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Abstract

Conventional displacement-based finite element programs do not yield unique
values of stress components which ought to be continuous at element interfaces, The
errors, being the differences from the correct unique values, become unacceptably large

at a bimaterial interface when the moduli of the two materials are significantly different.

This thesis formulates and implements new finite elements for obtaining the
correct values of the stress components, both continuous and discontinuous ones, at
bimaterial interface points under general dynamic loading, assuming linear, isotropic,

elastic material behaviour.

The constructed finite element programs, suitable for analyzing two-dimensional
and axisymmetric three-dimensional problems, have been validated by comparing the
predicted responses with the exact analytical solutions of some non-trivial impact loading

(wave-propagation) problems.

The work provides a necessary tool for analyzing and designing composite

structures, for example prosthetic knee and hip joints in the biomechanics field.



Résumé

Les programmes classiques de calculs par la méthode des éléments finis, fondés
sur une résolution en terme de déplacements, ne permettent pas d'assurer la continuité
des contraintes i 1'interface des différents éléments utilisés, L'erreur sur les valeurs des
composantes des contraintes, définie comme 1'écart entre la valeur correcte et la valeur
fournie par le calcul utilisant la méthode des éléments finis, devient inacceptable a
l'interface entre deux matériaux lorsque les modules de ces deux matériaux different de

maniére significative.

Cette thése décrit 1'élaboration et l1a mise en application d’éléments finis nouveaux
permettant d’obtenir les valeurs correctes des composantes des contraintes ¢n certains
points de l'interface entre deux matériaux pour un chargement dynamique quelconque,

en supposant un comportement £€lastique linéaire et isotrope des matériaux.

Les programmes d’éléments finis ainsi élaborés, utilisables pour 1'éude de
problémes 4 deux dimensions ou pour l'analyse de problémes axisymétriques & trois
dimensions, ont été validés en comparant les résultats qu’ils permettent d’obienir avec

les solutions analytiques exactes de problémes non triviaux de chargements impulsionnels
(propagation d’ondes).

Ce travail fournit un outil nécessaire pour 1'élaboration et 1'analyse de structures

composites comme celles, par exemple, d’une prothése de genou ou de hanche dans le
domaine de la biomécanique.

il



Acknowledgements

I would like to thank my supervisor, Professor S. C. Shrivastava, for his guidance

and advice throughout this research.

I also wish to express thanks to my wife, Liu Li, for her support and patience

that made my research work successful.

iii



Table of Contents

Abstract

...................................................... i
RESUME . ... . e e e e i
ACKNOWIEdEeMENtS . . .. .. i i e e iii
Table of Conlents ... .. .. ...ttt ittt ittt i it e it ey iv
Listof FigUres . . .. ... it it i e i i i e e e e e e vi
List of Tables & .ottt it it e e e e e e e e e vii
INTRODUCTION ... . .ttt it e it sttt sttt eas 1
1.1 Bimaterial Interface Problem . ... ... . ittt i e 1
1.2 Literature ReVIEW . . . . ..ttt ittt ittt it ettt st et it e 2
1.3 Objective of Present WorK . . . . . .4 ittt it ittt et it it e s e e 3
1.4 Organization of Thesis . ... ..o it ittt ittt it e et s n e e 4
PROBLEM FORMULATION . . .. ... i ittt i ittt e i ienasasnnas 6
2.1 Continuity and Discontinuity Conditions at a Bimaterial Interface ... ............. 6
2.2 Finite Element Equations of Motion . . ... ... ittt i 9
2.3 Two Dimensional Interface Element . . . .. ... .. ittt ii e, 12
2.4 Interface Element for Axisymmetric Problems . . ............ ... .o 23
NUMERICAL METHOD AND COMPUTER IMPLEMENTATION .............. 29
1 B § o T T T N 29
3.2 The Mode Superposition Method of Dynamic Analysis ..................... 30
3.3 Decoupling of the Equationsof Motion . . . . ...... .. ittt nan 3!
3.4 Solutionof Decoupled EQUations . . . .. . ..o ittt vt vttt st v e eaeenns 33
3.5 Computer Implementation . ... .. ... ..ottt iiin i rnonanoronsnnaes 35
3.6 Exact Time Integration for StepLoading ............... ... .. ..., 36
3.7 Specialization of the Exact Integration to the StaticCase . ................... 36
3.8 Programming ASPECIS . . . v v vttt a e e h e e e 37
EVALUATION TESTS FOR TWO DIMENSIONAL AND AXISYMMETRIC
PROBLEMS . ... ... .. ittt it et rnenn s eanensenenseneaneenas 41
4.1 TwoMaterials Bar . . ... . it it i it ittt et ettt i e 41
4.1.1 Hard Material Inside, Soft Material Outside . . . .. ....... ... ... ... .. 43
4.1.2 Soft Material Inside, Hard Material Outside . . . ... ............... ... 43
42 OneMaterial DisC . .. .. 0o ittt it et e e e e 50
43 TwoMaterial DisC . ... 00 i vttt ittt it e i e e 55
4.3.1 Hard Material Inside, Soft Material Outside . . ... ................... 55
4.3.2 Soft Material Inside, Hard Material Outside . . ...................... 60
4.4 Conclusion from Validation Tests . ... .... ...t ssorosans 60
BIOMECHANICAL APPLICATION: DYNAMIC STRESS RESPONSE OF THE
PROSTHESIS/CEMENT INTERFACE OF A KNEE TIBIAL COMPONENT ........ 69
S Imtroduction . . .. v it i e e e e e e e i e e e e 69
52 Finite Element Model . . .. ... i i ittt ittt tntesan oo nanernnas 71



52,1 Geometry . ..o e e e e e e e 71

5.2.2 Material Properties . .. ... ... i i i e e 73
5.23 FiniteElement Mesh . . .. .. ... i e 73
5.2.4 Boundary Conditions and Loading . .. ... ... . v ia iy 73
5.3 Dynanmic Stress Response by Developed New Interface Element . . .............. 76
5.3.1 Horizontal Interface SITESSES . . . . . o v i vt it i s i e e 78
5.3.2 Vertical Interface Stresses . . . .. v oo v i v v i i e 81
5.4 Con¢lusions Resulting From the Interface Stress Analyses .. ................. 83
SUMMARY AND CONCLUSION . . ... .. i ittt ettt it s e 87
1T T 89
Wave Propagationina Composite Bar . .. ... ......... ... .. ... 91
Wave Propagationina Composite Disc . . ... ... ... ... . . it 95
Listing of Finite Element Program . ... ... ... ... ittt iinsnneras 107



2.3
3.1
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4,11
4,12
4.13
4.14
4.15
4,16
5.1
5.2

3.3
54
5.5
56
57
5.8

List of Figures

Typical bimaterial interface. . ... ... v i ittt it i i i i e e e
{a) Five node quadrilateral isoparametric element, (b) a pair of five node

elements sharing an iNterface, . . . .. ..ot vttt i e i e e e
Cylindrical coordinate system, and a typical axisymmetric ¢lement,
Flow chart of the computer program developed in the present work.
Two materials composite bar, . . . .. i i e e e e e e s
Interface displacements for a two malerials bar, with hard material inside
Interface stress for a two materials bar, with bard material inside. .. ........ ... ...
Interface displacements for a two materials bar, with soft material inside.
Interface stress for a two materials bar, with soft material inside.
Typical mesh foraone material dise. ... ......... ... ... . ...
Stress o,, (ay) at the centre point for one material disc.
Typical mesh for atwo materials disc. . . ... ... ..., .. ...
Interface displacements for a two materials disc, with hard material inside. . .........
Radial stress at the interface of a two materials dise, with hard material inside, . . ... ...
Interface hoop stress on the hard side of two material disc, with hard material inside. . . . .
Interface hoop stress on the soft side of two materials disc, with hard material inside
Interface displacements for a two materials disc, with soft material inside. . .. ........
Radial stress at the interface of a two materials disc, with soft material inside. .. ......
Interface hoop stress on the soft side of two material disc, with soft material inside. . . . ..
Interface hoop stress on the hard side of two material disc, with soft material inside
A human knee joint after total knee arthroplasty. .. .............. .. v us
Geometrical dimensions (in mm) and the distribution of different material regions

of the axisymmetric prosthetictibiamodel. . . . ... ... .. ... ... .. .. ...
Axisymmetric finite element mesh of a tibia model.
The suddenly applied load on the tibia model.
Shear stress o, on the horizontal interface.
Normal stress o, on the horizontal interface
Shear stress o, on the veptical interface, . .. ... .. v i i i e
Normal stress o,, on the vertical interface,

---------------
..............
nnnnnnnnnnnnnn

............

----------------

......................

------------------------
............................
------------------------------

------------------------------

------------------------------

vi



4.1
4.2
4.3
4.4
4.5
4.6
5.1
5.2

List of Tables

First ten frequencies (radians/sec) for the two material bar with hard material inside. . .. .. 44
First ten frequencies (radians/sec) for the two material bar with soft material inside. ..... 47
First ten frequencies (radians/sec) for the one material disc. . ................... 52
Displacement along r direction at outer boundary for the one material dise, . .. ........ 53
First ten frequencies (radians/sec) for the two material disc with hard material inside. .... 57
First ten frequencies (radians/sec) for the two material disc with soft material inside. . .. .. 63
Material properties used inthe tibiamodel. . .......... ... ... ... .. . 74
The first and last ten of the computed frequencies of a prosthetic tibiamodel, . ........ 79

vii



Chapter 1

INTRODUCTION

1.1 Bimaterial Interface Problem

Composite structures, in which two materials of different properties are joined
together to behave as a unit, present challenging problems in the field of stress analysis.
The source of the challenge is the fact that the stress and strain fields are not continuous
as transition is made from one material zone to the other at the interface boundaries.
While some stress and strain components must necessarily remain continuous, others are
allowed to become discontinuous. Moreover, the greater are the differences in the

material properties of the two materials, the greater is the depree of discontinuity.

There are many examples of engineering structures which involve use of two
materials joined to each other. The most familiar examples are reinforced concrete
structures wherein concrete and steel are joined together to form a "perfect bond". The
ratio of the Young’s moduli in this case ranges from 10 to 25 depending on the types of
concrete and steel. Another example, from the field of biomechanics, is a prosthetic joint
in which a stainless steel prosthesis is cemented in the knee or hip joint by PMMA bone

cement [1]. The ratio of the moduli at the steel/PMMA interface is of the order of 100.

The stress analysis of composite structures of practical importance can only be
carried out numerically, usually by the finite element method. However, it is well known
that in conventional finite element analysis only the displacement compatibility is
satisfied. The requirements of stress compatibility are completely ignored, with the result
that the conventional finite element analysis gives non-unique values of even those stress
component at inter-element boundaries which ought to be unique. The differences
between the non-unique values is exacerbated at bimaterial interfaces when the two

materials are highly different in their material properties, for example at an interface of

1



rubber and steel (in bearing pads for bridges to simulate the roller condition). The
differences between the non-unique values remain significant, even when a refined mesh

is used at the interface.

From a design point of view, the knowledge of correct magnitudes of interface
stresses is of critical importance in order to be able to design the interface against bond
failure by shear or separation. Hence the interface problem for the present work consists
in accurately predicting the magnitudes of all interface stress components, both the

continuous ones and the discontinuous ones at bimaterial interfaces.

Solution of this problem requires formulation and implementation of finite
elements which are capable of providing the correct values of all stress components at
bimaterial interfaces irrespective of the differences in the material properties of the two
materials.

Although, as discussed below, this problem has been solved for the static loading
case, the present thesis addresses this problem for dynamic loading in general and impact
loading in particular. In the dynamic loading case, it is not only the moduli which
determine the bimaterial interface stresses, but also the mass densities of the constituent

materials.

1.2 Literature Review

The popular finite element programs of today, for example, NASTRAN, SAP,
ANSYS, provide no elements which can be used to obtain the compatible stress values
at bimaterial interfaces. In fact, the author is not aware of any commercially available

finite element program which solves this problem.

When using the conventional finite elements, the stress incompatibility problem
exists even for structures which are made from one material of homogeneous properties.
The stresses jump from element to element as the inter-element boundaries are crossed.
However, these jumps are small, and can be corrected by employing averaging and
smoothing techniques [2,3,4,5].



For bimaterial interfaces, Salama and Utku [6] have proposed a method of post-
processing the results of conventional (displacement based) finite element analysis to
obtain the interface stresses. They claim success of this indirect and approximate

procedure of enforcing stress continuity on the basis of some example problems solved
by them.

Soh {7] attacked the problem in a slightly different way by introducing 2 nine-
node rectangular element for plane problems, with 3 nodes on each side and one interior
node in the centre. The element is used by centering it appropriately at a bimaterial
interface boundary. The element is formulated by the usual assumed displacement
approach and the compatible stress components at the centre (interface) node are obtained

by a second procedure on the calculated nodal displacements of the nine node element.

The most direct approach was taken by Angelides [8], who introduced bimaterial
interface elements which enforced the stress compatibility conditions at one point of the
bimaterial interface belonging to the element. Such elements were developed for two-
dimensional plane-stress, plane-strain, axisymmetric, and three-dimensional analyses.
Validation test were performed for the plane and axisymmetric elements by comparing

the finite element results with analytical solutions of some simple structures with
bimaterial interfaces.

1.3 Objective of Present Work

The elements formulated by Angelides {8], solve the stated interface problem in
a general way, but only for static loading. The objective of this thesis is to formulate and
implement the interface elements for solving plane and axisymmetric elasticity problems
under general dynamic loading. Extension to three-dimensional problems, although
straight forward, is not pursued in the interest of restricting the scope of the
investigation. The theoretical approach is similar to that used by Angelides [8] in that

interface stress compatibility conditions are enforced as part of the formulation and
solution procedure.



The numerical procedure adopted for constructing the finite element programs is

to be based on the mode superposition technique. Damping effects are to be neglected.

The programs are to be validated by comparing the numerical values obtained by
using the constructed programs with the values from exact solutions of some simple but

non-trivial problems.

Application of the constructed programs is to be demonstrated by analyzing time
variation of stresses at the metal/cement interface of an axisymmetric model of a knee
joint fitted with a central stem-type prosthesis, and loaded by a suddenly applied step
loading. Both static and dynamic analyses are to be performed with the objective of
demonstrating the differing effects on interface stresses when the same load is applied

statically and dynamically.

1.4 Organization of Thesis

The thesis is presented in six chapters and three appendices. The first chapter
introduces the reader to the interface problem addressed by the thesis, relevant previous

work, and the objectives to be achieved.

The second chapter is central to the thesis. First, it presents general theoretical
aspects of the interface problem. Following that, interface elements for solving two-
dimensional and axisymmetric elasticity problems are formulated. This chapter constitutes
the most original part of the work.

The third chapter outlines the construction of finite element programs
incorporating the newly formulated elements. A brief exposition of the mode
superposition technique of dynamic stress analysis is given from a rather independent
point of view.

The fourth chapter is devoted to the validation of the constructed finite element
programs against test problems, the exact solutions of which are worked out in

Appendices A and B.



The fifth chapter demonstrates the application of the constructed finite element
program to the study of the interface stresses in an axisymmetric model of a prosthetic
tibia fitted with a metal prosthesis.

The sixth and concluding chapter summarizes the important aspects of the work,

and reiterates some of its salient conclusions.

Appendix A is concerned with obtaining the exact solution to the wave
propagation problem in a bimaterial composite bar of finite length, subjected to impact

type loading. This solution is used to validate the two-dimensional finite element program
of the thesis.

Exact solutions, for validating the axisymmetric finite element program, are
obtained in Appendix B. The problem tackled is that of a bimaterial composite disc
subjected to a step-jump of radial pressure at the outer periphery. The solutions obtained
constitute an original contribution, as this problem does not appear to have been solved
in full by other researches.

Appendix C provides a listing of the constructed finite element program.



Chapter 2

PROBLEM FORMULATION

Theoretical formulation of bimaterial interface elements is presented in this
chapter. Although the scope of applications in the present study is limited to two
dimensional and axisymmetric problems, the formulation is presented from a general
view point, appropriate for three dimensiona! problems as well. The materials are
considered to be linear elastic isotropic materials, and attention is restricted to small

deformations. Hence the mathematical problem is a linear one.

2.1 Continuity and Discontinuity Conditions at a Bimaterial Interface

It may be recalled that the nodal displacement compatibility is always enforced
in the conventional displacement-based finite element method. In addition, if possible,
suitable element displacement functions are chosen to ensure displacement compatibility
not only within the elements but also at the interelement boundaries. Thus, in general
(at least in two and three-dimensicnal elasticity problems), displacement compatibility is
enforced throughout the continuum. While such a choice of displacement field ensures
continuity of some strain components at the interelement boundary, none of the stress
components are required to satisfy any continuity conditions. Thus, even when the
material and geometrical properties of the two elements on the two sides of an interface
boundary are exactly the same, the conventional finite element method does not enforce

the required continuity of the inter-element stress and strain components.

Now, according to Newton's third law (i.e. the principle of equal action and
reaction), the force exerted by element "a” on element "b" across their common
boundary is equal and opposite to that exerted by element "b" on element "a”. Thus,

in absence of any applied forces at the interelement boundary, we must have the



following equality between the stress vectors:
Fo = _F @.1)

at the interelement boundary. If, as indicated in Fig. 2.1, direction x, is normal to the
interface and directions x, and x, are in its tangent plane, then from the definition of

stress vectors (e.g. F', = ¢%n") we must have

a _ _b a _ b a _ b 22
Gy = Oy O = 0y Ci3 = Oy (2.2)

regardless of the material properties. The remaining stress components at the

interelement boundary are allowed to be discontinuous.

Assuming that there always exists a perfect bond (i.e. neither slip nor separation
is allowed) between the two materials, the displacement must be continuous at the
interface

a b a b a b
Hy = By, U, = U, Uy = Uy (2.3)

Hence, the displacement gradients in the plane of the interface must also be continuous
by virtue of the fact that dx,* = dx,® and dx," = dx,”. Thus, one has

ou  du du  duy duy  duy
duy oul duy ou. du; dus
ax; axsb ax; 8):36 ax; axgb

The above relations when used in the definition of the strain components imply
that regardless of the material and geometrical properties of the elements, the following

equalities must hold between the strain components at the interface:

€ = egz’ €y = ega’ €3 = Ega 2.5)

The remaining strain components are, of course, allowed to be discontinuous.
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Figure 2.1 Typical bimaterial interface.



Summarizing, we see that according to the above, the stress and strain

components at an interface may be written as

. [ ] .
On Oy Op €y €13 €y
. . .
[0] =| 0y 922 Oy |, [€] S| € €y €23 (2'6)

» . »
O3 O O3 €3 €5, €5

wherein the components which must be continuous are those without the asterisks, while
those which are allowed to be discontinuous are marked with asterisks. It is interesting
to note that the continuity and discontinuity of stress and strain components are
complementary in that when a certain stress {(or strain) component is required to be

continuous, the corresponding strain (or stress) component is allowed to be
discontinuous.

2.2 Finite Element Equations of Motion

The equations of motion applicable to a continuum are

do
it} + b‘ = pu'i 2.7
ax, 2.7
% = %
in its volume V, and
om; = F, (2.8)

at the boundary S, where external tractions F; per unit area are present; b, and p are
respectively the body force components and the mass density per unit volume, n, are the
components of the unit outward normal to S, and a dot denotes differentiation with
respect to time, The virtual work equation, obtainable from the standard procedure, and

applicable for any continuum is



-[opedv + [ bdudv + [ Fouds = [ obuiav 2.9

wherein du; denotes a virtual infinitesimal displacement field, and J¢; the corresponding
virtual strain field. The interelement boundary terms at an interface vanish on account

of the continuity of the assumed displacement field.

For finite element analysis, the integrals in the above equation can be decomposed

over the domains of each element, so that the above equation can be written as:
-E[ o,bedv + Zf bpudv + T [ Fpuds

(2.10)
= Efv pdugdv

For deriving finite element equations, a switch to matrix notation is convenient.

Assume that the displacement field within an element is expressible as

by, = [N];f0) (2.11)

where {u}T=(u,,u,,4;) denotes the components of the displacement vector and [N] is the
matrix of shape functions which are assumed to be functions of the coordinates alone
(and not of time). On the other hand {A}, the vector of nodal displacements, is assumed
to be a function of time. Hence

@ = (NIA) 2.12)

The strain components, expressed as a row (or column) vector
{e}T=(€11,€22,€33,€12,€23,€3;), are obtainable by differentiation of Eq. (2.11) according to

the definition of strain tensor, and can be expressed as

{e} = [Bl{A) (2.13)

where [B] matrix contains derivatives of the shape functions [N]. Invoking the stress-

strain law for linear elastic isotropic material we obtain

10



{o} = [Elle} = [E][BIiA} (2.14)

where {o} is the column vector of stress components and [E] is the matrix of elastic
moduli. The above constitutive law implies that any damping (i.e. dissipation) is

neglected. Substitution of the above constitutive relations into the virtual work equation,
Eq. (2.10), then leads to

_ T, T +
{6 AT f y‘[B] [E][BldV YA} + {6 AN( f V'[N]T{b}dl/)

(2.15)
+ TIBAN( fs INTFIS ) = I8 AN fvp[N]T[N]dV A}

Since this relation must hold for arbitrary {A}", we obtain the following equations of
motion

[MHA} + [K){A) = (R} (2.16)

wherein all element matrices have been augmented to the system size and then
superposed so that

(M) = Zf, p[NI"INJav (2.17
Kl = Zf , [BI'E)(BlaV (2.18)
R =X f V'[N]T{b}dl/ + T fs‘[N]"{F}dS (2.19)

In the standard terminology [M] is the consistent mass matrix of the system, [K] is the
system stiffness matrix, and {R} is the vector of equivalent nodal forces applied to the
systern.  Although not mentioned above explicitly, the column vector of equivalent
applied forces, {R}, includes concentrated forces and also reaction forces. Needless to

say, in a dynamic problem these forces are time-dependent.

11



The above equations of motion are a system of coupled ordinary linear differential
equations. These can be solved analytically in the usual way by first determining the
natural frequencies and associated mode shapes. However, for a large system the
frequencies and mode shapes can only be determined by a numerical procedure, which

in general is a difficult and expensive procedure in terms of effort and computer time.

The alternative method of solving the above equations is by means of their
simultaneous step by step numerical integration with respect to time. This is a relatively
easier m2thod in terms of computer implementation, but suffers from the defect of error

accumulation when "large-time" response is required.

In this present work, the method of mode superposition has been chosen to
integrate the equations of motion in consideration of the fact that it is a semi-analytical
method the accuracy of which largely depends on the accuracy with which frequencies

and mode shapes are determined, starting from the lowest ones.

2.3 Two Dimensional Interface Element

Figure 2.2(b) shows the interface element. The quadrilateral 1-2-7-5-6 belongs
to material "a” while the quadrilateral 2-3-4-5-7 pertains to material “6". Node 7 on the

interface boundary is taken to be at the mid-point of line 2-5.

With reference to Figs. 2.2(a) and (b), the "isoparametric" mapping which maps

a 2 X 2 square in the £-n plane into a quadrilateral 1-2-7-5-6 is taken as

x = Nix; + Nyx, + Nyx, + Nyxg + Ngx, (2.20)
y = Ny, + Njy, « Ny, + Ni'yg + Ny,

where

12



U] y | / INTERFACE

4 3 6 5 4
1
Sty & » b
[ 2 i 2 3
(a) (b)

Figure 2.2 (a) Five node quadrilateral isoparametric element, (b) a pair of five node
elements sharing an interface.
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Ny = (E*-1)(n°-1)/4
Ny = (E°+1)(n"-1)n%4
Ni = -(E*+1)(n°+1)(n°-1)/2
NS = (E%+ 1)+ 1n%4
Ng = —(E°-1)(n?+1)/4

2.21)

"

Equations (2.21) list the shape functions. Actually, since node 7 is assumed to be at the
middle of the side 2-5, one has x,=(x,+Xs)/2 and y,=(y,+Y,)/2. This dependence then
renders the mapping functions to be subparametric. However, we prefer to use a

formulation in which this dependence is not explicitly considered. Node 7 may therefore
be placed anywhere on line 2-5.
The normal to the interface is described by the line perpendicular to line 2-5, and

is defined by
(2.22)

R=fxk
where 7 is the unit vector along the interface in the direction 2-5, so that one has

s s+ Oyl (2.23)
\/(xs -12)2 + (}’5 'yz)z

i= "'(xs"xgll:. + (ys‘yg)lr (2.24)
Yo% + 0=y

Hence, the direction cosines of the normal 7 with respect to the global x,y axes are

= cos = 053 (2.25)

Y53t + 5=y,
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= Y (2.26)
VG55 + (-9

s = sinf

The element displacement functions are taken as
u(xy) = (€% = Nyu,+Nyu, +Nyu; +Nsug+Ng'ug (2.27)
v(x,y) = v(EINT = Ny'v +Ny'v,+Nyvy + Ng'vg+Ng'vg

where according to isoparametric formulation the shape functions N/, N)%... N/ are

exactly those in the mapping functions, i.e. given by Egs. (2.21).

In a parallel fashion, the mapping and displacement functions for element "4" can

be written as
X = N2bx2 + Ngbxg + Nabx4 + Nsbxs + N‘;’xT (2.28)
b b b '
y =Ny, + Na)’:; + Nyy, + Nsb.)’5 + N’tb)"i
u(xy) = u(Ebn? = sz"z’szb“s‘fo“stb"s*va“v (2.29)

V(x,y) = V(Eb:nb) = Ngbvz +N3bv3 +N4bv4+N5sz+N7bV?

where similar to the element "a”,
Ny = ~(E'-1)(n®-1ntl4

-(Eb+1)(n®-1)/4

Ny = (EP+1)(nb+1)/4 (2.30)

NS = (B -1)(nt+1)nY4

Ny = (EB-1)(nP+1)(n*-1)12

R
o
n

We note this choice of displacement functions ensures the required displacement
compatibility at the interface regardless of the displacement values at nodes 2, 5 and 7.

The central idea of the present theory is to select such #; and v, displacements at the
interface that the continuity condition on the stress vector are satisfied at this one point

15



of the interface,

The strains associated with the chosen displacement field can be found as

ou’

eix ox

ava

{e?) = e:, = 1 %
€y au"+6v°
0y Ox]

where

[

z

aNla a

1

Y = [Ba]{Aa} (2.31)

a\T _
AN = Cuy v, uy vy uy vy ug v Ug V)

(2.32)

and [B*] is a 3 x 10 matrix containing derivatives of the shape functions with respect to

the global coordinates x and y, i.e.

(B9 =

.

Ny,
ox

0

aN?
3

oNy,'
ox

0

0 ..

Ny
dy

ON oN? oNS aNS

Jy

ox

dy

ox

(2.33)

Since the shape functions are defined as functions of £-y coordinates, we have

aN,a - aN‘a aEa . aNld ar'a

ox

gge ox

16
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aN,° aN," 9E® oN fa an®
= +

(2.35)
dy gE? 8y  a9n® O

Now, dN,/d¢° etc. on the right sides of Eqgs. (2.34) and (2.35) are casily computed.
However, the computations of 9£%/0x etc. require inversion of the "Jacobian" of the

mapping functions. The formulas obtained from such an inversion are as follows:

k1
ox  det[J9] an°
gn® _ _ -1 oy
dx  det[J¢] 3E° (2.36)
3 -1 &
9  detfJ9) an°
o’ _ 1 ox
dy  det[J?) 9&°
where
R
oF*  gE°
detlJ] = det § 8 _ ox dy _ ox oy (2.37)
ox ay aga ana ana aeu
i ana ann
Hence, explicitly, the terms of [B®] are of the following kind
aN;' _ 1 [BN{’ ay _ aN," ay‘} (238)
o detlJ9)| 98? an°  anT Ok
Ny 1 [_aN," ax N & (2.39)
3  detlJ°]| 3E° an®  an® 3E°
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in which right-hand sides can be calculated as functions of £,5, the nodal coordinates,

and nodal displacement parameters.

The columns of stress components are therefore obtained by invoking the stress-

strain relations for the materials
{o% = [Ee?, (0% = [E?)le}) (2.40)

where (omitting the superscript "a” and "b") {0} ={0,, 0,, 0,,}, and [E] represents the
appropriate 3 x 3 matrix of elastic moduli. For plane stress and plane strain problems,
these matrices are respectively

1 v 0
. _E v 1 0 2.41
[E]planeﬂ"& - (1_\,2) 1-v ( )
0 0 Y
2
1-v v 0
- E vi-v 0 (2.42)
Elpine aran (1+v)(1-2v) 1-2v
0 0 5

We now recall that the normal and tangential stress components on a plare with outward
unit normal making an angle 4 with the global x axis are

- 2 2 i
g, = 0,,€05°0 + 0,5in°0 + 20, ,5inBcosO

(2.43)
0, = (0,,-0,,)sinBcosd + o,(cos’0-sin’0)
In matrix notation we may write the above relations as
5 2 @2 . %n
nn - c A cS 059 (2'44)
O -cs ¢s ci-s?
012

or symbolically as

18



{a},., = [Nic} (2.45)

where [T] is the above 2 x 3 transformation matrix, with ¢ = cos@ and s = sing.

The continuity of the stress vector at the interface requires that:

(0%, = lo%,, (2.46)

or
[TH{o® = [TYie® (2.47)

or
[TIEe] = [TIE e (2.48)

or
[TIEIBHA% = [TIE(BY}A% (2.49)

or
[Q°HA% = [Q*)A% (2.50)

where obviously,

[Q4 = [TNE(B?), [QF] = [THE)BY] (2.51)

and it may be recalled that

AT = Cuy vy u, v, w4y vy Ug Vg ttg Vg ) 2.52)
AT = Cuy v, uy vy u, vy ug v uy vy )

Equations (2.50) can be looked upon as two equations to determine two

unknowns, i, and v,, in terms of the nodal displacements of the other nodes of elements

"a” and "b". To solve for u; and v; we write
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[Q4a% = [QI9de + [Q29){d} (2.53)
and

[QYA% = [QId? + [Q2%d'} (2.54)
where

or _
AT = Cuy vy uy v, g vy U, v, Ug Vg Ug Vg )

(2.55)
dh = (uy vy )

(@1, [Q1"] are appropriately modified (with additions of zeros) matrices of size 2 x 12,
and [Q2%], [Q2°] are matrices of size 2 x 2. Explicitly the elements of these matrices,
derived from {Q"] and [Q"] are

Ql‘:l QI‘:Z QITS Ql?d 0000 QI‘.I'J QI‘TB Ql‘:9 Ql‘:lo

Q19 = ' (2.56)
Qy Qyz Q3 @2 0 0 0 0 Qy; Qs Qs Qoo
[QZ”] _ QI‘:S Ql‘fﬁ (2.57)
Qss Qg
o o] ®° Qi @2 Qs Quis Qs Qs @7 Qs 0 0| () oo
0 0 Q) Gy Qs Qs Qo5 Qs @7 Q15 0 0
b b
[sz] ] Ql,9 an (2.59)

b b
Qo Qo

The solution for #, and v, now follows by virtue of the equality of the stress
vector at node 7, so that
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[1Q2% - [Q29 Wd% = [ [QI] - [Q1°] )ld*)

or

where

dh = [L)d

(L] = [ [Q2% - (@21 1" [Q!] - [QI%]

is a matrix of size 2 x 12.

The connection between {d°} and {A%}, {A"} can be written as

{A% = [R)(d4),

{AY} = [RY}d )

where [R'] and [R®] are 10 x 12 matrices of the following structure:

co oot Moo~ o

[R]] =

cocooo b Moo o~

and

o
w
>

o
cooof Mo ~-oo0

(7]
cooo g M~ o0o0o0

I
coood" P oooo

0 0 0 0 0 0 O

0 0 0 0 0 0 O

0O 0 0 0 0 0 O

O 0 0 0 0 0 O
s Lig Lz Lig Lyg Lyjo Lyyy Ly
s Log Lyg Lig Lyg Lyyo Loy Ly

0 0 01 0 0 O

0O 6 0 01 0 O

O 0 0 001 O

0 0 0 0 0 0 1
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(2.61)

(2.62)

(2.63)



00100000000 O
0 0 010000O0GO0TO0 0
0 000 10000TGO0CO O 0
0 0000 10000TO0 0
0 00 0O0O0T10O0TU0TO0TO0 0
RT=1 6060000071000 0
000 00O0O0O0TIL1O0TO0 0
00 00O0UO0O0O0TU 0TI 0 O
Ll,l L1.2 L1.3 LI.4 Ll.5 Ll.6 Ll.7 Ll.ﬂ Ll.9 Ll.lO Ll.ll Ll.n
L LZ,I L2,2 L2.3 L2,4 L2.5 L2,6 L2,7 LI,B L2,9 LZ,lO L2,l| Lz,lz |

With the above relations in hand, we can now construct the stiffness and mass
matrices of the combined interface element as

[k = [RTKR + [ROTKEIRY (2.69)

(m€ = [R)[m R + [RY[m2IRY (2.65)

where [£*], [m"] and [£"],[m"] are each 10 x 10 matrices, being exactly those which would
have been computed for any five-node isoparametric element. Naturally, the combined
stiffness and mass matrices [£°] and [m®] are of size 12 x 12 with ( &, v, ....u; V5 )

degrees of freedom.

Hereafter, the method to obtain the assembly of global mass and stiffness matrices
and to calculate the nodal displacements of a structure is the same as in the conventional
finite element method. The interface nodal degrees of freedom of every node of type 7
are not included in the global nodal displacement field since they are replaced by the
stress and displacement continuity at the interface. The global displacements obtained
from the solution can be used to calculate the displacements, strain vectors {¢'} and {¢"},
and stress vectors {0} and {¢®} for each interface element at the interface node (node 7),

which satisfy the interface continuity conditions discussed in Section 2.1.
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Summarizing, the formulation of two dimensional interface element has been
derived from the perfect continuity conditions by setting up two 5 node elements, one on
each side of the interface; the fifth node is taken at the centre of the common interface
boundary. The computational procedure to find the displacement, strain, and stress tields
for a structure is similar to that used in conventional finite element method. The only

difference is that matrices [L] have to be calculated for interface elements.

2.4 Interface Element for Axisymmetric Problems

The interface element for axisymmetric solids of revolution under axisymmetric
boundary conditions and loading is mathematically similar in many respects to the two-
dimensional interface element. Figure 2.3 shows the cylindrical coordinate system and
a typical axisymmetric element. The axisymmetric interface element, similar to the two
dimensional interface element discussed in Section 2.3, is composed of two quadrilateral
ring clements of materials "a” and "b", in r-z (real) and &~y (mapped) radial planes. The
mapping and displacement functions for element "a”, consistent with isoparametric and

axisymmetric assumptions, are taken as

r=r%En) = Nyr, + Njr, + Niry + Ngrg + Ngrg (2.66)
z = 2%E.m) = Ni'zy + Nyz, + Niz; + Nszg + Nz
and
u= ua(E,n) = Nlnul + N;uz + N;u.’ + N;us + Nﬁauﬁ (2.67)

w = wiEm) = Niw, + Nyw, + Nyw, + Njwg + Ng'w,

wherein the shape functions are exactly those used for two-dimensional plane element of

the previous section, namely
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Figure 2.3 Cylindrical coordinate system, and a typical axisymmetric element.
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Ny = -(E’-1)(n®-1)n?/4

NP = —(Eb+1)mP-1)/4

NP = (EP+1)(nP+1)/a (2.68)
NS = (Eb-1)(n’+1)nt4

Ny = (EP-1)(nb+1)(n’-1)2

Evidently, the case of axisymmetric-torsion has been excluded by stipulating that

circumferential displacement v = 0 throughout.
The non-zero strain components associated with the chosen displacement field

may be written as

ou’
) d
¢ ’
uﬁ
Ega r
b = b = (BeJA (2.69)
Q:z ow
oz
e’
) ou® . ow?
| Oz or |

where [B] is the 4 x 10 matrix involving the shape functions and their derivatives with
respect to r and z coordinates. As before, the typical expressions for these derivatives

are
oN' [oN? & aN: & (2.70)
o detJ7)| 96° an°  an° AE°
oN;’ S 1 l_aNia ar . oN or 2.71)
&  detfJ9]| OE° an"  an° Ak
where
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o

o9g® o&°

det{J %] = det ¢ ¢ _Or & _ O & (2.72)
or dz JE% an®  On? 9E¢
an® on°

The stress field associated with the assumed displacement (and hence the strain

field) is expressible as
{a% = [ET{e% (2.73)

where {0’} = ( 0,® g 0,° 0,"), and [E°] = the 4 x 4 matrix of elastic moduli for the

(torsionless) axisymmetric behaviour given by

[ 1-v® vl v¢ 0
g vd  l1-yd @ 0
[E]] = Ao 299 vl vl v 0 @.74)

0 0 0 1-2v*
{ 2

In the present case, the components ot the stress vector on the interface "plane”

arc

Oy, = G c0s?’0 + g, sin?® + 20}, cosO sind
oy = (0,-6;) cos@ sin® + o (cos’d - sin’p) 2.75)

Tno = 0

where 8 is the inclination of the outward normal to the interface plane belonging to
element "a” with the r-axis. The direction of the unit tangent vector is defined by line
2-3 in Fig. 2.3. Hence, the expressions for cosf and sinf are similar to those defined
previously, Eqs. (2.25) and (2.26) with (x,y) replaced by (r,z). The above relation can

be put in the matrix form as

{09, , = [Nle% (2.76)
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where [T is the 2 x 3 transformation matrix defined previously, and {¢*},." = (0,," 0,.

A similar procedure applied to element “b" yields its respective displacement,
strain and stress fields with exactly the same shape functions N} as given by Eq. (2.68).
The strain displacement matrix [B°] is similarly obtained. The components of the stress

vector at the interface plane belonging to material "b" are then
{0, = [Tllo? (2.77)
where [7T] is the same transformation matrix.

The continuity of the stress vector at node 7 is enforced by requiring that

fo), , = {0, , (2.78)
so that
[THEB HA® = [TIE®][B*HA®) (2.79)
or
[Q){A% = [Q%{A%) (2.80)

where [Q"] and [QF] are different matrices than for plane problems, peculiar to the
axisymmetric problems. Decomposing the [@], {A*} and [QP], {A®} matrices in the same

fashion, as for the two-dimensional case, we obtain

[QI)d4 + [Q2°)dY = [QI*)d* + (Q2*]ld" (2.81)
and
d' = [L)d*) (2.82)
where, in the same notation as previously used,

(L] = [[Q2%] - [@T1'[ (1% - [QI1] (2.83)

and
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{dam = ( Uy Wy ly Wy Uy Wy Uiy Wy Ug Wy Ug Wy ) (2.84)

The structure of the [R] and [R®] matrices connecting {d°} to {A"} and {A"} is the
same as given by Eqs. (2.64) and (2.65) of the previous section. Hence the stiffness [£]

and mass [m] matrices of the combined interface element, per radian sweep, are

[k = [REILR] + Rk IR (2.85)
and

[m¢] = [R)[m°R? + [RE)ImRY (2.86)
where

() = [ [ BVIE B rdeti NdEdn (2.87)
and

m = f_’l f_:p[N“]T[N"]rdet[J]dEdn (2.88)

with similar expressions for [°] and [m°], the stiffness and mass matrices, of the "b"
element. As before the free degrees of freedom of the interface element are (i, w, i, w,

Uy Wy lly Wy lls Wy U W),
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Chapter 3

NUMERICAL METHOD AND COMPUTER IMPLEMENTATION

3.1 Introduction

This chapter presents the numerical method to solve the governing finite element
equations, for example Egs. (2.16), of the previous chapter. The computer programs
constructed to implement the interface (and other standard) elements are also outlined,

and a flow chart indicating the various stafes of the solution process is presented.

As the present work is an extension of a previous research [8], which was
concerned solely with analysis under static loading, the computer programs of the present
work are constructed by modifying the previous programs and by writing new programs
so that the assembled main program is capable of solving problems under general
dynamic loadings, with or without the interface elements.

Most of the program development of the present work was done using the
microcomputer facilities of the Department of Civil Engineering and Applied Mechanics.
These included Intel-486 machines with math-coprocessor, and operating under DOS and
0S/2 systems. For the solution of large (real-life) problems, the programs were modified
to run on IBM-3090 main-frame computer of McGill University.

The programs have been written in FORTRAN 77, and were compiled using
Microsoft Fortran Optimizing Compiler, Version 5.10. The main-frame runs were made

after same modifications involving assignment of memory space and input/ocutput
statements,

Also worth mentioning is the fact that the program for extracting frequencies
needed for the analysis, was an IMSL [9] subroutine named DG2CSP. This was done

in the interest of saving time in implementing effectively a crucial step of the numerical
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procedure. In the analysis procedure adopted in this work, it will be seen that the
solution accuracy ultimately hinges upon the accuracy with which frequencies and mode

shapes are determined.

3.2 The Mode Superposition Method of Dynamic Analysis

The finite element equations of motion with total m number of degrees of freedom

M), l)yy + K], (8L, = B, (3.1)

are looked upon as a system of . oupled second order ordinary differential equations.
To integrate them we first apply the specified time-independent boundary conditions of
the problem on displacements, and obtain a reduced {(n x n) system of equations by
deleting the specified degrees of freedom. We then obtain the frequencies of vibration

in the process of solving the reduced (n x n) homogeneous system of equations

(M), (AL, + KA}, = O, (3.2)

The solution is assumed as {A} = &“/{d} which yields the homogeneous system

of algebraic equations

[ -w*M]+[K] 1id} = {0} (3.3)
The frequencies w, are the n roots of the characteristic equation

detl -0*[M]+[K]] =0 (3.4)

However, as is well known, the determination of the frequencies for a Jarge system can
not be pursued in the above direct way. This problem belongs to the general problem

of finding eigenvalues N, of a system of equations described by

[A1X} + A[B)X} = O (3.5)

There are a number of commercially available subroutines which can solve this

problem with efficiency and accuracy on a large or small computer system. As previously
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mentioned, the subroutine used in this work is the IMSL subroutine called DG2CSP.

This subroutine is capable of obtaining all eigenvalues and eigenvectors,

If w, and w; are any two frequencies of the system and {d;} and {d;} arc the

associated mode shapes, then it follows from the symmetry of [M] and [K] that:

(w7 -w)d ) MId) = 0 (3.6)

Hence if w, and w; are distinct, then the associated mode shapes are necessarily
orthogonal in the sense that

{d,}T[M]{dj} = {0} (3.7

Additionally, we scale the mode shapes {d;} to be of unit "length" by requiring that
did} =1 (3.8)

We also note that the above kind of orthogonal relation exists also with respect to the
stiffness matrix [K] in that

d)[K1\d} = (O (3.9)

Even when the eigenvalues w;, w; are not distinct (i.e. repeated roots), we can
construct distinct orthogonal mode shapes {d} and {d;} by employing the Gram-Schmidt
orthogonalization process. Thus, in any case, we are able to have n distinct and
orthonormal mode shapes corresponding to the n degrees of freedom of the system. In

the present study, this is achieved by employing the previously mentioned IMSL
subroutine DG2CSP.

3.3 Decoupling of the Equations of Motion

We assume that the frequencies have been ordered in increasing magnitudes so
that o < w? < w....07 ... S, and introduce the mode shape matrix [D) as the

matrix containing the first p (p < n) normalized mode shape vectors
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D),,, = [ d)...\d} ] (3.10)

nxp

Now since {d;} are orthonormal, [D] has the property:

D)y lD),,, = U1, (3.11)

The choice of p, the number of mode shapes considered, will be dictated in general by
the desired accuracy of the solution; large p means accounting of higher frequency modes
in the solution. There is no straight-forward way of choosing p, and in general one has

to resort to a trial-and-error method.

The orthogonality of {d,}, expressed by Eqgs. (3.7) and (3.8) can be used to define

the following diagonal "mass" and "stiffness” matrices

[@W = [DYT[M](D] (3.12)
(K,,, = [DI(K](D]

the individual element of which are

M, = {d)[M1d)

— (3.13)
K, =d)K}ld}
The definition of the mode shape {d;} as the solution of
~wi M), + [Klid), = (O} (3.14)
then enables us to express the individual frequencies as
o= (3.15)
M,

and collectively as the diagonal matrix
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[0) = [M]"'1K] (3.16)
Introducing now the mode-shape displacement vector {¥} by means of the relation

INT (3.17)

and substituting the above equation into Eq. (3.1), and then premultiplying resulting

equation by [D]”, we can write the equations of motion as

[DYIMIIDIP + [DYIKIDHY) = (DR} (3.18)

or as
M)} + [K)Y} = [DY(R) (3.19)

or as
R, +[07,,1,, = Q) (3.20)

where
Q. = [M];,[D], (R, (3.21)

Eq. (3.20) is the desired system of p decoupled equations, cach of the form

Y+wY, = Q (3.22)
wherei =1, 2,3, ... p, and p is the number of first frequencies out of the total .

3.4 Solution of Decoupled Equations

The general solution of the decoupled equations can be wrilten in the matrix form
as;

{1} = [sinwi}{A}+[coswi](B}+

[i]{ f ‘Q(t)sinw(t-1)dt} (3.23)
W )]
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where [sinwt], [coswt] and [1/w] are all diagonal matrices of size p x p. The individual

equations of the system equation, Eq. (3.22), can be expressed as follows:

Y, = Asinog+Bgeosw t+

1 pt¢ . 3.24
- fo Q((x)sinw (t-1)dx 3.24)

The constants {4}, {B} (or A, B)) can be determined from the initial conditions
on Y, and Y, which are related to the actual initial nodal displacements A(0) and nodal
velocities A(0) by

{Y(0)} = (B} = [DIHA0)} (3.25)
{Y(0)} = [w])l4) = [D)TA(O)

as a consequence of Eqs. (3.17). Hence, the general solution is expressible as

P = [SOHDITA 0))+ [cosw ] [DITA () +
© (3.26)

[%]{ [ 'Q)sina(t-e)ds)

Invoking now the relation {A}=[D}{¥} we obtain,

(@A) = [D][f%('ﬁ][D]T{A(O)h

[D][co§mt][D]T{A(O)}+ (3.27)
o1 [ Dy pyriR(elae

The solution for an individual nodal displacement component is therefore expressible as

sinw
Aj(r) = dﬁ 4
Wy

dcos(w,nd, A, 0)+ (3.28)
1 rt smcou(t-t)deRm(t)dr

d A (0)+

d, TR 0y

ef

where (according to the usual convention) a summation is implied on twice-repeated
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indices in terms on the right hand side, and where w, = 0if i # &, and w, = w, if i =
k and similarly M,; = 0 if e # i and M,, = M, is e = i. The range of indices is from 1

to p, where as pointed out before p can be chosen less than or equal to n (i.e. p < n).

3.5 Computer Implementation

For the purpose of computer implementation, we adopt a step-by-step numerical
integration procedure by considering the displacements and velocities, Y(..,) and f’j(rk.,).
at (k-1) th time step to be the initial values for determining their values Yj(f) and Y,(rk)
at the k th time step. The time step, At, = ¢, - 1., is taken to be small enough in that

the loading term Qy(7) is approximately constant equal to Qy(t,.,) during the step. Thus,
we use the recurrence relations

Y
Yj(tk) = Y!(tk_l)cos(wjbtkﬁ j(tk‘l)sin(ijt*)
(3.29
+9Lt';l1l[l—cos(wjmk)]
0
Y(t) = - Y1 Jsin(wAr)+
. Q) . (3.30)
Yj(tk_l)cos(mjAtkM ° sm(mjAtk)

where k¥ = O (and hence ;) obviously corresponds to time ¢t = 0, the initial time, and

Y(ty) and ¥(t,) are obviously equal to their initial values, i.e.,
Yt = Y0, Y& = Y0 3.31)

The computer program first calculates {¥(t)} and {¥(1)} for the chosen system
frequencies. Then the actual nodal displacements and velocities are calculated by
invoking the relationship
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AQty) = [DIYY), A = [DIY()) (3.32)

Having obtained A(t,), the steps are retraced to find the corresponding stress and strain
fields. The output for each time step is obtained in terms of nodal displacements,
components of stress and strain tensor at the Gauss integration points and at the interface

nodes.

3.6 Exact Time Integration for Step Loading

As a special case relevant to the biomechanics applications, presented in this
work, we note that the loading is considered to be of the step-function type. This means

that the load components are also of the same type, for example:
Q) = qH(:-0) (3.33)

where g, is the magnitude of the j th load component and H(s-0) is the Heaviside unit step
function, defined as

H(t-0)

0 Jor t<0 (3.34)
H(-0)

1 Jor t>0

For the above special loading the equation of motion can be integrated exactly as

Y(0)
Yj(t) = }}(O)cos(m jt) +————sm(mjt)
©
i (3.35)

+%}[1 —cos(mjr)]

Thus for this special type of loading, there is no need to use the step-by-step time
integration, which in general will be required for more complex time variations of load.

3.7 Specialization of the Exact Integration to the Static Case

The above modal superposition analysis for dynamic loading can be specialized

to static loading case very simply by omitting the time dependent terms in Eq. (3.35),
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so that

Yj.ﬂarfc.: _ 4

=5 (3.36)
]
The rest of the procedure of recovering static displacement, strains, and stress

components remains the same as for the dynamic case (with one time step).

In the computer program, the options of dynamic or static analysis are provided

by setting the value of a flag parameter to either 1 (dynamic case) or to 0 (static case).

Naturally, the above modal superposition method of static analysis must yield
exactly the same results as the direct (conventional) method. However, for correct
answers in the static case, it is found that one must use all (and not just first few)
computed frequencies and mode shapes in the above procedure.

3.8 Programming Aspects

The computer programs developed in this thesis are based on the theoretical
procedure described in Sections 2.2 and 2.3 for two-dimensional and axisymmetric

dynamic response using the newly formulated bimaterial interface elements. The flow

chart of programs is shown in Fig. 3.1.

The developed programs consist of a main program and a number of subroutines.
Besides the interface elements, the usual elements used in other finite element programs
are also incorporated in this program. These are bar (i.e. truss) elements for one
dimensional problems, constant strain triangular (CST) elements and linear quadrilateral
isoparametric (QUAD4) elements which can be used for either plane-stress, plane-strain,
or axisymmetric analyses. For QUAD4 and QUADS elements, a choice is provided to
perform either a 2 x 2 or 3 x 3 Gauss integration to obtain the element mass [M] and
stiffness [K] matrices.

The names of the subroutines used in the program and their functions are
described below.
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GENERATE
PROBLEM
DATA

DETERMINE
TYPE OF
ELEMENT

CALCULATE
ELEMENT MASS
& STIFFNESS
MATRIX

CALCULATE
COMPOSITE
ELEMENT MATRIX
8Y IMPOSING
STRESS CONTINUITY

UPDATE
GLOBAL MASS
& STIFFNESS
MATRIX

CALCULATE
EIGENVALUES &
EIGENVACTORS

PRINT
DISPLACEMENTS | DISPLACEMENTS
& REACTIONS & REACTIONS

DETERMINE
TYPE OF
ELEMENT

LAST
TIME STEP

CALCULATE
ELEMENT
STRESSES

PRINT
ELEMENT
STRESSES

Figure 3.1 Flow chart of the computer program developed in the present work.
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GENER : Nodal coordinates and nodal incidence of elements are generated by this
subroutine. This requires specification of the node numbers of the first and last elements
and the increment values of node and element numbers. The incremented nodal
coordinates and element node numbers are then automatically computed.

DATA : The input data is printed in sorted form by this subroutine.

STIFF : This subroutine calculates the individual element stiffness matrices, and
assembles global stiffness matrix.

BAR : Calculates stiffness matrix for bar elements.

CST : Calculates the stiffness matrix for the Constant Strain Triangle (CST) element.
QUAD4 : Calculates the stiffness matrix for the 4 node regular and 5 node interface
quadrilateral (QUAD4 and QUADS) elements by using Gaussian integration method (2].
SHAPEF : Calculates strain-displacement matrices for the QUAD4 and QUADS
clements.

REL : Calculates [L] matrix for enforcing the interface stress and displacement
compatibility at node 5 (discussed in Chapter 2).

YOUNG : Calculates the constitutive matrices for the cases of two dimensional (plane-
stress and plane-strain) and axisymmetric problems.

DISPL : Gives output of the displacement results, including the interface nodal
displacements.

FORCE : Calculates the axial force and elongation in the bar elements.

STR : Calculates stresses in the CST elements.

STRES : Calculates stresses in the QUAD4 and QUADS elements at Gauss points.
PRINC : Calculates principal stresses and their directions.

TRANSF : Transforms stresses from global into local interface coordinate system.
MATMAT : Calculates product of two matrices.

MATVEC : Calculates product of a matrix with a vector,

DOT : Calculates the dot product of two vectors.
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There are other subroutines which are called TRIAX, QUADAX, SHAPAX,
RELAX, STRAX, STRIAX for axisymmetric problems. Their function is similar to the
function of subroutines of CST, QUAD4, SHAPEF, REL, STR, STRES for plane- stress

and plane-strain problems.

MASS : Subroutine for assembling global consistent mass matrix for a structure.
MBAR : Subroutine for calculating consistent mass matrices of individual bar elements.
MCST : Subroutine for calculating consistent mass matrices of CST elements.
MQUAD4 : Subroutine for formation and numerical integration of consistent mass
matrices of QUAD4 or QUADS elements.

MSHAPEF : Subroutine for calculating the shape function and the Jacobian determinant
of QUAD4 or QUADS elements for plane-stress and plane-strain problems.

MTRIAX : Subroutine for calculating mass matrix of triangular axisymmtric elements.
MQUADAX : Subroutine for formation and numerical integration of consistent mass
matrix of axisymmetric elements.

MSHAPAX : Subroutine for calculating the shape functions and the Jacobian determinant
of axisymmetric QUAD4 or QUADS elements.

DG2CSP : An IMSL subroutine for calculating all eigenvalues and eigenvectors of the
generalized real symmetric eigenvalue problem [4]{x} = A[B]{x}, with [B] symmetric
positive definite [9]. This subroutine is available on the main-frame computer of McGill
University.

MODAL : Subroutine to implement the mode superposition method of the computer
program. This subroutine is adopted from Rao [10].

40



Chapter 4

EVALUATION TESTS FOR TWO DIMENSIONAL AND AXISYMMETRIC
PROBLEMS

To evaluate the interface elements and the finite element programs developed in

this thesis, we carry out three tests on example problems for which analytical solutions
have been obtained in Appendix A and Appendix B.

The objective of the first test is to validate the two-dimensional finite element
formulation and its program implementation. It consists in computing the dynamic
response of a two-materials composite bar supported at one end and loaded by a suddenly
applied axial load at the other end. The bar is modelled as an assembly of two

dimensional quadrilateral elements, including the 5-node interface element.

The objective of the next two tests is to validate the axisymmetric formulation and
program. To this end, dynamic responses of one-material and two-materials discs, loaded
by suddenly applied pressure at the outer boundary, are computed and compared with the
analytical solutions of Appendix B. In particular, for the two-materials disc, interface

stresses obtained by the present interface element are compared with those obtained
analytically.

4.1 Two Materials Bar

Figure 4.1 shows the two-materials composite bar, consisting of materials 1 and
2. The right end x = 1, is subjected to a suddenly applied compressive stress a, = 1
while the left end x = -1 is supported. The interface is taken at x = 0. The element
modelling is accomplished by conventional quadrilateral elements and new interface
elements. The number of nodes is 103. The position of node 103 is at the middle of

interface, chosen to satisfy the stress continuity. The total elements used in this model
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Figure 4.1 Two materials composite bar.
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are 50, which include 48 quadrilateral and one pair of interface elements. Bending
deformation is prevented by constraining the y-degrees of freedom of nodes, and shear
deformation is prevented by keeping the thickness much smaller than the length.
Analyses are carried out with and without the interface elemeni.

4.1.1 Hard Material Inside, Soft Material Outside

For this case, we take (dimensionless Young's modulus, density, and cross-
sectional area) E, = 200, p, = 8,and A, = 0.0l aswellasE, = 1, p, = l and A, =
0.01. The exact solution is obtainable from Appendix A. The frequency comparison is
shown in Table 4.1. Clearly the first ten computed frequencies are very close, albeit
slightly higher, to the exact ones. The exact frequencies satisfy the relations w,,, = w,
+ 57 by virtue of the chosen material parameters.

The computed response in terms of interface displacement closely follows the
analytical solution, Fig. 4.2. The interface stress as calculated by the new element also
matches closely with the analytical values, Fig. 4.3. On the other hand, although the soft-
side interface stress values calculated by using the conventional finite element method are

almost equal to those obtained by the interface element, the hard-side stress values are
somewhat inaccurate.

4.1.2 Soft Material Inside, Hard Material Qutside

Here we switch the positions of the materials. Accordingly, we have E,/E, =
1/200 and p,/p, = 1/8. We keep A/A, = 1. Table 4.2 shows that the first ten computed
frequencies are quite close to the exact values regardless of whether or not the interface

element is used. The exact frequencies again satisfy the relation w,,s = w, + 5.

The computed displacement response shown in Fig. 4.4 is virtually identical to
the exact values. However, as shown in Fig. 4.5, the computed interface stress on the

hard-side by using conventional finite elements varies chaotically and bears no refation
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—
[ —

Frequency F.E. with W
Number Interface Element | Interface Element 'f
i w, W, w;

1 1.5630 1.5630 1.5627

l( 2 4.6853 4.6853 4.6785

“ 3 7.5235 7.5234 7.5079
4 8.2196 8.2195 8.2000 l
5 11,118 11.118 11.0%0 |

" 6 14.333 14.333 14.145

7 17.614 17.614 17.271

ﬂ 8 20.947 20.947 20.386

h 9 23.498 23.492 23.216
|

24.576 24.575 23.908

Table 4.1 First ten frequencies (radians/sec) for the two material bar with hard material

inside.
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Figure 4.2 Interface displacements for a two materials bar, with hard material inside.
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Figure 4.3 Interface stress for a two materials bar, with hard material inside.

46



Frequency F.E. with F.E. without Analytical Solution
Number Interface Element | Interface Element
i w; w w,
1 0.3461 0.3461 0.3461 It
2 3.1776 3.1776 3.1755
3 6.3078 6.3078 6.2913 |
4 9.4722 9.4722 9.4167 J'
5 12.663 12.663 12.532 “
6 15.447 15.475 15.362 II
7 16.220 16.220 16.054
8 19.328 19.328 18.884 "
9 22.710 22.710 21.999
| 10 26.185 26.184 25.125
e e

Table 4.2 First ten frequencies (radians/sec) for the two material bar with soft material
inside,
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Figure 4.4 Interface displacements for a two materials bar, with soft material inside.
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Figure 4.5 Interface stress for a two materials bar, with soft material inside.
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to the exact values, The interface stress values by the new element and soft-side values

from conventional finite element are quite close to the analytical values.

4.2 One Material Disc

Figure 4.6 shows the type of mesh used for solving this axisymmetric problem.
The number of quadrilateral elements is 50. The number of nodes is correspondingly
102. Each node has two (r and z) degrees of freedom. The thickness to radius ratio is
taken as 1/10, which ensures that the shear response is inhibited and conditions of the
analytical solution are met. The suddenly applied pressure is lumped as equal radial

forces at the two outer nodes.

The dimensionless values of Young’s modulus (E) and density (o) are taken to be
unity each. Poisson’s ratio is taken equal to zero in accordance with the value used in the
analytical solution. The wave velocity (E/p)'? is therefore unity. The response is
calculated for a total time t = 2 units, employing an increment At = 0.2. This time is
roughly equal to the time for the wave to strike the centre and reach back to the loaded
outer boundary.

Table 4.3 shows that the first ten computed frequencies are remarkably close to
the analytical ones. Also as required by the theory, the former are always slightly higher
than the latter reflecting the somewhat stiffer behaviour of the finite element model.

Displacement response at the outer boundary is shown by values in Table 4.4.
Similar to Table 4.3, the agreement between computed and exact values is excellent.
Consistent with the observation made with regard to frequency values, the computed

displacements are slightly smaller than the exact ones.

Finally, Fig. 4.7 shows comparison of the stress values at the centre (where o,
= 04). Theoretically, these stresses are zero until the wave arrives at the centre att =
0.5, at which time the stresses jump from zero to some finite values. This is reflected
both by the present finite-element and exact solutions. The absolute maximum values
match quite well, and on the whole the agreement is quite good, considering the fact that
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Figure 4.6 Typical mesh for a one material disc.
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Frequency Finite Element Solution Analytical Solution
Number
i w, w;
1 1.8412 1.8412 "
“ 2 5.3331 5.3314 l]
3 8.5442 8.5363 “
') 4 11.728 11.706 "
“ 5 14.910 14.864
“ 6 18.101 18.016
" 7 21.306 21.164

Table 4.3 First ten frequencies (radians/sec) for the one material disc.
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Time Step Finite Element solution Analytical Solution
(At = 0.2)

“ 8 -1.8400 -1.8429 “

9 -1.9166 -1.9230 “

I 10 -1.7376 -1.7520 “

Table 4.4 Displacement along r direction at outer boundary for the one material disc.
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Figure 4.7 Stress o, (o) at the centre point for one material disc.
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the analytical solution is a series solution and generally the finite-element stresses are less
accurate than the displacements, The considerable discrepancy at the time value t = 0.8

can perhaps be ameliorated by mesh refinement and a finer time increment.

4.3 Two Material Disc

We now evaluate the effectiveness of the new element in predicting correct values

of the continuous and discontinuous stress and strain components at the interface under
impulse-type dynamic loads.

The composite disc is taken to consist of an inner disc of radius a,, Young's
modulus E,, density p;, and a surrounding disc of outer radius a,, E,, p,. Poisson’s ratio
for both of inner and outer discs is taken to be zero. Figure 4.8 shows the type of mesh
used. The disc is modelled by 48 axisymmetric conventional quadrilateral and one pair
of interface elements. The number of nodes is 103. As in other examples, the loading
consists of a suddenly applied radial pressure at the outer boundary. The exact analytical

expressions for interface displacement, stresses and strains as functions of time are
derivable from Appendix B.

4.3.1 Hard Material Inside, Soft Material Qutside

Wetakea, = 1,E, =200and p, = 8and a, = 2, E, = 1 and p, = 1. Table
4.5 gives a comparison of first ten frequencies obtained analytically and by two finite
element analyses, one without any interface elements, and the other with such elements.
We note that the computed frequencies are either equal or slightly higher than the

analytical values. Moreover, the values are virtually unaffected by the presence of the
interface element.

Figure 4.9 shows the time variation of interface displacements. It is remarkable
that finite element solution is quite close to the theoretical one, and it does not matter
whether or not the interface element is used.

Comparison of the continuous stress component, a,,, Fig. 4.10, shows that there
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Figure 4.8 Typical mesh for a two materials disc.
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Frequency F.E. with F.E. without Analytical Solution |
Number Interface Element | Interface Element
i w; w; W
1 1.4792 1.4792 1.4789
“ 2 4.6744 4.6744 4.6675 "
" 3 7.7604 7.7603 7.7311 “
4 9.2551 9.2549 9.2462
. 5 11.169 11.169 11.083
6 14.351 14.351 14.162
7 17.629 17.629 17.284
“ 8 20.979 20.979 20.411

Table 4.5 First ten frequencies (radians/sec) for the two material disc with hard materia)

inside.
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Figure 4.9 Interface displacements for a two materials disc, with hard material inside.
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is only a small difference between the finite element results and the analytical ones.
However, the interface element yields values which differ the least from the analytical
values, Among the two (interpolated) stress values predicted by the usual finite element
procedure, the values on soft-side and the hard-side are almost coincident with the values

predicted by the new element.

The values of the circumferential stress o, are computed and shown in Fig. 4.11
and Fig. 4.12. Since Poisson’s ratios are taken to be zero, these stresses are proportional
to the interface displacement value and the respective moduli. Hence the comments made

with regard tc displacements in Fig. 4.9 apply to these stress results as well.

As a conclusion, we can state that although the soft and hard-side finite element
results are acceptable if hard material is inside, the unambiguous results obtained by the

new interface elements are preferable and more accurate.

4.3.2 Soft Material Inside, Hard Material Outside

Here we switch the positions of the materials. Accordingly, we have E/E, =
1/200 and p,/p, =1/8, we keep a,/a, = 1/2. Table 4.6 shows that the first ten computed
frequencies are again close to the analytical exact values. The interface displacement
variation, Fig. 4.13, is almost identical for the three types analyses. However, both the
radial and circumferential stresses (g,, and o) at the interface are predicted to be rather
erratic on the hard-side of the interface, if no interface element is used, Figs. 4.14, 4.15,
and 4.16. On the other hand, the values of these stress components, including the
discontinuity in g, are predicted almost identical to the exact values by the new element.
It is clear that the conventional finite element cannot be relied upon to correctly predict

the continuous and discontinuous values of o,, and o, at the interface.

4.4 Conclusion from Validation Tests

It has been demonstrated by a comparison of the finite element sclutions with
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Figure 4.11 Interface hoop stress on the hard side of two material disc, with hard

material inside.

61



0.005
0 4—t—t—s
-0.005-
g -
% '0'01-,
&
2 ]
§ -0.015
5
RS
-0.02 1
-0.025-
4 = Theory {(soft)
:*NE{soﬂ)
] +FE (soft)
-0.03 T T T T T T T T7T 7

0 0.4 0.8 1.2 1.6 2.0

Time ¢ (sec.)

Figure 4.12 Interface hoop stress on the soft side of two materials disc, with hard
material inside,
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Freguency F.E. with F.E. wim Analytical Solution
Number Interface Element | Interface Element
i W W w;
1 3.3124 3.3124 3.3123 “
“ 2 3.9067 3.9067 3.9052 “
“ 3 7.0334 7.0334 7.0178
4 10.215 10.215 10.161
,l 5 13.414 13.414 13.286
16.203 16.202 16.099

Table 4.6 First ten frequencies (radians/sec) for the two material disc with soft material

inside.
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Figure 4,13 Interface displacements for a two materials disc, with soft material inside.
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Figure 4.14 Radial stress at the interface of a two materials disc, with soft material
inside.
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Figure 4.15 Interface hoop stress on the soft side of two material disc, with soft material
inside.
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the exact ones, that the present dynamic analysis program has been correctly
implemented. Moreover, the new interface finite element correctly predicts the
continuous and discontinuous interface stress components. Thus, the main objective of
the present thesis has been accomplished.

The conventional finite element does give good results insofar as the soft-side of
the interface is concerned. However, it cannot be used to obtain the hard-side stresses,
particularly the interface stress o for a two materials bar and o, for a two materials disc
problems if soft material is on the inside. This, then underscores the necessity of
abandoning the conventional finit= element, and using in its stead the new "stress-

compatible” interface element.
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Chapter 5

BIOMECHANICAL APPLICATION: DYNAMIC STRESS RESPONSE OF THE
PROSTHESIS/CEMENT INTERFACE OF A KNEE TIBIAL COMPONENT

5.1 Introduction

As an illustration of the useful applications of the computer program developed
in this thesis, the present chapter is devoted to an analytical investigation of the possible
adverse effects of stress response caused by dynamic loads at the prosthesis/cement
interfaces of a prosthetic human knee joint. In recent times, the replacement of fractured
or degenerated human joints by artificial joint prostheses has become a common
orthopaedic surgical operation. However, for the success of such operations, it is crucial
that the fixation system is engineered to assure long-term integrity of the artificial joint.
In this context, the present study is desirable because bond failure at prosthesis/cement
interfaces of prostheses fixed with PMMA (Polymethylmethacrylate) bone cement, may

induce wide-spread fracture of the cement and the eventual loosening of the prothesis.

A study on dynamic stresses at the prosthesis/cement interfaces has been
conducted previously [11]. However, this study was conducted on the basis of
conventional finite-element method, specifically by using the SAP 1V [12] finite element
program. Hence the interface stresses obtained in this study were ambiguous, and a
choice had to be made to select the cement-side results as approximately correct, and
ignore the metal-side stresses as incorrect. This choice therefore left the validity of the
analytical results of this study in doubt. The present finite element program gives unique
values of the interface stresses, and can now be used to check the validity of the previous
results and conclusions.

There exist a variety of prosthesis designs and fixation systems. However, only
a few have been investigated to determine their engineering efficiency. Figure 5.1 shows
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Figure 5.1 A human knee joint after total knee arthroplasty.
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a typical prosthetically reconstructed human knee joint. For the purpose of the present
study, the focus is kept on the tibial part of a reconstructed knee joint, and the finite
element model is simplified by assuming both the bone and prosthesis geometries as
axisymmetric, Accordingly, the prosthesis is considered to consist of a circular metal
plate with a central stem which is inserted in the centre of the tibia. The fixation is
achieved by an intervening PMMA cement layer.

The loading and boundary conditions are also taken as axisymmetric, which then

render the model problem amenable to be analyzed by the axisymmetric option of the
present computer program.

5.2 Finite Element Model

The finite element idealization of the prosthetic tibia axisymmetric model is
similar to the model employed by Shirazi-Adl and Ahmed [13], in their study of interface

stresses under static loads. However, the mesh layout of the present study is slightly
different.

5.2.1 Geometry

Dimensions of the tibia and prosthesis used in the analysis are shown in Fig. 5.2.
The tibia portion is taken 40 mm long, and the base is considered fixed against vertical
(but not horizontal) displacements. Ideally, a longer length representing the total tibia
would have been preferable. However, this would have required more powerful
computing resources in terms of memory and speed. A shorter length is justified on the
ground that the most relevant information pertains to interface stresses at the time of first
pass of the stress waves resulting from suddenly applied dynamic loads. In reality the
stresses from subsequent passes resulting from reflection of the stress waves at the distal
end boundary will be substantially damped out (because of the nature of the intervening

cancellous bone) for the dynamic load variation considered in the present analysis.

The thickness of the metal plate is 2 mm and its radius is equal to 32 mm. The
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Figure 5.2 Geometrical dimensions (in mm) and the distribution of different material
regions of the axisymmetric prosthetic tibia model. The numbers indicate the material

regions whose properties are listed in Table 5.1.
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metal plate lies entirely on the cancellous bone so that nowhere does it touch the cortical
bone. This is a safe design assumption in view of the fact that it is very difficult to
achieve and guarantee the contact of the prosthesis with the cortical bone. A prosthesis
with long stem is reported to be more effective [19]; for this reason, a 25 mm long metal
stem is used in the model. The thickness of the PMMA cement layer is taken to be 3

mm all around the prosthesis and cancellous bone.

5.2.2 Material Properties

Table 5.1 lists the different material properties with respect to Fig. 5.2 in which
material regions are indicated by numbers which correspond to the material propertics
listed in Table 5.1. The distribution of the material properties in the model is in
accordance with that reported by Goldstein et al. [14], being exactly the same as

employed in [11]. All these materials are assumed to be linear elastic and isotropic.

5.2.3 Finite Element Mesh

The model of resurfaced tibia is analyzed by the newly developed stress
compatible interface elements and computer program. The finite element mesh shown in
Fig. 5.3 is used in the present analyses. The mesh comprises mainly of isoparametric
quadrilateral elements, and some triangular elements. Elements for which aspect ratio is
greater than 3 are avoided wherever possible. The quadrilateral elements have the
property of a linear displacement variation along their edges, whereas the triangular
elements are based on a constant strain formulation. The new interface elements are used
to model the prosthesis/cement interface. These elements have quadrilateral shapes and
their formulation has been discussed in Chapter 2,

The model consists of 285 nodes and 280 axisymmetric ring eiements of
quadrilateral and triangular cross-sections. In the analysis by the newly developed

program, 25 pairs of quadrilateral elements to form 25 interface elements are used.

5.2.4 Boundary Conditions and Loading
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Number Material type Density | Young's | Poisson’s | Source |
(kg/m*) | modulus ratio reference
| (MPa)
1 cancellous bone 280 50 0.2 [11,14]
'I 2 cancellous bone 280 100 0.2 f11,14] h
h 3 cancellous bone | 280 150 02 | [(114] “
" 4 cancellous bone 500 300 02 | 111,14 “
" 5 corticz1 bone 1800 | 14000 | 03 | (11,15] H
6 cortical bone 1800 | 7000 | 03 | 11,15 I.
7 UUHMWP Plastic 900 1000 0.35 [11,16] "
" g stainless steel 8380 | 200000 | 03 | [11,17] |
" 9 PMMA bone cement 1100 2000 0.3 [11,18]

Table 5.1 Material properties used in the tibia model. The numbers refer to material

regions showr in Fig. 5.2.
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Figure 5.3 Axisymmetric finite element mesh of a tibia model. The dimensions are
shown in Fig. 5.2. Horizontal interface, line AB, consists of nodes from 298 to 310.
Vertical interface, line AC, consists of nodes from 286 to 297.
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The boundary conditions constrain to fix the movement of the distal end of the
tibia in the longitudinal (vertical) direction. In accordance with the axisymmetric

condition, nodes along the axis of symmetry are fixed against radial movemzat.

The model simulates the load transmitted from the femur part as a ring load of
compressive nature. For ease in interpretation of analysis results, the load is taken to be
a compressive load of 1 N distributed uniformly over an annular ring of inside and
outside radii of 14 mm and 22 mm respectively. The load is applied through a 7 mm
thick UHMWP (Ultra-High Molecular Weight Polyethylene) plastic plate. This plate
provides the articulating surface on the top of the horizontal metal plate of the prosthesis
[13].

5.3 Dynamic Stress Response by Developed New Interface Element

This section presents some important results obtained by the dynamic analysis of
the prosthetic tibia model, Fig. 5.3, under a suddenly applied (and then maintained)
resultant unit load, i.e. a Heaviside step load of 1 N magnitude, Fig. 5.4.

As stated earlier, there are 25 pairs of interface elements employed in this study.
The interface modelled by such elements is only that consisting of the steel stem on one
side and the PMMA cement on the other, The horizontal part of this interface extends
from nodes 298 to 310, whereas its vertical part extends from nodes 286 to 297. Since
the differences in the densities and elastic moduli are greatest at this interface, the

stresses due to dynamic load can be expected to be important at this interface.

As the loading is taken to be a Heaviside step loading, there is no need for step
by step integration of the equations of motion (Section 3.6); the solution for any time ¢
after the application of the load can be obtained in a single step. Thus, there is no
accumulation of error as would be the case if the loading were a mor: complex one

requiring step by step integration in small steps.

However, in order to c*+ain the history of deformation and stresses it is necessary

to compute these quantities at suitable times ¢, £, ... etc. Since this thesis is concerned
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Figure 5.4 The suddenly applied load on the tit'a model.
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mainly with the theoretical developmnent, and computer implementation of the newly
formulated interface elements, we refrain from a comprehensive study of the present
biomechanics problem, and instead restrict our attention to demonstrating the
effectiveness of the new elements in obtaining useful results. For this reason we choose
the history times as

t, = 3.0x 105 sec. and 1, = 6.0 x 10 sec.

The time ¢, is the approximate time the stress wave takes in travelling through steel from
the top of the stem (near the load application point) to the bottom of the stem. The time
1, = 2t, is the time by which the stress wave hcs arrived back at the top. These time
periods are important from a practical point of view because of the following reason.
Since the tibia materials, with the exception of steel, ar: highiy dissipative, we will
expect as stated earlier, that the effect of the suddenly applied load will be important for
only a few (say 1 or 2) cycles of the stress wave travelling up and down the stem. Hence
for realistic conclusions we confine ourselves to computing the relevant interface stress

values at the above times of the first cycle.

In order to show the time-dependent dynamic stresses against the reference of
their time-independent static values for the same magnitude of applied load, we also
perform a static stress analysis according to the method and the program developed in
this thesis. The present finite element model of the tibia has 540 unconstrained degrees
of freedom. Hence the number of frequencies computed by the program is 540. All these
frequencies have been used in obtaining the dynamic as well as the static solutions. We
note the fact, reiterated eatlier, that for a correct static solution, all computed frequencies
and mode shapes must be used. Table 5.2 lists the first and last ten of the computed
frequencies.

5.3.1 Horizontal Interface Stresses

The horizontal steel/cement interface is modelled by cement-side elements 201 to
213 and steel-side elements 220 to 232. For continuous components of stress it is

immaterial which side of the interface the elements are considered. Figure 5.5 shows the
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Number of first Value of Number of last ten Value of
ten frequencies i frequencies w; frequencies i frequencies w;
1 0.14210 x 10° 531 0.16272 x 10°
2 0.39922 x 10° 532 0.16421 x 10°
“ 3 0.67109 x 10° 533 0.16866 x 10
|| 4 0.71073 x 10° 534 0.17160 x 10°
5 0.86424 x 10° 535 0.17335 x 10°
“ 6 0.89966 x 10° 536 0.17561 x 10°
7 0.10308 x 105 537 0.17630 x 10
8 0.10697 x 10° 538 0.17692 x 10°
9 0.11500 x 10° 539 0.18254 x 10*
0.11637 x 10¢ 540 0.18593 x 10°

Table 5.2 The first and last ten of the computed frequencies of a prosthetic tibia model.
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Figure 5.5 Shear stress o, on the horizontal interface (line AB, Fig. 5.3).
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variation of the interface shear stress component ¢, at the two time values and also their
values under static loading.

From this figure it is seen that the shear stress at time ¢, is higher by a factor
more than 4 times and is of a different sign than its static value at the near-end (i.e. the
point close to the axis of symmetry) of the prosthesis plate. On the other hand at the far-

end (near the prosthesis plate edge), this shear stress is about one third of its static value
and is of the same sign.

The above situation is reversed, in a sense, at time #,. The shear stress at the far-
end of the prosthesis plate is about 4 times the static value, and is of the same sign. In

contrast, the near-end shear stress is nearly of the same magnitude as the static value, but
of a different sign.

Figure 5.6 shows the variation of the normal interface stress at the horizontal
interface. The results show similar dynamic effects as noted above for the interface shear
stress. At time ¢, the stress is higher at the near-end, about two times the static value,
and is of the opposite sign. The far-end value is aimost equal to the static value both in
magnitude and direction. At time #,, it is the far-end which experiences higher stress,
about three times the static value, alihough remaining of the same sign. At the near-end
the stress value is almost equal to the static value.

Thus, at the horizontal interface, boih the shear and normal stresses, particularly
the former have much higher values than those computed for static loading. We will

remark on the importance of these differences after examining the interface stresses at
the vertical stem/cement interface.

5.3.2 Vertical Interface Stresses

The vertical interface is modelled by elements numbering 55 (bottom), 66, 77,
88, 99, 111, 123, 135, 150, 163, 176 and 199 (top) at steel side. The corresponding

elements on the cement side are 56, 67, 78, 89, 100, 112, 124, 136, 151, 164, 177 and
200.
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Figure 5.6 Normal stress o,, on the horizontal interface (line AB, Fig. 5.3).

82



The shear stress variation along the stem at the two times, along with their static
part is shown in Fig. 5.7, We note that at time ¢,, the bottom-end experiences a dynamic
stress which is almost equal to the static value, However, at the top (near the point of

load application), the shear stress is higher in magnitude by about 4 times, and of
opposite sign than the static value.

At time ¢,, it is the bottom-end which experiences a dynamic stress which is about
3 times higher than the static stress, although of the same sign. In contrast, the shear

stress at the top-end experiences a value which is smaller by a factor of 3 than the static
value.

Figure 5.8 shows the variation of the normal stress along the vertical interface.
We note that these stresses are significantly different from their static values at time ¢,,
but not at time #,. An important aspect of their variation at time ¢, is that they are of
opposite sign for most of the interface length, and are about 2.5 times higher than the
static value at the top-end. It is interesting to note that insofar as the vicinity of the

bottom-end is concerned these stress do not show significant variation due to dynamic
load.

5.4 Conclusions Resulting From the Interface Stress Analyses

The constraints on computer resources (i.e. the expenses of using the main-frame
computer) and the time already spent in developing and verifying the computer program
precluded a more thorough and comprehensive study of this biomechanics problem.
Nevertheless, the above limited number of results do indicate the overall trend of the
general results which may be expected by a more detailed analysis. The significance of
these results and their trends can be summarized as follows.

(1) For the present finite element model of a knee joint with a stem-type
prosthesis, the dynamic interface shear stress can be expected to be about 3 to 4 times

higher than the static ones, both at the horizontal and vertical interfaces.

(2) The most vulnerable points (insofar as high shear stress is concerned) are the
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three corner points, viz., the near and far ends of the horizontal prosthesis plate, and the
bottom end of the stem.

(3) The dynamic interface normal stress can be expected to be about 2 to 3 times
higher than the static values. However these high stresses occur mostly at the far and
near ends of the horizontal prosthesis plate. The bottom end of the stem appears 1o be
not affected in a significant way by these stresses.

(4) Although in an actual situation of a patient, the loading cannot be expected to
be as severe as the step loading considered here, the high values of the stresses indicaic

that th2y would be relatively high even for more gradually applied dynamic loads.

(5) The high values of the interface stresses (particularly for the shear stresses)
above their static values, suggest a fatigue-type of failure of the steel/PMMA interface

bond. The site of these failures is predicted by the present analysis to be the three corner
points.

We close this chapter by recalling the conclusion reached in the previously
referred study [11]. In that study, which was conducted on the basis of conventional
finite elements, cement-side stresses were considered to be the correct interface stresses.
They indicated that for a ramp-type loading of rise-time 2 X 10? sec, the interface
stresses differed from their static part by about + 30%. In contrast, the conclusions of
the present study, reached on the basis of correct interface stresses, make it clear that
dynamic stresses can in general be much higher, as much as four times the static values
for the suddenly applied dynamic loading.
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Chapter 6

SUMMARY AND CONCLUSION

This thesis formulates and implements new finite elements for obtaining correct
values of the continuous and discontinuous components of stress and strain tensor at

points of bimaterial interfaces of highly dissimilar materials under dynamic loadings.

Two types of elements have been formulated, one for two-dimensional (plane
stress and plane strain) problems, and the other for three-dimensional axisymmetric
problems. The elements have been incorporated in a full-fledged dynamic analysis finite
element programs, constructed on the basis of programs previously constructed by
Angelides (8] for static analysis. The constructed programs are capable of solving stress
analysis problems of the above categories under general dynamic loading. The interface
elements are 6 node composite elements, consisting of two quadrilateral element
belonging to the two different materials, Node 7 is taken at the centre of the interface
boundary. However displacements of node 7 are not independent; they are chosen so as
to satisfy the continuity of the stress vector at this one point. Thus, displacements of
node 7 are not included as independent parameters. The equations of motion are solved
by employing the mode superposition technique. This technique has the advantage of
providing natural frequencies of the system, and can be used to obtain a series of
increasingly accurate solution depending on the number of frequencies used. Damping
is neglected entirely. Although the present elements and programs are specially designed
for dynamic stress analysis, they can also be easily used for static analysis as has been

discussed and shown in Chapter 3.

Performance of both plane and axisymmetric elements has been validated by
obtaining exact solutions of some simple wave-propagation problems (Appendices A and

B) and comparing the finite element solutions with them. The agreement is excellent first
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between the values of the natural frequencies, and second between the values of the
continuous and discontinuous stress and strain components at the interface points. Thus,
the new elements not only fulfil their expected usefulness, but also do not affect the
analysis results away from the interface in an adverse way. They can therefore be used
with confidence in analyzing general dynamic problems. To the author's knowledge there

are no elements of this type available either in the literature or in any commercial finite
element codes.

The fact that the stress continuity is enforced by appropriately choosing the
displacements of the interface node, means that the new interface elements are similar
to the conventional elements in their formulation and implementation. Therefore, they
can be implemented in any displacement based finite element code rather easily. The only

significant difference consists in computing the [L] matrices of Chapter 2.

The usefulness of the new elements and programs developed in this work is
demonstrated by analyzing an axisymmetric model of a prosthetic tibia under a step-jump
loading. The prosthesis consists of a circular metal plate with a central stem. The
prosthesis is fixed in the bone of the joint via an intervening layer of PMMA bone
cement, The analysis is aimed at calculating the correct interface stresses at the
cement/metal interface under the above type of loading. It has been shown that in general
the interface stresses under dynamic loads are considerable different, to the tune of three
to four times their static values. The sites at which the differences are the highest have
been identified to be the prosthesis-edge, prosthesis-stem junction, and the bottom end

of the prosthesis stem. Fatigue fracture of the PMMA may therefore occur at these
points.

An obvious suggestion for further research in this topic is to extend the present
formulation and implementation to three-dimensional solid interface elements. This will

undoubtedly increase the scope of the interface problems which can then be analyzed.
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APPENDIX A

Wave Propagation in a Composite Bar

For the purpose of validating the constructed computer program, we solve,
exactly and analytically to a limited extent, some simple problems of wave propagation

in composite structures.

The objective of this appendix is to present a solution of wave propagation
problem in a composite bar. For convenience of analysis, the origin is taken at the
interface. The subscripts or superscripts 1 and 2 refer to the materials at the left and right
of the interface. Assuming only the axial behaviour, and no damping, the equations of

motion can be written, in non-dimensional forms, as:

i dh ¥ 0%

= , - (A.1)
9E2 dr? oF? -9¢2
where the variables are rendered non-dimensional as follows:
x =af, t=(afc)
(A.2)

uxt) = au(€,7), uxf) = aiy(,1)

Obviously, u,(x,t) and u,(x,#) denote the axial displacement in the left and the

right materials, and
K = ¢fc, = (E\p/Epp)'” (A.3)

is the ratio of the velocities of one-dimensional wave propagation in the two materials.

The displacement and force continuities at the interface require that
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700 = 505, o) = y22 (A4)
u[(ost) - uz(O!tL 65 (091:) =Y aE (0’1:)

where ¥y = E,A,/EA,. The right end x = g (or £ = 1), is considered free and is
subjected to say a compressive step loading, while the leftend x = -b (or ¢ = b/a = «),

is considered supported. The boundary conditions are therefore:

%"E%(l,c) = -G H(z-0), i(a,7) = 0 (A.5)

where

00 = — (A.G)
and H(r - Q) denotes the Heaviside step function having the property that H(7 - 0) = 1
fort > Oand H(-0) = O fort < 0.

Taking the Laplace Transform with respect to time 7, and solving the resulting

ordinary differential equations, the transforms of the displacements can be written as:

it; = Mcosh(Es) + Nsinh(Es), it; = M,cosh(xEs) + N,sinh(xés) (A.7)

where s is the transform variable, and a superscript asterisk signifies the Laplace
Transform. The four constants introduced above can be determined by the following four
transformed boundary conditions:

@ =0 (A.8)
at the supported end ¢ = -«
iﬁi = _EE (A.9)
ok s

at the free end £ = 1, and
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i, =2 (A.10)

at the interface ¢ = 0. The transformed solutions for displacements and stresses are

therefore expressible as:

= Y% sinh{(E +)s] ] (A.11)
! s? | yxsinh(sxe)sinh(s«) + cosh(ske)cosh(se)

= _ "Eo[ yxcosh(Esx)sinh(se) + sinh(Esx)cosh(sa)] (A.12)
“ Kszlyxsitﬂl(sm)sinh(sa) + cosh(sxea)cosh(sa)

E- - _Azoo[ COSh[(&-bO’.)S] (A.13)
: sA, [yxsinh(sm)sinh(su) + cosh(sxa)cosh(sa)

s . ~0y[ yxsinh(Es«)sinh(sa) + cosh(Esx)cosh(sa)] (A.14)
s [yxsinh(sm)sinh(sa) + cosh(ska)cosh(sa)

The solutions with respect to time now requires finding the inverse Laplace
transform, which can be obtained from the residues at the poles which are zeros of the

denominator:
s[yx sinh(sxe)sinh(se) + cosh(sxa)cosh(sa)] = O (A.15)

The corresponding equation giving the natural frequencies, w, of free vibration of a
composite bar of length L, and L,, is obtained by putting s = iw (where i = (-1)'?) in
the above equation:

-yx sin(wka)sin(wa) + cos(wka)cos(we) = 0 (A.16)

Although we may obtain solution for all points (-ao € ¢ < 1), we restrict our
attention to the interface (¢ = 0) point, and obtain the following solutions for time
variations of interface displacernent and stresses, upon using the inversion theorem and
the calculus of residues:

93



- - 1 2sin(e w )cos(w,T)
il .o = ~YO o -Z—
w? (yrP+a)cos(akw sin(ew) + (yxe +x)sin(axwcos(ew)

(A.1T)
32 o= 3 1_2_1 2cos(o w Yeos(w,T)
W, (th2+a)cos(amo,)sin(ami) + (yre +x)sin(oxw Jeos(ew)
(A.18)
A
o, = ~1g, (A.19)
A

where we recall that «y, are the natural frequencies of the composite bar, and » = (a/c))t.

As a special case, we may also obtain solution for a one material bar (material
1 = material 2) by putting & = 0, ¥ = 1, and x = 1 in Egs. (A.16) to (A.18). In this
case, the frequency equation specializes to

o o Qi-Ln

; (A.20)
2

The time variations of free end (¢ = 1) non-dimensional displacement, and the supported

end (¢ = 0) non-dimensional stress are found to be

Pl = -5 1.5 dcoslQi-1ye/n] (A.21)
2t Qi-1)*n?
- = _3 |1 -3y_1ydeosl2i-1)t/n] A.22)
A 00[1 gy deosliB) (

Results given by Eq. (A.22) agree with those in Timoshenko and Goodier [20].
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APPENDIX B

Wave Propagation in a Composite Disc

As mentioned previously, the purpose of this Appendix is to obtain exact (series)
solutions to simple axisymmetric problems to validate the axisymmetric interface
elements. These solutions, although relatively simple, are non-trivial enough to test the
validity of finite element solutions. The problem of a composite disc worked out here

appeats to be unavailable in the literature.

B.1 One Material Disc Under a Step Loading

We first solve the simpler problem of axisymmetric dynamic response of a plane,
one material circular disc under a step-rise of radial pressure at the outer periphery. The
differential equation governing the motion is

a -
0, 9, Ogp = pazu (Bl)

+

or r o2

Assuming a small-strain, linear elastic, isotropic material behaviour the stress-strain-

displacement relations are

ou

O, = Eerr = 'a—
E" (B.2)

U

Og = E€gy = s

where to simplify the analysis we have assumed that Poisson’s ratio is zero. Hence the

governing differential equation, in terms of the radial displacement u, is

Fu  lou _u T (B.3)
92 KO g2 ¢
where we have made the following change of variables to render the differential equation
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non-dimensional:

w=au r=af, t=25 (B.4)
c

C = .E (B'S)

is the velocity of wave propagation (in a one-dimensional bar under axial loading). The

boundary ccnditions of the problem are

u(0,;) = 0
(B.6)

ou Py

— l,t = —_H t-o

3% (L) T (¢-0)
where p is the applied pressure, and H(s-0) is the Heaviside unit-step function defined by

Ht-0) =0 for t<0
H¢-0) =1 for t>0

(B.7)

The disc is thus loaded by a suddenly pressure applied at the boundary r = a. The initial
conditions are:

w0 = 2o -0 (B.8)
dt

As before, we use the method of Laplace Transform to solve this problem of step-

jump dynamic loading. The differential equations and boundary conditions become

2™ =~
T 1di _[1 +sz],-;.=0 (B.9)

de2 B dE (g2
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- (B.10)

where s is the transform variable (in lieu of 7) and a superscript asterisk signifies the

Laplace Transform of displacement or stresses.

The above differential equation is a Bessel equation, the solution of which, taking

into account the boundary conditions, is

I = _PIl(SE)
24/
Es I,‘(s) (B.11)
5 - _P I](SE)
rr ES II’(S)

where [, is one of the modified Bessel functions of first order, and I,’(s¢) denotes the
derivative of I,(s) evaluated at s¢. Accordingly, the transforms of the stresses at the

centre (¢ = 0), and the displacement at the periphery (¢ = 1) are

— - 1
G.(0) = Tpe(0)* = 2 — (B.12)
® 2Es 1(s)
Q) = .2 16 (B.13)
Es* I{(s)

The transforms can be inverted using the Residue Theorem {21]. We find (with the help
of Mathematica program of Wolfram Research Inc,, Champaign, Ill.) that the

denominator becomes zero at

5o — 0
s, = + 1.84118 i
5, = 1 533144 §

s, = + 8.53632 i
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sy = £ 11.7060 i
§s = 1 14.8636 (
S, = + 18.0155 ¢
sy = £ 21.1644 i
sy = & 243113

59 = + 274571 i
Sio= £ 30.6019i

It can be seen that these points are simple poles. The solution for the stress
components at the origin is then obtained as

6, (0) = 5,0 = -EPE[ 2-2.64798cos(1.841181)+1.2332c0s(5.331441) - ..... 1
(B.14)
where
o, = Es, a, = Edg (B.15)

Similarly, the radial displacement of the periphery is obtained as

u(l) = -%[ 1-0.836835¢c0s(1.841187)-0.07299281co0s(5.331441) - ... |
(B.16)
where
u=au (B.17)

In Chapter 4, the finite element solutions are compared with these solutions to
ascertain the former’s validity.

We also note that the natural frequencies (in radians per second) of the disc under
the boundary conditions, ¢,(1) = w(0) = 0, are
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2
‘0: = __"'___gf (B.18)
a®
where s, are the roots given above. These are also used in Chapter 4 for comparing the

frequencies obtained by the finite element method.

B.2 Two-Materials Composite Disc Under Suddenly Applied Pressure

We now obtain an exact solution for a composite disc, consisting of a core disc
of material 1 (E,, p,), size 0 < r < g, and an annular disc of material 2 (E,, p,), size
a, < r < a,, subjected to a step-rise of pressure at the outer boundary. For simplicity

we assume the Poisson’s ratios ¥, = », = 0.
The governing differential equations are:

Fa 10w & _ ¥,
g2 EQE g ar?

(B.19)
&, L 10, i =x2ﬂ5
gg2 & OE g2 gt?
where
p.E c2 a
Kz = 271 = _-1- 4 ul = alil 5 u2 = 01'72 3 t = —.I.t (B.ZO)
Pl ¢ |
The boundary conditions at the interface r = a, are
‘71(1’1:) = Ez(lsr)
~ — 21
o, _ E; o -

% E, &%

wherein the first equation states the compatibility of displacements (perfect-bond
condition), and the second one that of the radial stress. The other boundary conditions
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are

% ) = FHE-0) atE = 2
—(a,t) = -pH(t- a = — =«
9§ a, (B.22)
,(0) =0 at§ =0
where H(r - 0) is again the Heaviside unit-step function, and
(B.23)

b=
p E,

Application of the Laplace Transform with respect to the variable 7 then yields

on B
3 E, &% )

The transformed solution are
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(B.25)

(B.26)

(8.27)

(B.28)

(B.29)



i, = A (ES) 3.30)

Uy = A (xES) + B,K (xEs)

where [, and K, are the standard notations for the modified Bessel functions. The

interface conditions (at £ = 1) can now be used to express A, and B, in terms of 4, as

follows:
I,(xs) K,(xs)
A, Ii(s)
s Zkie) {B ] ”‘{ 1’@)} -
El 1 El 1 2 1
and hence
E
4, = 7i-[|3ur,(s)1q’(m) - LOK,)4, = -S4, (B.32)
2
E
B, = %[I{(s)ll(xs) - L34, = “Eisp 2(S)4, (B.33)

where we have used the well-known property

A = BUL(k)K[(xs) - L(xs)K,(xs)] = EE:; (B.34)
and have introduced
B - ?22 (B.35)
1P1
Fi(s) = BL()Ky(5) - L[(s)K,(xs) (B.36)
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Fy(8) = LS, (s) - PL(s){(xs)

Now, the boundary condition at outer periphery ¢ = « gives

EEz 1
3 / /
E\xs’ F (Ij(xas) + Fy()K;(xas)

This enables the transforms of the solutions to be expressed as

u; = A (Es)

— E,

U = -AIFSIFI(S)I,(KES) + F()K (xEs)]
2

-1, E, ou E
o = =L = A —LsIj(Es)
E, ot 'E

El 2 fi /
= —= = —Al—E—ZKS [F () (xEs) + Fy(s)K\(xEs)]

al‘ = —E—l-f-i = A ﬂll(ES)
ae E, £ i E, &
El A
ok = 2 = -A,E;-g[F,(s)l,(xzs) + Fys)K,(xE)]

U =iy = AL (s)
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(B.37)

(B.38)

(B.39)

(B.40)

(B.41)

(B.42)

(B.43)

(B.44)

Then, the interface (¢! = 1) displacement and stresses have the following transforms.

(B.45)



r

—1e  =2a E
Sy = G, = A=sl{(s) (B.46)
E‘.".

—1a E
G = AIE‘I,(s) (B.47)
2

Tge = -A,—i—‘s[Fl(s)I,(xs) + Fy()K,(xs)] (B.48)

2
The inversion of the transforms Eq. (B.43) to Eq. (B.46) can be accomplished by
computing residues at the poles of the integrands in the inversion formula. We can show
that s = 0 is a simple pole. The other poles are also simple poles, being the zeros of the

denominator in the expression for A, expressed above
F()(xas) + Fys)K{(xas) = 0 (B.49)

These zeros depend on the specific values of x and ¢ in a given problem. For the case
a = 2, E\/E, = 200, and p,/p, = 8, we have x = 5 and the first twenty roots are

5, = £+ 0.29578 i

5, = 4 0.93350 i

s; = 4 1.54623 |

5, = 1+ 1.84924 i

55 = £ 2.21656 i

5 = + 2.83241

s; = + 3.45687 i

53 = + 4.08213§

5o = £ 4.70514 i

$0= £ 5.26591 i

sy= + 5.40722 i

5=+ 5.97597 i

sp= + 6.59910
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Su= t 7.22424 |
5is= 1+ 7.84779 §
516= + 8.43402 {
s;7= + B.58269 i
5i5= % 9.11831 i
Se= 4 9.74093 i
Syp= £ 10.3660 {

Again, as remarked before, the natural frequencies are given by
c?
mi = -._‘25-: (B.50)
a

The expressions for the interface displacement and stresses are found as:

u(1) = -0,007976 + 0.010122c0s(0.2957841) - 0.003847c0s(0.93350501)
+ 0.005016c0s(1.546231) ......

(B.51)

0, (1) = -1.59521 + 1.97989c0s(0.2957841) - 0.59539c0s(0.9335051) +
0.33325c0s(1.546231) .......

(B.52)

gge(1) = -1.59521 + 2.02433cos(0.2957847) - 0.769462c0s(0.9335057) +
1.00329¢c0s{1.546231) .......

(B.53)

oge(l) = -0.007976 + 0.010122c0s(0.2957841) ~ 0.003847cos(0.93350501)
+ 0.005016cos(1.546237) ......

(B.54)
where 7 is the non-dimensional time defined in Eq. (B.20).

When the material positions are switched we have E/E, = 1/200 and p,/p; =
1/8, x = 1/5. The corresponding roots in such a case are
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s, = % 3.31225 §
5, = £+ 3.90521 i
5y = £ 7.01779 i
sy = + 10,1065 i
5s = 1 13.2862 i
S = + 16,0985 ¢
5= 4 16.7796 i
S3 = £ 19.6440 i
Sy = + 22,7638 i
Sip= + 25.8912 i
sy= + 29.0045 |
Sp= + 31.5845i
s;3= + 32.3841 §
siu= X 35.3587 i
sis= + 37.4786 i
5;= =+ 41.6046 i
sp= 1 44.7153 i
Sig= + 47.2059 i
so= + 48.0713 i
5= + 51.0694 i .

The interface displacement and stresses, obtained by using the Residue Theorem

for the inversion of Laplace Transform, are of the following form:

u(l) = -2,64463 + 2.5563c0s(3.312251) + 0.289828c0s(3.905217) (B.55)
+ 0.000705c0s(7.017797) ......

o, (1) = -0.013223 - 0.080905¢co0s(3.312257) + 0.076137cos(3.905217) «
0.011204c0s(7.017797) .......

(B.56)
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ols(1) = -0.013223 - 0.012782c0s(3.312251) + 0.001449¢c0s(3.905217) + ..
(B.57)

039(1) = -2.64463 + 2.5563c0s(3.312251) + 0.289828co0s(3.905211) +
0.000705c0s(7.017791) ......

(B.58)

where again 7 is the non-dimensional time of Eq. (B.20).
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APPENDIX C

Listing of Finite Element Program

/INFO MVS CL(92) CODE(CY99) TI(9999) PA(9999) SUB(000)
/INFO  R(CENTRAL) MSGCLASS(Q}

"

EXEC VSFTCLG,PARM.FORT="DC(GLOB)',PARM.FORT ="DC(GLOBE)’

/fFORT.SYSIN DD *

C

Cc

C FINITE ELEMENT PROGRAM TO ANALYZE A TWO DIMENSIONAL
C OR AXISYMMETRIC TRANSIT DYNAMIC PROBLEM USING THE FOLLOWING ELEMENTS :

- BAR ELEMENTS (PLANE STRESS)

- CONSTANT STRAIN TRIANGULAR ELEMENTS

» ISOPARAMETRIC LINEAR QUADRILATERAL ELEMENTS (TWO DIMENSIONAL AND
AXISYMMETRIC CASES)

- ISOPARAMETRIC 5-NODE QUADRILATERAL ELEMENTS WITH ENFORCED
NORMAL AND SHEAR STRESS CONTINUITY AT THE STH NODE (TWO DIMENSIONAL
AND AXISYMMETRIC CASES)

nNonNAnNONANNONN

DECLARATION OF VARIABLES

IMPLICIT REAL*S (A-H,0-2)

INTEGER N,NEL,NDOF,NLOAD,DOF,NGEN,INTER,MEQNS,KEQNS,REDOF,NCOUNT
INTEGER NID(640}, BCX(640),BCY(640), ELID(640),NTYPE(640),ID(2,640)
INTEGER N1(640),N2(640),N3(640),N4{640),N5(640), NODRED(640)
INTEGER ELIDB,N11,N22,N33,N44,N55,NELA(640), NELB(640), NRES
INTEGER NODFOR(640),KK1, KK2,IFPRE(640), MM,NGAUS1 ,NGAUS2,INCOMP
INTEGER NOUT

DOUBLE PRECISION X(640), Y(640)

DOUBLE PRECISION A(640),E(640),NU(640), T(640), FX(640),FY(640)
DOUBLE PRECISION KGLOB(640,640),ASLOD(640)

DOUBLE PRECISION LOAD{640),FIXED(640), REACT(640), X DISP(640)
DOUBLE PRECISION D1(640},PE1,PE2,PE,KEL(20,20)

DOUBLE PRECISION D(640), MGLOB(640,640), MEL(20,20)

DOUBLE PRECISION AA(640,640), BB(640,640), HH(640,640), OMEG(640),
DOUBLE PRECISION AA(640,640),0MEG(640),
+ T1(640,640), ZETA(640), TT(640,640),X0(640),
+ XDO(640), YO(640), YDO(640), WN(640,13),F(640,13),
+ TGM(640,640),V(640,13),XD(640,13), TIME(13),
+ DT(13).,TGMT(640,640),U(640,13),EPS. TPS,FACT(13),
+ Q(640,13),C(291600),R(291600), WK(540)

INTEGER ITMAX

CHARACTER*R0 TITLE

COMMON/GLOB/X.Y.A.ENU,T.D
COMMON/GLOBE/AA,T1,TT,KGLOB,MGLOB,TGM, TGMT.C.R

DATA INPUT

anNnonn

OPEN(1,FILE="FL.IN")

OPEN(2,FILE="FI.OUT")

READ(1,*) TITLE
READ(1,*) NCASE,N,NEL.NDOF NLOAD ,NGEN,INTER NGAUS1 ,NGAUS2,
+ INCOMP
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READ(!1,*) NFLAG,NFREQ,ITMAX,EPS,TPS,NSTEP
MEQNS=640
KEQNS=640
DOF=N*NDOF
IF(NGEN .EQ. 1) THEN
CALL GENER(N,NDOF,BCX ,BCY .NEL.NID.,X,Y,ELID,
+ NTYPE,N1,N2,N3,N4,N5,A,E.NU,T,D, KEQNS, MEQNS)
ELSE
READ(1,*) (NID{I).X(D), Y{1),BCX()),BCY(I),I= 1 N}
READ(1,*) (ELID(I),NTYPE(D,N1(1),N2(1),N3(1),N4() N5S(D,A(D,
+ E(D.NU(D).T(1),D(1), 1= 1,NEL)
END IF
IF(INTER .NE. 0) THEN
READ(1,*) (NELA(I),NELB(I).I=1,INTER)
END IF
IF(NLOAD .NE. 0) THEN
READ(1,*) (NODFOR(),FX(I),FY(I),]=1,NLOAD)
END IF
DOF=N*NDOF
c

C RENUMBER NODES NEGLECTING INTERFACE NODES
c

NNN=N-INTER
DO 50 I=1,NNN
ID(1,))=BCX(D)
ID(2.1y=BCY()
50 CONTINUE
NEQ=0
DO 70 I=1,NNN
DO 60 J=1,NDOF
IF(ID(},1).EQ.1) THEN
DY, =0
ELSE
NEQ=NEQ+1
ID(J.H=NEQ
END IF
60 CONTINUE
70 CONTINUE
C

C DATA ECHO
C

CALL DATA(N,NDOF,DOF,BCX,BCY ,NEL,NID X,Y ,ELID NTYPE,N1,
+ N2,N3,N4,NS.A,E,NU,T,D,NODFOR,FX,FY KEQNS MEQNS,NLOAD,

+ INTER,NGAUS1 ,NGAUS2,TITLE,INCOMP ,NCASE ,NRES)
C

C CALCULATION OF ELEMENT AND GLOBAL STIFFNESS/MASS MATRICES
C

REDOF=DOF-NDOF*INTER-NRES
DO 900 1=1,REDOF
DO 900 J=1,REDOF
KGLOB(1,5)=0.0D0
MGLOB(1,J)=0.0D0
900 CONTINUE
DO 1005 I=1,NEL
MM=2*NTYPE(l)
NCOND=1
IF(NTYPE(I) .EQ. 5) THEN
NCOND=0
DO 1000 J=1,INTER
IF(ELID(I) .EQ. NELA{J)) THEN
ELIDB=NELB(J)
N11=NI1(ELIDB)
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N22=N2(ELIDB)
. N33=N3(ELIDB)
N44 =N4(ELIDB}
N55=NS(ELIDB)

MM=12
CALL STIFF(ELID(]),ELIDB NTYPE(L) N 1(I},N2(1),N3(I),

+ N4(1),N5(I),N11,N22,N33,N44 N55 KGLOB,KEL,
+ MEQNS,NEL MM ,NGAUS1 ,NGAUS2,ID,INCOMP,
+ NCASE}

CALL MASS (ELID(I),ELIDB,NTYPE(l), N I{I),N2(I),N3(D),
+ N4([),N5(I),N11,N22,N33,N44,N55 MGLOB, MEL,
+ MEQNS,NEL MM ,NGAUS] ,NGAUS2,ID,INCOMP,
+ NCASE}

END IF
1000  CONTINUE
END IF

IF(NCOND .EQ. 1) THEN
CALL STIFF(ELID(I), ELIDB,NTYPE(I}, N1(I), N2(), N3(I), N4(I}, N5(I)
+ N11,N22,N33 N44,N55 KGLOB,KEL , MEQNS,NEL,MM ,NGAUSI,
+ NGAUS2,ID INCOMP ,NCASE)
CALL MASS (ELID(I) ELIDB NTYPE(D,N1(1).N2(D), N3(1), N4(1),N5(I)
+ N11,N22,N33,N44, NS5 MGLOB,MEL,MEQNS,NEL,MM,NGAUSI,
+ NGAUS2,1D,INCOMP,NCASE)
END IF
1005 CONTINUE
c

C INITIALIZATION OF FORCE AND B.C, VECTORS
C

DO 1020 I=| NNN*NDOF
ASLOD()=0.0D0
1020 CONTINUE
DO 1030 I=1,NLOAD
. c KK1=2*NODRED(NODFOR(I)}-1
KK1=2*NODFOR(I)-1
KK2=KKI+1
ASLOD(KK1)=FX(I}
ASLOD(KK2)=FY(I)
030 CONTINUE
DO 1040 I=1 ,NNN
N=ID{1,D
IF(I1.GT.0) THEN
ASLOD{Il)= ASLOD(I*2-1)
END IF
=1D(2.1)
IF(11.GT.0) THEN
ASLOD(11)=ASLOD(i*2}
END IF
1040 CONTINUE
NMODE=REDOF
C
DO 1100 I=1,N
ZETA()=0.0
Xo(H=0.0
XDO(I)=0.0D0
1100 CONTINUE
Cc
DO 1101 1=1,NSTEP
TIME()=1
FACT(l)=1.0
1101 CONTINUE
c
DO 1120 [= | NSTEP
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TIME(I) = TIME(I)*TPS
. 1120 CONTINUE
DO 1130 1=1,REDOF

DO 1130 J=1,NSTEP
F(1,])= ASLOD(I*FACT(])
1130 CONTINUE
c
DO 1141 1=1,REDOF
IF ( KGLOB(L1I) .LT. 0.0 ) THEN
WRITE(2,2501} I, KGLOB(LI)
END IF
1141 CONTINUE
C
CALL DG2CSP (REDOF,KGLOB,MEQNS,MGLOB,MEQNS,OMEG,AA.MEQNS.C.R,WK)
WRITE(2,2505)
C
DO 1150 I=1,REDOF
OMEG(])=SQRT(OMEG(I))
1150 CONTINUE
c
DO 1160 J= 1,REDOF
C 1=REDOF+1-J
WRITE(2,2501) J,OMEG())
1160 CONTINUE
c
DO 1165 1=1,REDOF
DO 1165 J=1,REDOF
TILN=AAQLY)
1165 CONTINUE
DO 1170 1=1,REDOF
DO 1170 J=1,REDOF

TT{L=T1(1.,1}
. 1170 CONTINUE
C

IF { NFLAG. EQ. 1 ) THEN

CALL MODAL (MGLOB,OMEG,T1,ZETA . X0, XDO,Y0,YDO,WN,F,U,V, XD, TIME,
+ DT.TT.M,NSTEP,REDOF NMODE, TGMT , TGM,MEQNS)

WRITE(2,2506)
END IF

IF { NFLAG. EQ. 0 ) THEN

CALL STATIC (OMEG,T1,TT,U,F.XD.Q,REDOF MEQNS ,NSTEP,NFREQ)
ENDIF

DO 1180 1=1,REDOF
WRITE(2,2507) 1, (XDXL)),J=1,NSTEP}
1180 CONTINUE
c
DO 1400 JY=1,NSTEP
WRITE(2,2402) JY
DO 1200 IY=1,NNN
IF(IY.EQ.1) THEN
KKY=0
END IF
Y =ID(1,1Y)
UY=1D{2,1Y)
IF(I1Y.EQ.0) THEN
XDISP(2*1Y-1)=0.0D0
ELSE
KKY=KKY+1
XDISP(2*1Y-1)=XD(KKY.,IY)
END IF
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IFUIY .EQ.0) THEN
XDISP(2*1Y)=0.0D0

ELSE
KKY=KKY+1
XDISP(2*1Y)= XD(KKY JY)

END IF

1200 CONTINUE
CALL DISPL(N,DOF,NID,NODRED ,N1,N2,N3,N4,N5 NELA ,NELB,INTER,
+ XDISP,.REACT MEQNS,NCASE)

DO 1251 [=1,N
WRITE(2,2403) XDISP(2*1-1), XDISP(2*])
1251 CONTINUE

DO 1300 1=],NEL
IE(NTYPE(l) .EQ. 2)THEN
CALL FORCE(ELID(I) N 1(I),N2(1), X(N1(I)), Y(N 1{1)), X(N2(I)},
+ Y(N2(I),A(D,E(I) MEQNS, XDISF}
ELSE
IF(NTYPE(I) .EQ. 3) THEN
IF(NCASE .EQ. 4) THEN
CALL STRIAX(ELIDXD),N1{I), N2(),N3(D, X(N1(D), Y(N I{D)
+ LX(N2(1), YIN2(I), X(N3D). Y(N3(I).E(D
+ JNU(1),XDISP,MEQNS)
ELSE
CALL STR(ELID(I), N1(D) N2(I),N3(D}, X(N 1{I)), YN 1(I)),
+ X{N2(D), YIN2(D)), X(N3(I)), Y(NI(DLE(D), NU(1),
+ T(1),XDISP,MEQNS)
END IF
ELSE
IF(NTYPE(l) .EQ. 4) THEN
X5=0.D0
Y5=0.D0
ELSE
X5=X(N5(1))
Y5=Y(N5(1))
END [F
IF{(NCASE .EQ. 4) THEN
CALL STRAX(ELID{D)},N1{I}, N2(I).N3(I}.N4(I),N5(]).
X{N1(D), YINIDLX(N2(D), YIN2(ID,X(N3(D)
BYNI(DLX(NAD), Y(N(D), XS5,Y5,E(D,
NU(I),XDISP,MEQNS NTYPE(I))

+ 4+ +

ELSE
CALL STRES(ELID(I),N1(1),N2(1},N3(I},N4(1),N5(D),
X(N1D) YINID)LX(N2(D), YIN2(I),X(N3(D)
LY (NI(D).X(N4(D), Y(N4(I).X5,YS,E(I),
NUD,T(1), XDISP,MEQNS, NTYPE(I),INCOMP)
END IF
END IF
END IF
1300 CONTINUE
1400 CONTINUE
C
o

++ +

C END OF PROGRAM
Cc

C2401 FORMAT(/,12D10.4)

2402 FORMAT(///,3X,"TIME STEP =*,2X,12,/)

2403 FORMAT(3X,D14.8,6X,D14.8)

2507 FORMAT(/,1 lHCOORDINATES,15./,1X,5D14.8,/,1X,5D14.8,/,1X,5D14.8)
2500 FORMAT(/.2X, 'I=", 15, 2X, "J=", I5, 3X, D12.5, 3X, D12.5)

2501 FORMAT(/,2X,15,3X,D12.5)
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2502 FORMAT(/,2X,1215)

c

STOP

END
c

SUBROUTINE GENER(N.NDOF,BCX,BCY ,NEL,NID,X.Y .ELID,

+ NTYPE,N1,N2,N3,N4,N5,A ENU,T,D,KEQNS, MEQNS)
C

C THIS SUBROUTINE READS AND GENERATES INPUT DATA
C

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION BCX(KEQNS),BCY(KEQNS),NID(KEQNS), X(KEQNS), Y(KEQNS)
DIMENSION ELID(MEQNS),N1(MEQNS)
DIMENSION N2(MEQNS),N3(MEQNS),E(MEQNS) NU(MEQNS), T(MEQNS}
DIMENSION N4{MEQNS),NS(MEQNS;,NTYPE(MEQNS),A(MEQNS),D(MEQNS)
INTEGER BCX,BCY,ELID,BCX1,BCY!
REAL*8 NU,NU1

C

C GENERATION OF NODAL POINTS
C

LL=]
C DO 40 WHILE(LL .LE. N)
DO WHILE(LL .LE. N)
READ(1,%) NID1,X1,Y1,BCX1,BCY1,KGEN
IF(KGEN .NE. 0) THEN
READ(1,*) NID2,X2,Y2,KK
KFACT=NID2-NID!1
KFACT1=KFACT/KK + |
DO 20 MM=1,KFACT!
NIDGEN = NID! + {(MM-1)*KK
NID(NIDGEN) = NIDGEN
X(NIDGEN) = X1 + (X2-X1)*(MM-1)/(KFACT/KK)
Y(NIDGEN) = Y1 + (Y2-Y1)*(MM-1}/(KFACT/KK)
BCX(NIDGEN) = BCX]1
BCY(NIDGEN) = BCY1
20 CONTINUE
LM = KFACT!
ELSE
NID(NID1) = NID1
X(NID]) = X1
Y{NIDI) = Y1
BCX(NID1} = BCX1
BCY{NID1) = BCY1
IM=1{
END IF
ILL=LL+LM
C 40 CONTINUE
ENDDO
C

C GENERATION OF ELEMENT CONNECTIONS
c

LL=1
C DO 80 WHILE(LL .LE. NEL)
DO WHILE(LL .LE. NEL)
READ(1,*) NELID1,NNTYPE,NN1,NN2,NN3,NN4,NN5,A1 E1 NUL,TI1,DI,
+ KGEN
IF(KGEN ,NE, 0) THEN
READ(1,*) NELID2,NNTYPE,NNN1,NNN2,NNN3,NNN4,NNN5,KK
KELFAC = NELID2-NELIDI
KEL1 = KELFAC/KK
KELF! = KELI + 1
DO 60 MM = | KELFI
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N

nnonno

NELID = NELID1 + (MM-1)*KK
ELID(NELID) = NELID
NTYPE(NELID) = NNTYPE
NI(NELID) = NN1 + (MM-1)*(NNN1-NN1)/KEL1
N2ANELID) = NN2 + (MM-1)*(NNN2-NN2)/KEL!
NINELID) = NN3 + (MM-1)*{NNN3-NN3)/KEL1
N4(NELID) = NN4 + (MM-1)}*{NNN4-NN4)/KEL
NS(NELID) = NN5 + (MM-1)*(NNN5-NNS)/KEL1
A(NELID) = Al
E(NELID) = E}
NU(NELID) = NUI
T(NELID) = T1
D(NELID) = DI
60 CONTINUE
LM = KELF
ELSE
ELID(NELID1) = NELIDI
NTYPE(NELID1) = NNTYPE
NI(NELIDI) = NNI
N2(NELID1} = NN2
NI(NELID]) = NN3
N4(NELID1) = NN4
NS(NELID1) = NN3
A(NELIDI) = Al
E(NELID1) = E1
NU(NELIDY) = NUI
T(NELID1) = T1
D(NELID1} = DI
LM =1
END IF
LL=LL + LM
80 CONTINUE
ENDDO

RETURN
END

SUBROUTINE DATA(N,NDOF,DOF,BCX,BCY,NEL,NID,X.Y,

+ ELID,NTYPE,N1,N2,N3,N4,N5,A E.NU,T,D,NODFOR,FX FY,
+ KEQNS MEQNS,NLOAD,INTER,NGAUS1,NGAUS2,TITLE,

+ INCOMP,NCASE,NRES)

THIS SUBROUTINE ECHOES THE INPUT DATA FOR CHECKING
AND REFERENCE PURPOSES

IMPLICIT REAL*S (A-H,0-Z)
DOUBLE PRECISION NU
DIMENSION BCX(KEQNS),BCY(KEQNS),NID(KEQNS),X(KEQNS), Y(KEQNS)
DIMENSION ELID{MEQNS),N1(MEQNS),FY(KEQNS)
DIMENSION N2{MEQNS),A(MEQNS),E(MEQNS),NODFOR(KEQNS),FX(KEQNS)
DIMENSION N3(MEQNS),N4(MEQNS),NS(MEQNS),NU(MEQNS), T(MEQNS)
DIMENSION NTYPE(MEQNS),D(MEQNS)
CHARACTER®S TYPE(400)
CHARACTER*S0 TITLE
CHARACTER*3 MODES
INTEGER DOF,BCX.BCY,ELID,INCOMP
WRITE(2,110) TITLE
100 FORMAT('- PLANE STRESS ANALYSIS - DATA ECHO")
102 FORMAT('~ PLANE STRAIN ANALYSIS - DATA ECHO")
105 FORMAT(- AXISYMMETRIC ANALYSIS - DATA ECHO")
IF(NCASE .EQ, 2) THEN
WRITE(2.100)
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ELSE
IF(NCASE .EQ. 3) THEN
WRITE(2,102)
ELSE
IF(NCASE .EQ. 4) THEN
WRITE(2,105)
END IF
END IF
END IF
110 FORMAT('1",A80)
WRITE(2,120) N
120 FORMAT('- NUMBER OF JOINTS',T32,":",13)
WRITE(2,130) NDOF
130 FORMAT('- NUMBER OF D.O.F. PER JOINT" T32,'' I})
WRITE(2,140) DOF
140 FORMAT('- TOTAL NUMBER OF D.0.F." . T32,":".13)
NRES=0
DO 160 I=1,N
NRES=NRES +BCX(l)+BCY(I)
160 CONTINUE
WRITE(2, 170) NRES
170 FORMAT('- NUMBER OF RESTRAINED D.O.F.',T32,"",13)
WRITE(2,180) DOF-NRES
180 FORMAT('- NUMBER OF UNRESTRAINED D.O.F.".T32,":".13)
NEL1=0
NEL2=0
NEL3=0
NEL4=0
DO 185 1=1,NEL
IF(NTYPE(I) .EQ. 2) THEN
NEL1=NEL! +1
TYPE(l)=" BAR"
ELSE
IF(NTYPE(I) .EQ. 3) THEN
NEL2=NEL2+1
IF(NCASE .EQ. 4) THEN
TYPE(I)="TRIAX’
ELSE
TYPE(D="CS T’
END IF
ELSE
IF(NTYPE(I) .EQ. 4) THEN
NEL3=NEL3+1
TYPE(l)="QUAD4’
ELSE
NEL4=NELA+1
TYPE(l)="QUADS"'
END IF
END IF
END IF
185 CONTINUE
WRITE(2,190) NEL1
190 FORMAT(’- NUMBER OF BAR ELEMENTS',T32,":",13)
WRITE(2,195) NEL2
195 FORMAT('- NUMBER OF TRIANG ELEMENTS',T32,"",13)
WRITE(2,196) NEL3
196 FORMAT('- NUMBER OF QUAD4 ELEMENTS',T32,":",13)
WRITE(2,197) NEL4
197 FORMAT(’- NUMBER OF INTERFACE ELEMENTS',T32,":",13}
WRITE(2,198) NGAUS1,NGAUSI
198 FORMAT('- QUAD4 INTEGRATION ORDER',T32,":",12," BY',12)
WRITE(2,199) NGAUS2, NGAUS2
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199 FORMAT(’- QUADS INTEGRATION ORDER',T32,":",12,' BY",12)

IF(INCOMP .EQ. 1) THEN
MODES = 'YES'

ELSE
MODES = 'NO°

END IF

WRITE(2,2(0)) MODES

200 FORMAT('- INCOMPATIBLE BENDING MODES', T32,": *,A3)
WRITE(2,209)

204 FORMAT('| NODE COORDINATES")

WRITE(2,2H)

210 FORMAT('- NODE’, T15,'X",125,'Y",T32,'X-BC', T42,'Y-BC")

WRITE(2,220) (NID(D),X(I), Y(I),BCX(1}.BC Y(D),
+ 1=1,N)

220 FORMAT('-'13,T10,F7.3,T20,F7.3,T32,13,T42,13)
WRITE(2,230)

230 FORMAT('| ELEMENT INCIDENCES'")
WRITE(2,240)

240 FORMAT('- ELEMENT',TI1,'TYPE",T17,"NODE-1',T24,'"NODE-2", T31,
+  'NODE-Y.T38, 'NODE-4'T45 'NODE-S',T56,' AREA',T68,'E",
+ T77,'NU", T87.'T", T97,'D")

WRITE(2,250) (ELID(I), TYPE(I),N1(1),N2(1),N3(1),NA(D,NS(D), A(D),
+ E(.NUI),T(H,D().1=1,NEL)

250 FORMAT('-", 74,13, T11,A5,T19,13,T26,13,T33,13,T40,13,T47,13,T53,
+ E8.2,T63.E10.3,T76,F4.2,782,E10.,T96,E10.3)
WRITE(2,260)

260 FORMAT('1 APPLIED LOADS")

IE{NLOAD .NE. 0) THEN
WRITE(2,270)
270 FORMAT{'- NODE',T13,'X-FORCE',T28,"Y-FORCE"
WRITE(2,280) (NODFOR(D),FX(1).FY(I),I=1,NLOAD)
280 FORMAT('-",14,T11,E10.3,T26,E10.3)

ELSE
WRITE(2,290)
290 FORMAT(- NO CONCENTRATED LOADS APPLIED")

END IF

Cc
RETURN
END

C
SUBROUTINE STIFF(ELID,ELIDB,NTYPE,N1,N2,N3,N4,N5,N11,N22 N33,Nd44,
+ N55,KGLOB,.KEL , MEQNS,NEL MM ,NGAUS] NGAUS2,ID,
+ INCOMP,NCASE}

c

C THIS SUBROUTINE CALCULATES THE ELEMENT STIFFNESS MATRIX
C AND ASSEMBLES THE GLOBAL STIFFNESS MATRIX

c
IMPLICIT REAL*S (A-H,0-Z)
DOUBLE PRECISION KPRIM(4,4), KEL(MM.MM},NU
DOUBLE PRECISION KELA(10,10),KELB(10,10),KELARA(10,12)
DOUBLE PRECISION KELBRB(10,12),KEL1(12,12),KEL2(12,12)
DOUBLE PRECISION KGLOB(MEQNS,MEQNS)
DIMENSION TR(4.4),B(3,10)
DIMENSION Q(2,12).RA(10,12),RB(10,12),RAT(12,10)
DIMENSION RBT{12,10)
INTEGER N!,N2,N3,N4,N5,N11,N22,N33,N44,N55,ELID,ELIDB,NGLOB(12)
INTEGER NOD(6).INCOMP,ID(2, MEQNS),KKK(12)

COMMON/GLOB/X(640),Y(640),A(640),E(640),NU(640), T(640),D{640)
NNTYPE=NTYPE
NDIM=NTYPE*2
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NOD(1}=N1
NOD(2)=N2
NOD(3)=N3
NOD(4)=N4
KKK(1)=1D(1,NOD(1))
KKK(2)=1D(2,NOD(1))
KKK(3)=1D(1,NOD{2))
KKK(4)=ID(2,NOD(2))
KKK(S)=1D(1 NOD(3))
KKK(6)=1D(2,NOD(3)}
KKK(7)=1D(1,NOD(4})
KKK(8)=ID(2,NOD(4))

IF(NTYPE .EQ. 2) THEN
CALL BAR(ELID,N1,N2,X(N1), Y(N1},X{N2),Y(N2),A(ELID},E(ELID),
+ KEL,TR,KPRIM)
ELSE
IF(NTYPE .EQ. 3) THEN
IF(NCASE .EQ. 4) THEN
CALL TRIAX(ELID,N1,N2,N3,X(N1),Y(N1).X(N2), Y(N2), X(N3),
+ ¥(N3),E(ELID),NU(ELID),KEL)
ELSE
CALL CST(ELID,N1,N2,N3,X{N1), Y(N1),X(N2), Y(N2),X(N3),Y(N3),
+ E(ELID),NU(ELID),T(ELID),B,KEL)
END IF
ELSE
IF(NTYPE .EQ. 4) THEN
IF(NCASE .EQ. 4) THEN
CALL QUADAX(NGAUS1,ELID,NTYPE,N1,N2,N3,N4,NS,KEL,NDIM)
ELSE
CALL QUAD4(NGAUS1,ELID,NTYPE,N1,N2,N3,N4,N5,KEL NDIM,
+ INCOMP)
END IF
ELSE
IF(NCASE .EQ. 4) THEN
CALL RELAX(ELID,ELIDB,N1,N2,N3,N4,N5,N11,N22 N33,Nda NS5,
+ Q
CALL QUADAX(NGAUS2,ELID,NTYPE,N1,N2,N3,N4,N5, KELA ,NDIM)
CALL QUADAX(NGAUS2,ELIDB,NTYPE,N11,N22,N33,N44,N55 KELB,
+ NDIM)
ELSE
CALL REL(ELID,ELIDB,N1,N2,N3,N4,N5,N11,N22,N33,N44,N55,Q)
CALL QUAD4(NGAUS2, ELID ,NTYPE,N1,N2,N3,N4,N5 KELA NDIM,
+ INCOMP)
CALL QUAD4(NGAUS2, ELIDB,NTYPE,N11,N22,N33,N44,N55,KELB,
+ NDIM,INCOMP)
END IF
c

C FORM R MATRICES
C

DO 50 LI=1,8
DO 50 L1=1,12
RA(LLLH=0.D0
RB(LLL))=0.D0
50 CONTINUE
RA(7,1)=1.D0
RA(8,2)=1.D0
RA(1,3)=1.D0
RAQR4)=1.D0
DO 55 LK=3,6
LM=LK+6
RA(LK,LM)=1.D0
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35 CONTINUE
. DO 58 KK=3.8
RB(KK,KK)=1.D0
58 CONTINUE
RB(1,9)=1.D0
RB(2,10)=1.D0
DO 60 K= 9,10
DO 60 L=1],12
MMM =K-3
RA(K.L)=Q(MMM,L})
RB(K,L)=Q(MMM,L)
60 CONTINUE

C
C MINIMIZE P.E. AND FORM STIFFNESS MATRIX
C
DO 80 M=1,10
DO BO N=1,12
RAT(N,M)=RA(M,N)

RBT(N,M)=RB(M,N)
80 CONTINUE
CALL MATMAT(10.10,12 KELA ,RA KELARA})
CALL MATMAT(12,10,12,RAT,KELARA,KELI)
CALL MATMAT(10,10,12,KELB, RB,KELBRB)
CALL MATMAT(12,10,12,RBT,KELBRB,KEL2)
DO %0 Ki=1,12
DO 9 K2=1,12
KEL(K1 K2)=KEL1(KI1,K2)+KEL2(K1,K2)
%0 CONTINUE
END IF
END IF

END IF
® c

C ASSEMBLE GLOBAL STIFFNESS MATRIX
C

IF(NTYPE .EQ. 5) THEN
NOD(1)=N4
NOD(2)=N22
NOD(3)=N33
NOD(4)=N44
NOD(5)=N2
NOD{6)=N3
NNTYPE=6
KKK(1) =1D(1 NOD(1))
KKK(2) =ID(2,NOD(1))
KKK(3) =ID(1,NOD(2))
KKK(4) =1D(2,NOD(2))
KKK(S) =ID(1,NOD(3))
KKK(6) =ID(2,NOD(3))
KKK(7) =ID{1,NOD(4))
KKK(8) =ID(2,NOD(4))
KKK(9) =ID(1,NOD(5))
KKK(10)=ID(2,NOD(5))
KKK(11)=ID(1,NOD{(6))
KKK(12)=1D(2,NOD(6))

END IF

DO 1300 [=1,MM
IF(KKK(1).GT.0) THEN

K=KKK(I)
DO 1250 J={ MM
IF(KKK()).GT.0) THEN
L=KKK(J)
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KGLOB(K,L)=KGLOB(K,L}+KEL(LJ)
END IF
1250 CONTINUE
END IF
1300 CONTINUE
3000 FORMAT(/!,;” NTYPE =',13)
C
RETURN
END
C
SUBROUTINE BAR(ELID,N1,N2,X1,Y1,X2,Y2,A,E, KEL,TR,KFRIM)
C

C THIS SUBROQUTINE CALCULATES THE ELEMENT STIFFNESS MATRIX

C AND TRANSFORMATION MATRIX OF A BAR ELEMENT
c

IMPLICIT REAL*S (A-H.0-Z)

INTEGER N1,N2,ELID,NGLOB(4)

REAL*8 L,L2,COS,SIN,C2,52,XDIF,YDIF,CS,KEL{4.4),K,LSMALL,TR(4,4}
REAL*8 KPRIM(4.4)

XDIF=X2-X1
YDIF=Y2-Y!
L2=XDIF*XDIF + YDIF*YDIF
L=DSQRT(L2)
COS=XDIF/L
SIN=YDIF/L
C2=C0S*COS
S2=SIN*SIN
CS=COS*SIN

K = A'E/L
KEL(1,1)=C2*K
KEL(!,2)=CS*K
KEL(1,3)=-KEL(1,1}
KEL(1,4)=-KEL{1,2)
KEL(2,1)=KEL(1,2)
KEL(3,1)=KEL(1,3)
KEL(4,1)=KEL(1,4)
KEL(2,2)=82°K
KEL(2,3)=-KEL(1,2)
KEL(2,4)=-KEL(2,2)
KEL(3,2)=KEL(2,3)
KEL(4,2)=KEL(2 4)
KEL(3,3)=KEL(1,1)
KEL(3,4)=KEL(1.2)
KEL(4,4)=KEL(2,2)
KEL(4,3)=KEL(3,4)

DO 1200 1=14
DO 1200 =14
TR(L})=0.0
KPRIM(L1)=0.0
1200 CONTINUE
c

TR{1,1)=COS

TR(1,2)=SIN

TR(2,1)=.5IN

TR(2,2)=COS

TR(3,3)=C0S§

TR(4,3)=-SIN

TR(4,4)=COS

KPRIM(1,1)=K
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KPRIM(!,3)=-K
KPRIM(3,1)=-K
KPRIM(3,3)=K

RETURN

END
C

SUBROUTINE CST{ELID,N1,N2,N3,X1,Y1,X2,Y2,X3,Y3,ENU,T,B,KEL)
C

C THIS SUBROUTINES CALCULATES THE ELEMENT STIFFNESS MATRIX OF A
C CONSTANT STRAIN TRIANGULAR ELEMENT

C
IMPLICIT REAL*8 (A-H,0-Z)
INTEGER ELID
REAL*8 X1,Y1,X2,¥2,X3,Y3,NU, T, EM(3,3),B(3,6),KEL(6,5)
REAL*8 BT(6.3),BTE(6,3),K1(6,6).A

B(1,1)=Y2-Y3
B(1,2)=0.0
B(1,3)=Y3-Y1
B(l.4)=0.0
B({1.5)=Y1-Y2
B(1.6)=0.0
B(2,1)=0,0
B(2.2)=X3-X2
B(2,3)=0.0
B(2,4)=X1-X3
B(2,5)=0.0
B(2,6)=X2-X1
B(3,1)=B(2.2)
B(3,2)=B(1,1)
B(3,3)=B(2.4)
B(3,4)=B(1,3)
B(3.5)=B(2,6)
B(3,6)=B(1,5)

A=(X2%Y3-Y25X3-X1*Y3+ YI*X3+ X1*Y2-Y1*X2)/2.

DO 20 {=1,3
DO 20J=1,6
B(LJ)=B(LJ)/(2.*A)
20 CONTINUE
DO 50 I=},6
DO 50 J=1,3
BT(1,))=B(.1)
50 CONTINUE
c
CALL YOUNG(EM,E\NU,3,0)
CALL MATMAT(6,3,3,BT,EM,BTE)
CALL MATMAT(6,3,6,BTE,B.KI)
DO 100 I=1,6
DO 100 J=1,6
KEL(L) =Ki(LI)*T*A
100 CONTINUE
c
RETURN
END
c
SUBROUTINE QUAD4(NGAUSS,NELEM.NORDER,N1,N2,N3,N4,N5 STIFEL,NDIM,
+ INCOMP)
C

C SUBROUTINE FOR FORMATION AND NUMERICAL INT.-GRATION OF ISOPARAMETRIC
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C ELEMENT STIFFNESS MATRIX
c

IMPLICIT REAL*8 (A-H,0-Z)

DOUBLE PRECISION JACOB,NU KEL(14,14}

DIMENSION XX(5),YY(5),PLACE(3,3),WGT(3,3),B(3.14),BTE(14.3}
DIMENSION EM(3,3),STIFEL(NDIM,NDIM)

COMMON/Q4/EN(5).JACOB(2,2)
COMMON/GLOB/X(640), Y(640), A(640),E(640),NU(640), T(640).D(640}

DATA PLACE(1,1),PLACE(2,1),PLACE(2,3),PLACE(3,1),PLACE(3,2)/

+  5%0.000000000000000D0/

DATA PLACE(1,2)/-0.577350269189626D0/

DATA PLACE(2,2)/ 0.577350269189626D0/

DATA PLACE(1,3)/-0.774596669241483D0/

DATA PLACE(3,3)/ 0.774596669241483D0/

DATA WGT(1.1)/2.000000000000000D0/, WGT(2,3)/0,888888888BBRERID(/
DATA WGT(1,2), WGT(2,2)/2*1.000000000000000D0/

DATA WGT(2,1),WGT(3,1),WGT(3,2)/3*0.000000000000000D0/

DATA WGT(1,3),WGT(3,3)/2%0.555555555555556D0/

CALL YOUNG(EM,E(NELEM),NU(NELEM),3,1)
MORDER=2*NORDER
NSIZE = NDIM + 2*INCOMP

XX(1)=X(N1)
XX{(2)=X(N2)
XX(3)=X(N3)
XX(@)=X(N4)
YY(1)=Y(N1)
YY(2)=Y(N2)
YY(3)=Y(N3)
YY(4)=Y(N4)
IF(NORDER .NE. 4) THEN

XX(5)=X(N5)

YY(5)=Y(N5)
END IF

anonn

CLEAR UPPER TRIANGLE OF ELEMENT STIFFNESS MATRIX

DO 40 K=1,NSIZE
DO 40 L=K,NSIZE
KEL(K,L}=0.D0
40 CONTINUE
c

C START QUADRATURE LOOP
c

DO 180 NA=1,NGAUSS
XI=PLACE(NA,NGAUSS)
DO 160 NB=1,NGAUSS
ET=PLACE(NB,NGAUSS)
CALL SHAPEF(XI,ET XX,YY,DETJAC,B,NORDER,INCOMP}

DVaWGT(NA NGAUSS)*WGT(NB,NGAUSS)*T(NELEM)*DETJAC
C

C FORM PRODUCT B-TRANSPOSE * E = BTE
C

KORDER = NSIZE/2
DO 80 J=1 KORDER
L=2%]
K=L-1
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C CARRY QUT ONLY NON ZERO MULTIPLICATIONS
C

DO6G)N=1,3
BTE(K,N)=B(1,K)*EM(1,N) + B(3,K)*EM(3.N)
BTE(L.N)=B(2,L}*EM(2,N) + B(3,L)*EM(3.N)
G} CONTINUE
40 CONTINUE

C
C LOOP ON THE ROWS
c
DO 140 NROW= | NSIZE
DO 120 NCOL=NROW NSIZE

DUM=0.D0
Ca-e
C LOOP FOR PRODUCT BTE
C

DO 100 J=1,3

DUM=DUM + BTE(NROW J)*B(J,NCOL)
100 CONTINUE

KEL(NROW NCOL)=KEL(NROW ,NCOL) + DUM*DV
120 CONTINUE
140 CONTINUE
160 CONTINUE
180 CONTINUE
C

C FILL IN LOWER TRIANGLE OF KEL BY SYMMETRY

c
DO 200 K=1,NSIZE
DO 200 L=K NSIZE
KEL(L.K)=KEL(K,L)
200 CONTINUE
c

C CONDENSATION OF STIFEL
C

IF(INCOMP .EQ. 1) THEN
DO 340 K=1.4
LL = NSIZE - K
KK =LL + 1
DO 320 L=1,LL
IF(KEL(KK,L) .EQ. 0.) GO TO 320
DUM = KEL(KK.LVYKEL(KK,KK)
DO 300 M=1,L
KEL{L,M) = KEL(L,M) - KEL(KK,M)*DUM
300 CONTINUE
320 CONTINUE
340 CONTINUE
LL=NSIZE-4
DO 350 K=1,LL
DO 350L=1.K
KEL(L.K) = KEL(K.L)
350 CONTINUE
END IF
c

C FORM ACTUAL STIFFNESS MATRIX
c

DO 4001 = 1, MORDER
DO 400 ) = 1| MORDER
STIFEL(L))=KEL{L))
400 CONTINUE
C
RETURN
END
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nonan 0

ann

c

SUBROUTINE SHAPEF(X1,ET.XX,YY,DETJAC,B,NORDER,INCOMP)

SUBROUTINE FOR CALCULATION OF THE SHAPE FUNCTIONS AND THE
STRAIN-DISPLACEMENT MATRIX OF AN ISOPARAMETRIC QUAD ELEMENT

IMPLICIT REAL*8 (A-H,0-2)

DOUBLE PRECISION JACOB,NU

DIMENSION RXI(5),RET(5),RK(5),RL(5)

DIMENSION XX(5).YY(5).B(3,14),EM(3,3) ENXK7),ENET(7)

COMMON/Q4/EN(5) JACOB(2,2)
COMMON/GLOB/X(640),Y(640),A(640),E(640), NU(640), T(640),D(640)

DATA RXV-1.,1,,1.-1,, LARET/L L -1.,1.,0,, 0
DATA RKA,,1,,1,,1.,0./

RL(1)=1.

RL(2)=1.

RL(3)=0.

RL(4)=0.

RL(5)=-2,

IF(NORDER .EQ, 4) THEN
RL(1)=0.
RL(2)=0,

END IF

CALCULATE THE SHAPE FUNCTIONS AND THEIR DERIVATIVES

DO 20 L=1,NORDER
Fl=(l. + RXKL)*XI)
F2=(l. + RET(L)*ET)
Fim(l. - XI*XI)
F4=(1. - ET)
EN(L)=RK(L)*F1*F2/4, - RL{L)*F3*F4/4,
ENXI(L)y=RK(L)*RXI(L)*F2/4. 4+ RL(L)*XI*F4/2,
ENET(L)=RK(LY*RET(L)*Fi/4. + RL(L)*F3/d.

20 CONTINUE

Cc
c

C

C

COMPUTE DERIVATIVES OF INCOMPATIBLE MODES

MORDER = NORDER

IF(INCOMP .EQ. 1} THEN
LMIN = NORDER + |
LMAX = NORDER + 2
ENXKLMIN) = -2,0D0*XI
ENET(LMIN) = 0.0b0
ENXKLMAX) = 0.0D0
ENET(LMAX) = -2,0DO*ET
MORDER = LMAX

END IF

NSIZE = 2*MORDER
DO 40 I=1,3
DO 40 I1=1,NSIZE
B(1.1)=0.0D0

40 CONTINUE

JACOB(1,1)=0.0D0
JACORB(1,2)=0,0D0
JACCB(2,1)=0.0D0
JACOB(2,2)=0.0D0
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C FIND JACOBIAN AND REPLACE IT BY ITS DETERMINANT

c
. DO 60 L=1,NORDER

JACOB(1,1)=JACOB(1,1)+ENXI(L}*XX(L)
JACOB(1,2)=JACOB(1.2)+ ENXKL)*YY(L}
JACOB(2,1)=JACOB(2,1}+ ENET(LY*XX(L)
JACOB(2,2)=]JACOB(2,2)+ ENET(L)*YY(L}

60 CONTINUE
DETJAC=JACOB(1,1)*JACQB(2,2)-JACOB(1,2)*JACOB(2.1)
F5=JACOB(1,1)/DETJAC
JACOB(1,1)=JACOB(2,2)/DETJAC
JACOB(1,2)=-JACOB(1,2)/DETIAC
JACOB(2,1)=-JACOB({2,1)DETJAC
JACOB(2,2)=F5

C

C FORM STRAIN-DISPLACEMENT MATRIX B

C
DO 8¢ J=| MORDER
L=2%}
KmL-1
B(1,K)=JACOB(1,1}*ENXI(J) + JACOB(1,2)*ENET())
B(2,L)=JACOB(2,1)*ENXI{]) + JACOB(2,2)*ENET(})
B{3,K)=B(2,L}
B(3,L)=B(1,K)
80 CONTINUE
c
RETURN
END
c
SUBROUTINE REL(NELEMI1,NELEM2,N1,N2,N3,N4,N5,N11,N22,N33,N44,N55,Q)
C

C MID-SIDE NODES OF ADJACENT QUADS ELEMENTS SO THAT NORMAL AND SHEAR
C STRESSES WILL BE CONTINUOUS AT THAT INTERFACE
C

. C SUBROQUTINE FOR ESTABLISHING THE LINEAR RELATIONSHIP BETWEEN

IMPLICIT REAL*8 (A-H,0-Z)

DOUBLE PRECISION NUA ,NUB,NU

DIMENSION XA(5), YA(5),XB(5), YB(5), TRAN1(2,3),BA(3,14),BB(3,14)
DIMENSION EA(3,3),EB(3,3),PRODI(3,10), TRAN2(2.3),QA(2.10),QB(2,10)
DIMENSION Q1(2,2),Q2(2,12),Q(2,12},XX1(5), XX2(5).YY 1(5). YY2(5}
INTEGER NELEM1,NELEM2,N1,N2,N3,N4,N5,N11,N22,N33,N44,N5§

COMMON/GLOB/X(640), Y(640),A(640), E(640), N U(640), T(640), D(640)

Pl=DACOS(-1.0D0)
DETJAC=0.0D0
XX1(D=X(N1)
XX1(2)y=X(N2)
XX1(3)=X(N3)
XX 1(4)=X(N4)
XX1(5)=X(NS)
YYID=Y(NI)
YY1(2)=Y(N2)
YY1(3)=Y(N3)
YY1(4)=Y(N4)
YY1(5)=Y(N5)
XX2(1)=X(N11)
XX2(2)=X(N22)
XX2(3)=X(N33)
XX2(4) = X{N44)
XX2(5)=mX(NS5)
YY2()=Y(NI1D)

123



YY2(2)=Y(N22}
YY2(3)=Y(N33)
YY2(4)=Y(N44)
YY2(5)=Y(N55)

CALL TRANSF(NELEMIL, XX1(1}, XX1{2), YY1(1),YY1(2).TRAN1,2,3)
CALL TRANSF(NELEM2 XX2(1),XX2(2),YY2(1}.YY2(2),TRAN2,2,3}

X1=0,0D0

ET=-1.0D0

CALL SHAPEF(XI,ET.XX1,YY1,DETJAC,BA,5.1)
CALL YOUNG(EA,E(NELEMI1),NU(NELEM1),3,0)
CALL SHAPEF(XLET,XX2,YY2,DETJAC,BB.5.0)
CALL YOUNG(EB,E(NELEM2), NU(NELEM2),3,0)

onon

CALCULATE QA AND QB MATRICES

CALL MATMAT(3,3,10,EA,BA,PRODI)
CALL MATMAT(2,3,10,TRAN1,PROD1,QA)
CALL MATMAT(3,3,10,EB,BB,PROD1})
CALL MATMAT(2,3,10,TRAN2,PROD1.QB)

[sNeKel

CALCULATE Q! AND Q2 MATRICES

.....

C

F1=(QB(1,9)-QA(1,9))*(QB(2.,10}-QA(2,10))
F2=(QB(1,10)-QA(1,10)*(QB(2.9)-QA{2.9)
DETQ=(F1-F2)
QI(1.1}=(QB(2,10)-QA(2,10)/DETQ
Q1(1,2)=-(QB(1,10}-QA(1,10)/DETQ
Q1(2,1)=-(QB(2,9)-QA(2.9)/DETQ
Q1(2.2)=(QB(1,9)-QA(1,9)/DETQ

DO 80 L=1,2
Q2(L.1)=QA(L,7)
QL.2)=QA{L.8)
Q2(L,3)=QA(L.1)-QB(L,3)
Q2(L,4)=QA(L.2)-QB(L.4)
Q2(L,5)=-QB{L,5)
Q2(L.6)=-QB(L,6)
Q2(L,7)=-QB(L,7)
Q2(L.8)=-QB(L.B}
Q2(L,9)=QA(L,3)-QB(L.1)
Q2(L.10)=QA(L.4)-QB(L.2)
Q2L.11)=QA(L.5)
Q2(L,12)=QA(L.6)

80 CONTINUE

c
C

FORM PRODUCT QI*Q2 = Q

c

CALL MATMAT{(2,2,12,Q1.Q2,Q)

RETURN
END

SUBROUTINE YOUNG(EM,E,NU ,NDIM,NPLANE)

SUBROUTINE FOR CALCULATION OF THE ELASTICITY MATRIX

0O 0NnNno 0

REAL*E E,NU,EM(NDIM,NDIM),COEF1,COEF2

DO 20 I=1,NDIM
DO 20 J=1,NDIM



EM(1,J)=0.D0

. 20 CONTINUE
c

IF(NDIM ,EQ. 3) THEN

IF(NPLANE .EQ. 0) THEN
COEF! = E/(1.D0-NU*NU)
EM(1,1)=COEF1
EM(1,2)=COEFI*NU
EM(2,1)=EM(1.,2)
EM(2,2)=COEFI
EM(3,3)= COEF1*({1.D0-NU)/2.D0

ELSE
COEF2=E/({1.D0-+NU)*(1.00-2.D0*NU))
EM(1,1)=COEF2*(1,D0-NU)
EM(1,2)=COEF2*NU
EM(2.1)=EM(1,2)
EM(2,2)=EM(1,1)
EM(3,3)=COEF2*(1.D0-2.D0*NU)/2.D0

END IF

ELSE

COEF2 = E/((1.D0+ NU)*(1.D0-2.DO*NU))

EM(1.1)=COEF2%(1.D0-NU)

EM(1,2)=COEF2*NU

