
STATIC VERIFICATION OF CONCURRENT SYSTEM DESIGN

by
Xun Zhu

School of Computer Science
McGill University, Montréal

June 2007

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Copyright c© 2007 by Xun Zhu

Abstract

Elaborating a correct design of a concurrent system is extremely difficult. In part this is
due to the infinite number of possible system runtime behaviors that result from the concur-
rent (or pseudo-concurrent) execution of interacting processes or threads. Data consistency,
deadlock, starvation and fairness issues are the most well-known problems encountered in
concurrent systems. Accurate concurrent system design verification approaches require an
expensive system runtime behavior analysis and consequently result in prohibitively high
development costs (i.e. for testing).
In this thesis we try to address this problem by presenting several static approaches that

can help the developer of a concurrent system during the design phase. In the first part of
the thesis we present an approach that can analyze an existing concurrent system design to
detect potential deadlock situations. This is done by mapping object interaction diagrams
such as sequence diagrams to System Synchronization Hasse diagrams, which are then
analyzed to detect deadlock cycles. Since the approach is static, it is overly pessimistic,
meaning that it is possible that the algorithm detects a deadlock that, in reality, cannot
occur. On the other hand, if the algorithm cannot detect any deadlocks, the developer can
be sure that the design is deadlock-free.
In the second part of the thesis we show how a concurrency-enriched specification can

be transformed into a system application-level consistent design. The approach starts with
concurrency-aware OCL-based operation schemas that describe all system functionality
using pre-, rely-, and post-conditions. These schemas are then mapped to Rely diagrams.
Based on the rely diagrams, sequence diagrams describing the concurrent system design
are elaborated. The approach uses locks to ensure consistency and deadlock freedom. We
then further show how these locks can be used to enforce certain fairness policies.

i

The usefulness of our approach is demonstrated by applying it to the design of a non-
trivial case study: an online auction system. We first illustrate an original online auction
system design that is built according to user requirements elicitation and analysis using
the object-oriented development process Fondue; then we check the original design for
deadlocks using our first approach. We subsequently modify the original design based on
the results.

ii

Résumé

L’élaboration d’une bonne architecture dans un système concurrent est une tâche extrêmement
difficile. Ceci s’explique par un nombre infini de combinaison de comportement d’exécution
possible causé par l’interaction des processus exécutant de façon concurrente (ou pseudo-
concurrente). La consistance de donnée, l’interblocage, l’insuffisance de ressources et le
partage juste des ressources sont les problhmes les mieux connus dans les environnements
concurrents. La vérification exacte d’une architecture de système concurrent est une solu-
tion très dispendieuse, nécessitant des analyses de comportement d’exécution qui s’avère
beaucoup trop coûteux.
Cette thèse adresse ce problème en proposant plusieurs techniques statiques qui peuvent

aider un développeur d’un système concurrent pendant la phase d’analyse. Dans la première
partie de cette thèse, nous présentons une technique qui permet d’analyser l’architecture
d’un système concurrent existant pour y découvrir des situations potentielles d’interblo-
ckage. Cette analyse nécessité le mappage de diagrammes d’interaction d’objet, tel que les
diagrammes de séquence, à des diagrammes de Synchronisation de Systhme Hasse, qui
peuvent être analysés à leur tour pour y découvrir des interblockages. Puisque la technique
est statique, elle est sur-pessimiste. Donc, elle peut trouver des interblockages qui n’existe
pas vraiment. Cependant, si aucun interblockage est trouvé, alors le programmes peut être
assuré qu’aucun interblockage ne s’y trouve.
Dans la deuxième section de la thèse, nous démontrons comment des spécifications

munies d’information concurrent, peut être transformées en spécification sans problème
d’interblockage. Cette technique débute avec des schémas opérationnels OCL munies d’in-
formation concurrent, qui décrivent toutes les fonctionnalités du système avec les pré-
conditions, les poste-conditions et les conditions de dépendance. Ces schémas sont alors

iii

mappés à des diagrammes de dépendance. En utilisant les diagrammes précédents, des dia-
grammes de séquences décrivant l’architecture du système concurrent sont élaborés. Cette
technique utilise des verrous pour assurer un état consistant et l’absence d’interblockage.
Nous montrons également comment ces verrous peuvent être utilisés pour assurer les poli-
tiques justes.
Le potentiel de notre technique est illustré par son application à l’architecture d’une

étude de cas : un système en-ligne d’encan. Premièrement, nous expliquons l’architecture
original du systhme d’encan qui a été construit à l’aide d’une analyse des pré-requis en
utilisant le processus de développement Fondue. Ceci nous permet d’évaluer l’architecture
originale pour la présence d’interblockage, en utilisant notre première technique. Nous
pouvons alors utiliser les résultats de l’analyse pour améliorer l’architecture originale.

iv

Acknowledgements

First, I would like to thank my two supervisors (names in alphabetical order): Professor
Clark Verbrugge and Professor Jörg Kienzle. This work would not have been done without
their constant help, guidance and encouragements throughout my time at McGill. I learned
a lot from Clark’s insights in concurrency, Jörg’s knowledge of high level software analysis
and design and the advice from both of them. I appreciate the time we three spent together
for the discussion and research.
I would like to thank Professors Clark Verbrugge, Jörg Kienzle, Bettina Kemme and

Muthucumaru Maheswaran for the courses they taught in concurrent programming, soft-
ware design, distributed systems and networking, which established my knowledge basis
and interest for this work. I would also like to thank Professor Hans Vangheluwe for his
advice on the Software Modeling Analysis and Professor Rob Pettit from George Mason
University for his suggestions of COMET development method. Besides, I am very grateful
to many professors and the Co-op program at the University of Victoria, which provided
me a solid foundation of Computer Science and Mathematics during my undergraduate
studies.
Meanwhile, I would like to use this opportunity to thank Laurie Hendren, Clark Ver-

brugge and Jörg Kienzle for providing very nice research environments in the Sable Re-
search lab and Software Engineering lab, where most of this work has been completed.
Additional thanks go to all members from both Sable Research group and Software Engi-
neering group, from which I made a lot of friends. Particularly, I thank Alexandre Denault
for his help on the French translation of my abstract, and Haiying Xu for the laughs she
brought to the office.
Finally, I would like to give my special thanks to my parents and my cousin sister

v

for their constant love, support, encouragement and patience during my best and difficult
times.

vi

Table of Contents

Abstract i

Résumé iii

Acknowledgements v

Table of Contents vii

List of Figures xi

List of Tables xv

Table of Contents xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 2
1.3 Thesis Organization . 4

2 Background and Related Work 7
2.1 UML Interaction Operators . 7
2.2 The Fondue Development Method . 11

2.2.1 The Fusion Method . 11
2.2.2 Object Constraint Language . 11
2.2.3 Original Fondue Method . 12

vii

2.2.4 Concurrency-Addressing Fondue Method 13
2.3 Other Concurrency Addressing Approaches 16

2.3.1 COMET . 16
2.3.2 Rely-Guarantee-Conditions . 16
2.3.3 Concurrency Pattern in UML . 17

2.4 Approaches to Verify Concurrent System Design 17
2.4.1 Deadlock Detection . 18
2.4.2 Detecting Incorrect System Conceptual State 19
2.4.3 Verify Fairness/Liveness Properties 20
2.4.4 Summary . 20

3 Overview of Online Auction System 23
3.1 Online Auction System Architecture . 23
3.2 Online Auction System Services and Rules 24
3.3 Online Auction System Requirements Elicitation 25
3.4 Online Auction System Analysis . 27
3.5 Online Auction System Monitor-Based Design 31

4 Detecting Deadlock within System Design 33
4.1 Deadlock in Concurrent System . 33

4.1.1 Conditions for Deadlock . 34
4.1.2 Resource Request Models . 36
4.1.3 Kinds of Resources . 38
4.1.4 Deadlock Prevention and Avoidance 39

4.2 Our Deadlock Detection Algorithm . 41
4.2.1 System Synchronization Hasse Diagram 42
4.2.2 Using the Hasse Diagram to Detect Circular Wait Conditions . . . 43
4.2.3 Applying the SSHD to Dining Philosophers Problem 47

4.3 Online Auction System Case Study . 50

5 Deriving a Correct Concurrent System Design 55
5.1 Application-level Consistency and Concurrency 56

viii

5.1.1 Definition of Application-level Consistency 56
5.1.2 Motivation . 58

5.2 Rely Diagram . 58
5.2.1 Extracting Concurrency-related Information 58
5.2.2 The Rely Diagram . 59

5.3 Guaranteeing Application-level Consistency Using Critical Regions 65
5.3.1 Difficulty to Verify Rely-Condition 65
5.3.2 Using Critical Regions to Guarantee Non-Interference with a Rely-

Condition . 66
5.4 Online Auction System Case Study . 67

6 Fairness and Liveness in System Design 73
6.1 Fairness/Liveness in Concurrent System 73

6.1.1 Definition of Liveness/Fairness 74
6.1.2 Fairness/Liveness Issues in Concurrent System 75
6.1.3 When to Verify Fairness Properties 77

6.2 Verifying Fairness in Concurrent System Design 78
6.2.1 Overview . 78
6.2.2 Detecting Fairness Sensitive Components 79
6.2.3 Additional Benefits . 86

6.3 Online Auction System Case Study . 90

7 Conclusions 93
7.1 Future Work . 95

Appendices

A Operation Schemas and Pseudo Codes for placeBid 97

Bibliography 103

ix

x

List of Figures

1.1 Extended Software Development Waterfall Model 5

2.1 Example of Using Interaction Operator alt 8
2.2 Example of Using Interaction Operator par 9
2.3 Example of Using Interaction Operator loop 10
2.4 Critical Region Example . 10
2.5 Sequential Operation Schema Template 13
2.6 Concurrent Operation Schema Template 14

3.1 Physical Architecture of Online Auction System 24
3.2 Online Auction System Environment Model 28
3.3 Online Auction System Concept Model 29
3.4 Online Auction System Protocol Model 30
3.5 Monitor-based Execution of placeBid and closeAuction 32

4.1 A Deadlock Situation in the Single-Unit Request Model 36
4.2 Deadlock in AND Request Model . 37
4.3 OR Request Model with/without Knot . 38
4.4 Transitive and Non-transitive Graphs . 43
4.5 Ordering of Objects Acquaintance for Operation foo 45
4.6 SSHD of Objects Locking Sequence . 45
4.7 SSHD Examples . 47
4.8 Dining Philosopher Problem . 48
4.9 Dining Philosopher Sequence Diagram for eat Operation 49
4.10 SSHD for Philosopher1 (P1) Eat Operation 50

xi

4.11 SSHD for Dining Philosopher Problem . 50
4.12 SSHD (with Deadlock) for placeBid and closeAuction 52
4.13 Deadlock-free Sequence Diagram for placeBid and closeAuction . . 53
4.14 SSHD (without Deadlock) for placeBid and closeAuction 53

5.1 Concurrent Operation Schema for Withdraw 60
5.2 Rely Diagram for withdraw . 61
5.3 Nested Rely Expression . 62
5.4 Example of Rely Diagram Structure with Nested Rely Expressions 63
5.5 Design Class Model of Own Relationship 63
5.6 Example of Refined Rely Diagram Structure 65
5.7 Mike, Larry and Bill Bidding Example 68
5.8 General Rely Diagram for placeBid 69
5.9 Design Class Model (partial) for Auction and history 70
5.10 General Rely Diagram (with Hidden Dependents) for placeBid 70
5.11 Application-level Consistent Sequence Diagram for placeBid and closeAuction 72

6.1 System Fairness Verification Process . 80
6.2 Two Philosophers with Three Chopsticks 81
6.3 Peter’s Stock Selling and Rachael’s Online Interview SSHD 83
6.4 Peter’s Stock Selling and Rachael’s Online Interview Sequence Diagram . 84
6.5 Peter’s Stock Selling and Rachael’s Online Interview Colorful SSHD . . . 84
6.6 Peter’s Stock Selling and Rachael’s Online Interview Colorful SSHDTrans-

formation Forms . 85
6.7 Colorful SSHD with Deadlock Detected 87
6.8 Colorful SSHD without Deadlock Detected 87
6.9 Choice and Control Flow Example . 88
6.10 Online Auction System Colorful SSHD Transformed Form 90

A.1 Sequential Operation Schema for placeBid 98
A.2 Concurrent Operation Schema for placeBid 99
A.3 Pseudo Code for placeBid . 100

xii

A.4 Pseudo Code for isGuaranteed . 101
A.5 Pseudo Code for insertBid . 101

xiii

xiv

List of Tables

4.1 Potential Concurrent Input Messages for a Given System Template 45
4.2 Potential Concurrent Input Messages for pick() 49
4.3 Potential Concurrent Input Messages for Online Auction System 51

6.1 Operation Table . 89

xv

xvi

List of Listings

4.1 Holt’s PL/I Example . 35
6.1 Code Segment with Starvation Issue . 76

xvii

Chapter 1
Introduction

Modern applications must meet an increasing number of demands. Many of these ap-
plications are implemented by using concurrent systems due to the fact these systems can
serve hundreds of clients simultaneously or they can provide interactive user interfaces.
However, concurrent systems are notoriously difficult to design and implement. They can
contain errors that are extremely hard to find. There is a large body of work on approaches
to detect design errors in concurrent systems; many of them require an expensive runtime
behavior analysis after the system’s implementation. Some system design issues such as
deadlock, system state inconsistency and fairness/liveness issues can cost way more to fix
if we detect them after the implementation phase, instead at the design phase. Therefore,
we need some efficient, general methods for verifying the concurrent system design before
its implementation.

1.1 Motivation

It is evident that practical and truly general approaches to verify concurrent system design
do not exist; algorithms capable of dealing with the myriad of diverse possibilities would
simply be much too computationally expensive to be effective or are unsolvable. It is our
contention, however, that general methods do exist for the conservative verification of the
system design: we do not need to consider all possible runtime behaviors; instead, a static
system design diagram is enough to provide the “reasonably” accurate verification results.

1

Introduction

This is the focus of this thesis: by constructing some system design diagrams, we are able to
conduct some general verification methods at the system’s design phase; as a consequence,
the overall cost for the concurrent system development is reduced.

1.2 Contributions

The primary contribution of our work has been to develop several general approaches which
we are certain can be efficiently used to overcome the following challenges inherent in the
design of the concurrent system.

Deadlock in the concurrent system design

A problem of increasing importance in the design of concurrent systems is the deadlock.
This fact arises from the increasing utilization of system resources. Utilizing system re-
sources by distributing them among many concurrently running processes is very common
in concurrent systems. But since the processes in concurrent systems can interact with each
other while they are executing, the number of possible execution paths can be extremely
large, and as a consequence the resulting resources utilization among different processes
can be very complex. This complexity in resources sharing can sometimes cause deadlock
problems that system developers are not even aware of. In this thesis, we will explain the
nature of deadlock state; survey the work that has been done to prevent or avoid dead-
lock; and propose our own algorithm that helps to guarantee deadlock-free property of a
concurrent system design.

System state inconsistency in the concurrent system design

System state inconsistency is another problem in the concurrent system. This kind of prob-
lem arises from improper system operation design. A system operation performs several
state changes that move the system from one consistent state (that verifies a set of pre-
conditions) to a new consistent state (that verifies a set of post-conditions). A concurrent
system, however, must be designed to run multiple operations concurrently. In this case, the
effect of running one operation can change the system’s state in a negative way with respect

2

1.2. Contributions

to the other concurrently running operation. This negative influence from one operation to
the other is extremely difficult to discover if we only monitor the system’s state from its
pre- and post-state of a particular operation. That is, if the negative influence takes effect
on the system’s state only during the middle of one operation’s execution, there is no way
we can guarantee the operation(s) affected by the changed state will run properly if we can-
not guarantee that the state changes made by concurrently running operations are isolated
from each other, for instance by locking the affected system’s state within a “safe range”.
Our approach in this thesis is going to explain how to extract the concurrency information
from the system’s analysis documents to detect the conflicts in the operation’s design. We
base our ideas on Sendall’s extended Fusion analysis [SS99] and Kienzle’s concurrency
addressing software development model [KS06]; we also propose a new method to solve
the system-state-inconsistency problem.

Fairness/liveness issues in the concurrent system design

Fairness/liveness issues are common in the concurrent system. Liveness issues are some-
times confused with fairness issues for its lack of practical meaning during the system run-
ning test [Lam00]. Formal methods for specification and verification of the fairness/live-
ness properties have been introduced in the past years [AH98, GPSS80]. A key component
in many formal approaches is the mathematical modeling of concurrency. However, veri-
fication with mathematical modeling is non-trivial, although it can provide accurate verifi-
cation results. A simple and general approach to verify the fairness/liveness properties is
difficult to design. There are two reasons we believe that cause such difficulty: one is due
to the subjective nature within the fairness; and the other is because liveness properties are
inherently difficult to verify. In this thesis we discuss and develop a new simple and yet
still general approach to help the developers to verify the system’s fairness/liveness prop-
erties. We inject the subjective fairness constraints into the meaning of liveness property
for each individual system, and we are therefore able to approximate the liveness property
to the property we really care about and that the corresponding running test is feasible. We
provide a general approach to find a list of system components that may affect the system’s
performance in terms of any kind of fairness constraints imposed on it. With the approx-

3

Introduction

imation within the liveness property, the new list-generation approach also applies to the
verification of the liveness property.

Keep the development cost low

Designing complex systems is not trivial, and designing concurrent systems is extremely
challenging. The cost to fix the design issues varies tremendously depending on the time
when these issues are detected. It has been shown in [Dav93] that the cost of fixing a
design error in later phases (coding, unit testing, acceptance testing, maintenance) can be
up to 40 times more. It is therefore desirable to detect design errors as soon as possible. The
techniques proposed in this thesis aim at preventing concurrency-related errors (deadlocks,
consistency and fairness issues) from occurring, and hence reduce the development cost of
concurrent systems.
Figure 1.1 is a modified software development waterfall model. It is augmented by our

verification methods at its design phase. Since we are performing static verification, our
approach is overly conservative. In other words, there might be other designs that would
also be correct, but that allow more flexible concurrent executions.

1.3 Thesis Organization

We begin with Chapter 2, which outlines the background of our research. It contains a
general introduction of interaction operators in Unified Modeling Language (UML), the
Fondue method and the Object Constraint Language (OCL). This chapter also presents the
related work people have done to incorporate concurrency into software system design and
to verify the concurrent system design.
Chapter 3 gives an overview of an online auction system that is used as a case study

throughout the thesis. The overview introduces the architecture, services and rules of the
online auction system. Also, the original analysis and design of the online auction system
using the Fondue method is presented.
Chapter 4 introduces the approach we adopt to check for deadlocks within a concurrent

system design. The approach is based on the Hasse Diagram, a simple picture of a finite

4

1.3. Thesis Organization

Requirements

Design

Implementation

Verification

Maintenance

Design Verification

Figure 1.1: Extended Software Development Waterfall Model

partially ordered set, from which we develop a new diagram called System Synchronization
Hasse Diagram (SSHD). By properly representing the system’s components in the SSHD,
we can run a cycle detection search in the SSHD in order to determine if the system is
deadlock-free. If the SSHD is cyclic, some further analysis methods are introduced in
order to refine the obtained result. We present our design, example usage, and related work
in this area.
In Chapter 5, we show how to construct a correct concurrent system design, in which

individual system operations perform their state modifications in a consistent and deadlock-
free way, even in the presence of other concurrently executing system operations. Based
on a concurrent system specification obtained using the Fondue development method, we
transform the rely conditions of the operation schema to rely diagrams. Based on the
rely diagrams, we elaborate sequence diagrams that describe the design of the system.

5

Introduction

These sequence diagrams contain critical regions in accordance with the rely diagrams
that guarantee the state changes are performed in a consistent way. The resulting design
is therefore “correct” by construction. In this chapter, we describe our technique and also
relate it to other related work on transaction systems.
Concurrent systems that have been designed without taking fairness into account can

exhibit undesirable behavior. In Chapter 6, we explore this kind of issue by suggesting an
approach that does not solve fairness issues, an extremely difficult problem, but points out
fairness sensitive resources, i.e. resources whose access-policies have an important impact
on the fairness of the overall system. The approach works for the liveness issues also, as
we explain why and how to bind liveness with fairness at runtime verification.
Finally, in Chapter 7 we draw some conclusions and present future work on our pro-

posed approaches. We find that the verification and generation algorithms we have devel-
oped can be used effectively to cope with common concurrent system design issues; the
online auction system case study demonstrates both the feasibility and applicability of our
methods.

6

Chapter 2
Background and Related Work

There has been a lot of research into addressing concurrency in software design. The
following sections build background knowledge for the work presented in this thesis; first
we discuss the general interaction semantics of the Unified Modeling Language (Version
2.0). The next section introduces the Fondue method, a software engineering method that
evolved from the Fusion method, and explains how it is extended to address concurrency.
The whole section is based on the work that have been done by Kienzle and Sendall [KS06].
In Section 2.3, we describe various other approaches that can address concurrency. Finally,
in Section 2.4 we present a survey of the previous work on the verification of concurrent
system design.

2.1 UML Interaction Operators

The Unified Modeling Language (UML) is widely used for the description of object-
oriented designs and therefore provides an excellent environment for specifying, visual-
izing and documenting models of software systems. Its newest version is 2.0.
UML supports behavioral modeling by providing several forms of interaction diagrams;

a very intuitive way to describe object interactions is the sequence diagram, which is
adopted throughout the thesis to describe system designs. Interactions can be used dur-
ing the detailed design phase, where the precise inter-process communication must be set

7

Background and Related Work

up according to formal protocols [UML04]. There are several interaction operators pro-
vided in UML 2.0 sequence diagrams that are commonly used in the system design and
here is a list of them [UML04]:

alt

The interaction operator alt represents a choice of behavior. By using alt, within the same
interaction fragment at most one behavior will be chosen. For each chosen behavior, there is
an explicit or implicit guard expression that evaluates to true at this point in the interaction.
An implicit true guard is implied if the behavior has no guard. The else guard represents a
guard that is the negation of the disjunction of all other guards in the enclosing combined
fragment. Figure 2.1 shows a situation in which, when X is larger than 0, foo() will be
called; otherwise, bar() will be called instead.

obj1 :C1 obj2 :C2 obj3 :C3

alt

foo()

bar()

[x>0]

[else]

interactionOperator
interactionFragment

Guard expression

Figure 2.1: Example of Using Interaction Operator alt

par

The interaction operator par represents a parallel merge between the behaviors. The event
occurrences can be interleaved in any way as long as the ordering imposed by each operand
of the par operator is preserved. The example displayed in Figure 2.2 shows that the
phone operators can receive different incoming calls simultaneously; but for each call, the

8

2.1. UML Interaction Operators

operator always handles it in the same way, regardless of the current situation of other calls.
That is, the operator first receives the call from the caller and then forwards the call to the
corresponding callee; the order is never changed.

:Operator :Caller :Callee

par Call(100)

Call(100)

--
Call(101)

Call(101)

Figure 2.2: Example of Using Interaction Operator par

loop

The interaction operator loop represents a loop behavior. The loop behavior will be re-
peated a number of times. The guard expression attached to the operator loop may include
a lower and an upper number of iterations, which means that a loop will iterate at least the
“lower” and at most “upper” number of times. The guard expression may also include a
Boolean expression; in this case, the loop will terminate when the Boolean expression is
false. The example displayed in Figure 2.3 shows that the foo() will be kept invoked
until the value of X is not positive.

critical

UML 2.0 allows a developer to visualize isolation using the interaction operator called
critical region. A critical region is a region within which all operations are executed atom-
ically. A critical region, represented as a fragment with the keyword critical, implies that
even though there could exist other par interaction operators within the same or other se-
quence diagrams, the parallelism is prevented on the objects within the critical region.

9

Background and Related Work

obj1 :C1 obj2 :C2

loop [x>0]

foo()

Figure 2.3: Example of Using Interaction Operator loop

Figure 2.4 shows an example of how to use a critical region fragment in the sequence
diagram. According to Figure 2.4, any 911-call must be handled contiguously; the operator
has to forward the 911-call before doing anything else. The normal calls, however, can be
interleaved freely.

:Operator :Caller :Callee

par Call(100)

Call(100)

--

Call(101)

Call(101)

:Emergency

--
Call(911)

Call(911)

critical

Figure 2.4: Critical Region Example

Of course, there are more interaction operators; for a complete reference, we can read
Section 14 in [UML04]. In this section, we only give a brief introduction of some of them,
which are also the ones we chose to use in our online auction system design case study.

10

2.2. The Fondue Development Method

2.2 The Fondue Development Method

Fondue is an OOSD method [SS99], which itself is based on the Fusion method [Col94].
In this section, we are going to first describe the Fusion method, which is followed by the
introduction of the original and extended Fondue method.

2.2.1 The Fusion Method

Fusion [Col94] is one of several interesting recent methods for OOSD. Very generally, like
those OOSD methods, Fusion breaks system development into several stages, which cover
the phases of analysis, design and implementation. A special characteristic of Fusion is that
Fusion has no requirements elicitation phase; this special property makes Fusion relatively
simple; but as a purported method for global system development, Fusion is clearly not
in line with the current ideas which reduce the emphasis on design and implementation
and emphasize instead the understanding of organizational environment and needs, and
the requirements collection and analysis processes [PdBZ95]. Moreover, comparing with
other OOSD methods, the Fusion method is relatively limited in its application scope; for
example, Fusion does not deal with synchronization in concurrent systems.

2.2.2 Object Constraint Language

Object Constraint Language (OCL) is a formal language for writing expressions whose
principles are based on set theory and first-order predicate logic [JBW03]. OCL can be
used in conjunction with UML models as a supplement to the UML diagrams.
One of the common usages of OCL is defining pre- and post-conditions for operations.

Pre- and post-conditions come from the work on program correctness [R.F67, Hoa69,
E.D76]. They were originally proposed as a pair of assertions in order to prove the cor-
rectness of the programs. Over time, pre- and post-conditions were used as the design
tools, offering a means to constrain the required behavior of an operation. The Fondue
method uses pre- and post-conditions specified by OCL in its operation model to represent
the effects of each system operation.

11

Background and Related Work

2.2.3 Original Fondue Method

Fondue is based on Fusion; but Fondue overcomes the limitations inherent with Fusion by
extending it in many ways. The main improvements consist of:

1. Fondue uses UML as its notation, which makes Fondue widely understandable.

2. Fondue includes the requirements elicitation phase in its system development pro-
cess; the needs of the system stake-holders are addressed in this phase.

3. Fondue introduces pre- and post-conditions in its operation schema by using OCL [JBW03];
this new addition to the operation schema makes Fondue more precise in its formal
specification.

Fondue analysis models

During Fondue analysis phase, the system and its environment are described with a collec-
tion of models, each model describing a different aspect or view. The resulting description
is of course limited to the expressiveness of the model’s building blocks and our perception
of the problem domain [KS06]. The models used in Fondue analysis include [KS06]:

• Environment Model: It precisely describes the system boundary, and shows how the
system interacts with its environment. The environment is represented by a set of
actors, which are autonomous entities external to the system.

• Concept Model: It offers insight into the problem domain. It takes the form of a
UML class diagram, and provides a description of the concepts of the problem do-
main relevant to the application under development, by representing the concepts as
classes, attributes and associations between classes.

• Protocol Model: It allows the analyst to specify the ordering in which input events
occur for the system under development by using UML state diagrams.

• Operation Model: It represents the effects of the system operations on the concep-
tual states specified in the concept model. For each operations, a separate operation

12

2.2. The Fondue Development Method

schema is written in OCL. The template for the original Fondue operation schema is
shown in 2.5.

Operation: system class:operation name (list of parameters, if any)
Description: description of operation, including purposes and effects
Notes: additional comments of the operation (optional)
Use Cases: list of related use cases (optional)
Scope: list of all classes and associations involved in the operation
Message: list of message types output by the operation together with their receiving actor
classes
New: list of objects that will be created by the operation
Alias: list of names that act like aliases (optional)
Pre: precondition; a Boolean expression that must be met before operation starts
Post: post-condition; a Boolean expression that represents the effects of the operation;

Figure 2.5: Sequential Operation Schema Template

Detailed examples of how to use each of these analysis models will be explained in Chap-
ter 3, where we can also see how these models help on the system design.

2.2.4 Concurrency-Addressing Fondue Method

The original Fondue method does not address concurrency in the system development;
Kienzle and Sendall improved the original Fondue in several ways by extending it in order
to record the inherent concurrency of the system [KS06].
First, the use case template of the Fondue method is extended to include a Frequency

& Multiplicity section. The concurrency requirements from the users therefore can be
encapsulated in this section.
Second, the Protocol Model is extended by two techniques. One technique for parti-

tioning the concurrency of the system is the divide-by-actor technique. This technique rec-
ommends that the interaction protocol between the system and each actor type is described

13

Background and Related Work

separately using a composite state. Such a state is referred to as an actor-activity-state,
and it takes a ...Activity suffix. The other technique, divide-by-collaboration, can be used
to specify the interaction protocol between the system and its actors in terms of distinct
types of collaboration between them. Such a collaboration is represented by a state named
with a ...View suffix, referred to as a view-state [KS06]. Comparing to actor-activity-state,
view-state puts more restricts on the concurrent behaviors of the actors.
Third, in order to specify the inherent concurrency captured in the Protocol Model, the

original operation schema has been elaborated to its concurrent version. Figure 2.6 shows
the concurrent operation schema.

Operation: system class:operation name (list of parameters, if any)
Description: description of operation, including purposes and effects
Notes: additional comments of the operation (optional)
Use Cases: list of related use cases (optional)
Scope: list of all classes and associations involved in the operation
Shared: list of all shared concepts
Message: list of message types output by the operation together with their receiving actor classes
New: list of objects that will be created by the operation
Alias: list of names that act like aliases (optional)
Pre: precondition; a Boolean expression that must be met before operation starts
Post: post-condition; a Boolean expression that represents the effects of the operation;

rely-condition is part of post-condition; rely-condition is a Boolean expression that must be met
during the execution of the operation

Figure 2.6: Concurrent Operation Schema Template

A new clause called Shared has been added in the concurrent operation schema; the
Shared clause is used to identify all shared concepts, i.e. classes or attributes or associations
that are used by potentially concurrent executing operations. Once all shared concepts have
been identified, we can update the Concept Model by adding <<Shared>> stereotype to
all shared classes, shared associations and shared attributes.

14

2.2. The Fondue Development Method

In the original sequential Fondue, analysis operations had instantaneous semantics. The
concurrent version, however takes into account the time it takes to execute an operation.
Therefore, the effects specified in the post-condition of the concurrent operation schema
no longer possess instantaneous semantics; pre-conditions or if statements with conditions
that include shared concepts can change their values during the execution of the operation.
To deal with this new problem, a new construct called a rely expression can be used in the
post-condition. A rely expression is a Boolean expression with the following form, where
the fail part is optional:

rely rely-condition then
rely-effect-expression

fail
fail-effect-expression

endre

The rely-conditionwithin the rely expression defines a condition that can be relied upon
to stay true during the execution of the running operation (or fulfillment of an effect). The
meaning of the above rely expression is that the running operation should fulfill the rely-
effect-expression if and only if rely-condition stays true during the execution period of the
running operation, even in presence of other concurrent operations. If, during the execution
period, the contract imposed by the rely-condition cannot be maintained, then there is an
obligation for the running operation to fulfill fail-effect-expression. This implies that, if
any other concurrently running operation changes the system to a state that violates the
rely-condition, then the running operation has to carry out the fail-effect-expression.
There are two notes for the concurrent operation schema. First, it is important to be

aware that the if expressions in the sequential operation schema that test shared concepts
have to be transformed into rely expressions. Second, in the concurrent operation schema,
pre-conditions that are based on shared concepts in the sequential operation schema may
also have to be moved to the post-condition; this is because there could be multiple opera-
tions executing concurrently, it may be not enough to check the condition only once at the
beginning of the operation.
This section only briefly describes the main features of the new concurrency-addressing

15

Background and Related Work

Fondue method. The further discussion on how to use these newly added features will be
in Chapter 3 and Chapter 5.

2.3 Other Concurrency Addressing Approaches

There have been several approaches that also address concurrency in system design; this
section presents a survey of some of the previous work and compares each of the ap-
proaches with the Fondue method.

2.3.1 COMET

COMET (Concurrent Object Modeling and architectural design mEThod) is a development
method for concurrent applications [Gom00]. It also has a requirements elicitation phase
and analysis phase; comparing to Fondue method, COMET emphasizes more on the design
phase. The system design is well elaborated by two phases. In the first phase, the system
under study is structured into subsystems, classes, objects. Interfaces between subsystems
are identified. The second phase is focusing on task structuring; concurrent tasks such as
synchronization and communication are considered in this phase. Moreover, in the second
phase, task clustering criteria is used for system control flow; and the interfaces between
tasks are identified.

2.3.2 Rely-Guarantee-Conditions

In [Jon83], Jones proposed rely- and guarantee-conditions as an extension to operation
specifications that use pre- and post-conditions. A specification that uses rely- and guarantee-
conditions consists of four assertions: pre-condition, rely-condition, guarantee-condition
and post-condition. The meanings of pre-, rely- and post-condition are very similar to
those in the Fondue method; the guarantee-condition specifies the condition that the run-
ning operation must satisfy when it changes the system state. There are several approaches
that make use of rely- and guarantee-conditions, such as the Catalysis approach [DFD98].
Comparing to the Fondue method, the rely-guarantee-conditions apply to the whole

execution period of a running operation; while the rely expressions in the concurrency-

16

2.4. Approaches to Verify Concurrent System Design

addressing Fondue method are used within the post-conditions and they have scope over
only a subset of the running operation’s effects. Another difference is that in Fondue
method, the rely expression may have a fail part encapsulating the fail-effect-expression
for the case when the rely-condition cannot be maintained during the execution of the op-
eration. Therefore, the Fondue method has more descriptive capability and consequently
provides the designers more possibilities without restricting the valid designs.

2.3.3 Concurrency Pattern in UML

In [CC01], Crinchton and his researchers proposed a pattern of usage for the UML. Their
work was intended to describe the systems in which two or more operations may be act-
ing concurrently upon the same object. Their pattern addresses two common problems -
inadequate models, and complicated state diagrams - with a simple separation of concerns.
Changes in attribute state and changes in operation state are described separately, using two
different types of diagrams.
The similarity between Crinchton’s pattern approach and the concurrency-addressing

Fondue is that they both analyze the operation individually; the pattern approach uses oper-
ation diagrams while Fondue uses operation schemas to describe each operation. However,
to perform detailed concurrent analysis on operation diagrams, additional help from formal
tools such as CSP [Hoa78] is needed; the concurrency-addressing Fondue method can use
intuitive graphical methods, such as rely diagrams, to conduct the concurrency analysis.
The details of how to use rely diagrams will be described in Chapter 5.

2.4 Approaches to Verify Concurrent System Design

There have been plenty of approaches dedicated to detect concurrency related errors in the
system design. This section divides these approaches into three categories: deadlock detec-
tion approaches, detecting inconsistent state and fairness/liveness verification approaches.

17

Background and Related Work

2.4.1 Deadlock Detection

Modeling concurrent behavior using abstract models such as process algebra including
CSP [Hoa78], CCS [Mil89], the π- calculus [Mil99] or Finite State Process(FSP) [JM06]
directly exposes concurrent behavior. For example, the Labeled Transition System Ana-
lyzer (LTSA) [JM06] is a verification tool for concurrent systems. The tool supports FSP
specifications for concise descriptions of component behavior and allows the Labeled Tran-
sition System(LTS) corresponding to a FSP specification to be viewed graphically. This
produces a mechanical way of checking that the specification of a concurrent system sat-
isfies the properties (including deadlock-freedom property) required of its behavior. This
kind of approach, although is general enough, requires a deep knowledge of the abstraction
being used and consequently is difficult to use for the practitioners.
Kaveh and Emmerich offered a new way to translate UML diagrams into behaviorally

equivalent process algebra representations and then use model checking techniques to find
potential deadlocks [KE01]. Their approach is realized by suggesting UML stereotypes to
represent the different synchronization behaviors in the UML model, and defining the se-
mantics of the UML stereotypes by using an abstraction model (FSP in their demonstrated
tool). Therefore, the verification of the UML model can be carried out on the generated
formal specification. However, their research concentrates on synchronization behavior in
object-oriented middle-ware systems only.
vUML [LP99] developed by Lilius is a tool using the SPIN model checker to perform

the verification of UML models. vUML is designed to convert the UML state charts dia-
grams into a PROMELA (a PROcess MEta LAnguage) specification first and then invokes
SPIN; the verification is then performed by SPIN without the necessity for the user to know
the knowledge of SPIN or the PROMELA language. In case the verification fails, vUML
generates a counter-example that shows how to reproduce the error in the model. vUML,
comparing to LTSA, releases the burden from the users by not requiring them to know how
to use SPIN or the PROMELA language; compared to Kaveh and Emmerich’s approach,
vUML has a broader application scope. But, it assumes that each instance of the modeled
class runs in a separate process, something not always true in practice.

18

2.4. Approaches to Verify Concurrent System Design

2.4.2 Detecting Incorrect System Conceptual State

System design errors are defined as violations of requirements expressed as properties of
the system. Among all of such errors, violation of the constraints imposed on the system
conceptual state are hard to detect, especially for concurrent systems. State changes in a
concurrent system are particular dangerous operations. That is, if the state-change is not
atomic then there exists a time point where a partially changed state can be fetched by a
concurrent actor, which can in turn apply a state-change-operation. This may lead to a
complex interleaving of partial state changes.
Temporal logic is a type of modal logic that is used for reasoning about changing prop-

erties with time, and naturally people have used it as a formalism to describe how a sys-
tem/program state will change over time. Working with assertions, which can express
system or progress invariants, temporal logic is a basis for many tools that are used to
verify system’s consistent state. Among them, SPIN [Hol97] is one of the most famous
tools. Many system state verification tools were developed based on SPIN, such as HSF-
SPIN [ELL01], extended PROMELA and SPIN for real time [TC96], and vUML [LP99].
SPIN is an example of a Finite State Verification (FSV) approach. There are two main
drawbacks to the FSV technique: first, FSV obtains the result from the model of the sys-
tem/program, therefore the quality of the results are depending on the models, which can
be very difficult to construct to be small enough to be tractable. Second, for concurrent
system/programs, the number of states can increase exponentially with the number of pro-
cesses. This well known “state explosion” can introduce significant scalability problems.
Although database and operating systems do not relate to concurrent systems directly,

the transaction processing techniques that are deeply ingrained in these two fields are in-
spirational to our approach. Transaction processing is designed to monitor, control and
update information in the database or modern system to ensure them remain in a consistent
state; it allows multiple operations to be bound together as a single, atomic transaction. The
transaction-processing system ensures that either all operations in the same transaction are
completed without error, or none of the operations are completed and the system rolls back
to its previous valid state. There exist many advanced technologies based on transaction
processing. For example, Park proposed a distributed group commit protocol [PY], which

19

Background and Related Work

identifies a consistent set of transactions that have to be committed together. The new pro-
tocol avoids consistency or system performance problem by propagating the transaction
precedence information and log contents on normal transaction messages. After review-
ing several transaction processing approaches, we found though transaction processing is a
promising approach that gives us a lot insights in how to keep system state consistent, the
space cost by using checkpoints (or log) and communication overhead to keep consistency
information up to date are not exactly what we want in our own cost-effective approach.

2.4.3 Verify Fairness/Liveness Properties

There are several general approaches to verify system liveness properties. Again, temporal
logic is one of them. Liveness properties can be specified by assertions in a simple tempo-
ral logic. SPIN [Hol97], a versatile verification tool we just introduced, can also be used
as an efficient on-the-fly verifier for the liveness property. State reach-ability is another
way for liveness verification. Cheung and his researchers have extended the conventional
Compositional Reachability Analysis (CRA) by extending the analysis to check liveness
properties which may involve actions that are not globally observable [CGK97]. Verifi-
cation of fairness, on the other hand, is very subjective. Each system may have different
fairness constraint from its users requirements. Fairness properties are easily confused with
liveness properties for the reasons we will explain in Chapter 6. Therefore, the techniques
to verify fairness properties are very similar to those used on liveness properties.

2.4.4 Summary

We address concurrency issues with the ideas from Kienzle’s concurrency-addressing Fon-
due method [KS06] and transaction processing. We are able to analyze and construct the
system design to ensure its state remains application-level consistent, and our techniques to
help developers verify system’s fairness/liveness properties are derived from and integrate
with our initial design work. Our approach to fairness/liveness verification is quite differ-
ent from the conventional techniques we surveyed in the Subsection 2.4.3. As a whole,
our three approaches to deadlock detection, verification of system application-level consis-
tency, and fairness/liveness properties are all linked together and can be used as a simple,

20

2.4. Approaches to Verify Concurrent System Design

general and fairly accurate verification package for the concurrent system. More related
work and knowledge of these three topics is discussed in each of the corresponding chap-
ters.

21

Background and Related Work

22

Chapter 3
Overview of Online Auction System

As product functionality increases, modern applications must be capable of responding
to an increasing number of requirements, including the need for better user interfaces and
interactions with real time devices, e.g. sensors. Multiple user situations are also common,
and in general the software integrated within is required to be capable of performing several
operations concurrently in order to provide prompt response to external stimuli.
This chapter gives a general introduction of a practical example with multiple demands.

Our online auction system introduction includes physical architecture, services, rules and
the design of an auction system. Since online auction systems are an example of dynamic
systems with cooperative and competitive concurrency, we use it throughout the thesis as
our use case study. The informal description of the online auction system presented in this
chapter is inspired by the auction service examples presented in [KSR02, Xio04], which
in turn are based on various live examples that can be found from Internet websites, e.g.
www.ebay.com, www.ubid.com.

3.1 Online Auction System Architecture

The physical online auction system architecture is shown in Figure 3.1. From Figure 3.1,
we see there are three main component types existing within online auction systems:

1. System Server (C1): it responds to the requests from its external users. The server
can connect to the credit institutions via the network. The number of servers varies

23

Overview of Online Auction System

Credit Institution User Terminal

User Terminal User Terminal

NetworkAuction System
Server

C1 C2

C3 C3

C3 C3

Figure 3.1: Physical Architecture of Online Auction System

depending on the system design.

2. Network (C2): it connects external user terminals and the credit institutions with the
system server.

3. External nodes (C3): they can be either user terminals or credit institutions. User
terminals are usually personal computers supporting different operating systems and
Graphical User Interfaces (GUI). The credit institutions are institutions that can pro-
vide users credit information.

3.2 Online Auction System Services and Rules

Like eBay, the online auction system we are using in this thesis only allows its registered
users to buy or sell items. To make our case study more complex, the registered users are
only allowed to use money from their auction system accounts to make deals. On the other
hand, at any time, the registered users can deposit into their auction accounts by transferring
money from their credit institutions.

24

3.3. Online Auction System Requirements Elicitation

Services

The auction system provides basic services to allow its members to log in, browse auctions,
bid in auctions and start new auctions. The system should terminate an auction automati-
cally when the corresponding auction passes its expiration time. The expiration time of an
auction can be determined either by a fixed duration or by a pre-defined time out. A fixed
duration could be 24 hours, 3 days, etc.; a pre-defined time out could be a one-day idle since
the last bid. The system can automatically withdraw or deposit money to its member’s auc-
tion system account. Upon request, the system can connect to a user’s credit institution to
transfer money between the user’s credit account and the user’s auction system account.
For each auction, the system preserves a bid history object for recording purpose and the
highest bidder account to track the last highest bidder’s account. The system is capable of
handling concurrent bids on the same auction item.

Rules

There are certain rules users should follow in order to use the online auction system. To
start a bid, the seller must provide the detailed information about the item. This informa-
tion should include the starting price, minimum increment amount and the duration of the
auction. The seller has the right to cancel the auction anytime before its initiation, but not
after. The bidder must not be the owner of the auction item; the bidding must take place
while the auction is still in its open status. The initial bid amount must be at least large as
the starting price of the auction. Each new valid bid must be higher than or equal to the
sum of last highest bid amount and the minimum increment amount. The user is allowed to
make as many bids as he/she wants. But a user’s account balance should remain at least as
much as is required to cover his/her pending bids and the new bid. When there is a higher
bid, the last highest bid amount should be returned to its corresponding bidder’s account.

3.3 Online Auction System Requirements Elicitation

Use cases are a widely used formalism for discovering and recording behavioral require-
ments of software system [Lar02]; it is an effective communication means between the

25

Overview of Online Auction System

technical developer and the non-technical stake-holder of the software. Use cases are in
general text-based, but their strength is that they can scale up or scale down in terms of
sophistication and formality, depending on the need and context [KS06]. For simplicity
purpose, this section only describes the use case of Buy Item under Auction by using the
Fondue method.
Fondue is one of the software development methods that have their own use case tem-

plates. The following is the Buy Item under Auction use case written in the Fondue use case
template.

Use Case: Buy Item under Auction
Primary Actor: Customer
Intention: The intention of Customer is to buy an item by following an auction of an item that

meets his/her criteria.
Frequency & Multiplicity: Customer may bid simultaneously in several auctions, and several

Customers can bid in the same auction simultaneously.
Main Success Scenario:

1. Customer searches for an item under auction.
2. Customer requests System to join the auction.
3. System presents a view of the auction to Customer.
Step 4 and 5 can be repeated according to the intentions and bidding strategy of the Customer.
4. Customer makes a bid on the item.
5. System validates the bid, and updates the view of the auction for the item with the new
high bid to all Customers that are joined to the auction.
Customer has the high bid for the auction.
6. System closes the auction with a winning bid by Customer.

Extensions:
3a. System informs Customer that auction is closed; use case ends in failure.
5a. System determines that bid does not meet the minimum increment. System informs Customer;
use case continues at step 4.
5b. System determines that Customer does not have sufficient funds to guarantee the bid. System
informs Customer; use case ends in failure.

26

3.4. Online Auction System Analysis

6a. Customer was not the highest bidder. System closes the auction; use case ends in failure.
Buy Item under Auction Use Case

The section Frequency & Multiplicity in this use case is used to help the developer discover
concurrency requirements for each use case. For example, in the Buy Item under Auction
use case, a customer can participate and bid in several auctions simultaneously.

3.4 Online Auction System Analysis

The Fondue analysis phase comes right after requirements elicitation. During analysis, a
black-box specification of the system under development is constructed. As mentioned
in Chapter 2, in Fondue the system and its environment can be described in a collection
of models. Based on the work done in [KS06] and for space reasons, we only briefly
go through these different models, each of which describes a different view of the online
auction system.

Environment model

The Environment Model of the online auction system, as shown in Figure 3.2, precisely de-
fines the online auction system boundary and how it interacts with its external environment.
The multiplicity of the actors and interactions states that there can be any number of sys-
tem users, of which any number can be interacting with the system at any given time. This
setting in the Environment Model ties closely to the requirements specified in the section
Frequency & Multiplicity in the Buy Item under Auction use case.

Concept model

The Concept Model of the online auction system, as shown in Figure 3.3, offers insight
into the problem domain; it excludes the objects, classes and relationships that belong to
the environment. The Concept Model is really straightforward to understand. It does not
address concurrency issues in itself; however, it forms the base for identifying possible
shared data structures [KS06]. For an instance, since Auction in Figure 3.3 has a one-to-

27

Overview of Online Auction System

<<time triggered operation>>

closeAuction

: AuctionSystem

<<active>>
User

: Credit Institution

register
deRegister
LogOn
LogOff
proposeAuction
cancelAuction
browseAuction
joinAuction
placeBid
getHistory
addCredit
removeCredit

invalidEnrollment_e
invalidLogInfo_e
invalidBid_e
auctionOpen
auctionClosed
auctionCancelled
bidSucceeded
bidFailed_e
itemSold

0..*

0..*

0..*

0..*
Transfer_c

requestFailed_c
transferSuccess

Figure 3.2: Online Auction System Environment Model

many association with Bid and each Bid has only oneCustomer, therefore we can determine
that Auction is the shared data structure.
There is one interesting detail about the derived attribute guaranteedBalance of Ac-

count in Figure 3.3. In order to guarantee that a bidder can always pay for his/her outstand-
ing bids, we let guaranteedBalance represent the maximum amount that a customer has
available for bidding. Since the attribute guaranteedBalance is derived type, its value is
calculated automatically after each valid bid. The calculation is conducted by subtracting
all high bids the customer has placed in the active auctions from the actual balance of his
online auction system account.

28

3.4. Online Auction System Analysis

Bid

+amount: Money

Auction

+description: GoodsInfo

+startingDate: Date

+duration: Period

+startingPrice: Money

+reservePrice: Money

+minIncrement: Money

 /started: boolean

+closed: boolean

Account

+actualBalance: Money

+creditDetail: CreditInfo

 /guaranteedBalance: Money

Customer

+customerDetail: CustomerInfo

+loggedOn: boolean

myBids

0..*
0..*

0..*

0..* 0..*

0..1

0..1

Makes

bidder 1

1

1

Has

myAuctions

joinedAuctions

SellsIn seller

JoinedTo

currentMbrs

ArePlacedIn

highBid

/HasHighBid

wins

<<System>>AuctionSystem

currentDate: Date
creditDetail: CreditInfo

Figure 3.3: Online Auction System Concept Model

Protocol model

As mentioned in Chapter 2, the Protocol Model is constructed by using state diagrams
to specify the ordering in which input events occur for the system under development.
Realizing the online auction system is a highly dynamic system, we use both divide-by-
actor and divide-by-collaboration techniques to describe the inherent concurrency of the
auction system.
Figure 3.4(a) shows UserActivity state by using the divide-by-actor technique, which

models the protocol that the system has withUser actors. In Figure 3.4(a), the<<concurrent>>

stereotype notation is added to highlight events in the model which can be invoked concur-
rently. Since the number of clients is dynamic, it is modeled as an auto-concurrent state,
represented by adding a multiplicity of 0..* to the state. Each concurrent state encapsu-
lates the interaction between the system and a particular User actor. The Active state is not

29

Overview of Online Auction System

concurrent, since a single user cannot physically perform multiple activities in parallel.
Further analysis on the online auction system tells us the protocol established in User-

Activity state is too general. It allows more concurrency than what is likely to be sup-
ported by the implementation. Figure 3.4(b) shows AuctionView state by using divide-by-
collaboration technique. It represents the collaboration between the various parties to take
an auction from start to finish. AuctionView state, comparing to UserActivity state, puts
more constraints on the concurrency level of the system. For example, from Figure 3.4(b),
we can see that joining and bidding is only permitted once the auction has started, and as
long as it is not closed.

BiddingActivity 0..*

SellingActivity 0..*

CreditMgmtActivity

Active
inactive

logOff

logOn

MemberActivity

register

register
deregister

<<concurrent>> UserActivity {protocol} 0..*

(a) The UserActivity State

<<concurrent>> Started

proposeAuction

when(timeToStart)

<<concurrent>> AuctionView {protocol} 0..*

waiting

joinAuction

placeBid

<<concurrent>> Joining 0..*

<<concurrent>> Bidding 0..*

when(time
ToClose)/
closeAuction

(b) The AuctionView State

Figure 3.4: Online Auction System Protocol Model

Operation model

For each of the system operations, a separate operation schema is needed. For simplicity
reasons, in this section we are concentrating on the operation placeBid only.
The protocol model (Figure 3.4(b)) states that the placeBid operation might exe-

cute concurrently with other operations. Therefore, we should use the concurrent opera-

30

3.5. Online Auction System Monitor-Based Design

tion schema instead of sequential operation schema, which we introduced in Chapter 2, to
specify the effect of placeBid on the auction system. Figures A.1 and Figure A.2 in Ap-
pendix A are the sequential and concurrent operation schemas for operation placeBid.
With the rely-conditions specified in Figure A.2, we understand that placeBid oper-

ation relies on the auction state being active, the bid amount is high enough and the balance
in the user’s account is sufficient to pay the bid during the execution of the operation.

3.5 Online Auction System Monitor-Based Design

After requirements elicitation and system analysis, we need to design the system that sat-
isfies the requirements defined by the analysis models. This section briefly describes a
monitor-based design of the online auction system.
Figure 3.5 is our original proposed online auction system design by following the

object-oriented design method. We map the system’s conceptual state to objects, and there-
fore the developers can decide how the conceptual state changes specified in every system
operation are to be implemented by interacting objects at runtime. In our sequence dia-
gram design, we choose to use dark grey color as the background of the monitor object.
The atomicity needed for implementing the rely expressions is achieved by acquiring read
or write locks on the monitor objects when checking the condition. A lock prevents other
threads from changing the condition while the operation executes. After the state changes
that rely on the condition have been performed, the locks are released again.
In Figure 3.5, auctionState, currentBid, currentAccount, previousAccount, history and

newBid are now monitors. A read lock is acquired while checking the auction status; this
blocks a potential concurrent attempt to execute the closeAuction operation. A careful
analysis shows that the balance of a customer’s account cannot decrease since the same
customer cannot place two bids simultaneously, or try to remove credit while placing a bid1.
Therefore, it is not necessary to acquire a lock to guarantee the balance when accessing the
account of the customer who is placing the bid. We can simply check and withdraw the
bid amount from the account in the operation isGuaranteed, which itself is atomic

1The guaranteed balance can grow during the placeBid operation if, for instance, a customer A bids in
auction a, and then, while bidding in auction b, a customer B over bids A in a.

31

Overview of Online Auction System

Figure 3.5: Monitor-based Execution of placeBid and closeAuction

because accounts are monitors; and then in a similar way check and update the current high
bid (checkAndUpdate operation). Subsequently, we release the bid of the previous high
bidder and update the previousAccount. Alternatively, if the bid is invalid, the money has
to be put back in the bidder’s account.

32

Chapter 4
Detecting Deadlock within System Design

In concurrent systems, processes or threads tend to communicate and interact by access-
ing shared resources. Concurrent modifications to shared data structures can lead to state
inconsistencies or data corruption. To prevent this, modifications have to execute with mu-
tual exclusion: when a thread tries to modify state that is already being modified by some
other thread, the first thread has to wait until the second one is done with the modification.
Due to the inherent non-determinism of concurrency, the number of possible inter-

leaving of resource accesses at run-time is extremely large, and it is therefore hard for a
developer to see the big picture and make sure that all interleavings lead to correct results.
In certain situations and circumstances it is unfortunately possible that a deadlock occurs,
which prevents the application from making further progress. In this chapter, we explain
the nature of deadlock, survey the work that has been done to prevent or avoid deadlock,
and propose our own algorithm that allows a developer to analyze his design for potential
deadlock situations.

4.1 Deadlock in Concurrent System

In order to understand how our proposed deadlock detection algorithm works, we first need
to have an overview of deadlock in the concurrent system. This section is structured to
introduce the following: what is a deadlock state in our thesis, different types of resources
and resource request models and historical approaches to prevent and avoid deadlock.

33

Detecting Deadlock within System Design

4.1.1 Conditions for Deadlock

Historically, there are at least five different situations that have been termed as dead-
lock [Lev03]:

1. An infinite waiting state containing a nonempty set of processes.

2. An infinite waiting state containing a nonempty set of processes that make no progress
according to some definition of progress.

3. An inactive infinite waiting state containing a nonempty set of processes that make
no further progress.

4. An infinite waiting state containing a circular chain of processes.

5. An infinite waiting state containing a circular chain of processes, each of which is
holding a non-preemptive resource while waiting for another held by the next process
in the chain.

These definitions are overlap and ambiguous and hence it is not trivially clean how to
define a precise deadlock detection algorithm. For the purpose of this thesis, we will use
the Coffman conditions to determine whether a deadlock situation exists or not. Coffman
stated four necessary conditions for resource deadlock to occur within a system [CES71].
These four conditions are:

1. Mutual exclusion condition: a resource is either assigned to one process or it is avail-
able.

2. Hold and wait condition: processes hold resources while waiting to acquire others.

3. No preemption condition: only the process holding the resource can release it.

4. Circular wait condition: two or more processes form a circular chain where each
process waits for a resource that is held by the next process in the chain.

34

4.1. Deadlock in Concurrent System

We use Coffman conditions as our necessary conditions to deadlock state in concurrent
system design. That is, if there is a deadlock in the system design, these four listed con-
ditions should be true. In most cases it is quite common for processes in the concurrent
system to satisfy mutual exclusion, hold and wait and no preemption conditions, therefore
only the circular wait condition is left for us to check in order to ensure that the system
does not deadlock.

Deadlock vs. Livelock / Starvation

Coffman conditions allow us to resolve the ambiguities within the deadlock definitions
presented above. According to the Coffman conditions, only the fifth definition in Sec-
tion 4.1.1 is considered a deadlock. Situations 1 and 2, for instance, do not explicitly men-
tion a ”hold-and-wait” or ”circular wait” condition, and hence are not considered deadlocks
in the context of this thesis. In the literature, such situations are sometimes referred to as
livelock or starvation situations.
Another similar example is found in [Hol72]. Holt stated the following three-line PL/I

program would cause a system deadlock if the event in line 2 never occurs.

1 REVENGE: PROCEDURE OPTIONS(MAIN, TASK),

2 WAIT(EVENT);

3 END REVENGE;

Listing 4.1: Holt’s PL/I Example

The code segment shown above would fall into situation 3 described in Section 4.1.1.
But according to the Coffman conditions, deadlock cannot happen with only one process.
This conclusion has also been widely accepted in modern textbooks [SGG04]. Nowadays,
people usually refer to infinite suspension of processes, such as the REVENGE process in
the Pl/I example program, as a liveness issue rather than deadlock.

35

Detecting Deadlock within System Design

4.1.2 Resource Request Models

To understand why Coffman conditions cannot be used as sufficient conditions for dead-
locks, we need to review different resource request models. Due to the reasons we ex-
plained before, we are only focusing our discussion on the circular wait condition to un-
derstand this topic. To make the idea easy to comprehend, we are using Wait-For Graph.
The Wait-For Graph (WFG) is a directed graph, where nodes are processes and a directed
edge from P→ Q represents that P is blocked waiting for Q to release a resource. If there
is a “circular wait condition” within the system, then there is necessarily a cycle within the
corresponding system wait-for graph.
There are four different kinds of resource requests that can all lead to a deadlock. They

are explained below:

1. Single-Unit Request Model: in this model, a process requests one single unit of
a resource and every requested resource has only one single copy or unit. If the
resource is available then the process acquires it; otherwise, the process is blocked
until the resource becomes available. When we represent this situation using a wait-
for graph, there will maximally be one outgoing edge for each process node. In
this case, the sufficient condition for deadlock to happen is a circular wait-for graph
among processes. Figure 4.1 shows such an example, where process P1 requests a
resource held by process P2; and process P2 requests a resource held by process P1.
In this model, since there is only one outgoing edge for each node, there are never any
branches in the path following the outgoing edges. The length of any detected cycle
is proportional to the number of computational steps that follow along the blocked
nodes.

P1 P2

Figure 4.1: A Deadlock Situation in the Single-Unit Request Model

2. AND Request Model: in this model, a process needs more than one resource to

36

4.1. Deadlock in Concurrent System

proceed. Again, each requested resource only has one copy. For example, a student
might need a pizza and a drink in order to continue to work. To represent this model
in a wait-for graph, more than one outgoing edge per process node is needed. With
multiple outgoing edges per node, it is possible for one process to be involved in
more than one deadlock at a given time. Since the complexity of cycle-detection
algorithms is linear with respect to the number of edges in the graph, an execution
of such an algorithm will most likely to visit large numbers of nodes that may not be
part of the deadlock cycle. Figure 4.2 shows a possible deadlock situation for this
model. P1 is involved in deadlocks with processes P2 and P3. Like in the single-
unit model, a circular wait-for relationship in the graph is a sufficient condition for
deadlock to occur.

P1

P2

P3

Figure 4.2: Deadlock in AND Request Model

3. OR Request Model: in this model, a resource may have more than one copy that
can be requested. For example, a student might need food such as a pizza or a sushi
in order to continue to work. According to Gertrude, the copies for the requested
resource are fungible [Lev03]. That is, in the example mentioned above, pizza and
sushi are interchangeable units; both can be regarded as a copy of the requested
resource, in this case food. The wait-for graph representing this model looks identical
to the wait-for graph in the AND-model, i.e. with potentially multiple outgoing edges
per node. But the interpretation of the outgoing edges is different. In this model, a
mere presence of a cycle does not necessarily signify a deadlock; instead, a knot is
required for deadlock to happen. A knot in a graph is a subset S of nodes such that the
reachable set of each node in S is exactly S. For example, in Figure 4.3(a) processes

37

Detecting Deadlock within System Design

P1, P2 and P3 form a cycle and also a knot; while P1, P2 and P3 in Figure 4.3(b) do
not form a knot although they are in a cycle.

P1 P2

P3 P4

(a) Cycle with Knot

P1 P2

P3 P4

(b) Cycle without Knot

Figure 4.3: OR Request Model with/without Knot

In Figure 4.3(b), even if a wait-for cycle is found, a deadlock is not bound to occur.
This is because process P1 may get its requested resource from process P4 instead of
P2, therefore once process P1 proceeds and terminates, P2 and P3 will no longer be
blocked. Algorithms to detect knots within a wait-for graph are more complex than
those that detect cycles.

4. AND-OR Request Model: this model is a combination of the AND-request model
and the OR-request model. For example, a student might need a pizza, at least one
kind of a drink, such as a Pepsi or a Sprite, in order to continue to work. Since the
OR-request model is part of this model, a knot is also required for deadlock to occur
in the AND-OR request model.

4.1.3 Kinds of Resources

There are two kinds of resources: reusable and consumable. Each kind has its own at-
tributes:

• Reusable resource: the number of such resources is fixed; the resources cannot be
created or destroyed; when the resource is allocated to a process, it is held until the

38

4.1. Deadlock in Concurrent System

process is done with the work and then released. Examples of such kind of resources
are CPU, memory and printer.

• Consumable resource: the number of such resource varies; there is a producer pro-
cess producing such resources; when the resource is allocated to a process, it is
consumed and ceases to exist. Examples of such kind of resources are messages,
interrupt signals and V operations in a semaphore.

In the context of the Coffman conditions, the resource kind we are interested in for our
thesis research is the reusable resource. That is, since consumable resources are not neces-
sarily unique or even bounded in number, we cannot detect deadlock caused by a process
requesting this type of resource. This constraint on the resource type is consistent with
the conclusion we made from listing 4.1 in Section 4.1.1: infinite wait for a consumable
resource such as a message or an event is treated as liveness issue in our thesis context.

4.1.4 Deadlock Prevention and Avoidance

There are several algorithms available to prevent or avoid deadlocks. Although they are
both deadlock handling strategies, there are differences between these two.
Deadlock prevention is done by constraining how processes’ requests for resources can

be made in the system and how they are handled. Some fairly common algorithms to
prevent deadlock from happening are:

• impose a linear ordering for the access to resources for each process;

• release a resource before the next resource request; and

• request all resources together and release all together after work is done.

Any of these situations mentioned above result in the ”circular-wait condition” being
avoided, and as a result, the potential deadlock is prevented. A reasonably common goal
behind designing such prevention algorithms is to make it impossible for one or more of
the Coffman conditions to occur.

39

Detecting Deadlock within System Design

Deadlock avoidance, on the other hand, is performed by the system dynamically. At
run-time, every resource request is considered and a decision has to be made whether it
is safe to grant the request at this moment. To do this, the system requires additional a
priori information regarding the overall potential use of each resource for each process.
One famous avoidance algorithm is called the Banker’s algorithm. It avoids deadlock by
simulating the allocation of pre-determined maximum possible amounts of resources. The
basic idea behind the Banker’s algorithm is to conservatively keep the system always in
a safe state. A safe state means that all processes within the system can eventually ter-
minate. The safe state is determined by knowing how much of each resource the system
has available, how much of each resource each process is concurrently holding, and how
much of each resource each process is possibly going to request in the future. With the
knowledge of all these three, the Banker’s algorithm can determine if a system state is safe
by finding a hypothetical set of requests by the processes that would allow each to acquire
its maximum resources and then terminate with returning its held resources to the system.
Any state within which there exists no such set is considered to be unsafe.
The Banker’s algorithm is overly pessimistic, since it always assumes each process will

attempt to acquire its stated maximum number of resources. The advantage of using dead-
lock avoidance over deadlock prevention is that often more concurrency can be achieved,
at the cost of constantly requiring dynamic information for each request. The difference
between deadlock prevention and deadlock avoidance can be compared to the ways a traffic
light or a police officer direct the traffic. Traffic lights use pre-designed rules to control traf-
fic, while police officers can direct the cars dynamically according to the different situations
on street.
However, these algorithms have drawbacks [Bel87]. For example, the Banker’s algo-

rithm requires a huge number of messages to be exchanged in a concurrent system in order
to determine safe or unsafe states. This can be especially expensive in a distributed system.
It also requires a linear order when acquiring resources, which is sometimes infeasible or
impractical.
Other algorithms, such as wait-die and wound-wait [RSI78], have been suggested in a

context when it is possible to abort or undo and restart processes. In the wait-die scheme,
a process with smaller (older) time stamp is allowed to wait for the resource that is held by

40

4.2. Our Deadlock Detection Algorithm

a process with a larger (younger) time stamp; or the waiting process should be aborted and
restarted. In the wound-wait scheme, a process with a larger time stamp is allowed to wait
for the resource held by a process with a smaller time stamp; the waiting process (older
process) preempts the resource holding process (younger process) and the latter aborts
and restarts. However, these algorithms could cause many process abortions. There are
some algorithms that improve the abortion rate such as the deadlock avoidance algorithm
proposed by Wu, Chin and Jaffar [WCJ02]. But their algorithm only works in the context
of the resource AND-request model.

4.2 Our Deadlock Detection Algorithm

From previous examples of available deadlock prevention and avoidance algorithms, we
find there is no perfect approach to prevent or avoid deadlock in different systems. We only
can say there are different algorithms for different needs, but for each algorithm there is
typically limitation to using it. Since a static approach is our adopted style in this research,
we feel instead of preventing or avoiding deadlock it is more reasonable to propose an
algorithm that can be used to guarantee deadlock-free property within the system design.
In this section we present our design-based approach.
There are some specific advantages to using our deadlock detection algorithm:

1. Being a static approach, the algorithm is a general method; it can apply to any system
that needs to be checked for deadlock under Coffman conditions.

2. To use our approach, there is no restriction on the type of resource request model.

3. Our design can be a foundation for algorithms to verify system application-level
consistency and help check fairness/liveness properties.

4. Our design can be used as an extension to high level modeling methods, such as the
Fondue concurrency addressing model introduced by Kienzle and Sendall [KS06].

5. The technique itself is easy and cheap to use.

41

Detecting Deadlock within System Design

4.2.1 System Synchronization Hasse Diagram

In order to guarantee a deadlock-free property, there must be at least one of Coffman con-
ditions being violated. As we mentioned previously, in most concurrent systems it is com-
mon to allow processes to have mutual exclusion, hold-and-wait and no preemption abil-
ities when they attempt to acquire resources. As a necessary condition to all models of
deadlock, the circular wait condition is the mostly easily modified property not allowed to
happen in deadlock-free systems. Since we aimed to develop a static approach that should
apply to any concurrent system, we chose to focus on the circular wait condition in order
to detect potential deadlocks within system design. Below we give the theoretical basis for
our approach and show how it can be applied to actual concurrent designs.

The Hasse Diagram

Helmut Hasse, a German mathematician, once introduced a simple picture of a finite par-
tially ordered set. This picture, called as Hasse diagram, represents partially ordered set as
a directed graph. In a Hasse diagram, elements of the set are represented by vertices of the
graph, and there is a directed arc from x to y if and only if y is “larger than” x.
As mentioned, Hasse diagrams represent partially ordered sets. A partially ordered

set, abbreviated as poset, is a set equipped with a partial order relation. A partial order
is a binary relation R over a set S which is reflexive, anti-symmetric, and transitive. For
example, if a, b and c are all in S, by definition of partial order, we have:

• Reflexive: aRa

• Anti-symmetric: aRb and bRa then a=b

• Transitive: aRb and bRc then aRc

The Hasse diagram actually draws the partial order in its transitive reduction form. The
transitive reduction form of a binary relation R on a set S is the actual smallest relation R on
S such that the transitive closure of R is the same as the actual transitive closure of R with
all edges added, even “redundant” ones. To understand this better, consider the following
example. If you think S is a set of airports and aRb means there is a direct flight from

42

4.2. Our Deadlock Detection Algorithm

airport a to airport b, then the transitive closure of R is the relation it is possible to fly from
a to b in one or more stops. With the knowledge of all above, we can see Figure 4.4 shows
the graph of non-transitive binary relation on the left side and its transitive reduction form
on the right.

a

cb

d

(a) Non-transitive

a

cb

d

(b) Transitive Reduction Form

Figure 4.4: Transitive and Non-transitive Graphs

4.2.2 Using the Hasse Diagram to Detect Circular Wait Conditions

One important prerequisite for circular wait condition is to have two or more processes form
a circular chain where each process waits for a resource that is held by the next process in
the chain. So in order to detect a circular wait condition, we need to have two kinds of key
information:

1. We should know during each operation’s execution: the objects that need to be ac-
quired, the length of time each object is “held” by the operation, and the ordering of
the objects to be acquired by the operation.

2. We should know the concurrency relationship among different operations in terms of
their executions; that is, can operation A execute in parallel with operation B?

43

Detecting Deadlock within System Design

If we represent the time sequence of all objects to be requested by one operation as a
partial order relationship, then in a poset of all objects we can assume the objects required
later are covered by the objects that are required earlier and still being held by the operation.
By knowing first type of key information, we can determine the partial ordering relationship
for all objects to be acquired by one specific operation; by knowing the second type of key
information, we can uncover what are the shared objects between every two concurrently
executing operations. A Hasse diagram easily encodes this information. Nodes represent
object sets, and edges represent precedence in object acquisition.
In order to get detailed information about how objects are acquired by one operation

during its execution, especially the sequence of the objects being acquired, we can consult
with operation sequence diagram. The sequence diagram consists of vertical lines called
lifelines. Each lifeline element represents the life of a given object. Lifelines are con-
nected by horizontal lines containing messages that pass from one object in the operation
(scenario) to the next object in the operation (scenario). By following the first horizontal
line that represents the initialization of the operation until the end of the operation, the
sequence of all objects being acquired during operation execution can be determined by
checking the vertical positions of the incoming messages to these objects. That is, if the
horizontal incoming message to object A is lower than the horizontal incoming message to
object B, then it means the operation acquires object B before object A during its execu-
tion. Figure 4.5 shows one example, in which operation foo is started by an actor sending
a synchronous foo() message to object A first. In other words, operation acquires ob-
ject A first, and then a synchronous message bar() is sent from object A to object B in
order to acquire the latter. Since both messages are of synchronous type, foo() cannot
complete until bar() finishes. (Dark grey scale in the object’s background represents a
monitor lock on this object, therefore object A and object B are both locked during the
execution of the operation.) Thus, in foo, acquisition of A precedes acquisition of B.
We can represent the example shown above as a Hasse diagram, shown in Figure 4.6.

To distinguish from a normal Hasse diagram, which more generally represents ordering
relations, we call the Hasse diagram used to represent the objects locking sequences as the
System Synchronization Hasse Diagram or SSHD.

44

4.2. Our Deadlock Detection Algorithm

Actor

objA :Obj objB :Obj

foo()

bar()

Figure 4.5: Ordering of Objects Acquaintance for Operation foo

ObjA ObjB

Figure 4.6: SSHD of Objects Locking Sequence

The second key piece of information is to find out all the operations that could execute
concurrently. Fortunately, by using Fondue Protocol Model, especially by using divide-
by-collaboration technique, the essential concurrency information can be extracted and
presented in a table [KS06], such as Table 4.1. Table 4.1 lists all possible messages (op-
eration invocations) that can appear in parallel during the execution of a particular system.
The Y cell represents the messages on its row and column can occur concurrently; the N
cell represents the messages on its row and column cannot occur concurrently.

input message1 input message2 input message3 ...
input message1 Y Y N ...
input message2 Y Y N ...
input message3 N N N ...

...

Table 4.1: Potential Concurrent Input Messages for a Given System Template

45

Detecting Deadlock within System Design

With both key pieces of information, we can use our proposed SSHD to verify the
deadlock-free property of the system under study. First, we can represent each system
object that will be locked during the execution of any operation as a vertex. By checking an
operation’s sequence diagram, we can find the operation’s locked objects and the sequence
of these objects to be acquired by the operation. Among all the vertices, draw lines from
the objects that are locked earlier and are still held by the operation to the objects that
are locked later by the same operation. There are several notes on our proposed System
Synchronization Hasse Diagram:

1. The System Synchronization Hasse Diagram differs from normal Hasse diagram by
the fact that its vertices are not necessarily connected in their transitive reduction
form.

2. We use different types of lines to represent different resource request models. For
example, as shown in Figure 4.6 we use the solid line to show AND request model;
we also use the dashed line to show OR request model, and AND-OR request model
can use both types of lines. For example, Figure 4.7(a) shows that the resources can
be requested as: R1 and R4; or R1 and R2 and R3.

3. Redundant links are only displayed once. In case the dashed line (OR request) over-
laps with the solid line (AND request), we always draw the solid line instead of the
dashed line. The reason why we let AND dominate OR is because the AND request
model has more restrictions on the resource acquisition. In order to guarantee the
deadlock-free property, we always assume the system is running in the most restric-
tive way; this gives us a conservative solution. For example, assume there are three
processes with one requesting resources R1 and R2; one requesting R2 and R3 and
R1; and the third process requesting R1 and R2, or R1 and R4, then the System Syn-
chronization Hasse Diagram for this example is shown in Figure 4.7(b). Note that
the R1→R2 edge is solid despite the final OR requirement.

After all vertices are connected properly according to the system operations, we can
use any searching algorithm such as Depth First Search to find potential cycles within
the System Synchronization Hasse Diagram. If the searching result shows the diagram is

46

4.2. Our Deadlock Detection Algorithm

R1 R2

R3 R4

(a) SSHD for AND-OR
Request Model

R1 R2

R3 R4

(b) SSHD for Redundant
Links

Figure 4.7: SSHD Examples

acyclic, then we can guarantee the system is deadlock-free. Alternatively, if a cycle is found
we need to do some further investigations to determine if the found cycle really means there
is a deadlock flaw in the system design. Depending on the types of resource request model,
the possible further investigations are:

• if the resource request model is OR request model or AND-OR request model, then
we need to use available knot detection algorithms, such as the ones introduced in
[MC82, CJ86], to determine if the system really has deadlock(s).

• if the request model is AND, then we can use critical regions to translate the SSHD to
its transformation form and check cycles again. The details about the transformation
will be discussed in chapter 6.

4.2.3 Applying the SSHD to Dining Philosophers Problem

The Dining philosopher problem is an illustrative and classic example of a computing prob-
lem with potential deadlock concerns in concurrency. In order to verify that our proposed
System Synchronization Hasse diagram works, dining philosopher problem is one of the
best cases to study first.
The dining philosopher problem was invented by E. W. Dijkstra in 1971. The problem

consists of n philosophers who spend their lives just thinking and eating in a dining room
with a circular table. All these n philosophers are sitting around the circular table with n

47

Detecting Deadlock within System Design

chopsticks on it. The following Figure 4.8 shows the positions of the philosophers and the
chopsticks, when n=5.

C1

C2

C3

C4

C0

P0

P1

P2
P3

P4

Figure 4.8: Dining Philosopher Problem

Each philosopher thinks. When he gets hungry, he sits down on his assigned chair and
picks his left hand chopstick followed by his right hand chopstick. If a philosopher can
pick both chopsticks then he can eat. After a philosopher finishes his eating, he puts down
the chopsticks and goes back to thinking again. In principle, at least two philosophers
should be able to eat concurrently. The problem happens when all n philosophers decide
to sit down and pick their left hand chopsticks simultaneously. A deadlock can appear at
that moment since no philosopher can find his right hand chopstick and meanwhile no one
is willing to put down his left hand chopstick. Figure 4.9 represents dining philosophers
eat operation in a sequence diagram. In this sequence diagram, the eat operation is
executed by sending two synchronous messages to two chopsticks laid on both sides of the
philosopher. Since both messages are synchronous type, then only when both chopsticks
are picked up can the eat operation be completed.
The previous textual description gives the key information of the first type. For the key

48

4.2. Our Deadlock Detection Algorithm

Px: Philosopher Cx: Chopstick C(x+1)%n: ChopstickP(x+1)%n: Philosopher C(x+2)%n: Chopstick

Par Multi =n, 0<=x<=(n-1)

pick()

pick()

pick()

pick()

Figure 4.9: Dining Philosopher Sequence Diagram for eat Operation

pick()

pick() Y

Table 4.2: Potential Concurrent Input Messages for pick()

information of the second type, in this example it is obvious that there is only one eat op-
eration; and the eat operations from different philosophers can be executing concurrently.
The table of concurrent input messages for dining philosopher problem is quite trivial, and
is shown in Table 4.2.
With the necessary key information at hand, we can start to draw SSHD for the dining

philosopher problem. First, each requested resource, which is chopstick in this example,
is irreplaceable. For example, when philosopher A wants to pick his left hand chopstick,
no other chopstick can substitute his choice. Plus, each philosopher needs two chopsticks
to eat, therefore the resource request model here follows the AND request model. Each
chopstick is represented as a vertex in the SSHD since it is locked during eat operation.
Furthermore, each eat operation with acquaintance of both left hand side and right hand
side chopsticks can be represented as an arrow coming from a vertex representing the left
chopstick to the vertex representing the right chopstick, as illustrated in Figure 4.10. Simi-

49

Detecting Deadlock within System Design

larly, Figure 4.11 displays the SSHD integrating all philosophers eat operations.

C1 C2

Figure 4.10: SSHD for Philosopher1 (P1) Eat Operation

C0

C1

C2

C3C4

P0 P1

P2

P3

P4

Figure 4.11: SSHD for Dining Philosopher Problem

The extra message besides each arrow in Figure 4.11 denotes which philosopher exe-
cutes the matching eat operation. Very obviously, there is a cycle within Figure 4.11. In
other words, there is a “circular wait condition” which occurs within the dining philosopher
problem. Since all synchronous messages pick() can be sent concurrently as shown in
Table 4.2 and the resource request model is AND request, there is no need to do any further
investigation of our found result. We can conclude that dining philosopher problem is not
deadlock-free.

4.3 Online Auction System Case Study

Having demonstrated the basic principles, we now show our system applied to a much
more complex and realistic example, our online auction system. Our original online auction

50

4.3. Online Auction System Case Study

proposeAuction joinAuction placeBid cancelAuction closeAuction

proposeAuction - N N N N

joinAuction N Y Y N Y

placeBid N Y Y N Y

cancelAuction N N N N N

closeAuction N Y Y N N

Table 4.3: Potential Concurrent Input Messages for Online Auction System

system design was proposed in chapter 3 without verifying its deadlock-free property. In
this section, we are going to verify this property by using the System Synchronization
Hasse Diagram.
For simplicity purpose, we assume the resource request model in online auction system

is AND request. To be consistent with Kienzle and Sendall’s studies [KS06], we are focus-
ing our verification based on placeBid() and closeAuction() operations. From
the AuctionView state displayed in Figure 3.4(b)(Page 30), the potential concurrent input
messages for online auction system generate Table 4.3 [KS06].
In order to know what objects are needed by placeBid() and closeAuction()

and the sequence of these objects being acquired, we can consult with original system
design, as displayed in Figure 3.5 (Page 32).
From Figure 3.5, we can see objects auctionState, currentBid, currentAccount, previ-

ousAccount, history and newBid are all locked by using monitors. Thus, only these ob-
jects need to be mapped as vertices in the SSHD. The length of each object being held
by each operation is represented by the length of the bar in objects lifelines. Auction and
System objects differ from other objects by their autonomous properties. That is, Auc-
tion object serves as a control center that receives different placeBid() messages from
different users and then sends out messages to different objects in order to fulfill users re-
quest; the System object automatically sends out message to the Auction object in order to
close the auction when time is up. Figure 4.12 shows the SSHD for placeBid() and
closeAuction().
From Figure 4.12 we can find a cycle between auctionState and history objects. With all

51

Detecting Deadlock within System Design

auctionState history

newBid

previousAcccurrentAcc

currentBid

Figure 4.12: SSHD (with Deadlock) for placeBid and closeAuction

the information we have so far, we can conclude that the original online auction system de-
sign is not deadlock-free. The deadlock happens if placeBid() and closeAuction()
are executing concurrently with placeBid() holding auctionState object and waiting
for history object held by closeAuction(), and closeAuction() holding history
object and waiting for the auctionState object held by placeBid(). There are several
techniques we can use to break this circular wait condition. The reason why we designed
closeAuction() to let it lock the history object is to guarantee that by holding the lock
on history, no more placeBid() can be made after the auction time has expired. But
since this design decision led to deadlock, we changed our design solution to the one as
shown in Figure 4.13. In the new design, we exempt closeAuction() from locking
history during its execution. Meanwhile we still can guarantee that no placeBid() is
going to be successful after auction time is expired. This is realized by adding a new check
on time before new bid is inserted into history. The corresponding SSHD (Figure 4.14)
confirms that the new system design is deadlock-free.

52

4.3. Online Auction System Case Study

Figure 4.13: Deadlock-free Sequence Diagram for placeBid and closeAuction

auctionState history

newBid

previousAcccurrentAcc

currentBid

Figure 4.14: SSHD (without Deadlock) for placeBid and closeAuction

53

Detecting Deadlock within System Design

54

Chapter 5
Deriving a Correct Concurrent System Design

One of the requirements of system design verification is to check the validity of the
conceptual system state. For the non-concurrent system, C.A.R Hoare once elucidated how
to use sets of axioms and rules of inference in proofs of the properties of the system state
or computer programs [Hoa69]. His introduction included a new notation: P{Q}R. This
notation may be interpreted as the triple P{Q}R is true if, assertion P is true before initiation
of a program Q and assertion R will be true on the program’s termination. According to
the Fondue operation schema introduced in Chapter 2, P and R are specified as pre- and
post-conditions of the running program.
Verification of the conceptual state of the concurrent system, however, is non-trivial.

Besides the system states before and after the running program, we also have to consider
the state during the execution of the program. Kienzle and Sendall integrated this con-
cern into the software development model by extending the original Fondue development
method to its concurrency addressing version [KS06]. Following the new Fondue method,
the developers can have a set of system operation schemas that specify the effects of every
system operation on the conceptual system state. These schemas contain concurrency-
related information as well, since they explicitly tag all conceptual system state that is
accessed by operations, which can potentially execute concurrently. That is, when a set
of state modifications can only be executed under certain conditions, and if these condi-
tions are likely to change because of other concurrently executing operations, then these
conditions are tagged as rely conditions; and the state modifications that have to be per-

55

Deriving a Correct Concurrent System Design

formed “atomically” with respect to these conditions are packaged within rely conditions.
This chapter describes how to use the new Fondue method to verify the conceptual state of
the concurrent system and use the verification result to come up with a design that imple-
ments the required state changes in a correct way, even if the other operations are executing
concurrently.

5.1 Application-level Consistency and Concurrency

The state of an application or system is composed of many data structures and objects.
Depending on the application, the state stored in one data structure might be linked to the
state in some other data structure. For example, in an application where a customer owns
a set of accounts, a design might store in the customer object a list of account references,
one for each account the customer owns. Vice versa, each one of the account objects stores
a reference to the customer that owns the account.
In general, a consistent change to the application state involves many individual state

modifications on data structures and objects. Usually, a system operation groups together
these individual operations, and hence a successful execution of a system operation results
in a consistent application state change. For instance, if an account changes owner, not only
the owner reference in the account must be changed, but the corresponding account lists
in the new owner and the old owner must be updated in order to achieve application-level
consistency.

5.1.1 Definition of Application-level Consistency

In the database world, transactions guarantee the ACID properties (Atomicity, Consistency,
Isolation and Durability) for accesses made to transactional objects [GR93]. One of the
properties, consistency, states that a transaction produces consistent results only; otherwise
it aborts. A result is consistent if the new state of the application fulfills all the validity
constraints of the application according to the application’s specification.
Unfortunately, this requirement is very hard or even impossible to verify. The state of

an application tends to be very complex, and the number of possible consistency constraints

56

5.1. Application-level Consistency and Concurrency

among data items is huge. In order to still guarantee consistency, current transaction sys-
tems rely on the application programmer to only commit a transaction if the application
state has been updated in a consistent way. A transaction must be written to preserve con-
sistency. That is, each transaction expects a consistent state when it starts, and recreates
that consistency after making its modifications, provided it runs to completion. Note that
the intermediate states produced by a transaction during execution of its individual opera-
tions need not necessarily be consistent. The transaction system guarantees only that the
execution of a transaction will not erroneously corrupt the application state.
Inspired by the transaction world, we will refer to the property of a state that fulfills

all the validity constraints of the application according to the application’s specification as
application-level consistency in this thesis. A system operation moves the system from an
old application-level consistent state that satisfies the validity constraints of the application
to a new application-level consistent state. In the Fondue development method, the condi-
tions under which a system operation can execute are described in the pre-condition, and
the state changes that define the desired new consistent state are given in the post-condition.
During the execution of an operation, the application state might however not always be
consistent.
In the presence of concurrency, special care must be taken to insure that system opera-

tions that execute concurrently do not interfere with each other, i.e. do not see intermediate
or temporary inconsistent application state. To make this easier, the sequential operation
schema of Fondue (see chapter 2) has been extended. It now allows the use of a rely ex-
pression within the post-condition:

rely rely-condition then
rely-effect-expression

fail
fail-effect-expression

endre

It prescribes that the new application state satisfies rely-effect-expression if and only
if rely-condition was satisfied during the time in which the required state changes were
performed; otherwise there is an obligation on the operation to fulfill fail-effect-expression.

57

Deriving a Correct Concurrent System Design

5.1.2 Motivation

It is highly non-trivial to come up with a design that correctly implements a system op-
eration with rely conditions in a concurrent environment. The purpose of the following
sections in this chapter is to present a design technique that helps the developer to derive
a correct concurrent design from a concurrent system operation schema. In addition, our
algorithm can also be used to detect fairness sensitive components that can be used to im-
pose sophisticated resource sharing policies to prevent starvation and other fairness issues.
This, however, is presented in chapter 6.

5.2 Rely Diagram

The ultimate goal of the design phase is to define how objects interact at run-time to achieve
the specified system functionality. This can be done, for instance, using interaction di-
agrams, such as sequence diagrams. To make the jump from the declarative operation
schema to the interaction diagram easier, we first describe in this section how to extract
concurrency-related information from a concurrent operation schema. We show how to
transform the operation’s rely-conditions to a rely diagram, and then finally how to use
the rely diagram to construct the sequence diagrams for each system operation that satisfy
application-level consistency.

5.2.1 Extracting Concurrency-related Information

The original Fondue operation schema only describes the system state before and after
the execution of a system operation. In Chapter 2, we have shown how to extend the
original Fondue operation schema from its sequential version to its concurrent version.
From the concurrent operation schema template, we can see that in order to guarantee
the post-condition to be true, not only the Boolean expression specified in the effects of
the operation should be true, but also the rely-condition should be met during the whole
execution period. In other words, the statements specified in the post-condition of the
concurrent operation schema no longer possess instantaneous semantics.

58

5.2. Rely Diagram

Figure 5.1 shows a concrete example that follows the concurrent operation schema tem-
plate. The operation is designed to withdraw a certain amount of money from an account.
In our case, there is no condition that could prevent the operation from executing, so the
precondition is always true. However, during the execution of the withdraw operation
we require the account balance to remain equal or larger than the amount to be withdrawn.
This is due to the fact that other system operations could potentially access the same ac-
count object concurrently. For instance, other concurrent withdraw operation executions
could also want to take money from this account. The rely expression makes sure that
either the requested amount of money was successfully withdrawn from the account and
during the execution of this state change no other operation modified the balance in such
a way that there was not enough money left on the account, or else the InsufficientFund
message has been sent to the customer.

5.2.2 The Rely Diagram

This subsection describes the generation of the rely diagram based on the rely-conditions.
The rely diagram can then in turn be used to construct the design of an application-level
consistent operation.

Constructing a Rely Diagram

By looking closely at the rely expression specified in section 5.1.1, we can see that each
rely expression has a rely-condition, which is a predicate that can contain assertions on
multiple objects or object attributes. We will call the objects and attributes listed in the
rely condition the rely expression’s dependant objects. Correspondingly, the operation that
has the rely-condition specified in its operation schema is called the dependent object’s
owner operation. For example, in Figure 5.1 the dependent object of its owner operation
withdraw is acc.balance.
In order to construct a rely diagram, we can put the owner operation name on the top of

the diagram; then a dashed arrow is drawn from the rely expression to each of its dependent
objects. Figure 5.2 is a simple rely diagram for the withdraw operation.
It is important to note that, especially when transforming if expressions from the se-

59

Deriving a Correct Concurrent System Design

Message (type) declarations:
InsufficientFunds e(); DispenseCash(amount: Money);
//define the messages that are to be used during the operation

Operation: Bank::withdraw (acc: Account, request: Money);
Description: Request from an ATM of some amount to be taken

from a given account. Cash is dispensed only if account has sufficient funds.
Scope: Account;
Shared: acc.balance;
Messages: ATM::{InsufficientFunds e; DispenseCash;};

// messages types to be output by the operation
Pre: true;
Post:

rely (acc.balance@pre ≥ request) then
acc.balance = acc.balance@pre - request &
sender ˆ dispenseCash (request)

fail
sender ˆ insufficientFunds e ()

endre;

Figure 5.1: Concurrent Operation Schema for Withdraw

quential operation schema to rely expression in order to take into account the shared re-
sources [KS06], there could be nested rely expressions in the same concurrent operation
schema, such as Figure 5.3.
In Figure 5.3, we use numerical indices to show the depths of the nested rely expres-

sions. In the concurrent operation schema with nested rely expressions, we call the inner
rely expression the dependent rely expression of its outer rely expression. Of course, the in-
ner rely expression still has its own dependent objects. For each rely expression in the rely
diagram, there is at most one direct inner dependent rely expression, while the number of
its dependent objects varies. Figure 5.4 shows the rely diagram of the concurrent operation

60

5.2. Rely Diagram

rely expression

acc.balance

withdraw

dependent object

owner operation

Figure 5.2: Rely Diagram for withdraw

schema with three nested rely expressions.

The Dependent-status-passing Rule

It is very important to be aware that the objects in the design solution domain are not the
same as the concepts in the problem domain. That is, migrating from analysis to design
can result in that some concepts may be implemented using several objects; or alternatively,
some concepts may be implemented as attributes of classes. The granularity of objects can
affect the system in several ways. A too fine-grained decomposition can lead to system
with thousands of objects, which can result in the extreme difficulty in system analysis and
huge communication overhead; a coarse decomposition can lead to a bulky architecture,
and objects within have unclear responsibilities [KS06].
Due to the objects mapping from problem domain to solution domain, it is highly pos-

sible that some new objects that only appear in the Design Class Model (class diagrams
generated based on the system design) are not treated as the dependent objects, which they
should be. In this case, if a dependent object or its mapping object in the Design Model has
a one-to-one association with some other “new” object that is only in the system Design
Class Model, then the “dependent” status of the first object is automatically granted to the
second object, and we should include the new dependent object in the rely diagram. We
name this as dependent-status-passing rule. For example, Figure 5.5 is a simple Design
Class Model. In the figure, if the customer object is only in the solution domain, then the

61

Deriving a Correct Concurrent System Design

rely rely-condition then
rely rely-condition then (1∗)

rely rely-condition then (2∗)
rely-effect-expression

fail
fail-effect-expression

endre
fail

fail-effect-expression
endre

fail
fail-effect-expression

endre

Figure 5.3: Nested Rely Expression

dependent object status of the account will be automatically passed to the customer, which
should also be included in the rely diagram. Of course, during the time when we use De-
sign Class Model to include new dependent objects in the rely diagram, all the dependent
objects included in the rely diagram are updated to system design objects; this implies the
old dependent objects coming from problem domain should also be replaced by their map-
ping objects in the Design Class Model. As displayed in Figure 5.1, the rely expression in
the concurrent operation schema shows that acc.balance is withdraw operation’s depen-
dent object. Since in the Design Class Model (Figure 5.5), every Account object associates
itself with only one Customer object by the own relationship; therefore, according to our
proposed dependent-status-passing rule, the customer who owns the account is also the de-
pendent object of withdraw operation. As a result of being dependent objects, both the
account and its owner cannot be changed during the execution of withdraw operation.

62

5.2. Rely Diagram

rely expression

rely expression (1*)

rely expression (2*)

object(s)...

object(s)...

object(s)...

operation name

dependent object
dependent rely expression

Figure 5.4: Example of Rely Diagram Structure with Nested Rely Expressions

Account

+creditDetail: CreditInfo

+balance: Money

Customer

+detail: CustomerInfo

+loggedOn: Boolean

1

1

Own

Figure 5.5: Design Class Model of Own Relationship

Change Dependent Object’s State in Two Ways

It is the nature of the concurrent systems to have more than one operation execute simulta-
neously and hence the state of one dependent object can be altered by another concurrently
running operation during its owner operation’s execution. The change of dependent ob-
ject’s state can either be “positive” or “negative” with respect to the owner operation’s
rely-condition. Change in a “positive” way means the state of the dependent object is

63

Deriving a Correct Concurrent System Design

changed in a way that favors the owner operation. In Figure 5.1, if during the execution of
withdraw operation there is another operation depositing money into the same account,
then we say this deposit operation changes acc.balance in a “positive” way, since more
money in the account does not prevent the withdraw from succeeding. Change in a “neg-
ative” way means that the state of the dependent object is changed in a way that could
decrease the chances of the owner operation running successfully. For an instance, in Fig-
ure 5.1, if during the execution of withdraw there is another operation transferring money
from the same account to somewhere else, then we say this transfer operation changes
acc.balance in a “negative” way. Transferring money decreases the balance of the account
and consequently lowers the chance to pass the rely-condition: acc.balance ≥ request.
In order to find the objects whose states could be altered in a negative way during

the execution of an operation, we can consult the system concurrency table that is built
during the Fondue analysis phase. An example of such a table is shown in Table 4.1(Page
45). By looking at the Shared clauses of all concurrently executing operations, we can
find out which dependent objects can potentially be altered by other operation(s) during
the execution of the owner operation; by examining the post conditions of concurrently
running operations, we can determine in which way (positive or negative) can the state(s)
of the owner operation’s dependent object(s) be affected.

Refining the Rely Diagram

The initial rely diagram can be refined based on the effects from all other concurrently
running operations, therefore it can display which dependent objects could be potentially
negatively affected. Figure 5.6 is one example of a refined rely diagram.
The difference between the general rely diagram and its refined form is that in the re-

fined version, there are some “-” notations besides some of the dependent objects. This “-”
notation indicates that the associated dependent object might be changed in a “negative”
way during the execution of the owner operation. For the dependent objects without “-”
notations, these are the objects that either will not be altered during the owner operation’s
execution, or they could be altered in a way that favors the owner operation’s execution.

64

5.3. Guaranteeing Application-level Consistency Using Critical Regions

rely expression

rely expression (1*)

rely expression (2*)

object A

object B

object C

operation name

-

-

Figure 5.6: Example of Refined Rely Diagram Structure

5.3 Guaranteeing Application-level Consistency Using

Critical Regions

This section describes how to elaborate sequence diagrams that contain critical regions in
accordance with the rely diagram to obtain a system design, which ensures that application-
level consistency is always guaranteed.

5.3.1 Difficulty to Verify Rely-Condition

As we introduced in section 5.1.1, in order to guarantee application-level consistency,
the system has to satisfy its running operation’s pre-condition, rely-condition and post-
condition. Verification of the pre-condition or post-condition is relatively easy; as these
conditions can be examined before and after the operation’s execution. For example, if the
system operation interaction is designed using sequence diagrams, we can use the inter-
action operator alt together with different guards to model different conditions that direct
different control flows.

65

Deriving a Correct Concurrent System Design

However, verifying a rely-condition in the sequence diagram is non-trivial. A rely-
condition, unlike a pre-condition or a post-condition, does not have instantaneous seman-
tics. This implies that it is not sufficient to verify if a rely-condition holds by checking
only once during the execution of the operation. In fact, in order to ensure the system al-
ways stays in its application-level consistent state, the rely-condition should be examined
continuously during the execution of the operation. This is, of course, impossible from a
computational point of view. It can also not be represented as such in a sequence diagram.
For example, interaction operator alt in the sequence diagram cannot model continuous
condition checking.

5.3.2 Using Critical Regions to Guarantee Non-Interference with a
Rely-Condition

One way to solve the problem of guaranteeing that the rely-condition holds during the
system operation execution is to check it, and then prevent it from being changed. This
can be achieved by looking closely at the information found in the refined rely diagram.
We absolutely do not want the operation’s dependent objects’ states to be changed in a
“negative” way during the operation execution; however, a change in a “positive” way is
allowed.
According to our approach, we only need to check the rely-condition once before ex-

ecuting the changes specified in the rely-effect expression; once the check is made, the
system is designed in a way that “isolates” those dependent objects from being changed in
a negative way until the end of the execution of the rely-effects. Based on the refined rely
diagram, it is easy to identify the group of dependent objects that have to be isolated: the
group consists of all objects with “-” notations besides.
With the property of the critical region as we mentioned in Chapter 2, it will be safe

to cover the owner operation together with its dependent objects within the same critical
region, without worrying about its dependent objects being altered during its execution.
Again, please note it is not wrong to cover all dependent objects in one critical region.
But this is a conservative approach. To achieve maximum concurrency in the system’s
performance, we should not include in the critical region the dependent objects without “-”

66

5.4. Online Auction System Case Study

notations.

5.4 Online Auction System Case Study

In Chapter 4 we have refined our online auction system design to ensure it is deadlock-free;
in this section we are going to verify its application-level consistent state. In order to do so,
let’s first look at the original concurrent operation schema and the related pseudo codes for
placeBid operation; these are listed in Appendix A.

Problematic Scenario

By comparing the placeBid concurrent operation schema and the pseudo code created
based on the design presented in Chapter 4, we discovered an interesting problematic sce-
nario.
Let’s imagine that Mike, a bidder, makes a first bid of $50 for the auctioned item. At

that time, the auction’s previous highest bidder account is set to Mike’s account. Later on,
Larry, a different bidder, joins the auction and over bids Mike by $100. The system accepts
Larry’s bid and sets the amount of money to be released by Larry’s placeBid operation
to $50. But before updating the auction history object and setting auction’s previous high-
est bidder account to Larry’s account, Bill, yet another bidder, joins the auction. Bill, who
makes an even higher bid of $150, has his bid accepted by the auction system. Conse-
quently, the amount of money to be released by Bill’s placeBid operation is set to $100.
However, after Bill’s bid is accepted by the auction system, the system does not go back to
complete what was left for Larry’s placeBid operation immediately. The system keeps
proceeding Bill’s placeBid operation by updating the auction’s history object. Thus, the
new previous highest bidder’s account is set to Bill’s account. Then, the system goes back
to work on Larry’s operation. Since Larry’s bid has already been accepted by the auction
system, its validity is not checked again before the auction’s history object is updated to set
the new highest bidder’s account to Larry’s account. The whole scenario is represented in
Figure 5.7.
The application state is now not consistent anymore. First, when the system set Bill to

67

Deriving a Correct Concurrent System Design

The order of bidders who make bids and the amount of each bid:
Mike ($50)→ Larry ($100)→ Bill ($150)

The amount of money to be returned by each bidder’s placeBid operation:
Mike ($0)→ Larry ($50)→ Bill ($100)

The order of the highest bidders stored in the auction’s history:
Mike→ Bill→ Larry

The amount of money the auction system will return to each bidder:
Mike ($100)→ Bill ($50)→ Larry ($0)

Final bid winner:
Larry

Figure 5.7: Mike, Larry and Bill Bidding Example

be the highest bidder, it released the last highest bid’s amount of $100, which came from
Larry’s bid, to Mike’s account. Then, when the system set Larry to be the highest bidder,
it released the last highest bid’s amount of $50, which came from Mike’s bid, to Bill’s
account.

Guaranteeing application-level consistency by using rely diagram

All the errors coming from the problematic scenario suggest that we may have “forgotten”
to list ArePlacedIn, or its mapping design object Auction.theHistory, in the placeBid’s
rely-conditions. Using scenario analysis is one way to find such errors; but rely diagram
analysis can give us a more systematic way to find application-level inconsistency errors. In
the rely diagram analysis, placeBid is an owner operation that relies on the states of its
dependent objects. According to the concurrent operation schema A.2, these dependent ob-
jects (after being mapped) in the system sequence diagram are: auctionState, highBid and
currentAccount. Following the general rely diagram construction rule , we can represent
these placeBid’s rely-conditions in the Figure 5.8.
Figure 5.9 is part of the Design Class Model for placeBid operation. In the figure,

68

5.4. Online Auction System Case Study

rely expression

rely expression (1*)

rely expression (2*)

auctionState

highBid

currentAcccount

placeBid()

Figure 5.8: General Rely Diagram for placeBid

each Auction owns one history object and has zero or one highBid; the history consists of
all previous valid bids and is the superset of the highBid. Since the change in the history can
lead to the change of highBid (a change in the history implies a new higher bid is inserted
into the history), then there is a one-to-one association between each specific highBid and
each particular history. As the highBid is identified as a dependent object, then in order to
prevent the highBid from being changed during the execution of placeBid, its superset
history should not be changed either. According to the dependent-status-passing rule, the
dependent object status is automatically passed from the highBid to the history. On the
other hand, since each bid is made from only one account, therefore the depend object
status of the highBid is passed to the previousAccount object, from which the highBid
comes from.
As explained above, by applying the dependent-status-passing rule, we can find the

hidden dependent objects even they are not originally specified in the operation’s rely ex-
pression(s). Figure 5.10 is a new rely diagram for placeBid that includes all hidden
dependent objects.
In Figure 5.10, all dependent objects have “-” notations besides, indicating they might

be changed in a “negative” way during the execution of placeBid. Therefore, when
we design our auction system in the sequence diagram, operation placeBid ought to be

69

Deriving a Correct Concurrent System Design

Auction history:Bid

Bid

0..*

highBid

0..10..1

11

owns

Account
10..1

has

bids

Figure 5.9: Design Class Model (partial) for Auction and history

rely expression

rely expression (1*)

rely expression (2*)

auctionState

highBid

currentAccount

placeBid()

historypreviousAccount

-

- - -

-

Figure 5.10: General Rely Diagram (with Hidden Dependents) for placeBid

covered together with these dependent objects within the same critical region in order to
avoid the errors we presented in the problematic scenario. In our final design solution,
however, currentAccount object is left outside the critical region. There is one reason for
this design decision. We know from the requirements elicitation phase that the system
user should be able to make several bids simultaneously. If we leave the currentAccount
in the placeBid’s critical region, then the user will not be able to make multiple bids
at the same time. In order to resolve the difficulty just mentioned, the pseudo code of
isGuaranteed (Figure A.4) is designed in a way to freeze the bid amount of money

70

5.4. Online Auction System Case Study

within the user’s account; so as soon as isGuaranteed is passed successfully, there’s no
way for the current account balance to be lower than required during the rest of execution of
placeBid. Although there is still possibility that another concurrent placeBid would
negatively affect the currentAccount’s balance before isGuaranteed is executed, in or-
der to achieve more concurrency in the system’s performance, leaving currentAccount out
of the critical region is a tradeoff we have to afford in our system design. Therefore, based
on the deadlock-free online auction system design (Figure 4.13) and the rely diagram anal-
ysis, we can derive an application-level consistent system design by grouping placeBid
operation with its dependent objects except currentAccount, in the same critical region.
The resultant design is shown in Figure 5.11.
Our case study does not follow entirely with the rely diagram analysis result due to

the external user’s requirement imposed on the system’s concurrency performance; how-
ever, rely diagram can guide us to a correct system design decision that ensures system’s
application-level consistency property.

71

Deriving a Correct Concurrent System Design

:Customer

a :Auction

as :AuctionState

currentBid :Bid

current :Account

previous :Account

history :BidHistory

:Clock:System

placeBid(currentAcc: Account, bidAmount: Integer)

1: readLock()

2: isGuaranteed(bidAmount)

3: succ := checkAndUpdate(bidAmount)

alt
[SUCC]

5: insertBid(bidAmount, time, date)

new :Bid

5.1: create()

6: releaseBid(lastBidAmount)

7: setPreviousAccount(current)

[ELSE]
5A: releaseBid(bidAmount)

getTimeAndDate()

loop[time<deadline]

1: writeLock()

par

4: time, date := getTimeAndDate(); succ = time > deadline ? false: true

[ELSE]

[SUCC]

4A: releaseBid(bidAmount)

alt

closeAuction(a)

critical

Figure 5.11: Application-level Consistent Sequence Diagram for placeBid and
closeAuction

72

Chapter 6
Fairness and Liveness in System Design

Problems of liveness and fairness have been studied intensively for concurrent sys-
tems. Fairness within a concurrent system ensures each process or thread makes progress
whenever possible. There are many specific fairness definitions describing when and how
often processes or threads are guaranteed to get a turn to run. For example, do we expect
each thread to execute as often as others; or is it acceptable if one thread runs a thousand
times for each run of another thread? Definitions of fairness for different systems may vary
significantly, and so consideration of user specified fairness constraints during the verifica-
tion of the concurrent system design is an important part of reviewing a system design in
order to ensure the proposed design ties to the original user’s requirement. In this chap-
ter, we present a static approach to addressing fairness issue within a concurrent system
design. In addition, since fairness assumptions can be used to prove systems liveness prop-
erties [KZ05], it is also possible that our fairness verification approach will ultimately help
to address liveness issues.

6.1 Fairness/Liveness in Concurrent System

Fairness and liveness are two important concepts of concurrent systems. Although they
are technically two different properties, people often find distinguishing them difficult. In
this section, we review these two concepts by focusing on their definitions, the reason

73

Fairness and Liveness in System Design

why people can get confused while distinguishing them, and finally the necessities and
difficulties of verifying them.

6.1.1 Definition of Liveness/Fairness

When we verify a concurrent system design, it is useful to categorize the properties of the
system into two classes: safety properties and liveness properties. Informally, a safety prop-
erty stipulates that some “bad thing” does not happen during system execution [Lam79].
The properties of deadlock freedom and system application-level consistent state are the
examples of safety properties which have been discussed in the previous chapters. On the
other hand, liveness properties stipulate that some “good thing” happens during system
execution [Lam79]. Liveness properties, which relate very closely to fairness properties,
include the following [Lam89]:

1. Starvation freedom: asserting each waiting process will eventually make its progress.

2. Termination: asserting a program must eventually generate an answer; or the pro-
gram will eventually terminate.

3. Guaranteed service: asserting every request will eventually be satisfied.

In concurrency theory, fairness is a concept used to define different levels of timeliness
constraints placed on concurrent actions. In a multiprogramming environment, fairness ab-
stracts the details of admissible schedulers; in a distributed environment, fairness abstracts
the relative speeds of processors [AH98]. Although there is more than one meaning of
fairness in computer science [Hoa78], usually fairness is defined in one of these two forms:

1. Weak fairness: also called justice [KPRS06]; all processes are executing infinitely
often; put differently, no enabled system state transition is postponed forever.

2. Strong fairness: also called compassion [KPRS06]; if a process requests a resource
infinitely often, then it should be allowed to get the resource infinitely often.

As mentioned previously, in reality the meaning of fairness to a specific system can be
greatly extended. It can be covered in the user’s specific system requirements. For example,

74

6.1. Fairness/Liveness in Concurrent System

it is fair to design the call switch system to forward all emergency (9-1-1) calls before it
deals with the normal calls. In this example, the additional fairness constraint on the switch
system is to allow 9-1-1 calls to be served earlier than normal ones. Hence, when it comes
to a specific system, the meaning of fairness for this system is very subjective; it may
include complex notions of priority in addition to simply being equitable. In order to verify
a system in terms of its fairness, we should also put those system-customized requirements
into consideration.

6.1.2 Fairness/Liveness Issues in Concurrent System

It is hard to enumerate all system specific fairness issues since each systemmay be expected
to have different requirements and behaviors from this point of view. However, for system
liveness issues, there are some general forms. Before we go any further, it is necessary to
have a review of these common forms.
Lack of liveness will usually be manifested by one of the following forms:

1. Starvation: a waiting process will never get into its critical section or progress.

2. No termination: a process never terminates.

3. No guaranteed service: following a request the corresponding service is never per-
formed.

For example, Listing 6.1 shows a code segment. If we look closely at the codes, we
can find if process p0 exits its critical region and goes back to check the f1 value quickly
enough, then process p1 will never get a chance to check turn’s value in its inner while
loop. As a consequence, process p0 will again gain control on the critical region. Since
theoretically, this situation can happen repeatedly, process p1 may be in a starvation status
since its request to get control of the critical region is never satisfied. As a result, the system
that is implemented by this code segment may eventually suffer a starvation issue.
Although the definitions of different types of liveness issues are clear, to prove them for

a particular program or system is hard. It may not, at a practical level, even be meaningful
to verify a system’s liveness property, something Lamport points out in a later article:

75

Fairness and Liveness in System Design

f0 := false

f1 := false

turn := 0 // or 1
p0:

f0 := true

while f1{

if turn != 0{

f0 := false

while turn != 0{}

f0 := true

}

}

// critical section
turn := 1

f0 := false

// non−critical section

f0 := false

f1 := false

turn := 0 // or 1
p1:

f1 := true

while f0{

if turn != 1{

f1 := false

while turn != 1{}

f1 := true

}

}

// critical section
turn := 0

f1 := false

// non−critical section

Listing 6.1: Code Segment with Starvation Issue

The question of whether a real system satisfies a liveness property is meaning-
less; it can be answered only by observing the system for an infinite length of
time, and real systems don’t run forever. Liveness is always an approximation
to the property we really care about [Lam00].

As the comments shown above, in reality liveness property is usually tested as an approx-
imation to the property that we really care about. For example, we may set our system’s
“guaranteed service” property to guarantee any of its processes to progress within a hun-
dred hours instead of infinitively long. In such a case, the new constraint on the “guaran-
teed service” property is obviously tied uniquely to our specific system. In theory, how-
ever, it is possible for us to prove system liveness properties by using fairness without

76

6.1. Fairness/Liveness in Concurrent System

using approximation [Sis94], or use fairness to allow us to capture some liveness proper-
ties [AS84]. In the context of our thesis research, we aim to help verification of a system’s
liveness property in a realistic way, based on conservative approximations of system fair-
ness.

6.1.3 When to Verify Fairness Properties

Fairness property can be verified at different software development phases. But verification
at different phases may need different verification approaches and result in different result
accuracy and verification costs. In this section, we are going to discuss when to verify the
system’s fairness property.
As discussed above, fairness is system implementation dependent. Sometimes even

if the system passes verification at its design phase; it still may behave “abnormally” at
runtime after its implementation. This is because the system implementation can include
a scheduler that determines how to interleave the threads, and the scheduler may or may
not provide any fairness guarantees; in most systems few actual guarantees are made. Lack
of fairness or other scheduler guarantees can result in unexpected and undesired behavior,
potentially as bad as any violated safety property. Due to this reason, we believe dynamic
verification of fairness property at runtime is necessary. There are also some other reasons.
First, it may happen that during the system’s implementation developers tend to pay more
attention to more obvious and critical system properties, such as safety, than the subtle
notions of fairness and liveness. Verification of fairness after implementation could help
to find the errors caused by the common focus on more obvious and deterministic bugs.
Second, the user might change his or her fairness requirements for the same system without
changing the system’s original design. In this case, usually a different implementation may
be necessary to satisfy the new requirements. Therefore, only verification after the new
implementation can ensure the new requirement is fulfilled. Third, in extreme, safety-
critical cases such as NASA projects or nuclear plant systems only verifying systems at
runtime can give the most accurate guarantees on whether the required fairness properties
are satisfied.
Besides verification after system’s implementation, we can also statically verify fairness

77

Fairness and Liveness in System Design

properties at the design phase. However, there is a tradeoff between the static and dynamic
verification approaches. Static approaches at the design phase typically provide results
conservative with respect to any possible input. This provides strong guarantees, but can
also easily be too conservative to be useful. Runtime dynamic verification is more accurate,
but may incur significant overhead and provide results either specific to a particular (set of)
inputs, or too late to be useful. Specific problems will benefit more or less from either
technique.
We concentrate here on verification in the late design phase. This allows maximal

design information to be used, without necessarily requiring a complex runtime fairness
monitoring system. Additionally, we feel fairness verification at the design phase can serve
as a supporting step for the runtime verification, which is inevitable.

6.2 Verifying Fairness in Concurrent System Design

As mentioned in the previous section, a system’s static verification of fairness property
may not provide accurate enough results. In this section we introduce our static approach,
attempting to minimize such problems. The approach itself is based on the critical region
concept discussed in Chapter 5. To explain it, we first introduce why we chose to use this
approach followed by the detailed description of the algorithm. Finally we will list some
extra advantages made possible by using our approach.

6.2.1 Overview

In Section 6.1.3, we have mentioned the necessity to verify system’s fairness property
after its implementation. The whole fairness verification process is shown in Figure 6.1.
Figure 6.1 first abstracts the work we have introduced in the previous chapters, which
includes requirements elicitation, Fondue analysis with its four different models, system
design with its derived SSHD and the rely diagram derived from the Operation model;
Figure 6.1 also shows that with SSHD and the rely diagram, we can make a checklist for
the system fairness verification purpose. Different fairness policies can be injected into
these selected components. If the system does not pass its runtime verification in terms of

78

6.2. Verifying Fairness in Concurrent System Design

its fairness property, the developers should go through the checklist and change the system
implementation accordingly.
The idea behind this fairness verification process is that our research aims to provide

a supporting and reasonably accurate verification method; therefore, we choose to focus
our static verification approach on not providing “pass” or “fail” outcomes; instead, our
approach is set to provide the developers a checklist before they implement the system.
The checklist should be system dependent. It should contain all the system components that
developers should pay attention to if they want to implement the system with its particular
fairness constraint(s). Therefore, even the system fails to meet its fairness constraint at
runtime, then the developers only need to go through and re-specify what is on the checklist
and how the system enforces fairness for the same constraint. As a consequence, the whole
repairing process will be convenient and cost effective.

6.2.2 Detecting Fairness Sensitive Components

In theory, every component in the concurrent system can affect system’s fairness perfor-
mance. That is because there are multiple processes or threads contending to use virtually
every component within the system. Any component can be designed to favor any specific
process or thread. However, it is unusual and impractical to design a system with the con-
cern of fairness for every component within the system. Experience tells us only a limited
proportion of all system components have a substantial impact on the system’s fairness per-
formance. If we can find such components and inject application-specific fairness policy
into them during the implementation, then the system can run in a way closer to its user’s
requirements. Even later on the fairness requirements on the system may be changed; we
still can easily adjust the system by injecting a different fairness policy into those discov-
ered system components. For the present purposes, we call these kinds of components
fairness sensitive components. This section describes how to find such fairness sensitive
components within the system design. This section first describes a small example that
explains the common features of the fairness sensitive components; it is followed by the
definition of two types of such components and the ways to find them.

79

Fairness and Liveness in System Design

Requirements Elicitation

System Analysis

System Design

Concept
Model

Protocal
Model

Operation
Model

SSHD Rely Diagram

Fairness
Checklist

System Implementation

Runtime Verification

pass

fail

Environment
Model

Fairness
Policies

Figure 6.1: System Fairness Verification Process

A small example

In order to extract the system’s fairness sensitive components, we need to know their com-
mon traits. Let’s consider the following example first.
Two philosophers are sitting together with three chopsticks available. These three chop-

sticks are laid down as shown in Figure 6.2. In order to eat, each philosopher should pick
up the two chopsticks laid on both his left hand side and right hand side. Assuming the
fairness constraint for this example restricts philosophers to eat in an alternative order; now
the question is: which chopstick is the one that can cause execution to be “unfair”? Obvi-

80

6.2. Verifying Fairness in Concurrent System Design

P1 P2

Figure 6.2: Two Philosophers with Three Chopsticks

ously, the answer for this question is the chopstick laid between two philosophers. This is
because only the middle chopstick is contended by both philosophers. If the acquisition of
the middle chopstick is out of alternative order between these two philosophers, then the
fairness constraint imposed in this example is violated.
Although the example shown in Figure 6.2 is very simple, it reveals one important

property of the fairness sensitive component. That is, a fairness sensitive component is a
system component contended or shared by multiple processes or threads, which are running
the operations that do not require exactly the same resources.

Types of shared objects

Different shared objects may affect the system’s fairness property differently. In order to
distinguish such difference, we divide each operation’s shared objects into two groups:

Holding group: objects in the holding group are locked by the thread for the period longer
than necessary. In sequence diagrams, even if such objects are no longer needed
by the operation, the lock on it will not be released until the control flow passes its
covering critical region.

On-call group: objects in the on-call group are locked by the thread for the period exactly
as long as it is needed. When the related work is done with that object, even if the
overall operation is not complete at that moment, it still releases the lock on the on-
call object. In sequence diagrams, the on-call objects are not covered by the critical
region.

81

Fairness and Liveness in System Design

Both groups of shared objects can act as fairness sensitive components. However, objects
in the holding group possess extra values for fairness property if the underlying operation
has timeliness constraints on it, or is time critical. To understand this statement better,
let us consider the following example. Peter may want to use the computer to sell his
stocks online within one minute or he may lose his current good selling price; his daughter,
Rachael, is using the same computer to do an online interview and cannot be interrupted.
In this example, selling stocks within one minute is a time constraint request from Peter’s
side, but the shared object - the computer is held by Rachael until her interview is over. If
Peter and Rachael can foresee this situation and therefore let Peter use computer first before
Rachael’s interview, then both will be satisfied at the end. From the example, we find that
in order to satisfy a time critical operation such as selling stocks at real time, finding its
shared objects is important since these shared objects could be one of the holding group
objects of another concurrently running operation.

Finding shared objects

To find shared objects is trivial. We can use the concurrency table such as Table 4.3(Page 51)
to find out all possible concurrent operations. Then we can use the concurrent operation
schemas to find the required objects for each of the found operations. By crosschecking
each concurrent operation’s required objects, we can filter out all of the shared objects and
their corresponding sharing operations. In order to find the shared objects in the holding
group for each operation, we can use the critical region. That is, if the operation has a
critical region within its sequence diagram, then all shared objects within the same criti-
cal region are the operation’s holding group shared objects; the rest of the shared objects
are in the operation’s on-call group. The characteristic of the critical region tells us the
shared objects in the operation’s holding group will not be released by the operation until
all executions covered by the critical region are over.

Find holding group shared objects using SSHD

The algorithm just described to find holding group shared objects can be visualized. Given
an SSHD, each system synchronization object is mapped as a vertex in the diagram. As

82

6.2. Verifying Fairness in Concurrent System Design

we mentioned in Chapter 4 if we consider all possible control flows and map all potential
synchronization objects into one SSHD the resultant diagram will be a static graph. That
is to say, since all possible synchronization objects are considered and displayed within the
same SSHD, then even if there is non-determinism existing for the runtime behaviors, it
will not change the structure of the diagram. If we can represent the critical region concept
in SSHD, then any shared objects within the operation’s critical region in SSHD are the
operation’s holding group shared objects. On the other hand, for each specific operation’s
synchronization object, if it is not covered by any critical region belonging to this operation
in the SSHD, then it is the operation’s on-call group shared object.
Figure 6.3 shows one SSHD example for Peter and Rachael’s example as explained pre-

viously. We assume in order to sell his stocks, Peter needs the computer and the calculator,

computer

pen

papercalculator

Figure 6.3: Peter’s Stock Selling and Rachael’s Online Interview SSHD

and in order to do her interview Rachael needs the computer, pen and the paper. Since
the computer is required for the entire stock selling and online interview, the computer is
a holding group object for both the stock selling and interview processes. For simplicity,
we also assume the calculator is held by Peter until he sells the stocks; pen and paper are
held by Rachael until she is done with her interview. So as seen in the sequence diagram
shown in Figure 6.4, Peter’s stock selling operation will be represented as a critical re-
gion that covers both computer and calculator; and Rachael’s interview operation will be
represented as a critical region that covers computer, pen and paper.
Please note we use different colors (or grey-scales) to represent different critical regions

in Figure 6.4. This color setting also makes it easy for us to recognize the different critical

83

Fairness and Liveness in System Design

Peter:Person Rachael:Person

computer:Computer calculator:Calculator pen:Pen paper:Paper

1: sellStock()
2: sellStock()

1: interview()
2: interview()

3: interview()

--

critical

critical

par

Figure 6.4: Peter’s Stock Selling and Rachael’s Online Interview Sequence Diagram

regions in SSHD after it is generated from the sequence diagram; the corresponding SSHD
for this example is displayed in Figure 6.5. Here, each object is assigned the same color

computer

pen

papercalculator

Figure 6.5: Peter’s Stock Selling and Rachael’s Online Interview Colorful SSHD

as its covering critical region, except the computer object. We cannot determine which
color should be assigned to the computer object, since it belongs to two critical regions
in the original sequence diagram. In reality, since it is impossible for the computer object

84

6.2. Verifying Fairness in Concurrent System Design

to be used by more than one operation at the same time, the computer can only have one
color assigned to it at anytime. Consequently, Figure 6.5 must exist in one of the following
two forms (Figure 6.6):

computer

pen

papercalculator

computer

pen

papercalculator

Figure 6.6: Peter’s Stock Selling and Rachael’s Online Interview Colorful SSHD Transformation
Forms

In Figure 6.6, we greyed out the operation that cannot coexist with the other currently
running operation. That is, if Peter is selling stocks then Rachael cannot be having the
interview; if Rachael is having the interview then Peter cannot be selling his stocks. There-
fore, the color of the computer object can be uniquely determined. We call this kind of
diagram a transformation form of the SSHD. Since selling stock is time critical, it is nec-
essary to find out which objects can hinder its processing. From Figure 6.5, we found the
computer object is the only object shared by both the stock selling operation and the in-
terview operation. Moreover, from Figure 6.6, we found the computer object belongs to
the holding groups of both operations. So, in order to resolve conflicts between Peter’s and
Rachael’s requests on the computer object, they should negotiate beforehand to decide
who uses the computer first.
When translating the original SSHD to its transformation forms, we should only con-

sider the activities that can run concurrently with the operation under study. Therefore, with
the different operation under study, the same SSHD can result in different transformation
forms.

85

Fairness and Liveness in System Design

6.2.3 Additional Benefits

By sorting out all of the fairness sensitive components, we can make the verification and
implementation of the system design a much easier job for the developers. That is the
primary goal we can achieve. Nevertheless, there are also several side benefits we can gain
from detecting such fairness sensitive components at system design phase. These include
the effects to refine deadlock detection results and some other aspects of fairness.

Refining deadlock detection

First, the same color setting of vertices within the same critical region in SSHD helps to
refine deadlock detection results. SSHD represents the concurrent needs of all operations
together. The transformed SSHD, however, has only a subset of vertices colored; this subset
may or may not include a cycle otherwise in the old SSHD.
For example, assume there are two threads. One thread executes an operation that

requires the sequential locks on objects A, B and C, while the other thread executes a con-
current operation that requires the sequential locks on objects C and A. We assume each
operation is covered by its own critical region, and the critical region covers all of the
objects required by the operation. Based on these assumptions we can establish the cor-
responding SSHD as shown in Figure 6.7. Please note that the two critical regions in the
figure are represented by two different colors. Since there is a cycle: A→B→C→A de-
tected in Figure 6.7, then there is no guarantee of deadlock-free property. But since objects
A and C belong to the holding groups of both operations, Figure 6.7 can be transformed to
the two forms shown in Figure 6.8.
Each form displays one of two possible synchronization sequences. Since at any point

of time, only one of the two forms can exist and neither has a cycle within, then we can use
this refined result to guarantee that the original system design is deadlock-free.

Liveness

Our second side benefit is that the discovery of shared objects, especially the ones in the
operation’s holding group helps to solve liveness issues. As we mentioned earlier in this

86

6.2. Verifying Fairness in Concurrent System Design

A

B

C

cannot determine colors;
A, C belong to holding
objects groups of both
operations

Figure 6.7: Colorful SSHD with Deadlock Detected

A

B

C

greyed out

A

B

C

greyed out

Figure 6.8: Colorful SSHD without Deadlock Detected

chapter, liveness properties are usually tested as an approximation of the properties we
really care about; similarly, we can use the same approach to improve understandings of
liveness issues by providing a checklist.
For example, if you find there is an operation that has been delayed infinitely long

(e.g., longer than the period that the user can tolerate), then the starvation issue occurs.
In order to solve this issue, you should check the operation’s shared objects first. Shared
objects, especially the ones in the holding groups of other concurrently running operations,
might delay the operation infinitely long. So for each of the shared objects, we have to
consider carefully the operations that might use it concurrently with the operation under
study. After the analysis, we can make a list of possible concurrently running operations.
With this list, it is much easier for the developers to pinpoint what might cause the violation
of the liveness property.

87

Fairness and Liveness in System Design

All in all, identifying fairness sensitive components definitely can be the first step to
assist solving liveness issues.

Flexibility

Our discussion implies considerable flexibility in implementations, and different choices
can achieve the same or different final fairness outcomes.
For example, if the blue (light grey-scale) critical region is chosen in Figure 6.8, then

the possibility for object B to be locked later is zero. Similarly, during the execution of the
process/thread, every choice of the operation on the fairness sensitive component changes
the odds for the subsequent operations being executed. This interesting discovery inspired
us to inject the fairness policy to the fairness sensitive component given a specific user
requirement.
The information from the concurrent operation schemas and SSHD is not likely to

change due to the expense, but the user’s fairness requirement for the system may change
from time to time. In order to cope with user’s changing requirements, we need a way to
inject different fairness constraints to the same system without changing its structure and
operation schema designs. To understand this, let us consider the following example first.

A

B

E

C

D

Figure 6.9: Choice and Control Flow Example

Assume there are four operations; each requires its specific objects to execute. The
detailed concurrency information is shown in Table 6.1; and the corresponding SSHD is
shown in Figure 6.9. From Table 6.1, we know that object A is a shared object con-

88

6.2. Verifying Fairness in Concurrent System Design

Operation

Name

Synchronized

Object(s)

Concurrent

Operation(s)

operation1 A, B operation2

operation2 A, C operation1

operation3 B, D operation4

operation4 B, E operation3

Table 6.1: Operation Table

tended by operation1 and operation2; object B is a shared object contended by
operation3 and operation4. Assume uniform choices are employed and either
operation3 or operation4 comes sequentially after operation1 depending on
which operation acquires the lock on object B first; and the initial odds to acquire the
shared objects by concurrently running operations are evenly distributed. The odds of exe-
cuting operation1 are thus 50%; and consequently the odds to execute operation3
are 25%. Now if the user specifies in his system requirements that he wants the overall
odds to execute operation3 to be 10% and he does not care what are the chances for
other operations to execute, we have at least two choices for the developers to implement
the system in order to satisfy the user’s requirement. First, the developers can inject a
specific scheduler to set the chance for operation3 to acquire object B to be 20% and
operation4 to acquire object B to be 80%. Second, the developers can choose to leave
the odds to acquire object B unchanged (50%). Adjusting the chance for operation1 to
acquire object A to be 20%, then results in the chance for operation3 to be executed
10% of the time. Of course, actual calculations to force or determine scheduling behaviors
are complex, and beyond this study.
The example presents the influence from the fairness sensitive components to the chances

of running operations. By advising the developers with a good checklist of fairness sen-
sitive components, we can help them to make implementation decision to fulfill the user’s
specific requirements, at least as much as the actual scheduling system allows.

89

Fairness and Liveness in System Design

6.3 Online Auction System Case Study

In previous chapters, we have verified the online auction system’s deadlock-free and application-
level consistency properties. In this section, we are going to use our proposed method to
verify the system’s fairness property.
Since our approach aims to provide the developers a list of shared objects that can affect

system’s performance in terms of its fairness property, we first need to find the auction
system’s fairness sensitive components. Once the fairness sensitive components are found,
we can modify our old system design in order to let it fit the user’s requirements better.
By reviewing our online auction system sequence diagram design, the only fairness

sensitive component is auctionState object since it belongs to the holding groups of both
bidder’s placeBid operation and the auction system’s closeAuction operation. Ad-
ditionally, since the auction system should close auction immediately when the auction’s
expiration time is reached, then closeAuction() operation is a time critical operation.

auctionState auctionState

currentBid currentAcc previousAcc

history

Figure 6.10: Online Auction System Colorful SSHD Transformed Form

Figure 6.10 is a transformed form of original auction system’s SSHD. The two forms
in Figure 6.10 display that the operations placeBid and closeAuction cannot exe-
cute simultaneously since they both have auctionState in their holding groups. As a time
critical operation, closeAuction() should take place as soon as auction’s expiration
time is reached. That is, the auction system should close the auction even if there are still
active placeBid() operations. But considering the fairness requests from the client’s

90

6.3. Online Auction System Case Study

side, we should always allow the pending placeBid() operations initiated before the
auction’s expiration to accomplish eventually. However, there is one dilemma doing so.
Since closeAuction() requires a write lock on the auction state, then as long as new
placeBid() operations keep coming to the system, the auction system cannot close the
auction since all placeBid() operations share and hold read locks on the auctionState
object. A potential consequence of this dilemma is that even though the time has passed for
the auction’s expiration, clients still can place bids on the auction since the auction system
cannot close it. To solve this problem, we let the system check the time stamp before each
bid is placed into auction’s history. By checking the time stamp, every bid initiated after
auction’s expiration will be rejected by the system. As a result, even if closeAuction()
does not execute precisely on time, clients still cannot make new bids after auction’s expi-
ration time.
The design decision to use a time stamp check is an arbitrary choice, and there are many

other ways to solve the same problem. The key point here, however, is that by identifying
fairness sensitive components within the system design, we can help the developers to
implement the system that satisfies its users’ specific fairness requirements.

91

Fairness and Liveness in System Design

92

Chapter 7
Conclusions

Concurrency is inherent in the domain of many problems that are addressed by software
solutions. It is important to have some general approaches to treat the many issues that arise
in such environments. This thesis illustrated a number of systematic approaches to verify
the design of a concurrent system.
In the first step we developed a technique that can verify if a design is deadlock-free

by mapping synchronization objects from design sequence diagrams to a specialized Hasse
diagram that we called the System Synchronization Hasse Diagrams (SSHD). The SSHD
approach is static, and hence avoids having to monitor complex resource sharing at run-
time to cover all possible execution paths; it detects the potential deadlocks (that can occur
when the Coffman conditions are satisfied), regardless of the resource request model. The
described approach, however, is overly pessimistic due to its static nature. It is nevertheless
viable, particularly when the system under study has to guarantee absence of deadlock.
The second approach described in the thesis shows how to use the concurrency-related

information extracted from a concurrency-aware system analysis and specification to derive
a system design that ensures that the system state is always application-level consistent, i.e.
fulfills all the validity constraints of the application according to the application specifica-
tion. At the specification level, a system operation schema defines pre-conditions, post-
conditions and the rely-conditions that specify properties that have to be valid before, after
and during the operation execution. Violation of any of these three conditions can lead the
system into an application-level inconsistent state. Verification of pre- and post-condition

93

Conclusions

is trivial. We propose to generate a rely diagram, which is generated from the concurrent
operation schema, to help ensure the rely-condition. We list the dependent objects that are
specified in the rely-expressions as the nodes in the rely-diagram. In order to come up with
a correct concurrent system design that implements the required state changes in a correct
way, we use critical regions to group all the dependent objects of the operation in the se-
quence diagram. With further analysis, we refined our general rely diagram by tagging the
dependent objects whose states might change during the execution of the operation by some
other concurrently executing operations in a way that would break the rely-condition. Only
the tagged objects have to be grouped within the critical region to ensure application-level
consistency; grouping other dependent objects into the critical region is unnecessary, and
could slow down the system’s performance.
Once deadlocks are eliminated from a concurrent system, fairness issues are the next big

concern. It is non-trivial to analyze fairness at the design phase. We show how our approach
can facilitate reasoning about fairness by detecting a set of shared resources, whose access-
policies can have important impacts on the system’s fairness property. Shared resources
are identified using concurrency tables and the concurrent operation schemas. In order
to distinguish the different influences of the resources on the overall fairness, we divide
the shared resources into on-call group and holding group. Theoretically, every shared
resource can affect the system’s fairness; further analysis reveals that shared resources
within the holding group can cause larger impacts, especially if the operation under study
is time critical.
We have used the online auction system as the main case study throughout the thesis

to illustrate our approaches. At very beginning, the original online auction system design
is shown; based on the original design, we used our approaches to verify and modify the
system design in order to ensure deadlock-freedom and system application-level consis-
tency; the auctionState object was identified to have a significant effect on the auction
system’s fairness performance. Besides this main case study, we have also illustrated the
usage of our approaches on the classic dining philosopher problem and other simple small
examples. All these case studies have demonstrated that our approaches can produce good
quality verification results during the design phase. Meanwhile, our approaches are intu-
itive and algorithmically simple, compared to other methods that were designed to address

94

7.1. Future Work

similar issues.

7.1 Future Work

First of all, it would be interesting to see how our approaches perform when applied to a
real-world concurrent system development project by comparing the performance of a de-
velopment team using our approach with a development team using standard development
approaches. It would be interesting to determine how many concurrency-related problems
can be detected early on during design, and therefore how much development costs can be
saved overall by using our approaches. This would be of course, a difficult and expensive
test to implement.
Considering the non-determinism of the concurrent system’s runtime behavior, the re-

sults coming from our conservative static verification method might be prohibitively strong.
SSHDs can be used effectively to prove deadlock-freedom, but not to show the existence
of a deadlock. In case of the occurrence of a cycle in a SSHD, which indicates a potential
deadlock, we could find ways to extend our approach to get a more fine-grained analysis.
This could be done, for instance, by coloring critical regions in the SSHD that correspond to
different concurrently running operations. Our initial design is straightforward, but perhaps
could be refined through further investigations.
A finer granularity analysis of SSHD might also be feasible. One of the promising

directions is to take different runtime “phases” into consideration. A sequence diagram, for
example, can be divided into several time phases, with each one having a partial system’s
call graph. If there is a way to find such a partial system call graph, then we can split the
original SSHD into several diagrams, one for each different time phase. As a consequence,
the deadlock detection results are a lot more precise. The viability of this work is unknown
due to the extreme complexity of the concurrent invocations of the different operations; it
is unknown to us if the concurrent system call graph can be split based on the different time
phases. However, this topic is definitely worth investigating.
The quality of the list of system fairness/liveness sensitive components can be im-

proved. The technique described here is the basis for producing a list of potential system
components that the developers should pay attention to in order to fulfill fairness require-

95

Conclusions

ments. However, we feel there are still differences in the degree that each individual shared
resource can affect the system’s overall fairness property. We have tried to use on-call
group and holding group to distinguish such difference; our SSHD could be extended to
add some degrees to the edges, in a way to help distinguish the different levels of influences
from different shared resources.
Rely diagrams provide a conservatively correct solution; however, for performance rea-

son and especially to improve concurrency, more optimistically speculative decision may
still be adopted. In addition to the verification usage, rely diagrams can also be used for
system design construction purpose. Investigating how to derive a systematic optimiza-
tion approach that takes both the rely diagram and user requirements into consideration,
and how to construct a correct application-level consistent system design based on the rely
diagram generated from the analysis are our future work.

96

Appendix A
Operation Schemas and Pseudo Codes for

placeBid

97

Operation Schemas and Pseudo Codes for placeBid

Operation: AuctionSystem:placeBid (a: Auction, c:Customer, bidAmount: Money)
Description: A user requests to place a bid in the given auction. The system must decide whether

the bid is valid and if so make the bid the current high bid.
Scope: Auction; Bid; Customer; Account; ArePlacedIn; Makes; Has; HasHighBid; JoinedTo;
Message: User::InvalidBid e;
New: newBid: Bid
Pre: a.currentMbrs→ includes(c) & a.started & not a.closed;
Post: if bidAmount ≥ a.highBid.amount + a.minimumIncreasement then

ifc.account.guaranteedBalance ≥ bidAmount then
newBid.oclIsNew(bidAmount) &
a.bid→ includes(newBid) & //update auction history
c.myBids→ includes(newBid)
else
senderˆinvalidBid e(Reason::insufficientFunds)
endif
else
senderˆinvalidBid e(Reason::bidTooLow)
endif

Figure A.1: Sequential Operation Schema for placeBid

98

Operation: AuctionSystem:placeBid (a: Auction, c:Customer, bidAmount: Money)
Description: A user requests to place a bid in the given auction. The system must decide whether

the bid is valid and if so make the bid the current high bid.
Scope: Auction; Bid; Customer; Account; ArePlacedIn; Makes; Has; HasHighBid; JoinedTo;
Shared: Account.guaranteedBalance; Auction.closed; HasHighBid; ArePlacedIn; JoinedTo;
Message: User::InvalidBid e;
New: newBid: Bid
Pre: a.currentMbrs→ includes(c) & a.started;
Post: rely not a.closed then

rely bidAmount ≥ a.highBid.amount + a.minimumIncreasement then (2∗)
rely c.account.guaranteedBalance ≥ bidAmount then (3∗)

newBid.oclIsNew(bidAmount) &
a.bid→ includes(newBid) & //update auction history
c.myBids→ includes(newBid)

fail
senderˆinvalidBid e(Reason::insufficientFunds)

endre
fail

senderˆinvalidBid e(Reason::bidTooLow)
endre

fail
senderˆinvalidBid e(Reason::auctionClosed)

endre

Figure A.2: Concurrent Operation Schema for placeBid

99

Operation Schemas and Pseudo Codes for placeBid

Operation Auction :: placeBid(currentCus: Customer, bidAmount : integer)
currentAcc := currentCus.getAccount();

begin
if currentAcc.isGuaranteed(bidAmount) then

if checkAndUpdate(bidAmount) then
if getTimeAndDate() ≤deadline

theHistory. insertBid(bidAmount);
if lastBidAmount > 0 then //if not first bid

previousAcc.releaseBid(lastBidAmount);
endif
previousAcc := currentAcc;
lastBidAmount := bidAmount;

else
currentAcc.releaseBid(bidAmount);
Exception(“auctionClosed”);

endif
else

currentAcc.releaseBid(bidAmount);
Exception(“invalidBid”);

endif
else

Exception(“invalidBid: insufficientFunds”);
endif

end placeBid

Figure A.3: Pseudo Code for placeBid

100

Operation Account::isGuaranteed(bidAmount : Integer)
OK : boolean;

begin
if currentAcc.actualBalance - bidAmount ≥ 0 then

currentAcc.actualBalance = currentAcc.actualBalance - bidAmount;
OK = true;

else
OK = false;

endif
return OK;
end isGuaranteed

Figure A.4: Pseudo Code for isGuaranteed

Operation BidHistory::insertBid(bidAmount : Integer, time : Time, date : Date)
bidList : Stack; //the Stack is like normal stack data structure

begin
newbid = new Bid(time, date, bidAmount); //create new bid object
bidList.add(newbid); //insert

end insertBid

Figure A.5: Pseudo Code for insertBid

101

Operation Schemas and Pseudo Codes for placeBid

102

Bibliography

[AH98] Rajeev Alur and Thomas A. Henzinger. Finitary fairness. ACMTrans. Program.
Lang. Syst., 20(6):1171–1194, 1998.

[AS84] Bowen Alpern and Fred B. Schneider. Defining liveness. Technical report,
Ithaca, NY, USA, 1984.

[Bel87] Ferenc Belik. Deadlock avoidance with a modified banker’s algorithm. BIT
Numerical Mathematics, 27:290–305, 1987.

[CC01] Alessandra Cavarra Charles Crichton, Jim Davies. A pattern for concurrency
in uml. Programming Research Group Research Report, 2001.

[CES71] E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks. ACMComput.
Surv., 3(2):67–78, 1971.

[CGK97] Shing Chi Cheung, Dimitra Giannakopoulou, and Jeff Kramer. Verification of
liveness properties using compositional reachability analysis. SIGSOFT Softw.
Eng. Notes, 22(6):227–243, 1997.

[CJ86] I Cidon and J M Jaffe. Local distributed deadlock detection by knot detection.
In SIGCOMM ’86: Proceedings of the ACM SIGCOMM conference on Com-
munications architectures & protocols, Stowe, Vermont, United States, 1986,
pages 377–384. ACM Press, New York, NY, USA.

103

Bibliography

[Col94] Derek Coleman. Object-Oriented Development: The Fusion Method. Prentice
Hall, 1994.

[Dav93] Fred D. Davis. User acceptance of information technology: System character-
istics, user perceptions and behavioral impacts. International Journal of Man-
Machine Studies, 38(3):475–487, 1993.

[DFD98] Alan Cameron Wills Desmond Francis D’Souza. Objects, Components, and
Frameworks with UML: The Catalysis Approach. Addison-Wesley Profes-
sional, 1998.

[E.D76] E.Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[ELL01] Stefan Edelkamp, Alberto Lluch Lafuente, and Stefan Leue. Directed explicit
model checking with HSF–SPIN. Lecture Notes in Computer Science, 2057,
2001.

[Gom00] Hassan Gomaa. Designing Concurrent, Distributed, and Real-Time Applica-
tions with UML. Addison-Wesley Professional, 2000.

[GPSS80] Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the
temporal analysis of fairness. In POPL ’80: Proceedings of the 7th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, Las
Vegas, Nevada, 1980, pages 163–173. ACM Press, New York, NY, USA.

[GR93] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann Publishers, San Mateo, California, 1993.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, 1969.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666–677, 1978.

[Hol72] Richard C. Holt. Some deadlock properties of computer systems. ACM Com-
put. Surv., 4(3):179–196, 1972.

104

Bibliography

[Hol97] Gerard J. Holzmann. The model checker SPIN. Software Engineering,
23(5):279–295, 1997.

[JBW03] Anneke G. Kleppe Jos B. Warmer. The Object Constraint Language. Addison-
Wesley Professional, 2003.

[JM06] Jeff Kramer Jeff Magee. Concurrency: State Models and Java Programs. Wi-
ley; 2Rev Ed edition, 2006.

[Jon83] C. B. Jones. Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst., 5(4):596–619, 1983.

[KE01] Nima Kaveh and Wolfgang Emmerich. Deadlock detection in distribution ob-
ject systems. In ESEC/FSE-9: Proceedings of the 8th European software en-
gineering conference held jointly with 9th ACM SIGSOFT international sym-
posium on Foundations of software engineering, Vienna, Austria, 2001, pages
44–51. ACM Press, New York, NY, USA.

[KPRS06] Yonit Kesten, Amir Pnueli, Li-On Raviv, and Elad Shahar. Model checking
with strong fairness. Form. Methods Syst. Des., 28(1):57–84, 2006.

[KS06] Jörg Kienzle and Shane Sendall. Addressing concurrency in object-oriented
software development. In CASCON ’06: Proceedings of the 2006 conference of
the Center for Advanced Studies on Collaborative research, Toronto, Ontario,
Canada, 2006, page 15. ACM Press, New York, NY, USA.

[KSR02] J. Kienzle, A. Strohmeier, and A. Romanovsky. Auction system design using
open multithreaded transactions. Proceedings of the 7th IEEE International
Workshop on Object-Oriented Real-Time Dependable Systems (WORDS’02),
San Diego, CA, USA, pages 95–104, 2002.

[KZ05] A. Koprowski and H. Zantema. Proving liveness with fairness using rewriting,
2005.

[Lam79] Leslie Lamport. A new approach to proving the correctness of multiprocess
programs. ACM Trans. Program. Lang. Syst., 1(1):84–97, 1979.

105

Bibliography

[Lam89] Leslie Lamport. A simple approach to specifying concurrent systems. Com-
mun. ACM, 32(1):32–45, 1989.

[Lam00] Leslie Lamport. Fairness and hyperfairness. Distrib. Comput., 13(4):239–245,
2000.

[Lar02] Craig Larman. Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process, 2nd edition, 2002.

[Lev03] Gertrude Neuman Levine. Defining deadlock. SIGOPS Oper. Syst. Rev.,
37(1):54–64, 2003.

[LP99] Johan Lilius and Ivan Porres Paltor. vUML: a tool for verifying UML models.
Technical Report TUCS-TR-272, 18, 1999.

[MC82] Jayadev Misra and K. M. Chandy. A distributed graph algorithm: Knot detec-
tion. ACM Trans. Program. Lang. Syst., 4(4):678–686, 1982.

[Mil89] R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1989.

[Mil99] R. Milner. Communicating and Mobile Systems: the Π-Calculus. Cambridge
University Press; 1st edition, 1999.

[PdBZ95] Alain Pirotte, Thierry Van den Berghe, and Esteban Zimányi. The fusion object-
oriented method: an evaluation. In SOFSEM ’95: Proceedings of the 22nd
Seminar on Current Trends in Theory and Practice of Informatics, 1995, pages
437–442. Springer-Verlag, London, UK.

[PY] Taesoon Park and Heon Y. Yeom. A distributed group commit protocol for
distributed database systems.

[R.F67] R.Floyd. Assigning meaning to programs, volume 19. American Mathematical
Society, 1967.

106

Bibliography

[RSI78] Daniel J. Rosenkrantz, Richard E. Stearns, and Philip M. Lewis II. System
level concurrency control for distributed database systems. ACM Transactions
on Database Systems (TODS) archive, 3(2):178–198, 1978.

[SGG04] Avi Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating system con-
cepts, seventh edition. 2004.

[Sis94] A. Prasad Sistla. Safety, liveness and fairness in temporal logic. Formal Asp.
Comput., 6(5):495–512, 1994.

[SS99] Alfred Strohmeier Shane Sendall. UML-Based Fusion Analysis, volume 1723.
Springer Berlin / Heidelberg, Fort Collins, CO, USA, 1999.

[TC96] Stavros Tripakis and Costas Courcoubetis. Extending promela and spin for real
time. In Tools and Algorithms for Construction and Analysis of Systems, 1996,
pages 329–348.

[UML04] UML 2.0 Superstructure Specification. Object Management Group, Framing-
ham, Massachusetts, October 2004.

[WCJ02] Hui Wu, Wei-Ngan Chin, and Joxan Jaffar. An efficient distributed deadlock
avoidance algorithm for the and model. IEEE Trans. Softw. Eng., 28(1):18–29,
2002.

[Xio04] Jie Xiong. Addressing concurrency using uml-based software development.
Master Thesis, 2004.

107

