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RESUME

Cette thése concerne la formulation et le développment d'une nouvelle
procédure numérique, appelée la méthode de contrainte hybride pour
éléments finis. La formulation proposée considére la contrainte et le
déplacement comme inconnus primaires et diverge de fagon radicale des
modeles d’éléments finis se basant sur le déplacement.

Parmi les caractéristiques spéciales de ce nouveau modéle, on retrouve
la définition des équations de rigidité des éléments en termes de systeme
de coordonnées locales plutot que globales, 'usage efficace du schéme de
mise en mémoire pour la solution de données “Skyline” ainsi que l'usage
rapide et efficace de routines de production et de modification de maille
spécialement développées pour les applications géotechniques.

Les essais effectués sur les problemes d’élasticité de solutions a forme
fermée démontrent que la méthode proposée est précise et nécessite
relativement moins d’éléments que les autres méthodes a éléments finis
pour obtenir la méme précision. Les études de cas effectuées sur deux
problémes de conception miniere ont reproduit les résultats obtenus par
d’autres procédures de modelage numérique dans des limites
acceptables et ont démontré que la méthode proposée peut étre utilisée
pour solutionner de fagon efficace et réaliste les problemes de
géoméchanique.
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ABSTRACT

This thesis reports the formulation and implementation of a finite
element model, which is based on the so called Hybrid Stress Finite
Element Method. The proposed formulation is based on stresses and
displacements as the primary unknowns and is radically different from
displacement-based finite element models.

Among the special features of the imodel are the casting of the
element stiffness equations in terms of local rather than global coordi-
nate system, the use of the active column method known as the “Skyline”
technique for the solution of equilibrium equations, and the use of fast and
efficient mesh generation and alteration routines developed specially for
geotechnical applications.

Verification tests carried out on problems in elasticity with closed form
solutions show that the proposed method is accurate and that it requires
relatively fewer elements than displacement-based finite element method
to achieve the same accuracy. Results of case history studies done on
two mine design problems matched those from other numerical modelling
procedures within acceptable limits and showed that the proposed method
can be used to solve geomechanics problems efficiently and realistically.
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Chapter 1

General Introduction

1.1 The Role of Mining and Minerals
in World Economy

Of the three traditional industries basic to human existence and development, viz, mining,
agriculture and forestry, the only thing common to them is that their resources come from
the earth. Agriculture and forestry depend on the land for their basic raw materials but
in general do not completely and irreversibly deplete these resources. The nutrients which
the farm and forest products take from the land are often returned to the land, sometimes
in artificially contrived greater measures that ensure a better yield of the resource in the
succeeding cycle of exploitation. Mining on the other hand depends on a resource which,
once depleted cannot be replenished or replaced. While man can, to a large extent, control
the basis of agriculture and forestry, the same is not true for minerais: man has no control
over the process of forming the minerals nor the geologic setting of their deposition. The
mining engineer is, as it were, constrained to work with the environment of the particular
ore deposit in order to exploit it.

Throughout the ages, men has been excavating below the surface of the earth for minerals
for various purposes, e.g. for ornaments, for health and medicinal purposes, for building and
finally, for articles of war and security, Jumukis [1]. These were the basic needs of man and
their satisfaction has usually resulted in an increased population worldwide as well as the
modernization of science and technology. This increase in all aspects of human endeavours
which minerals have helped to bring about has in itself resulted in an increased demand for
greater quantities of minerals so that it is no great surprise that mining has progressed from
the traditional small surface and near-surface openings to the great surface and underground
excavations of today.
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1.2 The Nature of Rock Masses

Rock differs from most other engineering materials in that it contains fractures of all sizes
and shapes which render its structure discontinuous. There is therefore a clear distinction
between a rock material and a rock mass Goodman [2], Brady and Brown [3]. A rock mate-
rial is the term used to describe the intact rock between discontinuities while a rock mass is
the total in-situ medium containing several discontinuities. These discontinuities are often
faults, joints, folds, bedding planes, and other structural features. The structure of a rock
mass describes the nature and distribution of the structural features within the rock mass.
Rocks are therefore discontinuous, often heterogeneous and definitely anisotropic engineer-
ing materials and their response to the field forces of their physical environment is therefore
influenced by their structures. For underground hard rock mines in particular, the predom-
inant structural features are joints, dykes, shear zones, faults, and folds.

Joints are the most common and the most significant feature. Joints are breaks of
geological origin along which there has been no visible displacement. They often occur
in sets, the distinguishing feature of any set being the same orientation and size in space.
Faults and joints are fractures with the difference that in faults, identifiable shear movement
has taken place.

1.3 Rock Mass Response to Imposed Force Fields

In other fields of engineering that deal with materials which are homogeneous, isotropic and
elastic, the study of their response to imposed forces is predictable and the application of
the relevant theories of mechanics is well established. Even in the older but closely related
field of soil mechanics, systematic documentation of case histories has been in progress for
over 40 years and has now resulted in well-established empirical design methods which are
also supported by theoretical analyses.

The following factors are generally recognized as influence factors in the consideration of
the response of rock masses to the force fields of their physical environment:

1.3.1 Rock Fracture

The nature of rock masses renders their response to imposed forces very different from the
response of conventional engineering materials such as steel. In general, the stress fields
operating in rock rnasses at depth are compressive so that established theories which usually
deal with tensile failure are not immediately applicable. Rocks are very weak in tension
and every strong in compression. Under high confining stresses, they will fail by shear
deformation and their strength is very dependent on the magnitude of the confining stress.




1.3.2 Size effects

The response of rock to imposed load is highly dependent on the size of the loaded volume.
This fact is attributed to the discontinuous nature of a rock mass whose strength and de-
formational properties are influenced by the properties of the rock material and those of the
various structural geological features.

1.3.3 Tensile Strength

The tensile strength of rock is one of its most distinguishing feature from other engineering
materials and in general is an order of magnitude lower than its compressive strength. Rock is
therefore conventionally described as a no-tension material, especially as joints and fractures
can offer little or no resistance to tensile stresses.

1.3.4 Groundwater Effects

Groundwater affects the response of rock masses in two ways. Under the effective stress
law, water under pressure in the joints defining rock blocks reduces the normal effective
stress between the rock surfaces, thus reducing the potential shear resistance which can be
mobilized by friction. Secondly, the mechanical strength of the rock mass is reduced by the
deleterious action of the water on particular rocks and minerals such as clays.

1.3.5 Effect of Loading Rate

Many rocks are sensitive to the rate at which loads are applied. At low stress levels, most
rate-sensitive rocks exhibit primary creep behaviour which is characterized by deformation
at a decreasing rate to a final state under a constant load and by recovery to the initial unde-
formed state once the loads are removed. However, in some cases, particularly for salt type
rocks such as potash, the stress level often exceeds the creep yield limit and secondary creep
behaviour, in which displacements are no longer recoverable and the creep rate approaches
a constant value, set in.

These factors are by no means exhaustive but it is clear that the response of a rock
mass to the force fields of its physical environment depends highly on the nature of the rock
mass and the environment. Thus, the need for constitutive models which are capable of
representing these different types of rock mass behaviour is important.

1.4 Types of Underground Mining Excavations

Ore extraction by underground mining methods involves the creation of different types of
openings for different purposes. These openings are best classified by the duration of time




they are expected to remain open. The first type of openings thus comprises the main shaft,
level drives, crosscuts, ore haulage drives, ventilation drives and airways. These constitute
the mine access and service openings. They are expected to remain open for the life of the
mine and are usually developed in the host rock.

Access crosscuts, drill headings, access raises, extraction headings and ore passes which
are directly related to ore development ard production con-titute the second type of mine
openings. They are usually developed in the ore body or very close to it and are expected
to remain open for the duration of the mining activity in their immediate vicinity, Many of
these openings are eliminated by the mining process.

The third type of mine opening is developed in the ore source itself or the stope. In
general a stope may be a free standing excavation with well defined boundary walls that are
strong enough to support themselves, the excavation growing in size as the ore is mined.
Sometimes however, a stope requires some kind of support either in the form of the broken
ore itself or some engineered mechanical suppor.. The lifetime of a stope is defined by the
duration of active ore extraction. It is usually shorter than the life spans of the first two types.

It is clear from the foregoing that in order for ;afe and economic exploitation of an ore
body to be possible, any mine opening must remain open for its expected life span, without
the danger of precipitating collapse, due, perhaps to the factors that pertain to the mining
process in combination with the rock mass properties and environment.

1.5 Sources of Instability in
Underground Excavation

According to Bieniawski [4], there are four principal sources of instability encountered in
underground mining excavations identified as follows:

1.5.1 Instability due to Adverse Structural Geology

This type of instability tends to occur in hard rocks which are faulted and jointed and where
several sets of discontinuity are steeply inclined. Stability can sometimes be improved by a
relocation or reorientation of the excavations. Usually however, extensive support system is
required. In all cases, the cost of mining is high.

1.5.2 Instability due to High Stress

This is also generally associated with hard rocks and can occur when mining is at great
depths or when very large excavations are created at shallow depths, or when very high




tectonic stresses are encountered. Changes in the shape of the excavations and repositioning
the excavations with respect to one another sometimes helps but support is usually required.

1.5.3 Instability due to Weathering

Weathering and sometimes swelling occur generally in weak rocks generally found near the
surface. Such rocks sometimes also occur as isolated seams within strong competent rocks.
The resulting instability is best dealt with by protecting the surface of the rock from contact
with moisture.

1.5.4 Instability due to Excessive Groundwater

Groundwater pressure or flow will cause instability in underground excavations when these
excavations are below the water table, which is often the case. A consequence of this is that
most underground mines routinely pump water out of the mine as an essential operation.
The instability due to this source becomes a problem when it is associated with one of the
above instabilities.

It is fair to state that the first two types of instabilities are the most serious to deal
with. Indeed the instability due to excessive rock stresses precipitates some other forms of
instabilities. As mining excavations grow in size, the loss of support previously provided
by the mined rock results in the transfer of stresses to the adjacent rock masses which may
then bear more than their capacity. The consequences of this include rock bursts, spalling
of sides, creation of fractures and thus channels for groundwater flow.

1.6 The Need for Realistic Mine Design Techniques

In the past few decades, changes in mine economics as a result of several factors have resulted
in the use of larger equipment with resulting increase in stope and access tunnel dimensions.
The increasing volume of underground mining activities combined with the high cost of
equipment and technolcgy that accompany their operations lend to them an air of perma-
nence formerly reserved to Civil Engineering works. Thus, a typical large mine nowadays
has major shaft systems with their surrounding complex of haulage ways, ore passes, crusher
stations, pump stations and underground engineering services. Consequently, such excava-
tions must be secure against rockfalls and other forms of instability.

The ultimate objective in mine design is to control rock displacements into and around
mine excavations, Brady and Brown [3]. Elastic displacements around mine excavations are
typically small. Rock displacements of engineering consequence may involve such processes
as fracture of intact rock, slip on a geological feature, excessive deflections of roof and floor
rocks, or unstable failure in the system during which, stored potential energy is suddenly
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released thus resulting in changes in the equilibrium configuration of the structure. These
modes of rock response indicate a methodology of designing stable excavations in rock. This
methodology includes the accurate determination of the strength and deformation properties
of the orebody and the enclosing waste rock mass, the geologic parameters of the rock mass
and the use of analytical methods to evaluate each of the possible modes of response of the
rock mass.

Thus, the design of underground mining excavations plays an important role in modern
mining philosophy and the science under which this design is practised is called ROCK
MECHANICS. A widely accepted definition of rock mechanics is the one first offered by the
United States National Commattee on Rock Mechanics in 1964, and later modified in 1974,
Judd [5):

"Rock Mechanics is the theoretical and applied science of the mechanical be-
haviour of rock and rock masses; it is that branch of mechanics concerned with
the response of rock and rock masses to the force field of their physical environ-
ment.”

Rock mechanics is thus of fundamental relevance to Mining Engineering because the act
of creating mining excavations changes the force fields of the physical environment of the
rocks. The study of the response of the rocks to these changes requires the application of
analytical techniques developed specifically for the purpose. Rock mechanics is a branch of
geomechanics, which is concerned with the mechanical responses of all geologic materials,
including rocks.

Figure 1.1 illustrates the main parts of a rock mechanics program. It is apparent that
numerical modelling, the area in which this thesis can be classified, is only a part of several
multipass loops. It is however, an important area. Various models of mining methods from
start up to end of mine life can be examined and in conjunction with mine monitoring, model
calibration that accurately reflects the response of the mine structures to mining operations
can be made.

The need to reduce the chances of failure of critical mine openings has made it very
important that advanced techniques be developed for designing the mine openings and for
general mining operations. Traditionally, mine design has been based on a combination of
experience and relatively simple analytical models modified by empirical factors to account
for the 'non ideal’ nature of rock. With today’s high tonnage, and bulk mining methods
operating at greater depths, there is a need for rational methods for designing the mine
geometry which explicitly consider the geological structure of the ore body and the host
rocks and account for the interaction between the various openings. This need is largely
being met by the appropriate use of the stress and displacement analysis techniques in the
field of rock mechanics




Site Characterization

definition of hydromechanical properties of the host rock mass for mining

Mine model formulation
conceptualization of site characterization data

Design analysis
Selection and application of mathematical and computational
schemes for study of various mine layouts and strategies

Rock Performance and monitoring
measurement of the operational response to mining of the host rock mass

Retrospective analysis
quantification of in-situ rock mass properties, and identification
of dominant modes of response of mine structure

Figure 1.1: (after Brady and Brown [3]) Components and Logic of a Rock Mechanics Program




1.7 Objectives of this Thesis
There were four main objectives in undertaking this research:

1. To develop from mathematical principles, a numerical model for analysing stresses and
displacements specifically tailored for excavations in rock masses, and based on the
hybrid stress finite element technique.

2. To write a computer code of the method and verify it by using problems in elasticity
with closed-form solutions.

3. To apply the computer code in solving actual mining stability problems which have
been examined by different methods and compare the solutions, and,

4. To develop computer programs designed to ease the problems of generating and altering
finite element meshes associated with excavations in rock masses.{}

Chapter 1, this chapter, addresses the role that minerals and therefore, mines have played
and are continuing to play in the life of man and in the world economy. It also sets the stage
for the following chapters and stresses the importance of the work reported in the thesis.
Subsequent to this chapter, an overview of the methods of stress and displacement analysis
in geomechanics is given in Chapter 2. It is shown that the particular method chosen in this
thesis is relatively new and unexploited in mining applications. Chapter 3 gives the detailed
formulation of the relevant mathematics of the hybrid stress finite element using eight node
isoparametric quadrilateral elements. This is followed in Chapter 4 by the mathematical
formulation of the element stiffrcss matrix and the associated load vectors for the hybrid
stress model.

In Chapter 5, a description of the computer programs is given. All the programs are
written in Fortran 77. These programs include the hybrid stress computer code, two quadri-
lateral mesh generation programs, and a program for altering quadrilateral meshes for the
purpose of creating voids or excavations in them. In Chapter 6, results of verification tests
done on different types of problems with closed form solutions are discussed. Chapter 7
gives a detailed description of two case studies done on two Noranda mines. Discussions,
conclusions, contributions and suggestions for further research then follow in Chapter 8.

There are five appendices in the thesis. Appendix A contains a listing of the hybrid stress
program written from the reserach carried out. Appendices B, C and D contain listings
of computer programs written for various purposes as described in Chapter 5. Appendix
E contains some important mathematical derivations and matrices that are crucial to the
programming of the hybrid stress finite element method.




Chapter 2

Methods of Stress and Displacement
Analysis in Geomechanics

2.1 Introduction

The methods available in geomechanics for solving problems of stress and strain fall into three
broad groups. These a1¢, direct measurement and observational methods, analytical methods
and, numerical methods as discussed below. Analytical and numerical methods start off by
choosing a material model in form of the constitutive equations of linear elasticity. The
theory of linear elasticity strictly applies to the case of a material with a stress-strain curve
which is linear and completely reversible under all conditions. However, many materials
which are not entirely linear elastic in their stress-strain behaviour, including rocks, are
found to be linearly elastic for moderate departures from some condition which may be
regarded as standard.

2.2 Direct Measurement and
Observational Methods

Measurement of displacements and in-situ stresses forms an important part of mine design
process before mine layout and planning, during the mining process, and after constructing
important mine structures such as shafts, crusher stations and other permanent features in
the mine. Measurements made before the excavation are used in the design process, those
made during the excavation process are used to confirm the validity of the design and to
provide a basis for any necessary changes in the original design. After construction, measure-
ments are made to check the overall response of the excavation to changes in the surrounding
rock masses, Hoek and Brown [6]. Data collected in the initial stage can also be used as
input parameters into the numerical models discussed below.
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Figure 2.1: Correlation between Calculated and Measured Vertical Stresses,
(after Bieniawski (4], p. 68)

The magnitudes and directions of the principal stresses which exist in the rock mass
before the creation of an excavation play an important role in the subsequent response of
the excavation to the changing stress field as more excavations are made. The creation of
an excavation thus disturbs the initial in-situ stress, Bieniawski {4]. Ground or field stresses
have been classified into virgin or original stresses, and induced stresses due to excavation.
The virgin stresses themselves can be of gravitational, tectonic or residual type. Gravita-
tional stresses are those due solely to the effect of gravity on the overburden rock. Tectonic
stresses are those due to straining in the earth’s crust, and residual stresses are stresses that
remain after the cause has been removed.

Rock stress measurements feature several techniques which may involve either overcoring
methods, flat jack methods or hydrofracturing. Such measurements have been conducted
in several parts of the world and attempts have been made to correlate the values of the
horizontal and vertical components with depth of overburden and with values calculated on
the basis of gravity alone. Figures 2.1-2.4 depict some of these correlations.
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2.3 Numerical Methods

Once the constitutive equation which represents the behaviour of the rock mass under stress
has been identified and the boundary conditions have been specified, the problem of solving
for the stresses and displacements around an underground excavation becomes one of solving
a boundary value problem. Two approaches to numerical modeling are identified, both
recognizing geologic structures as being discontinuous owing to joints, faults and bedding
planes. These approaches are as follows:

2.3.1 Continuum Models.

The continuum model, of which there are two types, treats the rock mass as a continuum
intersected by a number of discontinuities. Differential models characterize the entire region
and include the finite difference and the finite element methods. These models utilize the
classical theory of elasticity and plasticity to compute the stresses and displacements induced
in the initially stressed rock following excavation. It is assumed that displacements are con-
tinuous everywhere within the rock mass. This leads to an idealization and simplification of
its geometrical and mechanical properties.

The finite difference technique, Desai and Christian {15], was the first numerical approach
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formulated on mathematical basis, to be applied to problems in continuum mechanics. The
basic concept of the method is to replace all continuous derivatives by the ratio of changes in
variables over a small but finite distance. Thus, the differential equations which govern the
physical problem are transformed into a system of algebraic equations. A finite difference
grid must be set up and interpolation functions which express the variations of the unknowns
between the nodes need to be specified. The resulting system of equations is large but sparse.

For more complex excavation shapes and boundary conditions, the finite element method
and the boundary element method are two of the several new schemes that can be used. The
boundary element method is suitable for modelling unbounded problems in elasticity while
the finite element method has advantages in its capability of modelling non-linear material
behaviour, sequential excavations and other mining induced problems. Nowadays, hybrid
computational schemes which combine finite element methods or boundary element methods
with discrete element methods are coming into use, see Beer and Meek [16]. Details of the
hybrid finite element method of this thesis are given in Chapter 3.

Integral or boundary element methods involve the discretization of the interior or exterior
boundaries. The interfaces between diff~rent material types and discontinuities are treated
as internal boundaries and are also discretized. Boundary element methods produce much
smaller systems of algebraic equations than a finite element or finite difference method for
the same problem. However, the smaller system of equations is not sparse nor is it banded
as for the other continuum type models.

2.3.2 Discontinuum Models

Discontinuum models feature numerical procedures involving the equations of motion of
particles or blocks rather than the continuum. These models are used whenever independent
rock block movements must be taken into account, such as in block caving mining methods,
rock slope failure, rocf collapse or flow of ore in a stope or bin.

2.3.3 The Finite Element Method

The original concept of finite element methods for solids was developed by Turner, Clough,
Martin and Topp {17] who applied the matrix displacement methods to plane stress problems
using triangular and rectangular elements. Argyris [18] included in his treatise on matrix
structural analysis a derivation of the stiffness matrix of a plane stress rectangular panel.
The formulations of element stiffness matrices by early investigators were not based on the
field equations of the entire elastic continuum.

In the early 1960’s, it became apparent that the finite element method can be inter-
preted as an approximate Ritz method associated with a variational principle in continuum
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mechanics, Pian [19], Pian and Tong [20], Washizu [21]. From such variational principles as
illustrated by Figure 2.5, it is possible to derive numerous finite element models which may
lead to different methods which involve only displacements, only force, or a hybrid of dis-
placement and force. Washizu’s contributions, as a typical example can lead to the derivation
of finite element methods for solving initial strain problems, finite displacement problems,
plasticity problems and others. Pian [22] has given a thorough summary of the application
of the variational principles to the derivation of finite element equations for sulids, and has
classified finite element methods according to Washizu [21], Table 2.3.7.

In such methods, a selid continuurm is first subdivided into an assemblage of discrete cle-
ments called finite elements, which are connected along continuous interelement boundaries.
Piecewise continuous displacement and /or stress fields are then assumed in each element and
the resulting equations from the application of the variational principles are simultaneous
algebraic equations which may have either generalized displacements, genecralized internal
forces or stresses, or, both displacements and forces at the nodal points as unknowns to be
evaluated.

The nature of the final matrix equations has been used as the basis for one type of
classification of finite element methods and so, the three categories given above are often
referred to as,

e the displacement or compatible method,
e the force or equilibrium method,
¢ the mixed method, and

o the hybrid method

Turner et al. {17], were the first to apply the technique of matrix displacement methods
to plane stress problems using rectangular and triangular elements. The stiffness matrices
were derived by the direct stiffness method but the formulation was not based on the field
equations of the entire elastic continuum.

This study follows the definition of the hybrid finite element method given by Pian [23].
The hybrid stress method involves assumed equilibrating stresses only within each element
and compatible displacements along the interelement boundaries. The hybrid displacement
method involves assumed continuous displacement distribution within each element and
equilibrating surface tractions along the interelement houndaries.

The displacement method is usually derived from the Principle of Stationary (minimum)

Potential Energy, in which the displacements are assumed within the finite clement such that
they satisfy continuity conditions within the element and along the interelement boundaries.
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The stresses are then computed from the gradient of displacement functions. Boundary trac-
tions and the equilibrium equations are not exactly satisfied within the element, as a result
of which, the predicted stresses may not be accurate.

A method that can predict stresses with greater accuracy than the displacement method
is the force method which is also known as the equilibrium method. It can be derived from
the Principle of Stationary (minimum) Complementary Energy. The disadvantage of this
method is that it is usually difficult to derive a stress field that satisfies the prescribed trac-
tions and equilibrium equations. Also, the predicted displacements by this method may not
be accurate, Pian and Tong [20].

The mixed mzthod is often derived from the Hellinger-Reisner variational punciple, i
which the stress and displacement fields are assumed separately for each element.
The hybrid method can either be derived from the Modified Potential Energy or the Modi-
fied Complementary Energy Principles, which lead respectively to the Hybrid Displacement
Model and the Hybrid Stress Model. In the Hybrid Displacement Model, the displacement
field is assumed within the element and independent displacement and/or stress fields are
assumed on the element boundaries. In the Hybrid Stress Model, an equilibrium stress field
is assumed within the element and an independent displacement field is assumed on the
element boundaries.

In geomechanics, Desai and Christian [15], used the Displacement Model to solve prob-
lems involving such complexities as material, geometric and boundary non-lhinearities. It is
the author’s belief that the hybrid stress method can be used to solve complex problems in
geomechanics because of its specialized features some of which are discussed in the following
subsections.

Pian, [24] concluded that the use of the hybrid stress model will yield a more flexible
structure that the compatible model using the same boundary displacement approximations,
and a more rigid structure that the equilibrium model using the same internal stress approx-
imations. He further stated that the finite element method based on assumed stresses can
provide more accurate stress estimation than the assumed displacement scheme. Appa Rao
(76], in his studies on thick spheres and long thick cylinders also stated that the radial stresses
obtained by the hybrid stress model are closer to the exact values than the stresses obtained
by the assumed displacement model.
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2.3.4 Improvement of Finite Element Solution by
the Introduction of Special Elements
for Prescribed Stress Boundaries

Computations using the element stiffness matrices formulated by the conventional assumed
displacement method will not, in general, produce the correct stress components at the
prescribed stress boundaries. As an example, at a stress-free boundary, spurious stresses
will result. These can be prevented by the use of special free-boundary hybrid elements for
which appropriate (column) vector of stresses can be made so as to give zero values of the
generalized tractions on appropriate edges. Pian [24] and Yamada et al. [25] have shown
that the use of the special stress-free boundary element can make considerable improvement
on the finite element solution.

2.3.5 Improvement of Finite Element Solution for
Problems Involving Stress Singularities

In the conventional finite element method based on an assumed displacement compatible
method,the stress distribution within each element has been proved to converge to the exact
solution 1if the corresponding stress distribution remains finite everywhere in the domain.
However, for a problem involving a stress singularity such as the elastic solution at the tip
of a sharp crack, it cannot be proved that the finite element method using the conventional
compatible elements will necessarily couverge to the exact solution. On the other hand,
when the hybrid stress method is used, it is possible to include special stress terms which
represent the correct stress singularity behaviour. By extracting the singular part of the
solution in its correct analytical form, the nodal displacements in the finite element analysis
correspond to a solution without singularity. Thus, the convergence of the finite element
solution is assured, Toug and Pian [26).

The application of sections 2.4.2 and 2.4.3 to problems of joints and fractures is obvious.
There is an extensive literature on the topic, Akin [27]], Benzley [28], Roshdy [29], and Atluri
et al. [30] being typical of the keen interest.

2.3.6 Construction Sequences

Finite element simulation of ccnstruction sequences is now being done by the stress hybrid
procedure. Lightner [31] has reviewed past work done in this field such as embankments,
excavations and initial stress problems. Desai and Christian [15] also made extensive reviews
on construction sequences. The extension of this principle to excavation sequences in hard
rock mining, and to the design of mining methods for sill and crown pillars is also obvious.
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2.3.7 Interface modelling

Modelling the interface between dissimilar materials such as soil and rock has been done in
the past in several ways. The load transfer mechanism between two such unlike materials
is affected by the behaviour at the interface. Thus, during loading, special consideration
should be given to the modes of deformation such as slip, non-slip, opening, and closing
of contact surfaces. Goodman, Taylor and Brekke [32] developed one of the carliest joint
elements for use in this type of analysis. Zienkiewicz et al. [33] have used isoparametric
elements for modelling interface behaviour. Ghaboussi, Wilson and Isenberg [34] have criti-
cized the preceding models mainly on the basis of numerical ill-conditioning of the clement
stiffness matrices. They derived an interface element similar to the Goodman element with
supposedly better properties. However, most interface elements thus far developed are in-
adequate in many respects that make their utility very limited. However, research is going
on for development of better interface elements.
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Table 2.1: Classification of Finite Element Methods for Solid Continua

(after Pian[23])

UNKNOWNS
F.E VARIATIONAL VARIABLES PARAMETERS IN MATRIX
MODEL PRINCIPLE IN Tpme; MATRIX | METHOD
EQUATIONS
Poteéntial Displ.: Nodal displ.:
Compatible Energy {u} = [Al{g}; {eh: (a]; Displ.
Equbbnum Complim, Stress func.: Nodal stress
I Energy {u} = [B{p} function: {r}; Force
{r}i
Stress: Stress param.:
Equlibrium Modified {c}=[P}{B}; {8};
I Complim. Boundary displ.: Generalized Bd.: {q}; Displ.
Energy {g} = [(®T){u,}ds; | displ:, {q};
Stress: Stress param:
hybrid Modified {e} = [P{B}; {B};
Stress Complim. Boundary displ.: Nodal displ.: {¢}; Disp..
Energy {uT} = [L]{q}; {g};
Displacements: Displ. param:,
Hybrid Modified {x} = [C]{d}; {d};
Displ. I Potential Boundary traction: | Traction param:, {R}; Force
Energy [T]= I[M{R}; {R};
Displacements: Displ. param.:
{uv} = [Cl{d}; {d};
Hybrid Modified Boundary traction: | Traction param.. {¢}; Displ.
Displ. O Potential (T)= [M|{R}; {R};
Energy Boundary displ.: Nodal displ.:
{u} = [L}{g}; o
Displacements: Nodal displ.: |
Mixed Reisner {uv} = {4l{¢}; {¢h g} Displ. |
Model Stress: Nodal stresses: {gt, {s}; Mixea
L {o} =IN]{s}; {s}; {s}; Force |
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Chapter 3

The Hybrid Stress Finite Element
Method

3.1 Theoretical Basis of the Hybrid Stress Method

The Hybrid stress method was first introduced by Pian [19] in 1964 for the analysis of
plane stress and plate bending problems. In this method, equilibrating stresses are assumed
within each element in terms of undetermined stress coefficients and the displacements on
the boundaries of the element are expressed in terms of the element nodal displacements.
Subsequently, Pian and Tong [20] formulated the hybrid stress technique based on a modified
stationary complementary energy principle, ana they also considered the topics of conver-
gence and bounds of the resulting equations.

There are two major attractions in this method: (i) that the unknowns of the overall equi-
librium equations can be expressed in terms of the nodal displacements, and (ii) it is casier
to construct compatible interpolation functions for displacements at interelement boundaries.

Among the several investigators who made useful contributions to the development of
the hybrid stress method are Wissmann and Sprecht [35], Cook and Ladkany [36}, Wolf [37],
Spilker and Muuir [38], and Ahmad and Irons [39]. Several investigators apphed the hybrid
stress method to the analysis of structures, and have reported that the technique predicts
stresses and displacements with greater accuracy than does the displacement-based finite
element method, Pian et al. [40], Barnard and Sharman [41], Tong et al. [42], Tong [43],
and Spilker and Munir [44]. Ahmad and Irons [39] proved that the hybrid stress method is
superior to the displacement method.
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3.2 Hybrid Stress Model for Elastic Analysis

The modified complementary energy functional which has been used for the derivation of
the hybrid stress method for an elastic continuum is expressed by Pian [19] as follows:

1 = ‘
[y = zﬂ: [‘/Vn EDuklauakl dVv — -/E)Vn Tu,dS + La" Ty, dS] (3.1)

where

oy, = stress tensor,

T, = surface traction,

T, = prescribed boundary tractions,

U; = boundary displacements,

0V, = entire boundary of subregion V,, and

Ss,. = boundary along which prescribed tractions act.

These terms are illustrated in Figure 3.1 below.
D, is the elastic compliance matrix which, for a 2-dimensional body, is given by:

1 =2 0
1
0 0 1

where

G, the rigidity modulus is equal to E/[2(1 + v)],

E is the modulus of elasticity or Young’s modulus, and v is the Poisson’s ration.
For plane stress conditions, A = v/(1+ v), and

for plane strain conditions, A = ».

{T} is the vector of distributed surface tractions. The last integral in Equation (3.1) is
evaluated on those element sides with externally applied loads.

The stress distribution in an element can be expressed in terms of undetermined param-
eters {4} by the equation

{o} = [PHB} + [P]{Bs} (3.3)

where [P]{3} satisfies the homogeneous equations of equilibrium and [P,]{8} is a particular
solution of the equilibrium equations

0y +F =0 (3.4)
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where F, are the prescribed body forces. The matrices [P] and [P;] are functions of the
coordinaies. {3} are the so-called undetermined stress coefficients and [P,], {8} are known.
The surface tractions due to the assumed stress field can be expressed as:

Tt = Oy,

or

{T} = [RI{B} + [Rs]{ 5} (35)

where v, denotes the component of the unit vector in direction j. The inter-element bound-
ary displacement functions are expressed in terms of an interpolation function [L] and the
generalized displacements ¢ as

{U} =[L{q} (3.6)
Substituting Equations (3.3), (3.6) and (3.5) into Equation (3.1), we have:

e = X[ 5 (8)7 1) {8} + (8" [H] {8} - {8Y" (6] {a} + [QF'{a} + G

n

(3.7)
where
(4] = [ [PF" D] [P]aV (38)
() = [ (P D] [Py 4V (39)
G] = ]8  [RIT[L] dS (3.10)
G} = [ (BT (L)ds (3.11)
QF = [ T 1] g} dS — (8)7 [Gs] {a) (3.12)
and
Co= [, 5 {617 [RIT (D] [P {4} aV (3.1
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3.2.1 Application of the Variational Principle

The variational principle states that of all admiscible stresses and displacements, the solution
which satisfies the equilibrium, compatibility and boundary conditions is distinguished by
the stationary value of the functional with respect to variations in the stresses in the finite
element, and displacements along the element boundaries.

Differentiation of Equation (3.12) with respect to {3} and {¢} therefore, we get,

Bg;c = 2 (B} + [B]{5} - [G{e}) (3.14)

n

Equation (3.14) is zero at a maximum or minimum, at which state, 3 is given by

{8} = [H]7"[G] {a} — (H]7* (L] {8} (3.15)
Note that [H] is symmetric so that

[H] = [(H)
and
[ =
Also,
T = T (- 6 6) (3.16)
which, when set to zero yields
@I = {8} [G] (3.17)

Substituting Equations (3.15) into Equation (3.7), we have the final expression of 1I,,,

Moo = —2 ¥ 4a)7 (G 17 (6] {a} + 3= {a)” (GIF L™ (18] {44) -

% BT HT (H]T (] {8} + 2 (@ () + Cn) (3.18)

which becomes

24




{7 ] {q} - {Q}7 {a} + [B)] (3.19)

N —

- |

n

where
[k] = (G [H]" [G]
(3.20)

is the element stiffness matrix,

(@] = [G) [H]™" [H] {8} + {@Q} (3.21)

is the element load vector, and

Ba= 3 T A8 I (BT (1] {5} - C. (3.22)

is a constant.

The knowledge of the stiffness matrix and equivalent nodal forces of each element permits
assembly of the overall stiffness matrix and the load vector of the system. After applying
the prescribed boundary constraints. the system can be solved by any standard technique
to obtain the nodal displacements.

3.3 Effects of Body Forces on the
Hybrid Stress Formulation

The second part of Equation (3.3) represents the contribution to the element stresses due to
body forces and may be written as

{ov} = [P[{B} (3.23)

where the subscript b refers to body loads and the equation satisfies a particular solution
of the equilibrium equations. For gravitational loading - which is usually the cause of body
loads in geomechanics, the stress vector is given by

o = oz = 0.0
Oy = Oy = —P9Ys
Toy = Toy, = 0.0



where
p = rock density,
g = gravitational acceleration,
ys» = thickness of overburden.

Matrix inversion is implied in the solution for {3} in Equation (3.23) above. Since the
[P] matrix is 3x18 for reasons that will be explained later in Section 4.4, and Equation (3.23)
is a particular solution of the equilibrium equations, the [P,] matrix may be chosen as the
first three columns of the [P] matrix for the element. Once the [/} matrix has been evaluated
as described, all the matrices and vectors which depend on 1t are then easily computed. {3}
can also be solved for from Equation (3.23).

3.4 Contributions to Equivalent Nodal Forces

The equivalent nodal forces constitute the load vector which is given by the equation

{QF = [GI" (B {&) + {Q} = {&} + {Q} (3.:24)

where {@;} = body load contribution to the load vector and LEquations (3.21) are the
contributions from prescribed loads including loads due to initial conditions such as stress,
temperature or ground water pressure, (see next section). If there are no body loads, all
body load terms in Equation (3.21) disappear and only Equation (3.12) remains.

3.5 Initial Stress Approach

Initial stresses in geomechanical applications at depth play a great role in the design and
construction of excavations for mining and other uses such as for tunnels, underground stor-
ages, underground power plants and permanent waste disposal facilities. A construction
sequence involves the alteration of the state of stress and may involve excavation, dewater-
ing, deposition, and installation of support system. Each of these processes will alter the
state of stress in the surrounding medium. In this study, emphasis is given to the simulation
of excavation because it is the most common aspect in geomechanical applications.

Until recently, finite element modelling of excavation sequence has been based on the dis-
placement method as originally proposed by Goodman and Brown [45]. Other investigators
who have used variations of this technique are Lightner [31], Clough and Duncan [46], Mana
[47] and Christian and Wong [48]. In this model, the geostatic stress, {@g}, prior to the start
of excavation is determined from applied loads which are computed from the gravitational
loading of the medium. Since this load is vertical, the proper lateral stresses are obtained
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by the relation
o, = ko oy (3.25)

where o}, is the horizontal stress, o, the vertical stress and kg is referred to as the coefficient
of lateral stress at rest. Poisson’s ratio, v, is then computed from the equation

v

ko = (3.26)

1 —v

Excavation is simulated incrementally as shown in Figure 3.2. In each increment, a stress-
free surface is created by applying equivalent nodal forces on the excavation surface due to
the increment of excavation. The equivalent nodal forces are then computed from the existing
state-of-stress and applied with opposite sign to the excavated surface. The displacements,

stresses and strains are then computed and added to the values for the previous step as
shown in Equations (3.27), (3.28) and (3.29) below.

0, =09 — ZAO'J (3.27)
;

@ =g — 3 Ag, (3.28)
]

6 =€ — 9 Ag (3.29)
)

The hybrid stress procedure adopted in this study for the initial stress approach follows
the scheme illustrated in Figure 3.2. The stresses are computed directly on the boundary
of the excavation by substituting the boundary coordinates into the assurned stress fields,
using the excavated elements which have a common boundary with the unexcavated elements.
The equivalent nodal forces are then computed by using the magnitudes of the boundary
stresses and the interpolation functions used for the displacements of particular boundary,
see Equation (3.6). After each step, the vector {f} is accumulated for use in the computation
of the stresses on the boundary of the excavation in the next step. This method works well
for linear elastic media.
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Chapter 4

Formulation of the Element Stiffness
Matrix

4.1 Sign Convention and Constitutive Relations

The stresses at any point within a continuum are described by the nine components of the
stress tensor; however, only six of them, three normal stresses and three shear stresses are
independent. There are six strain components which are related to these stress components
as follows:

¢, = D,,0, (4.1)

where the D,, are the compliance coefficients. In general, there are 21 compliance coeffi-
cients but for isotropic materials, the number of independent coefficients reduces to 2. If a
state of plane strain is considered, Equation (4.1) for plane strain then becomes

€r
o,
& (=D (4.2)
OyTey
€xy

where the compliance coeflicient matrix, (D], is given in Equation 3.2. Equation (4.2)
can be inverted to express the stresses in terms of strains.

The sign convention adopted is the same as in the theory of elasticity and continuum
mechanics which can be stated as follows: The stress component, o, is positive if it acts
in the positive j—direction on a plane whose outward drawn normal points in the positive
i—direction. It is also positive if the ¢ and j directions are both negat've. By this definition,
tensile stresses are positive and compressive stresses negative. All the stresses shown in
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Figure 4.1 are positive. The kinematic analysis of the continuum, under assumption of
small displacements, gives the necessary Equations relating the strains to the displacements,
thus

€ Ou/0z
€ = dv/dy (4.3)
€xy du/dy + dv/dz

where u and v denote displacements along the z and y directions respectively. The final equi-
librium of the body under the given load conditions must satisfy the equations of equilibrium
which, in the absence of body forces, are given as

d/0x 9]y Or Tuy
=0 (4.4)

0 0 Tey Oy

The analyses reported in this thesis were limited to bodies which were loaded within their
elastic range.

4.2 Selection of an Admissible Stress Function

If the domain shown in Figure 3.1 has been discretized into, say, quadrilateral elements of
arbitrary shapes but having straight sides, it then becomes necessary for the solution of
plane problems to determine the stresses and displacements at every node of the domain.
To accomplish this, a suitable stress function that satisfies equilibrium within the element
boundary should be selected.

The solution of two-dimensional problems in elastic theory reduces to solving the two
differential equations of equilibriurn and the compatibility equations. Boundary conditions
imposed on any particular problem are then used to determine the constants of integration.
When body forces are absent or constant, the usual method of solving these equations is
to introduce the Airy Stress function. This function uniquely defines the generalized stress
components at any point within the element. There are many other ways of choosing such
functions, see, for instance Zienkiewicz [49], Aziz [50], Carnahan et al. [51], Bathe and Wil-
son [52], and Cook [53].

Let the body forces be zero. Then the Airy Stress function, ¢, is defined as
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(o, *®/dy?
oy V={ 2o/os (4.5)
| Tay ~0'®/dxdy

The two-dimensional equilibrium equations for zero body forces are, in matrix form, as
follows:

d/0x Or Try
=0 (4.6)
a/dy Ty Oy

Substituting Equations (4.1) into (4 2) shows that the Airy Stress function satisfies the
equilibrium conditions.

The two-dimensional compatibility condition is as follows:

(0*/9z* + 9*/0y*) (o + 0,) =0 (4.7)
substituting Equation (4.5) into Equation (4.7) gives

O®/0z + 20°/02*0y* + 9'®/dy* = 0 (4.8)

Thus, any function, ®, which satisfies Equation (4.8) also satisfies the compatibility and
equilibrium conditions. Two-dimensional problems involving zero body forces thus reduce
to colving a fourth-degree bi-harmonic equation as given in Equation (4.8) above. The Airy
Stress function is thus a good basis for the construction of finite element equations and was
used in this thesis along with 8 —node isoparametric quadrilateral element as described later.

4.3 Local and Global Ccordinates

In the context of finite element analysis, 1t 1s more convenient to use non-dimensional local
coordinate system based on the element rather than use a global system. In finite element
displacement methods, interpolation functions are used to relate the displacements at any
point within the element to the nodal displacements. When the same interpolation functions
are used for transformation of coordinates of the element, the element is called isoparametric,
Figure 4.2 shows the global (r,y) coordinates and the local (s, t) coordinates of an 8—node
quadrilateral element of arbitrary shape.

The global coordinates vary with the z— and y— values while the local coordinates vary

between + 1. Figure 4.3 shows the isoparametric mapping for an 8—node quadrilateral
element of arbitrary shape.
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The quadrilateral is mapped into the unit square. Details of the isoparametric con-

cept appear in references [49] - [53], Akin [54], Press et al. [55], Korn and Korn [56],
Abramowitz and Stegun [57].

A relation between the local and global coordinates for a 2 — D element is expressed as

{ z SN, X,
E
y L MY

where n = 8 for an 8-node quadrilateral elernent and N, are the interpolation functions.
There is a one-to-one correspondence between the global coordinates (z,y) and the local
coordinates (s,¢). By using the Chain Rule of differentiation, the following relation can be
established between the local and global coordinates:

0/0s d/0z
= [J] (4.10)
a/ot a/0y
where the Jacobian, [J], is defines as

Jz/0s 0Oy/0s apy a1z
[J] = { } = i' ] (4.11)
(9:1:/32? 5y/(9t Qg1 Q22

The interpolation functions used with the 8-node isopararnetric element can be derived
from the so called Serendipity elements and can be shown to be given as:

N(s,t) = (1+ s, 38)(1+ t, t)(s,8+ t, t—1)/4 (4.12)

for the corner nodes wherei = 1, 3, 5, and 7. At midside nodes where i = 2, 4, 6 and 8, we
have:

Ni(s, t) = 2 (1= ) (1 + s,8) /24 2 (1= *)(1+ t, t) /2 (4.13)

The interpolation functions and their first and second derivatives are utilized in the
formulation of the matrix equations. A complete listing is shown in Appendix E.

4.4 The Admissible Stress Function in terms of Local
Coordinates

The Airy’s Stress function @, can be expressed as follows:

¢ = f(s,t) = ¥(z,y)
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We represent ¢ as a series of terms involving the local coordinates and the undetermined
stress multipliers, thus:

Bis® + PBast + Got* +
Bas® + Bes’t + Prst®+ Bst’+
Bes® + Bizst + Pusitt + Biost® + Bot'+

Bias® + Piss't + Bt + P’ + Prest! + Bigt’ (4.14)

These 18 constants can be recognized as derived from the last four rows of Pascal’s Trian-
gle of order 6 which comprises 21 terms, with the first 2 rows missing. In Pascal’s Triangle,
the first row has 1 term, the second 2 terms etc. Thus a Pascal’s Triangle of order 6 has
(142+3+4+5+4+6 =) 21 terms. The missing terms are 3, gs, and gt which would vanish
even considering Equation (4.5) where the stress representation involves only second order
differentiation of s and ¢. They are therefore not necessary. It can also be inferred that the
highest terms to the power of 5 will result in a linear function in s and t on performing the
fourth differentiation to satisfy the compatibility Equation (4.8).

By taking the second partial derivatives of ® with respect to s and ¢, the {P] matrix can
be represented as:

Pl = =5 181 (12) - 1R 1) W) (4.15)

where A = det|J|
A full derivation of the [P} matrix is given in Appendix E.

A description of the hybrid computer program and the associated mesh generation and
alteration programs is given in Chapter 5.

4.5 Consistent Load Vector due to Distributed Loads

Figure 4.4 illustrates an 8-node quadrilateral element loaded with uniformly varying loads
on one side. The generalized forces and displacements for an 8—node quadrilateral element
is shown in Figure 4.5

For an element side loaded with uniformly distributed loads w,, wy, the nodal force vector
1s given by the equation:
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Figure 4.4: Uniformly Distributed Loads over an Element Side
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Pt [ [‘vb]{ - } dr (4.16)

Wy

where [.V®] are the shape functions for that side, and dr is an element of length of the
side. When local coordinates are used, one of them will be constant along any given side.
In what follows, the side 1-2-3 of the element in Figure 4.4 will be used as example.

((F,, ) "N, 0]
F,, 0 N
Fr, N, 0
F? = | > N = (4.17)
F, 0 N,
Fr3 A)V:] 0
\ F y3 J L 0 1\('3 d

dr is an element of length along the loaded side. Since, in general,

r? = 2?4+ y?, then

dr = (z/r)dz + (y/r)dy = dzcosf + dysinb By combining above expression for dr
with the isoparametric representation of  and y, it can be shown that

cos 6
dr = (ll)[J]{ } (4.18)

sin 0

where [J] is the Jacobian. The distributed loads, w,, w, can be linear or quadratic
functions of the coordinates, thus,

¢ \
Wy,
Wy wyl
wy We,
Wys )

where,
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[C] = (4.20)
0 C 0 ¢

For linear representation,
Cl = (1 - S)/?,
C2 = (1 + 3)/27
and for quadratic representation,
Cy = (s¥+st)/2,
C2 = (t2 - st)/?.

It can be verified that at node 1, w, = wy, and at node 3, w, = w3 Similar expressions

will hold for wy. It is assumed that the values of the distributed loads are given at nodes
1 and 3 only. The integration in Equation (4.16) will be done numerically along the loaded
side at a specified number of integration points.

4.6 Numericai Integration and the
Gauss Quadrature Formula

In general, the integration required in the equations presented so far in this thesis involve
matrices and higher order equations. The Gauss quadrature formula has proved to be an
efficient and accurate method of integrating such equations in finite element analysis, see
references [33] - [38]. In considering the evaluation of the definite integral, / = [° f(r)dz,
by numerical integration, Gauss found that the number of points n, into which the interval
(a,b) should be divided for the greatest accuracy should not be equally spaced but should
be symmetrical with respect to the mid point of the interval.

Let y = f(z). Define a change of variable

(r) = %(b—a)r%—%(b-&a) (4.21)

-

so that the non-dimensionalized limits of integration of r become —1 to +1. The new
value of y(r) is then given as

y = f(z) = [I5(6 - a)r + 5(b+a)) = ¥(r) (1.22)

The original integral now becomes

I = %(b —-a)/ll v(r)dr (4.23)
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Gauss showed that the integral in Equation (4.23) is given by

/11 b(r)dr = S Wop(n) (4.24)

where W, and r, represent tabulated values of the weight functions and the abscissae
associated with the n points in the non-dimensional interval (—1,1). Thus, the final result
of the integration is

[ = %(b —a) S Wip(r) (4.25)
1=1

Gauss showed further that this equaticn will exactly integrate a polynomial of degree
(2n — 1). In two dimensions, the quadrature formula for ¥ = 3(a, ) is found by first
integrating with respect to a and then with respect to 3, thus,

1 1 n n
I= / 1 / o )dads = 30 3 WWb(a8) (4.26)
iy =1 y=1
The extension to three dimensions is obvious. Most of the numerical integration done in
this thesis was carried out using the four point Gauss quadrature. Figure 4.6 illustrates the
4 x 4 Gauss integration points for an 1soparametric quadrilateral element.

4.7 Steps in Isoparametric Hybrid Stress Formulation

Thus far, the relevart equations necessary for the computation of the necessary equations in
Chapter 3 have been derived. On the element level, we have chosen a vector of functions -
the Airy Stress functions expressed in local coordinates. These functions describe the gen-
eralized stress components at any point within a typical element.

The 8-node quadrilateral element has been chosen over the triangular varieties mainly
because it enables higher order equations to be used in conformity with the stress function
chosen.

Having formed the [P] matrix for the element, the [H] matrix Equation (3.8) can then
be computed, using the [P] and the [D] matrices. If body forces are present, the [H,] matrix
is also computed from [P]. Assembly of the [G] and the [G}] matrices follow the same pro-
cedure (Equations (3.10), (3.11)), such that the [R] and the [R;] matrices are derived from
the [P] and the [P,] matrices respectively.

The next important component in the representation of the element stiffness matrix is

the nodal force vector, expressed by Equation (3.12)The assembly of the nodal force vector
is achieved by considering the imposed boundary conditions along with the boundary loads
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acting on the system.

The stiffness matrix is assembled for the element from a knowledge of the [H] and the [G]
matrices. Once the stiffness matrix and the load vector for the element have been assembled,
they are transferred to the global stiffness matrix and the global load vector respectively.
The solution for the displacements at the nodes then follows routinely from the equation:

{Q} = [K]{X} (4.27)

where the vector {X} represents the degree of freedom (d.o.f) displacements. The ver-
satility of isoparametric formulation lies in its capability of expressing the parameters of
interest as functions of nodal parameters. However, it is rare to have a finite element mesh
where all the element sides are parallel to the global axes. With the Airy's stress function, @,
expressed as polynomials in s and t local coordinates, its second derivatives with respect to
x and y global axes cannot in general, be constant over the element. The ideal is to express
$ as polynomials in local orthogonal cartesian coordinate system, ¢ and 7, unlike the s and
t which are in general not orthogonal.

The axes of the local orthogonal system have been obtained by Ahmad and Irons [39)
by firstly calculating the Jacobian at the centroid of the element and then performing the
iterating scissors on the [J]7 matrix to get the best orthogonal approximation. Consider a
quadrilateral element with local axes (s,t) and the point O as centre, as shown in Figure
4.7.

Let € and 7 axes represent an orthogonal system also centred at O, and let P be any point
in the element with coordinates P(x,y) in the global system, P(s,t) in the local (s,t) system
and P(e,n) in the local (¢,77) system. In matrix form, the local coordinate transformation
from the (s,t) system to the (€,7n) system is given by:

¢ cosf, —sind, 3
= (4.28)
i sind, cosd, {

Let

Jdz/ds 0Oy/0ds
[Ja] = (4.29)
0z/0t dy/ot

dz/de Oy/[0e
dz/dn  dy/on
be the Jacobian in the (s,t) and the (e — ) systems respectively. Then, it can be shown
that

43




-

Figure 4.7: Mean Axes System for Stress Function
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Oe/0s On/0s
[Jat] = [ } (431)
de/Ot 0On/ot

and from Equation (4.28),

Oe/0s On/ds cosf, sind,
= (4.32)
Oe/Ot  On/ot ~sinf, cosb,
The required local coordinate axes are obtained from Equation (4.31) as follows-
cosf, -—sinb,
[Jen]l = (4.33)
—-sin 8, cosb,

The mean axes are generally expressed as the transpose of the [J, ;] matrix. One obvious
way of defining the (¢,7) axes is to assume they are parallel to the global system. Then the
(s,t) system is coincident to the (€, 7) system and the case is trivial.

4.8 Computer Implementation

The following are the steps in the solution by Finite element methods of a problem:

(a) Define the problem and define its physical geometry.

(b) Generate a (quadrilateral) mesh and assign nodal and element topological properties.
(c) Assemble the stiffness matrix for each element and transfer into global stiffness array.
(d) Assemble the Load vector in a similar manner to the stiffness matrix.

(e) Solve the resulting algebraic equations for the nodal displacements,

(f) Solve for nodal stresses or stresses within any element.
Of these six steps, the mesh generation (step b) and the solution for nodal stresses (step

e) presented the greatest challenge apart from writing the computer code of the hybrid stress
finite element method.
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4.8.1 Mesh Generation Codes

It was apparent early in the research that a good and accurate mesh was highly 1mportany
for the correct solution of a problem by the finite element niethod. It is only the simplest of
meshes that can be generated by hand and even then, a thorough check is necessary. The
author spent much cflort in developing two mesh generation programs that work on the same
principles, ene specifically for generating quadnilateral meshes over regions sutrounding cir-
cular holes and the other as a more general quadnilateral mesh generator over quadrilateral
or nearly quadrilateral sections Both programs require the minimum of iput as described
in Chapter 5.

Along with the more general mesh generator, a small program that enables one to create
holes or empty spaces in an already existing mesh was also written. The usefulness of this
program becomes apparent when one considers a very common method of mining deep ore
bodies, i.e., open stoping or sequential excavation. Ordinarily, each new sequence requires an
alteration to a previous mesh. By defining the elements and nodes that are to be eliminated
in the next sequence, the companion program goes ahead and re-establishes a new mesh in
which the zone formerly occupied by the elements and nodes s now void.! The load vector
is also automatically altered to reflect the new realty.

4.8.2 Solution of the Stiffness Equations

The assembly of the global stiffness matrix and load vector leads to a system of linear
algebraic equations of the form

[K}{X} = {Y) (1.34)

where [K] is the global stiffness matrix, {X} 15 the vector of unknown nodal displace-
ments and {Y'} is the global load vector. These equations are often quite laige, of the order
of thousands in most cases of moderate to large problems, and the solution certainly calls for
the use of the computer. It is known that from 30 to 50% of the computer ime involved in a
linear finite elerent analysis 18 associated with solving simult aneous e quations. In non-hnear
and dynamic analysis, as much as 80% of the computer tirne s used for the same purpose.

However, certain properties of the square symmetnic matrix i all fimte element compu-
tations permit the use of a number of techmiques to reduce not only the selution tine, but
the amount of computer storage required to perform the analysis Fellipa [58], Mondkar and
Powell [59], Meyer [60], George [61], Hood [62], Hinton and Owen [63], and Irons [64] among
others, have written asbout ruethods of solving these types of equations

For the hybrid stress finite element method, the K] matnx is symimetne, semi-positive
definite, sparse and banded. Symmetry allows one to econommze on computer storage since
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only the elements in the upper or lower triangle need be stored. Because the matrix is positive
definite, pivoting is never required in order to ensure a stable solution. Banding depends on
the way the node numbers are assigned and the efficiency with which the the numbering was
done. Since the solution time varies as the square of the bandwidth, the nodal numbering
producing the minimum bandwidth results in the most economical solution. There is little
doubt that the mesh generation programs described above result in the best banding of the
[K] matrix. The two methods that were used in this thesis are described below:

The Skyline Method

The Skyline solution method, also referred to as the profile, envelope, or variable bandwidth
method first appealed to the author by its elegance. The symmetric and sparse [K] matrix
is stored in a linear array as a string of 'active’ columns of the upper triangle. The active
portion of each column is bounded by the diagonal and the furthest non-zero element. A
second array of pointers holds the position of the diagonal elements in the active array and
the algorithm used for solving the equations is the so-called modified Cholesky algorithm
which decormposes the [K] matrix into a lower triangular matrix [L], and a diagonal matrix

[D] thus,

(K] = [Ll(D)[L]" (4.35)

The factorization replaces elements of [K] by elements of [L] and [D] matrices. Once
the [K] matrix has been factorized as above, the program can be invoked to solve Equation
(4.34) for any right hand side vector Y. The solution vector 1s obtained in a three-stage
process thus:

[LH{z} = {V} (forward substitution)

(b} = (D' (z}  (scaling)

[L)T{X} = {b} (back substitution)

A working version of the program was written and tried on several problems. It was
found that the size of the problem affected the time necessary to effect a solution, proba-
bly because of the large data handling overhead (addressing, fetching, storing, etc.). The
program however, 13 quite accurate for solving linear simultaneous equations. Most of the
problems reported in this thesis were solved by this method.

The Frontal Solution Scheme

This method, first introduced by Irons, [64], uses the Gauss Elimination and back substitu-
tion method to solve Equation (4.21). In doing so, however, it first assemnbles the element
stiffness matrix and nodal loads into a global stiffness matrix and load vector. Its main
feature over other methods is the delayed introduction of variables and their accelerated
elimination. The active life of a node lasts from the time in which it first appears in an
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element to the time it last appears in an element.

Thus, the ordering of the nodes is not as crucial as the ordering of the elements, an
opposite requirement to that for banded solution schemes. [le core storage requirements
are at most the same as those for banded methods. The operation on zero coetlicients are
minimal and the total arithmetic operations are fewer than with other methods  On the
other hand, an elaborate housckeeping system 1s required for the frontal method A working
program was amended from the frontal subroutine i the reference {64] It was also found to
be quite accurate 1n solving simultancous equations. [t s defimtely faster than the Skyline
method.

4.8.3 Computer Programs

A description of the hybrid computer program and the assodated mesh generation and
alteration programs is given in Chapter 5.
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Chapter 5

Hybrid Stress Computer Programmes

Four programs are described in this chapter. Section 5.1 describes the hybrid stress computer
program written according to the mathematical developments in the preceding chapters. The
other three programs were written with the special need to generate 8-node quadrilateral
meshes over mining excavations and for altering the mesh configurations.

5.1 The Hybrid Stress Computer Code

5.1.1 General

Figure 5.1 is a schematic flow chart of the hybrid stress computer code. It is written
in FORTRAN 77 and can be described in terms of the major subdivisions into which the
theory of the hybrid stress formulation falls. These subdivisions are, in order of occurrence,
discretization of the continuum into finite elements, data preparation, assembly of the global
stiffness matrix and the global load vector, solution for nodal displacements, and finally,
solution for element nodal stresses. Mesh generation or the discretization of the continuum
into finite elements is described in Section 5.2. A brief description of the main subroutines
in Figure 5.1 follows. The computer code is given in Appendix A. The input file to the
hybrid stress finite element program is structured as follows.

(a) Title line;

(b) Problem control data (1 line);

(c) Material properties data lines;

(d) Nodal coordinates and constraints lines;

e) Element connectivity and element type lines;

(
(f) Distributed loads lines.
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Figure 5.1: Schematic Flowchart of the Hybrid Stress Computer Programme




The input file is prepared by the mesh generation program (see Section 5.3) and is held
in a designated file which must be present in the system for the program to work. Below is
a description of the data file. It is freely formatted.

(a) Line 1: Problem Title Line, format 80A1

(b) Line 2: Problem specification data line.
READ NNODE NNEL NUMAT NTYPE NPOIN NDIST IPRNT THIC

NNODE = Total number of nodes
NNEL = Total number of elements
NUMAT = Total number of material types
NTYPE = Problem type parameter,
1 for plane stress
2 for plane strain
Nodal point load parameter
0 for no point loads present, otherwise,
Total number of nodes with point loads
Distributed load parameter
0 for no distributed loads present, otherwise,
Total number of nodes with distributed loads
Print output parameter
0, do not print output
1, print output
Element thickness, assumed constant.

NPOIN

o

NDIST

IPRNT

1 1 | R O TR VI

THIC

(c) NUMAT Lines: Element material properties line(s)
For each property type, READ PROPS(1) PROPS(2) PROPS(3)

PROPS(1) = Young’s modulus
PROPS(2) Poisson’s ratio
PROPS(3) Density

(d) NNODE Lines: Nodal coordinate and constraint data.
These lines define the structural geometry of the discretized zone.

For each node, read N, XORD(N), YORD(N), JDOX(N), JDOY(N)




Node number

XORD(N) = x-coordinate

YORD(N) = y-coordinate

JDOX(N) = degree of freedom in x-direction

JDOY(N) = degree of freedom in y-direction

JDOX(N) = 0 for unconstrained displacement in x-direction

1 for constrained displacement in x-direction

(e) NNEL Lines: Element type and connectivity data.
For each element, read NUM, NELTYP, (NLM(J),J= 1,8)

NUM = Element number
NELTYP = Element type
NLM(J) = Jth. node

Numbering of elements is counterclockwise

(f) NPOIN Lines: Point load data lines.
If NPOIN is positive then , for each node under a point load,
read KNODE XFORCE YFORCE

KNODE = Node number
XFORCE = Point load in x-direction
YFORCE = Point load in y-direction

(g) NDIST Lines: Distributed load data lines.
Distributed loads are applied to some of the boundary element sides. If NDIST is
positive, then follows NDIST lines of data of type:

NODEI, NODE2, NODE3, ELNUM, XFORCEL, YFORCE], XFORCE3, YFORCE3

where




NODE! = node number of first node of element side
NODE2 = mnode number of second node of element side
NODE3 = node number of third node of element side
ELNUM = element number

XFORCE!L = load in x-direction at NODE1

YFORCE!L = load in y-direction at NODEI

XFORCE3 = load in x-direction at NODE3

YFORCE3 = load in y-direction at NODE3

5.1.2 Subroutines for Massaging Data Input

GAUSCQ is a small subroutine containing the 4-point Gauss quadrature data. It is called
by the main program at the start of computation and is held in memory throughout the
execution period.

The subroutine, INPUT, reads the input data file. The mesh generation program de-
scribed later is capable of generating the entire data for a given problem from a minimum
input information. The INPUT subroutine calls four other subroutines designed to complete
the data preparation section.

SKDIAG is a subroutine to compute the diagonal element positions in the Skylne vector
which stores the upper half of the stiffness matrix. This method of storage excludes all
leading zero elements starting from the first row of each column. DSLOD 1s a subroutine
for computing the applied load vector, {Q} of Equation (3.11). The subroutine, ELPRO
computes the compliance matrix for all the different materials and stores them in a linear
array termed CAR. In general, the compliance matrix is different for different material type.
Assuming linear elastic behaviour of all materials, the matrix is symnietric and is described
by three constants. More description 1s given in the subroutine in Appendix A.

OUTPUT is a subroutine which, at the user’s choice, will direct all the input data to a
terminal printer. It is called by the INPUT subroutine.

5.1.3 Subroutines for Assembling
Global Stiffness Matrix

The subroutine ELSTF is called for each element by the main program for the purpose of
computing the element stiffness matrix and summing the upper half of it into the global stiff-
ness vector held in the skyline mode. The two important matrices involved are the [H] and
[G] matrices of Equations (3.8) and (3.10) respectively. These two matrices are computed in
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the subroutines HMTX and GMTX respectively. Computation is by numerical integration
using the 4 point Gauss quadrature. Each of these two subroutines calls the PMTX sub-
routine which in turn calls the shape function subroutine, SHAPEF. The PMTX subroutine
computes the [P] matrix and the SHAPEF subroutine contains the relevant equations of
the 8-node isoparametric shape functions and their derivatives. LMTX contains a subset
of SHAPEF subroutine values computed along the element sides for which one of the local

variables is usually + 1. It is called by those subroutines that compute values along element
sides, namely, DSLOD and GMTX subroutines

The MATINV subroutine is used exclusively to invert the 18x18 square symraetric [H]
matrix because it 1s i that form that this matrix is used in subsequent equations.

5.1.4 Subroutines for Solution of
Nodal Displacements and Stresses

The two subroutines, SKYFAC and SKYSOL were adapted from the solution code by Fellipa
[58]. SKYFAC factorizes the global stiffness matrix and SKYSOL solves Equation (3.23) for
{q}, the nodal displacements. The displacement vector replaces the load vector and the
array is then passed to the subroutine STRSOL by the main program. This subroutine
solves for the stress compouents at any given point within the element. In the version of the
program reported in this thesis, these stresses are computed at the corner nodes, midside
nodes and the centre of each element.

5.2 Program for Meshes over Circular Holes,
CIRCMESH

The program takes advantage of the fact that when circular holes are involved in finite
element analysis, the continuum is often assumed to be uniform with respect to geometric
and material properties. The resulting symmetry about the axis of the hole means that only
a quadrant of the continuum need be analyzed. The input into the program consists of five
lines described below.
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Line 1: Title line

Line 2: NNY, NANG, R0, BM
Line 3: ((JXL(IJ),J=1.2),I= 14)
Line 4: XL,YB,XR,YT,TH

Line 5: ASXX, ASYY

NNY = Number of element sides along x or y axis
R0 = Borehole radius
BM = v (or x) boundary magnification factor

NANG = Number of angular subdivisions of
first quadrant (must be even)
JXL(IJ) = Condition code for Ith. Boundary in J-direction
= 0, means Ith. boundary can move in J-direction
1, means Ith. boundary cannot move in J-direction
J 1, means x-direction
J = 2, means y-direction

#l

In general, the left and right boundaries are parallel to the y-axis while the bottom and
top boundaries are parallel to the x-axis.

XL = x-coordinate of left boundary (parallel to y-axis)
YB = y-coordinate of bottom houndary (parallel to x-axis)
XR = x-coordinate of right boundary (parallel to y-axis)
YT = y-coordinate of top boundary (parallel to x-axis)
ASXX = applied stress in x-direction
ASYY = applied stress 1n y-direction

The number of angular subdivision 1s kept even for the purpose of symmetry, since the
program only has to generate the mesh over 450 arc and then reflect it over the 450 line to
complete the generation. Unlike other mesh generation programs, the program first calcu-

lates the length of each radial line from the periphery of the borehole to the outer boundary,
see Figure 5.2.

The number of corner nodes on any radial line is constant and equal to NNY+1. These
nodes are placed on the radial line in such a way as to increase the density of elements near
the borehole and create a coarse mesh farther away from it.

Ifry, ro rave... r, are the radial lengths from the onigin to the first, second, third, etc
corner node along any given line, the following algorithm is used to compute these lengths:
Qr, = ro, the radius of the hole, and,
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Discretized Areqa

Figure 5.2: Coordinates of Corner Nodes in F.E. Mesh over Circular Holes
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r = rey t+ el 1= 2,---.,NNY+1

The purpose is to compute the constant, a, from the knowledge of ¢ and the length of the
radial line. Once 1t is computed, all the r,’s are then calculated from the recurrence relation
above. It can be seen that r, is greater that r,_; so that smaller elements are generated near
the hole and larger ones farther away.

For any given r,, then,
x-coordinate of corner node = r,cos 8,
y-coordinate of corner node = r,sin 8

where 6 is the angle between the horizontal x-axis and the radial line. Symmetry about
the 45° line is utilized in both nodal coordinate generation and element node numbering.
The midside nodes are computed at the middle points of the element sides.

5.3 A General Quadrilateral Mesh
Generation Program, QUADMESH

This program will generate an 8-node quadrilateral mesh over an array of vertical lines whose
lower end coordinates are specified. These end coordinates need not necessarily lie on the
x-axis (assumed horizontal). The limits of the program are.

maximum number of nodes 1000
maximum number of elements 625
maximum number of sides with specified loads 125
maximum number of nodes with point loads 500
maximum number of element property zones 20
maximum number of different properties 10

The program essentially recognizes that straight-sided quadrilateral elements can be gen-
erated between two vertical lines or edges by drawing lines to join appropriate corner nodes.
This recognition is illustrated in Figure 5.3.

In each of the illustrations, elements to the left of the diagram have been generated so
that the nodal points on the left edge are already established. The left edge of the column is
termed the front edge. The diagrams contain all the possible types of quadrilateral elements
the program can generate. The continuum to be discretized is assumed to lie 1n the first
quadrant. A concise description of the method of generating the quadrilateral elements
follows.

(a) the program reads the specification of the first vertical line which may be, say, the
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Figure 5.3: Types of Quadrilateral Elements Generated by the QUADMESH Program




(d)

()

()

y-axis. Since this is the first line read, the program generates the nodes along this line
and tags the line as the front edge.

the program then reads the specification of the next line and tags it the right edge. It
then locates the first node on the front edge, ny,, which is not above the first node on
the right edge. n,,. and the first ncde on the front edge, ny,, which is not below the
last node on the right edge, n,,. Obviously, a line joiving ny, to n,, 1s the base of the
quadrilateral and is in a counter clockwise sense.

the program then examines the next three corner nodes on the front edge to determine
whether a turn through 900 has occurred. There are three possible turns. First, there
could be no turn through 90o. Then, there may be a clockwise turn to the right
followed immediately by an upward counter-clockwise turn, or lastly, there may be a
counter-clockwise turn followed 1mmediately by an upward clockwise turn.

If there has been no turn, this gives rise to a quadrilateral element with corner nodes
My, Neyy Negy N, The base of the next element is tagged ny, - n,,, see Figure 5.3 (a).

If there has been a clockwise turn through 900 followed by an upward turn, two quadri-
lateral elements are generated as <hown in Figure 53 (b) and the base of the next
element to be generated is tagged ny, - n,,.

If there has been a counter-clockwise turn through 900 followed by an upward turn,
two quadrilateral elements are generated as shown in Figure 5.3 (c¢) and the base of
the next element to be generated is tagged ny, - n,,.

When all the elements in the column are generated, the front edge is then redefined to
include only those nodes which are farttiest away from the y-axis and which daylight to the
right edge of the continuum. Examples of the meshes that can be generated by this program
are shown in Figures 5.4 and 5.3.
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Figure 5.4

Example of a Simple Mesh
Generated by QUADMESH Program
with 3 Vertical Line Input, AD, EF, & GH

Note progression of front:
1st front: AD
2nd front: ABEFCD
3rd front: GH

tlements are numbered in the order
in which they are generated
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Figure 5.5: Example of a Complex Mesh Generated by QUADMESH Program with 8 Vertical
Line Input
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5.3.1 Input Data to QUADMESH
The input data into QUADMESH is free formatted and is described below.

1. Line 1: Xo, Y5, NSUBX, NSUBY

2. Next line/s: If NSUBX > 1,: DELX(1), DELX(2),.., DELX(NSUBX)
3. Next line/s: If NSUBY > 1,: DELY(1), DELY(2),.., DELY(NSUBY)
4. Next line: 0.00000

Steps 1, 2 and 3 above are repeated for all vertical lines or sets of vertical lines. Step 4
ends the ends the vertical line information necessary for mesh generation only. The program
is also able to generate material properties, material types and distributed load information
with a few more lines of input data as described below.

Next line: NPOIN, NDIST, NUMAT, NTYPE, YDLL, YDLR, XDLT, XDLB
Next NPOIN lines: NPO(I), XPO(I), YPO(])
For each material type (I = 1, ..., NUMAT),

First line: YM(I), PR(I), MTYPE(I)
Second line: ZXL(T), ZXR(1), ZYB(I), ZYT(I)
If there is only one material type, then,

Second line: 0.000000.0

Displacement Boundary Condition Codes:

JXL, JYL, JXB, JYB, JXR, JYR, JXT, JYT
This is the end of the input data.

5.4 A Program for Creating Voids in
Discretized Media, VOIDMESH

Creating voids in a discretized medium is often necessary when simulating excavation se-
quences in a mine. The piocess involves deleting elements which represent the void, and the
nodes common to them. A program was written for this purpose, to be used in conjunction
with the mesh generation programs described above. Briefly, the initial mesh is generated
to cover the entire medium with elements. Zones occupied by shafts, tunnels, and stopes are
known and their boundaries are stored in a file which also holds information of the excava-
tion sequence.

Creating an excavation will affect items (d), (e) and (f) above. The input file to the
VOIDMESH program consists of the elements to be deleted and the affected nodes for each
excavation. These are arranged in sequence. Creating the void essentially means ignoring
the affected elements and nodes and updating the rest of the mesh data. The distributed
loads are usually applied along the boundaries of the continuum and updating the mesh will
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not affect their magnitudes, only the node numbering of the affected element sides. This
program is therefore an indispensable part of the mesh generation programs.
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Chapter 6

Verification Tests

6.1 Tests of the Reciprocity Theorem

Two series of patch tests were conducted using a square element of unit side with edges
parallel to the coordinate axes. These tests were performed to show that the computer
program is accurate and obeys the reciprocity principle. The form of this principle relevant
to the developments in this thesis states that if a body is in equilibrium under two sets of
forces, then the work done by the first set of forces acting through the displacements of the
second set of forces is equal to the work done by the second set of forces acting through the
displacements of the first set of forces, [7]. The tests consisied of subjecting a square plate
to a uniform load on one edge while the opposite edge was pinned, see Figures 6.1 and 6.2.

Point loads were used in the first series of tests, and distributed loads were used in the
second series. Each series consisted of paired tests in which the three nodes on any given
side were pinned while the opposite nodes were loaded, first with compressive loads and then
reversing the loads to make them tensile. Thus, each series consisted of four paired tests.
Each pair of tests should yield stresses and displacements which are equal in magnitude but
opposite in direction.

Using Figure 6.1 (&) as an example, nod s 4 and 8 should bulge out under compressive
loading and should squeeze in under tensile loading. This is certainly so in the results shown
in the Table 6.1. Using a simple one dimensional mcdel, the average stress and displacement
along the loaded edge (nodes 5, 6 and 7) can be computed as follows:

v = bo/E (6.1)

where

v = vertical (y) displacement,

b = length = 1.0,

E = modulus of elasticity = 1.0,
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Figure 6.1: Tests of the Reciprocity Theorem
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Figure 6.2: Tests of the Reciprocity Theorem, continued




o = average stress = P/A,
A = cross sectional area = 1.0,
P = average load = -(0.5 + 1.0 + 0.5) = -2.0

Thus,
average siress = -2.0, and v = -2.0
Using the computed values from the program for this load case, we have
v=-1.069 + (-3.224 + 1.069)/3 = -1.787
which can be approximated to -2.0, considering that only one element is used in the analysis.

Only the displacements and stresses obtained for the load cases shown in Figures 6.1(a) -
(d) are shown in Tables 6.1 - 6.8. The other four load cases shown in Figures 6.2(e) - (h) are
the clockwise rotations through 90° ,f Figures 6.1(a) - (d) respectively. The results for these
load cases are similarly the results of the tabulated load cases rotated clockwise through 90°.
The results confirm the reciprocity principle.

6.2 The Cantilever Beam Problem

The cantilever beam problern is a useful beam problem to investigate numerically because it
is simple to represent mathematically especially when the loading system is simple. Many
authors in the field of Mechanics have dealt with it, see Valliapan {65], Popov [66], and
Kreyszig [67]. Valliapan has considered the case of a cantilever beam of narrow cross-section
of width b and depth 2d, under a vertical end load P applied at the centre O, of the cross
sectional end. I this exarmnple, b 15 srall compared to 2d so that the beam can be considered
to be in a state of plane stress. O is the origin of coordinates with the x-axis parallel to the
longitudinal axis of the beam and the y-axis vertical. The length of the beam is L.

The boundary conditions are then as follows:

o o, =0forallxand y
o 7., = 0 at the upper and lower surfaces, that is, y = +d

e 7, = P at the so-called neutra. surface, that i3,y = 0

If I is the moment of inertia about the x-axis, then the following equations of stress hold for
the beam so described:

[ = (2ba%)/3

Or = -(Pry)/l
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Toy = -P(d* —y¥)/21 (6.2)

The equations for stress are correct only if the boundary force at the free end is distributed
parabolically. If the end load is a concentrated load, then by virtue of St. Venant’s principle,
the solution near the end of the beam will not be correct. This means that in a finite element
analysis of the beam problem, the stresses and displacements at the end of the beam will not
be correct. This effect can be mitigated by using a fine mesh. The equations of displacements
are given as:

up = Py{(3L* = 32% - vy*)/E + (y* — 34%)/G} /61

uy, = P(Bury2 + - 3L% + 2[.:3)/6E1 (6'3)

The displacements at the so-called neutral surface (y = 0) are

U =0

u, = PRL* - 3L*c + %) /6 E] (6.4)

[n the above expressions, E is modulus of elasticity and G is rigidity mo lulus, v is Poisson’s
ratio.

G=E/2(1 +v) (6.5)

Two computer models were run with the following specifications:

o P=-200

o L =600

e 2d = 4.0

e b=1.0

e £ = 1.0E08

e g = 0.25,

o Number of elements used in first mesh = 10

Number of elements used in second mesh = 20
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Figure 6.3: The Cantilever Beam under a Point Load, P

P =-60.0

20

19

Figure 6.4: Discretization of the Cantilever Beam into 20 Elements
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Figure 6 3 shows a free-body representation of a cantilever beam fixed on the left edge.
Figure 6.4 shows a 20-element, finite element discretization of the beam.

Tahle 6 9 summarizes the hybrid test results for the displacements. A comparison with
the exact mathematical solution is also included in the table. The table clearly illustrates
that the results of the hybrid finite element programme are in very good agreement with the
closed form analytical solutions.

6.3 The Hole-in-a-Plate Problem

| The circular hole in a plate problem, Jaeger and Cook (7], Obert and Duvall [68], is a classic

| case that has been examined extensively in books on the theory of elasticity. It lends itself

| to an analytic solution and 1s therefore a proper case that can be verified by the hybrid finite
element analysis.

Consider an infinite plate of thickness t with a circular hole of radius ry located with
centre at the origin, O, as shown in Figure 6.5

Let 5; and S, be the stresses at infinity applied in the x- and y- directions respectively.
At alarge distance from the hole, the polar components of stress, a,, a4, 7v4, are due entirely
to the applied stresses and are given in Equations 6.6 below.

1 i
(S, - S)(L43r8*/r* —4r8*/r?) cos 20

1
op = 5(S: + SH(1=ré*/r?) + 5

0g = %(Sr + 5,)(1 + 7"92/’"2) - %(Sz - S)(1 + 3r94/r4)<‘0320

Teg = %(S, - S = 3r8*/r* + 2r0%/r?)sin 20 (66)

At the periphery of the borehole, ry = r and Equations (6.6) reduce to the following;:

Oy = Trg = 07

og= (S;+ S,) + 2(S:— Sy)cos20 (6.7)

Points A and B (Figure 6.5), at the periphery of the bcrehole are of special interest
because at A, = n/2and at B,0 = 0. Also,at A, 09 = o, and at B, oy = o,
Three cases of applied stresses can be considered thus-
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Figure 6.5: Circular Hole-in-a-Plate Problem showing Discretized Zone
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case (a): S, = S, = —p, which leadsto 0,, = oyg = —2p,
case (b): S; = 0, which leads to 0, = =5, oyg = -39,
case (¢): S, = 0, which leads to ¢,, = 35;, oyp = -5,

In all cases, 07, = 0y, = 1oy = 0

Case (c) is the complement of case (b) when the axes are exchanged so that only cases (a)
and (b) need be tested in a finite element analysis. Four meshes of different finite element
densities were used as shown in Figures 6 6 to 6.9 were used.

The nieshes were 2x2, 4x4, 6x6 and Sx8 elements, the description indicating that there
are equal number of elements along the z- and the y- axis. These meshes were generated
by the program CIRCMESH. The results of the hybrid finite element tes‘s are summarized
in Tables 6.10 and 6.11. It is clear frum these tables that the accuracy of the hybrid stress
model ic high and adequate for the types of real mining problems it would be employed
to solve. Figure 6.10 shows the distribution of the horizontal stress along section AB of
Figure 6.9 for case (a). The corresponding horizontal stress distribution along the same
section for case (b) is shown in Figure 6.11

6.4 The Pure Beam Bending Problem

Desai and Abel [69] have analyzed the problem of a beam subjected to pure bending stresses.
They used four-node elements 1n a finite element program based on the displacement model.
In this test, the 8-node hybrid stress program is used not only to compare the results obtained
with those by Desai and Abel but also to confirm that the hybrid stress model converges to
the right answer rapidly with relatively fewer elements. Figure 6.12 shows the plane stress
representation of the pure beam bending problem. Due to symmetry, unly a quarter of the
section is discretized as shown in Figure 6 12, The two points of interest are the middle of
the discretized section and the far corner, marked X and Y respectively in Figure 6 12.
The matenal properties used were, as for Desai and Abel,

= 30 x 106 ps1 ( =207 MPa), v = 0.3 and h = 1.0 inch
The results are summarized in Table 6.12. They clearly show that the hybrid stress
model more accurately predicts the results than the displacement model. Also, no improve-

ment in accuracy is gained by using gieater density of elements from the 4-element, 21-node
discretization.
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Figure 6.6: 21-Node, 4-Element Circular Mesh
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Table 6.1: Patch Test Displacement Results for Point Loads (from Figures 6.1(a) and (b))

Figure 6.1(a) Figure 6.1(b)
Displacements Displacements

Node | X-Disp. Y-Disp. | X-Disp. Y-Disp.

1 0. 0.10. 0.
2 0. 0. 0. 0.
0 0.10 0

0.1424 -1.0440 | -0.1424 1.0440
0.5664 -2.6635 | -0.5664 2.6635
-0.0000  -1.6227 | 0.0000 1.6227
-0.5664  -2.6635 | 0.5664 2.6635
-0.1424  -1.0440 | 0.1424 1.0440

W -3 O O o W

Table 6.2: Patch Test Displacement Results for Point Loads (from Figures 6.1(a) and (b))

Figure 6.1(a) Figure 6.1(b)

Stresses Stresses

Node | Sigma-x Sigma-y Tau-xy | Sigma-x Sigma-y Tau-xy

-0.5294  -1.7457  -0.2292 | 0.5294 1.7457  0.2292
-0.4396  -1.9444 -0.0000 | 0.4396 1.9444  0.0000
-0.5294  -1.7457  0.2202 } 0.5294 L7457 -0.2292
-0.0689  -2.7357  0.0681 | 0.0689 2.7357  -0.0681
1.0803 -3.2239  -0.7743 1 -1.0803 3.2229  0.7743
0.4887 -1.0690  -0.0000 | -0.4887 1.6690  0.0000
1.0803 -3.2239  0.7743 | -1.0803 12239 -0.7743
-0.0689  -2.7357 -0.0681 | 0.0689 2.7357  0.0681

Q0 =3 O Ut W O DN =
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Table 6.3: Patch Test Displacement Results for Point Loads (from Figures 6.1(c) and (d))

Figure 6.1(c) Figure 6.1(d)
Displacements Displacements

Node | X-Disp. Y-Disp. | X-Disp. Y-Disp.

1 -0.5664  2.6635 | 0.5664  -2.6635
2 0.0000  1.6227 | -0.0000 -1.6227
3 0.5664  2.6635 | -0.5664 -2.6635
4 0.1424  1.0440 | -0.142¢ -1.0440
3 0. 0. 0. 0.
6 0. 0. 0. 0.
7 0. 0. 0. 0.
8 -0.1424  1.0440 | 0.1424  -1.0440

Table 6.4: Patch Test Stress Results for Point Loads (from Figures 6.1(c) and (d))

Figure 6.1(c) Figure 6.1(d)
Stresses Stresses

Node | Sigma-x Sigma-y Tau-xy | Sigma-x Sigma-y Tau-xy

1 1.0803 -3.2239 -0.7743 | -1.0803 3.2239  0.7743
2 0.4887 -1.0690  0.0000 | -0.4887 1.0690 -0.0000
3 1.0803 -3.2239  0.7743 | -1.0803 3.2239 -0.7743
4 -0.0689 -27357 -0.0681 | 0.0689 27357 0.0681
3 -0.5294 -1.7457  -0.2292 | 0.5294 1.7457  0.2292
6 -0.4396 -1.9441  0.0000 | 0.4396 1.9444 -0.0000
7 -0.5294 -1.7457  0.2292 | 0.5294 1.7457 -0.2292
8 -0.0689 -2.7357  0.0681 | 0.0689 21357 -0.0681
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Table 6.5: Patch Test Displacement Results for Distributed Loads (from Figures 6.1(a) and

(b))

Table 6.6: Patch Test Displacement Results for Distributed Loads from Figures 6.1 (c¢) and

(d)

Figure 6.1(a)

Figure 6.1(b)

Displacements Displacements

Node l X-Disp. Y-Disp. | X-Disp. Y-Disp.

1 0. 0. 0. 0.

2 0. 0. 0. 0.

3 0. 0. 0. 0.

4 -0.1270  0.5060 | 0.1270  -0.5060

5 -0.1104 0.9723 |} 0.1104  -0.9723

6 -0.0000 0.9974 | 0.0000 -0.9974

7 0.1104 09723 | -0.1104 -0.9723

8 0.1270  0.5060 | -0.1270 -0.5060

Figure 6.1(c)

Figure 6.1(d)

Displacements Displacements

Node ] X-Disp. Y-Disp. | X-Disp. Y-Disp.

1 -0.1104 09723 | 0.1104  -0.9723

2 0.0000 0.9974 | -0.0000 -0.9974

3 0.1104 09723 || -0.1104 -0.9723

4 0.1270  0.5060 | -0.1270 -0.5060

5 0. 0. 0. 0.

6 0. 0. 0. 0.

7 0. 0. 0. 0.

8 -0.1270  0.5060 | 0.1270  -0.5060
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Table 6.7: Patch Test Stress Results for Distributed Loads (from Figures 6.1(a) and (b))

Node

Figure 6.1(a)
Stresses

Figure 6.1(b)

Stresses

| Sigma-x Sigma-y

Tau-xy

Sigma-x Sigma-y Tau-xy

00 -1 O OV = W bo

0.1921 1.0290
0.2674 0.9392
0.1921 1.0290
-0.0268 0.9898
0.0219 0.8723
0.0250 1.0319
0.0219 0.8723
-0.0268 0.9898

0.1072
0.0000
-0.1072
0.0072
0.0494
0.0€00
-0 0494
-0.0072

-0.1921 -1.0290 -0.1072
1} 2674 -0.9392  -0.0000
-0.1921 -1.0290  0.1072
0.0268 -0 9898 -0.0072
-0.0219 -0.8723  -0.0494
-0.0250  -1.0319 -0.0000
-0.0219  -0.8723  0.0494
0.0268 -0.9898  0.0072

Table 6.8: Patch Test Stress Results for Distributed Loads (from Figures 6.1(c) and (d))

Node

Figure 6.1(c)
Stresses

Figure 6.1(d)
Stresses

] Sigma-x Sigma-y

Tau-xy

Sigma-x Sigma-y Tau-xy

O~ O U W

-0.0219 -0.8723
-0.0250 -1.0319
-0.0219 -0.8723
0.0268 -0.9898
-0.1921 -1.0290
-0.2674 -0.9392
-0.1921 -1.0290
0.0268 -0.9898

-0.0494
-0.0000
0.0494
0.0072
-0.1072
0.0000
0.1072
-0.0072

0.0219 0.8723 0.0494
0.0250 1.0319  0.0000
0.0219 0.8723 -0.0494
-0.0268 0.9898 -0.0072
0.1921 1.0290 0.1072
0.2674 0.9392 -0.0000
0.1921 1.0290 -0.1072
-0.0268 0.9898  0.0072
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Table 6.9: Comparative Displacements of the Cantilever Beam Bending Problem

Displacements Displacements
Total No. || Total No. at Point A at Point B
of nodes || of elems. (x 10=%) (x 107%)
u | v u | v
I r [ l
Hybrid stress
solutions
53 10 0.000 | -0.002706 || 0.000 | -0.0008469
85 20 0.000 | -0.002705 )i 0.000 | -0.0008460
l

Exact solution

0.000 | -0.002700 ) 0.00 | -0.0008438

|

Table 6.10: Hybrid Stress Results for Hole-in-Plate Problem, case (a)

| !

Stresses Stresses

Total No. | Total No. at Point A at Point C

of nodes || of elems. Oy Iy Oy Oy
(-2.00) { (0.00) || (0.00) | (-2.00)
21 4 -1.838 1 -0.317 i -0.317 -1.838
65 16 -1.974 | -0.129 | -0.129 -1.974
133 36 -1.998 { -0.093 || -0.093 -1.998
225 64 -2.018 | -0.052 || -0.052 -2.018

Note: Values enclosed in brackets are the theoretical values
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Table 6.11: Hybrid Stress Results for Hole-in-Plate Problem, case (b)

! !

Stresses Stresses
Total No. || Total No. at Point A at Point C
of nodes | of elems. Oz ay Or ay

(-1.00) | (0.00) || (0.00) | (3.00)

21 4 -1.838 } -0.317 § -0.317 | -1.838
65 16 -1.974 1 -0.129 4§ -0.129 ) -1.974
133 36 -1.998 | -0.093 | -0.093 | -1.998
225 64 -2.018 | -0.052 | -0.052 | -2.018
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Table 6.12: Comparative Displacements of the Cantilever Beam B ending Problem

Displacements Displaceme ts
Total No. j| Total No. at Point X at Point ¥
of nodes || of elems. (x 1074 (x 107%)
u | v u | v |
Hybrid stress
solutions
53 10 0.000 | -0.002706 0.000 | -0.0008469 |
85 20 0.000 { -0.002705 0.000 | -0.0008460
21 4 0.375 -0.319 || 1.300 -1.275
65 16 0.375 -0.318 1.498 -1.267
133 36 0.375 -0.319 § 1.500 -1.275
Desai and Abel
solutions [69)
25 ” 16 0.3679 | -0.31236 || 1.4552 { -1.2399
Exact solution
“ ” 0.3750 l -0.3188 ” 1.500 l -1.275
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Chapter 7

Case Histories

7.1 Introduction

The venfication tests reported in Chapter 6 clearly demonstrated that the hybrid stress
program can be relied vpon to perform finite element analysis of a continuum to the same
degree of accuracy and at less cost as any other finite element program with a different
basis. In order to show that it can also be relied upon to carry out practical geomechanics
type of analysis which typical mining operations perform in their ground control problems,
two case histories were analyzed. Both case histories were taken from NORANDA Minerals
operations in the Province of Quebec in Canada. This Chapter is therefore concerned with
the correlation of numerical analyses on the two mines carried out by different methods on
the one hand, and by the hybrid stress program on the other.

Noranda Inc. is a resource based company and mining is among its several areas of
operation. The analyses described below indicated good correlation between hybrid stress
results and those from other numerical procedures employed by Noranda Technology Centre.
In each of the cases described, the same portion of a mining zone that was analyzed by a
different numerical method was also analyzed by the hybrid finite element program devel-
oped in this thesis. Direct comparison of stresses and displacements was then made. The
hybrid stress results revealed greater detail in part due to the 8-node discretization of the
quadrilateral elements.

7.2 First Case Study: Geco Conveyor Drive Stability
A nalysis.

The descriptions in sections 7.2.1 to 7.2.3 inclusive were taken from an internal report written
for Noranda Technology Centre by Bawden and Milne [70].
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7.2.1 History

Geco mines i3 owned and operated by Noranda Minerals Inc., a natural resource-based
company with interests in mining mainly in Canada. The Geco Cu-Zn-Ag deposit is in the
Manitouwadge mining camp, in the Thunder Bay Mining District of northwestern Ontario,
320 kilometers east of Thunder Bay and about 150 kilometers northwest of Sault Ste Marie.
The mining camp lies 5 kilometers east of the town of Mantouwadge. Geco Mines Ltd.
was amalgamated with Noranda Mines Ltd. (now Noranda Inc) in 1964. The regional
geological structure consists of a broad easterly limb of this synform. It consists of one
vertical lenticular, continuous zone of mineralization which is interrupted by several diabase
dykes and is offset by the Fox Creek Fault. The average horizontal length on any level is
approximately 2400 feet with an average width of 65 feet. The bottom of the orebody plunges
to the east at an average of 35 degrees as it follows the S-shaped dragfold which exists west of
the orebody on each level. The orebody is made up of a core of massive sulphides consisting of
pyrites, pyrrhotites, chalcopyrites, galena and minor amounts of gold. Appreciable amounts
of silver are present, associated with the chalcopyrites and galena. The remainder of the
massive core is made up of wall rock inclusions,

7.2.2 Mining

There are three main methods of mining. The most common method is the "bulk” method
in which 70 ft wide, 300 ft high transverse stopes are taken at 120 and 150 ft intervals. Using
large blast holes, the primary slices are blasted and the broken ore is drawn out the bottom
of the muck pile while the void which is created above the broken ore is filled with waste rock
supplied from a surface quarry. The fill material provides support for the weak walls. Upon
completion of the stope, the waste rock fill is stabilized along the rib walls by introducing a
mixture of hydraulically placed mill sands and cement suitably mixed.

Blast hole open stoping is practiced in the upper parts of the orebody where the transverse
dimensions are less. Backfill with hydraulic sand is done after the stope is completely mined.
The above two methods account for about 95% of the ore produced. The remaining 5% is
mined by cut-and-fill methods in areas where the ore is too narrow to be mined by the other
two methods and where more wall support is required. The stopes are typically 9 ft high
and are taken along the strike. Again, hydraulic sand fill is used as backfill.

7.2.3 Stability Problems in the Conveyor Drift

The following is a description of the stability problems which ultimately led to a stabil-
ity analysis of the mine, using the finite element program, SAP2D, according to Baw-
den and Milne [70}, and Milne [71].
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Since 1983, the mine has been carrying out the retreat phase of the transverse stoping,
Le., recovering the pillars. Since then, movement was being experienced in the conveyor drift
and the 1-32 cross cut. The Mining Technology Division of the Noranda Technolgy Centre
(NTC), based in Montreal then carried out field investigations as well as linear elastic finite
element analysis of the area of concern.

Field Observations and Measurements by
the Noranda Technology Centre

The field investigations comprised a limited amount of structural mapping and classification
of the rock types. Three major joint sets were mapped, the most prominent of which was
parallel to the foliation in the rock. Rock classification was done using the Barton (NGI) and
the CSIR (RMR) systems. Closure measurements using extensometers were also undertaken.
The results of these field investigations showed that the observed movements were due to the
continued relaxation of the rock mass towards the stopes. The presence of a surface quarry
above the mining zone might have caused some uplift but the reduction in the vertical stress
due to this quarry was too small to consider. The relaxation mechanism was explained as
the loss of a so-called clamping force across the foliation. This clamping force was supplied
by compressive stresses acting across the foliation. With progressive stoping, the stresses are
dispersed and the loss of the clamping force resulis in rock failure along the foliation. This
mode of failure is well known at Geco. The backfill could not totally prevent this relaxation
although it retarded it.

Computer Analysis by Noranda Technology Centre

A SAP2D finite element analysis was done to validate the field observations with the follow-
ing assutuptions according to Bawden and Milne (70}, and Milne (71]. Vertical stresses were
equal to the weight of the rock, meaning that they were gravitational. Bawden and Milne [70)
claim that these conditions are similar to those expected in the Canadaian shield. However,
it is known that horizontal stresses in the shield are quite often larger than can be accounted
for by gravity alone. Maximum depth was taken as 420m.

A value for the Young’s modulus of 26 GPa was estimated based on the RMR (CSIR)
classification scheme. Poisson’s ratio was taken as 0.30. Values for rock strength were not
needed because the finite element model assumes a linearly elastic and homogeneous mate-
rial. The main purpose of the finite element analysis was to show the effect of mining the
adjacent stope to the surface, starting from the position it was in 1983 and ending in 1985
when the stope reached the surface. The computer results are illustrated in Figures 7.1, ,,
,y 1.6,
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Figure 7.1: Geco Conveyor Drift Stability Analysis,
Maximum Stress Contours, Present Stope Extent, (by the NTC)
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Maximum Principal Stress Directions, Present Stope Extent, (by the NTC)
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Figure 7.6: Geco Conveyor Drift Stability Analysis, Minimum Principal
Stress Directions, Stope Extended to Surface, (by the NTC)




A summary of the stress history for the stope and the conveyor drift is given in Ta-
bles 7.1 and 7.2. At the beginning of the excavation cycle, the conveyor belt drift is quite
stable. With the nearby stope at its 1985 position, the maximum stress induced around
the conveyor drift is less than 1200 psi (8.3 MPa). This level of stress is insufficient to
induce cracking and failure observed in the drift. Figures 7.1, 7.2 and 7.3 show the principal
stresses in magnitudes and directions. The principal stresses around the drift appear to line
up perpendicular to the foliation, thus confirming them as clamping stresses on the foliation.

As mining progresses Lo the surface, there is a reduction in the principal stresses sufficient
to cause loosening and relaxation around the drift. These observations are depicted 1 the
Figures 7.4, 7 5, and 7.6. Both the major and minor principal stresses decrease in magnitude
but are still insulicient to canse failure The minor principal stresses were slightly tensile
around the dnift. It is clear that the sides of the stopes are under some tensile stresses while
the top and bottom of the stope are under cornpressive stresses. Figure 7.1 indicates that the
bottom left corner of the conveyor dnft and the corner opposite to it are under compressive
stresses while the other two corners are under tensile stresses.

7.2.4 Hybrid Stress Modelling

This was done as part of the verification aspect of this thesis. The section of the mine
analyzed was the same for the SAP2D analysis but the mesh generation was done using the
QUADMESH generator described in Appendix A, starting with the initial position as at
1983. The sarne vertical section that was used by the Noranda Technology Centre in the
SAP2D analysis was also used in this case study. It measured approximately 580 m in the
horizontal direction by 490 m in the vertical. Displacement and load boundary conditions
are shown in Figure 7.7.

Progressive excavation was achieved in four stages as shown in Figures 7.8 to 7.12. The
magnitudes and directions of the principal stresses have been plotted for the initial position,
first excavation and the final stage of extending the stope to the surface. These are shown
in Figures 7.13, 7.14 and 7.15. The changing stress patterns following the excavations are
summarized in Tables 7.3 to 7.6.

The inset in Table 7.6 describes the nodes of the conveyor drift. It can be seen that the
walls of the stope are in tension (Tables 7.3 and 7.4 when the corner nodes for the initial
and first excavation are ignored). The maximum tensile stress occurs towards the lower end
of the stope walls and is greater than 6 MPa (870 psi). As stoping progresses, the walls are
under sufficient tensile stress to cause spalling and/or massive failure. The floor and the
back of the stope are under compressive stresses which increase gradually to a maximum of
over 11 MPa (1595 psi) as mining progresses (Table 7.5).
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The conveyor belt drift on the other hand shows a generally small minimum principal
stress which is tensile, confirming the results of the SAP2D analysis. However, the maximum
principal stress is compressive, starting off at high values and decreasing to near zero as the
stope is mined to the surface (Table 7.6).

The general conclusion to be drawn from this analysis is that the hybrid model gives a
better and more detailed description of the stress distributions at the various stages of the

stoping operation and its effects on the conveyor drift. The findings of the SAP2D analysis
have been duplicated.

7.3 Second Case History: Norita Transverse Stopes
Stability Analysis

The descriptions in Sections 7.3.1 to 7.3.3 inclusive were taken from open reports writ-
ten by Chauvin {72] and Goodier and Dube |73] while Section 7.4 is as reported by Baw-
den and Milne [70] and Stoesser [75] for the Noranda Technelogy Centre.

7.3.1 History

The Norita deposit, operated by Noranda Inc., Matagaini Division, is located 2 kilometers
north west of the town of Matagami in northern Quebec. Matagami town itself lies 180
kilometers north of Amos, Quebec, in one of the large volcanic centres in the so called
Abitibi greenstone belt of the Superior Province.

7.3.2 Geology

The Norita deposit consists of five massive sulphides lenses containing over 4 million tonnes
of ore grading 4.1% Zinc and 1.8% copper Chauvin [72], Goodier and Dube [73]. The
orebody was discovered in 1957 but was only brought into production in 1976. Exhaustion
of the ore is forecast for 1988. The five ore lenses are interbedded in a precambrian volcanic
succession of rhyolitic and basaltic tuffs which strike approximately E-SE with a sub-vertical
dip. The sulphide lenses have variable dimensions; the smallest (Upper Zone) has a height
of 100 m, a strike length of 150 m and a 6 m average thickness across strike; the largest (A
Zone) which is also the deepest, is 400 m in length, 210 m high and has a width of 1.2 min
its top section and over 25 m in its lower portion.

7.3.3 Mining Methods and Ground Control Problems

To the present day, the mine has passed through three distinct phases of ore extractior.
These correspond directly to major ground control problems and to minor problems associ-
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ated with dilution. The so-called Phase I mining was by the sub level retreat method which
was used successfully between 1975 and 1978 in mining the Main, Lower and Marker Zones.

This method was used in the “A” Zone which was discovered in 1977 and which appeared
well suited for this type of mining,

The first sign of ground control problems was noticed in 1978 in the form of ground
movements and spalling in the sill pillar drift of the 8-8 level, Bawden and Milne [74], and
Stoesser {75]. Various actions taken to combat this deterioration included introducing extra
ground support, lowering blast vibrations and thus decreasing pillar damage, monitoring
ground movement and stress changes and computer simulations of the mining sequence. In
addition, all development drifts were arched so as to improve their stability and lower stress
build-up around them.

The mining methods changed from sublevel retreat to a modified sublevel caving and
later to a transverse longhole open stoping which is still in use. Access to the stopes is from
the footwall drift. Waste fill was introduced at the top of the “A™ Zone to give some support
to the walls. This so-called Phase [I mining cycle began about 1981 with the development
of a waste stope above the “A” Zone. The first waste stope was lost as a result of severe
sloughing of the north and south walls of the 8-7 sub level which led to the loss of the waste
dumping points and the remaining two production sub levels of the Marker Zone. A smaller
waste stope was developed above the Marker Zone. For simulation purpose, the stopes were
assumed to be 15 m wide rectangles.

7.3.4 Instrumentation and Modelling by Noranda Technology
Centre

As a result of the deteriorating ground control situation, Noranda Technology Centre was
consulted in 1985. Initial solution was to install extensometers and stress meters to quantify
the visual ground movements in the sill pillar, shaft pillar and central pillar areas. Following
extensive monitoring, two types of numerical modelling were done, using the MINTAB and
the Boundary Element Analysis (BEA) programs.

The MINTAB program was used to simulate the extraction of the ore zone along the
strike on the vertical plane. Initial runs were done with the entire mine as the model but
after a few simulations it was apparent that mining of the “A” Zone had little effect on
the remainder of the levels above it. Further modelling was done on the “A” Zone only.
The model was correlated to the caving which had occurred before the mining method was
changed.

The BEA program was used to complete the model in the third direction, i.e., along the
strike in a horizontal direction. The computer runs indicated that the pillars between the
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open stopes had failed, an observation that correlated well with the MINTAB runs and the

site observations. In these runs, failure was based on the strength of the various cock types.

If the stress was above the strength of the rock, that rock would be deemed to have failed.
The two models used - MINTAB and BEA, have serious limitations some of which are:

1. no multiple materials;

2. no discrete geologic structures;

%)

. no “post failure” behaviour;

4. no stress shedding from failed zones, and

o

. only limited allowable movement of excavation boundaries.

However, they still allow a reasonable determination of the elastic stress distribution
around mine openings.

Modelling the transverse stoping for the lower A zone to about 1986 indicated that
induced stresses between the 9 and 10 levels, where the extraction ratio was low, would be
predicted at around 60-80 MPa while in the lower 10-11 levels where the extraction ratios
were somewhat higher, stresses would be predicted between 80 and 100 MPa. The proposed
transverse mining sequence is shown in Figure 7.16.

The “lower stopes” refer to stopes between the 10 and 11 levels while the “upper stopes”

refer to stopes between the 9 and 10 levels. The proposed sequence is then ordered as given
below:

step 1 lower stopes 6, 14, 8, 12
step 2 upper stopes 6, 14

step 3 lower stopes 16, 4

step 4 upper stope 16

step 5 lower stope 2

step 6 upper stopes 4, 2

MINTAB simulations of above stoping sequence showed that at each step of the exca-
vation, stress shedding to adjacent nillars occurred, often beyond thz estimated strength of
the pillars. The most highly stressed areas reached peak stress levels of up to 130 MPa as
shown in Figure 7.17 which shows the stress distribution after mining of the upper stopes 6

108




601

A zone J
8-8 sill drift Tosz L
I BN - vV T
sas |
™\ 5
[ 4
s e > |® xz| |® stopes
Level 99 — | | {-- 2 — -—
A o/
® ® Q) sopes
i 2 4 & 8 10 12 4 1817

Stope nuinbers

SCt @ Siress celi locotions
(D Swope sequencing number
994 [ Extensometer imtaliotions

Figure 7.16: Norita Transverse Stope Stability Analysis,
Stope Sequencing and Instrumentation, (by the NTC)



011

A

RN
e
L

il i
3h
% -
T
‘ ~

=

Figure 7.17: Norita Transverse Stope Stability
Stopes 6,& 14, and Lower Stopes 6,8,14 & 12.

Analysis, Mining of Upper
(by the NTC)




111

10-60 MPo
60-80 MPo
80-100 MPe
100-120 MPs
120- 143 MPo

Figure 7.18: Norita Transverse Stope Stability Analysis, Mining of Upper
Stopes 16 and all Lower Stopes. (by the NTC)




and 14, and the lower stopes 6, 8, 14 and 12.

Figure 7.18 shows the MINTAB model results for excavation of all the stopes up to step
5. At this stage, all of the lower 10/11 stopes have been excavated and backfilled but backfill
properties were never included in the modelling. At this stage, the upper level pillars 2 and 4
have become very highly stressed, as high as 140 MPa. It is certain that these pillars would
have failed and shed most of this stress to the east abutment and overlying sill pillar by
this time. Stress levels in the centre of the main upper level pillar (level 9/10, pillars 8-12),
however, remain relatively low, indicating that the core of the pillar remains intact.

7.3.5 Hybrid Stress Modelling

The hybrid stress finite element program was used to run simulations similar to the BEA
runs described above. The hybrid model is a horizontal section taken through the lower level
10/11 stopes from Figure 7.16. The section modelled included the shaft and all the 17 stopes

and pillars as shown in Figure 7.19 which also shows the boundary conditions imposed on
the system.

Comparison of Figures 7.16 and 7.19 shows that the stope sequencing of the hybrid model
follows the same order as for the MINTAB runs conducted by the Noranda Technology Cen-
tre. The hybrid modelling was done in four steps as given below:

step 1 Initial position with only the shaft excavated.

step 2 Position as at June 1986, with stopes 1, 3, 9, 10, 11, 13, 15 and 17 of Figure 7.19
excavated.

step 3 Lower stopes 6, 14, 8, 12 (sequence 1, 2, 3, and 4) excavated, and finally,

step 4 Lower stopes 16, 4 (sequence 5, 6, and T) excavated.

The section analyzed has three principal material types with the massive sulphide ore-
body bounded on the south side by rhyolitic tuffs and on the north side by basaltic tuffs.
Material properties had been determined in-situ from rock mass classification and from the
laboratory from tests on intact rock cores by the NTC. As expected, there was a very large
disparity in the properties with the laboratory measured values about an order of magni-
tude higher. The values used in the Hybrid simulation fall between the two extremes and
are shown in Table 7.7.

The hybrid stress simulation of the mining of the lower stopes was carried out in four
stages as described below. The first simulation, described the initial position which was

assumed to begin with only the shaft in place. The second simulation described the position
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of the transverse stopes as at June 1986 and corresponded with the MINTAB simulation
described above. During this step, stopes numbered 1, 3,9, 10, 11, 13, 15 and 17 were
mined. The third run corresponded to the excavation of the lower stopes 6,14, 8 and 12
(stope equence 1, 2, 3 aad 4). In the last simulation, the remaining lower stopes 16, 4 and
2 (sequence 5, 6 and 7) were taken. Figures 7.20 to 7.23 inclusive show the finite element
meshes that were used at the various stages.

The original mesh covering the discretized zone without any excavation was generated
using the QUADMESH program described in Appendix A. Meshes representing the vari-
ous steps of the modelling (Figures 7.20 - 7 23) were then generated using the companion
program REVISE to alter the original mesh. The program REVISE essentially deletes the
nodes and elements in a specified window of a given mesh and reorders the remaining nodes
and elements. Three material properties were used corresponding to the specification in the
reference {70].

The results for the lower stopes are summarized in Tables 7.9 to 7.12. The critical areas
for which stability was analyzed are the shaft, the west abutment, the east abutment and
stope 2 and 16 which were not taken during the transverse stoping as indicated in the tables.
The stress tensor plots for each step of the simulation are shown in Figures 7.24 to 7.27
inclusive.

The critical areas examined are best correlated to the MINTAB results with respect to
the abutments and the pillars. An examination of these results shows that the hybrid stress
results are slightly higher in magnitude than the values obtained by the MINTAB and BEA
methods but the trend is essentially the same and leads to the following observations:

The Shaft Pillar

Table 7.9 shows the state of stress of the shaft region during the progress of the excavation.
The shaft is a narrow slit about 3m wide by 8m long, the west and east walls representing the
long sides while the north and south walls represent the short sides. It can be surmised from
the theory of clasticity that there will be a high stress concentration therefore on the north
and south rockmass surrounding the pillar. This is borne out by the results in Table 7.9. In
general, the stress history shows a peak at about the start of the retreat cycle (June, 1986).
The tensile stresses are very small compared to the compressive stresses, a maximum value
of 11 MPa occurring in the north and south walls as of June 1986. Against this small tensile
stress, everywhere else is under high compressive stresses. Jt is clear from comparison of
these stresses with the strength wvalues of the various rock types in Table 7.8 that the shaft
is not endangered Ly the transverse stoping although the compressive stresses in the north
and south walls are rather high. These results do not differ from the MINTAB runs.
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Figure 7.20. Nornta Transverse Stope Stability Analysis,
Hybnd Stress Mesh for Initial Position with Shaft Excavated
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Figure 7.21: Norita Transverse Stope Stability Analysis,
Hybrid Stress Mesh for Position as at June 1986




LT

- - - » @ e - -p L L] -»a o »e b ] t ud - - - -
- » L » o fxlome - -y -
- e one - e s - L - - -
L4 -» - . - [» - L4 -
» » - n [w e ] " - - ”» - e ] - ) - - - -
- » - L] " ' L] -
L - - - - e ] - - - - -
” ] - » = je.as -l L)
- - - » - oo - "
- - - [ ) L L] L - - - -
- » -~ - - M -l -
- - ane -y -
- -» - - o« dein b d -y
- - - [ - s - = e -~ L4 - - - -
» L - - » jelen - -~
. L] - - a jeutem - L]
- L) g - [ [ 4 L] o - [ - - - - - - - - - -
» - - - = Pasems o -
L1l ] e LLE1 V] 2 e Y | E IR LA L - b { b oy
v - - L - v - - e - ]
-l: L .08 (OIS 1 e - {0 fpen oy (oos Ly - t]_ s Lo | 08 Lvg 100 -‘- ‘l‘ td p
[ ) - ® @ ohe L] L] L. - e {09 L 3] - -
° - - - o e - - ws - LYR") e |me - .
S0 (g Lape 200 | mas 09 LA BT -3 L N1 ) -d (2o ]rm 3t 21 ] LAt 2t ] -
. » - o | » e - - - - [ - - = _i _.[" - -
- - - - E - -~ poun
. » - - » el - L) - - - - [ ~ - e " - - - . g " L] - - - -
- - -~ e - - - - - - ) - - - -
. - - - - e b ) - - - - - -
- Load L ] [ ad - a L d L] - L] -
. » » L] . pufep - - - -~ (4 - -~ =3 - - - - -

Figure 7.22: Norita Transverse Stope Stability Analysis,
Hybrid Stress Mesh for Stopes 6, 8, 12 and 14 Excavated
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Figure 7.23: Norita Transverse Stope Stability Analysis,
Hybrid Stress Mesh, all Lower Stopes Excavated
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Figure 7.24: Nonta Transverse Stope Stabibty Analysis,

Stress Tensor Plot for Initial Position with Shaft Excavated
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Figure 7.25: Norita Transverse Stope Stability Analysis,

Stress Tensor Plot for Position as at June 1986
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Figure 7.26: Norita Transverse Stope Stability Analysis,

Stress Tensor Plot for Stopes 6, 14, 8 and 12 Excavated
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Figure 7.27: Norita Transverse Stope Stability Analysis,

Stress Tensor Plot, all Lower Stopes Excavated



The West and East Abutments

The west abutment lies immediately to the west of the No. 1 Stope and as such, it forms a
contiguous part of the abutment between the stopes and the shaft pillar. Any indications
of severe stressing of this area might be expected to spread towards the shaft in due course
without remedial action. The east abutment on the other hand adjoins the Norita East ore
zone which had not been mined at the time. Large stress concentrations in this area would
also not be tolerated. The result of the Hybrid stress analysis is shown in Table 7.10. Before
startup (Initial Position) the west abutment is still under compressive loads of between 60
and 70 MPa but thereafter, the stresses change to tensile and assume high values, reaching a
peak of about 135 MPa at the beginning of June 1986. Although they later decline to about
MPa tensile at the final simulation, the tensile stresses are considered high enough to have
caused failure if no support of some kind was instituted. The values for the cast abutiment
follow a pattern similar to that of the west abutment. It is worthy of note that the MINTAB
simulation put the maximum values for these stresses at 60 - 80 MPa for the west abutment
and at 80 - 100 MPa for the east abutment.

No. 2 Pillar

The hybrid stress results for the #2 Pillar are shown in Table 7.11 from where it is clear
that tensile stresses predominate soon after the initial position is established. This pillar is
best examined in twe parts: the western part on the one hand and the central and castern
parts on the other. The western part appears to bear the highest tensile stresses which
seem to peak around June 1986 with a maximumn value of 149 MPa. With respect to the
central and eastera parts of the pillar, the maximum principal stress is small but compressive
while the minimum principal stress is tensile, with a maximum value of about 60 MPa. The
explanation seems to be that as the transverse stoping operation continues, more and more
stopes are being mined to the east of this pillar. With the support previously provided by
the mined area gone, this pillar acts like a rod under bending moments with the western
part under tensicn and the eastern part under compression. The MINTAB results from
Figure 7.17 shows a stress regime of 60 - 80 MPa tensile in this pillar. Considering the
hybrid stress results for the central and eastern parts of the pillar (60 MPa as above), there
is a good correlation between the results.

No. 18 Pillar

An examination of the stress results for the No. 16 pillar as shown in Table 7.12 shows a
reverse situation compared to the No. 2 Pillar. Thus, the ecastern and central parts oi the
pillar show stress magnitudes similar to those of the castern and central parts of the No. 2
piliar, while the eastern part of the pillar shows responses similar to the western part of
the No. 2 pillar. However, the siress magnitudes are higher in the No. 16 pillar than in the
No. 2 pillar, a maximum of 176 MPa tensile being recorded even before the final excavations
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were taken. The same explanation for the No. 2 pillar seems to be true for the No. 16
pillar also. Again, the MINTAB results from Figure 7.17 show maximum stresses between
80 and 120 MPa for this pillar, values which are higher than those for the No. 2 pillar by
between 20 and 40 MPa. The correlation between the hybrid stress results and the MINTAB
results is also considered to be good for this pillar. This is the end of the case study on the
Norita Transverse Stopes Stability Analysis. An analysis for the upper 9/10 level stope was
considered but was not done because the stoping sequence was very similar to that of the
lower 10/11 Level stopes. The results of such an analysis would therefore have constituted
a duplicate of the presentation above for the lower 10/11 level stopes.



Table 7.1: Summary of SAP2D F.E. Analysis on Geco Conveyor Drift
Stress History of the Stope from Figs. 7.1 - 7.6

Analysis by the Noranda Technology Centre

Initial Position Final Position
(MPa) (MPa)

030 £ o € —4.76 0.00 € oo £ -7.58
Walls

~240 < 0y € —4.76 1.38 < o9 < =241

-13.79 € oy € =33.791 —-13.79 € oy < ~59.30
Floor

~480 < oy € —-9.65 -4.716 € o, < ~16.55

-965 < o £ —-30.34
Back Not Applicable

~240 < g < —11.03

Note: Negative Values indicate compressive stresses,
positive values, tensile
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Table 7.2: Summary of SAP2D F.E. Analysis on Geco Conveyor Drift
Stress History of the Drift from Figs. 7.1 - 7.6
Analysis by the Noranda Technology Centre

Initial Position Final Position
(MPa) (MPa)

o < ~6.90 o < 276
Walls

o3 ~ ~2.40 o, < -0.67

o < —10.34 o =~ -2.76
Floor

09 2 —2.40 09 =~ -0.67

o ~ —6.21 o, ~ =207
Back

ay =~ —-2.07 oy = 0.67

Note: Negative Values indicate compressive stresses,
positive values, teusile
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Table 7.3: Summary of Hybrid Stress F.E. Analysis on Geco Conveyor Drift
Stress History of the West Wall of the Stope

Initial First Final
Excavation Excavation Excavation
Node T2 ay (op) (o] (o) ay

83 || -5.351-2249 || -5.64 | -23.00 || -7.11 | -39.63
84 | 226 | 1.64 || 240 | 1.63 | 3.51 | 2.1
85 | 6.63 | -3.23 || 529 | -2.12 || 6.34 | -3.80
86 1.76 | 127 | 3.18 | 0.23 || 2.10 | 0.50
87 || -0.84 |-20.87 || 5.44 | -0.03 | 2.36 | -0.60

88 0.89 | -1.85 || 1.57 | 0.03
89 -3.27 1 -2217 )1 1.82 | 0.06
90 177 | -0.01
91 1.80 | 0.02
92 1.70 | -0.00
93 1.57 | -0.00
94 1.50 | 0.00
95 1.46 | -0.01

Note: Negative Values indicate compressive stresses,
positive values, tensile




Table 7.4: Summary of Hybrid Stress F.E. Analysis on Geco Conveyor Drift
Stress History of the East Wall of the Stope

Initial First Final
Excavation Excavation Excavation
Node | o, o1 o) oy o o,

103 || -1.15 | -19.72 | -1.58 | -20.73 || -11.63 | -42.12
104 |[ 449 | 1.86 || 4.64 | 1.78 3.69 | 0.70
105 || 536 | -3.60 [} 4.62 | -2.46 || 540 | -5.01
106 ) 1.85 | 0.81 1.91 | 0.40 224 | 0.58
107 | -8.271-2638 || 6.01 | -1.96 | 3.72 | -1.02

108 2.10 | -8.10 || 2.90 | 0.02
109 11.52 | -32.01 || 3.30 | 0.04
110 3.19 1 -0.01
111 3.21 002
112 3.20 | -0.00
113 3.19 | -0.00
114 3.20 | 0.00
115 3.21 | -0.00

Note: Negative Values indicate compressive stresses,
positive values, tensile
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Table 7.5: Summary of SAP2D F.E. Analysis on Geco Conveyor Drift

Stress History of Back and Floor Walls of the Stope

[nitial Excavation

First Excavation

Last Fxcavation

Node o) 01 topy o g a)

Floor

Left corner | -5.35 -22.49 || -5.64 -2347 10 -7.11 -39.63

Mid corner | -2.20 9410 -2.38 9651 -6.391 -14.12

Right corner || -1.15 21972 0 -1.58 2073 0 -11.63 ] 4212
Back

Left corner || -0.84 -20.87 )| -3.27 -2217 0 -5.5971 -25.74

Mid corner 1.98 -45.73 2.82 -40.73 1.57 | -41.44

Right corner || -8.27 -26.38 | 11521 32010 -9.56 ) -28.24

Note: Negative Values indicate compressive stresses,
positive values, tensile




Table 7.6: Summary of HYBRID F.E. Analysis on Geco Conveyor Drift
Stress History of the Conveyor Drift

Initial Excavation || First Excavation || Last Excavation

Node || 0y oy 0 oD o1

213 | -2.12 -11.18 318 | -11.72 0.52 0.25
214 ) 0.79 -1.37 0.74 -1.82 0.02 -0.19
215 | 1.99 -4.47 2.50 -3.31 -0.291  -0.56
225 | 0.32 -9.66 0.33 -8.61 0.07 -0.20
226 | 0.18 -8.47 0.17 -8.05 0.02 -0.20
239 || 2.73 -2.46 3.31 -0.90 -0.61 ) -1.28
240 § 0.86 -1.21 0.81 -1.43 0.03 -0.80
241 ) -2.27 -9.20 -3.01 -9.65 0.23 -0.07

215 226 241

Nodal numbers for

214 Conveyor belt 240
Drift
213 225 239

Note: Negative Values indicate compressive stresses,
positive values, tensile
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Table 7.7: Mechanical Properties of the Main Rock Types

Laboratory In-situ RMR Actual
Measured Classification Values
Rock values Values Used
Type E Poisson’s E | Poisson’s Poisson’s
(GPa) | ratio, v || (GPa) | ratio, v | (GPa)| ratio, v
Massive 232.0 0.164 28.0 100.0 0.25
Sulphides
Basaltic 95.0 0.261 10.0 50.0 0.25
Tuffs
Rhyolitic 68.0 0.15 10.0 0.0 0.25
Tuffs




Table 7.8: Mechanical Properties of the Main Rock Types

Compressive | Tensile | Rupture
Rock Strength || Strength || Strength
Type (MPa) (MPa) || (MPa)
Massive 316.0 30.39 32.90
Sulphides
Basaltic 118.00 11.80 37.01
Tuffs
Rhyolitic 98.30 15.24 18.14
Tuffs




Table 7.9: Summary of Hybrid Stress Analysis on Norita Transverse Stopes

Stress History of the Shaft Pillar

[nitial
Position

(MPa)

Position as at
June 1986
(MPa)

Final
Position

(MPa)

West Wall

~60.00 < 0y < -15.00

4.00 < 0y £6.00

—42.00 < 0y £ —-38.00

6.00 < o, <8.00

-48.00 < oy £ -3.00

6.00 <o <7.00

East Wall

-69.00< oy £ ~-19.00

5.00 < gy < 8.00

-130.00 < g, £ -9.00

-28.00 < 7, <21.00

-57.00 < oy < -10.00

6.00 <o, <9.00

North Wall

-104.00 < 0y £ -93.00

-34.00 <0, < -24.00

~137.00 < ¢, £ -107.00

-30.00 € ¢, <11.00

-118.00 <oy £ -49.00

-34.00 < o, < 11.00

South Wall

—-104.00 < oy < -97.00

~37.00 €0, £ ~15.00

—-141.00 € ¢, £ -102.00

~-30.00 <0, <11.00

—118.00 <oy < -99.00

-34.00 <o <11.00

|

Note: Negative Values indicate compressive stresses,
positive values, tensile
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Table 7.10: Summary of Hybrid Stress Analysis on Norita Transverse Stopes

Stress History of the West and East Abutments

Initial
Position
(MPa)

Position as at
June 1986
(MPa)

Final
Position

(MPa)

-67.00 < a0y £ —60.00

-31.00 € oy £ 7.00

-29.00 £ g £ -9.00

West
Abutment || ~13.00 € gy < =200 || 14.00 € 0, < 13500 13.00 < o £ 92.00
-38.00 < 09y £ =38.00 || —22.00 < oy < 9.00 | -27.00 < 0y < 14.00
East
Abutment || 51.00 < o, € 77.00 1 88.00 < o < 143.00 || 123.00 < 4, < 161.00

Note: Negative Values indicate compressive stresses,
positive values, tensile




Table 7.11: Summary of Hybrid Stress Analysis on Norita Transverse Stopes
Stress History of the #2 Pillar

Initial
Position

(MPa)

Position as at
June 1986
(MPa)

Final
Position

(MPa)

—-49.00 £ oy £ ~29.00

~18.00 € vy £ 24.00

~15.00 < oy < 23.00

West Wall
500 <o, <13.00 49.00 < 0, <149.00 | 15.00 <0, €£107.00
-43.00 <0, €-22.00 f -27.00 <03 < =3.00 1 —28.00 <oy <0.00
Central
core 0.00 < gy £43.00 37.00 < 07 £59.00 30.00 <oy < 41.060
-38.00 €0y < -24.001 ~22.00<a; <4.00 ~12.00 <0y €200
East Wall

—-16.00 < oy £43.00

2.00 < ¢y < 58.00

-2.00 <o, <5100

Note: Negative Values indicate compressive stresses,
positive values, tensile




Table 7.12: Summary of Hybrid Stress Analysis on Norita Transverse Stopes
Stress History of the #16 Pillar

Initial
Position

(MPa)

Position as at
June 1986
(MPa)

Final
Position

(MPa)

West Wall

-30.00 £ 0y £ -25.00

71.00 £ 0, £ 91.00

~60.00 < oy < —6.00

200 <oy £115.00

~20.00 < oy < —3.00

3.00 £ 03 £ 116.00

Central
core

—49.00 < 0y £ -31.00

67.00 < oy < 109.00

~17.00 < 0, £22.00

35.00 < 0, £198.00

0.00 €0, £27.00

62.00 <0, £91.00

East Wall

-52.00 < 0y < —37.00

85.00 < o7 £129.00

~5.00 < o, < 36.00

61.00 < 0, <93.00

~11.00 < oy < 17.00

50.00 < 0, £176.00

Note: Negative Values indicate compressive stresses,
positive values, tensile
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Chapter 8

Discussions and Conclusions

8.1 Discussions

A hybrid stress finite element procedure for investigating stability problems in the field of
geomechanics has been described and implemented. The theoretical basis, formulation of the
computer code and the various tests to verify it have also been described in detail. Although
emphasis has been laid on its use in mining and related fields, it was pointed out that its basis
is essentially a continuum whose properties and response to externally imposed forces can be
mathematically represented by a set of equations derived from the theory of elasticity. The
essential difference between this (hybrid stress) formulation and the traditional displacement

formulation was pointed out as leading to the advantage of using fewer elements for a more
accurate solution.

The final equations to be solved, as in most cases of fimte element analysis, are for the
nodal displacements. Two solution methods were investizated and implemented. One of
them, the so-called Skyline Storage method, required the assembly of the complete stiffness
matirx and therefore, a larger storage space in the computer. The resulting overheads in data
management causes longer delays in problem solution and is therefore ideally suited for small
problems. The other method, termed the "frontal soluticn scheme”, was also implemented.
This method does not require the complete assembly of the stiffness matrix and therefore
does not use up as much storage as the Skyline method. It is therefore ideally suited for
use with large problems and may be easier to implement in a small desktop computer where
data handling efliciency is of crucial importance.

Several closed form solutions to problems in elasticity were solved accurately, using the
new code, thus proving and establishing the veracity of the method. The case histories
dealt with in Chapter 6 are recent and current experiences of Noranda Minerals operations
in Quebec and Ontario. The results of the hybrid modelling in both cases confirm the
numerical modelling results done on the same problems by other methods although the
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magnitudes of the stresses by the hybrid method were generally higher than those by other
numerical procedures.

8.2 Notable Contributions

The finite element code was formulated in terrns of stress and displacements as the primary
unknowns. This is particulary relevant in the field of geomechanics where stress is the driv-
ing mechanism.

A particular feature of the formulation has been the derivation of the element stress
functions (the Airy’s Stress Function) in terms of element local coordinates. This scheme
involves complex mathematical formu!ation but has the advantage that the basis of the suff-
ness matrix computation for each element is the same. It also leads to less computational
errors than if the stiffness matrix for each element were computed on the basis of a set of
global coordinate axes, especially for a quadrilateral element

Most finite element procedures using quadnlateral elements up till now have tended
to concentrate on rectangular elements. The derivation of the relevant equations for a
generalized quadrilateral has been one of the strong points of this research for, it allows
curved and irregular edges of the continuum to be accurately modelled.

8.3 Suggestions for Future Work

Potential fields of applications of the hybrid stress finite element method are: in fracture
mechanics, a field which is becoming very important as the role of fractures in the concen-
tration and transmission of stress in rock masses - and consequently in mine design - become
more apparent; in fluid flow, interface modelling, rock bolt modelling, and non-linear mate-
rial response. Most of these fields of applications were not addressed in this thesis and could
easily form the basis of further research n the application of the stress hybrid finite element
method to geomechanics problems. A non-linear hybnd stress finite element version would
form the basis of more realistic geomechanics application especially in the field of mining.

The computer code was written in FORTRAN 77 and implemented on a micro VAX I1
computer with a large memory. Although micro VAX II fortran programs are generally
compatible with the more easily accessible IBM desktop computers, implementation of this
code on a smaller computer may require changes to the size of the various arrays used in
the program. The implementation of this code in another computer language such as "C”
would definitely save on computer memory and would speed up programme execution. None
of these items was attempted in the current research.
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The present code is for 8-node quadrilateral elements. A 4-node quadrilateral element
version will be less expensive to execute and should also produce accurate and acceptable
results.

A simple graphics programine could be written to display the meshes and plot the stresses
and displacements, rather than the present difficult method of exporting the output files to
an external graphics package.

8.4 Conclusions

The objectives of the research reported in this thesis were met. A hybrid stress finite element
computer code was written, along with mesh generation and alteration codes. The finite
element code was successfully verified and two mining casse histories were examined.
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Appendix A

LISTING OF THE HYBRID STRESS
COMPUTER CODE, HYBRID.FOR

The listing of the hybrid stress computer program, HYBRID.FOR, is
given in this Appendix. The program has been described in Chapter 5.
k2 2k o 2k o ok ok oK 6k 2 256 30 o K 3 o o 00 8 K 3K K K8 R R KRR K K R KO ONOR K OKOK R RO 3 ok K oK K

cC
cC
cc
cC
cC
cc
cC
cC
cC
cC
cC
cC
cC
cC
cC
cC
cC
cC

A GENERAL PURPOSE LINEAR ELASTIC
HYBRID STRESS FINITE ELEMENT PROGRAM

THE FOLLOWING LIMITS APPLY:

MAXIMUM NO. OF NCDES = 2000
MAXIMUM NO. OF ELEMENTS = 1000
MAXIMUM NO. OF NODES WITH DISPL. CONSTRAINTS = 200
MAXIMUM NO. OF ELEMENT SIDES WITH DISTRIBUTED LOADS = 100
MAXIMUM NO. OF MATERIAL TYPES = 10

IF ANY OF ABOVE LIMITS IS EXCEEDED, PROGRAM MUST BE RECOMPILED

IN THIS EDITION, CONSTRAINED ROWS AND COLUMNS OF THE STIFFNESS
MATRIX ARE NOT DELETED. SKYFAC/SKYSOL INVOCATION IS ON THE
UNREDUCED STIFFNESS MATRIX, LD VECTOR, aND QSLOD VECTOR.

CC***********#**********#**#*******t***************t******#*****

IMPLICIT REAL*8 (A-H,0-Z)
COMMON /BLK1/ PP(3,18),DB(3,8),DA(2,8),PB(3,3),SH(8),BD(3),DT
COMMON /BLK2/ XX(2,8), SS(3,3),GPT(4),GWT(4),KXY(8)
COMMON /O0AKS/ HMX(18,18),GG(18,16),XLL(2,16),HB(18)
COMMON /CONS/ THIC,NUMAT,NTYPE,NPOIN,NDIST,NNEL,
+ NNODE,NEQ,NQP,NWA ,MAXBAN,NTOT, IPRNT
COMMON /LINE/ LIN1,LIN2,LIN3,LIN4,LIN7,LIN8,LINS
COMMON /BLOK/ SE(9),TE(9)

COMMON ASKY(500000) ,NUMEL(8C00),QSLOD(4000),
+ DISPL(4000) ,LDVEC(4000),
+ XORD(2000),YORD(2000),
+ NELTYP(800) ,DENS(30),CAR(60)

LOGICAL EXISTS

CHARACTER#*1 TITLE(80)
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cC

CC INITIALIZE VARIABLES

cC
LIN1 = 1
LIN2 = 2
LIN3 = 3
LING = 4
LIN7 = 7
LIN8 = 8
LINS = 9

cC

CC CHECK THAT DATA FILE DECLARED NEW ARE NOT EXISTING.
CC IF THEY EXIST, PURGE THEM FIRST.

cc
CC ==mm oo e e e e
INQUIRE(FILE="CRDUTFILE’ ,EXIST=EXISTS)
IF(EXISTS) THEN
OPEN(UNIT=LINi,FILE=’COUTFILE’,STATUS='0LD’)
CLOSE(UNIT=LIN1,STATUS='DELETE’)
ENDIF
OPEN(UNIT=LIN1,FILE=’COUTFILE’,STATUS='NEW’,
1 FORM=’ FORMATTED )
ool e DL L LT
cc
OPEN(UNIT=LIN2,FILE='FILE2’,STATUS='NEW’,
1 ACCESS=’SEQUENTIAL’)
OPEN(UNIT=LIN3,FILE=’FILE3"’,STATUS='NEW’,
1 ACCESS=’SEQUENTIAL’)
o OPEN(UNIT=LIN4,FILE='FILE4’ ,STATUS='NEW’,
C 1 ACCESS=’SEQUENTIAL’)
OPEN(UNIT=LIN7,FILE='FILE7’,STATUS='NEW’',
1 ACCESS=a’SEQUENTIAL’)
OPEN(UNIT=LINS,FILE='FILES’,STATUS='NEW’,
1 ACCESS=’SEQUENTIAL’)
NQP=4
CALL GAUSCO(NQP,GPT,GWT)
C
LK =1
C DO 500 LK = 1,8
cc

CC CALL THE MESH GENERATING SUBROUTINE
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CC

cC

cc

10

20

CALL INPUT(TITLE,XORD,YORD,QSLOD,NUMEL,LDVEC,NELTYP,DENS,CAR)

NAMX = NNEL*306
DO 10 J=1,NWA
ASKY(J)=0.
CONTINUE

DO 20 J=1,NEQ
DISPL(J)=0.
CONTINVE

CC COMPUTE ELEMENT STIFFNESS MATRIX. ASSEMBLE INTO GLOBAL ARRAY

cC

25

NUM3 = NUMAT*3

REWIND LIN2

READ (LIN2,*) (XORD(I),YORD(I),I=1{,NNODE)
READ (LIN2,*) (NELTYP(I),I=1,NNEL)
READ (LIN2,*) (NUMEL(I),I=1,NTOT)
READ (LIN2,*) (DENS(I),I=1,NUM3)
DO 40 NL=1,NNEL

REWIND LINS

READ (LIN9,*) (QSLOD(I),I{=1,NEQ)
NN = NELTYP(NL)

RHO = DENS(NN)

N3 = NN*3

D025 I =1,3

DO 25 J = 1,3
$S(I,J) = 0.0
CONTINUE

SS(1,1) = CAR(N3-2)
85(1,2) = CAR(N3-1)
SS(3,3) = CAR(N3)
8S(2,1) = SS(1,2)
§s(2,2) = $5(1,1)
Ni = NL*8 - 7

N2 = N1 + 7

KK=0

DO 30 J = N1,N2
JJ=NUMEL(J)

KK = KK+1

XX(1,KK)=XORD(JJ)
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30
cC

40
CC

XX(2,KK)=YORD(JJ)
KXY (KK)=JJ
CONTINUE

CALL LL3.F(NL,NEQ,NQP,NWA,ASKY,QSLOD,LDVEC,THIC,RHO)
CONT UE

CC SCALE THE STIFFNESS MATRIX

cC

cC

cC

ASMAX = 0.
DO 60 I = 1,NWA

DD = ABS(ASKY(I))

IF(ASMAX-DD) 50,60,60
ASMAX = DD

ISP = 1

CONTINUE

DO 70 I = 1 ,NWA
ASKY(I) = ASKY(I)/ASMAX
CONTINUE

B L L L T T R R P T R P R ]

OPEN(UNIT=LIN4 ,FILE='FILE4’,STATUS='NEW’,
ACCESS='SEQUENTIAL’)
WRITE(LIN4,*) (ASKY(I),I=1,NWA), (LDVEC(I),I=1,NEQ+1)

CALL SKYFAC(ASKY,LDVEC,NWA,0,NEQ)

CC SCALE THE LOAD VECTOR

cC

130

cc

CC

140
cc

500

DO 130 I = 1,NEQ
QSLOD(I) = QSLOD(I)/ASMAX
CONTINUE

CALL SKYSOL(ASKY,LDVEC,NWA,NEQ,0,1,QSLOD,DISPL,NEQ)

CONTINUE

CALL STRSOL(DISPL,XORD,YORD,NUMEL ,DEN3,CAR,NELTYP,
THIC,NUMAT,NTYPE,NPOIN,NDIST,NNEL,

NNODE,NEQ,NQP,NWA ,MAXBAN,NTOT, IPRNT)
CONTINUE
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CLOSE(UNIT=LIN2,STATUS='DELETE’)
CLOSE(UNIT=LIN3,STATUS=’DELETE’)
CLOSE(UNIT=LIN4,STATUS=’DELETE’)
CLOSE(UNIT=LIN7,STATUS=’DELETE’)
CLOSE(UNIT=LINS,STATUS=’DELETE’)
STOP
END
CC ook sk sk o el 3 ROK O 0 A R HOK Ok 303 K 0K KOk o 3 o ok 3 380K o 9k 318 R ROk ke S o e i o i o ok ok kKK 0K
BLOCK DATA
IMPLICIT REAL*8 (A-H,0-2)
COMMON /BLOK/ SE(9),TE(9)
DATA SE/-1.0, 0.0, 1.0, 1.0, 1.0, 0.0,-1.0, -1.0, 0.0/
DATA TE/-1.0, -1.0, -1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 6.0/
END
CO ek ok i e o0 3k 3k e o e 3 B 3R Ok ok ok k3 3K a3 ok ok 35 5 3 2 o3 26 ol o 3k o 0 b ok ok oK 3K R ik 2K 3 i K K K K o ok o ok o % ok ok K
SUBROUTINE ELSTF(NL,NEQ,NQP,NWA,ASKY,QSLOD,
1 LDVEC, THIC,RHO)
IMPLICIT REAL*8 (A-H,0-7)

cc
COMMON /BLK2/ XX(2,8), SS3(3,3),GPT(4),GWT(4),KXY(8)
COMMON /0AKS/ HMX(18,18),GG(18,16),XLL(2,16),HB(18)
COMMON /LINE/ LIN1,LIN2,LIN3,LIN4,LIN7,LIN8,LIN9
DIMENSION QSLOD(1) ,ASKY(NWA) ,LDVEC(NEQ+1)
DIMENSION AMX(18,16) ,BS(16,16),HG(18)
INTEGER NEQ,NQP,NL,NWA

cc

CC FORM THE HMX MATRIX

cc
CALL HMTX(NQP,NL)

cc

CC INVERT THE H MATRIX

cc
CALL MATINV{HMX,18)

cc

CC FORM THE GG MATRIX

cc
CALL GMTX(QSLOD,NEQ,NL,NQP,THIC,RHO)

cc
DO 60 I=1,18
DD 60 J=1,16
DD=0.
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DO 50 K=1,18
50  DD=DD+HMX(I,K)*GG(X,J)
AMX(I,J)=DD
60 CONTINUE
65 format (6£12.4)
WRITE(LIN3,*) AMX
DO 80 I=1,16
DO 80 J=1,16
DD=0.
DO 70 K=1,18
70  DD=DD+GG(K,I)*AMX(K,J)
BS(I,J)=DD*THIC
80 CONTINUE
cc
CC FORM (HG) = INV.(HMX)*(HB)
cC
DO 120 I=1,18
HG(I)=0.
DO 110 J=1,18
HG(I)=HG(I)+HMX(I,J)*HB(J)
110  CONTINUE
120  CONTINUE
WRITE(LIN3,*) HG

ce
CC STORE TRANS.(GG) X (HG) IN FIRST 16 LOCATIONS OF (HB)
ce
D0 130 I=1,16
HB(I)=0.
DO 130 J=1,18
HB(I)=HB(I)+GG(J,I)*HG(J)
130 CONTINUE
cc
CC--~ EQUIVALENT NODAL FORCES
CC  SUM APPROPRIATE COMPONENTS OF HB INTO GLOLAL QSLOD VECTOR ONLY
ce
REWIND LIN9
READ (LIN9,*) (QSLOD(I),I=1,NEQ)
DO 140 J=1,16
J1=(J+1)/2
K=KXY(J1)*2-MOD(J,2)
QSLOD(K)=QSLOD (K)+HB(J)
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140  CONTINUE
REWIND LINS
WRITE (LIN9,*) (QSLOD(I),I=1,NEQ)
cc
CC BS(16,16) IS ELEMENT STIFFNESS MATRIX.
CC ELEMENTS OF BS ARE NOW SUMMED INTO ASKY (*)
cc
IF(NL.EQ.1) GOTO 145
145 DO 180 II=1,16
I=(II+1)/2
L=KXY(I)
LL=L*2-MOD(II,2)
DO 180 JJ=II,16
J=(JI+1)/2
M=KXY(J)
MM=M*2-MOD (JJ,2)
IF(LL-MM) 150,150,160
150  KK=IABS(LDVEC(MM+1))+LL-MM
GOTO 170
160  KK=IABS(LDVEC(LL+1))-LL+MM
170 ASKY(KK)=ASKY(KK)+BS(II,JJ)
180  CONTINVE
cc
oo
RETURN
END
CC o ok ok e e b 3 ot ok ok ok o 3 35 o e RNk ke e A ol ok R R R ok ok ko koK a2k R Ok K g o e R OK ak K K K e o ok K k0K X ok
SUBRUUTINE GAUSCO(N,A,W)
IMPLICIT REAL*8 (A-H,0-2)
DIMENSION A(N),W(N)

CC ==--- N=NO. OF GAUSS POINTS IN ONE DIMENSION

NLES1=N-1
G0T0(10,20,30), NLES1
10  A(1)=-0.577350269189626
A(2)=-A(1)
W(1)=1.0
wW(2)=1.0
GOTO 100
20  A(1)=-0.774596669241493
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A(2)=0.
A(3)=-A(1)
W(1)=0.555555555555556
W(2)=0.888888888888889
W(3)=W(1)
GOTO 100

30 A(1)=-0.861136311594053
A(2)=-0.339981043584856
A(3)=-A(2)
A(4)=-A(1)
W(1)=0.347854845137454
W(2)=0.652145154863546
W(3)=W(2)
W(4)=w(1)

100 RETURN
END

CC  exkmok oo ook koo ok ok o ok ak koK ok 3o ok ok o ook ok ok i 3 ok ok ok 6ok ok ok i ook ook ok ok ko bk ok ak kol a sk ook ok ok ok K

SUBROUTINE GMTX(QSLOD,NEQ,NL,NQP,THIC,RHO)
IMPLICIT REAL#8 (A-H,0-Z)

cC
COMMON /BLK1/ PP(3,18),DB(3,8),DA(2,8),PB(3,3),SH(8),BD(3),DT
COMMON /BLK2/ XX(2,8), 5S(3,3),GPT(4),GWT(4),KXY(8)
COMMON /0AKS/ HMX(18,18),GG(18,16),XLL(2,16),HB(18)
COMMON /LINE/ LIN{,LIN2,LIN3,LIN4,LIN7,LIN8,LINS
DIMENSION QSLOD(NEQ),GB(16),PC(2),BB(2,3),AP(3),BP(3),CP(3)
INTEGER NEQ,NQP

cC

CC INITIALIZE

cc

cc
DO 10 I=1,18
DO 10 J=1,16

10 GG(I,J)=0.

cc

CC NUMERICAL INTEGRATION OVER EACH ELEMENT SIDE

cc
DO 130 1IS=1,4
D0 15 J=1,16

15 GB(J)=0.
cc

CC COMPUTE LIMITS OF XLL MATRIX
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cC

cC
cC
cC

cC

20

30

40

50
cC
cC
cC

60
ce

Ni=I1S*4-3
N2=N1+§%

COMPUTE COMPONENTS OF SIDE IN X- AND Y-DIRECTIONS

I1=IS*2-1

I3=11+2

IF(I3.GT.8) 13=13-8
CY=XX(2,13)-XX(2,I1)
CX=XX{(1,I3)~XX(1,61I1)
RAD=SQRT(CX**2+CY**2)

CS=CY/RAD
SC=-CX/RAD
BB(1,1) = CS
BB(1,2) = 0.0
BB(1,3) = SC
BB(2,1) = 0.0
BB(2,2) = SC
BB(2,3) = (S

DO 110 II=1,NQP
PC(1) = 0.0
PC(2) = 0.0

SI=GPT(II)

TI=SI

WI=GWT(II)

G0T0(20,30,40,50), IS

TI=~1.0

GOTO €0

SI=1.0

GOTO 60

TI=1.0

GOTQ 60Q

SI=-1.0

---  NUMERICAL INTEGRATION OVER SIDE IS
CALL LMTX(SI,TI,XLL,IS)

CALL PMTX(SI,TI,PP,PB,BD,DELT,XX,RHO,NL)



cC
cC
cC
cC

cc

cC

65

66

67
70

cC

80
90

COMPUTE G AND GB MATRICES
MULTIPLY TRANS. OF BD BY GB AND STORE RESULT AS GB VECTOR

DO 70 I=1,18
DO 65 K = 1,3
AP(K) = PP(K,I)

IF(I.LE.3) THEN

CP(K) = PB(X,I)

ENDIF

CONTINUE

DO 67 J = 1,2

DO 66 K = 1,3

BP(K) = BB(J,K)

CONTINUE

DD = DOTPRD(AP,BP,3)

PP{J,I)=RAD * WI * THIC * DD/2.0

IF(I.LE.3) THEN

DD = DOTPRD(CP,BP,3)

D1 = RAD * WI * DD * THIC/2.0
PC(J) = PC(J) + D1*BD(I)
ENDIF

CONTINUE
CONTINUE

DO 90 I = 1,18
AP(1) = PP(1,I)
AP(2) = PP(2,I)

DO 80 JK = Ni,N2
J=JK

IF(J.GT.18) J=J-16
BP(1) = XLL(1,J)
BP(2) = XLL(2,))
GG(I,J) = GG(I,J) + DOTPRD(AP,BP,2)
CONTINUE

CONTINUE

DO 100 JK = Ni,N2
J=JK

IF(J.GT.16) J=]-16
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BP(1) = XLL(1,J)
BP(2) = XLL(2,J)
GB(J) = GB(J) + DOTPRD(PC,BP,2)

100  CONTINUE
110 CONTINUE

ccC

CC-~- EQUIVALENT NODAL FORCES
ccC SUM GB VECTOR INTO QSLOD
cC

DO 120 JJ = 1,16,2
11=(JJ+1)/2
J1=KXY(I1)*2-1
QSLOD(J1)=QSLOD{J1)-GB(JJ)
QSLOD(J1+1)=QSLOD(J1+1)-GB(JJ+1)

120  CONTINUE

130 CONTINUE
RETURN
END

CC e 3 3R K K OK e K 2 Kk o 3K 2 koK K K K K ok Ak K ke ok K A Ok K K R kKK K o R K K 325K K K K RO K K KK KK 3K K K K Ok K

SUBROUTINE SHAPEF(S,T,DA,DB,SH)
IMPLICIT REAL*8 (A-H,0-2)

DIMENSION DA(2,8) ,DB(3,8),SH(8)
cc

S1=(1.-5)/2.

S2=(1.48)/2.

Ti=(1.-T)/2.

T2={1.+T)/2.
cC
CC SH(I) = SHAPE FUNCTION
CC DA(L,I) = FIRST DERIVATIVE OF SHAPE FUNCTION WITH RESPECT TO S
CC DA(2,I) = FIRST DERIVATIVE OF SHAPE FUNCTION WITH RESPECT TO T
CC DB(1,I) = 2ND DERIVATIVE OF SHAPE FUNCTION WITH RESPECT TO S
CC DB(2,I) = 2ND DERIVATIVE OF SHAPE FUNCTION WITH RESPECT TO T
CC DB(3,I) = 2ND DERIVATIVE OF SHAPE FUNCTION WITH RESPECT TO S & T
cc

DO 20 J=1,8

SH(J)=0.

DO 20 I=1,3

IF (I.LE.2) DA(I,J))=C.

DB(I,J1)=0.

20 CONTINUE
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cC

cc

ce

cC

CC

DB(1,1)=T1
DB(1,2)=-2.*T1
DB(1,3)=T1
DB(1,5)=T2
DB(1,6)==2.%T2
DB(1,7)=T2

DB(2,1)=S1
DB(2,3)=S2
DB(2,4)=-2.%S2
DB(2,5)=82
DB(2,7)=S1
DB(2,8)=-2.%S1

DB(3,1)=1.25-32-T2
DB.3,2)=S
DE(3,3)=T2-52-.25
DB(3,4)=-T
DB(3,5)=S2+T2-0.75
DB(3,6)=-S
DB(3,7)=S2-T2-0.25
DB(3,8)=T

DA(1,1)=T1*(S+T/2.)
DA(1,2)=~5S*(1.-T)
DA(1,3)=T1%(S-T/2.)
DA(1,4)=T1*(1.4T)
DA(1,5)=T2%(S+T/2.)
DA(1,6)=-5*(1.+T)
DA(1,7)=T2%(S-T/2.)
DA(1,8)=-T2%(1.-T)

DA(2,1)=S1%(T+5/2.)
DA(2,2)==S1%(1.+S)
DA(2,3)=52%(T~S/2.)
DA(2,4)=-T*(1.+3)
DA(2,5)=52%(T+5/2.)
DA(2,6)=S2%(1.-S)
DA(2,7)=S1%(T-S/2.)
DA(2,8)=-T*(1.-S)

157



cC
SH(1)=~(1.-S)*(1.-T)*(S+T+1.) /4.
SH(2)=(1.-S*S)*(1.-T)/2.
SH(3)=(1.+S)*(1.-T)*(S-T-1.) /4.
SH(4)=(1.-T*T)*(1.+8)/2.
SH(5)=(1.+8)*(1.4T)*(S+T-1.)/4.
SH(6)=(1.-5*3)*(1.4T)/2.
SH(7)==(1.-8)*(1.4T)*(S-T+1.)/4.
SH(8)=(1.-T*T)*(1.-8)/2.

cc
RETURN
END

CC e akskok ok ok a2k 2 ok ok ok ok 6 s ok o 2 36 ok ok 2k ok ok 2k ok ok ok ok ok ok ok ko ok 3 ok 6 ik kK ok 3K ok ok K 3 oK K oK 3k ok o 2k ok o o ok 30K
SUBROUTINE PMTX(S,T,PP,PB,BD,DT,XX,RHO,NN)
IMPLICIT REAL*8 (A-H,0-Z)

CC =mwmm—mmmmcmmmmmme—cmcc e aae

CC THIS SUBROUTINE COMPUTES THE P MATRIX

CC AT AN INTEGRATION POINT

L e et
COMMON /CONS/ THIC,NUMAT,NTYPE,NPOIN,NDIST,NNEL,
1 NNODE,NEQ,NQP ,NWA ,MAXBAN ,NTOT,IPRNT
DIMENSION PP(3,18), PB(3,3), BD(3), XX(2,8)
DIMENSION DB(3,8),DA(2,8),SH(8)
DIMENSION QQ(2,18) ,ABC(3,3),DC(2) ,XJB(2,2)
ccC
CALL SHAPEF(S,T,DA,DB,SH)
cC

CC FORM THE INVERSE OF THE JACOBIAN MATRIX.
CC  DETERMINANT OF JACOBIAN IS DT
cC
DO 20 I=1,2
DO 20 J=t,2
XJB(I,J)=0.
DO 10 K=1,8
10 XJB(I,J)=XJB(I,J)+DA(I,K)*XX(J,K)
20 CONTINUE
DT=XJB(1,1)*XJB(2,2)~XJIB(1,2)*XJB(2,1)
ce
DD = XJB(1,1)/DT
XJB(1,1) = XJB(2,2)/DT
XJB(2,2) = DD

158



XJB(1,2) = -XJB(1,2)/DT
XJB(2,1) = -XJB(2,1)/DT

CcC

CC =--- [ABC] MATRIX

iC
ABC(1,1)=XJB(2,1)*x2
ABC(1,2)=XJB(2,2)%x2
ABC(1,3)=2.%*XJB(2,1)*XJB(2,2)
ABC(2,1)=XJB(1,1)*x2
ABC(2,2)=XJB(1,2)*%2
ABC(2,3)=2.*XJB(1,1)*XJB(1,2)
ABC(3,1)=-XJB(1,1)*XJB(2,1)
ABC(3,2)=-XJB(1,2)*XJB(2,2)
ABC(3,3)=-XJB(1,1)*XJB(2,2)-XJB(1,2)*XJB(2,1)

cC
DO 40 I=1,3
DO 40 J=1,18
PP(I,J)=0.
IF(I.LE.2) QQ(I,J)=0.

40 CONTINUE

CcC
PP(1,1)=2.
PP(1,4)=6.%S
PP(1,6)=2 T
PP(1,8)=12.%S%S
PP(1,11)=2 *T=T
PP(1,12)=6.%S=T
PP(1,13)=20.%S%S#S
PP(1,15)=12 *S*S»T
PP(1,17)=6.%S*Tx*T
PP(1,18)=2 *T*Tx*T

CC
PP(2,2)=2.
PP(2,5)=6.%T
PP(2,7)=2.%8
PP(2,8)=12.%T*T
PP(2,10)=6.%S*T
PP(2,11)=2.%3%S
PP(2,14)=20 . *T*T*T
PP(2,16)=12.,¥S*T*T
PP(2,17)=2 *S*S»S




cC

cC

cc

PP(2,18)=6.*S*S*T

PI3,3)=1.
PP(3,6)=2.%S
PP(3,7)=2 .%T
PP(3,10)=3 . *T*T
PP(3,11)=4 #S*T
PP(3,12)=3.%5%S
PP(3,15)=4 *xSxS%S
PP(3,16)=4 . *T*T*T
PP(3,17)=6.%S%S*xT
PP(3,18) =6 %S*T*T

QQ(1,1)=2.%S
QQ(1,3) =T
QQ(1,4)=3.%5%S
QQ(1,6)=2.%5xT
QQ{1,7)=T*T
QQ(1,8) =4 .%S*S*S
QQ(1,10)=T*T*T
QQ(1,11)=2 . %3*T*T
QQ(1,12)=3.%S*xS*T
QQ(1,13)=5.%54#5%S*S
QQ(1,15)=4 . *T*x3*S5*S
QQ(1,16) =T*T*T*T
QQ(1,17)=3 ., *S*S*T*T
QQ(1,18) =2, *S*T*T*T

QQ(2,2)=2 . T
QQ(2,3)=S
QQ(2,8)=3 . *T*T
QQ(2,6)=S*S
QQ(2,7)=2.*S*T
QQ(2,9) =4 . *T*T*T
QQ(2,10) =3, *S*T*T
QQ(2,11)=2 . %S*SxT
QQ(2,12)=5%5*3
QQ(2,14) =5 . *T*T*T*T
QQ(2,15)=S*S*S*S
QQ(2,16) =4  *S*T*T*T
QQ(2,17)=2. ¥T*S*S*S
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QQ(2,18) =3, *S*S*T*T
ccC
DO 60 I=1,2
DC(I)=0.
DO 60 JJ=1,8,2
= (JJ-1)/2
DC(I) = DC(I)+0.25%(XX(I,JJ)*(-1.0)**]J)
60  CONTINUE
cc

D1=DC(1)
D2=DC(2)
DO 70 I=1,2
DC(I) = D1*XJB(1,I)+D2*XJB(2,I)
70  CONTINUE
ce
DO 80 J=1,18
PP(3,J)=PP(3,J)-DC(1)*Qq(1,J)-DC(2)*QQ(2,J)
80 CONTINUE

cc
DO 100 J=1,18
D1=PP(1,J)
D2=PP(2,J)
D3=PP(3,J))
DO 100 I=1,3
DD = Di*ABC(I,1)+D2*ABC(I,2)+D3*ABC(I,3)
PP(I,J) = DD

100  CONTINUE

cC

CC BODY LOAD ARRAYS

cC

DO 110 I = 1,3

BD(I) = 0.

DO 110 J = 1,3

PB(I,J) = PP(I,J;
110  CONTINVE

CC
IF(GRAV.EQ.0.0) GOTO 150
DO 120 I=1,3
J=I+1
K=I+2

IF(J.GT.3) J=J-3
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120
cC

cC

130

140
CC
150

IF(K.GT.3) K=K-3
BD(I) = PB(3,J])*PB(1,K)-PB(3,K)*PB(1,J)
CONTINUE

DET=PB(2,1)*BD(1)+PB(2,2)*BD(2) +PB(2,3)*BD(3)
IF(DET.EQ.0) THEN

WRITE(*,*) 'ZERO DETERMINANT AT BODY LOAD SECTION.’
WRITE(*,*) 'PROGRAM ABORTS IN SUBRGUTINE PMTX'

STOP

ENDIF

¥0=0.

DO 130 I=1,8
YO0=YO+SH(I)*XX(2,I)
DG 140 I=1,3
BD(I)=RHO*BD(I)/DET
CONTINUE

RETURN
END

CC ook s ook ok ok s e sk s kol Ao o e ke o o e ol ok ok e S ¢k ok o ok ok ok e o ook o o o o e e sk ok ok ok ok ok ke ok ok o o Ok sk ok ok ok

CC

cc
cC
cc

10
cC

SUBROUTINE HMTX(NQP,NL)
IMPLICIT REAL*8 (A-H,0-2)

COMMON /BLK1/ PP(3,18),DB(3,8),DA(2,8),PB(3,3),SH(8),BD(3),DT
COMMON /BLK2/ XX(2,8), SS(3,3),GPT(4),GWT(4) ,KXY(8)

COMMON /DAKS/ HMX(18,18),GG(18,16) ,XLL(2,16) ,HB(18)

COMMON /LINE/ LIN1,LIN2,LIN3,LIN4,LIN7,LIN8,LINS

DIMENSION PQ(18,3),AP(3),BP(3),CP(3)

INTEGER NQP,NL

INITIALIZE

RHO =
DO 10
HB(I)
DO 10 J
HMX(I,J) = 0.0
CONTINUE

[ o T
# O W ©
(=

CC NUMERICAL INTEGRATION PART, AT EVERY INTEGRATION POINT.

162

e




cc
DO 100 II = 1,NQP
SI = GPT(II)
WI = GWT(II)
DO 100 JJ = 1,NQP
TI = GPT(JJ)
WJ = GWT(JJ)
cc
CC FORM THE P MATRIX AT THE INTEGRATION POINT
cc
CALL PMTX(SI,TI,PP,PB,BD,DT,XX,RHO,NL)
cc
cc
CC ---- FORM THE P TRANSPOSE X S MATRIX
cC
DO 50 I=1,18
DO 30 K = 1,3

AP(K) = PP(K,I)
30 CONTINUE

DO 50 J=1,3

DO 40 K = 1,3

BP(K) = SS(K,J)
40  CONTINUE

PQ(I,J) = DOTPRD(AP,BP,3)
50  CONTINUE

cC
CC =--- FORM THE (PQ MATRIX X P TRANSPOSE
ccC

DO 90 I=1,18

DO 60 K = 1,3

AP(K) = PQ(I,K)

60  CONTINUE
DO 90 J=1,18
DO70K=1,3
BP(K) = PP(K,J)
IF(J.GT.3) GOTO 70
CP(K) = PR(K,J)

70  CONTINUE
DD = DOTPRD(AP,BP,3)
HMX(I,J) = HMX(I,J) + DD * WI * WJ * DT
IF(J.GT.3) GOTO 90

LW aXa}



DD = DOTPRD(AP,CP,3)
HB(I)=HB(I) + DD * WI * WJ * DT * BD(J)
90 CONTINUE
100  CONTINUE
ce
RETURN
END
CC *****************#*************************************************
SUBRQUTINE LMTX(S,T,XLL,IS)
IMPLICIT REAL#8 (A~H,0-2)
DIMENSION XLL(2,16)
ce
S1=(1.-8)/2.
S2=(1.48)/2.
T1=(1.-T)/2.
T2=(1.+T)/2.
DO 20 I=1,2
DO 20 J=1,16
XLL(I,J)=0.
20  CONTINUE
cc
GOT0(30,40,50,60),1S
30 XLL(1,1)=-5*S1
XLL(1,3)=4,%S1%52
XLL(1,5)=5%32
XLL(2,2)=XLL(1,1)
XLL(2,4)=XLL(1,3)
XIL(2,6)=XLL(1,5)
GOTO 70
ce
40  XLL(1,5)=-TxT1
XLL(1,7)=4 xT1%T2
XLL(1,9)=T*T2
XLL(2,6)=XLL(1,5)
XLL(2,8)=XLL(1,7)
XLL(2,10)=XLL(1,9)
GOTO 70
cC
50 XLL(1,9)=5%S2
XLL(1,11)=4.%S1%52
XLL(1,13)=-5%S1
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cC
60

70

XLL(2,10)=XLL(1,9)
XLL(2,12)=XLL(1,11)
XLL(2,14)=XLL(1,13)
GOTO 70

XLL(1,13)=T*T2
XLL(1,15)=4 . *T1%T2
XLL(1,1)=-T*T1
XLL(2,14)=XLL(1,13)
XLL(2,16)=XLL(1,15)
XLL(2,2)=XLL(1,1)
CONTINUE

RETURN

END

CC ook sk ook ok o ok o8 e de ok ok K ok o i 8 B 3k ok 3 ok o 6 K ko ok R K K K 8 R 2 3 0l e 3 o3 3 ok ok ok Kok o ok o Kok ok ok ok ok o ok

cC

SUBROUTINE MATINV(HH,N)
IMPLICIT REAL*8 (A-H,0-2)

CC THIS ROUTINE INVERTS THE HH MATRIX AND RETURNS IT
CC ALSO AS HH

cC

CcC

20
ccC

cC
cc
cC
cC

COMMON /LINE/ LIN1,LIN2,LIN3,LIN4,LIN7,LIN8,LIN9
DIMENSION HH(N,N),A(18,18)

L10 = 30
DO 20 I=1,N
DO 20 J=1,N
A(I,1)=0.0
IF(I.NE.J) GOTO 20
A(I,D)=1.0
CONTINUE

I

DO 80 J=1,N

ROW OPERATION. OBTAIN UNITY IN (I,I) POSITION BY
DIVIDING ROW I BY H(I,I)

DD=HH(J,J)

DO 40 K=1,N
HH(J,K)=HH{J,K) /DD
A(J,K)=A(J,K)/DD
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40  CONTINVE
CC

CC COLUMN OPERATION. FOR THE JTH. ROW OF COLUMN I,
CC (I.NE.J), ADD -A(J,I) TIMES THE ITH. ROW TGO THE
C JTH. ROW SO AS TO OBTAIN ZEROS IN THE QFF-DIAGONAL
CC  ELEMENTS OF COLUMN I.
cC
DO 70 I=1,N
IF(I.EQ.J) GOTO 70
DD=HH(I,J)
DO 60 K=1,N
HH(I,K)=HH(I,K)-HH(J,K)*DD
A(T,K)=A(I,K)-A(J,K)*DD
60  CONTINUE
70  CONTINUE
80  CONTINUE
DO 100 I=1,N
DO 100 J=1,N
HH(I,J)=A(I,J)
100  CONTINUE
150 CONTINUE
RETURN
END
CC ook ok ok ok ok ok ak ok ok k3 ke 8 ok k8 o ok ok ok o o o oK R R ki o 6 KK I K 3K K k30 R OR o K R K R R KK K K
SUBROUTINE INPUT(TITLE,XORD,YORD,QSLOD,NUMEL,
+ LDVEC,NELTYP,DENS,CAR)
IMPLICIT REAL*8 (A-H,0-Z)
COMMON /CONS/ THIC,NUMAT,NTYPE,NPOIN,NDIST,NNEL,
+ NNODE, NEQ,NQP, NWA ,MAXBAN,NTOT, IPRNT
COMMON /BLK2/ XX(2,8), S$S5(3,3),CPT(4),GWT(4),KXY(8)
COMMON /LINE/ LINt,LIN2,LIN3,LIN4,LIN7,LIN&,LINO

DIMENSION PROPS(8,3),DLOAD(200),JDSIDE(200)
DIMENSION NLM(800,8),PL(800,2),JIX(4000)
DIMENSION NPL(800) , JDOF(2000,2)
DIMENSION XORD(1) ,YORD(1),QSLOD(1),NUMEL (1) ,LDVEC(1),
+ NELTYP(1) ,DENS(1),CAR(1)
CHARACTER*1  TITLE(80)
c
ceC
CC READ PROBLEM TITLE, PROBLEM SPECIFICATION DATA
cC
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ceC

fed
\¥)

cC
ceC
cc
cC
cc
cC
cC
cC
cC
cc
cc
cC
cC
ccC
cC
cC
ccC
cC
cC
cC
cC

cC
cC
"
ce
cC

OPEN(UNIT=LINS,FILE=’INFILE’,STATUS=’0LD’,
+ ACCESS=’SEQUENTIAL’ ,FORM='FORMATTED’)
READ(LINS,1) TITLE
FORMAT(80A1)
WRITE(*,*) TITLE
READ(LIN8,*) NNODE,NNEL,NUMAT,NTYPE,NPUIN,6NDIST,
+ IPRNT,THIC
WRITE(*,*) NNODE,NNEL,NUMAT,NTYPE,NPOIN,
+ IPRNT,THIC

INITIALIZE ARRAYS

GRAV = 0. => THERE ARE NO GRAVITY LOADS
NE. 0. => THERE ARE GRAVITY LOADS = ACTUAL VALUE

QsSLoD = NODAL DOF LOADS
NNGDE = TOTAL NO. OF NODES
NNEL = TOTAL NO. OF ELEMENTS
IPRNT = PRINT OUTPUT DATA QPTION
= § => DO NOT PRINT
= | => PRINT
THIC = ELEMENT THICKNESS, ASSUMED CONSTANT
DEPTH = DEPTH OF ORIGIN BELQOW SURFACE (NECESSARY IF GRAV > 0.)
NUMAT = TOTAL NO. OF MATERIAL TYPES
NTYPE = PROBLEM TYPE PARAMETER

=> PLANE STRESS
2 => PLANE STRAIN

NUMBERING OF THE BOUNDARY EDGES IS ANTICLOCKWISE, STARTING FROM
THE LEFTMOST VERTICAL BOUNDARY

NEQ = NNODE*2
DO 2 I = 1,NEQ
QSLOD(I) = 0.0
CONTINUE

READ ELEMENT PROPERTIES DATA

PROPS(I,1)
PROPS(I,2)

YOUNG'’S MODULUS FOR MATERIAL TYPE 1
POISSON'S RATIO FOR MATERIAL TYPE I
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CC PROPS(I,3)
CC 85(3,3)
cC

DENSITY FOR MATERIAL TYPE I
COMPLIANCE MATRIX

IJ =0
DO 10 I = 1,NUMAT
READ(LINS,*) (PROPS(I,J),J=1,3)
DO 10 J =1,3
1J = 1]+t
CAR(IJ) = 0.0
DENS(IJ) = 0.0
10 CONTINUE
CALL ELPROP(NUMAT,NTYPE,PROPS,CAR,DENS)

N3 = NUMAT=*3
cC
CC READ NODAL DATA
cC
CC XORD(I) = X-CCORDINATE OF NODE I
CC YORD(I) = Y-COORDINATE OF NODE I
CC JDOF(I,1) = X DOF OF NODE I
CC JDOF(I,2) = Y DOF OF NODE I
CC JDOF(I,J) = 0 => NODE I IS UNCONSTRAINED IN DIRECTICN J
CC JDOF(I,J) = 1 => NODE I IS CONSTRAINED IN DIRECTION J

cC
NEQ = O
DO 20 I = 1,NNODE
READ(LIN8,*) N, XORD(N), YORD(N), JDOF(N,1), JIDOF(N,2)
DD 20 J = 1,2
NEQ = NEQ+1
JIX(NEQ) = JDOF(N,J)

20 CONTINUVE

cC

CC READ ELEMENT GEOMETRIC DATA

cC

CC NLM(I,J) = NODE J OF ELEMENT I (J = 1,2, ..,8)
CC NELTYP(I) = PROPERTY TYPE OF ELEMENT I

cC

KK =0
DO 30 I = 1{,NNEL
READ(LINS,*) N,NELTYP(I),(NLM(I,J),J=1,8)
30 CONTINUE
cc
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cce
ccC
CC

cC
cC
CcC

ccC
ccC
CC
CcC
ccC
ccC
cc
ol
cc
cc
cc
cC
cc
cc
cC
CcC
CcC
CC
cC
CcC
CcC
cC
ccC
cc
cC
cC
cc

40

NTOT = 0
DO 40 I = 1,NNEL
DO 40 J = 1,8
NTOT = NTOT+1
NUMEL (NTQT) = NLM(I,J)
CONTINUE
--- MAXIMUM HALF BANDWIDTH
MAXBAN=2% (NLM(1,5)-NLM(1,1)+1)
FORM DIAGONAL PUSITIGON POINTER FCOR SKYLINE STORACE SCHEME
CALL SKDIAG(NEQ,NNODE,NNEL,JJX,LDVEC,NUMEL ,NTOT,NWA)

READ LOADING DATA

NPOIN = NCDAL POINT LOAD PARAMETER
= 0 => NO POINT LOAD
> 0 => THERE ARE POINT LOADS
IF NPOIN > O, THEN FOLLOWS NPOIN LINES OF DATA OF TYPE
KNODE XFORCE YFORCE
WHERE
KNODE = NODAL NUMBER
XFORCE = POINT LOAD IN X-DIRECTICN
YFORCE = POINT LOAD IN Y-DIRECTIQN
NDIST = DISTRIBUTED LOAD PARAMETER

= ¢ => THERE ARE NO DISTRIBUTED LOADS
> 0 => THERE ARE DISTRIBUTED LOADS ON NDIST BOUNDARY EDGES

IF NDIST > 0, THEN FOLLOWS NDIST LINES OF DATA OF TYPE

KSIDE  KFUNC FCRCE1 FORCE2

WHERE
KSIDE = BOUNDARY NUMBER
KFUNC = DISTRIBUTION FUNCTION
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cC
cC
cC
ccC
cC

CC
cC
cC
cc
ce
cc
cC
cC
ce
cC
cc
cC
cc
cc
cc
cC
cC
cC
ce
ol

80

1, LINEAR

2, QUADRATIC

DISTRIBUTED LOAD VALUE AT FIRST END
DISTRIBUTED LCAD VALUE AT SECOND END

FORCE1
FORCE2

IF(NPOIN.EQ.0) GOTO 69
J=0

LO 50 I = 1,NPOIN

READ(LINS,*) KK, XF, YF

J = J+1

NPL(J) = KK
PLCJ,1) = XF
PL(J,2) = YF

QSLOD (KK+KK-1) = QSLOD (KK+KK-1)+XF
QSLOD (KK+KK) = QSLOD(KK+KK)+YF
CONTINUE

DISTRIBUTED LOAD INPUT

NDIST = NO. OF SIDES WITH UNIFORMLY DISTRIBUTED LOADS.
JDSIDE(I,J) = ARRAY DESCRIBING GEOMETRIC PARAMETERS QF ELEMENT
SIDE WITH UNIFROMLY DISTRIBUTED LOADS.

I=1,2, ..., NDIST,

J=1,2,3,4

J =1 --> FIRST NODE ON THE ELEMENT SIDE

J = 2 --> SECOND NODE ON THE ELEMENT SIDE
J
J

= 3 --> THIRD NODE ON THE ELEMENT SIDE
= 4 --> ELEMENT NUMBER

DLOAD(I,J) = JTH COMPONENT COF DISTRIBUTED LOAD ON ITH SICT

I=1,2, ...., NDIST,

J =1, --> WX1, X-COMPONENT AT FIRST NODE

J =2, -=-> WYt, Y-COMPONENT AT FIRST NODE

J =3, --> WX3, X-COMPONENT AT THIRD NODE

J =4, --> WY3, Y-COMPONENT AT THIRD NODE

IF(NDIST.EQ.0) GOTO 80

write(*,*) ’'reading dist~ibuted lcad data’
DO 70 I = 1,NDIST

J1 = 4%]-3

J2 = 4x%]
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cc

cC

cc
cC
CcC

5

ce
ce
ce

ce
i

CC

cC
cC
o
cC
cc
ce
CC
CcC
cC

READ(LINS,*) (JDSIDE(J),J=J1,]2),(DLOAD(]),J=]1,]2)
70 CONTINUE

NDTOT = NDIST*4

FORMAT (417,4F10.3)

CALL DSLOD (NUMEL,NTOT,NDTOT,GPT,GWT,QSLOD, XORD,YORD,
+ DLOAD,JDSIDE,THIC,NQP,NEQ,NNGDE)

80 CONTINUE
WRITE QUTPUT FILES FOR OTHER PROCESSES

WRITE(LIN9,*) (QSLOD(I),I=1,NEQ)

00 FORMAT(® ’,6F12.4)
WRITE(LIN2,*) (XORD(I),YORD(I),I=1,NNODE)
WRITE(LINZ,~} (NELTYP(I),I=1,NNEL)
WRITE(LIN2,*) (NUMEL(I),I=1,NTOT)
WRITE(LIN2,%) (DENS(I),I=1,N3)

PP INT INPUT DATA

IF(IPRNT .EQ.0) GOTO 100

CALL OUTPUT(NLM,NELTYP ,NPL,PL,DL,PROPS,DLOAD, JDSIDE,
TITLE,THIC,NUMAT,NTYPE , NPOIN,NDTOT,NNEL,
NNODE,NEQ,NGQP ,NWA ,MAXBAN,NTOT, IPRNT)

00 CONTINUE
RETURN
END

kA ROK oK K R R KR 0 RO K K o s o sk ol i o 3 ok e ook KR ok ko e o ok ol e o o o o oK
SUBROUTINE ELPROP (MUMAT,NTYPE,PROPS, CAR,DENS)
IMPLICIT REAL*8 (A-H,0-2)

THIS SUBROUTINE COMPUTES THE COMPLIANCE MATRIX FOR ALL THE
DIFFERENT MATERIALS AND STORES THEM IN A LINEAR ARRAY CAR(x)

IN GENERAL, THE COMPLIANCE MATRIX WILL BE DIFFERENT FOR EACH
MATERIAL TYPE. ASSUMING LINEAR ELASTIC CASE, THIS MATRIX IS

SYMMETRIC AND IS DESCRIBED BY THREE CONSTANTS,VIZ

SS(1,1), SS(1,2) AND S$3(3,3).

THESE THREE CONSTANTS MAY BE COMPUTED FQR EACH MATERIAL TYPE
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cC
cC
cC
cC
cC
cc
cC

CC

ccC
cC

cC
cC
cC

cC

cc

AND STORED IN A COMPLIANCE ARRAY CAR(3I-2),CAR(3I-1)AND
CAR(3I) WHERE

I =1,2, ..., NUMAT,

CAR(3I-2) => S5(1,1)

CAR(3I-1) => S5(1,2) OR S$S(2,1)

CAR(3I) => $5(3,3)

DIMENSION PROPS(8,3), CAR(1),DENS(1)

GRAV = ACCELERATION DUE TQO GRAVITY (KM/SEC sQ)

GRAV = 9.80665
DO N = 1,NUMAT
N3 = N*3

YM = PROPS(N,1)
PR = PROPS(N,?2)
BETA = YM/(1.0 - PR*PR)
IF(NTYPE.EQ.2) THEN
BETA = BETA*(1.0 - PR)*(1.0 = PR)/(1.0 - 2.0%PR)
ENDIF

COMPLIANCE MATRIX CONSTA™TS

GAMA = 1.0/(BETA*(1.0 - PR*PR))
CAR(N3-2) = GAMA
CAR(N3-1) = -PR*xGAMA
CAR(N3) = 2.0%(1.0 + PR)/YM
DENS(N) = GRAV*PROPS(N,3)*1.0E-03
ZNDDO

RETURN
END
o ok o 3 3k e e ok e o R K i ik oAk kR b RO o Ik R ook 3k sk A R koOK Kok R ok R xiokok Ok ki ok ik ok K ok 3K K ok ik K ok
SUBROUTINE DSLOD (NUMEL ,NTOT,NDTOT,GPT,GWT,QSLOD,X0ORD,YORD,
+ DLOAD, JDSIDE, THIC,NQP,NEQ,NNGDE)
IMPLICIT REAL*8 (A-H,0-2)
COMMON /LINE/ LINt,LIN2,LIN3,LIN4,LIN7,LIN8,LINS
DIMENSION QSLOD(1),GPT(1).GWT(1)
DIMENSION XORD(1),YORD(1)
DIMENSION NUMEL (1) ,DLDOAD(1),JDSIDE(1)
DIMENSION XLL(2,16),XX(2,8) ,KXY(8)
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DIMENSION CZ(2,4),IX(3), IZ(3), BZ(2)
DIMENSION SH(8) ,DA(2,8),DB(3,8),AZ(16) ,WZ(4)

cc
NNEL = NTOT/8
ce
C WRITE(*,*) ’IN DSLOD’
ce
NDIST = NDTOT/4
cc
DO 500 NBD = {,NDIST
NB4 = 4*NBD
NB1 = NB4-4
NJ = JDSIDE(NB4)
IF(NJ.EQ.0) GOTO 500
ce
CC FORM THE [XX] AND {KXY} ARRAYS
ce
N1 = NJI#*8-7
N2 = N1+7
KK = 0
DO 20 J = Ni,N2
JJ=NUMEL(J)
KK = KK+1
XX(1,KK)=X0RD(JJ)
XX(2,KK)=YORD(JJ)
KXY (KK)=JJ
20 CONTINUE
ce
CC FORM THE {IZ} AND {WZ} ARRAYS
cc

D030 I =1,4
WZ(I) = DLOAD(NB1+I)
IF(I.LE.3) IZ(I) = JDSIDE(NB1+I)
30 CONTINUE

o
CC LENGTH OF THIS SIDE
cC
It = IZ(1)
12 = 1Z(3)
X1 = XORD(I1) -XORD(I2)
¥1 = YORD(I1) ~YORD(I2)
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CC
cC
ce
cC
cc
cC
cc
cC
cC

cc
cC
cC

40

50
cC
€0

cC
CC
cc

RADI = SQRT(X1#%2 + Y1%%2)

NODAL NUMBERING IS SEQUENTIAL FOR THE ELEMENT, IE
1,2,3, ...,8 WHERE
SIDE 1,(KL = 1), IS DESCRIBED BY NODES 1,2,3

SIDE 2,(KL = 2), IS DESCRIBED BY NODES 3,4,5
SIDE 3,(KL = 3), 1S DESCRIBED BY NODES 5,6,7
SIDE 4,(KL = 4), IS DESCRIBED BY NODES 7,8,1

FIND THE KL VALUE FOR THIS SIDE

DOS0OI = 1,8,2

I2 = (I+1)/2

IX(1) = KXY(I)

IX(2) = KXY(I+1)

I1 = I+2

IF(I1.GT.8) I1 = I1-8
IX(3) = KXY(I1)

COMPARE {IXY AND {IZ} ARRAYS

KL = 3

DO 40 J = 1,3

IF(IX(J) .EQ.IZ(J)) KL = KL-1
CONTINUE

IF(KL.EQ.0) THEN

KL = I2

GOTO 60

ENDIF

CONTINUE

CONTINUE

I1 = KL*2-1
12 = T1+2

Ji = KXY(I1)
J2 = KXY(I2)

NUMERICAL INTEGRATION OVER SIDE KL
DO 300 II = 1,NQP

SI = GPT(ID)
TI = SI
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WI = GWT(II)
GOTO (70,80,90,100) KL

70 TI = -1
GOTN 110
80 SI=1.0
GOTO 110
90 TI=1.0
GOTO 110
100  SI=-1.0
cC
110  CONTINUE
CI = SI
IF(ABS(SI).EQ.1.0) CI =TI
cc
CALL SHAPEF(SI,TI,DA,DB,SH)
CALL LMTX(SI,TI,XLL,KL)
cc
cc
CC FORM THE CZ MATRIX
cc

DO 152 I = 1,2

DO 162 J = 1,4

Cz(1,J) = 0.0
152 CONTIMUE

cc
czZ(1,1) = (1.0-CI)/2.0
CZ(1,3) = (1.04CI)/2.0
cz(2,2) = (1.0-CI)/2.0
CzZ(2,4) = (1.0+4CI)/2.0

cc

cc [cz] = {wz} = {BZ}

cC

PO 170 I = 1,2
DO 160 J = 1,4
AZ(J) = CZ2(1,))
160 CONTINUE
BZ(I) = DOTPRD(AZ,WZ,4)
170 CONTINUE
cC
CC NOW FORM THE CONSISTENT LOAD VECTOR FOR THIS SIDE
cC
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DO 185 I = 1,16
DD = BZ(1)*XLL(1,I) + BZ(2)*XLL(2,I)
AZ(I) = DD*THIC*WI*RADI/2.0

185  CONTINUE

cc
CC ASSOCIATE CONSISTENT LOAD VECTOR WITH GLOBAL LOAD ARRAY
oo
DO 210 I = 1,8
I1 = I*2
J = KXY(I)¥2
QSLOD(J-1) = QSLOD(J-1) + AZ(I1-1)
QSLOD(J) = QSLOD(J) + AZ(I1)
210 CONTINUVE
cc
300 CONTINUE
500 CONTINUE
cC
RETURN
END
CC ook ok o 3 Kk 30K ok 30K KO 3 KRR KKK KK 308 ROK 38 K0 80K 30Ok K 30 e ok 380K K 30K 0RO KK R K ok ok ok ok
SUBRQUTINE OUTPUT(NLM,NELTYP,NPL,PL,DL,
PROPS,DLOAD, JDSIDE,TITLE,
THIC,NUMAT,NTYPE,NPOIN,NDTOT,NNEL,
NNODE,NEQ,NQP,NWA ,MAXBAN,NTOT, IPRNT)
IMPLICIT REAL*8 (A-H,0-2)

cC
COMMON /BLK1/ PP(3,18),DB(3,8),DA(2,8),PB(3,3),5H(8),BD(3),DT
COMMON /LINE/ LIN1,LIN2,LIN3,LIN4,LIN7,LIN8,LINS
DIMENSION DL(4,2),PL(65,2) ,NLM(64,8) ,NPL(65)
DIMENSION NELTYP(1) ,PROPS(NUMAT,1)
DIMENSION DLOAD(1), JDSIDE(1)
CHARACTER*1  TITLE(80),STAR(80)
cc
cC PRINT RESULTS
CC
NDIST = NDTOT/4
D05 I=1,80
STAR(I) ='%’
5 CONTINUE
IF(IPRNT.EQ.0) GOTO 700
cC
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Q0

Q

C

Q

OO a0

WRITE(LIN1,10) STAR

WRITE(LIN1,10) (TITLE(I),I = 1,80)
WRITE(LIN1,10) STAR

FORMAT (/,80A1)

WRITE(LIN1,500) NNODE,NNEL,NUMAT,THIC

WRITE(LIN1,530)

DO 20 I = 1,NNODE

WRITE(LIN1,550) I,XORD(I),YORD(I),JDOF(I,1),JDOF(I,2)
CONTINUE

WRITE(LIN1,510)

DO 30 I=1,NNEL

WRITE(LIN1,520) I,NELTYP(I),(NLM(I,J),J=1,8)
CONTINUE

WRITE(LIN1,650)

DO 25 I = 1,NUMAT

WRITE(LIN1,615) I, PROPS(I,1),PROPS(I,2),PROPS(I,3)
CONTINUE

IF(NTYPE.EQ.1) THEN
WRITE(LIN1,580)
ELSE
WRITE(LIN1,590)
ENDIF

IF(NPOIN.GT.0) THEN

WRITE(LIN1,610)

DO 40 I = 1,NPOIN

WRITE(LIN1,620) NPL(I),PL(I,1),PL(I,2)
CONTINUE

ENDIF

IF(NDIST.GT.0) THEN

WRITE(LIN1,640)

DO 50 I = 1,NDIST

J1 = 4%x1-3

J2 = 4x]

WRITE(LIN1,645) JDSIDE(J2),(JDSIDE(J),J=J1,J2-1),
(DLOAD(J),J=J1,J2)
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60

QOO0 0an

Q
Q

500

510

520
530

540
5850
560

870
580
590
610

615
620
640

CONTINUE
ENDIF

WRITE(LINt,560)
WRITE(LIN1,570) (LDVEC(I),I=2,NEQ+1)

WRITE(LIN1,675)
DO 60 I = 1,NEQ,2
J = (I+1)/2
WRITE(LIN1,690) J,QSLOD(I),QSLOD(I+1)
CONTINUE
WRITE(LIN1,10) STAR
WRITE(LIN1,680)
WRITE(LIN1,10) STAR

FORMAT(’ ',//,5X,'TOTAL NO. OF NODES =’ 110/,
65X, TOTAL NO. OF ELEMENTS =’ 110/,
5X,’TOTAL NO. OF MATERIAL TYPES =',I10/,
5X, 'ELEMENT THICKNESS =',F10.3/)

FORMAT(’ ’,/,15X,’ELEMENT NODE NUMBERING’,/,
! ELEM ELEM NODE! NODE2 NODE3 NODE4’,

+ ' NODES NOUDE6 NODE7 NODE8’,/,

' NO TYPE’,/)
FORMAT(I4,4X 12,8(4X,13))
FORMAT(/,’ NODE X-COORDINATE Y-COCRDINATE .y

'X-DOF Y-DOF’,/)

FORMAT(® ',15,2(6X,F10.5))

FORMAT(® ' ,I5,2(6X,F10.5),2(6X,13))

FORMAT(/,’ ',’ DIAGONAL ELEMENT POSITIONS IN THE ',
'SKYLINE VECTOR. ’,/,’ (NEGATIVE VALUE’,

+ ’ INDICATES CONSTRAINED D.0.F)’/)

FORMAT(1017)

FORMAT(/,20X,’ PROBLEM TYPE PLANE STRESS’,/)
FORMAT(/,20X,’ PROBLEM TYPE PLANE STRAIN’,/)
FORMAT(20X,’ POINT LOAD DATA’,/,

10X, ‘' NODE NO. X-FORCE Y-FORCE’,/)

FORMAT(10X,15,8%,F9.3,2(8X,F5.3))
FORMAT(10X,15,8X,F9.3,5%X,F8.3)

FORMAT (20X, ' DISTRIBUTED LOAD DATA',/,
5X,'ELEM. NO. NODE1 NODE2 NODE3 XLOAD1’,
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+ 2X,’YLOAD1 XLOAD3 YLOAD3',/)
645 FORMAT(2(5X,I15),2(4X,I3),1X,4(1X,F7.2))
650 FORMAT(/,20X,' ELEMENT MATERIAL PROPERTIES ’,//,

+ 10X, ' MATERIAL YOUNG"S POISSON"S DENSITY’,/,
+ 10X, ' TYPE MOD RATIO (KG/CU.M)’,/)
675 FORMAT(/,10X,’ NODAL LOQADS ’,/,
+ ' NODE X-LOAD Y-LOAD’,/)

680 FORMAT(/,10X,’ NODAL DISPLACEMENTS ’,/,
+ ' NODE X-DISPLACEMENT Y-DISPLACEMENT',/)
690 FORMAT(1X,I4,2(6X,E10.3))

cC
700 CONTINUE
RETURN
END

CC ¢ o 3k o ok ok e 3 2 s e A R Kk 3 3Kk K o oK 3 e e 8 o R K K 3k 30K e 5 ofe 3 3k ik ok 3k ok 6 e ek i K K K 2k 3 e ok ok K K Kk Ok K Kk Kk K
SUBROUTINE SKDIAG(NEQ,NNODE,NNEL,JJX,LDVEC,NUMEL,NTOT,NWA)
IMPLICIT REAL*8 (A-H,0-2)

COMMON /LINE/ LIN1,LIN2,LIN3,LIN4,LIN7,LIN8,LIN9
DIMENSION JJX(1),LDVEC(1),KH(2000)
DIMENSION NUMEL(1),JD(2000)

cC
CC --- VECTOR LDVEC HOLDS THE POSITION NUMBERS QF THE DIAGONAL ELEMENTS
cc
DO 20 I=1,NNODE
20 JD(I)=0
DO 50 II=1,NNEL
I1 = II*8 - 7
I2 =11+ 7
cC
CC ~--- FIND SMALLEST NODE ( = NODE 1)
cC
N1=100000
DO 30 J=I1,I2
JJ=NUMEL(J)

IF(N1.GT.JJ) Ni=JJ
30  CONTINUE

cC
CC =--- FIND SKYLINE POSITION
ccC
NSK=N1%2-2
cc
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CC --- FIND THOSE NODES WITHOUT SKYLINE
C --- HEIGHT OF DIAGONAL ELEMENT BELOW SKYLINE = D.0.F-NSK
cC
DO 40 JJ=I1,I2
J=NUMEL (JJ)
IF(JD(J) .EQ.1) GOTO 40
Ji=J%2-1
J2mJ*2
KH(J1)=J1-NSK
KH(J2)=J2-NSK
JD(J)=1
40  CONTINUE
50  CONTINUE

ce
¢C --- ESTABLISH SKYLINE DIAGONAL VECTOR
cC

LDVEC(1)=0

DO 60 I=1,NEQ

LDVEC(I+1)=LDVEC(I)+KH(I)
60  CONTINUE
cc
NWA=LDVEC(NEQ+1)
D0 70 I=1,NEQ
Jal+1
IF(JJ%(I).GT.0) THEN
LDVEC(I+1)=-LDVEC(I+1)
ENDIF
70  CONTINUE
cc
RETURN

END
cC *****#***********************************************************#*

SUBROUTINE SKYFAC (A,LD,NWA,NBEG,NEND)
IMPLICIT REAL*8 (A-H,0-Z)

cC

CcC PERFORMS SYMMETRIC INCORE FACTORIZATION OF A

CC SPARSE, BANDED, SKYLINE-STORED, SYMMETRIC MATRIX.

cC
COMMON /LINE/ LINi,LIN2,LIN3,LIN4,LIN7 ,LIN8,LINS
DIMENSION A(1), LD(1), V(20000)
REAL AIJ2, D, EPSMAC, UMAX, UMIN
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LOGICAL SINGAB
EQUIVALENCE (AIJ2,D,DMAX)

cc
DATA EPSMAC/1.49E-8/, UMAX /1.00/, UMIN /0.625/
ce
CC INITIALIZATION
cC

REWIND LIN4
READ (LIN4,*) (A(I),I=1,NWA), (LD(I),I=1,NEND+1)
9000  FORMAT(1X,4E20.14)
909 FORMAT(1017)
IKJ =0
SINGAB = .TRUE.
cC
CC COMPUTE SQUARED LENGTHS OF UNCONSTRAINED ROWS NBEG+1 THRU NEND
cC
200 NBEGP!1 = NBEG+1
DO 1000 I = NBEGP1, NEND
II = LD(I+1)
IF(II) 1000,1000,400
400  V(I) = A(II)*x2
M= II-I
K = MAXQ(NBEGP1,IABS(LD(I))-M+1)
L = MINOCNEND,I) - 1
IF(K-L) 500,500,1000
500 DO 800 J = K,L
IF(LD(J+1)) 800,800,600
600 AIJ2 = A(M+J)*x2
V(I) = V(I) + AIJ2
V(I = V(I) + AIJ2
800 CONTINUE
1000  CONTINUE

cC
CC  FACTORIZATION SECTION
cC
DO 4000 J = NBEGP1,NEND
CcC

CC COMPUTE KU SUPERDIAGONAL ENTRIES OF JTH COLUMN OF [U]
CC IF UNCONSTRAINED
cC

JJ = LD(J+1)
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IF(JJ) 4000,40Cv,1200
1200 D = A(JJ)
JMJ = IABS(LD(J))
JK = JJ - IMJ
KU = JK - 1
IF(KU.EQ.0) GOTO 2200
DO 2000 K = 1,KU
I=J-JK+K
V(X) = 0.0
II = LD(I+1)
IF(II) 2000,2000,1800
1800 M = MINO(II - IABS(LD(I)),K) - 1
IJ = JMJ + K
V(K) = A(IJ) - DOTPRD(A(II-M),V(K-M),M)
AC(TI) = V(K)*A(II)
2000  CONTINUE
oo
CC  COMPUTE DIAGONAL ELEMENT
cc

D = D - DOTPRD(A(JMJ+1),V,KU)
2200 CONTINUE
cC
CC SINGULARITY TEST
cc
TOLROW = 8.0 * EPSMAC * SQRT(V(J))
IF(ABS(D).GT.TOLROW) GOTO 2500
IF(SINGAB) GOTO 6000
D = TOLROW
2500 A(JJ) = 1.0/D
4000 CONTINUE
5000 CONTINUE

cC
REWIND LIN4
WRITE(LIN4,*) (A(I),I=1,NWA), (LD(I),I=1,NEND+1)
RETURN

CC

CC ERROR EXIT

CcC

6000 WRITE(%,*) ’FATAL ERROR’

STOP
END
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SUBROUTINE SKYSOL(A,LD,NWA,N,IOP,IBX,B,X,NQ)
IMPLICIT REAL*8 (A-H,0-2Z)
COMMON /LINE/ LINt,LIN2,LIN3,LIN4,LIN7,LIN8,LINO

cC
DIMENSION X(1), A(1), B(1), LD(1)
REAL BI, BXFAC
REAL XI, XNORM
EQUIVALENCE (BI, XI, XNORM)

cc

CC  INITIALIZATION

cc

REWIND (LIN4)
READ (LIN4,*) C(A(I),I=1,NWA), (LD(I),I=1,NQ+1)
909 FORMAT (1017)
9000  FORMAT(1X,4E20.14)
KREF = 1
BXFAC = 0.0
IF(IBX.EQ.0) GOTO 200
BXFAC = 1.0
DO 150 I = 1,N
150  X(I) = B(I)
200 IF(IOP.GT.0) GOTO 1800
IF(IBX.EQ.0) GOTO 1100
cc
CC  RHS MODIFICATION
ce
DO 1000 I = 1,N
II = LD(I+1)
IF(II) 300, 1000, 1000
300 BI = B(I)
IF(BI.EQ.0.0) GOTO 1000
II = 11
K=1-II+ IABS(LD(I)) +1
DO 900 J = K,N
JJ = LD(J+1)
IF(JJ)  $00,900,400
400 M= J-I
IF(M) 500,600,600
500  X(J) = X(J) - A(II+M)*BI
GOTO 900
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600 IJ=JJ -M
IF(IJ-IABS(LD(J))) 900,900,800
800 X(J) = X(J) - A(IJ)*BI
900  CONTINUE
1000  CONTINUE

cC
CC  FORWARD SUBSTITUTION PASS
cC

1100 DO 1500 I = 1,N

IT = LD(I+1)
IF(II) 1200,1200, 1300
1200  X(I) = 0.0
GOTO 1500
1300  IMI = IABS(LD(I))
M= II - TMI -1
X(I) = X(1) - DOTPRD(A(IMI+1),X(I~M),M)
1500  CONTINUE
IF(IOP.NE.0) GOTO 5000
ce
CC  SCALING PASS
ccC
1800 DO 2000 I = t,N
II = IABS(LD(I+1))
2000  X(I) = ACID)*X(D)

cc
CC  BACK SUBSTITUTION PASS
cC

I=N

DO 3000 K = 1,N

II = LD(I+1)

IF(II) 220¢,2200,2400
2200  X(I) = BXFAC*B(I)
GOTO 2800
2400 M = II - IABS(LD(I)) -1
IF(M.EQ.0) GOTO 2800
DO 2500 J = 1,M
X(I-J3) = X(I-J) - A(II-1)*X(I)
2500  CANTINUE
2800 I =1 -1
3000 CONTINUE
210  FORMAT(1X,I4,6X,E10.3,6X,E10.3)
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cC

CC  CONSTRAINED RHS RECOVERY

ccC
4000

4200

4400
4600
4800
5000

IF(IBX.LE.0) GOTO 5000
DO 4800 I = 1 ,N
II = LD(I+1)
IF(II) 4200,4200,4800
IMI = IABS(LD(I))
M= -II -IMI -1
B(I) = DOTPRD(A(IMI+1),X(I-M),NM)
DO 4600 J = 1,N
IJ = IABSCLD(J+1)) + I - J
IF(IJ-IABS(LD(J))) 4600,4600,4400
B(I) = B(I) + A(I3)*X(J)
CONTINUE
CONTINUE
CONTINUE
REWIND LIN4
WRITE(LINgG,*) (X(I),I=1,NQ)
RETURN
END

CC 3ot e s ok kR ok 3k 0K A ok 3 ok ot ki s ok ik ok 3 o o 8 ke ook Ok 6 6 ok 3 o 3 ool 3 o ok e ek ok ok ok okok

cC

SUBROUTINE STRSOL(DISPL,XORD,YORD,NUMEL,DENS,CAR,NELTYP,
THIC ,NUMAT,NTYPE,NPOIN,NDIST,NNEL,
NNODE,NEQ,NQP,NWA ,MAXBAN,NTOT, IPRNT)
IMPLICIT REAL*8 (A-H,0-2)
COMMON /BLK1/ PP(3,18) ,DB(3,8),DA(2,8),PB(3,3),8H(8),BD(3),DT
COMMON /BLK2/ XX(2,8), SS(3,3),GPT(4),GWT(4),KXY(8)
COMMON /0AKS/ HMX(18,18),GG(18,16),XLL(2,16) ,HB(18)
COMMON /LINE/ LIN1,LIN2,LIN3,LIN4,LIN7,LIN8,LINS
COMMON /BLOK/ SE(9),TE(9)
DIMENSION QQ(16),SIG(6),PX(2000),8PX(2000,6)
DIMENSION AMX(18,16) ,BMX(18) ,BETA(18), DS(3)
DIMENSION DENS(1) ,CAR(1) ,NUMEL(1),XORD(1),
YORD(1) ,DISPL(1) ,NELTYP(1)

NUM3 = NUMAT=*3

REWIND LIN2

READ (LIN2,*) (XORD(I),YORD(I),bI=1,NNODE)
READ (LIN2,*) (NELTYP(I),I=1,NNEL)

READ (LIN2,*) (NUMEL(I),I=1,NTOT)
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READ (LIN2,*) (DENS(I),I=1,NUM3)
cc
CC READ DISPLACEMENT DATA FROM LIN4 AND WRITE
CC STRESSES AT ELEMENT CENTRES TO IT
ce
REWIND LIN4
READ (LIN4,*) (DISPL(I1),I=1,NEQ)
REWIND LIN4
WRITE(LIN1,630)
DO 71 =1,NEQ,2
J = (I+1)/2
WRITE(LIN1,650) J,XORD(J),YORD(J) ,DISPL(I),DISPL(I+1)
7 CONTINUE
PI=3.141592654
DO 10 I=1,NNODE
PX(I)=0.
DO 10 J=1,6
SPX(I,J)=0.
10 CONTINUE
c WRITE(LIN1,260)
ce
REWIND LIN3
NAM = 0
DO 180 II=1,NNEL
I = NELTYP(II)
RHO = DENS(I)
READ(LIN3,*) AMX
READ(LIN3,*) BMX
ce
c WRITE(LIN1,280) II
Nt = II*8 - 7
N2 = N1 +7
JJ =0
XTX = 0.0
YTY = 0.0
DO 20 KK= N1,N2
J=NUMEL (KK)
JI = JJ+1
XX(1,33)=X0RD(J)
XX(2,J3)=YORD(J)
XTX = XTX + XORD(J)/8.0
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YTY = YTY + YORD(J)/8.0
KXY(JJ)=J
JI1=J]*2-1
JJ12=]1%2
J1=J%2-1
J2=J%2
QQ(JJ1)=DISPL(J1)
QQ(JJ2)=DISPL(J2)

20  CONTINUE

cC

-=-==-MATRIX AMX*QQ

DO 60 I=1,18
DD=0.
DO 40 J=1,16

40  DD=DD+AMX(I,J)*QQ(J)
BETA(I)=DD - BMX(I)

60  CONTINUE

cC
cC
cC
ccC
cC
cC
ccC
ccC
cc
cc
cc
cC
c

-~- NOW SOLVE FOR NODAL STRESSES AT ELEMENT CENTRE

AND CORNER NODES ONLY
-—- SIG(J) = STRESSES AT NODE I
J =1 => SIGMA-X
J = 2 => SIGMA-Y
J = 3 => TAU-XY
J = 4 => SIGMA-1
J =5 => SIGMA-2
J =6 => ANGLE OF SIGMA-1 FROM X-AXIS
WRITE(LIN1,191)

DO 140 I=1,9

DO 753 = 1,6
SIG(J) = 0.

75  CONTINUE

S1=SE(I)
T1=TE(I)
CALL

Bl

PMTX(S1,T1,PP,PB,BD,DELTA,XX,RHO,II)

= BD(1)
BD(2)
BD(3)

B2
B3
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DO 80 J=1,3
BD(J) = B1*PB(J,1) + B2%PB(J,2) + B3*PB(J,3)
80 CONTINUE
DO 120 J=1,3
DD=0.
DO 100 K=1, 18
100  DD=DD+PP(J,K)*BETA(K)
DS(J)=DD + BD(J)
SIG(J) = DS(J)
120 CONTINUE
cc
S1=(DS(1)+DS(2))/2.
§2=(DS(1)-DS(2))/2.
S3=DS(3)
SIG(6)=ATAN2(S3,52)*90.0/PI
RS=SQRT(S2**2+S53%%2)
SIG(4)=S1+RS
SIG(5)=S1-RS
cc
CC SUM SIGMA-X, SIGMA-Y AND TAU-XY FOR THE RESPECTIVE NODES
cC
IF(I.LT.9) THEN
LL=KXY(I)
PX(LL)=PX(LL)+1.0
DO 125 K=1,3
SPX(LL,K)=SPX(LL,K)+SIG(K)
125 CONTINUE
C WRITE(LIN1,591) KXY(I),(SIG(J),J=1,6)
ELSE
C WRITE(LIN1,599) (SIG(J),J=1,6)
cc
CC WRITE STRESSES AT ELEMENT CENTRE TO LIN4
ce
WRITE(LING,*) XTX, YTY, (SIG(J),J=4,6)
ENDIF
140  CONTINUE
180 CONTINUE
cC
CC --- AVERAGE NODAL STRESSES
cc

DO 190 I=1 ,/NNODE
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IF(PX(I).EQ.0.) GOTO 190
DO 185 J=1,3
SPX(I,J)=SPX(I,J)/PX(I)

185  CONTINUE
S1=(SPX(I,1)+SPX(I,2))/2.
S2a(SPX(I,1)-SPX(1,2))/2.
IF(S2.EQ.0.) GOTO 190
S3=SPX(I,3)
SPX(I,6)=ATAN2(S3,52)%90.0/PI
S2=SQRT(S2%%2+S3%*2)
$S1=51+S2
§82=81-52
SPX(I,4)
SPX(I,5)

SS81
552

190  CONTINUE
WRITE(LIN1,192)
WRITE(LIN1,191)
DO 193 I=1,NNODE
WRITE(LIN1,205) I,(SPX(I,J),J=1,6)
193  CONTINUE
cc
CC OUTPUT STRESSES AT ELEMENT CENTRES
cC
REWIND LIN4
WRITE(LIN1,300)
WRITE(LIN1,640)
DO 250 I=1,NNEL
READ (LIN4,*) XTX,YTY, (SIG(J),J=4,6)
WRITE(LIN1,660) I,XTX, YTY, (SIG(J),J=4,6)
250  CONTINUE
192  FORMAT(® ’,20X,/,’ AVERAGE NODAL STRESSES’,)
191  FORMAT(/,’ NODE SIGMA-X  SIGMA-Y TAU-XY 7,
1 ’SIGMA-1 SIGMA-2  X-ANGLE’,/)
300 FORMAT(’ ’,20X,/,’' STRESSES AT ELEMENT CENTRES’,)
591  FORMAT(’ ’,’NODE’,I3,5F10.4,F10.2)
599  FORMAT(’ ’,’CENTRE ’,5F10.4,F10.2)
205  FORMAT(’ ’,I16,5F10.4,F10.2,F10.2)
210  FORMAT(1X,I4,2(6X,F10.4))
260  FORMAT(’ ’,/,20X,’' ELEMENT NODAL STRESSES’)
280  FORMAT(’® ’,/,20X,’ ELEMENT NO. ’,I2,/)
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630
640

650
660

FORMAT(/,’ NODE X-COORD. Y-COORD.
FORMAT(/,’ ELEM X-CENTR. Y-CENTR.
’SIGMA~2  X~ANGLE’,/)

' ,14,2F10.2,2F12.6)
’,14,2F10.2,2X,2F10.4,F10.2)

FORMAT(’
FORMAT(’
RETURN
END

190

X-DISPL.

SIGMA-1
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»
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Appendix B

LISTING OF A GENERAL PURPOSE 8-NODE
QUADRILATERAL MESH GENERATOR,
OUADMESH

cC

The listing of a general purpose 8-node quadrilateral mesh
generator called QUADMESH, 1s given in this appendix. The program
has been described in Chapter 5.

e

CC A GENERAL PURPOSE 8-NODE QUADRILATERAL MESH GENERATOR

cC

cc
INTEGER NLM(5000),JJX(2000),JDSIDE(500)
INTEGER MTYPE(20) ,NODRT(50) ,NODFR(50) ,NOMID(50) ,ND(50)
INTEGER DLOAD (500) ,NPO(500) ,NSP(100),KSP (100) ,NOTEM(50)
INTEGER NELTYP (1000) , JDOX(2000) , JDOY(2000) ,LXY(8)
INTEGER NUMEL ,NUMAT,NDIST,NUM,NNODE,LIN, LNP
REAL XX(2000),YY(2000),XV(100),YV(100)
REAL XP0(500),YP0O(500)
REAL DELX(100),DELY{100) ,XF(50),YF(50) ,XR(50)
REAL YR(50),XT(50),YT(50),XZ(4),YZ(4)
REAL ZXL(20) ,ZXR(20) ,2YB(20) ,ZYT(20) , YM(10) ,PR(10)
REAL YDLL, YDLR,XDLT, XDLB,XR,YT
CHARACTER*!{  TITLE(70)
cc
LIN = 11
LNP = 12
OPEN(LIN,FILE=’meshin’, STATUS=’OLD’,ACCESS='SEQUENTIAL’)
OPEN (LNP,FILE=’meshout ’ ,STATUS=0LD’ ,FORM='FORMATTED")
o e e L L P
cc

CC THIS PRUGRAM WILL GENERATE AN 8-NODE QUADRILATERAL MESH OVER
CC AN ARRAY OF VERTICAL LINES WHOSE LOWER END COORDINATES ARE
CC SPECIFIED. THE LIMITS OF THE PROGRAM ARE:

cC

cC MAXIMUM NO. OF NODES = 1000
cC MAXIMUM NO. OF ELEMENTS = 626
cC MAXIMUM NO. OF SIDES WITH DISTRIB. LOADS = 125
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cc
CC
cC
CC
CC
cC
CC
cC
cC
cC
cC
cC
cC
CC
cC
ccC
CC
CC
ccC
cC
cc
CcC
CcC
CC
CcC
ccC
CC
cC
CcC
cC
cC
cC
cC
cC
ccC
cc
CC
CC
CC
cC
cC

MAXIMUM NO. OF NODES WITH POINT LOADS = 500
MAXIMUM NO. OF ELEMENT PROPERTY ZONES = 20
MAXIMUM NO. OF DIFFERENT PROPERTIES = 10

IF THESE MAXIMUM ARE EXCEEDED, PROGRAM WILL ABORT.
THE INPUT DATA FOR EACH PROBLEM IS AS FOLLOWS:
1. LINE 1 : X0, YO, NSUBX, NSUBY

2. NEXT LINE(S),
IF NSUBX IS > 0, : DELX(1), DELX(2), ..... , DELX(NSUBX)

3. NEXT LINE(S),
IF NSUBY IS » 0, : DELY(1), DELY(2), ..... , DELY(NSUBY)

THE ABOVE THREE STEPS ARE REPEATED FOR ALL VERTICAL LINES
OR SETS OF LINES.

4. NEXT LINE : 0.0 0.0 0 O
THIS ENDS THE VERTICAL LINE INFORMATION.

5. NEXT LINE: NPOIN,NDIST,NUMAT,NTYPE,YDLL,YDLR,XDLT,XDLB

6. NEXT NPOIN LINES : NPO(I),XPO(I),YPO(I)

7. FOR EACH MATERIAL TYPE (I =1, ...,NUMAT),
FIRST LINE : YM(I),PR(I) ,MTYFE(I)
SECOND LINE : ZXL(I) ,2XR(1),2YB(I),ZYT(I)

IF THERE IS ONLY ONE MATERIAL TYPE, THEN,
SECOND LINE : 0.0 0.0 0.0 0.0

8. DISPLACEMENT BOUNDARY CONDITION CODES
:JXL, JYL, JXB, JYB, JXR, JYR, JXT, JYT

THIS IS THE END OF THE INPUT DATA

THE FOLLOWING DEFINITIONS ARE PERTINENT:

X0 = X~COORD. OF VERTICAL LINE
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cC
CcC
cC
cC
cC
cC
cc
cC
cC
cC
cC
cC
cC
cc
cC
cC
cC
cC
cC
cC
CC
CcC
cC
cC
ccC
cc
cC
cC
CcC
cC
cC
CcC
cC
CcC
cC
cC
CcC
cC
CC
cC
cC

YO0 = Y-COORD. OF BOTTOM OF VERTICAL LINE
NSUBX = NG. OF SUBDIVS. ALONG X-D.iECTION
= 0, THERE IS ONLY ONE VERTICAL LINE
NSUBY = NO. OF SUBDIVS. ALCNG Y-DIRECTION
= 0, THERE IS ONLY ONE POINT TO CONSIDER (= TRIVIAL)
DELX* = LENGTH OF SUBDIVS. IN X-DIRECTION,
STARTING FROM LEFT
DELY* = LENGTH OF SUBDIVS. IN Y-DIRECTION,
STARTING FROM BOTTOM
XR*, YR* = ARRAY OF NODAL COORDINATES OF RIGHT EDGE NODES
XF*, YFx = ARRAY OF NODAL COORDINATES OF FRONT EDGE NQDES
XZx, YZ* = ARRAY OF CORNER NODE COQORDINATES
OF CURRENT ELEMENT
NRY = NO. OF CORNER NODES ON RIGHT EDGE
NF = NO. OF CORNER NODES ON FRONT EDGE
NVERT = VERTICAL LINE COUNTER
ICOL = COLUMN COUNTER
NODRT* = ARRAY OF NODE NUMBERS QF RIGHT EDGE CORNER NGODES
NODFR* = ARRAY OF NODE NUMBERS QF FRONT EDGE CORNER NODES
NOMID* = ARRAY OF NODE NUMBERS OF MIDSIDE NODES CONNECTING
FRONT AND RIGHT EDGES
NOTEM* = ARRAY OF NODE NUMBERS EQUIVALENT TO NOMID=
LASTNODE = LAST NODE COUNTER
DISTRIBUTED LOAD INFQO.
THE LEFT AND BOTTOM EDGES ARE ASSUMED TO BE AXES OF SYMMETRY
SO THAT DISTRIBUTED LOADS CAN ONLY BE APPLIED ALONG THE TOP
AND RIGHT EDGES. DISTRIBUTED LOADS ALONG THE RIGHT EDGE
ARE ASSUMED TO VARY LINEARLY DOWNWARDS WHILE THOSE ALONG THE
TOP ARE ASSUMED TO BE CONSTANT,
XDLT = XLOAD AT TOP RIGHT HAND CORNER OF STRUCTURE,
XDLB = XLOAD AT BOTTOM RIGHT HAND CORNER OF STRUCTURE,
YDLL = YLOAD AT TOP LEFT HAND CORNER OF STRUCTURE,
YDLR = YLOAD AT TOP RIGHT HAND CORNER OF STRUCTURE,
NDIST = TOTAL NO. OF ELEMENT SIDES WITH DISTRIBUTED LOADS.
ZXL(I) = X-CORD OF LEFT BOUNDARY OF ITH ZONE
ZXR(I) = X-CORD OF RIGHT BOUNDARY OF ITH ZONE
ZYB(I) = Y-CORD OF BOTTOM BOUNDARY OF ITH ZONZ
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cC
cC
cC
cC
CC
CC
CC
cC
cC
cC
cC
cC
cC
cC
CC
cC
cC
cC
cC
CC
cC
cC
CC
cC
GC
ce
cC
cC
ccC
cC
CC
CC
cC
cC
CC

ZYT(I)
MTYPE(I)

POINT LOAD INFO.

NPOIN
NPO(I)
XPO(I)
YPO(I)

X~-CORD OF TOP BOUNDARY OF ITH ZONE
MATERIAL TYPE OF ITH ZONE

TOTAL NO. OF NODES WITH POINT LOAD.

= ITH NODE POINT WITH POINT LOAD

1]

MATERIAL PROPERTY INFO.

NUMAT

NTYPE

YM(I)
PR(I)

DISPLACEMENT

JXL =
JYL
JXB
JYB =
JXR =
JYR =
JXT =
YT =

u

X-LOAD ON NPO(I)
Y-LOAD ON NPO(I)

NO. OF DISTINCT ZONES OF THE DISCRETIZED

DOMAIN WITH DIFF. MATERIAL PROPERTIES
= TOTAL NO. OF DIFFERENT MATERIALS

PROBLEM TYPE,

= 1 => PLANE STRAIN
= 2 => PLANE STRESS
= YOUNG’S MQDULUS QF ITH MATERIAL TYPE

X-CONDTION
Y-CONDT10N
X-CONDTION
Y-CONDTION
X-CONDTION
Y~CONDTION
X-CONDTION
Y-CONDTION

VALUE = 1 => NO
VALUE = O => MOVEMENT IS

INITIALIZATION

XMAX = 0.0
XMIN = 1.0E10
YMAX = 0.0
YMIN = 1.0E10

NUM

NNODE

= 0
0

CODE FOR
CODE FOR
CODE FOR
CODE FOR
CODE FOR
CODE FOR
CODE FOR
CODE FOR
MOVEMENT

POISSON’S RATIO OF ITH MATERIAL TYPE

BOUNDARY CONDITION CODES

LEFT BOUNDARY

LEFT BOUNDARY

LOWER BOUNDARY

LOWER BOUNDARY

RIGHT BOUNDARY

RIGHT BOUNDARY

TOP BOUNDARY

TOP BOUNDARY

ALLOWED IN THE GIVEN DIRECTION,
ALLOWED IN THE GIVEN DIRECTION
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cC

15
20

cC

25

35

NUMEL = 0
JSP = 0
LASTNODE = 0
ICOL = O

JNS =
NVERT

o

0

DOSI=1,100
NSP(I) =0
KSP(I) =0
DELX(I)
DELY(I) =
CONTINUE
DO 10 I = 1,2000
JIX(I) = ¢

= 0.0
0.0

READ(LIN,15) TITLE
FORMAT(804A1)
READ(LIN,*) X0,YO,NSUBX, NSUBY
IF(NSUBX.EQ.0.AND.NSUBY.EQ.0) GOTO 500
IF(NSUBX.NE.0) THEN
READ(LIN,*) (DELX(I),I=1,NSUBX)
ENDIF
IF(NSUBY.NE.0) THEN

READ(LIN,*) (DELY(I),I=1,NSUBY)
ENDIF

DXX = X0
INX = 0
INX = INX+1

IF(INX.GT.NSUBX+1) GOTQ 20
IF(INX.GT.1) DXX = DXX + DELX(INX-1)
NRY = NSUBY+1
ICOL = NVERT
NVERT = NVERT+1
XR(1) = DXX
YR(1) = YO
DO 35 I = 1{,NSUBY

XR(I+1) = DXX

YR(I+1) = YA(I) + DELY(I)
CONTINUE
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IF(NVERT.EQ.1) THEN
NF = NRY
D030 I = 1,NF
XF(I) = XR(I)
YF(I) = YR(I)

30 CONTINUE
GOTO 25
ENDIF
cC

CC LOCATE FIRST NODE, (NF1), ON FRONT EDGE WHICH IS NOT ABOVE
CC FIRST NODE, (NR1), ON RIGHT EDGE AND FIRST NODE, (NF2), ON
CC FRONT EDGE WHICH IS NOT BELOW LAST NODE, (NR),
CC ON RIGHT EDGE.
(ol
J = 1+NF
NFO = 0
NF2 =]
DO 40 I = 1,NF
J =J-1
IF(YF(I).LT.YR(1)) NF0O = NFO+1
IF(YF(J) .GE.YR(NRY)) NF2=NF2-1
40 CONTINUE
NF1 = NFO
IF(YF(NFO+1) .LE.YR(1)) NF1 = NFO+1
cC
CC DETERMINE NO. OF EXTRA EDGES GENERATED BY THE FRONT TURNING
CC THROUGH 90 DEGREES

cC
NM = NRY
IF(ICOL.EQ.1) GOTO 45
DO 50 I = NF1,NF
IF(YF(I) .EQ.YF(I+1)) THEN
IF(YF(I) .GE.YR(1) .AND. YF(I) .LE.YR(NRY)) NM = NM+1
ENDIF
50 CONTINUE
cC
CC MAP NODFR* INTO GLOBAL NODE NUMBERS
cC

45 CONTINUE
IF(ICOL.EQ.1) THEN
NP = 2
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cC
cC
cC

cC

cC
cC
cC

cC
cC
cC
cC

77
78
CC

CALL MAP(NODFR,NF,LASTNODE,NP)
ENDIF

MAP NOMID* INTC GLOBAL NODE NUMBERS

NP =1
CALL MAP(NOMID,NM,LASTNODE,NP)

IF(NFO.GT.0) THEN

JSP = JSP+1

NSP(JSP) = NOMID(1)
ENDIF
IF(NF2.LT.NF) THEN

JSP = JSP+1

NSP(JEP) = NOMID(NSUBY+1)

ENDIF

MAP NODRT* INTO GLOBAL NODE NUMBERS

NP = 2
CALL MAP(NODRT,NRY,LASTNODE,NP)

BUILD 8-NODE QUADRILATERAL ELEMENTS IN COLUMN
SORT NSP ARRAY IN ASCENDING ORDER W.R.T Y-COORD.

DO 79 I = 1,MSP-1
II = KSP(I)
DO 77 J = I+1,MSP
JJ = KSP(J)
IF(YY(II).GT.YY(JJ)) THEN
KsP(I) = 1J
KSP(J) = II
II = JJ
ENDIF
CONTINUE
CONTINUE

JR
JM

non
PR
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DO 90 II = 1i,NM-1
JF1 = JF+1

JF2
NUM

JF+2
NUM+1

n

old]
IF(JF2.GT.NF) JF2=NF
LXY(1) = NODFR(JF)
LXY(2) = NOMID(JM)
LXY(3) = NODRT(JR)
LXY(7) = NODFR(JF1)
LXY(8) = NODFR(JF)+1
XZ(1) = XF(JF)
YZ(1) = YF(JF)
XZ(2) = XR(JR)
YZ(2) = YR(JR)
XZ(4) = XF(JF1)
YZ(4) = YF(JF1)
ce
IF(JFL1.EQ.JF2) GOTO 600
IF(YF(JF1)-YF(JF)) 400,300,200
200 IF(YF(JF2)-YF(JF1)) 290,250,220
220 IF(XF(JF1)-XF(JF)) 620,600,620
ce
CC CASES 1 AND 4

cc
600 LXY(4) = NODRT(JR)+1
LXY(5) = NODRT(JR+1)
LXY(6) = NOMID(JM+1)
XZ(3) = XR(JR+1)
YZ(3) = YR(JR+1)
GOTO 60
cc

250 IF(XF(JF2)-XF(JF1)) 600,280,270
ccC

CC CASE 3
oo
270 LXY(4) = NOMID(JM+1)
LXY(5) = NODFR(JF2)
ISP = ISP+1

LXY(6) = KSP(ISP)
XZ(3) = XF(JF2)
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JF = JF+1
JR = JR-1
GOTO 60
cc
CC CASES 5 AND 6
cc
620 LXY(4) = NODRT(JR)+1
LXY(5) = NODRT(JR+1)
LXY(f) = NOMID(JIM+1)
ISP = ISP+l
LXY(8) = KSP(ISP)
XZ(3) = XR(JR+1)
YZ(3) = YR(JR+1)
GOTO 60
cc
CC CASE 2
cc
300 LXY(4) = NOMID(JIM+1)
LXY(5) = NODFR(JF2)
LXY(6) = NODFR(JF1)+1
ISP = ISP+l
LXY(8) = KSP(ISP)
Xz(3) = XF(JF2)
YZ(3) = YF(JF2)
JF = JF+1
JR = JR-1
GOTO 60
280 WRITE(*,*) ’ERROR DETECTED AT STATEMENTS 250 - 280’
STOP
290 WRITE(*,*) ’ERROR DETECTED AT STATEMENTS 200 - 290’
STOP
400 WRITE(*,*) ’ERROR DETECTED AT STATEMENT 400 °
STOP
cc
60 CONTINUE
DO 701I=1,8
NUMEL = NUMEL+1
NLM(NUMEL) = LXY(I)
70 CONTINUE
cc

YZ(3) = YF(JF2)
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CC NODAL COORDS. QF CORNER NODES
cC

75
cc

J =0

TA = 8%(NUM-1)

D075 I =1,8,2

LL = NLM(IA+I)

JJ = JI+1
IF(JJX(LL).EQ.1) GOTO 75
NNODE = NNODE+1

XX(LL) = XZ(JJ)

YY(LL) = YZ(JJ)

JIK(LL) =1
IF(XMIN.GT.XX(LL)) XMIN
IF(XMAX.LT.XX(LL)) XMAX
IF(YMIN.GT.YY(LL)) YMIN
IF(YMAX.LT.YY(LL)) YMAX
CONTINUE

XX(LL)

= XX(LL)
= YY(LL)

CC NODAL COORDS. OF MIDSIDE NODES

cC

80
cC

cC
90

CC

po 80 I =1,8,2

J = I+2
IF(J.GT.8) J=J-8
LL = NLM(IA+I+1)
KK = NLM(IA+I)
JJ = NLM(IA+J)

IF(JJX(LL).EQ.1) GOTO 80

NNODE = NNODE+1
XX(LL) = (XX(KK)+XX(JJ))/2.0
YY(LL) = (YY(KK)+YY(JJ))/2.0

JIX(LL) =1

CONTINUE

JF
JR
M

JF+1
JR+1
JM+1

CONTINUE
MSP = Q

DO 46 I = 1,NM

YY(LL)
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46 NOTEM(I) = NOMID(I)
cC
CC CHECK WHICH OF NSP(*) ELEMENTS LIE ON THE FRONT
ce
DO 47 II = 1,JSP
I = NSP(II)
XV(II) = XX(I)
YV(II) = YY(I)

47 CONTINUE
CALL CHECK(NSP,JSP,KSP,MSP,XX,YY,NODFR,
1 NF,XV,YV,LASTNODE)
ccC
CC UPDATE THE FRONT EDGE
CcC
JJ=0

IF(NF2.EQ.NF) GOTO 105
DO 100 I = NF2,NF
JJ = JJ+1
XT(JJ)
YT(3J3)
ND(JJ)
100 CONTINUE
cC
106 NF =0
IF(NF0.EQ.0) GOTO 109
DO 107 I = 1,NF1
NF = NF+1
XF(NF) = XF(I)
YF(NF) = YF(I)
NODFR(NF) = NODFR(I)
107 CONTINUE
CcC
109 DO 110 I = 1,NRY
NF = NF+1
XF(NF) = XR(I)
YF(NF) = YR(I)
NODFR(NF) = NODRT(I)
110 CONTINUE
cc

XF(I)
YF(I)
NODFR(I)

IF(JJ.EQ.0) GOTO 125
DO 120 I = 1,JJ
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NF = NF+1
XF(NF) = XT(I)
YF(NF) = YT(I)
NODFR(NF) = ND(I)
120 CONTINUE
125 CONTINUE
ce
CC CHECK WHICH OF NSP(*) ELEMENTS LIE ON THE UPDATED FRONT
cc
CALL CHECK(NSP, JSP,KSP,MSP,XX,YY,NODFR,NF,XV,YV,LASTNODE)
cc
GOTO 25
500 CONTINUE
WRITE(*,*) 'MAXIMUM X-VALUE =’, XMAX
WRITE(*,*) ’MINIMUM X-VALUE =', XMIN
WRITE(*,*) 'MAXIMUM Y-VALUE =', YMAX
WRITE (*,*) 'MINIMUM Y-VALUE =’, YMIN
ce
CC NODAL CONSTRAINTS, ELEMENT MATERIAL PROPERTIES
CC AND DISTRIBUTED LOADS

cco
READ (LIN,*) NPOIN,NDIST,NUMAT,NTYPE,YDLL,YDLR,XDLT,XDLB
NDISZ = 4*NDIST
IF (NPOIN.GT.0) THEN
DO 510 I = 1,NPOIN
510 READ(LIN,*) NPO(I),XPO(I),YPO(I)

ENDIF
IF(NUMAT-1) 520,530,530
520 WRITE(*,*) *ERROR! NEGATIVE VALUE READ FOR NO.’,
1 'OF MATERIAL TYPES’, NUMAT
STOP
530 DO 550 I = 1,NUMAT
READ (LIN,*) YM(I),PR(I),MTYPE(I)
550 READ (LIN,*) ZXL(I),ZXR(I),ZYB(T),ZYT(I)
IF (NUMAT.EQ.1) THEN

ZXL(1) = XMIN
ZXL(1) = XMAX
ZXL(1) = YMIN
ZXL(1) = YMAX
ENCIF

READ (LIN,*) JXL, JYL, JXB, JYB, JXR, JYR, JXT, JYT
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cC
CALL MATEL(XX,YY,JDOX,JDOY,NNODE,NUM,NUMEL,
NLM,NELTYP, JDSIDE,DLOAD ,MTYPE,ZXL ,NDISZ,
ZXR,ZYB,ZYT,YDLL,YDLR,XDLT, XDLB,XMAX, XMIN, YMAX,
JXL, JYL, JXB, JYB, JXR, JYR, JXT, JYT,
YMIN,LNP,NUMAT ,NTYPE,YM,PR,NPOIN,NPO,XPQ,YPO,TITLE)
cC
STOP
END

SUBROUTINE MAP(NCELL,NN,LL,IJ)
DIMENSION NCELL (NN)
cC
LL = LL~IJ+1
DO 50 I = 1,NN
LL = LL+IJ
NCELL(I) = LL
50 CONTINUE
RETURN
END
CC ====mermcm e e e e e e
SUBROUTINE CHECK(NSP,JSP,KSP,MSP,XF,YF,NOD,NF,XV,YV,LL)
DIMENSION NSP(JSP),KSP(JSP),XF(LL),YF(LL),NOD(NF)
DIMENSION XV (JSP),YV(JISP)
cc
Do 86 II = 1,JSP
XI = XV(II)
YI = YV(II)
DO 84 JJ = 1,NF-1
J = NOD(JJ)
K = NOD(JJ+1)
XJ = (XF(J)+XF(K))/2.0
Y3 = (YF(J)+YF(K))/2.0
IF(XI.EQ.XJ.AND.YI.EJ.YJ) THEN
MSP = MSP+1
KSP(MSP) = NSP(II)
GOTO 86
ENDIF
84 CONTINUE
cc
86 CONTINUE
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cC

CC CHECK FOR REPEATED NODES

cc

130

140

150

cC

CcC

K = MsSP

DO 150 II = 1,MSP-.
I = KSP(I1)

DO 140 JJ = II+1,MSP
J = KSP(JD)
IF(I.EQ.J) THEN

K =111

IF(JJ.EQ.MSP) GOTO 140
DO 130 KK = JJ+1,MSP

K = K+1

KSP(K) = KSP(KK)

ENDIF

CONTINUE

MSP = K

CONTINUE

RETURN
END

SUBROUTINE MATEL(XORD,YORD, JDOX,JDOY,NNODE,NNEL ,NUMEL,
NLM,NELTYP,JDSIDE,DLOAD,MTYPE, ZXL ,NDISZ,
ZXR,2YB,ZYT,YDLL,YDLR,XDLT,XDLB, XMAX ,XMIN, YMAX,
JXL, JYL, JXB, JYB, JXR, JYR, JXT, JYT,
YMIN,LNP,NUMAT,NTYPE,YM,PR,NPOIN,NPO,XPO,YPO,TITLE)

+ + + +

DIMENSION XORD(NNODE), YORD(NNODE),DLOAD(NDISZ)
DIMENSION NLM(NUMEL), NELTYP(NNEL),JDOX(NNODE)
DIMENSION YM(NUMAT), PR(NUMAT),JDOY(NNODE)

DIMENSION NPO(NPOIN),XPG(NPOIN), YPO(NPOIN)

INTEGER  JDSIDE(NDISZ),MTYPE(NUMAT),NODE(4)

INTEGER  NNEL,NUMAT,NNODE,ML,ML,MT,IN

REAL ZXL (NUMAT) , ZXR (NUMAT) , ZYB (NUMAT) , ZYT (NUMAT)
REAL XL,XR,YB,YT,XXL,XXR,YYB,YYT

CHARACTER*1  TITLE(70)

<
- o
n

YBE

Y-CORD OF BOTTOM OF STRUCTURE,
Y-CORD OF TOP OF STRUCTURE,
BOTTOM Y-COORD. OF ELEMENT
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cC (ASSUMED PARALLEL TO X-AXIS)

cC YTE = TOP Y-COORD. OF ELEMENT

cC (ASSUMED PARALLEL TO X-AXIS)

cC YDLL = YLOAD AT TOP LEFT CORNER OF ELEMENT,

cc YDLR = YLOAD AT TOP RIGHT CORNER OF ELEMENT,
cc XDLT = XLOAD AT TOP RIGHT CORNER OF ELEMENT,
cC XDLB = XLOAD AT BOTTOM RIGHT CORNER OF ELEMENT,
C =m~womcemmm et m e cdcc e e ccm mr o e e e —— - ———
NDIST = NDISZ/4
THIC = 1.0
NPOIN = 0
DENS = -0.0264
IPRNT = 1
cc
CC NODAL CONSTRAINTS
cc
DO 10 I = {,NNQDE
JDOX(I) = 0
JDaY(I) = 0
cC
CC CHECK IF NODE IS ON LEFT BOUNDARY
cc
IF(XORD(I).EQ.XMIN) THEN
JDOX(I) = JXL
JDOY(I) = JYL
ENDIF
cc
CC CHECK IF NODE IS ON LOWER BOUNDARY
cc
IF(YORD(I) .EQ.YMIN) THEN
JDOX(I) = JXB
JDOY(I) = JYB
ENDIF
cC
CC CHECK IF NODE IS ON RIGHT BOUNDARY
ce
IF(XORD(I) .EQ.XMAX) THEN
JDOX(I) = JXR
JDOY(I) = JYR
ENDIF
cc
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CC CHECK IF NODE IS ON TOP BOUNDARY
cC
IF(YORD(I) .EQ.YMAX) THEN
JDOX(I) = JXT
JDoY(I) = JYT
ENDIF
cC
CC CHECK FOR CORNER NODES
cC
IF(XCRD(I) .EQ.XMIN .AND. YORD(I).EQ.YMIN) THEN
IF(JXL.EQ.1 .OR.JXB.EQ.1) JDOX(I) 1
IF(JYL.EQ.1 .OR.JYB.EQ.1) JDOY(I) i
ENDIF

cC
IF(XORD(I) .EQ.XMIN .AND. YORD(I).EQ.YMAX) THEN
IF(JXL.EQ.1 .OR.JXT.EQ.1) JDOX(I) = 1
IF(JYL.EQ.1 .OR.JYT.EG.1) JDOY(I) 1
ENDIF

cC
IF(XORD(I) .EQ.XMAX .AND. YORD(I).EQ.YMAX) THEN
IF(JXR.EQ.1 .OR.JXT.EQ.1) JDOX(I) 1
IF(JYR.EQ.1 .OR.JYT.EQ.1) JDOY(I) 1
ENDIF

cC
IF(XORD(I) .EQ.XMAX .AND. YORD(I).EQ.YMIN) THEN
IF(JXB.EQ.1 .OR.JXR.EQ.1) JDOX(I) = 1
IF(JYB.EQ.1 .OR.JYR.EQ.1) JDOY(I) = 1
ENDIF
ce
10 CONTINUE
cc
CC ELEMENT MATERIAL PROPERTIES
cC
IF(NUMAT.EQ.1) THEN
DO 20 II = 1{,NNEL
20 NELTYP(II) = 1
GOTQ 45
ENDIF
DO 40 II = 1 ,NNEL
IA = 8*%(II-1)
ML = NLM(IA+1)
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30
40
45

50

55
CC

60
cC

70

80
cC

MR = NLM(IA+3)
MT = NLM(IA+5)

XXL = XORD(ML)

XXR = XORD(MR)

YYB = YORD(ML)

YYT = YORD(MT)

DO 30 JJ = 1,NUMAT
XL = ZXL(JJ)

XR = ZXR(JJ)

YB = ZYB(JJ)

YT = 2YT(JJ)

IF(XXL.GE.XL.AND.XXR.LE.XR) THEN
IF(YYB.GE.YB.AND.YYT.LE.YT) THEN
NELTYP(II) = MTYPE(JJ)
GOTO 40
ENDIF
ENDIF
CONTINUE
CONTINUE
CONTINUE
WRITE(LNP,505) TITLE
WRITE(LNP,500) NNODE,NNEL,NUMAT,NTYPE,NPOIN,NDIST,
IPRNT,THIC
DO 50 I = 1,NUMAT
WRITE(LNP,510) YM(I), PR(I), DENS
DO 65 I = 1,NNODE
WRITE(LNP,80) I,XORD(I),YORD(I),JDOX(I),JDQY(I)
CONTINUE

DO 60 I = 1,NNEL

IA = 8xI-7

IB = TA+7

WRITE(LNP,70) I,NELTYP(I),(NLM(J),J=IA,IB)
CONTINUE

FORMAT(1016)
FORMAT(I6,2F8.3,215)

CC DISTRIBUTED LOADS, ASSUMED TO BE APPLIED TO THE
CC TOP AND/OR RIGHT BOUNDARIES ONLY.

ccC
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GRADX = (YDLL-YDLR)/(XMAX-XMIN)
GRADY = (XDLT-XDLB)/(YMAX-YMIN)
DD 90 I = NDISZ
90 DLOAD(I) = 0.0

cC
IN =0
DXB = XDLB
DYL = YDLL

DO 160 II = 1,NNEL
IA = 8%(II-1)
DO 150 JJ = 1,2

IJ = JJ*2
DO 100 KK = 1,3
IJ = 1J+1

100 NODE(KK) = NLM(IA+IJ)
GOTO(110,130), JJ
110 CONTINUE

cC
CC RIGHT BOUNDARY LOADS
cC
IF(XDLB.EQ.0.0 .AND. XDLT.EQ.0.0) GOTO 150
XN = XORD(NODE(3))
IF(XN.EQ.XMAX) THEN
IN = IN+1
IB = 4*IN-4
DO 120 I = 1,3
120 JDSIDE(IB+I) = NODE(I)

JDSIDE(IB+4) = II
YBB = YORD(NODE(1))
YBT = YORD(NODE(3))
DXT = GRADY*(YBT - YBB) + DXB
DLOAD(IB+1) = DXB
DLOAD(IB+3) = DXT
DXB = DXT
ENDIF
GOTO 150
130 CONTINUE
IF(YDLL.EG.0.0 .AND. YDLR.EQ.0.0) GOTO 160
e
CC TOP BOUNDARY LOADS
ce
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YN = YORD(NODE(3))
IF(YN.EQ.YMAX) THEN
IN = IN+1
IB = 4*IN-4
DO 140 I =1,3
140 JDSIDE(IB+I) = NODE(I)
JDSIDE(IB+4) = II
XBR = XORD(NODE(1))
XBL = XORD(NODE(3))
DYR = GRADY*(XBR - XBL) + DYL
DLOAD(IB+2) = DYR
DLOAD(IB+4) = DYL
DYL = DYR
ENDIF
cc
150 CONTINUE
160 CONTINUE

cC
IF(NDIST.GT.0) THEN
DD 170 I = 1,NDIST
IA = 4%1-3
IB = IA+3
f 170 WRITE(LNP,180) (JDSIDE(J),J=IA,IB),(DLOAD(J),J=IA,IB)
ENDIF
cC
IF(NPOIN.GT.0) THEN
DO 176 I = 1,NPOIN
175 WRITE(LNP,185) NPO(I),XPO(I),YPO(I)
ENDIF
cC

180 FORMAT (415, 4F10.3)
185 FORMAT(I5, 2F10.3)
508 FORMAT(70A1)
510 FORMAT(1F12.3,2F10.3)
500 FORMAT(716,F6.2)
cC
STOP
END
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Appendix C

LISTING A SPECIAL PURPOSE 8-NODE
QUADRILATERAL MESH GENERATOR

OVER CIRCULAR OPENINGS, QUADMESH

The listing of a special purpose 8-node quadrilateral mesh gener- l

ator called CIRCMESH, 1s given 1in this appendix. The program has
been described in Chapter 5.
CC******************#********4*************#**#*******#*t

CC INPUT IS AS FOLLOWS:

cc

CC LINE t: READ(LIN,1) TITLE

CC LINE 2: READ(LIN,*) NNY,NANG,RO,BM

CC LINE 3: READ(LIN,*) ((JXL(I,J]),J=1,2),I=1,4)

CC LINE 4: READ(LIN,*) XL,YB,XR,YT,TH

CC LINE §: READ(LIN,*) ASXX, ASYY

cC

CC EXPLANATIONS:

cC

CC TITLE = TITLE, NOT MORE THAN 75 CHARACTERS.

cC

CC NNY = NO. OF ELEMENT SIDES ALONG X OR Y AXIS

CC RO = BOREHOLE RADIUS

CC BM =Y (OR X) BOUNDARY MAGNIFICATION FACTOR

CC  NANG = NO. OF ANGULAR SUBDIVS. OF FIRST QUADRANT

cC ~ (MUST BE EVEN)

CC

cC JXL(I,J) = CONDITION CODE FOR BOUNDARY I IN J DIRECTION
cc J = 1, MEANS X-DIRECTION

cc J = 2, MEANS Y-DIRECTION

cC JXL(I,J) = 0, MEANS BOUNDARY CAN MOVE IN J DIRECTION
cC = 1, MEANS BOUNDARY CANNOT MOVE IN J DIRECTION

CC I=1, BOUNDARY # 1 : ( XL = LEFT BOUNDARY X-COORDINATE)
CC TI=2, BOUNDARY # 2 : ( YB = BOTTOM BOUNDARY Y-COORDINATE)
CC I=3, BOUNDARY # 3 : ( XR = RIGHT BOUNDARY X-COORDINATE)
CC 1I=4, BOUNDARY # 4 : ( YT = TOP BOUNDARY Y-COORDINATE)
cc
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cC
cC
cC
cC
cC
CcC
cC
cC
cC
cC
cC
cC
cC
cc
cC
cc
cC
cC

cc

CC

cC

cC
CC
cC
cC

ASXX = APPLIED STRESS IN X-DIRECTION
ASYY = APPLIED STRESS IN Y-DIRECTION

OTHER EXPLANATIONS ARE:

IPRNT = PRINT OUTPUT DATA OPTION
= 0 => DO NOT PRINT
= 1 => PRINT
NUMAT = TOTAL NQ. QF MATERIAL TYPES
NTYPE = PROBLEM TYPE PARAMETER
= 1 => PLANE STRESS
= 2 => PLANE STRAIN

NDIST = NO. OF ELEMENT SIDES WITH DISTRIBUTED LOADS
NPOIN = NO. OF NODES WITH POINT LOADS

IMPLICIT REAL*8 (A-H,0-Z2)

REAL XORD(225),YORD(225) ,DLOAD(512) ,PROPS(3)

REAL THIC,XR,YT,ASXX, ASYY

INTEGER  NLM(64,8),JDSIDE(512) ,NUMEL(512) ,ELTYP(64)

INTEGER  JJX(450),JD0X(225),JD0Y(225),JXL(4,2) ,MM(10)

INTEGER  NTOT,NNEL,NNODE,NEQ, ISIDE, NSIDE

LOGICAL  LESS, MORE, EXISTS

CHARACTER#5  TITLE(15)

PARAMETER (PI=3.141592654)

LOUT = 4

LIN =3

LESS = .FALSE.

MORE = .FALSE.

OPEN(LIN,FILE=’meshin’,STATUS='0LD’ ,FORM="FORMATTED’ )
CHECK THAT QUTPUT FILE DECLARED NEW DOES NOT ALREADY EXIST.

IF IT EXISTS, PURGE IT FIRST.
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INQUIRE(FILE='meshout’ ,EXIST=EXISTS)
IF(EXISTS) THEN
OPEN(UNIT=LOUT,FILE=’meshout’,STATUS=’0LD’)
CLOSE(UNIT=LOUT,STATUS='DELETE’)

ENDIF
OPEN(UNIT=LOUT,FILE='meshout’,STATUS='NEW’,
1 FORM=’FORMATTED’)
CC === m o e e e o
ce
CC READ PROBLEM TITLE
cc

READ(LIN,1) TITLE
WRITE(*,1) TITLE
WRITE(LOUT, 1) TITLE
1 FORMAT (15A5)
READ(LIN,*) NNY,NANG,RO,BM
READ(LIN,*) ((JXL(I,J),J=1,2),I=1,4)
10  FORMAT(8I5)
16  FORMAT(2I5,6F10.1)
20 FORMAT(7F10.1)
ISIDE = NANG=2
NSICE = 0
PI4=PI/2./FLOAT(NANG)
NN=-NNY-1
NP=NNY+1
CcC
ENDIF
CC
CC TOP EDGE
cC
IF(YORD(ISS(1)).EQ.YT.AND.YORD(ISS(3)) .EQ.YT) THEN
IF(ASYY.LT.0.0) THEN
XXYY = ASYY
ICHEK = 2
ENDIF
ENDIF
cC
80 CONTINUE
IF(ICREK.EQ.0) GOTO 90
JDS(KK+1) = ISS(1)




JDS (KK+2) = I8S(2)
JDS(KK+3) = 1SS(3)
JDS(KK+4) = NL
IF(ICHEK.EQ.1) THEN
DDL(KK+1) = XXYY
DDL{KK+2) = 0.0
DDL(KK+3) = 0.0
DDL (KK+4) = XXYY
ENDIF
IF(ICHEK.EQ.2) THEN
DDL(KK+2) = XXYY
DDL(KK+1) = 0.0
DDL(KK+3) = 0.0
DDL (KK+4) = XXYY
ENDIF
KK = KK+4
90 CONTINUE
100 CONTINUE
NS = KK
RETURN
END
NLM(NL,6)=IM+1
NLM(NL,7)=IL+2
NLM(NL,8)=IL+1
cc
DO 28 K = 1,8
NTOT = NTOT+1
NUMEL (NTOQT) = NLM(NL,K)
28 CONTINUE

IL=IL+2
IMaIM+1
IR=IR+2
30 CONTINUE

cC

CC ==mo=re- NODAL COOCRDINATES

cc
ANG=-PI4
MANG=NANG/2+1
BMR=BM#RO
DO 85 J=1,MANG

cC
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cC
cc

50

55
cC
59

60
cC

cC

cC
65
cC

cC

CALCULATE RADIAL LENGTHS OF CORNER POINTS ON RADIAL LINE

ANG=ANG+PI4
BZ=BM/DCOS(ANG)-1.0
EPS=0.00001

DENOM = 1000.0

LOOP = LOOP + 1
IF(LOOP.GT.2000) THEN
WRITE(*,=) 'TO0 MANY LOOPS '!’
STOP

ENDIF

XA=XA*RISE

BA=0.0

WB =1.0

DO 55 I = 1,NNY

WB = WB*XA

BA = BA+WB

CONTINUE

BAZ = BA-BZ
IF(BAZ) €0,70,65
LESS = .TRUE.

IF(MORE) THEN

IF(DABS(BAZ) .LE.0.001) GQTO 70
XA = XA/RISE
RISE = RISE + EPS*DENOM
DENOM = DENOM/10.0
MORE = FALSE.
ENDIF
RISE = RISE + EPS»DENOM
GOTO 80

MORE = ,TRUE.

IF(LESS) THEN
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IF(DABS(BAZ).LE.0.001) GOTO 70
XA = XA/RISE
RISE = RISE - EPS*DENOM
DENOM = DENOM/10.0
LESS = .FALSE.
GOTO 68
ENDIF
XA = XA/RISE
68 RISE = RISE - EPS*DENOM
GOTO 50
cc
70  CONTINUE
cc
NN=NN+NNY
MM(J)=NN+2
WB=0.
DO 80 I=1,NP
WB=WB+RO*XA**(I~1)
NN=NN+2
XORD(NN)=WB*DSIN(ANG)
YORD (NN)=WB*DCOS (ANG)
IF(DABS (BMR~XORD(NN) ) .LE.EPS) XORD(NN)=BMR
IF (DABS (BMR-YORD(NN) ) .LE.EPS) YORD(NN)=BMR
80 CONTINUE
85  CONTINUE
cc
CC NOW ROTATE ABOUT 45 DEGREES TO COMPLETE CORNER COORDS.
cc
DO 95 I=2,MANG
ML=MM(MANG-I+1)-2
NN=NN+NNY
DO 90 J=1,NP
ML=ML+2
NN=NN+2
XORD(NN)=YORD (ML)
YORD (NN)=XORD(ML)
90 CONTINUE
96 CONTINUE
cC
CC --~- INTERMEDIATE NODES
cc
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100
110

cC
cC
cC
CC
cC
CC
cC

CC
CcC
cC
cC
cC
cc
CC
cC
cC
cC
cC

cC

DO 110 II=1,NNEL

DO 100 JJ=2.8,2

J=NLM(II,JJ)

IF(JJIX(J).GT.0) GOTO 100
K1=JJ-1

K2=JJ+1

IF(K2.GT.7) K2=1

J1=NLM(II, K1)

J2=NLM(II,K2)

XORD (J)=(XORD(J1)+XORD(J2))/2.
YORD (J)=(YORD(J1)+YORD (J2))/2.
JIX(J3) =t

CONTINUE

CONTINUE

READ(LIN,*) XL,YB,XR,YT,THIC
READ(LIN,*) ASXX, ASYY

READ ELEMENT PROPERTIES DATA
PROPS(1)

PROPS(2)
PROPS(3)

YOUNG'’S MODULUS FOR MATERIAL TYPE I
POISSON’S RATIO FOR MATERIAL TYPE I
DENSITY FOR MATERIAL TYPE I

[}

READ (LIN,*) PROPS(1),PROPS(2),PROPS(3)
IF(ASXX.NE.0.0) NSIDE = NSIDE+ISIDE
IF(ASYY.NE.0.0) NSIDE = NSIDE+ISIDE

FORM THE NODAL D.O.F ARRAY, JDOX(I),
Joay(1r) (I=1,2, ..,NNGDE)

J = 1 MEANS X-DIRECTION

J = 2 MEANS Y-DIRECTION

JDOX(I) = O MEANS NODE I IS NOT CONSTRAINED IN X DIRECTION
JDOX(I) = 1 MEANS NODE I IS CONSTRAINED IN X DIRECTION
JDOY(I) 0 MEANS NODE I IS NOT CONSTRAINED IN Y DIRECTION
JpoyY(I) 1 MEANS NODE I IS CONSTRAINED IN Y DIRECTION

L}

DO 165 I = 1,NNODE

X1=(XORD(I)~-XL)/2.
X2=(X0RD(I)-XR)/2.
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CC

¥1=(YORD(I)-YB)/2.
Y2=(YORD(I)-YT)/2.
IF(DABS(X1).LE.0.001) XORD(I)=XL
IF{DABS(X2).LE.0.001) XORD(I)=XR
IF(DABS(Y1).LE.0.001) YORD(I)=YB
IF(DABS(Y2).LE.0.001) YORD(I)=YT

J=0
K=0
XI = XORD(I)
YI = YORD(I)
JDOX(I) =0
JDOY(I) = 0
IF(XI.EQ.XL) THEN
J=1
GOTO 162
ENDIF
IF(XI.EQ.XR) THEN
l1=3
ENDIF

162  IF(YI.EQ.YB) THEN

K=2
GOTO 164
ENDIF
IF(YI.EQ.YT) THEN
K=4
ENDIF

164 IF(J.EQ.0.AND.X.EQ.0) GOTO 165

165
cC
cC
cC

cC
cC
cC

IF(J.EQ.1.0R.J.EQ.3) JDOX(I) = JXL(J,1)
IF(K.EQ.2.0R.K.EQ.4) JDOY(I) = JXL(K,2)
CONTINUE

DISTRIBUTED LOADS

CALL SIDELOD(JDSIDE,DLOAD,NSIDE,XORD,YORD,NUMEL,
1 NNODE,NTOT,ASXX,ASYY,XL,XR,YB,YT)

MATERIAL TYPE VECTOR, ELTYP(I)

DD 167 I
ELTYP(I)

L]

1,NNEL
1
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167

ccC
CcC
cC

241

Q0

cC

240

245
cC

500
410
250

260

© O O H WO N -

CONTINUE
NDIST = NSIDE/4
IPRNT = 1
NUMAT
NTYPE
NPOIN

1
1
0

i

PRINT RESULTS

WRITE(LOUT,2) NNODE,NNEL,NUMAT ,NTYPE,NPOIN,NDIST,
IPRNT,THIC

WRITE(*,2) NNODE,NNEL,NUMAT,NTYPE,NPOIN,NDIST,
IPRNT,THIC

WRITE(LOUT,241) PROPS(1),PROPS(2),PROPS(3)
FOKMAT(3F10.4)

FORMAT(716,F6.2)

WRITE(LOUT,250) NNODE,NNEL,PROPS(1),PROPS(2),
THIC,PROPS(3), ASXX,ASYY

WRITE(LOUT,280) NNODE

DO 240 I = 1,NNODE

WRITE(LOUT,290) I,XORD(I),YORD(I),JDOX(I),JIDOY(I)
WRITE(LOUT,260) NNEL

DO 245 I=1,NNEL

WRITE(LOUT,270) I,ELTYP(I), (NLM(I,J),J=1,8)

DO 500 I = 1,NSIDE,4

J = I+3

WRITE(LOUT,410) (JDSIDE(K),K=I,J),(DLOAD(K),K=I,J)
CONTINUE

FORMAT(416,4F19.4)

FORMAT(’ ’,//,5X,’TOTAL NO. OF NODES =’ 110,/,
5X,’TOTAL NO. OF ELEMENTS =’ 110/,
5X, 'MODULUS OF ELASTICITY (MPA) =',F10.2/,
5X, 'POISSONS RATIO =’ F10.4/,
5X, 'ELEMENT THICKNESS (M) =’ F10.4/,
5X, ’MATERIAL DENSITY (MPA/M) =’ F10.6/,

SX,’APPLIED STRESS IN X-DIRECTION=',F10.3/,
5X, ’APPLIED STRESS IN Y-DIRECTION=’,6F10.3/)
FORMAT(’ ’,/,15X%,’ ELEMENT NODE NUMBERING’,/,
15X, TOTAL NO. OF ELEMENTS =’,13,/,
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270
280

289
290
350

cC

50

cC

' ELEM ELEM NODE1 NODE2 NODE3 NODE4’,

1’ NODE5 NODE6é NODE7 NODES’,/,

' NO  TYPE’,/)

FORMAT(I4,4X,I2,8(4X,13))

FORMAT(/,2X,’TQTAL NO. OF NODES =’,Is,/,

' NODE X-COORDINATE Y-COORDINATE X~DOF
FORMAT(® °,I5,2(6X,F10.5))

FORMAT(’ ’,15,2(4X,F10.5),2(4X,I3))
FORMAT(1017)

STOP

END

PO - W A T D S . T S S e

Y-DOF’,/)

SUBROUTINE SIDELGD(JDS,DDL,NS,XORD,YORD,NUM,NN,NTOT,

ASXX,ASYY,XL,XR,YB,YT)
DIMENSION XORD(NN),YORD(NN),NUM(NTOT)
DIMENSION JDS(NS),DDL(NS),NLM(8),IS5(3)
INTEGER KK, NNEL,NN, NS, ICHEK

KK = 0
NNEL =
NL =0
DO 100 II = 1,NTOT,8

NL = NL+1

J=II -1

D050 I =1,8

J = J+1

NLM(I) = NUM(J)

DO 90 IS = 1,4

ICHEK = 0

ISS(1) = IS*2-1

ISS(2) = ISx2

ISS(3) = ISx2+1

IF(ISS(3).GT.8) ISS(3) = ISS(3)-8

NTOT/8

CC CHECK IF SIDE CORRESPONDS TO ANY EDGE

ol

60
cC

DO 60 I = 1,3
ISS(I) = NLM(ISS(I))
CONTINUE

CC LEFT EDGE
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cc

cC
CC
CC

cC
CC
cC

CC
cC
cC

CC
80

IF(XORD(ISS(1)).EQ.XL.AND.XORD(ISS(3)).EQ.XL) THEN
IF(ASXX.GT.0.0) THEN
XXYY = ASXX
ICHEK = 1
GOTO 80
ENDIF
ENDIF

RIGHT EDGE

IF(XORD(ISS(1)) .EQ.XR.AND.XORD(ISS(3)).EQ.XR) THEN
IF(ASXX.LT.0.0) THEN
XYY = ASXX
ICHEK = 1
GOTO 80
ENDIF
ENDIF

BOTTOM EDGE

IF(YORD(ISS(1)).EQ.YB.AND.YORD(ISS(3)).EQ.YB) THEN
IF(ASYY.GT.0.0) THEN
XXYY = ASYY
ICHEK = 2
GOTO 80
ENDIF
ENDIF

TOP EDGE

IF(YORD(ISS(1)).EQ.YT.AND.YORD(ISS(3)).EQ.YT) THEN
IF(ASYY.LT.0.0) THEN
XXYY = ASYY
ICHEK = 2
ENDIF
ENDIF

CONTINUE

IF(ICHEK.EQ.0) GOTO 90
JDS(KK+1) = ISS(1)
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90
100

IDS(KK+2) = ISS(2)
JDS(KK+3) = ISS(3)
IDS(KK+4) = NL
IF(ICHEK.EQ.1) THEN
DDL (KK+1) = XXYY
DDL (KK+2) = 0.0
DDL(KK+3) = 0.0
DDL(KK+4) = XXYY
ENDIF
IF(ICHEK.EQ.2) THEN
DDL (KK+2) = XXYY
DDL(KK+1) = 0.0
DDL(KK+3) = 0.0
DDL(KK+4) = XXYY
ENDIF
KK = KK+4
CONTINUE
CONTINUE
NS = KK
RETURN
END
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Appendix D

LISTING OF A COMPUTER PROGRAM TO
CREATE EXCAVATIONS IN A FINITE
ELEMENT MESH, VOIDMESH

The listing of a special purpose 8-node quadrilateral mesh
generator called CIRCMESH, is given in this appendix. The program
has been described in Chapter 5.

e

cC
cC
cC
cC
cC
cC
cC
cC
cC
CC
cC
CC
cC
cC
cC
cC
cC
cC
CC
cc

REAL XORD(2000),YORD(2000) , DLOAD(200,4)

REAL YM(10) ,PR(10) ,DENS(10)

INTEGER NLM(800,8), IDOF (2000) , JDOF(2000) , JJX(2000)
INTEGER ISIDE(200,4) ,ICELL(200)

INTEGER DELEM(200) ,NOD(300) ,NNODE ,NNEL,IJ,NS

CHARACTER*14 FILEA,FILEB
CHARACTER*5  TITLE(15)
LOGICAL EXISTS
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PROGRAM TO CREATE EXCAVATIONS IN A FINITE ELEMENT MESH.

THIS IS OFTEN NECESSARY WHEN SIMULATING EXCAVATION SEQUENCES
IN A MINE. THE PROCESS INVOLVES DELETEING ELEMENTS AND THE
NODES COMMON TO THEM, OR, ALTERNATIVELY, DELETING NODES AND
THE ELEMENTS ATTACHED TO THEM. IT IS NECESSARY TO HAVE A
COMPUTER PROGRAMME THAT WILL REVISE AN

EXISTING MESH FOR THIS OPERATION.

THE INPUT FILE TC THE FRONT PROGRAMME IS
STRUCTURED AS FOLLOWS:

TITLE LINE

PROBLEM DATA LINE

MATERIAL PROPERTIES LINE(S)

. NODAL COOQRDINATES (AND CONSTRAINT) LINES

. ELEMENT CONNECTIVITY (AND TYPE) LINES, AND
. POINT AND/OR DISTRIBUTED LOAD LINES

A N b WA=
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CC CREATING AN EXCAVATION WILL AFFECT ITEMS 4,5, AND 6 ABOVE.
CC IT IS EASIER TO SPECIFY BOTH NODES AND

CC ELEMENTS INVOLVED ALTHOUGH

CC IN THEORY, GIVEN ONLY EITHER THE NODES OR THE ELEMENTS,THE
CC PROGRAM SHOULD BE ABLE TO VERIFY THE OTHER

CC MISSING COMPONENTS.

ccC

CC WE ASSUME THAT THE ITEMS TO BE DELETED ARE RANKED IN ORDER OF
CC INCREASING MAGNITUDE, SAY, N(1),N(2),N(3),....N(D).
cC

CC (A) NODAL COORDINATE REVISION

cc

CC OPERATION (A1)

cC

ce NODES N(1)+1 TO N(2)-1 DECREASE BY 1

ce NODES N(2)+1 TO N(3)-1 DECREASE BY 2

cC .

(ofe e e e

ce .

cc NODES N(I-1)+1 TO N(I) DECREASE BY (I-1)

cC

ce

cC

CC (B) ELEMENT CONNECTIVITY REVISION

cC

CC OPERATION (B1)

cc

cC ELEMENTS N(1)+1 TO N(2)~-1 DECREASE BY 1

ccC ELEMENTS N(2)+1 TO N(3)-1{ DECREASE BY 2

cC .

oo

ce .

cC ELEMENTS N(I-1)+1 TO N(I) DECREASE BY (I-1)

ce

CC OPERATION (B2)

cC

CC  IDENTIFY THE ELEMENT NODES AND APPLY OPERATION (A1) ABOVE.
cC

ce

cc (C) DISTRIBUTED LOAD SIDES REVISION

cC
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cc
CcC
CcC
cc
cc
cC
ccC
ccC
cC
cC
cC
cC
cC
CcC
ccC
CcC
cC

aQa

Q

aQa

FOR EACH LOADED SIDE,

(1) IDENTIFY THE ELEMENT NO. AND APPLY OPERATION (B1) ABOVE,
(2) IDENTIFY THE NODES AND APPLY OPERATION (A1) ABOVE.

AT THE END OF THE EXERCISE, THE TOTAL NODES AND ELEMENTS CC

WILL BE DECREASED BY THE AMOUNTS DELETED. THE PROGRAM
WRITTEN FOR THIS PURPOSE IS CALLED REVISE.F

NELD = NO. OF ELEMENTS TO DELETE, (MAX = 200)
DELEM(*) = ARRAY HOLDING THE ELEMENT NUMBERS TO BE DELETED
NDD = NO. OF NODES TO DELETE (MAX = 300)
NOD(*) = ARRAY HOLDING THE ELEMENT NUMBERS TO BE DELETED
LINS = 3
LINi=7
LIN2=8
FORMAT(14A1)
WRITE (%, %)
WRITE(*,*) ’'NAME OF INPUT FILE 7’
WRITE(*, %)

READ (*,*) FILEA
OPEN(LIN3,FILE= FILEA,STATUS='0LD’,ACCESS=’SEQUENTIAL’,
1 FORM='FORMATTED’)

WRITE (*,*)

WRITE(*,*) 'TOTAL NO. OF ELEMENTS TQ DELETE 7’

WRITE (%, %)

READ (LIN3,%*) NELD

WRITE (*,*)

WRITE(*,*) 'ELEMENTS TO DELETE 7’
WRITE (*,%)

READ(LIN3,*) (DELEM(I),I=1,NELD)
WRITE (*, %)

WRITE(*,*) 'TOTAL NO. OF NODES TO DELETE 7’
WRITE (*,%)

READ (LIN3,*) NDD

WRITE (*,*)

WRITE(*,*) ’NODES TO DELETE 7’
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C
C
c

CC

WRITE(*,%)

READ(LIN3,*) (NOD(I),I=1,NDD)
WRITE (%, *)

WRITE(*,*) 'NAME OF QUTPUT FILE 7'
WRITE(*,*)

READ (LIN3,10) FILEB

CC SORT DELEM* AND NOD* IN ASCENDING ORDER IF NECESSARY

cC

cC

cC

1

CALL SORT2(DELEM,NELD)
CALL SORT2(NOD,NDD)

OPEN(LINi,FILE='newdata.dat’,STATUS=’0LD’,
ACCESS=’SEQUENTIAL’, FORM=’FORMATTED’)

CC CHECK THAT QUTPUT FILE IS NOT ALREADY EXISTING.
CC IF IT EXISTS, PURGE IT FIRST.

cC
CC == =mmmmm e o e e e e e
INQUIRE (FILE=FILEB,EXIST=EXISTS)

IF(EXISTS) THEN
OPEN(UNIT=LIN2,FILE=FILEB,STATUS=’0QLD’)
CLOSE(UNIT=LIN2,STATUS='DELETE’)

ENDIF
OPEN(UNIT=LIN2,FILE=FILEB,STATUS=’NEW’ ,FORM=’FORMATTED’)
o e D
cc
CC NNODE = NO. QF NODES.
CC NNEL = NO. OF ELEMENTS.
cc NS = NO. OF LOADED SIDES.
cc
READ(LIN1,10) TITLE
WRITE(*, 10) TITLE
o WRITE(*,*) ’ENTER NEW TITLE’
READ (LIN3,10) TITLE
10 FORMAT (15A5)
WRITE(LIN2,10) TITLE
READ(LIN1,*) NNODE,NNEL,N7,N8,N9,NS,N1,D2
DO 20 I = 1,N7
READ(LIN1,*) YM(I),PR(I),DENS(I)
20 CONTINUE
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30

40

50
cC

cC

DO 30 I = 1,NNODE
READ(LIN1,*) IJ,XORD(I.),YORD(IJ),IDOF(IJ),JDOF(IJ)
DO 40 I = 1,NNEL

READ(LIN1,=*) N,JIX(N), (NLM(N,
DO 50 I = 1,NS

READ(LIN1,*) (ISIDE(I,J),J=1,

CLOSE (LIN1)

CC NODAL COORD. REVISION

cC

cC

CALL ALTNOD(XORD,YORD, IDOF, JDOF,NNODE, NOD,NDD)

CC ELEMENT CONNECTIVITY REVISION

CC

cC

70

CcC

80
85

90
100

CcC

NZ

=8
NNDD =

NNODE+NDD

DELEM(NELD+1) = NNEL+1
DO 100 II = {,NNEL
DO70 I =1,8
ICELL(I) = NLM(II,I)
JJ =11
MINUS = O
DO 80 I = 1,NELD+1

IF(II.EQ.DELEM(I)) GOTO 100
IF(II.LT.DELEM(I)) THEN
MINUS = I-1
GOTO 85
ENDIF
CONTINUE
JJ = JJ-MINUS
JIX(IJ) = JIX(II)

3),3=1,8)

4), (DLDAD(I,J),J=1,4)

CALL ALTER(ICELL,NZ,NNDD,NGD,NDD)

DO 90 I = 1,8
NLM(JJ,I) = ICELL(I)
CONTINUE

CONTINUVE

NNEL = JJ
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CC LOADED SIDES REVISION

cC
ce
cC
CC

110

cC

120

CC

cC

ZHANGE THE ELEMENT NUMBERS OF THE ELEMENTS CONTAINING
THE SIDES

NZ = NS

DO 110 J = 1,NS

ICELL(J) = ISIDE(J,4)

NOT =0

CALL ALTER(ICELL,NZ,NNEL,DELEM,NELD)

DO 120 ]

= 1,NS
ISIDE(J,4) = I

CELL(J)

DO 160 II = 1,NS
NZ =3

CC CHANGE THE NODE NUMBERS OF THE NODES DESCRIBING THE SIDES

cC

130

140

145

150
cC

155

160

170

180

190
200

DO 130 J = 1,3
ICELL(J) = ISIDE(II,J)
NOT = 0

CALL ALTER(ICELL,NZ,NNDD,NOD,NDD)
DO 140 J = 1,3

ISIDE(II,J) = ICELLQJ)
FORMAT(F12.2,2F12.4)

CONTINUE

WRITE(LIN2,*) NNODE,NNEL,N7,N8,N9,NS,N1,D2
DO 185 I = {,N7
WRITE(LIN2,145) YM(I),PR(I),DENS(I)

CONTINUE
DO 160 I = 1,NNGDE

WRITE(LIN2,200) I,XORD(I),YORD(I),IDOF(I),JDOF(I)
DO 170 I = 1{,NNEL

WRITE(LIN2,210) I,JJX(I), (NLM(I,J),J=1,8)
DO 180 I = {,NS

WRITE(LIN2,220) (ISIDE(I,J),J=1,4), (DLOAD(I,J),J=1,4)
CLOSE(LIN2)

CONTINUE

FORMAT(15,2F10.3,215)
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210 FORMAT(1015)
220 FORMAT (415,4F10.3)
cC
STOP
END
(0 Gk e ke ok e o o ok ok o ok i o e ok ok ok
SUBROUTINE ALTNOD(XX, YY ,ID, JD, NN, ND, KK)
DIMENSION XX(NN),YY(NN),ID(NN),JD(NN),ND(KK+1)
cc

ND(KK+1)
DO 50 II
JJ =11
MINUS = 0
DO 30 I = 1,KK+1

NN+1
1,NN

ce
IF(II.EQ.ND(I)) GOTO 50
IF(II.LT.ND(I)) THEN
MINUS = I-1
GOTO 40
ENDIF
30 CONTINUE
40 JI = JJ-MINUS
XX(JJ) = XX(II)
YY(JJ) = YY(II)
ID(JJ) = IDCII)
JD(JJ) = ID(IID)
50 CONTINUE
NN = JJ

RETURN
END

SUBROUTINE ALTER(IC, LL, MM, ND, KK)
DIMENSION IC(LL),ND(KK+1)
cC
ND(KK+1) = MM+1
MINUS = 0O
DO 50 II = 1,LL
JJ = IC(II)
DO 30 I = 1,KK+1
cC
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30
40

ccC
cC
cC
cC
ccC
cC
cC
cC

cC

ccC

IF(JJ.EQ.ND(I)) GOTO 50
IF(JJ.LT.ND(I)) THEN
MINUS = I-1
GOTO 40
ENDIF
CONTINUE
CONTINUE
JJ = JJ-MINUS
IC(II) = JJ
CONTINUE

RETURN
END

T e T T P R L L R T Y

SUBROUTINE SORT2(JD,NN)

SORTS A LINEAR ARRAY OF NN ITEMS IN ASCENDING ORDER

IN A DOUBLE-ENDED OPERATION.

THERE ARE  NN*(NN+1)/4 ITERATIONS FOR NN EVEN, AND,
(NN-1)*(NN+3)/4 ITERATIONS FOR NN ODD.

THIS COMPARES TO NN+(NN+1)/2 ITERATIONS FOR A SINGLE-ENDED

SORT, A SAVING JF NEARLY 50 PERCENT.

DIMENSION JD(200)
INTEGER JMIN, JMAX, IMIN,IMAX,JJ,KK,ID,IE

JJ =0

KK = NN+1

JK = NN/2

IE = 10000000

DO 60 I = 1,]K
IMIN = IE

IMAX = 0

JMIN = IE

JMAX = 0

JJ = JJ+1

KK = KK-1

DO 20 J = JJ,KK
ID = JD(J)
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20
cC

cC
30

cC

40
60
cC

IF(IMAX.LT.ID) THEN
JMAX = ]

IMAX = ID

ENDIF
IF(IMIN.GT.ID) THEN
JMIN = J

IMIN = ID

ENDIF

CONTINUE

IF(JMIN.EQ.IE .OR. JMAX.EQ.0) GOTO 60
IF(JMIN.EQ.JJ) GOTO 30

1J = JD(JI)

JDCJI) = JD(IMIN)

JD(JMIN) = IJ

IF(JMAX.EQ.KK) GOTO 40
IF(JMAX.EQ.JJ) JIMAX = JMIN

IJ = JD(KK)
JD(KK) = JD(JMAX)
JD(IMAX) = IJ
CONTINUE
CONTINUE

RETURN
END
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APPENDIX E

DERIVATION OF THE [P], [R] AND [L]
MATRICES

E.1 Formulation of the [P] Matrix
E.1.1 The Jacobian

There is a one-to-one correspondence between the global coordinates (z,y) and the local
coordinates (s,t). By using the Chain Rule of differentiation, the following relation can be
established between the local and global coordinates:

0/0s 0/0z
= [J] (E.1)
0/0t 0/0y
where the Jacobian, [J], is defines as
Oz/0s Oy/ds an o ar
= = (E.2)
017/(% 5y/0t an Q2
Note that [J7!)T = [J7]"! and that
Q2 —Qi
) = /A (£3)
—an an

where
A= detlJ| = 1107 — 1207

By taking the second partial derivatives of the Airy Stress Function @ with respect to
local coordinates s and t, it can be shown that

(B8] = (1" (A Y (E4)

where

[A] = [Ao] - [A:] - [A)] (E.5)
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0*0/0z*  0*®/0xzdy o, —Tuy
[B] = = (E.6)
90020y )y e

The components of [A] can be written as follows,

An  Ap
[4] = (E.7)
An  An

where

*®/os*  0*®/0sot
(40 = (E8)
0*®/dsot  9*9/0t?
Pz/0s* §%c]0sit
[A;] = 00/0z (E.9)
dz/dsdt 9%z /ot
d*y/0s*  O%y/0sot
(4] = 99/0y (E.10)
d%y /st O%y/[ ot

Each of the 2x2 matrices in the expressions above is symmetric and the [B] matrix can
be expressed entirely in terms of the undetermined stress rultipliers, 3,.

Equation ( E.4) can be expanded by substituting Equations ( E.3) and ( E.7) mnto it to
yield:
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Oy —Tay Qg3  —Oy An  An Q2  —ag
(B] = = JAY (E.11)
~Tey O —ay  ap An Ay —ayy  ay
which can be expanded and rearranged to yield:
Oz All
1
ay = E’ [S] Azg (E12)
Try Al’)
where
( ady af) ~2aq109 ]
(5] = aly aly —2ay303 (E.13)
| anaz anoy —(anag; + appog) |

Equation ( E.5) can be expanded by substituting Equations { E.7), ( E.8), ( E.9) and
( E.10) into it, and the resulting expression can be rearranged to yield:

An
An ¢ = [Z){8} - [FII] (W] {8} (E.14)
An
where
526952
(Z1{B} = { 0%®/ot’ (E.15)
/st
Pz/ds?  o%y/ds?
(Fl= | o%/oe  oy/or (E.16)

0%z/0s0t 8%y [BsOt
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(B.17)

d®/0x
(17 W] {8} = { }

09 /0y

From equations (E.12), and (E.14), it can be deduced that the [P] matrix is given by the
expression:

| -
Pl = 18 (2 - 1Pt w)) (E.18)
(W] is a 2x18 matrix whose coefficients are functions of s and t as derived from the first
partial derivative of ® with respect to s and t. [Z] is a 3x18 matrix with coefficients as
functions of s and t, as derived from the second partial derivatives of ® wi.h respect to s
and t.

The matrix, [F], when expanded in full results in the following expression:

[y ) ]
*N,/8s* 3*N,/0s* ... 0*Ng/ds* ] P 0 0]
[F] = O*Ny/0tt 0*°N, /Ot ... 0*Ng/ot? S 0 0 (E.19)
| 0*N1/0sdt 9*N,/dsot ... §*Ns/dsOt | | X, Y|
Ig Ys
L

where
)(c = (1‘1 -~ I3 +.”£5 - 137)/4,
Yo = (1 — ya +ys — yr)f4

This leads to further simplification in the computation of the [P] matrix. The full ex-
pressions for (W] and [Z] are as follows:
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2s 0 ]
0 2t

t 8
3 0

0 3t
28t s*

tt 2st
4g° 0

0 4
t3 Jst?
25t 25%
3s%t  §°
55 0

0 5t
4s3%t  §f

tt o 4t
35?253

| 25t 3s%t?
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20 0
0 2 0
0 0o 1 ;
6s 0 0
0 6t 0
2t 0 23
0 23 2t
122 0 0
(2]" = P E.20
0 6st 32 (£:20)

2t 2s?  4st

6t 0 32
20s° 0 0
0 20¢3 0

125t 0 453

0 12et% 47

6st?  28%  Gs%t

2% 632t Gst? ]

-




E.2 Formulation of the [G] Matrix

The [G] and [G;] are represented by the equations

6= [, [A[L)ds

(Gl = [, (RTIL)s

where [R] and [R,] are expressions of the tractions acting on the element side and [L] is
the expression for the displacement of the side.

E.2.1 Surface Tractions due to Assumed Stress Fields

Consider the forces acting on the sides of a typical quadiilateral element ABCD as shown
in Figure E.1.
The boundary surface tractions can be expressed as:

{T}Y' = {Tus Tac Tcp Toa) (E.21)

where

{TAE} = {_TABa"anAg}
{Tsc} = {0nperm80}
{Tco} = {mcpyncp}

{Toa} = {~0npsr=TDa} (E.22)

The boundary surface tractions can also be expressed as:
T, = o,v, (E.23)

where, for any particular boundary j, v, is the direction cosine of the normal to it.
Consider the boundary surface AB whose outward-drawn normal makes an angle § with the
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Tnpa

JapA

X

Figure E.1: Generalized Boundary Forces Acting on the Sides of a Quadrilateral Element
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X

Figure E.2: Components of Stress Acting on Side AB of a Quadrilateral Element
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positive direction of the x-axis as shown in Figure E.2.

If the stresses acting are 0., 0, 7, as shown, then

T, cosl@ 0 swnb 1

{o} (E.24)
T, 0 smb cost |

where the stresses are given by Equation (3 2) and the surface tractions by Equation (3..4)
of Chapter 3.
From Equations (3.2), (3.4) of Chapter 3, and ( E.21),

[cos® 0 sind
[R] = At [P) (E.25)

0 sinf cosd

L

[ cosO 0 sind
[Rb] = At [Pb] (1‘326)
0 sindl cos

L

where At s the thickness of the elenient.

E.2.2 The [L] Matrix

Consider the inter-element boundary ABof Figure E.1. Using 8-node isoparametric elements,
let the node numbering be anti-clockwise as shown. Let uy, v, be the horizontal and vertical
components of the inter-element displacements and let (u,,v,) be the global horizontal and
vertical components of the displacements of node i where (1 <1t < 3).

Since we are using isoparametric formulation, we can write:

Uy

Uy
3

U, Zl ‘Vlul Uj

= ' = [Nas] (E27)

Uy

vy )




where the subscripted components in

Ny 0 N, 0 N3 0
[Nap] = (E.28)
0 N1 0 IVQ 0 1V3

are the shape functions for nodes 1, 2 and 3 respectively of side AB. Similar expressions
can be written for the other sides of the quadrilateral element. The 6x1 vector of displace-
ments in Equation { E.27) is precisely part of the 16-component global displacement vector,
{q}, of the element. {¢q} comprises 2-component global displacements per node. Thus, the
inter-element displacements of side AB can be expressed in terms of the entire {g} vector
by expanding the 2x6 [/V1p] matrix to 2x16 by filling the rest of the positions with zeros.
Thus, if we consider the entire element sides, numbered 1 - 4, then, the [L] matrix is seen to
be an 8x16 matrix with each side subscribing a 2x16 sub-matrix.

When the quadrilateral element is expressed in terms of the local (s,t) coordinates as
shown in Figure E.J, and if we write:

S, (1-3s)
s, | _ 1) (I+s)
bS5 (1-1) (E.29)
t (141)
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then, the complete [L] matrix is given by

[ —ss, 0 0 0 0 0 ~tt, 0
0 ~ss, U 0 0 0 0 -t

B9, 0 0 0 0 0 0 0

0 4, 0O 0 0 0 0 0

s, 0 —t, 0 0 0 0 0
0 33, 0 =, 0 0 0 0
0 0 it 0 0 0 0 0
0 0 0 4t 0 0 0 0

=16 tt, 0 s, 0 0 0 (1-30)

0 0 0 tt, 0 84, 0 0
0 0 0 0 dss, 0 0 0

0 0 0 0 0 4ss, 0 0

E.3 Interpolation Functions for the
8-Node Quadrilateral Element

The interpolation functions used with the 8-node 1soparametric clement can be derived from
the so called Serendipity elements and can be shown to be given as.
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(Za,ys)
(35yt8)

(zb’yl)
(Sa,‘s)
(31,!14)

1 2 3
(z1,31) (23,¥3) (z3,¥3)
(s1,t1) (2,t3) (s3,1t3)

X

Figure E.3: Global and Local Coordinate System for Quadrilateral Element
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N(s, t) = (L4 s, 8)(L+ t,t)(s, s+ t,t— 1) /4 (E.31)

for the corner nodes where i = 1, 3, 5, and 7. At midside nodes where 1 = 2, 4, 6 and 8, we
have:

Nis, ) = s2(1= ) (1+ 9,8) /24 11— )1+ tt)/2 (E.32)

The interpolation functions and their first and second derivatives are utilized in the
formulation of the matrix equations. They are shown in the table below:

t
‘

o N, 0N, /0s [ 51\/,/(% "021\/‘/032 c')’N,/c’)t"l: 627\’,/03('% :
— SRR ; . . C

1 =st(s+t+1) T (2 +1t) ‘. 39,(2t + 3) t, s, ' (s—t, +0.25)"

- 75 B 43,s,t, t —2st, ‘ —23,8, -2t, 0 | 3

3 s';.“(:siﬁt -1) Ii 3t(2s - t) : I, -s) 3, ' (t, — 3, — 0.25) ‘

4 4s;t,}; — I AL, =2t 0 ~2s, | -t

5 syt(s+t- 15* | 3t,(28+¢) ?%é,(Zt +-s) : t, ] ::, 1 (8, = ¢, +0.32~5~)~

6 43,3,t, '. —2ast, T 29,3;- -2t, 0o -5

7 st(—s+t-1)] 1t(2s - t) Lﬁgs.(m -9 o | (s —t, —025)

8  dstt, —ont, t o, [___0_,“_,____.2;_'“. ¢ B
- (E.33)
where

3, (1-3)
sl aly 834
t, (1+t)

Node numbering is sequentially counter clockwise, starting from the node nearest to the
bottom left corner as in Figure 4.2 of Chapter 4.




