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ABSTRACT

Abstract

'l'his thesis is concerned with the develollment and real-time implementation of an algo­

ril.hm 1.0 dclermine interest points in a scene. These interest points will be used bya robot­

l1lollllted camera. t.o focus its attention. The camera output has a nonuniform sampling

resointÏon, modeled after t.he primate visual syst.em. lt. provides a cent.ral high resolut.ion

Coveal region surrounded by a much coarser peripheral region. The object.ive is t.o contin­

uously position the camera 50 that the iUl.erest.ing areas in the scene lie within the foveal

region.

'1'0 this end, a computationalmodel of visual attention has been developed and impie­

meuted in t.his thesis. The algorithm is based on psychophysical experiments of human gaze

fixat.ion. Using context-free edge informat.ion as input, interest points are defined as centres

of regions surronnded by edges. This is shown to be equivalent ta defining interest points

as t.he point.s of intersection of Iines of symmetry between edges in an image. By adopting

a symmetry nH,,,sure based on t.he loci of ceutres of cocircular edges, a novel, real-tïme

method for computÏng these interest points is proposed.

'l'he algorithm has been implemented on a parallel network of Texas Instruments

TMS:l20C40 (C40) proccssors. With this configuration, processing rates can exceed ten

frames pcr second, depending on the algorithm parameters. The thesis also shows results

of the ldgorithm applied ta a wide range of real-world images, bath foveal and peripheral,

Ils wdl as an lumlysis of parameter sensitivity, and system throughput and [atency.

ii



•

•

•

RésUlllé

Cette thèse présente Ic développemcnt ct. la réalbmtion d'un algorithml' "\.t·mps r{'l'l" dl'

sélection de poin ts d'intérêts dans une image. Ces points d'at.\.cn\.ions scr\'irOll t. à dM,erlllilu~r

l'orientation d'une caméra montée sur un robot. mobile. Cette caméra, possèllc UIW r{·solut.iun

non-uniforme basée sur la modélisation de la rét.ine des primates. Elle produit. une l'éj.!;illU

fovéale centrale de haute résolution entourée d'une région périphérique de résolut.iun lIIoind rI'

ct variable. L'objectif est de centrer continuellement. l<\. caméra ponr que les rôginus d'i\l\.él·i~t.

détectées par notre opérateur soient situés iL l'iutérieur de la fovéa.

Pour parvenir à cette fi.n, un modèle d'attention visuelle est présenté. L'algorit.lllllc l'st

basé sur des expériences psychophysiques slIr l'orientation dn regard humain. L'ut.ilisation

des contours d'une imagu, nous permet de définir les points (Pint.érêts comllw {~t.a.nt. les

centres de régions eI~totirées par ces contours. NOliS démontrons que œUe définitiun est.

équivalente à définir les points d'intérêts comme étant l'in tersection de lignes de sYlllét.ril~ tlt'S

contours de l'image. La mesure des points de symétrie est alon; obtenue par 10 rcgrnlll)lmwni.

des centres de co-circularité des paires de cont.ours. NOliS proposom; alors unc I.eclinicpw

originale du calcul "temps réel" de ces points d'intérêts.

L'algorithme est réalisé sur une architecture pamllèle de microprocesseurs 'l'MS:i20010

(C40) de Texas Instruments. Cette con figu mtion permet. d'obt.enir ulle fréqllenec dn t.mite­

ment de plus de dix images par secondes, en fonction des pammètws de l'algorithme. LI~S

résultats de l'algorithme su rune large g<ullmc de scèues réelles sont. ensuit.e présent.(!s Sil r dl!S

images fovéales ct périphériques. En conclusion, IIl1e analysc de la scnsihilit.é de la IIIf~thl}dc,

de sa vitesse et de son temps de latence est présent.ée.

iii
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CHAPTER 1. INTRODUCTION

CHAPTER 1

IlltroductiOll

This thesis discllsses the devc!opmellt of a fast and complltationally efficient mechanism

for glliding visllally-based attention in robotic vision systems. Fllrthermore, this system

is biologically motivated, modelled on experimental evidence of attention in the primate

visllal system. The details of the design of the model and its implementation on a network

of digital signal processors is presented in the following chapters. The remainder of this

c1mptcr addresses the need for visllal attention mechanisms in both biological and machine

vision systems. This leads to a description of the goals of the thesis and how they are

achieved throllgh a visnal attention system. Finally, an overview of the progression of the

thesis is given, presented as a brief outline of each of the remaining chapters.

L The Need for Visual Attention

Recent advances in compllter technology have made real-time machine vision systems

a possibility, and have lead 1.0 a great deal of work in active vision [1] [5] [10]. However,

despite ellormous progress in recent years, machine vision systems still have a long way 1.0

progress before being able to replicate human visual performance. Many of the problems

encountered in developing such a system are due 1.0 the enormous amount of data that must

be processed in a short amount of time. '1'0 this end, a means of reducing both the data

and compntational requirements for image processing is desired.

One method cmployed by the primate visual system 1.0 red uce the data in a visual

image is through the use of a nonuniformly sampIed retina. Such a configuration consists

of a central, high resolution foveal region surroun.,ied by a much coarser peripheral region

whose resolution dccreases with the distance from the centre of the image. Furthermore, the

primate visual system achieves a reduction in the computational requirements for analyzing

these images by concentrating computational resources on salient, interesting regions of the

image.
1
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2. ~t()TIVATION

Both of the biological processes jnst described reqnire an 011 cllti'lIIoi medmnism in ord ('1'

to sclect those regions of the image that an' worthy of mon' d"tailed l'xamination. Hlr the

data reduction obtained by the use of a. fovea.ted sensor l t.he at.t.entional system dett'rminps

where to position the eye so ,hat interesting parts of the image project onto the fovea.

This allows these interesting regions to be analy~ed at the highest possible resolntion. For

the compntational rednction achieved by focnsing compntat.ional l'l'son l'ces on interl'sting

parts of the scene, the attentional system is employed to determine t.he regions in t.he image

that warrant allocation of these resonrces. However, in cont.rast. t.o t.he aU,ent,ion re'lnired

for foveated sensors, the mechanism cont,rolling the allocation of compnt.ational n'sOli l'ces

does not necessarily involve eye movements since these analytieal resonrces "'ln be applied

anywhere in the visual field.

Based on the biologieal evidence, some recent. machine vision syst.ems ha.ve incorporat.l'd

a nonuniformly sampied sensor for data rednction [7] [68]. As weil, some syst.ems have t.ried

to concentrate their limited compnting resonrces on appropriat.e areas of an image [63] [16],

thus reducing total computational reqnirements. For the same l'casons t.hat at.t.ent.ion is

required to guide these processes in biologieal vision systems, these machine vision syst.ems

also require efficient attentional mechanisms.

2. Motivation

The goal of this thesis is the development. and real-timel implementation of an at.t.en­

tional algorithm for a robot-mounted, foveat.ed sensor syst.em. The object.ive is t.o det.ermine

interesting points in a scene so t.hat the camera can be continnonsly posit.ioned 1.0 allow t.he

interesting regions to lie within the fovea. Fnrthermore, it. is desired that t.he syst.em be gen­

l'l'al purpose and able to fnnction in a wide variety of real-world set.tings wit.hont speciali~ed

knowledge of the environment or task. '1'0 this end, it is also necessary for the algorit,hm to

not rely on prior image segmentation or otller context-dependent prellrocessing.

'1'0 accomplish these goals, a biologically motivated, compntatiomùly efficient. modcl

of visual attention has been developed. This model is prinmrily .based on t.he context.-free

(bottom-up), fixation guiding (overt) paradigm of visnal attention. '1'0 achieve a real­

time implementation, the algorithm is l'un in parallel on a network of Tex;., Inst.rnments

TMS320C40 (C40) digital signal processors.

1In the context of this thesis, the term reol.lime iH UHcd to mt!an aH c10Kll to video rate!! a!! l'IJ!!Hihh:.

2
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3. ORGANIZATION OF THE THESIS

3. Organization of the Thesis

The thesis progresses through the motivation, development, and Implementation of

a real-loi me atteutional system. This begius iu chapter 2 wil.h a review of the biologieal

Iiterature ou visual atteutiou, whieh is maiuly composed of psychophysieal and ueurophysi­

olollical studies. Evideuce from this Iiterature shows that there are Iikely two distiuct visual

processing mechanisms iu the primate visual system. The first of these, covert altention, is

respousible for focusiug the processiug resources of the cortex and does not facilitate actual

eye movemeuts. The secoud type, ovel" attention, iuvolves a reorientation of the eye so

that the fovea is ceutred on different objects in the environment. This chapter justifies the

selection of a model of overt attention to meet the specified objectives of the thesis.

Chapter 3 begins with a discussion of some of the models of visual attention that have

been developed for machine vision applications. The lack of a fast operator to compute overt

attention justifies the development of a new model, w:lich is described in the remainder of

the chapter.

The details of implementing the model arc discussed in chapter 4. This chapter in­

cludes discussions on the effects of pixelization and the implementation of the model on

nonuniformly mapped images. The end of chapt',r 4 presents a variety of results of the

model applied to real-world images. This includŒ a comparison of these results with an­

other system modelling overt attention [63], as weil as an examination of the selection of

various model parameters.

The first section of chapter 5 presents modifications to the implementation of chapter 4

required to achievl! real-time performance. This discussion presents simplifications to the

algorithm and changes to the data structures, as weil as the distribution of the algorithm on

a parallel network of processors. The second section of this chapter shows that the results

obt,ained with these modifications are in agreement with the results of chapter 4. Finally,

the performance of the real-time algorithm is examined, both by measuring run-times under

a variety of input conditions and by examining the outputs of the algorithm through a real­

time tracking situation. Both these evaluations show that the algorithm produces valid

interest points at rates that arc compatible with the requirements of active vision systems.

Finally, chapter 6 concludes the thesis with a discussion of the contributions of this

work, its relation to previous work, and the future direction of the research.

3
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CIiAPTEn 2. VIStlAL :\Tl'ENTION IN H10l.OGICAL ~\'STEMS

CHAPTER 2

Visual Attention in Biological Systems

On what parts of a scene do humans focus t.heir attention'! This is a very dillicult. qnl'st.illn

to answer and it seems unlikely that. there is a single explanat.ion in ail sit.uat.ions. On t.he

one hand, when a person is searching for a part.icular object. while perfol'luing a spedlic

task, their attention is controlled in a t.op-down, context-dependent nHUlner. On the ot.lll'r

hand, in order to accomplish this search task, there must still be a meclmnism t.hat. direds

recognition processing to the relevant point.s in the scene. Furthermore, in order 1.0 survive,

biologiea! systems must be able to detect and respond to nnexpect.ed stimuli. This sort. of

attention must be driven directly from t.he input stimulus and therefore requires a cont.ext.­

free, bottom-up process. Attention is accomplished throngh a close coupliug of these t.wo

types of processes, allowing the brain to quickly switch from one atlent.ional cue t.o anot.her

in order 1.0 survive in a complex, changing environment.

Though il. is acknowledged that both top-down and bottom-up processing arc import.ant.

aspects of any visual attention system, this work concent.rates on the bot.t.om-up, context.­

independent mech"nisms for a number of l'mISons. First, most of what. is known of t.hl!

human visual system is based on low-level processing, nmking it very dillicult. to design a

top-down attentional model that is biologically motivated. Second, t.op-down processing is

Iikely performed around anchor points found during an init.ial, cont.ext.-free at.t.entional st.age.

ln fact, il. has been argued that context-free attentional modules form the building blocks

for top-down attention [63]. Finally, the goal of this thesis is the development of a guidance

algorithm for a robot-mounted foveated sensor. The objective is to position the camera so

that interesting regions fall within the fovea, ready for further high resolution processing.

This goallends itself to the bottom-up, context-free paradigm. Once an object is positioned

within the fovea, recognition algorithms can be used to determine what the object is and

guide context-dependent attention. As weil, by stressing bot.tom-up proces.~ing, the system
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1. PSYCIIOPIIYSICAI_ STUDIES

will he appliCilhle to a wide variety of sitllatiolls, and will he able to perform in the absence

of any specjalized knowledge, Ilowûver, t.he system should still be capable of incorporating

t.op·down cOlIsl.raillts in ils search, and t.he illtcgration of snell componcnts will he discusscd

hriefly in chapter Û,

1. Psychophysical 5tudies

Many of the mcchauisms of hnman visual attention have bccn discovered through psy­

chophysical experiments. In these, hnmau performance is examined during an assigned

visuomowr task. Two basic models of visual atteut.ion have resulted from this research,

the :()()m-/cns and the spoUigllt models. The first of these, popularized by Erikson and

'L,soeiates [21] [20], building on work by .Jonides [34], proposes that attention is analogous

1.0 a zoom-Iens system. At low zoom powers, attentional resources arc concentrated evenly

aaoss the entire visual field. When a stimulus is f1ashed, the attentional system zooms in

1.0 that area, allocating a disproportionate amount of processing resources 1.0 il.. However,

regardlcss of zoom power, visual processing is always conducted in parallel across the entire

visual field, with more processing concentrated in the zoomed regions.

ln contrast, the spotlight model, first introduced by Neisser [53), then developed by

TreisnHUl [79], proposes two distinct. stages of visual attention. According 1.0 this model,

the first or 1n'Cattcntive stage is performed in parallel across the entire visual field. This

stage wonld be responsible for figurai and texturai segregation. The second or attentive

stage is then performed sequentially, applying more sophisticated analysis 1.0 the elements

segregated by the first stage. The spotlight metaphor cornes from the sequential scanning

of the attentive stage. This is by far the most accepted paradigm of visual attention and

many models have been derived from il..

1.1. What features catch the eye? Though the models described above try 1.0

explain lIow attention is processed in the brain, they do not address the more fundamental

question of tv/IRt features the braiu chooses 1.0 attend 1.0. For context-dependent attention,

this question can be answered, rather simplistically, by stating that attention moves towards

objects that match the parameters of what is being searched for. However, as was observed

in the experiments that gave rise 1.0 the spotlight model of attention (35) (36) [53) (78) (79)

[80] (81), a preliminary, low-level segregation stage must occur even for context-dependent

attention. As weil, examining the interaction of stimulus and higher level feedback from

the brain in a context-dependent attention task is extremely difficult. This is compounded

by the fact t1mt few details are known about the higher level processing occurring in the
5
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brain. For these reasons. most of t.hl' r('sparch in vbllal at.t.l'ntinn has fOlu·l'IIt.l'att'ti 011 lo\\"

level, context·free stimnli.

In analyzing the results of thesl' eXpCl'illll'lltS. a dist.inct.ion Ill't,wl'l'Il l.\\"t\ alh'I'llall' ftll'ms

of attentioll, ovcr/. and couerl, I11I1St. be made. Overt. att.ention invnl\"l's an adual :->hift. in tilt'

gaze fixation point t.o the point being aUcnded 1,0. In cont.rast.. rOVl'rt. attent.ion illvolvl's a

shift of attentional processing to a ne\\' lo(~at.ioll in t.he vistlal field, wit.hout a t:nrn'spnndillJ,!;

fixation shift. Early theories madc Iiule dist,inc!,ion bel,ween t.hese t.wo aUent.ional l'orms. Fm

example, Hebb [31] proposed that. percept.ion is based on t.he se'lm,nl.ial seannin,.; of "d";l'S

and corners, which are of significant importance 1,0 recognition. This view was SlIpp0l'tl'd

by Attneave [4] who showed t.hat image point.s 01' maximum eurval,nre al'e go",1 eandidah's

for shape segmentation. In addition, he showed t.hat conneeting t.hese point.s wit.h sl,raight.

Iines prodnees an image which ean be easily reeognized. Hebb fnrl,her reasoned [:n] t.hat.

sinee the visual system is proeessing corner and edge information, il, wonld hl' plansihle

that gaze fixation wou Id also be directed ta these points. Experiment.s on newhmn hahi..s

[39] [29] [69], which found that their gaze tends ta be att.raeted t.o cont.ont's, seenll'd 1.0

further support this point. However experiments on adnlt fixat.ions have shawn t.hal, t,h..r..

ean be a differenee of as mueh as t.wo degrees of visual augle bet,wet'n t.he poiut. of at.t.eut.ion

and the point of fixation [37] [58]. Though this is not a large discrepancy, sint:e wit.h a

two degree difference the attention point still l'ails within t.he foveal region, il, has ""1 t.o a.

proposai that covert and overt attention may be direeted by separat.e proeessing channels.

The covert channel determines fixat.ion points and gnides the oculomot.or syst.em, while t.he

overt channel guides recognition processing t.o salient. point.s iu an image. This separation

was anticipated by Richards and Kaufman [66] who said:

"It is not at ail necessary that the feature ,Iet,eetors which mediat.e pat.t.el'll

perception also drive the oculomotor orienting syst.em. Difrerent part.s of t.l1I'

brain might process the same ret,inal activity in 'luite difrerent ways. By

doing sa, the system as a whole might improve its performance."

Another interpretation is that overt eye movements are much more expensive, in t.erms of

speed and mechanical costs, than covert attention shift.s. Because or this, covert, att.ention

l'an be shifted very quickly, allowing the examination of a number or candidat.e fixat.ion

points before overt eyemovement oecurs ta the most import.ant one [47].

Ta highlight the similarities, difrerences, and interactions between these t,wo att."'ltional

paradigms, sorne results of seleeted experiments on covert and overt. attent.ion are presellt.ed

below. However, since the goal of this thesis is the development of a syst.em ta gnide t.he
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fixation or a mobile, spacc variant scnsor, more crnphasis will be placcd on cxperiments

illvolvillg overt., or fixation guiding attentioll.

1.1.1. Co"ert aUention. Covert attcntion is involved in focusing the processing re­

sonrces of the recognition syst.cm in thc brain. 'l'othis end, il. can be reasoned that the

fcat.nrcs that arc attractors of covert attcntion are featurcs that are salient in object recog­

nit.ion. I~xpcriments by Treisman [80] and .Jnlcsz [36] have demonstrated that humans are

cxt.rcmcly adept al. dctecting a part of an image which differs from ail otller parts in a single

,""pcd.. This WllS accomplished through pop-out experiments, in which a human snbject

is prcsentcd wit.h a display containing multiple objects and is asked 1.0 distinguish a target

object from the ol.llOr clistl'llctors. The object shapcs are usually quite simple, such as bars,

anglcs, or let.ters, and are charact.erized by a set. of features such as colour, orientation, size,

and textnre.

Thc qnest.ion of what. feat.ures at.tract at.tention still remains. Treisman [79] found that

in some pop-ont. experiment.s, reaction t.imes increased Iinearly with increasing numbers of

dist.ract.ors, while in othcrs, reaction times remained constant regardless of the number of

distractors. She fonnd that the particular behaviour depended on the feature differences

betwcen the target and distractors. For example, if a target has one basic feature that differs

fl'Dm ail the distractors, snch as :L red dot in a field of yellow dots, then that target can be

fonnd in constant time. If on the other hand a target has no single feature which differs

from ail thc distractors, but is dcfined by a unique combination of features, then the search

time for the target increases with the number of distractors. An example of this would be

searching for a red X in a field of yellow X's and red T's. Treisman explained these results

by reasoning that some featnres are detectable in parallel across the whole image (constant

reaction times), while others require a seriai search of the image (increllSing reaction times).

By determining which unique featnres are detectable in parallel, an inference can be made as

to which basic features attract carly visual attention. In this way, Treisman found evidence

that these features include line ends, closure, orientation and curvature, computed over

Inminance, colour, motion and depth maps.

It should be pointed out that an alt.ernate explanation of Treisman 's results exists.

This Interpretation states that increased reaction times are not due 1.0 the effects of a seriai

process, bnl, rather, are caused by a parallel process running al. a slower rate due 1.0 an

increase in the number of stim~li. This wouId occur, for example, if the brain had a Iimited

:Lmount of processing resources and had 1.0 divide them between ail the stimuli [76] [77].

Indeed it is dimcult 1.0 distinguish between these two effects. However, il. is interesting
7
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ta note that Trcisman '5 intcrprctat.ion of parallcl and seriai proccs.....illg 1ll0dl'l" mirrors tlu'

preattentive (parallcl) and attentive (seriai) stages of the spotlight 1111111<,1 ofvisnal atlt'nlion.

In further experiments, .Inlesz [36] [35] fonnd the basir preattentive att,raetors, whirh

he callcd textons, ta correspond ta bars, cllipsl's. lille segments, tinl' t,erminat.ions and linl'

crossillgs, along \Vith attributes sueh as calour a.nd orient.at.ion. Ill' also sho\\'pd thal. t.('Xt.lIl·(~

information, as weil as toxton5, arc important. for Hgurc/ground scgn.'gat.ion. lit' I.hl'orÎ4wd

that textnre is computed locally by calcnlating distribution statistks over t,Ill' textons.

Attention in the seriai, attentive stage of visllal processing would then Ill' at.t.r:\l"t,·,1 tu

singnlarities of up to the second order in the statistical distribution of textons.

1.1.2. Ovat attention. The resnlts of stlldies of covert attention show that feat.nl'l's

are distingnished when they differ l'rom their neighbours. However, I,here is eviden"l' l'rom

studies of overt attentiou to indicate that an object's shape l'an be a strong fixation al.t.ractor

on its owu. As weil, further experiments have shown that. the spatial distribution of objects

in a scene l'an also influence fixatiou tendencies. Both of these result.s arc related by the

notion of centroids. Human gaze appears to be strongly attracted towards the "l'ntres of

small, bounded, and symmetrical shapes [37]. As weil, when a group of objects is being

fixated, the fixation point tends to l'ail near the centre of the gronp [15].
Brueil and Albee [9], aud Pitts aud McCulloch [55] have proposed t.hat. cyl' Iix:tl.ious iu

adults are drawn to centroids of luminance. This behaviour wus observed by I\aufnmu and

Richards [37], [66], who examined adult fixatiou positions when viewiug simple, uniformly

shaded, geometric shapes. They found that. for snmll object.s subt.euding less t.han live

degrees of visual angle, the centres of the objects, us opposed to the vertices or corners,

were generally fixated (sel' Fignre 2.1). 'l'his wus truc regardless of whet.her t.he object. w,,'

open or c1osed. For larger objects, fixation became more scat.tered. Evml for t.hese objeds

however, fixation tended to l'ail within the object outliue rather than 011 the contours or

vertices. Kaufman and Richards explaiued these results iL' a tendeucy for Iixation t.o be

attracted to the centre of gmvity of small objects. They reusolled that. if corners 'alld

edges were important constructs in analyzing imuge information, by Iixat.ing t.he cent.re of

gravity of small patterns the eye is oriented so that these salient poillts cali be processed

simultaneously, at high foveal resolution, wit.h no need for further motor activity.

Further evidence for the fixation attraction of object centres l'OIlles l'rom Ile and I<owler

[30]. Theil' experiments involved measuring the fixation ofsubjects viewing t.riangles. They

found that fixation is directed more accurately ta a target at the centre (symmetric point.)

of a triangle than ta other locations within the shape. They further showed that when
8
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+.. ~A'" r;::;l (;\ ..1.. A F':::~'.. LJ .... 1'''lvl~ ~

n'~HultH of n Hludy hy 1(I1urnmn und HidmrdH [37}. Bach figlln: subtcnds ahout two dcgrccs of visunl angle. 'The
dClttl:d cird,:s f1ulli.w the rcgiollH in which 86% of the fiXl\tions occurrcd.

i"IGUltE 2.1. SponLancous fixation tcndcncics for varions figures

Sil bjects were asked to fixate to the whole triangle, their fixatiolls tended to land near the

sYlllllletric point.

The perceptllal processes involved ill deterlllining the centre of gravitYof an object were

exalllilled by Proffitt and his associates. They found that the actual perceptual centre of an

object is determined by its boundary configuration, and not by the luminance distribution

of points within the object [61]. This result is important in that it indicates that the visual

system relies primarily on edge information in determining the centre of a shape. In further

work [60] [59] they fOllnd that the number of symmetry axes of an object contributes to how

weil ail object's centre of gravity could be determined. This finding is further supported

by Locher and Nodine [44], who found that, in the examination of abstract art, fixations

are concentrated along the axes of symmetry. However, if there is no symmetry in the

pictllre, fixations are more evenly distributed to ail areas of the image. Finally, symmetry

has also been linked to the separation of figure from background in images. Objects with

a high degree of symmetry are more likely to be interpreted as figure than those with less

symmetry [67]. In further experiments, [(aufman and Richards tested how the degree of

acnteness of an angle attracted fixation. They found that the more acute the angle, the

more it attracted fixation, with a maximum preference for angles of twenty degrees. As

1lngles were made smaller than this their attraction decreased. They also found that angles

are preferred over lines, and this result may explain the drop in attraction for very acute

angles, since the shapes formed by these angles are so t.hin they begin to approximate line

segments.

Another attentional phenomenon, termed the global effect, is observed when multiple

part, objects are being attended to. When such targets are presented, the orienting eye

movement.s tend to be dirccted to an intermediate position between the elements. This

was first demonstrated by Coren and Hoenig [15], who used the term "centre of gravity"

ta describe the position of fixation attraction. They instructed their subjects to shift their

fixation to a specific target point, with a neighbouring distractor point positioned nearby.

They found that the length of the initial saccade, or rapid eye movement, positioned the
9
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FIGUltE 2.2. Differences in pcrcci"cd dist,ances duc 1,0 cxt,rant.'OllS stimuli

fixation point between the target and the distractur point.. They rlll'ther rOlllld t.hal. as t.he

distl'actor was moved rarther rrom the tal'get point, t.he saccade lengt.h inneased. This P1lt,ct.

\Vas lincar up to a maximum scparat.ion of approximatcly twa dcgrees. As separat.ions Wl~l'l'

increased beyond this threshold, fixation gradllally moved back t.owards the t.al'get. point..

This phenomenon has been explained by Coren [14] as an altempt by the brain t.o pusil.ion

the eyes in arder ta maximize the inrormation ralling on t.he dl'ect.ive rovea (2 - " deg. or

visllal angle). For points that are close together, positioning fixation betwCl'1I these t.wu

points allows bath points ta be in the rovea. For points that are rart.her apart., lixat.ing to

the centre of gravity of the two points no longer allows the target point to land in t.he lovlm,

and thus the target point is fixated exclusively. Subseqllent tests have revealed t.hat. ir one

of the abjects is made larger [23], more intense [17], or has a highel' text.llre density [46],

the saccade lands c10ser ta that abject. Finally, Findh~y [24] showed that. abject bOllndary

information is given particular emphasis by the saccadic system.

Further examination of the global effect was based on the theory that t.he extenl. or

eye movements influences perception. The basic premise of this theory is that. t.he mot.or

energy required ta move the eye from oue point ta another inflllences t.he perceived dis­

tance between these two points. A slight ext.ension of this theory st.at.es t.hat. a t.endency t.o

eye movement, or errerent readiness, mther than actual eye movement., is ail t.hat is lIeœs­

sary for this distance perception ta be noticed. The strongest. evidence in sllpport. or t.his

theory cornes from Festinger, White and Allyn [22] who observed that. t.he magnit.ude or

the perceptual illusion matched the size aï eye lllovement. errors. Furt.her experimeut.s Ily

Coren measured a subject's ability t.o estimate the dist.ance bet.ween t.wo point.s uuder t.he

influence of nearby, extraneons stimuli [14]. In agreement with his earlier results, Coren

found that the distance between the centres of gravity of the target points and the ext.m­

neous stimuli c10sely matched the erraI' in distance perception (see Figure 2.2). This etrec!.

increased up ta a certain distance between target and stimulus, then decrm.,ed gr:ulually

with further distance. These results have been used ta explain certain visnal illllsions, sllch

as the Mueller-Lyer illusion (Figure 2.3). In this illusion, the centre of gravity or the "wing"
10
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FIGURE 2.:3. The MueHer-Lyer illusiou

seeLious atthc euds of the line aUmet fixation, causing errors in the perceived length of the

line. Coren [13] found that moving the centre of gmvity of the wiug, either by clmnging

the wing angle or increasing the wing size, correlated directly with a change in illusion

magnitnde. As the centre of gravity was moved ont, away from the line end, the perceived

lellgth of the line increased. This effect occurred up to some ma.ximum distauce between

line end and wing ceutre of gravity. At larger distances, the wing centre of gravity no longer

at.traeted fixation, since the two points could not both be in the fovea, and the effect of

the illnsion decreased. In similar experiments, Virsn [S2] showed that illusions similar to

Mneller-Lyer can be produced with any shape distractor, Ilot just wings, placed near the

line ends. These resnlts strongly support the hypothesis that object centre of mass is an

attmetor for fixation.

Finally, there is also evidence that enclosure is perceptually significant in determining

where to fixate. The importance of enclosure in figure/ground segregation was realized

long ago by both art.ists [3] and psychologists [65]. However, it is clear that the strict

nmt.henmtical definition of enclosure is 1.00 constrained to account for perceptual phenom­

ena. Ml\thenmtical enclosure is an ail or nothing property; a point is either enclosed by

;\ contour or it is not. In contrast, experiments by Gillam [27] have shown that humans

perceive enclosnre as a continuous, graded quantity. Her results indicate that the degree of

perceptnal enclosure is a function of the gap sizes in a contour. For example, the sum of ail

the contonr lengths surrounding each centre point in Figure 2.4 is the same. However, the

percel'tion of enclosure is clearly greater when there are many small breaks (Figure 2.4(d))

mther than one large break (Figure 2.4(a)). Similar results have also been shown by EI­

der [19] and Treisman [S1] and a computational model of graded enclosure was recently

proposed by Kelly and Levine [3S]. Treisman's experiments a1so found that the degree

of enclosnre affected response times in visual search tasks. This seems to contradict the
11
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rcsults of Kaufman and Richards dcscribed carliel", which showed t.ltat. t"l~llt.I·I,'S or ~ra\'it.y of

closcd figures attractcd at.tention as weil as open ligures. Howe\'l~r, t.hey go 011 t.o l'xplain

that therc appears to be a cOll1plction process in operation in t.he bm.in, eansing 1l1an)' op!'n

figures to behave as if they \Vere closed [37].

It should finally be noted that ail of the fixa.tion t,endencies ohserved ahovl' apply tolow­

level, context-free viewing. Ali of these processes l'an easHy he overridden wlwn pl'I'I"nrminl':

context-dependent tasks. Evidence for this was fonnd in the experiments of Ile and I(owh'r

[30] and, more directly, by Findlay [23], who discovered that tlw mOl'e mpidly a saccade is

made, the more it is infiuenced by the global properties of the target l~onfignmtion. Findlay

argues that the slower a saccade occurs, the more time there is fOI' volnntary inlluenœs 1.0

override the refiex tendeucies.

In conclusion, the above evideuce suggests that there arc three hasic fadors which

attract overt attention. First, fixation is directed to the centres of gmvil,y of snmll ohjeet.s

in the field of view. The determinatiou of centres of gmvity is mediated by the houndal'y

configuration and degree of symmetry of the object. Second, when mnltiple ohjeet.s or

multiple part objects arc present, overt attentiou is dirccted 1.0 an intermediate position

between the clements of these objects. Finally, the degree of enclosure of a point all'cct.s tlll!

degree to which it is an attmctor of gaze fixation.

2. Neurophysiologieal Studies

There are still many unans\Vered questions regarding the functioning of the primate

bmin, and this is especially truc with regard to the visual system. Furthermore, m; proces.,­

ing progresses through the dilferent levcls of the primate visnal cortex, representation of the

visual scene becomes increasingly more abstract and complex, relying on global scene and

eontextual cues. For this reason it is extremely dimcult to obtain any information about,

the neural processes guiding top down at.tention. 1I0wever, it is possible to make a nnmber
12
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of inferences regarding bottom up attention based on neurophysiological and anatomieal

information. Though an extensive review of ail the neurological studies of attention is be­

yomlthe scop" of this work, a few findings, related to the psychophysieal research presented

previousiy, will be discussed in this section.

There is some nenrologieal evidencc snpporting the separation of the covert and overt

processing channels. These two channels are mirrored by the parvocclllllar and magnoccllll­

1",' streams in the visual processing system. The parvocellular path appears to be involved

iu d"termining what an object is, whereas the magnoccllular path seems to be responsible

for determining where an object is located [48]. These two paths remain relatively weil

separated l.hroughout the visual system. Both paUls begin with two distinct types of cells

at the retinal gangliou level, P cclls for the parvocellular stream and M cells for the mag­

nocellular stream. This separatiou continues, with sorne crosstalk, as both streams pass

through the lateral genieulate nucleus (LGN) to area V1 and then area V2 of the visual

cortex. After this the two streams diverge completely. The parvocellular stream proceeds

to V4 and the inferior temporal cortex (\T), whieh is involved in stimulus identification and

memori~ation. The magnocellular stream continues through the middle temporal cortex

(MT) to the posterior parietal cortex (PP), the area responsible for object localization and

spatial relations. Further evidence has shown that 1'1' neurons respond mainly to stimuli

near the fovea, whHe PP neurons are affected by both foveal and peripheral stimuli [48].

This evidence correlates weil with the functions of these two streams since an identification

system would require high resolution information from the area being fixated, whereas a

locali~ation system would require information from the entire visual field.

As for direct evidence of attentional proccssing centres in the brain, Moran and Desi­

mone [49] fonnd that receptive fields of V4 and 1'1' neurons in monkeys could contract to

include only a relevant, attended stimulus, even if two or more stimuli fell in the neurons'

original reccptive field. This is strong evidence that there are mechanisms which can adjust

the brain 's response for different attentional tasks. The question remains as to what con­

trois these tuning processes. Sorne researchers have concluded that the pulvinar nucleus of

the thalamus is partially responsible for this function [57]. PET scans have shown an in­

crease in blood Dow to the pu\vinar when subjects were told to ignore a particular stimulus,

indieating increascd activity in this area [41]. As weil, the thalamus is ideally positioned in

the visual pathway to perform a gating function, controlling signais as they pass from the

retina to the cortex. Finally, patients with pulvinar lesions exhibit a difliculty in directing

and maintaining visual attention [62].

13
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Other evidenee implieates other areas in the determinat.ion of visual at.t.ent.ion. For ex­

ample, eells in the snperior eollieulns (SC) eorresponding t.o the target location of a saeead.,

have been found ta have an enhaneed response just before a saceade begins [28] [83] [74].

This response oeeurs even if eye movement. is prevent.ed. Damage t.o t.he SC signilkantly

slows a patient's ability ta shift attention from one source to another. Ot.lll'r researdl has

found neurons in the frontal eye fJelds (FEI') that respond similarly t.o those in t.he SC.

However, these cells respond only if eye movement.s aet.ually oceur [56] [84]. The PI' alHo

has neurons that respond in the area of an att.ended st.imulus [83]. ln part.icnlar, I\'lount.­

castle and his colleagues [51] found three types of eells in area 7 of the l'l'of monkeys.

These cells, called fixation neurons, tracking neurons and saccade neurons, respond Helee­

tively when the monkey fixates an abject ofinterest in its immediate vieinity, when il. traeks

an abject of interest, and when it saccades ta an abject of intereHt, respect.ively. As weil,

lesions ta the pp lead ta dimculty in disengaging an existing foeus of attention in arder ta

shift ta another [56].

The evidence stated above shows that attention is an extremely complicated proecss,

involving many dilferent areas in the brain. As weil, there is evidence ta show that Hevl'ral

pathways exist which can compensate for each other if one is daulaged. Some effort has

gone into linking this evidence in a coherent way. For example, l'osner [57] has recenUy

proposed a three stage operation for shifting attention. First the parietal cortex dise,,!!,,!!es

the attention from its present focus. Second the SC moves the foens ta a new target. Filmlly,

the pulvinar en!!a!!es attention on the new target.

Further inferences can be made by examining the general anatomy of t.he bmin and

the connectivity of neurons. For example, as was described previonsly, bott.om-up attention

must be context-free, and must primarily be a response to certain characteristics of the

visual input. Therefore, in order for an attentional operator to be coutext-independent, it

must rely exclusively on the information avaHable from low level, carly vision cues. These

correspond to features, such as tangents [33] [45] and curvature [18], that are computed al.

the first levels of the visual cortex. As weil, most neural connections in the cortex extend

just 1-2 mm [33]. This corresponds roughly to the length of one aggregate fjeld in the

visual cortex. For this reason a bottom-up attentional mechanism must also be very local,

as interactions across large expanscs of the visual fJeld can only occur mnch further along

the processing pipeline.
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CHAPTER 3

Modelling Visual Attention

This chaptcr cxplorcs how visual attcntion cau bc modclled in a machine vision system.

First, a bricf rcvicw of sornc systcms implcmcuted by other researchers will be presented.

Ncxt thc motivation for thc rnodcl prcseutcd in this thesis is examiued, whieh is based on

thc psychophysieal aud ncurophysiologieal cvideuce of chapter 2. This leads finally to the

dcvcloprncnt of a new mathcmatical model of visual attention.

1. Attention in Machine Vision Systems

Rccent intcrcst in activc vision has necessitated the development ofsystems to guide the

fixatiou of thcsc active vision sensors. These systems can be grouped into two types, those

dcsigucd for spccific, constraincd tasks, and those designed to be applicable to a wide variety

of tasks and rcal-world cnvironments. Thc task-specific systcms have the advantage of a

priori knowlcdgc of what constitutcs an interesting object, and can use this information

to choosc fixations. Thercfore, thcsc systems are mainly based on top-down attentional

processing. For cxamplc, the car following system of Zielke, Brauckmann and von Seelen

[88) uscs information about the symmctries found in the back of a car to distinguish cars

frorn othcr objects.

Somc systcms, including the one proposed in this thesis, attempt to implement ageneral

purposc attcntion model whieh can be used in diverse situations. As was described in

chaptcr 2, thcsc must incorporate a bottom-up attentional mechanism, based only on the

information in thc input image, sincc a priori knowledge of the environment is not available.

Some of the proposed methods for determining such interest regions are based on texture

properties of an image. For example, gray level variance is used in [50) and a measure of

local business is used by [54). Others define interesting regions based on the optical flow

cornputed in a scene [75). Further approaches are based on early psychophysical data [31)

[4), attributing attention to regions of high edge curvature [42) [86).
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l. ATTENTION IN ~lACIIINE VI~HON ~Y~TE~t~

Almost ail of the reccnt. biologically motivat.cd mode!" of vÎ"nal at.tention hil\'e hl'l'n

based on covert evidence of visnal attention (sec for cxample [40] [n] [12] [16] [47] [70J

[26]). These modcls involve the l'om pn t.ation of a nu mber of fmllllY' 1I111/'S, repn'"en tinp;

the locations of various featurcs ~l1ch as orient.at.ion, l'olour and dired.ioll of movellH.'nt.

Attention is then focused on areas of the image whosl' featurc" dilrer l'rom I,heil' Ill'ip;hhour".

Most of the differenccs between t.hese modcl" involve thc features I,hat. arl' chosen for 1.11<'

feature maps, the ways that the different feat.ure maps arc combined, and t.11l' dli'e(. of ""Ill'

on their combination.

The goal of this thesis is to devclop a syst.em which can guide t.he po"it,ion of a l'OllOt­

mounted, foveated camera system. The object.ive is 1.0 posilion the camem"o th al, intere"t­

ing regions l'ail within the fovea, in preparation for fnrther high resolntion pro",,""ing. A"

weil, the determination ofinteresting regions shonld initially be accomplished in the ah",'n,,,'

of specialized knowledge abont the scene. Finally, a fast, near real-I.ime implementation i"

required to accommodate tracking and recognition of objects in a real-world "etUng. Ile­

cause it involves positioning the sensor in nnknown surronndings, this goal lends it"elf 1.0

the bottom-up, overt visual attention processes described in chapter 2.

There is only one algorithm that wc know of thal. is based on the IlCnrophy"iologieal

evidence of overt attention. This attentional operator, developed by Reisfeld, Wolf"on and

Yeshurtln [63], has a number of featnres in common with the ohjectives of thi" thesis. First.,

the model is biologically motivated, modelling interest points based on symllll1tric proper­

ties in the input image, and correlates weil with the psychophysical evidence of I\anfman

and Richards [37]. Second, it reqllires no higher level knowledge of the scene, relying only

011 the contours found ill the image. However, as will be seen ill this chapter, the COlII­

plexity of this operator scales with the sqllare of the IInmber of edges in the image, since

it l'l'qui l'es an operation be performed over every pair of edges in the image. This nlakes

the operator too computationally intensive 1.0 be practical for real-time implelllelll.ations.

Furthermore, the application of the operator to nOllnniformly lllapped periplll!ml images

is not clear. These dimculties arc demonstrated by the resnlts of ail al.tem(>tcd real-lime,

foveated implementation of the algorithm by Yamamoto, Yeshllrnn and Levine [85]. 'l'his

system required a massively parallel SIMD (Single Instrnction, Multiple Data) computer

architecture to implement the operator. Even so, it could only achieve fmme mtes on tl,e

order of seconds pel' frame. Furthermore, the algorithm was applied to log polar images

without any modifications based on this mapping.
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2. DEFINING TIIE MODEL

For t1w above re;l.'iOIlR, wc devcloped a Ile\\' model of ovcrt visual attention. IL is

appropriate for real~timc implcmcnt.atioll and ca::;ily adaptable to nonuniforrnly mappcd

images. This syst.em will bo pros''''t.od in t.he following sections.

2. Defining the Model

Tho biologieal procoosos glliding overt. visllal at.t.ontion will be t.he primary mot.ivat.ion

bohilld t.he development. of t.he at.t.ont.ional mode\. However, a 1I11mber of fllrt.her implemen­

t.ation rO'llliremellt.s aro illlposed on t.he doveioplllent. of t.he aigorit.hm t.o ensllre the syst.em 's

nsefnlness in an active vision environlllont.. Prilllarily, t.he algorit.hm mllst. be fast., rllnning

as close t.o real-t.imo '.s possible. As weil, t.he algorit.hm mnst. be robllst. and able t.o fllnction

in nnconst.rained, real-world environmont.s. This means t.hat. t.he algorit.hm must. not. be too

oensit.ivo t.o sonsor noiso, object. occlllsions, varying Iight.ing condit.ions, and ot.her real world

Ilêtzards.

l3ased on t.he psychophysical and nenrophysiologieal evidence present.ed in chapt.er 2, a

nllmber of crit.eria can be defined for developing a model of bot.tom-lIp, overt attent.ion or

gaze fixation. 'l'hcsc arc:

1. Parallel processing: Bottolll-np at.tention, corresponding to t.he preatt.entive

st.age of t.he spot.light. model, is performed in parallel across t.he entire visual field

[53] [79].
2. Centres of gravity: There is a lot. of evidence sllggest.ing that eye fixations are

drawn t.o t.he centres of gmvit.y of object.s in a scene [9] [55] [37] [66] [30]. This

errect. is most. pronollnced for small objects, sllbt.ending less t.han 5 degrees of visual

angle [37]. Furt.hermore, t.he cent.re of gravity is determined by an object's boundary

confignmt.ion, and not. by t.he Inminance distribution within an object [61]. This is

snpport.ed biologieally by the fact that edge information is available al. an early stage

of t.he visnal processing pat.hway [33].

3. Symmetry: Symmetry is another important perceptual cue in the determination

of overt attention. Evidence shows that the order of symmetry (number of symmetry

axes) of an object affect.s how weil that object.'s centre of gravity can be determined

[60]. This is support.ed by studies showing that fixations tend 1.0 be concentrated

along the axes of symmet.ry in an image [44] and that objects with a high degree of

symmet.ry are more readily interpreted as foreground [67].

4. Edge orientations: The relat.ive orientations of boundary clements affect how weil

t.hey attract fixation. For example, acute angles attract fixation more than obtuse
17



•

•

•

2, OEFINING TIIE ~tOnJo:1,

angles, with a maximal aUraet.ioli fol' ilngll's of 20 dl'grpl's [3;}. As \\'l'II. any all~lt\

is prcfcrrcd over an individual Hill' segllU'lIt..

5. Global eifect: Mult,iple objects grollped do",' tog<'l.her a\.trad. attl'Iltioll to thl'

centre point of the group [15]. This elf"l"t ouly m·,'lIrs for oh.i<'rts sl·parat.I',1 hy Il'ss

than 4 dcgrecs of visual angle. which hi t.he maximum dist.anee 1.\\'0 ohjl'et.s l"\11 IH'

spaccd while still allowing bot.h of t.hl'm t.o fall wit,hin t.hl' elrl'ct.i\"(· fovl'a.

6. Enclosure: The degrcc of enclosure of a point, alfe<'t,s it.s percept.lIal signilkan("(' [19]

[81]. Furthermore. enclosure is pcrceived as a graded quant.it,y whidl is a fllnd.ion

of the gap sizes in a cont.our [27].

7. Peripheral and foveal inputs: Neurologieal evidene!' shows t.hal, t.he overl, at.I,('n­

tional proccssing channel reccives inputs from bot.h t.he foveal and periphel'al rl'gions

of the retina [48].

8. Local interactions: ln order to be biologically plallsible, an at.tentional nlllt.ext.·

frec system must have an implemcntat.ion which can he achicved through ve!')' local

interactions. This is due ta the fact. t.hat. nenral connections in t.1", cort.ex ext.end

just 1-2 mm [33].

ln agreement with these criteria, wc model fixation points as t.he cent.res of endos"d

symmetric regions, based on the cont.onrs in an image (sec item 2 and it.em 6 1). 'l'hese

points l'an similarly be modeled as t.he intersect.ions of the Iines of symmet,ry in '"I image.

The validity of this approach, especially for c10sed figures, cau he sœn hy comparing t.h,·

points of intersection of the Iines ofsymmetry in Figure:l.l wit.h the psychophysieal findings

of Kaufman and Richards in Fignre 2.1. As weil, evidenc!' for t.his sorl, of processing in

biologieal systems l'an be found (scc it.em 3). Each possible fixation point is also nssigned

a magnitude of interest. This value is depeudent on two fnctors: l,he angles separat.ing

the edges contributing ta the lines of symmet,ry (it.em 4), and t.he degree of encloslll'e of

each point (item 6). Finally, points of high salience which arc close togel,her arc grouped,

and a single, centre point is determined for fixation (it.em 5). Ali of t.hese funct.ions will

be performed over the entire visual field at. each fnllne of prol"essing (item 1). As weil,

the algorithm is adapted ta compute interest. points for hoth a foveal image, mapped in

rectangular coordinat.es, and a peripheral image, mapped in log-polar coordinat.cs (it.em 7).

It should also be noted that although the particular. of the hardware configuration for t.his

1In this section, item numbers rcfer to the clement" in the liKt of modd c:ritl:rill. in IIm:tinll 2 ur thi!! dUlptl:r. Fur
cxamplc, item 2 refera to the centres of grnvity cutry in the Ii!!t.
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'l'lu: lilll'h or hYllllTlelry ror IL varÎety or hhapes an: nmrked with dll..'lhed Iines (- - .) in lhis figure. The poinls
mark"d with dols (.) arc lhe inlel"!iI,clinns or lhe !ineh or syrumelry. The ~'aHdily or mode!ing cenlres or grnvilY
r!,.~ lhe Înlel"!"'Clion or lines or syntnU,lry, espr:cia!ly ror the c10sed shapes cnn he seen in these images. The
I\Kn:cmenl or lhis mode! with psychophysiclli findings can ùe seen ùy compllring lhi!! figure wit.h Figure 2.1.

FIGURE 3.1. Intersections of lines of symmetry

system do nol. allow for a strictly local implemenl.ation (item 8), such an implementation

is possible and will be discllssed.

3. Developing the Algorithm

The proccssing for the algorithm can he divided into a number of distinct steps. Suppose

,Ul image is received from the camera and frame-grabber. First edge detection produces edge

magnitude and orientation maps from which lines of symmetry are determined. Next an

interesl. map is computed by determining where the lines of symmetry intersecte Finatly,

output points that are close together are grollped hy smoothing the interest map and finding

the local maxima. These maxima are the salient or interest points in the image.

Of the processing described ahove, edge detection, smoothing and local maxima de­

t.crminaLion are weil known in the image proccssing literature (see [43] for a review) and

their specifie implcmentation is Ilot critical. Suffice it to say that the edge detection stage

computes a discrete approximation of the first derivative of the image. This results in two

output images, one showing edge intensity, and the other edge orientation at each edge

pixel. The smoothing stage is equivalent to lowpass filtering, and is usually accomplished

by a convolution with a Gaussian mask. Local maxima are found from this image as the

pixels whose values are greater than ail of their nearest neighbours.

The rcmaining processing stages, deterrnination of the lines of symmetry, their cross­

ings, ,\l1d the dcgree of enclosure of a point, are developed specifically for this thesis, and

will be described in detail in the following sections.

3.1. Determining the Unes of symmetry.

3.1.1. Defining syrnmdry. There are a number of definitions of symmetry found in

t.he litcrature. Before describing these it is useful to introduce the notion of cocircularity.

Two cdgcs arc said to be cocircular if a circle can be drawn to which both edges are tangent

(Figure 3.2(a)). An alternate, yet cquivalent way of defining cocircularity is to say that two

cdgcs are cocircular if they form angles of equal magnitude, but of opposite sign, with the
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Edges ure cocircuJar (n) if n circle CUlI be dmwlI lo which bolh edBe~ l\r'! UlIll1,lml. nI' (h) if 1.111: IUlBkli f"l'I1wd
belween t.he edgcM and t.he line joilling t.helll arc of cqlluJlIluBlIil.ude. hut. of OJlJlc'/iill! liiBlI (if 0, =-(2)'

FIGURE :l.2, Cocir(:ularit.y

line joining them (01 = -02 in Figure 3.2(b)). The centre of cocircul:trity is tht! ccnl,I't! of

the circ1e defined by two cocircular tangents (point (XCI Yc) ill Figure a.2) ;tud t.he radius of

cocircularity, l'c, is the radius of that circ1e.

Many of the definitions of symmetry can be dcscribcd ill terllls of cocirclliarit.y. TIIll

symmetric axis transform (SAT) [6] can be defincd ;ts the loci of ail cocircular cent.res who:-ie

circ1es of cocircularity are containcd entircly withill .t part.iclliar contour. A slIpenmt. of t.he

SAT, the symmetry set [25] is delined HS the celltres of aJl circles I,ilugent t.o the curve al.

two or more distinct points. This is eqllivalent t.o t.he defillitioll of the SAT wit.hout. t.he

restriction requiring the circ1cs of cocircularity to be clltirely within t.he curvc. Allot.her

symmetry measure, closely related t.o the symmetry set, is the slIIoot.h 10Clti symmet.ry

(SLS) [8]. The points of the SLS arc the set of celltre points of the Hues conllccl.illg pain;

of cocircular edges. A comparison of thcse symmetry Illeasurcs is illustrat.cd in Figure a.a.
Finatly, the symmetry measurc uscd in the system of Reisfeld, Wolf.'5oU aud Ycshllrun [63]

should briefly be described. In this algorithm symmctry is dcfined as t.he loci of ail points

centred between two tangents, regardless of whether the tangent.s arc cocircular or not.

The magnitude of symmetry at these points is then weighted sa thal. edges with normals

painting directly toward or away l'rom each other produce 'L maximal out.put. A plot. l'illch

as those of Figure 3.3 cannot be produced for this mensure silice it is Ilot actually involved

in finding symmetry axes, but rathcr in usiug the symmetric informat.ion in the image lUi

part of an algorithm ta determine interest points.
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Output of difre:rcnL Kymlllctry mClL'IUreS for n rcdllnglc. (n) The symmclric axis lrllnsform (SAT) [6], (b) the
tlJlluut.h Jor.1l1 Kymmctry (SLS) [8], nnd (c) tlu: !lYlnmclry ~ml [25].

FIGUIU> 3.3. Comparison of different symmetry measures

ln comparing the symmetry measures, a few points should be el!1phasized. First, it

should be noted that ail the symmetry measures exccpt for the SAT can be applied without

any form of segmentation of the image. The SAT requires segmentation since it must

distinguish between regions that are inside and outside a contour. The remaining symmetry

meaSures arc purely a function of the edges in the image. Second, it can be seen in Figure 3.3

that ail the information contained in the SAT is a subset of the SLS, which is, in turn, a

subset of the symmetry set. This means that the most extensive set of symmetry axes is

contained in the symmetry set. It can also be seen that there are many similarities between

the various symmetries, highlighting the fact that ail these symmetl'Y measures are closely

related.

Selection of a l'articulaI' symmetry measure for use in this algorithm is based on a

number of criteria. First, the method must produce lines of symmetry that intersect in

a way that is compatible with the interest model described previously. This requirement

precludes the use of the SAT, since this algorithm does not output ail of the required lines

ofsymmetry. In fact, for the rectangle in Figure 3.3, the SAT completely misses the vertical

symmetry axis which results in the loss of the intersection of the horizontal and vertical

lines of symmetry. However, as defined by the model, this point of intersection should he

the primary interest point of the rectangle. Second, the algorithm must be adaptable to

iL fast, parallel implementation. The algorithm proposed hy Reisfeld and associates [63]

sulfers in this regard because it requires an operation to be performed between ail edge

points with ail other edge points in the image. This is the reason that a different model

of overt attention was pursucd in the first place. For the symmetry set and the SLS these

operations can be limitcd by taking advantage of the cocircularity requirement. In these

cases only cocircular cdge pairs nced to be considered. As weil, the computation of the

symmetry set can be further optimized since the determination of the centre of cocircularity
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(u) Each pair of cocircular cdgcs dcfincs n pnrliculnr line of NYll1lUt~ll·)·.with s)'lllmcLr)' Uritmtllliull 1/'. hist!clillF,
the two cdgc normnls. The orientntiom. of the Cllgc llorllU\ls llrc Inbclc!d rPi llml rP} rcsl)I!di\'dy, lUlll (hl thtl
angle 8cpnrnting the cdgc normal!! il> 111bclcd lp.

FIGURE 3.4. Definition of parame!.ers lIsed in the Illodcl

is a by-product of the symmetry algorithm which will be described lat,er in this chapt.er.

In contrast, the SLS requires t.he midpoint of the two edges to be det.ermined, reqniring

further computations. However, the reliance On contributing edge angle and the prodnction

of a weighted symmetry mal' in the algorithm of [63] is weil correlated with psychophysical

evidence, and any implementation should be modified t.o include t.hese features.

3.1.2. Computing lines of symmetr·y. Based On the above arguments, the symmel.ry set

is used as the symmetry measure for this work. However, the definition of the symmetry sel.

is extended to allow the output to be weighted based on t.he contributiug edge orieutat.ious

and intensities as was explained previously. As weil, in order to determine the intersecl.ions

of Iines of symmetry, a unique symmetry magnitude for a variety of symmetry orientations

at eacll point must be determined. 1'0 this end, the extent/ell symmetnJ set is defined aS

the set of ail symmetry magnitudes, one for every possible symmetry orient1Ltion, at every

point in an image.

We begin by defining the set rr(T)) as the set of ail pairs of cocircutar t1U1gents Ai and

Aj whose centre of cocircularity is the point p = (xc, Ye) and whose radius of cocircularity

is r. As weil, the extent of the operator can be limited by imposing an upper bonnd, "max

on allowable radii of cocircularity. Therefore

( )
_ {(' ') edges Ai and Aj have cocircular centre at point T)

rr P - l,;
re = r < rmax for edges Ai and Aj

For every pair of cocircular tangents Ai and Aj in rr(P), a symmetry orientation

tP(A;, Aj) is computed. The symmetry orientation is defined as the orientation of the line
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hiHecting the angle formed between the two inward pointing normals of the contributing

tangentH. ln terms of the parameters of Fignre 3.4(a), the symmetry orientation !/J is

(2)

(:l)

Now deflne rr."'(TJ) as the subset of ail cocircular tangents in rr(P) with symmetry

orientation !/J. Then we can compnte a symmetry magnitude, 8 r .", (1') , for each symmetry

orientation at the point l', contribnted by edges at a radius /', as

8 r ,,,,(]J) = L: IIÀj III1Àj Il (sin cp/2)wt

.1;"IJ,rr,~ (p)

where IIÀj Il and IIÀj Il are the edge intensitics of two cocircular edges and cp is the angle

separating their normals (see Figure 3.4(b)), computed as

The reliance on cp is included to agree with the psychophysical experiments of I<aufman

and Richards [37). Their findings, that acute angles attract fixation more than obtuse ones,

is reflected in the term (sincp/2). This effectively weights parallel edges (those with normals

pointing toward each otller) most heavily, with a decline in weight as the level of parallelism

decreases. This does not completely agree with the results of I<aufman and Richards, who

fouud a maximal fixation tendeucy for lines forming augles of 20 degrees. However, their

experiments were only conducted on line segmeuts that met at a point and therefore, angles

snmller than 20 degrees placed the two lines very close together, and they may have begun to

approximate a single line. This correlates with other experiments by I<aufman and Richards

[37) which showed that individual lines attract fixation less than any angles do, and may

explain the perceived drop in attractiou for angles less than 20 degrees. As weil, applying a

maximal symmetry weighting for parallel edges agrees with the intuitive notion of symmetry.

Finally, we note that the parameter Wl is included to allow the relative contribution of non­

parallcl edge pairs to be varied. The magnitude function and its reliance on WI is illustrated

in Figure 3.5(a).

The applicatiou of equations(l), (2), (3) and (4) rcsults in a separate symmetry magni­

tude for every possible point, orientation and radius of cocircularity. Toobtain the extended

symmctry set, it is necessary to combine these values over ail the radii. This results in a

symmetry magnitude, S"'(1'), at every point, l', and orientation, !/J, and is computed as the

maximum of the symmetry magnitudes over ail radii.

•

•
(5) S",(p) = h'r.tk Sr ",(l')

r=O '
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(a) The cffcct of the wcighting parnmctcr IVI on the synll11ct.ry nll\gniludt~ fUl1clion. Nntict! tlml tlu: nmxiulIllu
Declirs at cdgc separations of 11' radian!!. (h) The cireet of the wcighting pnrumctcr Il'2 011 tlw intC!fcrlt fUIlct.itlll.
Notice that this graph Î!I idcntical to the I11ngnituclc functioll, but. with IL difft!rcnt Illl\Xillltlltl nt Il)'lUl1lctry
orientation separations of 11'/2 radians.

FIGURE 3.5. Thc clfcct of wcighting paral1lctcrs 1111 and III,

Finally, it may seem that the determination of the extended symmel.ry set. reqnires

interactions that span the maximal extent of the operator, 1·",u". However, there arc imple­

mentations of similar algorithms [6] [71] that nse a diffnsion process to compllte symmetry.

These processes only rely on nearest neighbollr commnniclüions and show t.Imt. sll<:h an

implementation is possible. This is a necessary requirement in order for the algorithm t.o

be biologically plausible.

3.2. Determining intersections of lines of symmetry. As was described in t.he

model, an interest point is defined as the intersection of Iines of sYlllllwt.ry. 'l'Ill! eqnations

presented above showed how these Iines of symmetry are fonnd. This sedion will deal with

the determination of the intersections of these Iines of symmet.ry. Ul~qed on the delinit.ion of

the extended symmetry set, Iines of symmetry int.ersect at the point.s where there arc I.wo

or more symmetry orientations with non-zero magnitudes in t.he extended symlllet.ry set.

As weil, in agreement with the psychophysical data, the magnitllde of the interest. point is

weighted by the degree of enclosure of the point. However, as was disenssed in ehapt.er 2,

this measure of enclosure must be a continllous, graded qllantity, rather t.han the strict.

mathematical definition of enclosure.

There have been a number of computational models ofenclosure defined in the Iiteratll'"

(see [19] for a review). However, we require a method that can be compllted from t.he Iines of

symmetry determined at each point. 'l'osee how Wl! accomplish this, the shape.~of Figure 2.4
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(a) (b) (c) (d)

ln tht: llhuvr: inlUgcs, the t.hicklll:SS of the H)'IlU111:try Hiles is proportiolml to the magnitude of thnt lino of
synutlctry. I\K the pcn:r:ptioll of cndosurt: incrmL<;cs from (n) to (d), thc Illlmbcr of high intcnsity. orthogonal
linr.!i of HYllulictry nlsu incfr:tL.'icS,

l'IGURE :l.G. The eontonrs of Fignre 2.'1 with thcir symmctrics
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arc repeated in Figure 3.G with their lines of symmetry added. The thickness of each line

of symmetry is proportional to the symmetry magnitnde, S",(p), of that liue. Notice how,

as the shapes become more enclosed, the edges contribute to strong, orthogonal lines of

symmetry. In otller words, parallel edges forming symmetries of high maguitude tend to

contribute most to the perception of enclosure. As weil, sets of these parallel edge pairs,

spaccd so that their resultiug symmetries meet at right angles, result in a strong perception

of enclosure. The lines of symmetry at a point can therefore be combined to emphasize

enclosed regions by weighting the contributions from orthogonal lines of symmetry most

hmLvily. This is accomplished by comparing ail pairs of symmetry values at each point. The

pairs arc combined, and weighted by their symmetry magnitude and the angle between them

so that orthogonal lines of symmetry have the highest weighting. Therefore, the interest

value, 1(/1), is computed as a function of ail the symmetry values at the point. p = (xc, Ye)

as

I(p) = L S",,(/I)S"J(p)(Sin(,pi -"'i))""
l/Ji."';

The pammeter 102 is \lsed 1.0 tune the sensitivity of the algorithm to non-orthogonal sym­

metry combinations (Figure 3.5(b)). ICs elTect on equation(6) is similar to the elTect of

parmneter IVI on equation(3). Finally, it should be noted that the determinatioll of I(p)

t,hrough the application of equation(6) is depelldent only on the symmetry values found at

each point, ;\lld 50 is a completely local operation.
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CIlAP'l'EH ·1. 1~IPLEMENTATION OF Tlll'~ VIS\lAI. ATTENTiON MOllEt.

CHAPTER 4

Implementation of the Visual Attention Model

Thollgh the previolls c1mpter descl'ibed the model ill detail, thel'e still l'('main a 1111111\>"1' of

isslles which mllst be addressed ill order to prodllcc a working impleIlJeIlI,atioll. Som,' of t.III'H('

issnes involve practical considerations, sneh H8 the WH)' in which cocil'cula.I' edge pa.irs art'

determined. Others are concerlled with t.he fact that the implement.al,ioll is "Ulllllld.ed 011 a

discrete grid of pixels. Fllrthermore, the spatial characterist.ics of this grid at'l' '1l1it.,' dif!'el"'III,

for foveal and peripheral inp"ts, and so some dinerences exist bel,ween t.11I' impit'm,'nt.at.ions

for each of these two inp"t types.

1. Implementation on Foveal Images

Foveal images are qllalltized to a discrete IIl1mber of pixl!is, represent.ed on a IIniformly­

mapped, rectangular grid of points. The discllssion which follows describes th,! impl"m"n­

tation of the model on sllch an inp"t image. A nllmber of isslles mllst bc addres.,ed 1'01' el,cll

of the processing stages incillding edge detection, finding symmel,ries and intcresl, point.s,

and smoothing and finding the local maxima. These will be discllss"d individllally in t.he

following sections.

1.1. Edge detection. Thollgh the operation or the edge detect.or is fairly straight.­

forward, there arc a rew comments which shollid be made regarding its applicat.ion in tlJe

context of this thesis. As was mentioncd in chapter :l, the exact implementatîon of t,Ill' edge

detector is not critical. In practice, wc lise the Sobel edge operator (sec [43]) beC1lllsc of it.s

small mask size and efficiency. Like most edge detectors, this operator rcsllits in a vedor

quantity at every point, representing the magnitnde and normal orientation of the edge at

that point. As can be seen in Figllre 4.1(a), there arc two possible normal orientations for

any edge alignment. These are distingllished by the direction of contr;lSt change al, the edg".
21;
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(a) (b) (c) (d) (e)
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(n) 'l'wu mlgl:!> with the 1'OIUIII: alignl1lellt but upposite Ilurnml urientations, (b) A shape dcfincd by inward painting
t~d/l,l~1'I, (1:) Clutwnrd puintillg edges, und (d) huth inwllrd and autward painting edgcs, (e) 1'0 find sj'mmetrics rar
nll tht~M: cn....:~ tlll: nlgurithlll IL'iSUllleS tfml ail t~c1ges hll\'I: two nurmals.

FIGURE ~ .1, Combining inward and outward pointing cdgc normals

with the 1I0rmai orientat.ion pointing, by definit.ion, ill the direction of bright 1.0 dark con­

t.rast. change. There are a nllmber of conseqnences of this phenomenon. First, it is clear that

a paÎl' of edges wit.h normals pointing towards their celltre of cocircularity (inward point.ing)

corresJlonds to t.he border of a dark object on a bright background (Figure 4.l(b)). This

edge pair shonld clearly cont.ribute 1.0 the symmetry set of the object. Similar1y, a pair of

edges wit.h ont.ward pointillg normals can be seen as part of the border of a bright object.

on a dark backgrouud (Figure 4.l(c)). However, in real images, objects and background

rarcly have a constant intensity. In fact, it is simple to come up with a situation where a

shape has a boundary with cocircular edge pairs consisting of one inward pointing and one

ontward pointing normal (Figure '1.1(d)). Therefore, in order 1.0 detect these objects, the

algorithm Imndles ail edges as if they had two normals, one pointing in the inward and one

pointing in the outward direction (Figure 4.l(e)).

1.2. Finding interest points. The main problem involved in developing a working

implementation of the algorithm described in chapter 3 is the determination of the symmetry

set on a discrete grid of points. A number of methods have been proposed. Most of these

involve either an iterative wave diffusion process [6] [71], or a convolution method [71] [38].
From another point of view, by noting the relationship of centres of cocircularity 1.0 the

points in the symmetry set, finding the latter can be seen as being equivalent 1.0 the problem

of finding centres of partial circIes in an edge image. There are many circIe finding methods

described in the Iiteratnre. Most of these are based on variations of the Hough transform

[32] [52] [2] [87]. A method similar to convolution with annular operators [38] was chosen

because it is most readily nnderstood and also easily adaptable 1.0 computation of the

extended multiscalar symmetry set. However, this method was extensively modified in the

final implementation 1.0 make il. more efficient and compatible with the target DSP hardware.
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1. 1~IPLEl\IENTAT10N ON FOVEAL I~IAGES

(b)

(a) A ~ct of annular tcmplates and (b) one of tlu! tt~lllph,tcs dh'idcd intn nnglllnr hins. Withiu c~lleh IUlKlllnr
bin. only edgcs with normal oricntntion~ betwe(~n 01 und 02 ure cOllsidcred. As weil. t'ndJ nnF,ulnr bill lm." lUI

orientation t!J associated with il.

FIGURE 4.2. Annniar lcmplalcs

This results in a technique that resembles wave diffusion methods used in conjunct.ion with

a series of Hough-like accumulator armys.

The convolution approach to finding the symmetry set involves convolving the edge

intensity image with a set of annulai' masks of differing mdii. These radii are choseu to

cover the full range of extent of the symmetry operator (see Figure 4.2(a)). This produces a

high output when many edge clements are located within the anuular regious. Adapt.ing this

approach to the computation of the extended symmetry set requires the orientation of the

edge normals to be considered as weil. '1'0 accomplish this, each auuulus is further subdivid"d

into a discrete number of angnlar bins (Figure 4.2(b)). Within each bin, only edge segments

which have a normal pointing towards the centre of the annulus are considered. 1I0wever,

because of discretization, there is a range of allowable edge normal orientations which are

considered to be inward pointing for any given angular bin. For example, any edge with a

normal between Ih and 92 for the enlarged angular bin of Figure 4.2(b) is considered to be

inward pointing for that bin. As weil, each angular bin also Ims lUI orientation q, l~,,'ociated

with it, which is defined as the median angle of ail in ward pointing edge normal orientat.ions

for that bin. These annular templates are centred at ail points of the image. The edges t.hat.

fall within the annular masks, with normals oriented toward the annular centres, are used

to compute the symmetry at the central point. This leads to a computatiou of symmetry

at every point, and over every scale covered by the annular teltlplates.

Such an approach requires some modifications to the algorithm described by

equations(l) - (5). In fact, most of these modifications do not involve changes to the
28
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1. IMPLEMENTATION ON FOVEAL IMAGES

actual equatious themsclves, but rather involve slight changes to the defiuitions of the pa­

rameters used in the equatious. These parameter modifications arc mainly concerned with

treating the set of ail edges which fall withiu a single angular bin together, rather than the

pr"vious strategy in which each edge is considered indepeudently. As su-:h, the label A is

uow used to refer to the set of inward poiutiug edge elements which fall within a single

angular bin of a particular aunular template. This is a uatural extension of the previous

use of Awhich referred to a single, inward pointing edge element. Similarly, the definition

of IIAII is revised to refer to the maximum magnitude of ail the edges which are members

of A. Finally, the definition of cocircularity is modified to inc1ude these angular bins. Two

angular bins arc said to be cocircular if they belong to the saille aunular template, and each

contains at least one edge with an inward pointing normal.

Based on thcse modifications, the set fr(p) can now be defined as the set of ail pairs

of cocircular angular bins belonging to a particular annular template with radius of cocir­

cularity r, centred on the point p. Therefore, given the sets Ai and Aj corresponding to the

inward pointing edges falling within two angular bins, eqnation(l) now becomes

l Ai # {0} and Aj # {0}

['r(Tl) = (i,j) Ai and Aj correspond to dilferent angular bins of the same

annular template, ,., centred on point l'

ln this way, ail the acgular bins which are members of fr(p) contain cocircular tangents

whose centre of cocircularity is the point p.

From this wc determine a symmetry magnitude, Sr,,,, (1') , at each point l', for each

symllletry orientation, ,p, and radins, r. These values are combined to produce the extended

sYlllmetry set, S",(p), which is finally used to compute an interest value, 1(1'), for every

point. The computations can be performed by direct application of equations(2) - (6) from

chapter 3. However, the variables tPi and tPj now refer to the orientations associated with

each contributing angular bin, rather than the orientations ofindividual edges. Also fr,,,,(p)

now refers to the subset of ail pairs of angular bins in f r (l') contributing to the sYlllllletry

orientation, ,p. The equations are repeated below for convenience:

•

(8)

(9)

(10)

Sr,,,,(P) = L liAi III1Aj Il (sin 'P/2)W,
.\it.\jc:rr,!l' (p)
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(b)

In this figurc, X marks thc annlllar ccntrcs mul • I1ll\rks pixci positiuns. (1\) Ir tlu~ width uf (~lu:h lUlllUlllri iri tun
narrow the centre of twu cocircular celgcs cuu oc misscd. (h) Thc (:cntrc of tWIl encireuh\!' ml",c:s t:nn nlllu 11t~

misscd for widcr lUHllIli, if slIcccs."ivc t\lUluli do noL u\·c!rli\p.

FIGURE 4.3. Erreet, of pixc1izat.ion on annular seledion

1.2.1. Defining the annular templlltes. Each ltnnulltr templat.e is defined Ly an annular

width, which is the difference betweeu its minimum and maximnm radius. The wider each

annular template is, the less localized t.he resultiug lines of symmel.ry will be. llowever,

due to pixelization, if the templat.es are too narrow the cenl.ral point. of I.wo edges could be

completely missed (Figure 4.3(a)). For this reasou an annular widl.h of I.wo pixels is used.

As weil, in order to cover the full extent of the image with no gaps, the minimum radius of

one annulus must be less than or equal to the maximum radius of the nexl. smaller ltnnulus.

However, sorne pairs of cocircular edges will not. be det.ected if the minimum radius of one

annulus is equal to the maximum radius of the next smaller one (Figure 4.:I(b)). As weil,

this overlap should be minimized to limit dupliclttion of lines of symmetry ltt dilferent scltles.

For this reason an overlap of one pixel is used between successive annulltr t.empllttes.

Each annular template is also divided into angular bins. The selection of t.he num­

ber of bins is motivated by two confiicting requirements. Set.ting the number of bins t.oo

small results in large angular bins, whkh leads to Iltrge dusl.ers of int.erest points in the

output. However, setting this value t.oo large Cltuses the algorithm to be highly selective

in orientation tuning. This results in many disjointed interest regions in the output, ltnd

also increases the algorithm '5 sensitivity to noise in the edge orientlttions. This problem

can be partially solved by introducing sorne overlap between neighbouring angular bins.
:10
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(12)

S () ,,,"oz S ()
'" l' =max '.'" Pr=O

/(1') = L s",,(p)s"',(J,) (sin (Ij!; _Ij!j))'v,
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WiLhuuL anglliar bill nY'~rlr.P. eelses within a '~'~rlllin rallse of orientaLions (01 to 02) wOll]d be senrchcd for only
in tlu: dark shnded r.:gion. With oy.:rh'l) inlo the lleishbourinS hins. edges with the same range of oricnll.lions
ar.: h.mrc!wll fnr in tlll: Iighlly shlHlcd resions l~~ weil.

FIGURE 4.4. Errcct. of allgular bin overlap
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(1') Each pixcl ( • ) 1.!fcc1s a rcccplive field "round it of radius r RF' A pixel Wh05C rcccptive field overlaps the
tcmllh.lc (tduuled region) ÎlI pllrt of the lcmplt.le nmsk. (b) The pixels 1hat make up 1he 1empla1e in (Il). The
x represcnlll1hc centre of the llonlluhlll From which 1hill lIlusk wnll derivcd.

FIGURE 4.5. Cnlculating the templatc masks

'l'his lLllows a large number of anglliar billS to bc sclectcd\ with cach bill havillg a wide

cllough cxtcnt ta allow for some misalignrncllt in cdgc normals (sce Figure 4.4). Hawever\

thc 1Iitimatc choice of the number of bins and the angular bin overlap is not critical l as will

be shown in section 3.2.2.

Givcn a particular choicc of template parameters, the shape of the annular template

nHlsk cali be dctermincd. In practice, a separate template mask is computed for each

ttllgula,r bill. This is accomplishcd by overlaying the template on a rectangular grid of pixels

(Figure il.5(a)). By associating a reccptive field (RF) of radius rRF around each pixel,

the template mask can be obtaincd by calculating which pixel's receptive fields overlap the

rcgioll of the anglilar bin (Figure 4.5(b)).

1.2.2. lnver'ting the ammlar templatcs, ]11 actual practicc, a more efficient variant of

the alllllllar tcmplates is used. This alternative will he shown to be equivalent to annular

teml>lates, yet results in an implementatiol\ with a much smaller search space. Furthermore,

this will be the basis for the performance improvements described in the real-time implemen­

talion of chapter 5. This method, though derived from arguments related to the annular
31
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(Il) For a purliculur cdge Ilud nnnulnr lelllp"\te, the nnglllnr bill rur whkh lllt~ edgl~ il'! dl~l~lIu'd tu hl' inwlu'd
painting CIUI be dct.ermincd (slmdcd rcgion). Thl~ pixcll'! c(l!'rcspundillg tn this rcgiull ure shown ll-'\ x , lUltl t.llt~

centre or the nnnular templnte is nmrked with Il •. (h) Thc unllulur telllJ)llLtI~ il'! cClltred nt UllpuilliH tlll\l pllu,,!
the edge within the shaded ul1gulllr bill. The pnintl'l nmrked. corr(~SIHI1UIto nU thll pnl'!l'!ihlt~ centn~l'I ru!' thitl c~clgc!.

(c) These points make up n ncw inucrtCl1 templlltc, which nmps the cd~(~ to IJllssihlt~ t~Clltl'Cl'l ur t~tll',in~ulnl'Ît~·.

Notice dmt the invertcd tcmphlte is sil1lply Il mirrurt!c1 version or the original nnc.

FIGUllE 4.6. Inverting the annular lemplu!.e

implementation, turns out 1.0 be qnite similar 1.0 the wave propagation implemental,ious,

which further highlights the similarity of these two methods.

The annniar implementation described previonsly involves a search aronud each ontpnl,

point for ail edges which can contribnte 1.0 the symmetry ,lt that point. This proccss cau

also be driven in reverse by determining the possible aunnlar centres that can be affeded by

each edge. This is accomplished by irlVcr'/illg the 'llInnlar templates, iudic'lting the locat.iou

of possible annular centres for a giveu edge, and storing the edge contribntions in a set of

Hough·like accumulator arrays.

To see how these iuverted templates arc compnted aud appliecl, il. is besl, 1.0 begin by

referring 1.0 a particular example. Given the edge and annular template of Fignre 4.li(a), the

angular bin for which the edge is considered inward·pointing cau be determiued (shaded

region of Figure 4.6(a)). By centering the aunular template al. ail points that place the

edge within this ilngular bin (Figure 4.6(b)), ail possible centres affected by this edge for

the given annular radii ("c = "",i.. 1.0 "",ax) cau be found. This produccs a new iuvertecl

annular template (Figure 4.6(c)), whose points correspond 1.0 the offsets of possible ceutres

of cocircularity from the edge position.

This procedure is repeated for ail cdge orientations, resulting in a set ofinverted aunular

templates, each one mapping a particular cdge orientation to possible centres of cocircular­

ity. Furthermore, in the same way that each angular biu has a corresponding orientatiou,

each inverted annular template has an associated contribution direction, which describes
:12
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th" ''',"ilion or th" I."mplal.e wil.h respect to I.Iw contributing edge. In ract, the orientation

or th" inv"rt"d templates with respecl. to an edge is equiva!ent 1.0 the orientation or the orig­

inal angular bin (compare t/> in Figure <I.li(a) and (c)). Finally, il. should be noted that the

points corresponding 1.0 the inverted templates arc simply mirrored versions or the points

or the angular bin rrom which they were derived.

The iuverted I.emplate is used 1.0 determine ail the possible centres or cocircularity,

within the rauge r",jn 1.0 r",ar, ror each edge in the input image. This inrormation is stored

in an accumulator array, as a separate value ror each contribution direcl.ion al. each point.

ln accordance with the definition or edge magnitude used in this chapter', the value stored

in the array is the maximal magnitude or ail edges contributing 1.0 a point from a particular

angnlar bin. This is accomplished, by traversing the entire input image, and for each edge,

applying the inverted annular template corresponding to it's orientation2 • Application of the

inverted templates involves overlaying the templates on the accumulator array at a position

corresponding to the edge position in the original image. At the points of the accumulator

array corresponding to the template offset points (points marked • in Figure 4.6(c)), the

edge magnitnde is compared 1.0 the value previously stored in the accumulator array for the

corresponding contribution direction. Ir the edge magnitude is greater, its value replaces

the previous value in the accumulator array. An example of this procedure is shown in

Figure 4.7(a).

ln the same way, inverted templates can be determined for ail other annular templates.

This produces a series of inverted templates for each edge orientat.ion, each one correspond­

ing to the particular radius of cocircularity of the annular template from which it was

derived. Each of these radial ranges is treated separately, and the templates correspond­

ing to each range arc applied sequentially to the image, affecting different accumulator

arrays. Thererore, for Il original annular templates, li accumulator arrays, Oil 02, ... , On,

are required, each corresponding to centres of cocircularity al. a particular range of radii

(Figure <1.7(b)).

It should be noted that after the inverted templates have been applied to every edge in

the image, any point in the accumulator arrays with more than one non-zero contribution

direction is a centre of cocircularity. These points have contributions from exactly the Same

11'0 review, edge magnit.ude Il.\11 wu previously dcfined as t.he maximum magnitude of all the inward painting
cdg,eg lying wit.hin ft single angular bin.

:1 Ali WIUI diac:uMed prcvioualy, caeh edge actually has two normal orientations, onc inward and one outward
pninting. Becuullc of lhill, two templates arc actually applied al. caeh edge location, correaponding to the two normal
orientatioll8. lIowevcf. the application of one template docs not affect the ather, and SOI in order to simplify the
dÎ!~cu""ioll,ollly the application of a single template ill comlidered.
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in the nccmnulator nrray. These overlnpping 1l0intK correspund ln ccntreH nf cucircuhu'ity uf the twu mlglltt. (h)
The accumulalar arrnys for diffenmt templBle rIldii.

FIGURE 4.;. Applyillg illvc,tcd """111,,, I,cmplatcs 1.0" simple image

edges as the centres of cocirclllarity that wOllld be obtained usillg the nOIl-inv(!rl,e" lUllllllar

template method. In fact, the edges which cOlltribllte to an accllmulator army lLt. a poiut.

p and orientation t/> are exactly the same edges which would fall in t.he same angular bin

of a partieular annular template. This set of edges was labeled '" iu t.he discuHSion of t.he

application of the non-inverted templat.es. Furt.hermore, Il'''11 was defined as t.he maximnm

of ail these edge magnitudes, which is equiva.Ient. t.o t.he value stored in the acculllulator

arrays for each contributing orientation.

Bascd on this, we can develop a new definition of the set l'r(ll), whieh is equivalent

to equation(l). We refer to the value at a partieular point 11 and orientation 4, of an

accumulator array as a(p,t/». The set l'r(rl) is then defined as

•
(13) rr(p) = {(i'i) a(rl, il t= 0 and a(rl, i) t= 0

it=i
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From here, the application of the algorithm is identical to the one described previously,

and the detOfminaLion of interesl. values is cOlllputed by applying equations(2) - (5). As

W'L' the C'L,e for the annular implementation, cPi and cPj rcfer 1.0 the orientations of the

contributing telllplate, rather than an individual edge, and l'r,,,,(I') refers to ail the clements

in l'rtTJ) with sYlllllletry orientation V!.
It can be sccn that the inverted template procedure is equivalent to the application of

'''Inular tmuplates described in section 1.2. Ilowever, a number of advantages are gained by

adopt.ing this approach. Application of the annular templates requires a series of operations

to he perfornwd at every point of ail the angular bins making up the annulus. In contrast,

application of the inverted templates only requires a computation for the points correspond­

ing to th~ angular bin associated with the contribuLing edge orientation. Therefore, given

1/. angular bins, application of the annular templates involves n times more points to be

proccssed. However, this may not be significant if the annular implementation requires

significantly less operations l'cr point. At every point in the template, application of the

annniar met.hod requires a memory access to determine the value of the edge at that point,

and a comparison, to determine the maximal edge magnitude for the angular bin. Applica­

t.ion of the inverted templates requires a similar series of operations. At every point in the

template a memory access is needed to determine the value stored in the accumulator array.

which is compared to the magnitude of the contributing edge. Therefore. for every point it

is centred on, the annular method must perform n times more processing than the inverted

t.emplate method. Finally. the number of points that each template must be applied to

should be examined. '['he annular templates need to be centred at every point in the im­

age. In contr'lSt. the inverte<! templates are only applied to locations with an edge. Under

the worst circumstances an edge is found at every point in the image, in which case the

invert.ed template would be applied to the same number of points as the annular template.

Therefore, in the worst case. the inverted template method involves an n times decrease

in computation over the annular method. As weil. there is a possibility of significantly

increasing this improvement by reducing the number of edges. and this will be exploited in

the discussion of the real-time implementation.

1.2.3. P,veessing flow. Figure 4.8 shows the full processing path for computing inter­

est points. Each inward pointing edge affects one of the accumulator arrays. al (l'). 012(1') •

... , a'.. (p), based on the distance of the edge to the point p. The values stored in these

accumulator arrays is the ma.ximum edge magnitude. at each angular bin orientation, of ail

the edges within the accumulator array's range of radii. Application of equation(3) then
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gives a symmetry magnitude al. each radius and orientation. TIll'~:Il' values Rre comhitH'd

over ail radii through equation(5) to give a. single symllletry magnit,ude for eadl orieutat.ion

al every point. Finally, thcse magnitudes are combined over ail the symmet.ry orient.a.t.iolH;

using equation(6), resulting in a magnitude of int.crest. al cvery point. in t.he image.

1.3. Smoothing and determining local maxima. As discussed in the previllus

chapter, smoothing is accomplished by convolving the input image with a Gaussian mask.

This would normally require 20 processing for most convolution masks. lIowever, the

Gaussian belongs to a special class of sl'l'amble functious, which meaus that il. cau be sepa­

rated into two 10 Gaussians, one horizontal and one vertical. Sincc convolution ol",ys the

commutative law, convolving the iuput image with one of t,hese 1D Gaussiaus, theu COIlvolv­

iug the result of this with the other ID Gaussian gives the same result, as a 20 convolut.ion

with the original 20 Gaussian mask. However, a 20 convolution of an Il X Il Gaussian

mask with an N x N image requires 112 N2 mnltiplications and additions. In contrast" the

same results l'an be achieved nsing two ID convolutions wit,h 2nN2 multiplications and

additions. This is clearly a computational savings, which increases as larger convolut,ion

masks are used.

The final output of the algorithm are the local nmxinm of the smoothed image. Points

are defined as local maxima if they have a value greaLer than any otlll'r point wit,hin a

specified distance from themselves. However, the deLermination of local nmxinm follows

a smoothing operation which causes high freqnency changes in the interest nmp 1.0 he

removed. Thus maximal points which are close to each other tend to he grouped into large

clusters with a single maximum. Because of this, it is only necessary to examine the nearesL

neighbours of a point to determine if it is a local maxima.

2. Implementation on Peripheral Images

One of the major goals in developing this algorithm is its implementation on non­

uniformly mapped peripheral images. This arrangement mirrors the spatial clmracLeristics

of the primate retina, where resolution becomes coarser ,IS visual angle incrmlSes [72] (73)

[7]. Though this requires sorne changes 1.0 the implernentation descrihed ahove, these are

relatively minor and the algorithm remains qniLe similar. As such, Lhe discussion helow

describes the peripheral implementation in Lerms of the way that iL dilfers from the foveal

implementation described previously.

2.1. Log-polar mapping. The variable resolution of the periphery is rnapped onto

log-polar coordinate axes, permitting the full periphery to be represented in a rectangnlar
:IIi
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FIGURE 4.8. Praccssing flaw for camputing interest points
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(o.) The foven, mnpped onto n. rcctnngulnr grid, is ~urroullded b)' the periphcr)'t ml'PIICcl nntn n llnn-unifurm,
log-polnr grid. The crossings of thc grid Hnes lUark the centrcs of the pixels. Tht: circlt~9 dclhlt~l\le tlll! n~l~tlpth't:

field (RF) of en.eh periphcrnl pixel. Within cnch HF n weighted nvernge of nll points fnlling wilhin it 'H l'I:l:ellli\'t:
field is eomputed. (h) The foven IUld periphery CIUl be Ilmppcd to two scpnrnte, rcctililu:l\r gricls.

FIGUIŒ 4.9. Log-polar mapping

image (Figure 4.9) (see [7] for a full description of this system). This nmpping Ilfovides a

number of advantages from the perspective of computational vision. First, the amon nt of

data which must be stored as a result of this nH\pping is greatly rednced when compared

to the original rectangular input image. However, important image details can still be

examined at high resolution in the fovea and inner peripheral regions. Second, looming

and rotating objects appear as simple translations in this mapping. Some examples of t.11l!

kind of output produced by this mapping arc shown in Figure 4.10. An important point

which should be noted is that the log-polar peripheral image has no houndary in I.he Il

direction. This axis wraps around, connecting the left edge of the Jleriphery with t.he right

edge. This wraparound must be considered when implementing t.he interest. algorit.hm on

this coordinate axis.

2.2. Changes ta the foveal implementation. The first difference hetween t.Ill!

fovea! and peripheral implementation is at the edge det.ection stage. Since t.he Sohl!1 edge

detector was originally designed for a rectangular coordilH\te grid, it.s implement.al.ion in

the log-polar domain must be examined. The mapping from rectangnlar inJlnt image t.o

log-polar r::eripheral image still maintains nearest neighhour connectivity. This means t.hat

points tnat are neighbours in the input image will map to points that arc neighbonrs in

the peripheral image.. As wEil, linearity is approximately preserved in a local domain.

Therefore, since the Sobel operator only relies on nearest neighbour interactions (it uses a

3x3 pixel mask) it can be applied in the log-polar domain. There arc, however, a number

of differences that must be considered in interpreting the output. Pirst, since the log-polar
38
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(a) Log.pola!' mapping applied to R simple test image. (b) The same mapping applied to a complex, real·world
scene.

FlOURE 4.10. Images mapped in log-polar coordinates

•

donmin is obviously t1on-uniform, the seale of the edges found by the Sobel operator in the

log-polar domain will vary with position. However, this is exactly what is required, sinee

the seate of salient objects al::o inereases with their position in the log (r) direction of the

periphery. Second, the orientations round by the edge detector are relative to the (J and

log (r) axes. This is also desirable sinee the application of templates and the determination
=~~

of Hues of symmetry will also oecur along thesëaxes. Finally, the algorithm must be

Illodified slightly ta aceount for the wraparound of the (} axis. This is aceomplished simply
39



•

•

•

3. EVALUATION AND 'l'EST HESIILTS

by allowing the edge detedion opemt.or t.o IVrap aronnd t.his axis, t.realing t.ht' imagt' as if

the points at the left bonndary cont,inned past. t.he right. boundary point.s.

The saille annular templatc paramcters arc uscd ror the peripheral image aH 1'01' t.ht,

foveal image. HOIVever, because of the difference in mapping fnnctions, t.ht' t.emplat.t's mnst.

be computed differently. As in the rectilinear case, t.he t.emplat.e bins are overlaid on t.he gl'id

of pixels. HOIVever in this case t.he grid is not. nniformly dist.ribnted (Fignre ·\.ll (a)). Again,

each pixel whose receptive field overlaps the template becomes part of the template mask

(Figure 4.11(b)), whieh is then transformed into log-polar coordinat,es (Fignre .1.11(,,)).

Furthermore, these templates can be inverted in a manner similar t,a t.l", inversion of t,l",

rectangular coordinate, foveal templates. This is donc by centering an annnins on ail point.s

that place an edge within the appropriate angnlar bin (Figure 4.12(a)). This gives a sel, of

templates whieh map edge position and orientation ta possible centres of "ocircularit.y in

the log-polar domain (Figure 4.12(c)). \n this way, the inverted temphtt.e ;tlgorit.hm can be

run on the peripheral, log-polar image in the same way as WolS donc on the foveal image,

with the only difference being the specific pixels belonging ta each template mask.

The second modification reqnired ta implement the algorithm in the log-polar domain

involves image wrap around. In log-polar coordinates there is no real boundary at. the emls

of the IJ-axis. Instead, this axis wraps aronnd, connecting the left mlge of the image wit.h

the right edge. This is dealt with by simply allowing the templates to wrap around li", Il

axis as weil. For example, a template mask that crosses the right ('(Ige of an image coutinues

from the left (Figure 4.13).

Finally, there is one additional side effect of the log-polar implemental.ion described

above which should be noted. As the same template is applied higher in the log (1') direct.iou

it's spatial extent increases (Figure 4.14). However, this is a desirable erfect. since spatial

resolution becomes coarser in the outer periphery, requiring the spatial ext.ent of salient.

objects to similarly increase in this region.

3. Evaluation and Test Results

This section examines the performance of the described interest point algorithm. There

are basically two parts to the analysis. First, the intercst point model will be verilied and

results with real-world images will be examined. Ali the results prodnccd in the Iirst sect.ion

will be based on the same set of parameters. The second section will examine how changes

ta these parameters affect the output, and will justify the choiee of values nsed to prodncc

the results in the first section.
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3. EVALUATION AND TEST RESULTS

o
o

o•

The peripherllJ pixel~ corrc:;ponding to Il particular annu\ar template are found by (a) centering t,he annu\us on
the centre of li foven\ receptive field pixel, (b) deterntining which peripheral receptive fields intersect the nnnular
tcmplate, and finally (c) plotting t111.'Se points on e log-polar coordinate weis. In the exnmpleshown, cirelcs ( 0

and. ) rcprellent the peripheral pixels which intersect the annulus, with the filled circles ( • ) corrcsponding ta
the llpecific pixels which belong ta the shaded angular bin region of the nnnu\us.•

(a) (c)

FIGURE 4.11. Determining the annulus in log-polar coordinates

•

3.1. Evaluating the outputs. The pracessing path fOl' determining the interest

points in an image is shawn in Figure 4.15. As was described previously, edges in the input

image arc first detectcd , resulting in an edge magnitude and edge orientation map. These

images are then processed by the interest algorithm, producing a raw interest map. The

ma.p il'; thon smoothed, anù finally the local maxima of the smoothOO image are found. To

evaluéLte the results , the points of local maxima are shown as white crosses superimposed

on the original image, with the size of the cross proportional to the interest magnitude at

the point. As weil, ta ensure that the white crosses are visible, the intensity of the original

imagc is rcduced in these output images. Finally, in ail of these figu res1 the size of the

largcst annular template is shown by the circle at the bottom right corner of each figure.

The same tua.ximum template extent, rma:t' 1 was usOO for the outputs of ail the real-world

images in this chaptcr. Any variation in the size of the indicated circle from one figure ta

another is cntirely due ta differcut image scaling in printing.
41



:1. EVALUATION AND TEST HESllLTS

o

o

9

o

o

o

o

o

(h)

o

~:.
l' ••

c
0 0

0 • 0
0 • • 0

°c· •
00 0 • n 0

o~00
<) 0

0 0
0 0

log(r)

•

(a) An annulnr tcmplntc is eentercd on nll R1~ centu'S tlmt place the edge within the desired allgulllr hin.
Thcse RF <:cntrcs, mnrked with n ., correspond ta ail po:>siblc l\nllUlnr centres for thi!! edge. (b) The lIointK lm!
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the mIel! circles ( • ) mark the pix:cls eorrcsponding to the erigc'!! illverlc<i templllte. (c) 'l'he Hllllle cdge, plottl!d
in the log-polar domain. Thc lcmplate points ( • ) lllark the offHet, in log-Jloh\r coordÏlu\t'~H, of the Celgl! tn it'!'
possiblc centrcll of cocirculnrity.•

(a) (c)

FIGURE 4.12. lnverting templates in the log-polar domain
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the thetn·axis is wrapped nround, nfTeeting points at thc other end of the imnge.

FIGURE 4.13. Tcmplatc wrap around
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As \Vas mentioncd abovc, ail the results in this section use the same set of parameters.

This provides convincing evidence that there is a general set of parameters which allows the

algorithm to he effective regardless of input stimulus. The justification for the selection of
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these parameters will be deferred uuti! \.he uex\. sedion. For now, i\. is suflideu\. \.0 presl'n\.

the values used. Each annulaI' templa\.e is divided into a2 angular bins. The l'X\.l'n\. of l'ad.

of these bins overlaps its two ueighbonl"Ïng bins by 25%. As weil, each auuulus is t,wo pixl'ls

wide, overlappiug the uext smaller aud large.' annuli by 1 pixel each. 'l'Ill' smalles\. aunu);u'

radius is 1 pixel aud the largest anuulus has a radius of 10 pixels. Fiually, the t,woweighting

parameters Wl and W2 (see equations(a) aud (6)) are each set to 5, and Gaussian smoo\.hing

is applied with (f =4 pixels.

3.1.1. Vedfying the mollet. 1'0 begin evalnating \.he itlgoril.hm's performance, i\. is

useful to test it ou simple geometric shapes (Figure 4.16). Compariug t.hese resul\.s wi\.h

the experiments of Kaufmau and Richards [37] presen\.ed in Figure 2.1, we observe that.

there is strong agreement between the algori\.hm outpu\. and the psychophysical data. This

verifies both the interest point model and the implementation. Of con l'se, here we assume

that the complete object is viewed entirely by the fovea. It is also interesting to no\.e Hmt.

the algorithm is effective at finding the centres of open as weil as closed forms. This is due,

in part, to quantization e!fects in the edge detection, which interprets cOl'ners as diagonal

edges and line ends as orthogonal edges. This creates more inward pointing edge orientations

and allows for intersections to occur even when the theoretical lines of symmetry for these

shapes (see Figure 3.J) have no intersections. As can be seen, the resulting interest points

correspond exactly to the results of Kaufman and Richards for open forms. Finally it should

again be remembered that ail the results of Figure 4.16 were prodnced with the same set of

parameters, showing that special tuning for different shapes is not necess"ry.

3.1.2. Results on l'ea/ images. The interest point model, "nd the psychophysical ex­

periments from which it was derived, are mainly based on evidence from observers viewing

simple geometric shapes. Therefore, it is not app"rent how weil this model will perform on

natural, real-world scenes. As weil, because much of the psychophysic,,1 evidence is b"Bed

un simple shapes, the desired interest points for these stimuli are clearly defined. When "11­

l'lied ta more complex images, the evaluation of what constitutes an interest point is much

more diflicult. ln fact, it is not clear if a quantitative method for evaluating the algorithm's

performance on such scenes can be developed. Because of this, the resnlts of the algorithm

will be evaluated qualitatively, judging the outputs against an intuitive notion of what is

interesting in the image.

Figure 4.17 shows the results of the algorithm applied to a variety of real-world scenes in

rectangular coordinates. For sorne images, where many interest points are found, a second
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• Origmul Output Origimll QutPUI
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The CrO~:IeK illdicll1c the illtcre:lt points oblnincd by nppl)'ing the nlgorithm 10 n \'Uricty ofsho.pcs. Thesc outputs
(:nll he compllrcd directly ta the psychophysicnl rc:mltH of l,auCnnm und Richards [37] prcscllted in Figure 2.1.

FIGURE 4.1 G. Aigorithm output for simple shapes

•

•

illlage is presented, showing only the top ten int.erest. point.s. Beginning wit.h Figure 4.17(a),

it. can be sccn t.hat. many weak int.erest. point.s are obt.ained, due t.o t.he almost random nat.ure

of t.he edges found in the t.rees. However, t.he t.op t.en interest points dearly follow the path

of the wall, wit.h the highest. alllong t.hese corresponding t.o t.he three towers along t.he wall.

These arc dearly t.he 1ll0St. interest.ing object.s in t.he scene. Many weak interest points are

also found in t.he next. image (Figure 4.17(b)). However, the top ten interest points fall on

Illany of t.he most import.ant. areas in t.he image. These indude the Iicense plate, the stop

sign, and l.he wheels. As weil, sorne ot.her possible int.erest. points, corresponding to windows

of homes in t.he background, are also found. Similar results are seen in Figure 4.17(c), where

the towers and t.he boats in t.he foreground are highlight.ed. ln Figure 4.17(d) most of the

points OCCltr wit.hin the t.wo planes, with the two highest points corresponding to the centre

of each of the two planes. Similarly, the three highest points in Figure 4.17(e) correspond

t.o t.he thrcc towers in the image. Finally, Figure 4.17(f) highlights the obvious interesting

region in the image, a fragment of comet Shoemaker-Levy crashing into Jupiter.

Figure 4.18 shows the result of applying the interest operator to an important subset

of objects, faces, for which the algorithm is particularly well-suited (sec [64] for a face

recognition application of a similar algorithm). When facial features such as the eyes and

nose are at the scale of the operator (Figure 4.18(a), (b) and (c)), they are correctly found.

When the entire face is at the scale of the operator (Figure 4.18(d)), the centre of the
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The output of the algorithm for" varicty of rcal·world 8ceu(.'!I. The points nu-rked hy a whitt: c:ross indic:alt: lhe
locations of the intcrcllt points l with the lIize of the crOMS proportional tu tlll: intercst nu-gnitudl: at thllt puint.
Where a large number of intercst. points are found. lhe lop lell point.s are shown in " hl:ll"rllte inmge.

FIGURE 4.17. Algorithm output for rcal-world SCCIICS 4li
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"li:" is fouucl. Fiually, Figuw ·1.ln shows how t.he operat.or performs ou a group of faces

with il very lIoisy background. Agaill, as Wil5 t.he case for many of the olltdoor scenes, the

ralldolll nature of the hackground resnltli in mallY weak inLcrcst points. Howcvcr, the top

ten intercHt points llIostly correspolld t.o t.he faces of t.he \Volves, which a.rc the dcsircd points

in this scelle.

Figure ~.:.!() demoust.rat.es an important aspect of t.he algorithm. Since it is only sensitive

lo relative eogt! orientation, the algorit.hm is invaria.nt to rotation in an image. As weil, as

long 'cs the individual features of an object, are large enough not to be smoothed together,

the algorit.hm is also invariant to changes in scale. Thns the same interest points can be

t.racked as an object moVes and rot.at.es. In t.his case, not.ice t.hat. t.he point.s corresponding

to t.he eyes and chin remain st.able as t.he head changes position. This is very import.ant

for t.he ult.imat.e use of t.his algorit.hm, t.hat is t.o use a foveated sensor to keep interesting,

moving object.s al. t.he center of gaze.

Finally, t.here are a few point.s wort.h mentioning in \ight of the results presented above.

First, it. is impossible t.o det.ermine precisely what. regions of an image will be interesting in

a given sit.nat.ion, wit,hont. the use of higher level knowledge. For inst.ance, in Figure 4.17(b)

t.he cars may be of int.erest in some cases, .nd in other situations the windows of the

houses may be of int.erest. As weil, since the algorithm is not involved in any recognition,

hut rat.her is sensit.ive to part.icular groupings of edge orientations in an image, not ail

the int.erest points always correspond to actual interesting objects. This can be seen, for

eXlunple, in ail the points found in the t.rees in Figure 4.19 or between the wings and body

of the planes in Figure 4.17(d). In fact, these points arc va\id interest points according to

t.IlC model, and correspond to background regious which happen to have a shape that the

algorithm is sensitive to, though even in these cases the spurious interest points are often

much weaker than the desired ones. Howcver, the intent of this algorithm is only to present

candidat.e object locations, greatly reducing the search space for P. subsequent recognition

task. Clearly this is accomp\ished. The interest points found represent a majority of the

interesting regions in the scene. As weil, even with the few extra noise points that arc

produced, the search space for a recognition task is greaUy reduced. For example, even

when ail the noisy interest points in Figure 4.17(a) arc considered, the algorithm reduces

the search space for a recognition process to 28 points from the 25056 points in the original

image.
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FIGUIlE 4.18. The algoril.hlll applied 1.0 faces
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only the major ones, the efTectivcness of the lllgurithm Cllil he Hecn tu highlight the fnceH ur cach nr thl: wulvr.!I.

FIGUIlE 4.19. Faces on a noisy backgronnd
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•
The algorithm remains t1tablc, tracking the !Iflt1lC pointH,IUi the face iH movfld c!oKI:r und fllrtllllr.luullLK iL rntnlf:H.

These three images werl: obtuincd from the Vision und Mndcling Group, MIT M,:c1iu. 1~l1h.

FIGUIlE 4.20. Algorithm invariance to changes in orientation and scale
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:l.l.:l. 'Ibis (ni /Off-,w/m' imoges. Ali importallt motivatioll in the development ofthis

algorithm wa>; il.s impl""lentation in log-polar coordillates. The objective is to find illterest­

illg abjects in the p"riphery, alld thell physkally move t.he camera so that these objects fall

wit.hin t.he fovea. Object. recogllit.ion can t.hell follow. As sllch, t.he ability of the algoritbm

t.o find interestillg object.s ill the pel'iphery must. also be examined.

Figure 4.21 (a) shows t.he output. of t.he algorit.hm applied t.o a t.est image. Not.ice how

il. succcssfully fillds t.he cellt.res of bot.h t.he squares alld the circles in t.he fovea alld near

periphery, whell log(r) is snml\. The shapes in the fart.her periphery mal' to much smaller

forms 011 t.he log-polar axes, alld so are smoothed toget.her, forming single interest poillts

for a grollp of objects.

The applicat.ion of t.he algorit.hm 011 au outdoor scene is showlI ill Figure 4.21(b). lt

can be seell that t.he int.erest points found in this figure are in close agreement to those

foulld in Figure 4.17(a). III fact, because of the variation in scale in the outer periphery,

many of t.he unwant.ed noise points from Fignre 4.17(a) are not reproduced in the log-polar

implement.ation. As weil, when bot.h the fovea and periphery are considered together, the

st.ron;,r.st. int.erest. points correspond to the t.owers along the wall.

Figure 4,21(c) shows how t.he algorithm performs on a face located in the periphery.

Examining the peripheral image, the two points found on the left of this image correspond

t.o the nose and chin of t.he face, and the single point. on the right marks the top of the tie.

However, the eyes, found in Figure 4.18(a) are not found in the peripheral version. This

is duc t.o t.he challge ill scale of the objects ill the log-polar mapping, making them appear

much snmller in t.he far periphery. The illt.erest points that would correspond to the eyes

occnr quit.e close to the stronger nose point, corresponding to the centre of the entire head,

and are subsequeut\y smoothed into a single cluster. However, this is a desired effect, since

only larger feat.ures, such as the head, should be identified in the periphery. These points

cau subsequent\y be centred on the fovea, permitting the identification and examination of

interest points corresponding to the smaller features.

Finally, Figure 4.22 shows the algorithm 's ability to track an object as it moves across

the camera's field ofview. The object is first found in the periphery as a single interest point

(Figure 4.22(a)). As the object moves through the fovea, a number of other interest points

arc found, correspouding to various features within the object (Figure 4.22(b)). When

the object passes back into the periphery, it is again tracked by a single interest point

(Figure 4.22(c)).
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FIGURE 4.21. Applying the algarithm ta faveated images
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• • • o
(a) (b) (c)
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The siune objccL il' plnccd ilL dilTercnt locutiolls in the visunl field. The nlgorithm Im~llngc!l to truck iL as iL maYes
thrnugh the (oven. The origirllll images, which wcrc lutificilllly crent.cd, arc shown nt Imlr the sizc actunlly uBerl
to prodllcc the Coveu. and pcriphcry images.

FIGUIlE 4.22. Tracking an abject thrangh the visual field

3.l.4. CompllI'ison Witll otitel' algOl·Uhms. It is useful to compare the results produced

by this algorithm with otller algorithms described in the Iiterature. However, as discussed

in Chapter 3, t,here is only one other implementation known to the author which attempts

to model overt visnal attention. This is the algorithm of Reisfeld, Wolfson and Yeshurun

[63), and so, this is the only algorithm which is suitab!e for direct comparison.

Figure 4.23 shows the output of the radial symmetries found by Reisfeld, Wolfson and

Yeshurun 's algorithm, applied at the same range of scales and with a similar smoothing and

10caimaximiLdetection stage as the outputs produced in Figures 4.17 and 4.18. Where many

interest points are found, a second image showing the top ten interest points is also incIuded.

It can br. seen that the outputs ofthis algorithm are similar to those produced by the interest

algorithm I>resented in this thesis. In some cases, such as the faces, their algorithm produces

a few more noise points, while in others, suclt as the scene in Figure 4.23(c), fewer spurious

points arc produced by this algorithm. However, when the top interest points are compared

t.he resnlts arc very silllilar.

The distinction between the two aigorithllls can be seen when comparing computational

cOlllplexity. Whereas Reisfeld, Wolfson and Yeshurun's aIgorithm requires an operation be

performed on evel'Y pair of edges in the image, the algorithm presented in this thesis only

reqnires operations to be perfOl'med on pairs of cociI'Cular cdge elements. This leads to
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right shows only the ten highcst inLcrcsl POiUltl.

FIGURE 4.23. Outputs obtained \Vith t.he interest. algorithrn of [{l:!1

a very significant reduction in the computation required to produce the results. It also

permits further simplifications, making possible a Ilear real-time implementatioll which will

be presented in Chapter 5.
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3.2. Determining parameter values. There arc fOllr parameters that collid not

ho dntermillcd l.hrongh l.!Icorclical arguments a.nd SO, were evaluated cxperimentally. These

arc the two w"ightillg param"t"rs, /III and 1/J, (SC" "qllatiolls(3) and (6)), alld two vailles

that d"t"rmin" th" siz" of "ach allglliai' bin template: the nllmber of bins the annlliar

t"mplatc is divided illto and the amollnt of oVNlap between neighbollring allglliar bins (sec

s"ctions 1.2.1).

:1.2.1. 'J'lte effeet of tlte weiglttiTl!J l'Cl1Ylllletel·''. Ta IInderstand the effect of the weight­

illg parameters, il. is IIseflll 1.0 begin by evahmting the Olltpllt on a simple geometric shape. A

rect.allgle was chosen for this pli l'pose bec,,"se it's symmetry con figll ration is complex enollgh

to show ail the cffecls of the weighting parameters, yet simple enollgh ta IInderstand how

challges in these parameters affect the Olltpllt. Figllre 4.24 shows the raw interest mal' (be­

fore smoot.hillg alld local maxima determination) of the algorithm applied ta the rectangle

for a variety of combinations of the weighting parameters W1 and W2. By examining the

crossing points of the theoretical lines of symmetry for the shape, it can be seen that there

arc three points of intersection of lines of symmetry: one in the centre and two near either

end of the rectangle. The actllal Olltpllt of the algorithm differs from the theoreticallines of

symmel.ry in two ways. First, because of the spread in the templates, the lines of symmetry

fouud arc more diffuse. Second, because of quantization effects in the edge detection, the

coruers of the rectangle arc interpreted as diagonal edges, adding ta the lines of symmetry

ollt'pnt by the algorithm.

With bath the weighting parameters W1 and 'IV, set ta zero, ail the lines of symmetry

fonnd by the algorithm can be seen. lt is evident that this output is much noisier than

the theoretical lines of sym metry, thongh the peaks of the raw interest map for this set

of parameters do fall on the three desired intersection points. However, by setting the

two weighting parameters 1.0 zero, the angle between contributing edges and the angle of

intersection of the lines of symmetry arc not taken into account. Because of this, the outer

intersection points arc more prominent than the central point since more lines of symmetry

cross at these points. By increasing the value of 101, parallel edges are weighted more in the

symmetry contribntion than perpendicular ones, and sa the horizontal and vertical axes of

symmetry arc weighted more heavily than the diagonal axes, which also causes the central

intersection point ta be more prominent.

lncreasing the vaille of 102 makes the centre point more prominent, since it causes lines

of symmetry crossing at 90 degrees ta be weighted more heavily than crossings at other

angles. However, the diagonal lines of symmetry also cross at 90 degrees at the outer
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FIGURE 4.24. ElfecL of dilfercnt. weighLing paramet.ers on il simple shape

intersection points, giving them more weight us weil. Therefore, in ordlH' t.o out.put. t.llt'

desired centre of gravity of the rectangle, 'lV1 should be set great.er than ~ero, redudng t.he

effects of the diagonal symmetry axes. By doing this, 'IV~ can be increused t.o enhalll~e t.he

relative weight of the central crossing poiut with respect. 1.0 t.he out.er ones (s"'! t.he 'lIJ, = 5

column of Figure 4.24).

The effects of these parameters on real-world object.s is not so apparent. from t.he )';Lw

interest data. Thus il. is necessary t.o analy~e the out.put.s after smoot.hing and 10calnHLxinHL

detection. Figure 4.25 shows the interest. points found for I.wo images under l' variet.y of

weighting parameter settings. Wc will begin the analysis with t.he siml'1er imuge, t.11t! drill

in Figure 4.25(a). ln this example, il. can be seen that. when a small amounl. of smool.hing

is applied, the output. becomes noisy for both weighting paramet.ers sel. t.o ~ero, producing

interest points that arc not even within t.he object.. As the smoothing is incre;.~"d, these

noisy points arc absorbed into the dominant interest point.s of the drill, makiug t.he onl.pnl.

less susceptible 1.0 noise. However, even with more smoothing t.he int.ercsl. point.s for vaines

of 'lOI =0 and '102 = 0 arc not weil centred on t.he feat.ul'l!s t.hey represent.. As the wl!Îght.ing

values arc increased, regardless of the silloothing applied, the output. becomes more sensit.ive

1.0 the central disc, and less 1.0 the elongat.ed ends of the drill.

Figure 4.25(b) shows the saille results for a more complex image. Again, il. can be "!!en

that sillali values for both 17 and the weighting paramet.ers lead 1.0 spurious intercst. point.s.
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This erfect can he .ednced by increasing the weighting parameter values. However, this is

t.rne only up t.o a point.. For very large vailles of the lVeighting parameters, the number of

Olltpllt points increa,;es as weil, giving mallY, closcly spaccd intercst points. We note that

this e!fect can be reduced by increasing the smoothing.

The above examples show some interesting consequences regarding the interplay of

the lVeighting parameters and the amount of smoothing reqllired. Setting the weighting

parameters low prad lices lIlany peaks in the interest mal' becallse ail the intersections of

Iines of sYlllllletry arc eqllally weighted. Increasing the weighting parameter values causes

the algorithm ta be more selective in the type of intersections of Iines of symmetry that are

Olltpllt as interest points. However, when these parameters are set tao high, very few regions

in a real image correspond ta what the parameters are tuned ta, and 50 most of the local

maxima correspond ta points of much lower interest magnitude. As weil, because of the high

selcctivity of the algorithm with these parameters, the raw interest maps tend ta consist of

many very small cllIsters of points, rather than a smooth continuum. Such images require a

mllch higher degree ofsmoothing ta blend these clusters into a single point. It can therefore

be reasoned that there is a tradc-o!f between sensitivity ta the weighting parameters and

the amollnt of smoothing required. However, an intermediate value of weighting parameters

is insensilive ta variations in smoothing and produces acceptable results. Therefore, values

of lOI =5 and '102 =5 arc chosen as typical values for the weighting parameters.

3.2.2. Effect of the cmgtdm' bill 1'1l1Yl1llclers. Two parameters are used ta define the

extent of each angular bin in the annular templates. These arc the number of angular bins

each aunnhls is divided into and the aman nt of overlap between neighbouring angular bins.

These parameters Iimit the extent of each angular template. By increasing the template's

extent, the output becomes more dispersed, act.ing as a kind of smoothing process.

Figure 4.26 shows how this affects the raw interest mal' of the rectangle for 8, 16, 32,

and 64 angular bins. These values were selected ta take advantagc. of the symmetry of the

anunlar templates about bath the x and y axes. This symmetry permits the templates ta

be stored more emciently in memory. The figure demonstrates that the output becomes

more spread out as the number of bins is decreased. However, when actually applied ta

real-world images, this parameter has only a minor effect on the output, though sorne issues

do warrant attention. For example, the results for the drill (Figure 4.27(a)) show that when

the number of bins is set tao smail (8 bins), the output is quite sensitive ta the amount of

smoot.hing. This is because with 50 few angular bins, each angular template affects a large

portion of the image. This creates a more homogeneous raw intensity image, which causes
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FIGURE 4.25. EffccL of wcighting paramctcrs and smoothing on rcal-world objccl.s

the points of local maximum to have interest magnitudes very close to the background

interest magnitude. This results in spurious interest points when the amount of smoothing

is low, and missing interest points whon the arnount of smoothing is incrc;~~ed.
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FIGUIŒ 4,27. Elfeet of uumber of augular billS 011 real-world images

The effects of the same set of parameters ou the face image is shown in Figure 4.27(b).

Agaiu, the shortcomings of setting the number of bins tao small can be seen ta result in

some spurious interest points for small smoothillg values. As weil, setting the number of

bins too large (64 bins) causes too much segmentation in the raw interest maps, requiring

more smoothing to bring nearby points together.
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FIGURE 4.28. Effcd of <lngular hin overlap 011 il sill1pl(~ shape

Similar, though cvcn Icss dramatic eflccl.s cau he ooserved with changes in hin OVt~r1ap.

Figure 4.28 demonstrates this 011 the raw illtet'est Ilmp of t.he rectangll~. A~ l~xpectetll

larger values of overlap lcad to tcmplal.cs of largel' cxtent., and t.herel'ore prndnce a. lIlore

dispersed interest map. BOlVever, this erfect is too slight ta produce chanl(es in the drill

image (Figure 4.29(a)). BOlVever, IVhen applied ta the face illlage (Figur" 4.2!)(h)), souw

differences can be seen. More angular biu ov"rlap produC<!s 1II0re iut.er"st. poiut.s. 1\01V"""r,

setting this value tao small CRn rcsult. in the 108S of some dcsircd interest points, as can he

seen by the loss of oue of the eyes IVhen (J = " aud bin overlap = 0%.

These examples sholV that, out.side of ext.rellleiy 101V or high values, the algorit.hm is not.

too sensitive to the exact selection of the annulaI' temphüe pamllleters. Thus the seil'<:t.ion

of the parameters can be motivated mainly by the desire for cOlllputational ellicieucy. For

example, the felVer the number of angular bins, the 1II0re points t.here <LI''' t.Imt corl'l'spond

to each bin. Therefore, a snmll number of angnlar bins requires lIIany more point.s in t.I\I!

accumulator arrays to be npdat.ed for each edge. BOlVe"er, too many angular bius can nmke

t.he output fragment.ed. A similar argument holds for the choice of bin overial'. The largl!r

the overlap, the larger each angular bin's ext.ent, and the mon' l'oints in t.he accumulator

arrays that must be updated for each edge. Bowever, too small a value can make t.he

algorithm too sensitive. Therefore, 32 angular bins, each overlapping theÎl neighbouring

bins by 25%, lVere selected.

3.3. Summary of results. The development. and analysis (.f the algorilhm present",1

in this chapter proved the validity and effect.iveness of the developed interest point. mode!.

Of particular importance lVas the algorithm's insensitivity to exact. paramet.er sett.ings. This

allolVs a set of :;arameters to be chosen t.hat. will be effective under a lVide range of real­

world conditions. Notably absent from this discnssion was an evaluation of the computation

requirements and execution speed of the algorithm. BOlVever, the model has been set up to

allow for a fast, efficient implementation, and this is the subject. of the following chapter.
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CHAPTER 5

A Real-Time Implementation of the Visnal Attention Model

A real-time impiementation of the algorithm is prŒented in this chapt.er. This implen",n­

tation is accomplished in two ways. Firs!., t.hrough simplificat.ions and modificat.ions t.o t.he

algorithm discussed in t.he previons chapt.er. Second, by parallelizing t.he algorit,hm and

distributing the processing amongst. a ne!.work of processors. Each of t.he first. t.wo sect.ions

of this chapter concentra!.es on one of these methods. The chapter conc\ndes with a thirll

section which examines the performance of the real-time algorithm and shows resnll.s of il.s

application to l'cal images. These resnlts arc compared to the ones presented in dmpl.er 'l,

thereby showing that the simplifications do not significantly affect the resnlts.

1. Changes ta the Algorithm

Some improvements in the execution speed of the algorithm were achieved in the pre­

vious chapter by inverting the annulaI' templates and separating the Ganssia,n convolution.

These changes did not affect the actual outpnt of the algorithm. In conl.rasl., I.his chal)ter

will introduce certain simplifications to the operator which will change the ontpnt, slight.ly.

These simplifications are achieved in one of two ways. First by simplifying the calcnlations

that must be applied to each of the data points. Second by redncing the nnmber of data

points that these calculations must be applied to. However, it will be shown that the con­

sequences of these changes are minor, and arc offset by tl'emendons increa.~es in the speed

of execution.

To begin, both simplification goals, reduction of computation and reduction of data,.

are achieved through the use of a thresholded and binarized edge mal). The nnmber of

edges in the image is greatly l'ecluced by thresholding the gradient image so thlLt very small

magnitude edges are not considered. This l'esnlt,s in a significant rednction in the amonnl.

of data that must be processed in the image. As weil, by using a binary edge map, the
liO
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algorithm," reliancc on edge intensity is removed since each point is either an edge (ll.XII = 1)

or ÎH not (IIoXlI = 0). This simplifies the computational complexity at each point.

I~ven further computational savings can be achieved by taking advantage of the binary

nature of the edge data. Referring 1.0 the processing now diagram of Figure 4.8, it is seen that

the first stage of the algorithm involves the application of the inverted annular templates on

the "dge points, resulting in contribnting edge data being stored in each of the accumulator

arrays. In the implementation of the previous chapter, the values stored in the accumulator

arrays were the magnitudes of the strongest contributing "dges at each orientation. However,

since the algorithm no longer relies on edge intensity, it is not necessary to store these values

in the accumulator arrays. In fact, the only information that needs to be recorded in the

arrays is whether or not there is any edge above threshold which contributes to a point at a

particnlar orientation. Therefore, at each point in the accumulator arrays, a single binary

digit for each contributing orientation is snfficient to store ail t.fle information required. A

binary 1 indicates that there is at least one edge contributing to the point's symmetry from

the orientation represented by that bit, and a 0 signifies no edge is present.

The fael. that edge magnitude information does not need to be stored in the accumulator

arrays means that the application of the inverted annular templates can be simplified as weil.

Since only binary information needs to be stored, the application of the templates can be

accomplished nsing a simple Boolean operation. '1'0 do this, a binary word is defined, with

each binary digit associated with a particular edge orientation. This binary word is used to

represent the edge information in the accumulator arrays. Similarly, a unique binary mask

is assigned to each template orientation. This mask has a single bit set, corresponding to the

bit position representing the template's orientation in the accumulator array (Figure 5.1(a)).

Each accumulator array point affected by an inve<ted template is updated by logically ORing

the value at that point with the template's biuary mask (Figure 5.1(b)). ln this way, the

bits corresponding to the orientation of the contributing edges are set, and the remaining

bits are uuaffected.

Rererriug again to Figure 4.8, the next stage in the processing is the application of

cquation(3). This cqnation determines the symmetry magnitudes for every symmetry ori­

entation based on the contributing edges stored at each point of each accumulator array.

However, the foct that coutribnting edge data is now stored in the accumulator arrays as a

single binary word at each point can be exploited for further computational simplifications.

SI>ecifically, this cquation can be replaced by a series of look-up tables, each one mapping
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(a) An examplc or t.emplat.c mWlks and corrt.'tIponding edgc oriclllut.iom~ror lUI nUllulur tcmplnlll wilh Kl\lIKull\r
bins. (b) The value at. poinl p or nUllccull1uhllornrrny is round by logicnlly OHiug llu: t.clUplnlclIUIL..kll. ur nU lllt~

cdge!> cont.ributing t.o tllllt. point. In this way. cilch bit :1I~t in tht! ncctllUulntor llrrny rclJrmlCl1tK un nrilmtntiull in
which at least. one inward painting, contrihut.illg cdge Wll.'i round.

FIGUIlE 5.1. l3iuary template UHL<ks

the biuary value stored in an accumulator array to the corresponding symllletry lIlagnitude

of one symmetry orientation.

An obvious problem is that the binary word stored in the acculllulator arrays IIlL< ;L<

many bits as the number of angular bins, which can lead to very large look-up tables for

even modest numbers of angular quantification. However, it was shown in the previous

chapter that the output of the algorithm is not very sensitive to the nUlllber of angular

bins. Thus this problem can be solved by using fewer angular bins. But the fewer angular

bins selected, the larger the extent of each inverted telllplate, which conseqnent\y inCr"lL<es

the computation required. This means that, in order to maintain practical sizes of look-UI>

tables, the number of angular bins lIlust be smail. However, to maintain f;lSt COlIIl>lltation

times, the number of angular bins should be large. These seelllingly conflicting requirelllents

can both be satisfied by using the full range of edge orientations to determine the extent of

cach angular template, and using a coarser representation of orientation to store the edge

contributions in the accumulator arrays. ln practice, this is accolllplished by using the $llll"

binary mask for a number of template orientations (Figure 5.2). This Illeans that any edge
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A 1l1l1U1Jf:r (If nngulur bills cnll Il!Up lo the snlllc billl1ry tcmpll1tc mnsk. In liais exumplc, 16 ungul11r bins are
rmhlCf!d lo -, unique Oril:lltntiollK for storngc in Liu! IlCClJlIlUllltor llrrnys.

FIGUIlE 5.2. Reducillg Lhe accumulaLar array sLarage ward lengLh

•

•

which contributes 1.0 a particnlar point from any of these template orientations sets the

sallle bit in the accnmnlator arrays.

A fnrther conseqnence of Iimiting the nnmber of contributing edge orientations repre­

sented in the accumnlator arrays is that il. similarly Iimits the number of possible symmetry

orientations. For example, Figure 5.3 shows ail possible pairs of contributing edges, and

t.herefore ail possible symmetry orientations, when edge orientations are quantized 1.0 four

contributing directions for accnmulat.or array storage. Thus wc note that only four symme­

try orientations arc pessible given four contributing edge orientations. In fact, this result

can be generalized for any number of edge orientations. Hence il. can be seen that quan­

tizing the contributing directions down 1.0 Il values fixes the number of possible symmetry

orientations 1.0 Il as weil.

Furthermore, since the edge magnitudes are binarized, the symmetry magnitude,

Sr,v,(]/), relies only on the angle between the contributing edges (see equation(3)). Sim­

ilarly, since the number of contributing edge orientations is Iimited, the value of Sr,,,,(P) can

take on only a Iimited numbcr of distinct values. Based on this, three types of Iines of sym­

mctry can be defined, differentiated by the number of distinct symmetry magnitudes each

cali have. Two of these occllr when the number of contributing edge directions stored in the

accumulator arrays is even. The first of these, which we cali edge-symmetry, results in Iines

of symmetry that pass through the centre of a possible contributing edge orientation (Fig­

ure 5.4(a)). In the other type, called vertex-symmetry, the Iines of symmetry pass through

the vertex of two possible contributing edge orientations (Figure 5.4(b)). The third type

of symmetry occurs when the number of contributing directions is odd (Figure 5.4(c)). In

this case, ail the Iines of symmetry pass through the centre of a possible contributing edge

al. one end and a vertex al. the other and is therefore called edge-vertex-symmetry. Each
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1

Limitillg the IIl1l1lber of pos.~iblc contributillg cdgc "ricn\l\tion~ r(:llLLlt~ in 1\ llimihlr limitlltillll (III thc~ 1III lIIh ':1'
of possible symmetry orientntions. III this (:xllmplc~. it ell1l he lll:cm thllt unly rOllr S~'lllnwtl'~' Uril'lItlltinllS lm:
possible givell four contribntillg edge orientation!!,

FIGURE 5.3. The rclaliollship bclwccn t.hc nllmbcr of edge oricnt.at.iom; and the
rcsullant symmclry orientations

(a) (b) (e)

•

•

SOlne exumples of (a) cdgeosYllllllctrics, (b) "ertex-!IYlllllletries,lI11d (c) edg«."vCl'tcx-!IYllllllCltriC!!.

FIGURE 5.4. Tltrcc typcs of symmctry oricntatioll!>

of these symmetry types produccs ct unique set of possible sYlllllletry magnit.udes :;ince t.he

eombination of angles separating the edges resulting in eaeh of thesc sYlIllllct.ries Îs diffcrcnt..

The adual values of these magnitudes depcnds on the value of the wcighting plmLlllctcr, '/III

(see equation(3))! but the number of distinct values is based solely on the possible angles

between edges contributing to each symmetry type. This means that thcsc diserctc vltlues

ean be represented by fewer bits than required for symmctry magnitudes wÎt.h continu­

ous values. For example! eight contributing orientations result in four edge-sYlllllletrics ,ual

four vertex-syrnrnetries (Figure 5.5(a)). Each edge-symmetry can take on onc of six possible

magnitudes (Figure 5.5(b)). This range can be reprcscnted uniquely in thrcc bits! with each

symmetry magnitude mapping ta a partieular binary value. A similar analysis shows that

there are nine possible vertex-symmetry values, which rcquircs a four bit. representation.

By concatenating the binary representation of these values, we ean encode the symmctry

magnitudes for aU orientations at each point in one 28 bit binary word (Figure 5.H). This

leads to a further simplification! sinee only a single look-up into a table of 28 bit ward:; is

required ta obtain the symmetry magnitudes for aU orientations from the contributing cdge

information stored at each point in an accumulator array.
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Edge symmelrie.~ Vertex symmelrie.~

(il (li) (Ill)

(b)

(iv) (v) (vi)
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(l~) Eight edge oriellL!lliollll rellllttll in four poslIible edgt.'-sYlTuTletrlellllnd.1 pogsible vcrtex-lIymmctriell. (b) Euch
ctlgt.""YlIllllctry CUII tllkc on one of six possible nmgnitlldcs bu.sed 011 the cdgcs cOlltributing ~o thl\t Hne of
llYlIlllletry (scc cqtllltion(3)). Thelle valuclI lire;

(i) 0
(li) (!lin 7T/2)'U I
(m) (lIiIl7T/'I)W1
(iv) 2(lIÎlI7l"/'I)'"1
(v) {lIiIl1l/2)'UI + (IIÎll1r/.I)WI
(vi) (lliIl7T/2)WI +2{!lin7T/.I)'"1

FIGURE 5.5. Possiblc sYl11l11ctrics for cight contribuUng orientations

/ /~ ""-" \
l l l l l l l l

••• •••• ••• •••• ••• •••• ••• ••••,
V

/

28 bil ward

• =1binaI)' digil

Ail the pOllllible lIymmetry magnitudell for eight pOllsiblc llymmetry orientations can be completely encoded in one
28 bit billllry word IIsing thrce bitll to reprcllent the lIix p0511ible magnitudes of each Df the fDur edge-symmetrles
IInd fDur bitK fDr the nine possible magnitudes of ench of the four vertex-llymmetries.

FIGURE 5.6. Represcnting the symmp.try set in a single binary word
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The next step in the algorit.hm, as shown in Fignre ·1.8, is t.he combination of \,Ill' in­

dividual symmetries compnted for each acclllllulator mm.\'. This is an:omplished Ihrough

the application of equation(5), which t.akes Ihe maximum of IIIl' symmelries of cadI ori­

entation over ail the accumulator array~. This procedure rcqllin~.s a sepa.ra.h~ l"llmparisllll

over ail radii for cach symmetry orientation at. each point. I-lowcvcr, sinre t.he symmet,ry

magnitudes at each point are eucoded iu a siugle binary word, t.he values corresponding 10

each orientation must be decoded from these words before the comparison l'an be made.

Alternately, this is made much more efficient by slightly altering the W11Y t.he symmet.ry

magnitudes are stored so that a Boolean function t.hat, is equivalent. 10 taking a maximnm

l'an be applied over ail the orientations in pamllel. This is accomplisill'd by increasing (,he

number of bits used to store the magnitnde of each symmetry orient.at.ion. Wc refel' t.o t.his

as the long-symmet7·y bit format, to differentiate it from the regular binary format, which wc

cali the short-symmetry bit format. The way that. the long-symmet.ry format is compnt.ed

and used is best iIlustrated t.hrouglo a specific example. Figure 5.7(a) shows the diflcrences

in the two formats in storing four symmetry magnitude values. Increasing t.he number of

bits in the long-symmetry storage causes the mapping of symmetry magnit.ndes to t.ill'se

long-symmetry values to be nonuniqne. By taking advantage of the rednndancies, wc l'an

encode these values 50 that the resnlt of logically üRing two iong-symmet.ry vaincs together

maps to the same symmetry magnit.ude as the maximnm of the t.wo. '1'0 iIlust.rat.e how

this is accomplished, Figure 5.7(b) shows an example of this procednre for four symmet.ry

magnitude values at each of eight symmetry orientations.

Using the long-symmetry bit format for finding maxima re'luires a significant. increa"e

in the number of bits needed to store the symmetry magnitudes. For each contribnl.ing

direction, n - 1 bits are required to encode n symmetry magnit.udes. For example, using

eight contributing directions prodnces four vertex-symmetries with nine possible magnitudl!s

each, and four edge-symmetries with six possible magnitudes "ach. '1'0 encode t.hese values

using the method described above requires a binary word 52 bits long (4·(9-1)+4.(li-l)).

Such word sizes are too large for a practical system, and 50 reducing this is neccssary. This

is accomplished by further quantizing the number of symmetry magnitudes. For exam­

pie, limiting the symmetry values to four magnitude levels for each of eight contribntion

directions results in a total word size of 24 bits (8· (4 - 1)).

Wc are now left with a single binary word olt. each output point, encoding a magnitude

of symmetry for each orientation at that point. The final processing step, as shown in

Figure 4.8, involves the application of equation(6) to these vaincs, producing a nnique

lili
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Short-symmetry

00

01
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Short-symmetry set

00 0J 11 00 00 10 10 01

MAX
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Long-sym metry

000

001

01x

lxx

(a)

Long-Sym metry set

<=} 000 001 100000000 010 010 001

OR

<=} 010000 010 000 001 010 001 100

<=} 010001 110000001 010 011 101

(b)

•

•

(Il) Ail exnlllpic of rcprcscllLing four symmctry magnitudcli in the short-symmctry und long-symmctry bit. for­
nmtfl. 'l'he x's in the long-sYT11l1lctry vnhws rcprcscnt bits thnt cnn be cilhcr 0 or 1. (h) Finding the maximum
nt cneh orientation of Lwo flhort-synullctry values rt!C1uircs the bib. rcprc:>cnting cnch oricntntion ta he compo.rcd
scpnmle1y. The tlfUIIC procedure cali he nccornplishcd for ail orientations in paraI lei using the long-symmctry
hit fOfllmL lmd n simple logiclll OH olJeration.

FIGURE 5.7. The long-symmctry storage format

interest vainc, 1(1'), at eacll point.. Again, this equation can be replaced with a look-up

table. This table nses the birmry word representing the symmetry magnitudes of each

point as an index. However, the symmetry magnitudes are stored in the long-symmetry bit

format, and so, the size of the look-up table can be reduccd by eliminating the redundancies

in this encoding of the symmetry set. In the previous example of four magnitude levels at

eight contribution directions, 2~ bits were required to store ail the symmetries in the long­

synllnctry format. A 2~ bit index leads to a look-up table of 16 MWords. On the otller

hand, each symmetry value only represents four possible magnitudes, which can be uniquely

cncoded in two bits. Therefore, using the short-symmetry bit format, these symmetries can

be represented bya 16 bit word (two bits for each of the eight orientations), which indexes

iuto .t look-up table of only 6~ kWords. This is a significant memory savings. However,

it does require an efficient method for converting l'rom the long-symmetry format to the

short-symmetry format. This can be accomplished through another look-up table. Using

t,he full long-symmetry value as an index into this look-up table would still require a 16

MWord table, negating the reason for making this conversion in the first place. However,

such a procedure cau be achieved. First wc split the long-symmetry value into two shorter
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Short-symlllctry

output

I--~~ 10 00 Il 11

I-~~ 11 00 111 10

Look-up

TlIhlc

Look-up

Tnhlc

/,..-----e>~ 110 oon 001 011

/
110000 001 aIl 010000 III 101

~OIO \XlO III 101

Long-symmetry

input

A 2-1 bit long-symmctry valuc ill llplit into LWO 12 bit wonlll, clIch ilUlcxing 11 luok-up tulJIc~ whic:h lllllJllIl1l 1lit!
equivalcnt cight bit short-symmctry value. The two rCllultiug cight bit vl\IIICll lire then CU1\l:,.t,mllte,1 III r"111\ t.lll:

16 bit short-symmctry cquivnlcnt of the originnl 2-\ bit IOllg-llymmetry wonl.

•
FlOURE 5.8. Convcrtillg frolll long-sYlIllllctry lo shorl.-sYlIIlIIet.ry

binary wards. Then we use a look-up table to determinc thc short-15Ylllllle!.ry valllc of cadi

of these two words separately. This procedure only requires a look~up table "trge enough

ta be indexed by hall' of the loug-symmetry bits.

An example of this procedure is shown in Figure 5.8. In !.his eXillllplc, il 2'1 bit loug­

symmetry value is broken clown into two 12 bit words. Each of !.hese 12 bit words represen!.s

the symmetry magnitudes of four of the cight orientations. These words are l.hell used as iUl

index iuto a look-up table (12 bits indexes iuto a four kWard look-up table) which output.s

the equivalent short-symrnetry value iu cight bits. Coucatenat.iug the out.puts from t.h<l t.wo

12 bit words gives the 16 bit short-symmetry ward corresponding ta the original 24 bit,

101lg~symmetry value. It is this result.ing Hi bit short-sYlJllllel,ry value t1mt. i:.; IlHed as t.he

index into a finallook-up table, replacing cquation(6) in Figure 4.8.

•

1.1. Processing ftow. The previous section describes the sim plificat.ions a.ml

changes made to the algorithm ta improve its run-time efriciency. III doing so, 1TIa.IlY new

concepts were introduced and an overait picturc or the processing lIow may lmve beell losl..

As such, this section reiteratcs the basic computational steps iml>lemellted in I.hc rmLl-t.ime

algorithm. These stcps are iIIustrated in Figure 5.9.
fi8
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~
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FIGI'.HE 5.9. Real-Lime proccssing flow
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Ali the edges, whose centres of cocircularity are al a poiul ". l"Onlribule to lh,' valu('s

stored at point l'of oue of the accumulator arrays through the applicatiou of the inVl'rt,'d

tcmplates. The particular accuUlulator array aflcctcd is detcrmincd by t.lw dist.ance rrom

tbe edge to the centre point l'. These contributions are stored as a binary wonl in Il,,,

accumulator arrays, indicated by ctl (1'), ct2(p), ... , ctu(p) in Figure 5.!l. These words are t,hen

used as indices into a look-up table, outputtiug the long-symmetry ""lue resulting frolll

the contributing edges of each accumulator array. Ali these long-symmetry vahws are theu

ORed together, resulting in a long-symmetry ""lue that represents the maximal sYlllllletry

magnitude of each orieutation over ail the radii. This value is then converted ta its shorl­

symmetry equivalent by splitting it into two smaller binary words, each of which is used <lS

an index into another look-up table. The outputs of these two table look-ups are joined,

resulting in the short-symmetry l'l'presentation of the synBnet.!'y magnitudes al. l'ad. poiut..

This value, which is equivaleut to the original loug-symmetry value wit,h the n,dundancies

in coding removed, is then used as an index into a finallook-up table which determines t,he

interest value, I(I'), for the point based ou the l'articulaI' sYlllu"'tries at I,hat l'ai ut.

Finally, it is interesting to compare Figure 5.9 with Figure 4.8. Of particular note is

how ail the equations of the previous implementation have bccn replaced hy eil,her look-up

tables or Boolean operations in the real-lime implementation.

1.2. Determining parameters and tables. The real-time algorithm uses a num­

ber of look-up tables and quantizations in order to optimize its run-time efficieney. This

section will examine how the look-up tables arc precomputed, and ho\\' the uUlllher of '1uan­

tization levels are chosen. Some of these values arc dotermined by the amouul. of nwmolY

available for the look-up tables and the size of each machine addressahle word. As such,

the specifics of the hardware platform that is being used for this implementat.ion must also

be considered.

1.2.1. Se/l'ction of quantiztJtioll leve/s. There arc a number of simplifications applied

to the algorithm which require certain '1uantizalionlevels to be determined. Specifically, the

number of contributing directions stored in the accumulator arrays and the number of levels

ofsymmetry magnitudes must be chosen. These values arc interdependent since the number

of contributing directions directly affects the number of possible symmetry magnitudes. As

weil, choosing these values depends on a number of .machine specific constraints, such ;.,

the amount of memory available and the size of an addressable machine word.
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'1'0 llIaximiz(~ performance, \....e have irnplcllIcnted our syst.em 011 a pa.rallel nctwork of

Tex"" I/Istrullle/lts TMS:120C'10 (C'IO) processiug /Iodes. These processors run al. a c10ck rate

of 'IOM IIz', a/ld are capahle o( executiug f1oati/lg point operatio/ls in a si/lgle c10ck cycle. As

weil, th"se processors wc", ch~sclI duc 1.0 their exteusive commuuicatioll capabilities, which

will he disc/lssed i/l the lIext section. For the plIrposes of this sectioll, it is ollly lIecessary

1.0 /I","tio/l two cOllstraillts pertaillillg ta this hardware. The first is based 011 the amoulI!. of

syst"lII melllory avai/ahle for the look-up tables. The largest look-up table computes the filial

illl"""st value from a short-symmetry ward illdex. The short-symmetry ward is represellted

by "" n bit billary number, which cali index a look-up table of 2" Words. The elltire data

memory space avai/ahle is 256 kWords2 , which leads ta a maximum i/ldex ward size of

n = 18. Ilowever, this leaves /la room for otlter data, such as the accumulator arrays, other

look-up tables a/ld the alllllliar templates which must be stored in this area as weil. III arder

ta accomplish this, the maximllm vaille of n is Iimited ta 17, givillg a maximum table size of

2" = 128 kWords, alld Iimiting the short-symmetry ward size ta 17 bits. Furthermore, il. is

desired that ail the vertex-symmetry magllitudes be represented by the same number of bits,

alld simi/arly ail the edge-symmetry magllitudes should be represented by the same number

of bits. This ellsures that the IIl1mber of possible symmetry magllitudes for a particular

symmetry type does Ilot arbitrarily depelld ou the orieutation of that symmetry. Table 1

shows ail the possible ways these 17 bits can be divided ta represent the edge magnitudes

for different nnmbers of possible symmetry orientations. From this table il. can be seen that

t.here is a tradeoff between the nu mber of symmetry orientations and the number of bits used

1.0 encode the magnitude of each Iille of symmetry. However, the number of orientations

should not be made tao small, since wc arc IIltimately looking for edge contributions from

a lIumber of different orientations. Examining the table, one can see that there is a natural

cutolf at eight orientations. With ni ne or more orientations only one bit l'cr direction can

he used to store magnitude. This representation is tao coarse since sorne comparison of

relative symmetry strengths is desirable. However, al. eight orientations two bits can be

used, allowing four symmetry magnitudes per orientation 1.0 be encoded. This produces a

'1l1alltization of the six possible edge-symmetry magnitudes and the nine possible vertex­

symmet.ry magnitudes to four levels each. This still provides enough differentiation 1.0

allo\\' symmetries to be distinguished based on magnitude. Furthermore, eight symmetry

1A 50~UIt. \'cl"8ion of these processors hlL'i recentl)' becomc avni1ablc.
2Thc llcl\ml memor)' umilnble is 256kWords of SRAM, ulicd to store datn and tables, and 1 MWord of DRAM,

usee! lu store code. It is dCKircd to store ail the look-up tables in the SRAM bccnusc ncccss to this memory is much
rlL~tcr thnn to the DRA~,t. This is cspccinll)' Lruc~ of nCCCliSCS to non-scqucntiuJ memory locations sillcc DRAM imposes
n flubfltnntial pcnnlt)· cnch time n 6·1 kWord page boundary is crossed.
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No, or orientations T~'I)(~s or !>)'nHllci rÎt'S l'ussihll' divisiulIS ur !>hurt-s:-'mnll'I ry hil:"

2 1 cdgc-s)'l1ul1etr)' und 1 hil /1~dgt'-S)'lIlll\l'lry and Itô hil!>/ \'l'rh'~·s:-·llIl1l1'lr)·

1 \'ert eX-syll1lUcl r)' 2 and If>
:l and 1·1

: :
Itô l\Iul 1

3 3 edgc-\'crtcx-s)'llllllctril's ;. hils / SYI1l111ctQ'
·1 2 cdgl....syulllU:trics und 1 hil / t·dgl'-sYlllltll'try and j hit:./ \'l'rtf:x-sYlIIllll'll'Y

2 \'llrtcx-sylUllIlltrics 2 and Il
:1 lLnd r,

• and 1
5 5 cdge-\'crtcx-s)'mlUctrills :1 hits 1s)'lIInwtr)'
6 3 cdge-s}'mTllctrics nnd 1 hit /1~dgl'-S)'lIInwtry Ilnd .f hits / \'I~rlt~x-s)'llIIlWII'Y

3 \'crtcx-S}'l1IlUctrics 2 1\Iul :l
:l /lnd 2
.\ and 1

• j cdgl.... \'crtcx·synnuctrk-s '2 bits / sYlluudry
8 <1 edgl....s}·mlHctrics and l hit 1 cdgc-s)'llIll1ctr)' und a hits 1 \'t:rttlx-S)'lUllIdry

<1 \'cl·tcx-sYl1llUctrics 2 lUlll 2
:l nnd 1

9 9 eclgc-,,·crtcx.sYl1tmctrics 1 hit 1S)'lIIl1llltr)'
la 5 cdgl....symlllctrics und 1 bit 1 cdgc-sYllllUctry nnd 2 bits 1 \·llrtt:x-sYllIllII:t1·y

5 vcrtex·synnnctrics 2 lUit! 1
11 Il cdgc..... \·crtcx-s)'nll1letrics 1 hit l ")'lHllIcLl'y
12 6 cdgc-symmctrics and 1 hit 1 cdgl!-os)'lIullctr,)' Ilnd 1 bit 1 \,1:rhlx-sYllllndry

6 vcrtcx-s)'l1Il11ctrics
13 13 edgc..... \'crtcx·syll1l11ctrics 1 hit 1 sYIIIUldry

:

1. 1 1j cdgc..... \'crtcx-synunctrics 1 bit 1SYlllllultry

TABLE 1. Storagc rcquircmcnls ror c!Hfcrcnt oricntat.ion qllant.izal.iollS

orientations still allow a rich representation of the sYlllllletries in t.he iIIIage. Finally, il.

should be remembered that the nnmber of resnltant. symllletry orient.al.ions is "'1nltl t.u t.he

number of possible contributing edge directions, and so choosing t.his value also fixes t.h!!

number of possible contribnting edge directions to eight. Therefore, al. cadI point. in t.he

accumulator arrays, an eight bit binary word, corrc.>ponding to edge contrihut.ions from

each of eight contributing directions must be sl,ored. Titis is a furl.h!!r advanl.age, since

eight bit words are a naturalword size in most. compnter architectures, lC' it. is in ours, and

so sp"cialized machine instructions exist to extract eight bit words dficienl.1y and <Juickly.

The second constraint is the addressable machine word size for this architect.nre, whi<:h

is 32 bits. To maximize efliciency it. is desired that an ent.ire 10ng-sYlllllletry vainc, encoding

the symmetry magnitudes at ail orientations, fit into one 32 bit. word. Thus, this will

require only one table look-up to go from the contributing edge data 'If t.he ac<:nlllnlat.or
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arrays 1.0 I.his long-symmetry value. Usiug the values chosen above, each of the eight

symmetry orientatious requires three bits in the loug-symmetry ward ta store the four

possible magnitude levels. This leads ta a 2'1 bit 10ng-symme1.ry representation of the

symmetry set, which does fit within the :32 bit limit.

1.2.2. SeUillg Ill' the look-Ill' tllbles. There arc three separate look-up tables used in

the implementation. This section will discuss how the values for these look-up tables are

compnted. Though the computations involved in determining these look-up tables can be

extensive, the advantage of their use is that ail of these calculations can be performed on

initialization. This removes the necessity of performing them at run-time, and therefore

greatly improves algorithm performance.

The firstlook-up table outputs the the long-symmetry format of the extended symmetry

set, given the binary word representing the contributing edge orientations at a point as an

index. As was discussed previously, each index comes from a single accumulator array

representing a particular range of radii. As weil, each bit in the index represtnts whether

or not an inward pointing edge was found at a particular orientation for that range of

radii. Therefore, each bit in the index values represents a cocircular edge element at a

given orientation. With this information, it is a simple matter to determine the symmetry

vaincs for ail orientations. Given an index represented by the binary digits "\0, "\1, ... , ..\n,

with corresponding contribution orientations q,o, q,ll"" q,n, the set fr,,p(p) can be defined

as ail bit pairs which contribute 1.0 symmetry orientation !/J at radius r of point p. From

this, the magnitude for each symmetry orientation, !/J, is computed from the subset of bits

belonging 1.0 r'r,,p(P)' This is accomplished using equations(2) - (4), repeated below, and

the variable definitions presented above which renect the binary nature of the data:

(14)

( 15)

(16)

.1.(..\ . ..\.) = q,; +q,;
'+'OJ 2

Sr,,p{tJ) = L: 11..\; 1111..\; II (sin 'P/2)W'
.\".\) crr,\I' Cp)

•
This produces Sr,,p(P) , a symmetry magnitude for each orientation. Each of these

symmetry magnitudes is then assigned 1.0 a particular symmetry quantization level, and

given the correspondillg 10llg-sYlllmetry bit values for that leve!. Thèse bit values for ail
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the orientations are then placed end to end. rcslIlting in a single billary word repn'~entillg

the symmetries for a particular arraugemeut of coutributing cdg<·s. In this way, 1he long­

symmetry value for each possible index is computed, and placed in a table 50 th al. the iudex

maps to its corresponding long-symmetry value.

The second look-up table is used to convert long-symmetry vah",s 1.0 t.h<'ir short.­

symmetry equivaleuts. This is accomplished by splitting the long-symn",try value in t.wo,

and using two tablc look-ups t.o find t.he upper and low<'f halvcs of t.he equivaleut. short­

symmetry word. For each half of the splil, long-symmetry word, t.he short-symmet.ry half

words correspondiug to ail the possible long-symmetry bit combinat.ions can be det.ermined.

These values are placed in the look-up table so th al. the long-symmel.ry hall' word maps t.u

its corresponding short-symmetry half word.

The finallook-up table maps the short-symmcl.ry word to an outpnt interest value. Eaeh

possible short-symmetry word can be broken down into asymmetry magnitude quantization

level for each orientation. Each symmetry orientation is then assigned the corresponding

magnitude value for its quantization level. The iuteresl. value, 1(1'), for eaeh eombination

of symmetry magnitudes is computed by direct application of equatiou(li), repeated below,

over ail the contributiou directions:

(17) 1(1') = L S.p, (l')S.pJ (/J)(sin(,pi -,pj))"~
tPi'W}

where S.p(l') is the symmetry magnitude corresponding to a particular quantization level.

This is computed for each possible short-symmetry value, aud ph,ccd,;:' a table 50 t.hal. 1.11<l

short-symmetry values map to their correspondiug intel'est values.

2. Parallelizing the Algorithm

There are two major types of parallelization architectures possible for dist.ribut.ing an

algorithm on a MIMD (Multiple Instructions, Multiple Dat.a) network of parallel proCt!ssors,

pipeline processing or distributed data proeessing. Each of these has il.s own advantages

and disadvantages, which must be weighed in the context of the particular implementation.

Analysis of parallel architectures requires a number of factors to be considered. First,

there is the throughput of the system, which is the rate at which data arrives at the outpnt.

Another measure, the latcncy, is the dilference between the time data is inpnt to the syst.em

and the result, based on this data, appears at the ontl,ut. It is important to realize that

these two measures are 'luite different. Specific examples of how this dilference comes about

will be presented shortiy. A final factor which affects performance is the distribution of data.
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ln lIIany (:;..,es, time critical bottlenecks OCClU in the distribntion of data from one processor

ln another and not in the actual processing of the data.

l'ipelined systems arrange the task to he parallelized into a number of discrete, indi­

vidually compntable stages, where each stage relies on the output of the previous one. Such

implementations are usefnl when the data must pass through a Iinear processing stream

reqniring no feedback. However, pipelined networks are often associated with high latency.

For example, given a tluee-stage pipelined network (Figure 5.1O(a)), if each stage processes

an illlage in one second the throughput of t.he system is one image per second. However,

the ontput at any given lime is based on the input three seconds earlier, giving a latency

of t.hree seconds. This is of significant concern for active vision systems, since the system

should be able to respond to what. it is seeing as quickly as possible. There are, however,

a number of measures which can be adopted to minimize latency, which will be discussed

short.ly.

Another issue which must be considered for pipelined networks is that the throughput is

det.ermined by the speed of the slowest process in the pipeline. This is because ail the nodes

aft.er the slowest node must wait. for it. to output its data before they can continue their

processing. Aiso ail the nodes before the slowest node must wait until the slowest node is

ready t.o accept. new dat.a. This means that in order tn. maximize throughput and minimize

processor idle limes, special care must be taken to ensure that processing is divided equally

alllongst the pipeline nodes. As weil, pipelined systems require the enlire set of data to be

passed from node to node along the pipeline. Depending on the algorithm and hardware,

this communication may require a significant amount of the processors resollrces. However,

wc note that each individu;tl processor need only store the tables and code required to

pcrform it's specific function. In the case of the interest algorithm, where there is a large

alllount of data stored in look-up tables, this is an important consideration.

ln contrast, a distributed data system achieves its performance improvement not by

spreading the processing, but rather by spreading the data that must be processed (Fig­

ure 5.10(b)). In this way, each node perforrns the entire set of processing steps on a particular

subset of data. However, such implementations require extra processing to distribute the

data to the dilferent nodes, and then recombine the outputs of those nodes. Depending

on the data, this division and recornbination can be 'luite complex, requiring significant

proccssor t.ime in itself. However, such networks often result in less latency than pipelined

networks. As weil, the data distribution requirements at each link are reduced since each

node mnst only rcceive and send a subset of the total data set. However, this advantage may
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FIGURE 5.10. 'l'wo types ofparnllcl proccssing archil,cdllrc~

be sl;:riously offset at the distribution and rccombimt.tion Ilodcs, whcrc llIilllY proecsscs must

conlmunicate with a single node, increasillg the possibility of a botl.1cncck. As weil, silice

each proccssor performs the computations of the elltire algorithlll on a subset of the input.

data, cach must also store ail the code and tiLbles required to perform these operations.

The advantages of one parallelization scheme ovcr another must he weighcd in t.crllls

of the particular algorithm being imp\cmented, and the hardwiLrc used. For cxamplc, sOllle

algorithms may have a natural division of data, ICilding to trivial distribution ilnd recorn­

bination processing. In this case, a distributcd data system would be ideal. 011 the ather

hand, sorne algorithms may he naturally divided into a series of processillg steps, thu5 illl­

plying a pipelined network. As weil, the two methods do not have ta b~ Illutually exclusive.

A system can use both pipelined and distributed clements in different places of il I;Lrge

network. In fact, this is precisely the approach taken for the parallelization of the Îlltercst

algorithm.

Application of the interest algorithm naturally leads to two separate processing streams,

one for the peripheral data and a second for the foveal data. By processing thesc two sepa­

rately, each stream can be optimized for the particulars of its irnplemclltatioll. III addh.ion, .
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the divbion of these two streams is already accomplished in the retinal mapping nodes of

I.I", system [7], and so is available withont any further distribution. As weil, recombination

of these two streams does not. require any extra processing, since an)' implementaLion would

fI''Juire foveal and peripheral images ta remain separate t.hroughont processing.

Il pipelined l",twork is chosen within each of the foveal and peripheral streams. There

arc a number of advantages to be gained by using this architecture. First, the algorithm

follows a natural proccssing pipeline. An image is input and edges arc detected. The edge­

dctect.ed image is I.hen nsed to apply the inverted annular templates, forming a series of

accllmulator arrays. These arrays are usecl ta drive the ncxt stage, which determines an

interest IImp based on the vaines in the accumulator arrays. This interest map is then input

to a smoothing process and finally, the local maxima are determined. In contrast, dividing

t.he data into a distributed architect.nre is not so intuitive, and resnlts in a number of added

difricnlties. For example, dividing the inpnl. image into a lIumber of independently pro­

cessed snbimages leads to problems when edge contribntions cross the boundaries of these

snbimages. Second, the fact that the entire data set Innst be transferred from processor to

processor in a pipelined network is not. a problem because the architecture of the C40 pro­

cessors nsed permits large amounts of data to be transferred without any CPU intervention.

This is duc to the f1exibility of the on-chip DMII coprocessor, which is self-initializing. Thus

it can control complex data transfers to the six communication ports while only requiring

synchronizaLion signais from the CPU. Third, by distributing the processiug, each node

only reqnires a copy of the look-up tables necessary to perform it's function. This allows

more memory to be nsed to store image data and accumulator arrays, allowing larger images

to !Je proccssed. The full network used in the parallel implementation of the algorithm is

shawn in Figure 5.11.

Finally, since this pipelille is fonr processors deep, the question of latency must be

addressed. Having an output four frames behind the input is a s~rious Iiability. However,

mnch of the processing can be performed line by line, rather than one image at a time.

For example, since the maximum radius of the templates is known, the maximum distance

between any output point and a possible contributing edge is also known. This means that

as the application of templates progresses line by line throngh the input image, any lines

in t.he accnmulal.or arrays which can no longer be affected by an edge can be output for

processing by the next processor (Figure 5.12). By doing this, the latency in the system is

reduced from the Lime to process four full image frames. The exact latency depends on the

actual templates used and the size of the input image.
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3. Evaluation of the Real-Time Aigorithm

This section will examinc the rcsults and performancc of the real-t.imc aigorit.hlll. As

such, it is divided iuto thrce parts. Thc first examines the efrects of t.he simpliricatioml to

the algorithm made in this chapter. The second section examines t.he em~ct.s of changing

the edgc threshold and the third considcrs the proccssillg s(>ced of t.he Ilct.work.
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3.1. The effects of the real-time simplifications. In arder ta evaluate how the

,implifieation, made in thi, chapt.er affect t.he output., the real-time algorithm was applied

t.o t.he same input. images as were lIsed to test. the algorithm in chapt.er 4. [n doing this, the

'ame paramet.ers were used to prodncc t.he result.s. These values are lJJl = 5 and lJJ2 = 5

for the weighting oarameters, and (1 = ,1 pixels for the Gaussian smoothing. As weil, the

same annniar t.emplates were used, with the added quantizat.ions required for the real-time

implementation. The maximum template radius, "max, was set to the same 10 pixels. As

in the previous chapter, the extent of this template is indicated by the circle at the bottom

right of each figure. Any variation in the size of this circle from one figure to another is due

to different scaling of the images for printing, sincc the actual size of the template used for

ail the images in this section is exactly same. Finally, ail the results shown in this section

were prodnccd with the same edge threshold, set so that 7% of ail the pixels in the image

are edges. The motivation for this choiee will be discussed in the next section.

Figure 5.13 shows the resnlts of the real-time algorithm applied to the same input

images as Figure 4.17. A comparison of these two figures shows that many of the resul­

tant interest points are very similar, especially the points of highest magnitude. However,

thresholding the edges does affect some aspects of the output. In Figure 5.13(a), applying

a threshold prodnces much fewer spurious interest points in the trees. This is because the

edges in this region are qnite weak, and thus, below threshold. The ten highest interest

points closely follow the path of the wall, with the highest response still corresponding to

the towers along the wall. Similarly, for the street scene (Figure 5.13(b)), the points found

with the real-time algorithm are very similar to those found in the previous chapter. One

notable exception in this case is that the stop sign was not one of the top ten interest points,

and in fact, is ranked 12th. This is because sorne of the edges defining the stop sign are

below the selected threshold, resulting in fewer contributions to it's symmetry than were

fonnd in the previons chapter. In Figure 5.13(c), the towers and boats in the foreground are

fonnd, as in the previous chapter. The interest points found for the planes in Figure 5.13(d)

are similar to those found previously, ,,~nd in fact, tess spurious points are now elicited.
,l"

Similarly, in Figure 5.13(e), the highe~'i'interest points corresp"'ld to the three towers, as

in the previous chapter. Finally, the points found for Figure 5.13(f) are'the same as those

fonnd previonsly, but with a few extras corresponding to regions with weak edges that are

nevertheless abov~ threshold.

A further conivarison of Figure 5.14 with Figure 4.18, and Figure 5.15 with Figure 4.19,

shows similar results. The points found by the real-time algorithm, especially those of
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FIGURE 5.13. Real-time algorithm output on the scelles of Figure 4.17
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FIGURE 5.14. Real·time algorithm output on the faces of Figure 4.18

•

highest, magnit.ude, st.ill correspond t.o t.he int.CI'esting regions of t.he images and are very

similar t.o t.he point.s found in t.he previous chapt.er. An except.ion to this are t.he images of

t.he face in Figure 5.16. By comparing t.his to Figure 4.20, it. can be seen that in ail three

of t.he real-t.ime result.s the point corresponding 1.0 the chin is not found. Furthermore,

although the eyes are tracked throllgh Figure 5.16(a) and (b), they are lost in (c). The

reason this occurs is because the background in these scenes is quite busy, creating many

edges of high magnitude in the image. Setting the edge threshold 50 that 7% of the edges are

above threshold causes the weaker edges of the chiu and eyes to be below threshold. This

underlines a perennial problem which will be examined in more detail iu the next section.

Thal. is, how to choose a threshold value that is valid iu ail circumstances. However,
"

•

Figure 5. 16(a) and (b) still produce st.rong, valid interest points for the eyes, and eveu in

Figure 5.lli(c), where the background is illOst prominent, an interest point is still found

wil.hin I.he face. Finally, valid resull.s are obtained when the real-time algorithm is applied

1.0 peripheral images as weil. This can be seen by comparing the images of Figure 5.17 with

Figure 4.21 and Figure 5.18 with Figure 4.22.

Though there are some dilrerences bel.ween the interest points found using the real­

l,ime implementation of the algorithm and those found in chapter 4, the results of this

section show that the real-time algorithm still produces a valid set of interest points, with

many similarities 1.0 those found previously. Some differences in the output of the two

algorithms was expected, and must be accepted in order to accommodate a more efficient

implementation. As weil, most of the images tested in this section produced excellent results

for the same edge threshold value and parameter settings. This shows that the parameters
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FIGURE 5.16. Real-Lime algorithm output ou a the rotat,iug fa"" of Figure 'I.~O
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FIGURE 5.17. Real-Lime algorithm output ou the log-polar images of Figure ",~I

can be set 1.0 prodllce valid resllits in most Ilnconstrained Bettings witholl1. the rllJcd for

human adjustments.
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FIGURE 5.18. Traeking the bird or Fignre .1.22 wit.h t.he rcal·t.in... algorit.hm

3.2. The effect of the edge threshold. Olle parameter whieh mllst. be examine;!

is the edge threshold. Adaptive methods for ehoosillg appropriate edge t.hresholds have

been presented ill the literatnre (Sel' [43] for a review). I\owever, approad",s which reqnire

excessive computatiou would uot be appropriate for this implement.at.ion. As weil, sin""

the amonnt of processing re'lnired 1.0 implement. the algorithm is a fnnct.ion of tI", nllmber

of edges in the image, il. is desirable to main tain abOlit the same nnmber of edges above

threshold from one image frame to the next. In this way, the proces;;ing time wonld not.

fiuctuate greatly between frames. As snch, a threshold for each frame is sclect.ed which

permits a certain percentage of ail the pixels in the image to be above t.hreshold. '('hl' lat.ter

should be set as smalt as possible 1.0 minimize the nnmber of edges which mnst. he processed.

However, 1.00 Iowa setting can eliminate important featnres.

Figure 5.19 shows the outpnt. of the algorithm on a nllmber of dïlTerent. images at.

different edge thresholds. It can be SCCII from these images that. when very few edges arc

considered, many interesting regions cannot be fonnd. For exampIc, in Figll re 5.1!l(lL), when

the threshold is at 5%, only the bottom edges of the eyes are fonnd. Since these do not.

correspond to enclosed regions, they do not produce interest points. 'l'he edges at t.he t.ops

of the eyes are detected with higher thresholds. Thus the int.erest. point.s correspolldillg

to the eyes are found. However, when the number of edges is set. very high (for example,

20%), many spurious interest points are fOllnd. These images also explain a nnmber of

effects seen in the results presented earlier. For example, the edges around the st.op sign in

Figure 5.l9(b) are 'luite weak, and realty ollly become prominent. when t.he t.hreshold reaches

20%. This is the reason why the interest point corresponding to the stop sign is not one of

the highest 10 points in Figure 5.l3(b). Figure 5.l9(c) shows why points correspondillg to

the chin and eyes were not found in Figure 5.l4(c). For thresholds less than 10%, there arc
8:1
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:-;illlpiy flO f~dge5 eorre5ponding to t!le5c features. 1I0wcver, as thc threshold is increascd to

IOfX1l the cye:; \'ccollle promincnt 1 and at 20% the chin is marked.

As disclIsscd carlicr, il. is impossible ta dloose an edge threshold appropriate ta ail

situations. 1\:; weil, in order to rnaximize the algorithm's throllghput, wc arc rnotivated

by a fnrther re'l"irement ta have as few edges as possible in the image. By examining the

rcsnlts presented in this section, il. is observed that an edge threshold allowing ï% of the

total nllmber of pixels in an image ta be edges is often a good compromise, yielding good

rcsnlts nllder a wide variety of sccnes3 • Finally, il. should be noted that no look-up table

entries depend on the vaille of the "dge threshold. Thns the threshold can be changed "on

the f1y", with no nccd to recompute any tables. This aflows adjustments to be made to the

edgc threshold based on real-time feedback from the interest mal'.

3.3. Performance of the real-time algorithm. Finally, the performance of the

real-time algorithm must be examined. This is characterized by two measurements,

thc throughput and the latency. Figure 5.20(a) shows the average throughput (in

framcs/second) and latency (in seconds) of the real-time foveal processing over different

",Ige thresholds and image sizes. Ideally, it is desirable to have the throughput M large

as possible and the latency as small as possible. As expected, larger images require more

proccssing and data tmnsfers and sa result in less throughput and higher latency. As weil,

the more edges that need to be processed, the slower the algorithm. For a typical case

of il foveiL of ï5 X ï5 pixels iLt a threshold of ï%, the algorithm's throughput is about 8.4

fmmes/second, with il liLtency of 0.1ï seconds. Dccreasing the foveal size to 50 X 50 pixels

iLt ï% threshold increases the throughput to 18.4 frames/secûnd and decreases the latency

ta 0.11 seconds.

Fignre 5.20(b) shows the same graphs for the peripheral processing stream at typical

periphery sizes. The effects of image size and edge threshold on throughput and Iatency

arc similiLr ta those observed for the fovea. For a typical periphery size of 126 X 36 pixels

at ï% ",Ige threshold, the throughput is ï.6 frames/second with a latency of 0.40 seconds.

A snmller periphery of 110 x 22 pixels with the same threshold can be processed at 15.7

frRlues/second, with a latency of 0.34 seconds.

31t tlhould be noted herc that ail the test images used in these experiments werc ohtained over the internet.
'l'hercfl~rcl the tlentlor l\lld illumination conditions u!led to produce eaeh of these images would neeessarily be difT<:rcnt.
E,'en under thcsc circllllltltnnccs the Kc!ected edge thrcshold is nppropriate for most images. However, in actual use,
the tlCUKOr and ilhuuinntion factors would he known. Thus the thrcshold could he calihrated to the particularsensing
sitUl\tiou.
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Thcse images show t.he real-lime algorithm llpplied with Il vnricty of cdgc thrcshulds, 'l'llt~ pl~rc:cIILugc vIlhll::O
indicate what percent of the image pixcl!l arc cOllsid(!rcd cdgcs. The image directly nhuvc: flue:h nul put ÎnmKc iK
ils corrcsponding cdge mnp, with the white points indicnting the locatioll:> of tlll! cdgc!i "Imve: thN!Hhnltl.

FIGURE 5.19. The effect of threshold selection on the real-time aigoritllln

Finally, Figure 5.21 shows how the real·time algorithm performs in a real trackillg

situation. Figure 5.21(a) shows the scelle beillg processed, a persoll walking along the

sidewalk. This original 480 x 480 image is redllced to a 70 X 70 fovea and a 12(j x M

periphery. Figure 5.21(b) shows 6 frames of processing of the real-t.ime algorithm. These
85
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FIGURE 5.20. Throughput and latency of the real-time algorithm

•

results are obtained with the same template parameters used for ail the previous rcsults,

and the same cdge threshold of 7%.

'l'he first three frames of Figure 5.21(b) show the person moving through the fovea,

with a number of intcrest points following his path. As weIl, parts of the person extend

into the periphery in these frames and are aiso marked by interest points. ln frames (iv),

(v) and (vi), the person is no longer in the fovea, but moving up through the centre of the

peripheral images. An interest point corresponding to the person is found in ail of these

images. The potential for tracking the person in real-time is obvious.
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ln obtaining ail of the images in this chapter. and indeed for rllnning the systl'm in gl'n­

l'rai. the display was set IIp ta accept images indepelldelltly l'rom thl' fO\'('al alld peripl",ral

pipelines. In this configllration. the display always shows the last. flllly pron'ssed frallll' l'rom

the fovea and periphery, with each processing stream npdating ils image as ort.ell a:.- pos",-;ibll'.

This is necessary becanse the rovcal and periphcral processing st.reams run indepl'ndently,

and the processing of these streams may occllr al. different rates. As slldl, the images of

Figllre 5.21(b) ar~ representative of the output al. 0.25 second increments. \Ioll'ever, new

foveal data are available l'very 0.11 seconds (9.1 frames/second) and nelV peripheral data

l'very 0,19 seconds (5,2 frames/second),

The evidence presented above shows that the real-lime algorithm performs lVel!, hol.\l in

processing time and validity of the interest points obtained, The processing speeds. though

less than true video rates. are still suitable for a lVide variety of real-lVorld, active vision

tasks,
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• (a)

e e
(i) (ii)

e e
(iii) (iv)

e e 0
(v) (vi)

(b)

(l') The finit frame as secn by the camera. (b) 6 frames of the Coveat and peripheral processing of the scene.

• FIGURE 5.21. A rcal tracking situation 88
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CIIAPTEH li. CONCLllSIONS

CHAPTER 6

Conclusions

Ta function in a real-warld environment, an active vision system must. ha.ve a.n att.ent.iona.l

process to guide its limited computatioual resources. This thesis l''L~ described the devcl­

opment and implementation of such a system, direeting overt visnal at.tent.ion in real-t.ime.

This system was based on a number of design criteria. First, t.he algorit.hm had t.o be

biologically motivated. Second, ta be of general use, il. needed to rely only on cont.ext.­

free information_ Finally, the algorithm had to be computat.ionally ellicient., wit.h a fast.,

reai-time implcmentation.

'1'0 begin, a model of overt visual attention, directed by the preceding design criteria,

was developcd. Based on the psychophysical evidence, this model delines interest point.s

as the intersections of lines of symmetry in an image. '1'0 be context-free, these lines of

symmetry had to be found directly from the inpnt image, with no need for a priori knowledge

or prior image segmentation. This was accomplished by defining lines of symmetry as

the loci of ail centres of cocircularity of edges in the image. In order to COm(lnt.e this,

it is only necessary to obtain the edges from the original image. This can be achieved

without any knowledge of the scene. \n further agreement with psychophysical lindings,

the magnitude or saliency of the interest points is a function of both t.he angle sepaml.ing

the edges contributing to the lines of symmetry and the degree of enclosnre of the int.erest

point. Finally, points of interest that arc closely spaced arc smoothed togel.her, and the

final interest points are determined as th!! local maxima of this SlllOothcd interest map.

Next, the details of imp\ementation of this model were examined. First the discns­

sion addressed the development of annniar templates to determine cocircnlarity. Then the

inversion of these template:; was considered. This provides a more ellicient, Hough-like

accumulation method for determining centres of cocircularity. As weil, l.he use of the algo.

rithm for log-polar peripheral images was explored. It was found that the algorithm could
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he apl'lied direct.ly to t.hese images if an appropriately computed annular t.emplate is used

and if provisions for wrapping around Olle of the axes is providcd.

l'inally, the impiementation was adapted to run in real-time. This was accomplished

t.hrough modificat.ions t.o t.he algorithm aud by performing comput.at.ious in parallcl OVer a

series of processing nodes. The algorit.hm modifications st.emmed from the use of a binarized,

t.hresholded edge mal', which allowed the centres of cocircularity to be found very efficient1y.

l'urther simplifications involved redncing the nnmber of edge orientations contributing to

the symmetries. This permitted most of the computations of the algorithm to be replaced

by a series of look-III' tables. As weil, changes to the storage structure of the symmetries

allowed some computations to be performed through simple Boolean operations.

The results obtained, both by the direct implementation of the modcl and with the real­

time simplifications, highlighted many of the system's capabilities. First, these results were

ill excellent agreement with the psychophysical evidence on overt attention. As weil, the

points fOllnd by application of the algorithm on real-world scenes showed that the output

of the algorithm is in close correspondence to an intuitive notion of what constitutes an

interesting region in an image. These results also showed that the algorithm is stable with

respect to object rotations, translations and changes in scale. This makes it capable of

tracking a moving object in real-world situations. Furthermore, the applicability of this

operator to log-polar input images allows this tracking to function over a very wide field

of view with excellent proccssing times. An examination of these processing times showed

that, though true video rates arc not always achieved, the rates are commensurate with

the rcquirements of active vision systems. For example a typical 70 X 70 foveal image can

be processed at 9.1 frames/second, while, at the same time, a 126 x 54 peripheral image

is processed at 5.2 frames/second. Finally, the results showed that the same algorithm

parameters arc applicable to a wide range of input images. This means that the algorithm

can function in varying real-world environments with the same parameter settings, requiring

no human intervention.

Thongh the algorithm was designed to model overt visual attention with an application

to guiding caillera positioning, an examination of the results shows that the interest points

found can be useful in other applications as weil. For example, the algorithm is adept

at finding the location of facial features over a large range of scales and poses, making it

useful as a context-frcc front end processor for face recognition tasks. As weil, though the

algorithm is not able, nor is it intended, to reproduce ail the psychophysical effects of covert

visual .tttention, the points found by application of the algorithm on real-world scenes show
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that the outpnt of t.he algorit.hm is in dŒ:'l' l"orrpspollllt'Ilt'{' 1.0 ail int.uit.i\'p notion of \\'hat

constitutes an intcresting rcgioll in an image, This IlWilllS t.h01t. t.hl' alp;orilhm l'an IH' lI.st'd

ta guide higher level recoguition pron'sses. lllakiug it appropriatl' as an algnrithm for this

type of attention as weil. By using the algorit.hl11 in this \Vay, a sip;llilirant. n'dl1l"t.ion (alHJlll

three orders of magnitude) in the search space l'an be achil'""d for a l'l'cognition task.

1. Relation ta Previous Work

There is only one other algorithm known ta the anl,hor, the onl' developed by Rdsli,ld.

Wolfson and Yeshurun [63], which attempts ta model overt visnal aUention. The work

presented in this thesis has a number ofsimilarities with their algorithm, Bath are motiv,ttl'd

by the same psychophysical evidence, which can be obscrved by coolJmring results of the

two algorithms. As weil, bath model points of interest based on symmel,ril's in the image.

However, there are a number of significanl, differenees. First, the models arc based on very

different definitions of symmetry. The adoption of centres of cocircnlarity as the symmlMy

measnre in this thesis produees a much smaller search space for the determinat.ion of the

symmetries. This results in significant computational savings and the abilil,y 1.0 obt.ain a

real-time implementation of the algorithm. Furthermore, t.he nse of this synllnel,ry measure

permits the algorithm ta be applied directly ta log-polar ima~es, since the calcnlal,ion of

centres of cocircularity in these types of images cau be accomplished through miuor changes

ta the annulaI' templates used ta determine them. In contrast, applicat.ion of Reisfeld,

Wolfson and Yeshurun's algorithm ta log-polar images would require modifications t.o l,he

algorithm itself.

The significant contributions of this thesis are the developmenl, of an overt attl'lltion

model based on centres of cocircnlarities as symmetries, the adaptation of this model to

the log-polar domain, and a real-time implementation of the model through appropriat.l!

simplifications, specialized data structures, and parallelization.

2. Direction of Future Work

The next logical step in the research is the completion of the control structure by

c10sing the 1001' between interest points and the mataI' control of the canlllra position. This

is currently being studied in our laboratory.

Another area deserving further attention is the incorporation of top-down, l'ontext­

dependent attentional cues. This would be particularly useful when the algorithm is nsed

ta guide camera j)osition, since a single interest point must be selected as the next point of
!JI
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2. DIRECTION OF FUTURE WORK

fixat.io". 0"" possible mct.hod of achieving t.his is t.o search for objects with particular char­

,u:t"risties. /\ simple t",nplate matching procedure could be employed iu a ueighbourhood

surroundiug each interest point. I\owever, examiuation of the interest algorithm shows that

a rieh shape descriptiou is available through the symllletry and coeircnlar edge information

st.ored at. cach point. lu fact, rccent. work on shape represent.ation by Kelly and Levine [38]

is dependcnt on very similar information, and has shown that snch information provides a

nsefnl represent.ation of shape with many desirable propertics.
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