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ABSTRACT

The problem of detemining the electromagnetic fields in a dielectric
loaded waveguide is examined in this thesis. It is found that these fields are
governed by the vector Helmholtz equation formed from the axial components
of the electric and magnetic fields, subject to non-homogeneous boundary
conditions. A variational expression is derived for this system and its solution
is sought by the use of the Rayleigh-Ritz procedure. The region of integration
is divided into triangular sub-elements over each of which the trial functions
are assumed to have the same form. The first type of polynomial trial function
used are the general high~order interpolation polynomials and the corresponding
finite element matrices are evaluated. The second type uses the cutoff modes
obtained by finite element analysis as the trial functions. The analysis is im-
plemented by a general computer program and dispersion curves and field plots
of several waveguide configurations are presented. Solutions obtained by this
program are believed to be the most efficient and accurate presently available

for arbitrary dielectric loaded waveguides.
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ABSTRACT

The problem of determining the electromagnetic fields in a
dielectric loaded waveguide is examined in this thesis. It is found
that these fields are governed by the vector Helmholtz equation
formed from the axial components' of the electric and magnetic fields,
subject to non-homogeneous boundary conditions. A variational
expression is derived for this system and its solution is sought by
the use of the Rayleigh-Ritz procedure. The region of integration is
divided into triangular sub-elements over each of which the trial
functions are assumed to have the same form. The first type of.
polynomial trial function used are the general high-order interpolation
polynomials and the corresponding finite element matrices are evaluated.
The second type uses the cutoff modes obtained by finite element analysis
as the trial functions. The anaisrsis is implemented by a general
computer program and dispersion curves and field plots of several
waveguide configurations are presented. Solutions obtained by this
program are believed to be the mést efficient and accurate presently

available for arbitrary dielectric loaded waveguides.
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Chapter 1

INTRODUCTION

1.1 The Nature of the Problem

In a dielectric slab loaded wavegulde, there are, enclosed in a
cylind{rical metal tube, several homogeneous regions of different permittivity.
In each of these homogeneous regions, the electric and magnetic fields
satisfy the homogeneous Helmholtz equation, subject to boundary conditions
that ensure that Maxwell's equations are satisfied on the boundaries.
Consequently, the electro magnetic behavior of this system may be determined
by solving the boundary value problem formed by the combination of these
regions. |

All existing solutions of this problem may be classified into
two types. Historically, the first class of solutions are those which attempt
to determine analytic expressions to satisfy the reqni'rements posed by the
boundary value problem. Although such analytic methbds have the advantage
of being exact, they are restricted to simple geometrical configurations
and do not readily yield numerical values. The second class of solution
methods attempts to circumvent these limitations by obtaining a sequence
of simple numerical functions that converge to the solution. However, at
the present time, all such numerical methods have at least one of the following
shortcomings:

(1) The sequence of approximate soluticns converges too

slowly. Hence excessive numerical computations prohibit
accurate solution.

(2) The method cannot be adapted to any particular geo';netry

or requires extensive algebraic calculation for each particular

problenm.



In this thesis, a numerical method is presented that does not suffer
from these deficlencies. First, in this chapter, the existing solution methods
of the problem are reviewed. In Chapter 2, the variatlonal formulation of the
problem is developed and the general finite element method applied to it. Next,
two distinct methods are developed, one using interpolation polynomials directly,
the other employing the waveguide cutoff modes as trial functions. The latter
will be shown to be an extremely efficient and accurate method for the
analysis of dielectric loaded waveguides of arbitrary shape. Finally, the
computer programs needed for such analysis are presented in the appendix.

1.2 Analytic Solution Methods

The basis of analytic solution methods is to find a coordinate
system in which it is possible to separate the independent variables. Then,
with a clever choice of the field quantities, it is sometimes possible to
cast the equations in a form from which the solution may be recognized. As
a result, only the rectangular waveguide with parallel slabs and circular
waveguides with concentric dielectric regions have yielded analytic solutions
[ 1,2]. These solutions are not in an accommodating form, héwever, because
difficult transcendental equations must be solved in order to obtain a'value
for the propagation constant. For some particular geometric and dielectric
configurations, the results of such caléulations are tabulated or presented
graphically [é] - [6] . For the case of an arbitrary off center E-plane
dielectrically loaded waveguide, Eberhardt has also developed a nomogram to
solve the transcendental equation of the non-hybrid TE modes by using a
graphical procedure [6 ]

1.3 Numerical Solution Methods
Numerical solution methods have become increasingly poﬁular in

recent years because, with the advent of modern computers, numerical calculations
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have become very easy to perform. In all of these methods, the essential

characteristic is the formation of a matrixelgenvalue equation that is solved
for the frequency, propagation constant and fields in the waveguide. The
most generally successful of these methods, both with respect to accuracy

and problem adaptability, are those which employ variational principles.

The first general method for the solution of dielectric loaded
waveguides was reported by Collins and Daly [7] . They used the finite
difference method to discretize the Helmholtz equation for inhomogeneous
uaveguidet and tried to obtain the waveguide propagation constant by solving
a matrix eigenvalue equation of the form I4= YMY. Subsequently Hgnnaford
[8] refined the method by determining the do , t eigenvalue using the )<
stationaz‘j property of the Rayleigh quotient ¥ = éwig >>° Other workers
have used essentially the same techniques to obtain results for dielectric
loaded waveguides contaiming a microstrip conductor [9,10]. However, from
a practical point of view, the finite difference method is inefficient and
unwieldy when applied to dielectric loaded waveguides, The reason for this
is that due to the discontinuous change in dielectric constant, a small
mesh size must be used to get acceptable results and the corresponding
matrix eigenvalue equation is prohibitively large. Furthemore, when the
matrix L is not positive definite, the successive over-relaxation technique
used to solve the matrix eigenvalue equation will not converge in general
and very slow solution methods must be used.

Anofher procedure used to obtain numerical solutions of inhomogeneous
waveguldes is the use of the Rayleigh-Ritz method to minimize variational
expressions, This procedure has been theoretically known for many years and

several simple cases have been solved by it [1 92,11 ,,12:|° Recently, fairly

extensive calculations with this method were published by Thomas [13,11;]
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and by English [15j]. The principal part of this work is the application of
the trial functions r"{cs;: :2} to circular waveguides and of the products
of the sine and cosine functions to rectangular waveguides. The results
indicate that the method produces extremely accurate solutions in those cases
where the trial functions match the geometry of the problem. This, however,
limits each set of trial functions to a particular geometry and produces an
inherent inflexibility in the method because lengthy analytic expressions
must be evaluated for each set.

Useful numerical results have also been obtained with the transverse
resonance technique. In this method, a complicated w#veguide cross-section is
divided into sections for which transverse solutions are known. The Fourier
components of these solutions are then matchéd on the interface by minimizing
a variational expression. Lavik and Unger [16, 17, 18] have calculated
remarkably good values for a rectangular guide with a dielectric insert using
this method considering that they used only the first four Fourier components.

A serious limitation of this method, other than the obvious geometrical one,
is that only half of the eigenvalues are calculated, so that either the dominant
mode or the bandwidth of the structure remains unknown.

There are also two published reports on the application of the finite
element method to dielectric loaded waveguides in the literature. In one paper,
Arlett, Bahrani and 2171'<\1eu1cz [19] treat dielectric loaded waveguides in the Z.’W
same manner as homogeneous waveguides. They do not mention that the electric
and magnetic fields are uncoupled oﬁly at cutoff and that for other values of
propagation constant a more complicated pfoblem must be solved.

In the other paper, Ahmed and Daly [20] derive a very restricted fomm
of the finite element method and déemonstrate that the method produces very

accurate solutions by applying their method to a waveguide half-filled with
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dielectric. However, their work is unnecessarily restricted to special geometries
by imposing a regular mesh spacing and is limited in computational efficiency
by confining their polynomial approximation to first order. Two of the great
advantages of the finite element method are the freedom to fit any polygonal
shape by choosing arbitrary triangular element shapes and sizes, and the
extrefiely accurate approximations provided by high order polynomials. Both

of these advantages are retained in the finite element formulation presented

in this thesis.
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Chapter 2

MATHEMATICAL DEVELOPMENT OF THE FINITE ELEMENT METHOD

2.1 Variational Principles

Variational principles are extremely useful in the numerical solution

methods used for boundary value problems for two reasons. They provide stationary

expressions about a solution and consequently produce very good answers from
approximations that would otherwise be unsatisfactory. In addition, they
furnish simple criteria for establishing how the parameters in any function
set should be chosen so that the answer will be the best posaible.

For the following analysis, it will be convenient to define as the
scalar product of two elements <u| and |v)> of a complex valued vector

function space, a number that has the following four propertieés [21]

(1) <u lv>_=“<\il ud> (2.1a)
(2) Zulavy>=a<lujivy for any constant a (2.1b)
(3) KU+ U | V=KW, | v +< Wl v> (2.1c)
(L) ulu> 20 (2.14)

where equality holds if and only if |u> = 0. Furthermore, define as

.positive definite an operator A if <ujAw> >0 when [ud>#0 and as Hemmitian

(or self-adjoint for real ope:fators) an operator if <ulAv) = {Aulv) = <{u|A|v>.
Then the following theorem may be proved [21]
Theorem: ILet A lu>=Ilf> (2.2)
where A is a linear pqéitive definite, Hemmitian operator and |£>
is a given element., Then if (2.2) has a solution it is unique, and is the
one and only element that maximizes the functional
Fevy = <F IV +<v i > =<V [AIVD (2.3)
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Proof: (1) To prove that only one element may satisfy (2.2) suppose that
|, and |u,> are both solutions and let 1Z)>=. lu, = u,> . Then
AlZ)> = 0,80 that{Z|AlZ)> = 0. Since A is positive definite, this
implies that [Z> = O or that |u> = |u) .
(i1) To prove that the solution of (2.2) maximizes (2.3), let VD = ju = h).

Then
Fow — Fovy = <ETRY+<h IS = thiIAT W — WA +<h AR

=<f — Aulh> +<hif —A W +<hIATRK

=< hlAIRY
Consequently, if |h> > 0 then <h|Alh>>0 and F (u)>F (v).
(1i1) The converse property of the theorem is that if \u) makes F (v) a
maximum, then iu> is a solution of (2.2). This means that for any real

parameter € and any fixed element |7> , F(v)= F(u +€'I\) is stationary:
0 =[&Feureni, (2.1)
=<l +<918> —<NIAW> - <UlAIn

=<f—Auln> +<1E -AW

The same procedure with the element | 37> ylelds

0 =<f -Aulp — <N ¢ -AW
Adding this to the previous equation, there results O = <% - Adln>,
Since 17> is arbitrary, it follows from the fourth
property of the scalar product that
O=I1fF-AW
Similar theorems may be derived for general operators [21] s
although it is not possible to guarantee that (2.2) has a unique solution.

In particular, if the condition that A be positive definite is removed,

the following theorem holds [21] .
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Theorem: If A 1is a Hemitian operator, the one and only element which
makes the functional (2.3) stationary is the function |v> = lu)> where
|u) 41s the solution of (2.2).
Proof: The proof that if F(u) is stationary then lu) is the solution of
(2.1) is identical to part (iii) of the previous theorem. The rest of the
theorem follows from the definition of the functional (2.3) end the properties

of the scalar product:

[a% F(u remle, =< € 1> +<UE> -~ <UAInY = <AL
=<F - Auln> + ML E =AW
=<0IM> + <M 10>
= 0
In order to solve the variational expression (2.3) approximately for the

solution of (2.2) the Rayleigh-Ritz procedure may be used. Consider trial
functions of the form

V> =3 celvey (2.5)
where the ilv;}} are any set of linearly independent elements of the function
space and the {C:} are real rumbers. Then (2.3) will be stationary if the

expressions {%—E‘} are set equal to zero. In terms of (2.5), the functional is

F(v>=}['_ cidflvy +3 ckvel &y - % C:C3< VALV

Therefore

F
56 T <FIVMO < -3 Crdvil AV = 2 CsCvd ALY

~2Relcwl®y - c<wlalvd} =0
Consequently the 'Bayleigh-Ritz equations are obtained

n
<WKIE> = t’z=| C: <V ALY Jk=1,..,N (2.6)
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If the lvi> are chosen so that <v;lAl v = &; , the Rayleigh-Ritz
equations simplify to
<l §> = ¢y JK= 1, N (2.7)

and the sodution of (2.2) is

\uy = Li:' Celvey = Z_| IVed<v, > (2.8)

¢

Since any function may be expanded as
(2.9)

-} o0
Uy = 2 Ivordvel Aluy = 2 IV <vel §)
if the {W;)} form a complete set, it can be seen that the Rayleigh-Ritz
equations merely approximate the first n terms of the exact solution.
In fact, it is not difficult to show that for a Hermitian operator,
the Rayleigh-Ritz procedure produces the best approximation in a least squares

sense, i.e., so that

“Zn C:AlveY - \Q)\\z

=1

(2.10)

is a minimum, This norm will be a minimum when the {c;} are determined by
projecting |£> on to the subspace spanned by the vectors {A\VD}.
Let P be this projection operator. Then the projected element, P | £> ,
may be expanded in the {A ! Vz)} :
(2.11)
Pi£> = 2'% CtAIVD

Taking the scalar product of both sides with {Vy| , this becomes

(2.12)
€ <VulAT V>

n
SWIPIEY = <V | & = £ ¢
which are the Rayleigh-Ritz equations for (2.2). Therefore, minimizing
the functional (2.3) by the Rayleigh-Ritz procedure yields the best possible

solution to (2.2) using the vectors {IV;>} .
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2.2 Boundary Conditions and Functional Formulation

In order to derive a variational expression for axially unifomm,
dielectric loaded waveguides, the behavior of their physically realizable
electromagnetic. fields must be examined. These fields are governed by
Maxwell's equations and are assumed to vary sinusoidally in time and in the

direction of propagation

N N Jwt + 5 p2 (2.13a)
H = H(X’U) e

jwt + Bz (2.13b)

-—

E = E(X,g) e

With these simplifications, the source free field equations are [22, 23]

aEz . ) (2.1’4&)
55 = JBEs - juph
(2.1k4b)
o . .
5%2 = JBE, + jwpHy
(2.1ke)
. _ oE oE
jusp Hz é_g_x _ 5_3(_3
(2.1kLd)
a_gjz-_— 5(3H3 + jwe E.
H (2.1he)
gX 2= :)@ Hx - Jwe Es
H " (2.1Lf)
. o
ywe E.= a'—x Y A

From (2.1ha) and (2.1he), it is evident that if E, and H are completely
known, then Ey and H_ can be deduced and from (2.14b) and (2.14d) that

Ey and Hy are determined. Hence, the determination of the electromagnetic
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field reduces esqentially to finding the two quantities Ez and Hz . A3 a
consequence of this, a variational formula containing all six field components,
such as Berk's [2)4] s requires three times the necessary calculation and the
three component formula used by English [15] s while much more efficient,
still requires excessive computation.

If the transverse field components are eliminated from (2.1k), it
is found that in a homogeneous region the axial components satisfy the

homogeneous Helmholtz equation

(72 @)Y =0 (2.15)
Where ’
A= = (2.16)
H;
k2 _ W ep __(32 (2.17)
2_ 3° 2° (2.18)
Vi= S toaw

In order to derive an equation that may be used at a dielectric interface,
let O and 2 be orthogonal directions tangent to the interface and let n
be normal to them.

Then, from (2.1} a,b,d,e)

lu JwEN ) (2.19a)
bt e e
B,2E_ g ) (2.19b)
R 55 T Ci?%’- Ey - L%Zﬁ"‘\n
Upon adding this becomes ™
(2.20a)

M oK oFE, -~ _ )
k2§—nz+5@@—5€ -~ ks
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Similarly
€k, _ B aH, _ 3 (2.20b)
K* oan bk 33 = W i
These two equations may be put in the concise form [25 ]
1LY - £ 1ov ' (2.21)
M 3n _wk"’Jﬁ +C335%‘
Where :
€ O
M -( > (2.22)
o M
0 1 ‘
J -( ) - (2.23)
-1 0
E
5 - ( :r> (2.24)
Hy

=1a

The importance of this equation is that ¥ and 55 are contimnuous across

the boundary even if € and M change discontinuously there. (That the latter
is continuous may be seen from (2.19b) if one recalls that Eyy= Ey, and

}A. Hp = P He, ). Tt may also be observed from this equation that on a metal

boundary where E4 and E, are zero, o H, is zero,

an
In order to be able to use (2.21), define
D = M (1+ T%? ) | (2.25)

and write the wave equations for a homqgeneous region t as
D IV) = o (2.26)
The operator D is self-adjoint and the functional
(2.27)
F($) = <ol Dl ¢p=< DM D> + <DIMT DD

is stationary if and only if [¢) = (gt)- |4p> . Using a suitable integral
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definition for the scalar product, the functional at the stationary value

may be written as

t t
Green's first theorem states that [26]
(2.29)

(v ™MPudt = - (Vv ™. Tdt + v MY de
t t <

and the functional for the union of many homoggpqous regions will be the
sum of the contributions from :‘Ech
| - (2.30)
FR vy = % Ft o
Therefore the functional for an:dielectric loaded waveguide is
- (2.31)
Fe &9y = g\"l'—rl"l'\l( dR -é -‘\;;VA{'TM-V%R +§> ﬁg«y*m%i”h drt
where the integration is over the whole waveguide cross-section R and around
all of the boundaries [’ of each-swbregion. Using (2.21) on the boundary

integral gives
(2.32)

] hymBdr=LowT 128 ar + 56v T¥ar
r r r
Consider the second integral on the right

side of this equation. If external boundaries are qv
either metal, where E, and Eg, vanish, or lines of | “b
symmetry, where Hz and H, vanish, then this boundary Figure 2.1
integral is zero around the external walls. Furthermore, it can be seen from
Figure 2.1 that all of the internal boundaries are to be travelled twice, in
opposite directions. Since the values of ¢4 and ¥ must be continuous, there is

no contribution to the functional from this integral. The remaining boundary

integral is
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B4y I B B e 2B o
r 3 :
This integral contains all of the boundary conditions for dielectric loaded
waveguides. Notice that this integral is zero on external boundaries and
on internal boundaries across which k; does not change. At cutoff, i.e. when
@ = 0, the boundary contribution to the functional is again zero and when
it is zero, the electric and magentic fields are uncoupled.

This line integral may be converted into a surface integral by

using the vector identity. [26]

§ (Uvv)ds = )(Tuxvv).dt
¥ t
Then, in the formal scalar product notation of (2.27), the functional
expression for dielectric loaded waveguides may be written as
(2.35)

Fal® = <OMIG +<TI 5 1C, - faM| v

where C, is the operator producing the z component of the cross product.

In integral notation, this equation reads

Fe (&):g{@gdﬁdt +Nt§¢i dt - %§V¢2-V¢kdt (2.36)

- % gVGDh'Vth +2%‘|l<'{z§(<7 deVd),)-azdt
t

This functional has also been independently derived by Ahmed [27] °

The natural boundary conditions of this functional can be obtained
by using its stationary property about the solution to (2,25) and imposing
the conditions contained in (2.21) [28, 29] . Although it may not be obvious,

such a procedure reverses the steps used to derive the functional and, therefore,



15
will reproduce the boundary conditions that were built into it. In both
cases, the natural boundary conditions that result are homogeneous Neumann
for a field quantity, either E, or H, , not specified on the boundary.

2.3 The Rayleigh - Ritz Procedure

In order to solve (2.26) by determining the stationary condition
of the functional (2.35), the Rayleigh-- Ritz method may be applied.

As outlined in section 2.1, the procedure is to write

ce) D@ (2.37a)
d) = LZ—; (b[ O(;(ng)
(2.37b)
n h
(h .
=2 b Xy
and set 9F and 3F equal to zero. The first and second tems of
=70 SeM
(2.36) yield" ‘
ce) .38
5 “"’SZ B o, oc; dt =23 & foq o, dt (2.382)
(2.38b)
(R (W
——mgi o) ¢ " ¢ dt .-? Cbz gcx;o()dt
and the third and fourth give
(2.39a)
S6¢ S 2 ¢ ¢ ), Vv dt =25 CbU gvuuvcxkdt
o) W | ¢k N (2.39b)
( )]
553& ZCP VO<[-V(7(3dt=22 Cb‘- SV(X; X dt
The last term has both derivatives
(2.40a)
2 @ vy X Q
362 S 5 605 04 TS - oy 3¥)ds —2 % § 008 - ot 3%l
(2.40b)

), W

P ATE RPN L - NV



Therefore, the Rayleigh - Ritz equations are

acbf“o Z{ZE;ZT\MP@ 2 St ZS (c\

_%m_o Z%z/utz'r Cb() ZMtZSkL N

where

Ski = | Tk + VX dt

Tep = ) X, dt

Il
&+ Thlemmy

Uki = § (mk'%f’o\; —O(L' ag(k)dﬁ‘
b3

16

5 (2.41a)
+5 @3 Ugds
(2.41b)
%Zgé;\)ck ?ﬁ}
(2.42)
(2.43)
(2.4h)

These equations can be cast into matrix form if the following vector and

symmetric matrices are defined

€‘t.Su e €tgm

e Sr\\ ...etSV\V\ —%u“\

(2.45)

- & U,

e —~§ (2.146)

-
I
N
rI-WMIKM

_%U” e s -—%'E)M

$u e

ptgu ce

Pt SV\\ e

Pe S,

}At’ Srm
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€t—ru PR et _r;n
: : 0 (2.47)
€ —rn oo 0 € -I:m *
n _ t_ny t
Jd = Z )‘t—m e }*t-T:n
0 : :
))\me ".N*Tvm
s
Here k3 = WZEQ/-AG ’ 8 = % and {—} = QT:_? « With these
definitions, (2.41) becomes ‘
(2.48)

0y » = kK& =

For any value of phase velocity this is a matrix eigenvalue equation that
may be solved for the frequency of propagation and the field distribution

in the waveguide. In a homogeneous waveguide, or at cutoff, the off-diagonal
matrix sections of % are identically zero and (2.48) reduces to the

equations used in the finite element fomul&ion of homogeneous waveguides.[30,31].

@ ' (bu’“ (2.49)
¢,

¢m)°’ b= ;m

So=kTo ,<b=(

n

Therefore, with the Rayleigh- - Ritz procedure, the physical coupling of the
electric and magnetic fields on the dielectric interface has been converted

to the coupling between their corresponding matrices.
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2.4 Triangular Finite Elements

The Rayleigh - Ritz expansion that led to the development of (2.48)
has been performed with an arbitrary set of trial functions {D(i()(,\ﬁ)} R
subject only to the conditions that they be lineRrly independent and that the
operations performed on them be defined. However, for each set of trial functions
that is chosen, the integrals in (2.42) - (2.4li) must be evaluated and, as a
practical matter, it is wise to choose trial functions that minimize such
calculations.

The basic idea of the finite element method is to split the reglon
of integration into a number of simple elements. The integration over each
element of some particular sets of trial functions may then be reduced to the
evaluation of a few parameters and the calculation of the total integral may
be performed by a simple combination of these parameters.

These fundamental elements should be chosen to possess the following
properties:
(1) The number of parameters due to the element ahapg_should be as small as

possible.

(2) It should be possible to divide any geometrical region into these elements,

at least approximately.
A triangular element of arbitrary shape and size best satisfies these

two criteria. Therefore, the trial functions used in finite clement analysis

are written in the following form

@ % n @ +
Cb = Z dDZ 0( : (X,g) (2.50)
t=l =l
where o(f (X, 4) is defined to be zero if (x,y) is not in triangle t.

In order that trial functions of the above form be meaningful when
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Aa
applied to a functional, it is necessary that they-heve-contirmrous derivatives

of order one less than required in the functional they are applied to[32, 33 [
The functional derived for dielectric loaded waveguides requires one
differentiation., Hence, the trial functions in (2.50) must be contimious but
Mayapossess discontinuous derivatives. In physical temms, discontinuous
derivatives that are not infinite along a line do not affect the value of the
functional because it is integrated over an area.

In order to facilitate calculations over triangular elements, it
is convenient to write (2.42) in temms of homogeneous triangular or trilinear
coordinates. They are defined as the ratio of the distance from each side
of a triangle to the corresponding altitude [3h, 35, 36] . Each may be written

in termms of the Cartesian coordinates of the three triangle vertices as

Zz = 'ﬂ}' (Q; + ;X + Cey) (2.51)
where
by = Yy -y, (2.52b)
C: = X¢ — x; (2.52¢)
Xi i o1
A triangle area = 1/2 | X}J Y3 1' (2.53)
Xy Y, 1
and are related by the relationship
(2.54)

o+ 7, 4%, =
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By changing the variables of differentiation to triangular coordinates,

(2.42) becomes [37] .

S =§‘;&§ (b, b+cc)8§-%i?
t

Q

Xq 4 (2.55)
z ¢

|

Pq

v

From the properties of a triangle, it is found that

| A (2.56a)
b: by + Cicy = -2A cot B, , 7]

(2.56b)

~¢ N

2 A(CO" 93 + cot ek)

i

b + ¢

where 9‘- is the included angle at vertex i. Using these relationships,

(2.55) may be written as

‘ .
>q = "Zi cof 8 Qg (250

=

where

I
f‘f AY( 3%, a;k)('aag? - %%‘:)dt (2.56)

The quantities .‘,t' , A T and UH are independent of any
variable that depends on triangle shape or size. Consequently, the integrations
indicated in (2.43), (2.hl4) and (2.57) need to be performed only once for any
set of triangular trial functions. Once they are evaluated, the matrices WV
and §' may be assembled by performing simple arithmetic operations for each

element and, according to (2.50), summing all of the element values.
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Chapter 3
SOLUTION BY INTERPOLATION POLYNOMIALS

3.1 The Conventional Finite Element Method

The family of polynomials is one of the simplest class of functions
to employ as approximating functions [38] and were the first to be applied to
the finite element method [39 s 37] o« It has been found that a set of complete
polynomials may be obtained from interpolation polynomials and, with such
a formulation, many of the finite element calculations simplify.

Polynomial expressions for the potential in an element are required
to be complete in x and y if their form is to be rotationally invariant
(4o, 37] .+ A complete polynomial of order N contains n = 1/2 (N ¢ 1) (N + 2)
terms. As a result, this must be the number of parameters for each element
in (2.50). It has been stated that the trial functions should be continuous
across element boundaries. In order to ensure this condition, the two
Nth order polynomials on either side of an element ‘edge must be made equal
on the boundary. This implies that (N 4 1) parameters must be specified
on each side of a triangular element with the remaining 1/2(N = 1) (N = 2)

parameters specified in the interior. Silvester [37] found that the

polynomials
(3.1)
Xk (5, 5,7,) = P(2)Pi(%) Pz
where .
m N -t 4+
P.@ = () 2] (3.2)

Py = |
satisfy these requirements. In addition, these polynomials have the very

desirable property
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K13k (%f, %, §> = 1 (3.3)
if 1,j,k are integers satisfying
j+jek = N , 0£1,3,k<N (3.4)
and
4 3k (_1_ m n) =0 (3.5)
N, N, ¥

if 1,m,n are integers that satisfy (3.4) but have

144 or m¥} or ny¥k (3.6)

The regularly spaced points defined by the triangular coordinates
in (3.3) thus form an interpolation point set. The finite element trial
functions (2.5) are completely specified for the polynomials (3.1) by the
potential. values .f :Z on this interpolation point set. As a consequence
of this property, the coefficients in the Rayleigh -~ Ritz expa.naion which
form the vector 2 have the useful physical interpretation of representing de/@“ .
the potential values of regularly spaced points on each element. Hence, "
each trial function is completely specified by a point value, and the temms
trial function number and point number may be used interchangeably.

Furthermore, a very useful simplf-i.fication can be made. Ordinarily
the use of (2.50) in (2.48) results in a double summation over the parameters
in each element. However, with interpolating polynomials only one parameter
is non - zero in each trial function and only a single summation remains for
each element,

The matrix elements Sy, Tki and U, ; may now be evaluated for
polynomials approximation by using (3.1) and performing the indicated
operstions. As all of the terms are polynomials, the calculations require
the evaluation of the integrals of monomial expressions over a general

triangular area. Expressed in triangular coordinates, these integrals are

the Beta functions [il, 42|
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1-%
B(mel, 2)-S S - m! n! 3,
(n(‘:\—»\l;* o Jo L3 g2 47,4, (Wemez) (3.7)

and tabulated values are available [h3] .

Moreover, the matrix .elements S)q and Tki have been used to
solve the homogeneous Helmholtz equation and are therefore known and
tabulated [37] for polynomial approximations up to fourth
order. In order to evaluate the remaining elgmgnt, Upy » an expression
must be found for the tangential derivatives in (2.4h). This may be
obtained by finding the derivative of the polynomial (3.2)

2 - ——
z N
= 0 s Mm=0

and using the relationship
p +%q =1 (3.9)

valid on triangular element edges. After a little algebra, it follows that

the derivatives on the edges may be expressed as the polynomials

([ PR3 X PGIR_ (-3
N[% N?;,—Hﬁ ~ 2 Nomgy i ] Jk#0,k#N
=y (3.10)
9’3| N(l ﬁ;)-—l."'\
N PN(:;\
N[,_Z_, N?;—Z"'l] 7k’N

The Uys may then be evaluated to any order of polynomial approximation
and for any triangular shape by substituting this expression into (2.L4);)
and integrating the result around the perimeter of a triangle, using

triangular coordinates. Since the number of arithmetic steps required



2L
increases as 3N6 s this task appears at first to be quite formidable.
Fortunately however, the elements of this matrix are antisymmetric and
due to triangular symmetries, behave{ as a group modulo three. It is also X
apparent that the diagonal elements and those between two interpolation
points not on the same side must be zero. As a result, the number of
different matrix elements for each order of pclynomial approximation is

reduced to

1/L (N2 & 2N « 1) 1f N is odd (3.11a)
1/h (N2 « 2N) if N is even (3.11b)

The U matrix values have been computed up to fourth order
polynomial approximations and are presented in ”table 3.1 . These
matrices have also been independently computed by Daly [b,h] . Once
the matrix element values are computed, the assembly and solution of (2.48)
can be easily coded and performed by an automatic digital computer.

3.2 Computer Program and Results

A general computer program has been written to analyze dielectrically
loaded waveguides by the conventional finite element method and a listing is
given in Appendix 1. The program requires as input only the desired values
of phase velocity, the coordinates §f the numbered triangle vertices and
a list of the vertex numbers for each triangle. It is difficult to ascertain
the number of triangles that may be fed in using 100 K bytes of immediate
access memory because this number depends on the topology of the system.
Generally, the limit 1s about fifty first order triangles or about five
fourth order elements; these estimates may be doublgd if only cutoff values
are required. Of course, if for scme reason more points were required,

another partition of cone storage could be allocated by simply increasing
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the dimensions on the first card.

In the subroutine READIN, the computer generates the additional
points required for high order polynomial approximation and renumbers all
of the points so that Dirichlet points are listed ‘at the upper end of the
vector 22 .. The remaining READIN function is the calculation of the four
paremeters, the area and the three included angle cotangents, necessary to
specify the triangular finite element geometry. Once evaluated, the
remaining computer memory may be cleared to allow for the ¥ and &
matrices.

These métrlces are assembled in the subroutine AéSFMB from
element values contained in the block data subprogram. Since the U
matrix sections are zero at cutoff, in this case provision is made to
solve for the electric and magnetic fields separately with a considerable
saving of computer time. The only complication in the assembly routine
is the need to intercﬁa.nge point numbers on the boundary where the electric
field satisfies Dirichlet ‘conditions and the magnetic field is Neumann, or
vice versa. This is, however, taken care of fairly simply with the
numbering scheme obtained from the READIN routine.

The matrix eigenvalue problem is solved by a procedure that
has become fairly standard and, in fact, the routines are more or less
borrowed from the routines used to solve the homogeneous waveguide préblem
[31] . First, since the matrix § is symmetric and positive definite,

it is possible to perform a Choleski decomposition on &' [L5,46,47 ]

& = goT (3.12)
where G is a nonsingular lower triangular matrix. Hence (2.48) may be
written in standard fom as

AZ = %27 . (3.13)
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vwhere

A= g leygrt (3.14)

= clze - (3.15)
The Choleski decomposition is performed by the subroutine CHOLOW and the
inversion of G and multiplication ¢ lwg are done by the subroutines INVLOW
and GAGT respectively.

The solution of the matrix eigenvalue problem (3.13) is performed
by Householder tridiagonalization of the matrix A followed by the method
of bisection to locate the eigenvalues [hS,hé] . These operations are
performed by the subroutines TRIDIA and BISICT. Although the solution
algorithms involved are rather complicated, this procedure is the most
efficient method presently available for a general symmetric matrix. One
useful advantage of this procedure, due to the Sturm sequence property
of the determinant of a tridiagonal matrix, is the ability to detemmine
the value of any eigenvalue of the matrix. Since only the positive eigenvalues
are desired in (2.48), the program determines the number of non=positive
eigenvalues and proceeds, in most cases, to evaluate the next fifteen. If
no eigenvalue is positive, a message is printed and the program advances
to the next data set.

Next, the eigenvectors of the tridiagonal matrix are detemmined
by Wielandt iteration [L4S] in the subroutine WIELNMD, As the eigenvalues
are accurately known, a very strong dominance of the proper elgenvector over
the others exists, and only two passes are required to achieve full accuracy.
The subroutine REVERS then performs the reverse transformation to convert
these elgenvectors into the elgenvectors of the full matrix A. Subsequently,
TRIMUL computes the eigenvectors 22 by using the matrix GTM1 still stored
in memory. ~

The remaining subroutines given in Appendix 1 are needed for the
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solution procedure 'deve}oped. :.i.nl the next chapter and will be discussed
there. Aithough they are incorporated in this program, they do not affect
the solution, The entire package has been molded into a unit that requires
comparatively little memory and performs with outstanding efficiency and
accuracy.

Dispersion curves may thus be obtained by plotting the dominant
eigenvalue at different values of phase velocity. Fiéurés 3.1=3.2 contain
dispersion curves obtained by finite element analysis for some waveguide
configurations that have been solved by using other methods. The values
are remarkably good throughout the curves and any difference is attributable
to difficulty in reading the dispersion curves from the refergnges,

As with any numerical method, the question "What is tile solution
accuracy?® must be answered, This is perhaps conceptually most easily
accomplished by considering a rectangular waveguide divided into four
fourth order triangles. Along.'the centerline the first electric mode
(T;4) is theoretically known to be half of a sine wave. In the finite
element analysis, this wave is approximated by the best four fourth order
polynomials possible, Clearly the difference between the two curves is
extremely small and, due to the variational formulation, the error in the
eigenvalue is even less. In fact, if the computations are performed on a
computer with 24-bit maubissa, it is not possible to distinguish between
the two, as all errors can be traced to round=-off error [31] .

The field in a more complicated waveguide configuration is no
longer a sine wave but as long as the region contains no re-entrant cormers,
it is still well-behaved. As an example, the first ten eigenvalues of the

waveguide in Figure 3.2 were evaluated twice, once with half the number of

triangles in completely different configurations, and their values y{ X
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differed only in the seventh significant figure. Therefore, the accuracy
of the solutions obtained by finite element analysis of dielectric loaded
waveguides is limited by the same process that limits all computer solutions:
round-off error accumlation due to a finite word length.

One of the problems encountered in plotting dispersion curves
is the selection of the correct eigenvalue. For values of § less than 1/c,
all eigenvalues are real and the dominant eigenvalue is the first. An
exception is the case of pure Neumann boundaries, where the dominant
eigenvalue is the second,’V¥ = O being a trivial, non-physical solution of
the Helmholtz equation in this case.

At §=1/c, (2.48) is not defined; this corresponds to the case
where k = O in the Helmholtz equation and the fields are governed by Laplace's
equation. For values of © close to 1/c only those regions with EpMy= eo }40
will contribute appreciably to U but, so long as no overflows are
encountered, (2.48) is still valid, and good results are obtained, as
indicated by the dispersion curves.o

For § greater than 1/c but less than €;4; the regions with
€M will produce negative contributions to %/ and usually about half of
the resulting eigenvalues are negative. The first real eigenvalue then
corresponds to the dominant mode, except for some values of § near €y,
where some smaller real eigenvalues appear. These extraneous solutions are
troublesome and their properties will be examined below,

At § = €y the same problem occurs as at §= €M, and for §
greater than €10, all eigenvalues are negative.

This behavior of the elgenvalues can be explained theoretically
by examining the nature of the functional (2.33).

The first tem
3 S(etng ¢ pyH2 ) dt (3.16)
t
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is positive definite and the last

s 1 §(e,|\vE12 s plvm, | D) at (3.17)

v K2 %
is either positive semi~definite or negative semi-definite in each reglon,
depending on the sign of kE . The remaining term is a boundary integral
that, in physical terms, cammot add energy to the system. Between cutoff
and the first singularity, k% is always positive. Hence, the solution is
unique there, except for the case of pure Neumann boundaries where V=
constant is possible.

Slightly above the first singularity, some values of kg are still
positive but others are negative and the total functional is indefinite.
Consequently, in addition to the true solution, extraneous, non=physical
solutions are possible. Although they cannot be eliminated mathematically,
extraneous solutions may be detected by their non-physical behavior [12] o
A plot of the field solution provides a good, if somewhat tedious test,
since the dominant field in a physical waveguide has an easily recognizable
convexity.

As the value of $ is increased, the magnitudes of the positive
contributions increase and the magnitudes of the negative ones decrease.

The functional never becomes definitely positive but there are, correspondingly,
fewer extraneous solutions,

Beyond the final singularity, all values of k% are negative and
the operator is negative semi-definite. All eigenvalues are negative and
free propagation in the waveguide cannot exist.

An interesting mathematical property of the matrix may be ascertained
by considering a waveguide in which the direction of propagation is reversed.
Physically, the waveguide modes are not changed and so the eigenvalues and

eigenvectors of the matrix must be the same, However, this corresponds to
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changing the sign of § -@/w and, consequently, of the off-diagonal matrix
sections. Hence, the antisymmetric elements Up; may be assembled with the

incorrect sign without affecting the properties of the matrix.

Finally, Figure 3.3 contains an example of the solution of a
problem that has important practical applications [9,10] . The configuration
is a microstrip conductor on a dielectric surface and surrounded by a zero

potential surface.



Figure 3.1: Normalized phase-change coefficient as a function
of angaéar frequency for a half-filled rectangular waveguide.
€= 2-,4
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Figure 3.2:

—— Lavik and Unger [17]

Dispersion curve for a waveguide partially
loaded with dielectric.€~=3.00
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Figure 3.3: Dispersion curve f&r a microstrip conductor on a
dielectric with ¢73.58 and surrounded by a zero potential
rectangular box.
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Chapter L
SOLUTION BY ORTHOGONAL FUNCTIONS

L.1 Waveguide Mode Expansion

Although the conventional finite element method as developed in
Chapter 3 represents the first practical solution method for general
dielectric loaded waveguides, it has a serious deficiency: to obtain a
dispersion curve, the same geometric problem is solved many times with
no attempt to utilize previously computed results. In this chapter, a
method is developed for expanding the fields above cutoff in temms of
waveguide modes. This method will be shown to be much more efficient
for treating the inhomogeneous waveguide problem than the conventional
finite element method. A general inhomogeneous waveguide program will
also be described and results for some interesting wavegulde configurations
will be given.

In ordér to present a conceptual picture of the disadvantages
of the trial functions used in conventional finite element analysis,
imagine a representative first order finite element trial function. One
group of triangles rises from the bounded zero potential surface to fom
a pyramidal surface; the remainder is flat. This trial function is very
easy to work with, but unfortunately, is not very closely related to the
field distributions usually found in waveguides. Consequently, many such
trial functions must be used to produce good approximations and a large
matrix eigenvalue problem must be assembled and solved. Furthemore, the
finite element trial functions are not orthogonal (they could be made
orthogonal by lowering the potential reference level) and computational

effort must be spent to assemble and decompose the § matrix.
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In the search to find trial functions that are more naturally
suited to the problem, the waveguide cutoff modes appear to be the ideal
candidates. Each mode is a continuous function that exists exactly over
the wavegulde cross-section and satisfies all of the external boundary
conditions. For rectangular waveguides; they are products of the sine and
cosine functions, in circular waveguides the modes are composed of
Bessel functions, and for other geometric shapes the modes are composed
of functions as yet unnamed by mathematicians. Each of these waveguide
modes forms an orthogonal set of functions. It is possible, therefore,
to expand any function in a series of waveguide cutoff modes, provided
the function satisfies the same boundary conditions. In particular, it
is possible to expand the electric and magnetic fields in a waveguide
at any value of phase velocity in the cutoff modes and, because of their
close physical relationship, relatively few cutoff modes need to be used.

Their most important property, however, is their availability
in the form of finite element approximations. Since the electric and
magnetic fields are uncoupled only at cutoff, the analysis of cutoff modes
may be performed in about one-quarter of the time and with one-quarter of
the fast access memory that is required at any other value of phase velocity.

In such a waveguide mode expansion, it is useful to consider
their orthogonality properties [1,2,48] . A simple proof of some of these
follows directly from the matrix properties of (2.48) if a complete set
of trial functions is chosen. When (2.48) is solved, the eigenvectors Efﬁi),
if properly nommalized, form a basis in which & is the identity matrix
and the diagonal elements of W/ are the eigenvalues k2.

Consequently, the following orthogonality properties must hold for

dielectric loaded waveguides of arbitrary shape:



33

() (4.1a)
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Then, taking the trial functions to be waveguide cutoff modes, (2.L48)
reduces to a matrix eigenvalue equation in standard fomm

i 5| 5 cb““U\ \ e
:ki (L.2)

P S /h) h

>SSy —
£ L5 epy-%P ST
J 4 ,%Cp

‘)
o, (e)

where d)i is now the potential value of the (e)th mode obtained for

point i in triangle t by conventional finite elemént analysis. The

sumMations in this equation cannot be simplified and generally no element

of this form of the W matrix is zero.

A theoretical comparison with the conventional finite element
method is possible, If it is aséumed that the order of the polynomial
approximation is the same\ in both cases,then both sets of trial functions
will span the same function space. Since each method will produce the best
approximation possible in that function space, it follows that the eigenvalues

of the two procedures rmust be identical.
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‘Indeed, it is easy to show that this change of trial functions
represents a change of basis in the N dimensional Hilbert space defined

by the interpolation polynomials. A general modal matrix element Mpq is

given vy
T
S SSS @y ¢ @ .( (p)X m))
M'Pq t 13 (bi i3 ¢J d) mie (L.3)
where Mij is a matrix element for the order of the approximation considered,
(M) is the conventional finite element assembled matrix for N points and

the (}) are Nevectors. If the () are nommalized to 1/N then (4.3) may be

written as

N M (6®) - (m)(q>(q’) (Lok)

Next, choose the () to be eigenvectors of (M) . Then

v Z M (0 = ws (69) (4.5)
and
SOe®) = w(me@) = w(e) (1.6)

Thus, if (¢) is an eigenvector of (M) with eigenvalue v then () is also
an eigenvector of (7])with eigenvalue V.
The beauty of the mode expansion technique is now apparent. By
expanding the fields in terms of their cutoff values, instead of some
physically unrelated polynomials, the matrix eigenvalue equation requires
much less transformation to obtain the solution. Typically, if one works
with a one hundred point set, the conventional finite element method
requires the assembly and solution this large eigenvalue problem. By comparison,

in mode expansion, the highest ninety modes make negligible contribution to
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to the dominant eigenvalue and, consequently, the assembly and solution of

only one matrix of order twenty is required.

4.2 Computer Results
SOttt

The parts of" the computer program listed in Appendix 1 and not
explained in Chapter 3 are designed to analyze dielectric loaded waveguides
by the mode. expansion technique. First the program solves for ti’xe waveguide
cutoff electric and magnetic fields separately, using the conventional finite
element method, as outlined in Chapter 3. These fields are normalized in
the subroutine TNORH aécording to (L4.la&b) and stored in the spaces vacated
by the bulky conventional finite element matrices. The computer then assembles
the matrix in equation (L.2) for the requested values of % in the subroutine
VEE using the S matrix elements evaluated in SMAT. The eigenvalues are
again evaluated by tridiagonalization and bisecﬁion and the eigenvectors
computed by Wielandt iteration. On an IBM 360/75 the analysis for ten
values on a dispersion curve of an 80 point set requires about 90 seconds
of computing time. This is at most 1/20 of the time required for the
conventional finite element solution on the same point set.

For the purpose of checking the orthogonality of the mode solution
obtained by finite element analysis, the modal T matrix was assembled for
several loaded waveguides. With the diagonal terms normalized to unity,
the off-diagonal terms had values of the order of 10->, This value is
considered satisfactory, since the arithmetic was performed using a 24 bit
mantissa. In fact, the elgenvalues of the full eigenvalue problem and the
elgenvalues computed assuming T to be the unit matrix were identical to six
significant figures.

The other assumption made in the preceding analysis, that of using
only about the first ten cutoff modes in the analysis, also passed computational

tests. It is found that the components of modes ten or higher in the dominant
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eigenvector are less than 1% of its major components. Since a variational
method is used, this indicates that very good values for the dominant eigenvalue
can be obtained with this method.

For comparative purposes, both conventional finite element solutions
and cutoff mode approximation solutions were obtained for some particular
geometries. It is found that for most of the dispersion curve, the values from
the two methods are identical to three of four significant figures, but with
much shorter computation times needed with the modal solution method.

In oxrder to check the program results with analytically known values
(3], rectangular waveguides with side and center slabs parallel to the E-field
and with a side slab perpendicular to the E-field were solved. These results
are shown in Figures 4.1 = L.3. In addition, a rectangular waveguide with a
dielectric ridge was solved with different values of permittivity; the results
are compared with those of Lavik and Unger (17) in Figure L.4. Note that all
values are in excellent agreement,

In addition, several waveguide configurations have been investigated
which have not been solved previously. Figure 4.5 shows the dispersion
characteristies of a rectangular waveguide with a diamond shaped dielectric
insert and in Figure L.6 are the dispersion characteristies of a "maple leaf"
waveguide with three dielectric inserts of different permittivities. It can
be seen that by varying the values of permittivity in the three regions,
dispersion curves with different characteristies are obtained. Consequently,
the method can be used in practical applications not only to obtain the
fields in waveguides already built, but also to design waveguides in which
the dispersion curve has some desired form,

The remaining figures contain contour plots showing the field

variation with different values of phase velocity.
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Figure L4.1: Propagation characteristic of a rectangular waveguide
half-filled with a central dielectric slab parallel to E. C,= 2.45
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Figure 4.2: Propagation characteristic of a rectangular waveguide
half-filled with a dielectric slab parallel to E and at one side.€, = 2.45

—— Marcuvitz (3] o modal approximation
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Figure L.h: Dispersion curve of the waveguide in Figure 3.2 with

€ = 15.0.
—— Lavik and Unger [17]
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Figure 4.5: Dispersion characteristic of a rectangular
waveguide with a diamond shaped dielectric insert. €=

10.0

| ] | | ] 1 .
R X Q@ N @
N QV QN — —

o]

w a/c



Figure 4.6: Dispersion characteristics of two inhomogeneous
waveguides with a "maple leaf" cross=section. '
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Figure 4.7 : Field plot of the first electric mode at cutoff for the waveguide -

'in figure 3.2 .




Figure 4.8 : Field plot of the first magnetic mode at cutoff for the

~ ' "maple leaf" waveguide in figure 4.6 1 .
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CHAPTER 5
CONCLUSIONS

The two finite element methods described in this thesis can be
used to determine the electromagnetic fields in dielectric loaded wave=~
guides. Both methods rely on the same variational formulation and both
produce the best possible approximation in their respective function
spaces. However, the mode expansion technique is more naturally suited
to the problem and, as a result, produces field solutions with
greater computational efficiency.

There are two apparent drawbacks in the methods developed in
this thesis. The first is the appearance of extraneous solutions for
values of phase velocity where the functional is indefinite. This
difficulty is implicit in the variational formulation of multi-dielectric
problems and, while such solutions may be detected, they cannot be
eliminated from the procedure. The otﬁer is the impossibility of
exactly modeling waveguide problems with curved boundaries by triangular
finite elements. For such problems, good approximate solutions are
obtained by representing a curved side by a many sided polygon; however,
this detracts from the inherent accuracy and simplicity of the method.

These difficulties notwithstanding, the general finite element
computer program in Appendix 1 provides an accurate, reliable, economical
and easy to use method to solve dielectric loaded waveguides. It is
hoped that its use will facilitate thelr design and that some of the
procedures developed in this thesis wili be extended to solve other

problems in electromagnetic field theory.
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APPENDIX 1

GENERAL FINITE ELEMENT DIELECTRIC LOADED WAVEGUIDE
ANALYSIS PROGRAM

THIS COMPUTER PROGRAM ANALYSES DIELECTRIC LOADED WAVEGUIDES
BY FINITE ELEMENT METHODS. THE WAVEGUIDE CROSS-SECTION MUST
BE DIVIDED INTO TRIANGULAR ELEMENTS, THE VERTICES OF WHICH
ARE READ IN AS DATA. THE USER MUST ALSO SPECIFY THE VALUES OF
DELTA = BETA/OMEGA TO BE USED AND DECIDE TO USE EITHER THE
CONVENTIONAL FINITE ELEMENT METHOD OR THE MODAL APPROXIMATION
METHOD. THE LATTER IS TO BE MUCH PREFERRED SINCE IT IS ABOUT
20 TIMES FASTER AND WILL ACCCOMODATE TWICE AS MANY POINTS.

EACH SET OF DATA MUST BE ARRANGED IN THE FOLLOWING MANNER.
FIRST CARD:

COLUMN 1 * THIS SYMBOL MUST APPEAR AT THE BEGINNING
OF EACH DATA SET.
2=-41 TITLE

45-54 SCALE FACTOR FOR X — IF BLANK, 1. IS ASSUMED
55-64 SCALE FACTOR FOR Y - IF BLANK, 1. IS ASSUMED
65 ORDER OF POLNOMIAL DESIRED - 1 THROUGH 4 ALLOWED
69-70 NUMBER OF MODES TO BE USED ~ USUALLY ABOUT 10
79-80 NUMBER OF EIGENVECTORS TO BE CALCULATED
THE NEXT GROUP OF CARDS MUST CONTAIN THE VERTEX NUMBERS, ONE
AT A TIME AND IN INCREASING ORDER, AND THEIR CORRESPONDING
COOCRDINATES.
COLUMN 2-5 VERTEX NUMBER
6-15 X COCRDINATE
16-25 Y COORDINATE
THIS GROUP OF CARDS IS FOLLOWED BY A BLANK CARD AND THEN
CARDS WITH THE TRIANGULAR INFORMATION
COLUMNS 2-5,6-10411-15 THREE VERTEX NUMBERS FOR EACH TRIANGLE-
THESE MUST BE COUNTERCLOCKWISE

30 THE CONSTRAINT NUMBER FOR SIDE 1-2
31 THE CONSTRAINT NUMBER FOR SIDE 2-3
32 THE CONSTRAINT NUMBER FCR SIDE 1-3

THESE CONSTRAINT NUMBERS ARE:

O FOR NO CONSTRAINT

1 FOR METAL BOUNDARIES

2 FOR EXTERNAL LINES OF SYMMETRY
FIN ALLY, THE VALUES OF DELTA ARE READ IN TEN AT A TIME
COLUMN 2¢499169eeey72 1 FOR CONVENTIONAL FINITE ELEMENT AN/

2 FOR MODAL APPROXIMATION
4=T9ll-14400.974~77 DELTA '

MORE VALUES OF DELTA MAY BE READ IN IF THE NEXT CARD HAS A
+ IN COLUMN 1 AND THE FOLLOWING CARD HAS MORE VALUES OF DELTA.
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C
1001 DIMENSION A{2628),V{2628),T(2628),DIAG{72),SUBD(T2)
0 DIMENS ION AREA{(100),COTNG(3,100) yNVTX{300) 4HT(2,100)
} DIMENSION WSQM15)4IDEL(10)sDEL(LIO} oSMAT(1)sE{1541)yH(1541)yW(1)
1004 EQUIVALENCE {A{466)ySMAT(L1)) y(V{466) sH{141))4T(466)4E(141)),
4 1 (V(1),0(1))
1005 COMMON TsA,V
1006 1 CALL READIN(AREAsCOTNGyWToNVTXoNFIToNPTS,NFREE 4NEL
1 NMAG4NTOTPTys NELMT s IDEL 4DEL y NMODES ¢ NVECT}
007 NMODES = MINO(NMODES,15)
008 NBIG = NPTS*(NPTS + 1)/2
009 REWIND 1
010 CALL SMATRX{SMATCOTNGyNFIT,NPTSysNBIG,NELMT)
011 DD 30 11 = 1,10
012 IF(IDEL(II).EQ.O) GO TO 1
013 IFCIDELCII).EQ.2) GO TO 7
014 IVECT = NMODES
015 IFIDEL(I1).EQ.D.) GO TO 2
0l6 N = 2%NFREE + NEL + NMAG
017 GO T0 3
018 2 N = NFREE + NMAG
019 IEH = 1
c290 3 NERRDR = N%{N + 1)/2
c21 IF(NERROR.GT.2628) GO 7O 50
022 DO 4 I = 1,NERROR
023 VII) = C.
D24 4 T{1) = 0.
D25 CALL ASSEMB{VsTyAREASMATWT yNVT Xy NFREE ¢NEL ¢ NMAG,
‘ 1 NFITyNPTSoNBI Gy NELMT, IEH,DEL(II)) '
D26 DO 5 1 = 1,NERROR
227 5 A(I) = 0.
228 CALL CHOLOW{T,TyNyNERROCR)
229 IF{NERROR.EQ.O)GO TO 6
330 GO TO 51
)31 6 CALL INVLOW(T,N)
132 CALL GAGT(A,T,VsN)
133 GO TO 8
)34 7 N = 2%NMCDES
)35 IVECT = NVECT
)36 CALL VEE(AyEgsHySMATyWT yNVTXyNFIToNPTSyNBIGyNELMT yNMODES,DEL{IT))
137 WRITE(6100) DELA{IT}
)38 .
)39 B8 aLtL 1RIDIACA,DIAG,SUBD,N)
)40 NEIGYV = 15
)41 CALL BISLCT(DIAG»SUBD,yNyLEASTyNEIGV,yWSQ}
142 IF(LEAST.GT«N) GO TO 52
143 DO 9 J = 1,.NEIGV
V44 9 W{J) = SQRTIWSQ(J))
)45 LEAST = LEAST - 1
146 WRITE(64101) DEL(II)LLEAST
47 WRITE(6,102) (JeW(J)J=1,NEIGV)
148 IVECT = MINO(IVECT,NEIGV)
149 DO 21 1 = 1,IVECT
0 CALL WIELND(DIAG»SUBDy Ny WSQUI) W)
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0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
o017
o078
0079
oo8o
oosl
ooeaz
0083
0084
0085
D086
oos7
ooss
ooc89
0090
0091
0092
0093
C094
0V95
0096
0097
0098

&
0
0101
0102
0103

0lo04

10

11

12

13

14

15

16
17

18

19

20

21

24

22

23

1y MOC 4 MAIN CATE = 70087

CALL REVERSUA)SUBDowN)
IF(IOELLIT).EQe2) GO TC 20
CALL TRIMUL(WyToWsN)

Nl = N ¢+ 1
IF(DEL(I1).NEsOQO.) GC TO 16
B9 10 J = N1LJNTOTPT

wlJ) = 0.

IF(1IEH.EQ.2) GO TC 14

JX = NFREE

LEAST = NEL + NMAG

DO 11 J = 1,LEAST

JX = JXx + 1

ViJ + 300) = W(JX)

JX = NFREE
DO 12 J = 1yNEL
JX = JgX + 1

W(JX) = VIJ ¢+ NMAG + 300)
DO 13 J = 1yNMAG

JX = JX + 1

WiJdx) = ViJ ¢ 300)

WRITE (1) (WU(J)oJd=1,4NTOTPT)
GO 7O 21

DO 15 J = 14NTOTPT

H{IsJd) = W(J)

GO 70 21

LEAST = 2*NTOTPT

DO 17 J = N1oLEAST

W(J) = 0.

LEAST = NFREE + NEL + 1

DO 18 J = 1y NTOTPT

H{IsJ) = W{J + LEAST)

LEAST = NFREE + 1

DO 19 J = LEASTNTOTPT

wWlJ) = C. _

WRITE (1) (W(J)eJd=14NTCTPT)
GO 10 21

WRITE(64103) 1

WRITE(64104) (JeWl(J) ed=1eN)
CONTINUE

IFCIDELI I1)eEQ.2) GO TO 30
IF(DEL(II) «NEeO. .OR. IEH .NE. 1) GO TO 24
N = NFREE + NEL

IEH = 2

CALL SMATRX(SMATCOTNGoNFIT,NPTSyNBIGyNELMT)
GO 7O 3

REWIND 1

DO 22 I = 1,NMODES

READ (1) (EC(IyJ)eJ=1NTOTPT)

1271k

CALL TNORM(EvH'AREAvHT,NVTX,NFIT.NPTSoNBIG,NTOTPT,NELNT.NMSCES)

DO 23 I = 14NMODES

WRITE(€4103)

WRITE(69104) (JyE(L9J)9J=14NTOTPT)
WRITE(64105)

WRITE(6y104) (JoeH(I9J)2J=14NTCTPT)
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2105
0106

b} |
d
J109

J)110
111
J112
)113
)114
115

116
17
)118
1119
1120

1121
1122
1123

REWIND 1
CALL SMATRX(SMATCOTNGsNFITyNPTSyNBIGyNELMT)
30 CONTINUE
50 WRITE(649106) NyNERROR
GO TO 1
51 WRITE(6y107T)NERROR
G0 T0 1
52 WRITE(64108)DEL(II)
GO 70 1
100 FORMAT(1H1,40X,'V MATRIX FOR DELTA =',F10.5)
101 FORMAT (1H1,30X,'ANGULAR FREQUENCY OMEGA FOR DELTA =',F10.5//
1 33Xy *{THERE ARE'+I3,* IMAGINARY FREQUENCIES)®//)
102 FORMAT(5(17+E13.6))
103 FORMAT (1H-932X, *EIGENVECTOR NUMBER',13//)
104 FORMAT(5(164F10.6))
105 FORMAT (1H-)
106 FORMAT{*-THE MATRIX SIZE IS TOO LARGE. ITS RANK IS*'I5,* AND NEEDS
1A DIMENSION OF *41I5) ‘
107 FORMAT('-CHOLOW HAS ENCOUNTERED A NONPOSITIVE PIVIT - NUMBER'»17)
108 FORMAT('-ALL EIGENVALUES ARE NEGATIVE - DELTA =',F10.5)
END

TOTAL MEMORY REQUIREMENTS 002160 BYTES
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0001

00

*
0004
0005
2006
2007

008

J009
JO10
JOl1
)012
013
014
)O15
)016
)o17
)al8
19
1020
021
022
1023
1024
025
026
Q27

028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
D44
045
D46
047
048
049
250

SUBROUTINE READIN(AREAyCOTNGyWTSyNVTXyNFIToNEWyNFREEoNEL,
1 NMAGyNPTS yNELMT »IDEL 9 DELy NMODES y NVECT )
DIMENSION IDEL(1)4DEL(1)
DIMENSION AREA(1)yCOTNG(351)+yWTS(2413,NVTX(1)
DIMENSION TITLE(10) ¢ INLIST(3),KONSTR(3)
DIMENS ION XX(25}s YY(25)s NEWVTX(25), NEWDIR(25)
DIMENS ION ND(800)yX(800),Y(800) y WORKX(800) s WORKY (800) ¢4NFR(4)
DATA IBLANKyISTARy IPLUS/1H ylH*y1H#/
COMMON ND9Xy9 Yo WORKX s WORKY 9 XXy YY o NEWDIRyNEWVTX,TITLE

READ(57100+END=49yERR=502 MIND yTITLE +SCALXsSCALY sNyNNsM
IF(MIND.EQ.IPLUS) GO TO 31 :
NFIT = N

NMODES = NN

NVECT = M

IF(MIND.NE.ISTAR) GO TO0 1

WRITE(69101) TITLE

NN =1

READ(5+102 yEND=499ERR=50)IMINDs Ny EXyWHY
IF{MIND.NE.IBLANK) GO TO 50

IFIN.LE.O) GO TO 3

IF{N.NE.NN) GO TO 50

NN = NN+ 1

X{N) = EX * SCALX

Y(N) = WHY * SCALY

WRITE{69103) NsX(NI)yY(N)

GO 10 2

NPTS = NN - 1

REFX = 0.

REFY = 0.

DO 7 I = 1,4NPTS

REFX = AMAX1(REFXy, ABS{X{(I)))
REFY = AMAX1(REFY, ABS(Y(I)))
CONTINUE

REFX = REFX * 1.E-5

REFY = REFY * 1.E-5

DO 8 I = 1.NPTS

ND(I) =1

NV = 0

NN = 0

WRITE(€&y104)

NN = NN + 1

READ(5+1054END=494 ERR=S50)MyINLIST+KONSTRyEX s WHY
IF(M.NE.IBLANK) GO TO 50

IF{INLIST(1).EQ.0)GO TO 14

IFIEX.EQeD.)EX=10

IF {WHY sE Qe Ce JWHY=1.,

WRITE(6y 106) NNy INLISTyKONSTREXy WHY

DO 5 1I=1,3
KONSTR{I)
WTSC(1,NN)

KONSTR(I} + 1
EX
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352

C
61

C
9
10

C
11
12

c
14

13
15

16

18

13

READIN DATE = 70087

WTS(29sNN) = WHY

CALL TRIPTS({X, Y, INLISTy KONSTRy XXy YYy, NEWDIR,
) § NEWVTXys NFIT, NEW)

DO 10 I = 14NPTS

DO 9 N = 1.NEW

IF(ABS(X(I) — XX(N)).GT.REFX)GD TO 9
IF(ABS(Y{I) - YY(N)).GT.REFY) GO TO 9
NDC(I) = ND(IDMXNENWDIR(N)

NEWVTXIN) = I

GO T0 10

CONTINUE

CONTINUE

DO 12 1 = 1yNEW
IF(NEWVTX{I)NE.O) GO TO 11
NPTS = NPTS + 1
X{NPTS) = XX(I)
Y(NPTS) YY(I)
NEWVTX(I) = NPTS
ND(NPTS) = NEWDIR(I)
NV = NV + 1

NVTX(NV) = NEWVTX{I)
CONTINUE

GO TO 4

IF(NN.EQ.1) GO TO 50

NELMT = NN - 1

D0 13 I=1,NPTS
IF(ND(I).EQ.1)GO TO 13
IF(MOD(ND(1I)4+6).EQ.0)G0 TO 6
IF(MOD(ND(I)}y23.EQ.0) ND(I)
IF(MODI(ND(1},3).EQ.0) ND(I)
GO TO 13

ND{I) = 4

CONTINUE

DO 15 I=ly4

NFR(I} = 0

DO 16 I=14NPTS

NFR{ND(I)) = NFR{ND(I)) + 1
NN =0

NFREE = NFR(1l)

NEL = NFR(1) + NFR(2)

NMAG = NEL # NFR(3)

DO 22 I=1,4NPTS

N = ND(I)

GO TO (18519920921)yN

NN = NN + 1

ND(I) = NN

GO TO 22

NFREE = NFREE + 1

ND{(I) = NFREE

GO TO 22

W N
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Lol 20 NEL = NEL + 1

L02 ND(I) = NEL

L GO TO 22

l@ 21 NMAG = NMAG + 1

LO ND(I) = NMAG

LO6 22 CONTINUE

LO7 DO 23 I=1¢NPTS

|08 WORKX({ I} = X(I)

|09 23 WORKY{I) = Y{I)

110 DO 24 1 =1,NPTS

(11 X{NDC(I)) = WORKX{I)

112 24 Y{ND(I)) = WORKY({I)

.13 DO 25 I=1,NV

.14 25 NVTX(1I) = NDINVTX(I))

.15 WRITE(65107) (I4X(I)sY(I)yI=14,NPTS)

.16 WRITE(65108)

17 NN = —NEW

.18 NF = NEW - NFIT

.19 DO 30 N =14NELMT

.20 NN = NN + NEW

.21 NA = NVTX(1l + NN)

.22 NB = NVITX{NF + NN)

.23 NC = NVTX{(NEW + NN)

24 SIZE = ABS{{Y(NB) - Y{NA))IX{X{NC) - X(NA))
1 - (Y(NC) - Y(NAMI*(X(NB) - XI(NA)))

.25 DO 26 1 = 1,3

26 COTNG( IyN) = ({XINC) = XINA)I*(X(NB) - X(NA})
1 + (YI(NC) - YUINA))IX(Y(NB) - YINA)II/SIZE

27 J = NA

.28 NA = NB

.29 NB = NC

.30 26 NC = J

.31 AREAIN)} = SIZE/2

.32 30 WRITE(69109) Ny (NVTX(NN + I),I=1yNEW)

.33 NFREE = NFR(1)

.34 NEL = NFR{2)

.35 NMAG = NFR(3)

36 31 READ(55113) MINDy (IDEL(I),DEL(I)+I=1,10)

37 IF{MINDoNE-IBLANK) GO TO 50

38 IF(SCALX.NE.O.) IDEL(1l) =1

39 RETURN

40 49 WRITE(65112)

41 STQOP

42 50 WRITE(64110)

43 GO 70 1

44 100 FORMAT(A1,10A4 ¢3X92F10.091193X+12+8X512)

45 101 FORMAT(91°//10Xs 10A4// 23X, 'INPUT POINT LIST'// 4X,
1 16Xy *NOL%y 6Xy X%y 13Xe °Y'// )

46 102 FORMAT (Al, 14y 2F10.0)

47 103 FORMAT(20Xs I3, 2G14.6)

48 104 FORMAT(®0Q°// 27Xy 9INPUT ELEMENT LIST® // 4Xs *NO.',

1 17Xy VERTICIES? y9 Xy *CONSTRAINTS',

12718,
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2 3Xy 'CONST-1%, 4Xy *CONST=2'//)

.49 105 FORMAT(A1:5144+215914X¢311928X92F10.0)

.5 106 FORMAT(3X3I34517Xy313+13X931242G13.5)

é 107 FORMAT (°1°//7/20Xy °ASSEMBLED POINT LIST'// (2X, I3, 2Gl3.5,
1 1169 261359 1164 2G13.5))

.52 108 FORMAT('0°// 28Xy °ASSEMBLED ELEMENT LIST*// 3Xy 'NO.‘',

‘ 1 25Xy *VERTEX NUMBERS'//)

.53 109 FORMAT(3X913913Xy2514)

.54 110 FORMAT(°ODATA ERROR®//)

.55 111 FORMAT(*OELEMENT *4 A4, °'NOT IN LIBRARY'//)

.56 112 FORMAT(1H1) '

.57 113 FORMAT(A1l9I191X9F4.099(1Xe1191XsF4.0))

.58 END

"OTAL MEMORY REQUIREMENTS 001222 BYTES



JRTRAN IV G LEVEL 1, MOD 4 TRIPTS DATE = 70087 12/718/.

)OO0l SUBROUTINE TRIPTS(X, Yy INLIST, KONSTRy XX, YY, NEWDIR,
1 NEWVTXys NFITy NEW)
)0 DIMENSION X(1)s Y(1l)s INLIST(1), KONSTR{1)
)0% DIMENSION XX{(1)s YY(1)
)OO DIMENS ION NEWDIR{1), NEWVTX(1)
J005 X1 = X{INLIST(1))
JO06 Yl = Y{INLIST(1))
J0O7 X2 = X{INLIST(2))
JO08 Y2 = YUINLIST(2))
)J009 X3 = X{INLIST(3))
JO10 Y3 = Y{INLIST(3))
C A
1011 NF1 = NFIT ¢ 1
012 I =20
)013 DO 10 IPP = 14NF1
1014 IP = NF1 - IPP
J015 NIP = IP + 1
1016 DO 10 IQQ = NIPsNF1
017 IQ = NF1 - 1QQ
1018 IR = NF1 - IQ - IP -1
1019 I =1 +1
1020 XX(I) = (IP * X1 +# IQ * X2 + IR * X3) / NFIT
1021 YY(I) = (IP * Y1 + IQ * Y2 + IR ¥ ¥Y3) / NFIT
1022 NEWVTX{I) = 0
023 NEWDIR{I) = 1
1024 IF{IR.EQ.OINEWDIR(I} = NEWDIR{I)*KONSTR{1)
025 IF(IP.EQ.O0) NEWDIR(I) = NEWDIR(I)*KONSTR(2)
1026 IF{IQ.EQ.O0) NEWDIR(I) = NEWDIR(II*KONSTR(3)
027 10 CONTINUE
028 NEW = (NFIT + 1)*(NFIT + 2)/2
1029 RETURN
030 END

TOTAL MEMORY REQUIREMENTS OOOQO4EE BYTES



ATRAN

JOo1
20

)
)05
)06
)07
)08
)09
)10
)11
)12
)13
)14
)15
)16
117
)18
)19
)20
)21
122
)23
124
)25
126
127
128
)29
130
131
132
133
134
135
136
137
138
139
140
141
42
43
44
45
46
“7
48
49
50
51
52

@

IV G LEVEL 1, MOD 4 ASSEMB DATE = 70087

SUBROUTINE ASSEMB(VsToAREA,SMAT,WTsNVTXsNFREEy NELyNMAG, -
1 NFI TyNPTSyNBIGyNELMT, IEHsDELTA)

DIMENSION AREA(L)ySMAT(1)oWT(291)9yNVTX(1),V(1),T(1)
DIMENSION NPA(4) yNMA(4),NP{34),TT(202),U(202),0Q(202)
COMMON /TUQ/ NPA,NMA,NP»TT,U,Q

IF(DELTA.NE.O) GO TO 2

NA = NFREE + NEL

NB = NA

IF(IEH.EQ.1) NA = NFREE + NMAG

IHE = MOD(IEH,2) + 1

DO 1 N = 1.NELMT
NC = (N - 1)*NPTS
ND = (N - 1)*NBIG
DO 1 I = 14NPTS
IN = NVTX{(I + NC)

IF(IEH.EQ.2) GO TO 5

IF(IN.GT.NFREE .AND. IN.LE.NB) GO TO 1
IF(INSGT.NB) IN = IN - NEL

DO 1 J = 1.1

JN = NVTX(J # NC)

IF{IEH.EQ.2) GO TO 6

IF(IUN.GT.NFREE .AND.JN.LE.NB) GO TO 1
IF(JN<GT.NB) JUN = JUN - NEL

IF{IN.GT .NA .OR. JN.GT.NA) GO TO 1

L = LOCATE(INsJN)

L1 = IXI - 1)/72 + J

V(L) = VIL) + SMAT(L1 + NDI/WTUIHE,N)
T(L) = TEL) + TT(LL + NMA(NFIT))*AREA(N)I*WT(IEH,N)
CONTINUE '

RETURN

NA = NFREE + NEL

NB = NFREE + NEL + NMAG
NC = 2*NFREE + NEL + NMAG
NC = NC*{NC + 1)/2

ND = NAX{NA + 1}7/2

DO 4 N = 1.NELMT

IEH = (N = 1J)*NPTS

IHE = (N = 1)*NBIG

COEF = WT(1l,N)*WT(2yN) — DELTA**2
COEF2 = DELTA/{2.*COEF)

L1 = 0

DO 4 1 = 14NPTS

IN = NVTX(I -+ IEH)

DO 4 J = 141

Ll = L1 + 1

JN = NVIX(J + IEH)

IM = MAXOUIN,JN)

JM = IN + JN - IM
IF(IM.GT.NB) GO TO 4

IN = IM

JN = JM

IF(IN.GT.NA) IM = IN = NEL
IF(JN.GT.NA) UM = JUN = NEL

L = INX(IN - 1) /2 + JN

12718



YTRAN IV G LEVEL 1, MOD 4 ASSEMB DATE = 70087
NO + NAX*IM + IM*(IM ~1)/2 + UM

)54 LD

)55 LUO = ND ¢ NAX(IM - 1) &+ IMK(IM - 1)/72 + JM
) LUI = ND + NA®(JM = 1) + JMk(JM - 1)/2 + IM
3% L2 = L1 + IHE

)5 L3 = L1 + NMA(NFIT)

)59 IF(L.GT.ND) GO TO 3

)60 VIL) = V(L) + SMAT(L2)*WT(1,N)/COEF

)61 TCL) = T(L) & TTUL3)*AREA(N)*WT(1,N)

)62 IF{LD«GT.NC) GO TO 4

)63 IF(IN.GT.NFREE .AND. IN.LE.NA)GO TO 4

)64 IF{IN.GT.NFREE .AND. JN.LE.NA)GO TO 4

)65 3 VILD) = V(LD) ¢ SMAT(L2)*WT{2,N)/COEF .

)66 TILD) = T(LD) + TTUL3)*AREAIN)*WT(2,N)

)67 IF(L.GT.ND) GO TO 4 -

)68 VI{LUO) = V{LUDO) + U(L3)*COEF2

)69 V(LUI) = V(LUI)} - U(L3)*COEF2

)70 4 CONTINUE

)71 RETURN

)72 END

FOTAL MEMORY REQUIREMENTS OOOA6A BYTES

12718/



IRTRAN IV G LEVEL 1, MOD 4 SMATRX DATE = 70087 12718/

001
1002
®
‘00
006
007
008
009
olo
Ol1
012
013
014
015

ol16
017

SUBROUTINE SMATRX(SMAT,COTNG NFITyNPTS,NBIGyNELMT)
DIMENSION SMAT({1),COTNG(3,1)

DIMENSION NPA(4) yNMA(4) yNP{34),TT(202),U(202},Q{(202)
COMMON /7TUQ/ NPASJNMASNP,TT,U,Q

DO 1 N = 1,NELMT

K = (N - 1)®NBIG

L1 = 0

DO 1 I = 1,NPTS

NPI = NP{1 ¢+ NPA(INFIT))

DO 1 J = 1,1"

NP = NP(J + NPA(INFIT))

L1 L1 + 1

L2 LOCATE(NPI,NPJ) + NMAINFIT)

L3 LOCATE(NP(NPI + NPAINFITI)INPINPJ + NPAINFIT))) + NMAINFIT)

1 SMAT(L1 + K) = QL1 + NMA(NFIT))*COTNG(1sN) + QUEL2)*COTNG(24+N)}

1 + QUL3)*COTNG(3,N)
RETURN
END

TOTAL MEMORY REQUIREMENTS 00036C BYTES



IRTRAN IV G LEVEL 1, MQD 4 TNORM DATE = 70087

1001 SUBROUTINE TNORM(E¢HAREAsWT sNVTXyNFIT,NPTS,NB1G,
‘ NTOTPT yNEL MT y NMODES)

10 DIMENSION E(1591)9H(1591)3AREA(L) s WT (2,13 4NVTX(1)

. DIMENSION SMAT(1),COTNG(3,1)

004 DIMENS ION NPA({4) yNMA(4),NP(34),T(202),U(202),Q(202)

005 COMMON /TUQ/ NPAsNMAsNP,T,UsQ

1006 DOUBLE PRECISIGN ENORMyHNORM,EDIV,HDIV

1007 DO 4 M = 1,NMODES

008 EDIV = O.

009 HDIV = O.

olo K = =NPTS

o1l1 DO 3 N=1,NELMT

012 ENORM = O.

013 HNORM = Q.

0l4 K = K + NPTS

015 . L = NMAINFIT)

016 DO 2 1 = 1.NPTS

017 N1 = NVIX(I + K)

018 DO 2 J = 1,1

019 N2 = NVTX(J + K)

020 L=1L+1

021 ENORM = ENORM + E(MyN1)*E(MyN2)*T(L)

022 2 HNORM = HNORM + H(MyN1)*H{MsN2)*T(L)

023 L = NMAINFIT)

024 DO 5 J = 24NPTS

025 N2 = NVTX(J + K)

026 L=4 +1

027 J1=J -1

028 DO 5 I = 1,41

029 N1 = NVIX(I + K)

030 L=L +1

031 ENORM = ENORM + E(M,N1)*E(MyN2)*T(L)

032 5 HNORM = HNORM #+ H{MyN1)*H{MyN2)*T(L)

033 EDIV = EDIV + ENORM®XAREA(N)*WT (1,N)

034 3 HDIV = HDIV + HNORM®XAREA(N)*WT (2,N)

035 EDIV = DSQRT(DABS(1./EDIV))

036 HDIV = DSQRT{DABS{1./HDIV))

037 DO 4 I = 1,NTOTPT

038 E{MsI) = EDIVRXE(M,I)

039 4 H({MyI) = HDIVRkH(MsI)

040 RETURN

041 END

TOTAL MEMORY REQUIREMENTS 00067E BYTES

12718,



JRTRAN IV G LEVEL 1, MOD 4 VEE DATE = 70087
Y001 SUBROUTINE VEE(VEsH SMATyWTNVTXyNFIT,NPTS,NBIG,
NELMT, NMODES+DELTA)
T¢) DIMENSION E(1591)9H(15510yWT {24912 ,NVTX(12,V(1),SMAT(])
) DIMENS ION COEF(150),COEF2(150)
‘004 DIMENS ION NPA{4) sNMA(4),NP(34),TT(202),U(202),Q(202)
005 COMMON COEF, COEF2
006 COMMON /TUQ/ NPASNMANP,TT,U,Q
007 DOUBLE PRECISION VEyVMyeVUOsVUI ¢TE»TM,TUO,TUI
Qo8 DO 5 N = 14NELMT :
Q09 COEF(N) = WT(1,N)*HWT(2y,N) — DELTA**2
010 COEF2(N) = DELTA/Z(2.*COEF(N))
011 ND = NMODES*(NMODES + 1)/2
012 DO 4 M1 = 1,NMODES
013 DO 4 M2 = 1,M1
als LP = LOCATE(ML,M2)
015 tD = ND + MI1*NMODES + LP
016 LUC = ND + /M1 —-1)%NMODES + M1*(Ml -1)/2 +M2
017 LUI = NI # (M2 -1) ®*NMODES + M2%(M2 - 1)/2 + Ml
ol8 TE = O.
019 T™™ = O.
020 TUO = Q.
021 TUI = 0.
022 K = -NPTS
023 KT = -NBIG
D24 DO 3 N = 1,4NELMT
025 VE = O.
026 VM = Q.
027 vuo = 0.
028 vul = 0.
229 K = K + NPTS
230 KT = KT + NBIG
)31 LU = NMA(NFIT)
232 LT = KT
)33 DO 1 I = 14NPTS
134 N1 = NVTX{I + K)
235 DO 1 J = 1,1
136 N2 = NVTX{J + K)
137 LU = LU + 1
)38 LT = LT + 1
)39 VE = VE + E{M1,N1)*E{(M2,N2)*SMATILT)
)40 VM = VM + H(M1,N1)*H{M2,N2)*SMAT(LT)
)4l VUD = VUO + H(M1,N1)*E(M2,N2)*U(LU)
142 vUI ‘= VUI + HE{M2,N1)*E(M1,N2)*U(LU)
)43 LU = NMA(NFIT)
Y44 LT = KT
)45 DO 2 J = 24NPTS
146 N2 = NVTX(J + K)
)47 LU = LU + 1
)48 LT = LT + 1
)49 Ji = g -1
150 DO 2 I = 1,41
)51 N1 = NVTX(I + K)
)52 LU = LU + 1
LT = LT + 1

12718,



ORTRAN IV G LEVEL 1, MOD 4 VEE DATE = 70087 12718;

0054 VE = VE # E(ML,N1)*E(M2,N2)*SMATI(LT)
0055 VM = VM & HUML,N1I*H(M2, N2)*SMAT(LT)
00 VUO = VUO =~ H(ML,N1)*E(M2,N2)*U(LU)
0 2 VUI = VI = H{M2yN1)*E(M1,N2)}*U(LU)}

0058 TE = TE + WT{1N)*VE/COEF{N)
0059 TM = TM + WT(2,N)*VYM/COEF(N)
0060 TUG = TUO + COEF2(N)*VUO
DO61 . 3 TUI = TUI -+ COEF2(N)*VUI
0062 VILP) = TE

0063 V(LD) = TM

0064 V(LUD) = TUO

2065 4 V(LUI) = TUI

2066 RETURN

2067 END

TOTAL MEMORY REQUIREMENTS 0009B0 BYTES



RTRAN IV G LEVEL 1,

001
002

&
005

006

JoT

J08

1

LA R IR IR B JE IR B BE N B BFTRE SR

L2 AR OB BE 3 R K 3K K B BE BE N OSE W 3

LA AR R B 3R IR K CBE R BF N 3

MOD 4

BLOCK DATA

BLK DATA

DATE =

70087

12718

DIMENS ION N(B) ¢sNN(34),A(101),8(101),C(101),D(1013,E(101),F(101)
COMMON /TUQ/N¢NNAsBoCoeDyE,F
DATA N/0334991950,6927482/

DATA NN/3y 19 24 649 3,

15y 10,
A/ Z402AAAAA,

DATA
Z402AAAAA,
240208208,
14016C16C,
200000000,
140149249,
LBF 524924,
1404A0EAQ,
140149249,
23F107507,
Z3F62BE2By
IBF524924,
2140149249,
I3EAF BAF8,
23EBBEF1D,y
LBF5CTT8E,
Z3F1BBO77y

DATA
ZBF5C 778E,
ZBF12TE4F,
ZBEBBEF1D,
IBF127TE4F,
L3E49F93E,
Z3FBBEF1D,
2BDDDEBBC,
ZBEB1742E,
Z3F5CTT8E,
ZBDDDEBBC,
LBF4559AA,
Z3FE4DBlA,
2ZBF4559AA,
Z3F377TAEF,
ZBDDDEBBC,
Z3EBBEF1D,

DATA
200000000,
200000000,
200000000,
2C1155555,
200000000,
200000000,
200000000,
200000000,
200060000,
200000000,
200000000,
200000000,
ZCl16CCCC,

14, 64 9,

23888888,
IBF16C16C,
24016C16C,
ZBF16C16C,
Z3EAF8AF8,
240149249,
200000000,
Z3E6B46B4,
23F2ES2ES,
IBF524924,
IBF524924,
I3E6B46B4y
Z3E6B46B4,
Z3FBBEF1D,
IBF4559AA,
240308891,

L3F1BBDT7,
IBF127TE4F,
IBF6EFSDE,
L3F127TE4F,
ZBE1F3526,
23EBSBEF1D,
L3F24FC9F,
Z3F5C778E,
23E49F93E,
Z3F1BBD7T7,
IBEBL1T742E,
Z3F24FCO9F,
IBF5CT78E,
IZBEBBEF1D,
IBE1F3526,

200000000,
2C0555555,
200000000,
2C 0555555,
ZC116CCCC,
200000000,
240999999,
2402CCCCC,
200000000,
200000000,

2000000090,

ZC02cCCCCCy
2402CCCCC,

59 1' 21 49
8y 124 1s 2,

13, 34 5
140155555,
200000000,
200000000,
200000000,
200000000,
Z3FA49249,
Z3F15F15F,
LBF 524924,
200005000,
Z3F107507,
Z3EAFBAF8,
Z3F62BE2B,
L3F107507,
2000090000,
Z3EBBEF1D,
Z3FE4DB1A,
ZBESCTT8E,

B/ Z3F1BBD77y Z3FE4DBlA,
Z3F12TE4F,

Z3E49F93E,
ZBF6EF5DE,
Z3F127E4F,
240308891,
ZBF5CT78E,
200000000,
Z3EBBEF1D,
Z3F127TE4F,
Z3F127E4F,
Z3E49F93E,
Z3F1BBD77,
23F127E4F,
Z3F127E4F,
Z3FBSEF1D,
ZBESCTT8E,
200000000,

241155555,
141155555,
241155555,
241155555,
200000000,
200000000,
200000000,
2€0999999,
200000000,
24116CCCC,
200000000,
200000000,
2€0999999,

10| 6' 9’

2402AAAAA,
2402D82D8 ,
ZBF5B05B80,
240208208,
.23F888888,
140149249,
Z3F62BE2B,
2BF733333,
Z3F107507,
ZBF524924,
140149249,
13FA49249,
200000000,
'Z3EAFBAFS,
23F5C778E,
23EBSEF1D,
ZBF4559AA,
2000000004
Z3FBBEF1D,
ZBF3TTAEF,
IBF3TTAEF,
200000000,
Z3F127E4F,
ZBEB1742E,
ZBEBSEF1D,
ZBF4559AA,
13F24FC9F,
Z3E3TTAEF,
ZBF4559AA,
13F24FC9F,
Z3F5CTT8E,
IBE1F3526,
ZBEB1742E,
ZBESCTT8E,

200000000,
200000000,
200000000,
200000000,
200000000,
200000000,
201206666,
200000000y
200000000,
Z00000000,
Z00000000,
240999999,
74116CCCC,

39 59

b9 T
140155555,

200000000,
23F888888,
ZBF16Cl6C,
Z3F2ES52ESy
200000000,
Z3F62BE28B,
ZBF20EAOE,
Z3EAF8AF8,
ZBF20EAOQE,
Z3F107507,

200000000,

Z3F107507,
Z3F2ES52ES,
Z3FBBEF1D,
Z3F5CTT8E,
ZBF 5CT78E,
Z3F3TTAEF,
ZBEBSEF1D,
Z3FSCT78E,
ZBF6EFSDE,
Z3F24FC9F,
1BF 12TE4F,
ZBESCTT8E,
IBEB1742E,
ZBF127E4F,
‘Z3EBBEF1D,
ZBF377AEF,
ZBESC7T8E,
Z3E49F93E,
Z3F5C778E,
ZBES1 74 2E,
ZBEBBEF1D,
Z3EBSEF1D,

2C1155555,
200000000,
240555555,
200000000,
2€0999999,
200000000,
200000000,
Z4116CCCC,y
200000000,
200000000,
200999999,
200000000,
200000000y

8y 1y 2
11/

4y 7

240155555
24016C16
ZBF58058
ZBF5B058
‘I3EAFBAF
ZBF73333
Z3F62BE2
.23F62BE2
Z3F15F15
13FA4924
1BF20EAO
ZBF73333
Z3F15F15
13F14F31
ZBE5CT78
Z3F5C778
Z3E3T7AE
Z3F24FCOF
Z3F127E4
24030889
Z3F18BBDT
Z3F3TTAEl
Z3F5C778
ZBEBBEF1|
13F14F31
Z3E49F93
Z3FBSEF1|
Z3E3TTAEI
ZBFS5C778
ZBF127E4
Z0000000!
200000001
Z3EBSEF1|
Z3F 14F31

C/ 200000000, 241100000, 200000000, ZC1100000, Z41100000

2006000001
20000000
200000001
24116CCCI
241206661
200000001
200000001
20000000
20000000!
20000000¢
241206661«
20000000¢(
Z20000000(



RTRAN IV G LEVEL 1, MOD 4

@

)10

111

BLK DATA

* 24118EC39, 200000000,
* 724123C23Cy 200000000y

* 7200000000y
D/ 200000000, Z00000000, 240680680,

L JE BC I 3K K 3R 3R ONE B N K N W3

"DATA

LR K G BE BE BE BE B B B R L K K

-DATA

L BE IR 3E 3R L BE OB SR R R BE R K

DATA
24123C23C,
2000000005
200000000,
200000000,
200000000,
200000000,
Z 00000000,
200000000,
200000000,
200000000,
200000000,
200000000,
200000000y
ZC111566A,
2000000005
ZC118EC39,

2408000005
741155555,
200000000,
200000000,
741180000,
240566666+
24140CCCC,
7411B0000,
ZBF999999,
200000000+
2000000005
7411B0000;
Z3F 999999,
200000000+
2€0C30C30,
2€12D82D8s

ZCOA90A90,
200000000,
200000000,
240D00D00y
ZC02702 70,
2411D41D4,
23FAD6028By
200000000,
ZC022ACD5y
200000000+
Z401A01A0,
2412F56F5,
ZCO11566A,
241104104,
Z3FAD602B,
240208208y
END

200000000,

200000000,
200000000,
200000000+
200000000+
200000000,
ZCO1CFC7A,
24118EC39,
200000000y
200000000,
200000000,
200000000,
200000000,
2000000005
24123C23C,
200000000+
ZCO1CFCTAs

E/ 200000000,

100000000,
200000000y
200000000,
2402AAAAA,
200000000+
241180000,
2000390000
2000000005
2406CCCCC,
200000000+
2000000090,
200000000,
ZC 0166666
24121976k,
Z40C30C 30y
2415B05B80,

240000000y
240680680y
200000000y
ZC1410410y
Z40D00D0O0,
200000000y
240208208,
200000000y
Z4022ACDS5,
200000000,
ZCO01AQ1AO,
Z00000000,
ZC022ACD5,
IC11F2747,
ZCO15AC05,
Z3FETE3D3,

ZC118EC39,
200000000,
240D9CD9C

200000000,
200000000,
200000000,
200000000,
2C123C23C,
140680680,
200000000,
200000000,
200000000,
200000000,
200000000,
200000000,
200000000,
200000000,
240D9CD9C,
240680680,

200000000,

200000000,
200000000,
ZCOAAAAAA,
ZCOAAAAAA,
Z2C1180000,
200000000,
240566666,
Z23F 999999,
200000000,
ZCOACCCCCy
200000000,
ZBF999959,
1240566666
200000000,
241273673,
200000000,

F/ 2C12D82D8,y 141273673,

2€0270270,
2CODOODO0 s
200000000,
7415B0580,
ZCOA90A90,
ZBFAD602B y
ZCO015AC05,
200000000
24022ACDS,
200000000 5
ZCO1A01AQ,
200000000,
24022ACDS,
2411D41D4,
Z3FAD602B,
ZCO3ED942,

240800000,

200000000,

DATE =

200000000,
200000000,
200000000,

200000000,
200000000,
200000000,
2C0680680,
200000000,
200000000,
200000000,
200000000,
200000000,
200000000,
200000000,

-200000000,

200000000,
2401CFCT7A,
200000000,
ZC0D9CD9C,

241155555,
200000000,
241155555,
240800000,
241180000,
1200000000,
2C0566666,
ZBF999599,
200000000,
241180000,
200000000,
Z3F999999,
ZCoAcCcCccC,
ZC121976¢E,
200000000,
240C30C30,

Z411D4104,
240680680,
140680680,
200000000,
ZC0340340,
Z3FAD6028B,
ZCO15AC05,
ZC011566A,
ZC022ACDS5,
Z3FDOODOO,
1401A01A0,
200000000,
214022ACDS5,
200000000,
Z3FAD6028B,
240778CD1,

70087

200000000,
200000000,
2C123C23C,

ZC111566A,

200000000,
206000000,
200000000,
200000000,
200000000,
ZCOD9CD9IC,
200000000,
200000000,
Z4118EC39,
1200000000,
ZCOD9CD9IC,
200000000,
200000000,
200000000,
200000000,
Z4118EC39,

200000000,

200000000y
240800000,
200000000,
200000000,
200000000,
200000000,
240566666,
Z3F999999,
200000000,
200000000,
140566666,
ZBF999999,
Z2406CCCCC,
14121976E,
200000000,
ZCOC30C30,

200000000+,
ZC1270270,
Z2C0DOO0D0O,
2C0568015,
Z40D00D00,
Z3F AD60 2B,
23FAD6028B,
Z24022ACD5,
ZCOA6DFC3,
ZCO1AO1AQ,
Z24077BCD1,
ZC011566A,
ZCO022ACDS,
Z3FAD6028B,y
ZCO15AC05,
ZCOA6DFC3,

12718/

2¢009CD9IC
200000000
200000000
200000000,
200000000
200000000
200000000
Z4111566A
.200000000
200000000
200000000
200000000
200000000
200000000
74123C23C
200000000
140680680
2C0680680
200000000
200000000

20800000,

ZC1155555
200000000
200000000
200000000
2C0566666
2C1206666
2C1206666
/200000000
200000000
200000000
ZC1159999
200000000
200000000
200000000
200000000
14064C64C

24056B015, 2C0568015,

200000000
241580580
240680680
240568015
21270270
ZCO015AC05
Z405F7TDF7
ZC011566A
241104104
Z3FDOODOO
ZIC11F2747
Z4022ACD5
ZCO3ED942
ZBFAD602B.
ZCO15AC05
Z405F7DFT.
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HAVEG6
SUBROUTINE CHOLOW(A, By, Ny NONPOS) WAVES
HAVE6

ﬁﬁﬁﬁﬁﬂgﬁ o

(g N g

5

THIS SUBROUTINE PERFORMS A CHOLESKI DECOMPOSITION ON THE MATRIX A WAVE6
AND STORES THE RESULTING LOWER TRIANGULAR FACTOR IN B. BOTH MAT- WAVE6
RICES ARE OF ORDER Ny AND SYMMETRIC, ONLY THE LOWER TRIANGLE ELE~ WAVE®6
MENTS BEING STOREDs IN COMPRESSED FORM BY ROWS. IF A IS NOT POSI-WAVE®6
TIVE DEFINITEy AN IMMEDIATE RETURN OCCURS,y WITH THE ERROR INDICA- WAVE®6
TOR *NONPOS' SET TO THE NUMBER OF THE NEGATIVE PIVOTAL ELEMENT. WAVE®6

WAVES

DIMENSION A{1), B(1) WAVEb
NONPQS = 0 : WAVES
: WAVES

FORM THE FIRST THREE ELEMENTS WAVE®6
IF(A{1).LT.0.) GO TO 24 WAVE®G
B{1l) = SQRT(A(1)) HAVES6
IF(N.EQ.1) GO 7O 12 : WAVES6
B(2) = A(2) 7 B(1) WAVES
SUM = A(3) - B(2)*%*2 WAVES
IF{SUM.LT.0.) GO TO 24 WAVE®S
B{3) = SQRT(SUM) WAVE®S
IFIN.EQ.2) GO TO 12 MAVES
I = 3 WAVE®6
WAVES.

REMAINING ROWS FOLLOW WAVES

DO 10 1 = 3,N WAVES
II = LOCATE(IsI) WAVE®6:
ISTART = LOCATE(I,1) WAVESD
WAVES

FIRST ELEMENT IN ROW WAVE®6

1 =14+ 1 WAVEG6
B{IJ) = A(IJ) /7 B(1) WAVES!
WAVE6!

ROW ELEMENTS UP TO DIAGONAL WAVEG!

LAST =1 - 1 WAVE®6!
DO S5 J = 2,LAST WAVE 6!
1 =14 +1 WAVEG!
JJ = LOCATE(J,eJ) WAVE®6!
JSTART = JJ - J + 1 WAVE®6!
JEND = JJ - 1 WAVET!(
IK = ISTART WAVET!(
SUM = Qe WAVET!
: WAVET(

FORM ROW PRODUCT SUM WAVET(

DO 3 K = JSTART,LJEND WAVET!(
SUM = SUM + B(K) * B{IK) WAVETI
IK = JK + 1 WAVET{
WAVET(

SET VALUE OF B(1J) WAVET(

B{IJ) = (A(L1J) - SUM) /7 BLJIJI) WAVE 7]
CONTINUE WAVET]
WAVET]

FORM DI AGONAL ELEMENT WAVET]

LAST = I1 - 1 WAVET]
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24

1, MOD 4 CHOLOW
14 =1J +1
SUM = Qe

DO 7 K = ISTART,LAST
SUM = SUM + B(K)**x2
SUM = A(1J) - SUM
IF(SUM.LT.0.) GO TO 24
B(IJ) = SQRT(SUM)

.CONTINUE

RETURN
NONPOS = 1J
GO TO 12
END

A0RY REQUIREMENTS 0004AC BYTES

DATE =

70087

12/718/35- -

WAVET1!
WAVET1¢
WAVETL"
WAVETL1¢
WAVET1¢
WAVET72(
WAVET2]
WAVET2:
WAVET2:
WAVET2¢
WAVET72E
WAVET2¢
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SUBROUTINE INVLOW(A,N)

THIS SUBROUTINE REPLACES THE LOWER TRIANGULAR MATRIX A OF ORDER N
BY ITS INVERSE. A IS STORED BY ROWS UP TO THE DIAGONAL ELEMENT.

DIMENSION A(1l)
A(l) = 1. /7 A(1)

DO 3 M = 24N

Ml =M-1

MO = LOCATE(M,0)
MM = MO + M

DO 2 K = 11“1
SUM = Q.

IK = LOCATE(KyK)
DO 1 I = KyM1

MI = MO + 1

SUM = SUM + A(MI) * A(IK)
AMI = A(MI)

AIK = ACIK)

IK = IK ¢+ 1

MK = MO + K

A(MK) = - SUM /7 A(MM)
MK = MK + 1 :
A(MK) = 1. / A(MK)
RETURN

END

.ORY REQUIREMENTS 0002DA BYTES

12/18/35

WAVET2
WAVET2
WAVET3
WAVET73
WAVET3.
WAVET3:
WAVET3.
WAVET3!
WAVET3:
WAVET3"
WAVET3!
WAVET3!
WAVET74!
WAVET4!
WAVET4:
WAVET4!
WAVE T4«
WAVET74!
WAVE 741
WAVET74’
WAVE T4
WAVET4!
WAVETSH
WAVETS!
WAVETS.
WAVET5!
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o wnd

WAVETS

SUBROUTINE GAGT(Zy Gs Ay N) WAVETS

WAVETS
THIS SUBROUTINE PERFORMS THE MATRIX MULTIPLICATION Z = G * A * G',WAVET5
WHERE Z AND A ARE SYMMETRIC MATRICES OF ORDER Ny AND G IS A LOWER WAVETS
TR IANGULAR MATRIX. ALL THREE ARE STORED IN COMPRESSED FASHION BY WAVET76

ROWS OF THE LOWER TRIANGLE. WAVET6
' - WAVET6
 DIMENSION Z(1), A{l), G(1) WAVET6
DIMENSION RKJ{115) WAVET6
WAVET6

DO 7 J = 14N WAVET6.
JO = LOCATE(Jy O) WAVET6'
- : WAVET6!

DO 6 K = 1,N WAVET6'
KO = LOCATE(K, O} : WAVET7
: WAVETT!

TERM = 0.0 WAVETT,
M = MINO(J,K) . WAVETT:
DO 1 L = 1,M WAVETT
KL = KO + L - WAVETT!
JL = JO + L WAVETT!
TERM = TERM + A(KL) * G(JL) WAVETT'
IF(M.EQ.J) GO TO 5 WAVETT!
KL = K + 1 WAVETT!
KL .= KL + K WAVET8(
DO 4 L = KlyJ WAVET8]
JL = J0 + L . WAVET8:
TERM = TERM + A(KL) * G(JL) , | WAVET78:
KL = KL + L ' WAVE 784
CONTINUE WAVET8S
RKJ(K) = TERM WAVETS
| WAVETS81
DO 3 I = J,N WAVET8SE
10 = LOCATE(I, 0) WAVETS8S
TERM = 0.0 WAVE 79
DO 2 K = 1,I WAVET91
IK = 10 + K WAVET92
TERM = TERM + G(IK) * RKJ(K) WAVET93
IJ=10+J WAVET94
2(1J) = TERM WAVE 795
CONTINUE WAVET96
- WAVE 797
RETURN WAVET798
END WAVET799

ORY REQUIREMENTS O00S5BE BYTES
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SUBROUTINE TRIDIA(A, DIAG, SUBD, N)

12718735 -

WAVESO
WAVESO

THE SYMMETRIC MATRIX Ay IN COMPRESSED STORAGE BY ROWS OF ITS LOW- WAVESO

ER TRIANGLE, IS TRIDIAGONALISED USING THE HOUSEHOLDER METHOD.
DIAGONAL ELEMENTS ARE RETURNED IN ARRAY *'DIAG*, THE SUBDIAGONAL .
ELEMENTS IN THE FIRST N-1 LOCATIONS OF -THE ARRAY *'SUBD'.
RAY A IS REPLACED BY THE HOUSEHOLDER TRANSFORMATION VECTOR COM-

PONENTS ON RETURNING.
DIMENSION A{1), DIAG(1), SUBD{1)

TRIDIAGONALIZE IN REVERSED SEQUENCE
DO 7 MK = 34N
K=N+3 - MK
KL = K-=-1

FIND ROW SUM OF SQUARES *'SIGMA’
SIGMA = 0.0
LOW = LOCATE(K,0)
LIMT = LOCATE(K,K1l)
LOWR = LOW + 1
DO 1 J = LOWRLIMT
SIGMA = SIGMA + A(J)**2

FIND SUBDIAGONAL ELEMENT

AK = A(LIMT)
SK = SIGN(SQRT(SIGMA), AK)

suBD(K1) = - SK

FIND H AND CHECK FOR ZEROD SUM
IF(SIGMA.EQ.0.0) GO TO 7
H = SIGMA + SK * AK

FORM VECTOR U IN ROW K LOCATIONS OF A
A(LIMT) = SK + AK

FORM VECTOR P IN LOCATIONS OF ARRAY DIAG
ONLY THE NECESSARY K-1 LEADING COMPO-
NENTS ARE CALCULATED.
DO 3 I = 14K
SUM = 0.0
I0 = LOCATE(I,0)

SUM ALONG ROW, UP TO DIAGONAL ELEMENT
DO 2 J = 1,41
1J I1C + J
KJ LOW ¢+ J
SUM = SUM + A(IJ) * A(KJ)
IF(1<GE.K1) GO TO 3

SUM DOWN I'TH COLUMN

It =1 +1
JI = LOCATE(IoI) ¢ I
DO 9 J = I14K1

THEWAVESO

WAVE 80!

THE AR- WAVE 80:

WAVE 80’
WAVE 801
WAVESO!
WAVESI(
WAVES1!
WAVESB1
WAVES1:
WAVEB1¢
WAVES1®
WAVES1¢
WAVESL]
WAVES1 ¢
WAVESLS
WAVE82(
WAVE 821
WAVEB2:
WAVEB2:
WAVEB24
WAVES2S
WAVEB26
WAVES217
WAVES28
WAVEB29
WAVES30
WAVES31
WAVES32
WAVES33
WAVES34
WAVES3S
WAVE836
WAVES37
WAVES38
WAVES39
WAVEB40
WAVEB84 1
WAVES42
WAVE843
WAVE 844
WAVE845i
WAVEB46

WAVEB48!
WAVES849
WAVEB50
WAVEBS 11
WAVES8S5 21
WAVE853(
WAVES85 4|



t G LEVEL

9
® -
Cc
Cc
4
C
C
5
Cc
Cc
6
7
c
Cc
8
c

.19 MOD 4 TRIDIA .

KJ = LOW + J

SUM = SUM + A(JI) * A(KJ)
JI = JdI -+ J

DIAG(I) = SUM / H

FIND BIGK
BIGK = 0.0
DO 4 J = 1K1
KJ = LOW + J

BIGK = BIGK # A(KJ) * DIAG(J)

BIGK = BIGK /7 (2.0 * H)

DATE =

FORM VECTOR Q IN LOCATIONS OF ARRAY DIAG

DO 5 J = 14K1
KJ = LOW + J

DIAG(J) = DIAG(J) - BIGK * A(KJ}
CALCULATE THE REDUCED MATRIX A

DO 6 I = 1.K1

10 = LOCATE(I, 0)

KI = LOW + I

DO 6 4 = 1yl

I3 =10+ J

Kd = LOW + J

70087

A(IJ) = A(IJ) - A(KI) * DIAG(J) - A(KJ) * DIAG(I)

CONTINUE

COMPUTE OUTPUT ARRAYS
DO 8 I = 1sN
J = LOCATE(I,I)

DIAG(I) = A(J)
SUBD(1) = A(2)
SUBD(N) = 0.0
RETURN

END

MORY REQUIREMENTS 0006A0 BYTES

12718735

WAVEBS
WAVES8S5:
WAVESS
WAVESS
HAVEBS'
WAVEB6
WAVES6.
WAVESS6.
WAVEBS:
WAVEB6¢
WAVE 86!
WAVEB6!
WAVES86'
WAVE 86!
WAVEB6!
WAVEST(
WAVEBT]
WAVEST:
WAVEST:
WAVEST!
WAVEBT!
WAVEST ¢
WAVEST
WAVESTS
WAVEBTS
WAVEB8(
WAVE88]
WAVEBS2
WAVEB83
WAVEB84
WAVES8S
WAVEB86
WAVE 887
WAVES8S
WAVEB89
WAVES90
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10

5
11
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BISLCTY

DATE

70087

SUBROUTINE BISLCT(DIAGy SUBDs Ny NLEAST, NEIGV, EVALU)

RETURNS

*NEIGV?

EIGENVALUES,
SYMMETRIC TRIDIAGONAL MATRIX OF ORDER N,
SUBDIAGONAL ARE STORED IN ARRAYS *'DIAG*
THE EIGENVALUES ARE RETURNED IN ARRAY

STARTING FRGOM
WHOSE PRINCIPAL 'AND
AND
‘EVALU*.

TO ABOUT EIGHT SIGNIFICANT FIGURES.

DIMENSION DIAG(1), SUBD(1), EVALU(1)

FIND ROW NORM OF MATRIX

RONORM
DO 1l K
RONORM

1 N

~hn

2+N
AMAX] (

RONORM,

ABS(DIAG(1)) + ABS(SUBD(1))

*NLEAST'y OF .THE

'SUBD' RESPECTIVELY.
THEY _ARE ACCURATE

12/18/35

WAVES9,
WAVESY.
WA VE89.
WAVES9!
WAVES9
WAVESY'
WAVEBY!
WAVEB9!
WAVE90(
WAVE90]
WAVE9O;
WAVE90:
WAVE90¢

ABS(DIAG(K)) + ABS(SUBD(K)}) ¢ ABS(SUBD(K-1WAVE90!

SQUARE SUBDIAGONAL ELEMENTS TO SAVE ARITHMETIC

DO 10 K
SuUBDI(K)

1sN

SIGN(SUBD(K) **2,

suBD(K))

IF(SUBD(K) <EQ.0.0) ‘SUBD(K) = 1.E-14 * RONORM**2

FIND

'NEIGV?

EIGENVALUES,

CALL STURMI(DIAGySUBDsN90.0yNSIGN)
NLEAST = NSIGN + 1
IF{NLEAST.GT.N)

MOST
NEIGV
K=20
DO 4 I
K K +
UPPERX
SMALLX

GO T0 5

MINO(NyNLEAST + NEIGV - 1)

MOST - NLEAST + 1

NLEAST,
1
RONORM

MOST

- RONORM

FIND I*TH EIGENVALUE

STARTING WITH ROW NORM BOUNDS

30 BISECTIONS FOLLOW TO REDUCE ERROR BY 2%%30

DO 3 4 =

1,30

TRIALX = (UPPERX + SMALLX) / 2.0
CALL STURM(DIAG, SUBD,
IFI(NSIGN.GE.I) GO TO 2

SMALLX =
GO 70 3
UPPERX

CONTINUE

TRIALX

TRIALX

STORE EIGENVALUE
= (UPPERX + SMALLX) / 2.0

EVALU(K)

Nes TRIALX,

RESTORE SUBDIAGONAL ELEMENTS

CONTINUE
DO 11 K
SusD(K)
RETURN
END

19N

SIGN(SQRT(ABS(SUBD(K))),

NSIGN)

SUBD(K))

WAVE90¢
WAVE90
WAVE9O0
WAVE 905
WAVE 9L ¢
WAVE911]
WAVE91:
WAVE91:?

WAVESLS
WAVES16
WAVE917
WAVE918
WAVE919
WAVE920
WAVE921
WAVE922
WAVE923
WAVE924
WAVE925
WAVE926
WAVE927
WAVE928
WAVE929
WAVE930
WAVE931
WAVE932
WAVE933
WAVE934
WAVE93 5
WAVE936!

WAVE93T!
WAVE93 81
WAVE939¢
WAVE940(
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SUBROUTINE WIELND{(DIAGy SUBD, Ny EVALU, X)

12718/35

WAVE94
WAVE94

THIS SUBROUTINE DETERMINES THE EIGENVECTOR * X' CORRESPONDING TO WAVE9%
THE EIGENVALUE ®EVALU' OF THE SYMMETRIC TRIDIAGONAL MATRIX OF OR- WAVE94
DER N WHOSE PRINCIPAL AND SUBSIDIARY DIAGONALS APPEAR IN *DIAG'  WAVE94

AND *SUBD®* RESPECTIVELY. TWO PASSES OF WIELANDT ITERATION,

USING WAVE94

GAUSSIAN DECOMPOSITION WITH INTERCHANGES, RETURN EIGENVECTORS OF . WAVE94
GOOD ACCURACY, BUT NOT GENERALLY ORTHOGONAL IF MULTIPLE EIGENVA- WAVE9%

LUES ARE ENCOUNTERED. ‘
DIMENSION DIAG(l), SUBD(1), X(1)

WAVESS
WAVESS
WAVE9S

DIMENSION DIAL(110), DIA2(110), DIA3(110), FACTR{110), INTER(110) WAVESS5

LOGICAL FINISH,y INTER
ABSMAX(Ay B) = SIGNUAMAX1(ABS(A), B), A)
SET UP STARTING VALUES

RONORM = ABS(DIAG(1)) + ABS(SuBD(1)})
D01 I = 24N
RONORM = AMAX1 (RONORM, ABS(SUBD(I-1)}) + ABS(DIAG(I}) +

ABS(SUBD(I)))
TINY = ABS(RONORM) * 1.E-8

U = DIAG(1) - EVALU
V = ABSMAX(SUBD(1), TINY)
TRIANGULAR DECOMPOSITION NOW PRODUCES 2 SUPERDIAGONALS
Nl = N-1
DO 3 I = 1¢N1
I1 =1 + 1

DECIDE WHETEHER INTERCHANGE IS REQUIRED
SUB = ABSMAX(SUBD(I), TINY)
SUBNEX = ABSMAX{(SUBD(I1l), TINY)
INTER(I) = ABS(SUB).GT.ABS(U)
IFCINTER(I)) GO TO 2

DECOMPOSITION WITHOUT INTERCHANGE
FACTR(I1) = SuB /7 U

DIALI(I) = U

DIA2(I) =V

DIA3(1) = 0.

U = DIAG(I1) - EVALU - V * FACTR(Il)
V = SUBNEX

GO 70 3

DECOMPOSITION WITH INTERCHANGE REQUIRED
FACTR(I1l) = U / SuB

DIAlN(I) = SuB

DIA2{I) = DIAG(I1l) - EVALU
DIA3({I) = SUBNEX

U=V - FACTR(I1) * DIA2(I)
V = = FACTR{I1l) * SUBNEX
CONTINUE

FINISH = .FALSE.

WAVE9QS
WAVE9S
WAVE95
WAVE9S
WAVE9S
WAVE9S
W/ VE96
WAVE96
WAVE96.
WAVE96
WAVE96
WAVE96
WAVE96
WAVES6'
WAVEQ6
WAVE96"
WAVEQT!
WAVEST
WAVE9T;
WAVE9ST.
WAVE9T:
WAVE9T!
WAVE9 T
WAVEST
WAVEQT!
WAVE9QT!
WAVE98(
NAVE98 ]
WAVE9S|
WAVE9S:
* WAVE98:
WAVE9S!
WAVE98(
WAVE98"
WAVE98!
WAVEQ8¢
WAVE99(
WAVE99]
WAVE99:
WAVE9QS:
WAVE99¢
WAVE99®
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DIAl(N)=U HWAVE99

c SET UP. INITIAL ITERATE WAVE99
DO 4 I.= 1,N WAVE99

@ :xn-=-1. WAVE99
c - WAV100
c PERFORM BACK SUBSTITUTION WAV100
9 X(N) = X(N) / ABSMAX(DIA1(N), TINY) WAV100
X(N-1) = (X{N-1) - DIA2(N-1) * X{N)) / ABSMAX(DIAL(N-1), TINY)  WAV100

H = XINI**2 + X(N-1)%%2 WAV1 00

DO 5 KI = 24NL WAV100
I=N-KI WAV100.

X(1) = (X(I) - DIAZ(I)*X(I+1) - DIAB(I)*X{I+2)) / ABSMAX(DIAL(I), WAV100

1 TINY) WAV100:

5 H=H + X{(1)¥%2 WAV100

H = SQRT(FLOATIN) / H) WAV101

c WAV101'
c SCALE EIGENVECTOR WAVLOL!
DO 6 1 = 14N WAV101:

6 X(I) = H * X(I) WAV101:
IF(FINISH) RETURN WAV101!

c WAV1011
c FORWARD SUBSTITUTION WAV101®
DO 8 I = 2,N WAV101!
1I1=1-1 WAV101¢
IF(INTER(I)) GO TO 7 WAV102!(

X(I) = X(I) — FACTR(I} * X(I1) WAV102]

GO TO 8 WAV102:

70 = X(I1) WAVL02:
X(I1) = X(I) WAV102¢

X(I) = U - FACTR(I) * X(I1) WAV102!

8 CONTINUE WAV102¢
FINISH = TRUE. WAV1 021

GO TO 9 WAV102¢

END WAV1 02¢

10RY REQUIREMENTS 00104E BYTES
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WAV110

c |
SUBROUTINE STURM( DIAG, SUBSQs N, TRIALX, NEIGN) WAV110

C WAV110
©: THIS SUBROUTINE DETERMINES THE NUMBER NEIGN OF EIGENVALUES SMAL- WAV110
C LER THAN *TRIALX' OF -THE TRIDIAGONAL MATRIX OF ORDER N WHOSE DIA- WAV110
C GONAL TERMS AND SQUARES OF SUBDIAGONAL TERMS APPEAR IN *DIAG' AND WAV110
c *SUBSQ' RESPECTIVELY. THE MODIFIED STURM SEQUENCE METHOD IS WAV11l

. C USED. ~ | - WAV1ll
c WAV111l
DIMENSION DIAG(l), SUBSQ(1) WAV111

C WAV11l
EPS = 1.E-8 WAV11l

NEIGN = 0 WAV11l

Q = DIAG(1) - TRIALX WAV11l
IF(QeLT.0.) NEIGN = 1 WAV1ll
IF(Q.EQ.0.) Q = ABS(DIAG(1) * EPS) WAV111

c - WAV112
D0 3 1 = 2,N WAV112

Q = DIAG(I) - TRIALX - ABS(SUBSQ(I-1))/Q WAV112;

IF(Q) 2, 1, 3 WAV112:

1 Q = ABS(DIAG(I-1) * EPS) WAV112.

G0 TO 3 » WAV112)

2 NEIGN = NEIGN + 1 WAV112

3 CONTINUE WAVI12®

c WAV112!
RETURN WAVI12®

END | WAV113t

IORY REQUIREMENTS 000282 BYTES
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SUBROUTINE REVERS(A, SUBDs Xy N) WAV103

c WAV103

c THIS SUBROUTINE PERFORMS THE INVERSE HOUSEHOLDER TRANSFORMATION  WAV103

O ON AN EIGENVECTOR *X' SO AS TO OBTAIN THE CORRESPONDING EIGEN- WAV103

C VECTOR OF THE ORIGINAL SYMMETRIC MATRIX OF ORDER N. WAV103

c WAV103

DIMENSION A(l) 4 X(1), SUBD(1) WAV103

c | WAV103

D0 3 K = 3,N WAV103

K1 =K-1 WAV104

o WAV104

c FIND THE PRODUCT U®#*X | WAV104

SUM = 0. WAV104

KO = LOCATE(K,O0) WAV104

DO 1 J = 1,K1 WAV104

KJ = KO + J WAV104
IF(A(KJ) «EQ.0.)A(KJ) =1 .E-8 S

1 SUM = SUM + X(J) * A(KJ) WAV1Q4

SUM = — SUM / (SUBD(KL} * A{KJ)) ' WAV104

c < ' WAV104

C DETERMINE TRANSFORMED X WAV105

DO 2 J = 1,K1 WAV105

KJ = KO + J . WAV105

2 X(J4) = X(J) - SUM * A(KJ) WAV105

3 CONTINUE WAV105

c WAV105

c SCALE VECTOR TO LENGTH N - | WAV10S

SUM = 0. WAV105

DO 4 J = 1,N WAV105

4 SUM = SUM + X(J)**2 WAV105

SUM = SQRT(FLOAT(N) / SUM) WAV106

DO 5 J = 1,N WAV106

5 X(J) = X(J) * SUM : WAV106

RETURN WAV106

END WAV106

10RY REQUIREMENTS OO038E BYTES
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c WAV106¢

SUBROUTINE TRIMUL{Y, A, Z, N) WAV106'

c WAV106¢
c THIS SUBROUTINE PERFORMS THE MULTIPLICATION Y = A' * Z, WHERE Y WAV106¢
c AND Z ARE COLUMN MATRICES OF ORDER Ny AND A IS LOWER TRIANGULAR INWAV107(
c COMPACTED STORAGE. 'Y MAY OVERWRIYE Z. WAV107]
c | WAV107:
DIMENSION Y(1)y Z(1)4 A(1) WAV107:

c - WAV1074
DO 2 I-= 1,N | WAV107¢

KI = LOCATE(I,I) WAV1O0T¢

SUM = 0. WAV107'

DO 1 K = IsN WAV10T¢

SUM = SUM + A(KI)  * Z(K) WAV 07¢

1 KI = KI + K WAV108(

2 Y(I} = SUM - : WAV108]
RETURN WAV108:

END : WAV108:

fORY REQUIREMENTS 000220 BYTES
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FUNCTIGN LOCATE(Iy J)

THIS FUNCTION LOCATES THE POSITION IN LINEAR STORAGE OF THE (I4J)
ELEMENT OF A SYMMETRIC MATRIX, STORED BY ROWS OF THE LOWER OR CO-

LUMNS OF ITS UPPER TRIANGLE.

MJ = MAXO(I, J)

MI = MINO(Iys J)

LOCATE = (MJ * (M3 - 1)) /7 2 + MI-
RETURN

END

MORY REQUIREMENTS O00019E BYTES

WAV113;
WAV113:
WAV113¢
WAV113¢
WAV113¢
WAV1137
WAV113¢
WAV113¢
WAV114C
WAV1141
WAV114:2



