
McNumJS: A JavaScript Library for Numerical
Computations

Sujay Kathrotia

School of Computer Science
McGill University
Montréal, Canada

April 2015

A thesis submitted to the Faculty of Graduate Studies in partial fulfillment of the
requirements for the degree of Master of Science.

© 2015 Sujay Kathrotia

i

Dedication

Dedicated to my supportive parents and kindhearted sisters, for their unconditional and

unceasing love, belief and support. Also, to the entire research community, who with their

hard work, make this world a better place!

ii

Abstract

There has been a huge development in the web community recently, with an increasing

focus on the performance of JavaScript. The development of state-of-the-art JavaScript

engines and JavaScript technologies has improved the performance of JavaScript con-

siderably and made it competitive with other dynamic languages. The major advantage

of JavaScript applications is that they can run on any device that supports web browsers

and distribution of these applications is very easy. This thesis reports on McNumJS,

an easy-to-use and high-performance JavaScript library for numerical computations.

This library is helpful to JavaScript developers for developing numerical applications

and compiler writers who want to compile scientific languages like MATLAB or R to

JavaScript.

There has been a surge of technologies like typed arrays, web workers and asm.js,

developed to improve the performance of JavaScript. We analyze these technologies

and report their suitability for numerical applications. We have also compiled a detailed

study on asm.js and performed different experiments to find the parts of asm.js that we

can use in regular development of JavaScript applications.

There are two main design goals behind the development of McNumJS: i) making

it easy-to-use, and ii) provide high-performance. We achieved the easy-to-use goal by

making an API similar to the NumPy, a popular python library for scientific comput-

ing. To make McNumJS high-performance, we used JavaScript typed arrays and type

coercing rules defined by asm.js. We report the speedups we get by using McNumJS

compared to other JavaScript libraries and JavaScript with regular arrays. We report

the performance difference between McNumJS and native C. These experiments show

that the performance of McNumJS library is competitive with native C and outperforms

other JavaScript libraries for numerical computations.

iii

Résumé

Il y a eu de fortes avancées dans la communauté du web récemment, avec un focus par-

ticulier sur la performance de JavaScript. Le développement des machines virtuelles de

dernière génération et des technologies associées ont considérablement amélioré la per-

formance de JavaScript et l’ont rendu compétitif avec les autres langages dynamiques

en vogue. Le principal avantage des applications web est qu’elles peuvent être exé-

cutées sur n’importe quel appareil avec un navigateur web. De plus, leur déploiement

est particulière aisé. Ce mémoire présente McNumJS, une librairie de calcul haute-

performance et simple d’utilisation pour JavaScript. Cette librairie est utile à la fois

pour les développeurs d’applications JavaScript et les développeurs de compilateurs

pour des langages scientifiques, tel MATLAB et R, qui ciblent JavaScript.

De nombreuses technologies pour JavaScript sont apparues récemment, comme les

tableaux typés (Typed Arrays), les sous-processus de calcul (Web Workers), et la déf-

inition d’un sous-ensemble du langage facilement optimisable (asm.js). Ces technolo-

gies sont étudiées et une analyse de leur applicabilité aux applications numériques est

présentée. Une étude détaillée sur le sous-ensemble asm.js est présentée ainsi qu’une

étude empirique de performance qui a permis de déterminer les parties de ce sous-

ensemble qui peuvent efficacement être utilisée dans le développement d’applications

JavaScript conventionnelles.

Deux critères principaux ont motivé le développement de la librairie McNumJS: i) la

facilité d’utilisation et ii) la performance à l’exécution. La facilité d’utilisation provient

d’une interface similaire à NumPy, une librairie de calcul scientifique populaire et éprou-

vée pour le language Python. L’objectif de performance fut atteint en utilisant une com-

binaison de tableaux typés ainsi que les annotations de typage définies par le sous-

ensemble asm.js. La performance obtenue par l’utilisation de McNumJS est comparée à

iv

celle des autres librairies de calcul numérique pour JavaScript. Elle est également com-

parée à la performance en utilisant directement JavaScript avec des tableaux réguliers.

Finalement, la performance de la librairie utilisée dans un navigateur web est comparée

à une version C des mêmes programmes de test. Ces expériences montrent que la li-

brairie McNumJS est compétitive en performance avec des technologies natives et offre

une performance supérieure aux autres librairies de calcul numérique pour JavaScript.

v

Acknowledgements

Foremost, I would like to express my heartfelt gratitude to my adviser, Prof. Laurie

Hendren for her patience, motivation, enthusiasm, and profound knowledge. Her con-

tinuous guidance and feedback helped me to not only improve the quality of my research

and but also my writing and presentation skills.

I would like to thank MCJS team for putting up with me, for developing Ostrich

benchmark suite and writing paper on JavaScript performance. It provided me the

foundation for my performance analysis. I am thankful to Rahul Garg for his valuable

inputs and suggestions. I would also like to thank Ismail Bidawi for searching names

with me for my library. Many thanks to Erick Lavoie and Vincent Foley for translating

my thesis’s abstract to French. Thanks to Sridipta Misra for proof-reading my thesis.

At Last, I am thankful to the Sable Lab for all the facilities and resources that they

provided to make my learning and research effective and interesting. Many thanks to

CS Helpdesk for providing tech support whenever I needed.

vi

Contents

Abstract ii

Résumé iii

Acknowledgement v

Chapter 1: Introduction 1

1.1 Motivation . 1

1.2 Thesis Contributions . 2

1.3 Thesis Organization . 3

Chapter 2: Background and Related Technologies 4

2.1 JavaScript Features and Technologies . 4

2.1.1 Regular arrays . 4

2.1.2 Typed arrays . 6

2.1.3 Asm.js . 8

2.1.4 Web Workers . 11

2.1.5 WebCL . 14

2.2 Related Technologies . 16

2.2.1 NumericJS . 17

2.2.2 Google Closure Library . 17

2.2.3 Sylvester . 18

2.2.4 NumPy . 18

Chapter 3: Performance Analysis of asm.js 19

3.1 Overview of asm.js Specifications . 19

Contents vii

3.2 Asm.js Experiments . 20

3.2.1 Normal JavaScript . 20

3.2.2 Function with Type Coercion . 22

3.2.3 Function with Type Coercion in Strict Mode 22

3.2.4 Calling asm.js Function from Normal JavaScript 23

3.2.5 Calls between Different asm.js Modules 23

3.2.6 Complete asm.js Module . 25

3.3 Results . 25

Chapter 4: McNumJS - A JavaScript Library for Numerical Computations 29

4.1 JavaScript Features and Technology Selection 29

4.2 Architecture . 31

4.2.1 Core Module . 32

4.2.2 Generation Module . 40

4.2.3 Unary Operations Module . 43

4.2.4 Binary Operations Module . 45

4.3 Development Process . 45

Chapter 5: Performance Results 47

5.1 Methodology . 47

5.1.1 Measurement objectives . 47

5.1.2 Experimental setup . 48

5.1.3 Measurements . 49

5.2 Ostrich Results . 51

5.2.1 McNumJS vs C . 51

5.2.2 McNumJS vs JavaScript Typed Arrays 53

5.2.3 McNumJS vs Asm.js . 55

5.2.4 McNumJS vs One dimensional Regular Arrays 55

5.3 Performance compared to other libraries . 58

Chapter 6: Conclusions and Future Work 62

6.1 Conclusion . 62

6.2 Future Work . 63

Contents viii

Appendix A: Ostrich Benchmark Suite Results 66

A.0.1 Execution times . 66

Appendix B: Micro-benchmarks Results 68

References 71

ix

List of Figures

2.1 Architecture of JavaScript Typed Arrays . 7

4.1 Architecture of JavaScript Typed Arrays . 41

4.2 Development Process of McNumJS . 46

5.1 Slowdown of McNumJS compared to C . 52

5.2 Slowdown of McNumJS compared to JavaScript Typed Arrays 54

5.3 Slowdown of McNumJS compared to asm.js 56

5.4 Speedup of McNumJS compared to One dimensional Regular Arrays . . 57

5.5 Slowdown of JavaScript libraries compared to McNumJS in Chrome (V

= Vector, M = Matrix, S = Scalar) . 60

5.6 Slowdown of JavaScript libraries compared to McNumJS in Firefox . . . 61

List of Tables

3.1 Machine specifications . 27

3.2 Asm.js results . 28

4.1 Typed Array alias in McNumJS . 33

4.2 TypedArray constructor parameters in McNumJS 34

4.3 TypedArray constructor parameters in McNumJS 40

5.1 Machine specifications . 48

List of Tables x

5.2 Ostrich Benchmarks . 50

5.3 Micro-Benchmarks . 51

A.1 Ostrich benchmark suite results on C and Firefox 66

A.2 Ostrich benchmark suite results on Chrome 67

B.1 Micro-benchmark results on Firefox . 69

B.2 Micro-benchmark results on Chrome . 70

xi

List of listings

1 Sepia filter using regular arrays . 5

2 Sepia filter using typed arrays . 7

3 Sepia filter using asm.js module . 9

4 Sepia filter using Web Workers . 12

5 Sepia filter using Nokia WebCL on Mozilla Firefox 15

6 Kernal for Sepia filter using Nokia WebCL 16

7 Normal JavaScript . 21

8 Normal JavaScript with type coercion . 21

9 Type coercion in strict mode . 22

10 Add method in asm.js calling from Normal JavaScript 23

11 Add method in asm.js calling from different asm.js module 24

12 Add method in asm.js . 26

13 Changing Uint16Array Constructor . 32

14 Uint16Array Constructor in McNumJS . 33

15 Example of strides . 36

16 Example of get method for 2-dimensional array 37

17 Example of methods added to typed array class 39

18 Generation module functions syntax and examples 42

19 Unary operations module functions syntax 43

20 Example of transpose . 44

21 Binary operations module functions syntax 45

1

Chapter 1

Introduction

1.1 Motivation

JavaScript was developed and released by NetScape Communications in 1995 as a non-

professional scripting language to support small client-side computations like validating

forms and changing HTML data [1]. JavaScript has evolved a lot since then. The lan-

guage has become so widespread these days that it has powered server-side as well as

desktop applications [2, 3]. Due to increased standardization and support [4], it has

become possible to run same code on a wide variety of devices. This is advantageous to

both developers and users as developers don’t need write separate programs for differ-

ent configurations and users can run these programs on different devices.

With the availability of sophisticated virtual machines and JIT compilers for JavaScript [5,

6], the application of JavaScript has evolved from simpler to more complex applications

like 3D games, image editing, signal processing, data visualization etc., which were pre-

viously reserved for classical programing languages [7]. These applications are highly

compute-intensive. So features like typed arrays, web workers, and technologies like

asm.js [8], WebGL [9] and WebCL [10] have been developed to improve the perfor-

mance of JavaScript. These technologies have been discussed in details in Chapter 2.

However, for developers and scientists, it is non-trivial to work with these technolo-

gies. Some developers stick to the classical programming languages as they provide

significant performance and easy-to-use APIs while others use JavaScript without these

technologies and hence receive with slower performance. We aim to solve this prob-

1 Introduction 2

lem by creating a library which uses these technologies and exposes familiar numerical

API like NumPy [11] to the developers. Developers can use this API to develop and

distribute numerical applications, either through developing JavaScript applications di-

rectly, or by using JavaScript as a target in compilers for languages such as MATLAB or

R. End-users would have easy access to such applications through the wide variety of

computers and mobile devices at their disposal.

In addition to creating a library for numerical computation in JavaScript, other con-

tributions of our work are: (1) analysis of JavaScript technologies; (2) performance

evaluation of asm.js; (3) guide to coerce type information like asm.js; and (4) cost

assessment of different numerical operations in JavaScript. We elaborate on these con-

tributions below.

1.2 Thesis Contributions

The main contribution of our work is:

McNumJS Library: We have developed a JavaScript library McNumJS, which provides

familiar API functions like NumPy to the developers for numerical computation.

The library uses recent JavaScript features like typed arrays to improve the perfor-

mance. McNumJS also uses coercing type information by accessing typed arrays

or providing type annotations to the variables like asm.js so that JavaScript en-

gines can better optimize the code. By developing this library, we aim to ease

development of numerical programs.

Apart from the major contribution of developing library, our work also contributes

in the following ways:

Analysis of JavaScript technologies: Our study provides detailed information on what

JavaScript technologies are available which can provide speedup for numerical

computations. We list these technologies along with their advantages and disad-

vantages. This study can equip developers to select optimal technologies for the

development of their application in JavaScript.

1 Introduction 3

Performance evaluation of asm.js: We study the performance of asm.js, a low-level

and efficient subset of JavaScript with different configurations like asm.js code

with and without “use asm” directive, asm.js code communicating with other sub-

set of JavaScript and asm.js code within other subset of JavaScript code. We

evaluate the performance results of these configuration.

Guide to coerce type information like asm.js: Asm.js is defined by a static type sys-

tem. Compiler writers can easily use this system to produce target JavaScript code

but it is not trivial to write asm.js modules in normal JavaScript code. However, it

is still possible to coerce type information in most of the code with ease and allow

JavaScript engines to better optimize the code. Our work will provide direction

on how to coerce type information in the regular development of JavaScript ap-

plications.

Cost assessment of matrix operations: We analyzed time complexity of some com-

mon matrix operations in terms of big O notation. This study will set a benchmark

for numerical application writers and allow them to minimize time complexity of

their applications.

1.3 Thesis Organization

This thesis comprises seven chapters. Chapter 2 gives brief introduction about differ-

ent JavaScript features, technologies and libraries available for numerical computation.

Chapter 3 provides detailed performance analysis of asm.js with different configura-

tions. Chapter 4 describes the development and architecture of the McNumJS library

and provides details about API functions. Chapter 4 also provides information about

time complexity of some matrix operations. Chapter 5 discusses the performance results

of the JavaScript library with respect to other popular libraries. Chapter 6 concludes

the thesis and discusses possible future work.

4

Chapter 2

Background and Related Technologies

In this chapter, we discuss different JavaScript features and technologies which we can

use for numerical computation. Analysing these technologies is important as our goal

is to create fast and easy-to-use JavaScript library for numerical computations. This

chapter also touches on related work of JavaScript libraries for numerical computations.

We also discuss the popular numerical library NumPy for Python.

2.1 JavaScript Features and Technologies

The following subsections lists JavaScript features and technologies. Each subsection

starts with a brief introduction of the feature or technology followed by an example. We

will briefly discuss about the example and then provide advantages and disadvantages

of the feature or the technology.

2.1.1 Regular arrays

JavaScript arrays are high-level, list-like objects to store multiple values. JavaScript

arrays have neither fixed length nor fixed type of elements. Thus, JavaScript arrays

can grow or shrink dynamically and have any value. If we set a value at the index,

which is outside the current bounds of the array, JavaScript engines update the array’s

length automatically. Similarly, if we dynamically decrease the length value of an array,

it will delete the remaining elements from the array. JavaScript arrays are zero indexed.

2 Background and Related Technologies 5

The Array prototype object provides methods to traverse, filter, sort, map, and reduce

operations on array elements.

1 function sepia(image, width, height) {
2 for(var i=0; i < height; i++) {
3 for(var j=0; j < width; j++) {
4 var r = image[i][j][0];
5 var g = image[i][j][1];
6 var b = image[i][j][2];
7

8 var sr = r * 0.393 + g * 0.769 + b * 0.189;
9 var sg = r * 0.349 + g * 0.686 + b * 0.168;

10 var sb = r * 0.272 + g * 0.534 + b * 0.131;
11

12 image[i][j][0] = sr > 255 ? 255 : sr;
13 image[i][j][1] = sg > 255 ? 255 : sg;
14 image[i][j][2] = sb > 255 ? 255 : sb;
15 }
16 }
17 }

Listing 1 Sepia �lter using regular arrays

Listing 1 is the function which applies a sepia filter to an image represented by a 3-

dimensional JavaScript array. You can notice that we can easily access the elements of

multi-dimensional arrays by just providing indexing of each dimension in square braces.

JavaScript stores this as array of arrays. You can also notice that as regular arrays can

contain any data type, we have to manually make sure that the Red, Green and Blue

values do not exceed 255.

Advantages of Regular arrays are:

• Regular arrays can grow or shrink dynamically.

• We can add any type of data in arrays which makes multi-dimension array index-

ing easy.

2 Background and Related Technologies 6

• Creating strided arrays are easy by exploiting above two advantages. Strided ar-

rays are arrays in which only some of the elements are present. This can save

memory by not storing the empty elements in between.

Disadvantages of Regular arrays are:

• Getting and setting value at given index of an array requires extra steps of checking

bound conditions as well as maintaining the length property. This makes regular

arrays slower to access.

• Operations like slicing of an array or transposing matrix in-place is not possible

without copying or manipulating array elements.

2.1.2 Typed arrays

JavaScript typed arrays are array-like objects and provide a mechanism for accessing

raw binary data. Unlike regular JavaScript arrays, typed arrays cannot grow dynami-

cally.

The architecture of typed arrays comprises two main parts: array buffers and views.

Figure 2.1 represents the architecture of the JavaScript typed arrays. ArrayBuffer object

represents the chunk of data. ArrayBuffer object does not have any method to access or

manipulate data. In order to use data contained in buffer, we need to use views (either

TypedArrayView or DataView). Views provide context like data type, starting offset,

number of elements, etc. to the array buffers.

Listing 2 is the function to apply sepia filter to an image, which is stored using

Uint8ClampedArray. Typed arrays are only one dimensional arrays. Thus, if we want

to use multi-dimensional indexing, we need to manually map it with one dimensional

index (refer line 4 of Listing 2). As Uint8ClampedArray guarantees that the data will

not exceed one byte, we won’t have to check for the pixel color values exceeding 255.

Advantages of Typed arrays are:

• Typed arrays provide mechanism to work with binary data which makes easier to

manipulate audio, video and images.

2 Background and Related Technologies 7

Fig. 2.1 Architecture of JavaScript Typed Arrays

1 function sepia(image, width, height) {
2 for(var i=0; i < height; i++) {
3 for(var j=0; j < width; j++) {
4 var offset = (i*width+j)*4;
5 var r = image[offset];
6 var g = image[offset+1];
7 var b = image[offset+2];
8

9 image[offset] = r * 0.393 + g * 0.769 + b * 0.189;
10 image[offset+1] = r * 0.349 + g * 0.686 + b * 0.168;
11 image[offset+2] = r * 0.272 + g * 0.534 + b * 0.131;
12 }
13 }
14 }

Listing 2 Sepia �lter using typed arrays

2 Background and Related Technologies 8

• Typed arrays provide element types for data contained in them. Without typed

arrays, there is just one type of double-like representation for numbers.

• Array buffers are contiguous chunk of memory. This provides faster access and

manipulation of the data than regular arrays.

• Having a separate view for the buffer enables slicing of the array without actually

copying or manipulating entire array.

Disadvantages of Typed arrays are:

• Initialization of typed array takes more time than regular arrays as initialization

allocates memory block as well as fill that memory block with zeros.

• Typed arrays cannot grow dynamically. If we need to change the size of the typed

arrays, we have to create new array buffer with the new size and copy the data.

• Array buffers are just one contiguous chunk of memory. So typed arrays do not

provide any way to use multi-dimensional indexing. However, we can provide

this facility by adding properties like shape and stride to the typed arrays.

2.1.3 Asm.js

Asm.js is a strict subset of JavaScript, that can be used as a low-level, efficient target

language for compilers. The subset is defined by a static type system. The asm.js pro-

gramming model is built around integer and floating-point arithmetic and a virtual heap

represented as a typed array. Although, JavaScript does not have a construct for inte-

gers, they can be emulated by either integer loads and stores using typed arrays, and

integer coercions performed by the JavaScript bitwise operators. Thus, with the combi-

nation of static and dynamic validation, asm.js modules are amenable to ahead-of-time

optimizing compilation. Mozilla Firefox employs an ahead-of-time compiler for valid

asm.js code [12], while Google Chrome and Opera heavily optimizes asm.js style code

during JIT compilation [13].
Listing 3 defines an asm.js module which returns a sepia function. The asm.js mod-

ule is a special function which can have three optional arguments (Line 1). The stdlib

object provides access to a limited subset of the JavaScript standard libraries (e.g. Math

2 Background and Related Technologies 9

1 function ImageProcessing(stdlib, foreign, buffer) {
2 "use asm"; /* asm.js module */
3 /* Globals */
4 var image = new stdlib.Uint8Array(buffer);
5 var min = stdlib.Math.min;
6 /* Module body */
7 function sepia(width, height) {
8 width = +width; /* Double */
9 height = +height; /* Double */

10 var i=0.0,j=0.0,r=0.0,g=0.0,b=0.0, /* Doubles */
11 offset=0; /* Integer */
12

13 for(i=0.0; i < +height; i=+(i+1.0)) {
14 for(j=0.0; j < +width; j=+(j+1.0)) {
15 /* Coercing double result to integer */
16 offset = ~~(((i*width)+j)*4.0);
17

18 /* Asm.js uses byte addressing, hence bit-wise shift
19 * operator. Second shift operator for reading
20 * uint value and the result is coerced to double. */
21 r = +(image[offset>>>0]>>>0);
22 g = +(image[(offset+1)>>>0]>>>0);
23 b = +(image[(offset+2)>>>0]>>>0);
24

25 image[offset>>0] = min(
26 ~~(r * 0.393 + g * 0.769 + b * 0.189), 255)|0;
27 image[(offset+1)>>0] = min(
28 ~~(r * 0.349 + g * 0.686 + b * 0.168), 255)|0;
29 image[(offset+2)>>0] = min(
30 ~~(r * 0.272 + g * 0.534 + b * 0.131), 255)|0;
31 }
32 }
33 }
34 /* Export */
35 return {
36 sepia: sepia
37 };
38 }

Listing 3 Sepia �lter using asm.js module

2 Background and Related Technologies 10

object). The foreign object provides access to custom external JavaScript functions. The

buffer object provides single ArrayBuffer to act as the asm.js heap. These objects allow

asm.js to communicate with external JavaScript. The asm.js module requests validation

by using "use asm" prologue directive (Line 2).

The asm.js module is divided into three parts: global declarations (Lines 3-5), mod-

ule body (Lines 6-33) and single return statement (Lines 34-37). The return statement

returns object containing all the functions and properties we want to expose to the exter-

nal JavaScript. The global declaration part usually creates variables from standard and

foreign library that we want to use in the module (Line 5). This part also creates typed

array from array buffer (Line 4). Although, JavaScript supports Uint8ClampedArray,

asm.js doesn’t support it. So we need to use Uint8Array and ensure that the value

doesn’t go over 255 (Lines 25-30).

Each function in the asm.js module is also divided into three parts. The first part

implicitly declares type information about arguments (Lines 8-9). Type information

is declared by using unary operators or bit-wise operators. For example, the unary

plus operator declares double type variable, bit-wise OR operation with 0 declares an

argument as integer type and bit-wise right shift operator with 0 declares an argument

as unsigned integer.

The second part declares all the local variables used in the function (Lines 10-11).

We cannot declare local variables anywhere else in the function. All the variables must

be initialized with the type. We can use literals to initialize variables. A literal containing

dot sign makes the variable double (e.g. i,j,r,g,b) and without it makes the variable

integer (e.g. offset).

The third part of the function in asm.js module is the function body. All the op-

erations including function calls requires type coercion to double, integer or unsigned

integer. Binary operators like plus, minus, multiply, divide are operated only on same

type of variables. Hence, addition operation on variable i require 1.0 instead of just 1

(Line 13). Also, multiplication of two integer variables is not allowed. One operator

must be a literal to avoid overflow in integers. Thus, we need to declare i and width

variables as doubles so that we can multiply them (Line 16). Conversion from integer to

double is performed using the unary+ operator (Lines 21-23) and conversion from dou-

ble to integer is performed using special ~~operator (Lines 16, 25-30). Asm.js forces

2 Background and Related Technologies 11

byte addressing of the heap by requiring shifting operation. We are using Uint8Array

(byteLength = 1), so we need to shift all the indexing with 0 (Lines 21-23). Similarly,

if we want to use Float32Array (byteLength= 4), then we need to shift indexing with 2.

Advantages of asm.js are:

• As asm.js is a strict subset of JavaScript, with the use of static and dynamic op-

timization, asm.js code can directly be compiled to assembly which can provide

great speedups.

• Absence of index bounds checks and garbage collection, and unboxed representa-

tions of integers and floating-point numbers make AOT compilation very efficient

and the resulting code is much faster than normal JavaScript code.

• The asm.js subset is very well defined, which makes it a good compilation target.

Disadvantages of asm.js are:

• The programming model of asm.js is not conventional. It makes manual program

writing very hard.

• Manual heap management makes implementation of algorithms very hard.

• As asm.js uses typed arrays, all the disadvantages of typed array also applies to

asm.js.

2.1.4 Web Workers

Web workers [14] provide a mechanism for web pages to run scripts in background

threads. Workers can communicate with the spawning task by posting and receiving

messages. Each worker works on a separate context which is different from the current

window (window object). The Web Workers API does not provide access to non-thread

safe objects like DOM, and each data communication is done through serialized objects

to ensure thread safety. Web workers are useful for heavy executions which makes web

page unresponsive to user inputs. We can transfer these computations to the new worker

thread to avoid the issue [15].

2 Background and Related Technologies 12

1 function ImageProcessing() {
2 var worker, callback;
3

4 function apply_sepia(image, width, height) {
5 worker = new Worker("sepia-worker.js");
6 worker.postMessage([image, width, height], [image.buffer]);
7 worker.onmessage = function(e) {
8 this.terminate();
9 if(callback) callback.call();

10 };
11 return ret;
12 };
13

14 function done(e) {
15 callback = e;
16 };
17

18 var ret = {
19 sepia: apply_sepia,
20 done: done
21 };
22 return ret;
23 }

1 importScripts(’201-sepia-typed-arrays.js’);
2

3 onmessage = function workerOnMessage(e) {
4 sepia(e.data[0], e.data[1], e.data[2]);
5 self.postMessage(e.data[0], [e.data[0].buffer]);
6 };

Listing 4 Sepia �lter using Web Workers

2 Background and Related Technologies 13

Listing 4 contains code for two JavaScript files. The first JavaScript will be included

in the web page which will create a worker with the second JavaScript file (Line 5). The

page script is creating functions in an ImageProcessing module which exposes sepia

and done functions. The sepia function takes image and applies sepia filter in a new

worker thread and the done function takes a callback which is called when worker thread

completes its work (Line 9). The worker thread imports another JavaScript (Line 1

in second file) file which contains sepia function for Uint8ClampedArray typed array

(Section 2.1.2). Data communication between the worker thread and the spawning

thread is done through posting a message (Line 6) and an onmessage event handler

(Line 7).

To maintain thread safety, the global context of each worker is different and data

communications are done only through serialized objects. So there is no data sharing

between worker threads, and during each communication all the passing objects get se-

rialized and de-serialized. Since there is a copy of data, this operation takes more time

as the data gets bigger. However, the web worker API provides access to transferable

objects. Transferable objects can transfer ownership of the object without copying data.

In the page script, the postMessage method takes two arguments: a data object and an

array containing objects to transfer the ownership. In this example, reference of the im-

age buffer is transfered to the worker thread so there is no actual copying of the image

data. However, we are passing typed array view of image, width and height as data so

there is a copy of these objects passing to the worker thread. The page script cannot

access image buffer as long as the worker thread has its ownership. Thus, we need to

pass back the ownership of the buffer to the page script as soon as the processing in

worker thread is finished (Line 5 in second file).

Advantages of web workers are:

• Web workers makes it possible to work with threading in JavaScript, without wor-

rying about low-level thread safety maintenance.

• Computation heavy operations or I/O operations can be transfered to the workers

without affecting the current page.

Disadvantages of web workers are:

2 Background and Related Technologies 14

• Web workers are very resource-intensive. We cannot create a lot of web workers

in a single machine. For example, when working with an image, we cannot create

workers for each pixel. We should only work on the whole image in a single web

worker.

• For regular arrays or non-transferable objects, data communication cost is very

high. So if the task is not big enough, it is probably unwise to create worker

threads for such objects.

2.1.5 WebCL

WebCL is a JavaScript binding to the OpenCL standard for parallel computing. WebCL

enables applications to make use of GPU and multi-core CPU parallel processing from

web browser which provides significant speedup in the numerical applications. Al-

though WebCL has not been officially integrated with any of the major browsers, there

have been some plug-ins developed which provide access to the WebCL API [16, 17].
Listing 5 contains JavaScript code and Listing 6 contains OpenCL kernel for Sepia

filter. The program uses Nokia’s implementation of WebCL for Mozilla Firefox. The

WebCL specification provides API functions to query available GPUs or multi-core CPUs

and platforms, and we can select specific device and platform to execute OpenCL kernel

(Lines 3-4). Unlike web workers, we need to manually get the OpenCL kernel code

by using AJAX query, and compile it before we can use it (Lines 6,7,10). Before we

execute the kernel, we need to setup the device memory and copy the ArrayBuffers

(Lines 17-18). Since JavaScript and OpenCL both have different data types, the WebCL

implementation boxes and unboxes the data communication between JavaScript and

OpenCL kernel. When the execution of the kernel gets finished, we can read back the

device memory to ArrayBuffers to get the result (Line 30).

Advantages of WebCL are:

• WebCL is the first standard that allows for heterogeneous parallel computing in a

browser exposing CPUs and GPUs.

• Provides good speed up for highly parallel algorithms.

2 Background and Related Technologies 15

1 function sepia(image, W, H) {
2 //============ Setup WebCL Program ================
3 var platform = webcl.getPlatforms()[0],
4 device = platform.getDevices(WebCL.DEVICE_TYPE_ALL)[0],
5 ctx = webcl.createContext(device),
6 src = document.getElementById("clSepia").text,
7 program = ctx.createProgram(src),
8 queue = ctx.createCommandQueue(device);
9

10 program.build ([device], "");
11

12 // ============== Initialize Kernels ================
13 var sepiaKernel = program.createKernel("sepia");
14

15 // ============== Setup Kernel Memory ================
16 // memory has to be allocated in terms of bytes
17 var image_d = ctx.createBuffer(WebCL.MEM_READ_WRITE, W*H*4);
18 queue.enqueueWriteBuffer(image_d, true, 0, W*H*4, image);
19

20 var localSize = [4];
21 var globalSize = [H*W];
22

23 // ============== Set Args and Run Kernels ================
24 sepiaKernel.setArg(0, image_d);
25

26 queue.enqueueNDRangeKernel(sepiaKernel, 1, null, globalSize, localSize);
27 queue.finish();
28

29 // ============== Pull Results ================
30 queue.enqueueReadBuffer(image_d, false, 0, W*H*4, image);
31 queue.finish();
32

33 // ============== Free Memory ================
34 image_d.release();
35 program.release();
36 sepiaKernel.release();
37 queue.release();
38 ctx.release();
39 }

Listing 5 Sepia �lter using Nokia WebCL on Mozilla Firefox

2 Background and Related Technologies 16

1 <!-- Include this kernal script in the html -->
2 <script id="clSepia" type="text/x-opencl">
3 __kernel void sepia(__global char *image) {
4

5 int i = get_global_id(0)*4;
6

7 float r = image[i];
8 float g = image[i+1];
9 float b = image[i+2];

10

11 barrier(CLK_LOCAL_MEM_FENCE);
12

13 image[i] = (r * 0.393f) + (g * 0.769f) + (b * 0.189f);
14 image[i+1] = (r * 0.349f) + (g * 0.686f) + (b * 0.168f);
15 image[i+2] = (r * 0.272f) + (g * 0.534f) + (b * 0.131f);
16 }
17 </script>

Listing 6 Kernal for Sepia �lter using Nokia WebCL

Disadvantages of WebCL are:

• There are no major browser vendors, who officially supports WebCL at the mo-

ment. So the WebCL implementation is still very immature.

• There are some security checks required to make WebCL applications safe. These

checks can slow the performance of the application.

2.2 Related Technologies

In this section we will briefly discuss the popular JavaScript libraries for numerical com-

putations and also look at the NumPy, a popular python library for scientific compu-

tations. We examine the performance of McNumJS with these JavaScript libraries in

Chapter 5.

2 Background and Related Technologies 17

2.2.1 NumericJS

The Numeric Javascript library allows you to perform sophisticated numerical compu-

tations in pure JavaScript in the browser and elsewhere [18]. The NumericJS library

uses regular arrays to represent matrices and vectors, but internally it creates a special

tensor object for computation. It also has the support for complex numbers which are

also represented using tensor objects. The NumericJS library is carefully tuned with

modern JavaScript engines to obtain good performance for a Javascript program.

While NumericJS uses tensor object based on JavaScript regular arrays, McNumJS

uses modified typed array view object for internal computations and data representa-

tion.

2.2.2 Google Closure Library

The Google Closure Library provides user interface widgets, an event framework, a

packaging system, tools for DOM manipulation, tools for creating animation effects,

communication utilities, a unit testing framework, and a wide variety of other packages

including math package for numerical computations [19].
The Google Closure Library has classes for representing coordinates, line, curves,

matrices, vectors, etc. All of these classes internally use JavaScript regular arrays and

provide numerous methods to work on the objects of these classes. Since JavaScript

only has a generic double like object to represent a Number, we cannot create inte-

gers. However, different data types are necessary for numerical computations. So the

Closure Library also provides an Integer and a Long class which represents 32-bit and

64-bit signed integers respectively. For operations like addition and multiplication, the

library splits each number into 16-bit pieces, and then uses JavaScript’s floating-point

representation without worrying about overflow or change of sign [20].
McNumJS uses typed arrays which provides different numeric data types like Int32Array,

Uint16Array, Float32Array, Float64Array, etc. So there is no need to manually handle

overflows or sign. The Closure Library provides a lot of modules used for building com-

plex web applications, while our focus in McNumJS is only numerical computations.

2 Background and Related Technologies 18

2.2.3 Sylvester

Sylvester is a vector, matrix and geometrical library for JavaScript, that runs in the

browser and on the server side. It includes classes for modeling vectors and matrices in

any number of dimensions, and for modeling infinite lines and planes in 3-dimensional

space [21]. Sylvester also uses JavaScript regular arrays for creating objects of these

classes. Sylvester provides methods to work with accuracy and to handle floating-point

rounding errors for JavaScript Number object. This library does not provide any way to

represent Unsigned Integers, Integers or Long.

Sylvester uses objects like the Closure Library to represent matrices and vectors.

These objects are not carefully tuned to provide better performance. The basic purpose

of the library is to provide functionality not the performance, while McNumJS provides

good performance as well as makes it easy-to-use.

2.2.4 NumPy

NumPy is the fundamental package for scientific computation with Python [11]. It

contains among other things:

• a powerful N-dimensional array object,

• sophisticated (broadcasting) functions,

• tools for integrating C/C++ and Fortran code, and

• useful linear algebra, Fourier transform, and random number capabilities.

NumPy’s main object is the homogeneous multidimensional array. It is a table of

elements (usually numbers), all of the same type, indexed by a tuple of positive integers.

In Numpy, dimensions are called axes. The number of axes is called rank.

We can compare this object with JavaScript’s typed array. However, JavaScript typed

arrays do not support multi-dimension. We can provide multi-dimension in the typed

arrays by adding shape and stride properties. Considering this similarity, we can create a

JavaScript library using typed arrays which provides API functions similar to the NumPy.

This will also fulfill one of our goals of creating the library: ease of use.

19

Chapter 3

Performance Analysis of asm.js

In this chapter, we are going to find more about asm.js and we will experiment with

the different ways to use asm.js. We are studying asm.js as it allows ahead-of-time

compilation and provides better speedup than normal JavaScript. We would like to

find the parts of asm.js specifications that we can incorporate into regular JavaScript

development and get better performance.

3.1 Overview of asm.js Specifications

In this section, we are going to look over the asm.js specifications briefly. Listing 3 shows

the example of the asm.js code. We summarize the asm.js specifications as follows:

• The asm.js programming model is built around integer and floating-point arith-

metic and a virtual heap represented as a typed array.

• The asm.js module is a function with three optional arguments. Two of these

arguments allows communicating with the JavaScript standard library and foreign

functions. The third argument represents the virtual heap buffer.

• The asm.js module validation is requested by "use asm" directive at the beginning

of the module.

• The asm.js module has exactly three parts: global declaration, module body and

a single return statement.

3 Performance Analysis of asm.js 20

• Function arguments must be of primitive types: unsigned int, int or double. Types

must be provided to function arguments by using bit-wise operators.

• Variables must be initialized to primitive types. They cannot be null or undefined.

Integers are initialized by integer literals and doubles are initialized by literals

with floating-point.

• Arrays (regular, typed or ArrayBuffers) cannot be created dynamically. We can

only use the heap buffer to access arrays.

• The heap cannot be modified outside the functions.

• All the operations must be typed and if type conversion is required, it must be

done as per the grammar.

Based on these specifications, we will conduct few experiments with the asm.js mod-

ules. These experiments would ignore some of the grammar rules to make it more like

regular JavaScript. This way we can check if some or any specification of asm.js can be

used for regular JavaScript development.

3.2 Asm.js Experiments

In this section, we define six different versions of the same micro-benchmark to check

the performance of the implementations using some or all of the asm.js specifications.

In the following section, we compare the performance of each of these versions.

3.2.1 Normal JavaScript

Listing 7 measures the performance of element-wise addition of two vectors. In the

listing, in1, in2 are the input vectors of type Float64Array and of size 8000 and out

is the output vector of same type and size. In normal JavaScript, we iterate over the

length of the vector and add the input vectors element-wise, and store the result into

the output vector.

3 Performance Analysis of asm.js 21

1 function dotAdd(a, b) {
2 return a + b;
3 }
4

5 function add(in1, in2, out) {
6 for(var l=out.length, i=0; i<l; ++i) {
7 out[i] = dotAdd(in1[i], in2[i]);
8 }
9 }

10

11 // We will benchmark this fn call
12 add(in1, in2, out);

Listing 7 Normal JavaScript

1 function dotAdd(a, b) {
2 a = +a; b = +b;
3 return +(a + b);
4 }
5

6 function add(in1, in2, out) {
7 var l = out.length|0, i=0;
8 for(; i<l; i = (i+1)|0) {
9 out[i] = +dotAdd(in1[i], in2[i]);

10 }
11 }
12

13 // We will benchmark this fn call
14 add(in1, in2, out);

Listing 8 Normal JavaScript with type coercion

3 Performance Analysis of asm.js 22

3.2.2 Function with Type Coercion

Listing 8 is the same micro-benchmark but this version contains the addition func-

tion with type coercion as per the asm.js specifications. It is important to note that we

coerced type information as much as possible. We cannot provide type to in1, in2 or

out. In this version, we are ignoring all the other asm.js specifications. As we provide

type information to the variables, JavaScript engines can better optimize the code and

provide better performance.

3.2.3 Function with Type Coercion in Strict Mode

Listing 9 is the same as the previous version except the functions defined are in strict

mode. JavaScript strict mode enforces stricter parsing and error handling on JavaScript

code at runtime [22]. It is important to see that how strict mode affects the type coercion

in JavaScript.

1 function dotAdd(a, b) {
2 "use strict";
3 a = +a; b = +b;
4 return +(a + b);
5 }
6

7 function add(in1, in2, out) {
8 "use strict";
9 var l = out.length|0, i=0;

10 for(; i<l; i = (i+1)|0) {
11 out[i] = +dotAdd(in1[i], in2[i]);
12 }
13 }
14

15 // We will benchmark this fn call
16 add(in1, in2, out);

Listing 9 Type coercion in strict mode

3 Performance Analysis of asm.js 23

3.2.4 Calling asm.js Function from Normal JavaScript

In Listing 10, we kept the array iteration intact, but the addition function was changed

to the asm.js module. In this version, we convert scalar operations to asm.js module

while keeping the arrays outside of the module. The module contains the addition

function (Line 4) with all the asm.js specifications kept in consideration. In this version,

we inspect the performance of asm.js when called from a normal JavaScript loop body,

without creating a heap. The outcome of this version is of great significance as attaining

a better performance with this version would obviate the requirement of creating a heap.

1 function AsmPointMath() {
2 "use asm";
3

4 function dotAdd(a, b) {
5 a = +a; b = +b;
6 return +(a + b);
7 }
8

9 return { dotAdd: dotAdd };
10 }
11

12 function add(in1, in2, out) {
13 var math = AsmPointMath();
14 for(var l=out.length, i=0; i<l; ++i) {
15 out[i] = math.dotAdd(in1[i], in2[i]);
16 }
17 }
18

19 // We will benchmark this fn call
20 add(in1, in2, out);

Listing 10 Add method in asm.js calling from Normal JavaScript

3.2.5 Calls between Different asm.js Modules

In Listing 11, we replace the array iteration and addition functions of normal JavaScript

3 Performance Analysis of asm.js 24

1 function AsmPointMath() {
2 "use asm";
3

4 function dotAdd(a, b) {
5 a = +a; b = +b;
6 return +(a + b);
7 }
8

9 return { dotAdd: dotAdd };
10 }
11

12 function AsmMath(stdlib, foreign, buffer) {
13 "use asm";
14

15 var l = 8000,
16 in1 = new stdlib.Float64Array(buffer, 0<<3, 8000),
17 in2 = new stdlib.Float64Array(buffer, 8000<<3, 8000),
18 out = new stdlib.Float64Array(buffer, 16000<<3, 8000),
19 dotAdd = foreign.dotAdd;
20

21 function add() {
22 var i=0<<3, j = l<<3;
23 for(; (i|0)<(j|0); i = (i+8)|0) {
24 out[i>>3] = +dotAdd(+in1[i>>3], +in2[i>>3]);
25 }
26 }
27

28 return { add: add };
29 }
30

31 var heap = new Float64Array(8000*3);
32 heap.set(in1);
33 heap.set(in2, 8000);
34 heap.set(out, 16000);
35

36 // We will benchmark following code
37 var pointMath = AsmPointMath();
38 AsmMath(window, pointMath, heap.buffer).add();

Listing 11 Add method in asm.js calling from di�erent asm.js module

3 Performance Analysis of asm.js 25

with the respective asm.js modules. The module with addition function is same as the

previous version. We pass this module as a foreign library and the window object as

a standard library to the AsmMath module. However, we cannot pass multiple typed

arrays or cannot create arrays dynamically inside asm.js module. So we created a heap

and added in1, in2 and out to this heap (Lines 31-34). It is important to note that we are

not benchmarking the heap buffer creation time or data copying time. As asm.js only

uses typed arrays, the data generation time for different types of asm.js modules will

be same. So, we are more interested in the computation time than the data generation

time. We then pass the heap buffer to the AsmMath module. In AsmMath module, we

create in1, in2 and out typed array views from the heap buffer using standard library

functions (Lines 16-18). It is important to note that we are using byte addressing of

typed arrays, as specified by asm.js grammar, instead of providing indices. We call the

dotAdd function from foreign library for addition.

Inter-modular function calls are quite common in any library. Thus, it is critical to

study the performance of this version.

3.2.6 Complete asm.js Module

Instead of creating two different modules for array iteration and addition functions,

we compose them inside same the module in Listing 12. This is a complete asm.js mod-

ule. Similar modules can be expected to be generated upon compilation of applications

in other languages to asm.js. Thus, it is important to check the performance of this

version and compare it with the other versions to see how the compilation target fares.

3.3 Results

In this section, we are going to see the performance results of the aforementioned ver-

sions of the micro-benchmark. We test the performance of the different versions of

the benchmark for two types of arrays: Int32Array and Float64Array. We use popular

JavaScript performance playground jsPerf [23] to measure the performance. We used

standard consumer laptop to test these versions. The configuration of the laptop is given

in Table 3.1. jsPerf provides performance result in terms of operations per second, thus

higher numbers are desired.

3 Performance Analysis of asm.js 26

1 function AsmMath(stdlib, foreign, buffer) {
2 "use asm";
3

4 var l = 8000,
5 in1 = new stdlib.Float64Array(buffer, 0<<3, 8000),
6 in2 = new stdlib.Float64Array(buffer, 8000<<3, 8000),
7 out = new stdlib.Float64Array(buffer, 16000<<3, 8000);
8

9 function dotAdd(a, b) {
10 a = +a; b = +b;
11 return +(a + b);
12 }
13

14 function add() {
15 var i=0<<3, j = l<<3;
16 for(; (i|0)<(j|0); i = (i+8)|0) {
17 out[i>>3] = +dotAdd(+in1[i>>3], +in2[i>>3]);
18 }
19 }
20

21 return { add: add };
22 }
23

24 var heap = new Float64Array(8000*3);
25 heap.set(in1);
26 heap.set(in2, 8000);
27 heap.set(out, 16000);
28

29 // We will benchmark following code
30 AsmMath(window, {}, heap.buffer).add();

Listing 12 Add method in asm.js

3 Performance Analysis of asm.js 27

Desktop
CPU Intel Core i5, 2.50GHz × 4
Cache 4 MiB
Memory 6 GiB
OS Ubuntu 12.04 LTS
Chrome 33.0.1750
Firefox 30.0

Table 3.1 Specifications of the machine used for asm.js experiments

Table 3.2a and Table 3.2b shows the result in operations per second for the different

versions of the micro-benchmark for Chrome and Firefox respectively. We have defined

shorter names for these micro-benchmarks which are: normal for normal JavaScript;

normal-typed for normal JavaScript with asm.js type coercing; strict-typed for type co-

ercing in strict mode; js-asm for calling asm.js function from normal JavaScript; asm-

asm for calls between different asm.js modules and asmjs for complete asm.js module.

In Chrome, the slowest performer is asm-asm version of the benchmark. The normal

and strict-typed also do not perform that well in comparison to the other versions. The

version delivering the best performance is the asm.js version for Int32Array and the

normal-typed version for Float64Array. However, there is not much difference between

the performance of the asm.js and the normal-typed versions for both, Int32Array and

Float64Array.

We can notice the substantial performance hit that the Firefox takes for js-asm and

asm-asm versions. In these cases, the addition function is inside a separate asm.js mod-

ule. So the module is called several times. The asm.js implementor has reported a

bug and mentioned that calls to asm.js functions from a non-asm.js functions and vice

versa are much slower than normal function calls due to general-purpose enter/exit

routines [24]. It is important to note that the Mozilla Firefox employs an ahead-of-time

validation and compiler for asm.js code.

In Firefox, asm.js performs the fastest among all the other versions for both: Int32Array

and Float64Array. However, we can see that normal-typed and normal versions are also

not far behind.

Based on these numbers, Chapter 4 discusses the design and technological choices

made for developing the McNumJS.

3 Performance Analysis of asm.js 28

Int32Array Float64Array
normal 13774 8298
normal-typed 47648 58001
strict-typed 13128 8055
js-asm 47385 58606
asm-asm 12234 6196
asmjs 57983 57835

(a) Chrome

Int32Array Float64Array
normal 87979 57861
normal-typed 88007 57875
strict-typed 59034 56870
js-asm 805 795
asm-asm 873 896
asmjs 88280 57982

(b) Firefox

Table 3.2 Asm.js experiment results in operations per second (Higher
numbers desirable) (normal = Normal JavaScript; normal-typed = Normal
JavaScript with asm.js type coercing; strict-typed = Type coercing in Strict
mode; js-asm = Calling asm.js function from Normal JavaScript; asm-asm =
Calls between different asm.js modules; asmjs = Complete asm.js module)

29

Chapter 4

McNumJS - A JavaScript Library for

Numerical Computations

So far, we studied the JavaScript features and technologies available for numerical com-

putations. We also studied the asm.js specifications and analyzed the performance

of asm.js. In this chapter, we discuss the technological choices we made to develop

McNumJS. We talk about the McNumJS library and its modules and we also briefly

describe its development process.

4.1 JavaScript Features and Technology Selection

In this section, we argue for the selection of JavaScript features and technologies to

develop McNumJS.

Regular Arrays: JavaScript regular arrays can contain any data including numeric,

string, array or object. Moreover, the length of regular arrays can be varied dy-

namically. Thus, there exists array bounds check, dynamic memory allocation,

type checking, etc. JavaScript regular arrays are represented as hash-tables in

the JavaScript engines. Due to these reasons, JavaScript regular arrays do not

provide good performance. So even though JavaScript regular arrays can support

numerical computations, the lack of performance makes the numerical computa-

tions slow. For this reason, we decided not to use the JavaScript regular arrays as

the base matrix container.

4 McNumJS - A JavaScript Library for Numerical Computations 30

Typed Arrays: JavaScript typed arrays are similar to C arrays except that the typed

arrays are only one-dimensional. Typed arrays provide better performance as they

represent one-dimensional memory buffers. To access the memory buffer, there

exists typed array view which provides a context - that is, a data type, starting

offset, and number of elements - that turns the data into an actual typed array. So

JavaScript typed arrays provide better performance but being single-dimensional

makes them hard to use. However, we can add shape information to the typed

array views to make it multi-dimensional. This makes them a better performing

choice for numerical computations as well as easy-to-use.

Asm.js: We can use asm.js in three different ways: (1) compile existing libraries to

asm.js; (2) develop a library using asm.js; or (3) develop a library in normal

JavaScript but with type coercion provided by asm.js specifications.

There are several libraries available in many different languages that provide great

performance. We can compile these libraries to asm.js, to use them as numerical

libraries in JavaScript. However, the problem with this approach is that the com-

piled code size will be huge and debugging of the code will be a non-trivial task.

Moreover, we will still need to write a wrapper code for this compiled code to

keep the dynamic behavior of JavaScript and provide high-level functions. This

wrapper will also need to create a heap buffer and copy array data to this buffer

to use inside asm.js module. Thus, it may not be beneficial to compile an existing

library to asm.js.

As mentioned in Section 2.1.3, developing a library in asm.js is not trivial in itself.

The programming model of asm.js is not easy to work with and it was mainly de-

veloped for compilation target. Also, as previously mentioned, we need to create

a heap buffer and copy the data. So even though we find in Section 3.3 that asm.js

performs fastest among other implementations, we cannot use it to develop the

library.

In Section 3.3, we reported the result of different asm.js experiments and we saw

that the fastest version is the complete asm.js module. But we also noted that

the normal JavaScript with type coercion is also not far behind in terms of per-

formance. Providing type information to function arguments and local variables

4 McNumJS - A JavaScript Library for Numerical Computations 31

according to asm.js specification, is easy enough. We ignore the other grammar

rules specified by asm.js. So we do not need to create the heap buffer and copy

data. Hence, we will use type coercing in the development of the McNumJS.

Web Workers: Web workers allows us to create multi-threaded JavaScript applications.

However, the web workers are not light weight. We cannot create threads for

each array index. To ensure thread safety, deep object copying occurs to pass

the data between threads. Web workers are meant to defer script execution in a

new thread, leaving main thread free to maintain its responsiveness. If we use

web workers to parallelize numeric applications, they will introduce slowdown

because of data copying. Web workers might show potential if we were to im-

plement lazy computation and group multiple operations. However, we are not

implementing lazy computation in our library for now and thus, web workers are

not of any use.

WebCL: WebCL allows heterogeneous parallel computing in a browser exposing CPUs,

GPUs and DSPs. It is a web equivalent of OpenCL. However, WebCL is still in

development and is not supported by any major browser vendors and requires

plug-ins to use it. WebCL also is still immature and provides performance gain

only for highly parallel benchmarks. The results in WebCL over JavaScript are

not congruent with OpenCL over C [25]. Due to the lack of support in popular

browsers and the limitations of current implementation, we are not going to use

it to develop McNumJS.

In conclusion, we use type coercing rules defined by the asm.js specifications to

improve JIT optimization. We also use typed arrays to get faster array access. We

change typed arrays and add shape information to map multi-dimensional indices to a

single-dimensional index. In the next section, we will elaborate this topic and discuss

more about the architecture of the McNumJS.

4.2 Architecture

The McNumJS library is built using modular design. There are currently four different

modules: (1) core module; (2) generation module; (3) unary operations module; and

4 McNumJS - A JavaScript Library for Numerical Computations 32

(4) binary operations module. We elaborate on these modules in the following sections.

4.2.1 Core Module

The core module in McNumJS creates a global object mn, which contains all the McNumJS

API functions. The main part of core module is to extend typed array views and provide

multi-dimensional array support.

In JavaScript, there is no standard way to directly change the constructor of typed

arrays. So we first create an alias of the typed array and then create a function variable

of the typed array. Listing 13 shows the example of changing Uint16Array construc-

tor. Table 4.1 lists typed arrays in JavaScript and its alias in McNumJS library. The

new constructor now takes four more optional arguments than standard constructor:

shape, stride, offset and order. McNumJS creates an array view object by calling the

standard constructor from the new constructor, then calculates the value of the extra

properties, and adds them to the object. Thus, if someone want to use standard typed

array constructor arguments while using McNumJS, it would still work.

1 var UI16A = Uint16Array;
2

3 var Uint16Array = function Uint16Array_constructor
4 (data, shape, stride, offset, length) {
5 // ...
6 }

Listing 13 Changing Uint16Array Constructor

Listing 14 shows the possible Uint16Array constructor syntax in McNumJS. McNumJS

typed arrays supports the normal typed array constructors specified in ECMAScript 6

(Lines 2-5). In addition, McNumJS supports some more syntax to support multi-dimension

(Lines 8-12). Table 4.2 shows the typed array constructor parameters and provides a

brief description about them.

Before moving further, let us discuss more about the shape, stride and order pa-

rameters. The shape parameter represents the shape of the array. As JavaScript typed

4 McNumJS - A JavaScript Library for Numerical Computations 33

Typed Array Description Alias in McNumJS
Int8Array 8-bit twos complement signed integer I8A
Uint8Array 8-bit unsigned integer UI8A
Uint8ClampedArray 8-bit unsigned integer (clamped) UI8CA
Int16Array 16-bit twos complement signed integer I16A
Uint16Array 16-bit unsigned integer UI16A
Int32Array 32-bit twos complement signed integer I32A
Uint32Array 32-bit unsigned integer UI32A
Float32Array 32-bit IEEE floating point number F32A
Float64Array 64-bit IEEE floating point number F64A

Table 4.1 Typed array views in JavaScript and its alias in McNumJS.

1 // Standard Typed Array Constructors:
2 new Uint16Array(length);
3 new Uint16Array(typedarray);
4 new Uint16Array(object); // Single-dimensional
5 new Uint16Array(buffer [, byteOffset [, length]]);
6

7 // New in McNumJS:
8 new Uint16Array(length [, shape, [stride, [offset, [order]]]]);
9 new Uint16Array(typedarray [, shape, [stride, [offset, [order]]]]);

10 new Uint16Array(object); // Multi-dimensional
11 new Uint16Array(object [, shape, [stride, [offset, [order]]]]);
12 new Uint16Array(buffer [, shape, [stride, [offset, [order]]]]);

Listing 14 Uint16Array Constructor in McNumJS

4 McNumJS - A JavaScript Library for Numerical Computations 34

Parameter Description
length length of the typed array to create.
typedArray copies the buffer of the typedArray and returns a new

typed array.
object A new typed array is created from an object. In nor-

mal JavaScript, the object has to be single-dimensional
regular array. However, in McNumJS, the object can
be regular array or multi-dimensional arrays-of-arrays.
McNumJS automatically calculates shape and stride in
this case.

buffer a new typed array is created on the given ArrayBuffer.
byteOffset (optional) number of bytes to offset in the buffer from the first index.

Default: 0.
shape (optional) an array representing the shape of the array. Default: ar-

ray of single element containing the length of the array
stride (optional) an array representing the stride of the array. Default: Cal-

culates based on the shape and order of the array.
offset (optional) number of elements to offset from the starting element.

Default: 0.
order (optional) represents the order of the elements arranged in the array.

This parameter can be either "r" representing row-major
order or "c" representing column-major order. Default:
"r".

Table 4.2 TypedArray constructor parameters in McNumJS

4 McNumJS - A JavaScript Library for Numerical Computations 35

arrays are single-dimensional arrays, shape provides it dimensions. For example, a 2x3

bi-dimensional matrix has the shape of [2, 3].
We calculate stride property in the constructor if it is not provided in the constructor

arguments. The stride is a tuple of elements to step in each dimension when traversing

an array. Consider Listing 15 for the examples. In the first example, we create 2x3

matrix. The order of the elements is row-major by default, meaning the elements are

stored in row-by-row. Lines 4-5 show the 2-dimensional matrix and line 6 shows the one-

dimensional representation of the same matrix in row-major order. To step in the first

dimension, we just need to go to the next element in one-dimensional representation.

For example, stepping from (0,1) to (0,2) would just require moving to the next element

in one-dimensional array. Thus, the stride of first dimension is 1. Similarly, to step in

second dimension, we need to go to the third element. For example, stepping from

(0,1) to (1,1) would require moving from (1) to (4) in one-dimensional array. Thus,

the stride of second dimension is 3.

The second example in Listing 15 creates 2x3 matrix of the order column-major,

meaning the elements are stored in column-by-column. Lines 17-18 show the 2-dimensional

matrix and line 19 shows the one-dimensional representation of the matrix in column-

major order. To specify the column-major order, we pass the argument "c" in the con-

structor. Similar to the previous example, we calculate the stride of the matrix.

We calculate the stride to convert multi-dimensional indices to a single-dimensional

index. As shown in lines 12 and 25, we can multiply stride elements with that of indices

and add them to get the single-dimensional index. The calculation of stride can vary

based on the order of the data. The stride of the first dimension of the row-major

matrix is 1. The stride for the rest of the dimensions are multiplication of the size of

the previous dimensions. In Listing 15, the stride for the first dimension is 1 and the

second dimension is 1*3=3 (Line 10). Similarly, the stride of the last dimension of the

column-major matrix is 1. The stride for the rest of the dimensions are multiplication

of the size of the higher dimensions. In the second example of Listing 15, the stride for

the last dimension is 1 and the first dimension is 1*2=2 (Line 23).

Based on the aforementioned constructor, we calculate and add following properties

or methods to the typed array view object1:

1Figure 4.1 shows the full syntax of these properties and methods.

4 McNumJS - A JavaScript Library for Numerical Computations 36

1 // constructor: Int32Array(object, shape)
2 var intView = new Int32Array([1,2,3,4,5,6], [2,3]);
3 // 2x3 Int32 Matrix default row-major
4 /** 1 2 3
5 * 4 5 6
6 * => [1, 2, 3, 4, 5, 6]
7 */
8 console.log(intView.size); // 6
9 console.log(intView.shape); // [2, 3]

10 console.log(intView.stride); // [3, 1]
11 console.log(intView.get(0,1)); // 2
12 // index: 0*3+1*1 = 1
13

14 // constructor: Int32Array(object, shape, stride, offset, order)
15 var intView = new Int32Array([1,2,3,4,5,6], [2,3], null, 0, ’c’);
16 // 2x3 Int32 column-major Matrix
17 /** 1 3 5
18 * 2 4 6
19 * => [1, 2, 3, 4, 5, 6]
20 */
21 console.log(intView.size); // 6
22 console.log(intView.shape); // [2, 3]
23 console.log(intView.stride); // [1, 2]
24 console.log(intView.get(0,1)); // 3
25 // index: 0*1+1*2 = 2

Listing 15 Example of strides

4 McNumJS - A JavaScript Library for Numerical Computations 37

shape: an array representing the shape of the array,

stride: an array representing the stride of the array,

offset: an integer representing the offset, and

size: an integer representing the size of the array,

1 var intView = new Int32Array([1,2,3,4,5,6], [2,3]);
2 /* 2x3 Int32 Matrix: [1 2 3
3 4 5 6]
4 */
5 console.log(intView.shape); // [2, 3]
6 console.log(intView.stride); // [3, 1]
7 console.log(intView.get);
8 /*
9 function (i0, i1) {

10 return this[2*(i0|0) + 1*(i1|0)];
11 }
12 */
13

14 console.log(intView.get(1,1)); // 5

Listing 16 Example of get method for 2-dimensional array

We also dynamically add the following methods to get, set and map the multi-

dimensional indices to a single-dimensional index.

index: maps multi-dimensional indices to a single-dimensional index,

get: access the element at the given multi-dimensional indices, Listing 16 shows a get

method for a 2-dimensional array. The ordering of the array is row-major, and

set: set the value of the element at the given multi-dimensional indices.

We have also added static methods to each of the typed array classes (i.e. Float64Array,

Int32Array, etc.) to allow changing shape and stride dynamically. However, we do not

4 McNumJS - A JavaScript Library for Numerical Computations 38

change the shape and stride of the same typed array view but we create a new view

with the same array buffer (data) and new shape and stride properties. We make all

the properties and methods read-only to improve the JIT compilation. Our preliminary

results shows that for 2-dimensional matrix of size 400x400, we get a speedup of 2x

by making these properties read-only as JIT compiler can better optimize computations

if data is immutable. We have added following static properties/methods to the typed

arrays view class:

clone: Creates a array buffer, copies the data from the calling object and creates a new

view object on the new array buffer.

reshape: Creates a new view object with the new shape and stride properties.

slice: Slices the array given the lower and upper bounds arrays. It creates a new view

object on same array buffer and changes the shape, stride and offset properties.

class: Refers to the class of the typed array view.

map: Similar to JavaScript regular array map function, iterates through the array and

calls the callback function. Unlike regular map function, the second argument

of the callback function provides the multi-dimensional array indices instead of

single index value.

Listing 17 shows an example of the above methods. We create an Int32Array of

shape 3x3. The clone method will copy the ArrayBuffer and return a new Int32Array

object. The reshape method returns a 3x2 array view on same ArrayBuffer with updated

shape and stride properties. The slice method, given lower and upper bound of (0,1)

and (2,3) returns a new 2x2 array view on same buffer but with updated shape, stride

and offset properties. It is important to note that the reshape and slice methods do not

copy the underlying data but it returns a new view object with the changed properties.

We can still use the current view object but it would have the unchanged shape and stride

properties. The map function iterates through all the elements and add a constant 10

to the each of the element.

Let us compare the time complexity of traversing an array in regular arrays and

McNumJS typed arrays. Consider d as the number of dimension of an array and n as

4 McNumJS - A JavaScript Library for Numerical Computations 39

1 var intView = new Int32Array(
2 [1,2,3,4,5,6,7,8,9], [3,3]);
3

4 var copy = intView.clone();
5 // Copies array buffer and returns a new view object
6

7 var clipped = intView.reshape([3, 2]);
8 // Returns a new view with new shape on same ArrayBuffer
9 /* 1 2

10 * 3 4
11 * 5 6
12 */
13 console.log(clipped.shape); // [3, 2]
14 console.log(clipped.stride); // [2, 1]
15 console.log(clipped.size); // 6
16

17 var sliced = intView.slice([0, 1], [2, 3]);
18 // Returns a new view with sliced shape on same ArrayBuffer
19 /* 2 3
20 * 5 6
21 */
22 console.log(clipped.shape); // [2, 2]
23 console.log(clipped.stride); // [3, 1]
24 console.log(clipped.size); // 4
25 console.log(clipped.offset); // 1
26

27 sliced.map(function(v) {
28 return v + 10;
29 });
30 /* 12 13
31 * 15 16
32 */

Listing 17 Example of methods added to typed array class

4 McNumJS - A JavaScript Library for Numerical Computations 40

the total number of elements. To access an index in JavaScript regular arrays, there

is O (d) indirect memory reads or array accesses. So, the time complexity of regular

arrays (arrays of arrays) for traversal including indirect memory reads is O (dn). Also,

array traversal is oblivious to the memory caching. The time complexity of McNumJS

typed arrays for accessing an index is also O (d) as there is no indirect memory reads but

there is mapping of multi-dimensional indices to a single-dimensional index. However,

the array traversal is iterating through the elements and does not require mapping of

indices, which makes the time complexity O (n). Also, array traversal in McNumJS is

most likely to get benefit from the memory caching, as the typed arrays are stored as a

stretch of contiguous memory location.

In summary, the architecture of the McNumJS typed array is shown in the Figure 4.1.

We can compare this architecture with the normal JavaScript typed array architecture

shown in Figure 2.1.

4.2.2 Generation Module

The generation module contains API functions to generate matrices or vectors and fill

the values. For example, zeros will create a matrix of specified shape and class and

fill it with zeros. Similarly, there are API functions to create matrices of ones, linearly

spaced numbers, random numbers, etc. Listing 18 shows the syntax and examples of

generation module functions. Table 4.3 provides more description about the types and

meaning of all the parameters of these functions.

Parameter Description
shape an array representing the shape of the array.
className Class of the typed array to generate. Default:

Float64Array.
start, stop End points for the linearly spaced points or range.
n Number of points to generate for linearly spaced points.

Default: 100.
step step to generate next number in a range. Default: 1 or -1

based on start and stop values.
N Generates identity matrix of shape NxN.

Table 4.3 TypedArray constructor parameters in McNumJS

4 McNumJS - A JavaScript Library for Numerical Computations 41

Fig. 4.1 Architecture of JavaScript Typed Arrays (The properties and meth-
ods shown in black are added in the McNumJS)

4 McNumJS - A JavaScript Library for Numerical Computations 42

1 // mn.zeros(shape [, className]);
2 mn.zeros([6, 6]);
3 // Float64Array of shape 6x6
4

5 // mn.ones(shape [, className]);
6 mn.ones([6, 6], Int32Array);
7 // Int32Array of shape 6x6 filled with 1
8

9 // mn.rand(shape [, className]);
10 mn.rand([6, 6], Int32Array);
11 // Int32Array of shape 6x6 filled with random numbers
12

13 // mn.linspace(start, stop [, n [, className]]);
14 mn.linspace(0, 99);
15 // Float64Array of size 100 filled 0 ... 99
16

17 // mn.range(start, stop [, step, [className]]);
18 mn.range(10, 1);
19 // Float64Array of size 10 filled 10 ... 1
20

21 // mn.identity(N [, className]);
22 mn.identity(5, Uint8Array);
23 // Identity matrix of type Uint8Array and shape 5x5

Listing 18 Generation module functions syntax and examples

4 McNumJS - A JavaScript Library for Numerical Computations 43

4.2.3 Unary Operations Module

The unary operations module provides functions to perform unary operations like negate

matrix, sum of all the elements, get Sine of the matrix elements, etc. The unary opera-

tions also works on scalars. These API functions calls the functions specific to the type

of the arguments. For example, the negate function checks if the argument is scalar

or an array, and in case of scalars, it directly negates it and returns the result or calls

the negation function for arrays which iterates through the array and negates the array

elements. We also check if the array’s size and length mismatches. If it is not, then we

can just iterate through the entire array and do the operation to make the operation

faster. Else, we iterate using strides and do the operation. Listing 19 shows the syntax

of unary operation functions of McNumJS.

1 mn.fill(typedarray, value);
2 mn.negate(typedarray);
3

4 mn.sin(typedarray);
5 mn.cos(typedarray);
6 mn.abs(typedarray);
7 mn.sqrt(typedarray);
8 mn.exp(typedarray);
9 mn.ceil(typedarray);

10 mn.floor(typedarray);
11 mn.round(typedarray);
12

13 mn.sum(typedarray);
14 mn.average(typedarray);
15 mn.norm2(typedarray);
16

17 mn.transpose(typedarray [, axis1, axis2]);

Listing 19 Unary operations module functions syntax

An important API function in the unary operations module is the transpose function.

With regular arrays, it is necessary to create a new array with the transposed shape and

copy the data according to the transpose of a matrix. In case of McNumJS typed arrays,

4 McNumJS - A JavaScript Library for Numerical Computations 44

we can just change the order of accessing index to transpose a matrix. For example,

an array ordered by row-major can be transposed by changing access order to column-

major. Thus, we do not need to copy the data to get a transpose of a matrix.

In Listing 20, we create 2x3 Int32Array. The transpose function on this array changes

shape of the array to [3, 2] and stride to [1, 3]. The new view is shown in the lines 15-

17. Note that the ArrayBuffer is same and is not copied. Now we can see that the

index (0, 1) maps to (3) in single-dimensional index instead of (1). Thus, regardless

of the number of elements, we can create the transpose of the matrix fairly easily and

efficiently by changing the shape and stride.

1 var intView = new Int32Array([1,2,3,4,5,6], [2,3]);
2 // 2x3 Int32 Matrix default row-major
3 /** 1 2 3
4 * 4 5 6
5 * => [1, 2, 3, 4, 5, 6]
6 */
7 console.log(intView.size); // 6
8 console.log(intView.shape); // [2, 3]
9 console.log(intView.stride); // [3, 1]

10 console.log(intView.get(0,1)); // 2
11 // index: 0*3+1*1 = 1
12

13 var T = mn.transpose(intView);
14 // 3x2 column-major Matrix
15 /** 1 4
16 * 2 5
17 * 3 6
18 * => [1, 2, 3, 4, 5, 6]
19 */
20 console.log(T.size); // 6
21 console.log(T.shape); // [3, 2]
22 console.log(T.stride); // [1, 3]
23 console.log(T.get(0,1)); // 4
24 // index: 0*1+1*3 = 3

Listing 20 Example of transpose

4 McNumJS - A JavaScript Library for Numerical Computations 45

4.2.4 Binary Operations Module

The binary operations module contains the binary operations like add, subtract, multi-

ply, divide. The binary function can accept scalars and matrices. Based on the function

arguments, these functions call the type specific function. Listing 21 shows the syntax

of binary operation functions of McNumJS. In the syntax, in1 and in2 are the inputs

which can be scalars, matrix. out is the optional argument for output which by default

creates a new typed array based on the inputs.

1 mn.add(in1, in2 [, out]);
2 mn.addeq(in1, in2);
3

4 mn.subtract(in1, in2 [, out]);
5 mn.subtracteq(in1, in2);
6

7 mn.dot(in1, in2 [, out]);
8 mn.doteq(in1, in2);
9

10 mn.divide(in1, in2 [, out]);
11 mn.divideeq(in1, in2);

Listing 21 Binary operations module functions syntax

4.3 Development Process

In this section, we overview the development process of the McNumJS and the tools

involved in the process.

In development of the library, there are several tasks we need to perform redun-

dantly. For example, we override the constructor of the typed arrays to support multi-

dimensional indices. There are currently nine typed arrays supported by the modern

JavaScript engines. We need to create constructors for all of them. To automate these

redundant tasks, we create macros and expand them using sweet.js. Sweet.js provides

the hygienic macros from the languages like Scheme or Rust to JavaScript [26]. We

4 McNumJS - A JavaScript Library for Numerical Computations 46

can expand the macros either dynamically or statically, but to make the McNumJS less

dependent, we expand the macros statically.

Sweet.js generates the output code in three phases: (1) Parsing and expanding; (2)

hygienic changes (like removing temporary variables, renaming variables, etc.); and

(3) AST creation, parsing, validating AST and generate code using escodegen [27]
(ECMAScript code generator). However, escodegen does not recognize the asm.js code.

So it removes some parenthesis and operations while generating output code that are

required to coerce type. For example, as shown in Listing 3, we use 0.0 to coerce double

type to variables. This declaration is reduced to 0 instead making it of type integer.

Thus, to develop McNumJS, we just use the first phase of the sweet.js to avoid removal

of operations and parenthesis that are required.

We use grunt JavaScript task runner [28] to build the library. The grunt task runner

works on node.js and automates the build process. Figure 4.2 shows the development

process of the McNumJS. We first concatenate all the module files, including macro

files and then pass it to the sweet.js to expand the macros. The output code is the

distribution-ready McNumJS library. We have used unit-testing framework TAPE [29]
to test the library. There are test files for each of the modules2.

Modules Concatenation Sweet.js macro
expansion

mcnum.js

Development Distribution

Fig. 4.2 Development Process of McNumJS

2McNumJS library is available at http://www.sable.mcgill.ca/mclab/projects/mcnumjs/

47

Chapter 5

Performance Results

McNumJS dynamically adds properties and methods to typed arrays to support multi-

dimensional arrays. We extend the constructor of typed arrays and calculate these

properties dynamically inside this constructor. This additional calculation may affect

the performance of typed arrays. Moreover, we use get and set methods to map multi-

dimensional indices to a single dimensional index. Making calls to these functions for

accessing index can also negatively affect the performance.

In this chapter, we want to study the loss of performance due to these extra calcula-

tions. We also want to study the performance of McNumJS compared to native C and

other popular JavaScript libraries.

5.1 Methodology

5.1.1 Measurement objectives

One of the goal for McNumJS library is to improve performance for numerical applica-

tions. We study the performance of McNumJS by comparing it with that of native C.

We also report the slowdowns we get by adding properties on typed arrays. In addi-

tion to using typed arrays, asm.js code enables ahead-of-time compilation or improves

just-in-time compilation, thus providing best performance in JavaScript. So it is impor-

tant to compare McNumJS with asm.js and analyze the performance. There are several

popular JavaScript libraries for numerical computation like NumericJS, Sylvester and

Google Closure. These libraries are based on regular JavaScript arrays.

5 Performance Results 48

The following research questions will help us to understand both the performance of

McNumJS library and the slowdown introduced by the extra calculations done in typed

array constructor:

Q1: Is the performance of McNumJS competitive with native C? (Section 5.2.1)

Q2: How much performance do we lose in McNumJS compared to typed arrays? (Sec-

tion 5.2.2)

Q3: How does McNumJS fare compared to the asm.js? (Section 5.2.3)

Q4: Does McNumJS provide performance improvement compared to regular arrays?

(Section 5.2.4)

Q5: How is the performance of McNumJS versus other JavaScript numerical libraries?

(Section 5.3)

In the following sections, we describe the experimental setup to answer the research

questions and provide details on measurement methods for minimizing standard devi-

ation. We will also discuss briefly about the benchmarks and their different implemen-

tations used to perform these experiments.

5.1.2 Experimental setup

To perform the experiments, we have used a consumer-grade desktop environment.

Detailed specifications of the desktop machine is listed in Table 5.1.

Desktop
CPU Intel Core i7, 3.20GHz × 12
Cache 12 MiB
Memory 16 GiB
OS Ubuntu 12.04 LTS
GCC 4.6.4
Emscripten 1.12.0
Chrome 40.0.2214 (Dev version)
Firefox 36.0a1 (Nightly version)

Table 5.1 Specifications of the machine used for experiments.

5 Performance Results 49

5.1.3 Measurements

We can use the Ostrich benchmark suite [25] to answer the first four questions. Colella

identified seven algorithmic patterns that occur in numerical computations which are

referred to as Dwarfs [30]. The Ostrich benchmark suite [31] covers 12 dwarfs contain-

ing one benchmark for each dwarf. The suite comprise implementations in C, JSTA1,

OpenCL and WebCL. Table 5.2 briefly describes each benchmark from Ostrich bench-

mark suite and mentions which dwarf it belongs to.

We manually developed these benchmarks which make use of McNumJS library and

compare them with the existing implementations of the benchmarks. To answer the

first question, we used C implementation from the suite and compare its performance

with that of McNumJS. We have used GCC compiler with highest optimization level

to compile C code. We ran all the benchmarks 10 times and computed the arithmetic

mean of the execution times. We calculate the execution time ratio against McNumJS

and report the geometric mean of the ratios.

To find the cost of computing extra properties in McNumJS typed arrays, we used

JSTA implementation from the benchmark suite and compare the performance with

McNumJS benchmarks. The execution times are measured with the high-resolution

timer performance.now in both the implementations.

To answer the third question, we need the asm.js version of benchmarks. We ob-

tained asm.js code by using emscripten [32]. Emscripten is a compiler that translates

LLVM [33] bytecode to asm.js. We can compile the C implementation to LLVM using the

Clang compiler and then compile LLVM code to asm.js. Thus, we can compare compiled

asm.js code with McNumJS benchmarks and answer the third question. To ensure cor-

rectness of the benchmarks, we are using O2 optimization level while using emscripten,

instead of using highest level of optimizations. The highest level of optimization(O3)

changed the results significantly in some of the benchmarks like back-propagation. The

asm.js benchmarks uses Date.now while McNumJS uses high-resolution timer perfor-

mance.now to measure the execution time.

We changed the JavaScript version of the benchmarks and obtain one dimensional

regular array implementation of the benchmarks. We compare this implementation with

McNumJS and answer our fourth question.

1JSTA = JavaScript with Typed Arrays

5 Performance Results 50

Benchmark Dwarf Description
back-prop Unstructured grid a machine-learning algorithm that trains

the weights of connecting nodes on a lay-
ered neural network

bfs Graph traversal a breadth-first search algorithm that as-
signs to each node of a randomly generated
graph its distance from a source node

crc Combinatorial logic an error-detecting code which is designed
to detect errors caused by network trans-
mission or any other accidental error

fft Spectral methods the Fast Fourier Transform (FFT) function
is applied to a random data set

hmm Graphical models a forward-backward algorithm to find the
unknown parameters of a hidden Markov
model

lavamd N-body methods an algorithm to calculate particle poten-
tial and relocation due to mutual forces be-
tween particles within a large 3D space

lud Dense linear algebra a LU decomposition is performed on a
randomly-generated matrix

nqueens Branch and bound an algorithm to compute the number of
ways to put down n queens on an n × n
chess board where no queens are attacking
each other

nw Dynamic programming an algorithm to compute the optimal align-
ment of two protein sequences

page-rank Map reduce the algorithm famously used by Google
Search to measure the popularity of a web
site

spmv Sparse linear algebra an algorithm to multiply a randomly-
generated sparse matrix with a randomly
generated vector

srad Structured grid a diffusion method for ultrasonic and radar
imaging applications based on partial dif-
ferential equations

Table 5.2 Ostrich Benchmarks: dwarfs and description.

5 Performance Results 51

However, these benchmarks only contain primitive operations and thus, cannot use

existing library functions provided by other JavaScript libraries for numerical computa-

tions. So to answer the fifth question, we need different set of benchmarks. We will use

6 micro-benchmarks based on linear algebra implemented in McNumJS, NumericJS,

Closure library and Sylvester library. Table 5.3 briefly describes these six benchmarks.

We will use same desktop machine to run these benchmarks.

Benchmark Description
abs(V) Finding absolute value of vector elements
I(M) Creating Identity matrix
Transpose(M) Transpose a matrix
Sum(M) Sum of all the elements of a matrix
M .* S Matrix-Scalar dot product
M .+ M Matrix-Matrix point-wise addition

Table 5.3 Micro-Benchmarks: Name and description.

5.2 Ostrich Results

In this section, we are going to compare the performance of McNumJS with that of other

Ostrich benchmarks implementations to answer the first four questions.

5.2.1 McNumJS vs C

Programs written in C or other low-level languages that compile to efficient native code

provides maximum performance out of the hardware. Thus it is very important to com-

pare the performance of McNumJS with C code and answer Q1. We start by look-

ing at the results in Figure 5.1 obtained on our desktop machine using two popular

browsers for Linux, Google Chrome and Mozilla Firefox. We are reporting the slow-

down of McNumJS benchmarks compared to C by dividing execution time of McNumJS

by the execution time of C. We report the execution times of these benchmarks in Ap-

pendix A.

5 Performance Results 52

back-prop

bfs
crc fft hmm

lavamd

lud
nqueens

nw page-rank

spmv
srad

geo.mean

0

1

2

3

4

5

6
Sl

ow
do

w
n

co
m

pa
re

d
to

 C

Chrome-mcnum-Desktop
Firefox-mcnum-Desktop
C

Fig. 5.1 Slowdown of McNumJS compared to C

In Figure 5.1, we observe that on an average2 McNumJS is just below 2 times (1.91

times for Chrome and 1.83 times for Firefox) slower than C.

The most interesting of all the benchmarks is lavamd which is approximately 3 times

faster in McNumJS than C, in Chrome. The execution profile shows that the cause of

speedup is a call to the exponential function in a deeply nested loop body. There is an

article on Google Developers [34] explaining that a faster approximation of exp function

was implemented in V8 which is faster than standard system libraries.

Another interesting benchmark is srad. This benchmark is 5.89 times slower in

Chrome but only 2.03 times slower in Firefox. We are going to explain this behavior in

the next section. The only remaining benchmark which is slower than 4x in McNumJS

2We use geometric means instead of normal mean. So in the rest of the report, average means geo-
metric mean.

5 Performance Results 53

is fft. It is 4.08 and 5.18 times slower than C in Chrome and Firefox respectively. This is

because multiple typed arrays are allocated inside a recursive function, and in JavaScript

typed arrays are initialized to zero, which is more expensive than allocating arrays in

C. Hence the severe penalty in the benchmark.

In conclusion, McNumJS performs well for numerical computations, resulting in

slowdown within the factor of two in comparison to C.

5.2.2 McNumJS vs JavaScript Typed Arrays

McNumJS extends JavaScript typed arrays to provide multi-dimension support. So it is

very interesting to see how much slowdown we get by performing the extra calculations

of maintaining these properties and providing multi-dimension support to JavaScript

typed arrays. Figure 5.2 shows the slowdown of McNumJS benchmarks compared to

JSTA implementation by dividing execution time of McNumJS by the execution time of

JSTA implementation.

In Figure 5.2, we can see that on an average, McNumJS is 1.12 and 1.002 times

slower than JSTA on Chrome and Firefox respectively, making it nearly of similar per-

formance.

The only sore thumb here is the srad benchmark which on chrome is 3.12 times

slower than JSTA. We could not get the reason behind this weird behavior using Chrome

profiler. So we tweaked the benchmark to make it run on D8 (Google Chrome’s V8

JavaScript engine, built as a terminal application). We then used V8 profiling tools [34]
to profile the benchmark to get the detailed execution profile and discovered the prob-

lem. The underlying data in the benchmark was created using Float64Array typed ar-

rays and stored in row-major fashion. However, the access pattern in the rest of the

benchmark was in column-major fashion. Thus, the profiling data suggests that the get

and set function calls for accessing indices, make it hard for Chrome to optimize array

bounds checks. This was simple in the JSTA implementation as there were no calls to

function for accessing index, and the index was determined only once in the loop body.

To double check the deduction, we incrementally changed the get and set function calls

to manual index mapping. We observed that there is exponential speedup as we in-

crease the manual index mapping, which suggests that there is a missed optimization

opportunity for array bounds check in Chrome. This is the same reason, why we see big

5 Performance Results 54

back-prop

bfs
crc fft hmm

lavamd

lud
nqueens

nw page-rank

spmv
srad

geo.mean

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Sl

ow
do

w
n

co
m

pa
re

d
to

 js

Chrome-mcnum-Desktop
Firefox-mcnum-Desktop
js

Fig. 5.2 Slowdown of McNumJS compared to JavaScript Typed Arrays

difference between the Chrome and Firefox result for srad in Figure 5.1.

Another interesting benchmark in Figure 5.2 is nw. This benchmark is 1.519 and

1.051 times faster in McNumJS than JSTA. This benchmark contains a function for map-

ping 2-dimensional index to one-dimensional index. Therefore, both of the implemen-

tations (McNumJS and JSTA) are similar except the fact that McNumJS has get and set

functions added to the typed array object prototype and the arguments of these func-

tions are implicitly typed, while in JSTA the mapping function is separate from typed

arrays and arguments to this function are not typed. Thus, McNumJS provides better

performance than JSTA.

In Figure 5.2, there are many benchmarks that do not show any change. It is impor-

tant to note that six of the benchmarks, namely bfs, crc, fft, lavamd, nqueens and spmv

5 Performance Results 55

contains just one-dimensional arrays. So there is no mapping of indices in JSTA and the

cost of calculating extra properties in McNumJS is negligible in this case. As the figure

shows, these benchmarks show little or no change.

In conclusion, we can say that in McNumJS, the cost of calculating extra properties

to support multi-dimensional index and calls to get and set methods for accessing index

is insignificant in comparison to the manual mapping in JSTA.

5.2.3 McNumJS vs Asm.js

Asm.js defines low-level, strict JavaScript subset, allowing ahead-of-time compilation in

Firefox and better JIT optimizations in Chrome and other supported browsers. There-

fore, asm.js mostly provides better performance than hand-written JavaScript. It is very

interesting to see the performance of McNumJS in comparison to the compiler gener-

ated asm.js code. In this section, we will discuss the slowdown of McNumJS compared

to asm.js code by dividing execution time of McNumJS by the execution time of asm.js.

In Figure 5.3, the average slowdown of McNumJS is 1.37 and 1.26 times that of

asm.js code in Chrome and Firefox respectively. We can observe that only 3 benchmarks

out of 24 have slowdowns of more than 2x and 17 out of 24 benchmarks have slowdowns

under 1.5x.

Similar to the previous results, there is a huge difference between Chrome and Fire-

fox performance of srad benchmark. The benchmark is 4.36 and 1.59 times slower

than asm.js in Chrome and Firefox respectively. This was expected as the McNumJS

benchmark runs slower in Chrome than Firefox.

It is noticeable that there is a huge speed up of 2.08 for lavamd benchmark in Firefox.

The reason behind it is that the asm.js version of the benchmark performs badly in

Firefox.

In conclusion, we can say that McNumJS performs well only by slowing down below

the factor of 1.4 in comparison to the asm.js code.

5.2.4 McNumJS vs One dimensional Regular Arrays

JavaScript typed arrays are not popular in routine web application development. Sci-

entists and engineers usually work with regular arrays as they are easy to work with.

5 Performance Results 56

back-prop

bfs
crc fft hmm

lavamd

lud
nqueens

nw page-rank

spmv
srad

geo.mean

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5
Sl

ow
do

w
n

co
m

pa
re

d
to

 a
sm

js

Chrome-mcnum-Desktop
Firefox-mcnum-Desktop
asmjs

Fig. 5.3 Slowdown of McNumJS compared to asm.js

However, we claim to make McNumJS to be of high-performance. So it is important to

see how much speedup we get using McNumJS compared to using regular arrays.

Figure 5.4 shows the speedup graph of McNumJS compared to one-dimensional

regular arrays. We obtained the regular arrays by changing typed array constructor to

regular array constructor. We have kept some of the typed arrays to ensure correctness of

the algorithm. For example, operations with unsigned integers would require additional

conditions using regular array to ensure correctness. Thus, we have not changed these

typed arrays to regular arrays. As the graph is a speedup graph, higher value is desirable.

Also note that the graph is on log base of 4.

In Figure 5.4, average speedup we get by using McNumJS is 1.25 and 2.01 times

that of the regular arrays in Chrome and Firefox respectively. This is a huge difference.

5 Performance Results 57

back-prop

bfs
crc fft hmm

lavamd

lud
nqueens

nw page-rank

spmv
srad

geo.mean

0.2

1.0

4.0

16.0

64.0
Sp

ee
du

p
co

m
pa

re
d

to
 js

-n
ot

a
(l

og
4)

Chrome-mcnum-Desktop
Firefox-mcnum-Desktop
js-nota

Fig. 5.4 Speedup of McNumJS compared to One dimensional Regular Ar-
rays

We will discuss the reason behind this gap later in this section.

As shown in the figure, we get major slowdown for fft benchmark. As discussed

previously, fft creates multiple typed arrays in a recursive function, and because typed

arrays takes more time to initialize than regular arrays, we get slowdown in McNumJS

compared to regular arrays.

Another interesting benchmark in Figure 5.4 is srad, as we get speedup in Firefox and

slowdown in Chrome. As mentioned before, there is a missed optimization opportunity

in Chrome which makes the McNumJS implementation of the benchmark slower.

We can notice that for back-prop, nw and page-rank, there is a vast difference be-

tween the speedups of Chrome and Firefox. Firefox shows a huge speedup for McNumJS.

The reason behind this is that Chrome optimizes the regular arrays better than Firefox.

5 Performance Results 58

Chrome internally converts regular arrays to arrays of doubles within hot loops, mak-

ing it highly optimizable and faster to access. Also, Chrome has a missed optimization

opportunity for some of these benchmarks.

As mentioned earlier, we converted JSTA version to regular arrays by changing the

typed array constructor. Also, we have kept some of the typed arrays unchanged as they

were required to ensure the correctness of the algorithm. If we use multi-dimensional

regular arrays, some of the benchmarks run out of memory and some of them continue

running more than three minutes. Thus, if scientists were to develop numeric appli-

cation in JavaScript, they cannot use multi-dimensional regular arrays due to its lim-

itations. In conclusion, McNumJS shows good speedup over one-dimensional regular

arrays.

5.3 Performance compared to other libraries

In this section, we are going to use micro-benchmarks described in Table 5.3 to find

how much performance we get using McNumJS compared to other popular JavaScript

libraries for numerical computations as described in Chapter 2.

Micro-benchmarks have lower execution time compared to normal benchmarks. The

execution time of these benchmarks are often misleading. We cannot account the times

for context switches, garbage collections, library load, which occurs at any random time

and take any nondeterministic amount of time. If we execute a micro-benchmark, and

any one of these times add up, it will make an significant change in the execution time.

Thus, to safely deduce the performance result for micro-benchamarks, we run these

benchmarks repeatedly over a considerable period of time and calculate MEPS (Micro-

benchmark Executions Per Second), the number of times the benchmark has run. Thus,

we can safely ignore the other timings.

In this section, we calculate MEPS for all the micro-benchmarks and compare the

performance of McNumJS with other libraries by dividing the MEPS of McNumJS to the

MEPS of other libraries. Thus we show the slowdowns of the other libraries compared

to McNumJS. We used four different input sizes to test the result. We ran these micro-

benchmarks in Chrome and Firefox. We reported MEPS for all of these benchmarks in

Appendix B.

5 Performance Results 59

Figure 5.5 and Figure 5.6 shows the slowdown of popular JavaScript libraries com-

pared to McNumJS. So the higher numbers indicate better performance for McNumJS.

The single line connecting four dots are slowdowns of a single benchmark, for different

input sizes. The input size represents the number of elements in vector or row/column

in matrix. We tested four different input sizes: 50, 200, 800 and 3200. We can see

that for large inputs, McNumJS outperforms the other libraries. For smaller input size,

McNumJS is just behind NumericJS for just two benchmarks. Google Closure Library

and Sylvester library uses objects to represent the matrices or vectors. So we can expect

that they do not perform as well as other libraries as objects are not very optimizable.

Also, the primary focus of these two libraries is not good performance but to provide

functionality.

Firefox shows a huge slowdown for NumericJS for large input size compared to

McNumJS. As discussed in previous section, Firefox is not good with optimizing regu-

lar arrays but it is good with optimizing typed arrays. Thus we get huge speedup for

McNumJS in Firefox.

On average, McNumJS is 1.76, 13.46 and 9.02 times faster than NumericJS, Closure

library and Sylvester library in Chrome respectively. Similarly, on Firefox, McNumJS is

5.04, 12.34 and 8.35 times faster that NumericJS, Closure library and Sylvester library.

We can see that as the input size increases, the speedup gets higher for McNumJS.

It is important to note that for transpose, as we do not copy the data and just create

a new view object with updated shape and stride properties, transpose should be much

faster. However, other libraries creates a new object when performing a transpose, it is

only fair if we clone the object first and then perform transpose in McNumJS. Thus, in

transpose benchmark, we also copy the data. We should get more speedup if we do not

copy the data.

In conclusion, McNumJS outperforms the other libraries by at least a factor of 1.8.

5 Performance Results 60

0

5

10

15

20

25

30

35

40

45

50

S
lo

w
d

o
w

n
 c

o
m

p
a
re

d
 t

o
 M

cN
u

m
JS

NumericJS

Sylvester

Closure Library

Fig. 5.5 Slowdown of JavaScript libraries compared to McNumJS in
Chrome (V = Vector, M = Matrix, S = Scalar)

5 Performance Results 61

0

50

100

150

200

250

300

350

S
lo

w
d

o
w

n
 c

o
m

p
a
re

d
 t

o
 M

cN
u

m
JS

NumericJS

Sylvester

Closure Library

Fig. 5.6 Slowdown of JavaScript libraries compared to McNumJS in Firefox

62

Chapter 6

Conclusions and Future Work

6.1 Conclusion

JavaScript allows applications to run on any device with web browsers and makes the

distribution of the applications easier than ever before. With the increasing popularity

of JavaScript, a lot of research has been done to improve the performance of JavaScript

and minimize the quirks that the language has. However, the lack of high performance

numeric library for JavaScript, makes it difficult to develop numeric applications that

run with high temporal efficiency. With this thesis, we aim to solve the problem by

providing a high-performance library for numerical computations.

To provide high-performance, we investigated existing and currently in development

JavaScript technologies that can provide good performance and are suitable for numer-

ical applications. In Chapter 2, we listed these technologies with their advantages and

disadvantages, and provided examples by implementing sepia function in each of these

technologies. Moreover, to make our library easy-to-use, we studied other popular nu-

meric libraries and kept them as reference.

We then provided an in-depth analysis of asm.js with different JavaScript modes and

asm.js calling patterns. Even though the main motivation behind asm.js was to make it

compilation target, we discovered that the type coercion rules define by asm.js are easy

to work with and provide performance improvements. We also explored the limitations

of asm.js. For example, calling asm.js from normal JavaScript or another asm.js module

changes the execution engine, which greatly reduces the performance.

6 Conclusions and Future Work 63

McNumJS makes use of typed arrays to get faster array access. We extend the view

object, and add shape and stride information to provide multi-dimensional array access.

In Chapter 4, we provide cost analysis of maintaining these properties and benefits from

them. McNumJS also uses asm.js style type coercing to get even better performance. In

the case of transpose and slicing, McNumJS avoids copying data by just changing the

shape and stride properties of the McNumJS typed arrays.

McNumJS is developed in four modules. The core module extends the typed arrays

and provides multi-dimension array access. This module also provide methods like

reshape, to change the shape of the array. This will create a new view object with

new values of properties on the same data. The generator module provides functions to

generate different matrices like zeros and ones. We can optionally specify type to create

different type of arrays supported by JavaScript like Uint32Array or Float32Array. The

unary and binary operator modules provide functions for unary and binary operations

on matrices like add, subtract, sin and cos.

This thesis analyzes the performance of McNumJS by comparing it with C and other

JavaScript libraries. We also check the slowdowns we get by maintaining extra prop-

erties to support multi-dimensional arrays. Our experiments show that McNumJS is

slower than C within a factor of 2. The slowdowns we get are fairly negligible. How-

ever, in some cases, Chrome shows huge slowdowns for McNumJS. McNumJS provides

good speedup in comparison to the regular arrays. We also showed that it performs very

well in comparison to the other JavaScript libraries.

6.2 Future Work

Based on the deduced knowledge and results, we recognize some of the areas in which

future research or development initiatives can be undertaken to make the API robust

and more efficient. We categorize possible future works as follows:

Adding more Library functions: The current implementation of the library consists

of generation of multi-dimensional matrices and basic arithmetic operations on

them. However, for scientists and engineers to write numerical applications, these

functions are not sufficient. Keeping this library as a base and providing more li-

brary functions should be fairly simple. Fourier transform and LU-Decomposition

6 Conclusions and Future Work 64

are examples of some of the functions that are required to be implemented. More-

over, efficient implementation of complex numbers in JavaScript is also an inter-

esting feature to develop.

Efficient API implementation: As more and more research is being done in the area

of JavaScript performance, there are more chances of optimizing the library and

providing better performance. Also, as we have seen in Chapter 5, there are some

missed optimization opportunities for the Google Chrome. An efficient implemen-

tation is required to overcome such aberration in performance.

Implementing lazy computation: It is advantageous to combine non-conflicting oper-

ations and compute only when the result is required. There are many optimization

opportunities if we combine the operations. However, the current implementation

does not provide any function or way to combine operations or delay computation

till the results are required. NumPy library uses lazy computation to optimize the

computations. Thus, it is an interesting research topic to find a way to provide

lazy computation in McNumJS.

Making use of Parallelism: There are several research projects going on to support

parallelism in JavaScript. We also investigated the possibility of using Web Work-

ers to provide parallelism but the Web Workers are not light-weight and they in-

troduce slowdowns. We also studied the performance of WebCL and found that

it provides good speedups only for highly parallel benchmarks. However, as the

research progress, we can see the possibility of extending the library and making

use of parallelism.

Performance tuning for more JavaScript engines: We have studied the performance

of McNumJS in Google Chrome and Mozilla Firefox browsers. These browsers

take around 60% of the browser usage market share [35]. However, Internet

Explorer and Safari also have a fairly large user base. So it is important to tune

the performance of the library for these browsers as well.

Minimization (or Minification): Minimization is the process of removing all unneces-

sary characters from source code without changing its functionality [36]. Mini-

fication is very important in JavaScript as it reduces the size of the code and the

6 Conclusions and Future Work 65

reduced size takes less time to transfer over the Internet [37]. McNumJS uses type

coercion rules and that requires some binary operations and some extra parenthe-

ses. Currently available JavaScript compressor tools like Google Closure tools [38]
and UglifyJS [39] removes these extra parenthesis. Thus, we need to create a tool

which recognizes asm.js code and do not remove parentheses.

66

Appendix A

Ostrich Benchmark Suite Results

In this appendix, we present the timing results from our experiments.

A.0.1 Execution times

The tables below show the average times (in seconds) for 10 execution of each bench-

mark in each software configuration.1

Benchmark C Fx-JS-noT Fx-asmjs Fx-JS-TA Fx-mcnum
back-prop 0.903 30.220 0.815 1.544 1.526
bfs 0.333 0.790 0.362 0.518 0.514
crc 0.643 2.224 1.023 2.213 2.210
fft 0.795 2.619 2.831 4.148 4.120
hmm 1.804 25.966 2.866 4.256 4.480
lavamd 2.435 2.229 4.648 2.195 2.231
lud 1.950 1.994 2.003 1.992 2.049
nqueens 2.947 6.113 4.097 5.547 5.392
nw 0.442 4.670 0.664 0.795 0.756
page-rank 3.373 12.881 3.064 3.255 3.235
spmv 0.679 1.827 1.393 1.442 1.424
srad 3.902 8.787 4.974 7.467 7.933

Table A.1 Ostrich benchmark suite results on C and Firefox

1Cr= Chrome; Fx= Firefox; JS-TA= JavaScript with typed arrays; JS-noTA= JavaScript with regular
arrays

A Ostrich Benchmark Suite Results 67

Benchmark Cr-JS-noTA Cr-asmjs Cr-JS-TA Cr-mcnum
back-prop 10.935 0.835 1.370 2.064
bfs 1.082 0.712 0.679 0.679
crc 2.016 1.422 2.023 2.063
fft 0.974 1.873 3.250 3.246
hmm 23.484 3.408 3.728 4.572
lavamd 0.786 0.722 0.751 0.792
lud 1.986 1.983 1.998 2.004
nqueens 5.332 4.683 4.552 4.504
nw 1.763 0.857 1.589 1.046
page-rank 4.122 3.206 3.260 3.424
spmv 2.260 1.708 1.466 1.478
srad 7.612 5.277 7.367 23.008

Table A.2 Ostrich benchmark suite results on Chrome

68

Appendix B

Micro-benchmarks Results

In this appendix, we present the MEPS results from our experiments with micro-benchmarks.

B Micro-benchmarks Results 69

benchmark size NumericJS Google Closure Sylvester McNumJS

abs(V) n=50 3071968.8 99064.51 702142.86 13107167
n=200 571511.63 26448.27 170638.89 4274065.2
n=800 211827.59 6821.42 34863.63 1117068.2
n=3200 920.00 1678.57 11968.75 292547.62

I(M) n=50 85305.55 33347.82 18707.31 14730.76
n=200 3745.09 2638.88 979.16 7346.15
n=800 407.40 151.51 78.12 523.80
n=3200 0.41 8.03 3.64 135.13

Transpose(M) n=200 2159.09 793.10 1146.34 3653.84
n=50 74902.43 15320.00 17431.81 6586.20
n=800 185.18 44.44 52.63 121.95
n=3200 0.31 1.50 1.79 20.20

Sum(M) n=50 19175.00 10638.88 35697.67 511958.33
n=200 3653.84 696.96 2435.89 27392.85
n=800 407.40 43.47 76.92 1382.35
n=3200 31.74 2.51 5.97 79.36

M .* S n=50 59038.46 10638.88 11606.06 16078.53
n=200 2768.11 696.96 793.10 1382.35
n=800 78.12 42.55 28.57 90.90
n=3200 0.31 2.53 2.46 5.42

M .+ M n=50 52931.03 9341.46 10942.85 361382.35
n=200 1270.27 605.26 696.96 22558.82
n=800 139.24 37.03 44.44 1468.75
n=3200 0.27 2.18 2.07 71.42

Table B.1 Micro-benchmark results on Firefox

B Micro-benchmarks Results 70

Benchmarks Size Numeric Google Closure Sylvester McNumJS

abs(V) n=50 3780884.6 396354.84 664189.19 6779551.7
n=200 1404314.3 136511.11 186151.52 1820407.4
n=800 396354.84 19666.66 45147.06 438821.43
n=3200 102366.67 4130.43 11606.06 109678.57

I(M) n=50 198161.29 27392.85 25566.66 21305.55
n=200 13678.57 1880.00 1566.66 7958.33
n=800 920.00 58.82 47.61 410.71
n=3200 12.57 3.73 2.83 25.97

Transpose(M) n=50 136511.11 12766.66 24741.93 10078.94
n=200 4547.61 676.47 1468.75 5162.16
n=800 147.05 32.25 38.46 500.00
n=3200 9.56 1.68 2.25 29.85

Sum(M) n=50 73119.04 6161.29 13678.57 211827.59
n=200 7346.15 407.40 979.16 11606.06
n=800 86.95 21.97 35.71 718.75
n=3200 3.30 1.37 2.73 66.66

M .* S n=50 99064.51 5968.75 11968.75 102366.67
n=200 6161.29 392.85 741.93 7346.15
n=800 71.42 18.18 18.01 469.38
n=3200 2.75 1.29 1.31 51.28

M .+ M n=50 73119.04 5617.64 12766.66 93060.60
n=200 4547.61 379.31 793.10 5162.16
n=800 74.07 17.54 18.34 323.52
n=3200 2.81 1.21 1.15 20.00

Table B.2 Micro-benchmark results on Chrome

71

References

[1] C. Severance, “Javascript: Designing a Language in 10 Days,” Computer, vol. 45,
no. 2, pp. 7–8, 2012.

[2] “Develop High Performance Windows 8 Application with HTML5 and JavaScript.”
http://blogs.msdn.com/b/dorischen/archive/2013/04/26/develop-high-
performance-windows-8-application-with-html5-and-javascript-best-practices-
amp-tips.aspx, Apr. 2013.

[3] S. Tilkov and S. Vinoski, “Node.js: Using JavaScript to Build High-Performance
Network Programs,” IEEE Internet Computing, vol. 14, pp. 80–83, Nov. 2010.

[4] “Standard ECMA-262 ECMAScript® Language Specification Edition 5.1.”
http://www.ecma-international.org/publications/standards/Ecma-262.htm,
June 2011.

[5] A. Gal, B. Eich, M. Shaver, D. Anderson, et al., “Trace-based Just-in-time Type
Specialization for Dynamic Languages,”

[6] L. Bak, “Google Chrome’s Need for Speed.”
http://blog.chromium.org/2008/09/google-chromes-need-for-speed_02.html,
Sept. 2008.

[7] “‘Epic Citadel’ Demo Shows the Power of the Web as a Platform for Gaming.”
https://blog.mozilla.org/futurereleases/2013/05/02/epic-citadel-demo-shows-
the-power-of-the-web-as-a-platform-for-gaming/, May 2013.

[8] “Asm.js Specification.” http://asmjs.org/spec/latest/.

[9] “WebGL Specification.” https://www.khronos.org/registry/webgl/specs/1.0/,
Mar. 2013.

[10] “WebCL Specification.” http://www.khronos.org/registry/webcl/specs/latest/1.0/,
May 2014.

References 72

[11] Numpy.org, http://www.numpy.org/, NumPy.

[12] L. Wagner, “Asm.js AOT compilation and startup performance.”
https://blog.mozilla.org/luke/2014/01/14/asm-js-aot-compilation-and-startup-
performance/, Jan. 2014.

[13] “Chrome and Opera Optimize for Mozilla-Pioneered Asm.js.”
https://blog.mozilla.org/futurereleases/2013/11/26/chrome-and-opera-
optimize-for-mozilla-pioneered-asm-js/, Nov. 2013.

[14] “Web Workers.” http://www.w3.org/TR/workers/, May 2012.

[15] S. Okamoto and M. Kohana, “Load Distribution by Using Web Workers for a Real-
time Web Application,” in Proceedings of the 12th International Conference on In-
formation Integration and Web-based Applications; Services, iiWAS ’10, (New York,
NY, USA), pp. 592–597, ACM, 2010.

[16] “Nokia WebCL for Firefox.” http://www.khronos.org/registry/webcl/specs/latest/1.0/,
May 2014.

[17] “WebCL Chromium.” https://www.khronos.org/registry/webgl/specs/1.0/, Mar.
2013.

[18] S. Loisel, “Numeric Javascript.” http://www.numericjs.com/.

[19] Google, “Closure Library API Documentation JavaScript.” http://docs.closure-
library.googlecode.com/git/index.html.

[20] “Integer - Closure Library.” http://docs.closure-
library.googlecode.com/git/class_goog_math_Integer.html.

[21] J. Coglan, “Sylvester.” http://sylvester.jcoglan.com/.

[22] “Strict mode - JavaScript | MDN.” https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Strict_mode.

[23] M. Bynens, “jsPerf: JavaScript performance playground.” http://jsperf.com/.

[24] “Asm.js in Firefox Nightly.” http://blog.mozilla.org/luke/2013/03/21/asm-js-in-
firefox-nightly/.

[25] F. Khan, V. Foley-Bourgon, S. Kathrotia, E. Lavoie, and L. Hendren, “Using
JavaScript and WebCL for Numerical Computations: A Comparative Study of Na-
tive and Web Technologies,” in Proceedings of the 10th ACM Symposium on Dynamic
Languages, DLS ’14, (New York, NY, USA), pp. 91–102, ACM, 2014.

References 73

[26] T. Disney, N. Faubion, D. Herman, and C. Flanagan, “Sweeten Your JavaScript:
Hygienic Macros for ES5,” in Proceedings of the 10th ACM Symposium on Dynamic
Languages, DLS ’14, (New York, NY, USA), pp. 35–44, ACM, 2014.

[27] Y. Suzuki, “estools / escodegen.” https://github.com/estools/escodegen/.

[28] “Grunt: The JavaScript Task Runner.” http://gruntjs.com/.

[29] “tap-producing test harness for node and browsers.”
https://github.com/substack/tape.

[30] W. C. Feng, H. Lin, T. Scogland, and J. Zhang, “OpenCL and the 13 Dwarfs: A
Work in Progress,” in Proceedings of the 3rd ACM/SPEC International Conference
on Performance Engineering, ICPE ’12, (New York, NY, USA), pp. 291–294, ACM,
2012.

[31] “Ostrich benchmark suite.” https://github.com/Sable/Ostrich.

[32] A. Zakai, “Emscripten: An LLVM-to-JavaScript Compiler,” in Proceedings of the ACM
International Conference Companion on Object Oriented Programming Systems Lan-
guages and Applications Companion, SPLASH ’11, (New York, NY, USA), pp. 301–
312, ACM, 2011.

[33] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation,” in Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization, CGO
’04, (Washington, DC, USA), pp. 75–, IEEE Computer Society, 2004.

[34] “Profile your web application with V8’s internal profiler.”
https://developers.google.com/v8/profiler_example.

[35] “W3Counter: Global Web Stats - November 2014 Market Share.”
http://www.w3counter.com/globalstats.php.

[36] “Minification (programming).” http://en.wikipedia.org/wiki/Minification_(programming).

[37] D. Odell, “ Boosting JavaScript Performance ,” in Pro JavaScript Development,
pp. 91–118, Apress, 2014.

[38] “Closure Tools - Google Developers.” https://developers.google.com/closure/compiler/.

[39] “UglifyJS - JavaScript parser / mangler / compressor / beautifier library for
NodeJS.” https://github.com/mishoo/UglifyJS.

	Abstract
	Résumé
	Acknowledgement
	Introduction
	Motivation
	Thesis Contributions
	Thesis Organization

	Background and Related Technologies
	JavaScript Features and Technologies
	Regular arrays
	Typed arrays
	Asm.js
	Web Workers
	WebCL

	Related Technologies
	NumericJS
	Google Closure Library
	Sylvester
	NumPy

	Performance Analysis of asm.js
	Overview of asm.js Specifications
	Asm.js Experiments
	Normal JavaScript
	Function with Type Coercion
	Function with Type Coercion in Strict Mode
	Calling asm.js Function from Normal JavaScript
	Calls between Different asm.js Modules
	Complete asm.js Module

	Results

	McNumJS - A JavaScript Library for Numerical Computations
	JavaScript Features and Technology Selection
	Architecture
	Core Module
	Generation Module
	Unary Operations Module
	Binary Operations Module

	Development Process

	Performance Results
	Methodology
	Measurement objectives
	Experimental setup
	Measurements

	Ostrich Results
	McNumJS vs C
	McNumJS vs JavaScript Typed Arrays
	McNumJS vs Asm.js
	McNumJS vs One dimensional Regular Arrays

	Performance compared to other libraries

	Conclusions and Future Work
	Conclusion
	Future Work

	Ostrich Benchmark Suite Results
	Execution times

	Micro-benchmarks Results
	References

