. Singer, “The forgetron: A kernel-based perceptron
on a budget,” SIAM Journal on Computing, vol. 37, pp. 1342–1372, Jan. 2008.

[39] Y. Le Cun, J. Denker, and S. Solla, “Optimal brain damage,” in Advances in Neural
Information Processing Systems, pp. 598–605, 1989.

[40] B. Hassibi, D. Stork, and G. Wolff, “Optimal brain surgeon and general network
pruning,” in IEEE International Conference on Neural Networks, pp. 293–299, 1993.

[41] B. De Kruif and T. De Vries, “Pruning error minimization in least squares support
vector machines,” IEEE Transactions on Neural Networks, vol. 14, pp. 696–702, May
2003.

[42] M. Lázaro-Gredilla, S. Van Vaerenbergh, and I. Santamaŕıa, “A bayesian approach
to tracking with kernel recursive least-squares,” in IEEE International Workshop on
Machine Learning for Signal Processing, pp. 1–6, 2011.

[43] D. Rzepka, “Fixed-budget kernel least mean squares,” in IEEE Conference on Emerg-
ing Technologies Factory Automation, pp. 1–4, 2012.

[44] T. Ahmed, M. Coates, and A. Lakhina, “Multivariate online anomaly detection using
kernel recursive least squares,” in 26th IEEE International Conference on Computer
Communications, pp. 625–633, 2007.

[45] P. Vincent and Y. Bengio, “Kernel matching pursuit,” Machine Learning, vol. 48,
no. 1-3, pp. 165–187, 2002.

[46] V. Guigue, A. Rakotomamonjy, and S. Canu, “Kernel basis pursuit,” in European
Conference on Machine Learning, pp. 146–157, october 2005.

[47] D. Needell and J. Tropp, “Cosamp: Iterative signal recovery from incomplete and
inaccurate samples,” Applied and Computational Harmonic Analysis, vol. 26, pp. 301–
321, May 2009.

[48] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal
Statistical Society (Series B), pp. 267–288, Jan 1996.

[49] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pursuit,”
SIAM Journal on Scientific Computing, vol. 20, pp. 33–61, Jan. 1998.

[50] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle regression,” The
Annals of Statistics, vol. 32, pp. 407–499, Apr. 2004.

[51] M. Mackey and L. Glass, “Oscillation and chaos in physiological control systems,”
Journal of Science, vol. 197, pp. 287–289, July 1977.

References 84

[52] D. Donoho and J. Johnstone, “Ideal spatial adaptation by wavelet shrinkage,”
Biometrika, vol. 81, no. 3, pp. 425–455, 1994.

[53] M. Mart́ınez-Ramón, J. Arenas-Garcia, A. Navia-Vázquez, and A. Figueiras-Vidal,
“An adaptive combination of adaptive filters for plant identification,” in IEEE Inter-
national Conference on Digital Signal Processing, vol. 2, pp. 1195–1198, 2002.

[54] M. Silva and V. Nascimento, “Improving the tracking capability of adaptive filters via
convex combination,” IEEE Transactions on Signal Processing, vol. 56, pp. 3137–3149,
July 2008.

