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neurotrophic factor on a specific cellular phenomenon, to the speculative establishment of a

neurochemical affective regulation pathway and its involvement in psychopathology.
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research would not have been possible. Finally, for you reading this, either through obligation or
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1v. General outline

The format of this document will be as follows:

- Abridged research overview

- Overview of the relevant concepts

- Existing theories for depressive etiology, antidepressant mechanisms, and the current
research’s contextual role

- Identification of NRG1 as pro-neurogenic and anti-depressant, and ErbB3 as a candidate
mechanistic receptor

- Additional characterization of the neurogenic effects of NRG1, and identification of

factors distinguishing immature dorsal and ventral dentate gyrus neurons



- Investigation of the role of NRG1/ErbB3 in psychopathology and related suicidal

endophenotypes

V. Abstract

We initially sought to examine the effects of neuregulin-1 (NRG1) administration on adult
hippocampal neuroplasticity, and determined that this paradigm increases cell proliferation and
neurogenesis in the ventral (but not dorsal) hippocampus. This neurogenic increase was
accompanied by antidepressant-like behaviour that was present when these cells became
functional neurons, but not acutely after administration. We also identified ErbB3 as a candidate
mechanistic receptor in this phenomenon. Next we completed our characterization of the
neurogenic effects of NRG1, and determined that they are limited to proliferation and
neurogenesis in the ventral hippocampus. We also discovered morphological differences
between immature neurons in the dorsal and ventral dentate gyrus (DG). Having determined that
NRG1-ErbB3 signaling has antidepressant-like properties, we then sought to investigate whether
the converse was also true, in that psychopathological samples and animal models might show
deficits in NRG1-ErbB3 signaling. As hypothesized, we found decreased hippocampal ErbB3
expression in suicide completers, as well as deficits in anterior DG granule neurons (which we
and others show ubiquitously express ErbB3), with the latter phenotype being reversed with
antidepressant treatment, as well as cell body hypertrophy in the posterior DG granule cell layer.
Together these results identify a pathway that is putatively involved in both psychopathology and

its amelioration, ostensibly through its effects in the DG.



Nous avons d’abord cherché a examiner les effets d 'une administration de la NRGI sur la
neuroplasticité hippocampique et déterminé que ce traitement augmente la prolifération
cellulaire ainsi que la neurogenése au sein de [’hippocampe ventral (mais non dorsal). Cette
neurogenese accrue fut accompagnée, des lors que les cellules devinrent des neurones
fonctionnels, d’un comportement typique d’'un effet antidépresseur. Nous avons également
identifié le récepteur ErbB3 comme étant le récepteur pouvant médier ces effets. Nous avons par
la suite complété la caractérisation des effets neurogeniques de NRG1 et déterminé ainsi que ces
effets se limitent a la prolifération et a la neurogenese au sein de [’ hippocampe ventral. Nous
avons aussi découvert des différences morphologiques entre les neurones immatures localisés
dans [’hippocampe ventral et ceux de [’hippocampe dorsal. Ayant déterminé que la signalisation
NRGI-ErbB3 présente des propriétés antidépressives, nous avons ensuite cherché a savoir si des
déficits dans cette signalisation étaient détectables au sein d’échantillons cérébraux humains et
de modeles animaux de psychopathologies. Notre hypothese fut vérifiée par la démonstration
d’une forte régulation a la baisse de [’espression d’ErbB3 dans [’hippocampe de suicidés, ainsi
que de déficits dramatiques au niveau des neurones granulaires du gyrus denté antérieur
(phénomene renversé par le traitement aux antidépreseurs), connus pour leur expression de ce
récepteur. De plus, nous avons observé une hypertrophie du corps cellulaire dans la couche de
cellules granulaires du gyrus denté postérieur. Dans leur ensemble, ces résultats identifient une
nouvelle voie pouvant étre impliquée, par ses actions au sein du gyrus denté, dans la

psychopathologie ainsi que dans son traitement.
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MDD: Major depressive disorder
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1.1 INTRODUCTION

1.1.1 NEUREGULIN-1 AND ERBB RECEPTORS

Research interest in neuregulins, a group of epidermal growth factor- (EGF-) related signaling
proteins, and ErbB (avian erythroblastosis oncogene B) receptor tyrosine kinases, has historically
come from four distinct research domains: 1) oncological research, due to their roles in particular
cancers; 2) developmental neuroscience, due to their critical role in early development; 3)
psychiatric research, based initially on the identification (and subsequent validation) of
neuregulin-1 (NRG1) as a schizophrenia candidate gene, and more recently the potential
involvement of NRG1 and ErbBs in a broader psychopathological role; and 4) cardiac research,
based initially on the strong expression of NRG1 in cardiac tissue and subsequently on its
apparent therapeutic potential in ameliorating heart conditions. However, although these fields
may seem disparate, the findings in this section relating to NRG1-ErbB signaling converge on a
central thesis driving our initial experiments (Figure 1). Specifically, they first supported the
hypothesis that NRG1 could plausibly induce proliferation of new neurons in the hippocampus,
as it has been shown to stimulate proliferation in oncological contexts. Given its prominent role
in neurodevelopment, NRG1 would likely affect adult brain activity, including hippocampal
plasticity in the form of adult neurogenesis. As both NRG1-ErbB signaling and neurogenesis
have been associated with affective regulation and psychopathology, we were driven to examine
whether NRG1 administration could also influence affective behaviour in animals in which
neurogenesis had been augmented. Finally, the potential therapeutic utility of any positive effects
of NRG1-ErbB signaling examined throughout this document is bolstered by cardiac research

indicating its suitability as a novel treatment in psychopathological contexts.
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NRGT1 binds to ErbB receptor homo- or heterodimers. ErbB3 and ErbB4 are capable of binding
NRGI directly, and the extracellular domain (domain I'V) of these receptors hinges toward
domains II and III (Franco-Gonzalez et al., 2013). ErbB3 and ErbB2 commonly heterodimerize,
primarily at domain II and (to a lesser extent) domain IV (Franco-Gonzalez et al., 2013). ErbB1
also shows a weak affinity for heterodimerizing with ErbB3, typically preferring to
homodimerize in the presence of the latter receptor, but ErbB1 does form heterodimers with
ErbB4 (Macdonald-Obermann et al., 2013; Mei and Xiong, 2008) (for a visual representation of
NRGI1/ErbB structure and signaling, see Falls, 2003; Mei and Nave, 2014; Mei and Xiong,

2008).

Expression of NRG1 (and its receptors) is widespread throughout the body, including the heart,
in blood, and at neuromuscular junctions (Camprecios et al., 2011; Fischbach and Rosen, 1997;
Zhang et al., 2008). Numerous studies have indicated that NRGI1 crosses the blood-brain barrier
(BBB) to affect brain processes. Kastin et al. (2004) showed that this occurs readily, through
receptor-mediated transport. Additional studies have also shown that peripherally-administered
NRGI crosses the BBB, modulates brain activity and behaviour, increases ErbB phosphorylation
in the brain, and acts as a neurotrophic factor (Abe et al., 2011; Carlsson et al., 2011; Cui et al.,
2013; Depboylu et al., 2015; Engel et al., 2014; Kato et al., 2015; Kato et al., 2011; Rosler et al.,

2011).

One complicating factor in the discussion of neuregulins and ErbB receptors is their large
taxonomical variety and confounding nomenclature, instances of which have subsequently been
established as misnomers. NRG1 isoforms have been known variously as glial growth factor
(GGF), neu differentiating factor (NDF), heregulin (HRG), acetylcholine receptor inducing-

activity (ARIA), and sensory and motor neuron differentiating factor (SMDF). NRG receptors
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have similar nominal variability, with ErtbB1-4 being known as Her1-4, ErbB1 referred to as
EGFR (EGF receptor), ErbB2 known originally as Neu, and so on. For the purposes of this
document, I will refer to their most common designations, with ErbB1 referred to as EGFR, and

the neuregulins and other ErbB receptors referred to as such.

Although at least four NRG classes (1-4) are known to exist, comparatively little is known about
NRG2-4 (Falls, 2003), and so this introduction will focus predominately on NRG1. The
transcriptional products of the NRG1 gene are remarkably (one hesitates to say ‘infuriatingly”’)
diverse, due to alternative splicing, including at least 31 known isoforms (Mei and Xiong, 2008).
[ will attempt to summarize this variance in as painless a manner as possible. Suffice it to say, in
general the varieties of NRG1 isoforms are distinguished by their EGF-like domains, their N-

terminal sequences, and their membranous status.

The EGF-like domain of NRG1 isoforms serves as their active signaling domain; in fact, this
domain alone is sufficient for signaling, and is often used in isolation in NRG1 administration
paradigms (Falls, 2003). The immunoglobulin- (Ig)-like domain, in contrast, is dispensable for
signaling. The EGF-like domain is present in one of two forms, a or 3, with the 3 variant having

higher binding potency {Falls, 2003 #1086} .

The N-terminal sequence of NRG1 isoforms divides them into six categories; I (Ig-like domain,
short N-terminal), I (Ig-like domain, long N-terminal), and III (cysteine-rich domain), with two
transmembrane domains (Fleck et al., 2013) are the most widely studied, whereas IV-VI are

generally much less expressed or absent in the brain {Falls, 2003 #1086;Liu, 2011 #1231}.

Their method of release prior to signaling further distinguishes NRG1 isoforms. NRG1s may be

released from a transmembrane conformation by proteolytic processing, transcribed as a secreted
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cytokine, or may signal through a juxtacrine conformation, with the latter being restricted to
type-1II NRG1 isoforms. Paracrine signaling by transmembrane NRG1 is attained through
proteolytic processing by beta-secretase 1 (BACE1), a disintegrin and metalloproteinase domain-
containing protein 10 (ADAM10), ADAM17, and ADAMI19 (Falls, 2003; Fleck et al., 2013; Luo
et al., 2011; Mei and Xiong, 2008). Notably, BACE1 knockdown increases hippocampal
doublecortin (DCX) expression (Modarresi et al., 2011). Backward or reverse signaling is also
possible, in which membrane-anchored NRG1 acts as a receptor for soluble or membrane-bound
ErbBs. This has been shown to regulate promoter activity of postsynaptic density protein 95
(PSD-95) through the Eos transcription factor (Bao et al., 2004; Mei and Xiong, 2008). Finally,
he isoforms are also distinguished (though not commonly) by their cytoplasmic tails at the C-

terminus into a- or b-type.

As B, a-type tail, and type-I NRG1 isoforms are among the most highly expressed in the nervous
system, the NRG1-Bla (B EGF-like domain, type-I N-terminal, a-type tail) is likely one of the
most prominent isoforms in the central nervous system (Falls, 2003; Liu et al., 2011), and was

thus our primary focus during our initial experiments, as described subsequently.

1.1.2 Oncological studies of NRG/ErbBs

The naming in full of ErbB receptors reflects their initial oncological discovery. Clinical
oncological examination of NRG/ErbBs began with the finding that ErbB2 was upregulated in a
subset of breast cancer patients, resulting in interest in neuregulins as ErbB2 ligands (Montero et
al., 2008). These findings led to the development of ErbB antagonists lapatinib, trastuzumab, and
pertuzumab for the treatment of ErbB-expressing tumors. NRG1-ErbB3 signaling in particular
induces stem cell characteristics in breast tumor cells (Jeong et al., 2014). Expression of NRG1

or ErbBs has been identified in a multitude of tumors in addition to breast cancers (Montero et
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al., 2008). While seemingly distal from my own research topics, these studies offer critical
support for the role of NRG/ErbBs in cell proliferation, which I identify with respect to neural
progenitor cell proliferation later in Chapter 2, and in identifying the signaling cascades in this
phenomenon. In addition, concerted industrial efforts to develop both broad and selective ErbB
antagonists in order to treat ErbB-related cancers, while generally not commercially available at
the time of this writing, offer future avenues of research that could validate and refine the

findings and models discussed herein.

1.1.3 Role of NRG1/ErbBs in neural development

The vast majority of neurological research into NRG1/ErbBs to date has focused on its pivotal
role in early neurodevelopment. Indeed, research into the role of this signaling pathway in the
function of the adult brain has almost exclusively occurred in the last few years with few
exceptions, providing an impetus for our research into this topic. Consequently, multiple
developmental roles for NRG1 and ErbBs have been discovered, including neuronal migration,
neurite development, synapse formation, myelination, oligodendrocyte development, and

neuromuscular junction formation (Garcia et al., 2013; Mei and Xiong, 2008).

Insight into the onset of NRG1 expression influencing nervous system development has come
from knockout studies, in which Schwann cell precursor alterations are seen in overall NRG1
knockouts as early as E10.5, at which point the embryo does not survive due to heart failure
(Falls, 2003). Similarly, NRGI1 type-III knockouts show neuromuscular synapse disruption at
birth (Falls, 2003). Finally, expression of NRGI1 transcripts in both the rodent and human cortex

decrease from early life to adulthood (Liu et al., 2011).
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NRGI is involved in the migration of a wide variety of cells in the developing brain, including -
aminobutyric acid- (GABA-)ergic and glutamatergic neurons. This may be NRG1-ErbB4
signaling-dependent, as ErbB4 inhibition impairs interneuronal migration, and inhibition of
ErbB4 activity specifically in glial cells prevents radial migration of glutamatergic neurons along
glial fibers (Flames et al., 2004; Mei and Xiong, 2008; Rio et al., 1997). Neural crest cell

migration is also altered in mice lacking ErbB4 (Golding et al., 2000).

ErbB receptors are also involved in neurite development. Pheochromocytoma cell line 12 (PC12)
cells treated with medium from sciatic nerve and a tyrosine receptor kinase/protein kinase C
(TrK/PKC) inhibitor leads to elongated neurites, Na+ current elicitation, increased neuronal
differentiation, and increased expression of EGFR, ErbB2, and (in particular) ErbB3; pan-ErbB
inhibitor administration prevented neuritogenesis, differentiation and Na+ current effects. These
effects may be mediated by inhibition of PKC, and ErbB receptors and PKC modulation may
regulate neuronal differentiation, Na+ current initiation and neuritogenesis, at least in PC12 cells
(Garcia et al., 2013). Finally, NRGI acts as a distal chemoattractant for thalamocortical axons

(Lopez-Bendito et al., 2006).

The developmental influence of NRG1 on synapse formation in the brain has been demonstrated
for acetylcholinergic, GABAergic, and glutamatergic receptors, with animals in which NRG1-
ErbB4 signaling is inhibited showing disrupted N-methyl-D-aspartate (NMDA) and a-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (Li et al., 2007). Postsynaptic
ErbB4 may regulate excitatory synapses in an activity-dependent manner that requires its
recruitment by PSD-95 (Li et al., 2007; Liu et al., 2001; Mei and Xiong, 2008; Rieff et al., 1999;
Yang et al., 1998). In particular, NRG1 has been shown to activate NMDA receptor subunit

NR2B in immature cortical neurons (Pandya and Pillai, 2014), and NRGI1 increases spine
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density, spine size, and AMPA receptor GluA1 subunit surface expression in vitro in cortical

pyramidal neurons (Cahill et al., 2013).

The involvement of NRG1 in oligodendrocyte function and brain development has not been as
thoroughly investigated as with Schwann cells and the peripheral nervous system (Mei and
Xiong, 2008). However, it has been shown that NRG1 regulates oligodendrocyte proliferation,
differentiation, and survival, as well as the migration of oligodendrocyte precursor cells (Canoll
et al., 1996; Flores et al., 2000; Kim et al., 2003b; Ortega et al., 2012; Vartanian et al., 1994).
Additionally, ErtbB4 hypomorphs display reduced numbers of oligodendrocytes, altered

oligodendrocyte morphology, and disrupted myelination (Roy et al., 2007).

Together these results suggest that NRG1 has wide-ranging effects on peripheral and central
nervous system development. However, the influence of NRG1 on adult brain function has not
been as thoroughly studied, and the examinations to date have largely focused on its regulation

of neuronal firing and synaptic plasticity.

1.1.4 NRGT1 in adult central nervous system neuronal activity

In the central nervous system, NRG1 is predominately expressed in neurons (Fleck et al., 2013),
and NRGI affects multiple ion channels in its influence on neuronal firing, although studies to
date have predominately focused on NRG1-ErbB4 signaling-modulated activity in particular (as
with brain development studies). NRG1 acts through Kv1.1 channels to regulate fast-spiking
neuronal excitability in parvalbumin-expressing interneurons (Li et al., 2012a), and also
regulates outward Kv4.2 current through Akt and mTor signaling in immature neurons during
development (Yao et al., 2013). In the substantia nigra, NRG1 potentiates mGluR 1-activated

currents through phosphoinositide 3-kinase (PI3K)/Akt/mTor signaling, and NRG1
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administration increases dopamine release in this region as well as in the hippocampus, in which
NRGT1 depotentiates long-term potentiation at glutamatergic synapses (Kwon et al., 2008;
Ledonne et al., 2015). Similarly, NRG1p causes D4 receptor activation-dependent increases in
gamma oscillation in the hippocampus (Andersson et al., 2012). The role of NRG1-ErbB
signaling in depotentiation may be ErbB4-dependent, as ErbB4 hypomorphic mice do not
display reversal of long-term potentiation after stimulation, and show (along with NRG1
hypomorphic mice) increased hippocampal long-term potentiation (Shamir et al., 2012).
However, NRG1 type-I overexpression does not affect hippocampal long-term potentiation,
although spatial memory performance is impaired in aged mice (Deakin et al., 2012). NRG1 also
reduces excitability in voltage-gated sodium currents in hippocampal interneurons by increasing

firing threshold, in an ErbB-dependent manner (Janssen et al., 2012).

Thus NRG1 has been shown to regulate synaptic plasticity, including in the hippocampus.
However, whether NRG1 affects adult hippocampal neurogenesis, an additional form of synaptic
plasticity and largely a recapitulation of early brain neurogenesis (Kempermann, 2006), was
unknown at the outset of our studies. This was made especially intriguing by previous studies
showing increased hippocampal neurogenesis after administration with other neurotrophic
factors {Aberg, 2000 #308;Jin, 2002 #307;Scharfman, 2005 #293}, as discussed later in this
Chapter. Thus we determined the effects of NRG1 administration on adult hippocampal
neurogenesis, in order to address this gap in understanding. However, in order to hypothesize
whether any NRG1-induced neurogenic changes would induce neurogenesis-related alterations
in affective behaviour, it is important to examine whether NRG1 is disrupted in

psychopathological conditions, as has been reported in studies in humans.

1.1.5 NRG1 and ErbBs in human studies
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Studies of NRG1 in human psychopathological and healthy contexts largely began with the
discovery of an association between NRG1 and schizophrenia (Stefansson et al., 2002), but
rapidly proliferated subsequently. Understandably, a large proportion of the human NRG1
studies following this seminal paper sought to validate this association, with many supporting the
initial finding. Genetic associations between NRG1 and schizophrenia have been found in
Icelandic (Stefansson et al., 2002), Scottish (Stefansson et al., 2003), Pakistani (Naz et al., 2011),
Indian (Kukshal et al., 2013), and Korean (Yang, 2012) populations. There is also genetic
linkage in schizophrenia patients between NRG1-related genes (Hatzimanolis et al., 2013),
NRGI polymorphisms have been associated with a schizophrenia-related endophenotype (Kang
et al., 2012), and NRG1-induced downstream Akt signaling is impaired in first-episode
schizophrenia, with decreased hippocampal volume correlating with Akt signaling levels

(Szamosi et al., 2012).

Similarly, NRG1 genetic variation is associated with structural alterations in multiple brain
regions in healthy individuals, bipolar patients, and schizophrenia patients (Barnes et al., 2012;
Cannon et al., 2012; Douet et al., 2014; Gruber et al., 2008; Nickl-Jockschat et al., 2014; Tosato
et al., 2012). ErbB4 genotype has similarly been associated with structural alterations (Douet et

al., 2015), as well as cortical GABA levels (Marenco et al., 2011).

NRGI has also been associated with other pathological phenotypes. Depressed patients show
reduced numbers of NRG1-expressing neurons in the prefrontal cortex {Bertram, 2007 #527}.
NRG1 has been shown to have a genetic association with bipolar disorder (Cao et al., 2014).
Additionally, decreased levels of NRG1 in blood are associated with increased risk of subsequent

appearance of psychosis in high-risk individuals (Kiss et al., 2012).
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Finally, NRG1 genotype has been associated with ubiquitous phenotypes, such as sociality (Yoo

et al., 2015) and creativity (Keri, 2009).

In addition to NRG1, ErbB4 has been associated with depression, bipolar disorder, and
schizophrenia, and peripheral ErbB3 has also been associated with major depressive disorder
(MDD) and antidepressant response, subsequent to our identification of its putative involvement
in antidepressant-like behaviour (Chen et al., 2012; Chong et al., 2008; Mahar et al., 2011;

Milanesi et al., 2012).

Together, these studies suggest that NRG1 and ErbB disruptions may be etiologically related to
psychopathology. This includes depression, and as discussed at length later in this chapter,
decreases in neurogenesis or its end-product, granule cell neurons, have been associated with
depression or depression-like behaviour (Mahar et al., 2014). Similarly, increases in
neurogenesis have been associated with antidepressant usage and antidepressant-like behaviour
(Mabhar et al., 2014). Thus, we examined whether any increases in neurogenesis induced by

NRG1 administration would affect antidepressant-like behaviour.

1.1.6 Cardiac NRG/ErbB research

Cardiac research into NRG/ErbBs grew from the discovery that knockouts for NRG1, ADAM17,
ErbB2, and ErbB4 are all embryonically lethal and include cardiac developmental defects (Yin et
al., 2015). Additionally, ErbB2 inhibition by trastuzumab has been shown to induce
cardiotoxicity (Gao et al., 2010; Guarneri et al., 2006). Preclinical studies established that NRG1
has cardioprotective effects in rodent models of chronic heart failure, potentially through
increased proliferation, growth, and survival of cardiac myocytes (Liu et al., 2006; Zhao et al.,

1998). This led rapidly to human trials, several of which are still in progress (Gao et al., 2010;
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Jabbour et al., 2011). Again, while this research arm may seem distal to the aims of my thesis,
multiple relevant points can be gleaned. In particular, NRG1’s cardioprotective effects seemed to
be via cardiac reverse remodeling, due to downstream signaling changes, epigenetic
modifications, and cell metabolism effects (Yin et al., 2015), and perhaps more relevantly,
NRGI1 treatment in humans has been shown to be tolerated well, with minimal side effects (Gao
et al., 2010; Jabbour et al., 2011). This latter point suggests that NRG1 treatment for
neuropsychiatric contexts may be a viable alternative or adjunct therapeutic, as I propose in

subsequent Chapters based on our experimental findings.

1.1.7 NRG1-ErbB signaling in adult hippocampal neurogenesis, affective behaviour, and

psychopathology

As is hopefully clear at this point, NRG1-ErbB signaling has been demonstrated to have
cytogenic properties, plays a crucial role in neurodevelopment and mature brain function, and is
linked with psychopathology, but had not been studied in the context of adult hippocampal
neurogenesis at the outset of our studies, providing the initial impetus for our research. The
original thesis behind the subsequent experiments was predicated upon the fact that NRG1 might
be involved in adult brain functioning, particularly with respect to hippocampal plasticity and
psychopathology. Along these lines, the subsequent sections discuss not only existing theories of
depressive and suicidal etiology from a conventional standpoint of the predominant
monoaminergic theory of depression, but also discuss hippocampal neurogenesis in particular
and presents a model by which these two leading etiological elements of depressive
psychopathology might be integrated, with particular relevance to the original studies discussed

herein.
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ABSTRACT

Chronic stressful life events are risk factors for developing depression, the pathophysiology of
which is strongly linked to impairments in serotonin (5-hydroxytryptamine, 5-HT)
neurotransmission. Exposure to chronic unpredictable stress (CUS) has been found to induce
depressive-like behaviours, including passive behavioural coping and anhedonia in animal
models, along with many other affective, cognitive, and behavioural symptoms. The
heterogeneity of these symptoms represents the plurality of corticolimbic structures involved in
mood regulation that are adversely affected in the disorder. Chronic stress has also been shown
to negatively regulate adult hippocampal neurogenesis, a phenomenon that is involved in
antidepressant effects and regulates subsequent stress responses. Although there exists an
enormous body of data on stress-induced alterations of 5-HT activity, there has not been
extensive exploration of 5-HT adaptations occurring presynaptically or at the level of the raphe
nuclei after exposure to CUS. Similarly, although hippocampal neurogenesis is known to be
negatively regulated by stress and positively regulated by antidepressant treatment, the role of
neurogenesis in mediating affective behaviour in the context of stress remains an active area of
investigation. The goal of this review is to link the serotonergic and neurogenic hypotheses of
depression and antidepressant effects in the context of stress. Specifically, chronic stress
significantly attenuates 5-HT neurotransmission and 5-HT1a autoreceptor sensitivity, and this
effect could represent an endophenotypic hallmark for mood disorders. In addition, by
decreasing neurogenesis, CUS decreases hippocampal inhibition of the hypothalamic-pituitary-
adrenal (HPA) axis, exacerbating stress axis overactivity. Similarly, we discuss the possibility
that adult hippocampal neurogenesis mediates antidepressant effects via the ventral (in rodents;

anterior in humans) hippocampus’ influence on the HPA axis, and mechanisms by which
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antidepressants may reverse chronic stress-induced 5-HT and neurogenic changes. Although data
are as yet equivocal, antidepressant modulation of 5-HT neurotransmission may well serve as
one of the factors that could drive neurogenesis-dependent antidepressant effects through these

stress regulation-related mechanisms.

Highlights:
- The central 5-HT system regulates affect and stress
- Acute and chronic stress paradigms have divergent neurobiological effects on the 5-HT
system and neurogenesis
- Hippocampal neurogenesis is influenced by endogenous and exogenous 5-HT modulation
- Neurogenesis is related to stress response, affect, and antidepressant effects
- Ventral (in rodents; anterior in humans) hippocampal neurogenesis may modulate affect

and stress via the HPA axis

Keywords: Stress, neurogenesis, serotonin, hypothalamic-pituitary-adrenal axis, chronic

unpredictable stress, depression, neurotrophic factors, antidepressant

1.2.1 Introduction

MDD is a recurrent and debilitating mental disorder with a lifetime prevalence of up to
20% in the general population, among the highest for psychiatric disorders (Kessler et al., 2003).
Its diagnosis is based upon the presence of persisting affective, cognitive and behavioural
symptoms (see Table 1), with a depressive episode requiring at least five of these symptoms

(including depressed mood or anhedonia) persisting for at least two weeks to meet diagnostic
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criteria (American Psychiatric Association, 2013). Despite advancements in the development of
therapeutics, current treatment options have not reached optimal efficacy. For instance,
pharmacological antidepressant treatments typically require several weeks of treatment before
improvement of symptoms can be observed (Jacobs et al., 2000). In the Sequenced Treatment
Alternatives to Relieve Depression (STAR*D) study, the largest prospective, randomized
antidepressant trial to date, 16% of participants dropped out due to tolerability issues, only 36.8
% achieved remission after a first level treatment with an antidepressant, and 40% of remittances
subsequently led to relapses (McGrath et al., 2008). A large proportion of remitted patients also
suffer from residual symptoms that may fluctuate over time (Judd et al., 1998). These clinical
limitations owe in part to gaps in knowledge about depressive pathophysiology, which is
increasingly being recognized as involving multiple levels, encompassing disturbances in
molecular signaling and in modulatory network function.

The etiology of depression is still largely unknown, and theories vary widely in scope and
perspective. For example, depression has been proposed to be an evolutionary adaptation to
social environments (Allen and Badcock, 2006), or as a consequence of deleterious social
environment (Billings et al., 1983). Cognitive theories span from earlier psychoanalytical
perspectives of depression as a product of subconscious libidinal drive (Silverman, 1976) to
more modern and supported cognitive theories concerning negative and irrational cognitive
distortions regarding the self as well as ruminative cognitive patterns (Possel, 2011), and other
psychosocial theories suggest particular personality factors such as introversion and pessimism
might predispose to depression (Akiskal et al., 1983). More recent theoretical focus has largely
been on biological factors, including a wealth of information supporting stress as a causal factor

in depression, largely concerning chronic stress-related HPA dysregulation and toxicity from
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excessive glucocorticoid release (Lupien et al., 2009), though other theories posit that a
downregulation of hippocampal neurogenesis underlies the disorder (Kempermann &
Kronenberg, 2003), or suggest genetic or epigenetic factors for developing depression (Karg et
al., 2011; Menke et al., 2012). The diathesis-stress model accounts for the interaction of a
number of factors as crucial for the etiology of depression. In particular, it posits that a
depressive episode is triggered by a combination of a biological predisposition or intrinsic
vulnerability (the diathesis) and a precipitating stressful event that may occur much later in life
(Monroe and Simons, 1991). The diathesis may stem from genetic liabilities impacting different
neurobiological systems involved in stress adaptation and affective processing (as discussed in
later sections) or from postnatal or periadolescent events such as child abuse, which directly
impact early development of the nervous system (Kendler et al., 2002, 2006; Kendler et al.,
2004). The effect of stress, on the other hand, can be modulated by many other factors such as
personality, intra-psychic conflict, and presence (or absence) of social support, which could
affect how stressful events are perceived in terms of controllability and agency. These
environmental and stress factors could in turn influence biological systems, such as causing
excessive glucocorticoid release or other HPA dysregulation, particularly in tandem with genetic
polymorphisms influencing physiological response to stress, leading to changes in limbic and
cortical brain areas as well as depressive (including cognitive) symptoms. Thus theories of
depression to date involve evolutionary, social, environmental, interpersonal, psychoanalytical,
cognitive, personality, behavioural, endocrine, cellular, and genetic and epigenetic factors and
levels of analysis.

However, at the neurochemical level, the most widely accepted hypothesis concerns the

depletion of monoamines, most notably of the indoleamine serotonin (5-hydroxytryptamine, 5-
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HT), in the brains of depressed patients. Indeed, conventional antidepressants that enhance 5-HT
transmission, such as inhibitors of 5-HT reuptake, are the primary choice for first-line
pharmacotherapy (Bambico et al., 2009a; Bambico and Gobbi, 2008). However, it is important to
point out that some findings do not entirely support a simplistic explanation of depression as
purely arising from a serotonergic deficit. For example, a decrease in 5-HT tone does not
precipitate a full-blown clinical depressive phenotype in healthy individuals, although this has
been shown to occur in some individuals with a history of depressive episodes. Moreover, not all
depressed patients respond substantially to treatment with 5-HT agonists (Albert et al., 2012;
Neumeister et al., 2002). In addition, although typically chronic treatment with antidepressants is
necessary for therapeutic efficacy in treating depressive symptoms in patients or reversing
depression-like endophenotypes in animal models (Jacobs et al., 2000), extracellular 5-HT levels
increase rapidly after administration (Hervas and Artigas, 1998), suggesting that restoration of 5-
HT activity is not immediately sufficient for depressive amelioration and that additional longer-
term mechanisms are likely involved. As such, other potentially contributing neurobiological
etiological factors underlying depression (and its treatment) have been proposed, including
deficits in other neurotransmitters and in neurotrophic factors such as brain-derived neurotrophic
factor (BDNF), changes in hippocampal neurogenesis, HPA dysregulation, and circadian rhythm
disruption (Hasler, 2010; Jacobs et al., 2000). Notably, these factors do not exist in isolation and
frequently influence each other; for example (as discussed later in this article, in sections 4.2 and
4.4), BDNF and 5-HT positively modulate hippocampal neurogenesis, which in turn regulates
HPA function and response to stress.

5-HT is produced from the essential amino acid L-tryptophan in neurons of midbrain

raphe nuclei, primarily by the dorsal raphe (DR), which contains about half of the mammalian
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nervous system’s 5-HT neurons and represents a major source of 5-HT projections in the central
nervous system, including the spinal cord (Dahlstroem and Fuxe, 1964; Descarries et al., 1982).
Virtually all corticolimbic structures that are involved in mood regulation and the stress
response, and which express receptors for 5-HT, are extensively innervated by DR-originating
axons. These include the prefrontal cortex (PFC), amygdala, hippocampus and nucleus
accumbens (NAc) (Holmes, 2008; Steinbusch, 1981). Not surprisingly, depressive
symptomatology is extremely complex and overlaps with that of other neuropsychiatric
disorders, such as the negative symptoms seen in schizophrenia. It has been hypothesized that
disturbances in 5-HT activity in these postsynaptic targets underlie the wide range of emotional,
cognitive, vegetative, and endocrine symptoms found in depression (Blier and de Montigny,
1999; Ressler and Nemeroff, 2000). Genetic (Caspi et al., 2003; Lesch, 2004; Levinson, 20006),
brain imaging (Rosa-Neto et al., 2004), tryptophan depletion (Delgado et al., 1999; Leyton et al.,
2000), and post-mortem studies (Mann et al., 2000) have provided further evidence in support of
this view. The origin of 5-HT impairment in depression is multifaceted and is likely due to the
interaction of many intrinsic (e.g. genetic predisposition, gender, and personality factors) and
extrinsic factors (e.g. drug use, insufficient social support, and stress) (Jans et al., 2007). Among
environmental elements, stress has been given considerable attention as one of the most potent
precipitating factors for depression. The emergence of depressive symptoms does indeed proceed
in many cases from an experience with a stressful stimulus of one form or another, with which
the organism is incapable of coping (Jans et al., 2007). Furthermore, the impact of genetic factors
has been shown to be modulated by stress (Kendler et al., 1995; Pucilowski et al., 1993; Silberg
et al., 1999). Under normal conditions, the stress response is integral to survival and proper

biological and psychological functioning. However, an individual subjected repeatedly to stress,
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especially where it finds itself unable to neutralize the source of stress, may eventually succumb
to despair. In this case, the accumulated psychological and physical demands (allostatic load) of
the stressful experiences will have become detrimental to the central nervous system. These
consequences are conducive in potentiating one’s vulnerability to depression and other
neuropsychiatric disorders. The neural transmission of monoamine transmitter systems has been
examined in response to the depressogenic nature of stressful stimuli. It is gradually being
recognized from neurochemical and electrophysiological studies that 5-HT neural excitability is
greatly influenced by stress and other depressogenic factors, as well as manipulations or agents
possessing antidepressant activity. This impact of stress on 5-HT activity could influence the
spontaneous and evoked single-spiking and burst-firing activity of 5-HT neurons, as well as the
function of their presynaptic and postsynaptic receptors. Stress could also affect different levels
of the monoamine metabolic pathway (synthesis, intracellular trafficking, degradation, and re-
uptake), which could in turn influence electrochemical signaling (Holmes, 2008). Notably,
environmental context may also play a role in the interaction between stress and monoaminergic
antidepressant effects. A recent study has shown that an enriched environmental context during
treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine leads to behavioural,
glucocorticoid, and hippocampal and hypothalamic BDNF recovery from chronic stress, whereas
fluoxetine treatment in a stressful context (after enriched housing) exacerbates these
consequences of chronic stress (Branchi et al., 2013). Future studies may further elucidate
whether environmental context, among other as yet unconsidered factors, modulates response to
antidepressants and stress.

Chronic stress has also been shown to affect several aspects of hippocampal

neuroplasticity. In particular, it potently decreases adult hippocampal neurogenesis (Dranovsky
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and Hen, 2006), the process by which new granule cell neurons are added throughout life to the
dentate gyrus (DG) of the hippocampus (Altman and Das, 1965; Kempermann, 2011). Given that
hippocampal neurogenesis can regulate the hypothalamic-pituitary-adrenal (HPA) axis
(Schloesser et al., 2009; Snyder et al., 2011b), this consequence of chronic stress may exacerbate
affective and behavioural responses to stress (Raison and Miller, 2003) in addition to
predisposing an individual to subsequent depressive episodes in response to stress. Notably,
treatments with antidepressant efficacy have been shown to increase hippocampal neurogenesis,
including antidepressant medication (serotonergic as well as non-serotonergic (Banasr et al.,
2006; Dranovsky and Hen, 2006)) and non-pharmacological interventions such as
electroconvulsive shock (Perera et al., 2007), transcranial magnetic stimulation (Ueyama et al.,
2011), and exercise (Glasper et al., 2010; Kiuchi et al., 2012); the neurogenic efficacy of non-
serotonergic therapies suggests that antidepressant-stimulated neurogenesis may also be
regulated by non-serotonergic pathways. In fact, hippocampal neurogenesis may be required for
the actions of some antidepressant agents, particularly serotonergic medications (Airan et al.,
2007; Jiang et al., 2005; Santarelli et al., 2003; Surget et al., 2008), and this requirement may
involve inhibition of the HPA axis by adult-born neurons in the hippocampus (Snyder et al.,
2011b).

This review considers the effects of short-term and chronic stress on 5-HT and
neurogenesis-related neurophysiology, primarily within the context of stress-related animal
models of depression. The central 5-HT system will be extensively discussed, particularly in
relation to the influences of acute (section 1.2.2) and chronic (1.2.3) stress on 5-HT activity, as
well as hedonic and motivational behaviour (1.2.3.1). The role of presynaptic and postsynaptic 5-

HT1A receptors in the control of 5-HT activity, which have also been exhaustively studied in the
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past regarding receptor mechanisms of antidepressant action and stress adaptation, will be also
be examined (1.2.3.2). Finally, the potential role of hippocampal neurogenesis (1.2.4) in
depression and antidepressant effects (1.2.4.1), its regulation by monoamines and neurotrophic
factors (1.2.4.2), its relationship with antidepressant response (1.2.4.3), and the particular
function of ventral (in rodents) or anterior (in primates) hippocampal neurogenesis in mediating
response to stress and antidepressant effects (1.2.4.4) will be discussed, along with a timeline of
important stages in hippocampal neurogenesis and when neurogenic manipulations at various
stages should have functional consequences on behaviour (1.2.4.5). 5-HT and neurogenic
responses to stress and influences on affective behaviour explored throughout this review are
summarized in Fig. 2. We also propose a link between these two systems by suggesting that
stress-induced neurogenic deficits contribute to 5-HT dysfunction through HPA dysregulation,
and that antidepressants acting on 5-HT may drive hippocampal neurogenesis-dependent

antidepressant effects through stress regulation.

1.2.2 Acute effects of stress on serotonergic neuronal activity

Under normal conditions, stress sets into motion a cascade of physiological mechanisms
(i.e. autonomic and endocrine), paralleled by cognitive and affective processes, which rapidly
prepare for the mobilization of energy (glycogenolysis). This equips the organism with an
arsenal of defensive behaviours, such as escape, aggression, and avoidance, to address the source
of danger. Acute stress exposure modulates the activity of the central 5-HT system as an
important neurophysiological component of the stress response. Acute or short-term exposure to
various noxious (physical) stimuli and psychological (situational) stressors have been found to

influence the synaptic transmission of monoamines in varying degrees (Lanfumey et al., 2008;
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Sapolsky, 2003; Schultz, 2007). These responses are rather rapid, transient (may last for several
seconds beyond stimulus offset) electrochemical changes that aim to re-establish homeostasis in
the organism, and are generally commensurate to the demand imposed by the stressful situation
(i.e. allostatic load) (Lanfumey et al., 2008; Sapolsky, 2003; Schultz, 2007).

Many electrophysiological studies have examined how various external stimuli and
events might influence central 5-HT neural activity. These entail monitoring changes in the
electrical discharge pattern of 5-HT neurons while awake animals are being exposed to the
stimuli or are under anaesthesia immediately following exposure to stimuli. In freely moving
cats, DR 5-HT neurons are resistant to any effect of acute physical or psychological stress on
action potential firing, such as following exposure to restraint, loud (100 dB) white noise,
confrontation with a dog, or injection of formalin into the extremities (Shima et al., 1986;
Wilkinson and Jacobs, 1988). Similarly in anesthetized rats, DR 5-HT neurons are unaffected by
repeated light flashes (Mosko and Jacobs, 1974). In anaesthetized rats, prior exposure to 30 min
of restraint produces at most a slight non-significant increase in the mean firing activity of DR 5-
HT neurons (Bambico et al., 2009b). However, some aversive stimuli, such as a foot shock
(Schweimer and Ungless, 2010) or defensive encounter with an intruding conspecific in the
home cage or experimenter (Walletschek and Raab, 1982), as well as innocuous (non-noxious)
stimuli such as clicks (auditory) and light flashes (visual), are able to increase the firing rate of
these neurons in awake cats and tree shrews or anesthetized rats (Heym et al., 1982; Trulson and
Jacobs, 1979; Trulson and Preussler, 1984; Walletschek and Raab, 1982). In studies with
anesthetized rats investigating the response of DR 5-HT neurons to prior restraint, interspike
interval (ISI) histograms showed a clear disruption in the rhythmicity of firing in about half of 5-

HT neurons monitored, compared to an otherwise Gaussian profile normally exhibited under
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non-stress conditions. Additionally, the probability of encountering 5-HT neurons that fired in
burst was markedly increased by stress exposure (about 50% in comparison to 18% under
control, non-stress conditions) (Bambico et al., 2009b). Crawford et al. (2010) proposed that the
excitability of these 5-HT neurons in response to acute stress, particularly exhibited by 5-HT
neurons in the lateral wings and the medial extent of the DR, is consistent with the their unique
intrinsic active and passive membrane properties (greater membrane resistance, hyperpolarized
spike threshold, smaller activation gap, larger tau, long afterhyperpolarization duration, increase
in current-induced firing rate). These characteristics are argued to contribute to greater
converging input and consequent output, necessary for a role for stress adaptation. In agreement
with these electrophysiological studies, several neurobiological studies have detected an increase
in immediate-early gene expression (such as c-fos) in the DR, indicating enhanced activation of
5-HT neurons in this midbrain nucleus, following acute stress exposure (Amat et al., 2005;
Commons, 2008; Crawford et al., 2010; Grahn et al., 1999; Hale et al., 2008; Takase et al.,
2004). Corroborating stress-induced activation of DR 5-HT neurons, in vivo microdialysis has
also correlated acute stress exposure with significant increases in the extracellular/tissue levels or
5-HT efflux, detected within the DR, medial PFC (mPFC), amygdala and hippocampus, which
could be related to the rapid increase in amount of transmitter released per electrical impulse
(Bambico et al., 2007; Gartside et al., 2000; Holmes, 2008; Mo et al., 2008; Sheikh et al., 2007).
This has been observed following a wide range of different stimuli (such as electric shock, tail
pinch, exposure to an elevated platform or predator, social defeat, restraint/immobilization), but
not for all forms of aversive stimuli and contexts (Amat et al., 2005; Holmes, 2008; Maier and
Watkins, 2005). The exact synaptic and neurophysiological mechanisms that drive increases in

tonic or burst-firing activity in DR 5-HT neurons by acute stress have not been completely
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clarified. A number of hypotheses have been proposed, including a role for excitatory
glutamatergic feedback (Crawford et al., 2010; Crespi, 2009, 2010; Rouchet et al., 2008) and
alterations in the function of small-conductance calcium-activated potassium (SK) channels
(Crespi, 2009, 2010; Rouchet et al., 2008) that are expressed in midline and lateral wing DR 5-
HT neurons. The role of glutamatergic inputs from the mPFC to the DR has been the subject of
recent investigations regarding the DR 5-HT-activating consequences of acute stress; this has
been explained in relation to the ability of the mPFC to communicate synaptic information to DR
5-HT neurons about the controllability of acute stressors (Amat et al., 2010; Amat et al., 2005;
Amat et al., 2008; Maier et al., 2006; Maier and Watkins, 2005), as will be discussed in the
following sections. Amat and colleagues (2005) have determined through measurements of c-fos
expression that inescapable stressors possess the capacity to activate 5-HT neurons, particularly
those located in the caudal region of the DR, and that this activation is associated with the
behavioural consequences of acute stress. Such activation can be driven by modifications in
mPFC-DR glutamatergic excitatory input to GABAergic and 5-HT neurons in the DR (Amat et
al., 2005; Maier et al., 2006). Other stress-associated events may act in concert with these
mechanisms in modulating 5-HT activity. These include enhancement in tryptophan hydroxylase
(TPH)2-mediated intracellular synthesis, vesicular monoamine transporter (VMAT)2-mediated
vesicular packaging of transmitter, and reduction in 5-HT cleavage by monoamine oxidase-A
and in reuptake by the 5-HT transporter (SERT). In an extensive review, Holmes (2008)
suggested that these are also subject to genetic variability (strain and species-dependence in
animal studies), and are likewise sensitive to conventional and putative antidepressants. More

investigations are warranted to clearly understand how properties of stressors, such as severity,
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chronicity, controllability, and aversiveness interact to affect 5-HT activity, and to determine

whether and which discrete 5-HT neuronal subgroups are influenced by stress.

1.2.3 Effects of chronic stress on behaviour and 5-HT activity

1.2.3.1 Chronic stress and other models of depression

As depression is a complex, symptomatically heterogenous disorder, existing animal
models may be limited in reproducing all of the pathological dimensions of depression, and face
a particular obstacle in demonstrating face validity. Nevertheless, these models can be very
useful testing tools, as they reproduce particular endophenotypes related to specific components
of depression symptomatology. Fig. 3 illustrates some of these animal models of depression and
tests for depressive-like behaviour.

Vulnerability to a depressive-like state can be precipitated by a number of validated
experimental manipulations that mimic early life adversity, genetic liabilities, stress, and other
predisposing factors (Monroe and Simons, 1991). The maternal separation model of early life
adversity involves periodic separation of neonates from the dam (Leussis et al., 2012). Genetic
manipulations, such as with SERT knockout mice (Olivier et al., 2008) and cannabinoid CB1
receptor knockout mice (Valverde and Torrens, 2012), have shown depressive-like phenotypes.
Similarly, congenital learned helplessness rats are selectively bred for learned helplessness
behaviour (Weiss et al., 1998), and Flinders sensitive line rats are selectively bred for increased
responses to cholinesterase inhibitors (Overstreet, 1993). Olfactory bulbectomy (complete
ablation of the olfactory bulb) has been used to model depression (Song and Leonard, 2005), and
causes widespread neuronal degernation and remodelling in limbic, raphe, and other brain

regions (Harkin et al., 2003). Pharmacological models are also used, including psychostimulant
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(such as amphetamine) withdrawal (Barr et al., 2002) and clomipramine treatment in neonates
(Vogel et al., 1990). Finally, multiple models involve repeated exposure to stress or stress
hormones. These include chronic administration of corticosterone (Rainer et al., 2011), chronic
restraint stress (Chiba et al., 2012), chronic social defeat by a dominant conspecific
(Avgustinovich et al., 2005), prolonged social isolation (Brenes Saenz et al., 2006), repeated foot
shock (Swiergiel et al., 2008), and chronic unpredictable mild stress (CUS) exposure (Willner et
al., 1992), which have been shown to increase glucocorticoid levels and induce depressive-like

phenotypes.

Although the neurobiological foundations of these models may be argued to be distinct
from that of depression, these models are typically validated by behavioural tasks with quite
remarkable predictive validities in screening for antidepressants. Among these are the forced
swim test (FST), tail suspension test, and learned helplessness test measuring stress coping
impairment or behavioural despair, the sucrose preference test measuring anhedonia-like
reactivity, the novelty-suppressed feeding test examining anxiety-like behaviour, and the social
interaction test examining sociality (Cryan and Holmes, 2005; Dulawa and Hen, 2005; Lucki,

1997; McArthur and Borsini, 2006; Nestler et al., 2002; Willner, 1990).

Of these models, CUS merits particular examination due to its widespread use and
validation (Willner, 1997, 2005). In this model, multiple varied non-debilitating inescapable and
uncontrollable physical, psychological, and circadian stressors are applied in an unpredictable
(occurring at any time) and randomized fashion for several weeks, whereas control (unstressed)
animals are not exposed to any of the stressors and may be housed in pairs throughout the course
of the experiment (Bambico et al., 2009b; Bekris et al., 2005; Moreau et al., 1992; Moreau et al.,

1995; Willner et al., 1992). Table 2 shows some of the commonly used micro-stressors, whose
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combinatory and cumulative effects are sufficient to produce depressive-like behaviours. CUS
exposure delays or prevents habituation, has increased physical and psychological demand,
progressively increases corrective behavioural/physiological reactivity, and adversely alters
neural systems involved in subsequent stress appraisal (Fairbank et al., 1991; Roman et al.,
2004), effects than could otherwise be more effectively overcome with short-term exposure and
with one kind of stressor (homotypic). CUS can therefore lead to the eventual exhaustion of
physical and cognitive resources, which eventually translates to depression-relevant behavioural
responses. These depressive-like consequences develop only after an extended duration
(Bambico et al., 2009b; Banasr and Duman, 2008; Grippo et al., 2006; Grippo et al., 2005; Kim
et al., 2003a), with the exact time of onset varying, likely due to differences in the CUS protocol
(intensity, duration, types and combination of stressors), animal strain, and handling procedures
used across different laboratories. Depressive-like features cover a large spectrum that includes
alterations in emotional and hedonic reactivity, cognitive function, motivational states, grooming
behaviour, and body weight, features analogous to those found in depressed patients, and which
could accordingly be prevented or reversed by chronic treatment with antidepressants (Moreau et
al., 1992; Moreau et al., 1995; Willner, 1997, 2005; Willner et al., 1992; Willner et al., 1987).
CUS possesses face (symptom profile, including anhedonia), construct (theoretical
background), predictive (treatment profile), and etiological (causation) validity as a model of
depression (Willner, 2005). Moreover, its validity may surpass that of other models (including
those that also involve repeated stress), many of which fail to show validity in each of these three
domains or to show the same depression-relevant chronicity of behavioural endophenotype
duration (Willner, 1997). The efficacy of long-term, but not short-term, antidepressant treatment

in reversing behavioural and biochemical sequelae associated with CUS reliably mirrors the
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temporal delay of antidepressant treatment effect in depressed patients (predictive validity)
(Willner, 1997, 2005; Willner et al., 1987).

CUS also mimics from the human milieu the role of stress in the etiology of depressive
disorders. Epidemiological studies have indicated that chronic exposure to stressful life events in
the human population is considered a major risk factor for developing depression (Firk and
Markus, 2007; Kendler et al., 2004). Interestingly, the distinct pattern of depressive symptoms
has been found to be dependent upon the characteristics (e.g. the kind and severity) of the
stressful event(s) experienced (Keller et al., 2007). This association of stress and depression has
also been supported by experiments among healthy individuals, such as those demonstrating that
a stressful experience and associated changes in cortisol responses greatly magnify self-reported
depressive symptoms and the effects of mood-impairing manipulations including tryptophan
depletion (Pruessner et al., 2003; Richell et al., 2005). In recent years, evidence for the strong
link between stress and genetics as an essential factor in the pathogenesis of depressive disorders
has been rapidly mounting (El Hage et al., 2009; Jans et al., 2007). Polymorphisms in genes
encoding glucocorticoids and attendant receptors or other elements of the HPA axis, such as the
CRF-R1 and NR3C1 genes (for review, see El Hage et al., 2009), in the 5-HT transporter-linked
promoter region (5-HTTLPR) of the 5-HT transporter-encoding SLC6A4 gene (chromosome 17,
11 in mouse), or of the Htr1 A promoter region on the 5-HT1A-encoding gene on chromosome 5
(13 in mouse) confer greater tendency to develop depression or depressive symptoms after
stressful life events, such as childhood trauma (Caspi et al., 2003; Jacobs et al., 2006; Kaufman
et al., 2004; Keller et al., 2007; Kendler et al., 2004; Kendler et al., 2005; Le Francois et al.,
2008; Zalsman et al., 2006). In particular, the 5-HTTLPR s/s genotype, associated with reduced

SERT expression, and the G(-1019) variant of the Htr1 A promoter region, which is associated
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with reduced 5-HT1A receptor expression, have been found to impair affective regulation (Caspi
et al., 2010; Le Francois et al., 2008; Lesch et al., 1996). Moreover, CUS exposure in both
humans and animals is argued to profoundly influence epigenetic regulation that may produce
gradual but stable behavioural and neurobiological adaptations seen in depression (for review,
see Tsankova et al., 2007; Zhang and Meaney, 2010). In particular, chronic but not acute
exposure to stress has been determined to decrease the function of the enzyme histone
deacetylase in the mouse NAc, leading to increased histone acetylation and transcription of target
genes and hypersensitivity to the behavioural effects of chronic stress (Renthal et al., 2007).
Furthermore, CUS increases hippocampal histone deacetylase activity and decreases histone
acetylation (Ferland and Schrader, 2011). Finally, resilience or susceptibility to stress is also a
feature of both chronic stress animal models of depression and depressive etiology in humans
(Russo et al., 2012). Specifically, the subset of animals submitted to CUS that are susceptible to
developing anhedonia also show decreased hippocampal expression of synapse-related genes,
increased thymopoietin, and increased glucocorticoid levels, similar to findings in depressed
patients (Brown et al., 2004; Christiansen et al., 2012; Duric et al., 2013; Goldstein et al., 2000;

Henningsen et al., 2012).

1.2.3.2 Chronic unpredictable stress alters serotonergic neural activity

The underlying neurobiological underpinnings of CUS-induced depressive-like
behaviours are likely multi-factorial and may include neurodegenerative, morphological, and
immunological processes, as well as impairments in intracellular signalling and hippocampal
neurogenesis. Indeed, CUS results in the attenuation of cell proliferation and neurogenesis

(Jayatissa et al., 2009; Mineur et al., 2007), extracellular signal-regulated kinase (ERK)

40



phosphorylation (Qi et al., 2006), vascular endothelial growth factor (VEGF) expression
(Bergstrom et al., 2008), and an increase in long-term depression (Holderbach et al., 2007) in key
limbic structures, notably the hippocampus and the PFC. It also enhances pro-inflammatory
cytokines and immunosuppressant processes (Pitychoutis et al., 2009; Rasheed et al., 2008). At
the neurochemical level, CUS can directly impact the 5-HT system, the impairments of which

correlate with several dimensions of depressive symptomatology.

1.2.3.2.1 Effect of CUS on DR serotonergic neural activity

Following CUS, spectrophotometric and neurochemical analyses have found an increase
in monoamine oxidase-A (Bhutani et al., 2009) and a global depletion of 5-HT (Ahmad et al.,
2010; Bhutani et al., 2009; Dang et al., 2009a; Dang et al., 2009b; Rasheed et al., 2008). There
have also been reports of reductions in 5-HT release, tissue concentration, and synaptic activity
in key corticolimbic structures, such as the hippocampus and NAc (Bekris et al., 2005; Kang et
al., 2005; Luo et al., 2008; Yi et al., 2008). These changes are consistent with those observed in a
subgroup of depressed patients who display reductions of the 5-HT metabolite 5-
hydroxyindoleacetic acid (5-HIAA) in cerebrospinal fluid (van Praag, 1996), although some
studies on 5-HT metabolites in depressed patients provide mixed results (Belmaker and Agam,
2008). Moreover, experimentally-induced depletion of 5-HT through a diet lacking the 5-HT
precursor tryptophan produces greater depressed mood among healthy subjects with a family
history of depression (Benkelfat et al., 1994; Klaassen et al., 1999a; Klaassen et al., 1999b), and
triggers a relapse among remitted depressive patients (Delgado et al., 1999), likely involving a
direct attenuating effect on 5-HT action potential firing. CUS has been shown to induce a

significant decline of about 35% in the mean spontaneous neural firing activity of 5-HT neurons
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recorded from the DR, a significant decrease in the number of spontaneously active neurons,
anhedonia-like reductions in the preference for and intake (absolute and relative) of sucrose in
the sucrose preference test (Bambico et al., 2009b), which is a depression-related endophenotype
thought to be instigated by dysregulation in dopaminergic neurotransmission (Willner, 2005),
and enhanced immobility (passive behavioural coping or behavioural despair) in the FST (Banasr
and Duman, 2008). Conversely, the observed enhancement in 5-HT neurotransmission is widely
considered to be a benchmark of antidepressant-like activity (Bell et al., 2001; De Montigny,

1981).

1.2.3.2.2 CUS downregulates presynaptic 5S-HT14 autoreceptor function

Among the numerous subtypes of 5-HT receptors, the 5-HT1a, a Gi/Go-protein-coupled
receptor, is one of the most commonly studied in relation to the neurobiology underlying mood
disorders and antidepressant response (Holmes, 2008). The activity of DR 5-HT neurons is
negatively regulated by these receptors, which may be localized on somatodendritic
compartments (presynaptic auto-inhibitory receptors) of 5-HT neurons or postsynaptic targets of
5-HT terminals (Hall et al., 1997; Pazos et al., 1987). Postsynaptic 5-HT1a receptors, such as
those in the ventral (infralimbic) regions of the mPFC, exert inhibitory and excitatory control
over DR 5-HT neuronal activity (Hajos et al., 1999; Martin-Ruiz and Ugedo, 2001) by
modulating glutamatergic excitatory input to DR GABAergic and 5-HT neurons (Amat et al.,
2005; Bambico et al., 2007), as discussed in the next section. For this position to influence 5-HT
neural activity, presynaptic and postsynaptic 5-HT1a receptors are implicated in the therapeutic

mechanisms of antidepressants and are putative antidepressant targets (Blier et al., 1998).
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Alterations in the function and levels of 5-HT1a receptors in depressive pathology are not
as consistently reported in humans as in animal models. As shown in Table 3, human brain
imaging and post-mortem studies on depressed patients have obtained divergent findings (van
Praag, 2004). These equivocal findings could arise from the difficulty of delineating depression-
specific changes from those associated with comorbidities, including other neuropsychiatric
conditions and history of drug use, as well as from those incurred by medications. However,
animal models have consistently shown reductions in somatodendritic 5-HT1a autoreceptor
sensitivity in the DR. This has been demonstrated in ex vivo and in vivo electrophysiological
experiments on CUS-exposed rats or mice by a diminution in the inhibitory response of DR 5-
HT neurons to a local application of the 5-HT1a agonist/partial agonist 8-OH-DPAT or
ipsapirone (Table 3). Interestingly, CUS-induced 5-HT1a desensitization was accompanied by a
reduction in spontaneous 5-HT firing activity (Bambico et al., 2009b), effects that were
recapitulated in SERT knockout mutant mice (Fabre et al., 2000; Gobbi et al., 2001; Li et al.,
2000; Lira et al., 2003) and neonatal clomipramine treatment models of depression (Kinney et
al., 1997; Maudhuit et al., 1995, 1996). These observations are striking given that chronic SSRI
administration decreases 5-HT1a autoreceptor binding in depressed patients (Gray et al., 2013).
In rodent electrophysiology models, SSRIs acutely decrease 5-HT neuronal firing activity, and
following chronic administration desensitize 5-HT1a autoreceptors to restore normal 5-HT
neuronal firing activity (Bambico et al., 2009a; Bambico and Gobbi, 2008; Blier and de
Montigny, 1999). As SSRI-mediated and CUS-induced 5-HTia autoreceptor desensitization are
associated with opposing behavioural profiles, it is likely that these progress via somewhat
unrelated mechanisms. SSRI-induced 5-HT1a autoreceptor desensitization appears to determine

the gradual restorative increase in DR 5-HT firing activity with chronic SSRI treatment. A more
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complex process might be at play though, as acute and not chronic SSRI treatment has been
reported to internalize DR 5-HT1a autoreceptors (Riad et al., 2008; Riad et al., 2004). CUS-
induced desensitization, however, is paralleled by a lower basal 5-HT neuronal firing tone
(Bambico et al., 2009b). It can therefore be hypothesized as a compensatory response to the
primary CUS-induced decrease in 5-HT tone, possibly among a presumed subpopulation of 5-
HT neurons (about 16%) with low or null expression of these 5-HT1a autoreceptors (Kiyasova et
al., 2013).

There is a long-standing view that 5-HT1a autoreceptor desensitization is essential for the
therapeutic mechanism of SSRIs. 5-HT1a autoreceptors are desensitized by chronic treatment
with SSRIs, whereas postsynaptic 5-HT1a receptors, particularly those in the hippocampus, are
sensitized by chronic tricyclic antidepressant treatment and electroconvulsive shock
administration (for review, see (Bambico et al., 2009a; Bambico and Gobbi, 2008; Hill et al.,
2009; Sharp et al., 2007). It is recognized that the desensitizing action of SSRIs occurs to
disengage negative regulation of 5-HT neuronal activity, but may also tap into other 5-HTa-
related intracellular processes. However, SSRI treatment has been shown to reverse CUS-
induced behavioural deficits (for review, see Willner, 1997, 2005), suggesting that the
occurrence of 5-HT1a desensitization with CUS does not completely abrogate the therapeutic
action of SSRIs. This has been similarly observed in CB1 (Aso et al., 2008; Aso et al., 2009;
Steiner et al., 2008b) and 5-HT1a (Santarelli et al., 2003) knockout mice, which are responsive to
the antidepressant effects of SSRIs (paroxetine) and tricyclic antidepressants (imipramine and
desipramine), respectively, despite the absence or desensitization of 5-HT1a autoreceptors. More
recently, Richardson-Jones and colleagues generated mice with high and low 5-HT1a

autoreceptor expression in the DR, without affecting postsynaptic 5-HT1a receptors, by
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genetically engineering the Htr1 A gene that encodes 5-HT1a (Richardson-Jones et al., 2010).
They found that high-DR 5-HT1a mice showed a blunted physiological response to acute stress,
increased passive behavioural coping and a non-response to fluoxetine despite displaying gradual
desensitization of 5-HT1a autoreceptors. Conversely, low-DR 5-HT1a mice were more
responsive. It appears from these studies that SSRIs may still be therapeutically active in the
presence of desensitized 5-HT1a autoreceptors, but not in their complete absence, and that the
interplay between the sensitivity and expression of these receptors may more reliably determine
the severity of the depressive-like state and the response to SSRIs. This notion corroborates some
clinical studies (Rabiner et al., 2004) but not others (Lan et al., 2013; Miller et al., 2013), and
therefore warrants further investigation on the differential role of 5-HT1a receptor expression,
internalization, and sensitivity in the partial or lack of response to SSRIs among a subgroup of

patients.

1.2.3.2.3 CUS alters postsynaptic 5-HT1a heteroreceptor function: possible

influence on medial prefrontal glutamatergic feedback

In addition to the effects of CUS on presynaptic 5-HT1a autoreceptors, an impact on
postsynaptic 5-HT1a heteroreceptors is likely to contribute to the behavioural and
neurophysiological impairments found in CUS-exposed animals, including impairments in
midbrain 5-HT neuronal activity. Postsynaptic 5-HT1a heteroreceptors located in different
corticolimbic regions, such as the PFC, amygdala, and hypothalamus, have been suggested to
indirectly modulate DR 5-HT activity (Bosker et al., 1997; Holmes, 2008). Of these, the mPFC is
of particular interest as it abundantly expresses 5-HT1a and serves as the origin of most cortical

projections to the DR (Gabbott et al., 2005; Hajos et al., 1999; Peyron et al., 1998). 5-HT1a
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receptors in the mPFC, like 5-HT1a autoreceptors in the DR, exert regulatory feedback onto DR
5-HT neurons via a long-range loop (Celada et al., 2001; Gabbott et al., 2005; Hajos et al., 1999;
Martin-Ruiz and Ugedo, 2001; Peyron et al., 1998). Application of 8-OH-DPAT directly into the
mPFC inhibits the spontaneous and glutamate-mediated neuronal firing of the major projection
neurons therein (Araneda and Andrade, 1991; Ashby et al., 1994; Borsini et al., 1995; Cai et al.,
2002). This could, in turn, inhibit DR 5-HT neuronal firing activity, as has been demonstrated
under conditions where DR somatodendritic 5-HT1a autoreceptor activity was inhibited by
pertussis toxin blocking intracellular signaling of Gi/Go proteins (Martin-Ruiz and Ugedo,
2001). Interestingly, following CUS it was observed that a systemic injection of 8-OH-DPAT
that could activate these mPFC 5-HT1a receptors failed to attenuate DR 5-HT neuronal firing
activity (Bambico et al., 2009b). As DR somatodendritic 5-HT1a autoreceptors were desensitized
in these CUS-exposed animals, this decrease in the ability of 8-OH-DPAT to inhibit 5-HT
neurons suggests that mPFC 5-HT1a receptors themselves were desensitized by CUS, and as 5-
HTa receptors are inhibitory, their desensitization in the mPFC would translate into a
hyperactivation of mPFC glutamatergic projections to the midbrain. The desensitization of
mPFC 5-HTia receptors following CUS concurs with observations from other animal models, as
well as with the significant reduction of PFC 5-HT1a receptor binding and 5-HT1a sensitivity
found in treated and untreated depressive patients (Drevets et al., 2007). However, contradictory
findings have also been reported, such as reports of an increase in postsynaptic 5-HTia receptor
density (Vicentic et al., 2006; Ziabreva et al., 2003), messenger RNA (mRNA) levels (Neumaier
et al., 2002), or sensitivity (Arborelius et al., 2004) in the rodent model of maternal separation
and congenital learned helplessness. Nevertheless, data from brain imaging studies on depressed

patients appear to converge at abnormal hyperactivation in cortical regions such as the anterior
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cingulate and the subgenual cortex (Price and Drevets, 2010), structures that are considered
analogous to the mPFC in the rodent. Indeed, the most parsimonious hypothesis that could
explain this hyperactivity is a desensitization or downregulation of inhibitory 5-HT1a receptors
in the PFC.

The mPFC-DR circuit is an important locus for cognitive appraisal of stressful situations,
and likely subserves some of the cognitive, executive, and memory-related dysfunctions
associated with depression, such as disturbance in concentration and learning, negative and
irrational cognitive distortions regarding the self, increased rumination, and despair (Amat et al.,
2005; Celada et al., 2001; Price and Drevets, 2010). The prelimbic/infralimbic region of the
mPFC is postulated to be the cortical detector and processor of stress controllability. It functions
to inhibit the stress-induced activation of 5-HT neurons of the caudal DR when the stimulus is
perceived to be controllable or escapable (Amat et al., 2010; Amat et al., 2005; Amat et al.,
2008). This could well explain the opposing effects of aggressiveness/offensiveness-
(controllable) and defensiveness-related (uncontrollable) stimuli on DR 5-HT neuronal activity
observed in tree shrews made to confront a conspecific intruder or an experimenter (Walletschek
and Raab, 1982). Electrical stimulation of the mPFC also elicits antidepressant-like effects,
enhances DR 5-HT activity, and increases the postsynaptic release of monoamines, notably 5-HT
(Hamani et al., 2010a; Hamani et al., 2010b; Juckel et al., 1999), which could provide the
neurochemical basis for the efficacy of subgenual cingulate (Cg25) deep brain stimulation as an
antidepressant treatment for intractable depression (Mayberg et al., 2005). As the mPFC forms a
reciprocal feedback circuit with the DR (Celada et al., 2001; Martin-Ruiz et al., 2001), repeated
experience of loss of control and unpredictability, as well as the associated allostatic load

observed with CUS, could progressively impair both the mPFC and the DR, as well as their
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interaction. Functionally, this could translate to alterations in neural excitability in the mPFC, as
has been demonstrated (Wilber et al., 2011), and to decreases in spontaneous single-spiking and
burst-firing activity of 5-HT DR neurons (Bambico et al., 2009b). Behaviourally, these effects
could translate into passive behavioural coping, anhedonia, and other depression-related markers.
Interestingly, Maier and colleagues have shown that prior experience to an otherwise
controllable (escapable) aversive stimulus (such as tail shock) potently blocks the behavioural
and neurochemical alterations produced by subsequent uncontrollable (inescapable) stressor (tail
shock) (Amat et al., 2010; Amat et al., 2005; Amat et al., 2008; Maier et al., 2006; Maier and
Watkins, 2005), and possibly the progressive cascade of adverse consequences of CUS.
Similarly, predictable chronic mild stress may have antidepressant, anxiolytic, and pro-
neurogenic effects in the hippocampus (Parihar et al., 2011). These results indicate that
controllable or predictable stress exposure may inoculate against the deleterious effects of stress
seen in paradigms such as CUS, and suggest an interaction between the processes involved in
neural responses to controllable and uncontrollable stress.

Thus chronic stress induces changes to 5-HT systems in the brain, including the
hippocampus, associated with depression and depressive-like phenotypes, which can be reversed
by antidepressant treatment. However, chronic stress also impacts hippocampal neurogenesis,
which is itself regulated by 5-HT, and the effects of stress on neurogenesis can also be reversed
by monoaminergic antidepressant treatment. In the following section we discuss how this
regulation of neurogenesis occurs, and how neurogenesis interacts with ADs, 5-HT, and stress to
mediate the opposing effects of stress and antidepressant treatment on depression-related

pheonotypes.
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1.2.4 The role of hippocampal neurogenesis in mediating affect, antidepressant
action, and stress response
1.2.4.1 Neurogenesis in depression

Soon after the discovery of adult hippocampal neurogenesis in humans (Eriksson et al.,
1998), it was theorized that basal deficits in hippocampal neurogenesis may underlie symptoms
of psychiatric disorders, particularly depression (Jacobs et al., 2000; Kempermann, 2002). This
theory was largely based on findings indicating decreased hippocampal volume in depressed
patients and increased neurogenesis with administration of antidepressant medication and
therapies (Kempermann, 2002; Kempermann and Kronenberg, 2003), supported by recent
studies indicating decreased numbers of granule cells and decreased granule cell layer volume in
the anterior and mid-DG in unmedicated depressed patients relative to controls, as well as
increased hippocampal neurogenesis and increased granule cell layer volume in depressed
patients who had taken antidepressants relative to unmedicated patients (Boldrini et al., 2012;
Boldrini et al., 2013; Boldrini et al., 2009). A particularly exciting recent report by Spalding et
al. has revealed that adult hippocampal neurogenesis in humans is substantial and that neuronal
turnover is high in comparison to rodents, supporting the possibility that human hippocampal
neurogenesis is sufficient to support a role in affective and cognitive phenomena such as
depression and response to stress and antidepressants (Spalding et al., 2013). In addition, the
delay in efficacy of antidepressants (in both humans and animal models) appears to mirror the
time required for newly proliferated neurons to become functional and hyperplastic (Ge et al.,
2007; Jacobs et al., 2000).

However, in presenting a balanced view of the role of hippocampal neurogenesis in

depression and antidepressant effects, it is important to consider evidence that fails to support or
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contradicts this view. Recent studies have brought into question whether decreased neurogenesis
underlies depression (Eisch and Petrik, 2012; Hanson et al., 2011; Petrik et al., 2012). Whether
ablating neurogenesis in animals is sufficient to induce a depressive phenotype remains
controversial (Perera et al., 2011; Schloesser et al., 2009; Snyder et al., 2011b; Surget et al.,
2008; Vollmayr et al., 2003; Wang et al., 2008). Further disputing the role of hippocampal
neurogenesis deficits in depressive etiology is the fact that depressed patients have not been
demonstrated to have significantly reduced hippocampal neurogenesis (Boldrini et al., 2009),
although granule cells and granule cell layer volume are reduced (Boldrini et al., 2013), leaving
the neurogenic hypothesis of depression in doubt (Hanson et al., 2011; Petrik et al., 2012).
Consequently, a more supported hypothesis has emerged: that adult hippocampal neurogenesis is
involved in mediating response to antidepressant treatments (Hanson et al., 2011). This is
supported by studies showing that increases in hippocampal neurogenesis are associated with
antidepressant effects mirroring the developmental latency of new neurons (Mabhar et al., 2011),
that antidepressant treatments increase hippocampal neurogenesis (Boldrini et al., 2009; Malberg
et al., 2000), and that the behavioural effects of antidepressants may require intact neurogenesis
(Perera et al., 2011; Santarelli et al., 2003; Wang et al., 2008). However, in understanding the
importance of adult hippocampal neurogenesis in the mechanism of exogenous monoamine-
related agents, it is important to discuss the regulation of neurogenesis by endogenous

monoaminergic systems.

1.2.4.2 Monoaminergic and neurotrophic factor regulation of neurogenesis
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Hippocampal neurogenesis has been shown to be regulated by a variety of monoamines
and neurotrophic factors, as shown in Table 4. The hippocampus receives dense innervation by
5-HT fibers (Gage and Thompson, 1980; Gasbarri et al., 1994). Ablation of 5-HT neurons in the
DR and median raphe decreases neurogenesis, and these effects are reversed by 5-HT re-
innervation (Brezun and Daszuta, 2000a, b). Regarding 5-HT receptors, effects of 5-HT-
mediated signalling on hippocampal neurogenesis appear to be receptor subtype-specific.
Pharmacological studies suggest that 5-HT stimulation is pro-neurogenic, 5-HT1s stimulation
does not produce an effect, 5-HT2a/c antagonism decreases proliferation, 5-HT2s stimulation
increases neurogenesis (and has antidepressant-like effects; notably, blocking activity of this
receptor ablates behavioural and neurogenic efficacy of SSRIs), and 5-HTzc stimulation does not
affect neurogenesis (Banasr et al., 2004; Diaz et al., 2012). In addition, suppression of SERT
expression increases hippocampal neurogenesis and causes antidepressant-like behaviour
(Ferres-Coy et al., 2013).

Apart from the influence of the 5-HT system, the dopaminergic and norepinephrinergic
systems have also been shown to influence neurogenesis, although the findings are not as clear as
those regarding 5-HT. Dopamine depletion reduces hippocampal cytogenesis, an effect that is
reversed by ropinirole administration (Hoglinger et al., 2004), although in other studies a
transient increase is observed after depletion (Park and Enikolopov, 2010). D2 receptor
activation by quinpirole increases subgranular zone proliferation (Yang et al., 2008), and D3
knockout or blockade also increases proliferation (Egeland et al., 2012), suggesting a receptor-
specific regulation. However, the effects of dopaminergic antagonists (e.g. haloperidol) on
hippocampal neurogenesis are mixed (Veena et al., 2011), and merit further experimental

investigation. Although dopamine transporter-immunoreactive (-IR) fibers have been identified
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near neurogenic cells in the subgranular zone (Hoglinger et al., 2004), dopaminergic subgranular
zone innervation is thought to be limited (Kempermann, 2011). This suggests that the regulation
of hippocampal neurogenesis by dopamine may be due to an indirect mechanism, potentially
involving reciprocal interactions with the 5-HT and norepinephrinergic systems (Guiard et al.,
2008a; Guiard et al., 2008b).

Norepinephrine depletion decreases hippocampal progenitor proliferation (Kulkarni et al.,
2002). Norepinephrine has been shown to positively modulate hippocampal neural precursor cell
proliferation in a B-adrenergic receptor-dependent (but not a1- or a2-dependent) manner (Jhaveri
et al., 2010; Masuda et al., 2012), although in other studies a2-receptor blockade increases cell
survival and dendritic arborisation (Rizk et al., 2006). These effects may result from direct
norepinephrine input onto neurogenic cells (Rizk et al., 2006).

Neurotrophic factors have also been shown to increase adult hippocampal neurogenesis
and modulate antidepressant-related behaviours, particularly BDNF, insulin-like growth factor
(IGF), VEGF, and neuregulin-1 (NRG1). Notably, many of these factors can be administered
peripherally to induce these effects (Aberg et al., 2000; Duman et al., 2009; Mahar et al., 2011;
Schmidt and Duman, 2010), suggesting that peripheral levels of neurotrophic factors may
modulate hippocampal neurogenesis and mood.

Infusion of BDNF, both peripherally and centrally, increases neuronal survival and
overall hippocampal neurogenesis, and also produces antidepressant-like effects (Scharfman et
al., 2005; Schmidt and Duman, 2010; Shirayama et al., 2002). Decreases in BDNF are
predominantly detrimental to neurogenesis, although results are mixed. Proliferation is largely
unchanged in BDNF+/- mice (Rossi et al., 2006; Waterhouse et al., 2012) (though one study

reports an increase in proliferation in these animals (Sairanen et al., 2005) and another reports
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increased proliferation but decreased neuronal differentiation in mice largely lacking dendritic
BDNF (Waterhouse et al., 2012)), but these animals show decreased survival (Sairanen et al.,
2005) and a lack of effectiveness for environmental enrichment on increasing neurogenesis
(Rossi et al., 2006). DG-specific knockdown of BDNF leads to decreased neurogenesis through
decreased neuronal differentiation (Taliaz et al., 2010). BDNF-hypomorphic mice also show
depression-like behaviour and behavioural resistance to antidepressants (Adachi et al., 2008;
Taliaz et al., 2010). Notably, BDNF may contribute to the modulation of neurogenesis in
response to both stress and antidepressants, as hippocampal BDNF levels decrease in response to
chronic stress (Larsen et al., 2010; Shi et al., 2010b; Smith et al., 1995a; Smith et al., 1995b) and
increase in response to antidepressant treatments (Altar et al., 2003; Czubak et al., 2009; Gersner

et al., 2010; Hanson et al., 2011; Musazzi et al., 2009; Nibuya et al., 1995).

Peripherally administered IGF increases hippocampal neurogenesis by stimulating DG
proliferation and neuronal differentiation (Aberg et al., 2000), and also produces antidepressant
effects (Duman et al., 2009), whereas IGF-knockout mice display decreased numbers of
hippocampal granule cells (Beck et al., 1995). Blocking IGF activity decreases proliferation in

both sedentary and exercised animals (Glasper et al., 2010).

VEGF administration increases hippocampal neurogenesis by promoting cell
proliferation (Jin et al., 2002). In contrast, VEGF-knockout mice display decreased numbers of
immature neurons and reduced proliferation (Sun et al., 2006). Hippocampal VEGF levels
increase after antidepressant treatment, and VEGF (through signalling with Flk-1) may also be
necessary for antidepressant-induced proliferation and antidepressant-like behavioural effects

(Warner-Schmidt and Duman, 2007). Stress-induced depressive-like behaviour and decreases in

53



DG cell survival are reversed by exercise, but this effect is abolished with VEGF antagonists

(Kiuchi et al., 2012), similar to effects seen with IGF antagonists (Glasper et al., 2010).

NRGI has been shown to cross the blood-brain barrier (Carlsson et al., 2011; Kastin et
al., 2004), and peripheral administration of NRG1 increases ventral hippocampal neurogenesis
by rapidly increasing proliferation, possibly through direct stimulation of ErbB3 receptors in DG
cells, leading to antidepressant-like effects four weeks after administration (Mahar et al., 2011).
This delayed effect mirrors the latency for newborn cells to have differentiated into hyperplastic
neurons (Ge et al., 2007). It remains to be determined whether other EGF-related proteins have

similar effects, or whether NRG1 antagonism leads to neurogenic deficits.

Thus monoamines (including 5-HT) and neurotrophic factors have been shown to
modulate hippocampal neurogenesis, and this represents one avenue by which stress-induced 5-
HT system changes can affect hippocampal neurogenesis and its functions. Overall, the
neurogenic influence of these factors is primarily positive for 5-HT and norepinephrine as well
as neurotrophic factors, and positive to mixed for dopamine, suggesting that further studies into
endogenous regulation of neurogenesis by monoamines should investigate the complex (and
potentially indirect) modulation of hippocampal neurogenesis by dopamine, including various
dopaminergic receptors and receptor-specific antagonists. In contrast, the relationship between
hippocampal neurogenesis and antidepressants (primarily exogenous monoaminergic signalling-
related agents), as well as behavioural antidepressant effects, has been more thoroughly

characterized.

1.2.4.3 Relationship between neurogenesis, antidepressants, and antidepressant

effects
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Chronic antidepressant treatment has been shown to increase neurogenesis (see
(Dranovsky and Hen, 2006) for review) and decrease anhedonia and learned helplessness
behaviour (David et al., 2009; Holick et al., 2008; Jayatissa et al., 2006; Jayatissa et al., 2008;
Malberg and Duman, 2003; Pechnick et al., 2011; Perera et al., 2011). These effects have been
observed in rodents (David et al., 2009; Jayatissa et al., 2006; Jayatissa et al., 2008; Malberg and
Duman, 2003), non-human primates (Perera et al., 2011), and humans (Boldrini et al., 2012;
Boldrini et al., 2009). A recent report by Sahay et al. has also shown that increasing hippocampal
neurogenesis through genetic manipulation in unstressed mice is not sufficient to induce some of
the anxiolytic and antidepressant-like effects seen after antidepressant treatment (Sahay et al.,
2011). In addition to suggesting that an increased number of new neurons alone might not be
responsible for all of the behavioural effects of antidepressants, these findings also bring to light
the possibility that the involvement of increased numbers of new neurons in certain behavioural
responses to antidepressants may require the presence of the monoaminergic modulation induced
by these treatments, or may exist only in the presence of stress in some paradigms. It is important
to note that some agents with antidepressant properties, such as nicotine, do not increase
hippocampal neurogenesis (Abrous et al., 2002; Mahar et al., 2012; Mudo et al., 2007; Vazquez-
Palacios et al., 2005), and in some studies chronic antidepressant treatment did not increase

neurogenesis (Holick et al., 2008; Huang et al., 2008; Navailles et al., 2008).

Antidepressants can also reverse stress-induced effects on affective behaviour and
neurogenesis (Li et al., 2004; Surget et al., 2008), and in some studies stress or stress hormones
are required for these effects of antidepressants (Anacker et al., 2011; Dagyte et al., 2010). In
fact, antidepressants may regulate neurogenesis through glucocorticoid receptors and cyclin-

dependent kinase (CDK) inhibitors. The SSRI sertraline has been found to affect glucocorticoid

55



receptor phosphorylation via protein kinase A (PKA), and blocking PKA or glucocorticoid
receptor activity blocks antidepressant-induced increases in cell proliferation (Anacker et al.,
2011). Similarly, antidepressants act to differentially increase expression of the GR-dependent
CDK inhibitors p27Kip1 and p57Kip2, which regulate exit from the cell cycle and increase
neuronal differentiation (Lee et al., 2006; Shin et al., 2009; Ye et al., 2009), and decrease
expression of p21Cipl, which prevents proliferation of neuronal progenitors (Anacker et al.,
2011; Pechnick et al., 2011). The involvement of glucocorticoid receptor stimulation in
proliferation is supported by the finding that antidepressants may only increase proliferation in
the presence of glucocorticoids (Anacker et al., 2011; David et al., 2009). Together, these results
show that antidepressants may regulate hippocampal neurogenesis through glucocorticoid
receptor phosphorylation via PKA, leading to altered expression of CDK inhibitors to increase
proliferation and neuronal differentiation. However, the CDK inhibitor regulation effects may be
antidepressant-specific, given that antidepressants have differing effects on proliferation and
later stages of neurogenesis, corresponding to differing effects on CDK inhibitor expression
changes (Anacker et al., 2011; Pechnick et al., 2011). Notably, antidepressants may also regulate
hippocampal plasticity by causing the dematuration of existing granule cells to a more plastic
immature state. In particular, chronic fluoxetine acting through 5-HT4 receptors causes mature
granule cells in the DG to lose calbindin expression and to display increased excitability,

mirroring features of immature granule cells (Kobayashi et al., 2010).

Most importantly with respect to neurogenesis and antidepressants/antidepressant effects,
neurogenesis seems to be required for antidepressant effects in some paradigms (Airan et al.,
2007; Jiang et al., 2005; Perera et al., 2011; Pollak et al., 2008; Santarelli et al., 2003; Surget et

al., 2008). Ablating neurogenesis appears to abolish the effects of antidepressants in the novelty-
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suppressed feeding task, as well as their effects on coat state in response to stress (David et al.,
2009; Santarelli et al., 2003; Wang et al., 2008). Sucrose consumption is also decreased after
ablation of neurogenesis (Snyder et al., 2011b). The role of neurogenesis in mediating
antidepressant-like behaviour in the FST is somewhat controversial. David and colleagues
showed that fluoxetine reduces FST immobility in the absence of neurogenesis (David et al.,
2009), and Holick and colleagues showed that reduced neurogenesis did not affect response to
antidepressants in the FST (Holick et al., 2008). However, other studies have provided
conflicting results, in that increases in neurogenesis (but not proliferation) are associated with
antidepressant-like effects in the FST at a time when the increased numbers of new neurons are
especially hyperplastic (Ge et al., 2007; Mahar et al., 2011), and that ablating neurogenesis
prevented an antidepressant-induced decrease in FST immobility (Airan et al., 2007; Jiang et al.,
2005; Snyder et al., 2011b). Overall, the evidence suggests that antidepressant-mediated
recovery from depression and depression-like phenotypes involves not only changes to 5-HT

function but also changes to hippocampal neurogenesis.

Hippocampal neurogenesis also appears to be required for HPA axis regulation
(Schloesser et al., 2009; Snyder et al., 2011b), and is necessary for antidepressants to restore
inhibition of the HPA axis by the hippocampus following chronic stress (Surget et al., 2011). To
understand how this regulation of HPA axis function by neurogenesis may occur, and how
neurogenic deficits could result in dysregulated responses to stress contributing to stress-induced
5-HT dysfunction and depression-related phenotypes, it is important to consider the functional

anatomy of the hippocampus.
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1.2.4.4 Stress and the subregional localization of neurogenic function along the

septotemporal axis

CUS has repeatedly been shown to induce depressive-like behaviour (Elizalde et al.,
2010; Jayatissa et al., 2009; Schmidt and Duman, 2010; Valente et al., 2012), and to negatively
affect multiple stages of hippocampal neurogenesis, including proliferation (Elizalde et al., 2010;
Jayatissa et al., 2009) and survival (Dagyte et al., 2011; Mineur et al., 2007) (although see
Hanson et al. (2011) for a discussion of studies failing to show an effect of CUS). High doses of
cortisol in vitro decrease proliferation and neuronal differentiation of human neural progenitor
cells in a glucocorticoid-dependent manner, potentially via decreased TGFB-SMAD?2/3 and
Hedgehog signalling and increased SGK1 activity, with increased SGK1 transcription also being
observed in the blood of depressed patients and hippocampi of rats exposed to CUS, providing a
putative molecular mechanism for CUS-induced decreases in hippocampal neurogenesis
(Anacker et al., 2013a; Anacker et al., 2013b). In addition, other chronic stress paradigms have
also been shown to decrease neurogenesis and induce depression-related behaviour (Brummelte
and Galea, 2010; Perera et al., 2011; Veena et al., 2009; Wong and Herbert, 2004, 2006). In one
study, escitalopram treatment following CUS reversed anhedonic behaviour only in animals who
also displayed restored hippocampal cytogenesis; notably, this neurogenic reduction, recovery,
and putative requirement for antidepressant-like effects was restricted to the ventral

hippocampus (Jayatissa et al., 2006).

In fact, the relationship between neurogenesis and response to stress may be specific to
particular hippocampal subregions. The hippocampus as a whole has been shown to be neither
structurally nor functionally homogenous along the septotemporal axis (Bannerman et al., 2004;
Fanselow and Dong, 2010; van Strien et al., 2009). The dorsal hippocampus in rodents
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(analogous to the posterior hippocampus in humans) appears to be more involved in learning and
memory functions, whereas the ventral hippocampus (analogous to the anterior hippocampus in
humans (Fanselow and Dong, 2010)) seems to be involved in emotional modulation (Bannerman
et al., 2004). Lesions of the dorsal hippocampus lead to spatial memory deficits (Broadbent et al.,
2010), whereas adult ventral hippocampal lesions are anxiolytic and can affect stress response
(Bannerman et al., 2004; Fanselow and Dong, 2010; Hobin et al., 2006; Kjelstrup et al., 2002;
Pentkowski et al., 2006). These ventral hippocampus effects may be a result of the functional
connectivity of the ventral hippocampus. The ventral hippocampus has increased serotonergic,
norepinephrinergic, and mesolimbic dopaminergic innervation in comparison to the dorsal
hippocampus (Bjarkam et al., 2003; Gage and Thompson, 1980; Gasbarri et al., 1994; Wilson
and Molliver, 1991). In addition, this structure projects to brain areas involved in emotional
regulation, including the mPFC, amygdala, bed nucleus of the stria terminalis (BNST), and
paraventricular nucleus of the hypothalamus (PVN) (Bannerman et al., 2004; Fanselow and
Dong, 2010; van Strien et al., 2009). Notably, ventral hippocampal lesions specific to areas

projecting to the neuroendocrine hypothalamus alter response to stress (Nettles et al., 2000).

The functional distinction is also reflected at the level of the DG itself, in both the
temporal dynamics of neuronal maturation along the septotemporal axis (Snyder et al., 2012) and
functionality, with the dorsal DG's implication in learning and memory function, and the ventral
DG's implication in anxiety and depressive/antidepressant behavioural phenotypes (Deng et al.,
2010; Kheirbek and Hen, 2011). More specifically, these behaviours have been associated
specifically with the birth of new neurons in this structure, and many studies examining
behavioural consequences of altered neurogenesis have revealed functional discrepancies

between dorsal and ventral hippocampal neurogenesis. Chronic stress has been shown to cause
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ventral DG-specific decreases in neurogenesis (Elizalde et al., 2010; Jayatissa et al., 2006;
Jayatissa et al., 2008), antidepressants have been shown to increase neurogenesis selectively in
the ventral DG (Banasr et al., 2006; Paizanis et al., 2010), and increases in neurogenesis
restricted to the ventral DG have been associated with antidepressant effects (Mahar et al., 2011).
A noteworthy recent study by Tanti et al. specifically investigating the distinction between dorsal
and ventral DG consequences of stress and antidepressant effects on different neurogenic stages
found that CUS reduced the number of neural progenitors specifically in the ventral DG and
decreased the number of early immature neurons in the dorsal and ventral DG, with both effects

reversed by fluoxetine treatment (Tanti et al., 2013).

The influence of ventral hippocampal neurogenesis on affect and antidepressant activity
could be related to its connection to the mPFC, in that hippocampal plasticity could modulate
cognitive plasticity, including helplessness-related cognition (Feldmann et al., 2007), cognitive
distortions, or ruminative cognition. However, the hypothalamic projection of the ventral
hippocampus may be a more likely candidate, as recent research suggests that the mood-
regulating actions of the ventral hippocampus (and ventral hippocampal neurogenesis) may be
due to its regulation of stress. Ablation of hippocampal neurogenesis causes aberrant HPA axis
activity, including increased glucocorticoid response to stress, increased HPA recovery latency
following stress, and decreased HPA suppression by dexamethasone (Schloesser et al., 2014;
Schloesser et al., 2009; Snyder et al., 2011b). Antiglucocorticoids, which mimic the effects of
increased neurogenesis with respect to HPA inhibition, have antidepressant properties
(Fitzsimons et al., 2009). Thus changes in ventral hippocampal neurogenesis likely affect the

HPA axis via the BNST/PVN, modulating the effects of stress on depression- and antidepressant-
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related behaviour. Modulation of the HPA axis by neurogenesis would thus also affect 5-HT

activity, given the regulation of 5-HT systems by stress, as described earlier.

1.2.4.5 Timeline of neurogenic effects and synopsis of neurogenic role in affective
modulation

Several of the aforementioned findings are best examined from a temporal perspective.
Specifically: (i) antidepressants typically take several weeks to attain clinical efficacy (Jacobs et
al., 2000); (i1) chronic stress can have depressogenic effects whereas acute stress often fails to
(Hanson et al., 2011); (ii1) neurogenesis is required for certain antidepressant-related effects
(Airan et al., 2007; Jiang et al., 2005; Perera et al., 2011; Santarelli et al., 2003; Surget et al.,
2008); and (iv) short-term administration of glucocorticoid receptor antagonists can produce
acute antidepressant and antidepressant-like effects in humans and animal models, respectively
(Belanoff et al., 2002; Flores et al., 2006; Veldhuis et al., 1985).

To understand how neurogenesis might mediate these effects, it is important to take into
consideration the time course of adult hippocampal neurogenesis (Fig. 4). Proliferation of new
cells proceeds rapidly in the hours following pro- or anti-proliferative stimuli. Following this
stage, new cells differentiate into neuronal progenitors, extend dendrites into the molecular layer
surrounding the DG and form spines, undergo apoptosis or survive to a functional state, and
experience a brief period of hyperplasticity at approximately 4-6 weeks of age (Ge et al., 2007),
after which these new neurons are functionally indistinguishable from older mature granule cells.
Notably, the timing of this plastic window at 4-6 weeks of age may be specific to rodents, as the
timing and duration of this window may differ in primates (Kohler et al., 2011; Perera et al.,

2011); this possibility emphasizes the importance of increasing our understanding of the
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maturation of adultborn neurons in addition to their proliferation and survival. It seems that the
hyperplastic stage has particular relevance to the function of hippocampal neurogenesis, as prior
to this stage these cells are not functional, and immediately following this stage the loss of
neurons that proliferated in the presence of a particular stimulus would represent a relatively
negligible change in the function of a mature granule cell population that is relatively quiescent
(Aimone et al., 2010; Alme et al., 2010). Thus modulation of hippocampal neurogenesis should
produce changes in affective behaviour if the overall number of immature hyperplastic ventral
(in rodents; anterior in humans) DG neurons is affected at the precise time of behavioural testing
or clinical assessment (c.f. Jayatissa et al., 2009; Mahar et al., 2011) (Fig. 4). This would explain
why chronic but not acute antidepressant treatment (initially increasing proliferation of new cells
that weeks later become immature neurons) has clinical efficacy, why chronic but not acute
stress is depressogenic and anti-neurogenic, and why anti-glucocorticoid treatments (mimicking
the end result of increased neurogenesis in inhibiting HPA function) have comparatively rapid

antidepressant effects.

1.2.5 Concluding remarks

Multiple theories of depression and antidepressant action have been put forward in recent
years. Here we have attempted to review recent research involving two of these theories, the
monoaminergic and neurogenic hypotheses, and present a view linking these theories in the
context of stress and HPA axis activity. To summarize, chronic stress causes depression and
depression-related behaviour through monoaminergic changes in several brain regions as well as
suppression of hippocampal neurogenesis, leading to altered activity in cognition- and emotion-
related brain regions, as well as HPA axis dysfunction that itself exacerbates the effects of stress,

including its effects on 5-HT activity. Some of these effects are reversed by antidepressant
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treatment, which may act by increasing hippocampal neurogenesis (possibly by increasing
monoaminergic neurotransmission), leading to restoration of HPA activity and stress
responsivity, ameliorating deleterious stress-induced 5-HT changes. Future studies involving the
interaction between monoamines and neurogenesis may further elucidate this relationship. In
addition, linking particular changes in brain function to particular depressive symptoms will
prove useful in understanding the etiology of depression. Finally, future clinical and post-mortem
studies in human patients may further characterize this interaction in the context of depression

and antidepressant effects.

Acknowledgements: IM receives funding from the Fonds de recherche du Québec - Santé, and
would like to acknowledge the family of Dr. Steven S. Zalcman for their memorial award. FRB
receives funding from the Canadian Institutes of Health Research (CIHR). NM is a CIHR New
Investigator and Bell Senior Fellow in Mental Health. JNN receives funding from the Ontario

Mental Health Foundation.

63



FIGURES:

Oncological studies

b

Psychopathology studies

"\

NRG1 administration
increases hippocampal
neurogenesis

NRG1 administration
has antidepressant-like
effects

Hippocampal NRG1-ErbB
activity is disruptedin
psychopathology

NRG1 administration may be a
safe and effective
psychopathological therapeutic

t

Neurodevelopmental studies

t

Cardiac clinical trials

Figure 1. Brief synopsis of some of our main hypotheses (black boxes) and some of their

experimental support from previous studies (blue) and our own findings (green). Oncological

studies suggesting that neuregulin-1 (NRG1) has proliferative effects, as well as findings from

neurodevelopmental studies, led us to hypothesize that NRG1 administration might increase

hippocampal neurogenesis. Findings from human post-mortem psychopathology studies, as well

as the influence of hippocampal neurogenesis on affective behaviour, suggested that increases in

hippocampal neurogenesis might be accompanied by antidepressant-like effects. Our animal

studies, as well as previous findings associating disrupted NRG1-ErbB activity with

psychopathology, led us to investigate whether hippocampal NRG1-ErbB signaling was aberrant

in specific psychopathology-related contexts. Together, our results suggested that NRG1 may

have therapeutic benefit in particular psychopathological conditions, and may be safe and well-

tolerated by patients based on clinical trials for NRG1 administration for cardiac conditions. The

dotted line represents that this final hypothesis has yet to be tested directly.
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Depressed mood most of the day, nearly every day

Compromised ability to experience pleasure (anhedonia) or
interest in activities most of the day, nearly every day

Feelings of worthlessness or unreasonable guilt nearly every day
Sleep disturbance (insomnia or hypersomnia) nearly every day
Fluctuations in weight or appetite changes nearly every day
Psychomotor agitation or retardation nearly every day

Fatigue nearly every day

Diminished ability to think or concentrate nearly every day

Recurrent thoughts of death or suicidal ideation

Table 1. Symptoms of a depressive episode, at least five of which must persist for at least two
weeks to meet diagnostic criteria, with depressed mood or anhedonia requisite (DSM-V;

American Psychiatric Association, 2013).
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Lighting conditions and disturbance in the circadian cycle
frequent, intermittent on-off switching of lights
abrupt reversal of the light/dark cycle
stroboscopic lights

Food and water availability
restricted food supply
restricted water supply
water deprivation
food deprivation

Housing conditions
isolation
group housing
cage tilt
used mouse cage exposure
damp bedding

Ecological challenges
foreign object exposure
cold room
noise
predator odor
restraint

forced swim

Table 2. Stressors used in the chronic unpredictable stress (CUS) model of depression.
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5-HT;a Changes

Reference (species)

Animal models

SERT”" mice 3 (desensitized) presynaptic Fabre et al., 2000; Gobbi et al.,
2001; Li et al., 2000; Lira et al.,
2003

CB17 mice J presynaptic Aso et al., 2008; Aso et al.,
2009

Chronic stress J presynaptic Bambico et al., 2009b (rat);
Froger et al., 2004 (mouse);
Lanfumey et al., 1999 (mouse)

Chronic corticosterone treatment { presynaptic Rainer et al., 2011 (mouse)

Maternal separation { presynaptic Gartside et al., 2003 (rat)

Neonatal clomipramine treatment J presynaptic Kinney et al., 1997 (rat);

Maudhuit et al., 1995 (rat),
1996 (rat)

Acute stress exposure

<> presynaptic

Laaris et al., 1997 (rat); Steciuk
et al., 2000 (rat)

Chronic SSRI treatment

{ presynaptic

Le Poul et al., 1997 (rat)

Chronic TCA treatment

T postsynaptic (hippocampus)

Bijak et al., 1996 (rat)

Depressed patients (5-HT14 mRNA, 5-
HT14 receptor density and function)

T presynaptic

Stockmeier et al., 1998

{ presynaptic, also distribution
volume

Arango et al., 2001; Meltzer et
al., 2004; Rabiner et al., 2004

<> presynaptic

Bhagwagar et al., 2004

{ postsynaptic, medicated and
unmedicated patients

Drevets et al., 2007; Hirvonen
et al., 2008; Neumeister et al.,
2004; Sargent et al., 2000

<> postsynaptic, midbrain

Stockmeier et al., 1998

{ neuroendocrine response to
agonist

Pitchot et al., 2005

{ hypothermic response to
agonist

Cowen et al., 1994

Table 3. Evidence of disrupted 5-HT1a receptor function in depressed patients and animal models

of depression, and related effects of antidepressants. Note that some findings are equivocal in the

literature. SERT"": serotonin transporter knockout; CB17": cannabiniod receptor knockout; SSRI:

selective 5-HT reuptake inhibitor; TCA: tricyclic antidepressant.
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Agonism | Antagonism References (species)
Monoamines
Serotonin 1 ! Banasr et al., 2004 (rat); Diaz et al., 2012 (mouse)
Norepinephrine ) ! Jhaveri et al., 2010 (mouse and rat); Kulkarni et al., 2002

(rat); Masuda et al., 2012 (rat)
Dopamine 1 1? Hoglinger et al., 2004 (mouse); Veena et al., 2011 (rat and
mouse); Yang et al., 2008 (mouse)
Neurotrophic factors
BDNF 1 ) Sairanen et al., 2005 (mouse); Schmidt and Duman, 2010
(mouse); Waterhouse et al., 2012 (mouse)
IGF i ! Aberg et al., 2000 (rat); Beck et al., 1995 (mouse); Glasper
et al., 2010 (mouse)

VEGF 1 ! Jin et al., 2002 (rat); Sun et al., 2006 (mouse)
NRG1 1 ? Mahar et al., 2011 (mouse)

Table 4. Summary of findings regarding direction of influence of monoamines and neurotrophic

factors on hippocampal neurogenesis. Serotonin and norepinephrine, as well as neurotrophic

factors, appear to positively regulate hippocampal neurogenesis, although transgenic BDNF

reduction may increase proliferation but decrease survival and neuronal differentiation, whereas

findings on the influence of dopamine are mixed (particularly regarding the effects of

pharmacological antagonism). BDNF: brain-derived neurotrophic factor; IGF: insulin-like

growth factor; NRG1: neuregulin-1; VEGF: vascular endothelial growth factor.
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levels

(Via BNST/PVN)

NEUROGENIC EFFECTS

Decreased cell proliferation
Decreased cell survival
Decreased neuronal differentiation

Decreased
neurogenesis

Figure 2. Model of serotonergic (5-HT; green arrow), neurogenic (blue arrow), and behavioural
effects of stress. Acute stress (dotted box) increases dorsal raphe (DR) 5-HT firing. Chronic
stress leads to monoaminergic changes (solid box), decreased neurogenesis (blue box), and
depressive symptoms or endophenotypes. Decreases in ventral hippocampal (in rodents; anterior
hippocampal in humans) neurogenesis, which may underlie depressive/depression-like
phenotypes, impairs regulation of the hypothalamic-pituitary-adrenal (HPA) axis, leading to
HPA dysregulation and resulting monoaminergic and behavioural effects of chronic stress.
Restoration of ventral (in rodents; anterior in humans) hippocampal neurogenesis (e.g. through
serotonergic antidepressant treatment) reinstates hippocampal regulation of HPA activity and
reverses depression-like behavioural phenotypes. BNST: bed nucleus of the stria terminalis;
CSF: cerebrospinal fluid; HPC: hippocampus; mPFC: medial prefrontal cortex; NAc: nucleus

accumbens; PVN: paraventricular nucleus of the hypothalamus.
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Figure 3. Animal models of depression vulnerability and depressive-like reactivity.
Vulnerability to a depressive-like state can be precipitated by a number of experimental
manipulations that mimic early life adversity, genetic liabilities, stress, and other predisposing
factors (within the circle). Following development of depression vulnerability, enhanced
expression of depressive-like phenotypes/behavioural reactivity can be assayed by the forced
swim test (FST), tail suspension test (TST) and learned helplessness test (LH) that measure
impairment in stress coping; by the sucrose preference test (SPT) for anhedonia-like reactivity;
by the novelty-suppressed feeding test (NSFT) for anxiety-like reactivity; and by the social
interaction test (SIT) for perturbed sociality. Other behavioural and physiological measures not
shown here include exploratory behaviour in an open field, intracranial self-stimulation for
reward sensitivity, changes in sleep architecture, and modifications in neuroendocrine response
(corticosterone assays and dexamethasone challenge). CB1-/-: cannabinoid CB1 receptor
knockout; cLH: congenital learned helplessness; FSL: Flinders sensitive line; SERT-/-: serotonin

transporter knockout.
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Critical period of stage, or period
of experimental manipulation

Approximate timeline of neurogenic stages in the rodent hippocampus

Proliferation

(Decreases from stress
(CUS) require chronic
(~4-6 weeks) duration

Jor anhedonia/passive

Latency to functional/behavioural influence

behavioural coping; Cell survival
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antidepressant efficacy) Morphological changes
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reversal of stress effects

Functional integration in MPP circuitry

0-1 2 3
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Figure 4. Temporal dynamics of neurogenic effects. Timing of stages as shown is roughly

approximated and applies particularly to rodents. We suggest that the relevant feature of

hippocampal neurogenesis with respect to depression-/antidepressant-related behaviour is the

number of hyperplastic immature functional neurons (4-6 week-old neurons in mice) present in

the ventral DG at behavioural assessment. Therefore, latency between proliferation effects and

affective behaviour should be approximately 4-6 weeks (with potential variation by species); for

changes in neuronal differentiation should be slightly sooner; and for changes in survival

assessed in 2 week-old cells should be 2-4 weeks. If immature neurons can be ablated directly, or

late-stage functional integration affected, effects should be apparent acutely. AD: antidepressant;

CUS: chronic unpredictable stress; MPP: medial perforant path; NTF: neurotrophic factors.

1.2.6 ADDENDUM

Although the preceding section was published relatively recently (2014), the areas of research

described therein are especially rapidly-advancing, and so it is worth updating with the most
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recent studies published afterward, as well as adding topics relevant to subsequent aims and

experiments.

Perhaps the largest omission of the preceding Chapter in the context of this thesis is regarding
suicide, as a significant topic of our later experiments. A comprehensive review of the
neuroscience of suicidality could easily fill more than the full volume of this (and many other)
theses; however, [ will attempt to summarize, as concisely as possible, our current knowledge of

this topic and what our studies may contribute.

For obvious reasons, the vast majority of studies on the etiology of suicide have involved post-
mortem tissue analyses. Consequently, the proliferation of brain banks worldwide in recent years

has led to rapid growth in this aspect of suicide research, with much promise in the near future.

Suicidal etiology may be modeled upon two independent axes; a temporal axis, wherein both
temporally proximal and distal events contribute to suicidality (Turecki, 2014), and a biological
axis, in which etiology is represented on a continuum from the most microscopic (molecular,
genetic, and epigenetic changes in the brain) to the anatomical (brain structural abnormalities in
post-mortem suicidal individuals, brain imaging studies in living suicide attempters or relatives

of suicide completers) and the most macroscopic (behavioural or interpersonal) levels.

Regarding genetic and epigenetic associations with suicide, high-throughput or genome-wide
studies have often provided conflicting or unvalidated results; however, some moderate
consensus has been reached with respect to the putative involvement of the hippocampus, stress,
and HPA regulation (Turecki, 2014), strikingly analogous to the depressive model presented
previously in this Chapter. These associations likely represent temporally distal factors to a

suicidal event (Turecki, 2014), such as early life adversity-related epigenetic events affecting
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predisposition toward suicide (Labonte et al., 2012; McGowan et al., 2009), as opposed to

proximal factors leading acutely to a suicidal crisis such as substance abuse issues.

Anatomical and morphological post-mortem research, though proliferating, is still sparse in
contrast with other research into psychiatric contexts. In the white matter of the anterior
cingulate, fibrous astrocytes are hypertrophic, and a higher ratio of microglia are in a primed
state, for depressed suicide completers (Torres-Platas et al., 2014; Torres-Platas et al., 2011),
whereas anterior cingulate pyramidal neurons have fewer third-order dendritic branches (Hercher
et al., 2010). Astrocytic hypertrophy has also been observed in the thalamus, caudate, and
dorsolateral PFC (Steiner et al., 2008a; Torres-Platas et al., 2015). Along the subventricular
zone-olfactory bulb neurogenic pathway, the number of DCX-expressing cells (and the volume
of processes in these cells) was increased in the olfactory tract in suicides, and DCX expression
was increased in the subventricular zone and olfactory bulb for suicides, with the former
phenotype reversed by antidepressant treatment (Maheu et al., 2015b). However, despite its
importance in affective and stress regulation, the hippocampus has not yet been studied
anatomically in post-mortem suicide samples, apart from a report indicating a tendency for

microglial activation in suicide completers (Steiner et al., 2008a).

Proteomic studies of suicide completers have been limited primarily to 5-HT1A, and these have
produced mixed findings (Furczyk et al., 2013). However, of particular interest is a study
examining DCX and polysialylated neural cell adhesion molecule (PSA-NCAM) as markers of
neuroplasticity in the basolateral amygdala, which were found to be increased in depressed non-
suicides but not depressed suicides, suggesting a potential failure of limbic neuroplasticity-
related compensation in suicide completers (Maheu et al., 2013). Interestingly, chronic

fluoxetine treatment has been shown to increase PSA-NCAM expression in the rat basolateral

73



amygdala, as well as in multiple hippocampal layers and the dorsal cingulate cortex (Guirado et

al., 2012).

Regarding neurotrophic factors, depressed suicides show reduced levels of glial cell line-derived
neurotrophic factor (GDNF) family receptor alpha 1a (GFRala) in the amygdala, likely due to
increases in microRNA- (miRNA-)511 (Maheu et al., 2015a). Neurotrophin-3 levels are reduced
in the hippocampi of unmedicated (but not medicated) suicide completers (Karege et al., 2005).
Similarly, neurotrophin-4 levels in cerebrospinal fluid are reduced in depressed patients who had

attempted suicide, but not in other depressed patients or controls (Kimata, 2005).

Research into BDNF in this context has been more extensive. The BDNF gene is
hypermethylated in the Wernicke area of suicide completers (Keller et al., 2010). BDNF levels
are reduced in the hippocampi and ventromedial PFCs of unmedicated (but not medicated)
suicide completers (Karege et al., 2005). This hippocampal finding was partially validated by a
study showing decreased hippocampal BDNF expression in male (but not female) depressed
suicide completers, as well as decreased expression in the frontopolar PFC in female (but not
male) suicide completers (Hayley et al., 2015). The Valo66Met BDNF single nucleotide
polymorphism in particular has repeatedly been associated with suicidality (Iga et al., 2007;
Pregelj et al., 2011; Ratta-Apha et al., 2013; Sarchiapone et al., 2008; Zai et al., 2012), with
additional BDNF single nucleotide polymorphisms associated with suicidality as a haplotype
(Ropret et al., 2015). Levels of BDNF in blood, including BDNF overflow from the brain at the
internal jugular vein, were decreased in suicidal individuals, relative to non-suicidal patients and
controls (Dawood et al., 2007; Grah et al., 2014; Kim et al., 2007; Pinheiro et al., 2012). This
may be due to changes in peripheral BDNF methylation, which is associated with suicidality in

depressed patients (Kang et al., 2013). BDNF receptor TrkB-T1 is expressed in lower levels in
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the frontal cortex of suicide completers, possibly due to altered methylation of the TrkB-T1 gene

(Ernst et al., 2009) or increased expression of miRNA-185* (Maussion et al., 2012).

Together these neurotrophic factor studies have indicated that neurotrophic factors in particular,
and brain plasticity by extension, are involved in suicidal etiology, predominately in the
hippocampus. However, the neurotrophic factor NRG1 and its receptors, as well as the

neuroanatomy of the hippocampal DG, had not been studied in the context of suicide.

Thus, research on suicide has not extended to several key areas, specifically the investigation of
hippocampal plasticity in suicidality, the potential etiological and treatment role of NRG1/ErbB
signaling in suicidality (in line with its association with psychopathology, and also as a
neurotrophic factor), and potential alterations in the DG and neurogenesis. In Chapter 5, we

attempt to augment existing suicide research with studies into these areas.

Of lesser relevance to this thesis, but of interest regarding the discussion of depressive or suicidal
etiology in general, the preceding Chapter largely omitted discussing one of the more prominent
psychopathological theories, specifically that of neurological inflammation. As with the topic of
suicidality, this topic in itself extends far beyond the scope of the current document. However,
suffice it to say that there is intriguing evidence of hyper-inflammation underlying depression
and suicidality (Black and Miller, 2015; Zunszain et al., 2013). This model of depression is not
incongruent with the findings discussed within this document, as glucocorticoid and
inflammatory processes are linked (Horowitz et al., 2013), and as NRG1 ameliorates the

inflammatory response of cells exposed to IL-1p (Wu et al., 2015).

Regarding additions to the general literature for monoaminergic theories of depression, it was

quite recently found that methylation of the SERT gene is increased with early childhood trauma,
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and is inversely associated with hippocampal volume (Booij et al., 2015). It was also recently
found that 5-HT3 agonism is pro-neurogenic, and that 5-HT3 is required for exercise-induced
neurogenesis and potentially the resulting behavioural effects (Kondo et al., 2014). Similarly, our
discussion of neurotrophic factors involved in hippocampal neurogenesis also requires updating,
as an additional neurotrophic factor, neurotrophic factor-al (NF-al) has also been shown to be

associated with stress, depression, and hippocampal neurogenesis (Cheng et al., 2014).

We omitted discussing sex-specific distinctions of neurogenesis in the preceding review, such as
findings that spatial training spurs neurogenesis differently between male and female rats,
neurogenic ablation disrupts behaviour more severely in female than male mice, oxidative stress
differentially affects neurogenesis between sexes, and chronic restraint stress in rats also
differentially affects neurogenic stages between sexes, whereas male rats had increased numbers
of immature DG neurons at baseline (Chow et al., 2013; Hillerer et al., 2013; Ma et al., 2012;
Roughton et al., 2012). Supporting this distinction, estradiol has recently been found to
potentiate fluoxetine-mediated increases in neurogenesis and dendritic complexity in immature
neurons, suggesting that serotonergic modulation of hippocampal neurogenesis might underlie

sexually dimorphic differences in hippocampal neurogenesis (Vega-Rivera et al., 2015).

I have extensively discussed the functional discrepancies distinguishing the dorsal from the
ventral DG. Additional support for the functional distinction of these DG subregions has come
from studies showing that dorsal DG neurogenesis correlated with spatial memory task
performance, whereas anxiety-related behaviour correlated with ventral DG neurogenesis

(Vetreno and Crews, 2015).

We previously described in this Chapter how decreased neurogenesis in some contexts might not

affect basal activity, but might exacerbate stress response. A recent advance is the development
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of a mouse transgenic line in which neurogenesis is endogenously enhanced; these animals have
normal baseline anxiety and antidepressant-like behaviour, but display anxiolytic and
antidepressant-like behaviour in a stress-related model of depression (Hill et al., 2015). This
supports our assertion that hippocampal neurogenesis can regulate affective behaviour through

modulation of stress response, as described earlier in this Chapter.

We also mentioned earlier the multitude of factors that stimulate hippocampal neurogenesis,
including through electrical stimulation. A recent publication has found that this is additionally
possible through extremely low-frequency electromagnetic fields, which can increase rodent
neurogenesis in vivo and increase neural stem cell proliferation and neuronal differentiation in
vitro, with a potentially epigenetic mechanism via histone H3 lysine 9 (H3K9) acetylation and
cAMP response element-binding protein (CREB) phosphorylation, contingent upon Cav1
channels (Leone et al., 2014). If this can similarly be accomplished in humans, the implications
are noteworthy, as this non-invasive treatment could provide therapeutic benefit for a wide

variety of psychiatrically related phenotypes.

Finally, the preceding Chapter briefly mentioned the possibility the ventral hippocampal
neurogenesis exerts its mood regulating effects via the mPFC. While an intriguing and
potentially wide-reaching hypothesis, it had at that point been unsupported. However, it has
recently been found that ventromedial PFC stimulation increases hippocampal neurogenesis and
dendritogenesis in new neurons, as well as memory task performance, with neurogenesis
correlating with performance (Liu et al., 2015). Future studies will hopefully elucidate to what
extent the influence of hippocampal neurogenesis on behaviour is mediated by the HPA axis as

well as the mPFC.
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1.3 SPECIFIC AIMS AND EXPERIMENTS

Having introduced neuregulin-1 and ErbB receptors, the phenomenon and function of
hippocampal neurogenesis, and its distinction along the septotemporal axis (the concepts forming
the impetus behind the thesis), we move to the specific aims of the thesis and its composite

experiments.

AIM 1: Assess whether peripheral NRG1 administration affects adult hippocampal
neurogenesis. To accomplish this aim, we subcutaneously administered NRG1 to adult mice and
assessed subsequent proliferation and neurogenesis using immunohistochemical techniques, as

described in Chapter 2.

AIM 2: Assess whether NRG1-mediated increases in hippocampal neurogenesis are
associated with antidepressant-like effects. We assessed animals with NRG1-mediated
increases in ventral hippocampal neurogenesis using behavioural tasks, as discussed in Chapter

2.

AIM 3: Characterize the effects of NRG1 on hippocampal neurogenesis, across neurogenic
stages and the septotemporal axis. Here we repeated the administration paradigm of
experiments in Chapter 2, focusing on immature neurons specifically, as described in Chapter 3,
with the addition of neuronal reconstructions from across the septotemporal axis. Cumulative
experiments from these chapters revealed that NRG1 has temporally- and subregionally-specific

neurogenic effects.

AIM 4: Identify a putative mechanism for the neurogenic and behavioural effects of NRG1.
Using BrdU to label cells at various time points, we identified expression patterns of ErbB

receptors in DG cells and identified these cells immunohistochemically (Chapters 2 and 4),
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revealing that ErbB3 may be the candidate NRG1 receptor mediating the neurogenic and
antidepressant-like effects of NRG1 administration. We then used phosphorylation ELISA

(Chapter 4) to verify that ventral DG ErbB3 is activated by NRG1 administration.

AIM 5: Determine whether psychopathology is associated with disrupted NRG1-ErbB
signaling. As discussed in Chapter 4, we examined whether DG ErbB3 is disrupted in an animal
model of depression, then peripherally in depressed patients, and finally in the hippocampus of
suicide completers. This was done using genetic and epigenetic techniques, as well as
stereological and morphological examination of the DG in suicide completers, and determined
that DG ErbB3 is reduced in the DG of mice in a model of depression and in the hippocampus of
suicide completers, and that the latter may be due to a substantial deficit in DG granule cell

neurons.
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CHAPTER 2. Subchronic peripheral neuregulin-1 increases ventral hippocampal

neurogenesis and induces antidepressant-like effects.
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Abstract

Background

Adult hippocampal neurogenesis has been implicated in the mechanism of antidepressant
action, and neurotrophic factors can mediate the neurogenic changes underlying these effects.
The neurotrophic factor neuregulin-1 (NRG1) is involved in many aspects of brain development,
from cell fate determination to neuronal maturation. However, nothing is known about the
influence of NRG1 on neurodevelopmental processes occurring in the mature hippocampus.
Methods

Adult male mice were given subcutaneous NRG1 or saline to assess DG proliferation and
neurogenesis, as well as cell fate determination. Mice also underwent behavioural testing.
Expression of ErbB3 and ErbB4 NRG1 receptors in newborn DG cells was assessed at various
time points between birth and maturity. The phenotype of ErbB-expressing progenitor cells was
also characterized with cell type-specific markers.

Results

The current study shows that subchronic peripheral NRG1p administration selectively
increased cell proliferation (by 71%) and neurogenesis (by 50%) in the caudal DG within the
ventral hippocampus. This pro-proliferative effect did not alter neuronal fate, and may have been
mediated by ErbB3 receptors, which were expressed by newborn DG cells from cell division to
maturity and colocalized with SOX2 in the subgranular zone. Furthermore, four weeks after
cessation of subchronic treatment, animals displayed robust antidepressant-like behaviour in the
absence of changes in locomotor activity, whereas acute treatment did not produce
antidepressant effects.

Conclusions
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These results show that neuregulin-1 has pro-proliferative, neurogenic and
antidepressant properties, further highlight the importance of peripheral neurotrophic factors in
neurogenesis and mood, and support the role of hippocampal neurogenesis in mediating

antidepressant effects.

2.1 Introduction

Adult hippocampal neurogenesis, the evolutionarily conserved process by which new
granule cell neurons are added to the DG of the hippocampus, has been implicated in several
brain functions, including affective modulation. According to the neurogenic theory of
antidepressant effects, increasing hippocampal neurogenesis can ameliorate depressive
symptoms ((Boldrini et al., 2009; Jacobs et al., 2000; Jayatissa et al., 2006; Kempermann, 2002;
Kempermann and Kronenberg, 2003; Malberg et al., 2000; Santarelli et al., 2003; Surget et al.,
2008); see (Drew and Hen, 2007; Sahay and Hen, 2007; Vaidya et al., 2007) for review),
although it is controversial whether deficits in neurogenesis are sufficient to cause a depressive
phenotype. In support of the involvement of neurogenesis in antidepressant effects,
antidepressant treatments increase hippocampal neurogenesis (Banasr et al., 2006; Boldrini et al.,
2009), ablating hippocampal neurogenesis can prevent antidepressant effects (Airan et al., 2007,
Jiang et al., 2005; Santarelli et al., 2003; Surget et al., 2008 (although see David et al., 2009;
Holick et al., 2008), and the latency of these effects in humans and animals correlates with the

time required for newborn DG neurons to integrate into mature circuits (Jacobs et al., 2000).

Neurotrophic factors have been proposed to mediate the neurogenic response to
antidepressants, with strong evidence that peripherally circulating neurotrophic factors can

modulate both mood and neurogenesis (Aberg et al., 2000; Duman et al., 2009; Scharfman et al.,
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2005; Schmidt and Duman, 2010; Sen et al., 2008; Wang et al., 2009). In particular, chronic
peripheral administration of brain-derived neurotrophic factor (BDNF) has been reported to
increase neurogenesis (Schmidt and Duman, 2010) and to induce antidepressant and anxiolytic
effects (Schmidt and Duman, 2010). Interestingly, serum levels of BDNF are also reduced in
depressed patients and increased by antidepressant treatment (Diniz et al., 2010; Sen et al.,
2008), raising the possibility that peripheral activity of this neurotrophic factor could affect mood
by modulating central neurophysiological processes such as adult hippocampal neurogenesis.
Further support for a peripheral influence of neurotrophins on mood arises from the
demonstration that peripheral administration of the pro-neurogenic hormone insulin-like growth

factor-I, which can cross the BBB, produces antidepressant-like behaviour (Duman et al., 2009).

The neuregulin (NRG) family of EGF-related proteins comprises a wide variety of
soluble and membrane-bound proteins that mediate their effects through ErbB tyrosine kinase
receptors (Olayioye et al., 2000; Talmage and Role, 2004). The diversity of NRG proteins,
arising mainly from alternative splicing, is particularly well-documented for the neurotrophic
factor NRG1, which includes at least fifteen isoforms. In addition to being expressed in the brain,
some NRG1 isoforms are also widely expressed in the periphery (Shibuya et al., 2010; Wen et
al., 1994; Zhang et al., 2008). In particular, NRG1p, the most widespread NRG1 isoform in the
brain, is found in the circulation, from which it can readily cross the adult BBB via carrier-
mediated transport and affect brain activity (Carlsson et al., 2011; Kastin et al., 2004; Xu et al.,
2006; Xu et al., 2004). Studies of NRG1 signaling in the brain indicate prominent roles for this
protein during development, such as cell fate determination (Sardi et al., 2006), axon guidance

(Lopez-Bendito et al., 2006), radial glia elongation (Anton et al., 1997; Gierdalski et al., 2005;
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Schmid et al., 2003), neuronal migration (Flames et al., 2004; Yau et al., 2003) and dendritic

growth (Rieff and Corfas, 2006).

Despite our rapidly expanding knowledge of NRGI1 functions in the developing brain,
very little is currently known about the influence of this neurotrophic factor on
neurodevelopmental processes occurring at maturity. NRG1 administration in the adult
subventricular zone (SVZ) has been shown to affect progenitor organization and migration
(Ghashghaei et al., 2006). However, a possible role for NRG1 signaling in modulating
hippocampal neurogenesis remains to be examined (Jaaro-Peled et al., 2009). Here, we exploited
the fact that NRG1p readily crosses the BBB to study the consequences of subchronic peripheral
administration of this neurotrophic factor on hippocampal neurogenesis. Based on previous
studies showing that NRGI is pro-proliferative in vitro (Eto et al., 2010; Liu et al., 2005) and
that neurotrophic factors increase proliferation and neurogenesis in the adult hippocampus
(Aberg et al., 2000; Scharfman et al., 2005; Schmidt and Duman, 2010), we hypothesized that
NRGIB treatment would stimulate DG proliferation, leading to an increase in hippocampal
neurogenesis. We further hypothesized that this increase in neurogenesis would lead to
antidepressant effects, in line with studies demonstrating an association between these
phenomena (Airan et al., 2007; Jiang et al., 2005; Santarelli et al., 2003; Surget et al., 2008), as
well as those showing antidepressant effects after neurotrophic factor administration (Duman et
al., 2009; Schmidt and Duman, 2010). We show that this treatment strongly stimulates DG cell
proliferation exclusively in the ventral hippocampus, leading to an increase in neurogenesis that

is accompanied by robust antidepressant-like behaviour.

2.2 Methods and materials
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2.2.1 Animals

Adult male C57BL/6 mice were purchased from Charles River Canada. For
ErbB3/SOX2/nestin triple labeling, group-housed transgenic mice expressing green fluorescent
protein (GFP) at the nestin promoter (nestin-GFP (Mignone et al., 2004)) on a C57BL/6
background were used. All animals were 2 months of age and housed in groups (except animals
for neurogenesis and behavioural experiments, which were isolated) on a 12:12 light:dark cycle
with ad libitum access to food and water. All experiments followed the policies and guidelines of
the Canadian Council on Animal Care and were approved by McGill University's Animal Care

Committee (approval ID: 5473).

2.2.2 NRG1p and BrdU administration

After anesthesia with isoflurane, mice were implanted with subcutaneous osmotic mini-
pumps (Alzet) containing either recombinant NRG1p type-I (EGF domain dissolved in sterile
0.9% saline, administered at a constant rate of 10 pg/d; R&D Systems; accession # NP_039250)
or vehicle (randomized groups assignment). Animals were given a subcutaneous saline injection
and placed on a heating pad to recover, and were monitored post-operatively for complications.
An anti-inflammatory Carprofen tablet was placed in each cage. Depleted mini-pumps were
removed from anesthetized animals after the administration period, and pump depletion was
verified.

To evaluate proliferation, mice (n=6/group) were sacrificed at the end of a 24 h NRG1p3
or vehicle administration period, having received two injections of bromodeoxyuridine (BrdU;
Sigma; 50 mg/kg, i.p.) dissolved in sterile 0.9% saline with 0.4 M NaOH: one immediately after

mini-pump implantation, and the other two hours prior to sacrifice. To evaluate neurogenesis
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(encompassing proliferation, differentiation and survival), mice (n=7/group) received BrdU
twice daily during the 72 h NRG1p or vehicle administration period and sacrificed 30 d after
mini-pump implantation. For immunohistochemistry receptor colocalization experiments, naive
animals received BrdU 2 h, 24 h, 7 d, or 28 d prior to sacrifice (n=2/survival period), with the
latter two groups receiving two BrdU injections on the day of administration. To determine the
acute behavioral effects of NRG1p, mice were given three 0.1 ml i.p. injections of NRG1 (3.33
pg; n=7) or vehicle (n=8), 24 h, 12 h and 1 h prior to testing, and then sacrificed (see Fig. 5 for

experimental timelines).

2.2.3 Tissue processing

Animals were deeply anesthetized with a cocktail of ketamine, xylazine and
acepromazine (0.1 ml/100 g), and perfused through the heart with ice-cold phosphate-buffered
saline (PBS) followed by 4% formaldehyde in 0.1 M phosphate buffer. Brains were then rapidly
removed, postfixed at 4°C for 24 h in fixative, then transferred to a 30% sucrose solution until
equilibrium was reached. Brains were cut using a cryostat into serial 40 um-thick coronal
sections, which were placed in a cryoprotectant solution (glycerol:ethylene glycol:PBS, 3:3:4)

and stored at -20°C.

2.2.4 BrdU immunohistochemistry

Unless otherwise specified, all immunohistochemistry incubations were at room
temperature. The section-sampling fraction was 1/8. Omitting primary antibodies resulted in an
absence of specific staining for all immunohistochemistry protocols. Rinses with PBS preceded

all steps except the addition of primary antibodies and addition of H202. For BrdU light
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microscopy immunohistochemistry, sections were pre-treated for 1.5 h in PBS containing 0.2%
Triton X-100 (PBS-T; Fisher), 10 min in PBS containing 0.9% H202, and 30 min at 37°C in PBS
with 2N HCI to denature DNA. Sections were then incubated in PBS-T containing 2% Normal
goat serum (NGS) for 30 min, and then overnight at 4°C in the same solution with monoclonal
rat anti-BrdU (1:1000; Serotec). Sections were then incubated for 1 h in biotinylated goat anti-rat
antibody (1:200; Vector Laboratories), followed for 30 min by the avidin-biotin complex
procedure (ABC Kit, Vectastain Elite, Vector). Labeling was revealed with a diaminobenzidine
kit (Vector). Sections were mounted on glass slides, dehydrated, and coverslipped with Permount

(Fisher Scientific).

2.2.5 BrdU/NeuN double-labeling

To determine the proportions of newborn cells that became neurons, coronal brain
sections from the neurogenesis experiment were incubated overnight at 4°C with rat anti-BrdU
(as above) and mouse anti-NeuN (1:200; Chemicon) antibodies in 2% NGS in PBS-T, after
consecutive incubations in PBS-T (2 h), 2N HCl in PBS at 37°C (30 min) and PBS-T containing
2% NGS (1 h). This was followed by a 1.5 h incubation in fluorescent DyLight 594-labeled goat
anti-rat (1:1500; Jackson) and DyLight 488-labeled goat anti-mouse (1:500; Jackson) antibodies
in 2% NGS in PBS-T. Sections were mounted on glass slides and coverslipped with ProLong

Gold antifade reagent with DAPI (Invitrogen).

2.2.6 BrdU/ErbB double-labeling
Sections from animals injected with BrdU 2 h, 24 h, 7 d, or 28 d prior to sacrifice were

incubated for 2 h in PBS-T. Sections were then incubated for 30 min in PBS at 37°C in 1N HCl
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to denature DNA, and incubated in 2% NGS in PBS-T for 2 h before an overnight incubation at
4°C in rat anti-BrdU (as above) and monoclonal mouse anti-ErbB4 (Thermo Scientific; 1:100) or
monoclonal rabbit anti-ErbB3 (accession # Q61526, Santa Cruz; 1:100) in the same solution.
Sections were then incubated for 1.5 h in DyLight 594 goat anti-rat (1:1500) and DyLight 488
goat anti-rabbit (1:500) or goat anti-mouse (1:100 or 1:200) antibodies (Jackson) in PBS-T
containing 2% NGS. Sections were mounted on slides and coverslipped and coded as above.
The anti-ErbB4 antibody is directed against an extracellular domain of the ErbB4
receptor (Neddens and Buonanno, 2009), and the anti-ErbB3 antibody is directed against the C-
terminal domain (Gerecke et al., 2001). The specificity of the latter antibody has been validated
previously in ErbB3-knockout tissues (Jackson-Fisher et al., 2008; Lee et al., 2009). In addition,
we confirmed the staining pattern using a different anti-ErbB3 antibody raised in mice
(Millipore, 1:25, 1:50 and 1:100; accession # P21860; not shown) under light microscopy
conditions with DAB. Furthermore, immunofluorescence double-labeling with both anti-ErbB3

antibodies revealed colocalization throughout the DG (wide-field and confocal microscopy).

2.2.7 ErbB3/SOX2/nestin triple-labeling

Nestin-GFP mouse brain sections were incubated for 2 h in PBS-T and 1 h in 2% NGS in
PBS-T, then overnight at 4°C in rabbit anti-ErbB3 (as above) and mouse anti-SOX2 (R&D;
1:200; accession # P48431). The staining pattern of the latter (which has been validated
previously in SOX2-knockout tissue (Cavallaro et al., 2008)) was confirmed with an additional
anti-SOX2 antibody (Millipore; 1:12 000 and 1:20 000; accession # P48431; not shown) under
light microscopy conditions with DAB. Secondary antibodies (DyLight 594 goat anti-rabbit and

Dylight 649 goat anti-mouse, 1:500, Jackson) were added for 1.5 h. Sections were mounted on
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slides and coverslipped as above. As a negative control, a nestin-GFP-negative sibling did not

show GFP staining using wide-field and confocal microscopy.

2.2.8 Cell quantification

All quantifications and analyses were done by an investigator blind to experimental
groups. BrdU-IR cells in the DG of the hippocampus were counted using a Leica CME with a
40X 0.65NA E2 achromat objective (proliferation) or a Leica DM 2500 with a 40X 0.75 NA
HCX PL Fluotar objective (neurogenesis). Cell counts were expressed as average numbers per
DG, with left and right DGs per section averaged, and for subregion analyses DG counts were
averaged between DGs in each subregion. Proliferation of cells in the SVZ was determined at
40X (0.75 NA UPlan FL N objective) on an Olympus BX51 microscope equipped with a
motorized stage and CX-9000 camera (MBF), using an optical fractionator (OF) probe (Stereo
Investigator, MBF). A pilot study conducted to establish sampling parameters revealed a
Gunderson coefficient of error (CE) (m = 1) < 0.05. The size of the counting frame for cell
estimation was 500 pm?, dissector height was set to 14 um, and guard zone distance to 1 pm. The
average sampling area was 6072.5 um?. As the OF procedure provided cell count estimates and
not absolute cell numbers, density of BrdU-IR cells was determined as the estimated population
using section thickness divided by the Cavalieri volume corrected for overprojection. Gunderson

CEs (m = 1) for all animals were < 0.05.

2.2.9 Surface area and volumetric analyses
To rule out group differences in surface area or volume (as calculated by planimetry and

Cavalieri estimation), the SVZs and DGs of each brain used in cell quantification were traced on
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the Olympus BX51 microscope mentioned above with a 10X UPlan FL N 0.3 NA objective
using the Stereo Investigator software package (MBF). SVZs and DGs as well as rostral (-1.46 to
-2.54 mm from bregma (Franklin and Paxinos, 2007)) and caudal (-2.55 to -3.80 mm from
bregma) DG subregions presented no significant difference between groups for any of the
measures of this analysis, including total and average surface area and total and average volume,

both corrected and uncorrected for overprojection (ps > 0.05).

2.2.10 Confocal microscopy

Multiple-labeling analyses were conducted at 40X (1.3 NA Plan-Neofluar 40x Oil DIC
objective) on a Zeiss LSM510 Meta confocal microscope equipped with an Axiovert 200M stand
and motorized stage (Carl Zeiss Canada), using 405 nm, 488 nm, 543nm, and 633 nm
wavelength lasers. Images were obtained using the Zeiss Aim software package (Carl Zeiss
Canada), at a pixel size of 0.11 pm for x and y, a scan average of > 4 frames, a pixel dwell time
of >3.20 ps, and optical slice of <3 um sampled at an interval of < 1.5 pum. Images were
unaltered except for overall brightness and contrast. For quantitative colocalization analyses, 20
random cells from the rostral and caudal DG (10/subregion from multiple DGs) of each animal
were analyzed, and data expressed as the percentage of BrdU-IR cells that were also NeuN-IR or

ErbB-IR.

2.2.11 Behaviour
Animals in the neurogenesis experiment were assessed in a locomotor task and in the
FST 28 d and 29 d, respectively, after the onset of the 72 h NRGIp or saline administration

period, or 40 min and 1 h after the final injection in the acute behaviour experiment. The FST
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was chosen for its implication as a hippocampal neurogenesis-dependent task (Airan et al., 2007;
Jiang et al., 2005 (although see David et al., 2009; Holick et al., 2008)), and the locomotor task
served to determine whether putative antidepressant effects were due to changes in general
locomotor activity. To study locomotor behaviour, mice were placed individually into acrylic
Versamax RS2USB v4.00 Animal Activity Monitor boxes (.2m L x .2m W x .3m H; Accuscan)
in a room lit by red light for a period of 90 min (20 min for the acute behaviour experiment).
Locomotor behaviour was analyzed automatically by the Versamax VMX 1.4B software system
(AccuScan). Three periods of activity were analyzed: no habituation (first 10 min activity), 10
min of habituation (second 10 min activity) and extended habituation for the neurogenesis
experiment (30 min habituation, 60 min activity). For the FST, mice were placed in 4 L glass
beakers (25 cm depth, 15 cm diameter) 1/3™ filled with water (25°C) for a period of 10 minutes
in a dimly lit room. Behaviour was recorded by video equipment and subsequently analyzed
using Videotrack behavioural tracking software (Viewpoint). The first two minutes were treated
as habituation, and the following four minutes analyzed for duration of swimming and

immobility behaviour.

2.2.12 Statistics

Normality of data was assessed using Shapiro-Wilk tests. Parametric pair-wise
comparisons were made using Student’s t-tests. Non-parametric pair-wise comparisons were
made with Mann-Whitney U-tests. Comparisons within testing period time points across the
duration of the FST were made with Bonferroni-corrected t- and U-tests. Values of p < 0.05 were

considered to be statistically significant.

91



2.3 Results
2.3.1 Proliferation

Mice were administered NRG1f or saline for 24 h (to evaluate proliferation immediately
after) or 72 h (to evaluate neurogenesis and behaviour four weeks later), and received injections
of BrdU during administration (see Fig. 5). After 24 h of NRG1 administration, cell proliferation
in the DG, as assessed by numbers of BrdU-IR cells, increased by 38% compared to controls (p
=0.013). Subregional analyses revealed that this increase was highly significant in the caudal
DG (71%; p = 0.0011), but non-significant in the rostral DG (p = 0.29) (Fig. 6A). Proliferation in

the SVZ did not differ between groups (p = 0.34; Fig. 7).

2.3.2 Neurogenesis

Overall, BrdU-IR cell numbers in the DG increased four weeks after NRG1f
administration (31%; p = 0.042). As with proliferation however, this increase was only
significant in the caudal DG (50%, p = 0.013; rostral: p = 0.20) (Fig. 6B). The proportion of cells
that differentiated into neurons in these animals did not vary with treatment (overall: p = 0.91;
rostral DG: p = 1.00 or caudal DG: p = 0.90; Fig. 8), indicating that the NRG1B-induced increase

in proliferation within the caudal DG led to increased neurogenesis in this region.

2.3.3 BrdU-ErbB colocalization

To examine if these effects may have resulted from direct stimulation of NRGI1 receptors
expressed by progenitor cells, we determined at different post-BrdU injection time points
whether BrdU-IR in the DG colocalized with ErbB3- or ErbB4-IR (see Fig. 5), as presence of

one of these receptors is required for NRG1-ErbB signaling. IR for both receptors were observed
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in the DG in expression patterns similar to previous studies using these and other antibodies
(Chaudhury et al., 2003; Gerecke et al., 2001; Neddens and Buonanno, 2009). In naive animals
70 £8% (rostral: 55 £16%; caudal: 85 £3%; mean % +SEM) of newborn cells were found to
express ErbB3 during the proliferative period (2 h and 24 h following BrdU injection; Fig.9, A1l
and A2), whereas BrdU-IR and ErbB4-IR were not found to be colocalized in the DG during this
period. Interestingly, BrdU/ErbB3 colocalization was also observed 7 d and 28 d post-injection
(Appendix Figures Al and A2), suggesting a life-long influence for NRGs on the activity of

adult-born granule cells.

2.3.4 ErbB3/nestin/SOX2 colocalization

To examine which neurogenic cell subtypes in the DG expressed ErbB3, we analyzed the
colocalization of ErbB3, nestin and SOX2 in nestin-GFP animals. Colocalization was
predominately limited to the subgranular zone. Although both SOX2 and nestin colocalized with
ErbB3 in the rostral and caudal DG, nestin and ErbB3 were only co-expressed in cells expressing
SOX2 (i.e. triple-labeled cells; Fig.10A and A3A) and not in the absence of SOX2, whereas
ErbB3 and SOX2 also colocalized in the absence of nestin (Fig.10B and A3B), suggesting that

the neuronal precursor cells involved in the NRG1-induced proliferative increase express SOX2.

2.3.5 Behaviour

The effects of subchronic (72 h) NRG1p treatment on antidepressant-like behaviour were
assessed in the same animals in which neurogenesis was examined. For all analyses of the
locomotor task, experimental groups did not differ in either total distance traveled (1% 10 min: p

=0.30; 2" 10 min: p = 0.28; 60 min after 30 min habituation: p = 0.26) or activity duration (1
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10 min: p = 0.25; 2" 10 min: p = 0.23; 60 min after 30 min habituation: p = 0.29) (Fig. 11).
Treatment groups did not differ in locomotor activity after acute treatment (24 h), either initially
(distance: p = 0.67; duration: p = 0.96) or after 10 min of habituation (distance: p = 0.60;
duration: p = 0.67) (Fig. 12).

NRGI1B-treated animals showed decreased immobility (44%; p = 0.0062) and increased
swimming (194%; p = 0.0062) in the FST four weeks after the administration period, suggesting
that NRG1p treatment had antidepressant effects. Bonferroni-corrected temporal analyses
revealed that these animals had significantly increased swimming and decreased immobility
throughout the testing period (0.019 < ps < 0.039) except the fifth minute (ps = 0.11) (Fig. 13).
Acute treatment with NRG1p did not produce antidepressant effects in the FST compared to
vehicle-treated animals (immobility: p = 0.15; swimming, p = 0.15). During the testing period

treatment groups did not differ at any point (0.37 < ps < 1.0) (Fig. 14).

2.4 Discussion

This study shows that peripheral NRG1p administration increases cell proliferation in the
caudal (but not rostral) DG within 24 h, and that this treatment leads to a similar increase in local
neurogenesis. This pro-proliferative effect did not influence cell fate, and was likely mediated by
ErbB3 receptors in SOX2-expressing neuronal precursor cells. Given the magnitude of this effect
within such a relatively short period, it is likely that the progenitor cells involved in this increase
are the rapidly proliferating type-II cells, as opposed to the more quiescent type-I stem cell-like
progenitors that have been found to give rise (predominately through symmetric division) to both
stem cell-like progenitors and neuronal fate-determined progenitors (Kempermann et al., 2004;

Namba et al., 2011). However, the widespread expression of ErbB3 in the DG leaves open the
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possibility of mature granule cells contributing to this phenomenon. In addition, the large
increase in DG cell numbers was accompanied by antidepressant-like behaviours four weeks
after cessation of subchronic treatment, but not acutely. NRG1p administration did not increase
proliferation in the SVZ, in agreement with previous findings (Ghashghaei et al., 2006),
suggesting that the pro-proliferative influence of NRG1p in neurogenic regions of the adult brain
in vivo is restricted to the caudal DG. This region is localized within the ventral hippocampus
(Banasr et al., 2006; Maren and Holt, 2004; van Strien et al., 2009), which is structurally and
functionally distinct from the dorsal hippocampus (Bannerman et al., 2004; Fanselow and Dong,
2010; van Strien et al., 2009). Adult ventral hippocampal lesions are anxiolytic and disrupt fear
conditioning and memory (Bannerman et al., 2004; Fanselow and Dong, 2010; Hobin et al.,
2006; Kjelstrup et al., 2002; Pentkowski et al., 2006), whereas neonatal ventral hippocampus
lesions are a well-characterized model of schizophrenia (Lipska and Weinberger, 2002; Wilson
and Alvin V. Terry, 2010). In addition to its role in anxiety, the ventral hippocampus and ventral
hippocampal neurogenesis have been implicated in depression, antidepressant-related behaviour
and response to stress (Airan et al., 2007; Banasr et al., 2006; Elizalde et al., 2010; Jayatissa et
al., 2006; Maggio and Segal, 2007a, b; Nettles et al., 2000; Oomen et al., 2010; Paizanis et al.,
2010; Sahay and Hen, 2007). The involvement of the ventral hippocampus in emotional
modulation may be linked to its connectivity, which includes projections to the PFC, amygdala,
nucleus accumbens, olfactory bulb, and HPA axis-related structures (Bannerman et al., 2004;
Fanselow and Dong, 2010; Ishikawa and Nakamura, 2006; Miller et al., 2010; van Groen and
Wyss, 1990), and to its increased serotonergic innervation in comparison with the dorsal

hippocampus (Bjarkam et al., 2003; Gage and Thompson, 1980; Sahay and Hen, 2007; Wilson
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and Molliver, 1991). Interestingly, NRG1 hypomorphic mice display disrupted ventral

hippocampal—nucleus accumbens transmission (Nason et al., 2011).

Treatments that induce neurogenic, antidepressant and anxiolytic effects typically do so
after chronic (but not subchronic) duration (Banasr et al., 2006; Detke et al., 1997; Dulawa et al.,
2004; Jiang et al., 2005; Malberg et al., 2000; Santarelli et al., 2003). The present study
demonstrates that NRG1 has neurogenic and antidepressant effects with subchronic (72 h)
treatment. These effects were measured 28 d after cessation of treatment (and long after
exogenous NRG1f would have degraded), a delay that mirrors the maturation period of neurons
born during treatment (Ge et al., 2007). Given that these newborn neurons are then in a state of
increased plasticity (Ge et al., 2007), our results suggest that boosting the number of highly
plastic neurons in the ventral hippocampus can mediate antidepressant effects. Notably, 24 h of
treatment was sufficient to increase ventral hippocampal cell proliferation but not to produce
antidepressant effects, supporting the hypothesis that the latter are due to the hyperplastic state of
immature neurons and not simply an increased number of DG cells. A recent study has suggested
that behaviour in the FST may be neurogenesis-independent (David et al., 2009), in opposition to
previous studies (Airan et al., 2007; Jiang et al., 2005). However, our temporal paradigm shows
that the antidepressant effects seen here are concomitant with an increase in adult-born granule
cells. Although the current data indicate that the antidepressant effects of NRG1 in particular
may be neurogenesis-dependent, they also offer support to the hypothesis that established
antidepressants such as SSRIs have a delayed onset of clinical effectiveness (and require chronic
treatment) due to the delay required for treatment-induced newborn neurons to mature and

integrate into DG circuitry.
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NRGTI has attracted widespread interest for its involvement in the etiology of psychiatric
conditions. Single nucleotide polymorphisms of the NRG1 gene have been associated with
schizophrenia and bipolar disorder (Georgieva et al., 2008; Goes et al., 2009; Lu et al., 2010;
Naz et al., 2011; Prata et al., 2009; Seshadri et al., 2010; Stefansson et al., 2003; Stefansson et
al., 2002; Walker et al., 2010). Mice hypomorphic for NRG1 or ErbB4 show behavioural
abnormalities consistent with existing animal models for schizophrenia, including abnormal
prepulse inhibition and enhanced response to cannabinoid and dopaminergic agonists (Boucher
et al., 2007a; Boucher et al., 2007b; Kato et al., 2011). Studies of clinical populations have
revealed decreased peripheral expression of NRG1 in schizophrenic patients that increased with
antipsychotic treatment (Shibuya et al., 2010; Zhang et al., 2008), which is particularly
interesting as NRG1p can cross the adult BBB and affect brain activity and behaviour (Carlsson
et al., 2011; Kastin et al., 2004; Xu et al., 2006; Xu et al., 2004). Schizophrenia has been
associated with both abnormal NRG1 type-I signaling in the PFC (Bertram et al., 2007; Mei and
Xiong, 2008; Parlapani et al., 2010) and decreased hippocampal neurogenesis (Cui et al., 2009;
Reif et al., 2006). In particular, some studies suggest that NRG1 levels are decreased in the
brains of depressed and schizophrenic patients (Bertram et al., 2007; Parlapani et al., 2010).
Decreased NRG1 activity may negatively affect hippocampal neurogenesis in schizophrenic
patients, contributing to the etiology of this disorder. NRG1 administration could both reverse
decreases in hippocampal neurogenesis and ameliorate psychiatric symptoms. The potential
utility of NRGIp as a therapeutic that could be delivered peripherally is supported by a recent

Phase II clinical study examining NRG1p as a treatment for chronic heart conditions, which
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revealed that peripheral NRG1 administration does not lead to serious adverse effects in

humans (Gao et al., 2010).

In conclusion, this study is the first to suggest that NRG1p, a peripherally and centrally
expressed neurotrophic factor that crosses the BBB, increases ventral hippocampal neurogenesis
and modulates mood as a putative antidepressant. It is also the first to show that newborn DG
cells express ErbB3 from birth to maturity. That the behaviourbehavioural effects were not
observed acutely but were present four weeks after subchronic treatment cessation in a novel
administration paradigm is consistent with the neurogenic theory of antidepressant effects, as this
time frame corresponds to the maturation and functional integration of newborn neurons within
ventral hippocampal circuitry following treatment-stimulated proliferation. These results also
highlight the potential for modulation of brain plasticity and behaviour by peripheral

neurotrophic factors.
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Figure 6. Proliferative and neurogenic effects of peripheral NRG1 administration. (A) NRG1
increases dentate gyrus (DG) cell proliferation, in the caudal (71%; p = 0.0011), but not rostral (p
=0.20), DG. (B) NRGI1 increased the number of BrdU-IR cells 28 d after administration. As
with proliferation, this increase is significant in the caudal (50%; p = 0.013), but not rostral (p =
0.29), DG. Bars represent mean + SEM. *p < 0.05; **p < 0.025; ***p < 0.005. CAU, caudal;

ROS, rostral; SAL, saline; TOT, total.
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Figure 7. SVZ cell proliferation. NRG1 administration does not affect SVZ proliferation (p =

0.34). Bars represent mean + SEM.
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Figure 8. Neuronal differentiation. NRG1 administration does not affect the proportion of BrdU-
IR cells that differentiated into NeuN-IR neurons, either overall (p =0.91) or in the rostral (p =

1.0) or caudal (p = 0.90) subregions. Bars represent mean = SEM. TOT, total.
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Figure 9. BrdU/ErbB3 colocalization. BrdU-IR cells (red) express ErbB3 (green), at 2 h
(Fig.A1 and A2) and 24 h (above), corresponding to the period in which cell proliferation is
increased following NRG1 administration, as well as 7 d and 28 d after birth (Fig. A1 and A2).

Scale bar = 20 pm.
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Figure 10. ErbB3/nestin/SOX2 colocalization. ErbB3-IR cells (red) in the DG colocalize with
nestin (green) and SOX2 (blue) (arrow in A; Fig. A3A), or with SOX2 in the absence of nestin
(arrow in B; Fig. A3B), but not nestin in the absence of SOX2. Arrowhead in B denotes a nestin-

IR cell that is negative for both ErbB3 and SOX2. Scale bar =20 pm.
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Figure 11. Locomotor activity does not change in response to NRG1 administration. NRG1
administration does not affect locomotor activity 28 d after subchronic administration, either in
distance (A, C, E) or duration (B, D, F). A, B: First 10 min of activity (distance: p = 0.30;
duration: p = 0.25). C, D: 10 min of activity after 10 min habituation (distance: p = 0.28;
duration: p = 0.23). E, F: 60 min of activity after 30 min habituation (distance: p = 0.26;

duration: p = 0.29). Bars represent mean + SEM.
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Figure 12. Acute locomotor activity does not change in response to NRG1 administration.
NRG1 administration does not affect locomotor activity acutely after administration, either in
distance (A, C) or duration (B, D). A, B: First 10 min of activity (distance: p = 0.67; duration: p

=0.96). C, D: 10 min of activity after 10 min habituation (distance: p = 0.60; duration: p = 0.67).

Bars represent mean + SEM.
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Figure 13. Animals treated with NRG display antidepressant behaviour in a forced swim test 28

d after administration. NRG-treated animals show decreased immobility (A, 44%, p = 0.0062; B)

and increased swimming behaviour (C, 194%, p = 0.0062; D), both overall during the testing

phase (A, C) and throughout the task (B, D). Dashed lines denote beginning of testing phase.

Bars and points represent means £ SEM. *p <0.05, **p <0.01.
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Figure 14. Animals treated with NRG do not display antidepressant behaviour in a forced swim
test acutely after administration. Treatment groups did not differ with respect to immobility (A,

p=0.15; B) or swimming behaviour (C, p=0.15; D), both overall during the testing phase (A, C)
and throughout the task (B, D). Dashed lines denote beginning of testing phase. Bars and points

represent means + SEM.

Supplementary materials are available in Appendix.

2.5 ADDENDUM
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As the first manuscript to result from our experiments, the preceding Chapter was published
comparatively early during my doctoral studies (2011). As such, several of its key findings and
implications have subsequently been further developed by additional research performed outside

of our group. The following is a brief synopsis of these relevant interim developments.

Earlier we discussed the propensity for NRGI1 to cross the blood-brain barrier. Subsequent
studies have validated this property, administering radiolabeled NRG1p-I and subsequently
detecting it in multiple brain regions. Peripherally-administered NRG1 has also been shown to
increase phosphorylation of Akt and ErbB receptors in the brain, alter neuronal firing activity,
act as a neurotrophic factor, and protect against phencyclinide-induced behavioural and
neurotransmission alterations (Abe et al., 2011; Carlsson et al., 2011; Cui et al., 2013; Depboylu

etal., 2015; Engel et al., 2014; Rosler et al., 2011).

Following our demonstration of antidepressant effects resulting from NRG1 administration, the
majority of subsequent studies examining NRG1/ErbBs and behaviour involved transgenic mice.
NRG1 mutants lacking the transmembrane domain were shown to have an exacerbated
corticosterone response to acute stress in young mice and a decreased anxiety response to acute
stress in older mice, and the normally anxiolytic effects of cannabidiol are ablated in these mice
(Chesworth et al., 2012; Long et al., 2012). Conversely, inducible NRG1 overexpression in
forebrain regions led to schizophrenia-like alterations in open-field, prepulse inhibition, memory,
and social interaction (but not anxiety) behaviours, which were partially reversed by
antipsychotic treatment and normalized at adulthood when NRG1 levels were restored (Yin et
al., 2013). These results support the hypothesis that imbalances of NRG1 affect behaviour
bidirectionally (Deng et al., 2013), with forebrain increases contributing to schizophrenia-like

behaviours and decreases affecting anxiety and stress response. With the antidepressant-like
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activity and normal locomotor activity in our studies, this potentially suggests that the impetus
behind our effects was not increased forebrain NRG1 but is likely more limbic, such as in the

hippocampus specifically.

Subsequent to the publication of the preceding Chapter, additional studies supported the role of
NRG1 and ErbB3 (as well as related proteins) in cell proliferation, in a variety of cell types. The
NRG1 isoform was shown to induce proliferation of cancer cells (Ruan et al., 2012).
Intracerebroventricular infusion of betacellulin, an additional EGF family member, was shown to
increase neurogenesis in the DG and SVZ, and neurospheres in vitro, and betacellulin
hypomorphs display diminished recovery of neuroblast populations following ablation of
proliferation (Gomez-Gaviro et al., 2012). EGFR is involved in PI3K, ERK/MAPK, and PLCy
pathway activation in neural stem cells, providing a mechanism for its pro-proliferative/survival
influence on these cells (Siitterlin et al., 2013). NRG1-ErbB3 signaling drives proliferation in
melanoma cells through PI3K/Akt (Belleudi et al., 2012). ErbB3 was also found to positively
influence cell proliferation through a Cyclin D1-related mechanism (Andrique et al., 2012).
Furthermore, ErbB3’s C-terminal interacts with NEDD4’s WW domains, and this interaction
occurs even in the absence of NRG1. Knocking down NEDD4 increases ErbB3 expression and
cancer cell proliferation in vivo and in vitro, offering further support for ErbB3 as pro-
proliferative and providing further insight into its regulation (Huang et al., 2015). Conversely,
ErbB3 knockdown in colon cancer cells causes cell cycle arrest in G1, with dramatic reductions
in cell proliferation within 72 hours (Lee et al., 2014a). Finally, ErbB3 is required for the

proliferation of Bergmann glial cells in the cerebellum (Sathyamurthy et al., 2015).

Of particular relevance to the role of ErbB3 in regulating cell proliferation were striking findings

that ErbB3, previously thought to have insufficient kinase activity for signaling (Guy et al.,
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1994), is in fact capable of signaling (Deng et al., 2013; Shi et al., 2010a; Steinkamp et al.,
2014). This not only suggests a functional role of the receptor even in a homodimeric
conformation, but supports the plausibility of ErbB3 is the mechanistic receptor from our

findings as discussed earlier in this Chapter.

Regarding our methodology in quantifying numbers of BrdU-IR cells in the DG, we considered
an absolute quantification of the number of labeled cells to be a more accurate and relevant
option than an estimate derived from stereological assessment. A recent publication has
supported this position, concluding that absolute quantification may be preferable to stereology
for DG cell proliferation, based largely on the heterogenous distribution of proliferating cells

(Noori and Fornal, 2011).

Previously in this Chapter we discussed our efforts to characterize ErbB3 and ErbB4 expression
in the murine DG, both temporally and along the septotemporal axis. Subsequent studies have
thoroughly examined the expression of ErbB4 across brain regions and species, using
immunohistochemical and transgenic techniques. In mice, cells expressing ErbB4 are
particularly dense in the cortex and amygdala, and sparse in the thalamus, hindbrain, and
cerebellum, with intermediate density in the olfactory bulb, basal ganglia, and hypothalamus.
Although some ErbB4-expressing cells are GAD67-negative, particularly in subcortical areas, in
the cortex the majority of ErbB4-expressing cells are GABAergic interneurons, particularly
parvalbuminergic basket/chandelier interneurons. In the hippocampus, ErbB4-expressing cells
are found in all areas except for the subiculum, and particularly in the pyramidal and molecular
layers of cornu ammonis regions, as well as the granule cell layer and hilus of the DG. Most
hippocampal ErbB4+ cells are GAD67+, with 30% also expressing parvalbumin. Interestingly,

in the DR, a sizable proportion of serotonergic neurons also express ErbB4 (Bean et al., 2014). In
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primates, ErbB4 expression appears to be largely or completely restricted to GABAergic
interneurons (Neddens and Buonanno, 2011), as in mice. However, it is important to point out
that there is some electrophysiological, morphological, and immunohistochemical murine
support for ErbB4 expression in principal hippocampal and cortical excitatory neurons as well

(Cooper and Koleske, 2014; Mechawar et al., 2007; Pitcher et al., 2011).

Part of the association between increased hippocampal neurogenesis and antidepressant-like
behaviour in the preceding Chapter was contingent upon the previously-discovered temporally-
restricted critical period of hyperplasticity of immature adultborn hippocampal neurons (Ge et
al., 2007). Subsequent studies have both supported and further elucidated this critical period.
This plasticity was validated as being NR2B NMDAR-dependent, is accompanied by a
transiently-increased excitation/inhibition balance in immature granule cells relative to mature
granule cells, and is potentially related to pattern-separation functions (Kheirbek et al., 2012;
Marin-Burgin et al., 2012; Nakashiba et al., 2012). Experience-dependent synaptic input
remodeling occurs during this period (Bergami et al., 2015), as does the source of inputs,
switching from local circuits to more distal cortical inputs, particularly from the perirhinal and
lateral entorhinal cortices (Vivar et al., 2012). The development of GABAergic inputs may also
contribute, as these differ between mature and immature neurons, as does their integration into
feedback coupling circuits with a temporal association to this critical period, and these
GABAergic inputs may help contribute (and temporally regulate) the hyperplasticity observed in
these neurons (Li et al., 2012b; Temprana et al., 2015). Neurogenic ablation, by irradiation or
transgenic techniques, causes memory impairments specifically 4-6 weeks following the
manipulation, as does optogenetic silencing of 4 week-old adultborn granule cells, indicating that

newborn neurons functionally contribute specifically during this period of hyperplasticity
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(Denny et al., 2012; Gu et al., 2012). The process of continually producing a unique pattern of
immature hyperplastic neurons in circuits containing mature granule cells has been hypothesized
to serve as a putative ‘time-stamp’ for memories during consolidation (Rangel et al., 2014),
although the relevance of this to the more affective functions of the ventral hippocampus has not
yet been shown. In addition, some aspects of the increased plasticity of adultborn neurons may
persist into neuronal maturity and have relevance for spatial memory (Lemaire et al., 2012), and

potentially other neurogenesis-related functions.

Finally, regarding subsequent relevant human clinical findings, a panel of blood biomarkers of
depression, including ErbB3, showed high validity for MDD and response to cognitive-
behavioural therapy (Keri et al., 2014). The preceding Chapter also discussed the clinical
implications of our findings in the context of human clinical trials, based on a phase-II
neuregulin-1 administration heart failure trial (Gao et al., 2010). Additional studies have further
supported the safety of therapeutic agents targeting NRG1 and ErbB signaling, indicating that
NRG1 administration in the treatment of psychiatric conditions would likely be well-tolerated
with a low incidence of side effects (Jabbour et al., 2011; Macbeath et al., 2014; Tjulandin et al.,

2014).
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CHAPTER 3. Effects of neuregulin-1 administration on neurogenesis in the adult mouse

hippocampus and characterization of immature neurons along the septotemporal axis

3.1 PREAMBLE

The previous Chapter established that NRG1 administration has neurogenic effects; specifically,
this increases proliferation and overall neurogenesis in the ventral DG, but does not affect
neuronal differentiation. However, there are other stages of neurogenesis that were not examined
by this manuscript (see Fig. 3 in Chapter 1). Particularly, it was unclear what the effects of
NRGI administration on intermediate stages of neurogenesis might be, when cells have
differentiated into immature developing neurons. To this end, we aimed to characterize the
effects of NRG1 on the remaining stages of hippocampal neurogenesis, specifically survival and
morphological development (dendritogenesis, synaptogenesis, and cell body morphology). To
specifically target this population of cells, we repeated the NRG1 administration paradigm of the
previous study, but altered the timing of the BrdU administration, in order to track a population

of cells undergoing intermediate neurogenic stages at the time of NRG1 administration.

From these experiments, we determined that NRG1 administration does not affect cell survival
or morphology in immature granule cell neurons, and thus that the neurogenic effects of NRG1
in the hippocampus are temporally and subregionally specific to proliferation and overall

neurogenesis in the ventral DG.

In addition, we took advantage of the extensive cellular characterization data across the
septotemporal axis from these studies to thoroughly investigate whether immature neurons differ

between the dorsal and ventral DG. We determined that immature neurons in these two
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subregions differ in several key developmental aspects, with potential relevance to their
subsequent functional distinctions. We also found that overall cytogenesis is higher in the ventral

DG than in the dorsal DG.

Together, the results in this Chapter complete our characterization of the effects of NRG1 on
hippocampal neurogenesis, determine features characterizing immature granule cell neurons
during their development, and identify distinguishing markers between dorsal and ventral

immature neurons and neurogenesis that may have relevance to their particular functions.
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3.2 Effects of neuregulin-1 administration on neurogenesis in the adult mouse hippocampus
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ABSTRACT

Adult hippocampal neurogenesis has been associated with behavioural regulation, including
learning and emotional behaviour. Its diverse functionality is segregated along the septotemporal
axis from the dorsal to ventral hippocampus, with the former region associated with memory and
the latter with stress and emotional regulation. However, features defining and distinguishing
immature neurons in these distinct regions have yet to be characterized. In addition, although we
have previously shown that administration of neuregulin-1 (NRG1), a neurotrophic factor
implicated in psychopathology, selectively increases proliferation and overall neurogenesis in the
mouse ventral DG, effects of administration at intermediate stages of neurogenesis in immature

neurons are unknown.
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In the current study, we labeled adultborn cells in mice using BrdU, and later administered
NRGI1 to examine its in vivo neurogenic effects on immature neurons with respect to cell
survival, morphology, and synaptogenesis. In addition, we characterized features of immature

neurons along the septotemporal axis.

We found that the neurogenic effects of NRG1 are temporally and subregionally specific to
proliferation in the ventral DG. We also determined particular features that differentiate
immature neurons in the dorsal and ventral DG, including cell body size, synaptic density, and
dendritic branching. In addition, we found that rates of cytogenesis differed between the dorsal
and ventral DG, but were correlated between the two regions, suggesting that a common set of
factors regulate cytogenesis in both regions. Finally, we identified a novel heterogeneity in
synaptic density in the molecular layer surrounding the granule cell layer, which is maintained

along the septotemporal axis.

These results indicate that the neurogenic involvement of NRG1-induced antidepressant-like
behaviour is associated with increased ventral DG cell proliferation in particular, and identify
novel distinctions between neurogenic development in the dorsal and ventral hippocampus,

likely contributing to their functional heterogeneity.

KEYWORDS: Neurogenesis, neuregulins, cell morphology, dendritogenesis, synaptogenesis

HIGHLIGHTS:

- Hippocampal neurogenesis has been shown to be increased by neuregulin-1 (NRG1)
administration.
- However, the effects of NRG1 administration on immature neuronal stages of

neurogenesis are unknown.
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- Here we show that the neurogenic effects of NRG1 are restricted to proliferation in
the ventral dentate gyrus, without affecting immature neurons.
- We also thoroughly characterize differences in immature neuronal features along

the septotemporal axis.

3.2.1 Introduction

Adult hippocampal neurogenesis is the process by which new neurons are added throughout life
to the granule cell layer of the DG in the hippocampus (Kempermann and Gage, 2000). This
phenomenon has been associated with a number of different functions, most notably learning and
memory, affective regulation, and response to stress (Deng et al., 2010; Snyder et al., 2011b). In
addition, depression has been associated with reduced number of DG granule cells (Boldrini et
al., 2014), whereas antidepressant treatment increases hippocampal neurogenesis in rodents, non-
human primates, and humans (Boldrini et al., 2013; Boldrini et al., 2009; Malberg et al., 2000;
Perera et al., 2011). The functional role of new granule cell neurons appears to be related to their
unique electrophysiological properties during a hyperplastic window extending from
approximately four to six weeks of cellular age in rodents (Ge et al., 2007), whereas mature

granule cells are comparatively quiescent (Aimone et al., 2010).

Anatomically, the hippocampus follows a septotemporal axis, progressing from the dorsal (or
septal) hippocampus rostrally to the ventral (or temporal) hippocampus caudally (Fanselow and
Dong, 2010; Mahar et al., 2011; Tanti et al., 2013). Recent studies have established that the
dorsal and ventral hippocampus are anatomically and functionally distinct regions, with the
dorsal hippocampus (analogous to the posterior hippocampus in humans) being more involved in
spatial learning and memory, whereas the ventral hippocampus (anterior hippocampus in

humans) is associated more with emotional regulation (Bannerman et al., 2004; Fanselow and
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Dong, 2010; van Strien et al., 2009). This functional distinction is maintained at the level of the
DG and DG neurogenesis, as studies have shown that dorsal hippocampal neurogenesis is
necessary for contextual discrimination, whereas the ventral DG has been associated with
affective behaviour, antidepressant response, and response to stress (Banasr et al., 2006; Elizalde
etal., 2010; Lehmann et al., 2013; Mahar et al., 2011; Tanti et al., 2013). As a result, it has been
proposed that the influence of adult hippocampal neurogenesis on emotion-related behaviour is
contingent upon the number of functional immature hyperplastic neurons present in the ventral
DG specifically at the time of behavioural assessment, potentially due to connections between
the ventral hippocampus and the HPA axis, amygdala, nucleus accumbens, and PFC (Mahar et
al., 2014). However, despite the identified importance of these cells in emotion-related
behaviour, there is a lack of studies specifically examining developmental, morphological, and

synaptic features distinguishing immature ventral and dorsal hippocampal neurons.

In addition to the influence of monoaminergic agents, such as antidepressant medications, on
adult hippocampal neurogenesis, neurotrophic factors have also been shown to increase
hippocampal neurogenesis (Mahar et al., 2014). These include brain-derived neurotrophic factor
(BDNF) (Scharfman et al., 2005; Schmidt and Duman, 2010), VEGF (Jin et al., 2002), IGF
(Aberg et al., 2000), and most recently NRG1 (Mahar et al., 2011). NRG1, which had previously
been associated with psychopathology (Bertram et al., 2007; Georgieva et al., 2008; Stefansson
et al., 2002), was found in this study to rapidly increase hippocampal proliferation and
neurogenesis selectively in the caudal DG within the ventral hippocampus when administered
peripherally to adult mice (Mahar et al., 2011). This neurogenic effect of subchronic NRG1f3
administration likely resulted from local binding to NRGI1 receptor ErbB3 in neural progenitor

cells, and was associated with antidepressant-like behaviour (Mahar et al., 2011). However,
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although these results identified a temporal association between increased
proliferation/neurogenesis and antidepressant-like behaviour, the effects of NRG1 on
intermediate stages of hippocampal neurogenesis, occurring between cell proliferation and

functionality several weeks later, remain to be assessed.

In the present study, we examined the consequences of NRG1 administration on immature
neurons in the adult hippocampus, to determine if the mood-related behavioural effects of NRG1
administration previously associated with increased hippocampal neurogenesis can be
specifically identified as being due to changes to proliferation/neurogenesis, or alternatively
whether other morphological and synaptic changes to neurons in intermediate stages of
development may be involved in this phenomenon. This was accomplished through assessments
of neuronal survival, morphometric analyses of reconstructed immature neurons, and
quantifications of synaptic densities. In addition, we applied these data to characterize immature
neurons in the dorsal and ventral DG, in order to identify both common and distinguishing
features between these cell populations contributing to vastly distinct behaviourally- and

psychopathologically-relevant functions.

Our findings reveal that the effects of NRG1 on hippocampal neurogenesis are temporally and
subregionally specific to proliferation, and lead to increased neurogenesis in the ventral DG.
Furthermore, our results indicate that immature neurons differ between the dorsal and ventral DG
with respect to specific developmental features that may contribute to their specific functional

contributions.

3.2.2 Methods and materials
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3.2.2.1 Animals

Adult male C57BI1/6 mice were obtained from Charles River (Quebec), and were approximately
nine weeks of age at the time of experimentation. Mice were housed on a 12:12 light:dark cycle,
with ad libitum access to food and water. Animals were randomly assigned to groups aside from
weight matching at time of arrival, and did not differ by weight at time of experimentation
(p=0.55). All experiments adhered to the policies and guidelines of the Canadian Council on

Animal Care, and were approved by McGill University's Animal Care Committee.

3.2.2.2 NRG1 and BrdU administration

BrdU (50 mg/kg) was injected i.p. three times, spaced >3 hours apart within a 24 h period in
order to label dividing cells. 15 days after BrdU administration, mice were given either
recombinant NRG1p type-I (R&D Systems; EGF domain dissolved in sterile 0.9% saline,
administered at a constant rate of 10 pg/d; n=9) or vehicle (n=10) for three days in
subcutaneously implanted osmotic mini-pumps (Alzet; model 1003D), as performed and
described previously (Mabhar et al., 2011). This latency was chosen as it corresponds to a specific
critical period during which adultborn neurons undergo a period of apoptosis or survival, extend
dendrites into the molecular layer, and form synapses (Grossman et al., 2010; Snyder et al.,
2009a; Toni et al., 2007; Zhao et al., 2006) (see Fig. A4 for experimental timeline). Mice were
left to recover post-operatively on a heating pad, and each animal was given an anti-

inflammatory Carprofen tablet.

3.2.2.3 Tissue processing
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Mice were deeply anesthetized with a ketamine, xylazine and acepromazine cocktail (0.1 ml/100
g), and perfused intracardially with ice-cold PBS, then with 4% formaldehyde in 0.1 M
phosphate buffer. Brains were rapidly removed, postfixed at 4°C for 24 h in the fixative solution,
then transferred to 30% sucrose in PBS until equilibrium was reached. Brains were flash frozen
to -40°C in isopentane and cut with a cryostat into serial 40 um coronal sections that were

immersed in a cryoprotectant solution (glycerol:ethylene glycol:PBS, 3:3:4) and stored at —20°C.

3.2.2.4 Immunohistochemistry

Immunohostochemistry was conducted on free-floating sections. For all protocols, sections were
washed with PBS (pH=7.2) between incubations, except between blocking and primary
incubation. All steps occurred at room temperature except for incubation in HCI/PBS, which was
at 37°C, and overnight primary incubations, which were at 4°C. Steps following addition of

fluorescent antibodies included protection from light.

For BrdU single-labeling immunohistochemistry to assess cell survival and cytogenesis, sections
were incubated for 1.5 h in PBS-T, then 10 min in 0.9% H202 in PBS, followed by 30 min in 2 N
HCl in PBS, 30 min in block solution containing PBS-T with 2% NGS (Vector), and then
overnight in block solution containing rat anti-BrdU antibody (1:1000; Serotec). This was
followed by incubation in biotinylated goat anti-rat secondary antibody (1:200; Vector) in block
solution for 1 h, and the labeling revealed with DAB using VectaStain Elite and DAB kits (both
by Vector), and quenching in double-distilled water (ddH2O) for 5 min before transferring

sections to PBS. Sections were mounted on SuperFrost Plus slides (Fisher) in PBS-T, left to dry
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to affix to slides, then dehydrated using increasing concentrations of ethanol followed by xylene,

and coverslipped using Permount (Fisher).

For BrdU/DCX double-labeling immunohistochemistry for neuronal reconstructions, we used a
combination of light and fluorescence microscopy to optimize cell identification while avoiding
issues of photobleaching during tracing. Sections were incubated in PBS-T for 2 h, then 10 min
in 0.9% H20:21n PBS, followed by 1 h in block solution containing PBS-T with 2% normal horse
serum (Vector), then 24 h in block solution containing goat anti-DCX primary antibody (1:250;
Santa Cruz). Sections were then incubated for 90 min in block solution containing biotinylated
horse anti-goat secondary antibody (1:200), then VectaStain Elite and DAB as performed with
BrdU immunohistochemistry. We then incubated sections for 30 min in 1 N HCI in PBS, then 1
h in block solution comprised of PBS-T with 2% NGS, then anti-BrdU in block solution
overnight. Goat anti-rat DyLight 594 (1:500; Jackson) secondary antibody in block solution was
added for 90 min. Sections were mounted in PBS-T on to slides, then rinsed in ddH20 and
coverslipped with ProLong Gold antifade reagent with DAPI (Life Technologies) using #1.5

thickness cover slips (Corning).

For BrdU/DCX/PSD-95 triple-labeling to assess synaptic density, sections were treated for 1 h
with PBS-T, then 1 h in blocking solution (PBS-T containing 2% normal donkey serum
(Jackson)) followed by overnight incubation in blocking solution containing anti-DCX and rabbit
anti-PSD-95 (1:250; Invitrogen) antibodies. Sections were then incubated in blocking solution
containing donkey anti-goat DyLight 488 and donkey anti-rabbit DyLight 647 secondary
antibodies (1:500; Jackson), followed by 1 N HCI in PBS for 30 min, then 1 h block in PBS-T
containing 2% NGS, followed by overnight incubation in blocking solution containing anti-

BrdU, then 75 min in PBS-T containing goat anti-rat DyLight 594 secondary antibody (1:500;
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Jackson). Sections were mounted on slides, rinsed in ddH20, and coverslipped with ProLong
Gold antifade reagent with DAPI using #1.5 thickness cover slips. A similar protocol was used

for staining for confocal microscopy in order to verify PSD-95 staining specificity.

3.2.2.5 Cell quantification

BrdU-IR cells were counted across the septotemporal axis on a Leica CME microscope, using a
40X 0.65 NA E2 achromat objective. For this and other experiments discussed herein,
experimenters were blind to group identity. Dorsal and ventral DG regions were identified using
previously established criteria (Franklin and Paxinos, 2007; Mahar et al., 2011; Sierksma et al.,
2013a; Sierksma et al., 2013b); dorsal: —1.46 to —2.54 mm from bregma; ventral: —=2.55 to —3.80

mm from bregma). Data are expressed as the average number of BrdU-IR cells per section.

3.2.2.6 Neuronal reconstruction

At least six clearly-labeled BrdU-/DCX-IR immature neurons (Fig. 16 A-B) per subject across
the septotemporal axis from multiple DGs were randomly selected to be reconstructed using
Neurolucida software (MBF) (Fig. 16B). Neurons were traced using an Olympus BX51
microscope with a motorized stage and CX-9000 camera using a 100X (1.40 NA UPlansApo oil
objective), and analyzed using Neurolucida Explorer (MBF Bioscience). The microscope was
calibrated for grid tuning and parcentric/parfocal parameters. Labeled cells with primary or
secondary dendrites which appeared to be cut off by the upper or lower boundaries of the tissue,

or without a visible process extending through the granule cell layer, were excluded from
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analysis. The third panel of Fig. 16A was produced in Adobe Illustrator by overlaying a

fluorescence (50% transparency) image over a brightfield image of the same field.

3.2.2.7 Synaptic density assessment

Synaptic density was assessed in two stages, with the first examining overall synaptic density
within the molecular layer surrounding the granule cell layer, and the second examining synapses
specifically associated with approximately 18 day-old immature BrdU-IR neurons. These
experiments used an Axio Imager.M2 microscope with motorized stage, AxioCam MR camera,
and Apotome.2 system (Zeiss), at 63x (1.40 NA plan-apochromat oil objective). The microscope

was calibrated for grid tuning and parcentric/parfocal parameters.

To assess overall synaptic density, four zones in the molecular layer were chosen: adjacent to the
basal aspect of the suprapyramidal blade, adjacent to the apical suprapyramidal blade, adjacent to
the basal infrapyramidal blade, and adjacent to the apical infrapyramidal blade. For each zone, a
z-stack of images from the top to the bottom of the tissue was obtained using Neurolucida
software. Four DGs (two dorsal, two ventral) were included per subject. Image acquisition
parameters were maintained between subjects. For each image stack, the intensity of PSD-95
staining was obtained from luminance information in each slice for which the molecular layer
was in focus without tissue aberration, then averaged between slices. Additional analyses using
all images in each stack throughout the issue did not change statistical significance status of

primary comparisons.

To assess synaptic density specifically for immature neurons, we traced BrdU/DCX-IR cells at

63X using NeuroLucida software, and quantified PSD-95-IR puncta across dendritic branch
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orders and on the cell soma (Fig.17C, E; Fig. AS) for 122 cells across all subjects and the

septotemporal axis.

3.2.2.8 Confocal microscopy

PSD-95 staining specificity and reliability were assessed with a Zeiss LSM510 Meta confocal
microscope equipped with an Axiovert 200 M stand and motorized stage, and 488 nm, 543 nm,
and 633 nm wavelength lasers (Carl Zeiss Canada). Objectives used were 40X Plan-Neofluar 1.3
NA oil and 100X Plan-Apochromat 1.4 NA oil. Images were obtained using the Zeiss Aim
software package (Carl Zeiss Canada), with a pixel dwell time of >3.20 ps, optical slice 1-3 um
sampled at 1 um intervals. PSD-95 was absent in no-primary control tissue. PSD-95 staining was
absent in corpus callosum but present in synapse-rich regions such as cortical and hippocampal

regions (Fig. A6), suggesting specificity in PSD-95 labeling.

3.2.2.9 Statistics

Data normality was assessed using the D'Agostino and Pearson omnibus normality test. Pairwise
comparisons were made using unpaired or paired t-tests with or without Welch’s correction for
parametric data, or Mann-Whitney or Wilcoxon tests for non-parametric data. Region x
treatment analyses were conducted using two-way mixed-model ANOV As, with Holm-Sidak
multiple comparisons post-hoc tests; treatment was a between-subjects factor, and DG subregion
was a within-subjects factor. Cytogenic relationships were analyzed by Pearson correlations. All
statistical tests were two-tailed, and p values <0.05 were considered statistically significant.

Figures show mean + SEM.
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3.2.3 RESULTS

3.2.3.1 Effects of neuregulin-1 administration on cell survival

Overall DG cell survival, as assessed by average numbers of BrdU-IR cells per section, was
unaffected by NRGI treatment. This was true for the overall number of BrdU-IR cells in the DG
(p=0.27; Fig. 15A), for the subgranular zone and granule cell layer (SGZ/GCL) alone (p=0.21;
Fig. 15B), and for the hilus alone (p=0.89; Fig. 15C). In examining the effect of NRG1 on
hippocampal subregions, there was also no difference specifically in the dorsal DG (total:
p=0.19; hilus: p=0.67; SGZ/GCL: p=0.21; Fig. A7A-C) or in the ventral DG (total: p=0.44;

hilus: p=0.67; SGZ/GCL: p=0.30; Fig. A7D-F).

3.2.3.2 Effects of neuregulin-1 administration on morphological development

Cell body perimeter did not differ significantly between NRG1- and saline- treated mice overall
(averaged across the septotemporal axis; p=0.36; Fig. A8A), or in the dorsal (p=0.07; Fig. A7B)
or ventral (p=0.54; Fig. A7C) subregions. This was also the case for cell body area (overall:
p=0.49; dorsal: p=0.13; ventral: p=0.54; Fig. 16C, ASAB-AC), feret max (p=0.59; p=0.13;
p=0.54; Fig.A8D-F), feret min (p=0.60; p=0.39; p=0.83; Fig.A8G-I), aspect ratio (p=0.95;
p=0.20; p=0.83; Fig.A8J-L), compactness (p=0.98; p=0.46; p=0.82; Fig. A8M-0), convexity
(p=0.098; p=0.16; p=0.61; Fig.A8P-R), form factor (p=0.21; p=0.14; p=0.99; Fig.A8S-U),
roundness (p=0.92; p=0.49; p=0.88; Fig.A8V-X), and solidity (p=0.39; p=0.31; p=0.62;

Fig.A8Y-AA).

Total dendritic length did not differ with treatment overall (p=0.81; Fig. A9A), or in the dorsal

(p=0.86; Fig. A9B) or ventral (p=0.70; Fig. A9C) subregions. Examining length by branch
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order, there was no effect of treatment overall (p=0.82; Fig. A10A), or in the dorsal (p=0.96;
Fig. A9B) or ventral (p=0.60; Fig. A10C) subregions, and this was also the case for Sholl
analysis of length (overall: p=0.81; dorsal: p=0.98; ventral: p=0.60; Fig.16D, A10W-X). Mean
dendritic length (length per branch) by branch order did not differ with NRG1 treatment overall
(p=0.91; Fig. A10D), or in the dorsal (p=0.74; Fig. A10E) or ventral (p=0.38; Fig. A10F)
subregions. There was a significant effect for branch order overall and in both subregions
(ps<0.0001); length was highest in the 2" and 3™ branch orders versus subsequent branches

(ps<0.0021), and these tended to be higher than the 1% order (ps<0.089).

Total dendritic volume did not differ with treatment overall (p=0.69; Fig. A6G), or in the dorsal
(p=0.81; Fig. ASAM) or ventral (p=0.65; Fig. A§AN) subregions. Examining volume by branch
order, there was no effect of treatment overall (p=0.70; Fig. 16E), or in the dorsal (p=0.99; Fig.
A10S) or ventral (p=0.56; Fig. A9T) subregions. Mean dendritic volume by branch order did not
differ with NRGI1 treatment overall (p=0.67; Fig. A10G), or in the dorsal (p=0.91; Fig. A10H)

or ventral (p=0.46; Fig. A10I) subregions.

Total dendritic surface area did not differ with treatment overall (p=0.66; Fig. A6E), or in the
dorsal (p>0.99; Fig. A8AK) or ventral (p=0.66; Fig. A8AL) subregions. Examining surface area
by branch order, there was no effect of treatment overall (p=0.68; Fig. A10J), or in the dorsal
(p=0.89; Fig. A10K) or ventral (p=0.54; Fig. A10L) subregions. Mean dendritic surface area by
branch order did not differ with NRGI1 treatment overall (p=0.64; Fig. A10M), or in the dorsal

(p=0.98; Fig. A7N) or ventral (p=0.38; Fig. A100) subregions.

Total dendritic nodes did not differ with treatment overall (p=0.84; Fig. A8D), or in the dorsal
(p=0.37; Fig. A10AE) or ventral (p=0.61; Fig. A7AF) subregions. Examining nodes by branch

order, there was no effect of treatment overall (p=0.84; Fig. A10P), or in the dorsal (p=0.59; Fig.
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A10Q) or ventral (p=0.82; Fig. A10R) subregions, and this was also the case for Sholl analysis
of nodes (overall: p=0.84; dorsal: p=0.56; ventral: p=0.82; Fig.A10Y-AA). There was a
significant effect for Sholl distance overall and in both subregions (ps<0.0001). Overall nodes
were most prevalent 10-70um from the cell body (ps<0.0004, except 60-70 versus 70-80), in the
dorsal DG nodes were most prevalent 10-60um from cell body (ps<0.0048, except versus 60-
70um and 40-50 versus 70-80), and ventrally nodes were most prevalent 10-60um from cell body

(ps<0.0024, except versus 60-70um).

Quantity by branch order did not differ with NRGI treatment overall (p=0.79; Fig. 16F), or in

the dorsal (p=0.55; Fig. A10U) or ventral (p=0.88; Fig. A10V) subregions.

Total dendritic endings did not differ with treatment overall (p=0.73; Fig. 16K), or in the dorsal
(p=0.33; Fig. A8AG) or ventral (p=0.73; Fig. ASAH) subregions, and this was also the case for

Sholl analysis of endings (overall: p=0.73; dorsal: p=0.49; ventral: p=0.83; Fig.A10AB-AD).

Dendritic intersections by Sholl analysis did not differ with NRG1 treatment overall (p=0.66;
Fig. A10AE), or in the dorsal (p=0.85; Fig. A10AF) or ventral (p=0.56; Fig. A10AG)

subregions.

Total dendritic tortuosity did not differ between NRG1- and saline- treated mice overall (p=0.68;

Fig. A9P), or in the dorsal (p=0.70; Fig. A9Q) or ventral (p=0.85; Fig. A9R) subregions.

3.2.3.3 Effects of neuregulin-1 administration on synapse development

NRGI1 treatment did not affect overall molecular layer synaptic density averaged across zones

(p=0.68; Fig. 17A). This was consistent along the dorsal (p=0.42; Fig. A11A) and ventral
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(p=0.17; Fig. A11B) subregions. When analyzing individual zones, there was no significant
effect of treatment overall (p=0.68; Fig. 17B) or in the dorsal (p=0.42; Fig. A11C) or ventral

(p=0.17; Fig. A11D) subregions.

Examining synapses specifically for immature neurons, treatment with NRG1 did not affect
overall dendritic synapse numbers (p=0.43; Fig. A11E) or density (p=0.82; Fig. A11H). This
was also the case for the dorsal (total synapses: p=0.82, Fig. A11F; density: p=0.48; Fig. A11I)

and ventral (total synapses: p=0.53, Fig. A11G; density: p=0.19; Fig. A11J) subregions.

For branch order synaptic analyses, we analyzed the first four branch orders, as all subjects had
cells with dendrites reaching at least this order (barring one subject with fewer dorsal branch
orders). Analyzing by overall branch order, NRGI treatment did not affect number (p=0.43; Fig.
A11K) or density (p=0.82; Fig. 17D) of dendritic synapses, although there were significant
effects of branch order (ps<0.0001), with lower numbers of synapses in the first two branches
than subsequent two branches (ps<0.0020) and lower numbers in 1 versus 2" order branches
(p=0.0019), and highest density in the 1% branch order (ps<0.0001). In the dorsal DG, NRG1 did
not affect number (p=0.86; Fig. A10L) or density (p=0.75; Fig. A11N) of synapses, although
there were significant effects of branch order (ps<0.0001), with lower numbers of synapses in the
1* branch than subsequent three branches (ps<0.01), and highest density in the 1% branch order
(ps<0.0001). Ventrally, NRG1 did not affect number (p=0.53; Fig. A10M) or density (p=0.19;
Fig. A110) of synapses, although there were significant effects of branch order (ps<0.0001),
with lower numbers of synapses in the 1% branch order versus 3™ and 4™ order branches
(ps=0.0003), and highest density in the 1% branch order versus subsequent three branch orders

(ps<0.0003).
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Somatic synapses did not differ overall (p=0.63; Fig. A11P) or in the dorsal (p=0.89; Fig.
A11Q) or ventral (p=0.59; Fig. A11R) subregions; this was also the case for somatic synapse

density (overall: p=0.39; dorsal: p=0.67; ventral: p=0.23; Fig.17F, A11S-T).
3.2.3.4 Septotemporal characterization of cytogenesis

With treatments pooled, cytogenesis was higher in the ventral DG overall (p=0.0007; Fig. 18A),
and in the SGZ/GCL (p=0.028; Fig. A12A) and hilus (p<0.0001; Fig. A12B) specifically.
Overall DG cytogenesis was significantly correlated between the dorsal and ventral DG (r=0.47;
p=0.041; Fig. 18B), and this tended to be the case specifically in the SGZ/GCL (r=0.39;

p=0.099; Fig. 18C) but not the hilus (r=0.23; p=0.35; Fig. 18D).
3.2.3.5 Septotemporal characterization of immature neuronal morphology

Summarized characteristics of dorsal and ventral DG immature neurons are available in Table 6.
With treatments pooled, cell body perimeter (p=0.027; Fig. A12C) and area (p=0.049; Fig. 19A)
were smaller for immature neurons in the ventral DG. Feret max (p=0.065; Fig. A12D), but not
feret min (p=0.13; Fig. A12E), tended to be larger in the dorsal DG. Cell body aspect ratio
(p=0.31; Fig. A12F), compactness (p=0.27; Fig. A12G), convexity (p>0.99; Fig. A12H), form
factor (p=0.30; Fig. A12I), roundness (p=0.30; Fig. A12J), and solidity (p=0.70; Fig. A12K) did

not differ between subregions.

Overall, dendritic length (p=0.89; Fig. A12L), volume (p=0.77; Fig. A12M), surface area
(p=0.80; Fig. A12N), nodes (p=0.49; Fig. A120), endings (p=0.51; Fig. A12P), and tortuosity

(p=0.95; Fig. A12Q) did not differ between subregions.

Dendritic length did not differ between dorsal and ventral subregions by branch order (p=0.87;

Fig. A12R) or sholl analysis (p=0.85), although length was highest for 2" and 3™ order branches
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(ps<0.0034) and between 10-80 um from the cell body (ps<0.0001; Fig. 19B). Mean dendritic
length differed by branch order (p<0.0001) and was highest for the first three branch orders
versus subsequent orders (ps<0.0001; Fig. A12S) but did not differ between subregions

(p=0.57).

Dendritic volume did not differ by subregion (p=0.95), although volume differed by branch order
(p<0.0001) with volume highest in the first three branch orders (ps<0.0041; Fig. 19C). Dendritic
mean volume did not differ by subregion (p=0.93), although mean volume differed by branch

order (p<0.0001) and was higher in the first two branch orders than subsequent orders (ps<0.036;

Fig. A12T).

Dendritic surface area did not differ by subregion (p=0.73), although area was significantly
higher in the first three branch orders (ps<0.0001; Fig. A12U). Dendritic mean surface area did
not differ by subregion (p=0.64), but was significantly higher in the first three branch orders

(ps<0.0020; Fig. A12V).

There was a tendency for number of branches to be highest in the ventral DG (p=0.092), and

they were highest in the 2" and 3™ branch orders (ps<0.0001; Fig. A12W).

Number of nodes tended to be higher ventrally (p=0.084), and were highest in the first three
branch orders (ps<0.0001) and from 10-60 pm from the cell body (ps<0.013, except 40-50 vs 60-

70: p=0.48; Fig. 19D).

For dendritic intersections, dorsal and ventral subregions did not differ by Sholl analysis
(p=0.90), and intersections were more common 10-80 um from the cell body than at other

distances (ps<0.0061; Fig. 19E).
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For dendritic endings, Sholl analysis revealed an interaction between subregion and Sholl
distance (p=0.0013); specifically, immature neurons in the ventral DG had significantly more

endings 60-70 pm from the cell body (p=0.0002; Fig. 19F).

3.2.3.6 Septotemporal characterization of synaptic distribution

With treatments pooled, overall molecular layer synapses did not differ between the dorsal and
ventral DG (p=0.84; Fig. 20A). However, there was heterogeneity in synaptic density in specific
zones around the molecular layer (Fig. 17B). Specifically, overall synaptic density varied by
zone (p<0.0001), with the highest density in the suprapyramidal basal zone compared to the
suprapyramidal apical (p=0.0005), infrapyramidal apical (p<0.0001), and infrapyramidal basal
(p=0.039) zones. Suprapyramidal apical density was higher than infrapyramidal apical density
(p=0.0004), and infrapyramidal basal density was higher than that of the infrapyramidal apical

zone (p<0.0001).

Notably, these distinctions are largely preserved across the septotemporal axis. In the dorsal DG,
the highest density was in the suprapyramidal basal zone compared to the suprapyramidal apical
(p=0.0045), and infrapyramidal apical (p<0.0001) zones, but not the infrapyramidal basal zone
(p=0.26; Fig. A11C). Infrapyramidal apical density was also lower than suprapyramidal apical
(p=0.011) and infrapyramidal basal density (p<0.0001). Ventrally, the highest density was in the
suprapyramidal basal zone compared to the suprapyramidal apical p=0.0086), infrapyramidal
apical (p<0.0001), and infrapyramidal basal zones (p=0.037; Fig. A11D). Infrapyramidal apical
density was also lower than suprapyramidal apical (p=0.0032) and infrapyramidal basal density

(p=0.0004).
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Pooled overall number of dendritic synapses per immature neuron did not differ between the
dorsal and ventral DG (p>0.99; Fig. A13A), and this was maintained when controlling for
dendritic length (p=0.71; Fig. A13B). Analyzing by branch order, there were no overall
septotemporal differences for number (p=0.81; Fig. A13C) or density (p=0.97; Fig. 20D) of
dendritic synapses; however, there were significant main effects for branch order for synapse
number and density (ps<0.0001). Specifically, first-order synapses were less abundant than
second- (p=0.0065), third- (p<0.0001), and fourth-order synapses (p<0.0001), and second-order
synapses were less abundant than third- (p=0.0022) and fourth-order (p=0.0068) synapses.
Conversely, when correcting for branch-order length, first-order synaptic density was higher than

that of other branch-orders (ps<0.0001).

Number of somatic synapses did not differ by subregion (p=0.22; Fig. A13D), but ventral DG

immature neurons showed increased somatic synapse density (p=0.028; Fig. 20C).

3.2.4 DISCUSSION

Our results suggest that NRG1 does not affect intermediate stages of neurogenesis in immature
adultborn DG neurons. This indicates that the influence of NRG1 on hippocampal neurogenesis
is temporally- and subregionally-specific, with effects only for proliferation in the ventral DG
leading to neurogenic increases in this same subregion (Table 5). Furthermore, this NRG1-
mediated increase in neurogenesis is accompanied, four weeks after treatment cessation, by
antidepressant-like effects (Mahar et al., 2011). The current results suggest that to the extent that
changes in ventral DG neurogenesis underlie this change in emotion-related behaviour four

weeks after NRG1 administration, it is changes to cell proliferation alone (and subsequent
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increases in immature functional neurons four weeks after proliferation), as opposed to

additional contributions from other neurogenic stages, that contribute to this phenomenon.

The lack of effect of NRG 1P administration on dendritogenesis or synaptogenesis may seem
counter-intuitive, as previous in vitro studies examining cortical interneurons have reported
increased dendritogenesis and synaptogenesis following NRG1 administration (Cabhill et al.,
2012; Ting et al., 2011). However, this appeared to be contingent upon ErbB4 expression (Cahill
etal., 2012; Ting et al., 2011). Newborn granule cells in the adult DG lack ErbB4 but express
ErbB3 (Mahar et al., 2011), suggesting that NRG1-ErbB4 signaling can modulate
dendritogenesis and synaptogenesis, whereas NRG1-ErbB3 signaling is involved in cell
proliferation. Indeed, NRG1-ErbB3 signaling not only seems to stimulate the proliferation of
neuronal precursors in the mature hippocampus (Mahar et al., 2011) but also stimulates
proliferation in cancer cell lines (Andrique et al., 2012). In support of this, Ting et al. (2011)
found that neither size nor number of synapses made by glutamatergic neurons, which have been
shown to largely or completely lack ErbB4 (Bean et al., 2014; Chen et al., 2010; Neddens et al.,

2011; Vullhorst et al., 2009) were affected by NRG1 administration.

Comparison of the specificity of hippocampal neurogenic effects following NRG1 administration
with other neurotrophic factors is partially confounded by incomplete characterization of these
factors’ effects along the neurogenic timeline from proliferation to functionality. However, it has
been shown that BDNF administration increases cell survival but not proliferation (Schmidt and
Duman, 2010), IGF administration increases proliferation and neuronal differentiation (Aberg et
al., 2000), and VEGF increases proliferation but not survival (Fournier et al., 2012; Jin et al.,
2002). These results highlight the potential specificity of neurogenic effects of neurotrophic

factors, and underscore the importance of assessing at which particular neurogenic stages pro-
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neurogenic neurotrophic factors induce their effects.

To our knowledge, we also provide the first characterization of parameters that define and
distinguish immature neurons in the dorsal and ventral DG. These include differences between
these subregions in cell body size, somatic synapses, and dendritic branching. Although
associating the differences observed between these particular immature neuronal populations
with the distinct behavioural functions associated with either the dorsal or ventral hippocampus
is beyond the scope of this study, these differences likely contribute to neuronal function. The
smaller cell body size in ventral DG immature neurons is plausibly related to the previously-
established maturational distinction between dorsal and ventral immature neurons, in which
ventral DG immature neurons appear to mature more slowly with a wider window of excitability
(Piatti et al., 2011; Snyder et al., 2012; Tanti et al., 2013). The observed increase in somatic
synapse density for ventral DG immature neurons is likely due to this reduction in cell body size,
as the total number of somatic synapses per neuron did not differ by DG subregion. Interestingly,
the increase in terminal dendritic branches in ventral DG immature neurons occurred 60-70um
from the cell body, which roughly corresponds to the point at which developing dendrites
emerge from the granule cell layer into the molecular layer, selectively receiving input from
mossy cells (Buckmaster et al., 1992; Scheff and Price, 1998). This suggests that immature

neurons in the ventral DG receive comparatively more input from neighboring mossy cells.

We find that cytogenesis, as determined by the number of BrdU-IR cells that proliferated prior to
treatment and survived until the animal was sacrificed, was consistently higher in the ventral DG.
Previous studies have found that, after water maze training, cell proliferation and neurogenesis
were higher in the dorsal than ventral DG (Snyder et al., 2009b; Snyder et al., 2011a). However,

these studies examined density of neurogenic cells by volume, as opposed to the absolute
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number of cells as analyzed here, and thus this discrepancy may be explained by the volumetric
difference between the dorsal and ventral DG. Consequently, it may be that the density of new
cells is lower in the ventral DG, whereas overall cytogenesis as measured by the total number of
adultborn cells is higher in this region, as reported here. This cytogenic heterogeneity along the
septotemporal axis suggests that cytogenic assessments in which cell counts are averaged across
the septotemporal axis may be less accurate than those assessing septotemporal subregions
separately. However, we find that dorsal and ventral DG cytogenesis are significantly correlated,
supporting the notion that a common set of factors regulates this dynamic phenomenon in both

regions.

In addition, we identified heterogeneity in dendritic synaptic density in the molecular layer that
was maintained along the septotemporal axis; specifically, density was generally highest in the
suprapyramidal basal zone and lowest in the infrapyramidal apical zone. This result indicates for
the first time an unequal distribution in granule cell synapses in the molecular layer, and suggests
that the resulting synaptic profile of adultborn neurons may be contingent on their precise

position of integration within the granule cell layer.

Together, these results further characterize the effects of exogenous NRG1 administration on
hippocampal neurogenesis across neurogenic stages. They indicate that the neurogenic influence
of NRG1 is temporally and subregionally restricted to increases in ventral DG cell proliferation
and resulting increases in the number of functional immature DG neurons. In addition, we also
determined that the morphology and connectivity of immature neurons differs along the
septotemporal axis of the DG, and hypothesize that the specificity of these subregional features

may contribute to the functional differences that exist between the dorsal and ventral DG.
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Figure 15. Effects of neuregulin-1 administration on cell survival. Cell survival is not affected
by neuregulin (NRG) administration in the overall DG (A), or specifically in the subgranular

zone (SGZ) and granule cell layer (GCL) (B) or hilus (C). SAL, saline.
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Figure 16. Effects of neuregulin-1 administration on dendritic morphological development. A,

Immature neuron labeled with DCX (left), and BrdU (middle) in the same field, with an overlay

at right. B, example reconstructed neuron showing dendritic branch orders and Sholl distances

(10 um). NRG1 administration did not affect immature neuron morphology, including cell body

size (C), dendritic length (D), dendritic volume (E), and number of dendritic branches (F). Scale

bar =10 um.
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Figure 17. Effects of neuregulin-1 administration on synapse development. Overall synaptic
density in the molecular layer surrounding the DG was not affected by NRG1 administration (A),

and this was also the case in analyzing particular zones adjacent to various aspects of the DG (B,
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although there was heterogeneity in synaptic density between these zones. C, dendritic synaptic
labeling by doublecortin (DCX; green) and postsynaptic density protein 95 (PSD-95; red)
staining in BrdU-identified immature neurons. D, Dendritic synaptic density was unaffected by
NRG1 administration. E, somatic synaptic labeling by DCX (green) and PSD-95 (red) staining in
BrdU-identified immature neurons. Somatic synapse density was unaffected by NRGl1
administration (F). Single-channel images of the planes in C and E are shown in Fig. AS. Scale

bar = 10 pm. **, p<0.01; **** p<0.0001.
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Figure 18. Septotemporal characterization of cytogenesis. A, cytogenesis was higher in the
ventral DG than in the dorsal DG. Cytogenesis in the subregions correlated significantly for the
overall DG (B), and tended to correlate specifically in the SGZ-GCL (C) but not the hilus (D). #,

p<0.1; *, p<0.05; **, p<0.01; *** p<0.001. BrdU, bromodeoxyuridine.
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Figure 19. Septotemporal characterization of immature neuronal morphology. A, cell body size
was decreased for immature neurons in the ventral DG versus the dorsal DG. Dendritic length
(B), volume (C), nodes (D), and intersections (E) did not differ for immature neurons between
septotemporal subregions, although terminal dendritic endings were increased for ventral DG

immature neurons (F) specifically 60-70 um from the cell body.
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Figure 20. Septotemporal characterization of synaptic distribution. A, Synaptic density in the
molecular layer surrounding the DG does not differ between DG subregions along the
septotemporal axis. B, Dendritic synapse density does not differ for immature neurons in the
dorsal versus ventral DG; overall, density is highest in the first dendritic branch. C, Somatic

synapse density is higher for immature neurons in the ventral DG. *, p<0.05.
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OVERALL DORSAL VENTRAL

PROLIFERATION T X T
DIFFERENTIATION X X X
SURVIVAL X X X
oo x x x
o x x x
SYNAPSE DEVELOPMENT X X X
OVERALL x
NEUROGENESIS 1 T

Table 5. Specificity of effects of neuregulin-1 on adult hippocampal neurogenesis. Neuregulin-1
has temporally and subregionally specific neurogenic effects, wherein cell proliferation and
overall neurogenesis are increased selectively in the ventral DG following administration (Mahar
et al., 2011), and other neurogenic features (including neuronal differentiation (Mahar et al.,
2011), cell survival, cell body and dendritic morphology, and synapse formation) in immature

neurons are unaffected.
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Immature neuronal parameters

Dorsal

Ventral

Cell body area

50.28 £ 4.6 um

43.81 2.1 um

Dendritic length

191.5 + 15.16 pm

182.7 £ 11.31 pm

Dendritic surface area

364.9 +35.39 um?

338.5 +28.34 um?

Dendritic volume

73.14 £ 7.89 um?

69.27 + 8.49 pm’

Dendritic nodes

cell body

2.31+0.25 2.49+0.23
Highest length 2" and 3" branch orders 2" and 3" branch orders
Nodes Most prevalent 10-60 um from the | Most prevalent 10-60 um from the

cell body

Dendritic endings

Fewer 60-70 um from the cell body

More 60-70 um from the cell body

Dendritic synapses

Lowest (but most dense) in 1%
branch

Lowest (but most dense) in 1%
branch

Somatic synapse density

Decreased versus ventral

Increased versus dorsal

Overall differentiating
features

Larger cell body; decreased
somatic synapse density; fewer
terminal dendritic endings 60-70
pm from the cell body

Smaller cell body; increased
somatic synapse density; more
terminal dendritic endings 60-70
pm from the cell body

Table 6. Parameters of immature neurons in the dorsal and ventral DG. Statistically significant

differences between immature neurons in the dorsal and ventral DG subregions are shown in

italics.

Supplemental materials are available in Appendix.
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CHAPTER 4. Disrupted hippocampal neuregulin-1/ErbB3 signaling and dentate gyrus

granule cell alterations in suicide

4.1 Preamble

The subsequent Chapter details the majority of the remainder of the experiments conducted
during the course of my PhD, and as such is possibly the broadest in terms of scope. Having to
this point established that NRG1 administration has temporally and subregionally specific
neurogenic effects and concurrent antidepressant-like effects, we aimed to determine if the
antithesis of this would be true in psychiatrically relevant populations. More specifically, we
hypothesized that depression or suicidality may be associated with disrupted NRG1-ErbB3
signaling and decreased numbers of DG granule cell neurons, as the product of hippocampal
neurogenesis. Additionally, we sought to support the role of ErbB3 in the effects of NRG1 in

hippocampal function and affective regulation.

The first experiment presented attempted to support ErbB3’s mechanistic role in proliferation
acutely after NRG1 administration, first hypothesized in our 2011 PLoS ONE publication. We
recapitulated the NRG1 administration paradigm from this paper, then dissected out the DG and
examined ErbB3 phosphorylation. Strikingly, ErbB3 was phosphorylated in the DG, but only in
the ventral DG, mirroring our earlier studies in which this NRG1 administration paradigm only
induced cell proliferation in the ventral DG. As ErbB3 is the only receptor to bind NRGI that is
present in these cells (Mahar et al., 2011), this further supports the mechanistic role of ErbB3 in

mediating the effects of NRG1 on hippocampal plasticity.
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The next experiment presented asks, “If increasing hippocampal NRG1-ErbB3 signaling has
antidepressant-like effects, would hippocampal ErbB3 be deleteriously affected in a model of
depression?” To this end, we used the social defeat model, a chronic stress paradigm that has
been strongly validated as a model of depression (Golden et al., 2011). Following this paradigm,
DG tissue was removed by micropunches, RNA was extracted, and we quantified ErbB3
expression. ErbB3 was indeed reduced across the DG; this pattern of ErbB3 reduction, as
opposed to DG subregionally-specific alteration, is in line with previous studies showing

neurogenic effects of stress that extend across the septotemporal axis (Tanti et al., 2013).

Subsequently, we examined whether NRG1-ErbB3 signaling was disrupted in psychiatrically
relevant populations. This was split into two investigations: peripherally, as NRG1 is expressed
in blood and can readily cross the blood-brain barrier (Kastin et al., 2004; Rosler et al., 2011),
and centrally in the hippocampus, based on the aforementioned animal studies revealing NRG1’s

effects on hippocampal plasticity and affect.

The peripheral investigation, in MDD patients and controls before and after antidepressant
treatment, revealed that NRG1 levels in blood are not altered in MDD patients with respect to
controls, either before or after antidepressant treatment. Additionally, examining by patient
response to treatment did reveal differences in NRG1 expression. These experiments suggest that
the level of peripheral NRG1 expression is not etiologically related to MDD, nor is it predictive
or determinant of response in antidepressant medication in MDD. Thus, to the extent that NRG1-
ErbB signaling may be disrupted in psychopathology, this disruption would likely occur

centrally as opposed to peripherally.

In the hippocampus, we found that ErbB3, but not other ErbB receptors or NRG1, was sharply

reduced for suicide completers in comparison to controls. Although this supported our initial
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hypotheses, it also raised the question of the cause of this deficit. We thus examined whether
ErbB3 methylation might explain the decrease in hippocampal ErbB3 expression. However,
methylation was not altered between suicides and controls, although we did identify a cluster of

CpGs in the ErbB3 gene that were hypermethylated with antidepressant treatment.

Finally, as ErbB3 is expressed by neurogenic cells and mature granule cell neurons (Mahar et al.,
2011), we examined whether the decreased ErbB3 expression may be due to decreased numbers
of granule cells in the DG. Using a stringent stereological protocol including the most detailed
human DG tracings performed to date, we determined that in the anterior DG (analogous to the
ventral DG in rodents) the number of granule cells was sharply reduced in unmedicated suicides,
with a concordant reduction in DG volume, and that granule cell bodies were hypertrophied in
the posterior DG. These results not only provide a mechanistic explanation for the decreased
ErbB3 in the mRNA studies, but also identify novel suicidal endophenotypes and support
hippocampal NRG1-ErbB3 signaling (particularly in the anterior DG) as a candidate pathway in

affective regulation and psychopathology.
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ABSTRACT

Neuregulin-1 (NRG1) and ErbB3 have been associated with psychopathology, and NRG1-ErbB3
signaling has been shown to increase hippocampal neurogenesis and induce antidepressant-like
effects. We aimed to determine whether deficits in NRG1 or ErbB3 might be present in an
animal model of depression or in human psychopathological samples. We found that DG ErbB3

expression is decreased in an animal model of depression, and that unmedicated suicides show
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sharply decreased hippocampal ErbB3 expression and decreased numbers of granule cell neurons
in the hippocampal DG (reversed by antidepressant treatment), which express ErbB3. We also
found alterations in anterior DG glial cells and cell body morphology in posterior DG granule
cells. These results reveal novel suicidal endophenotypes, as well as a putative etiological
mechanism underlying suicidality, and suggest that antidepressant or NRG1 treatment may

reverse the deficit in DG granule cell neurons observed in suicidal individuals.

4.2.1 Introduction

Suicide has become the leading cause of injury mortality in the United States (Rockett et al.,
2012). However, our understanding of the etiology of suicidality remains limited. Although
studies have reported genetic and epigenetic associations with suicidality (see (Turecki, 2014)

for review), a clear putative etiological candidate mechanism has yet to emerge.

Neuregulin-1 (NRG1) has repeatedly been associated with psychopathology in multiple human
populations as well as in animal models. Genetic association studies have linked NRG1 with
schizophrenia, MDD, and bipolar disorder (Georgieva et al., 2008; Moon et al., 2011; Rethelyi et
al., 2010; Stefansson et al., 2003). Post-mortem investigations have shown altered NRG1
cleavage in the PFC in schizophrenia as well as decreased density of NRG1-expressing neurons
in schizophrenia and depression, and reduced hippocampal NRG1 expression in schizophrenia
and bipolar disorder (Bertram et al., 2007; Marballi et al., 2012). In animal studies, altering
NRGT1 activity changes behaviour in tasks modeling schizophrenia, anxiety, and antidepressant
response HPA axis response to stress (Bi et al., 2015; Chen et al., 2008; Chohan et al., 2014;

Mahar et al., 2011; O'Leary et al., 2014; O'Tuathaigh et al., 2010; Pei et al., 2014). Notably,
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NRGTI has been shown to readily cross the blood-brain barrier and affect brain activity (Carlsson

et al., 2011; Kastin et al., 2004; Xu et al., 2006; Xu et al., 2004).

The NRG1 receptor ErbB3 has also been associated with multiple psychiatric conditions (Aston
et al., 2004, 2005; Le-Niculescu et al., 2009; Li et al., 2009; Milanesi et al., 2012). Although
previously considered to be kinase-insufficient (c.f. Cao et al., 2007) based largely on a report of
reduced autophosphorylation compared to EGFR in insect cells with induced ErbB3 expression
(Guy et al., 1994), recent studies have suggested that ErbB3 has sufficient kinase activity for
signaling (Deng et al., 2013; Shi et al., 2010a; Steinkamp et al., 2014), and its downstream
signaling primarily involves PI3K/Akt (Cook et al., 2011; Jung et al., 2006; Lee et al., 2014b;
Sathyamurthy et al., 2015; Smirnova et al., 2012; Young et al., 2013). ErbB3 has also recently
been found to be required for certain types of cell proliferation in the brain, likely due to

downstream PI3K signaling (Sathyamurthy et al., 2015).

The process of adult hippocampal neurogenesis, which adds new granule cell neurons to the DG
throughout life, has been strongly implicated in the mechanism of antidepressants, response to
stress, and affective behaviour (Mahar et al., 2014). In addition, deficits in hippocampal
neurogenesis may precipitate vulnerability to stress and psychopathology (Mahar et al., 2014).
As a result, the investigation of the human DG and granule cells has become a rapidly
developing field, with the few studies to date in psychiatric populations providing interesting
psychopathological insight. Recent post-mortem studies from Boldrini and colleagues have
found that antidepressants increased numbers of neural progenitor cells in depressed patients,
and that granule cells were decreased in untreated MDD patients in the anterior and mid DG
(Boldrini et al., 2014; Boldrini et al., 2013; Boldrini et al., 2009). Conversely, a recent report

found no difference in the number of granule cells between MDD patients and controls, but
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reported an increase in granule cells with age for individuals taking antidepressants, supporting
the hypothesis that these therapeutics have a positive effect on granule cell number through
increased neurogenesis (Cobb et al., 2013). However, these few studies did not directly compare

granule cell numbers between suicide completers and controls.

Previously, we have shown that peripheral NRG1 administration has temporally- and
subregionally-specific effects on neurogenesis and affective behaviour. Specifically, NRG1
administration in mice rapidly induces cell proliferation in the ventral DG (but not acute
behavioural effects), leading to increased ventral DG neurogenesis (Mahar et al., 2011). This is
accompanied by antidepressant-like behaviour at a time at which these cells are functional
hyperplastic neurons (Ge et al., 2007; Mahar et al., 2011). These neurogenic effects are restricted
to this subregion and also these neurogenic stages, as NRG1 administration does not affect the
differentiation or survival of neuronal precursors (Mahar et al., 2011). The neurogenic and
affective effects of NRG1 may be mediated through the activation of ErbB3 expressed by
neurogenic cells from division to functional maturity. ErbB4, the other primary NRG1 receptor
which the ligand binds to directly, was not observed in early neurogenic cells and is potentially
limited to GABAergic interneurons in the hippocampus (Bean et al., 2014; Mahar et al., 2011;

Neddens and Buonanno, 2009 (although see also Mechawar et al., 2007; Pitcher et al., 2011).

Although increasing NRG1 has neurogenic and antidepressant-like effects, it is unclear whether
the converse to these effects may also be true, whereby deficits in NRG1-ErbB3 signaling would
be associated with psychopathology. Here, we hypothesized that hippocampal ErbB3 would be
disrupted in an animal model of depression, and that NRG1-ErbB3 signaling would be decreased
in affective psychopathological populations. We show that peripheral NRG1 activates ErbB3

specifically in the ventral DG in mice, that ErbB3 is ubiquitously expressed in DG granule cells
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in humans as in mice, that hippocampal ErbB3 is disrupted in an animal model of depression,
and that hippocampal (but not peripheral) NRG1-ErbB3 signaling is disrupted in affective
psychopathology. This disruption is commensurate with a deficit in granule cell neurons in the

DG that is reversible with antidepressant treatment.

4.2.2 Methods and materials

4.2.2.1 NRG1 administration

Adult (approximately P60) male C57Bl/6 mice (n=8/group; Charles River, QC) were housed in
groups until experimentation, with ad /ibitum access to food and water on a 12:12 light:dark
cycle. All animal experiments were in accordance with the guidelines and policies of the
Canadian Council on Animal Care, and were approved by McGill University's Animal Care
Committee. Mice were administered either sterile 0.9% saline or recombinant NRG1f (R&D;
EGF domain, 10 pg/d) dissolved in saline for 24 h through subcutaneously implanted osmotic
mini-pumps (Alzet), as performed previously (Mahar et al., 2011). Post-operatively, mice were
placed on a heating pad to recover and were monitored for complications, and received an anti-

inflammatory Carprofen tablet placed in the cage.

4.2.2.2 Mouse dentate gyrus dissection and protein extraction

Following NRG1 or saline administration, mice were deeply anesthetized with isoflurane and
decapitated. Brains were rapidly removed and placed in cold PBS under a dissecting microscope.

DGs were dissected based on a previously established DG isolation procedure (Hagihara et al.,
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2009). Dissected DGs were then separated into dorsal and ventral segments, corresponding to
previously established designations (Mahar et al., 2011), and stored at -80°C. Protein was
digested in radioimmunoprecipitation assay buffer containing protease and phosphatase
inhibitors, then sonicated and centrifuged at 13200 RPM for 20 min at 4°C. The supernatant was
removed, vortexed, aliquoted, and stored at -20°C, and protein verified with a BSA protein assay

kit (Pierce) and plate reader at 562 nm.

4.2.2.3 Fluorescence-Assisted Cell Sorting

To validate DG dissections, parallel DG dissections were performed in adult male transgenic
mice expressing GFP at the nestin promoter (nestin-GFP (Mahar et al., 2011; Mignone et al.,
2004)) on a C57BI1/6 background and non-transgenic littermates, in a manner mimicking the
mice used in NRG1/saline administration experiments. DG tissue was digested, triturated, and
processed following a previously established cell isolation procedure (Brewer and Torricelli,
2007), and neuronal gradient fraction cells were sorted on a FACSAria machine (BD
Biosciences). Fluorescence phenotype of sorted cells was subsequently verified on an Olympus

BX51 microscope.

4.2.2.4 pErbB3 quantification

ErbB3 phosphorylation was assessed using a pErbB3 ELISA kit (RayBiotech). Briefly, dorsal
and ventral samples from subjects were loaded onto wells of the kit’s 96-well plate, with
subsequent manufacturers’ instructions observed. Samples were read on a SpectraMax plate

reader (Molecular Devices) at 450 nm. To verify and correct for protein concentration, samples
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were loaded onto 4-12% polyacrylamide gels (Invitrogen), transferred to nitrocellulose
membrane (Amersham GE Healthcare), treated with Ponceau (Sigma) and visualized using a
charge-coupled device camera and Image Studio Lite software (Licor). Values were normalized

to control samples.

4.2.2.5 Chronic social defeat stress

Adult (approximately P60) male C57B1/6 mice (Charles River, QC) were subjected to social
defeat stress following a previously established protocol (Golden et al., 2011). Briefly, animals
were pair-housed in identical conditions to the previous animal experiments, and defeated mice
(n=13 were exposed to daily 5 min physical interactions with an aggressive male CD1 mouse
(approximately 60; Charles River, QC) during 10 consecutive days. CD1 mice were otherwise
housed individually and had been previously screened for 3 days to verify aggressive behaviour.
Defeated mice remained in the home cage of the aggressor mouse for 24 h post-defeat, separated
physically by a perforated plexiglass divider, and were rotated between CD1 aggressors for each
session. Control undefeated mice (n=7) were pair-housed, separated by a plexiglass divider.
Animals were decapitated, and brains were removed, frozen in -40°C isopentane, and stored at -

80°C.

4.2.2.6 DG micropunches

Brains of stressed and control mice were placed in a cryostat at -20°C, and separated into serial 1

mm sections using a mouse brain matrix and razor blades. Micropunches (0.5 mm in diameter)
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were obtained from both the dorsal and ventral DG bilaterally, and stored at -80°C prior to RNA

extraction.

4.2.2.7 Quantitative RT-PCR for rodent DG

RNA was extracted from micropunches using RNeasy Micro (Qiagen) kits with elution in
RNAse-free water. RNA was assessed using a Nanodrop 1000 system (Thermo Scientific).
cDNA was synthesized with oligo dT primers. mRNA was measured by quantitative RT-PCR
(qRT-PCR) (Life Technologies; 7900HD) using TagMan probes (Life Technologies;
MmO01159999 ml, Mm99999915 ¢1) for ErbB3 and GAPDH, including water and RNA-free
control wells that did not give a positive signal. Expression values as shown are mean relative

fold change quantities of sample replicates normalized to GAPDH.

4.2.2.8 ErbB3 immunohistochemistry and in situ hybridization in human DG

All steps were at room temperature unless otherwise specified. Washes in wash buffer (Dako)
were performed between all steps except between blocking and addition of primary antibody.
Based on a previously established ErbB3 immunohistochemistry protocol (Mahar et al, 2011),
paraffin-embedded tissue from two control subjects (a 60 year-old male with a post-mortem
interval of 7.25 h, and a 74 year-old female with a post-mortem interval of 11 h) was dewaxed
and rehydrated in xylene, decreasing concentrations of ethanol, and ddH2O. Tissue was then
incubated in a proteinase-K solution (1:1000; Qiagen) for 10 min, PBS-T for 1 h, 3% H20: for
10 min, blocking solution (2% NGS (Vector) in wash buffer) for 1 h. This was followed by an

overnight incubation at 4°C in blocking solution with rabbit anti-ErbB3 antibody (1:25 and
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1:100, Santa Cruz), an antibody that has been validated previously (Jackson-Fisher et al., 2008;
Lee et al., 2009; Mahar et al., 2011). After primary antibody removal, tissue was incubated in
biotinylated goat anti-rabbit secondary antibody (1:500; Vector) in blocking solution for 90 min,
and labeling was revealed using the Vectastain Elite and DAB kits (both Vector), quenched in
ddH20 for 5 min, dehydrated in increasing ethanol concentrations followed by xylene, then
coverslipped using Permount (Fisher). A no-primary control condition did not produce staining.
Sections were visualized on an Olympus BX51 microscope using MBF software. Additional
human ErbB3 immunohistochemistry data were obtained from the Human Protein Atlas for a
rabbit anti-ErbB3 antibody (HPA045396) with a demonstrated high degree of specificity
(Human Protein Atlas, 2015; Uhlen et al., 2015). ErbB3 in situ hybridization data were obtained
from the Allen Human Brain Atlas (Allen Institute for Brain Science, 2014; Hawrylycz et al.,
2012). Specifically, in situ hybridization data were obtained from http://human.brain-
map.org/ish/search, and microarray data were obtained from http://human.brain-

map.org/microarray/search. All images were unaltered except for overall brightness or contrast.

4.2.2.9 MDD blood collection and qRT-PCR

Human blood samples were collected and processed as previously described (Lopez et al., 2014).
Briefly, blood samples and Hamilton Depression Scale (HAM-D) scores were obtained from
non-depressed control and medication-naive MDD patients at the Douglas Mental Health
University Institute in Verdun, Quebec, at two time points; baseline (T0) and 8 weeks later (T8).
Patients were referred to the study by a clinician, and received antidepressant treatment with
citalopram (10-60 mg/day titrated progressively) between TO and T8. Blood samples were

collected, and RNA extracted, using PAXgene tubes/kits (PreAnalytiX/QIAGEN). Gene
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expression was quantified by qRT-PCR using TagMan probes (Hs00247620 m1, cat.
#4310884E). Subject information for this and other human studies is available in Appendix
Table A1. Controls were classified as not diagnosed primarily with a non-substance psychiatric

disorder for all experiments, and did not die by suicide in post-mortem experiments.

4.2.2.10 Post-mortem frozen hippocampus processing for molecular assays

Frozen hippocampal samples from individuals who had undergone toxicological and
psychological autopsy assessments (Dumais et al., 2005) were obtained from the Douglas-Bell
Canada Brain Bank (Verdun, QC). Medication status was obtained from toxicological assay and
medication history. RNA was extracted using RNeasy kits (QIAGEN), and cDNA was produced
using oligo dT primers. Amplification and quantification was performed using qRT-PCR and
TagMan probes (Hs00247620 m1, Hs01076078 m1, Hs01001580 m1, Hs00176538 ml,
Hs00955525 ml, cat. # 4310884E). Expression values as shown are mean quantities of sample

replicates normalized to GAPDH.

For epigenetic analyses, DNA was extracted from frozen human post-mortem hippocampal
samples, which was then bisulfite-converted using an EpiTect Bisulfite kit (Qiagen), and samples
were processed for epityper (Sequenom) quantification at Genome Quebec (Montreal, Quebec,
Canada). To measure ErbB3 methylation, CpGs were analyzed in 3 500 bp regions (spanning
from positions 56472794-56474049 on chromosome 12) within the promoter and surrounding
the transcription start site of the ErbB3 gene. Data are represented as percentage of methylation,

with missing values calculated to allow mixed-model analysis.
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4.2.2.11 Post-mortem fixed hippocampus processing for stereological and morphological

analyses

Fixed hippocampal samples were also obtained from the Douglas-Bell Canada Brain Bank.
Tissues were immersed in a 30% sucrose solution until sinking, flash-frozen in isopentane (-
45°C), then sliced coronally at 50 um on a freezing sliding microtome in PBS, placed on a
shaker for 1 hour, then transferred to a cryopreservative solution (glycerol:ethylene glycol:PBS,
3:3:4) for storage at -20°C. Slices were mounted in PBS-T, and after drying were rehydrated in
dH20, stained with a heated cresyl violet solution for three minutes, rinsed in dH20O for 5
minutes, then dehydrated in increasing concentrations of alcohol and xylene, then coverslipped.
DGs were carefully traced tightly around the granule cell layer, to assess population and volume
as accurately as possible. The hippocampal head was considered as the anterior hippocampus
(Duvernoy, 1988). Stereology, cell body measurement, and regional volume assessment were
performed using Stereolnvestigator software (MBF Bioscience). The parameters for stereology
were: counting frame: 30 pm X 30 um; grid size: 350 um X 350 pum; dissector height: 10 pm;
guard zone height: 3 um; measuring thickness at each site. Granule cell bodies were assessed
with the nucleator probe (eight-ray isotropic uniform random sections). Volume was assessed
using the Cavalieri estimator (grid spacing: 20 pum) corrected for overprojection. Population and
volumetric data were averaged across sections to account for variation in number of sections.

The microscope was parcentric/parfocal and lens grid tune calibrated.

4.2.2.12 Statistics
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All statistical tests were two-tailed. Pairwise comparisons were made by Mann-Whitney or t-
tests with Welch’s correction when required. Social defeat expression data were analyzed by
two-way mixed-model ANOVA. Three-group analyses were performed by Kruskal-Wallis or
ANOVA with Fisher’s post-hoc tests. Time point/CpG x group analyses were performed with
two-way mixed-model ANOVAs and Sidak post-hoc tests. Covariate corrections were performed
by ANCOVA. Experimental group identity was blinded when applicable. Statistical outliers
were identified by Grubbs’ tests and removed. P values < 0.05 were considered significant. Data

are presented as mean+=SEM.

4.2.3 Results

4.2.3.1 Peripheral NRG1 phosphorylates ErbB3 in the ventral DG

To determine whether peripheral NRG1 can activate ErbB3 receptors in the DG of the
hippocampus, we administered NRG1 or saline subcutaneously to mice for 24 hours, then
dissected the dorsal and ventral DG and assessed ErbB3 phosphorylation by ELISA. ErbB3
phosphorylation was selectively increased in the ventral DG (t(14)=2.214; p=0.044; Fig. 21A-
B), in agreement with previous findings showing that this administration paradigm selectively
increases cell proliferation in this subregion (Mahar et al, 2011). FACS in transgenic animals
revealed a GFP+ population in DG dissections (Fig. A14), supporting the anatomical accuracy of

DG dissections.

4.2.3.2 Hippocampal ErbB3 is decreased by chronic social defeat stress

As boosting hippocampal NRG1-ErbB3 signaling has been suggested to have antidepressant-like

effects, we sought to determine whether hippocampal ErbB3 expression is reduced in an animal
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model of depression. Mice subjected to chronic social defeat stress showed reduced expression
of overall DG ErbB3 compared to unstressed mice (F(1,16)=6.16; p=0.025; Fig. 21C) without

this reduction being specific to either DG subregion.

4.2.3.3 ErbB3 is ubiquitously expressed in human DG granule cells

Although we had previously reported that ErbB3 is ubiquitously expressed in murine DG granule
cells, we sought to confirm this expression pattern in the human DG, as had been mentioned in a
previous immunohistochemical study (Chaudhury et al., 2003). We find a similar expression
pattern in humans, with ubiquitous ErbB3 expression in granule cells throughout the granule cell
layer, using both immunohistochemistry (Fig. 22A) and in situ hybridization (Fig. 22B-C) data,
with strong expression present in granule cells. These results are supported by data from the

Human Protein Atlas (Human Protein Atlas, 2015; Uhlen et al., 2015) (Fig. A15A).

4.2.3.4 Peripheral NRG1 expression is not associated with MDD, depressive recovery, or

antidepressant response

As NRGI1-ErbB3 activity is disrupted in an animal model of depression, and as peripheral NRG1
has been associated with affective behaviour (Mahar et al., 2011), we investigated whether
NRG1 is differentially expressed in peripheral blood of depressed individuals before or after 8
weeks of antidepressant (citalopram) treatment. To this end, we found that NRG1 expression did
not differ by experimental group or time point (there was a significant interaction (F(1,43)=7.75;
p=0.0079), but post-hoc tests were non-significant (ps>0.05); Fig. 23A), suggesting that any

disruption in NRG1-ErbB3 related to psychopathology would more plausibly be central rather
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than peripheral. Dividing MDD subjects by symptomatic remission status did not reveal
differences from controls or between time points, suggesting that basal levels of peripheral

NRGT1 do not predict or mediate response to antidepressants.

4.2.3.5 Hippocampal ErbB3 expression is reduced in suicide completers

Similar to expression of NRG1 in the blood of MDD patients, hippocampal NRG1 expression
was unchanged in suicide completers (Fig. 23B). However, ErbB3 expression was markedly
decreased in suicide completers compared to controls (Fig. 23E; F(2,53)=4.39, p=0.017;
unmedicated t(53)=2.80, p=0.0071; medicated t(53)=2.37, p=0.021; pooled suicides vs. controls
t=1.78, p<0.05), whereas ErbB1 (EGFR; Fig. 23C), ErbB2 (Fig. 23D), and ErbB4 (Fig. 23F)

expression were unchanged between groups.

4.2.3.6 Decreased ErbB3 is not due to epigenetic changes in gene methylation

To attempt to determine a putative explanation for the decreased hippocampal ErbB3 expression
observed in suicide completers, we next sought to determine whether epigenetic modifications to
ErbB3, in particular differential methylation, could underlie this deficit. We found no overall
group differences in hippocampal ErbB3 methylation; however, there was a group x CpG
interaction, in that a cluster of CpGs in the third fragment, surrounding the transcription start site,
was hypermethylated in suicides who had taken antidepressants (F(34,626)=2.04, p=0.0006;
CpG 22-24 ps<0.0001; CpG 25-28 t(663)=3.41, p=0.0021 vs. unmedicated suicides, t(663)=2.59,

p=0.029 vs. controls; Fig. 23G).
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4.2.3.7 Assessment of granule cells in suicide completers

As decreased hippocampal ErbB3 in suicides was not attributable to changes in gene
methylation, and given the expression pattern of ErbB3 in the human DG, we hypothesized that a
loss of granule cells may account for this phenomenon, and tested this hypothesis through
detailed tracing and stereology in human DG samples (Fig. A15B-C). Stereology, cell body
nucleator, and Cavalieri CEs were low (mean optical fractionator CE: 0.044; mean nucleator CE:

0.0064; mean Cavalieri CE: 0.028).

Number of granule cells was decreased selectively in the anterior DG for unmedicated suicides
compared to controls (45%; F(2,10)=5.18, p=0.029; t(10)=2.78, p=0.020; Fig.24A, A16A-B) and
medicated suicides (47%; t(10)=2.85, p=0.017), with the latter not differing from controls
(t(10)=0.23, p=0.83). Similarly, granule cell layer volume was selectively reduced in the anterior
DG for unmedicated suicides relative to controls (36%; F(2,10)=4.50, p=0.04; t(10)=2.70,
p=0.022; Fig.24B, A16C-D) and medicated suicides (36%; t(10)=2.53, p=0.030; controls vs.
medicated suicides t(10)=0.036, p=0.97). Neuronal density was unchanged between groups
(Fig.24C, A16E-F). Neuronal cell body size was increased in the posterior DG of pooled
suicides (t(9)=2.54; p=0.032; Fig. 24D), but not in the anterior or overall (Fig. A16G-H) DG.
Number of glial cells did not differ between groups overall (Fig. A16I) or in the posterior DG
(Fig. A16J), but were altered in the anterior DG (F(2,10)=4.32; p=0.045; Fig. 24E), with
decreased glial cells in unmedicated suicides vs. controls (t(10)=2.91, p=0.016). Glial density did
not differ between groups, either overall or in the anterior or posterior DG (Fig. A16K-M). Ratio
of neurons to glia did not differ between groups, either overall (Fig. 24F) or in the anterior (Fig.

A16N) or posterior (Fig. A160) DG.

164



4.2.4 DISCUSSION

Our results are the first to associate the NRG1-ErbB3 signaling pathway with suicidality, by
indicating that hippocampal ErbB3 is disrupted in suicide completers, likely owing to deficits in
DG granule cells in unmedicated suicides. We also identify hippocampal ErbB3 as being
potentially linked to depressive etiology in general, as this receptor was decreased in an animal
chronic stress model of depression. Peripheral NRG1 administration (which has been shown to
be safe in humans (Gao et al., 2010; Jabbour et al., 2011)) phosphorylates ErbB3 receptors in the
DG and increases neurogenesis, producing additional granule cells expressing ErbB3, with
concomitant antidepressant-like effects (Mahar et al., 2011). As such, this represents a promising

putative therapeutic target for depressed individuals, particularly those with a suicidal phenotype.

The results of the ErbB3 phosphorylation experiment are intriguing, as phosphorylation was
increased in the DG in vivo following NRG1 administration, yet only in the ventral DG, a
subregion repeatedly shown to be involved in the response to stress and antidepressants (Mahar
et al., 2014). This aligns with our previous experiments, which showed that the neurogenic
effects of NRG1 are also restricted to this subregion (Mahar et al., 2011), supporting our
hypothesis that NRG1 has its neurogenic and behavioural effects through ErbB3 phosphorylation
in this hippocampal area. The subregional specificity may be related to increased ErbB3
expression in neurogenic cells in the ventral DG (Mahar et al., 2011). These results also add
further support to findings indicating that NRG1 readily crosses the blood-brain barrier and
affects a variety of brain processes (Carlsson et al., 2011; Kastin et al., 2004; Kato et al., 2015;
Kato et al., 2011; Mahar et al., 2011; Xu et al., 2006; Xu et al., 2004). In addition, the finding
that DG ErbB3 is decreased in a chronic stress model of depression inversely mirrors the

antidepressant-like effects of augmented NRG1-ErbB3 signaling (Mahar et al., 2011), suggesting
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that affective regulation by hippocampal NRG1-ErbB3 signaling may be bidirectional in nature.
Given the expression of ErbB3 in neurogenic and mature granule cells, this finding is also in
accordance with previous studies showing that a rodent chronic stress model of depression

reduces DG neurogenesis across the septotemporal axis (Tanti et al., 2013).

Although our epigenetic analysis reveals that decreased hippocampal ErbB3 expression in
suicides is likely not related to differential methylation, we found in individuals who had taken
antidepressants a cluster of differentially methylated CpGs located around the transcription start
site of the ErbB3 gene, in a region enriched in transcription factor binding sites. Though
preliminary, this could potentially highlight a mechanism for the positive effects of
antidepressants on neurogenesis, especially as increased antidepressant-mediated gene
methylation has been shown in previous studies to mediate antidepressant effects (Robison et al.,
2014). Future investigation could determine if methylation at these sites affects the response of

neural progenitor cells to antidepressant medication.

The decrease in hippocampal ErbB3 can plausibly be attributed to a loss of granule cells in the
anterior DG, particularly in unmedicated suicides, as we (and others; see Chaudhury et al., 2003;
Gerecke et al., 2001; Hawrylycz et al., 2012; Mahar et al., 2011; Uhlen et al., 2015) show that
these cells ubiquitously express ErbB3. These results are also in line with previous studies
showing decreased numbers of anterior hippocampal granule cells and neural progenitors in
individuals with MDD, as well as increased numbers of mitotic cells in this subregion with
antidepressant treatment (Boldrini et al., 2014; Boldrini et al., 2013; Boldrini et al., 2009). The
anatomical specificity of the effects is noteworthy, as the anterior hippocampus is more
associated with emotional modulation (Bannerman et al., 2004) and, in non-human primates,

depression-like behaviours are inversely correlated with anterior DG neurogenesis (Perera et al.,

166



2011). This subregion is analogous to the ventral hippocampus in rodents, which has been
associated with affective regulation (Fanselow and Dong, 2010). More specifically, the ventral
DG and DG neurogenesis in particular have been associated with response to stress and
antidepressants, as well as affective behaviour (Mahar et al., 2014). It is also the selective
subregion in which NRG1 disruption leads to decreased communication efficacy with the
nucleus accumbens (Nason et al., 2011) and in which ErbB3 phosphorylation and increased
neurogenesis occur following NRG1 administration (Mahar et al., 2011). Thus it seems that
chronic stress or other deleterious factors may contribute to suicidality by reducing the number
of ErbB3-expressing granule cells in this emotion-related subregion of the hippocampus,
whereas this endophenotype is reversed by administration of antidepressants (and potentially
NRGI1). The mechanism by which reduced numbers of granule cells contribute etiologically to
suicidality may also be stress-related, as DG granule cells inhibit HPA axis activity, and in their
absence response to stress is augmented, further reducing numbers of granule cells and
exacerbating other effects of stress (Mahar et al., 2014). The fact that medicated suicides had
significantly more granule cells than unmedicated suicides, but not higher hippocampal ErbB3
expression, was surprising; however, there are at least three potential explanations. First,
although adultborn rodent granule cells have shown ErbB3 expression soon after division (Mahar
et al., 2011), it is possible that adultborn human granule cell neurons express ErbB3 later in
maturation, in accordance to their potentially lengthened maturation profile (Kohler et al., 2011;
Perera et al., 2011), with a larger proportion of granule cells being born in response to
antidepressants after treatment. In fact, this has been shown in previous studies, with increased
ErbB3 expression in DCX+ immature neurons in comparison to SOX2+ early neurogenic cells

(Bracko et al., 2012). Alternatively, we show that antidepressants hypermethylate a region of the
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ErbB3 gene, which could subsequently suppress ErbB3 expression per cell. Finally, the mRNA
expression data were from the hippocampus as a whole, whereas the stereological assessment

was specific to a subregion of interest, which may account for the discrepancy.

In contrast to previous studies investigating schizophrenia (Shibuya et al., 2010) and depression
(Belzeaux et al., 2010), we did not find that peripheral NRG1 expression was associated with
MDD or recovery with antidepressant treatment. This suggests that, to the extent that disrupted
NRG1-ErBb3 signaling might underlie depression-related phenotypes, it is likely that this
disruption is central (e.g. in the hippocampus), as opposed to peripheral. Although previous post-
mortem studies have found alterations in the brain for NRG1 or ErbB4 in the context of
psychopathology (Bertram et al., 2007; Hahn et al., 2006; Law et al., 2006; Marballi et al., 2012;
Parlapani et al., 2010), we measured no change in NRG1, ErbB1 (EGFR), ErbB2, or ErbB4
expression in the hippocampus of suicides. However, ErbB receptor studies in hippocampal
psychopathological samples are sparse, and thus would benefit from analyses in a broader
psychopathological perspective, particularly given our finding that hippocampal ErbB3 is
disrupted in suicides. Indeed, given the potential relevance of ErbB3 to neurogenesis, affective
behaviour, and psychopathology, and its ubiquitous expression profile in the granule cell layer,
ErbB3 may represent a promising target of future investigation in the etiology and treatment of

psychiatrically relevant phenotypes.
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Figure 21. ErbB3 in the DG is activated by peripheral NRG1 administration, and its expression is
reduced in a mouse model of depression. A, Ventral DG phosphorylation is increased by 24 h of
subcutaneous NRG1. B, chronic social defeat stress reduces ErbB3 expression in the DG. *,

p<0.05. FC, fold change; NRG, neuregulin; SAL, saline.

Figure 22. ErbB3 is expressed ubiquitously by granule cell layer neurons in the human DG. A,
ErbB3 immunohistochemistry. B, in situ hybridization for ErbB3 (left) and corresponding Nissl
staining (right). (C) ErbB3 gene expression heatmap. Image credit (B-C): Allen Human Brain
Atlas (http://www.brain-map.org/ ; Allen Institute for Brain Science; Hawrylycz et al., 2012.

Scale bars: 100 pm.

170



A

Peripheral NRG1 expression

OverallNRG1

E‘- 7o
2 . s
a a
* o
o <
< &
Q14 =
®
4
Z9 T
Control MDD
D ErbB2 E E
rbB3
* %
2.0 1 5m %
T 1.54 = *]
a [=]
o o
< I < ¥
O 1.04 g
o~ o«
@ m 29
2 2
w 0.59 w
14
0.0 o T
<& N v & ¥ ¥
& o @ & o &
o° °\b° @ %‘9‘;& ° ab“ @ g;)\ 6‘6
B R
) )
G
ErbB3 methylation
Control
407 U
Suicide No AD
B suicideAD sk ok ok
% 3% %k %k
§ 201 -
= * %
z x
°
E
201
e |
]
c
@
e
a
101 f ‘
(e I ‘ iﬂli.ﬂ‘t

LN v " b hﬁ& NN IR v & 2 aR ¢ o
2" N LA ¥ P N
CpGs

171

EGFR/GAPDH

EGFR
1.5
1.0 _I_
0.59
0.0 T
N
<° ¥
000 e‘\c
&

F ErbB4

1.59
==
=] o
Q40
L4
°
-
m
o 0.54
o
w

0.0 T

hY
" ¥
0¢ QG
[4) @
X
\G



Figure 23. Peripheral and central NRG1/ErbB gene expression in cases and controls. Peripheral
NRGI expression is not disrupted in major depressive disorder (MDD) patients at baseline (A;
T0), is not affected by eight weeks of citalopram treatment (T8), and baseline TO expression is
not predictive of antidepressant response. Hippocampal expression of NRG1 (B), ErbB1 (EGFR;
C), ErbB2 (D), and ErbB4 (F) does not differ between controls and suicides regardless of
antidepressant treatment; however, ErbB3 expression (E) is reduced. G, reduced hippocampal
expression of ErbB3 in suicides is not due to changes in ErbB3 methylation, as unmedicated
suicides did not differ from controls in terms of CpG methylation. However, antidepressant
usage was associated with increased methylation in a cluster of CpGs is located around the
ErbB3 promoter region near the transcription start site, in an area enriched in transcription factor

binding sites. *, p<0.05; **, p<0.01; **** p<0.0001. AD, antidepressant; CTRL, control.
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Figure 24. Assessment of granule cells, glia, and granule cell layer in DG of suicides and
controls. Unmedicated suicides have decreased numbers of granule cells in the anterior DG (A),
as well as decreased volume in the anterior DG (B). Granule cell neuronal density was
unchanged in the anterior DG (C). Granule cell body size was increased in suicides in the
posterior DG (D). Number of glial cells was decreased for unmedicated suicides compared to
controls in the anterior DG (E). Ratio of granule cell neurons to glia in the overall DG did not

differ between groups (F). AD, antidepressant.

Supplemental materials are available in Appendix.
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CHAPTER 5. DISCUSSION AND CONCLUSIONS

5.1 Discussion of results and implications

As our results are discussed at length in their respective Chapters, I will attempt to avoid a
lengthy reiteration of our findings here in the interest of concision and limiting redundancy. As
mentioned in Chapter 1, our overall aims were to determine whether NRG1 administration
affects hippocampal neurogenesis and affective behaviour, characterize NRG1-induced
neurogenic affects across neurogenic stages and the septotemporal axis, identify a putative
mechanism for the effects of NRG1 that we identified, and determine whether NRG1-ErbB
signaling is etiologically associated with psychiatrically relevant contexts such as depression and
suicide. In brief, through our experiments we determined that NRG1 has temporally- and
subregionally-specific neurogenic effects that are limited to increasing proliferation and
subsequent neurogenesis in the ventral DG. This increased neurogenesis was associated with
antidepressant-like behavioural effects at a time when these new neurons were immature
hyperplastic neurons, but not earlier. We identified ErbB3 as a candidate mechanistic receptor in
these phenomena, and verified that ErbB3 in the ventral DG is phosphorylated by peripheral
NRG1 administration. Finally, we associated NRG1-ErbB3 signaling with suicidality, including
decreased ErbB3 expression in the hippocampus of suicide completers that was likely due to a

deficit in DG granule cell neurons.

These results are the first to identify NRGI1 as a neurogenic regulator, the first to identify
hippocampal NRG1-ErbB3 as regulators of antidepressant-like behaviour, and the only results to
date associating the NRG1-ErbB3 pathway with suicidality. The finding that hippocampal
NRG1-ErbB3 signaling regulates neurogenesis and affective behaviour suggests that this

pathway may have etiological relevance for psychiatrically relevant contexts, and as such may
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lead to treatments targeting this pathway. In addition, one of the specific endophenotypes that we
identified in suicide completers (reduced numbers of granule cell neurons) was shown to
potentially be reversible through administration of NRG1 from our animal studies, indicating
that this may serve as a useful and valuable therapeutic in future practice. Finally, the
endophenotypic hallmarks of suicidality that we have observed in the hippocampus shed light on
the etiology of this phenomenon, furthering our understanding of how suicidality may originate
and be therapeutically addressed. The subsequent section proposes specific measures by which

these results may be furthered in these and other areas through future research.

5.2 Future directions

Although the sum total of the research we performed serves as an attempt to address the research
questions and hypotheses we presented in Chapter 1, as a natural consequence many additional

questions have been raised from our results.

In terms of clinical relevance, our data converge upon the hypothesis that a deficit in ErbB3
(possibly due to decreased numbers of granule cell neurons in the DG) exists in the hippocampus
in psychopathological contexts, particularly with respect to suicidality, and that this might be
reversed by treatment with NRG1, which has shown to be safe in human trials. Future studies
might establish or disprove this hypothesis through the administration of NRG1 to depressed and
suicidal patients to determine if depressive or suicidal symptoms are ameliorated. In terms of
logistics, clinical trials for the use of NRG1 in heart failure have established dosage ranges that
can be administered without causing substantial side effects, and thus would serve as initial

heuristics in determining a putatively therapeutic dosage for psychiatrically relevant treatment.
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The potential benefits of this treatment are threefold; 1) NRGI1 treatment may produce
antidepressant effects after only a brief administration paradigm (followed by a delay in
therapeutic efficacy), limiting exposure for individuals who might otherwise experience side
effects; 2) side effects may be less than those of conventional antidepressants, based on clinical
trial data and NRG1’s status as an endogenously-found protein; and 3) it could easily be added as
an adjunct therapy in combination with traditional antidepressants. Such treatment, based on our
findings, could increase hippocampal neurogenesis, reversing deficits in hippocampal granule

cells and ErbB3 expression, with commensurate amelioration of psychiatric symptoms.

As an aside, it is important to address one potential risk in NRG1 as a clinical therapeutic or
adjuvant. Overexpression of ErbB receptors has been found in a variety of cancer cell types,
particularly in breast and ovarian cancer (Jeong et al., 2014; Montero et al., 2008), and
stimulation of these cells by NRG1 could induce cell proliferation, worsening oncological
prognosis, although there is no indication to date that NRG1 treatment might actually induce
cancerous development in the absence of cancerous cells. As this has yet to be assessed in the
existing NRG1 clinical trials as a counter-indication for NRG1 treatment, this remains a concern
for clinical usage of NRG1 in patients who also have cancer, and possibly also those in cancer
remission. Thus, until this concern is allayed by clinical trial data to the contrary, clinical usage
of NRG1 should be limited to cancer-free individuals, and might not be ideal for longer-term

administration.

The mechanism behind affective regulation by NRG1-ErbB3 signaling is currently speculative,
and could be expanded by subsequent research. Our current hypothesis is that NRG1 binds to
ErbB3 receptors expressed by neurogenic cells, leading to increases in proliferation through

PI3K/Akt signaling, increasing neurogenesis in DG subregions (ventral in rodents, anterior in
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humans), which could prevent or reduce depressive or suicidal symptoms, potentially through
improving regulation of the HPA axis via the PVN/BNST. This could be tested in several
preclinical investigations. First, although mice lacking ErbB3 are embryonically lethal and
ErbB3-specific antagonists are not yet commercially available, the latter could be used upon
commercial release (ideally through selective administration into the DG) in tandem with NRG1
administration to determine whether ErbB3 expression in the DG is critical for the neurogenic
and antidepressant effects of NRG1 administration. In addition, conditional suppression of
ErbB3 in granule cells, through RNA interference, lentiviral vectors, or optogenetic techniques,
could also determine how (and when, with respect to administration) ErbB3 is required in these
phenomena. Neurogenic studies have recently begun to investigate whether HPA regulation is
critical to neurogenesis-related antidepressant-like effects following antidepressant
administration (Schloesser et al., 2014; Schloesser et al., 2009; Snyder et al., 2011b). These
could be extended to examining the effects of NRG1 administration in the absence of changes in
HPA function (e.g. in the context of glucocorticoid antagonists or adrenalectomy), to determine
if the mechanism by which NRG1 administration and its resulting neurogenic effects affect
behaviour is through this system. Finally, it is possible (although unlikely, given the temporal
dynamics of our behavioural findings), that NRG1’s behavioural effects are due to a
neurogenesis-independent mechanism. This could be examined by repeating these earlier studies
in mice with ablated neurogenesis. Although the means to do so were not available to us at the
time that we performed the initial experiments, several labs are capable of doing so with minimal
ancillary or confounding effects, including methods to selectively irradiate the DG and
transgenic ablations of neurogenesis (Lagace et al., 2010; Snyder et al., 2011b; Wu and Hen,

2014). These techniques could determine if NRG1 induces antidepressant-like effects through a
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neurogenesis-independent mechanism (i.e. if administration induces behavioural changes in the
absence of neurogenesis), or conversely whether neurogenesis is required for these behavioural

phenotypes to emerge.

Similarly, as ErbB receptors are also expressed in the periphery and in non-hippocampal brain
regions, our current experiments cannot preclude the possibility that our peripheral NRG1
administration paradigm induces its neurogenic and behavioural effects through NRG1-ErbB
binding outside of the hippocampus or the brain as a whole. To address this, our initial animal
experiments could be repeated with direct intrahippocampal administration replacing our
subcutaneous administration. If our neurogenic and antidepressant results were replicated, this
would support our hypothesis that peripheral administration acts through the hippocampus
specifically. Conversely, if our results were not replicated, this would suggest that the
mechanism for our findings may be extra-hippocampal, through binding either in other brain
regions or in the periphery. In either case, selective administration paradigms could further
establish the specific site of NRG1-ErbB binding required to produce these effects, and these

could be verified through localized ErbB inactivation.

Based on the model presented in Chapter 1, we suspect that the decrease in ErbB3 observed in
socially defeated mice from Chapter 4 may be due to chronic stress-induced increases in
glucocorticoids that negatively regulated hippocampal neurogenesis and numbers of granule
cells. This could be tested through repetition of this experiment in tandem with
adrenalectomization (to reduce HPA activation-induced hypersecretion of glucocorticoids) or
glucocorticoid antagonist administration, to determine if this prevents or ameliorates social

defeat-induced ErbB3 decreases.
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It was particularly interesting to us that our primary findings were restricted to the ventral DG in
mice, and the anterior DG in humans, as these represent DG subregions that are particularly
associated with affective regulation. However, it is not entirely clear why these effects were so
subregionally restricted. The subregional specificity of effects of NRG1 on neurogenesis may be
partially explained by the increased proportion of neurogenic cells expressing ErbB3 in the
ventral DG in mice, as discussed in Chapter 2, and this could be paralleled in the anterior DG in
humans. However, this may not be a completely sufficient explanation, as ErbB3 was not
entirely absent in the dorsal DG in mice, yet proliferation was unchanged in these animals
following NRG1 administration. Similarly, the mechanism underlying the deficit in anterior (but
not posterior) DG granule cells in suicides is not yet clear. These questions will hopefully be
addressed by subsequent studies examining distinctions between DG subregions, similar to those

we performed in Chapter 3.

Similarly, is this deficit in anterior DG granule cells the cause, or consequence, of suicidality?
This is an especially difficult question to answer, as the logistics of human research (particularly
post-mortem suicide research) precludes us from manipulating numbers of DG granule cells and
observing causality. Further, no valid animal models for suicide exist, limiting the potential to
determine causality in animals. It is possible that decreased numbers of DG granule cells
predispose to suicide by exacerbating stress responses, or alternatively that the stress of
experiencing suicidal ideation (or stressors that cause it) subsequently reduce numbers of DG
granule cells. Distinguishing between these possibilities may be difficult for future studies to
address, especially as animal studies have shown both increased stress responses resulting from
neurogenic ablation (Schloesser et al., 2014; Schloesser et al., 2009; Snyder et al., 2011b), and

stress reducing neurogenesis (Dagyte et al., 2011; Elizalde et al., 2010). Ultimately, it is
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plausible that both mechanisms co-occur in the suicidal brain, potentially leading to a positive
feedback loop that further exacerbates both stress and stress response, as proposed in the context

of depression in Chapter 1.

Along the same lines, does the deficit in hippocampal ErbB3 in suicides merely reflect the
decreased numbers of granule cells, or is it possible that ErbB3 expression is reduced per cell,
subsequently reducing NRG1 binding and resulting neurogenesis? The latter hypothesis could be

tested with laser-capture microdissection of the granule cell layer in tandem with qRT-PCR.

Although decreased numbers of granule cells is a plausible and sufficient potential explanation
for the decreased ErbB3 expression observed in unmedicated suicides, we cannot rule out
alternative possibilities. For example, disrupted regulation of ErbB3 by altered expression or
function of ErbB3-targeting miRNAs could plausibly cause the observed ErbB3 deficit, which
future studies could examine. This could also be said for long non-coding RNAs, as well. In
addition, when we conducted studies to examine epigenetic regulation of ErbB3 in suicides, we
examined methylation and determined that it was not supported as a candidate mechanism for
altered ErbB3 expression in suicides. However, additional epigenetic processes, such as

acetylation and chromatin remodeling, could potentially influence ErbB3 expression.

Relating to these epigenetic studies, we identified a cluster of CpGs in the ErbB3 gene that were
hypermethylated with antidepressant treatment in suicides. These CpGs were found in the
promoter region and surrounded the transcription start site, in a region enriched in transcription
factor binding sites. It is tempting to speculate that this could relate to the mechanism by which
antidepressants increase hippocampal neurogenesis, in that antidepressant treatment potentially
hypermethylates this region of the ErbB3 gene and affects ErbB3-related cell proliferation and

subsequent neurogenesis. This is especially intriguing given the necessity of neurogenesis for the
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behavioural effects of antidepressants, and the decreases in granule cells observed in depression
(Boldrini et al., 2013; Santarelli et al., 2003). However, at this early point this hypothesis is
merely speculative, and it remains for subsequent research to investigate whether this finding has

any clinical relevance.

Although we did not detect ErbB4, the other receptor apart from ErbB3 that binds NRG1, in
early neurogenic cells, ErbB2 co-expression was not examined in these cells. However, previous
studies have shown that even an extremely low ratio of ErbB2 to ErbB3 is sufficient to assist or
facilitate signaling of ErbB3 complexes through heterodimeric pairing (Steinkamp et al., 2014).
Studies ablating ErbB2 function and assessing the effects on cellular proliferation in a NRG1
administration paradigm would determine whether this coreceptor contributes to ErbB3 signaling

and neurogenesis.

Our studies have focused on the adult brain. Although previous studies have examined the
effects of early-life NRG1 administration on behaviour (Kato et al., 2015; Kato et al., 2011), it is
unclear whether NRG1 administration during development would affect developmental
neurogenesis. If this is the case, this could lead to increased numbers of DG granule cells,
buffering against stress effects through HPA regulation. Alternatively, this manipulation may
lead to DG hypertrophy or aberrant DG formation, which could underlie the behavioural
disruptions seen in animals administered NRG1 during development (Kato et al., 2015; Kato et

al.,, 2011).

Finally, it is undeniable that our experiments (indeed, the contents of this document in total)
focus on NRG1 as the ligand of interest, particularly NRG1BI. As such, our results do not
necessarily generalize to other neuregulins or other EGF family members, such as betacellulin,
heparin-binding EGF-like growth factor, amphiregulin, epiregulin, and epigen (Singh and Harris,
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2005). The rationale behind our experiments could also be applied to a lesser extent to these
proteins; although not expressed in the brain to the extent of NRG1 (or at all, in some cases), as
ErbB ligands it is possible that they might also affect neurogenesis, affective behaviour, and

psychopathology, which future research might investigate.

5.3 CONCLUDING REMARKS

This document has described the context, hypotheses, methods, findings, conclusions, and
implications of the past seven years of my research into neuregulin-1, ErbB receptors,
hippocampal neurogenesis, affective regulation, and psychopathology, particularly suicide and
depression. In brief, we believe that we have supported our hypotheses that NRG1 has
temporally- and subregionally-specific neurogenic effects in an emotion-related subregion of the
hippocampal DG, that the mechanism for these effects involves binding to the ErbB3 receptor on
neurogenic cells in this subregion, that these neurogenic effects are concurrent with
antidepressant-like behavioural alterations, and that conversely models of depression and suicide
completers show decreased hippocampal ErbB3. This latter finding is plausibly related to a
deficit in DG granule cell neurons that is reversible with antidepressant treatment. These findings
have clinical implications regarding the potential for NRG1 as a novel therapeutic or treatment
adjuvant, and may shed light into the etiology of suicidality and other psychopathology. The
logical follow-up research to these studies should focus on supporting or disproving our
proposed models, as well as determining the therapeutic utility of NRG1 in clinical populations.
NRG1-ErbB signaling appears to play a fascinating and powerful role in hippocampal plasticity,
affective regulation, and psychopathology, and it is my hope that the current document has

conveyed its importance in these phenomena.
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APPENDIX

Supplemental materials from Chapter 2:

Figure A1l. Bromodeoxyuridine (BrdU)/ErbB3 colocalization is present for at least 28 d after
cell birth. BrdU-immunoreactive (-IR) cells (red) express ErbB3 (green), 2 h (A), 24 h (Fig. 9),

7 d (B), and 28 d (C) after birth. Scale bars = 20 um.
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Figure A2. Orthogonal views of BrdU/ErbB3 colocalization. Orthogonal view of BrdU (red) /

ErbB3 (green) colocalized cells from Fig. 9 and Fig. A1. A, 2 h; B, 24 h; C, 7 d; D, 28 d.
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Figure A3. Orthogonal views of cell type colocalization. A, orthogonal view of triple-labeled
cell from Fig. 6A. B, orthogonal view of ErbB3-IR/SOX2-IR/nestin-negative cell from Fig. 6B.

Red, ErbB3; blue, SOX2; green, nestin.
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Supplemental materials from Chapter 3:

Mini-pump implantation

Blrfij NRGIiALladFiliistration
| —HH

d1 16171819

Figure A4. Experimental timeline. Mice were given three injections of BrdU on the first day of
experimentation to label newborn cells. At day 16-19, corresponding to a period at which
adultborn neurons undergo either apoptosis or morphological and synaptic development,
neuregulin-1 (NRG1) or saline (SAL) was administered through subcutaneously implanted

osmotic mini-pumps, and animals were sacrificed (X) following administration.
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Figure AS. A, B, single-channel images of the planes shown in Fig. 17C and Fig. 17E,
respectively. Red, doublecortin (DCX); green: postsynaptic density protein 95 (PSD-95). Scale

bars: 10 um.
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Figure A6. Comparison of PSD-95 staining in corpus callosum and hippocampal molecular
layer. PSD-95 staining in the current protocol is absent from the corpus callosum but present in
synaptically enriched regions; A, Dentate gyrus (DG); B, top: cortex; bottom: corpus callosum;
C, top: corpus callosum; bottom: dorsal boundary of hippocampal molecular layer. Red (A),
DCX; blue, DAPI; green, PSD-95.
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Figure A7. Additional findings on effects of neuregulin-1 administration on cell survival. NRG1
administration did not affect cell survival in the dorsal (A) or ventral (B) overall DG, or
specifically in the subgranular zone and granular cell layer dorsally (C) or ventrally (D) or in the

hilus dorsally (E) or ventrally (F).

256



A Overall perimeter

30

20

Hm

NRG

SAL

Overall feret max

NRG

Overall feret min

SAL

Aspect ratio
>

NRG

Overall aspect ratio

SAL

Compactness
=
-

-]
N

NRG

Overall compactness

SAL

o
o

SAL

pm

Compactness

Aspect ratio
s

(=3
W

B

40

Dorsal perimeter

159

104

54

SAL

Dorsal feret max

SAL

Cell body dorsal feret min

w

e
o

Dorsal aspect ratio

SAL

Dorsal compactness

257

H NRG

NRG
NRG

2 NRG

pm

8

Ventral perimeter

pm

Compactness

Aspect ratio

e

=3
@

o
td

o
-

<
~

e
o

NRG

Ventral feret max

NRG

Ventral feret min

SAL

NRG

Venltral aspect ratio

Ventral compactness




00

Overall convexitly

SAL NRG

Overall form factor

L

Overall roundness

Solidity

0.5

0.0

SAL NRG

Overall solidity

SAL NRG

AB

Dorsal area

——

SAL NRG

.

Convexity

(=3
v

0.0

Dorsal convexity

SAL NRG

Dorsal lorm factor

<

Roundness
Qo o o
- @ @

-3
o

SAL NRG

Dorsal roundness

e
o

Solidity

0.5

Dorsal solidity

0.0

SAL NRG

AC

Ventral area

. !
|

SAL NRG

258

Convexity
o

(=3
w

Ventral convexity

0.0

SAL

Ventral form factor

Roundness
(-] o
- Ll

<
Y

Ventral roundness

e
=3

Solidity

0.54

SAL

Ventral solidity

0.0

SAL




Figure A8. Additional findings on effects of neuregulin-1 administration on cell body
morphological development. NRG1 administration did affect overall, dorsal, or ventral immature
neuronal cell body perimeter (A-C), feret max (D-F), feret min (G-I), aspect ratio (J-L),
compactness (M-0), convexity (P-R), form factor (S-U), roundness (V-X), solidity (Y-AA), or

area (Fig. 16C, AB-AC).
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Figure A9. Additional findings on effects of neuregulin-1 administration on total dendritic

morphological development. NRG1 administration did affect overall, dorsal, or ventral immature

neuronal dendritic length (A-C), volume (D-F), surface area (G-I), nodes (J-L), ends (M-O), or

tortuosity (P-R).
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Figure A10. Additional findings on effects of neuregulin-1 administration on dendritic
morphological development by branch order and Sholl analyses. By branch order, NRG1
administration did affect overall, dorsal, or ventral immature neuronal dendritic length (A-C),
mean length (D-F), mean volume (G-I), surface area (J-L), mean surface area (M-0), nodes (P-
R), ends (M-0), volume (S-T; Fig. 16E), or quantity (U-W). By Sholl analysis, NRG1
administration did not affect dendritic length (W-X; Fig. 16D), nodes (Y-AA), endings (AB-

AD), or intersections (AE-AG).
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Figure A11. Additional findings on effects of neuregulin-1 administration on synapse

development. NRG1 did not affect total molecular layer synaptic density in the dorsal or ventral

subregions, overall (A-B) or analyzed by molecular layer zone (C-D). Examining immature

neurons specifically, NRG1 did not affect total dendritic synapse numbers (E-G) or density (H-

J), and this was maintained when examining by dendritic branch order (K-Oj; Fig. 17D).

Number (P-R) and density (S-T, Fig. 17F) of somatic synapses was unaffected by treatment.
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Figure A12. Additional findings on septotemporal characterization of cytogenesis and immature
neuronal morphology. Cytogenesis was higher in the ventral granule cell layer and subgranular
zone (A) and hilus (B) compared to dorsally. C, cell body perimeter was lower in immature
neurons in the ventral versus dorsal DG. Dorsal and ventral immature neuronal cell body feret
max (D), feret min (E), aspect ratio (F), compactness (G), convexity (H), form factor (I),
roundness (J), or solidity (K) did not differ between groups. Immature neurons did not differ by
subregion for total dendritic length (L), volume (M), surface area (N), nodes (O), ends (P), or
tortuosity (Q). Analyzing by branch order, there were no septotemporal differences in dendritic
length (R), mean dendritic length (S), mean volume (T), dendritic surface area (U) or mean
surface area (V), or dendritic quantity (W). *, p<0.05; **, p<0.01; ***, p<0.001; ****,

p<0.0001.
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Figure A13. Additional findings on septotemporal characterization of synaptic development.
Number (A) and density (B) of total dendritic synapses did not differ between the dorsal and
ventral DG. C, Number of synapses did not differ between subregions by branch analysis. D,

total number of somatic synapses did not differ between subregions.
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Supplemental materials from Chapter 4:

Peripheral NRG1 experiment

Control MDD p value
n 17 28 N/A
Sex (M/F) | 9/8 9/19 N/A
Age 38.11 43.68 £2.33 | 0.12
+2.30
Hippocampal mRNA expression experiment
Control Suicide p value
n 14 49 N/A
Sex (M/F) | 14/0 49/0 N/A
Age 38.79 38.80 £1.61 | >0.99
+3.18
PMI 28.79 31.00£1.97 | 0.73
+3.11
pH 6.43 6.53£0.046 | 0.15
+0.074
Diagnosis | 0 20MDD, 6 | N/A
BD,2SZ, 6
other
Medication | 1 11 N/A
Cause of 7 cardiac, 5 | 31 hanging, | N/A
death MVA, 1 13
work intoxication,
accident, 1 | 2 jumping, 2
intoxication | shooting, 1
drowning
ErbB3 methylation experiment
Control Suicide p value
n 9 31 N/A
Sex (M/F) | 9/0 31/0 N/A
Age 40.22 40.23 +£1.74 | >0.99
+4.65
PMI 23.56 26.86+£2.00 | 0.41
+2.26
pH 6.47 6.57 +0.053 | 0.38
+0.093
Diagnosis | 0 10 MDD, 2 | N/A
BD,2SZ, 6
other
Medication | 0 7 N/A
Cause of 5 cardiac, 3 | 19 hanging, | N/A
death MVA, 1 5
intoxication,
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work 2 shooting, 1
accident jumping, 1
drowning, 1
cutting, 1
asphyxiation,
1 carbon
monoxide
Stereological, volumetric, and morphological
experiment
Control Suicide p value
n 9 14 N/A
Sex (M/F) |72 13/1 N/A
Age 44.78 49.43 £4.98 | 0.58
+6.93
PMI 11.39 17.04 £4.62 | 0.84
+2.00
pH 6.52 6.69 £0.098 | 0.22
+0.088
Diagnosis | 0 5 MDD, 4 N/A
BD, 1 other
Medication | 0 7 N/A
Cause of 4 cardiac, 3 | 12 hanging, | N/A
death MVA, 1 1 jumping, 1
pulmonary | intoxication
embolism,
1 unknown

Table Al. Subject information from human experiments. Diagnosis refers to primary Diagnostic
and Statistical Manual of Mental Disorders Axis I diagnosis. Medication refers to antidepressant
medication. BD, bipolar disorder; MDD, major depressive disorder; MV A, motor vehicle

accident; PMI, post-mortem interval; SZ, schizophrenia.
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Figure A14. Fluorescence-assisted cell sorting confirmation of nestin-green fluorescent protein
(GFP) cells in dissected DG, in order to verify dissection anatomical accuracy. A, sample
histogram of sorted cell population in a dissection from a nestin-GFP-negative (non-transgenic)
mouse, revealing a homogenous low-fluorescence cellular population. B, GFP signal intensity
dot plot relative to phycoerythrin (PE) autofluorescence from a dissection from a non-transgenic
mouse, revealing an absence of GFP+ fluorescence. C, sample histogram of a sorted cell
population in a dissection from a nestin-GFP+ mouse, revealing a high GFP fluorescence signal
and two distinct cellular populations. D, GFP signal intensity dot plot of a sorted cell population
in a dissection from a nestin-GFP+ mouse, revealing a distinct GFP+ cell population that clusters

at higher fluorescent signal intensity.
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Figure A15. A, additional ErbB3 staining in human DG granule cells. B, detailed tracing (light
green) of human DG for stereological and morphological analyses. C, DG at 100X. Arrow:
granule cell; arrowhead: glial cell. Scale bar = 100 um (A), 50 um (B, C). Image credit (A):

Human Protein Atlas (http://www.proteinatlas.org/ ; Uhlen et al., 2015).

275



Glialpym?®

Overall dentate gyrus glial cell density

Suicide no AD Suicide AD

Anterior DG neuron/glia ratio

Suicide no AD Suicide AD

Anterior DG granule cell body area

A [ 29
J Posterior dentate gyrus glial cells
251054 31044
5  1x10% I 4 I
8 m_ 2x10
2 g
L 3
5 5x10% © .10
0 r 0 i
Control Suicide no AD Suicide AD Control
Posterior DG glial density
2.5x104- 3-
2.0x10 1 ©
—
—_T— = 24
=] 1
1.5x10 41 &
c
I
1.0x1044 5
2 M
5.0x10 51
0 T T 0 T
Control  Suicide no AD Suicide AD Control
Overall DG granule cell body area
1004 100 -
80 804 I
o 807 o 601
g 5
40+ 40
204 204
ﬂ T u T
Control  Suicide no AD Suicide AD control

Suicide no AD Suicide AD

276

L

Glialum?®

Glialsection

410+

4
3x10 T

2x10-]

1104

Anterior DG glial density

T
Control

o)

Suicide no AD Suicide AD

Posterior neuron/glia ratio

Ll
o
|

[
o
L

-
w
1

Neurons/glia
p

e
n
L

4
o

T
Control

Suicide no AD Suicide AD

Overall dentate gyrus glial cells

2x10°;

T

2x10°4

1x1074

5x1044

T
Control

Suicide no AD Suicide AD




Figure A16. Additional stereological and morphological data from the DGs of controls and
suicides with or without antidepressant (AD) treatment. In contrast to the anterior DG, number of
granule cells did not differ between groups overall (A) or in the posterior DG (B), and DG
volume did not differ overall (C) or in the posterior DG (D). Granule cell neuronal density did
not differ overall (E) or in the posterior DG (F). DG granule cell body size did not differ overall
(G) or in the anterior DG (H). Number of glial cells in the DG did not differ between groups
overall (I) or in the posterior DG (J). Glial density did not differ overall (K) or in the anterior (L)
or posterior (M) DG. The ratio of neurons to glia in the DG did not differ in the anterior (N) or

posterior (O) DG.
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