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Abstract

As digital systems become widespread, the importance of error control in these sys-
tems increases. Further, since most channels cannot be realistically modelled by a
simple Binary Symmetric Channel, it is required to reliably estimate the performance
of error control schemes on real channels. This thesis considers the analysis and sim-
ulation of a Generalised Hybrid ARQ Type II (GH-ARQ II) error control scheme on
a channel modelled by the Gilbert-Elliott model. The analysis is easily extended to
higher order systems and channels modelled by first-order Markov chains. The results
indicate that the performance of the GH-ARQ II scheme improves as the errors in
the channel become burstier in nature and that this scheme is well suited to channels
with relatively slowly varying err.- ¢ statistics. Further, it is found that the roundtrip
delay of the selective repeat retransmission strategy may affect the performance of
this error control scheme on burst-+.nise channels.




Précis

Compte tenu que les systemes numériques sont devenus trés courants, le controle
d’erreurs dans ces systémes est une considération importante dans leur conception.
De plus, la plupart des canaux de communications ne peuvent pas étre convenable-
ment décrits par un canal symétrique binaire. Cette these consiste en 'analyse et la
simulation d’un systéme de contrdle d’erreurs ARQ hybride généralisé type 11 (GH-
ARQ II) lorsque le canal est décrit par le modele de Gilbert et Elliott. L’analyse peut
étre facilement étendue & des systemes d’ordre supérieur et a des canaux représentés
par des chaines Markov de premier ordre. Les résultats démontrent que la perfor-
mance de ce systeme GH-ARQ II s’améliore lorsque les erreurs deviennent plus con-
centrées. De plus, le délai aller-retour dans la stratégie de retransmission peut affecter
la performance de ce type de systeéme de controle d’erreurs.
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Chapter 1

Introduction

The importance of error control coding has steadily increased since its origin in the
late 1940’s. Error control coding can be used to ensure the reliability of digital sys-
tems; for example, a single error in an air traffic control system could have disastrous
consequences. It can also be used to render digital systems more economical as in
trellis coded modulation [7] which can transmit more information in a given band-
width than uncoded modulation. Error control coding may allow a decrease in the
required transmission power of satellite systems while maintaining their reliability,
thereby allowing closer spacing of these satellites in gecsynchronous orkit. It has also
been sucessfully applied in the memory architecture of the Cray 1 supercomputer [9].
The reliability and capacity of this computer’s memory modules were increased by
using a code capable of correcting one error and detecting two errors. In summary
then, the applications of error control are varied and not restricted to communications
systems.

1.1 Error Control Techniques

The basic elements of ~ typical communications systems are illustrated in Figure 1.1.

The source generates the message I which is to be communicated. The transmitier
suitably encodes this message to form the transmitted packet . This packet then
travels through the channel® which, depending upon its state, may or may not cause
errors. The recewver then accepts this possibly noisy receiwved packet r and uses the
code to correct or detect the errors that may have occurred. After the receiver has
decoded the received packet, its estimate of the message I is delivered to the sink.

1T distinguish it from the feedback channel, this channel is sometimes referred to as the forward
ckannel

A vt St
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I t I
(Source}'Transmitter—- Channel +— Recei .. ;<Sink>

Feedback Channel
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Figure 1.1: Basic Elements of a Communications System

If the communications system is to be useful, the message at the source I should be
the same as the message at the sink I with high probability?. The feedback channel
allows the receiver to send messages back to the transmitter. Depending upon the
type of error control scheme and protocol, it may or may not be present; if it is, it
may be the same as the forward channel.

The performance of a communications system is measured by two quantities: through-
put effictency and rehabiity. The definition of throughput efficiency, or simply
throughput, varies according to the type of the analysis. In this context,? it 1s defined
to be the ratio of the number of message bits accepted by the receiver to the total
number of bits transmitted. It measures, in a sense, the overhead* that is required
to communicate the message. The reliability, or probability of undetected error, of
the system is the probability that the receiver aelivers a message containing errors to
the data sink. The goal when designing a communications system is to make it as
efficient as possible while maintairing an acceptable reliability Usually there is some
tradeoff between throughput and reliability; a highly reliable system tends to have
low throughput (high overhead), while a nighly efficient (low overhead) system tends
to be less reliable. This idea translates into two classes of communications systems:
Forward Error Correction (FEC) and Automatic Repeat Request (ARQ).

The Forward Error Correction technique encodes the essage I with a code that the
receiver will use to correct the errors that may have occurred during transmission. If
the receiver is unable to correct the errors in the received packet, the decoded mes-
sage I will contain errors. Consequently, the throughput efficiency of this scheme is

2Some systems are less sensitive to errors than are others For example, a voice system may be
able to tolerate a limited frequency of errors without a significant quality degradation, while a data
system probably cannot tolerate a single error.

SIn other contexts, the throughput efficiency is defined to be the number of transmitted bits per
unit time.

4The overhead is understood to comprise two components: the parity bits required for error
correction or detection and the number of retransmissions that might be requestzd by the receiver
via a feedback channel.
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constant and equal to the rate of the code (the ratio of the number of information
bits to the total number of encoded bits). However, since the code is only capable
of correcting a given number of errors, its reliability deteriorates as the channel con-
ditions worsen. This scheme does not require the feedback channel and may be the
only choice when no such channel is available.

The receiver of an Automatic Repecal Request system uses the coding to detect the
presence of crrors 1n the received packet If errors are detected, the receiver will dis-
card the received packet and will request that the transmitter retransmit the encoded
message ¢t This request is achieved by sending a negative acknowledgement message,
or NAK, through the feedback channel to the transmitter. Otherwise, if the receiver
does not detect errors in the received packet, it sends a positive acknowledgement
message, or ACK, to the transmitter and delivers the recovered message [ to the data
sink. The receiver will continue to request that the packet t be retransmitted until it
fails to detect the presence of errors in the received packet r. Note that the receiver
may deliver an erroneous message to the sink if the number of errors in the received
packet exceeds the code’s error detection capability. Since a given code is capable
of detecting more errors than it can correct, the reliability of the ARQ scheme is
higher than that of a comparable FEC scheme. This comes at the expense of a lower
throughput efficiency, since the ARQ scheme may require more than one transmission
to communicate a message I. Interestingly, Shannon showed that use of a feedback
channel does not increase the capacity of a memoryless forward channel, but can in-
crease its reliability at all rates below the channel’s capacity [45]. Also, it is usually
assumed that the feedback channel is noiseless, so that the messages from the receiver
to the transmitter are always correctly communicated.

In summary, the throughput efficiency of FEC systems is constant and usually greater
than that of ARQ systems (provided they use the same code), but this comes at the
expense of lower reliability (higher probability of undetected error), especially when
the channel conditions are poor. For a given code and packet length, the complexity
of error correction is greater than that of error detection. However, since the ARQ
system requires additional circuitry to support the feedback channel as well as one of
the retransmission sirategies discussed in Section 1.3, its complexity is greater than
that of a comparable FEC system. The performance analysis of these error control
schemes has generated a wealth of literature; see, for example, [24, 38, 39, 60, 61].

1.2 Hybrid ARQ Variations

In order to overcome the limitations of the FEC and ARQ error control schemes,
several hybrid systems have been proposed. The goal of these systems is to combine
the efficiency of FEC with the reliability of ARQ. There are two broad types of

o
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hybrid ARQ; the first is well suited to channels whose characteristics are well-known
and stable, the second is appropriate when the channel conditions are unknown or
time-varying.

Type I Hybrid ARQ combines both error detection and error correction in an attempt
to benefit from the advantages of FEC and ARQ. Rocher and Pickholtz [17] considered
a scheme whereby the message to be communicated is encoded with a code that
will be used by the receiver to correct and detect errors. The receiver attempts to
correct the errors that may have occurred during transmission and then performs error
detection to check for any remaining uncorrectable errors In this scheme, the error
correction characteristic of FEC may decrease the required number of retransmissions
(compared to a pure ARQ scheme), while the error detection characteristic of ARQ
may improve 1ts reliability (compared to a pure FEC scheme). They found that on
binary symmetric channels, the use of Hybrid ARQ became attractive when error
rates exceed 104, Sastry [44] investigated the performance of this system on satellite
channels where the roundtrip retransmission delay is long; he found that it offered
a “substantial” performance improvement over FEC and ARQ. Kasam et al. [37]
considered a concatenated coding scheme that utilized two codes: the inner code is
used for both error correction and detection, while the outer code is used only for error
detection. Deng and Costello [6] found that this approach can provide extremely high
throughput and low probability of undetected error. They concluded their analysis
by suggesting that this scheme is a good candidate for use on high speed channels
such as satellite and file-transfer systems.

This type of hybrid ARQ is well suited to channels whose characteristics are known
and stable so that an appropriate error correction code may be used. However, if
the channel is quieter than expected, the additional redundancy included for error
correction is wasted. Whereas, if the channel is noisier, that redundancy is still wasted
because the receiver will be unable to correct all the errors caused by the channel and
will have to request a retransmission from the transmitter.

Type II Hybrid ARQ differs from Type I by its adaptive nature; the parity bits used
for error correction are sent to the receiver only when they are required. This scheme
was initially proposed by Mandelbaum in 1974 [14]. It requires less a prior: knowledge
about the channel and, hence, is well suited to conditions in which the error rate is
nonstationary.

Lin and Yu proposed a Type II Hybrid ARQ scheme using two codes for use on
satellite channels [21]. The outer (N, k) block code Cp is designed for error detection
only, while the inner (2k, k) block code C; is designed for both error detection and error
correction. Further, C, is tnvertible in the sense that the message I may be uniquely
determined by its parity bits P(I). The k information bits to be communicated are
coded with the inner code C;. Assuming that this code is systematic, the result is a
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2k-bit codeword (I | P(I)) in Cy, where I is the message and P(I) corresponds to the
parity bits generated by C;. The requirement that C; be systematic is not stringent,
and merely for notational convenience®. The k message bits that form [ are then
coded with the outer error detection code Co to form the packet (I, @) which is then
transmitted. Here, Q corresponds to the parity bits resulting from the error detectivn
encoding B

At the receiver, the syndrome of the reccived packet r = (i,_@_) is computed. If the
syndrome is zero, the transmission is assnmed successful, the receiver returns ACK to
the transmitter and the recovered information bits 1 _—_i are delivered to the data
sink. However, if the syndrome is nonzero, errors have been detected. The receiver
returns NAK to the transmitter and stores the currently received packet in 1ts memory.
When the transmitter receives the NAK from the receiver, it encodes the parity block
P(I) with the error detection code Cy to form (P(I), Q') and transmits this packet.
Here Q' corresponds to the parity bits resulting from the erior detection encoding

of P(I) with Cy. Upon reception of this cecond transmission, the receiver begins by

attempting to detect occurs that might be present in the received packet (P’(Z),_;QA_I).
In the case that no errors are detected, the receiver returns ACK to the transmitter; I
is then recovered from P(/\l) by inversion and delivered to the data sink. Otherwise,
the receiver combines this packet with the previously reccived one to form (£, P(I)).
This combined packet may then be decoded using the C; code in an attempt to correct
the errors. If the error pattern 1s correctable, then the receiver returns ACK to the
transmitter and the recovered information J is delivered to the data sink. Conversely,
in the case that the receiver determines that the error pattern is uncorrectable, 1t

returns NAK to the transmitter and the packet (/, Q) is replaced by (P/(:’),Q_’) in its

memory. The transmitter alternates transmissions of (I,@) with (P(I), Q") until it
receives a positive acknowledgement from the receiver.

Lin and Yu analyzed the performance of this system on a discrete memoryless channel
with a finite-buffer selective repeat request retransmission strategy. They found that
this scheme offered higher throughput efficiency than a simple ARQ error control
scheme without error correction. It was also found that its reliability is the same as
that of this simple ARQ scheme, if the error detection capability of the inner code C;
is sufficiently large. Since the Type Il hybrid scheme requires an inversion circuit and
an error detection circuit for Cy, its complexity is greater than that of a Type I hybrid
scheme. This additional complexity may be compensated for by better performance
if the throughput efficiency is sufficiently increased while maintaining an acceptable
reliability.

Although the scheme proposed by Lin and Yu used block codes for Cp and Cy, it is

5In fact, a system that uses a nonsystematic error correction code will be considered in a later
chapter.
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possible to use convolutional codes instead. Lugand et al. [4] analyzed the perfor-
mance of such a scheme on a channel described by a simple burst-noise model. They
found that its throughput efficiency increases and its reliability improves as the noise
in the channel becomes progressively burstier.

Wang and Lin {20] proposed a Type II Hybrid ARQ scheme similar to that proposed
by Lin and Yu. In this scheme, Cg is an (V, k) code used for error detection and C; is a
(2N, N) invertible code used for error correction only. Unlike the Lin-Yu scheme, this
scheme uses the full error correction capability of C;. The Wang-Lin scheme begins by
encoding the message I with the error detection code Cy to form the packet t = (I, Q),
where () represents the error detection parity bits. Then, ¢ is encoded with the error
correction code C; to form (2, P(t)). Again, it is assumed for notational convenience
that C; is a systematic code. The packet t is then transmitted.

Upon reception of the possibly noisy packet r = (_[, Q), the receiver attempts to detect
the presence of errors by using Co. If no errors are detected, the packet is assumed
error-free, the recovered message I =1 is delivered to the data sink, and ACK is re-
turned to the transmitter. Qtherwise, errors have been detected, the receiver stores {
in its buffer in preparation for the next transmission and returns NAK to the transmit-
ter. Upon receiving the NAK message from the receiver, the transmitter will transmit
the packet P(%). The receiver begins by inverting r = ﬁ(Z) to form P‘I[I;(Z)]. This
inverted packet is then checked for errors with the code Co; if none are detected, the
transmission is positively acknowledged and the recovered message is delivered to the
sink. Otherwise, the receiver combines this packet with the previously transmitted
packet to form the combined packet {{, P/(Z)) The error correction code C; is then
used to attempt to correct the errors in the combined packet. Let the resulting de-
coded packet be denoted by (I*,@*). This packet is then checked for errors; if none
are detected, the receiver returns ACK to the transmitter and delivers I=1I"to the
sink. Otherwise, the receiver discards { from its memory, replaces it by 15(\1) and
returns NAK to the transmitter. Note that the transmitter alternately transmits ¢
and P(t). When the packet length is small, Wang and Lin found that their approach
resulted in slightly higher throughput efficiency than the scheme proposed by Lin and
Yu, probably because it uses the full error correction capability of the inner code.

The Type-II Hybrid ARQ error control schemes considered up to now have used a
half-rate error correction code; however, this scheme may be generalised so that the
parity bits of a code with progressively greater minimum distance are sent to the
receiver on each retransmission. For example, instead of sending the packet (1, Q) on
the second retransmission, it would be advantageous to transmit parity bits that the
receiver could use for decoding with a rate one-third error correction code. In this
scheme, the receiver begins by inverting the received packet and then checking for
errors. If the inversion is unsuccessful, the receiver then combines this packet with
the two previously received packets and uses a (3N, N) code to attempt to correct
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the errors. In principle, there is no limit on the number of retransmissions by the
transmitter until it returns to transmitting the original message. This approach is
called Generalised Hybrid ARQ Type II (GH-ARQ II} and was first introduced by
Morgera and Krishna [1, 12]. Note that the Type II Hybrid ARQ scheme proposed
by Wang and Lin is a special case of the generalised approach.

The main advantage of GH-ARQ I1 is its ability to adapt to varying channel conditions
to a higher degree than Type I Hybrid ARQ. However, this scheme’s adaptability and
gain in performance may be offset by its decoding complexity unless a suitable code is
chosen for C;. In the worst case, a decoder is required for each error correcticn code:
(2N, N), (3N, N),...(mN, N). Further, as Metzner suggested [48], it is desirable to
partition the usually long packets into smaller blocks so that a simpler and shorter
error correction code may be used. This makes soft-decision decoding possible [3].
This performance of this error control scheme has been analyzed by Krishna and
Morgera 1] on a binary symmetric channel, but little is known about its performance
on burst-noise channels. Given its adaptive characteristic, it seems likely that this
GH-ARQ II error control scheme would outperform other schemes on this type of
channel. The GH-ARQ II error control scheme proposed by Morgera and Krishna
will be described in more detail in Section 3.1.

Figure 1.2 illustrates the differences in performance of three ARQ error control
schemes. The simple ARQ scheme uses a code for error detection only, the Type I
Hybrid ARQ scheme uses one code for error detection and correction (like the scheme
proposed by Rocher and Pickholtz [17]), and the Type II Hybrid ARQ scheme is like
the one proposed by Wang and Lin which uses two codes. At low error rates (be-
low 10-5) the throughput efficiency of the simple ARQ and Type II ARQ schemes is
identical; that of the Type I Hybrid scheme is lower because the added redundancy
for error correction is wasted. As the error rate increases, the efficiency of the simple
ARQ scheme decreases quickly and becomes virtually useless at error rates greater
than 1073, At error rates between 10~ and 10-2, the throughput of the Type I Hy-
brid ARQ scheme is greater than that of the Type II scheme. This is because the error
correction coding in the T'ype I scheme suffices to correct most of the errors that occur
during transmission, while the Type II scheme must request a retransmission since
it has no inherent error correction capability on the first transmission of a packet.
Finally, at very high error rates, the throughput of the Type II Hybrid ARQ scheme
is superior to that of the other error control schemes because the error correction
capability of its half-rate code C; exceeds that of the Type I Hybrid scheme.
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Throughput of ARQ Error Control Schemes
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Figure 1.2: Comparison of Error Control Schemes [24]. Legend: — Simple ARQ
— — — Hybrid ARQ Typel —.— Hybrid ARQ Type IL

1.3 Retransmission Strategies

The retransmission strategy in an ARQ-type system refers to the protocol that man-
ages the utilization of the forward and feedback channels. There are three major
types of retransmission strategies which are described in detail in [24]. Again, it will
be seen that there is a tradeoff between the complexity of a strategy and its efficiency.

The stop-and-wait retransmission strategy, illustrated in Figure 1.3, is the simplest
and least efficient. According to this strategy, the transmitter transmits a packet and
then waits for the receiver’s response before transmitting another one. This strategy
is simple to implement, but represents a waste of the channel’s resources because of
the time in which it is idle. This is especially significant if the roundtrip delay is large
as in a satellite channel for example.
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/ Transmitted Blocks

Received Blocks 1

Error

Figure 1.3: Stop and Wait Retransmission Strategy

The second retransmission strategy is Go-Back-N as shown in Figure 1.4. It is as-
sumed N packets may be transmitted in the time that it takes for one roundtrip. In
the Go-Back-N retransmission strategy, the transmitter continuously transmits pack-
ets to the receiver - it does not pause between transmissions to wait for the receiver’s
response as it did in the simple stop-and-wait strategy. If the transmitter receives
a negative acknowledgement from the receiver, it goes back N packets and resumes
transmitting from there.

/‘ Transmitted Blocks
1 2 ) 4 5 6 2 3 4 5 6 7 3
\ ACK NAK ACK ACK ACK ACK ACK NAK

1 1213145161271} 3
Received Blocks | [

Error Error

Figure 1.4: Go-Back-/V Retransmission Strategy with N=5.

This approach is more complex to implement than a simple stop-and-wait retrans-
mission strategy, yet is significantly more efficient when the channel is quiet and the
roundtrip delay is large because the channel is not idle for long periods of time. How-
ever, when the channel conditions are poor, this retransmission scheme is no better
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than a simple stop-and-wait scheme because much of the time is spent going back N
packets to retransmit packets received in error. This inefficiency is illustrated in Fig-
ure 1.4. When the first error occurs, it forces the transmitter to back up to packet #2.
Notice that packets #3 to #6 were correctly received after the error occurred, but
were discarded by the receiver so as to keep the packets correctly ordered at the data
sink. Herein lies the inefficiency of Go-Back-N; this issue will be addressed by the
next retransmission strategy.

The selective-repeat retransmission strategy is the most complex and most efficient of
the three strategies that will be considered. Like the Go-Back-N strategy, the trans-
mitter continuously transmits packets to the receiver. However, unlike Go-Back-N,
when a negative acknowledgement is returned by the receiver, the transmitter re-
transmits only that packet which was received containing errors — not. the previous
N packets. The factors that limit the performance of this retransmission strategy
are its requirement of a buffer at the receiver (theoretically, an infinite buffer is re-
quired) and the added overhead required to number the packets so that they are
correctly ordered at the data sink. It has been found, though, that this scheme is far
more efficient than the stop-and-wait and Go-Back-N retransmission strategies. This
retransmission strategy, and variations of it, is analyzed in detail in [2, 43, 45, 50].

'/ Transmitted Blocks

1 2 3 4 5 | 6 2 718 9 {1011} 7

\ ACK NAK ACK ACK ACK ACK ACK NAK

1 2 3 4 5 6 2 7
Received Blocks | i

Error Error

Figure 1.5: Selective Repeat Request Retransmission Strategy




CHAPTER 1. INTRODUCTION 11

1.4 In This Thesis...

Most analyses of error control schemes have modelled the channel as a simple mem-
oryless channel. This 1s usually an oversimplification of reality — few channels are so
easily modelled. Tais thesis analyzes and simulates a GH-ARQ Il communications
scheme when a short block code is used for error correction and the channel may be
modelled as a first-order Markov chain. It is organized as follows.

In Chapter 2 the channel model is described and the , erformance of a simple ARQ
error control scheme on this channel is analyzed. Then, the problem of integer par-
titioning is described and solved by using integer partitioning trees. The solution to
this problem is required to make the analysis of the GH-ARQ 1I error control scheme
more efficient.

The GH-ARQ 11 error control scheme is described in more detail in Chapter 3. This
chapter also considers the effect of the error correction code upon the performance of
the error detection code in such a scheme; two examples are provided to illustrate this
effect. Further, the computation of the weight distribution of some high-rate codes is

described.

The performance of the GH-ARQ II scheme on a burst-noise channel is then analyzed
in Chapter 4. The receiver state transition diagram presented in this chapter is well
suited to describing this type of error control scheme. The throughput and probability
of undetected error are then computed in terms of the transition probabilities in
the receiver state transition diagram. The analysis is then completed by computing
these transition probabilities. The approach taken to analyze this GH-ARQ II error
control scheme is easily extendible to higher order systems and other channels that
are modelled by first-order Markov chains.

This is followed by the results of some analyses and simulations considering various
GH-ARQ II schemes and channel parameters in Chapter 5. The experiments include
the simulation of a GH-ARQ II system. The throughput estimated by simulation
is then compared with that obtained from the preceeding analysis. Then, the effect
of the roundtrip delay in the various retransmission strategies upon the performance
of the GH-ARQ II error control scheme is investigated. As well, the throughput
efficiency and reliability of the GH-ARQ II scheme is compared to that of a simple
ARQ scheme. The effectiveness of these error control schemes is also considered on
some mobile radio channels whose channel model parameters have been mecasured.
This chapter concludes by determining the effect of the error correction code’s depth
upon the throughput efficiency of the GH-ARQ II schemes.

Chapter 6 concludes this thesis and suggests some further topics of interest. Ap-
pendix A describes an approximation that significantly decreases the complexity of
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<~

the throughput efficiency computation. Then, it describes the analysis modifications
that are required to account for error correction cudes consisting of non-invertible
generator matrices. This appendix concludes by extending the performance analysis
of the GH-ARQ II error control scheme to depth-3 and depth-4 systems. Appendix B
discusses some issues related to the Gilbert-Elliott burst-noise channel model. Fi-

nally, Appendix C summarizes the error correction capabilities of some selected KM
codes.




Chapter 2

Preliminary Issues

This chapter describes a burst-noise channel model as well as its related parame-
ters. The performance of a simple ARQ error control scheme on this channel is then
analyzed. Finally, the integer partioning problem and a method to enumerate the
partitions of an integer are presented. This problem will arise when the performance
of the GH-ARQ II error control scheme is analyzed and its solution decreases the
computational complexity of this analysis.

2.1 The Channel Model

Channel models, in general, fall into one of two categories: generative or descriptive.
Generative models are those that attempt to describe a model which generates error
sequences with similiar properties’ to those generated by the real chaunel. Note
that the error sequence e is the sequence produced by the modulo-2 addition of the
transmitted and received packets, t and r respectively. Descriptive models describe
the structure of the the real channel’s error sequence by a su:table set of statistics. In
this thesis, only generative models are considered; descriptive models are discussed
in more detail in [13].

The simplest channel model is the Binary Symmetric Channel (BSC) shown in Fig-
ure 2.1. This model is memoryless in the sense that errors occur at random intervals
with constant probability p. Thus, the properties of this model are simply summa-
rized by p. Unfortunately, the BSC is not adequate to describe the characteristics of
several real channels of interest.

1For example, these properties might be the average error rate or the error gap distribution of
the channel in question [13].

13
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1—
0 P 0
p
p
1 1
t 1-p %
p : Probability of Error

Figure 2.1: The Binary Symmetric Channel. The k-th bit in the transmitted and
received packets is denoted by t; and r, respectively.

Real channels tend to have some memory which causes errors to occur in bursts.
These may be caused, for example, by radio static, switching transients or varying
weather conditions {10]. Unlike the errors that occur in the BSC, it is in general very
difficult to describe the statistics of the errer bursts. Collectively, channels in which
the errors occur in bursts are referred to as burst noise channels or fading channels.

The first model to adequately describe the behavior of some fading channels was
proposed by Gilbert in 1960 [10]. The Gilbert model consists of a two-state first-
order Markov chain. When the channel is in the “Good” state, no errors occur; while
in the “Bad” state, errors occur with probability €. In effect, the bad state is a
BSC with probability of error equal to €¢;. The transitions between the two states are
determined by the transition probabilities from the good to bad state Py and from
the bad to good state P,,. Since the channel is in the bad state with probatkility

7,—:—:‘_"7.—, and since errors can only occur in this state with probability ¢, the overall
4 )

- « Pgpe
- bE€p
average probability of error € is yores

In this thesis, the burst-noise channel model that will be considered is the extension
of the Gilbert model proposed by Elliott [11] in 1963 and shown in Figure 2.2. It
accounts for the possibility that etrors can occur in the good state with probability
€g- Typically €5 > ¢,. Let the current state of the channel be denoted by €,. The
average probability of error € in this model may then be computed as follows:

¢ = Pr(Error, % = G) + Pr(Error, ; = B)
= Pr(Error | Q, = G) Pr(; = G) + Pr(Error | Q, = B) Pr(£2, = B)
Pgyer + Pgeg
Pgb + Pbg ’
where the results that Pr(State G) = P.%IFT. and Pr(State B) = Fffp—; are used and
are derived in Appendix B.
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0 —a—% . g
€p €p
I —4= 1

BSC in Good State BSC in Bad State

Figure 2.2: The Gilbert-Elliott Model for Burst-Noise Channels

The “burstiness” of th: Gilbert-Elliott model may be more explicitly described by
an alternative set of parameters as proposed by Lugand ef al. [4]. This approach
qualifies the bursts as diffuse or dense. A dense burst channel is characterized by
infiequent bursts of several errors, while a diffuse burst is distinguished by frequent
bursts of few errors.

In order to quantify the burstiness of this channel model, several definitions are
required. The average burst length b is the average number of packets transmitted
while the channel is in the bad state and is simply b = 1/P,,. Let the probability
that the channel model is in the bad state be denoted by B,, and finally, define the
high-to-low bit error rate ratio to be p = ¢/¢,. The Gilbert-Elliott model may then
be completely described by the four parameters b, P, € and p instead of P, B,
€g, and €. It is now possible to describe the burstiness of this channel model more
concretely. A dense burst channrel is one in which P, is small and p is large, while a
diffuse burst channel is one in which P, is large and p is slightly greater than unity.
The limiting case of the diffuse burst channel model is the BSC in which ¢, = ¢
(p = 1); the transition prcbabilities in this case are irrelevant.

In order for this channel model to be qualified as previously described, it must satisfy
four conditions as described in [4]. The one additional constraint required in order for
the model to meet these conditions is that e, = €P,. This constraint decreases by one
the number of degrees of freedom in this channel model and simplifies the analysis
of the performance of error control schemes on this channel model. Therefore, the
parameters b, P, and € with the constraint ¢; = €P, completely describe the Gilbert-
Elliott channel model. The original channel model parameters may then be computed
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from these three parameters by using the following expressions:

1
B, = =
L
By b
P, = g
® = 1B
e = eh
€ € 1_ _l.._'E 1 -t
e = { &—(1~P)e for B> +3 \/‘2—)‘(—»«?5 |
3, otherwise

2.2 Analysis of a Simple ARQ 5cheme

In this section, a simple ARQ) scheme is described and its performance on a burst-
noise channel is analyzed. Suppose that the message to be communicated I is a
k-bit block denoted by a vector I = (i0,...,2-1). This message is encoded with
an error detection block code C to produce an N-bit packet ¢ which is suitable for
transmission. Since this code is assumed to be a block code, it may be described
in; general by a (k X N) generator matriz, G. The encoding process is then simply
described by { = 1@, assuming that the k-bit message is a (1 x k) vector. Let the
weight distribution of this code C be denoted by the set {Ax: k =0,1,..., N}, where
A, is the number of codewords in C with weight k.

The receiver checks for the presence of errors in the received packet by computing its
syndrome. The parity check matriz, denoted by H is an (N —k x N) matrix with the
property that GH T = 0, where 0 is the (k x (N — k)) zero matrix. The syndrome §
of the received packet is then

S=rH T,

If S = 0, where 0 is the zero vector, then the receiver decides that no errors have
occurred and delivers the recovered message I to the data sink. Otherwise, if § # 0 the
receiver requests that the transmitter retransmit the packet t. This process continues
until a packet with zero syndrome is received. The computation of the syndrome may
be illustrated as shown in Figure 2.3.

If the error sequence added by the channel is equal to a codeword in the error detection
code, the receiver will deliver a message I containing errors to the data sink. This is
because the syndrome of the error sequence, S, = eH T, is 0 and, thus, is undetectable.

The throughput efficiency of this scheme is defined to be the reciprocal of the av-
erage number of transmissions required before the receiver positively acknowledges
reception of the data. The reliability of the simple ARQ scheme is defined to be
the probability that the receiver delivers a packet containing errors to the data sink.
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l

If $ =0, the If S #0, the
receiver returns receiver returns
ACK to the NAK to the
transmitter. transmitter.

Message Block (k bits)

Error Detection Encoding

Channel Adds Error Sequence e (/N bits)

T = ¢g T Compute Syndrome S (N — k bits)
=0

Recall that GHT =0 = IGHT

Figure 2.3: Syndrome Computation in the Simple ARQ Error Control Scheme

Assume that the transitions between the states of the channel model occur only be-
tween transmissions of packets. This assumption is common [4, 6] and cnsures that
the error rate during the transmission of a packet is constant. Let,

C = Pr(§=0,e=0)
Q = Pr(§=0,e#0)
P = Pr(§#0),

where, as before, S is the syndrome of the received packet. These probabilities may
be interpreted as follows. The quantity C is the probability of receiving an error-free
transmission, @ is the probability of receiving an error sequence equal to a non-zero
codeword in the error detection code C, and, finally, P is the probability of receiving
a message containing a detectable error sequence.

By definition, the average number of transmissions before the receiver accepts the
transmitted packet, E[Number of Transmissions], is
(o <]

E[Number of Transmissions] = > _ i Pr(¢ Transmissions).

(£33

Since Pr(¢ Transmissions) = P*~1(1 — P),

E[Number of Transmissions] = Y iP""}(1~ P)
i=1

= Z z+l)P’ ZzP'

1=0 1=1

il
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E[Number of Transmissions] = 14 ) [(i+1)P* —iP"]

i=1

o0
= P

=0
= ! P <.
= {_P assuming

The throughput, 7(ARQ), of this simple ARQ scheme is then,

n(ARQ)=1—P. (2.1)

The reliability (probability of undetected error) of this scheme FP,i(ARQ) may be
computed in a similar manner. That is,

P.,i(ARQ)

> Pr(Undetected Error on -th Transmission)

1=1

= Y_ QiPr(: Transmissions)

=1
= QY. P
=0

= — i 1.
T p> assuming P <

Therefore, the reliability of the simple ARQ error control scheme is given by

Pus(ARQ) = T‘?”F' (2.2)

There remains the computation of the probabilities C, @ and P, which is easily
accomplished as shown below. Let €; be the current state of the channel. Then,

= Pr(§=0,e=0,%=G)+Pr(§=0,e = 0,0 = B)
— Pr(S=0,e=0]|0 =G)Pr( =G)
+Pr(S =0,e =0]|% = B)Pr(Q2, = B)
— ey by R, Fob
- (1 eﬂ) P +P +(1 6l’) Pb+Pbg
C = -—-——-[P,,,1-e,) + Pu(l—e)].

P + Pog
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o

Let d be the minimum distance of the error detection code C. Then,

Q =

Pr(S=0,e#0,9 =G)+Pr(S =0,e # 0,% = B)
Pr(S=0,e#0 | % = G) Pr(§}; = G)
+Pr(S —06#0|Q—B)Pr( = B)

P

— N Ape*(1 — € )Nk 4 Arel(1 — )Nk
PMPWE ke (1 —€g) R +Pb“§i rer (1 — &)V

1
mZAk [Pbgﬁ l—fy)N k+Pgb€b(1—Cb)N k]

Finally, since C + P + @ = 1, the probability P = Pr(S # 0) is simply

P=1-C-Q.

Substitution of these expressions for C, () and P into the expressions for the through-
put and reliability (Equations 2.1 and 2.2 respectively) completes the performance
analysis of this simple ARQ error control scheme on a burst-noise channel.

— 1 1 N N
74RQ) = i { Byl = )" + Pa(1 = )
N
+ 3 A [Pt — )" + Padlt - )]
k=d

Sl g Ak [Preh(1 — €)% + Peh(1 — &)V 4]

Pua(ARQ) =

Pog(1 — ¥ + Pp(1 — &)V + X4L4 Ax [PbgGL‘(l — )Nk 4 Pppef(1 — &)V~ "]

2.3 The Integer Partition Problem

This section describes the general problem of integer partitioning which will be an
issue when the GH-ARQ II error control scheme is analyzed. Further, it presents a
method to enumerate the partitions of a given integer along with an example of it.
Comments regarding the correctness and complexity of this enumeration method are
then offered.
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2.3.1 Description of the Problem

Consider the following problem. Given a packet of N bits with Hamming weight w
and comprised of N/n blocks, enumerate the number of ways in which the weight w
may be distributed (or partitioned) among the blocks. For example, suppose that a
6-bit packet comprised of 3 blocks has Hamming weight equal to 2; so w =2, N =6
and n = 2. There are two ways in which to partition the Hamming weight among the
blocks in the packet. These are illustrated in Figure 2.4.

1 1 0 2 0 0

18t Partition ond partition

Figure 2.4: Example of Partitions

These partitions satisfy the following constraints:

e The Hamming weight of the packet is w.
e The Hamming weight of any given block does not exceed n.

e The order of the blocks is unimportant. That is, the partitions1 1 0and 10 1
are considered equivalent.

The problem then, is to efficiently enumerate these partitions when w, N and n are
large enough so that simple inspection is infeasible.

The enumeration of these partitions is an issue in the broader integer partitioning
problem which is summarized here and described in detail in [23]. Suppose w is a
non-negative integer and that there exist integers a;, 7 =1,..., K (K > 1), such that
ag 2 ...2a32>20a; >0 Ifw= Ei’il a;, then a = {ay,...,ax} is a K -part partition
of w. The enumeration of the partitioning of w = 7 is given in Table 2.1.

Regarding the integer partitioning problem in the present context, two issues will be
addressed. The first is the number of partitions of an integer and the second is the
description of a method to systematically enumerate these partitions.

Let p(w) denote the number of partitions of an integer w. Further, let [¢*] be an
operator that returns the w-th coefficient of the polynomial upon which it operates
so that if .

f(g) = 2 aiq’ = ang™ + ana1q™ + ... + 419 + ao,

=0
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l1-part | {7}
2’part {1’6} {2’5} {3a4}
3-part | {1,1,5} {1,2,4} {1,3,3} {2,2,3}

g-part | {1,1,1,4} {1,1,2,3) {1,2,2,2}
5-part | {1,1,1,1,3} {1,1,1,2,2}
6-part | {1,1,1,1,1,2}

7-part | {1,1,1,1,1,1,1}

Table 2.1: Enumeration of the Partitions of w =7

then

\
[¢“1f(q) = T%’—’ = @y, for 0 <w < n.

q=0

The number of partitions of the integer w is then given by [23]

p(w) = [¢“] [T - ¢)
i=1
The problem of enumerating these partitions will be the subject of the following
section.

2.3.2 Construction of an Integer Partition Tree

The solution that was adopted to enumerate the partitions of an integer consists in
constructing a tree, the integer partition tree?, so that valid paths through the tree
form partitions of the integer w. Begin by assuming that the maximum value of
any a, in the partition « is n (the number of bits in a block). Also, since there are
N/n blocks in a packet, it is required to enumerate all partitions up to and including
N/n-parts; that is K < N/n. To construct this tree, begin by assigning its root a
cumulative weight w; of zero. Now, add n leaves to the root. The cumulative weight
of each leaf is then its index number. This is illustrated in Figure 2.5.

Each leaf of the tree is tested to ensure that it is still consistent with the requirements

of a valid partition:

1. Its total cumulative weight w; must be less than or equal to the integer being
partitioned w. That is w, < w.

2. The number of levels in the weight partition tree must be less than or equal to
the number of blocks in the packet N/n. Note that the root is not counted as

ZSince the integer in question is usually the Hamming weight of a packet, the term “Integer
Partition Tree” is used interchangeably with “Weight Partition Tree”.
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— “n” Leaves

Figure 2.5: First Level of an Integer Partition Tree

a level in the tree. This ensures that no partition with more than N/n parts is
generated.

If it is found that a leaf has total cumulative weight w, greater than w, then it is
eliminated from further “growth”. If a leaf has total cumulative weight equal to the
target integer w, then the path from it to the root is a valid partition of w. Finally,
in the case that the leaf’s total cumulative weight is less than the target weight, the
growth is continued at least one more level. It is interesting to note that the j-th leaf
on the first level will enumerate all those partitions with a; = ;.

The growth to a second level is illustrated in Figure 2.6.

<-— Root

n
<~ First Level

n

°® -— Second Level
we=2 we=3 we=n+1 wy=4 wy=n+2 we=2n

Figure 2.6: Second Level of an Integer Partition Tree

Note that the second level is extended from the first level in such a way that equivalent
partitions will not be generated. Leaf 1 on the first level is extended by n leaves
numbered 1...n, leaf 2 on the first level is extended by n — 1 leaves numbered 2...n
and leaf n on the first level is extended by 1 leaf numbered n. In general, child 3
on the first level is extended by n — j + 1 leaves numbered ; ...n which ensures that
az > ay. This procedures applies to the succeeding levels as well.

The growth of the integer partition tree is complete when no leaf may be extended
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in such a way that the previously outlined conditions are still respected. When this
happens, the paths from those leaves with w; = w to the root enumerate the partitions
of the integer w.

The correctness of this procedure to enumerate the partitions of an integer is easily
demonstrated by recalling the definition of a partition; namely that the parts o
should be such that

aKZ...ZO/2201>0.

This is exactly how the partitions are generated with the integer partition trees. The
first level in the partition tree generates a;, the second level generates a, and in
general the j-th level (j < N/n) generates a;,. Since a leaf on the i-th level may
generate only children with index number greater than or equal to its index number,
this ensures that a,4; > a,. Consequently, the integer partioning trees as previously
described are a simple interpretation of the definition of the original integer parti-
tioning.

The comnlexity of this scheme is an important consideration. If there is no restriction
on the size and number of parts in a partition, then the complexity of any scheme is
lower bounded by the number of partitions p(w) of the integer w. However, given the
restrictions that no part shall be greater than ¢ and no partition shall be comprised of
more than N/n parts, this constrains the number of allowable partitions of an integer
w to be less than or equal to p(w). It is, in general, a very difficult problem to deter-
mine the number of nodes that are generated in a partition tree when enumerating
the partitions of an integer w.

The number of partitions enumerated by the weight partition tree is the number
of terminal leaves in the tree. Note that not necessarily all of these partitions are
valid, yet these must all be counted because they contribute to the complexity of
the enumeration. Suppose that no part in any valid partition of an integer w may be
greater than ¢ and that no partition may contain more than N/n parts. Consequently,
there are t nodes on the first level of the integer partition tree. The number of nodes
on the second level is exactly
i _tt+1)
1=

i=1
which can be upper bounded by 2 (since ¢ > 1). This upper bound may be obtained
alternatively by imagining that each node on the first level is extended by ¢ children to
form the second level. Hence, the second level would contain ¢? children. In general,
the I-th level of the tree would then contain at most # nodes. Since an integer partition
tree may contain at most N/n levels, the upper bound on the number of terminal

leaves is t¥/", It has been found, though, that this bound is very loose especially
when ¢ and N/n are large.
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2.3.3 An Example

This section presents an example of the enumeration of the integer partitions using
an integer partition tree. Suppose that the Hamming weight of the packet is 6 and
that there are N = 12 bits in a packet with n =3 bits per block. In the language
of integer partitioning, this example would be interpreted as the partitioning of the
integer 6 such that no partition contains more than N/n = 4 parts and no part «, is
greater then n = 3. The completed weight partition tree is illustrated in Figure 2.7.

/ wg=6\/
‘ J @x ©

x @ @

w=4 w=b wi=6 w=6 we=T7T w=8 wy=T7 w=8

Figure 2.7: Example of an Integer Partition Tree

From the integer partition tree in Figure 2.7 it is seen that there are five partitions
marked / which satisfy the constraints N = 12, n = 3 and w = 6. These partitions
are:

P = {1,1,1,3}
P, = {1,1,2,2}
P = {1,2,3}
Py = {2,2,2}
Ps = {3,3}
These partitions may be expressed more efficiently in terms of 7r§") = (wg-g), vy wgf,)),

such that 7r§f) is the number of parts equal to 7 in the j-th partition of the integer k.
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Using this notation, the partitions for this example may be expressed as

P w®=(0,3,0,1)
P, <°> = (0, 2,2,0)
Ps: =(1,1,1,1)
| Py =(1,0,3,0)
1 Ps : ("‘) =(2,0,0,2)

This notation will be convenient when the transition probabilities in the receiver state
transition diagram of the GH-ARQ Il system are computed in Chapter 4. Also, notice
that these partitions satisfy the following constraints:

1. The number of parts in the partition of & should be equal to the number of
blocks in the packet N/n. Note that the number of parts equal to zero should
be included in the counting of these parts. That is,

Z 7r(k) = N/n.

1=0

2. The sum of the parts of the partition of the integer k must equal k. That is,

Z i7r§f) = k.

=1
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Chapter 3

Description of a GH-ARQ II

Scheme

This chapter presents some issues regarding the GH-ARQ II error control scheme
which will be analyzed in the following chapter. It begins by describing this error
control scheme in some detail. This is followed by a discussion of the effect of the error
correction encoding upon the error detection code in the GH-ARQ II scheme. Finally,
the weight distribution of dual, linearly altered and shortened codes is discussed.

3.1 Overview of the GH-ARQ II Scheme

In Section 1.2, the GH-ARQ II error control scheme was briefly described; this section
will now describe it in more detail. The GH-ARQ 1I scheme that will be considered
in this thesis utilizes two codes: Cp is an (V, k) block code used for error detection
only, while C; is an (mn,n) block code used for error correction only. The code C; is
a key factor in the complexity of this type of system. Its generator matrix has the
form

M =[M,| M,|...| M, ],

where m is referred to as the depth of the code C; and M; is an (n x n) square
matrix. Let C{®) be generated by M® = [M,| ... |M, ] and d; be its corresponding
minimum distance. In order for the code C; to be useful, it should have the property
that d; < d, for ¢ < j. This will ensure that the minimum distance, and hence the
error correction capability, of C; increases progressively with each retransmission. It
is assumed that M, is invertible. Otherw’se, as will be seen in the description of this
scheme that follows, the first transmission is ineffective because the message cannot
be recovered. This requirement is not strictly necessary for M,,1=2,...,m.
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Consider a depth-3 system so that M = [M,| M,| M, ]. The encoding process at
the transmitter begins by encoding the k-bit message I with the error detection code
Co. The resulting N-bit packet! (I, Q) is then coded with the first submatrix M, of
the error correction code’s generator matrix M. Let

G1=M1®I.’!1

where ® denotes the Kronecker product of two matrices, and In is the identity matrix
of order N/n [1]. The encoding by M, is then completed bynrnultiplying the N-bit
packet (I, Q) by G,; the effect of this multiplication by G, is to subdivide the packet
(1, Q) into n-bit blocks and then to multiply each block by M,. The resulting packet

t(1)is ready for transmission.

Since M, is invertible, the receiver begins by inverting the received packet r = (I, Q)
to remove the effect of the encoding by M,. The inverted packet is then checked
for errors with the error detection code Co. If no errors are detected, the recovered
information [ = I is delivered to the data sink and the transmission is positively
acknowledged. Otherwise, the transmission is negatively acknowledged and the re-
ceived packet is stored in preparation for the next transmission. Note that there is no
attempt to correct errors on the first transmission because no parity bits have been
included for this purpose.

Upon receiving a negative acknowledgement from the receiver, the transmitter will
encode the packet (I, Q) with M, of the generator matrix M to form (). When the
receiver receives this packet from the transmitter it begins, again, by removing the
effect of the encoding by M, (if it is invertible) and then checking for errors with the
error detection code Cp. If no errors are detected, then the recovered information I is
delivered to the data sink, the receiver’s buffer is emptied of the previously received
packet and the transmission is positively acknowledged.

If errors are detected, the receiver combines the currently received packet r(* with
the previously received one r(*-1), as shown in Figure 3.1, and attempts to correct
the errors by using the error correction code C{¥) generated by [M, | M,]. This is

accomplished by combining the j-th block of the previously received packet B_Si"l)
with the j-th block of the currently received packet BS‘) to form the combined block
[B¢=1) | BY) which is then decoded with the code C{?. The result of the decoding is

the j-th n-bit block Bgf’) of the N-bit decoded packet. Note that this decoding may
be performed independently in parallel for each of the N/n blocks in the packets. The
decoded packet is then checked for errors once again with the error detection code.

If the receiver was unable to successfully correct the errors in the currently received

1This description assumes that C; is systematic; this assumption is not stringcut and is made for
notational convenience only.

.
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Previously Received Currently Received
Packet r(i-1) Packet r(*)

— [ 1—1 1 [} 3
‘Bg 1y ... ,55 N g (B (B9 B
S——— L N’

n bits . v y J

(B8 | BY] (2n bits)

Y
(2n,n) Decoder
2
g | - | 8o - B } Packet -
! ! Nl ) (N Bits)

Figure 3.1: Combining Two Packets tor Error Correction.

packet, the transmission is negatively acknowledged and the packet is stored with the
previous one in preparation for the next transmission. The transmitter encodes (1, Q)
with G; = M, ® I~ and transmits the resulting packet ¢(3). Upon reception of this
packet, the inversion and error detection process is initiated if M, is invertible. If
the inversion is unsuccessful or not possible, then this packet will be combined with
the two previously transmitted packets in a manner similar to that illustrated in
Figure 3.1. The attempt to correct the errors is accomplished by combining the 7-th
block in the current packet with the j-th blocks in the two previously received packets
to form [Bg_;_z) | BS'_I) | Bg')] and then decoding with the code C{*) which is generated
by [M, | M, | M,]. After decoding, the receivers checks for errors. If the decoding
fails, the transmission is negatively acknowledged, the currently received packet is
stored and the least recently received packet is discarded from the receiver’s memory.

On the fourth transmission of the message, the transmitter returns to M, of the
error correction code C; The inversion at the receiver proceeds as it did on the first
transmission but the error correction decoding uses c§3) to attempt to correct the
errors in the received packet if the inversion is not possible or unsuccessful.

From the preceeding description of this GH-ARQ II error control scheme, it is seen
that the error correction capability adapts to the channel conditions. The parity bits
for error correction are transmitted as they are required. For poor channel conditions,
this scheme will use up to a rate-1/3 error correction code; in general, a scheme with
a depth-m code would use up to a rate-1/m error correction code.
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3.2 The Effect of C; Upon C,

The process of error correction enceding after error detection encoding may have a
significant effect upon the performance of the latter code. Klgve and Miller consid-
ered the effect of the error correction code on the error detection code in a scheme
similar to the concatenated coding scheme described by Deng and Costello in [6].
They found that the reliability of an error detection code improves if the minimum
distance of the error correction code is at least twice that of the error detection code.
Unfortunately, their approach is not applicable to the problem under consideration
because the inner code in this scheme has no inherent error capability by itself; in
fact, its minimum distance is usually 1. Wang and Lin [20] recognized the effect of C;
on Cp but assumed that the codes in their scheme are chosen so that the performance
of the error detection code is unaffected by the error correction encoding.

The encoding process may be viewed as two steps: the first consists in encoding the
k information bits with the (N, error detection code Cp and the second consists in
encoding this codeword with the appropriate submatrix of the error correction code
C:. This is summarized in Figure 3.2.

1
i lG Error Detect Encode Cy
t= llGGz “Linearly Alter” with G, of C{®
r=1 G%G, +e The channel adds errors: e
rG;t = _I_lG +eGo? Invers(ia%ré Ctto 0rfercn;:ve the
S=rG;*HT = llGHT + eG;*HT Syndrome computation.
§=£G;‘HL=QG;‘HT Since GHT = 0.

Figure 3.2: Syndrome Computation of a Linearly Altered Error Detection Code.

Referring to this figure, G is the (k x N) generator matrix of the error detection code
and G, is the (N x N) matrix corresponding to the z-th submatrix M of the error
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correction code. It is seen that, if G is invertible, the net effect of the inner code is
to “linearly alter” the error detection code in such a way that the generator matrix
of this code becomes GG, and its parity check matrix becomes G;*HT. This effect
can be quite profound as the following examples will demonstrate.

Example 3.1

In this example, the error detection code is the BCH (15,11) code with generator poly-
nomial g(z) = «* + z + 1. This code will be linearly altered by each of the following

(5 x 5) matrices which generate the KM (15,5,5) code [1, 12).
11010 01101 00100
00100 11111 01000
M,=|o0o1010| M,=|00110] M,=}|11100
00110 00101 00011
01001 00111 00001

The weight distributions of the unaltered BCH (15,11) code as well as those obtained
by linearly altering it with M,, M, and M, are shown in Table 3.1. In this table, A
is the number of codewords with Hamming weight & in the code Cy, while Aff) is the
number of codewerds with Hamming weight & in the code Cy which has been linearly
altered by M, of the error correction code.

Weight Distributions

A | AV AD | AD
1 1 1 1

0 0 0 0

0 0 6 3

35 |35 129 |32
1051105 |75 |90
168 | 168 | 198 | 183
280 | 280 | 340 | 310
435 1435 | 375 | 405
435 | 435 | 375 | 405
280 | 280 | 340 | 310
101168 | 168 | 198 | 183
111105105 |75 |90

WO 00 =IO W Of

12135 [35 |29 |32
1310 0 6 3
1410 0 0 0
15 (1 1 1 1

Table 3.1: Weight Distributions of the BCH (15,11) Linearly Altered Codes

It is seen from this table that the effect of the linear alteration by the matrices
M, and Mj is to decrease the minimum distance of the BCH (15,11) code from 3
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to 2. Interestingly, the matrix M, has no effect upon the weight
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distribution of the

BCH (15,11) code. The probability of undetected error of these codes is plotted versus

BSC probability of error in Figure 3.3.

Probability of Undetected Error Versus BSC Error Rate
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Figure 3.3: Reliability of the BCH (15,11) Code Linearly Altered by M,. Legend:
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The effect of the linear alteration is seen to be especially significant at low error rates.
When the BSC error rate equals 10~7, the probability of undetected error of C((,z) and
S is approximately one million times worse than that of the unaltered BCH (15,11)

code.
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Example 3.2

The second example considers the extended Golay (24,12) code which is formed by
appending a parity bit to the Golay (23,12) code so that the Hamming weight of
every codeword is even. The generator polynomial of the Golay (23,12) code is
g(z) = 2 + 2% + 27 + 28 + 2% + z + 1. This code is linearly altcred by the following
(4 x 4) matrices which generate the KM (12,4,5) code

1101 1100 0100

00110 1110 1100
M"— 0101 ’M’_ 1010 ’Ms_ 00611}

0011 1101 0001

and by the following (6 x 6) matrices which generate the KM (18,6,6) code

110001 101101 011000
001100 101011 110100
=T 000101 v 110110 F 001000
Ml— 010101 ’M’_ 111001 ’M3_ 000100
011000 110011 001011
011111 100110 000101

The Hamming weight distributions of the unaltered Extended Golay (24,12) code as
well as those obtained by linearly altering it are shown in Table 3.2. In this table, A
is the number of codewords with Hamming weight k in the extended Golay (24,12)
code, Aﬁz) and Aﬁ') are the number of codewords with Hamming weight k in the
Golay (24,12) code which is linearly altered by M, and M. respectively.
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Weight Distributions

KM (12,4,5) KM (18,6,6)
k| A [ AV AD [ AD [ AD | AP | A
0 |1 1 1 1 1 1 1
1 10 0 0 0 0 0 0
2 10 0 0 0 0 0 0
3 10 0 0 0 0 0 0
4 |0 0 2 0 3 2 2
5 10 ) 13 |6 13 |11 |7
6 {0 37 |31 |26 |35 |3 |34
710 8 (82 (101 (78 |77 |97
8 |79 [179 | 172 [201 | 149 | 177 | 169
910 333 | 316 [ 310 | 325 | 336 | 311
100 469 | 485 | 454 | 521 | 463 | 476
11{0 601 | 614 [ 589 [614 | 595 | 601
12 12576 | 665 | 688 | 691 | 659 | 679 | 697
1310 599 | 610 | 634 | 599 | 624 | 621
14 [0 487 | 441 | 446 | 461 | 489 | 450
1510 323 | 318 [ 319 | 322 | 307 | 315
16 { 759 | 176 | 191 | 194 | 178 | 162 | 182
1710 87 |8 |74 |87 (84 |85
18|10 31 |35 [34 |39 |37 |32
1910 11 110 |15 |10 |13 |11
2010 3 2 1 2 3 5
2110 0 1 0 0 1 0
2210 0 0 0 0 0 0
2310 0 0 0 0 0 0
241 0 0 0 0 0 0

Table 3.2: Weight Distributions of the Extended Golay (24,12) Linearly Altered Codes

33




CHAPTER 3. DESCRIPTION OF A GH-ARQ II SCHEME 34

It is seen from this table that the effect of the matrices M, and Mj is to decrease
the minimum distance of the Extended Golay (24,12) code from 8 to 5 and that of
M, decreases its minimum distance from 8 to 4. Further, M,, M, and ﬁs decrease
the minimum distance of the Extended Golay (24,12) from 8 to 4. The probability
of undetected error is plotted versus BSC probability of error in Figures 3.4 and 3.5.
Further, M, appears to alter the performance of the error detection code less than
M,. This suggests that, when selecting an error correction code to be used in such
an error control scheme, the error correction capability of the code C; should not be
the sole criterion. Its effect upon the performance of the error detection code also
needs to be considered.

Probability of Undetected Error Versus BSC Error Rate

10'1 T T Ty LNt St SR B A R 1 T v v oo T T TTTTTY T T T T T T rTrTy

107

1013
1019
105;

1031

1037 . ]

T
N

Probability of Undetected Error

1043} i

104F -

10.55 hd L L 11125 el 2 1 011N Lood.3 11401 o1 4 321141 J 1 % 1 atil AW R RS

107 106 10-5 104 103 102 10!

Binary Symmetric Channel Error Rate

Figure 3.4: Reliability of the Extended Golay (24,12) Code Linearly Altered by M,.
Legend: — — —~ Co — C{P andC» —.- ¢V

Again, the effect of the linear alteration is more significant at lower error rates; yet
it remains more significant at high rates than it was in the previous case of the
BCH (15,11). This suggests that some “matching” between the error detection and
correction codes is required so as to minimize the effect of the latter upon the former
while maintaining an acceptable error correction capability.
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Probability of Undetected Error Versus BSC Error Rate
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Figure 3.5: Reliability of the Extended Golay (24,12) Code Linearly Altered by M,.
Legend: —— —Cp —-— c}‘,", éf,z), and c‘“,“”

3.3 Computation of Weight Distributions

In order to analyze the performance of the GH-ARQ II error control scheme, it will
be necessary to compute the weight distribution of the error detection and error
correction codes. This does not pose a problem when k is small, but restricts the
analysis to very low rate codes which are unpractical. Suppose it is required to
compute the weight distribution of codes for which k is quite large (on the order of
500 bits for example). In this case, the MacWilliams Identity will prove to be very
useful. This section will consider the cases of an unaltered code, a linearly altered
code, and a shortened code. It is assumed that all codes under consideration are
binary and linear.
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3.3.1 Unaltered Code C

For the case where no error correction coding has been performed, the MacWilliams
identity will directly apply. Assume that it is desired to compute the weight distri-
bution of the binary (N, k) linear code C with generator matrix G. Further, suppose
that the rate of the code, R = N, is close to unity and because k is large, it is not
possible to directly compute the weight distribution of this code. The dual code Ct 1
generated by the parity check matrix H of the code C. Note that GHT = 0, where
0 is the (k x (N —k)) zero matrix. The dual code is a very low rate code consisting of
2N~k codewords. Since N — k is small, the weight distribution of the dual code is eas-
ily computed by enumeration of all its codewords. Let the weight distribution of the
dual code C+ be denoted by { A} and that of the code C by {Ax}. The MacWilliams
Identity relates the two weight distributions as follows [8]:

l N-k_k 1
Apz” "y* =
2 &

w(z+ )N Mz - y)k,

where | C* |= 2¥-* which is the number of codewords in the dual code. Equivalently,
it is possible to set x =1 to obtain:

N

Wy + VR —y)k

k=0 k=0
Therefore, after computing the weight distribution of the low rate dual code C*, it is
then a simple matter to compute the weight distribution of the high rate code C.

3.3.2 Linearly Altered Code C{

Now consider the case of a long, high rate linearly altered code, say C(’) Suppose
that the error detection code is linearly altered by M, which leads to the %enerator
matrix G, = M, ® In N. The problem then is to compute the dual code C( , glven

that C( )is generated by GG,. Assuming that G;* exists, then the dual of c§®) s
generated by H (G;‘)T. It may be verified that the condition for C((,') and C‘(f)l to
be dual,

GG, (H(G:")T)T =0,

is indeed true. Therefore, to compute the weight distribution of the linearly altered
error detection code C0 generated by GG, it suffices to compute the weight distribu-

tion of the dual code €+ generated by H(G*)T and then to use the MacWilliams
Identity.
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3.3.3 Shortened Code C,

Often a suitable code cannot be found to match the desired length of a packet. In
this case, a code C with natural length longer than the desired packet length may
be shortened to accomodate the constraints. Let the natural length of the code be
N bits and the desired length of the packet be N — A bits, so that it is required to
shorten the code C by A bits. Also, let the shortened code be denoted by C,. The
generator matrix of the code C is G, a (k x N) matrix. Similarly, the generator matrix
of the shortened code C, is G,, a ((k—A) x (N — A)) matrix. The dual matrix of G,,
denoted by H,, isa ((N — k) x (N —A)) matrix. To compute the weight distribution
of the code C,, it suffcies to compute the weight distribution of the code generated
by H, and then to use the MacWilliams Identity.

& k 1 & Nk k

> At = mEAi(y-H) (1 —y),

k=0 k=0
where {A,} and {A}} are the weight distributions of the codes C, and C}* respectively.
Example 3.3

Suppose it is desired to compute the weight distribution of the BCH (31,26) code
which is shortened by 1 (A = 1) bit and linearly altered by each of the three (5 x 5)
matrices in Example 3.1. The generator polynomial of the BCH (31,26) code is
g(z) = z% + % + 1. Direct computation of the weight distribution of this code would
require the generation of 22% ccdewords; clearly, this is not a practical approach. This
is an ideal application for the MacWilliams Identity since " — k is small and the dual
code is a very low rate code. The generator polynomial of the dual code, h(z), is [8]

N -1 -1
glz) ~ zb4+z241
o 264 284 g2 4 204 AT 4 06 L o35 L 4

e A A S A N A S L L oy |

h(z) =

Note that the shortened (30,25) code is not necessarily cyclic. To avoid confusion
regarding the various codes that are generated by the BCH (31,26) code C, the short-
ened (30,25) code will be denoted by C, and the shortened (30,25) code which is
linearly altered by M., of the KM (15,5,5) code will be denoted by C{#). Then, us-
ing the MacWilliams Identity, the weight distribution of these shortened codes may
be easily computed. They are summarized in Table 3.3. In this table, A, refers to
the number of codewords in C, with weight k, while Ai’) refers to the number of
codewords in C{*) with Hamming weight k.
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Weight Distributions
k Ay Al AP A
0 |1 1 1 1
1 10 0 0 0
2 110 13 9 12
3 | 140 121 136 111
4 | 945 839 859 875
5 | 4368 4520 4413 4577
6 || 18200 18606 18582 18356
7 || 63960 63414 63728 63334
8 || 183885 | 182857 | 182817 | 183661
9 || 446160 | 447376 | 446886 | 447178
10 || 936936 | 938975 | 939091 | 937544
11 §| 1708980 | 1706931 | 1707440 | 1707857
12 || 2705885 | 2702543 | 2702507 | 2703959
13 || 3739680 | 3742704 | 3742023 | 3741135
14 || 4541040 | 4545396 | 4545252 | 4544808
15 || 4850640 | 4846692 | 4848000 | 4848084
16 || 4547475 | 4543227 | 4543371 | 4543011
17 |j 3739680 | 3743808 | 3741924 | 3743244
18 || 2700880 | 2703835 | 2703871 | 2704156
19 {| 1708980 | 1705839 | 1707528 | 1705761
20 || 939939 | 938525 | 938409 | 938481
21 || 446160 | 447784 | 446875 | 447983
22 || 182520 | 182974 | 183014 | 182884
23 1 63960 63430 63696 63334
24 1| 18655 18555 18579 18607
25 || 4368 4464 4438 4490
26 || 840 857 837 848
27 i 140 133 128 127
28 |l 15 13 17 13
29110 0 1 1
30 0 0 0 0

Table 3.3: Weight Distributions of the Shortened BCH (30,25) Codes
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Chapter 4

Analysis of the GH-ARQ) II
Scheme

This chapter presents the performance analysis of a GH-ARQ II error control scheme
on a burst-noise channel described by the Gilbert-Elliott model. In order to efficiently
analyze a system that may use a depth-2, depth-3, or even depth-4 error correction
code, a systematic approach is required. This approach begins by describing the
receiver’s state transition diagram which is a simple first-order Markov chain. From
this Markov chain, it is possible to compute expressions for the system’s throughput
and reliability in terms of its transition probabilities. The problem then becomes the
computation of these transition probabilities.

This approach will be seen to be general in the sense that it is applicable to the
analysis of depth-2, depth-3, and depth-4 systems and is easily extended to other
channels modelled by first-order Markov chains.

4.1 Analysis Assumptions

This section briefly describes the pertinent assumptions that will be made in the
analysis of the GH-ARQ II error control scheme. The feedback channel is assumed
to be noiseless. This is a common assumption in the literature and is achievable in
practice by coding the receiver’s message with a very low rate code.

It is also assumed that the error correction code C; has a non-negligible effect on the
performance of the error detection code Co. Wang and Lin [20] had assumed in their
analysis that C; was chosen so that it had no effect on C,.

The transitions in the Gilbert-Elliott model are assumed to occur between transmis-

39



CHAPTER 4. ANALYSIS OF THE GH-ARQ II SCHEME 40

sions of the packets. This ensures that during the transmission of a packet, the error
rate is constant. This assumption is common and was made, for example, by Lugand
et al. [4] and Deng et al. [6] in their analyses.

The retransmission strategy is a selective repeat request approach with an infinite
receiver buffer; the details regarding its operation are not considered. Various selective
repeat request strategies are considered in detail in [2, 45, 50]. Also, the stop-and-
wait retransmission strategy will be treated as a special case of the analysis with a
selective repeat request retransmission strategy.

Since a depth-2 system is analyzed, the generator matrix of the error correction code
C® will be M = [M, | M,), and it will be assumed that both M, and M, are
invertible. As described in Appendix A.2, the analysis may be easily modified to
account for non-invertible M,.

Finally, the error detection and error correction decoders are not assumed to be
bounded distance decoders. In the case of the error detection decoder, this means
that it is capable of detecting some error patterns with Hamming weight greater than
or equal to the minimum distance of the error detection code Co. In the case of
the error correction decoder, this means that it is capable of correcting some error
patterns with Hamming weight greater than its error correction capability t., where

t, = |_§=2‘—1J and d is the minimum distance of the code ng). For convenience let 7,

be the maximum number of errors in a combined block [B;‘H"z) .on] B;‘)] which is

possibly correctable. Consequently, this implies that there does not exist any error
seq)uence e containing more than 7, which is correctable. In general, 7, > t. unless
c®is a perfect code. Recall that a perfect code is one which is capable of correcting
all sequences with up to and including ¢, errors, but cannot correct any sequences
with more than ¢, errors; therefore, for such a code, 7, = t..

4.2 Receiver State Transition Diagram

This section describes the receiver state transition diagram for a cepth-2 system

which, in effect, uses a half-rate code for error correction. This siate transition
diagram is shown in Figure 4.1.

As seen in this figure, the depth-2 receiver state transition diagram consists of five
states: two absorbing states, ¢ and u, and three transient states, 1, T1, and T2.
The state ¢ corresponds to the receiver delivering an error-free message to the data
sink, while the state u corresponds to it delivering a message containing errors. In
its initial state, state 1, the receivers inverts the received packet (multiplying by
G:') and attempts to detect errors. After this inversion, the receiver will deliver
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Figure 4.1: Depth-2 System Receiver State Transiticn Diagram

an accurate message to the data sink with probabilty Cy, and will deliver a message
containing undetected errors with probability @;. The probability that the receiver
will request a retransmission, after this initial inversion, is P;.

After the receiver has requested a retransmission, it enters state T2 in which the
transmitter will encode the packet (1,Q) with M, of the error correction code C
as described in the previous section. Similar to state 1, the receiver delivers an
error-free message (by successfully inverting or decoding the received packet) to the
sink with probability ng) and delivers a message containing undetected errors with
probability Q(z) It will request another retransmission with probability P(z) and then
moves to state T1. This state is identical to state T2 except that the transmitter
codes the packet (I, Q) with M, of the error correction code C1 In this case, the
transition probabilities are superscripted by (1) instead of (2). Note that the receiver
never returns to state 1. This reflects the fact that after the initial unsuccessful
transmission of a message, the receiver will always attempt to correct the errors in
a received packet if the inversion is not possible or unsuccessful. Thus, the receiver
moves bet ween states T2 and T1 as the transmltter alternates encodmg the message
with M, and M, of the error correction code C 2), Finally, the receiver returns NAK
to the transmitter when it moves from one transient state to another and returns ACK
when it moves from a transient state to an absorbing state.
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4.3 Throughput and Reliability

In this section, the throughput and reliability of the the GH-ARQ II (Depth-2) scheme
are expressed in terms of the transition probabilities in the receiver’s state transition
diagram. These may be easily computed by using the first-step analysis described
in [19]. In the present context, the throughput is defined to be the mean number
of transmissions of a message before the receiver returns a positive acknowledgement
to the transmitter. This is the expected number of transitions in the receiver state
transition diagram before absorption into either states ¢ or u. The reliability (or
probability of undetected error) is defined to be the probability of absorption into
state u. To compute the throughput and reliability of this system, the transition
probability matrix P of the receiver must be constructed. That is,

¢c 1 T1 T2 u

1 00 O 0 7 c
|G 00 A @ 1
P=1lcm oo p® | m1
c® o0 PO QP | T2

0 00 0 1 | wu

This matrix may be more conveniently expressed by relabelling the states and the
transition probabilities from states 1, T1, and T2 so that they may be more easily
indexed. Note that P;; is the probability of transition from state 1 to state ;.

0 1 2 3 4
1 0 0 0 0] O
P = P Py Py P33 Py 1
Py Py Py Pz Py 2
Pso Psy Ps; Psz Py 3
0 0 0 0 1] 4

Let X, be the state of the Markov chain at time ¢ and assuine that 7" is the number
of steps until absorption so that T' = minp>0{Xn == 0 or X, = 4}.

The reliability of the GH-ARQ II scheme P4 is Pr(Xy =4 | Xp = 1), the probability
of absorption into state 4 (u)To compute this, begin by defining u, as follows:

u;=Pr(Xr=4|Xo=17), :=12,3.

The key to the first-step analysis is to compute Pr(Xr =4 | X; = 1),¢ = 1,...,5.
First consider X; = 0; in this case Pr(Xr = 4 | X; = ¢) = 0 because X; = 0
corresponds to the absorbing state c¢. Conversely, if X; = 4, then Pr(Xy =4 | X; =
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¢) = 1. Finally, if X; =i for i = 1,2,3, then Pr(Xr = 4 | X1 = ¢) = u; because the
transition probabilties of the chain are assumed stationary. In summary, then,

Pr(Xr=4|X1=0) = 0

PrXr=4|X1=1) = u
Pr(Xr=4|X1=2) = u,
PriXr=4|X1=3) = u
PriXr=4|X1=4) = 1

Recall that u; = Pr(Xr =4 | Xo =1) for i=1,2,3. By total probability, then

4
Us = EPI‘(XT=4,X1=’C|X0=1)

=0

4
= Y Pr(Xr =4, X1 =k,Xo=1)Pr(Xy = k| Xo = ¢)

k=0
4

= EPI(XT =4,|X1 = k)PI’(Xl = leo"—‘l)
k=0

The final step is a consequence of the fact that the Markov chain is first-order so
that the next state depends only on the present state and none of the previous ones.
Expand the above equations for i = 1,2,3 to obtain

u; = Pr(Xr=4,]X;=0)Pr(X; =0]|Xo=1)
+Pr(Xp=4,] X; = 1) Pr(Xa =1 | Xo = i)
+Pr(Xp = 4,] X1 =2) Pr(Xa =2 | Xo =)
+Pr(Xr =4,| X1 =3) Pr(X; =3 | Xo = 1)
+Pr(Xr =4,| X1 =4) Pr(X1 =4 | Xo =1)

= w1 Py +usPi2a + usPs+ Py

These equations may be expressed as the following system:

Py-1 P Py Uy —Pyy
Py Pp-1 Py uy | = | —FPas (4.1)
Ps Py Py—1 usz —Psy

Substitute the values of the transition probabilities in the receiver’s state transition
diagram of Figure 4.1 for the P;, in Equation 4.1 to obtain:

-1 0 P [ -
0 -1 PO | |u =] -8V
0 PP —1 ||us ~Q»
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Finally, solve for Pug = uy (by using Cramer’s rule, for example) to obtain the ex-
pression for the reliability of the GH-ARQ Il scheme as a function of the transition
probabilities of the receiver state transition diagram.

Pu=G1+hH

QP + PRIgP
1- PV PR

The next problem is to compute the throughput of the GH-ARQ II system. Let T
be defined as previously and v; = E[T | X = ¢], where E[-] denotes the expectation
operation. The quantity v; is interpreted to be the average number of transitions
until absorption into state c or state u given that the initial state is ¢, so that the
throughput of the GH-ARQ II system is simply v;. The approach to solve for v; is
similar to that previously taken to solve for u;. To compute v,, use the {act that the
Markov chain is first-order and total probability to obtain:

v = E[TIX():z]
4
= Y B[T| X1 =k Pr(X: = k| Xo =1)
k=0

Now, the quantity E[T | X; = k] must be computed. If £ = 0 or & = 4, then
the process has reached an absorbing state after one transition, so E[T | X; = 0] =
E[T | X;=4] =1.If1 <i <3, then E{T | X; = k] = 1+v,. Therefore, for 1 <: <3,

v, =1+ v1F +v2Piz2 + v3Pa.
This equation may then be expanded into a system of three linear equations:
Py -1 Py Pis U1 -1
le Pzz -1 P23 V2 = -1 (42)
Py Ps;  Ps—-1 v3 -1

Again, substitute the values of the transition probabilities in the receiver’s state
transition diagram of Figure 4.1 for the P,; in Equation 4.2 to obtain:

-1 0 P J[w -1
0 -1 P;sl) U2 = -
0 PP —1|[vs -1

Solving for v; the throughput of the GH-ARQ II system 7 is

1
n = ,

- (3) ]
L+ 2]
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4.4 Computation of P, @, and C,

The computation of ti.e transition probabilities P;, @1, and C; is very similar to the
computation of the probabilities P, @), and C of the simple ARQ error control scheme
described in Section 2.2. The effect of the error correction code on the error detection
code is easily integrated into these expressions.

The probability of correct reception on tl e first transmission, C}, is simply the prob-
ability that zero errors occurred during transmission. Let §2; be the current state of
the channel. Then, as in Section 2.2

C: = Pr(0 Transmission Errors)
= Pr{0 Transmission Errors | & = G) Pr(€% = G)
+ Pr(0 Transmission Errors | Q, = B) Pr(Q, = B)

— 1 N N
C, = m [Pbg(l — €g) + Pgb(l - Eb) ]

The probability of undetected error on the first transmission, @,, is the probability
that the error sequence ¢ is a codeword in the error detection code that is linearly
altered by M, of the error correction code.

@1 = Pr(Undetected Errors, 2; = G) + Pr(Undetected Errors, ; = B)

1 N
Q1= ——_Pgb oy Z Aﬁl) [Pbgf:(l — 6")N—k + Pgbﬁt(l _ 6b)N--k]
k:dl

where Aﬁl) and d, are the number of codewords with Hamming weight k and minimum
distance in the error detection code that has been linearly altered by M, of the error
correction code. The computation of the weight distribution {Ag,1 } is described in

Section 3.3.

Finally, the probability of a retransmission after the first transmission, Pj, is simply

hA=1-Q1-C
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4.5 Computation of P\”, Qf°, and o

In order to compute the transition probabilities P{¥, Q) and C{*), the flowchart
shown in Figure 4.2 will be useful. Note that z refers to the submatrix M, of the
error correction code ng) with which the currently transmitted packet is encoded.

Received Packet r

|

Inversion

j!

Compute
Syndrome S,

C§2) Decoder
!

Compute Correct Undetected
Syndrome S, Errors

Retransmission
Requested Correct Undetected
Errors

Figure 4.2: Depth-2 System Receiver Flowchart
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In this flowchart, the Inversion is performed if the matrix M, that was used to code
this packet is invertible. If it is not, then the receiver begins imnmediately with the
Decoder.

From Figure 4.2, the transition probabilities C{, Q%), and P{® may be expressed

as

Cé" Pr(S, = 0, No PI Errors) + Pr(S; # 0,S; = 0,No PD Errors)
Q%) = Pr(S, =0,PIErrors) 4+ Pr(S; # 0,5, = 0,PD Errors)
P® = Pr($,#0,5, #0)

where “Pl Errors” refers to the presence of post-inversion errors (if the inversion is

possible) and “PD Errors” refers to the presence of post-decoding errors at the output
of the decoder.

4.5.1 Computation of C{*)

Recall that Cz(,z) = Pr(S; = 0,No PI Errors) + Pr(S; # 0,S; = 0, No PD Errors).
This is interpreted as the probability that the receiver delivers an error-free message
to the data sink on the second and succeeding transmissions.

The Pr(S; = 0,No PI Errors) is simply the probability of zero transmission errors
which is equivalent to the transition probability C; computed in Section 4.4; therefore,

1

Pr(S, = 0,No PI Errors) = P Ee
gb bg

[Poo(1 = &) + Pus(1 — &)"].

The Pr(S, #0,S, = 0,No PD Errors) may be interpreted as the probability that the
error sequence added to the packet during transmission is not a codeword in the error
detection code C((,’) (linearly altered by M. ) and that this sequence is correctable by
the decoder. In this context, “correctable” means that the error sequence is decoded
to 0 so that the decoded packet is error-free. Let

X = Pr(S, #0,58, =0,No PD Errors).

There are two approaches which may be taken to compute this probability. The first
approach begins by generating every possible error sequence which is not a codeword
in the code C((,’). Then, X is computed by summing the probability of successfully
correcting each of these error sequences. When the length of the packet N is small
(say N < 15) this exhaustive approach is feasible. However, when the packet length
is greater than this, a more efficient approach is required.

P \a»..m«.’éﬁ
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To develop such an approach, X may be equivalently expressed, as

2N _2k

X = Z Pr(e ¢C( ), (9) _ 0),

Jj=1

where the expression ¢; ¢ C((,’) is interpreted to be an N-bit error sequence ¢, which is
not a codeword in the code C‘(,’), and g&) is the decoded error sequence at the output
of the error correction code decoder when the currently received error sequence is ,

Note that there are 2¥ —2* words are not codewords. The second approach to compute
X decreases the number of error sequences which need to be considered by grouping
together those sequences ¢, with “similar structure”. Moreover, the requirement that

€, be correctable, 6‘(09 = 0, further decreases the number of sequences that needs to
be considered.

The notion of correctable error sequences with similar structure is the key to making

the computation of X manageable. Suppose that the received packet r is comprised
of four blocks so that

£=[30|31|32|33]-

Now suppose that the Hamming weight of blocks By, B;, and B; is zero, and that of
block By is two. Let the Hamming weight of this packet w(r) be denoted as

w(r)=1[2]0]0]0].

Two packets are said to be equivalent if the weight partition?® of one of the packets may
be obtained from the other by permuting the order of its blocks. For example, packets
r, and r, with weight partitions w(ry) ={2|1]0|1] and w(r,) =[0]|1]|1]2] are
equivalent in the sense that their weight partitions differ only by their order. Further,
a received packet r is potentially correctable if the Hamming weight of each of its
blocks is less than or equal to 72, where 75 is as defined in Section 4.1. Whether
or not this packet is actually correctable depends also upon the previously received
packet. Conversely, if the currently received packet contains a block with Hamming
weight greater than 7, then it is not correctable with certainty. Consequently, the
approach that will be taken to compute X considers only those error sequences which

are potentially correctable and not equivalent to any other error sequence under
consideration.

Before X may be computed, it is required to calculate P.(w), the probability that
a combined block [Bf"'l) | Bg')] containing w errors is correctable. This quantity

depends upon the error correction code ng) as well as its decoder implementation.
For w < 15, F,(w) =1 and for w > 73, P.(w) = 0. In the range t; < w < 7y, Pe(w) 15

!Note that the weight partition is assumed to refer to the Hamming weight partition of a packet.
These terms tend to be used interchangeably.
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computed by exhaustive enumeration of the combined blocks containing w errors. In
this case,

Po(w) = N(B CZ§;3ctable)
w

where the expression N(B correctable) denotes the number of combined blocks B =
[BG-1) | BG-1)] with Hamming weight w that are correctable (decoded to 0).

’ ty < w < Ta.

Recall that the computation of X = Pr(S; # 0,5, = 0,No PD Errors) may be
expressed as

2N _2t

X = Y Pr(g¢Cf,é)=0)
=1
2N _ 2k
= Y Pr(g ¢ C((,"),QJ is correctable),
=1

where ¢; is the y-th N-bit sequence which is not a codeword in the code Cg’). Let A
be the set of all words which are not codewords in the code C((,z) and, let A; be the
subset of A containing those with Hamming weight . Clearly, the A; form disjoint
subsets which cover A. That is, A; M A; = @ for 1+ # 5, and

N
A=A
=1
Since the code C((,") is linear, it must contain the zero-sequence; consequently, Ag = §
and X may be computed as follows:
2N 2k
D> Pr(e; ¢ C((,z),gJ is correctable)

=1

= E Pr(e is correctable)
e€EA

X

N
= Y_ > Pr(eis correctable)
k=1e€cA,

N
= Y | Ax| Pr(e is correctable, w(e) = k),

k=1
where | A, | is the cardinality of the set A, and w(e) is the Hamming weight of the
error sequence e. Also, let B{®) =| A | so that, if A{®) is the number of codewords

with weight k in the code C{*), then A{) + B{®) = (’,:’), the total number of error
sequences with Hamming weight k. Now,

N
X =Y B Pr(e is correctable, w(e) = k).
k=1
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The Pr(e is correctable, w(e) = k) imposes two constraints on the error sequences ¢
which need to be considered in the computation of X.

1. The Hamming weight of the error sequence ¢ must be k.

2. The requirement that e be correctable restricts consideration to only those error
sequences which are potentially correctable. Suppose that an error sequence ¢’
contains a block with more than 73 errors. Then the Pr(¢’ is correctable, w(e') = k)
is zero because €' is uncorrectable with certainty. Therefore, there is no point
in considering error sequences which are not potentially correctable.

These two constraints are reminiscent of the integer partitioning problem described
in Section 2.3. In particular, suppose that the set of potentially correctable partitions
of e with Hamming weight k is denoted by =(¥). Let the cardinality of such a set
be denoted, once again, by | 7(*) |. Further, let the j-th partition of the set 7(%) be
r;(,k). Finally, the expression ¢ ~ 7r§") is interpreted to mean that the Hamming weight
partition among the n-bit blocks comprising the error sequence e is equivalent to the

partition 7r§-k). The computation of X may then be expressed as

Nn/n x4y
X=) B,(f) )" Pr(e is correctable, e ~ 7r§k)). (4.3)
k=1 =1

Equation 4.3 is the key to the computation of X. As previously described, the compu-

tation of the Pr(e is correctable,w(e) = k) becomes a summation of the probability
that each potentially correctable error sequence is successfully corrected. If 7:';") con-
tains fewer parts than blocks in e, then it is padded with a sufficient number of
zero-parts. Note that the upper limit on the summation indexed by k is N73/n, in-
stead of N as might have been expected. This is because there exists no potentially
correctable error sequence with Hamming weight greater than N7,/n. Now, the ef-
fect of the channel states and the selective repeat retransmission strategy are easily

integrated into this expression for X.

Nmfn (=]
X = z B,(f) z Z Z Pr(e is correctable, e ~ wfk),Q._s, Q0,),
k=1 =1 Q, Q,_;

where, as before, the expression ¢ ~ 7r§k) is interpreted to mean that the Hamming

weight k of the error sequence ¢ is partitioned like 7r§"). The current state of the
channel is denoted by €; and ;_s is its state § transitions in the past. The pa-
rameter § refers to the roundtrip retransmission delay in the selective repeat request
retransmission strategy. The stop-and-wait retransmission strategy corresponds to




. &
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6 = 1. The problem ther becomes the computation of

Pr(e is correctable, e ~ 7r( ) , s, S1)
= Pr(e is correctable | ¢ ~ 7r( ) Qs )
-Pr(e ~ 7r§ ) | Qis, ) Pr(Q_s, )
The quantity Pr(f,_s,) is the é-step transition probability from state Q,_s to {2,

and is computed in Appendix B.3. The other quantities may be easily computed as
shown below.

The Pr(e ~ ng) | ,_5,%) is independent of the state ,_s, so that
Pr(e ~ 7r§k) | Q_s,82,) = Pr(e ~ 775") | ).
Let 7r_$:-’) be the number of parts equal to 7 in the j-th partition of the integer k. Then,

e~ 7te)
Pr(e~7r()|ﬂ) /.(\f/———((_z_j_l—)_)-

where N(-) is the number of error sequences satisfying the indicated requirement,
and €; is the probability of error in the current state of the channel, {,. Then,

W) =k = (§)

(%)! 3 [(?)]'ﬁf’.

nz_o W(k)' 1=0 7

bt ~r 0 = G (O

(k) 1=0 (")I — &)

Now, it is required to compute Pr(e is correctable | ¢ ~ 7r( Q,-5,%%). Let p be

the number of errors in the previously received block BU- -’ of the combined block
[B6-1) | BO|. Then,

- e)",

Ne~nd) =

therefore,

Pr(e is correctable | e ~ 7r( ) -5, 50)

= Pr(e is correctable | e ~ 7r( ) ,$%2s)

™
= [[[Pr(p < 7 = D))" "
=0
M

-l n

= ﬁ Y Pa+1)Pr(p=a)

=0 | «=0
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e
=H[Z( B) P+ Dets(l — eg)™e|

=0 | a==0

where €;_5 is the probability of error in the state of the channel § transitions in
the past and P,(w), as described earlier in this section, reflects the error correction
capability of the code ng). The computation of Pr(S; # 0,5, = 0,No PD Errors) is

now complete:

1 (l.)
"7 P(a—{-l)e‘ 6(1_5: 6)"-01] )

5 Pr(0e, ) [ L) EE

0,5 1=0 7’;;‘)'-
The transition probability ng) is then,
=__ 1 RN PRy
C§ oy, [Poo(1 = €)™ + Pou(1 — &)"]
Ny ol g )
+H(3)'Z 7y & St - e
N/ k=1 ( ) n,
e
2 [( ) e(a+ e 5(1 — 6.-5)““’] "
E PI' 1— 5’ H (k)
Qs I= T

4.5.2 Computation of Q)

Recall that Q%) = Pr(S, = 0,PI Errors) + Pr(S; # 0,5, = 0,PD Errors). This is
interpreted to be the probability that the receiver delivers a message containing errors
to the data sink on the second and succeeding transmissions.

The Pr(S; = 0, PI Errors) is simply the probability of undetected errors after inver-
sion. It is similar to the transition probability ¢, which was computed in Section 4.4,

except that the error detection code is linearly altered by M, of the error correction
code; thus,

1 N
Y AP [Pogeh(1 — )"+ + Pack(1 — &)V ¥].

Pr(S; =0, P! Errors) = ————
- Fop + Pog /27,
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The Pr(S; # 0,5, = 0,PD Errors) is interpreted to be the probability that an error
sequence which is not a codeword in the code Cg {=) is decoded into a nonzero codeword
in the unaltered error detection code Co. As before, at least two approaches may be
taken to compute this probability. The first consxsts in generating every possible error
sequence which is not a codeword in the code C ) and then computing the probability
that this sequence is decoded into a nonzero codeword of the code Cp. Again, this
approach is practical only for situations where N < 15. The second approach consists
in grouping together equivalent decoded error sequences. Let the expression ¢; ¢ ci
be interpreted to be the j-th N-bit error sequence ¢, which is not a codeword in

the code C((,'), and let ggi) be the decoded error sequence at the output of the error
correction code decoder when the current error sequence is ¢,. Then,

Y = Pr(§ #0,5, = 0,PD Errors)

2N 2k
= 2:1 Pr(e, ¢ c§), g,) € G),
J=

where Cg is the unaltered error detection code without the zero codeword. To compute
Y, begin by removing the restriction that ¢; ¢ CS'). Now, let

2N
= Z Pr(_e_g,) € éo),

=1
where ¢; is now any /V-bit error sequence. So

2N _2k

Y = 2 Pr(e; ¢ C&), ) € Go)

. 3 2N _2k_1
= Zpr(gﬁ,’} €l)—- 3 Pr(gecH, &) el
1=1 2=0
2N_2k_ .
= Y- Z PX‘(QJ' € Cg'),gf,f,) € (?0)
1=0
2N_2*1

Y = V' -Pr(Qel)— Y. Pr, €, €),

where G5 is the code C® without the 0 codeword and g;?i) is the output of the error
correction code decoder when the currently received error sequence is 0. It is usually
the case that the zero error sequence is much more likely to be received than an error
sequence equal to a codeword in the code C~((,’). That is,

2N _2k
Prie € (P, €lo)> Y Pr(; € €, € G),

=1
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where ¢, is the zero error sequence and gl(:,) is the output of the decoder when the cur-
rently received error sequence is 0. Thus, the expression for Y may be approximated
by

Y~Y - Pr(ggy € Co).

To complete the approximate computation of Y, it is required to compute two quan-
tities: Y* and Pr(el9 € C,). Recall,

aN_ ok )
Y = Y Pr(d) €Go)
=1

N Ak
3 75+ Pr(k PD Errors),
k=d (k)

where A, is the number of codewords in the error detection Cy with Hamming weight
k, d is the minimum distance of the code Cp, and Pr{k PD Errors) is the probability

of k errors at the output of the decoder. The probiem then becomes the computation
of Pr(k PD Errors).

Suppose that k errors (d < k£ < N) remain uncorrected in the decoded packet. These
errors may be partitioned in a manner similar to the way in which the errors in
the error sequence e were partitioned in the computation of C-‘(,’). So, nstead of
partitioning an packet input to the decoder, the errors in the packet at the output
of the decoder [B§°) |...| B&;}n] will be partitioned. It is then possible to define the
Pr(k PD Errors) in terms of the valid partitions of the k errors at the output of the
decoder. In this context, a valid partition consists of at most N/n parts with no part
greater than n. Let the set of valid partitions of the integer k (as defined in this
context) be denoted by #(¥). Further, let the cardinality of this set be denoted, once
again, by | 7(® | and the j-th element of the set 7(*) be denoted wgk). Then it is
possible to compute Pr(k PD Errors) as

Lakd.
Pr(k PD Errors) = E N(W_Sk))Pr(”gk))’

=1

where N (rr:(,-k)) is the number of sequences with partition 7r§k) and Pr(wﬁk)) is the
probability that the sequence at the output of the decoder is partitioned like 7r§").

Similar to the computation of C;’), the effect of the channel and the retransmission
strategy are easily integrated into this expression:

|
Pr(k PD Errors) = ) ZPI(Q-'-J, Q) N(“Ek)) Pr(wgk)),

0. O, =1
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where §, as before, represents the roundtrip delay of the selected retransmission strat-
egy. The quantity A (7r§")) is easily computed to be

A/'(?r(-")) - (%)'

J

= P
H?:O 7!'5-1 )!

The probability of the partition 7r§k) is

Pr(r®) = [T[Bpel D],

1=0

where P,4(1) is the probability that the block B(°) at the output of the decoder contains
[ errors. The approach that will be taken to compute this probability will also he
useful when Pr(gf:,) € (o) is calculated. To compute the probability distribution
Poa(l) it is required to exhaustively enumerate all possible 2n-bit combined blocks
[BC¢=%) | B()] and then to determine the output of the decoder. Then, a table as
shown in Table 4.1 may be constructed. In this table, N'(w;_s, w,, w,) is the number
of n-bit blocks at the output of the decoder containing w, errors such that the number
of errors in the block B(~%) at the input of the decoder is w,_s and the number of
errors in the block BO) is w;.

Wy_§ | W | Wy N(wi—h w,, wo)
0 {00 N@G,0)
o lo| 1] w001
0 n N(0,0,n)
0o |1 N(0,1,0)
o (1|1 WMo1,1)

7.1 nlo N(n;n,O)
n |n|1l N(n,n,1)

n |nln .N'(n,.n,n)

Table 4.1: Error Correction Code C{z) Decoder Qutput
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Using this table, it is a simple matter to compute Poa(l):
i N@, k1

Pul) = 35 '(" ) Pr(wi_s = j, w; = k)
z: ( 5

n
1=0 k=0
n

S,
x

de(l) = :‘ Z % Pr(w;_g = ]) Pr(w. = k)

1=0 k=0

“

Pu(l) = Y2 NGk DE (1 — eig) k(1 — &)™
=0 k=0
therefore
{=(%)] ,‘.i‘)
Pr(k PD Errors) = ( ) z 3 Pr(€os, ) Z I o[P(p:)(' )] ’
‘—5 n Jl H
and . .
Ay "R o[ P
Y' = Pr(Q_s, ) .
(B)Zproms gy el

Having computed Y, there remains the computation of Pr(gg),) € Cp). This is the
same as Y’ except that the number of errors in the current input block to the decoder
B®) is known to be 0 (since the error sequence is the all- zero sequence). This requires
the following simple modifications:

N
Pr(e,q @ ed) = z (% PD Errors, ¢, = 0),

"

where Pr(k PD Errors,¢; = 0) is the probability of k£ post-decoding errors when the
current input error sequence is 0. As before

|x(8)]
Pr(k PD Errors,¢; =0) = Z > Pr(Qs, ) Z N(w(k) ) Pr(r (k))
Qs 1
and (N)
N
N TF(-k) — n
( ’ ) n;l:o ﬂ;f)l

The difference between this case and the previous one is in the quantity Pr(rg‘b') ) which
must reflect that fact that the currently received error sequence is 0. Consequently,

- gipm<z>1*ﬁf’,
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where Ppgo(l) is the probability that the block at the output of the decoder B(°)
contains [ errors when the currently received error sequence is equal to 0. This
quantity is easily computed by considering, in Table 4.1, only those rows with w; = 0.

Then,

o N(5,0,1
deo(l) = Z: (] ) Pr(w‘l—5 = .7)

=0 j

= Y N(G0,Del5(1 —eis)™.
Jj=0

The Pr(gf,:) € Gp) is, therefore,
©) YA TR [P D]
P( ECQ ( ) EZPI |—6a z:—_EH (k)| .
Q.5 0, k=d (k) =1 =0 7rJl H

The approximation for Pr(S; # 0,5, = 0, PD Errors) is complete:

Pr(S; # 0,5, = 0,PD Errors)

N ()] PP PO
(n) “OZ‘Pr -5, {2 Z():’X_; H)[pd((h))! _H[pd(k)!] }

The transition probability Q% is then,

QP = —'——P ) Z AP [Prgeh(1 - )V + Poef(1 — &)V ]
g ? ke

=] b A
) Eprnan L [ e

Q.5 N j=1 {=0

4.5.3 Computation of P*)

This is the probability of a retransmission on the first and following retransmissions.
It is simply

AP =1-07 -0
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4.6 An Example — Throughput and Reliability
Computation

This example illustrates the computation of the throughput and reliability of a simple
GH-ARQ II error control scheme. The error detection code Cy is the BCH (15,11) code
and the error correction code is M = [M, | M,], where M, and M, are as defined
in Example 3.1. The weight distributions of Cy and C{) (z = 1,2) are also computed
in that se-tion. Since the submatrix M, of the code ng) is seen to have no effect
upon the performance of the code Cy, there is a fairly good match between the codes
in this error control scheme. The error correction code decoder simply selects the
codeword in ng) which is closest to the combined block 8(~%) | B(), This is feasible
as there are only 2% = 32 codewords in this particular error correction code. The error
correction capability of the code sz) is easily computed by exhaustive enumeration
of all possible 10-bit sequences; Table 4.2 summarizes P.(w) for this code. From this
table it is seen that 7, = 2

w P.(w)

0 1.0

1 1.0

2 0.06667
3<w<10 0.0

Table 4.2: Error Correction Capability of ng)

Having specified the codes in this example, there remains the specification of the
burst-noise channel model parameters. Suppose that fairly dense bursts occur in the
channel, so that P, = 0.05. Also suppose the average error rate is € = 10~% and the
transition probability from the bad to the good state, Py; = 0.025. Using the expres-
sions from Section 2.1, the parameters of this channel model are easily computed:
Py = I—P”_:"-% =1.316 x 1073
P, = 0.025

€g = P, =5x10"1
_[sz -P+1
& = €|————

= 0.190
e

Also, let the retransmission strategy be a simple stop-and-wait scheme so that 6 = 1.

The transition probabilities C;, Q,, and P, are easily computed as shown beiow (refer
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to Section 4.4 for details).
1

C, = —-———-———-—Pb+ P [Pbg(l _'Cg)N-’rP,b(l _ 65)"]
g g
= 0.50927
1 N _ )
Q1 = e 3 AW [pb,e’;(l C ek 4 Pkl — )V k]
g ke=d;
= 1.1135 x 1072
P1 = 1- Ql — Cl
= 0.47959

To compute the transition probability C;') as described in Section 4.5 it is required to
enumerate the potentially correctable partitions for the integers up to and including
NTt3/n = 6. This enumeration may be achieved by using the integer partition trees
described in Section 2.3. The valid partitions are summarized in Table 4.3.

k Partitions T
1| {1} Y =(2,1,0)
2 | {1,1} {2} = =(1,2,0) =¥ = (2,0,1
31{1,2} {1,1,1} | »{¥ = (1,1,1) =¥ = (0, 3,0)
41{1,1,2} " =(0,2,1)
5| {1,2,2} = (0,1,2)
6| {2,2,2) = = (0,0,3)

Table 4.3: Valid Partitions for the Computation of Céz)

From this table, it is also seen that the number of ~quences that need to be considered
in order to compute C{¥) decreases from 215 — 21! = 30720 to 8§ sequences. This
represents a significant reduction in complexity. The computation of the transition
probability Qg’ requires the consideration of more sequences than does that of ng);
53 sequences must be considered as enumerated in Table 4.4.

Using the expressions which were derived in Section 4.5, the transition probabilities
C';(,'), Qg'), and Pz(') for z = 1,2 are found to be:

c = 0.74138

cP® = 0.73973

QY = 1.7987 x 102

QP = 21450 x 1072

P = 0.24063

P® = 0.23882

3 e s e vacboarion Pt ‘_u_.‘g...cﬂm
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Partitions

{1}

{1,1} {2}

{1,1,1} {1,2} {3}
{1,1,2} {1,3} {2,2} {4}

1,2,2

1,2,3} {2,2,2) {2,4) {3,3)
1,2,4} {1,3,3} {2,2,3} {2,5}
1,3,4
1,4

O 00 =IO Ut v O N = X
—~—
fam—y

12 | {2,5,5) {3,4,5) {4,4,4}
13 | {3,5,5) {4,4,5)

14 | {4,5,5)

1o | {5,5,5}

Table 4.4: Valid Partitions for the Computation of Qg')

The computation of the throughput and reliability of this error control scheme is
then completed by substituting the values for the transition probabilities into the
expressions for 7 and P,y found in Section 4.3. Then,

n = 0.6134
Pa = 2.424 x 1072,

For purposes of comparison, the throughput and reliability of the simple ARQ scheme
described in Section 2.2 are computed given these channel parameters.

n(ARQ) = 0.5204
Pu(ARQ) = 2.140 x 1072

These results demonstrate an appreciable increase in throughput efficiency of the GH-
ARQ II scheme over the simple ARQ scheme with no error correction. As expected,
the reliability of the GH-ARQ II scheme is slightly worse than that of the simple
ARQ scheme. This is a consequence of two factors.

1. The error correction code C{z) (in particular M,) has a non-negligible effect
upon the error detection code Cy.

2. On the first and following retransmissions, there are two “opportunities” for the
receiver to make an undetected error: after the inversion and, possibly, after
error correction decoding, if the inversion fails or is not possible.
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The effect of the error correction coding in the GH-ARQ II scheme is manifested in
the values of the transition probabilities. On the first transmission, the probability
that a retransmission will be re(%uested P, is 0.48. On the second and following
transmissions this probability, P/, decreases to approximately 0.24. Most of this
difference is attributable to the error correction capability of the GH-ARQ II scheme.

4.7 Summary

This section stmmarizes the expressions for the transition probabilities of the depth-2
GH-ARQ II error control scheme. Recall that the throughput and reliability of this
scheme were described in terms of these transition probabilities in Section 4.3.

€1 = m [Pos1 = €)™ + Pos(1 — )]
0= g 2 A [Pkl - 4 P - "
P= 1- Ql -

o = m [P,,, (1= ¢)" + Pyl — &) ]

() 1=

*(%)35f55335

(?) 7o Pa+ De2 4(1 — 6‘_6)n—a 5

,::1:;

-3 Pr(Qu_s, )

0.5 N 1=0 glk)'
(=) _ 1 Z Al=) [P Ck(l — ¢ )N—k+ P Ck(l _ )N-k]
2 Pgb"’Pby k=d, k b% g »% b
$~ Ax IS 0k [Prao( )]
< ) E %:Pr 1— 6) (‘5 — II (k)' H (k)'
s =1 =0 . .
HO= 1o g
1
m= 1+P®
1+ P [—(-g—ml 4 P,]
Q(z) P(’)le)
Pu= Q1+ A
_ P“Sl)Pz(Z)




Chapter 5

Simulation and Analysis Results

This chapter begins by describing an error correction code with properties that make it
well suited to the GH-ARQ Il scheme. Then, an overview of the simulation procedure
is presented. Finally, this chapter concludes by presenting the results of several
experiments.

5.1 The KM Error Correction Code

This code was initially proposed and described by Krishna and Morgera [1]. Recall
that the complexity of the GH-ARQ II error control scheme is strongly dependent
upon the error correction code Cg’); if a separate decoder were required for each error
correction code ng), ...,Cf"'), the complexity of such a system would be prohibitive.
Fortunately, the distinguishing property of the KM codes is that a fixed decoder
configuration is capable of decoding the codes ng), e ,Cg"‘). This makes these codes
ideal candidates for the GH-ARQ II error control scheme under consideration. It
should be noted though that it is probably possible to find other codes with such a
property; however, only KM codes will considered. Since these codes have a short
block length (n = 4,...,8) they are well suited to soft decision decoding [3].

The error correction capabilities of the code Cf'), P.(w), as described 1n Section 4.5.1
was computed for most of the codes described in [1]. These are summanzed in Ap-
pendix C. In general, KM codes are referred to as (mn, n, d), where m is the maximum
depth of the code, n is the block length and d is the design minimum distance of the
code. For example, the (21,7,6) KM code encodes 7 bits into 21 bits and has a design
minimum distance equal to 6. Note that this code also generates the (14,7,3) KM
code by deleting the submatrix M, from its generator matrix M.

62
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5.2 Overview of the Simulation Procedure

A flowchart of the simulation procedure is shown in Figure 5.1. The k& message bits are
randomly generated with 0 and 1 being equiprobable. The message is then encoded
with the cyclic! error detection code g(x). Let m(z), the message polynomial, be
defined as

k=1

m(z) = Y mz’,

i=0
where m, is the z-th bit in the message. The generator polynomial g(z) of the error
detection code is similarly defined as

N-k

9(z) = ) g;7’,

=0

where g; is the j-th coefficient in the generator polynomial. The codeword resulting
from the error detection coding, v(z) is

k—1 N—k

v(z) = m(z)g(z) = Z Z m,g,z* %7,

1=0 =0

Note that the summation is performed over GF(2) so that the coefficients of v(z)
are 0 or 1. The resulting codeword in the error detection code is then partitioned into
n-bit blocks, whereupon each block is encoded with the appropriate submatrix M, in
the KM error correction code to form the transmitted vector ¢(*) for the GH-ARQ II
scheme.

An error sequence is then generated using the Gilbert-Elliott model and added to v
and t(*). The codeword from the error detection code v and the transmitted packet
t(2) are kept separate so that the GH-ARQ II and the simple ARQ schemes each
operate under identical conditions.

Then, the decoding of the received packets is performed. The error detection decoding
in the simple ARQ scheme is performed by using a polynomial division circuit. The
received polynomial, 7'(z) = v(z) + e(z), is divided by g(z). If the remainder of this
division is 0, then it is assumed that no errors have occurred and the simple ARQ
scheme positively acknowledges the transmission. The siniulator then checks the
accepted message for undetected errors. Otherwise, errors have been detected and
a retrancmission 1s requested. An undetected error is made if the error sequence
e(r) is a codeword in the error detection code, so thai e(z) mod g(z) = 0. This

!In these experiments, only a cyclic error detection code is used. In principle, the only restriction
required is that the code be linear.
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implementation of the decoder is capable of detecting some patterns containing more
errors than its error detection capability.

The decoding process in the GH-ARQ II scheme is similar to that of the simple ARQ
scheme except that a provision must be made for inversion and error correction. The
receiver in the GH-ARQ II scheme begins by inverting the error correction coding (i
the corresponding submatrix M, is invertible) and then attempts to detect errors with
the same error detection decoder used by the simple ARQ receiver. On the second and
following transmissions of a message, the receiver will attempt to correct the errors in
the received packet if the inversion is unsuccessful or not possible. In this simulator,
the error corre:tion decoding is performed by selecting the codeword in the KM code
which is closest to the combined block. This decoding approach is possible because n
is small (which makes the number of KM codewords 2" manageable). The output of
the error correction code decoder is then checked for errors by using the error detection
code. Again, this is accomplished by dividing by g(z). If the syndrome is zero, the
simulator checks for undetected errors, otherwise a retransmission is requested.

If the channel conditions are very poor, it is possible that a large number of transmis-
sions would be required before an error-free packet is received. In order to safeguard
against this possibility, the simulator will abandon a packet that requires more than

a preset number of retransmissions. Usually, this limit is on the order of 80 retrans-
missions.
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5.3 Comparison of Analysis and Simulation Re-
sults

This set of experiments estimates the throughput efficiency by simulation of several
GH-ARQ II schemes. A comparison is made with the results of the previous analyses.
The experiments in this section use a simple stop-and-wait scheme (8§ = 1) for their
retransmission strategy and the simulations are all performed over 10000 packets.

Experiment A

The GH-ARQ Il error control scheme in this experiment uses the BCH (127,120) code
shortened by A = 47 bits for error detection. The generator polynomial of this code
is g(z) ="+ 23+ 1. The KM (12,4,5) depth-3 code is used for error correction.
The performance of this scheme was simulated and analyzed on three channels as
summarized in Table 5.1.

Channel | Burst Py Py P
A Dense 2.04 x 10-* 0.01 0.02
B Diffuse 3.33 x 10~ 0.01 0.25
C BSC 0 0.01 1.0

Table 5.1: Channel Parameters for Experiment 5.3.A

The results of the simulations and analyses are presented in Figure 5.2. These are
plotted on the range of average error rate from 107 to 102

The simulation and analysis results are seen to be in very close agreement. The max-
imum error (in absolute value) is approximately 12%. This error could be decreased
by increasing the number of packets used in the simulation. The results suggest that
the throughput of this error control scheme increases as the errors 1n the channel be-
come progressively “bursty” in nature (as P, decreases). Note that the results of the
reliability analysis and simulations are not presented because, since the probability of
undetected error tends to be quite small, its estimation by simulation is very difficult.
For example, to estimate a probability of undetected error on the order of 108, the
simulation would require at least 10% packets, which is not feasible.
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Simulation and Analysis Results: Throughput
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Figure 5.2: Throughput Analysis and Simulation of Experiment 5.3.A. Legend: —— —
Analysis-Channel A — - — Analysis-Channel B — Analysis-Channel C  +
Simulation-Channel A o Simulation-Channel B x Simulation-Channel C

Experiment B

In this experiment, the GH-ARQ II error control scheme uses the (15,5,5) KM code
for error correction and the BCH (127,120) code shortened by A = 47 bits for error
detection. As before, the retransmission strategy is a simple stop-and-wait scheme.
The channel parameters differ from the previous experiment in that these do not sat-
isfy the conditions described by Lugand et al. in [4]. Instead, the channel parameters
for this experiment, summarized in Table 5.2, are similar to those described by Deng
et al. [6] in their analysis. Note that p =1 corresponds to the binary symmetric

channel and that these parameters do not necessarily satisfy the conditions outlined
by Lugand et al. [4].

e Sl
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Channel P,b Pbg p= f:-
A 0.1 0.05 1
B 0.1 0.05 10
C 0.1 0.05 1000

Table 5.2: Channel Parameters for Experiment 5.3.B

The results of the simulations and analyses are plotted in Figure 5.3 on the range of
average error rate from 10~7 to 1071,

Simulation and Analysis Results: Throughput
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Figure 5.3: Throughput Analysis and Simulation of Experiment 5.3.B. Legend: — ——
Analysis-p=1 —-— Analysis-p =10 — Analysis-p = 1000 + Simulation-p =1
o Simulation-p = il x Simulation-p = 1000

Once again, the analysis and simulation results are seen to correspond closely; the
maximum difference in absolute value being approximately 10.4%.
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Experiment C

The goal of this experiment is to compare the results of the approximate throughput
analysis described in Appendix A.1 with those obtained by simulation. To this end,
the GH-ARQ II error control scheme uses the depth-4 (24,6,9) KM code for error
correction and the BCH (127,120) code, shortened by A = 47 bits, for error detection.
The channel parameters are summarized in Table 5.3.

Channel | Pp FBy p= o>
A 0.011 0.01 1
B 0.011 0.01 10
C 0.011 0.01 1000

Table 5.3: Channel Parameters for Experiment 5.3.C

The results of the analysis and simulations are plotted in Figure 5.4.

Simulation and Analysis Results: Throughput
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Figure 5.4: Throughput Analysis and Simulation of Experiment 5.3.C. Legend: — ——
Analysis-p =1 —.— Analysis-p = 10 — Analysis-p = 1000 + Simulation-p =1
o Simulation-p = 10 x Simulation-p = 1000
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It is seen that there is a very good correspondence between the approximate through-
put analysis and the simulations. In general, the effect of the approximation upon
the throughput analysis appears to be very slight. However, in the case of the relia-
bility analysis it has been found that the between it and the simulation can be quite
significant, depending upon the channel parameters.
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5.4 Effect of the Roundtrip Delay

This goal of this experiment is to investigate the effect of the roundtrip delay upon
the performance of the GH-ARQ II error control scheme. This is an important con-
sideration because the roundtrip delay is an integral characteristic of the channel and
retransmission strategy of real communications systems. The error detection code Co
is the BCH (127,120) code shortened by A = 47 bits and the error correction code Cy
is the (12,4,5) KM code. The performance of this error control scheme was analyzed
on the four channels summarized in Table 5.4.

Channel Py Py, € & & [
A 0.0011 0.01 5x10=3 0.455 | 0.099 0.050
B 0.01 0.01 0.025 0.075| 0.5 0.050
C 0.5 0.01 16-8 0.1 | 0.98 0.098
D 2x10~* 3 x10* 10-5 0.1 0.4 0.040

Table 5.4: Channel Paramters for the Investigation of the Effect of §

The throughput and reliability of this GH-ARQ II scheme were computed as a func-
tion of roundtrip delay 8. The percentage improvement for the throughput and reli-
ability are plotted in Figures 5.5 and 5.6. In this context, the percent is relative to
the case when 6 = 1. That is, if n(é) and P,a(6) are the throughput and reliability of
the GH-ARQ 1! scheme when the roundtrip delay is 8, then

% Improvement(n) = ’—I%—a)lq—)- x 100,

and

Poa(1) — Pua(9)
Pu4(1)
Note that the % Improvement (P,4) is defined so that an improved reliability (lower

probability of undetected error) results in a positive percentage.

% Improvement(P) = x 100.
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Throughput Improvement Versus Roundtrip Delay
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Figure 5.5: Throughput Improvement Versus Roundtrip Delay. Legend: — Chan-
nelA — - — Channel B —.— Channel C ... Channel D

The results are interesting as they suggest that it is difficult to determine a prior:
the effect of the roundtrip delay on the performance of the GH-ARQ II scheme with
a given burst-noise channel. The throughput of this error control scheme is seen
to decrease monotonically on channel A, and increases monotonically on channels C
and D. On channel B, the throughput increases to a maximum of improvement, of 0.4%
at § = 50 and then decreases slightly to level off at % Improvement (n) = 0.37%. In
all cases, though, the effect of the roundtrip delay is seen to be fairly small.

The effect of the roundtrip delay upon this error control scheme’s reliability is more
significant than it was upon its throughput. On channels B and C, the effect of the
roundtrip delay is to improve the reliability by only 2 to 3% . However, on channel A,
the reliability deteriorates by as much as 22% and, on channel D, improves by up
to 10%.

Interestingly, the effect of the roundtrip delay upon the throughput is comparable to
that upon the reliability. In particular, the performance deteriorates on channel D,
improves very slightly on channels B and C, and improves moderately on channel A.
The only generalization possible at this time is to say that the roundtrip delay has
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Reliability Improvement Versus Roundtrip Delay
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Figure 5.6: Reliability Improvement Versus Roundtrip Delay. Legend: — Channel A
— — — Channel B — - — Channel C  .-- Channel D

no effect upon the performance of the GH-ARQ Tl error control scheme when the
channel is modelled as a BSC. On burst-noise channels it appears to be difficult to
determine the effect of roundtrip delay on the performance of the GH-ARQ II error
control scheme.
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5.5 Performance Improvement Over Simple ARQ

This section explores the improvement in performance of a GH-ARQ II error control
scheme over a simple ARQ scheme. Also, it establishes some conditions under which
there is no significant improvement in performance of the GH-ARQ Il scheme over
the simple ARQ scheme.

Experiment A

The GH-ARGQ Il error control scheme considered in this experiment uses the BCH (127,120)
code shortened by A = 47 bits for error detection and vhe KM (15,5,5) depth-3 code
for error correction. The roundtrip delay is 6 = 1 so that the retransmission strat-
egy is a simple stop-and-wait scheme. The channel paramteres are summarized in

Table 5.5.

Channel | Burst Py, B
A Dense 0.025 0.02
B Diffuse 0.025 0.25
C BSC 0.025 1.0

Table 5.5: Channel Parameters for Experiment 5.5.A

The throughput and reliability analyses of this experiment are plotted in Figures 5.7
and 5.8.
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GH-ARQ II and Simple ARQ Comparison: Throughput
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Figure 5.7: Throughput Analysis of Experiment 5.5.A. Legend: — — — GH-ARQ II-
Channel A - -— GF ARQ II-Channel B — GH-ARQ II-Channel C + Simple

ARQ-Channel A o Simple ARQ-Channel B x Simple ARQ-Channel C

As expected, the throughput efliciency of the GH-ARQ II error control scheme im-
proves as the channel becomes progressively burstier, however, that of the simple
ARQ scheme also increases. Further as the errors in the channel become burstier in
nature, the difference in performance between the two schemes becomes negligible.
This result may seem surprising, but can be understood by considering the relation-
ship between this channel and this error contral scheme. A dense burst channel is
one in which the bursts are very short in duration yet cause many errors. Since the
GH-ARQ II scheme has no error correction capability on the initial transmission of
a message, an error burst during this transmission will force a retransmission (unless
an undetected error occurs). On the second transmission of the message, the channel
has either entered its “good” state (because the bursts tend to be short in duration)
in which case the error correction capability is probably not required (as no errors
have occurred), or the channel is still in its very “bad” state .xnd the error correction
code is incapable of correcting the numerous errors that have occurred. Note that the
reliability of the simple ARQ scheme 1s greater than that of the GH-ARQ II scheme
up to average error rate equal to 10~3 at which point they are approximately equal.
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GH-ARQ I and Simple ARQ Comparison: Reliability
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Figure 5.8: Reliability Analysis of Experiment 5.5.A. Legend: — — — GH-ARQ II-
Channel A — - — GH-ARQ II-Channel B — GH-ARQ II-Channel C 4+ Simple

ARQ-Channel A o Simple ARQ-Channel B x Simple ARQ-Channel C

For such a channel, where the bursts are very short in duration and occur frequently,

there is no siginificant performance advantage in selecting a GH-ARQ Il error control
scheme over a simple ARQ scheme.

There is, however, a significant improvement in efficiency on the other two channels
when the average error rate is greater than = 1073. Below this rate, the throughput
efliciency of the two schemes is virtually identical but the simple ARQ scheme 1s seen
to be far more reliable. However, as the average error rate increases, the difference in
reliability between the two schemes decreases progressively until € = 1073, at which
point they are comparable.
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Experiment B

This experiment compares the performance of the GH-ARQ II and simple ARQ er-
ror control schemes when the channel is described in a manner similar to that in
Experiment 5.3.B. Both of these error control schemes use the BCH (127,120) code
shortened by A = 22 bits for error detection. Further, the GH-ARQ II scheme uses
the KM (21,7,6) code for error correction. The roundtrip delay, 6, is one and the
channel parameters are summarized in Table 5.6.

Channel Py Py, p= f}L
A 5x 10—% 2 x 1073 1
B 5x%x10-% 2 x 10-3 10
C 5x10-2 2x10"% 1000

Table 5.6: Channel Parameters for Experiment 5.5.B

The throughput efficiency and reliability of these error control schemes are plotted in

Figure 5.9 and 5.10.

On all three channels, the improvement in throughput efficiency of the GH-ARQ II
scheme over the simple ARQ scheme is very significant. For example, when € = 102,
the throughput of the GH-ARQ II scheme is approximately 80% greater than that
of the simple A12Q scheme with equal reliability. This represents a tremendous im-
provement. Moreover, when the average error rate exceeds € = 10~2, the throughput
and reliability of this GH-ARQ II scheme are greater than that of the simple ARQ

scheme.
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GH-ARQ IT and Simple ARQ Comparison: Reliabtlity
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5.6 Performance Of GH-ARQ II On Mobile Ra-
dio Channels

Cygan et al. [5] measured the characteristics of three mobile radio channels in Ger-
many and computed the corresponding parameters of a Gilbert-Elliott model. These
channel parameters are summarized in Table 5.7.

Channel

Description

Py

Doy

g

<

o~

A

Interstale

Munich

3.95 x 104

1.05 x 104

2.1 x 104

0.317

0.2505

v = 40km/h
“Secondary
Highway
Hamburg

v = 40km/h
Autobahn
Munich- s
¢ Stuttgart 2.96 x 10

© = 90km/h

2.1 %107 1.54 x10"* 3.4 x10-* 0.298 | 0 1721

1.29 x 10* 1.1 x 10~* 0.194 | 0.0363

Table 5.7: Gilbert-Elliott Model Parameters of Three Mobile Radio Channels

The peformance of a GH-ARQ II error control scheme was analyzed on these three
channels modelled by the respective Gilbert-Elliott models The GH-ARQ Il scheme
in question uses a BCH (127,120) code shortened by A = 47 bits for error detection
and the KM (15,5,5) depth-3 code for error correction For comparison, the simple
ARQ error control scheme also uses the BCH (127,120) code shortened by A = 47 bits
for error detection The retransmission strategy is the simple stop-and-wait scheme
corresponding to § = 1. The results of this analysis are surnmarized in Table 5.8.

These results suggest that there is little improvement (approximately 1.5% on the
average) in throughput and reliability of the GH-ARQ II error control scheme over
the simple ARQ scheme. On these channels, the GH-ARQ II scheme fails to show
any significant improvement in throughput because the error rate in the “bad” state

Throughput Rehability
Channel | GH-ARQ II | Simple ARQ || GH-ARQ II | Simple ARQ
A 0.215439 0.212672 0.028682 0.029020
B 0.422795 0.416229 0.010682 0.016828
C 0.809086 0.807698 0.001830 0.001805

Table 5.8: Performance Analysis of GH-ARQ II and Simple ARQ Error Control
Schemes on Threc Mobile Radio Channels
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) Throughput Reliability
Channel | (Approx) || GH-ARQ II | Simple ARQ | % Improvement || GH-ARQ II
A 2000 0.224412 0.212672 5.52 0.030830
B 4000 0.432827 0.416229 3.99 0.012406
C > 108 0.811899 0.807698 0.52 0.001988

Table 5.9: Maximum Throughput of GH-ARQ II on Three Mobile Channels

of these channel models is so high that it renders the error correction code ineffective;
it is unable to correct all the errors that have occurred.

A slightly greater improvement in the throughput of the GH-ARQ) II scheme over the
simple ARQ) scheme is possible if a selective-repeat request retransmissicn strategy is
employed instead of the stop-and-wait scheme. The throughput of the GH-ARQ 11
scheme was computed as a function of retransmission roundtrip delay §. It was found
that, for a given value of §, the throughput of the GH-ARQ II scheme could be
maximized on two of the three channels. On channel C, the throughput improvement
appears to increase monotonically up to é &~ 10000 and then becomes constant. The
maximized throughput, the corresponding (approximate) é and reliability for each of
these channels are summarized in Table 5.9

On these channels, the selective repeat request retransmission strategy has a beneficial
effect upon the throughput efficiency of the GH-ARQ II error control scheme. In
particular, the throughput of the GH-ARQ II scheme improves by 5.52% over the
Simple ARQ scheme when § = 2000, yet only improves by 1.3% when a stop-and-
wail retransmission strategy is used. This phenomenon would not be observed on
binary symmetric channels.

i 8
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5.7 Effect of Maximum Depth

This experiment investigates the effect of the error correction code’s depth upon the
throughput of a GH-ARQ II error control scheme. This scheme uses the (24,6,9) KM
code for error correction and the BCH (127,120) code shortened by A = 47 bits. The
throughput efliciency of the GH-ARQ II error control scheme was analyzed in the
case of the depth-4 system with the approximate expressions of Appendix A.1. For
the case of p = 1000, the throughput analysis is plotted in Figures 5.11 and for that
of p=1 (BSC), it is plotted in Figure 5.12. In all the plots, the range of average
error rate is from 1072 to 0.25.

The Effect of the GH-ARQ I System Depth Upon Throughput

0.7

Throughput

01 — 1 A A o -

102 10-! 100

Average Error Rate

Figure 5.11: Throughput Analysis of a GH-ARQ II Scheme. p = 1000. Legend.
— — — Depth-2 System  — - — Depth-3 System — Depth-4 System

Regarding the case of p = 1000, the improvement in throughput efficiency of the
depth-3 and depth-4 systems over the depth-2 system is significant at average error
rates greater than 5 x 10-2. The difference in throughput between the depth-3 and
depth-4 systems is 'nsignificant over the range under consideration. When the channel
is a BSC (p = 1) the improvement in throughput becomes significant at average error
rates greater than 2 x 10~2. But, as the average error rate continues to increase, the
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The Effect of the GH-ARQ II System Depth Upon Throughput
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Figure 5.12: Throughput Analysis of a GH-ARQ II Scheme. p = 1. Legend: — — —
Depth-2 System  — - — Depth-3 System — Depth- 4 System

improvement in throughput of the depth-4 system over the depth-3 becomes much
more significant than it was in the case when p = 1000. Interestingly, when the
average rate approaches 0.125, the throughput of the depth-3 system approaches that
of the depth-2 system. This is because the error correction codes in these systems are
equally incapable of correcting the errors caused by the channel.

It was found that, in general, the depth-2 system exhibits a lower reliability than the
other two systems and that the difference is significant, once again, at average error
rates above 5 x 102,

e A Yﬂ



Chapter 6

Summary

This chapter describes some other interesting topics related to the work in this thesis
and concludes by presenting a general summary and some conclusions.

6.1 Other Interesting Topics

The analysis of the GH-ARQ II and simple ARQ error control schemes assumed that
the receiver buffer was infinite; in practice this is not achievable. The next logical
step in this analysis would be to extend it to cases where the receiver buffer is finite
and to study its effect upon the system’s throughput efficiency and reliability.

The performance of GH-ARQ II error control schemes using soft-decision decoding
has been studied when the channel is modelled by a Binary Symmetric Channel.
It would be interesting to extend this analysis to analog fading channel models so
that the effect of multipath and frequency selective fading upon the performance of
GH-ARQ II schemes in mobile communications systems could be studied.

As Section 3.2 demonstrated, the error correction code can nave a significant effect
upon the performance of the error detection code. This effect merits a closer investi-
gation. As previously mentionned, this problem has been considered in the context
of a concatenated coding scheme; it should now be considered in the context of the
GH-ARQ II error control scheme. Such an investigation should determine the condi-
tions, if any, for which the error correction encoding improves the performance of the
error detection code. Then, if it is found that the errer correction encoding cannot
improve the performance of the error detection code, the conditions for which the
former has no effect upon the latter should be determied.

The experiments in Chapter 5 demonstrated that the retransmission delay can have a

84
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moderate effect upon the performance of GH-ARQ II error control schemes on burst-
noise channels. It might be worthwhile to determine a priori the effect of é as a
function of the channel model’s parameters.

Finally, KM codes were chosen for error correction in the GH-ARQ II scheme. It would
be a worthwhile endeavour to search for other classes of codes with the property that
their decoder implementation is fixed, yet may have greater minimum distance o. a
lesser effect upon error detection codes of interest.

6.2 Conclusions

A general approach to analyze the performance of GH-ARQ II error control schemes
on channels modelled by first-order Markov chains is presented. This approach is
easily extended to depth-3 and depth-4 systems and is best suited to schemes which
use a short block code for error correction. Several issues related to this performance
analysis were presented: the effect of the error correction encoding upon the error
detection code, the integer partitioning problem, the computation of the weight distri-
bution of various codes and the analysis of a simple ARQ scheme on a Gilbert-Elliott
burst-noise channel model.

The approach taken to analyze the GH-ARQ II error control scheme begins by con-
structing the receiver’s state transition diagram. The throughput and reliability of
this scheme may then be expressed in terms of the transition probabilities in this di-
agram. The problemn then becomes the computation of these transition probabilities.
The complexity of this computation may be decreased by grouping together those er-
ror sequences with “similar” properties. The integer partitioning problem was found
to be useful in this computation of the transition probabilities.

The results of several experiments were presented. It was found that the analysis and
simulation results were very consistent and that the approximation for the throughput
computation is very good. Further, the roundtrip delay associated with the various
retransmission strategies can have a beneficial or detrimental effect upon the perfor-
mance of the GH-ARQ Il scheme. It is difficult to determine, a prior:, the exact effect
of the roundtrip delay. Also, it was found that the throughput efficiency and reliability
of the GH-ARQ II scheme improve as the errors in the channel become progressively
bursty in nature. However, it was also observed that this phenomenon is equally true
for simple ARQ systems and consequently the difference in performance between the
two types of schemes appears to decrcase as the channel becomes burstier. In general,
it appears that GH-ARQ II schemes may be better suited to slowly varying channel
conditions than they are to quickly varying conditions. When the channel is fairly
diffuse and the average error rate is high, the high-order GH-ARQ I1 systems were
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found to offer significantly improved performance over second order (depth-2) sys-
tems. Further, under these conditions, the GH-ARQ II systems were found to yield
significantly higher throughput efficiencies than simple ARQ schemes whiie maintain-
ing cornparable reliability.
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Appendix A

Analysis of Other GH-ARQ II
Systems

This appendix describes an aporoximation that can significantly decrease the com-
plexity of the throughput analysis of GH-ARQ II schemes. Then the analysis of
systems using non-invertible submatrices M., ¢ = 2,...,m is presented. This ap-
pendix concludes by extending the analysis of Chapter 4 to GH-ARQ Il Depth-3 and
Depth-4 systems.

A.1 Approximate Throughput Analysis

Suppose that it is only required to estimate the throughput efficiency of a GH-ARQ 11
scheme; the estimate of its reliability being less important. In this case, it is possible
to significantly decrease the computational load of the analysis by approximating the
post-decoding probability of undetected error to be zero. This is not an unreasonable
assumption since it is usually the case that the post-inversion probability of unde-
tected error is greater (and often much greater) than the post-decoding probability
of undetected error. That is,

Pr(S; = 0,PI Errors) > Pr(S; # 0,5, = 0,PD Errors)
is usually true.

By approximating Pr(S; # 0,5, = 0,PD Errors) = 0, the complexity of the analysis
is decreased. The expressions for the transition probability Q(z’) is thus

z 1 N F -
Qo = 3 AP [Proch(1 = )" + Pasch (1 - )]

Pﬂb + Pbg k=d.
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and all other transition probabilities may be computed as described in Section 4.7.
Experimental results regarding the consistency between the simulation and the ap-
proximate throughput computation were presented in Experiment 5.3.C.

A.2 Noninvertible Generator Matrices M,

If a given submatrix M of the error correction code C{® is not invertible, the analysis
of the GH-ARQ II will require a few simple modifications. Since the matrix M is not
invertible, the transition probabilities C; (=) Q(") and P(’) may be defined as follows:

C.‘(,’) = Pr(S; #0,5, =0,No PD Errors)
Q¥ = Pr(S, #0,S; = 0,PD Errors)
PP = Pr($; #0,5: #0)

Since the error sequence ¢ is any N-bit sequence, then

k
The expressions for these transition probabilities are simply
Nra/n|x¥)]

o = (F)1E T T et—ap

k=1 =1

B,(:’: (N),for()skSNandm:l,?.

x(*)

[(7) £220 Pl + Deg (1 = eas)me]™

Z Pr(Qi_s, 0, )H

0, I=0 W(Ik)!
B p ( ) P (k)
g) = (n) anpr ,_5,9)2( ) Z; H[ P‘d((k)' —H[ pdo((k))i]
| § W = i=0 )
Pz(z) = 1- C;(»z) - Qz

A.3 Depth-3 GH-ARQ II Systems

This depth-3 system uses up to a rate-1/3 code C{® for error correction. The generator
matrix of this code may be expressed as

M=[M,|M,|M3]

and the generator matrix of a rate-1/2 error correction code C{¥) may be obtained
from M by deleting the submatrix M from it.

Bisainas
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A.3.1 The Receiver State Transition Diagram

The receiver state transition diagram of a depth-3 GH-ARQ II system is shown in
Figure A.1l. Similarly to the definition of the states in Section 4.2, states T3, T2 and
T1 correspond to the transmitter encoding the packet (I, Q) with My, M, and M,
respectively of the error correction code with the receiver performing error correction
decoding with C) (if necessary).

Figure A.1: Depth 3 System. Receiver State Transition Diagram

A.3.2 Its Throughput and Reliability

Using a procedure similar to the one described in Section 4.3, the throughput and
reliability of the depth-3 system are easily computed. The throughput of this system
was found to be

n= 3) D]
1+ P+ PP {_'T';F‘);(TTI:_};;,1+P£ 5 ]

3 3
and its reliability is

Q) + PYQS + POPIQEY
PM=Q1+P1Q2+P1P2[ 1_P(1)P(2)P(3) .
3 3 3

A.3.3 Transition Probabilities

This section presents the expressions for the transition prcbabilities. Most of these,
except those related to the error correction decoding of the code Cf’), are straightfor-
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ward extensions of the transition probabilities computed in Chapter 4.

As before, C('), Qg') and P{*) may be expressed as

C:gz) = Pr(8, = 0,No PI Errors) + Pr(S; # 0,S; = 0,No PD Errors)
Q%) = Pr(S, =0,PIErrors) + Pr(S; # 0,5, = 0, PD Errors)
Pa(c) = Pr(ﬁx ?é 0, _Sz 74 D_)

The computation of C§ is similar to that of C(’) except that the code c§3’ is used
to attempt to correct the errors that may have occurred during transmission. Let

X3 = Pr(S,; # 0,5, = 0,No PD Errors),

SO

1
(=) _. P (1 = )Y + Pu(l - )| + Xa.
3 Pgb + Pbg [ bg(l 0) + ab( eb) ] + A3

The problem, once again, is to compute X3. Similarly to the analysis of the depth-2
system,

Nny/n [x(®}

Z B(’) 3 Z E Z Pr(e is correctable, s ~ 1r( ) D25, iz, ),

J=1 Q, O, Oz

where Q;_s5 is the state of the channel 26 transitions in the past and, as before,
7(¥) is the set of potentially correctable partitions of the integer k. To complete the
computation of X3, it is required to compute

Pr(e is correctable, e ~ 7r(-k) , 25, 5, §4)
= Pr(e is correctable | e ~ 1r( ) 5 Qim2s, Qis, )
Pr(e ~ 1 | Qi_as, Quos, V) Pr(Ri-as, Vs, ) (A.1)

As in Section 4.5.1,

P
_ (%)' ﬁ [(l)] "' e*(1 = &)V k. (A.2)

There remains the computation of Pr(e is correctable | s ~ 7r§-k), Q255 Qis, )

Pr(e is correctable | s ~ 7r§"), Qi26, Yis, )

PR

= Pr(e is correctable | e ~ rf-k),ﬂ.-_gs, Qi_s)

%{&Mv&»w e
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Let p be the number of errors in the two previous blocks B(-%) and B(-9) of the
combined blocks [B(#=24) | B(-8) | B()]. Then,

Pr(e is correctable | e ~ 7r( ), Qi_as, Q,-5)

= [Pt < ra — 01
1=0

o5

"

0 |a=0

= f[ fé Pa+1)Pr(p=a)

x®
-1 W]

“fi[r a+l)2()(aﬁp) & 251 — i) P8P (L - €s) | (A3)

=0 _—0

By substituting Equations A.2 and A. 3 mto Equation A.l, the computation of Xj is
complete. The transition probability Ca is thus

C(z) = m[Pbg l—Cg) +Pgb(1 —Cb) ]
N Nny/n B(c) |1r( )l
HIPE T T T et T T Prlfieas, 0ie, )
n k=1 ( ) i=1 0, N,_s Qa4

[( ) £25 Pla+ 1) Tho () (a76) € 0s(1 — 026" Peif (1 — )+’ &
i =

1=0
The joint transition probability Pr(Q,_ss,,_s,82;) is computed in Appendix B.3.

The computation, or rather approximation, of Q:(, is also similar to that of Q(')
Chapter 4, with some modifications though. As before, let

Ys = Pr(S, #0,8, = 0,PD Errors).

Therefore,
(z) _ 1 () Nk N
Q" = Py + Py :.ZJ, A [Pbﬂea(l €g) + Paey (1 — ) ] +Ys.
Recall from Section 4.5.2 that
2N 3k )
v; = 3 Pr(i) el
:'—1

= Z A pr(k PD Errors),

)
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where Ax and d are the weight distribution ard minimum distance of the unaltered
error detection code respectively, and the Pr(k PD Errors) refers to the probability
of k errors at the output of the error correction code Cfa) decoder. This probability
may be expressed in terms of the current and previous channel states as

=(®)
Pr(k PD Errors) = 3. 3 3 Pr(R-25, Qs ) Y, N (¥ Pr(x{®),
0 w28 Qs Q, =1

where N (ng)) is the number of decoded error sequences with post-decoding errors
partitioned like 1r§") and Pr(rg")) is the probability of this partition. The quantity
N (wgh)) is as computed in Section 4.5.2. To compute Pr(rf-")) Table 4.1 has to be

slightly modified to account for Q,_s5. This is shown in Table A.1 which is constructed
like Table 4.1, except that it accourts for ;_25 by adding the column labelled w;_j;.

Wy 25 | Wis | Wi | Wo M(wl—%s Wy_§, Wy, wo)
0 [ 0 o]0 N(0,0,0,0)
o | 0o |o]1 N(0,0,0,1)
0 | 0 {0]n N{(0,0,0,7n)
n n |n|0 N(n,n,n,0)
n n {n|l N(n,n,n,1)
n n |n|n N(n,n,n,n)

Table A.1: Error Correction Code c§3) Decoder Output

Using Table A.1, it is a simple matter to compute Pyq(l), the probability of I errors
in a block B at the output of the error correction code Cl(a) decoder. Then,

PPd(I) = Z Zzpr(ﬂi-za,ﬂt-s,ﬂ')

n|—25 s O,
- NG, k,m,1)
ZZ Z Pr(w,_s = Jywis = k,w; = m)
J=0k=0m=0 k \m
= 22 ZPr(n.-_zs,nt-a, )
0 _3s 05 O,

izn: i NGk, )Pr(w,_” = j) Pr(w;_s = k) Pr{w; = m)

=0 k=0 m=0 (?) (") ("‘)
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de(l) = Z Z EPI‘ 1~289 t—G’Q )
N, _as ﬂg s O
Z Z Z N (3, kym, el_g5(1 = €ioag)" el 5(1 — £i)" (1 - &,
3=0 k=0 m=0

The Pr(k PD Errors) is then

)5 1 LRl
Pr(k PD Errors) = ( ) Z 3 S Pr(9_2s, Qis, O )Y H—-Ld(—k)——,
1—2‘ nl—‘ n J=1 1=0 '
and
Ay T [Ppa(l) ]”:r
V= (D) T ¥ TP >z(— > I=m—
|—ﬂln -5 k=d k) =1 l=0 .
The Pr(ld € Cy) is
©F Ak
Pr(e,d € Co) = U Pr(k PD Errors, e = 0),
where e is the currently received error sequence and
(k)|
Pr(k PD Errors,e = 0) = Z E }:Pr i—25, i—s, (k) E N(,r(k) Pr(n )
Q25 0,5 Q, J=1
Ny
(R _ (?T)
N(WJ ) = H?oﬂ'(k)'

Pr(r{) = H[deo i

In this case, Fpao(l) is the probability that the block B(®) at the output of the error |
correction decoder of the code C( ) contains [ errors when the currently received error |

sequence is equal to 0. Again, this quantity is easily cemputed by considering in
Table A.1 only those rows with w, = 0. Then, the result is

Pao(l) = 30 S N, k,0,1)ed_p5(1 — £i_g5)" 7™ 4(1 — £,_5)™*.

2=0 k=0

Therefore,

N Lol "
P((°’eCo)‘("') 5 3 PO s, ) Y HETEZ))—']_

N
Q42605 0O k=d (h) i=1 I=0 Nt
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and Y may be approximated as

Finally,

A.3.4

Ci =

@ =

C, =

Q: =

%o~ (2) T 5 PO, s, )

1—25 N,.s 0O,

A R 1, ()1 [P (D]
5@32 [H > )! H pdﬂg)! ]

=1 |i=0 1=0

N
(=) _ 1 (=) r Nk _
V= ey 2 A0 [P - @ Pad(1 - a)" ]
+(3) T TP s
—25 [ ) .
n n w n %)
N tz“:’l i [Poa(D)]™! —H[P”d°(l)] pr
k=d (k) =1 |i=0 (k)' I=0 ng)!
Summary
1
i [Pra1 = €)™ + Pas(1 - &)
1 N
Py + Py ;,Zd Ag) [P"“C:(l - ":a)N-k + Pgbf’;(l - Cb)N—k]
=d
1-Q:1~
o [Rg(1 = &) + Pl N
Pgy + Py b"( -—69) + 96( —65)
Nryfn 1(2) =¥
(3T T IPICUE
SRR
[(}) £25 Pl + Dez (1 — e, K
Z PT(Q —5» I:_E W(k)l
|-‘ = J’ !
1

—_— A Ppe*(1 — e, )¥-% 1 P, ¥ (1 — o \N—*
Py + B kgz k [ boeg(l — €)" " + Ppey(l — &) ]

N Jx{®)] i
+(Z): S P, ->z:z’,—‘:7z II[P”"(k. H[P”‘°<(k>)3

l—‘ Q. k=d \ k 1=1 [l=u

1—02 Q:

s,
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- 1
Cg ) = m [Pbg(l - Cg)N + Pp(1 — eb)N]
g
N Nﬂ/n B
( ) E Zf"(l“f=)" ~ Z > Pr(Q-2s, Yuos, )
U a, Qs Ouas
(l)
H [( ) n:('l Pl +1) Zﬂ—“( ) (“21‘3) C‘-S-zs(l - 6&-26)"—'96 (1 — € 5)n—a+’3] g
=0 7‘-(,‘)'
= )y
e 1 . _ )
¥ = Pt Py Z A [Pogeb(1 — €)% + Poyek(1 — &)V ]
HCATD > AN SE 8wl Dk -y "
r(Qi_25, Lis, Upd )l 7
026 06 0, ® - k=d (_5 1=1 |I=0 7{5?)! (k)l
P = 1-C0 -
1
no= )1 p(0 p®
1+P>) + PV p
1+ Py + PP, [ T ]

Pu = Q1+P1Q2+P1P2[

QP + PO + POPIQY
1 - PPP PP

A.4 Depth-4 GH-ARQ II Systems

This section briefly describes the performance analysis of a depth-4 GH-ARQ Il error
control scheme. Since its analysis is very similar to that of the depth-2 and depth-3
systems, only the pertinent details are presented.

A.4.1 The Receiver State Transition Diagram

Figure A.2 illustrates the receiver state transition diagram of a depth-4 GH-ARQ 11
error control scheme.

A.4.2 Its Throughput and Reliability

Again, using a procedure like the one described in Section 4.3, the throughput and
reliability of the depth-4 system are easily computed. The throughput of the depth-4
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P

Figure A.2: Depth 4 System. Receiver State Transition Diagram

system was found to be

1

1+PY 4 p1) p)  p() p(3) () ]
1- 4‘ Pc Pc 4‘

n‘:.
1+ A+ PP+ PPP

and its reliability is

Pua = Q1+ PQ:+ PAPQs
QPPOPIK + o + QOKORY + QP P
1 - P PA PRI PM

+P P Ps

A.4.3 Summary of Transition Probabilities

The transition probabilities for Cy, Q1, P, C2, Q- and P, are exactly as described in
the summary in Section A.3.4. The transition probabilities C3, Q3 and P; may also
computed from the C$7, Q$ and P{® as described in Section A.3.4 by setting z = 3.

The other transition probabilities, namely C{®, Q) and P{® are summarized below.
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Let £(e, q) = (;;) €?(1 — €)%, Then,

(=) _
Ci m [Pba(l — &) + Pp(l — &) ]

() SIS S - S T T P )
= U o —-36) 1—25) i—8y 3L

Q — nl-—" nn—:l
(i)

v [(7) SUd P+ 1) Teo T35 E(eis, B)E(€iz2,7)E (€35, — B~ 7)] ™
1=0 W.S:‘)!

1 N
—_— Al k(1 — e YNk 4 p_ k(1 _ ¢ )N-k
Pyt P k—zd k [Pbafg(l &)V * + Popek (1~ e)V |

AN T T 5 TP ican, 0ins, )

n.—u nl—?i nl-l 0,

QL)

Ay T 1p Poao (D)
-z(N) 3 | - 12

k=d =1

=0
PP = 1-00-QP




Appendix B

Issues Regarding the
Gilbert-Elliott Model

In this section the é-step transition probabilities of the Gilbert-Elliott burst-noise
channel model are derived. Then the derivation of the expressions for Pr(Q; = G)
and Pr(§}; = B) is presented. This appendix concludes by deriving the joint é-step
transition probabilities of this channel model.

B.1 é4-step Transition Probabilities

Recall from Section 2.1 the transition probability matrix P of the Gilbert-Elliott
model is,
G B

P= {1-P, Py G
Py 1-PFy| B

To compute the §-step transition probabilities it suffices to compute

-

-

)
Py Py’ |

where P,;(6) is the é-steg transition probability from state i to state j. Note that this
preblem will be solved in general by using the transition probabilities P;;. Upon its
solution, the transition probabilities of the Gilbert-Elliott model will be substituted
for the F;;. The problem is then the computation of the transition probabilities 68-5 ),
although this is tedious, it is not complicated. The computation begins by defining
P’ recursively:

104
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P = p*-'p

PEY PEVT[Pa P

P-‘sf_l) Pg'l) Pn Py

- [P11P1‘5“>+P,1P1‘£“’ P::Pl‘f“"+PnP,‘§‘”]
PaPE™ 4 P PG PupPE™ 4 Py PEY

(B.1)

Equation B.1 generates two systems of equations as shown below
St { Pl(f) = P11P1(f—l) + lepl(g_l)
PR = PoPi V4 PP

PuPz(f—l) + pnpé.f,’l)
PP = PP 4 P PR

2
e,
"l

I

Since the two systems are similar in structure, S; will be explicitly solved by using
2-transforms; the solution for S, is analogous. To compute the one-sided z-transform
of P,-(J?s), it is nessary to compute the initial conditions P1(1_ D and Pl({ N, Referring to
S1, let § = O to obtain

PR = PPV 4+ P PGV
PQ = Pup,PSY + PpPGY

Since, by definition, Pl(f) =1 and Pl(g) = 0 then Pl({ D and Pl({ ) may be found by
solving the following system using Cramer’s rule for instance.

Py P[PV _[12
Py Ppn Pl(,'l) 0
Then,

Py
Py Pz — P3Py
— P,

) 25t B.2
1 PP — PP (B.2)

PEY =

The one-sided 2z-transform of Pg) may then be computed. It is defined for a sequence

z(n),n >0 as

X*(z) =) z(n)™,

n=0
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and its time delay property is [22]
z(n) <5 X*(2)

k
z(n — k) JELIN z7*Xt(2) + ) z(—n)z").

n=1

Let P,-(f) & IT}(z). The one-sided z-transform of the system of equations Sy is

MH(z) = Puz ' [[f(z) + PGz + Puz" I (2) + P72 (B.3)
M(z) = Pz [[f(2) + PGz + Puzt[ITh(2) + P12 (B.4)

Substitute the values for P1(1 D and Pl(;l) computed in Equation B.2 into Equa-

tions B.3 and B.4 to obtain:

I (2)[1 ~ Puz™] = Pz I, (2)
IMfy(2)[1 — Prez™'] = P27 'IIfi(2) = 0

This system may now be conveniently expressed in matrix form:
1- Puz‘l ——lez‘l HE(Z) _ 1
-—-Pnz‘l 1-— PzzZ_l Hi*,(z) — 10

It is easily solved, the result being

1- Pzzz*l
+ —
Hll(z) - (1 _— Puz‘l)(l - P22z_1) - P12})212_2
P -1
If)(z) = e

(1 — Puz_l)(l - PzzZ'l) — P12P212—2

In order to solve for Pf, ), it is required to invert II}(z); the required expression for
the inversion is [29]

z(n) = 27’]‘{ X(2)*z""1dz,

where j = /=1 and C is a contour in the region of convergence of X*(z) taken
in the counterclockwise direction. The inversion of IIf(2) is easily accomplished by
recalling the residue theorem [29]. A similar procedure may be used to compute the
transition probabilities in sysiem Si;. Therefore, after inversion, the é-step transition
probabilities are

PO = (1= Pp)+ (1 - Pu)(Put+ P —1)°
2—Pn—Ppn

-
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po _ Pig — Pip(Piy + P2y — 1)
127 =
2— Py — P
P _ Py — Py(Piy + Poy — 1)
21 =
2— Py — Py
P® - (1 = Pu)+ (1= Pp2)(Pry + Paa — 1)

2"'P11_P22

Returning to the parameters of Gilbert-Elliott’s model, the transition probabilities

P;; correspond as follows:

Pun = 1-P,
P = Py
Py = B,
P, = 1-PFy

Finally, the é-step transition probabilities of the Gilbert-Elliott model are

Py + Pp(1 — Py — Pyy)f

pe  —
a9 Pgb + Pbg
p) _ P — Pa(l— Py — Py)®
e Pop + Py
e Pog — Pog(1 — Py — Py )’
S
Fo + Pig
P(G) — Pgb + Pbg(l - Pgb - Pbg)6
¥ P+ P

B.2 Pr(Q; = G) and Pr(Q; = B)

These probabilites may be easily computed by using the expressions for

letting § — oo. Assuming that |Pi; + P2z — 1| < 1, then

P
- = (8) . "%
Pr(f =G) = 6122, Py = Pt P
P = i p®_ P
Prfh =B) = lim B’ =5 h,

as claimed in Section 2.1.

P® and

1
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B.3 Joint Transition Probabilities

In this section, the é-step joint transition probabilties are computed for the depth-2,
depth-3 and depth-4 systems.

B.3.1 Pr(Qis, )

Let €, be the current state of the model and Q,_s be its state § transitions in the
past. Then Pr(£2;_s,2;) may be computed as follows:

Pr(Qi_s, %) = Pr(, | Qi_s) Pr(_s),

where Pr(£; | ©_s) is recognized to be the é-step transition probability from state
Q;_s to state §; which was computed in Appendix B.1. Therefore,

szb+Panba(1 “Pab'_ Pba)6
(Pas + Pog)?
Py Pog — Py Pog(1 “Pab“Pba)6
(Pyb + Pba)2
Pos Pog = Pay Pog(1 = Pop — Pog )’
(Pab + Pbc)z
P + PasFPog(1 — P — Pog)’
(Pab + P69)2

PI‘(Q.‘_5 = G,Q,' = G) =

Pl‘(Q.’_& = G, Q,‘ = B) =

Pr(Qs =B, =G) =

PI‘(Q;_; = B, Q,‘ = B) =

B.3.2 Pr(Q;_s,0Q,_s, )

Let ), and Q,_s be as defined in Appendix B.3.1 and let £;_»5 be the state of the
channel model 26 transitions in the past, then Pr(£,_2s, s, §2,) may be computed
as follows:

Pr(Qi_2s, Qu_s, ) = Pr(€h | _s) Pr(Qi_s | Qi-26) Pr(i_as),

where Pr(€); | ;_s) is as defined in Appendix B.3.1 and Pr(£;_s | §_25) is the é-step
transition probability from ;.25 to Q,_s. Therefore,

Pr(Q,_zs = G,Q,‘_s = G,Q,’ = G)

_ (Pog+ Pl — Py — Py)’)* Pig
(Pos + Pog)®
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Pr(Q._35 = G,Qi_s = G,Q.' = B)
_ (Pas — Pa(1 — Py — Pug)*)(Pog + Pip(1 — Py — Poy)’) Pog
(Fob + Fig)?

PI(Q.'_QG = G,Q;_s = B,Q.' = G)
(Pog — Pog(1 — Ppp — Pyy)®)(Pgy — Ppp(1 — Pgp — Pyy)’) Py
(Pab + Pba)3

PI‘(Q,’_:; = G,Q,‘_J = B,Q, = B)
_ (Pas + Pog(1 — Py — Poy)*)(Pgp — Pp(1 — Py — Pyy)°) oy
(Pab + Poy)?

PI‘(Q,‘_;J = B,Q,‘_5 = G, Q, = G)

(Pog + Pab(1 — Pop — Poy)®)(Pog — Pog(1 — Py — Piy)°) Py
(Pab 4 Pag)®

Pr(Qh_2s = B,%i_s = G, = B)
_ (P — Pp(1 — Py = Pog)®*)(Pog — Pog(1 — Py — Poy)®) P
(Fob + Pog)®

Pr(ﬂ._za = B,Q,_5 = B, Q, = G)
(Pog — Pog(1 — Pos — Poy)®)(Pgs + Pog(1 — Pop — Fiy)°) P
(Pgs + Pog)®

Pr(§i-2s = B,{i_s = B,{); = B)
- (Pab + Pby(l — Pab — va)s)zpab
(Pab + Pba)a

B.3.3 Pr(Qi_ss, Qi_25, Qi_s, )

Let §;, Q,_s and ,_25 be as defined in Appendix B.3.2 and let €2;_35 be the state of
the channel model 36 transitions in the past, then Pr(€;_ss, Qi _25,Q_s, %) may be
computed as follows:

Pr(-as, Qi-25, Qis, ) = Pr(Q; | Qis) Pr(Qi_s | Qio2s) Pr(€—2s | i_35) Pr(§_as),
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where Pr(€%; | Qi_s) and Pr(f_s | i_3s) are as defined in Appendix B.3.2 and
Pr(4i_2s | Q,_35) is the é-step transition probability from ;_ss to Q;_25. Therefore,

Pr(Qi_3s = G, Q25 = G, Qs = G, 2 =G)
(Pba + Pﬂb(l - Pab - Pbﬂ)6)apba
(Pab + Pba)‘

Pr(Qi-ss = G, Q25 = G, %5 = G,Q, = B)
_ (Pop = Pyp(1 = Py — Poy)*)(Pog + Pyp(1 — Po — Pog)*)? Pog
(Fob + Pig)*

Pr(Q,'_;;; = G,Q,_g& = G,Q,-5 = B,Q, = G)
(Pba — Pba(l -~ Pab — Pbg)s)(Pab - Pcb(l - Pﬂb - Pba)‘)(Pba + Pob(l - Pab - Pba)s)Pba
(Pob + Pog)*

PI‘(Q,_” = G7 Q1—26 = G,Q,_& = BaQi = B)
_ (Pas + Poy(1 = Py ~ Poy)*)(Pyp — Pon(1 — Pyp — Poy)*)(Pog + Pp(1 = Py = Pig)*) Py
(Fob + Pog)*

Pr(Q,_“ = G,Q,’_zs = B,Q,_s = G,Q,‘ - G)
(Pog + Pab(1 — Pay — Pog)*)(Pog — Pog(1 — Py — Poy)*)(Ppp — Pp(1 — Py — Pyy)°) Py
(Pgs + Pyg)*

Pr(Qi-M = G,Qt—26 = B,Q,‘_g = Gaﬂi = B)
— (Pgb" Pyb(l - Pyb —an)6)2(Pba" Pba(l "Pyb "Pba)s)an
(Pos + Pog)*

PI‘(Q{_“ = G,Ql—ﬂ} = B, Qs—& = Baﬂi = G)
(Pog = Pog(1 — Py — Poy)®)(Pob + Pig(1 — Py — Poy)*)(Pay — Pop(1 — Poy — Pyy)*) Py
(Pob + Pyg)*

Pr(Qi_ss = G,i_25 = B,Q%_s = B,Q, = B)
_ (Pt Pog(1 — Py = Pog)*)* (P = Pn(1 = Fop — Piy)*) Py
(Fob + Fog)*

Pr(Q.‘_ss = B,Q._25 = G,Q,'..a = G,Q, = G)
(Pog + Pas(1 — Pgy — Poy)®)*(Poy — Pog(1 — Py — Pyy)’) Py
(Pos + Pog)*
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Pr(ﬂ;_u = B, Q,‘_g; = G,Qi_a = G, ﬂ,‘ = B)
_ (Pob = Pap(1 — Py — Pog)*)(Pog + Pop(1 — Pop — Fi)°)(Pog — Pog(1 — Py — Pog)°) By
(Pob + Pog)*

Pr(ﬂ.'_u = B, Q,_gs = G,Qg_a = B,Q; = G)
(Pog — Pog(1 = Poy — Pog)’)*(Pgb — Pos(1 — Py — Pog)’) Py
(Pnb + Pbﬂ)4

Pr(Qi_ss = B, Yi_ass = G, Vs = B,Q, = B)
— (Pnb + Pba(l - Pnb - Pbg)s)(Pab - Pyb(l — Pab - Pba)s)(an - Pba(l - Pab — Pba)s)Pob
(Pgb + Pog)*

PI‘(Q,‘_:;; = B,Q,..% = B,Q;_g = G,Q,‘ = G)
(Pog + Pyp(1 — Pas — Pog)®)(Pog — Pog(1 — Poy — Pog)®)(Pgp + Pog(1 — Pop — Pog)®) P
(Pnb + Pba)4

Pr(Qi_ss = B, Q425 = B, Qi_s = G, = D)
_ (Pab“va(l —Pab_Pba)s)(Pba"Pbo(l —Pob_Pba)6)(Pab+Pba(l "Pob"Pba)s)Pab
(Pyb + Pbsv)4

PI‘(Q._35 = B,Q,_gs = B,Q;_s = B,Q; = G)
_ (Pog = Pog(1 — Pop — Pog)®) (P + Pog(1 = Py — Poy)°)* P
(Fob + Pog)*

Pr(€_as = B,Qi_s5 = B,Qi_s = B,{}; = B)
_ (P95+Pba(l "Pgb - Pba)s)apab
(Pgs + Pog)?




Appendix C

P:(w) of Selected KM Codes

This appendix summarizes the error correction capabilities P.(w) of selected KM
codes. The generator matrices for thesc codes are presented in [1]. The KM code
decoder is implemented by selecting the +.deword which is closest (in the sense of
Hamming distance) to the combined blo.s in question. Note that whenever the
combined block B currently under consideration is equally close to the zero-codeword
as well as a non-zero codeword, the latter codeword is chosen as the decoder output
so that B is considered uncorrectable. This ensures a lower bound on the probability
of successful error correction decoding.

Pe(w)

w (8,4,3) KM Code | (12,4,5) KM Code

0 1.0 1.0

1 1.0 1.0

2 0.0 1.0

3 0.0 0.12727
4<w<8 0.0 0.0
9<w<12 - 0.0

Table C.1: P.(w) of the (8,4,3) and (12,4,5) KM Codes

112




APPENDIX C. Pc(W) OF SELECTED KM CODES

P.(w)

w (10,5,3) KM Code | (15,5,5) KM Code

0 1.0 1.0

1 1.0 1.0

2 6.6667 x 10~2 1.0

3 0.0 0.76483

4 0.0 0.12234
5<w<10 0.0 0.0
11<w<15 - 0.0

Pe(w)
(12,6,3) KM Code | (18,6,6) KM Code | (24,6,9) KM Code
1.0 1.0 1.0
L 1.0 1.0 1.0
2 0.40909 1.0 1.0
3 4.5455 x 10~3 0.90564 1.0
4 0.0 0.45523 1.0
5 0.0 1.6223 x 102 0.91481
6 0.0 0.0 0.56123
7 0.0 0.0 9.9724 x 102
8 0.0 0.0 4.1606 x 10-*
I<w<12 0.0 0.0 0.0
3<w<18 - 0.0 0.0
9<w<24 - ~ 0.0

Table C.3: P.(w) of the (12,6,3), (18,6,6) and {24,6,9) KM Codes

P.(w)

w (14,7,3) KM Code | (21,7,6) KM Code

0 1.0 1.0

1 1.0 1.0

2 0.52747 1.0

3 5.4945 x 10~3 0.98496

4 0.0 0.74052

5 0.0 0.19441

6 0.0 1.3637 x 10-3
T<w<l4 0.0 0.0
16<w<21 - 0.0

Table C.4: P.(w) of the (14,7,3) and (21,7,6) KM Codes



¥l

APPENDIX C. P¢(W) OF SELECTED KM CODES

P.(w)

w (16,8,3) KM Code | (24,8,6) KM Code

0 1.0 1.0

1 1.0 1.0

2 0.57500 1.0

3 0.0 0.98024

4 0.0 0.83851

5 0.0 0.42024

6 0.0 4.7587 x 102

7 0.0 1.4735 x 10—4
8<w<16 0.0 0.0
17<w<24 - 0.0

Table C.5: Pe(w) of the (16,8,3) and (24,8,6) KM Codes
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