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Abstract

Majorana fermions have garnered a large amount of attention in recent years due
to their unusual behavior. They are intimately related to the exotic phenomena of
topological superconductivity and consequently lie at the heart of all current proposals
for topological quantum computers. Perhaps the simplest model which realizes the
necessary physics required for such computers is the fermionic Kitaev chain model. A
natural question to ask is whether the same physics can be realized for photons, which
unlike electrons, are bosons and not fermions. In this thesis, we introduce and study a
bosonic version of the Kitaev chain. Much like the original fermionic version, we show
that the model is best understood in terms of the local Hermitian degrees of freedom.
The system demonstrates phase-dependent chirality; signals propagate and are amplified
in a manner which depends on the phase of the photonic excitation. Further, we find a
striking sensitivity to boundary conditions: the boundary-less system is characterized by
delocalized dynamically stable modes whereas the finite system with open boundaries
only supports localized, stable modes. Finally, we discuss our system’s entanglement
properties. While we focus specifically on a photonic system, our ideas are in principle
applicable to any kind of bosonic system.
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Résumé

Les fermions de Majorana ont attiré beaucoup d’attention ces dernières années du à
leur comportement inhabituel. Ils sont intimement liés aux phénomènes exotiques de
supraconductivité topologique et sont donc au coeur de toutes les propositions actuelles
pour les ordinateurs quantiques topologiques. Peut-être le modèle le plus simple qui
réalise la physique nécessaire pour de tels ordinateurs est la chaîne fermionique de Kitaev.
Une question naturelle à se poser est de savoir si la même physique peut être réalisée
pour les photons, qui contrairement aux électrons, sont des bosons et non des fermions.
Dans cette thèse, nous présentons et étudions une version bosonique de la chaîne de
Kitaev. Toute comme la version fermionique originale, nous montrons que le modèle est
mieux compris en termes de degrés de liberté hermitiens locaux. Le système démontre
une chiralité qui dépant de la phase; les signaux se propagent et sont amplifiés d’une
manière qui dépend de la phase de l’excitation photonique. En outre, nous trouvons une
sensibilité frappante aux conditions de limites: le système sans limites est caractérisé
par des modes dynamiquement stables délocalisés alors que le système fini avec des
frontières ouvertes ne supporte que des modes localisés et stables. Enfin, nous discutons
de l’enchevêtrement de notre système. Alors que nous nous concentrons spécifiquement
sur un système photonique, nos idées sont en principe applicable à tout type de système
bosonique.
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Introduction

Topological insulators and superconductors are relatively new states of matter which are

by now extremely well understood. They are characterized by a fully insulating bulk, yet

host gapless edge states. A particularly simple model in which the presence of these edge

states is extremely transparent is the Kitaev chain, a topological superconductor whose

edge modes are exotic states known as Majorana modes [1]. The fermionic nature of the

electron is crucial to the physics displayed by the Kitaev chain. In this thesis, we will

therefore attempt to answer a relatively simple if broad question; is there an interesting

analogue of Kitaev chain in the bosonic case? Before diving into the question at hand,

we first briefly review Kitaev’s original model and a few of its remarkable properties.

We then touch on the basic theory required to understand parametrically driven bosonic

systems, the bosonic equivalent of superconductors. Finally, we introduce the bosonic

Kitaev chain, the model that we will study throughout the rest of this thesis.

1
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1.1 Fermionic Kitaev Chain

Before trying to study the bosonic Kitaev chain, we briefly review the original fermionic

version. The purpose here is not to exhaustively study this interesting model, but rather

highlight its remarkable properties. Despite several noteworthy features, the fermionic

Kitaev chain is deceptively simple: it consists of spinless electrons hopping on a 1D lattice

subject to a p-wave superconducting pairing amplitude, described by the Hamiltonian

ĤF =
1

2

∑
j

(
tĉ†j+1ĉj − µĉ

†
j ĉj + i∆ĉ†j+1ĉ

†
j + h.c.

)
(1.1.1)

where ĉj and ĉ†j are electron creation and annihilation operators at site j, t is the hopping

amplitude, µ is the chemical potential, and ∆ is the superconducting pair potential. Note

that the phase of ∆ amounts of a choice of gauge and without loss of generality we may

set ∆ > 0. Since the model is translationally invariant, momentum is conserved. Moving

to the momentum basis, the Hamiltonian reads

ĤF =
∑
k

[
(t cos k − µ) ĉ†kĉk + i

∆

2
sin k

(
ĉ†kĉ
†
−k − h.c.

)]
(1.1.2)

where ĉk and ĉ†k annihilate and create an electron with momentum k respectively. The

amplitude i∆ sin k pairs up electrons with a zero net center of mass momentum, a

consequence of translational invariance. Furthermore, due to Fermi statistics, the pairing

amplitude must be an odd function of k.

The amazing properties of the Kitaev chain can be traced back to its topological

origins. This is more transparent by introducing a two component operatorC†k = (ĉ†k, ĉ−k)
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and rewriting Eq.(1.1.2) as

ĤF =
1

2

∑
k

C†k (hF (k) · σ̌)Ck, (1.1.3)

where hF (k) = (0,−∆ sin(k), t cos(k)−µ) and σ̌ is a vector of Pauli matrices in particle-

hole space. Since hx(k) is zero for all momentum, the momentum space Hamiltonian

anti-commutes with the first Pauli matrix, i.e. σ̌x (hF (k) · σ̌) σ̌x = −hF (k) · σ̌. The mo-

mentum space Hamiltonian, anticommuting with a unitary operator, is then said to have

chiral symmetry. Due to this symmetry, we consider hF (k) as a two-dimensional vector

and subsequently define a topological number which counts the number of times the vec-

tor hF (k) encircles the origin. In the Kitaev chain when µ = 0 (which we consider from

now on),the vector hF (k) encircles the origin once, indicating a topologically non-trivial

state. The bulk energies are given by E±(k) = ±|hF | = ±
√
t2(cos k)2 + ∆2(sin k)2

which implies that this topological number can’t change unless we close the bulk gap

(i.e. |hF (k)| = 0 for some k in the Brillouin zone).

The interest in topological states of matter is not purely academic: there are interesting

physical consequences to having a non-zero topological number. The quintessential

example is the bulk-boundary correspondence, which in the context of topological band

theory states that a topologically non-trivial system supports protected zero-energy modes

at its boundary [2–4]. Having just demonstrated that the fermionic Kitaev chain has

such a non-zero topological number, we know that the finite-size version with open

boundary conditions must have an edge mode, which we now demonstrate. The relevant

Hamiltonian is

ĤF =
1

2

N−1∑
j=1

(
tĉ†j+1ĉj + i∆ĉ†j+1ĉ

†
j + h.c.

)
(1.1.4)
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The existence of edge modes is most easily seen by introducing new localized degrees of

freedom on each site, the Majorana operators γ̂Aj and γ̂Bj via

ĉj =
ei
π
4

√
2

(γ̂Aj + iγ̂Bj) . (1.1.5)

One can easily verify that both γ̂Aj an γ̂Bj operators are Hermitian and satisfy the usual

fermionic anticommutation relations

γ̂†α,j = γ̂α,j {γ̂α,j, γ̂α′j′} = δj,j′δα,α′ (1.1.6)

With that being said, asking whether a Majorana mode is occupied or not is meaningless,

since γ̂†αj γ̂α,j = γ̂2
α,j = 1

2
. Instead, these modes should be viewed as "half" a regular

fermion.

Expressed in the Majorana basis, the Hamiltonian takes the form

ĤF =
−i
2

N−1∑
j=1

(−(t−∆)γ̂A,j+1γ̂B,j + (t+ ∆)γ̂B,j+1γ̂A,j) . (1.1.7)

Thus, A-type Majoranas only couple to B-type Majorana’s and vice-versa. Furthermore,

the coupling between γ̂A,j and γ̂B,j±1 is asymmetric. Is it precisely this asymmetry that

leads to the edge modes. This is most easily demonstrated in the limit where ∆ = t and

the Hamiltonian is given by

ĤF = −it
N−1∑
j=1

γ̂B,j+1γ̂A,j = t

N−1∑
j=1

(
d̂†j d̂j −

1

2

)
. (1.1.8)

d̂j = 1√
2
(γ̂A,j + iγ̂B,j+1) are new fermionic operators, which consists of two Majorana

mode on adjacent sites. In agreement with the analysis of the bulk, we see that one must

pay an energy cost of t to add a d̂j fermion. However there are still two Majoranas, γ̂B,1
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and γ̂A,N which do not appear in the Hamiltonian. One can therefore define a new, highly

non-local fermion f̂ = 1√
2
(γ̂A,N + iγ̂B,1) which costs zero energy. This zero-energy

mode is completely invisible to the bulk theory, which is best understood by imposing

periodic boundary conditions on our chain. In this case, the two Majoranas γ̂A,N and

γ̂B,1 are actually coupled to one another, creating an energy gap. In going from open to

periodic boundary conditions, we’ve "split" the fermionic mode f into two, leaving a

Majorana fermion at each end of the chain.

This concludes our brief review of the Kitaev chain. We’ve seen that the bulk system

is gapped and carries a non-zero topological invariant yet, in accordance with the bulk-

boundary correspondence, hosts zero-energy modes localized at its edges. We note that

away from the point ∆ = t in parameter space, these modes are not exactly at zero energy

nor localized purely at the edges. Instead, their wavefunctions decay exponentially into

the bulk and the corresponding energy decays exponentially as the length of the chain

as long as the bulk is gapped [1, 2]. These localized states are still present even for a

non-zero chemical potential µ 6= 0 as long as the vector hF (k) winds once around the

origin, i.e. when |t| > |µ|. Furthermore, the localization physics is best understood

in terms of Majorana modes, which we can colloquially think of as "half" a fermion.

It is only natural to ask whether the same physics can be realized in a bosonic system

which, formally, resembles a fermionic superconductor. Before addressing this question

however, we must first discuss how such models can be physically realized as well as the

stark differences between these bosonic models and their fermionic counterparts.

1.2 Parametrically Driven Bosonic Systems

In fermionic superconductors, the pairing mechanism is the result of a mean-field analysis

of a genuine two-body interaction. Taking this idea over to the bosonic case, we reason
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that one may also obtain a non-particle conserving Hamiltonian by using a non-linear

Hamiltonian as the starting point. Fortunately, such non-linear interactions are com-

monplace in several areas of physics including optomechanics [5], circuit QED [6], and

cavity QED [7] to name a few. To obtain the relevant physics, one must drive the system

by pumping an auxiliary bosonic mode, i.e. with a laser (one obtains similar terms by

considering a mean-field treatment of an interacting bosonic system when one has a

condensate). Focusing on a single bosonic mode â, after all approximations have been

made the relevant Hamiltonian becomes [8] (~ = 1 here and throughout)

ĤSMS = ω0â
†â+ i∆

(
e−i2ωP tâ†â† − ei2ωP tââ

)
(1.2.1)

where ω0 the bare frequency of mode â and ωP is the pump frequency. The precise form

of ∆ will vary depending on the physical implementation, but will always be proportional

to the drive amplitude and will be referred to as such. We now make a rotating-frame

transformation

ĤRSMS = Û †(t)ĤSMSU(t)− iÛ †(t) d
dt
Û(t) (1.2.2)

Û(t) = e−iωP â
†ât (1.2.3)

In this rotating frame, the Hamiltonian is time independent

ĤRSMS = ωâ†â+ i∆
(
â†â† − ââ

)
(1.2.4)

with ω = ω0 − ωP . It is immediately evident that a fermionic equivalent of Eq. (1.2.4)

would be trivial. Fermionic statistics would force the particle non-conserving term to be

zero, since physically, a fermionic mode can’t be doubly occupied. Of course, bosons
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have no such constraint on occupation number. This is our first insight that, even though

we have no interactions, particle statistics play an important role in parametrically driven

bosonic systems. This is perhaps most obvious by considering the dynamics generated

by the Hamiltonian in Eq. (1.2.4). The Heisenberg equations of motion for â and â† are

i∂t

 â(t)

â†(t)

 =

 ω 2i∆

2i∆ −ω


 â(t)

â†(t)

 (1.2.5)

Thus, despite starting with a Hermitian Hamiltion Ĥ , the dynamics are by a non-

Hermitian matrix. We must be careful when analyzing the dynamics of the system

since we can no longer immediately assume that the eigenvalues of the dynamical matrix

are real. In fact, if we drive on resonance ωP = ω0, the eigenvalues of the dynamical

matrix are simply ±2i∆. In this case, the equations of motion are trivial to solve and

give

â(t) = cosh(2∆t)â+ sinh(2∆t)â† (1.2.6)

The complex eigenvalues have resulted in exponential growth instead of the usual

oscillatory terms whose frequencies are determined by the energies. Consequently, the

number of photons in mode â will diverge as t → ∞, even if our initial state is in

the vacuum state. We must remember however that our dynamics were generated by

a linearized mean-field version of a genuine non-linear Hamiltonian. As the photon

number starts to diverge, the non-linear effects play an important role in the dynamics

and, ultimately, make the system stable once again.

The driving term ∆ has thus rendered the system parametrically unstable, a feature of

driven bosonic systems which have no fermionic counterpart. After a moments thought,

it is perhaps not surprising that we have a diverging photon number with this simple
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model: when driving on resonance, Eq. (1.2.4) tells us that our pump adds and remove

pairs of photons with no energy cost. We can thus avoid the issue of parametric instability

by, for example, driving off resonance or adding dissipation.

In this thesis we are interested in studying quadratic particle non-conserving bosonic

Hamiltonians which, despite having essentially classical equations of motion, are still

able to generate genuine quantum states. For example, let yet once again consider the

Hamiltonian in Eq. (1.2.4) again focusing on the case where we drive on resonance. If

we assume that we start in the vacuum state, then for all times 〈x̂(t)〉 = 〈p̂(t)〉 = 0. The

variance of the quadrature degrees of freedom x̂ = 1√
2
(â+ â†) and p̂ = 1√

2i
(â− â†)

〈x̂2(t)〉 =
1

2
e4∆t 〈p̂2(t)〉 =

1

2
e−4∆t (1.2.7)

grows and decays exponentially in time, while still saturating Heisenberg’s uncertainty.

Such states are called squeezed states and their usefulness is immediately obvious: if one

can couple a physical observable to the quadrature which gets squeezed, the uncertainty

in the resulting measurement will be greatly reduced.

Non-particle conserving quadratic Hamiltonians can also be used to generate states

which are entangled, a manifestly quantum effect. The simplest such example is a

two-mode squeezing (TMS) Hamiltonian

ĤTMS = i∆
(
âb̂− â†b̂†

)
. (1.2.8)

with â and b̂ two bosonic modes. Assuming that the initial state is the vacuum (and the

resulting stated is called a two-mode squeezed vacuum state), we can write down the
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many-body wavefunction in the Fock basis of both modes â and b̂ as [8]

et ∆(âb̂−â†b̂†) |0〉 =
1

cosh(t∆)

∞∑
n=0

tanhn(t∆) |nn〉 (1.2.9)

After tracing out the b̂ mode, we are left with the reduced density matrix for the â mode

ρ̂â =
1

cosh2(t∆)

∞∑
n=0

tanh2n(t∆) |n〉 〈n| (1.2.10)

which is a thermal state with effective Boltzmann factor tanh2(t∆). Thus, even though

we started with a pure state, we are left with a mixed state. We conclude that a two-mode

squeezed vacuum state is indeed entangled. Furthermore, a larger squeezing parameter

means the two modes are more strongly entangled. Indeed, in this limit the effective

temperature of the reduced density matrix goes to infinity. One can in fact readily

quantify the amount of entanglement of a two-mode squeezed state via the log-negativity

[9].

1.3 Model

Having discussed how one can physically realize a bosonic analogue of a fermionic

superconductor, as well as the corresponding novel dynamics that arise due to bosonic

statistics, we are now in a position to study the bosonic version of the Kitaev chain. The

simplest such model one could consider calling a bosonic Kiatev chain is by simply

replace the fermionic operators in Eq. (1.1.1) with bosonic ones.

ĤB =
1

2

∑
j

(
tâ†j+1âj + i∆â†j+1â

†
j + h.c.

)
=
∑
k

[
t cos k â†kâk + i

∆

2
cos k

(
â†kâ

†
−k − h.c.

)]
,

(1.3.1)
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where we’ve assumed periodic boundary conditions and Fourier transformed to mo-

mentum space. One can readily compute the energies E±(k) = ±
√
t2 −∆2 cos k and

conclude that stability is realized throughout the band if and only if t > ∆. Furthermore,

the eigenstates of this model are plane waves, a consequence of translational invariance.

Like in the fermionic Kitaev chain, we now ask how the presence of boundaries

affects both the energies and eigenstates of the Hamiltonian Eq. (1.3.1). The intuition

obtained from the fermionic case tells us that the finite sized version of this model should

be trivial seeing as the vector hB(k) in Eq. (1.3.1) no longer winds around the origin.

This intuition turns out to be correct: while momentum is no longer conserved due to the

presence of boundaries, we may simply form standing waves of momentum k and −k to

diagonalize the Hamiltonian. More specifically, focusing on a finite sized system of N

lattice sites, we have

ĤB =
1

2

N−1∑
j=1

(
tâ†j+1âj + i∆â†j+1â

†
j + h.c.

)
=

N∑
n=1

[
t cos kn â

†
kn
âkn + i

∆

2
cos kn

(
â†kn â

†
kn
− h.c.

)]
, (1.3.2)

with âkn a standing wave annihilation operator

âkn =

√
2

N + 1

N∑
j=1

sin(knj)âj, (1.3.3)

and kn = nπ/(N + 1). The finite chain with open boundary conditions is essentially no

different from the infinite lattice or the chain with periodic boundary conditions. One

readily sees that stability is achieved throughout the band if and only if t > ∆, just like

in the system without boundaries. Furthermore, the eigenstates of the finite sized system

are standing waves and thus do no exhibit any localization.
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To obtain any interesting physics, we must break inversion symmetry (i.e. the

operation which sends j to −j). If we did not, then the Hamiltonian would always be

diagonal in the standing wave basis introduced above. The easiest route to breaking

inversion symmetry is by making the hopping amplitude purely imaginary t→ it. Again

assuming we have a finite lattice of N sites, we have

ĤB ≡
1

2

N−1∑
j=1

(
itâ†j+1âj + i∆â†j+1â

†
j + h.c.

)
(1.3.4)

Note that phase factor in the hopping can’t be simply gauged away, as would be the case

if ∆ = 0. Although the standing wave basis no longer diagonalizes the Hamiltonian, it is

not obvious that this new model is any more interesting than the one without any phases.

Taking inspiration from the fermionic model, we now express Eq. (1.3.4) in a new

basis of localized Hermitian operators âj = 1√
2
(x̂j + ip̂j), i.e. the canonical quadrature

operators. A direct substitution yields

ĤB ≡
1

2

N∑
j=1

(−(t−∆)x̂j+1p̂j + (t+ ∆)p̂j+1x̂j) (1.3.5)

The structure here is analogous to the fermionic case: x̂ quadratures are only coupled to

p̂ quadratures, and further, there is an asymmetry in the coupling between x̂j and p̂j±1

(c.f. Eq. (1.1.7)).

In this thesis we study the bosonic Kitaev chain as introduced above. In Chapter (2)

we examine the dynamics of our model and demonstrate that propagation is heavily

quadrature dependent and uniquely bosonic in nature. Chapter (3) explores the effect of

boundaries; we find that it drastically affects both the dynamics and eigenstates of our

system. We then discuss in Capter (4)the possibility of using a generalized version of

our model to generate useful Gaussian entangled states. Finally, Chapter (5) gives a brief
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summary and possible directions for future work.



2

Phase-Dependant Transport

The fermionic Kitaev chain is gapped: the hopping asymmetry leads to isolated Majorana

modes on the edges while the bulk can only carry supercurrent. As we have seen in the

previous chapter, the bosonic Kitaev chain has a similar asymmetric hopping strucutre in

the basis of quadrature operators. In this section, we study the dynamics of our model

and show that they depend heavily on the global phase of the photonic excitation. Further

the transport properties are uniquely bosonic, having no fermionic counterpart.

2.1 Quadrature Representation

Perhaps the most dramatic consequence of the pairing structure in Eq. (1.3.5) lies in the

dynamics. The Heisenberg equations of motion corresponding to ĤB are

˙̂xj =
t+ ∆

2
x̂j−1 −

t−∆

2
x̂j+1 (2.1.1)

˙̂pj =
t−∆

2
p̂j−1 −

t+ ∆

2
p̂j+1. (2.1.2)

13
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Note that the dynamics of the x̂ quadratures are completely decoupled from that of the

p̂ quadratures. Furthermore, each quadrature is forced in an asymmetric manner by its

neighbors. As ∆→ t, we have completely asymmetry: x̂ quadratures are only forced by

their neighbor to the left, p̂ by their neighbors to the right. If we imagine quadratures are

particles, we would thus expect chiral propagation: x "particles" would only propagate

to the right, p particles to the left. As we shall soon see, this picture is essentially correct:

Eqs. (2.1.1)-(2.1.2) imply that the propagation dynamics of a photonic wavepacket is

determined by it’s global phase.

Before proceeding, we must recall the discussion in the previous chapter and ask

the question: is ĤB stable? Focusing at the moment on our finite chain, we find that

the system is stable as long as t > ∆, independent of the chain length. In this regime,

the parametrically driven system is unitarily equivalent to a simple particle conserving

tight-binding model, as we now show.

We first define the parameter r via

e2r =
t+ ∆

t−∆
, (2.1.3)

which is a measure of the asymmetry in the left-right quadrature coupling. We can then

define a local position-dependent unitary transformation by

Û x̂jÛ
† = er(j−j0) ˆ̃xj, Û p̂jÛ

† = e−r(j−j0) ˆ̃pj. (2.1.4)

Here, ˆ̃x and ˆ̃p are new canonical quadrature degrees of freedom and j0 is an arbitrary real
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number. In this new basis, we find

ÛĤBÛ
† =

t̃

2

∑
j

(
−ˆ̃xj+1

ˆ̃pj + ˆ̃pj+1
ˆ̃xj

)
=

1

2

∑
j

(
it̃ˆ̃a†j+1

ˆ̃aj + h.c.
)
, (2.1.5)

with

t̃ =
√
t2 −∆2 = t/ cosh(r). (2.1.6)

Thus, in the regime t > ∆, ĤB is unitarily equivalent to a simple, particle-conserving

Hamiltonian with a renormalized hopping amplitude t̃. Note that the transformed Hamil-

tonian is completely independent of j0, a consequence of ĤB being invariant under

any spatially constant squeezing transformation which doesn’t mix x̂ and p̂ quadratures,

i.e. x̂j → ezx̂j , p̂j → e−zp̂j .

We also briefly comment on the special case t = ∆. In this case, Eq. (1.3.5) implies

that the coupling is completely asymmetric such that x̂j only couples to p̂j+1 and not

p̂j−1. In a finite chain of N sites, there are two quadratures x̂1 and p̂N which drop out

of the Hamiltonian. While in the fermionic model, these two decoupled edge modes

are of great interest, this is not the case here. Unlike Majoranas, one can’t form a new

bosonic degree of freedom from two spatially separated quadratures. More explicitly,

since [x̂1, p̂N ] = 0, no operator f̂ which is a linear combination of these two quadratures

can possibly satisfy the bosonic commutations relation [f̂ , f̂ †] = 1̂. Although these

decoupled quadratures are quantum non-demolition variables (QND), meaning that their

conjugate variables have no dynamics, their existence requires precisely tuning to the

threshold of instability. We will thus focus on the regime t > ∆ throughout this thesis.
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2.2 Phase-sensitive chiral transport

Eqs. (2.1.1)-(2.1.2) imply that photonic excitations propagate in a manner that is directly

determined by their phase. To characterize the chiral nature of the transport, we compute

the quadrature-quadrature Green’s functions. This can be readily computed by using the

position dependent squeezing transformation Eq. (2.1.4). The only non-zero Green’s

functions are

GR
x [j, j′;ω] ≡ −i

∫ ∞
0

dt eiωt〈[x̂j(t), p̂j′(0)]〉

= iG̃R
0 [j, j′;ω]er(j−j

′) (2.2.1)

GR
p [j, j′;ω] = −iG̃R

0 [j, j′;ω]e−r(j−j
′) (2.2.2)

Here, G̃R
0 [j, j′;ω] is the retarded Green’s function of a simple, particle conserving tight-

binding chain with hopping matrix element it̃.

The Green’s function GR
x [j, j′;ω] describes propagation of the x quadrature within

the lattice; in particular it describes how x̂j responds to a perturbation which directly

forces x̂j′ . We note that since x and p quadratures are dynamically decoupled, forcing

x̂j′ never induces a response in p̂j . The structure of the Green’s function makes the

expected chirality evident: x quadratures propagate and are amplified(de-amplified) as

they propagate to the right (left) and vice-versa for the p quadratures. Note that the local

Green’s function (j = j′) are independent of the squeezing parameter r and are in fact

equal to that of a particle conserving tight-binding model.

Remarkably, the above structure still holds if we introduce position dependent loss.

We assume this loss is Markovian and model it using standard input-output theory [10,

11]. The loss rate κj on each site could be due to coupling to the waveguides or to internal
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loss. The Heisenberg-Langevin equations for the local quadratures x̂j and p̂j reads

˙̂xj =
t̃

2

(
erx̂j−1 − e−rx̂j+1

)
− 1

2
κjx̂j −

√
κjx̂

(in)
j , (2.2.3)

˙̂pj =
t̃

2

(
e−rp̂j−1 − erp̂j+1

)
− 1

2
κj p̂j −

√
κj p̂

(in)
j . (2.2.4)

x̂
(in)
j and p̂(in)

j are the quadratures of the input fields impinging on loss port j. It could,

for example, corresponds to a classical drive field or vacuum noise.

Although we have broken translational invariance by introducing site dependent loss,

we are still able to map the system to a particle conserving model. One simply performs

the same squeezing transformation defined in Eq. (2.1.4) on both the cavity modes and

input fields. Although the input modes are now squeezed in this frame, the linearity of

the equations of motion imply that the Green’s function remain unchanged. Thus, the

Green’s function of the system with loss will still have the form of Eqs.(2.2.1)-(2.2.2)

with G̃R
0 [j, j′;ω] the photonic Green’s function of a tight-binding model with hopping

amplitude it̃ and on-site loss κj .

2.3 Scattering Properties

We now consider the case where input-output waveguides are attached to our lattice, and

ask how signals injected into these waveguides are scattered. Since our equations of

motion are linear, the scattering matrix completely characterizes such transport properties.

Input-output theory gives us a simple relation between the input, output and cavity modes

via the boundary conditions â(out)
j = â

(in)
j +

√
κj âj and Heisenberg-Langevin equations

in Eqs. (2.2.3),(2.2.4) [11]. Since x and p quadratures are dynamically decoupled in our
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system, the scattering matrix takes a particularly simple form in this basis

x̂(out)
j [ω] =

∑
j′

sxjj′ [ω]x̂(in)
j′ [ω], p̂(out)

j [ω] =
∑
j′

spjj′ [ω] p̂(in)
j′ [ω] (2.3.1)

The scattering matrices are completely determined by the Green’s function of the cavity

system, and thus inherits their unique structure

sxjj′ [ω] = er(j−j
′)s̃jj′ [ω], (2.3.2)

spjj′ [ω] = e−r(j−j
′)s̃jj′ [ω]. (2.3.3)

where s̃jj′ [ω] is the scattering matrix of a particle conserving tight-binding model with

on-site loss κj and hopping matrix element it̃. The scattering matrix in such a system is

phase-independent, and is thus the same for both quadratures. As expected, scattering in

our full system can be understood by examining the dynamics of the unperturbed system:

x̂ quadrature signals are amplified (de-amplified ) when transmitted from left to right

(right to left) while p̂ quadratures exhibit the opposite behavior (see Fig. 2.1).

Our system thus represents a unique kind of phase-sensitive amplifier. These devices

amplify one quadrature (while de-amplifying the other) without the needed for added

noise. They are also used as a resource, producing non-classical squeezed states. Con-

ventional amplifiers amplify only in one direction, due to phase matching, or amplify

the same quadrature regardless of transmission direction. In contrast, here we obtain

amplification in both directions, but in different orthogonal quadratures. Note also that

the end to end transmission gain |sx1N [ω]|2 = |spN1p[ω]|2 scales like e2rN , whereas the

amplification bandwidth goes like t̃ = t/ cosh(r). Thus, if we have a long chain and a

small parameter r, we can get arbitrarily large gain without greatly reducing the band-

width. We have therefore sidestepped the usual gain-bandwidth product restriction that
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Figure 2.1: Scattering properties of the bosonic Kitaev-Majorana chain: (a) Schematic of
the setup. The leftmost, middle and rightmost sites are attached to waveguides (coupling
rates κL, κM and κR respectively). A signal with a frequency ω and global phase θ = 0,
corresponding to an x excitation, is injected in the middle waveguide and is amplified
(deamplified) as it propagates to the right (left). (b) Amplitude squared of the scattering
matrix elements plotted as a function of frequency of the input signal. As expected,
signals propagating to the right (left) and amplified (deamplified). Note the reflection
probability (black) is bounded by unity. (c) Same setup as in (a), except the phase
of the signal is now θ = π

2
, corresponding to a p excitation. (d) The signal is now

amplified (deamplified) as it propagates to the left (right). For (b),(d), we take N = 13
sites, ∆ = t/2, uniform on-site internal loss rate κ = 10−2t, and waveguide couplings
κM = 2κL = 2κR = 2t.

most amplifiers adhere to.

Viewed as an amplifier, the bosonic Kitaev chain has another unique property: while

we have a large amount of transmission gain, there is never any reflection gain. This

follows direction from Eqs. (2.3.2)-(2.3.3), which tells us that sxjj[ω] = spjj[ω] = s̃jj[ω].

Reflection in our system is phase insensitive and equal to that of a particle conserving

tight-binding model and thus is bounded by unity. The lack of reflection gain is useful in

many settings where one would like to protect the fragile signal impinging on the input

port.

The lack of reflection gain can be intuitively understood by returning to the equations

of motion Eqs. (2.1.1)-(2.1.2). Due to the open boundaries and nature of the hopping,

reflection requires an equal amount of left-to-right and right-to-left propagation. The
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chiral nature of amplification then implies that the net amplification for such a process will

always be zero: amplification in one direction is perfectly canceled by de-amplification

in the opposite direction.



3

Sensitivity to Edges and Disorder

As we have already seen, a remarkable feature of the Kitaev chain is its striking sensitivity

to boundary conditions. In an infinite or periodic system there is an energy gap centered

around zero and corresponding plane-wave eigenfunctions, yet for open boundary con-

ditions there are zero energy Majorana modes localized on the edges. We find that our

bosonic Kitaev chain exhibits an even stronger sensitivity to boundary conditions: the

periodic system is characterized by dynamically unstable delocalized modes, whereas the

presence of boundaries renders all modes stable and localized on the edges. We explain

further in what follows.

3.1 Spectrum

Let us first consider our bosonic Kitaev chain with periodic boundary conditions. The

presence of the phase in the hopping parameter t → it changes the single particle-

conserving dispersion t cos(k) → t sin(k) (see Eq.(1.3.1)) such that the Hamiltonian

21
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now reads

ĤB =
1

2

∑
k

(
t sin k(â†kâk − â

†
−kâ−k) + i∆ cos k

(
â†kâ

†
−k − h.c.

)
)
)

(3.1.1)

We can already conclude that the system is unstable for an arbitrarily strong driving

strength ∆. The presence of the phase has made the detuning between modes k and

−k zero, such that the pairing term with amplitude ∆ cos k is resonant. Indeed, one can

readily compute the complex energies Ek,± = t sin k ± i∆ cos k. Furthermore, due to

translational invariance, the eigenstates are simply plane-wave states.

Despite being intuitively reasonable, the behavior of the periodic boundary condi-

tion system is completely different than the corresponding system with open boundary

conditions. The former, as demonstrated in Eq.(2.1.5), can be mapped onto a particle

conserving tight-binding model with hopping amplitude it̃ =
√
t2 −∆2. Consequently,

for any ∆ < t, there is no instability: its spectrum is entirely real and givenEn = t̃ cos kn

with kn = nπ/(N+1). We thus have a dramatically different spectrum depending on the

choice of boundary conditions, as demonstrated in Fig. (3.1). Note that this conclusion is

independent of system size.

For an intuitive understanding as to why the different boundary conditions give rise

to such different dynamics, we return to our discussion of the reflection gain. In an

open boundary setup, reflection requires an equal amount of right-to-left and left-to-right

propagation. The lack of reflection gain is a consequence of a delicate balance between

amplification in one direction and deamplification in the opposite direction. A photonic

wavepacket which undergoes a single round trip within the open boundary system will

not be amplified, which precludes instability. With periodic boundary conditions in place

however, this intuitive picture no longer holds. In this ring geometry, a wavepacket with

a definite global phase corresponding to e.g. an x excitation propagating clockwise will
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Figure 3.1: Spectrum of the system with periodic boundary condition (PBC) EPBC
k,± =

t sin(k)± i∆ cos(k) versus open boundary conditions (OBC) EOBC
k =

√
t2 −∆2 cos(k)

with ∆ = t/2. The spectrum with PBC is complex for any non-zero ∆, indicating
parametric instability. In contrast, the system with OBC is stable as long as t > ∆,
regardless of system size.

be amplified by a factor of erN after a single round trip. The subsequent infinite number

of round trips in the chain lead to a diverging excitation amplitude; the system is now

unstable for arbitrary ∆ (see. Fig. 3.1).

3.2 Eigenstates

As we have just seen, the spectrum of the bosonic Kitaev chain is extremely sensitive

to the boundary conditions under consideration. It is perhaps then not surprising that

the eigenstates of the finite open chain bear no resemblance to those of the infinite sized

system. Naively the eigenstates of the finite sized system are linear combinations of
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plane-wave states whose momenta have the same bulk energy. Yet our local squeezing

transformation Eq. (2.1.4) already indicates that this intuition must fail. After the

squeezing transformation, the Hamiltonian is readily diagonalized ĤOBC
B =

∑
nEnβ

†
nβn

where βn are Bogoliubov modes of the original photonic operators

βn =
N∑
j=1

(
un(j)âj − vn(j)â†j

)
. (3.2.1)

Here, un(j) and vn(j) are the "particle" and "anti-particle" wavefunctions respectively

un(j) =

√
2

N + 1
i−j sin(knj) cosh(r(j − j0)) (3.2.2)

vn(j) =

√
2

N + 1
i−j sin(knj) sinh(r(j − j0)). (3.2.3)

where the squeeze parameter r is defined in Eq. (2.1.3). Note that there are many different

ways to diagonalize the Hamiltonian through the free parameter j0, which corresponds

the origin of our squeezing transformation.

Both the particle and antiparticle part of the wavefunctions are localized; they both

have an exponential dependence on position and their weight is concentrated at the

edges. On the other hand, for a given eigenmode, the contribution from each site to the

symplectic norm |un(j)|2 − |vn(j)|2 does not exhibit any localization. This quantity is

in fact completely independent of the two photon driving term ∆, consistent with the

local Green’s function being phase insensitive and independent of r. Consequently, is it

difficult to measure the localization in our system with a purely local probe; one must

consider a non-local probe such as transmission.
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3.3 Disorder Effects

We now explore, both qualitatively and quantitatively, how the bosonic Kitaev chain is

affected by the presence of disorder. We focus exclusively on a finite chain ofN sites with

open boundary conditions. The simplest kind of disorder we could imagine is random on-

site losses κj . Yet we’ve already seen that this disorder is fairly unimportant; we can still

map our system onto a particle conserving model via a local squeezing transformation,

where the accompanying fluctuations describe squeezed noise (see Eqs. (2.2.3)-(2.2.4)).

Thus, our system is unitarily equivalent to a tight-binding model with disordered on-site

loss. Despite breaking translational invariance, causing reflections within the system, we

still remain stable in this case.

The situation is very different if we have a non-zero on-site energies described by

Ĥdis =
N∑
j=1

ωj â
†
j âj. (3.3.1)

Our foremost concern is that the presence of varying on-site energies can cause instability

even in the clean chain condition ∆ < t. This can be understood by moving to our

squeezed basis defined by Eq. (2.1.4). While the loss terms are invariant under this

squeezing, the on-site potential terms in this frame do not conserve particle number

ÛĤdisÛ
† =

N∑
j=1

ωj

(
cosh(2r(j − j0))ˆ̃a†j ˆ̃aj +

1

2
sinh(2r(j − j0))

[
ˆ̃a†j ˆ̃a
†
j + ˆ̃aj ˆ̃aj

] )
(3.3.2)

where we’ve thrown away terms proportional to the identity. Thus, it is generically

impossible to move to a frame where particle number is conserved and we can no longer

preclude dynamical instability. In the special case where there is only one impurity at
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site j = jimp, there is never instability; we may set the origin of the squeezing to be

the site of the impurity j0 = jimp thereby mapping our system yet again onto a particle

conserving model. This is no longer possible if there is even a single additional impurity

located at another site.

We now seek a more physical understanding as to how on-site potential disorder

causes instability. To this end, let us return to our trusty equations of motion in the

quadrature basis which now reads

˙̂xj =
t̃

2

(
erx̂j−1 − e−rx̂j+1

)
− 1

2
κjx̂j + ωj p̂j, (3.3.3)

˙̂pj =
t̃

2

(
e−rp̂j−1 − erp̂j+1

)
− 1

2
κj p̂j − ωjx̂j. (3.3.4)

We see that the main effect of this potential disorder is to dynamically couple the x and p

quadratures. Scattering off of these impurities can then change the phase of the photonic

wavepacket (i.e. covert an x excitation to p excitation and vice-versa). The chiral nature

of the amplification then implies that multiple reflections between several impurities can

lead to indefinite amplification and thus instability. This is in contrast to scattering off of

on-site loss or boundaries, processes which manifestly preserve the phase of excitation

and hence do not lead to any instability.

We now wish to qualitatively assess the impact of on-site potential disorder. To

do so, we perform a numerical disorder average. We take the ωj in Eq. (3.3.1) to be

random independent variables, uniformly drawn from the interval [−W,W ], with W

being the disorder strength. If there is a significant amount of amplification, we expect

frequency disorder to be highly detrimental to stability; the multiple phase-changing

reflections become more relevant and can lead to indefinite amplification. On the

other hand if W � t̃ and r, N not too large, we expect disorder effects to be largely

mitigated. The validity of our claim is confirmed by computing the disorder averaged
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Figure 3.2: Disorder averaged transmission coefficient 〈|sxRM[ω]|2〉dis for the same setup
as is Fig. 2.1, but with on-site disorder (disorder strength W = 10−3t). The shaded
region corresponds to the variance and the dashed orange line corresponds to the clean
system. Although stability is no longer guaranteed after introducing the disorder potential,
with the chosen parameters, instability only occurs in less than 0.01% of realizations.
For smaller values of r and/or N , one can tolerate even larger amounts of disorder.
Parameters: N = 13 sites, ∆ = t/2, uniform on-site internal loss κ = 10−2t, waveguide
coupling rates κM = 2κL = 2κR = 2t.

scattering probabilities (104 realizations) in Fig. 3.2. There, for a similar setup as in

Fig. 2.1 (N = 13, r ≈ 0.55) but with disorder strength W = 10−3t, less than 0.01% of

realizations are unstable. The remaining realizations closely resembles the scattering of

the clean system.
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3.4 Non-Hermitian Topology

It is only natural to ask whether the striking properties of the bosonic Kitaev can be

given a topological underpinning since, after all, the fermionic version is the prototypical

example of a topological superconductor. As we’ve previously noted however, the

fermionic and bosonic problems are not identical due to particle statistics; the dynamical

matrix in the latter case is non-Hermitian. Consequently, the topology of parametrically

driven bosonic systems is quite different than the fermionic version and has in fact been

the subject of several recent studies [12–16]. In these papers however, one first assumes

the driven system is stable, and only then proceed to examine its topology. For the

bosonic Kitaev chain, this is clearly inadequate; with periodic boundary conditions any

small pairing amplitude ∆ leads to instability throughout the band. We therefore need a

non-zero topological invariant which can be applied to unstable driven systems.

Attempting a full characterization parametrically unstable driven systems is far

beyond the scope of this thesis. We will instead analyze a generalized bosonic Kitaev

model on a semi-infinite lattice, and demonstrate that one can associate to it a non-zero

topological number which guarantees the presence of edge modes. The model under

consideration is described by the Hamiltonian

ĤSI =
1

2

∞∑
j=1

(
teiφâ†j+1âj + ∆eiθâ†j+1â

†
j + νâ†j â

†
j + ω0â

†
j âj + h.c.

)
. (3.4.1)

where as before, t is the hopping matrix amplitude, and ∆ is the nearest neighbor pairing

amplitude with arbitrary hopping phase φ and θ respectively. We’ve also no longer

assumed that we are driving on resonance (so that ω0 6= 0) and furthermore we’ve

introduced an on-site pairing term ν which we take to be real. To find an eigenstate α
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with energy E, we make an ansatz of the form

α =
∞∑
j=1

(
uj âj − vj â†j

)
. (3.4.2)

Heisenberg’s equations of motion then turns into a set of coupled difference equations

A

uj−1

vj−1

+ (B − E1̌)

uj
vj

+ C

uj+1

vj+1

 =

0

0

 (3.4.3)

where A,B and C are the 2× 2 matrices

A =
1

2

 te−iφ ∆e−iθ

−∆eiθ −teiφ

 B =

ω0 ν

−ν −ω0

 C =
1

2

 teiφ ∆e−iθ

−∆eiθ −te−iφ.


(3.4.4)

with boundary condition u0 = v0 = 0 since we have a semi-infinite chain.

Eq. (3.4.3) suggest that the wavefunctions should satisfy a sort of Bloch’s theorem,

i.e. we should try an ansatz of form

uj
vj

 = zj

u
v

 . (3.4.5)

with z a complex number and the vector (u, v)T at this point is undetermined. Inserting

the ansatz in Eq. (3.4.3) gives

(
H(z)− E1̌

)u
v

 =

0

0

 (3.4.6)

H(z) ≡
(
z−1A+B + zC

)
. (3.4.7)
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We have introduced the matrix H(z) because when z is on the unit circle, it is precisely

this 2× 2 dynamical matrix one must diagonalize to determine the band structure of the

system with boundary conditions. Thus, when |z| = 1, we will refer to H(z) as the bulk

Hamiltonian.

For a non-trivial solution to Eq. (3.4.6), we must find the roots zm of the polynomial

det
(
H(z)− E1̌

)
and then subsequently require that (u, v)T is in the kernel of H(zm)−

E1̌. By the fundamental theorem of algebra, we can readily see that there will in general

be four such roots zm and corresponding vectors (u(m), v(m))T . We assume for simplicity

that there are no repeating roots. The general form of the wavefunction at site j is then

simply

uj
vj

 =
4∑

m=1

cmz
j
m

u(m)

v(m)

 (3.4.8)

with cm coefficients chosen to satisfy boundary conditions. In the present context we

have two boundary conditions. First, we seek edge states whose wavefunctions vanish

at infinity. The second boundary conditions is simply u0 = v0 = 0, by virtue of the

semi-infinite nature of our system. The first boundary condition is easy to satisfy; if the

root zm lies outside the unit circle, hence it’s norm is larger than unity, we set cm = 0.

The second boundary condition, in terms of the undetermined coefficients cm is

u0

v0

 =
4∑

m=1

cm

u(m)

v(m)

 =

0

0

 (3.4.9)

Generically speaking, for a non-trivial solution we need at least three of the cm to be free

parameters. Combining these two boundary conditions together, we thus arrive at the

sufficient (but in general not necessary) condition which dictates when we have an edge



31 CHAPTER 3. SENSITIVITY TO EDGES AND DISORDER

state: three roots of the polynomial det
(
H(z)− E1̌

)
must lie inside the unit circle.

To characterize the number of roots which lie inside the unit circle, we simply use

the argument principle, familiar from any introductory complex analysis class. Namely,

we have

1

2πi

∮
|z|=1

dz∂z log
(
det(H(z)− E1̌)

)
= Z − P (3.4.10)

where Z is the number of zeroes and P is the number of poles inside the contour,

which in our case is the unit circle. Since det(H(z) − E1̌) has a second order pole at

z = 0 we conclude that if Eq. (3.4.10) is equal to one, we have an edge state. We can

make this formula more visually appealing, and perhaps more intuitive, by factoring

the determinant as det(H(z)− E1̌) = (E+(z)− E)(E−(z)− E) with E±(z) the bulk

dispersions generalized to a complex parameter. The left hand side of Eq. (3.4.10) then

reads

1

2πi

∮
|z|=1

dz∂z log (E+(k)− E) +
1

2πi

∮
|z|=1

dz∂z log (E−(k)− E) . (3.4.11)

Eq. (3.4.11) is simply the sum of two winding numbers. It counts the number of time

that the bulk dispersions E±(k) encircles the base point E in the complex plane. Thus,

if the energy E lies "inside" the curve drawn out by the by the bulk dispersion in the

complex plane, the corresponding eigenstate will be an edge mode. Needless to say, this

quantity is manifestly an integer, and is invariant under small perturbation of system

parameters. One may then argue that this quantity is a topological invariant. We point

out that a number of similar looking formulas have been found recently in several papers

[17, 18].

Although the previous analysis was done on a system which is infinite in one direction,
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Figure 3.3: (a) Spectrum of the generalized bosonic Kitaev chain described by the
Hamiltonian 3.4.1 for both periodic boundary conditions, a open boundary conditions on
a lattice with N = 13. All eigenvalues of the finite chain lie "inside" the bulk dispersion,
and consequently all eigenstates are localized. (b) Unnormalized particle un(j) and
hole vn(j) (see Eqs. (3.2.3-3.2.2)) part of the wavefunction for a given eigenstate for
the same parameters as in (a). One can easily see that the wavefunctions are localized
to one end of the chain, in accordance with the analysis presented in the main text.
All other eigenstates are also localized (half to the left, half to the right). Parameters:
ω0 = t,∆ = ν = 0.5t, φ = π

2
, and θ = 0

we find that a the conclusion holds for a system of finite extent. Indeed our original

bosonic Kitaev chain, where only t, ∆ and φ = π
2

were non-zero, certainly has a non-

trivial winding number associated to it. This is already apparent from Fig. 3.1; the

energies of the finite-sized system all lie inside the curve drawn out by the bulk energies

and, consequently, all eigenstates are localized. In Fig. 3.3 we numerically compute the

energies and eigenstates of for a different set of parameters. There too, we observe a

localization of all eigenstates which accompany energies that lie within the complex bulk

bands.



4

Entanglement Properties

We now consider the ability of our bosonic Kitaev chain to produce entangled photons.

While entanglement is a generic feature of bosonic amplifiers, our system has unique

features. The local squeezing transformation used to bring the model to particle con-

serving form has two attractive properties. It renders the problem exactly solvable while

also making the nature of both the intra cavity and output light remarkably transparent.

We will use this to our advantage by first studying the steady-state produced by letting

simple vacuum noise impinge on each site. Unfortunately, the purity of this steady state

is too small to be considered interesting. We then show that a generalized version of

our model can be used to create a variety multi-mode entangled states which have been

proposed to demonstrate so called "quantum supremacy".

4.1 Steady-State

In quantum optics, one is often interested in the long-term dynamics of a driven dissipative

open system. Heuristically, one can imagine that the dissipation will push the system

into a state in which the driving and coherence in the Hamiltonian will perfectly balance

33
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the loss. Thus, in the long-time limit, the system will relax into this state and have no

dynamics. Such a simple picture can sometimes fail, e.g. if there is more than one steady

state or if there are so called dark states which do not see the dissipation at all. This

will not be the case in this section however; we can then identify the steady-state as the

long-time limit of the quantity of interest.

In this section we will consider perhaps the simplest steady state we can imagine.

The Hamiltonian describing the coherent dynamics is our bosonic Kitaev chain and the

dissipation comes from vacuum noise impinging on each site. Further, we assume that

the dissipation rate on each site is equal κj = κ. The Langevin-Heisenberg equation of

motion in the quadrature basis is

˙̂xj =
t̃

2

(
erx̂j−1 − e−rx̂j+1

)
− 1

2
κx̂j −

√
κx̂(in)

j , (4.1.1)

˙̂pj =
t̃

2

(
e−rp̂j−1 − erp̂j+1

)
− 1

2
κp̂j −

√
κp̂(in)

j . (4.1.2)

The input noise at each is assumed to be uncorrelated Gaussian white noise with zero

mean and accompanying correlators 〈â(in)
i (t)â

†(in)
j (t′)〉 = δijδ(t−t′), 〈â(in)

i (t)â
(in)
j (t′)〉 =

〈â†(in)
i (t)â

(in)
j (t′)〉 = 0. By the Gaussian assumption, these correlators completely char-

acterize the statistical properties of the noise.

Since the equations of motion are linear, they can be readily be solved by the use of
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Green’s functions

x̂j(t) =
∑
j′

(
er(j−j

′)G̃R
0 [j, j′; t]x̂j′ +

√
κer(j−j

′)

∫ t

0

dt′G̃R
0 [j, j′; t− t′]x̂(in)

j′ (t′)

)
(4.1.3)

p̂j(t) =
∑
j′

(
e−r(j−j

′)G̃R
0 [j, j′; t]p̂j′ +

√
κe−r(j−j

′)

∫ t

0

dt′G̃R
0 [j, j′; t− t′]p̂(in)

j′ (t′)

)
(4.1.4)

where G̃R
0 [j, j′; t] is the retarded Green’s function of a particle conserving tight-biding

chain with hopping it̃ and on-site decay rate κ (see Eqs. (2.2.1)-(2.2.2)). Due to the

Gaussian nature of the noise, it follows that any state of our system will also be Gaussian.

That is, all information about the system’s correlations is determined by the 2N × 2N

symmetrically ordered covariance matrix V defined via Vjj′ = 1
2
〈∆ξ̂j∆ξ̂j′ + ∆ξ̂j′∆ξ̂j〉

with ∆ξ̂j = ξ̂j − 〈ξ̂j〉 and ~̂ξ = (x̂1, p̂1, . . . , x̂N , p̂N). Note that, in our case, the first

moments of all operators x̂j(t) and p̂j(t) vanish. One can easily find the equal time

correlators, and subsequently the t→∞ correlators, using Eqs. (4.1.3)-(4.1.4). We leave

the gory details to Appendix. B and cite the final result

〈x̂i(∞)x̂j(∞)〉 =
κii+j

2

(
2

N + 1

)2 ∑
j′,n,m

er(i+j−2j′) (−1)j
′
sin (knj

′) sin (kni) sin (kmj
′) sin (kmj)

i(En + Em) + κ

(4.1.5)

〈p̂i(∞)p̂j(∞)〉 =
κii+j

2

(
2

N + 1

)2 ∑
j′,n,m

e−r(i+j−2j′) (−1)j
′
sin (knj

′) sin (kni) sin (kmj
′) sin (kmj)

i(En + Em) + κ

(4.1.6)

1

2
〈x̂i(t)p̂j(t) + p̂j(t)x̂i(t)〉 = 0 (4.1.7)

The last equation follows from the dynamical independence of x and p. Now that we
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have all relevant correlators, we are in principle ready to examine the entanglement

properties of our steady state.

However before doing so, let us recall that each lattice site is coupled to a dissipative

bath at a rate determined by the coupling strength κ. Thus, we will have photon flux

leaving the various cavities into the bath, which are now entangled. The intracavity states,

which is what we are interested in, will then generically be a mixed state. If we want

to use the steady-state of our bosonic Kitaev chain as an entanglement resource, ideally

we would want our state to be pure. If not, our state is a statistical mixture of several

quantum states which necessarily must be described by some density matrix ρ̂. The

purity µ of a density matrix takes a very simple form for Gaussian states for N bosonic

modes [9]

µ = trρ̂2 =
1

2N
√

detV
(4.1.8)

The purity of a pure state is, as one would imagine, one. Heuristically, a small value

of the purity indicates that the state is a stastical mixture of a large number of quantum

states; any quantum information protocol would then be inefficient if performed with any

such state.

Unfortunately, we find here that the purity of the bosonic Kiatev chain is quite small

and therefore, not a useful resource for entanglement. In Fig. 4.1 we plot the purity as a

function of the parametric drive term ∆ for a chain with N = 13 sites and κ = 10−3t.

At ∆ = 0 we see that the system is in a pure state, namely the vacuum. There is no

coherent addition of photons to balance the dissipation and, in the long-time limit, the

system relaxes into a state with no photons in any of the cavities. As we increase the

driving term ∆ we see that we very quickly become impure. We can therefore conclude

that the steady state of the bosonic Kitaev chain is not a good resource of intracavity
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Figure 4.1: Purity µ of the steady state as a function of the drive amplitude ∆. When
∆ = 0 the steady state is the collective vacuum of all the cavities and the state is
manifestly pure. As we increase ∆, the purity decays exponentially. Thus, the intracavity
light in the steady state is not a good source of entanglement.

entanglement.

4.2 Multi-Partite Entanglement

We’ve just seen that the steady-state of the bosonic Kitaev chain is not an ideal producer

of entanglement. This follows immediately by considering the purity; it was too small

to be considered useful. Physically, the fact that our state is mixed is because we have

not kept track of the photons emerging from our system. To overcome this issue, we

may consider using outgoing states of light as an entanglement resource. The necessary

machinery required for such a task has already been developed; using input-output theory

we’ve completely characterized the outgoing states of light using the scattering matrix.
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To be more concrete, let us consider a set of M ≤ N input-output waveguides

coupled to the sites in our lattice where, as before, N is the number of lattice sites. As

we’ve seen in the previous section, even if vacuum noise is incident on each site, there

will be a non-zero number of photons in the light emerging from the waveguides. Further,

such light has a remarkably transparent form; it consists of sending in squeezed light in a

beam-splitter network, and then again squeezing the light at the output. A schematic of

the setup is depicted in Fig. 4.2 and follows immediately from Eqs (2.3.2)-(2.3.3). First,

one prepares M squeezed states with squeezing parameter Rj = rj (see Eq. (2.1.3)) in

the waveguide coupled to site j. At this point, the photons in waveguide j do no exhibit

any correlations with photons in other waveguides j′. The photons are then subsequently

sent into an effective beam splitter network, described by a M × M unitary matrix

K; this is just the scattering matrix of a particle conserving tight-binding model with

hopping amplitude it̃ and couplings κj . Finally, one performs a local anti-squeezing

transformation of the light at the output, yet another completely local operation. As such,

it does not affect the entanglement properties of the output light.

The states depicted in Fig. 4.2 have recently received attention as potentially useful

in demonstrating "quantum supremacy: the idea that a quantum mechanical system can

compute something that is classically difficult to do. In particular, these states can be used

to compute the molecular vibronic spectra [19], as well as solving classically-hard graph-

theoretical problems [20]. We note that normally, producing such states is experimentally

challenging. One first has to produce M squeezed states, then transporting and injecting

them with high efficiency into a beam-splitter network, a non-trivial task. The bosonic

Kitaev chain thus circumvents this problem by generating all the squeezing locally.

If one wanted to use our system for such applications, we would ideally like to have

full control over both the squeezing parameters Rj and unitary matrix K describing the

beam-splitter network. We can achieve the former by letting the hopping amplitude and
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Figure 4.2: Schematic showing an equivalent depiction of scattering off our lattice
with M input-output waveguides coupled to M ≤ N arbitrary sites. Input states in
each waveguide are first locally squeezed (squeeze parameters Rj). They then pass
through a beam-splitter network, and are then finally locally anti-squeezed at the outputs.
Crucially, the squeeze parameters Rj and beam-splitter unitary matrix K have a direct
and simple relation to the system Hamiltonian. In particular, K is the unitary of a simple
tight-binding model (see Eqs. (4.2.6-4.2.7)).

parametric drive vary from bond to bond t → tj , ∆ → ∆j . Crucially, we require that

the phase of the hopping amplitude remain the same, i.e. it is purely imaginary. The

corresponding Hamiltonian of this generalized bosonic Kitaev chain is

ĤB ≡
1

2

N−1∑
j=1

(
itj â

†
j+1âj + i∆j â

†
j+1â

†
j + h.c.

)
(4.2.1)

=
1

2

N∑
j=1

(−(tj −∆j)x̂j+1p̂j + (tj + ∆+j)p̂j+1x̂j)) (4.2.2)

Although we do not expect to be able to diagonalize this Hamiltonian as before, we would

still like to characterize when instability occurs. Recall from our previous discussion

that, for the translationally invariant clean Hamiltonian, stability was guaranteed by the

fact that the x and p quadratures were dynamically decoupled in conjunction with the

chiral nature of the amplification and de-amplification. Yet both of those features are



4.2. MULTI-PARTITE ENTANGLEMENT 40

present even without translational invariance. Thus, as we will now show, stability is

achieved if the tunneling matrix elements are larger than the parametric drive terms.

More explicitly if we assume that tj > ∆j for all j and define

e2rj =
tj + ∆j

tj −∆j

, Rj =

j−1∑
m=0

rm, (4.2.3)

with r0 an arbitrary real number, we can make a local position-dependent squeezing

transformation:

Û x̂jÛ
† = eRj ˆ̃xj, Û p̂jÛ

† = e−Rj ˆ̃pj (4.2.4)

A direct substitution yields

ÛĤB′Û † =
1

2

∑
j

(
it̃j ˆ̃a

†
j+1

ˆ̃aj + h.c.
)
, (4.2.5)

with t̃j =
√
t2j −∆2

j .

Thus, in the case where tj > ∆j for all j, ĤB′ is unitarily equivalent to a particle

conserving tight-binding chain with a spatially varying tunnel matrix element it̃j . This

mapping also implies a simple form for the scattering matrices that corresponds to

Fig. 4.2:

sxjj′ [ω] = eRj−Rj′ s̃jj′ [ω], (4.2.6)

spjj′ [ω] = e−(Rj−Rj′ )s̃jj′ [ω] (4.2.7)

where now s̃jj′ [ω] is the scattering matrix of an N -site tight binding chain with hopping

matrix elements it̃j and on-site decay rates κj . Therefore, experimental control over tj



41 CHAPTER 4. ENTANGLEMENT PROPERTIES

and ∆j allows one to realized a large class of multi-mode entangled states.
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5

Conclusion and outlook

The original purpose of this thesis was deceptively simple; finding and characterizing

the correct analogue of the celebrated Kitaev chain in the bosonic setting. Our starting

point was replacing the exoctic Majorana particles in Kitaev’s model with the well

known quadrature operators x̂ and p̂ for bosons, the rational being that all the interesting

physics in the Kitaev chain come from the Majorana pairing structure. Despite the

formally similar Hamiltonians, the two problems nearly nonidentical, a consequence of

particle statistics. In our model, photonic wavepackets propagate and are amplified in a

manner that depends on it’s phase. Further, the bosonic Kitaev chain exhibits sensitivity

to boundary conditions that is much stronger than any conventional condensed matter

system. The addition of boundaries not only localizes all states to the edge, but also

makes these modes dynamically stable. These features can be tentatively attributed to a

non-trivial winding of the bulk spectrum in the complex plane, which is only possible in

a driven-dissipative system. Our system is not only of fundamental interest, but could

also serve as a useful resource for quantum computing. While the steady-state is too

impure to be of interest, a generalized version of the bosonic Kitaev chain can be used to

prepare a large class of multi-mode entangled states that have received recent attention
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in the literature.

In terms of outlook, the physics discussed in this thesis perhaps raises more questions

that it answers. We have made a surprising connection between the Majorana modes

and the bosonic quadrature operators; one can only wonder if this correspondence can

be taken further. Namely, the classification of fermionic topological band structure can

be understood entirely in terms of Majorana fermions [21]. It is only nature to ask if

the quadrature operators play a similar role in the bosonic case. Finally, the role of real

photon-photon interactions in this setting would be extremely interesting.



A

Scattering matrix of a regular

tight-binding chain

For completeness, here we derive the expression of the photon scattering matrix of a

regular tight-binding chain s̃jj′ [ω], from which we immediately obtain the quadrature

scattering matrices, c.f. Eqs (2.3.2)-(2.3.3). The first step is to compute the Green’s

function G̃0[ω] of the unperturbed system, i.e. without the spatially dependent loss. By

definition,

G̃0[ω] =
(

(ω + i
κ

2
)1−H

)−1

(A.1)

where κ is the uniform on-site decay rate and H is the single particle Hamiltonian which,

in real space, has matrix elements (c.f. Eq. (2.1.5))

Hij = i
t̃

2
δi,j+1 − i

t̃

2
δi,j−1. (A.2)

Note that we could make a local gauge transformation to make the Hamiltonian matrix

H real valued. However, this transformation would also alter the scattering matrix,
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and we therefore choose to keep the imaginary phase factors in the definition of the

Hamiltonian. With Eq. (A.1) in combination with Eq. (A.2), one easily verifies that the

Green’s function for a finite chain of N sites is

G̃0[j, j′;ω] = ij−j
′ 2 sin (q[ω] min(j, j′)) sin (q[ω](N + 1−max(j, j′)))

t̃ sin (q[ω]) sin (q[ω](N + 1))
(A.3)

where q[ω] is the complex wavevector satisfying the dispersion

ω + i
κ

2
− t̃ cos(q[ω]) = 0. (A.4)

The introduction of spatially dependent loss κj introduces an effective imaginary potential

V at each lattice site. In real space it has matrix elements

Vij = −iκj
2
δij. (A.5)

The full Green’s function G̃[ω] is given by Dyson’s equation

G̃[ω] = G̃0[ω] + G̃0[ω]VG̃[ω] =
1

1− G̃0[ω]V
G̃0[ω]. (A.6)

Standard input-output theory [10, 11] then gives a simple relation between the scattering

matrix and the Green’s function

sjj′ [ω] = δjj′ − i
√
κjκj′G̃[j, j′;ω] (A.7)



B

Steady-State Correlators

In this appendix we derive the steady state correlators of our bosonic Kitaev chain in the

presence of uniform damping κ on each site. It is obvious that there are no dark states,

i.e. states which are unaware of the dissipation and that the steady state will be unique.

We may then identify the steady state correlators 〈x̂ix̂j〉ss and 〈p̂ip̂j〉ss as the t → ∞

limit of the equal time correlators 〈x̂i(t)x̂j(t)〉 and 〈p̂i(t)p̂j(t)〉 respectively (two-point

correlators involving both x̂ and p̂ vanish since they are dynamically decoupled). Recall

that in the main text, we had found the solution to x̂i(t) and p̂i(t) using the Green’s

function technique

x̂j(t) =
∑
j′

(
er(j−j

′)G̃R
0 [j, j′; t]x̂j′ +

√
κer(j−j

′)

∫ t

0

dt′G̃R
0 [j, j′; t− t′]x̂(in)

j′ (t′)

)
(B.1)

p̂j(t) =
∑
j′

(
e−r(j−j

′)G̃R
0 [j, j′; t]p̂j′ +

√
κe−r(j−j

′)

∫ t

0

dt′G̃R
0 [j, j′; t− t′]p̂(in)

j′ (t′)

)
(B.2)
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with G̃R
0 [j, j′; t] the Green’s function for a particle conserving tight-binding model with

imaginary it̃. Thankfully, we’ve already found the eigenstates ψn(j) and energies En of

the Hamiltonian: they are simple standing waves

ψn(j) =

√
2

N + 1
ij sin(knj), , En = t̃ cos(kn) kn =

nπ

N + 1
(B.3)

The retarded Green’s function can then be readily found by using the spectral decompo-

sition

G̃R
0 [j, j′; t] =

∑
n

ψn(j)ψn(j′)∗e−iEnt−
κ
2
t

=
2ij−j

′

N + 1

∑
n

sin (knj) sin (knj
′) e−iEnte−

κ
2
t (B.4)

We are now in a position to compute the relevant correlators.

Before doing so, we first notice two things which will simplify said correlators. The

first is that it is only necessary to compute either 〈x̂ix̂j〉ss; the other correlator 〈p̂ip̂j〉ss

can be found by changing the sign of the squeezing parameter r → −r. The second

thing to note is that x̂i(t) can be decomposed into two terms. The first corresponds to

the free evolution of the cavity modes, whereas the second includes the effects of the

dissipative bath on each site. In the t → ∞ limit, the former will vanish due to the

damping induced by the coupling to the baths. Thus, using Eq. (B.1) and the cavity

correlators 〈x̂(in)
i (t)x̂

(in)
j (t′)〉 = δijδ(t− t′)/2, we obtain

〈x̂i(t)x̂j(t)〉 = κ
∑
j′,j′′

er(i−j
′+j−j′′)

∫ t

0

∫ t

0

dt′dt′′G̃R
0 [i, j′, t− t′]G̃R

0 [j, j′′, t− t′′]〈x̂(in)
j′ (t′)x̂

(in)
j′′ (t′′)〉

=
κ

2

∑
j′

(
er(i+j−2j′)

∫ t

0

dt′G̃R
0 [i, j′, t− t′]G̃R

0 [j, j′, t− t′]
)

(B.5)
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Plugging Eq. (B.4) into the equation above and performing the elementary integration

leads to the result quoted in the main text

〈x̂i(∞)x̂j(∞)〉 =
κii+j

2

(
2

N + 1

)2 ∑
j′,n,m

er(i+j−2j′) (−1)j
′
sin (knj

′) sin (kni) sin (kmj
′) sin (kmj)

i(En + Em) + κ

(B.6)
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