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English abstract

Digital human characters are a mainstay of video games, film, and interactive computer graphics

applications. However, animating hands remains a challenging aspect of human character anima-

tion: posing the hand involves coordinating many degrees of freedom, synthesizing a plausible

grasp requires careful placement of contacts, and realistic rendering must account for intricate

colour and texture variations. Traditional solutions to these problems require significant manual

effort by skilled artists. It is therefore of great interest to computer animation researchers to de-

velop fast and automatic methods for animating hands. This thesis presents methods for improving

the realism of hands in real-time physics-based virtual environments.

We begin by presenting a framework for skilled motion synthesis, wherein reinforcement learn-

ing and non-linear continuous optimization are used to generate controllers for single-handed re-

orientation tasks. A mid-level multiphase approach breaks the problem into three parts, providing

an appropriate control strategy for each phase and resulting in cyclic finger motions that accom-

plish the task. The exact trajectory is never specified, as the task goals are concerned with the final

orientation and position of the object. Offline simulations are used to learn controller parameters,

but the resulting control policy is suitable for real-time applications.

We then describe a method for the simulation of compliant articulated structures using an approx-

imate model that focuses on plausible endpoint behaviour. The approach is suitable for simulating

physics-based characters under static proportional derivative control and stiff kinematic structures,

like robotic grippers. The computation time of the dynamical simulation is reduced by an order

of magnitude, and faster than real-time frame rates are easily achieved. Additionally, the state of

internal bodies is computed independently, and in a parallel fashion.

We also demonstrate an approach for synthesizing colour variation in fingers due to physical in-

teraction with objects. A data-driven model relates contact information to visible colour changes

for the fingernail and surrounding tissue on the back of the fingertip. The model construction uses

the space of hemoglobin concentrations, as opposed to an RGB colour space, which permits trans-

ferability across different fingers and different people. Principal component analysis (PCA) on the
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sample images results in a compact model, enabling efficient implementation as a fragment shader

program.

Finally, we introduce a system for capturing grasping and dexterous interactions with real-world

objects. A novel sensor ensemble collects information about joint motion and pressure distributions

for the hand, and the data is used to design grasping controllers for a physics-based climbing

simulation. Additionally, we speculate on how the interaction data can be used to derive future

control strategies in physics-based animation. Combining interaction data with physical models is

a promising approach for skilled motion synthesis involving hands.
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French abstract

Les personnages humains numériques jouent un rôle primordial dans les jeux vidéo, les films et

les logiciels d’animation interactifs. La main reste toutefois une partie du corps difficile à animer:

positionner une main implique de coordonner plusieurs degrés de liberté, la synthèse d’un mou-

vement réaliste de préhension requiert un placement minutieux des points de contact, et un rendu

photoréaliste comporte des difficultés au niveau des variations de couleur et de texture. Les solu-

tions traditionnelles à ces problèmes demandent l’effort de plusieurs artistes hautement qualifiés.

Cela motive les chercheurs en animation le développement d’outils permettant d’animer une main

automatiquement. Cette thèse présente plusieurs méthodes qui augmentent le réalisme des mains

dans des simulations interactives basées sur la physique.

Nous commençons par présenter un cadre technique pour la synthèse de mouvements adroits dans

lequel un apprentissage par renforcement et une méthode d’optimisation non-linéaire sont utilisés

pour générer des contrôleurs d’orientation lors de tâches comportant une seule main. Une méthode

à phases multiples basée sur l’état de la simulation divise le problème en trois parties, fournissant

une stratégie de contrôle appropriée pour chaque phase et produisant un mouvement cyclique des

doigts qui accomplit la tâche souhaitée. La trajectoire exacte des doigts n’est jamais précisée, car

les objectifs de la tâche dépendent de la position et de l’orientation de l’objet.

Nous exposons ensuite une méthode pour la simulation de structures articulées adaptatives en

utilisant un modèle basé sur les comportements plausibles des extrémités. Cette méthode convient

à la simulation de personnages physiques régis par un régulateur proportionnel dérivé statique et

constitués de liens structurels raides, comme une pince robotique. Le temps de calcul pour une

simulation dynamique est réduit par un ordre de grandeur, et une fréquence de rafraîchissement

supérieure au niveau interactif est facilement observable. De plus, l’état des liens internes est

calculé de façon indépendante et en parallèle.

Nous démontrons aussi une méthode pour la synthèse de variations de couleur au niveau des doigts

provenant des interactions avec les objets. Un modèle basé sur des données permet de faire le

lien entre les informations du contact et les changements de couleur visibles des ongles et des

tissus adjacents. En s’inspirant du modèle RGB pour les couleurs, notre modèle utilise un espace
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paramétrique de la concentration d’hémoglobine, ce qui permet une portabilité entre différents

doigts et entre différentes personnes. Une analyse des composantes principales de photographies

de doigts en action produit un modèle compact, ce qui rend possible une mise en application

efficace de la méthode dans un nuanceur.

Finalement, nous introduisons un système permettant l’enregistrement de mouvements de préhen-

sions et de manipulations adroites avec des objets réels. Un groupe de capteurs révolutionnaire

récolte l’information provenant du mouvement des articulations et de la distribution de la pression.

L’information récoltée est ensuite utilisée dans le développement de régulateurs de préhension

lors d’une simulation basée sur la physique d’un personnage escaladant une paroi. De plus, nous

spéculons sur la possibilité de tirer avantage de cette information dans le développement d’autres

stratégies pour l’animation basée sur la physique. La combinaison de données d’interaction et d’un

modèle physique est une méthode prometteuse pour la synthèse de mouvements adroits des mains.
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Chapter 1

Introduction

The work presented in this thesis focuses on developing methods for physics-based character ani-

mation. Specifically, our target is the animation of human hands, and similar mechanical structures,

for real-time applications. Simulation, control, and appearance modeling are pillars of physics-

based character animation. Therefore, the objectives of our work are threefold: (1) to facilitate

complex manual interactions between animated 3D characters and their environment, (2) to in-

crease the overall richness and plausibility of grasping and dexterous manipulation animations by

rendering cues that highlight these interactions, and (3) to develop methods that allow grasping

and manipulation whilst maintaining the high frame rates demanded by real-time applications.

1.1 Motivation

Hands have long been identified as a distinguishing feature of humans; Aristotle once said that the

hand is the “tool of tools”.1 They are instruments of the human mind: we use them to express

ourselves, perform manual tasks, and realize complex interactions with the world around us. This

compelling relationship is reflected by the significant body of literature devoted to reproducing the

aesthetics (Hogarth, 1988), form (Yasumuro et al., 1999), and function of hands.

1Full quote: “It follows that the soul is analogous to the hand; for as the hand is a tool of tools, so the mind is the
form of forms and sense the form of sensible things.” (see Aristotle, 350 B.C.E.)

1
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Figure 1-1: We explore techniques from machine learning, non-linear optimization, robotics,
multi-body dynamics, and rendering in order to address the overall problem of physics-based ani-
mation for hands.

In computer animation, human characters are a mainstay, appearing in film and video games.

However, the animation of hands is a difficult and time consuming task. Whether designed from

scratch or recorded by a motion capture device, generating a motion that exhibits natural behaviour

while satisfying task-specific or artistic constraints is challenging. Physics simulation may be

used to address some difficulties, but depends on many variables. For instance, when designing a

grasping animation, the shape, size, texture, and other physical properties of the object influence

the success of the simulation. Also, human hands and similar articulated structures are typically

modeled as kinematic chains of rigid bodies and joints. As a result, the simulation of physics-

based grasping presents some challenging obstacles. Scenarios involving complex contact are

computationally expensive and require special treatment by the dynamics solver. Notably, the

constraints generated by hand-object contact can result in numerical issues, due to loops in the

constraint topology and degenerate linear systems (Arechavaleta et al., 2009). Therefore, methods

that address these concerns and reduce the overhead and complexity of grasping simulation are an

active area of research.

In addition to presenting simulation difficulties, control and manipulation synthesis are also a chal-

2



lenge. Common approaches are similar in flavour to robotics, employing motion planning, to move

within reach of a target object, and contact planning, to maintain a stable grasp while simultane-

ously applying wrenches to perform a manipulation task. This involves coordination of the large

number of degrees of freedom (DOF) for the human hand model, making control algorithms sus-

ceptible to the curse of dimensionality. Also, since manipulation occurs by contact between the

hand and the object, the planning landscape is wrought with non-linearities and discontinuities

introduced by contact forces and friction.

Figure 1-2: A side-by-side comparison
of rendering without and with appear-
ance changes due to interaction forces.

Even if dynamical simulation and dexterous motion

synthesis presented no problems, standard skinning

and rendering methods ignore the fine visual details as-

sociated with manual interaction. For example, con-

sider the colour variations present in a hand when

tightly gripping a cliff ledge. The whitening of the fin-

gers and knuckles provides important cues about phys-

ical interactions with an object. Figure 1-2 shows sim-

ulations where these details are included as opposed to being overlooked. In a side-by-side com-

parison, it is clear that these visual specifics dramatically improve the richness of human hand

animations. However, work in this area for interactive applications has mainly focused on colour

adjustments to the face, and modeling surface deformations due to self contact.

Grasping and dexterous manipulation are contact-centric behaviours, and there is significant room

for improving the performance and complexity achievable by current methods. In this regard,

methods proposed by this thesis aim to push the state-of-the-art of physics-based animation toward

likelife hands at real-time frame rates.

1.2 Contributions

The work presented in this thesis presents a solution for the real-time animation of interactive

characters with hands. We aim to address many of the challenges discussed above by exploring

methods from a number of different research areas. This diversity is due to the fact that our work

is inspired by ideas from many fields, including robotics, machine learning, real-time rendering,
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physics simulation, multi-body dynamics, and non-linear optimization (see Figure 1-1). We also

draw inspiration from work in the biomechanics and neurobiology communities. By standing on

the shoulders of giants, we realize novel methods for the purpose of 3D character animation and

the contributions of this thesis are discussed below.

Skilled motion synthesis. We describe an approach for single-handed dexterous manipulation.

This approach is one of the first methods for online motion synthesis involving object manipula-

tion. The algorithm uses a combination of machine learning and offline optimization to generate

a control policy for complex manipulation tasks involving contact. Only the end configuration of

an object is specified by the user; the full trajectory is not known a priori. The approach was suc-

cessfully applied to a 23 DOF physics-based hand model that was subsequently able to manipulate

various objects in a series of re-orientation tasks.

Physics simulation. We propose a reduced, accelerated model for the simulation of articulated

structures containing loops. The approach uses a first-order model to approximate the behaviour

of compliant kinematic chains, effectively speeding up the simulation by an order of magnitude.

Additionally, the process of updating the configuration of rigid bodies is done in a parallel fashion

and is suitable for implementation on multi-core platforms, for instance, as a GPGPU program.

Although developed with grasping simulation in mind, the method is also useful for simulating

other scenarios involving articulated mechanisms, such as the suspension of a vehicle or a tree

swaying in the wind. Therefore, it is relevant to a wide variety of real-time virtual environment

applications, such as video games and training simulations.

Appearance modeling. We propose a method for synthesizing colour changes that occur in the

fingertip when grasping or manipulating a physical object. Colour changes are due to local re-

distribution of hemoglobin concentrations; a function approximator is learned to estimate these

concentrations from finger pad pressures. The method requires a small memory footprint and is ef-

ficiently computed using a compact shader program. Integrating with a new or existing simulation

application is straightforward, and requires only marking areas where colour variations occur. This

is the first work that we know of that focuses on providing fast colour changes, due to interaction

forces, with a grasped object.

Interaction capture. Finally, we introduce a novel sensor ensemble for performing interaction
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capture. The setup uses off-the-shelf components to capture pressure distributions across the palm

and fingers, as well as joint motion information. Data collected from a human subject is used to

build a postural synergy for climbing tasks. An optimization algorithm is used to learn grasps for

handholds, allowing a dynamic character to grip and support itself on a climbing wall. The chapter

ends with a discussion on the role of interaction capture for controller design.

1.3 Outline

In Chapter 2, we briefly review the state-of-the-art of physics-based character animation, grasping

control, and human appearance modeling. We then present our control framework for single-

handed dexterous manipulation in Chapter 3. This is followed by a discussion about FORK-1S in

Chapter 4, which demonstrates our reduced accelerated model for simulating articulated structures

containing loops. In Chapter 5, we present our appearance model for synthesizing realistic colour

changes due to physical contact between a finger and an object. A novel capture system for collect-

ing hand motion data and information about interaction forces is introduced in Chapter 6. Finally,

we provide a summary of our contributions and discuss future research directions in Chapter 7.
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Chapter 2

Related work

In this chapter, we provide a state-of-the-art literature survey on methods related to those presented

in this thesis. This is not limited to work on physics-based character animation; it includes work

from robotics, rendering, and machine learning. We first review motion synthesis techniques,

focusing on grasping and manipulation tasks. We then review physics modeling and simulation

for articulated mechanisms. Finally, we examine methods for appearance modeling of skin colour

changes and surface deformation.

2.1 Control for grasping and manipulation tasks

In physically based computer animation, synthesizing realistic character motions is essentially a

control problem. Forces and torques are generated by the control algorithm in order to accomplish

a task or desired motion. Where manual interaction is concerned, contact is a critical aspect, and a

variety of control strategies can be used to accomplish object manipulation.

Previous approaches to the problem of control for grasping and dexterous manipulation can be

categorized, roughly, as optimization or data-driven. Optimization techniques determine the exact

contact forces needed to perform a manipulation task, at each instance in time or over a short

planning horizon. Often this limits the type of contact that may occur (e.g., no sliding or rolling)

and where contacts may form. Likewise, the exact trajectory of the object must be known ahead

of time. Data-driven methods attempt to replay motion captured from a sensor device, such as
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an optical tracker with markers and camera. Although very natural motion can be reproduced

with this type of approach, it often fails to accomplish the task when conditions of the virtual

environment are disparate from the captured environment. Also, it can be costly to capture motions

for successful replay in every situation.

The grasping control work presented in this thesis includes aspects of both optimization and data-

driven approaches. Continuous optimization is used to learn suitable motor control parameters

which are analogous to short horizon planning. A corpus of hand poses is used to compute a latent

parameter space in which motor control programs are learned. Also, inspired by the success of

reinforcement learning methods for controlling characters in locomotion tasks, our control work

builds a policy of controllers that generalizes to many simulation and task states.

A common approach for control of physics-based characters is to break the problem into phases.

This is also the recipe adopted in our work, where automata based controllers use contact changes

to trigger transitions in the phases of motion. Such controllers are a natural choice for modeling

virtual motor control involving environmental interactions, such as grasping, manipulation, and

locomotion. In other work, Pollard and Zordan (2005) present a physically based grasping simula-

tion that combines a finite state machine with motion capture at the wrist and selected key poses.

However, their method only performs a grasp and release of an object, whereas our controllers are

capable of performing complex re-orientation tasks. Also, the state machine transitions use simple

heuristics for triggering the release of the object, as opposed to a grasp quality metric.

Other animation work has performed dexterous manipulation from a grasping pose by optimiz-

ing the forces necessary to move a manipulated object on a pre-specified trajectory (Liu, 2009).

These optimized forces are then used to drive finger motions with appropriate torques at the joints.

However, the complete trajectory of the object is known a priori, and an initial grasp is required.

Our work differs in that only the start and goal start of the object are required. Similarly, Ye

and Liu (2012) use contact sampling to animate fingers, given motion capture data for the object.

Interestingly, they note that it is important that the motion of the object comes from a captured ma-

nipulation, as opposed to a key-framed trajectory, for finger motions to appear natural. This is not

unexpected, and provides motivation for using a goal-based approach, as opposed to simplifying

the problem by first scripting or planning a path for the object.
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Mordatch et al. (2012a) present a solution that produces impressive results, and it does not require

a pre-scripted trajectory for the object. Their approach solves a sequence of space-time constraints

with special treatment for contact. They avoid optimizing the motion of each joint by considering

only end effector positions; finger poses are reconstructed with inverse kinematics (IK). An alter-

native here would be to simulate all of the finger joints, with an optimization that takes the form

of a shooting method, as opposed to encoding physics as kinematic constraints. Such an approach

would produce solutions that have better physical plausibility and hard contacts, but with higher

computational cost due to the fidelity of the simulation. Liu et al. (2010) use a shooting technique

to synthesize compelling character motions involving complex contact scenarios. However, their

approach requires that a similar motion trajectory has previously been recorded.

In robotics work, Huber and Grupen (2002) demonstrate robust finger gaiting from simple closed-

loop controllers. While not optimal, in the sense that they do not maximize stability or manipula-

bility, the grasps generated by their technique do exhibit force closure. However, the motions are

restricted to clockwise and counter-clockwise rotations, with a state machine controller designed

specifically for the task. Their work is similar to ours, but they do not use a latent parameter space

to compute control poses. Ideally, controller parameters could be learned automatically and result

in a control policy capable of adapting to scenarios with changing goals, like the work presented

in this thesis.

Han and Trinkle (1998a,b) introduce a framework for dexterous manipulation using two- and three-

fingered robotic grippers. Although limited to spherical objects, their approach provides a recipe

for manipulation control that includes contact planning, coordinated motion, and grasp stability.

However, like Huber and Grupen (2002), Han and Trinkle (1998a) do not consider complex contact

scenarios involving the full kinematic chain of the gripper.

Other work uses multi-modal control approach to perform motion planning for full body manip-

ulation tasks. Hauser et al. (2007) break down the planning problem for robot pushing tasks into

a sequence of walking, reaching, and pushing motions. These modes are high-level compared to

the phases used by our controller framework. Their framework uses short planning phases (10-100

ms), making exploration costly for scenarios where high branching factors exist. Therefore, syn-

thesizing motions for manipulation tasks with complex contact scenarios is protracted. This over-
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head could be reduced by determining phase transitions not based on time, but contact changes.

Our work schedules phase transitions according to discrete events within the simulation, result-

ing in longer phase durations, typically 200-1000 ms. Okamura et al. (2000) provide an excellent

overview of dexterous manipulation in robotics and discuss the idea of mid-level control. In such

a framework, transitions between phases are triggered by contact events. This is an appropriate

strategy for manipulation tasks, and one which we use in our own control work.

More recent robotics work has used synergy-space planning for grasping and object manipulation

tasks (Ciocarlie et al., 2007; Kumar et al., 2014). This effectively reduces the dimensionality of

the controller parameter search, making the problem of contact and motion planning for a gripper

with high DOF a tractable one. Ben Amor et al. (2012) use a low-dimensional sub-space built

from a database of recorded human grasping postures to perform grasp optimization on a robot.

The focus of their work is complementary to ours in that their approach synthesizes motions for

“reach-and-grasp” tasks. Also, they must deal with correspondence problems between human and

robot kinematics. This could be avoided by allowing the user to supply a pose corpus directly,

using a simulation model.

Recognition by the robotics community that the grasping problem can be described in a low-

dimensional manner is supported by the biomechanics literature. Santello et al. (1998) show that

the variation in final imagined grasp poses for a large number of objects is quite small, with well

over 80% of the variation explained by only two principal components. Similarly, Flanagan et al.

(2006) observe that changes in motor control are triggered by discrete events, with the contact

information provided by different mechanoreceptor signals. When this information is suppressed,

it becomes difficult to perform fine manipulation (e.g., imagine trying to open a combination lock

with fingers numbed by cold). This justifies adopting a phase-based approach to enable control for

manipulation tasks, with phase transitions determined by contact changes.

In other work, there has been progress in resynthesizing human grasping motions. Kry and Pai

(2006) describe a method where force measurements are used in conjunction with motion capture

to estimate finger stiffnesses for use in a grasping simulation. The controller in this case is entirely

feed-forward. While the resynthesized interactions appear natural due to the estimated compliance,

there is no feedback to ensure that the resulting final object position and orientation match a desired
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goal.

An important part of our motion synthesis work is that we use continuous optimization and ma-

chine learning to compute successful controllers, which produces a policy that can be used in a

real-time simulation. In the context of locomotion, Coros et al. (2009) use reinforcement learning

to create a control policy for performing a series of walking tasks, such as walking on a line. Their

controllers benefit from a learned control policy in that they are made more robust by interpolating

optimal control parameters from nearby states. Similarly, Wang et al. (2009) perform optimization

for walking controllers that anticipate perturbation.

Model predictive control (MPC) is emerging as an important tool for generating plausible motion

at interactive rates. The general approach here is that an underlying physics simulation is used to

explore short-term solutions that make progress towards a goal state. Controller parameters are

determined as part of an online sampling process, and MPC approaches tend to use importance

sampling and pruning techniques to efficiently explore solutions (Hämäläinen et al., 2014; Kumar

et al., 2014). However, these approaches still have significant computational overhead, and further

development of these techniques is required to achieve true real-time frame rates.

2.1.1 Grasp quality and planning

Determining the quality of a grasp is an important aspect of planning. Grasp quality metrics

evaluate the ability of a grasp to resist external perturbations (stability) and make progress on the

task at hand (manipulability). Although Okamura et al. (2000) and Bicchi (2000) provide excellent

overviews of these topics, this section highlights seminal work in this area.

Ferrari and Canny (1992) introduce a metric that computes quality as the maximum finger force

required to resist an external wrench. This involves taking the convex hull of the grasp wrench

space (GWS) over all contact forces. The quality is the minimum distance of the surface of the

hull to the origin. This metric depends on the choice of the reference frame used to compute torques

(e.g., the center-of-mass of the object), and an optimum grasp with respect to one reference system

may not be optimal with respect to another. The metric developed by Teichmann (1996) avoids this

problem by computing the quality measure as the radius of the largest sphere inscribed in the set of

wrenches that a grasp can resist. However, this requires solving a linear programming problem, and
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the methods developed by Ferrari and Canny (1992) and Teichmann (1996) are computationally

expensive. Specifically, computing the convex hull of the GWS is costly, with naive algorithms

having O(n3) time complexity. If this is done as part of online grasp planning, it can severely

impact the performance of interactive and real-time physics simulations.

Pollard (1996) characterizes the quality of a grasp in terms of the task. In addition to the set of

disturbance wrenches, the task wrench space (TWS) contains the set of wrenches applied on an

object to achieve a given objective. Similar to the GWS, this space is effectively represented by a

6D convex hull, although it is commonly approximated by an ellipsoid (see Li and Sastry, 1988).

A task-based quality is used by Li et al. (2007) to filter a collection of candidate poses obtained

from a hand pose corpus. A shape-matching algorithm re-targets a database of grasps to new

objects, choosing a grasp with the ability to apply forces that best match those required by the task.

This approach is limited to static enveloping grasps, but it significantly reduces the manual effort

required to synthesize a plausible grasp for hand animations.

In a somewhat different approach, Kyota and Saito (2012) incorporate a grasp taxonomy as part

of their interactive application for designing hand animations. Their approach is capable of syn-

thesizing precision grasps, in addition to the power type of grasps generated by Li et al. (2007).

The taxonomy represents a hierarchical categorization of grasps, providing a coarse alignment

of the hand and fingers depending on the size of the object being grasped and required dexterity

(Cutkosky, 1989).

2.2 Simulating articulated structures

A main objective of our work is physics simulation at real-time frame rates. This is a common goal

for many aspects of physics-based animation, such as simulating deformation, friction, contact, and

collision. We now examine work on modeling and simulating physical systems at different levels

of fidelity. Since our focus is on human hand models, literature on articulated multi-body dynamics

is relevant. The book by Murray et al. (1994a) provides an excellent overview of the mathematics

of rigid motion, twists, wrenches, and adjoint transformations between different coordinate sys-

tems. We consider it essential background reading for this thesis, particularly for the material in
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Chapter 4. A brief introduction to rigid body kinematics and related definitions is also provided in

Appendix A.

One approach for the simulation of multi-body mechanical systems is to use a constrained full-

coordinate formulation. Such systems can be solved quickly with sparse methods, and linear time

solutions are possible when the structure has the connectivity of a tree (Baraff, 1996). This type

of constrained, multi-body simulation is popular for its simplicity, and is available in a number

of different software libraries including Vortex, PhysX, Havok, Box2D, and the Open Dynamics

Engine. However, numerical drift must be addressed using stabilization techniques (Ascher and

Petzold, 1998). Loops also result in redundant constraints that require special attention in the

solution of such systems (Ascher and Lin, 1999; Faure, 1999). The simulation approach we later

demonstrate in Chapter 4 uses a spatial coordinate formulation, but does not require any specialized

solvers or constraint equations for the internal structure. Since we are only concerned with the end

bodies in the kinematic chain, the behaviour is well approximated by a reduced set of equations

resembling a mass-spring-damper system.

An alternative approach to a full-coordinate representation is to formulate the system using min-

imal coordinates (Featherstone and Orin, 2000). in essence, the joint angles. Straightforward

linear time solvers have been used for decades, while divide-and-conquer approaches permit par-

allel algorithms with logarithmic time complexity (Mukherjee and Anderson, 2006; Featherstone,

2008). Mechanical structures with loops likewise require special treatment and modified solvers.

Various libraries based on minimal coordinates exist, such as SD/FAST, which is commonly used

in mechanical engineering applications, and RTQL8, which is designed specifically for character

animation and simulated robots. Other approaches have been proposed for reducing multi-body

dynamics. These resemble neither minimal coordinates, nor a full coordinate constrained multi-

body system. Redon et al. (2005) use adaptive dynamics and a reduced coordinate formulation to

perform rigidification of selected joints, which allows for faster simulation.

We note that IK techniques provide a possible solution for determining the internal configuration

of articulated mechanisms. There are a variety of fast methods for solving over-constrained IK

problems using singularity-robust inverse computations (Yamane and Nakamura, 2003) or damped

least squares (Buss and Kim, 2004). Again, special treatment is required for loops in the kinematic
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structure. While the motion generated by these methods can appear natural, physical properties

such as mass and joint stiffness are not considered; dynamical effects, such as secondary motion,

are missing from the system.

The dynamical equations of motion are important in robot control and analysis. Khatib (1987)

uses projections of system dynamics as a central part of an operational space formulation. An

incremental projection process is used to produce a reduced model for the dynamics of a robotic

manipulator located at the end of a kinematic chain. Effective end-point dynamics can also be

estimated from data. For instance, model fitting has been applied to human fingertips and hands

(Hajian and Howe, 1997; Hasser and Cutkosky, 2002). However, a dynamics projection approach

is preferable because the fitting process can become difficult when data are complex. Fitting a

simple 6D linear mass-spring is undesirable when the force-to-displacement relationship in the

full model exhibits non-linearities and bifurcation behaviour. Sampling the system behaviour can

be expensive and does not fit the desired work flow of interactive simulators. It is not unreasonable

to impose a simple model and to identify its behaviour based on a projection of linear compliant

or PD controlled behaviour of joints. The simplification produces a computationally inexpensive

first-order model, with a plausible response corresponding to a slightly modified set of non-linear

joint controllers.

In contrast to redundant coordinate formulations, modal reduction of rigid articulated structures is

possible, and has been used to animate animals (Kry et al., 2009) and synthesize stylistic character

motions (Nunes et al., 2012). There has also been a vast amount of relevant work in computer

graphics which exploits modal vibration for reduced models in soft-body simulation and defor-

mation. A good survey can be found in a state-of-the-art report by Nealen et al. (2006), while

other alternative elastic simulation reduction techniques continue to be an active area of research

(Nesme et al., 2009; Barbič and Zhao, 2011; Kim and James, 2012; Harmon and Zorin, 2013).

Frictional contact computations can also be simplified in a variety of ways, such as exact Coulomb

friction cones, discretized friction pyramids, box constraints, or penalty based methods (Duriez

et al., 2006; Yamane and Nakamura, 2006; Parker and O’Brien, 2009). With respect to the con-

tact equations, the contact patches can be discretized at arbitrary resolutions (Allard et al., 2010),

and collision detection and response can be modified to produce various plausible animations with
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different fidelity levels (O’Sullivan and Dingliana, 2001).

2.3 Deformation and appearance changes of skin

Although producing plausible motion is a central concern for methods in human character anima-

tion, synthesizing appearance qualities, such as texture, colour, and skin deformation, are equally

important. Over the years, many improvements have been proposed to enhance the appearance of

animated characters beyond the standard linear blend skinning model (Magnenat-Thalmann et al.,

1988). This section provides an overview of such techniques, with a focus on appearance modeling

for hands.

Kinematic quantities, like joint angles and posture, have successfully been used to drive geom-

etry changes in the character model. For instance, pose space deformation interpolates geome-

try corrections using radial basis functions (Lewis et al., 2000), and shape-by-example interpo-

lates corrections mapped back into the rest pose with the inverse skinning transform (Sloan et al.,

2001). Likewise, the EigenSkin technique interpolates shapes within a basis computed using PCA

(Kry et al., 2002). This provides a memory-efficient representation for interpolating the geometric

changes. The appearance modeling work presented in this thesis makes the observation that similar

techniques are appropriate for modeling skin colour variations. Instead of interpolating geometric

shape, we interpolate a blood concentration texture and use this to compute a correction to the skin

colour.

In the context of physics-based animation, simulation quantities may also drive appearance up-

dates. Borshukov et al. (2007) use playable universal capture where the texture appearance is

driven by simulated attributes (i.e., contacts in the physics simulation), rather than a previously

recorded appearance trajectory. Our data-driven appearance model interpolates textural changes

based on contact forces, and a similar reduction method to Kry et al. (2002) permits a compact

implementation as a shader program.

Sueda et al. (2008) propose an approach wherein geometric features on the back of hand are driven

by tendon simulations. Although anatomically accurate, this type of simulation is costly, and

human character models are often not designed with the required level of fidelity. Alternatively,
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Huang et al. (2011) capture and model pose dependent wrinkles on hands, while other popular

approaches build wrinkle texture maps into the character rig to provide these details without the

cost of geometric modeling (Oat, 2007; Dutreve et al., 2011).

There are important changes in the appearance of the fingertips during posture changes and con-

tact. In fact, it is possible to estimate posture and touch force using sensors that measure colour

changes under the fingernails (Mascaro and Asada, 2004). Inspired by this difficult inverse prob-

lem, our focus is the creation of a data-driven model suitable for synthesizing these appearance

changes. Also, while it may be convenient to model appearance variations in RGB colour space,

it is preferable to work in the space of changing hemoglobin concentrations. Displacement of

blood due to contact is the primary explanation for the change in appearance; building a model

that works directly in the space of hemoglobin concentrations allows for easier reuse of captured

data across different fingers and different people. A variety of techniques have been devised for

estimating these quantities for medical purposes. For instance, camera-based sensors can be con-

structed to measure melanin, hemoglobin, and oxygenation of tissue, through the use of a known

spectral illumination (Jakovels et al., 2011). More recently, it has been shown that Wiener estima-

tion methods can produce estimates from an appropriately white balanced RGB camera (Nishidate

et al., 2013). In computer graphics, Tsumura et al. (2003) use independent component analysis to

estimate melanin and hemoglobin components using a single image, such as the image of a face.

Our appearance modeling is also closely related to that of Tsumura et al. (1999). They use in-

dependent component analysis in a negative log colour space to model appearance changes due

to hemoglobin and melanin concentration, with the assumption that a simple Lambert-Beer scat-

tering law explains skin colour. Parameters used by their model are conveniently estimated from

example images. The difference with our work is that we do not need to extract melanin concentra-

tions because we can focus entirely on the appearance variation due to hemoglobin concentration

variations across an image dataset.

In contrast, Jimenez et al. (2010) produce skin colour variations from a lookup table indexed by

hemoglobin and melanin concentrations. Their objective is to model the appearance of dynamic

faces using a skin appearance rig. They use hemoglobin maps to control skin colour, permitting

variation of appearance under the deformation of different blend shapes, or due to other conditions,
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such as exercise or alcohol consumption. Kider et al. (2011) use a data-driven appearance model,

driven by fatigue, which includes models of flushing and perspiration appearance. Boukhalfi

(2012) focuses on face geometry during strenuous exercises. Other work uses hemoglobin es-

timation methods to produce skin colour variations (Tsumura et al., 1999, 2003; Jimenez et al.,

2010).

Donner et al. (2008) specifically focus on hands. They fit a multi-spectral layered model to data

collected from human skin samples. By modifying parameter maps, they show the possibility of

appearance changes due to blood being squeezed out of areas deformed by contact. Within the

context of our work, an interactive physics simulation could also be used to drive realistic colour

changes.
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Chapter 3

Multi-finger manipulation control policies

This chapter presents our approach for physics-based one-handed manipulation. A key feature of

this approach is that it does not require a scripted path for the object. Instead, only the goal config-

uration of the object is specified and allows the trajectory to be influenced by hand geometry and

dynamics of the finger and palm. This is useful for generating plausible and natural manipulation

motions, and is relevant to many scenarios where only the final object configuration is important.

For instance, preparing a coin for insertion into a vending machine, rotating a small package to

read its label, or orienting small parts as part of a larger assembly task.

3.1 Overview

Problems related to simulated grasping and manipulation have received significant attention from

the computer animation and robotics communities, with extensive work addressing the issues of

motion planning, contact placement, and grasp quality. In contrast to high-level motion planning

techniques that solve complex problems through a sequence of actions, we use a mid-level con-

trol approach (Okamura et al., 2000). By introducing an automata-based structure, the controller

produces cyclic finger gaiting actions, wherein contact related events trigger different low-level

controller phases. Adjusting a volume dial, manipulating a ball held in the hand, or removing a lid

from a jar are examples that work well with this approach; the goal can be achieved by chaining
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together a number of similar turning actions with repeated releasing and re-grasping interleaved to

reposition the contacts. These three phases are termed approach, actuate, and release.

Continuous optimization is used to compute the parameters necessary for our mid-level controller

phases. The objective is to successfully perform a manipulation task, but also to produce a phys-

ically plausible, natural motion sequence. The controllers tend to work well for a collection of

nearby states, and because several cycles are often necessary to reach farther goals, a control pol-

icy is built using reinforcement learning (RL) and interpolation of controller parameters. Unlike

traditional RL, a discretized action space is not used and parameter selection occurs in a continu-

ous manner for each state. This learning approach helps to adjust the release phases so that fingers

are better positioned for improved progress toward the goal in future cycles. More importantly,

once the policy has been computed, it is useful for simulation of goal-oriented manipulation in

real-time.

Although motion capture is not used, a selection of natural hand poses is used to compute a reduced

parameter space for the low-level controllers. This limits the number of degrees of freedom that

are needed to include in searching for solutions, and encourages the use of natural hand poses.

Despite the reduced degrees of freedom, we still have a full simulation that produces poses outside

of the reduced pose space, with finger joints bending to accommodate contacts.

This method makes important progress toward the development of improved virtual humans that

can perform successful goal-oriented physically based interactions with virtual objects in real-time.

The contributions of this work are as follows:

• A novel framework for synthesizing motions for human manipulation problems where the

generated motions exhibit finger gaiting;

• A reduced search space based on natural poses to increase the performance of our method

while ensuring the use of plausible hand shapes;

• Learned control policies that run in real-time;

• An analysis of the robustness of the control policies, providing insight into the selection

of learning parameters, as well as providing indications on how to improve the low-level

controllers used by our framework.
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3.2 Multi-phase controllers

Actuate

ReleaseApproach

Figure 3-1: Our mid-level control
strategy.

Our approach is motivated by the observation that hu-

man finger motion exhibits pseudo-cyclic characteris-

tics, or finger gaiting, for a broad range of hand ma-

nipulation tasks. The fingers move in a coordinated

fashion with an effort determined by one of three dis-

tinct phases: (i) a pre-shaping and finger planting phase

wherein the hand forms a stable grasp around the ob-

ject, (ii) an actuation phase in which wrenches due to

contact forces are used to translate and rotate the ob-

ject toward some desired configuration, and (iii) a re-

lease phase wherein the fingers adjust to a pose that is

suitable for a subsequent approach phase. We refer to

these phases simply as approach, actuation, and release

(see Figure 3-1).

Figure 3-2: The hand model
used in manipulation experi-
ments. The associated DOF is
shown for each joint.

These phases represent strategies that are encompassed by an

automata-based controller architecture. Individual controllers

use a set of three reference poses, (q̃0, q̃1, q̃2), to guide the hand

in order to accomplish a manipulation task. Each pose con-

sists of 20 joint angles corresponding to the degrees of free-

dom of the hand. The method for selecting target poses is

discussed later, in Section 3.3.1. During the ith phase, we

apply joint torques, τ , computed as

τ = K (q̃i − q)−Dq̇ , (3.1)

where K and D are the joint stiffness and damping matri-

ces, respectively. The hand model used in our experiments is

shown in Figure 3-2.
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Notation. We use ·̃ to denote a target, or desired, quantity. Throughout the rest of this chapter we

use the integer subscripts 0, 1, 2 on scalar and vector parameters to denote a correspondence with

each of the approach, actuation, and release phases, respectively.

3.2.1 Phase transitions

Phase transitions occur asynchronously and are tied to contact and joint limit events occurring

within the simulation. In this section, we describe the conditions used to trigger transitions between

phases.

The initial obstacle faced in many grasping problems is determining where to form finger-object

contacts so that manipulation may be performed. This is the main objective of the approach phase,

wherein pre-shaping occurs and finger end effectors ultimately make contact. It is most beneficial

to end in a configuration that results in a stable grasp and good dexterous potential for manipulating

the object. The subsequent phase involves actuating the object using contact forces, typically until

further actuation is no longer possible (i.e., due to joint limits) and some or all fingers break contact.

The hand then moves toward a recovery pose where pre-shaping and approach can begin again,

repeating the cycle.

The approach phase ends once the fingers have planted and the desired grasp quality, Q̃, has been

achieved. Quality here means that some stable, dexterous manipulation is possible, and there

are several possibilities for measuring this quantitatively. We use a metric that is computationally

inexpensive, but effective. Details about estimating grasp quality are provided in Section 3.3. Once

the grasp quality condition is met, the approach phase transitions to the actuation phase.

At this point, the fingers are ready to manipulate the object. The direction of manipulation is a

result of contact with the object and the accumulation of joint torques as computed by the PD

control given in Equation 3.1.

During actuation, joint torques are applied until the grasp quality drops below an acceptable thresh-

old, indicating that dexterous manipulability is no longer possible and the controller transitions to

the release phase.

The transition between release and approach occurs when the total joint velocity of the fingers
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becomes small, indicating that the desired pose has been reached, or that motion is hindered due

to contact forces. There is also a transition when the allotted time for the phase has elapsed. The

controller state is set to the approach phase and the cycle repeats. Contact information is not used

to trigger a transition out of the release phase.

There is no assurance that a stable grasp is maintained during the release phase. However, it

is assumed that “good” trajectories ultimately lead to the goal state; this information is encoded

in the value function, V (s). We include the value function as part of the selection process for

controller parameters. This is a subtle, but important, aspect of our approach and further details

are provided in later sections.

For all phases, we force a transition to the next phase if the joint velocities of the hand become

small or the duration of a phase exceeds a maximum value, Tmax. The one exception is when the

goal has been reached, in which case the hand holds in either the actuate or release phase, waiting

for the goal to change. The choice here is to let the hand remain in the actuation phase, ready

to apply forces to achieve a new goal, or to remain in the release phase, allowing the hand to be

moved between objects as part of a higher level control.

3.3 Control policy creation

In this section, we provide details on how to build a control policy for object manipulation tasks,

beginning with a description of the simulation environment. Since our work focuses on single-

handed manipulation tasks, state information regarding a full character skeleton is ignored; only

the wrist and fingers joints are considered. Therefore, each state vector, s, contains the joint angles

of the hand, q, the orientation of the object, θ, and its 3D position, x. The object orientation is

stored as a quaternion, and both the position and orientation use a coordinate frame affixed to the

wrist of the hand model. A homogeneous transformation matrix is used to transform the object’s

position and orientation from a global coordinate frame to a hand centric frame. The state vector

is updated at each time step.

Other components of the simulation state, such as the linear and angular velocity of the object and

hand joint velocities, are used to initialize the dynamics simulation when evaluating control pa-
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rameters. However, we found these state components had little effect on the results when querying

the control policy for optimal control parameters. This can be partly explained by the quasi-static

nature of the hand based on the stiffness and damping control parameters we use. Therefore, we

exclude all velocity level quantities from the state when building our control policy function.

An action, a, is represented by the tri-phase controller described in the previous section. Each

action is composed of a sequence of three desired hand poses, (q̃0, q̃1, q̃2), which are determined

during the offline continuous optimization stage, as described in Section 3.3.1. The control policy,

Π(s), provides a mapping from the environment state to an optimal action, a∗, whose control

parameters are used to bring the environment to a higher valued state by making progress on the

task. Progress occurs by means of a forward dynamics simulation, and the value of being in state s

is stored in the value function, V (s).

The value and control policy functions are represented by a k-nearest neighbours (k-NN) func-

tion approximator. Distance between neighbouring states is computed as a combination of state

components. The distance between states sa and sb is computed as

d(sa, sb) = βq ‖qa − qb‖+ βx ‖xa − xb‖+ βθ ‖ log(θ−1a θb)‖.

Of these components, the distance between hand postures is most critical for selecting the most ap-

propriate action. Our implementation represents the object’s position in centimeters. The range of

values for this component is similar in magnitude to the angular component, which is measured in

radians and computed by the logarithm of quaternions.1 Hence, the distance between hand postures

tends to dominate the function d(sa, sb). The scalar values βq, βx, βθ are used to weight contri-

butions of the pose, object position, and orientation components, respectively. Through empirical

evaluation we determined that βq = βx = βθ = 1.0 gave good results, and this is coincidentally

equivalent to an unweighted metric.

The interpolation weight for the ith neighbouring state is computed using an inverse distance-

squared kernel,

wi =
1

σ

1

(d(s, si))
2 .

1Briefly, log(θ−1
a θb) gives the geodesic curve connecting the unit quaternions θa and θb (see Kim et al., 1995).

22



Procedure 3-1 The value iteration algorithm used to build the control policy.
while not converged do

for s ∈ S do

a∗ = OPTIMIZE(s)
s′ ←DYNAMICS_SIMULATION(s, a)
Ṽ (s) = R(s, a∗) + γV (s′)
V (s) ← αṼ (s) + (1− α)V (s)
Π(s) = a∗

if ISNOVEL(s′) then

S ← S ∪ s′

end if

end for

end while

Convexity is ensured by computing a normalizing factor 1
σ

such that
∑k

i=1 wi = 1. The optimal

action for an arbitrary state is estimated by interpolating the actions for the k closest states in the

policy,

a∗ =
k∑

i=1

wi ai .

3.3.1 Fitted value iteration

A control policy is learned using the value iteration method (Sutton and Barto, 1998). The collec-

tion of states, S, that make up the instance-based functions Π(s) and V (s) is bootstrapped with

random states that are chosen uniformly across the pose and task space. Additionally, we make

sure these are physically valid states. Specifically, no intersections occur between the fingers and

the joint angles are within the constraint limits of the hand model.

Controller parameters are determined by performing a multi-objective optimization. For each state

s ∈ S, candidate actions are evaluated using a forward dynamics simulation. This means that the

parameter search occurs across a non-linear, rugged landscape.

The value function is updated using the reward and value of the proceeding state, s′, at the end of

the simulation. The method ISNOVEL(s′) uses a threshold, ε, to determine if the state is sufficiently

novel and the method returns true if d(s, s′) > ε for all s ∈ S. Novel states are added to S. Note

that for the states used to bootstrap the control policy, ISNOVEL(s′) is true. Pseudo-code for the
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value iteration algorithm is provided in Procedure 3-1.

CMA-ES (Hansen, 2006) is used to determine the optimal controller parameters at each state s.

The phases are not optimized in isolation, and instead CMA-ES optimization is performed over

one complete cycle of the state machine. The coupling between phases is key to our approach,

since evaluation of the success of a controller is determined not only by the minimization of a set

of objective terms for each phase independently, but by their performance as a sequence.

Each objective term is a function of the simulation and task state across all controller phases,

leading to the composite objective function

min
a∗

L0 + L1 + L2 + Lg .

Here, L0, L1, L2 pertain to the approach, actuation, and release phases, respectively; Lg is an

aggregation of global terms pertaining to all phases. The contents of the phase specific and global

objective functions are discussed in later sections.

Notation. The terms of the composite objective function are denoted by the symbol L, and sub-

scripts are used to distinguish individual quantities pertaining to phase-specific features. These

features are quantities accumulated throughout a phase, or computed at phase transitions. The

notation
∑

t∈Ti
is used to indicate a term that is accumulated over period Ti, with its value being

sampled at each time step.

3.3.2 Multi-objective optimization

Here we discuss the details of the optimization function. The explanation is organized according to

phase, starting with approach. This also includes details on the global terms, which are applicable

to all phases.

Approach. The approach is a pre-shaping phase, wherein the agent (hand) makes contact with the

object in preparation for actuation. The objective function for this phase is simply

L0 = l0 max
(
0, Q̃−QT0

)
,

24



which ensures a penalty if the grasp quality at the end of the phase, QT0 , is below the desired

grasp quality, Q̃. As such, the duration of the approach phase T0 can equal the time out T if

the grasp quality was not achieved, in which case L0 will be some positive value to penalize this

action. Alternatively, if grasp quality is achieved, then T0 is the time at which the approach phase

transitions into activation, and the objective L0 will simply be zero. Overall, this encourages the

optimization method to find solutions where the fingers are planted and ready to actuate the object.

Grasp quality.

Figure 3-3: Discretized
friction cone showing
the contact normal, 	n,
and the frictional basis
vectors, b1...4.

In this section, we describe our method for computing the grasp qual-

ity. A common metric for determining grasp quality is by computing

the force closure of the GWS (Murray et al., 1994b). If the convex

hull of the GWS contains the origin, it has closure, and any external

wrench acting on the object can be resisted by a convex combination

of the grasp wrenches. However, computing the convex hull at each

simulation step is a computational bottleneck, and instead we estimate

the grasp quality with an ellipsoid, similar to the method outlined by

Klein and Baho (1987).

The matrix G ∈ R
6×(mN) is assembled from a set of representative vectors, accounting for N

finger-object contacts and m basis vectors at each contact that approximate the Coulomb friction

cone (as shown in Figure 3-3). The positive linear span of the friction cone represents the set of

potential forces a contact may apply to the object. For our experiments m = 4, and the basis for

the ith contact is denoted by (bi1 , bi2 , bi3 , bi4).

The matrix, Γi ∈ R
6×3, is used to map contact forces in the global coordinate frame to wrenches in

the object’s local frame. This matrix has the block form Γ =
[
RT − p̂RT

]T , where R is a rotation

matrix transforming vectors in the global coordinate frame to the object’s coordinate frame, and p

is the contact location used to form the skew symmetric cross product matrix p̂. This gives the set

of wrench vectors

Wi =
[
Γibi1 Γibi2 Γibi3 Γibi4

]
, (3.2)
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and G becomes the block row matrix G = [W1 . . . WN ].

We compute the singular value decomposition G = UΣV T , and estimate grasp quality, Q, as the

smallest singular value of G. By avoiding poses where the singular value is equal or close to zero,

the optimization is more likely to select non-singular grasp configurations. The columns of U

provide the axes of the wrench ellipsoid, and the axis corresponding to the smallest singular value

provides a direction in which the least amount of force and torque is needed to break the grasp.

Informally, the smallest singular value corresponds to a GWS direction that is “weakest”.

The example illustrated in Figure 3-4 shows the convex hull computed for a grasp in a 3D wrench

space. The grasp lacks closure since the hull does not contain the origin yet the wrench ellipsoid is

not degenerate and does contain the origin. Therefore, as an additional check, we ensure that the

cone spanned by the contact wrenches is at least π, otherwise Q = 0. Although this approximated

metric often leads to grasps which have the force closure property, there is no assurance of clo-

sure grasps throughout a manipulation. Rather, this heuristic sufficiently guides the optimization

towards manipulable and plausible grasps.

We justify the use of the wrench ellipsoid heuristic by considering computational performance. For

complex scenarios involving approximately 10 contacts, the time required to compute the wrench

hull with an Intel 3.2 GHz processor is 15 ms compared to 0.1 ms for the wrench ellipsoid based

quality metric. In our experiments, there was little difference in the motions generated using these

two quality metrics, so we choose the one that is less expensive to compute.

Actuation. It is during the actuation phase that most of the progress is made on the task. Wrenches

acting on the object change its position and orientation such that it moves toward the goal state.

Based on this assumption, it is necessary that the predominant objective for this phase is to mini-

mize the task-based objective function

LT = lx‖x̃− x‖+ lθ‖ log(θ̃−1θ)‖.

Note that LT ≥ 0, and the minimal value occurs when the goal state is reached.
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Figure 3-4: Left, the wrench convex hull of a 2D grasp, with two linear force components (fx,fy)
and an angular torque (τ ); the 3D wrenches are drawn in red. The grasp does not have closure
(i.e., the hull does not contain the origin), yet the wrench ellipsoid, shown on the right, is not
degenerate. Therefore, an additional check is performed to ensure that the GWS spans a cone of
at least π.

The value function should reflect the optimality of the task state. By using the reward function

R(s) = −‖x̃− x‖ − ‖ log(θ̃−1θ)‖,

this results in a V (s) that is non-positive for any state s. Choosing an action that minimizes the

objective term LT will maximize the return of the reward function, meaning that in a greedy sense

progress is made on the task. This duality is also exploited during the release phase for choosing a

recovery posture by incorporating V (s) as an objective term, maximizing future rewards.

During manipulation, it is also a requirement that the fingers maintain a certain degree of stability

for the object. Using the same metric from the approach phase, a minimum level of grasp quality

is maintained throughout the actuation phase by the objective

LQ = lQ
1

T1

∑
t∈T1

max
(
0, Q̃−Qt

)
.
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Here, T1 is the duration of the actuation phase and Qt is the quality at time t of the actuation phase.

Note that this is similar to averaging the difference from the desired grasp quality throughout the

actuation phase, but only accounts for frames when the quality falls below a threshold.

Additionally, we include a penalty term allowing the user to specify which of the M fingers partic-

ipate in the actuation. An array of boolean values, p, contains an entry for each finger, indicating if

it should participate (i.e., true if participating, false otherwise). The summed magnitude of contact

forces affecting each finger is computed as

Fj =

Nj∑
k

‖fj,k‖,

where fj,k is the kth of Nj contact forces between the object and finger j. If the value of Fj for a

non-participating finger exceeds a threshold, η, a penalty proportional to the contact force is added.

Conversely, if Fj for a participating finger falls below η, a penalty is also added. The penalty is

accumulated at each time step of the phase as

LP = lP
∑
t∈T1

M∑
j

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η − Fj if Fj < η and pj

Fj − η if Fj > η and not pj

0 otherwise

.

For the results shown in this chapter, η = 2.0.

Assembling each of the task, quality, and participating finger penalty terms, the objective function

for the actuation phase becomes

L1 = LT + LQ + LP .

Release. The primary objective of the release phase is to let the fingers break contact and move

them in preparation for another approach. Since our tasks focus on re-orientating and re-positioning

an object, spatial velocity of the object during this phase is penalized in order to ensure that

progress made during the actuation phase is not undone. We introduce objective terms that pe-
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nalize any spatial velocity throughout this phase:

Lω = lω
∑
t∈T2

‖ωt‖2

Lv = lv
∑
t∈T2

‖vt‖2 .

Here, ωt and vt are the angular and linear velocities of the object at time t.

However, simply minimizing the spatial velocity of the object will not ensure successful manip-

ulation, since the hand must recover to a pose where it can make progress during the subsequent

approach phase. Upon transitioning to this phase, if the object has reached the target configuration,

the hand simply maintains a static grasp on the object. Consider the case where the configuration

of the object is not the goal state. Progress must be made in subsequent phases. Given the control

policy, Π(s), states corresponding to future progress are considered high value states. High value

states are discerned using the value function, V (s), and we include it as part of the optimization

for the release phase to determine a good recovery posture.

Conveniently, like the reward function, the value function has an upper bound of 0 and lower bound

of −∞. Therefore, we can use its value directly as a penalty term in the controller optimization

problem as

LV = −lV V (sT2) ,

where sT2 is the state of the simulation at the end of the release phase. Note that a negative scalar is

used to weight this objective term. By minimizing LV , postures that result in good finger planting

at the subsequent approach phase are encouraged.

At the beginning of each inner loop, the covariance matrix entries pertaining to the release phase are

reset. This is necessary because the value function changes at each iteration of the algorithm. Thus,

the solution found for the release pose in a previous iteration may no longer minimize V (sT2).

Combining the velocity penalty and value function terms, the objective function for the release

phase is

L2 = Lω + Lv + LV .
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Global terms. In addition to the individual objectives for each phase, a global penalty term was

added to minimize the energy used to perform the action, and to discourage contacts that use

surfaces on the back of the fingers. The global component of the objective function is

Lg = lτ
∑
t∈T ′

‖K (q̃ − q(t)) ‖+ lh
∑
t∈T ′

M∑
j

hj(t),

where hj(t) is equal to 1 if there is contact on the back of finger j at time t, or 0 otherwise. This is

determined by comparing the contact force with a vector defining the backhand direction of each

finger segment. We use T ′ to denote the time interval necessary to complete a full controller cycle.

3.3.3 Tractability and implementation

In addition to using a grasp quality metric which is simpler and faster to compute, we have made

a few other technical choices which significantly reduce the computing time of the CMA-ES op-

timization required for controller selection. For instance, we use a parallelized implementation of

the OPTIMIZE(s) method. On a modern multi-core CPU, this reduced the time required to compute

an optimal action by nearly an order of magnitude.

Rather than performing optimization in the full coordinate space, we were inspired by the work

of Santello et al. (1998), which suggests human hand postures, when interacting with tools and

everyday objects, may be represented using just a reduced postural synergy. Using a set of ap-

proximately 20 grasp poses, from which the user may select some or all, a reduced pose basis is

constructed. Figure 3-5 shows examples of the poses we use for building our reduced pose space.

The poses are manually designed and selected to be representative of grasps necessary for the tasks

in our experiments.

Principal component analysis (PCA) is used to generate a set of orthogonal basis vectors in which

to perform the controller optimization. Basis vectors are selected according to their component

scores and the set of vectors remains the same for all phases. For the tasks shown in this chapter,

the parameter space for controlling the joints of the hand is reduced from 20 per phase to just 3 to 5

per phase, depending on the task, giving a total of 9 to 15 parameters for each tri-phase controller.

Note that the process of bootstrapping a control policy is done using the reduced pose vectors.
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Figure 3-5: Selected example poses from the corpus used to build a reduced basis for the control
parameter search.

3.3.4 Practical considerations

Constraint force mixing (CFM) is a feature of several off-the-shelf rigid body physics engines and

is often a required, practical consideration for building stable simulations of complex systems. We

use CFM to implicitize the joint torques needed in Equation 3.1. This permits us to take large time

steps (Δt = 1
60

s) while remaining stable. For the range of values of the stiffness and damping

coefficients used by our experiments, it would require advancing the simulation at sub-millisecond

time steps if PD control torques were computed explicitly (see Pollard and Zordan, 2005). This

gives a significant speedup in the time required perform the CMA-ES optimization.

This approach is similar in spirit to the work of Tan et al. (2011), and although the formulation is

different, the results are equivalent. They correctly identify the analogy between PD controllers

and penalty based constrained dynamics. The controllable DOFs may be considered regularized

constraints, where some violation of the position is allowed. For further details, we refer readers

to the related literature on CFM (see Erleben et al., 2005).

3.3.5 Parameter tuning

For all results presented in this chapter, α = 0.8 and γ = 0.7 are used as the learning rate and

discount factor values, respectively, in the fitted value iteration. These are determined by experi-

mentation and we found that convergence of the policy building algorithm was reasonably insensi-

tive to changes in these values. Scaling is used to bring the range of values across objective terms

to within an order of magnitude, and approximately unity across exemplary sequences. Scaling

factors are computed once for each task, and are determined empirically by data collected from

manually defined manipulation sequences. By scaling each objective term in this way, it simpli-

fies the process of the tuning the weights, l, for the multi-objective optimization problem. These
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Figure 3-6: Convergence of a dial turning control policy with α = 0.8 and γ = 0.7. The mean
value across states for the instance based V (s) approaches zero, indicating controller sequences
that achieve the goal are being found. Novel states are added mostly during early iterations of the
algorithm.

scaling factors are omitted from the equations in previous sections to improve readability. Fi-

nally, tuning the CMA-ES step size σ and population size λ is also done experimentally, such that

the optimization finds suitable controller parameters within 30-60 seconds for a single simulation

state.

3.3.6 Policy convergence

Figure 3-6 shows the evolution of V (s) during each iteration of Procedure 3-1 for a dial turning

task. The policy is initialized with 7 random states and V (s) = −10 for each state s. The policy

grows in size as novel states are added at each iteration. Novel states are encountered mainly

during preliminary iterations of the algorithm, occurring less frequently as the policy converges.

Note that the mean and max of the value function approach zero, indicating controller sequences

are being found that reach the goal state, since R(s, a) = 0 once the goal state is achieved.

3.4 Manipulation results

In this section, we provide results for two examples: dial turning and ball-in-hand manipulation.

The tasks involve re-positioning and re-orienting an object to match a desired configuration. A
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Figure 3-7: Showing hand motion sequences for the ball-in-hand example (top) and dial turning
example (bottom). The desired (yellow) and current (red) configuration are shown.

collection of capsule and box collision geometries is used to model the hand, with finger segments

being actuated by joints with 1 and 2 DOF (see Figure 3-2), for a total of 20 joint angles.

The Vortex2 toolkit is used to simulate the forward dynamics, including contact and gravity forces.

All results were obtained using a 6-core Intel i7 3.2 GHz processor and running 12 simulation

threads for the CMA-ES optimization. Conveniently, Vortex supports the method of PD control

discussed in Section 3.3.4 for hinge and universal joints; stiffness and damping coefficients may

be assigned directly through the programming interface.

Although learning times may take hours, the result is a policy that runs in real-time. Individual

iterations of our algorithm work like a space-time constraints optimization problem, giving a par-

tial solution for performing the overall task. Learning times for specific tasks are discussed in

Section 3.4.1 and Section 3.4.2.

Figure 3-7 shows a temporal sequence of hand poses generated for two examples. Complete ani-

mations are available on the project page.3

2http://www.vxsim.com/
3http://www.cs.mcgill.ca/~sandre17/multifinger/
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Figure 3-8: Variations in the synthesized motion may be achieved by changing parameters of the
multi-objective optimization.

3.4.1 Dial turning

For the dial turning example, a cylindrical object is constrained using a hinge joint, similar to a

mounted dial or volume knob. Since the object is constrained to rotate about a single axis and no

linear motion is allowed, the reward function simplifies to

R(s) = −
∣∣∣θ̃hinge − θhinge

∣∣∣
where θ̃hinge and θhinge are the desired and current angle of rotation about the hinge axis, respectively.

One of the trajectories generated by the learned policy is shown in the bottom row of Figure 3-7.

The mean wall clock time to perform the controller optimization for a single state s is approxi-

mately 18 seconds. For the example shown in Figure 3-7 (bottom row), the policy was bootstrapped

with 16 states, finally growing to 32 states after 23 minutes of running our algorithm.

The CMA-ES parameters used by this example are σ = 0.2, λ = 30. The multi-objective weights

and other parameter values are provided in Table 3.1.
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l0 lQ lx lθ lω lv lh lV lP lτ Tmax

Dial turning 0.4 0.4 1.0 1.0 0.5 0.5 10 0.6 0.2 0.1 0.6 s
Ball-in-hand 0.4 0.4 1.0 1.0 0.5 0.5 10 0.6 0.0 0.1 1.0 s

Table 3.1: Parameter values used to learn example tasks.

3.4.2 Ball-in-hand

The ball-in-hand example involves re-orienting and re-positioning an unconstrained ball. The task

state consists of the 3D position and orientation of the object in the hand frame. There is special

consideration for states s′ where, at the end of the controller optimization, the ball is no longer in

contact with the hand. These are not added to S.

On average, it takes approximately 45 seconds to perform the controller optimization for each state

s ∈ S. For the example shown in Figure 3-7 (top row), the policy was bootstrapped with 40 states,

finally growing to 320 states after 4 hours 21 minutes of running our algorithm.

The CMA-ES parameters used by this example are σ = 0.4, λ = 60. The multi-objective weights

and other parameter values are provided in Table 3.1.

3.4.3 Task variations

It is possible to synthesize variations of motion for a task by changing the weights of the multi-

objective optimization problem and the maximum phase duration, Tmax. Figure 3-8 shows two

styles of motion generated for the dial turning task. For the controllers with shorter phase duration

(top row), multiple cycles are required to reach the goal. The controller with a longer phase du-

ration reaches the goal in one cycle, but only the thumb, index and middle fingers are flagged as

participating.

3.4.4 Robustness of controllers

To evaluate the robustness of the control policy and individual controllers, we performed a series

of experiments on the success of performing a task as a function of perturbations to s. A control

policy was built using a small number of states (approximately 12) with the value of θ and θ̃

remaining fixed. The states were carefully selected so that the learned controllers were capable of
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Figure 3-9: The effect of perturbation, φ, on the effectiveness of the controller. Random joint
perturbations in the range [−φ, φ] are applied to the hand joints. Effectiveness is measured as the
reward at the end of the controller cycle, R (s′). Note that the reward is averaged over 100 trials.

reaching the goal state at the end of the release phase, or R(s′) = 0. For this experiment, ε = ∞
to avoid updates to the control policy.

The state of the simulation is initialized to sδ = s +
(
δ(φ)T , 0, 0

)T

, where s ∈ S, and δ(φ) is a

function used to generate a randomized perturbation to the joints of the hand. Specifically, δ(φ) =

(g(φ), · · · , g(φ))T . The function g(φ) generates a random number with a uniform distribution in

the range [−φ, φ].

Figure 3-9 shows the reward as φ was increased from 0.05 to 0.35 radians. Each data point in

the plot represents the mean value of R(s′) over 100 trials. As expected, when φ is small, the

controllers perform well. However, as φ increases, performance decreases. Increasing k for the

nearest neighbour interpolation mitigated this problem.

These experiments provide insight into the selection of learning parameters for the instance-based

function approximators. For our experiments, k = 6 and ε = 0.22, giving a trade-off of perfor-

mance versus learning times.

Further analysis gives additional insight as to why the performance drops as φ grows. Figure 3-10

shows the duration of the approach and actuation phase as φ is increased. In the same graph, the

average grasp quality at the end of the approach phase, Q0, and throughout the actuation phase, Q1,
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Figure 3-10: The effect of perturbation, φ, on the duration of controller cycles and the grasp
quality. The duration of the approach phase, T0, is lengthened and the duration of the actuation
phase, T1, is shortened. Similarly, the average grasp quality at the end of the approach phase, Q0,
and throughout the actuation phase, Q1, drops, indicating poor progress on the task.

is plotted. Recall that, during the actuation phase, when the grasp quality drops below a minimum

value, it triggers a transition to the subsequent phase. The plot indicates that the controller phases

are transitioning early due to an insufficient grasp on the object, and less progress is being made on

the task. The controllers used by our framework are feed forward in nature, and ignores aggregate

features of the simulation, such as grasp quality, throughout the duration of the controller cycle.

We speculate that incorporating some feedback about these features will not only improve the

performance of our controllers, but also lead to sparser control policies.

3.5 Discussion

The results we have shown involve the manipulation of convex and symmetric objects. Generating

control policies that perform well across variations in object size, shape, and mass is a challenge

for our framework. Although our method does not exploit these properties for successful manip-

ulation, and no examples involving non-convex or asymmetric objects are provided, there is no

evidence indicating that control policies cannot be learned for other classes of objects. This is

mainly attributed to the robustness of the CMA-ES method and its ability to find solutions that

successfully achieve task objectives. However, complex object geometry may void the smoothness
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assumption we make by interpolating controller parameters for a k-NN representation of Π(s).

One solution may be to increase the density of the function approximator and exploring more

states. Similarly, tasks where object momentum is exploited, such as contact juggling, require

adding simulation information to the state, such as the object’s velocity. Both of these changes

would result in longer learning times.

The work presented in this chapter is targeted at synthesizing cyclic, single-handed manipulation

tasks. An interesting extension would be to modify the framework to perform a general class of

manipulation, including those that involve aperiodic motion. One obvious approach is to include

additional automata as part of the controller state machine, giving the controller a form wherein

multiple outgoing transitions may occur at any state and additional parameters for the associ-

ated phases of motion. This makes batch optimization of controller parameters problematic, since

branching determined by each new transition needs to be optimized independently. Using a hier-

archical approach could be beneficial here, wherein each possible circuit of the controller graph is

represented by a different policy. At run-time, a top-level agent then chooses the best action across

all learned control policies. However, this increases the complexity of our approach, and would

certainly increase the offline learning stage of our algorithm.

Large-scale motion planning is not considered by our work, since we focus only on single-handed

manipulation. In all of our examples, the wrist is immobile, which may be unrealistic for some

tasks where motion of the arm, elbow, shoulder, and other body joints may be useful. Note that

for the examples shown in Figure 3-8, additional control parameters (2 joint angles per phase) are

used to allow motion of the wrist. However, providing additional degrees of freedom to control

other body joints is not appropriate given the restrictions of our phase-based controller architecture.

Furthermore, aperiodic finger gaiting styles may not be synthesized without modifications to the

controller framework.

This framework provides a powerful approach for online motion synthesis of dexterous manip-

ulation tasks. The learning approach is an incremental one, where progress is learned over short

motion phases. This style of motion synthesis has been gaining traction in the field (Mordatch et al.,

2012a,b). However, the offline optimization step used to build our control policies is a protracted

aspect of the method. This is due to running many forward dynamical simulations to evaluate
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controller parameters. It can take several hours to learn manipulation strategies for a single object.

One way to reduce the time of the the policy building step is to speed up the simulation. In the

next chapter, we introduce an approximate model for articulated mechanisms that accelerates the

dynamical simulation by an order of magnitude.
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Chapter 4

FORK-1S: Compliant mechanisms with

parallel state computation

Real-time physics simulation has emerged as a fundamental component of interactive virtual envi-

ronments. There are many important applications, for example, in training operators of robots and

heavy equipment, design of robots and mission planning, and simulating virtual humans in video

games. In this chapter, we describe a technique for improving interactive simulations of scenarios

involving complex multi-body mechanisms with contact. For instance, a grasping simulation of a

human or robotic hand involves a complicated chain of compliant joints and distributed contacts.

Collaborative grasping and manipulation with multiple people, multi-legged robots, and vehicle

suspension systems can produce similarly challenging computational scenarios. Simulating these

kinds of systems is difficult because they result in large, over-constrained systems of equations

that, in general, require considerable computational effort to solve. Furthermore, special attention

must be paid to the parameters of both the system and simulation to ensure stability. The technique

demonstrated here simplifies these kinds of systems, allowing for complex interactive mechanisms

to be simulated while meeting real-time requirements.
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Figure 4-1: Example simulations used to demonstrate the FORK-1S technique include a multi-
legged robot on uneven terrain, a humanoid robot grasping, and two firemen catching a bunny. The
reduced model in the firemen scenario involves only one body, the trampoline, while the reduced
models for the legged robot and hand involve multiple, coupled end effectors.

4.1 Overview

Our approach is based on two main assumptions. The first assumption is that there are a limited

number of surfaces at which our articulated systems experience contact. Thus, we can focus on the

effective mechanical properties of a small collection of bodies in the system. This is a reasonable

assumption for many scenarios, such as the wheel ground contact for a vehicle, the fingertips of a

hand during grasping, or simulated tool-use by virtual humans and robots. The second assumption

is that the multi-body system has a reference pose, which is held due to linear springs at the

joints. This is certainly true for systems that have passive linear elastic joints, but also reasonable

for virtual humans following the equilibrium point hypothesis of motor control, and in simulated

robots using PD control.

In the case of a single interaction surface, our approach simplifies an entire system to a single 6D

mass-spring system. When there are multiple bodies with surfaces experiencing contact, we use

a collection of compliantly coupled bodies. We present an incremental algorithm for computing

the dynamics model, which walks the body connectivity graph. The result is a system that is much

simpler than the original, and is also stable and fast to compute. Note that we do not assume that

the structure has the topological structure of a tree, as is necessary for fast computation in many

alternative multi-body algorithms.

At simulation time, external forces produce a dynamic transient behaviour for the bodies that we

include in the model. The configuration of all the remaining bodies is updated by computing a
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compatible state. Rather than using IK, we compute linear maps that provide twists for each body

as a function of the reduced system state and use the exponential map to compute the body posi-

tions. Thus, non-interacting body configurations can be computed independently and in a parallel

fashion. Although the twists only model the linear response, we observe that the exponential map

gives good behaviour. There is little separation at joints for an adequate range of interaction forces,

and we discuss the size of the errors produced. Because the position updates can all happen in par-

allel, our method is well suited to parallel implementation on modern CPUs and GPUs. With

new hardware from smart phones to desktop computers primarily gaining additional computation

power through increasing core counts, we believe it is important for future algorithms to exploit

parallelism, and we identify this separable computation of the internal state as one of the important

contributions of our work.

Another important aspect in our work is that we have control over the fidelity of the physics sim-

ulation, and can dial it up or down as necessary. For instance, we can simplify a grasping system

to just the fingertips of a hand in frictional contact with a grasped object. Alternatively, assuming

no sliding or rolling at contacts, we can reduce the system to model the grasped body alone, which

may be of interest in the simulation of a peg-in-hole insertion task. Likewise, if we know that

additional contacts will occur at other bodies in the multi-body system, these can be included as

interaction surfaces in our model.

The work presented in this chapter is an important new tool for simulating first-order reduced

compliant systems, or FORK-1S. The contributions of this work are summarized as follows:

• An approximate model for the simulation of complex kinematic structures;

• A model building process that uses a principled approach based on first-order projections of

the dynamical behaviour of the system;

• Methods for efficient and parallel updates of the internal bodies;

• Concise recursive algorithms for constructing the FORK-1S model, for which we provide

pseudo-code;

• A demonstration of various important scenarios that show the utility of our approach and the

models that we can produce.
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4.2 Dynamics projection and notation

Our method targets mechanisms made up of articulate chains of compliant joints where external

interaction occurs only with a small collection of bodies at the interface. We call these bodies the

end effectors, following the terminology used in robotics literature. For simplicity, we will initially

present our approach for the case where the base, or root, of the mechanical system is fixed in the

world (the case of a free-body base link is discussed in Section 4.5). There are numerous simu-

lation and animation applications where this type of configuration occurs, such as the previously

described grasping and manipulation examples.

In this section, we explore the simple case of dynamics projection for a single body with one rota-

tional joint, and provide a preliminary discussion of how we can incrementally build a projection

for a complex mechanical system.

4.2.1 Projection for a single link

�
x

Figure 4-2: The simplest
mechanism: a single rigid
body x rotating about a com-
pliant joint with angle θ.

Consider the behaviour of a rigid body link x rotating about a

hinge joint, as illustrated by Figure 4-2. For simplicity, we as-

sume the hinge constraint is fixed in the global coordinate frame.

The hinge constrains the motion of the body to a single degree

of freedom and the admissible twists are rotations about the joint

axis. Therefore, the twist of the rigid body ξ ∈ R
6 is a function

of the joint angle θ ∈ R, or ξ = f(θ). The Taylor expansion of

f(θ) gives the approximation

ξ ≈ f(0) +
δf

δθ
Δθ, (4.1)

where J = δf
δθ

is the Jacobian of the kinematic configuration of the body. Without loss of generality,

let f(0) = 0, giving the first-order kinematic relationship ξ ≈ JΔθ.

Assuming a stiff joint, any displacement of the hinge from its rest or initial configuration will

generate a torque about the joint axis. The torque τ and joint displacement Δθ of the hinge are

related by

K−1
θ τ = Δθ, (4.2)
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where K−1
θ is the compliance, or inverse stiffness, of the joint.

Body wrenches w ∈ R
6 corresponding to joint torques are computed by the transpose of the

Jacobian,

τ = JTw. (4.3)

Combining Equations 4.2 and 4.3 and multiplying on the left throughout by J gives

JK−1
θ JTw = ξ. (4.4)

Here, K−1
x = JK−1

θ JT is the effective compliance of the body x in spatial coordinates. The twist

of the body ξ resulting from an applied external wrench wext is computed as

K−1
x wext = ξ (4.5)

and the homogeneous transformation of the body’s displacement is computed by the exponential

map.

It is convenient to use compliance to model the behaviour of the body in full coordinates because

this compliance will be zero for motions not permitted by the joint. As such, K−1
x is rank deficient,

and a robust method for computing the matrix inverse is necessary to compute the stiffness Kx.

Our work uses a truncated SVD (Hansen, 1990) to compute the inverse when needed.

We can perform a very similar projection of the rotational mass matrix Mθ. From the equation

of motion M−1
θ τ = θ̈, and assuming the body acceleration φ̇ ∈ R

6 is approximately Jθ̈, we find

JM−1
θ JTw = φ̇, thus, M−1

x = JM−1
θ JT . We follow the same projection for the damping matrix

to produce the second-order system

Mxφ̇+Dxφ+Kxξ = w. (4.6)

Note that the static solution of this system exactly matches that of the original. Also, this example

is more instructional than useful given that Equation 4.6 has 6 dimensions, but it is constructed

from a 1D joint. Nevertheless, these projections are useful and a central part of the approach we
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Figure 4-3: The connectivity of bodies used in constructing the effective coupled stiffness, damp-
ing, and mass of end effectors.

describe in Section 4.3. Specifically, the end effector will be part of a complex system of joints

and rigid bodies. The effective compliance at the end effector x is due not only to the compliant

behaviour of the directly attached joint, but also depends on the compliance of its parent (and the

rest of the system). As such, we will describe an incremental approach for computing the effective

stiffness, damping, and mass, at each link in an articulated system.

4.2.2 Notation

Throughout the rest of the chapter, we use different coordinate frames to explain our method.

Preceding superscripts are used to denote the coordinate frame in which a vector is expressed. For

instance, the velocity φ ∈ R
6 of body i in frame j is denoted by jφi. Likewise, a wrench acting on

body i in frame j is denoted by jwi. The adjoint matrix k
jAd maps the twist of a body in frame j to

frame k, while its inverse transpose is used to change the coordinates of a wrench from frame j to

frame k.

The joint structure of the mechanism has a dual representation as a directed acyclic graph (DAG),

as seen in Figure 4-3. The graph’s nodes are links (i.e., rigid bodies), and the edges correspond to
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joint constraints, with the direction denoting the parent-child relationship. Specifically, the terms

parent link and child link refer to the rigid bodies associated with the outgoing and incoming vertex

of the edge, respectively. We use Pi and Ci to denote the set of parents and children of link i. Also,

Aj is the set of ancestors of link j where branching occurs (e.g., see Figure 4-3), Af contains c

and b. Finally, let E denote the set of end effectors.

4.3 Incremental FORK-1S construction

We incrementally build our approximated model by starting at the base link and working towards

the end effectors. The process is simplified by examining three fundamental cases: chaining,

splitting, and merging. In Figure 4-3 we can observe the three cases. Body b is a chained extension

from body a. There exists a split at body b because both c and h are children. Finally, the only

merge exists at body e, which has the two parents c and i. It is interesting to note that the parent-

child relationship between bodies c and e can be set in either direction without affecting the final

projection.

4.3.1 Chaining

The effective compliance of body b in the chaining case is the sum of the compliance of the parent

link a and the compliance due to the stiffness of the joint between the two bodies, Kθ. Assuming

the effective compliance of the parent link has already been constructed, it is straightforward to

compute the effective compliance of the child link k. The twist-wrench relationship at link k is

K−1
b,b = JK−1

θ JT + b
aAd K−1

a,a
b
aAd

T , (4.7)

where K−1
a,a is the effective compliance of the parent link, J and K−1

θ are respectively the kinematic

Jacobian and compliance of the common joint. Multiplying the compliance K−1
b,b by a wrench bwb

produces a twist, where the total twist is the sum of two parts: the twist due to the parent’s motion

and the twist due to the common joint motion.

Note that we use two identical subscripts to denote the compliance K−1
b,b because we want the

motion of body b due to wrenches on body b. In the sections that follow, we will also need to
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capture the motion of one body due to a wrench on another body in the system. Also notice that

the compliance matrix could be written b
bK

−1
b,b to denote that it provides twists expressed in the

coordinate frame of body b and must be given wrenches expressed in the same coordinate frame.

We will drop these preceding scripts when the coordinate frames are clear due to context.

4.3.2 Splitting

In the case where two or more links share a common parent, their motion is coupled through

their common parent. For a link with m children, the linear system determining the twist-wrench

relationship of the child links is Φ = K−1w where

K−1 ≡

⎡
⎢⎢⎢⎣
K−1

1,1 . . . K−1
1,m

... . . . ...

K−1
m,1 . . . K−1

m,m

⎤
⎥⎥⎥⎦ (4.8)

and Φ = (1φT
1 · · · mφT

m)
T , w = (1wT

1 · · · mwT
m)

T . In block matrix K−1 the diagonal block K−1
i,i is

the compliance of child link i computed as described for the chaining case, while the off-diagonal

blocks provide the coupling. That is, K−1
i,j determines the twist at link i due to a wrench applied to

link j. To create these off diagonal blocks, an adjoint transform is used to first map wrenches in

link j to the common parent k. The resulting twist is determined by the compliance of the parent,

which is then mapped from frame k into the local coordinate frame of link i:

K−1
i,j = i

kAd K−1
k,k

j
kAd

T . (4.9)

Chaining additional links after a split is very similar. The diagonal blocks are updated as per

Equation 4.7, while the off diagonal blocks are updated using Equation 4.9, where k is the lowest

common ancestor of the two links i and j.

4.3.3 Merging

Unlike the cases of serial chain and splitting which work with compliances, merging uses the ef-

fective stiffness of the parent links. The effective stiffness is a parallel combination of the effective

stiffness of the parent links, and includes the coupled stiffness due to a common ancestor.

47



Procedure 4-2 Recursive algorithm for computation of K−1. Recursion is initiated by RECUR-
SECOMPLIANCE(base).

function RECURSECOMPLIANCE(i)
if |PARENTS(i)| == 1 then

K−1
i,i ← CHAIN(i) // apply Equation 4.7

else if |PARENTS(i)| > 1 then

K−1
i,i ←MERGE(i) // apply Equation 4.11

end if

for j ∈ CHILDREN(i) do

RECURSECOMPLIANCE(j)
end for

if |CHILDREN(i)| > 1 then

SPLIT(i) // apply Equation 4.9
end if

end function

The compliant behaviour of link k results from multiple coupled chains attached to a single rigid

body. For a link with m parents, we consider that the motion of k is the result of multiple su-

perimposed versions of the link, with virtual link labels 1, . . . ,m, and coupled compliance matrix

K−1 computed with Equation 4.8. Let us now write the linear system describing the wrench-twist

relationship using the stiffness as

w = KΦ (4.10)

where Φ = (kφT
1 · · · kφT

m)
T and w = (kwT

1 · · · kwT
m)

T . Note that we use coordinate frame k for all

blocks, and observe that kφ1 = kφ2 = · · · = kφm because the twist motion of all the virtual links

must be identical. Also, the accumulation of wrenches equals the total wrench at link k, that is,
kwk =

∑m
i=1

kwi. Therefore, the effective stiffness at link k is

Kk,k = I K IT (4.11)

where I = (I · · · I), and I is the 6 × 6 identity matrix. That is, the stiffness is the sum of all the

blocks of the inverted coupled compliance matrix. The effective compliance at link k is computed

by inverting Kk,k using the truncated SVD method. As an aside, performing matrix inversion by a

truncated SVD is used extensively in our work. The tolerance parameter for inclusion of singular

values is tuned according to the stiffnesses of mechanism joints, and this is done by inspection.
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Instead of creating the coupled compliance incrementally, starting from the base and moving out

to the end effectors, we use the recursive approach outlined in Procedure 4-2, which combines the

chaining, merging, and splitting techniques described in this section. This process is initiated by a

single call RECURSECOMPLIANCE(a), where parameter a is the base link of the mechanism.

4.4 Wrench and twist maps

With the method described in the previous section, we can construct the coupled compliance,

damping, and mass matrix of the end effectors. This allows us to simulate a reduced system

consisting only of the end effectors. However, we still need to visualize the positions of all links

in the structure. For this, we use the static pose twist of internal links as computed from a set

of end effectors wrenches, and we call this the twist map. At a given time step of the reduced

simulation, we compute wrenches that explain the current state, i.e., current twists, thus producing

a compatible pose for the internal links.

In order to compute the twist map, we first describe the construction of a wrench map that dis-

tributes wrenches applied at the end effectors to the internal links. These maps are built incremen-

tally. Our algorithm starts at each end effector and traverses the DAG of the mechanism in reverse

order. First, a local wrench map is found that distributes wrenches from child links to their parents.

Then, a global wrench map is computed by a compound matrix transform along the kinematic

chain.

4.4.1 Local wrench map

Given the wrench at link k, the local wrench map may be used to compute the wrenches distributed

amongst its parent links. Naively, we could simply divide the wrench by the number of parent links

and compute the wrench to transfer to the parent links using the appropriate adjoint transforms.

However, this division of force will not be correct because the wrenches transmitted down different

chains will depend on the effective compliance of each chain. Thus we construct a linear system to

ensure that wrenches are distributed in a plausible manner that respects the internal joint constraints

and compliances.
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Note that the sum of the wrenches at the parent links must equal the wrench applied at the child

link k. That is,
kwk =

∑
i∈Pk

i
kAd

T iwi. (4.12)

Consider the case of m superimposed virtual links that was presented in Section 4.3.3. We can

write the following constrained linear system to determine the distribution of wrenches on the

different chains: ⎡
⎣K−1 IT

I 0

⎤
⎦
⎡
⎣w
λ

⎤
⎦ =

⎡
⎣ 0

kwk

⎤
⎦ . (4.13)

The constraint here is the same as Equation 4.12, except that all quantities are represented in frame

k, and thus the adjoints are 6 × 6 identity matrices, i.e., I w = kwk. To compute a local wrench

map that takes the wrench from k and divides it among its parents 1, . . . ,m, we invert the system

above, replacing the right hand side by a block column matrix that will provide the desired vector

when right multiplied by kwk. That is,

⎡
⎢⎢⎢⎢⎢⎢⎣

1Wk

...
mWk

∗

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎣K−1 IT

I 0

⎤
⎦
−1 ⎡

⎣0
I

⎤
⎦ . (4.14)

This gives us a block column vector containing the wrench map for each parent link, with a block ∗
due to the Lagrange multipliers that we can ignore. Note that forming left hand side blocks iWk re-

quires computing the inverse of a system that may be rank deficient due to the coupled compliance.

Again, we use a truncated SVD in its computation.

Finally, while these wrench maps only consider the difficult case of merging (multiple parents) by

using superimposed virtual parent links, the transmission of wrenches along simple serial chains

is easy. It simply involves a change of coordinates with an adjoint inverse transpose. For parent

link a and child link b in a serial chain, the wrench map is simply

aWb =
b
aAd

T . (4.15)
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Procedure 4-3 Recursive algorithm to compute all wrench maps iWe. Here, i is a mechanism link.
Initiate recursion by calling RECURSEWRENCHMAP(e, e, I) for every end effector e, where I is
the identity matrix.

function RECURSEWRENCHMAP(i, e, iWe)
for j ∈ PARENTS(i) do

jWi ← LOCALWRENCHMAP(i) // apply Equation 4.14 or 4.15
jWe ← jWi

iWe // apply Equation 4.16
RECURSEWRENCHMAP(j, e, jWe)

end for

end function

4.4.2 Global wrench map

The matrix iWk gives a local mapping for wrench distribution between child link k and parent

link i. Since the local wrench map only needs to be computed once, this makes it possible to

construct a global wrench map for computing the wrench at internal links due to applied wrenches

at the end effectors. Keeping with our scheme of incremental model building, we use the local map

to compute the wrenches distributed to internal links due to wrenches applied at the end effectors.

Let jWi be the matrix mapping wrenches from link i to its parent link j. The matrix mapping

wrenches from end effector e to link j is simply the compound matrix transform of the wrench

map for each body in the path 1, . . . , n between e and j,

jWe =
jW1

(
n−1∏
i=1

iWi+1

)
nWe. (4.16)

By accumulating the wrenches due to all end effectors, the wrench affecting an internal link is

iwi =
∑
e∈E

iWe
ewe. (4.17)

We use a recursive algorithm to explore the DAG while computing the global wrench map for each

link. Procedure 4-3 gives an overview of how the equations described in this section are used to

build the maps.
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Figure 4-4: Deforming a helix (left), spring ladder (middle), and “Y” mechanism (right). The rest
configuration is shown, as well as a comparison between the static solution reached by simulation
with FORK-1S versus a constrained rigid body simulator (Vortex). In each case, a 100N force is
applied (yellow arrow); all joints use a stiffness of K = 1000.

4.4.3 Global twist map

The twist map provides the static solution of the compliant joint chain due to wrenches applied at

the end effectors. For a serial chain of compliant joints, the twist at an internal link i is computed

as
iφi =

∑
e∈E

iK−1
i,i

iWe
ewe. (4.18)

However, for more complex mechanisms, special consideration must be given to the coupled mo-

tion due to splitting and merging of the kinematic chain. The contributed motion of links that share

a common ancestor with link i must also be considered, and the general version of the twist map

in Equation 4.18 is

∑
e∈E

(
iK−1

i,i
iWe +

∑
a∈A

i
aAd K−1

a,a

(
aWe − i

aAd
T iWe

))
. (4.19)

The twist has a component due to the wrench arriving from each ancestor, but also experiences

motion due to that of its ancestors influenced by end effector wrenches. The subtraction in the last

term ensures that we do not include the motion of the ancestor induced by the wrench transmit-

ted through the chain containing link i, because it is already accounted for in the first term (see

Equation 4.18).

52



4.5 Dynamic simulation

We simulate the reduced dynamic system using a backward Euler formulation (Baraff and Witkin,

1998). As such, we have a system matrix of the form A = M−h2K−hD. To solve this system with

frictional contacts, we use an iterative projected Gauss-Seidel solver similar to the one described by

Erleben (2007). This involves a Schur complement of the form GTA−1G, where G is the Jacobian

for the contact and friction constraints. We note that it is only necessary to invert the system matrix

once, and reuse this small dense inverse system for the duration of the simulation.

The solution to the reduced dynamic system only provides the positions (twists, ξ) and velocities of

the end effectors links. Internal links are updated using the twists of the end effectors. Specifically,

we compute equivalent static end effector wrenches as w = Kξ, and then from these, compute the

configuration of internal links using the twist map in Equation 4.19.

4.5.1 Free-body base link

For simplicity, the discussion above has let the body frame of the base link be fixed in the world.

To extend the reduced model to allow for motion at the base, we integrate a second equation of

motion for a rigid body representing the base. We set the base mass and inertia matrix to be that

of the entire structure in the rest pose. The motion of the base is driven by gravity, but also by the

net external wrenches applied at the end effectors. While the coupled equations of motion could

be derived from the Lagrangian, we only couple the base and end effector models through external

forces, and assume that the omitted terms such as Coriolis forces are negligible when the base

has large mass and is moving slowly. In this case, the contact and frictional constraints must be

modified to use the combined velocity of the base link bφb and velocity of the end effector link kφk

in contact frame c, cφk+b =
c
kAd

kφk +
c
bAd

bφb.

4.6 Results

We have integrated our approach with the Vortex simulator. In this section we demonstrate the

utility of our approach and the models we can produce in various scenarios of importance, such as

simulation of amphibious robot walking, and simulation of human grasping, as seen in Figure 4-1.
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Figure 4-5: The relative constraint error is measured for the “Y” shaped mechanism and the
robotic arm as a single end effector is pulled in various directions. The vertical axis gives the
constraint violation error, which is relative to the mechanism size. The horizontal axis gives the
relative displacement of the end effector, which is also represented in proportion to the mechanism.

Video results are available on the project page.1 Note that all video results were obtained by

FORK-1S simulation, unless otherwise stated.

Figure 4-4 shows a comparison between simulations with our method versus a commercial physics

engine. In each case, a constant force is applied at an end effector and simulated until a static

equilibrium is reached. The final configurations are perceptually very similar between simulation

with FORK-1S and the standard Vortex physics engine.

Additionally, we have performed a number of experiments to explore how joint constraint violation

errors grow as external forces are applied. The error at each joint is measured as the Euclidean

distance between constraint attachment points of the body pairs, which are accumulated over all

joints and scaled by the bounding sphere radius of the mechanism.

Figure 4-5 shows error plots for the “Y” mechanism and robotic arm as a single end effector is

pulled in various directions. The relative error is computed as the position violation of the con-

1http://www.cs.mcgill.ca/~sandre17/forks/
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Example # links Vortex FORK-1S
N=1 N=4 N=8

Helix 50 240 20 12 15
Helix 100 470 32 16 21
Helix 400 2150 112 84 76
Ladder 48 334 22 14 18
Robot arm 20 121 24 18 21

Table 4.1: Mean computation time in μs per simulation step for various examples. Our method
with N threads is compared against performing a full constrained rigid body simulation using the
Vortex physics engine. Note that a 6-core Intel i7 processor with hyper-threading enabled was used
to obtain these results.

straint, accumulated over all joints and scaled by the bounding sphere radius r of the mechanism.

This is plotted versus the relative displacement of the end effector, which is computed as the Eu-

clidean norm of the twist with the linear component scaled by r and the angular component scaled

by 2π. The rate of increase in the error is dependent on the direction of the applied force, but even

for significant displacements of the end effector, the proportional constraint error remains low.

Perceptually there is often no constraint violation, as demonstrated in the accompanying video.

However, although the error remains relatively low, our method is based on a low-order approx-

imation, and once the mechanism is sufficiently displaced from its initial configuration the error

increases sharply.

4.6.1 Performance

Here, we compare the overhead of simulating a mechanism with a constrained rigid body physics

engine versus the method outlined in this chapter. The computation times for solving the dynamical

system in Section 4.5 and performing numerical integration is given in Table 4.1. Each mechanism

listed in the table was simulated using a single threaded version of the Vortex physics engine, as

well as our FORK-1S implementation using different numbers of threads for the parallel update of

internal links. Note that only moderate efforts were made to optimize our implementation.

The FORK-1S method performed better in all cases, with the most drastic speedups observed when

simulating long serial chains. Notably, there is a 28 times performance increase for the 400 link

helix example. Also, as Table 4.1 suggests, there is a “sweet spot” in choosing the thread count

for simulating a particular mechanism, with an increase of threads not necessarily giving better
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performance.

One practical consideration that impacts performance significantly is grouping the internal links

so that updates are performed in batches per thread. This avoids unnecessary context switching.

Additionally, the associated data structures are stored contiguously in memory in order to minimize

memory thrashing issues.

4.7 Discussion

When large external forces are applied, constraint errors result in the interior body reconstruction.

These errors can be fixed by allowing rigid bodies to stretch, but there is a limit to how large

external forces can grow before geometry modifications are visible. As such, we have imagined

the addition of a model to reduce compliance as the system is pulled from its rest state. This

would help address the fact that the structure should become stiffer as singular configurations are

approached, and would help us approximately model geometric limits of the internal joints. We

plan to implement such a non-linear compliance scaling method in future work.

Adaptively stiffening the system would help keep the state closer to the rest configuration, avoiding

states where joint constraint violations would be visible. Nevertheless, we also note that it is

possible to make small modifications to the geometry to correct the error at the expense of letting

rigid links deform. Such a strategy has been used in repairing foot skate (Kovar et al., 2002), and

such length changes are often not perceived (Harrison et al., 2004).

We note that the behaviour of our reduced model can differ from the full model. In general,

we observe the reduced systems to be slightly stiffer than their fully simulated systems. This

is not surprising, and we believe this occurs naturally due to the lower number of DOF and the

linearization we impose. Higher levels of damping seen in the reduced system can be explained by

our implicit integration, while Vortex uses a symplectic integration scheme.

Finally, the construction process assumes that we can walk from a base node in the graph to all

end effectors. When there are loop closures between two end effectors that are on the far side of

the graph from the base, the incremental algorithm will not find them. An alternative projection

technique is necessary in this case.
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Chapter 5

Fingertip appearance models for interactive

hand simulation

Chapters 3 and 4 describe methods for controlling and simulating physically based hands, and

other similar articulated mechanisms. These methods are useful for synthesizing motion at real-

time frame rates. However, though the motion appears plausible, the hands still do not appear

realistic. Even if a skinned hand model with high-resolution textured geometry is used, this does

not effectively portray fundamental visual aspects associated with grasping and manual interaction.

For instance, colour changes due to contact.

In this chapter, we present our method for synthesizing such colour changes; the visual cues asso-

ciated with hand-object interaction. Simulating these colour changes better reflects the nature of

hand-object interaction, and increases the richness of interactive character animations.

5.1 Overview

Digital characters have become increasingly realistic over the years. Skinning techniques have

been developed to better model the deformation of skin; physically based simulation of garments

has improved realism by providing valuable secondary motion to a character’s movement; and

control strategies have allowed for natural simulated motion that reacts to environmental changes
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Figure 5-1: An illustration of the texture modification process used by our method for appearance
modeling of interaction forces.

in a plausible manner. Control, deformation, and appearance can make use of procedural tech-

niques, physics simulation, or data-driven models. Physically based deformation and rendering, in

combination with anatomically detailed models, have become a popular approach for improving

the quality of images and animation. We follow the alternative, which is to use captured data to

create empirical models that replicate the behaviour of real-world example measurements.

While motion is central to the problem of character animation, and deforming geometry is a pri-

mary factor explaining overall appearance, colour variations across the character’s skin are essen-

tial for rendering life-like images. Texture and bump mapping are now standard, while spatially

varying surface scattering distribution functions and light transport approximations are becoming

more common for highly realistic image production. In some cases, reflectance or scattering mod-

els can be parameterized. For instance, varying amounts of perspiration can drive glossiness to

permit simple appearance changes, while it is also possible to model sub-surface blood variations

due to pose, pressure, alcohol consumption, or exercise.

This is where our work fits in, as we are modeling colour changes due to the contact forces avail-

able in an interactive simulation. Our approach to modeling these colour changes is with a simple

scattering model. Figure 5-1 shows an overview of our appearance modification process. A grasp-

ing motion controller and multi-body physics simulation is used to demonstrate the results of our

method. The contributions of this work are summarized as follows:

• A simple capture process for collecting fingertip photos and finger pad pressure images;
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• An analysis method that uses a custom, simplified hemoglobin concentration model;

• An efficient appearance model implementation within a fragment program, which integrates

easily with a real-time interactive physics-based simulation of grasping control.

5.2 Data capture

Our capture process involves collecting photographs and force measurements of fingertips that are

applying different amounts of pressure. We use a TekScan Grip system for measuring contact

pressure at a fingertip. This system has a resolution of 6.2 taxels per square centimeter, where a

taxel is a “tactile pixel” or “tactile element” within a pressure image. At the fingertip, the pressure

image resolution is 4 × 4, giving a total of 16 taxels. We multiply the pressure value at each

taxel by the area of an individual taxel, and sum up the force contributions of all taxels under the

fingertip to produce a total force estimate. We also compute a center of pressure, but we currently

only investigate the appearance change associated with forces centered on the finger pad. We have

collected data with varying center of pressure to be used in future work.

We capture images with a consumer camera. Because we use a makeshift diffuse light box (con-

sisting of David laser scanner calibration panels), we assume that the images effectively capture

the albedo variation of the skin and fingernail. The camera white balance is set so that we can

compute reasonable hemoglobin concentration estimates (see more details in Section 5.3).

Figure 5-2 shows our capture setup along with a sample of the captured pressure data. We have

captured data for index and ring fingers of the right hand across three subjects. The process starts

with the capture subject placing the distal finger pad of the selected finger at the center of the

fingertip taxel grid. The capture subject interactively adjusts the positioning of their finger by

applying a small amount of perpendicular force to the sensor surface. The fingertip position is

adjusted until the center of pressure is aligned with the center of the sensor grid. Once capture

begins, the finger remains in contact with the sensor, and if finger slippage occurs, the process

is restarted. The back of the finger remains visible to the camera as the subject explores different

pressure magnitudes (as well as varying the center of pressure in our extended future work data set).

Pressure and image data are captured simultaneously. The interactive nature of the capture software
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Figure 5-2: Left, makeshift diffuse light box and TekScan capture setup. Right, example pressure
data showing center of pressure.

Figure 5-3: Left, an example raw captured image, and right, the cropped and masked pre-
processed image ready for analysis.

allows the subject to avoid collecting multiple similar examples, which could be problematic for

over-fitting during model construction.

Because the fingertip may translate and rotate slightly between different photographs when ap-

plying different amounts of pressure, the example images need to be warped into a consistently

parameterized texture image (note that rotation is more pronounced in examples that involve vary-
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ing centers of pressure). In particular it is important to match the shape of the fingernail. While

it would be possible to develop a custom automated process to warp the images, we choose to do

this manually for the examples that we collect (i.e., 10 samples used for our data-driven model).

This pre-processing task is not onerous, and ultimately we observe that the estimated model for

one fingertip is sufficiently general to apply to all fingertips and across individuals (validation of

this can be found in Section 5.5). We use the Puppet Warp tool in Photoshop to deform the images,

and apply a mask to avoid including any of the fingertip silhouettes and background in the analy-

sis. Figure 5-3 shows an example photograph, along with a pre-processed example image which is

ready for analysis.

5.3 Model fitting

While Mascaro and Asada (2004) note that finger posture also plays an important part in fingertip

appearance, we focus solely on contact forces. Thus our appearance model can be seen as a

function mapping a force on a finger pad to colour variations in the texture. Given that these

colour changes are largely driven by the distribution of blood in the fingertip, we choose to do our

regression in the space of hemoglobin concentrations.

In this section, we first explain our model for varying concentrations of hemoglobin, and the ef-

fect that it has on light scattering. We then describe how to estimate the absorption properties of

hemoglobin in our images, and from there, how we work with hemoglobin concentration changes

across the fingertip images. Finally, we describe an interpolation function that allows us to repro-

duce the collected examples.

5.3.1 Material concentration and light absorption

We assume a simple model for light scattering within human skin following previous work (Tsumura

et al., 1999; Jensen et al., 2001; Tsumura et al., 2003). The transmittance T of light through a mate-

rial at a given wavelength λ is defined as the fraction of the exiting spectral radiance L(λ) over the

initial incident radiance L0(λ). The Lambert-Beer law models transmittance as a function of the

distance d that the light travels within the material, and the molar absorptivity and concentration
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of a material α(λ) at the given wavelength. Specifically,

T =
L(λ)

L0(λ)
= 10−α(λ)d ∈ [0, 1]. (5.1)

Since we are using RGB images, we will take the convenience of defining α ∈ R
3 as a three-

tuple of values corresponding to red, green, and blue wavelengths. When there exists a mixture of

materials, we can write α as a sum of contributions from each of the materials. For instance, in our

case it is useful to write the absorption as the sum of two parts, the first due to hemoglobin, αh,

and the second due to other constituents, αo, such as melanin and keratin.

In the context of a diffuse reflection, we assume that our RGB images do not contain any lighting

variation due to geometry, and in one sense, we can view the pixel values as varying surface albedo,

which can be used as the diffuse material parameter in a lighting program. Here, we assume this

per pixel reflected light percentage can be treated as transmission along a sub-surface light path

of unknown fixed length within a homogeneous material. We further assume the light path d to

be constant across all pixels. Thus, the negative logarithm of the pixel components gives us a

proportional absorption property of the material mixture recorded at that pixel. That is, given a

pixel’s colour as (R,G,B) ∈ [0, 1]3, we compute

α = (− log(R),− log(G),− log(B)) ∈ [0,∞]3. (5.2)

Because the molar absorptivity of a material is constant, we factor α into a normalized pigment

vector and a scalar quantity. Thus, we model colour changes in log space as changes in material

quantity, and at any given pixel we can write

α = qσh + αo, (5.3)

where q ≥ 0 is the hemoglobin quantity, σh ∈ R
3 is the hemoglobin pigment, and αo models

the absorption of all other materials. We expect q at a given pixel to change depending on the

distribution of blood in the fingertip, while the concentration of other materials, and in turn the

absorption, remains constant.
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5.3.2 Hemoglobin pigment estimation

With the white balance of the camera set correctly, our images will have colours appropriate for

use in a texture map. However, because the illumination spectrum and camera response curves are

unknown, the observed pigmentation of hemoglobin may not be fixed and must be estimated from

the captured data. This is relatively straightforward because we have numerous sample images in

which the only changes are due to the redistribution of blood in the fingertip tissues as different

pressures are applied to the finger pad. Thus, the negative log colour values of different images at

a given pixel should only vary in the direction σh.

We estimate σh as the first principal component of the negative log colour of all pixels in all images.

Each pixel is centered independently to account for the varying amounts of other materials (i.e.,

αo) across the fingertip. We use the negative log colour of the pixel in the zero pressure image

as the center, though the mean negative log value would also be suitable (or likewise, that of any

example image).

Note that the vector σh will have all positive components because absorption at different wave-

lengths is positively correlated (i.e., a material can only absorb more of any given light wavelength

when its concentration is increased). Averaging across three data sets for three individuals, we

estimate σh = (0.19, 0.77, 0.61), which corresponds to higher absorption of green and blue wave-

lengths in comparison to red. Section 5.5 discusses estimates and validation further.

Letting σh be normal length, we can compute the hemoglobin quantity for any pixel in any image

with a simple dot product,

q = α · σh, (5.4)

while the residual provides absorption due to other materials,

αo = α− qσh. (5.5)

We compute hemoglobin quantity-change images for all of the examples to permit analysis and

modeling (see Figure 5-4). While the pigment estimation is not sensitive to the center, we choose

the zero pressure image as the center for the example hemoglobin quantity-change images. There-
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Figure 5-4: Example quantity-change images showing considerable correlation across examples
at different non-zero finger pad forces.

fore, the quantity has zero change when there is zero force on the finger pad. We do not store the α

or residual αo vectors as they can easily be computed on the fly in the shader program as described

in Section 5.4.

5.3.3 PCA model of hemoglobin quantity changes

Because there is considerable correlation among the hemoglobin quantity-change images that we

observe with the different finger pad forces, it is appropriate to use PCA to compute an efficient

basis to represent these changes in our example images.

There is camera noise in our example images, and because blood redistribution does not happen

at the spatial frequencies captured by our full resolution example images, we down-sample the

images to 256× 256. Furthermore, we have considered applying a Gaussian blur to reduce camera

noise, but this is not essential as we have not observed noise as having a significant effect on the

first few principal components.

Figure 5-5 shows the principal component basis, along with the variation explained by the different

basis vectors. We call these basis images eigen textures. Note that with just the first two we can

capture over 94% of the variation observed in our examples.

Figure 5-6 shows reconstructions of the example RGB images using a reduced basis with only 4

components. The negative log colour image is modified by adding σh scaled by the per pixel quan-

tity change computed with the truncated eigen texture basis. The result is negated, exponentiated,

64



 

 

−0.04

−0.02

0

0.02

0.04

0.875 0.066 0.019 0.013 0.011

Figure 5-5: The principal component basis vectors (i.e., eigen textures) explaining hemoglobin
quantity-change across images. Below each is a value corresponding to the variation explained by
each vector.

and finally clamped to [0, 1] to produce the reconstruction RGB image. Note that clamping is only

necessary for extreme modifications and is typically unnecessary.

We are effectively modeling a process of appearance change due to blood moving about in the

fingertip. As such, it would be ideal to use a data interpolation technique that appropriately takes

into account mass transport (Bonneel et al., 2011). In the interest of having an inexpensive inter-

polation, we instead choose to model blood distribution variation in a principal component basis.

The consequence is that we cannot do any better than blending examples, and if we do not have

enough examples, then our results will exhibit less prominent differences from either the average

or zero force appearance.

5.3.4 Interpolation

At this point, we have a collection of N examples consisting of a measured total finger pad force

in newtons, x ∈ R, and a hemoglobin concentration change that is represented in a truncated PCA

basis, y ∈ R
M . We use M = 4 because it is both sufficient and maps easily to graphics hardware.

We use a quadratic polyharmonic spline to interpolate the PCA coordinates at the sampled forces,

y(x) =
N∑
j=1

wjφ(‖ x− xj ‖), (5.6)

where φ(r) = r2ln(r) and xj is force data for the jth sample. The weights w are computed
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0.6 N 2.5 N 5.4 N 7.7 N 9.7 N

Figure 5-6: Top row shows processed example images, while the second row shows reconstructions
using 4 principal components. Note the whitening at the sides of the fingertip and under the nail at
the tip as the pressure increases due to blood being squeezed out, into surrounding tissues. Also,
note the similarity between examples and reconstruction.

easily with a linear solve. We use this RBF interpolation approach because it will extend easily

to interpolate other important features, such as the center of pressure on the finger pad, and the

posture of the distal joint. In preliminary work in this direction, we noted that care is necessary

in defining the distance metric for x such that it is meaningful. Ranges for different components

must be taken into account to allow for valid comparisons. For example, position and force values

need to be scaled to a comparable range, as do the joint angles of the finger if they are included.

Figure 5-7 shows plots of how well and how smooth the interpolations fit the data. The coefficients

of the higher index principal components are noticeably smaller. This is because the basis vectors

are all unit length, and the higher index vectors only capture a small portion of the variation.

5.4 Reconstruction implementation

In this section, we describe the reconstruction of the fingertip appearance in the context of ren-

dering our full hand model. Thus, we will address how we pack information into textures and

implement the reconstruction process in a fragment shader.
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Figure 5-7: Interpolation of the examples, shown with dots, in the coefficients of the PCA basis.

Our model is suitable for any skinned hand rig. Preliminary experiments used a hand model ex-

ported from DAZ Studio. Our current work uses a hand model purchased from TurboSquid, with

higher quality textures. Both models include linear transform blending weights. We use the FBX

format for the convenience of being able to load and display the models easily within OpenScene-

Graph.

5.4.1 Textures

In order to modify the colours of the diffuse texture map, we create a second texture map shown in

Figure 5-8. We name this texture stiaTex to denote the contents of its four components: s and t

texture coordinates, a finger index i, and an alpha mask a. The red and green channels contain the

texture coordinates for the fragment’s corresponding location in the pre-processed example image

(to access the eigen textures for computing the fragment’s hemoglobin quantity change). The blue

channel contains an index i to identify the fingertip to which the fragment belongs (this allows us

to look up the appropriate finger’s PCA coordinates which were computed from the contact force).
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Figure 5-8: Textures used in computing varying fragment colours at the fingertips. Left shows
the stiaTex, with texture coordinates in red and green for looking up hemoglobin concentration
changes, and the finger index encoded with different shades in the blue channel. Middle shows the
base texture and the alpha mask with feathered edges used to blend the base texture with colour
values modified due to finger pad forces is shown on the right.

Finally, the alpha channel contains an alpha mask to allow a smooth blend between the modified

colours and the base texture at the edges of the fingertip.

Note that the alpha component is shown separately at the right of Figure 5-8 to make it easier to see.

Likewise, we overlay black lines to show the mesh coordinates within the texture to display how

the texture content relates to the mesh geometry. Obviously, our run time textures do not contain

these black lines. Furthermore, note that these mesh lines reflect the coarse level resolution of the

mesh, while we use a subdivided mesh for better quality at run time.

The index information is easy to paint into the stiaTex texture image. However, a bit more

work is involved to set the red and green channels to the appropriate texture coordinates. The

process we use is to first prepare a red-green texture gradient identity map, and overlay this with

our pre-processed fingertip example image. We then paste the red-green texture coordinate image,

along with the zero pressure example image in a coupled layer, into the stiaTex image. The

pasted layers must first be scaled, translated, and rotated to roughly match with the back of a

fingertip in the base texture. We then use the Photoshop Puppet Warp tool to carefully deform the

fingertip example image to match features in the base texture and mesh geometry. Once we have a

good match, the warped red-green gradient can be flattened into the red and green channels of the

stiaTex image, and we repeat the process for all fingers.
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Figure 5-9: The auto-
matic alpha mask com-
puted from eigen tex-
tures.

The alpha mask is not difficult to produce. We partially automate

the process by using the eigen textures to identify where there are

important changes in hemoglobin quantities. At each pixel, we sum

up the absolute values of the first four eigen textures, and normalize

to produce the mask shown in Figure 5-9. This is helpful because

the pre-processed example images include areas which were masked

and filled with a neutral skin texture to avoid the silhouette edges and

background, and using this automatic alpha mask as a guide ensures

that we exclude these regions in our blend. Ultimately, we edit this

to produce the final alpha mask (e.g., we apply threshold, erosion, blur, and custom per finger

modifications). The alpha mask is warped and flattened into the stiaTex image in the same

process used for the red-green texture coordinate gradient.

While we could let our model produce colour changes on the base texture, we choose to replace the

base texture with the warped zero pressure example image. This typically involves a small HSV

space colour correction to the base texture to have it match our white balanced example images.

We use the alpha mask generated above to smoothly blend the pasted example into the base texture.

Computing hemoglobin changes involves a chain of two texture lookups. This is a useful alter-

native to defining a new set of texture coordinates over the surface of the mesh. It allows for

distortions in the mapping at the resolution of the texture, as opposed to the resolution of the mesh.

This can be useful for closely matching small features, for instance, the length of fingernail may

be longer or shorter in the geometry in comparison to our pre-processed images.

We compute hemoglobin changes using the first four eigen textures shown in Figure 5-5. These

can be assigned to different texture units, but when only four are needed, it is efficient to pack them

into the red, green, blue, and alpha components of a single floating point texture image. Note that

in the previous section we use Matlab to compute the principal component analysis, and export

the eigen textures as floating point tiff images, which are easily loaded into texture memory using

OpenSceneGraph.
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5.4.2 GLSL fragment program

Most of the work of modifying the appearance of fingertips is done in a fragment program. Using

the total force on each finger pad, we evaluate the interpolation function in Equation 5.6 to compute

the PCA basis coefficients for each finger’s hemoglobin quantity change. We have 4 values for each

fingertip. Thus, we compute a total of 20 values and store the results in a vec4 GLSL uniform

array. The GLSL fragment program code necessary to compute the appearance modification is

quite small and is provided in Procedure 5-4.

To summarize the process, it begins with a base colour and stia value texture lookup, followed

by a third texture lookup of the PCA basis at texture coordinates st. The negative log colour of the

base texture is computed, and then modified in the direction of σh by the hemoglobin concentration

change. Note that in our implementation, σh is stored as a constant global variable, or uniform,

and only needs to be set once. The hemoglobin concentration change is computed with a simple

dot product of the PCA coordinates and the four PCA basis vector components associated with

the fragment. Note that some care is necessary when building the stia texture to ensure that

the blue component can be correctly cast to an integer. The final diffuse colour is computed by

exponentiating the modified negative log colour. The colour is clamped to [0, 1], and blended with

the base colour using the alpha mask.

5.4.3 Grasping control and simulation

The hand grasping animation is simulated with the Vortex real-time physics simulation software.

We use a variety of simple PD feed-forward control trajectories to produce animation, as well as a

grip strength controller that works from a single grasping pose based on the method of Liu (2009).

Our controller permits the computation of forces and torques at the fingertips that allow for a

simple modulation of grip strength. From the forces at each contact, we compute control torques

at the joints by multiplying with the Jacobian transpose (Murray et al., 1994b). This lets us set

a reference pose for a proportional derivative controller. We use reasonable joint stiffness and

damping values, which are set using the object-in-hand drop test suggested by Pollard and Zordan

(2005).
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Procedure 5-4 GLSL fragment shader code snippet summarizing the necessary additions to a
standard per fragment lighting program.

// Fragment program
sampler2D baseTex;
sampler2D stiaTex;
sampler2D eignTex;
varying vec2 tex0;
uniform vec4 y[5];
uniform vec3 sigma_h;

vec3 base = sampler2D( baseTex, tex0.st );
vec4 stia = sampler2D( stiaTex, tex0.st );
vec4 U03 = sampler2D( eignTex, stia.st );
vec4 y03 = y[int(stia.b)];
float dq = dot( y03, U03 );
vec3 alpha = -log( base );
alpha += dq * sigma_h;
vec3 base2 = exp( -alpha );
base2 = clamp( base2, 0, 1 );
float mask = stia.a;
diffuseColour = mix( base, base2, mask );

// per pixel lighting follows...

When there is one or more contacts at a finger pad, we sum up the force contributions, and use the

magnitude in the PCA coordinate interpolation functions. We note that even when the simulation’s

collision restitution is set to zero (i.e., no bounce), there can be a spike in the contact force which

results in a brief white flash on the fingertips. In reality, the appearance changes should be gradual

due to the fact that blood must physically move within the fingertip. Therefore, we add viscosity

in the form of an exponential decay, which we apply to the force magnitude (conceptually it would

make more sense to do this on the PCA coordinates, but there is no difference in our model). Our

simulation runs at 100 Hz, and we note pleasing results by blending 0.95 of the previous time

step’s force magnitude with 0.05 of the current.

5.5 Validation and results

In this section, we discuss three types of validation that we have performed on our fingertip ap-

pearance modeling efforts: leave one out cross-validation of interpolated reconstructions, model
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Figure 5-10: A simulated grasping sequence where grip strength starts low and increases. Note
the whitening of the nail while tissue near the cuticle takes on a more prominent red colour.

Figure 5-11: A simulated interaction where a box can be pulled away from a grasp using a spring
attached at the cursor location. Note the colour changes at the middle and ring fingers that subtly
indicate increased contact forces.

transferability between fingers and subjects, and verification of hemoglobin pigment consistency.

We also show results from interactive simulations of grasping. Complete animations and video

sequences are available on the project page.1

5.5.1 Cross-validation

Figure 5-12 shows a comparison of images synthesized with interpolation compared to pre-processed

example images that were left out of the data analysis and fitting. The two examples show that our

method successfully interpolates examples involving both small and large contact forces with little

error. We compare our method to the naive solution, which simply uses the base fingernail image

for all interaction forces. The absolute error is computed as the mean squared difference in RGB

values of the validation and synthesized images. The relative error, computed by a ratio of absolute

errors, is 0.6559 at 0.18 N, giving just a moderate improvement over the naive method. However,

at larger interaction forces, the benefit of our method becomes clear, as the relative error drops to

0.1183 at 9.25 N.

1http://www.cs.mcgill.ca/~sandre17/fingertip/
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Figure 5-12: Leave-one-out cross-validation of our synthesis approach with testing examples at
0.18 N (top) and 9.25 N (bottom). From left to right are the example images, synthesized images,
the RGB error magnitude of the synthesized image, and the RGB error of the naive solution (errors
scaled 4× to reveal detail).

5.5.2 Model transferability

To evaluate the transferability of our model across fingers and subjects, we performed the model

fitting steps on three separate sets of 10 sample images gathered from three subjects. Figure 5-13

shows the first principal component from each set. These first eigen textures share qualitative

similarities, with most changes occurring toward the distal part of the fingernail, and in the skin to

the left and right. The Pearson correlation coefficient of the first eigen texture between the first two

subjects is 0.6033, indicating a moderate correlation, but note that these two eigen textures do not

share a common parameterization. For instance, we would expect a stronger correlation if image

warping was applied.

We have also evaluated the constancy of our hemoglobin pigment estimation across different sub-
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Figure 5-13: The first principal component computed using different sets of example data from
three different subjects. Shown are the index finger of subject one (left), the ring finger of subject
two (middle) and the index finger of subject three (right).

jects and example sets. The hemoglobin pigment vectors for the three subjects in Figure 5-13,

number one on the left, two in the middle, and three on the left, were estimated to be

1σh = (0.1584, 0.7786, 0.6072),

2σh = (0.1905, 0.7810, 0.5948),

3σh = (0.2386, 0.7513, 0.6153).

We note that the hemoglobin pigment vectors are remarkably similar, with 1σh · 3σh = 0.9964,

which is an angle of less than 5 degrees. The variance across the three pigment estimates is

(0.0016, 0.0003, 0.0001).

Figure 5-10 shows an example simulation where a virtual hand simulation is grasping an object.

When we increase the desired grip strength parameter of the controller, the hand posture changes

to produce larger torques at the joints and in turn larger contact forces. We see a change in finger

posture for the stronger grip, but also colour changes at the fingertip due to blood distribution

changes estimated by our data driven model. The effect can be seen more prominently in the

supplementary video.
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Figure 5-11 demonstrates both fingertip colour changes and the interactivity of our physics based

grasping simulation. A mouse-spring interface is used to apply forces on the wooden block, caus-

ing it to rotate. The compliant finger joints bend to accommodate the motion, while the fingertips

show colour changes due to the varying contact forces.

5.6 Discussion

Our real-time rendering method for fingertips produces hand animations that are undeniably richer

versus using naive techniques. The demonstrated technique shares similarities with other work

in appearance modeling, notably Tsumura et al. (1999) and Donner et al. (2008). However, our

work focuses on fast appearance changes for fingers driven by contact forces in a multi-body

dynamical simulation. An obvious target application for this work is video games, although the

method is accessible to a range of applications and existing frameworks. The method can be readily

integrated into an existing shader pipeline, and to facilitate re-use of our source code and data, we

have released these materials on the project page.

The demonstrated results are compelling and we are motivated to expand on this work. Currently,

we are considering building a more expressive model, and applying appearance changes to other

regions of the hand. For example, the described method produces plausible colour changes for

contact with the middle of the fingerpad. A limitation of our work is that it cannot faithfully

reproduce details when rolling the fingertip. The center of pressure could therefore be incorporated

as part of the model to address this issue.

Additionally, the viscosity parameter discussed in Section 5.4.3 requires some tuning to get plausi-

ble behaviour for colour changes. This is a minor drawback, but the parameter could be estimated

from captured video and pressure data. For example, by performing a frame-by-frame reconstruc-

tion of a sequence where a dynamic pressure is applied at the finger pad, it should be possible

to solve for a viscosity constant that best matches the captured sequence. However, this requires

significant manual effort in order to pre-process and puppet warp individual video frames. An

automatic technique could be devised for this purpose.
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Finally, previous work has treated melanin and hemoglobin as chromophores that independently

contribute to skin colour (Jimenez et al., 2010; Tsumura et al., 1999). An interesting validation

experiment, which we intend to carry out as part of future work, is verifying that our model is

transferable to the fingers of people with varying melanin contents, such as people of different

ethno-racial backgrounds.
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Chapter 6

Interaction capture system for grasp

synthesis

The framework presented in Chapter 3 uses a combination of simulation, optimization, and a pre-

determined controller structure to successfully perform in-hand manipulation of objects. This is

a common approach, whereby carefully selected features of the simulation are used to construct

objective functions. This also means that a state machine needs to be designed for each class of

motion or manipulation problem, and features of the simulation must be carefully selected in or-

der to construct an objective function. Ideally, controllers for synthesizing natural human motion

could be created automatically from real-world examples. With this goal in mind, we created a

novel sensor ensemble to perform motion and interaction capture, and have taken steps towards

building controllers from the data.

This chapter presents the details of the capture setup. This unique system may be used to exam-

ine human grasping and manipulation tasks. Additionally, we present experiments based on data

collected from real-world interactions and preliminary results are discussed. Also, we discuss our

initial work on controller design by interaction capture and our success in this area.
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Figure 6-1: Top row, showing the combined Tekscan Grip and Measurand ShapeHand sensors.
Bottom row, a screen shot from the custom C++ application used to capture and visualize data
from the sensors. The redness of the virtual taxels corresponds to the measured pressure, and a
real-time plot at the bottom of the screen provides the user with an estimated grasp quality that is
computed from sensor data.

6.1 Sensors and software

One way to generate natural motion is by replaying data collected using a motion capture device.

For example, an optical tracking system may be used to capture and reconstruct the joint motions

of a human character model, including their hands. However, other devices are better designed for

capturing hand and finger joint motions. One such device is the Measurand Shapehand,1 which

we use as one of the components. It uses 40 flexion sensors to reconstruct the joint motions of

the fingers and wrist. Motion frames are sampled at a rate of 100 Hz. Each frame is a set of

1http://www.shapehand.com/
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16 quaternions, representing the rotations of proximal, intermediate, and distal phalanges, as well

rotation of the wrist.

We augment the Shapehand glove and combine it with a Tekscan Grip2 pressure sensor. This type

of sensor captures tactile and interaction forces at 18 sites across the finger pads and palm. Each

site varies in size and has an array of tactile sensing elements, or taxels, which are capable of

measuring pressure up to 50 psi. There are 349 taxels in total. The pressure data is stored as a

25× 29 resolution image, which may be sampled at a rate of up to 750 Hz.

Figure 6-1 shows the assembled system without data cables. The pressure sensors are very thin and

conveniently sewn into custom designed pockets on the front of the glove. The flexion sensors are

inserted into pockets on the back of the glove. These pockets are provided as part of the original

manufacturer’s design. The signal processing units for both the joint motion sensors and pressure

sensors are mounted on the forearm, behind the wrist, using a velcro strap.

We implemented a custom C++ application to collect data from the two sensor devices. The pres-

sure sensors update at a much faster rate than the joint motion sensors. Therefore, frames from

each device are buffered and a separate timer function is used to synchronize the data structures.

The buffers are updated at a rate of 100 Hz. We estimate that sampling at this rate is sufficient

to capture transient force and joint velocity information during grasping tasks. For instance, dur-

ing pseudo-static grasping tasks, reaction times to disturbance forces are typically greater than

125 ms (Johansson et al., 1992); our system can collect dozens of pressure frames over this du-

ration. Likewise, hand joint velocities across a variety of reaching and grasping tasks is typically

less than 50 rad/s (see Spalding, 2010), a signal rate that we can faithfully reproduce based on the

Nyquist-Shannon sampling theorem.

The sensor data is also used to update the joint configuration of a 3D hand model in a real-time

simulation (see Figure 6-1). Pressure data is visualized by changing the colour of virtual taxels

drawn on the hand. The application allows the user to adjust the dimensions and location of taxel

arrays on the virtual hand, thus giving better correspondence with the real hand and glove. Also, a

grasp quality metric (Ferrari and Canny, 1992) is computed at each time step using the position and

2http://www.tekscan.com/grip-pressure-measurement
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orientation of virtual taxels, and contact forces estimated from the pressure measurements. This

information is plotted to an on-screen display.

6.2 Postural synergies for grasp optimization

In this section, we discuss how data collected with our system is used to learn grasps for a climbing

simulation. Recall that the work in Chapter 3 demonstrates how the challenge of determining

controller parameters for a 23 DOF hand model can be mitigated by incorporating a user-defined

pose corpus and computing a reduced pose basis. We use a similar approach here, but rather

than manually defining the poses, a postural synergy is determined from real-world measurements

obtained using the system described in Section 6.1.

The climbing application includes a fully dynamic articulated character with n = 83 DOF, which

uses a collection of low-level controllers to support itself and make progress on a climbing wall.

One of these, the grasping controller, pre-shapes the hand and plants the fingers on a target hand-

hold. This section will discuss the optimization process used to learn grasping poses and its inte-

gration as part of the controller.

6.2.1 Reduced parameter space

We build a reduced pose basis using a sample set of 21 grasp postures captured during climbing

trials. Each sample consists of a pose vector q ∈ R
n, where n is the number of degrees of freedom

of the hand skeleton. The elements of q correspond to the joint angles of the hand, excluding the

wrist. The samples represent static grasp postures used by human subjects to support themselves

on a climbing wall.

From the samples, PCA is used to construct U ∈ R
n×m whose columns contain a reduced eigen

basis of the postural synergies used in climbing. Note that m is much less than n, the total degrees

of freedom for the hand. A target posture for the hand may be computed by the relationship

q ≈ Up, where p ∈ R
m is a coordinate vector in the reduced space. This allows us to search for a

grasp posture using far fewer degrees of freedom. The postural synergies used by the optimization

are shown in Figure 6-2, and for our experiments m = 3.
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Figure 6-2: The eigen postures used for grasp optimization. Each row shows poses from a single
coordinate index, as the parameter value is gradually increased.

6.2.2 Grasp optimization

A pose is learned by solving a multi-objective continuous optimization problem. At runtime, this

pose is tracked using PD servos, actuating the joints of the fingers and wrist towards a reference

configuration to successfully grasp a handhold. The controller parameters consist of a vector õ ∈
R

6, giving the desired position and Euler angle orientation of the wrist, and the target eigenvector

pose p̃. We use a = (õ, p̃) to refer to the wrist and the reduced coordinate parameters collectively.

Please note that in the proceeding discussion, we use ·̃ to denote a target quantity, and ·̂ for unit

length vectors.

To determine suitable controller parameters for a given handhold, we solve a minimization problem

for the multi-objective function

min
a

wdLd + wbLb + wfLf + wvLv.

This is done by running a forward dynamical simulation to evaluate candidate solutions for a,

and the CMA-ES algorithm is used to find an optimal solution. The initial configuration for the
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simulations has the hand located approximately 16 cm in front of the handhold with a neutral pose

(see middle column Figure 6-2). Details about the objective terms, and how they are computed,

are provided in the proceeding sections.

Fingertip distance. The term Ld is used to minimize the distance between the fingertips and the

handhold at the end of the grasping phase. This helps the optimization find motions that move

toward the handhold, and is useful when exploring regions of the parameter space where the final

configuration of the hand is not in contact with the handhold. It is computed as the sum of the

minimum distance between each finger segment and the handhold, or

Ld =
∑
i∈K

1

r
d(Gi, Ghold).

The parameters Gi and Ghold define the triangle mesh geometry of the ith finger segment and the

handhold, respectively. Note that the Euclidean distance d(Gi, Ghold) is divided by the bounding

sphere radius r of the hand, thus normalizing the range of values for this objective term. The

distance function returns 0 if the finger segment intersects the handhold mesh. Also note that only

the distal finger segments are contained in the set K. This was found to give satisfactory results

for the optimization.

Bounds. The term Lb introduces a penalty for controller parameters that are outside the valid range.

For parameters controlling the orientation of the wrist, a range of min-max values [omin, omax] is

selected that reflects the set of natural wrist postures. Similarly, the range of values [pmin, pmax] for

the eigen pose p̃ is determined by mapping the original set of sample poses onto the basis UT and

choosing the minimum and maximum value of each coefficient index. Parameter values outside

this range are penalized, and the objective term becomes

Lb =
m+6∑
i=1

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|ai−amax
i |

|amax
i −amin

i | , ai > amax
i

|ai−amin
i |

|amax
i −amin

i | , ai < amin
i

0, otherwise

.

Note that the penalty term is normalized, and here ai is the ith element of the controller parameter

vector.
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Force transmission ratio. The term Lf attempts to maximize the force transmission ratio (FTR)

due to fingers in contact with the handhold. The FTR is an estimate of the potential force that can

be exerted in a given direction. We compute it as in the work by Chiu (1987). The force applied

by the fingers must be in a direction opposite the force required to support the character in the

climbing task, since contacts at the fingertips are used to resist the effects of gravity and inertia.

For example, if climbing in a vertical direction, the character must apply a force in a downward

direction. To compute the FTR, only contacts that have the property n̂T
i v̂i < 0 are considered.

Here, n̂i is the unit length contact normal at the ith finger segment and v̂i is a unit length vector

giving the front facing direction for that finger segment. By accumulating the ratio over each of

the k finger segments, an estimate of the FTR for the grasp is determined. Therefore, the objective

term becomes

Lf =
1∑k

i=1 α(ci, ŝ)
,

where α(ci, ŝ) =
(
ŝTJciJci

T ŝ
)− 1

2 is used to compute the FTR. Note that Jci is the linear Jacobian

computed at contact ci, and the unit length vector ŝ is the supporting direction for the climbing

task. Note that we assume that α(ci, ŝ) is non-negative, and if no finger segment is in contact with

the handhold, Lf = 100 (i.e., a large value to dominate other terms in the objective function).

Alignment. The final term La penalizes orientations of the forearm that are misaligned with the

desired pulling or pushing direction, thus ensuring natural postures for the wrist. The objective

term is

La = 1 + σ ûT ŝ,

where û is a unit vector pointing in the direction of a line connecting the elbow and wrist, and σ is

+1 or −1, depending on if a pull or push is required.

Figure 6-3 shows some of the grasping poses found by the optimization algorithm for a target

handhold. The optimization takes approximately 20 seconds on an six-core Intel 3.2 GHz processor

per direction per handhold. A parallelized implementation of the CMA-ES algorithm is used. A

sequence showing the character reaching, grasping, and supporting itself on a climbing wall is

shown in Figure 6-4. The RTQL83 physics engine is used to simulate the character and climbing

3http://www.cc.gatech.edu/~karenliu/RTQL8.html
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Figure 6-3: Learned grasping postures for the climbing wall handhold shown on the left. The
different poses found by the optimization depend on the direction of the supporting force for the
character. Optimization parameters wf = 5.0,wb = 10.0,wd = 0.2,wc = 0.2,wa = 1.0 were used
to generate these results.

Figure 6-4: A character supports itself by grasping handholds on a climbing wall. An offline
optimization step is used to learn grasping postures for each handhold. At runtime, an appropriate
grasp is selected based on the limb configuration of the character and the climbing direction.

wall. The postures used for the pre-shaping phase are the ones learned by the optimization. A

video clip of the climbing sequence is available on the project page.4

In this section, we have demonstrated how a collection of real-world data may be used to determine

a synergy of climbing postures and plan grasps in a low dimensional parameter space. The resulting

poses are plausible and have been successfully used in a virtual climbing application. Similar to the

approach outlined in Chapter 3, the grasping optimization described here also uses an offline step

to learn controller parameters. Although the latter method uses a forward dynamical simulation

to evaluate controller parameters, a faster approach may be possible. For example, a dense set of

grasp poses could be generated as a pre-computation step, and collision detection performed online

4http://www.cs.mcgill.ca/~sandre17/climbing/
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Figure 6-5: Left, the singular values of the 25 × 29 pressure images is computed using PCA for
a phone flipping sequence involving hundreds of frames. Two separate trials are shown, in red
and blue. Although the dimensionality is high (725 pressure values), most of the variance (more
than 90%) is accounted for by the first 20 principal component vectors. Right, the pressure data
is projected onto the first principal component vector computed from each motion sequence. The
phone was flipped five times, and this is easily determined by counting the peaks.

against these configurations to quickly estimate the FTR of a grasp. This type of computation

is relatively cheap and allows for parallelized implementation as a GPGPU program, since each

configuration may be evaluated independently. We are currently exploring this approach, which

could eliminate the need for a costly non-linear optimization and allow the character to interact

with arbitrary 3D meshes.

6.3 Force synergies for manipulation tasks

In addition to postural synergies, we examine the pressure data collected for a variety of manipu-

lation tasks. These tasks are similar to the ones discussed in Chapter 3, involving single-handed

re-orientation of objects. Also, the motions for these tasks exhibit cyclic finger gaiting. One such

task included in our analysis is turning over a cell phone. For example, consider when a person

removes a cell phone from their pocket and the screen is facing the wrong direction. The phone

may be re-orientated, or flipped, so that the screen is visible.

Pressure frames were captured from a real person performing the phone flipping task. This in-
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volved the capture subject turning over the phone continuously in the palm of their hand. Note that

since the task required them to flip multiple times, grasp stability is part of their control strategy,

since otherwise it is likely that dexterous manipulation would not be possible after the first few

turns.

PCA was performed on pressure data from separate trials. Approximately 450 sampled frames

were used in the analysis, and each pressure frame consists of 725 pressure values from the taxel

arrays on our glove. The plot on the right side of Figure 6-5 illustrates that the first 20 principal

component vectors contain more than 90% of the variance in the pressure data. Also, when the

pressure frames are projected onto the first PC vector, the cyclic nature of the motion becomes

obvious; peaks of the plot clearly correspond to the sequence of five flips.

Similarly to how control of hand postures for grasping tasks involves a few postural synergies

(see Santello et al., 1998), the modulation of contact forces during manipulation may be equally

synergistic. Contact planning for grasping typically occurs in the space of contact wrenches at

fingertips. For a given task, the general footprint of contact forces across the hand could be de-

termined relatively quickly using a latent variable model derived from statistical data, with small

scale adjustments used to refine the manipulation.

Applications other than simulated grasping may also be possible using this type of analysis. For

example, the interaction synergies provide patterns that may be used for task or object identification

using pressure sensor data.

6.4 Discussion

Although this chapter presents preliminary work on data capture and grasping control, the results

are encouraging. Our novel system for collecting interaction data gives us a unique opportunity

to make interesting progress in skilled motion synthesis for hands. Therefore, we plan to leverage

this data as part of future work.

Our analysis of interaction forces in Section 6.3 indicates that basic force patterns are being used

to perform stable grasping and manipulation of objects. This corroborates the observations of San-

tello and Soechting (2000), that synergies are used to generate a majority of the control forces
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in similar grasping scenarios. We envision a plan of acquiring interaction data from many real-

world manipulation tasks and using it to determine control strategies for online grasp synthesis.

In Chapter 3, an appropriate control strategy was selected based on the phases used by the mid-

level control framework. The plots shown in Figure 6-5 suggest that automatic segmentation of

interaction forces into phases is also possible. Segmentation of the interaction trajectories we cap-

ture could be used to automatically design controllers from real-world manipulation experiments,

for example, by splitting the trajectories into phases and tracking pertinent simulation features.

Modifying existing methods for segmenting motion capture to perform phase-level segmentation

warrants investigation, such as the work by Barbič et al. (2004).

The climbing experiments discussed in Section 6.2 use synergies built from a hand pose corpus.

This was done using only the joint angle information about the hand. However, we intend to ex-

plore the idea of building interaction synergies which include both contact force and joint angle

information. A full body motion capture system, like OptiTrack,5 could be combined with our

interaction capture system to collect a comprehensive dataset from human climbing trials. Know-

ing motion trajectories for the full skeleton will allow us to generate synergies that include the

limbs and trunk, in addition to the contact forces and joint motion of the hand. Motion and contact

planning could be performed for entire limbs using a low dimensional space of control parameters.

Planning approaches for characters in contact with their environment, such as the work by Ton-

neau et al. (2014), could then be applied to real-time climbing tasks for characters in a multi-body

dynamical simulation. This is an exciting idea, since the reduced coordinate space facilitates an

online method.

5https://www.naturalpoint.com/optitrack/
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Chapter 7

Conclusions and future work

This thesis has presented novel methods for animating hands in physics-based virtual environ-

ments. The methods run in real-time, or in the case of the FORK-1S method, faster than real-time.

The low computational overhead also makes them well suited for a variety of applications where

physically based articulated characters are used.

7.1 Contributions

Synthesizing realistic motion for dexterous manipulation tasks is a difficult problem. A framework

for generating single-handed grasping motions was introduced in Chapter 3. By building a policy

of phase based controllers, motions are synthesized for a variety of manipulation tasks. Optimiza-

tion by a forward dynamics simulation is used to tune their parameters. Not only are the motions

plausible, but since the approach does not assume a predefined trajectory and the primary objec-

tive is to achieve a given goal state, the agent is capable of adapting to task changes in real-time.

The multi-phase controller architecture also generates motion sequences that exhibit periodic fin-

ger gaiting, which is a characteristic of dexterous manipulation. The motions meet not only the

task objectives, but stylistic ones too. Additionally, the agent is able to adapt to changes in the

task specification in real-time, making the approach an excellent one for interactive applications.

Although the control policies can be queried in real-time, building one is protracted by having to

run many forward dynamics simulations. Accelerated models for physics simulation is therefore
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an important stream of research. Within the context of our work, it allows for efficient evaluation

of control parameters. The FORK-1S method outlined in Chapter 4 provides a fast alternative to

simulating virtual humans and robots. By focusing on the end effectors, the simulation only needs

to solve a small dense system while the full state of the non-reduced mechanism can be computed

in parallel. Using the exponential map to compute the state of the internal links produces good be-

haviour with little separation at joints for a good range of interaction forces. The method requires

no special treatment for loops in the constraint topology, and permits different levels of physics

fidelity by adjusting the number of end effectors included in the reduced model. FORK-1S pro-

vide an important new approach among a large spectrum of techniques that are necessary for the

creation of interactive and immersive virtual environments.

Synthesizing plausible motion for an articulated character is only one aspect for creating believable

animated characters; rendering and displaying surface detail is also of concern. Chapter 5 describes

a method for changing the appearance of fingertips due to contact forces. This provides important

visual cues to show the force used when grasping an object, much like shadows give important

information about the existence of contact. Although deformations and wrinkles are also important

cues that give an indication of the interaction force, these attributes are not addressed since other

techniques already exist to deal with them. Ultimately, any of the contact deformation techniques

proposed in previous work could be combined with our work to improve the overall quality of

hand simulations. Additionally, the construction of the data-driven model used by this work is

straightforward, requiring a minimal storage and computational footprint. The inclusion of these

appearance changes within a physics-based grasping simulation demonstrates how subtle visual

cues can improve the richness of the overall interactive experience.

7.2 Future work

Incorporating linear feedback as part of our controller design will likely improve the robustness

of the learned control policies. Feedback using domain specific features has been successfully

applied to character locomotion tasks (Yin et al., 2007). The work by Ding (2011) presents a

general approach for designing linear feedback controllers and preliminary efforts to integrate with

our framework are promising. The use of this type of feedback control in the grasping domain is
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interesting and deserves further investigation. For example, by tracking grasping features, such as

pressure distribution at finger segments, it may be possible to improve the overall robustness and

stability of the control policy. Also, it is likely that a sparser control policy could be learned if

feedback were incorporated into the controllers.

A straightforward extension to the control work presented in this thesis is to use a motion cap-

ture corpus to compute a latent parameter space for the low-level controllers. Investigating the

force-joint synergies of human grasping is key to building more complex control strategies that

correspond to phase transitions that occur in actual manipulation tasks. Another potentially inter-

esting avenue of research is in building control policies for coordinated manipulation with two or

more hands. One possible approach is to treat control policies learned for single-handed tasks as

abstract actions within a hierarchical reinforcement learning framework, as shown by Huber and

Grupen (1998). Such strategies remain relatively unexplored in computer animation applications,

but have been successfully used in robotics research applications.

In addition to the grasping postures captured during climbing tasks, interaction forces were also

collected using the system described in Section 6.1. Work by Santello and Soechting (2000) noted

that force synergies exist for multi-fingered grasping tasks. They determined that variations in

force patterns during holding and lifting tasks were modulated as a function of physical properties,

such as the relative location of the center of mass. It is likely that such synergies could be exploited

to improve the grasping controller used by the climbing application. Preliminary work on this has

been very successful, with the grip strength of the learned grasp modulated according to the force

required to support the character. We also plan to investigate using postural synergies that include

the limb joints as part of motion planning for climbing dynamic characters.

The FORK-1S method currently does not consider the geometric limits of joints in modeling the

compliant behaviour of an articulated mechanism. Some preliminary work has begun on non-

linearly scaling the effective compliance once geometric joint limits are reached. This technique

may be used to adjust the behaviour of dependent bodies in the chain to restrict their motion once a

joint limit has been reached. Alternatively, multiple FORK-1S models could be built by linearizing

the behaviour at strategic points in the configuration space of the mechanism. Nearby models could

then be blended to give a better approximation of the behaviour of the full system. Investigating
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various methods for controlling end effector motion is a related topic. Rather than assuming a static

joint configuration with PD servo control, it may be possible to linearize the compliant behaviour

at multiple configurations across pose space. By blending across these models, the compliant

behaviour of the mechanism could be simulated for the entire motion trajectory. Manipulation

tasks for character animation and robotics simulation could benefit from such an extension to this

work.

There is some manual effort required to pre-process the images used in building our fingertip

appearance model. However, warping images to permit the construction of the PCA basis only

needs to be done once, and the model is transferable across fingers and subjects. An automatic

method is being developed to perform image warping and construct the PCA vectors, reducing

the required manual effort. Also, it is natural to include the center of pressure in the model of

hemoglobin changes. The center of pressure may be estimated from the current data set and this

extension is currently being explored. Note that the variance of the pressure distribution may

also be measured in the data collection process, and in turn create a model that can capture the

difference between a sharp and flat contact surface (e.g., the corner of a cube in contrast to a face).

Because the physics simulation uses rigid collision proxies, it would likewise need to be reworked

to include soft elastic contact, or estimate the size of contact patches based on inter-penetration

volume.

In a broader context, the methods presented in this thesis are pieces of a larger puzzle, with the

overall mandate to create high-fidelity, interactive digital characters. One long-term challenge

facing physics-based animation researchers is how to use the growing catalogue of techniques in

commercial video games. Future research should focus on leveraging the parallel computing plat-

forms which are ubiquitous for consumer gaming. Similarly, data harvested from human motion

and real-world interactions provides important targets for underlying models used in control, sim-

ulation, and rendering of human characters. Strategically combining this data with physics-based

models is a daunting task, but has thus far shown promising results. Although it is tempting to

simply rehash trajectories, a vast amount of data is required to match the possible configurations

of increasingly complex virtual environments. Rather, a more viable approach is to consider these

trajectories as “sketches” for an underlying general framework.
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Appendix A

Appendix A - Rigid Body Kinematics

Any rigid motion from one position to another may be described as a screw motion. That is, there

exists a coordinate frame in which the motion consists of a translation along an axis combined with

a rotation about the same axis. The time derivative of a screw motion is a twist consisting of the

linear velocity v ∈ R
3 and angular velocity ω ∈ R

3. Since much of Chapter 4 concerns statics,

and because it is convenient to write rigid displacements (screws) in body frames, we abuse the

term twist for these small displacements ξ. We use φ and the term velocity to write the equations

of motion and specifically use the body velocity as defined by Murray et al. (1994a). Analogous to

a twist, a wrench w ∈ R
6 is a generalized force consisting of a linear force f ∈ R

3 and a rotational

torque τ ∈ R
3. Following Murray et al., we pack twist and wrench vectors with linear parts on top

and angular parts on the bottom, i.e., φ = (vT , ωT )T and w = (fT , τT )T .

Twists and wrenches transform to different coordinate frames using the adjoint matrix Ad ∈ R
6×6.

To transform twists from coordinate frame a to coordinate frame b, we directly use

b
aAd =

⎡
⎣b

aR
bp̂a

b
aR

0 b
aR

⎤
⎦ , (A.1)

where b
aR ∈ SO(3) is the rotation matrix from frame a to b, the origin of coordinate frame a

in coordinates of frame b is bpa, and ·̂ is the cross product operator. That is, aφ in frame b is

computed as bφ = b
aAd

aφ. The inverse transpose of the adjoint is used to transform a wrench
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between coordinate frames, bw = b
aAd

−T aw. Finally, we use the exponential map eφ̂ : R6 → SE(3)

on a twist to compute the relative rigid motion as a homogeneous transformation matrix. Note that

here φ̂ ∈ se(3) and has the 4× 4 matrix form

φ̂ =

⎡
⎣ω̂ v

0 0

⎤
⎦ .

For further details, see the formulas in Murray et al. (pp. 412-413).
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Nesme, M., Kry, P. G., Jeřábková, L., and Faure, F. Preserving topology and elasticity for embed-
ded deformable models. ACM Trans. on Graphics, 28(3):52, 2009.

Nishidate, I., Maeda, T., Niizeki, K., and Aizu, Y. Estimation of melanin and hemoglobin using
spectral reflectance images reconstructed from a digital rgb image by the wiener estimation
method. Sensors, 13(6):7902–7915, 2013.

Nunes, R. F., Cavalcante-Neto, J. B., Vidal, C. A., Kry, P. G., and Zordan, V. B. Using natural
vibrations to guide control for locomotion. In Proc. of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, pages 87–94. ACM, 2012.

Oat, C. Animated wrinkle maps. In ACM SIGGRAPH 2007 courses, pages 33–37, 2007.

Okamura, A. M., Smaby, N., and Cutkosky, M. R. An overview of dexterous manipulation. In
Proc. of IEEE International Conference on Robotics and Automation, pages 255–262. IEEE,
2000.

Olsen, T. G. K.-R., Andrews, S., and Kry, P. G. Computational climbing for physics-based charac-
ters. Poster presented at the 2014 ACM SIGGRAPH / Eurographics Symposium on Computer
Animation, 2014.

O’Sullivan, C. and Dingliana, J. Collisions and perception. ACM Trans. on Graphics, 20(3):
151–168, 2001.

Parker, E. G. and O’Brien, J. F. Real-time deformation and fracture in a game environment. In
Proc. of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 165–
175, 2009.

Pollard, N. S. and Zordan, V. B. Physically based grasping control from example. In Proc. of
the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pages 311–318,
2005.

Pollard, N. S. Synthesizing grasps from generalized prototypes. In Proc. of IEEE International
Conference on Robotics and Automation, volume 3, pages 2124–2130. IEEE, 1996.

Redon, S., Galoppo, N., and Lin, M. C. Adaptive dynamics of articulated bodies. ACM Trans. on
Graphics, 24(3):936–945, 2005.

Santello, M. and Soechting, J. F. Force synergies for multifingered grasping. Experimental Brain
Research, 133(4):457–467, 2000.

Santello, M., Flanders, M., and Soechting, J. F. Postural hand synergies for tool use. The Journal
of Neuroscience, 18(23):2123–2142, December 1998.

Sloan, P.-P. J., Rose, C. F., III, and Cohen, M. F. Shape by example. In Proc. of the 2001 symposium
on Interactive 3D graphics, pages 135–143, 2001.

Spalding, M. C. Characterizing the correlation between motor cortical neural firing and grasping
kinematics. PhD thesis, University of Pittsburgh, September 2010.

Sueda, S., Kaufman, A., and Pai, D. K. Musculotendon simulation for hand animation. ACM
Trans. on Graphics, 27(3):83:1–83:8, Aug 2008.

99



Sutton, R. S. and Barto, A. G. Reinforcement Learning I: Introduction. The MIT Press, 1998.

Tan, J., Liu, K., and Turk, G. Stable proportional-derivative controllers. Computer Graphics and
Applications, IEEE, 31(4):34–44, July 2011.

Teichmann, M. A grasp metric invariant under rigid motions. In Proc. of IEEE International
Conference on Robotics and Automation, volume 3, pages 2143–2148. IEEE, 1996.

Tonneau, S., Pettré, J., and Multon, F. Task efficient contact configurations for arbitrary virtual
creatures. In Proc. of the 2014 Graphics Interface Conference, pages 9–16. Canadian Informa-
tion Processing Society, 2014.

Tsumura, N., Haneishi, H., and Miyake, Y. Independent component analysis of skin color image.
Journal of Optical Society of America A, 16(9):2169–2176, 1999.

Tsumura, N., Ojima, N., Sato, K., Shiraishi, M., Shimizu, H., Nabeshima, H., Akazaki, S.,
Hori, K., and Miyake, Y. Image-based skin color and texture analysis/synthesis by extract-
ing hemoglobin and melanin information in the skin. ACM Trans. on Graphics, 22(3):770–779,
2003.

Wang, J. M., Fleet, D. J., and Hertzmann, A. Optimizing walking controllers. ACM Trans. on
Graphics, 28(5):1–8, 2009.

Yamane, K. and Nakamura, Y. Natural motion animation through constraining and deconstraining
at will. IEEE Trans. on Visualization and Computer Graphics, 9(3):352–360, 2003.

Yamane, K. and Nakamura, Y. Stable penalty-based model of frictional contacts. In Proc. of IEEE
International Conference on Robotics and Automation, pages 1904–1909, 2006.

Yasumuro, Y., Chen, Q., and Chihara, K. Three-dimensional modeling of the human hand with
motion constraints. Image and Vision Computing, 17(2):149–156, 1999.

Ye, Y. and Liu, C. K. Synthesis of detailed hand manipulations using contact sampling. ACM
Trans. on Graphics, 31(4), 2012.

Yin, K., Loken, K., and van de Panne, M. Simbicon: Simple biped locomotion control. ACM
Trans. on Graphics, 26(3), 2007.

100


