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RESUME 

Cette thèse concerne la formulation et le développment d'une nouvelle 
procédure numérique, appelée la méthode de contrainte hybride pour 
éléments finis. La formulation proposée considère la contrainte et le 
déplacement comme inconnus primaires et diverge de façon radicale des 
modèles d'éléments finis se basant sur le déplacement. 

Parmi les caractéristiques spéciales de ce nouveau modèle, on retrouve 
la définition des équations de rigidité des éléments en termes de système 
de coordonnées locales plutôt que globales, l'usage efficace du schème de 
mise en mémoire pour la solution de données ~~Skyline" ainsi que l'usage 
rapide et efficace de routines de production et de modification de maille 
spécialement développées pour les applications géotechniques. 

Les essais effectués sur les problèmes d'élasticité de solutions à forme 
fermée démontrent que la méthode proposée est précise et nécessite 
relativement moins d'éléments que les autres méthodes à éléments finis 
pour obtenir la même précision. Les études de cas effectuées sur deux 
problèmes de conception minière ont r~produit les résultats obtenus par 
d'autres procédures de modelage numérique dans des limites 
acceptables et ont démontré que la méthode proposée peut être utilisée 
pour solutionner de façon efficace et réaliste les problèmes de 
géoméchanique. 
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ABSTRACT 

This thesis reports the formulation and implementation of a finite 
element model, which is based on the so called Hybrid Stress Finite 
Element Method. The proposed formulation is based on stresses and 
displacements as the primary unknowns and is radically different from 
displacement-based finite element models. 

Among the special features of the Inodel are the casting of the 
element stiffness equations in terms of local rather than global coordi­
nate systeln, the use of the active colmnn method known as the "Skyline" 
technique for the solution of equilibrium equations, and the use of fast and 
efficient mesh generation and alteration routines developed specially for 
geotechnical applications. 

Verification tests carried out on problems in elasticity with closed form 
solutions show that the proposed method is accurate and that it requires 
relatively fewer elements than displacement-based finite element method 
to achieve the same accuracy. Results of case history studies done on 
two mine design problems matched those frOIn other numerical modelling 
procedures within acceptable limits and showed that the proposed method 
cao be used to solve geomechanics problems efficiently and realistically. 
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Chapter 1 

General Introduction 

1.1 The Role of Mining and MineraIs 
in World Economy 

Of the three traditional industries basic to human existence and development, viz, mining, 
agriculture and forestry, the only thing common to them is that their resources come from 
the earth. Agriculture and forestry depend on the land for their basic raw materials but 
in general do not completely and irreversibly deplete these resources. The nutrients which 
the farm and forest products take from the land are often returned to the land, sometimes 
in artificially contrived greater measures that ensure a better yield of the resource in the 
sucœeding cycle of exploitation. Mining on the other hand depends on a resource which, 
once depleted cannot be replenished or replaced. While man can, to a large extent, control 
the basis of agriculture and forestry, the same is not true for mineraIs: man has no control 
over the process of forming the mineraIs nor the geologic setting of their deposition. The 
mining engineer is, as it were, constrained to work with the environment of the particular 
ore deposit in or der to exploit it. 

Throughout the ages, mé'U has been excavating below the surface of the earth for mineraIs 
for various purposes, e.g. for ornaments, for health and medicinal purposes, for building and 
finally, for articles of war and security, Jumukis [1]. These were the basic needs of man and 
their satisfaction has usually resulted in an increased population worldwide a.s weIl as the 
modernization of science and technology. This increasc in aH aspects of human endeavours 
which mineraIs have helped to bring about has in itself resulted in an increased demand for 
greater quantities of minerais so that it is no great surprise that mining has progressed from 
the traditional smaH surface and near-surface openings to the great surface and underground 
excavations of today . 

1 
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1.2 The Nature of Rock Masses 

Rock differs from most other engineering materials in that it contains fractures of aU sizes 
and shapes which render its structure discontinuous. There is therefore a clear distinction 
between a rock mate rial and a rock mass Goodman [2], Brady and Brown [3]. A rock mate­
rial is the term used to describe the intact rock between discontinuities while a rock mass is 
the total in-situ medium containing several discontinuities. These diseontinuities are often 
faults, joints, folds, bedding planes, and other structural features. The structure of a rock 
mass describes the nature and distribution of the structural features within the rock mass. 
Rocks a.re therefore discontinuous, often heterogeneous and definitely anisotropie engineer­
ing materials and their response to the field forces of their physical environment is therefore 
influenced by their structures. For underground hard rock mines in particular, the predom­
inant structural features are joints, dykes, shear zones, faults, and folds. 

Joints are the most eommon and the most significant feature. Joints are breaks of 
geological origin along whieh there has been no visible displacement. They often oceur 
in sets, the distinguishing feature of any set being the same orientation and size in space. 
Faults and joints are fractures with the difference that in faults, identifiable shear movement 
has taken place. 

1.3 Rock Mass Response to Imposed Force Fields 

In other fields of engineering that deal with materials which are homogeneous, isotropie and 
elastic, the study of their response to imposed forces is predictable and the application of 
the relevant theories of mechanics is weil established. Even in the older but closely related 
field of soil mechanics, systematic documentation of case histories has been in progress for 
over 40 years and has now resulted in well-established empirical design methods which are 
also supported by theoretical analyses. 

The following factors are generally recognized as influence factors in the consideration of 
the response of rock masses to the force fields of their physieal environment: 

1.3.1 Rock Fracture 

The nature of rock masses renders their response to imposed forces very different from the 
response of eonventional engineering materials sueh as steel. In general, the stress fields 
operating in rock masses at depth are compressive so that established theories which usually 
deal with tensile failure are not immediately applicable. Rocks are very weak in tension 
and every strong in compression. Under high eonfining stresses, they will fail by shear 
deformation and their strength is very dependent on the magnitude of the confining stress. 

2 
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1.3.2 Size effects 
The response of rock to imposed load is highly dependent on the size of the loaded volume. 
This fact is attributed to the discontinuous nature of a rock mass whose strength and de­
formational properties are infiuenced by the properties of the rock material and those of the 
various structural geolog;cal features. 

1.3.3 Tensile Strength 

The tensile strength of rock is one of its most distinguishing feature from other engineering 
materials and in general is an arder of magnitude lower than its compressive strength. Rock is 
therefore conventionally described as a no-tension material, especially as joints and fractures 
can offer little or no resistance to tensile stresses. 

1.3.4 Groundwater Effects 

Groundwater affects the response of rock masses in two ways. Vnder the effective stress 
law, water under pressure in the joints defining rock blocks reduces the normal effective 
stress between the rock surfaces, thus reducing the potential shear resistance which can be 
mobilized by friction. Secondly, the mechanical strength of the rock mass is reduced by the 
deleterious action of the water on particular rocks and mineraIs such as clays. 

1.3.5 Effect of Loading Rate 

Many rocks are sensitive to the rate at which loads are applied. At low stress levels, most 
rate-sensitive rocks exhibit primary creep behaviour which is characterized by deformation 
at a decreasing rate to a final state under a constant load and by recovery ta the initial unde­
formed state once the loads are rernoved. However, in sorne cases, particularly for salt type 
rocks such as potash, the stress level often exceeds the creep yield limit and secondary creep 
behaviour, in which dis placements are no longer recoverable and the cl'eep rate approaches 
a constant value, set in. 

These factors Me by no means exhaustive but it is clear that the response of a rock 
mass ta the force fields of its physical environrnent depends highly on the nature of the rock 
mass and the environrnent. Thus, the need for constitutive models which are capable of 
representing these different types of rock mass behavÎour is important. 

1.4 Types of Underground Mining Excavations 

Ore extraction by underground mining methods involves the creation of different types of 
openings for different purposes. These openings are best classified by the duration of tirne 
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they are expected to remain open. The nrst type of openings thus comprises the main shaft, 
level drives, crosscuts, ore haulage dri"es, ventilation drives and airways. These constitute 
the mine access and service openings. They are expected to remain open for the life of the 
mine and are usually developed in the kJst rock. 

Access crosscuts, drill headings, acces" raises, extraction headings and ore passes which 
are directly related to ore development ar,d production con~titute the second type of mine 
openings. They are usually developed in t!1e ore body or very close to it and are expected 
to remain open for the duration of the mimng activity in their immcdiate vicinity. Many of 
these openings are eliminated by the mining process. 

The third type of mine opening is developed in the ore source itself or the stope. In 
general a stope rnay be a free st.anding excavation with weil defined boundary walls that are 
strong enough to support themselves, the exc.wation growing in size as the ore is mined. 
Sometimes however, a stope requires sorne kind of support either in the form of the broken 
ore itself or sorne engineered mechanical supporl. The lifetime of a stope is defined by the 
duration of active ore extraction. It is usually short,er than the life spans of the first two types. 

It is clear from the foregoing that in order for ,;afe and economic exploitation of an ore 
body to be possible, any mine opening must remain open for its expected life span, without 
the danger of precipitating coHapse, due, perhaps to the factors that pertain to the mining 
process in cornbination with the rock mass properties and environment. 

1.5 Sources of Instability in 
Underground Excavation 

According ta Bieniawski [4], there are four principal sources of instability encountered in 
underground mining excavations identified as follows: 

1.5.1 Instability due to Adverse Structural Geology 

This type of instability tends to occur in hard rocks which are faulted and jointed and where 
several sets of discontinuity are steeply inclined. Stability can sometimes be irnproved by a 
relocation or reorientation of the excavations. Usually however, extensive support system is 
required. In aU cases, the cost of mining is high. 

1.5.2 Instability due to High Stress 

This is also generally associated with hard rocks and can occur when mining is at great 
depths or when very large excavations are created at shallow deptbs, or when very high 
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tectonic stresses are encountered. Changes in the shape of the excavations and repositioning 
the excavations with respect to one another sometimes helps but support is usually required. 

1.5.3 Instability due to Weathering 

Weathering and sometimes swelling occur generally in weak rocks generally found near the 
surface. Such rocks sometimes also occur as isolated seams within strong competent rocks. 
The resulting instability is best dealt with by protecting the surface oî t,he rock from contact 
with moisture. 

1.5.4 Instability due to Excessive Groundwater 

Groundwater pressure or flow will caus~ instability in underground excavations when these 
excavations are below the water table, which is often the case. A consequence of this is that 
most underground mines routinely pump water out of the mine as an essential operation. 
The instability due to this source becomes a problem when it is associated with one of the 
above instabilities. 

It is fair ta state that the first two types of instabilities are the most sel'ious to deal 
with. Indeed the instability due to excessive rock stresses precipitates sorne other forms of 
instabilities. As mining excavations grow in size, the loss of support previously provided 
by the mined rock results in the transfer of stresses to the adjacent rock masses which may 
then bear more than their capacity. The consequences of this include rock bursts, spalling 
of sides, creation of fract u;es and thus channels for ground water ftow. 

1.6 The Need for Realistic Mine Design Techniques 

ln the past few decades, changes in mine economics as a result of several factors have resulted 
in the use of larger equipment with resulting increase in stope and access tunnel dimensions. 
The increasing volume of underground mining activities combined with the high cost of 
equipment and technnlogy that accompany their operations lend to them an air of perma­
nence formerly reserved ta Civil Engineering works. Thus, a typical large mine nowadays 
has major shaft systems with their surrounding complex of haulage ways, ore passes, crusher 
stations~ p~mp stations and underground engineering services. Consèquently, such excava­
tions must be secme against rockfalls and other fonns of instability. 

The ultimate objective in mine design is ta control rock displacements into and around 
mine excavations, Brady and Brown [3]. Elastic displacements around mine excavations are 
typically small. Rock displacements of engineering consequence may involve such processes 
as fracture of intact rock, slip on a geological feature, excessive ddlections of roof and floor 
rocks, or unstable failure in the system during which, stored potential energy is suddenly 
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released thus resulting in changes in the equilibriurn configuration of the structure. These 
modes of rock response indicate a methodology of designing stable excavations in rock. This 
methodology includes the accurate determination of the strength and deformation properties 
of the orebody and the enclosing waste rock mass, the geologic parameters of the rock mass 
and the use of analytical methods to evaluate each of the possible modes of response of the 
rock mass. 

Thus, the design of underground mining excavations plays an important role in modern 
mining philosophy and the science under which this design is practised is called ROCK 
MECHANICS. A widely accepted definition of rock mechanics is the one first offered by the 
United States Natwnal Commlttee on Rock /t.Jechanzcs in 1964, and later modified in 1974, 
Judd [5]: 

"Rock Mechanics is ~he theoretical and applied science of the mechanical be­
haviour of rock and rock masses; it is that branch of mechanics concerned with 
the response of rock and rock masses to the force field of their physical environ­
nIent." 

Rock mechanics is thus of fundamental relevance to Mining Engineering beca.ll'lC the act 
of creating mining excavations changes the force fields of the physical environment of the 
rocks. The study of the response of the rocks ta these changes requires the application of 
analytical techniques developed specifically for the purpose. Rock mechanics is a bran ch of 
geomechanics, WhlCh is concerned with the mechanical responses of aU geologic materials, 
including rocks. 

Figure 1.1 illustrates the main parts of a rock mechanics program. It is apparent that 
numerical modelling, the area in which this thesis can be classified, is only a part of several 
multipass loops. It is however, an important area. Various models of mining methods from 
start up to end of mine life can be examined and in conjunction with mine mOllitoring, model 
calibration that accurately reflects the response of the mine structures ta mining operations 
can be made. 

The need ta reduce the chances of failure of critical mine openings has made it very 
important that advanced techniques be developed for designing the mine openings and for 
general mining operations. Traditionally, mine design has been based on a combination of 
experience and relatively simple analytical models modified by empirical factors ta account 
for the 'non ideal' nature of rock. With today's high tonnage, and bulk mining methods 
operating at greater depths, there i8 a necd for rational methods for defligning the mine 
geometry which explicitly considcr the geological structure of t.he ore body and the host 
rocks and account for the interaction between the various openings. This nced is largely 
being met by the appropriate use of the stress and displaccment analysis techniques in the 
field of rock mechanics 
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Site Characterization 

---e 
definition of hydromechanical properties of the host rock mass for mining 

[ 

~ 
Mine model formulation 

conceptualization of site characterization data 

Design analysis 

-- Selection and application of mathematical and computational 
schemes for study of various mine layouts and strategies 

Rock Performance and monitoring 
measurement of the operational response to rnining of the host rock mass 

Retrospective analysis 
- quantification of in-situ rock mass properties, and identification 

of dominant modes of respODse of mine structure 

Figure 1.1: (after Brady and Brown [3]) Components and Logic of a Rock Mechanics Program 
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1.7 Objectives of this Thesis 

There were four main objectives in undertaking this research: 

1. To develop from mathematical principles, a numerical model for analysing stresses and 
displacements specifically tailored for excavations in rock masses, and based on the 
hybrid stress finite element technique. 

2. To write a computer code of the method and verify it by using problems in elasticity 
with closed-form solutions. 

3. To apply the computer code in solving actual mining stability problerns which have 
been examined by different methods and compare the solutions, and, 

4. To develop computer prograrns designed to ease the problems of generating and altering 
finite element meshes associated with excavations in rock masses.n 

Chapter 1, this chapter, addresses the role that mineraIs and therefore, mines have played 
and are continuing to play in the life of man and in the world economy. It also sets the stage 
for the following chapters and stresses the importance of the work reported in the thesis. 
Subsequent to this chapter, an overview of the methods of stress and dis placement analysis 
in geomechanics is given in Chapter 2. It is shown that the particular method chosen in this 
thesis is relatively new and unexploited in mining applications. Chapter 3 gives the detailed 
formulation of the relevant mathematics of the hybrid stress finite clement using eight node 
isoparametric quadrilateral elements. This is followed in Chapter 4 by the mathematical 
formulation of the element stiffLl'sS rnatrix and the associated load vcctors for the hybrid 
stress model. 

In Chapter 5, a description of the computer programs is given. Ail the programs are 
writtcn in Fortran 77. These programs include the hybrid stress computer code, two quadri­
lateral mesh generation prograrns, and a program for altering quadrilateral meshes for the 
purposc of creating voids or excavations in them. In Chapter 6, results of verification tests 
done on different types of problems with closed form solutions are discussed. Chapter 7 
gives a detailed description of two case studies do ne on two Noranda mines. Discussions, 
conclusions, contributions and suggestions for further research then follow in Chapter 8. 

There are five appendices in the thesis. Appendix A contains a listing of the hybrid stress 
program written from the reserach carried out. Appendices B, C and D contain listings 
of computer programs written for various purposes as described in Chapter 5. Appendix 
E contains sorne important mathematical derivations and matrices that are crucial to the 
programming of the hybrid stress finite element method. 
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Chapter 2 

Methods of Stress and Displacement 
Analysis in Geomechanics 

2.1 Introduction 

The methods available in geomechanics for solving problems of stress and strain fall into three 
broad groups. These al~, direct measurement anJ observational methods, analytical methods 
and, numerical methods as discussed below. Analytical and numerical methods start off by 
choosing a material model in form of the constitutive equations of linear elasticity. The 
theory of linear elasticity strictly applies to the case of a material with a stress-strain curve 
which is linear and completely reversible under aH conditions. However, many materials 
which are not entirely linear elastic in their stress-strain behaviour, inc1uding rocks, are 
found to be linearly elastic for moderate departures from sorne condition which may be 
regarded as standard. 

2.2 Direct Measurement and 
Observational Methods 

Measurement of displacements and in-situ stresses forms an important part of mine design 
pro cess before mine layout and planning, during the mining process, and after constructing 
important mine structures such as shafts, crusher stations and other permanent features in 
the mine. Measurements made before the excavation are used in the design process, those 
made during the excavation process are used to confirm the validity of the design and to 
provide a basis for any necessary changes in the original design. After construction, measure­
ments are made to check the overall response of the excavation to changes in the surrounding 
rock masses, Roek and Brown [6]. Data coUected in the initial stage can also be used as 
input parameters into the numerical models discussed below . 
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Figure 2.1: Correlation between Calculated and Measured Vertical Stresses, 
(after Bieniawski [4], p. 68) 

The magnitudes and directions of the principal stresses which exist in the rock mass 
before the creation of an excavation play an important role in the subsequent response of 
the excavation to the changing stress field as more excavations are made. The creation of 
an excavation thus disturbs the initial in-situ stress, Bieniawski [4]. Ground or field stresses 
have been classified into virgin or original stresses, and induced stresses due to exc:avation. 
The virgin stresses themselves can be of gravitational, tectonic or residual type. Gravita­
tionai stresses are those due solely to the effect of gravit y on the overburden rock. Tedonic 
stresses are those due to straining in the earth's crust, and residual stresses are stresses that 
remain after the cause has been removed, 

Rock stress measurements feature several techniques which rnay involve either overcoring 
methods, fiat jack methods or hydrofracturing. Such measurernents have been conducted 
in several parts of the world and attempts have been made to correlate the values of the 
horizontal and vertical components with depth of overburden and with values calculated on 
the basis of gravit y alone. Figures 2.1-2.4 depict sorne of these correlations. 
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Figure 2.2: Plot of Vertical Stress versus Depth Below Surface,( after Bieniawski [4], p. 68) 
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Figure 2.3: Variation of Ratio of Average Horizontal Stress to Vertical Stress with Depth 
below Suface, (After Bieniawski [4], p. 69) 
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Figure 2.4: Comparison of Relationship Proposed for the Variation of Horizontal Stress 
Component with Depth below Surface, (After Bieniawski [4], p. 70) 

2.3 Numerical Methods 

Once the constitutive equation which represents the behaviour of the rock mass under stress 
has been identified and the bOllndary conditions have been specified, the problem of solving 
for the stresses and displacements around an underground excavation becomes one of solving 
a boundary value problem. Two approaches to numerical modeling are identified, both 
recognizing geologic structures as being discontinuous owing to joints, faults and bedding 
planes. These approaches are as follows: 

2.3.1 Continuum Models. 

The continuum model, of which there are two types, treats the rock mass as a continuum 
intersected by a nurnber of discontinuities. DifferentiaI models characterize the entire region 
and include the finite difference and the finite element methods. These models utilize the 
classical theory of elasticity and plasticity to compute the stresses and dis placements induced 
in the initially stressed rock following excavation. It is assumed that displacements are con­
tinuous everywhere within the rock mass. This leads to an idealization and simplification of 
its geometrical and mechanical properties. 

The finite difference technique, Desai and Christian [15], was the first nurnerical approach 
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formulated on mathematical basis, to be applied to problems in continuum mechanics. The 
basic concept of the method is ta replace aIl continuous derivatives by the ratio of changes in 
variables over a small but finite distance. Thus, the differential equations which go vern the 
physical problem are transformed into a system of algebraic equations. A finite difference 
grid must be set up and interpolation functions which express the variations of the unknowns 
between the nodes need to be specified. The resulting sy~tem of equations is large but sparse. 

For more complex excavation shapes and boundary conditions, the fini te clement method 
and the boundary element method are two of the several new schemes that can be used. The 
boundary element method is suitable for modelling unbounded problems in elasticity while 
the fini te element method has advantages in its capability of modelling non-linear material 
behaviour, sequential excavations and uther mining induced problerns. Nowadays, hybrid 
computational schemes which combine fmite element methods or boundary element methods 
with discrete element methods are corning into use, see Beer and Meek [16]. Details of the 
hybrid finite el~ment method of this thesis are given in Chapter 3. 

Integral or boundary element methods involve the discretization of the interior or exterior 
boundaries. The interfaces between diff,'rent mat,erial types and discontinuitïes are treated 
as internaI boundaries and are also discretized. Boundary element rnethods produce much 
smaller systems of algebraic equations than a finite element or finite difference method for 
the same problem. However, the smaller system of equations is not sparse nor is it banded 
as for the other continuum type models. 

2.3.2 Discontinuum Models 

Discontinuum models feature numerical procedures involving the equations of motion of 
particles or blocks rather than the continuum. These models are used whenever independent 
rock black movements must be taken into account, such as in block caving mlning methods, 
rock slope failure, roof collapse or flow of ore in a stope or bin. 

2.3.3 The Finite Element Method 

The original concept of fini te element methods for soHds was developed by Turner, CIough, 
Martin and Topp [17] who applied the rnatrix displacement methods to plane stress problems 
using triangular and rectangular elements. Argyris [18] included in his treatise on matrix 
structural analysis a derivation of the stiffness matrix of a plane stress rectangular panel. 
The formulations of element stiffness matrices by early mvestigators were not based on the 
field equations of the entire elastic continuum. 

In the early 1960's, it became apparent that the finite element method can be inter­
preted as an approximate Ritz method associated with a variation al principle in continuum 
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mechanics, Pian [19], Pian and Tong [20], Washizu [21]. From such variational principles as 
illustrated by Figure 2.5, it is possible to derive numerous finite element models which may 
lead to different methods which involve only displacements, only force, or a hybrid of dis­
placement and force. Washizu's contributions, as a typical example can lead to the derivation 
of finite element methods for solving initial 5train problems, finite displacement problems, 
plasticity problems and others. Pian [22] bas given a thorough sumrnary of the application 
of the variational principles to the derivation of finite clement cquations for solids, and hdS 

classified fini te element methods according to \Vashizu [21L Table 2.:3.7. 

In such methods, a soHd continuum is first subdivided into an assemblage of dlscrete cle­
ments called finite clements, which are connected along continuous intcrelement boundaries. 
Piecewise continuous displacement and/or stress fields are then assumed in each element and 
the resulting equations from the application of the variational princip les are simultaneous 
algebraic equations which may have t'ither generalized displaccments, generalized internai 
forces or stresses, or, both displacements and forces at the nodal points as unknowns to be 
evaluated. 

The nature of the final matrix equations has been used as the basis for one type of 
classification of finite element methods and so, the three categories glven above are often 
referred to as, 

• the displacement or compatible method, 

• the force or equilibri um method, 

• the mixed method, and 

• the hybrid method 

Turner et al. [17], were the first to apply the technique of matrix displacement methods 
to plane stress problems using rectangular and triangular elements. The stiffness matrices 
were derived by the direct stiffness method but the formulation was not based on the field 
equations of the entire elastic continuum. 

This study follows the definition of the hybrid finite element method given by Pian [23]. 
The hybricl stress method involves assumed cquilibrating stresses only within caLil clement 
and compatible dis placements along the mt.erelement boundar!('s. The hybrid displacement 
method involves assumed continuous displacement distflbution wlthin ca ch clement and 
equilibrating surface tractions along the interelement boundaric::I. 

The displacement method i8 u:mally derived [rom the Principle of Stationary (minimum) 
Potential Energy, in which the dlsplacements are assurned within the finite clement such that 
they satisfy continuity conditions within the element and rLiong the interclernent boundaries . 

14 



..... 
'" 

• • 

1 sua.-sttaln J Relations 
1 Potœlia" or ikJdy Fon:a 1 

and Sud_ Fon:a 
EqualÏona 0( E.quDibriura ,1 

Mcchankal Bouodary CondltÂODa 

Priocipia 0( VUtuaJ Won; J 
l Strain &c:rJy FUDCÙOD 1 , ! 

Priociplc 0( Minimum 1 

PotœtiaJ Eocru 

Complcmcotuy Eoav 
FUoction 

GC:DcnHz.cd Priocip&o 1 

HcJllntcr-Reiunu PrindP'o 1 

StnUn-Dilpla.ccmc:nt Rclaüooa Pnocip&c 0( 

0c0metricaJ Boundary Complolnoatuy Priociplc 0( Minimum 
Coodj,iooa Virtual Work l ComplcmœWy Eoau 

Figure 2.5: Variational Principles in the Small Displacement Theory of Elasticity 



• 

• 

The stresses are then computed from the gradient of displacement functions. Boundary trac­
tions and the equilibrium equations are not exactly satisfied within the element, as a re~ult 
of which, the predicted stresses may not be accurate. 

A method that can predict stresses with greater accuracy than the displacemcnt method 
is the force method which is also knowll as the equilibrium method. It can be ùcrived from 
the Principle of Stationary (minimum) Complemcntary Energy. The disadvantage of this 
method is that it is usually difficult to derive a stress field that satisfies the presmbed trac­
tions and equilibrium equations. Also, the predicted ùisplacrments by this !1H'thod lIlay Ilot 
be accurate, Pian and Tong [20]. 

The mixed m~thod is often derivcd from the lIellinger-Reisller variational PllllClple, iIl 
which the stress and displacement fields are assumed separately for cMh e1erncnt. 
The hybrid method can either be derived from the Modified Potential Energy or the Modi­
fied Complementary Energy Principles, which lead respectivcly to the I1ybrid Displacement 
Model and the Hybrid Stress Model. In the Hybrid Displacement Model, the <lisplaccment 
field is assumed within the element and independent Jisplacement and/or :"tress fields are 
assumed on the element boundaries. In the Hybrid Stress Model, an equilibrium stress field 
is assumed within the element and an independent displacement field is a~~umcd on the 
element boundaries. 

In geomechanics, Desai and Christian [15], used the Displaccment Model to solve prob­
lems involving such complexities as matcrial, geometric and boundary non-Imcarities. It i8 
the author's belief that the hybrid stress method can be used ta solve complex problems in 
geomechanics because of its specialîzed features some of which are discussed in tlw following 
subsections. 

Pi,lIl, [24) concluded that the use of the hybrid strc~,> mude! \ViII yicld a mOle flexible 
structure that the compatible mode} using the same boulldary displacerlH~nt approximations, 
and a more rigid structure that the equilibrium mode! using the same internai ~tre~s approx­
imations. He further stated that the finite clement method based on assurned stre~s{'s caIl 
provide more accurate stress estimation than the assumed displacement seheme. Appa Rao 
[76], in his studies on thick spheres and long thick cylinders alsa stateo that the rddial stresses 
obtained by the hybrid stress model are doser to the exact values than the stresses obtained 
by the assumed displacement mode!. 
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2.3.4 Improvement of Finite Element Solution by 
the Introduction of Special Elements 
for Presc-ribed Stress Boundaries 

Computations using the element stiffness matrices formulated by the conventional assumed 
displacement method will not, in general, produce the correct stress components at the 
prescribed stress boundaries. As an example, at a stress-free boundary, spurious stresses 
will result. These can be prevented by the use of special free-boundary hybrid elements for 
which appropriate (column) vector of stresses can be made so as to give zero values of the 
generalized tractions on appropriate edges. Pian [24] and Yamada et al. [2ti] have shown 
that the use of the special stress-free boundary clement can make conSIderable improvement 
on the finite element solution. 

2.3.5 Irnprovement of Finite Element Solution for 
Problerns lnvolving Stress Singularities 

In the conventional finite element method based on an assumed dis placement compatible 
method,the stress distribution within each element has been proved to converge to the exact 
solution if the corresponding stress distribution remains finite everywhere in the domain. 
However, for a problem involving a stress singularity such as the elastic solution at the tip 
of a sharp crack, it cannot be proved that the finite element method using the conventional 
compatible elements will necessarily cOllverge to the exact solution. On the other hand, 
when the hybrid stress method is used, it is possible to include special stress terms which 
represent the correct stress singularity behaviour. By extracting the singular part of the 
solution in its correct analytical farm, the nodal displacements in the finite element analysis 
correspond to a solution without singularity. Thus, the convergence of the finite element 
solution is assured, Tong and Pian [26]. 

The application of sections 2.4.2 and 2.4.3 to problems of joints and fractures is obvious. 
There is an extensive literature on the topic, Akin [27 ]], Benzley [28], Roshdy [29], and Atluri 
et al. [30] being typical of the keen interest. 

2.3.6 Construction Sequences 

Fini te element simulation of COllstruction sequences is now being done by the stress hybrid 
proceduce. Lightner [31J has reviewed past work donc in this field such as embankments, 
excavations and initial stress problems. Desai and Christian [15J also made extensive reviews 
on construction sequences. The extension of this principle to excavation sequences in hard 
rock mining, and to the design of mining methods for sill and crown pillars is also obvious . 
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2.3.7 Interface modelling 

Modelling the interface between dissimilar materials such as soil and rock has bœn dont! in 
the past in several ways. The load transfer mechanism between two sueh unlike lllateriais 
is atfected by the behaviour at the interface. Thus, during loading, special consideration 
should be given to the modes of deformation such as slip, non-slip, openlllg, and closing 
of contact surfaces. Goodman, Taylor and 8rekke [3~] developed one of the earliest joint 
elements for use in this type of analysis. Zienkiewicz et al. [3:3] have used isoparametric 
elements for modelling interface behaviour. Chaboussi, Wilson and Isenberg [3·1] have cri ti­
cized the preceding models mainly on the basis of Ilumerical ill-couditioning of the clement 
stiffness matrices. They derived an interface element similar to the Goodman clement wlth 
supposedly better properties. However, most interface elements thus far developed are in­
adequate in many respects that make their utility very limitcd. However, researeh is gOÎng 
on for development of better interface elements. 
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Ta.ble 2.1: Classification of Finite Element Methods for Solid Continua 

(after Pian(23J) 

UNKNOWNS 
F.E VARIATIONAL VARIABLES PARAMETERS IN MATRIX 

MODEL PRINCIPLE IN 1I'mci MATRLX .\<lETHOD 
EQUATIONS 

Pottlntlal Displ.: Nodal displ.: 
Compa.tible Energy {u} = [A]{q}; {q}; [q]; Displ. 

Eqtul.J.bnum Complun. Stress [unc.: Noàal stress 
l Energy {u} = [B]{p}j function: {pl; Force 

{pl; 
Stress: Stress para.m.: 

Eqtulibnum Modified {a} = [P]{,6}; {j}}j 
II Complim. Boundary displ.: Generalized Bd.: {q}j DlSpl. 

Energy {q} = J[ cpT]{ u. }ds; displ.:, {q}; 1 

Stress: Stress param: 

1 
hybrid Modified {a} = [P]{,6}j {j}}j 
Stress Complim. Boundary dlSPl.: Nodal dlspl.: {q}j Disp:. 

Ener~y {uT} = [L]{q}; { q}; 
Dlsplacemems: DISpl. param:, 

Hybnd Modified {u} = [C]{d}; {d}j 
Displ. l Potential Boundary tra.ction: Tra.ction pa.ra.m:, {R}j Force 

Energy [T1 = [Ml{R}; {m; 
Dlsplacements: 

1 

DlSpl. para.m.: 
{u} = [C]{d}j {d}j 

Hybrid Modified Boundary tractIOn: Traction para.m .. {q}; Displ. 
Displ. II Potential [T] = [M]{R}j {R}; 

Energy Boundary dis pl.: Nodal dlspl.: 
{u} = [LJ{q}; {q}; 

Dlsplacements: 1 N oda! d.tspl.: 1 1 

Mixed Reisner {u}:: [A]{q}; {q}; {q }; DlSpl. 1 

Madel Stress: Nodal stresses: {q}, {s}; MLxea 
{a} = fN]{s}; {s }; {s} ; Force 1 
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Chapter 3 

The Hybrid Stress Finite Element 
Method 

3.1 Theoretical Basis of the Hybrid Stress Method 

The Hybrid stress method was first introduced by Pian (l9] in 1964 for the analysis of 
plane stress and plate bending problems. In this rnethod, equilibratmg stresses are assumed 
within each element in ter ms of undetermined stress coefficients and the displact-?Illcnts on 
the boundaries of the clement arc expressed in terrns of the element nodal displacclllcnts. 
Subsequently, Pian and Tong [20] formulated the hybrid stress technique based on a Illodified 
stationary complementary energy principle, and they also considered the topies of conver­
gence and bounds of the rcsulting equatlOns. 

There are two major attractions in this rnethod: (i) that the unknowns of the uVf'rall equi­
librium equation~ can be expressed in terms of the nodal displacements, and (ii) it is ('asi('r 
to construct compatible interpolation functions for displacements at intcrell'lI1t:nt boundanes. 

Arnong the several investigators who made useful contributions to the d('velopmcnt uf 
the hybrid stress method are Wissmann and Sprecht [:J.5], Cook and LdCikany [36], Wolf [37], 
Spilker and Munir [38], and Ahmad and Irons [39J. Several invcstlgators appbed the hybrid 
stress method ta the analysis of structures, and have reported that the technique predicts 
stresses and displacements with greater dccuracy than do es Üw displùeement-ba::.ed finite 
element method, Pian et al. [40J, Barnard and Sharrnan [41], Tong et al. [·12], Tong [4:3], 
and Spilker and Munir [44]. Ahmad and Irons [:39] provcd that the hybrid stress method is 
superior to the displacement method. 
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3.2 Hybrid Stress Model for Elastic Analysis 

The modified complementary energy functional which has been used for the derivation of 
the hybrid stress method for an elastic continuum is expressed by Pian [19] as follows: 

where 
cr,] = stress tensor, 
T, = surface traction, 
T, = prescribed boundary tractions, 
Ui = boundary displacements, 
aVn = entire boundary of subregion Vn , and 
SUn = boundary along which prescribed tractions act. 

These terms are illustrated in Figure 3.1 below. 
D'Jkl is the elastic compliance matrix which, for a 2-dimensional body, is given by: 

[D] 

where 

1 
2G 

1 -À 0 

-À 1 0 

o 0 1 

G, the rigidity modulus is equal to Ej[2(1 + v)], 
E is the modulus of elasticity or Young's modulus, and v is the Poisson's ration. 
For plane stress conditions, À = v j (1 + LI), and 
for plane str:iÏn conditions,;\ = LI. 

(3.1 ) 

(3.2) 

{T} is the vector of distributed surface tractions. The last integral in Equation (3.1) is 
evaluated on those element sides with externally applied loads. 

The stress distribution in an element can be expressed in terms of undetermined param­
eters {,B} by the equation 

(3.3) 

where [P]{,B} satisfies the homogeneous equations of equilibrium and [Pb]{,Bb} is a particular 
solution of the equilibrium equations 

(3.4) 
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where F, are the prescribed body forces. The matrices [Pl and [Pb] are functions of the 
coordina~es. tB} are the so-called undetermined stress coefficients and [Pb]' {Pb} are known. 
The surface tractions due to the assumed stress field can be expressed as: 

or 

(3.5) 

where 1/J denotes the component of the unit vector in direction j. The inter-element bound­
ary displacement functions are expressed in terms of an interpolation function [L] and the 
generalized displacements q as 

{U} = [L]{q} (3.6) 

Substituting Equations (3.3), (3.6) and (3.5) into Equation (3.1), we have: 

IImc = L [ ~ {,B}T [H] {,B} + {,B}T rHb] {J'b} - {p}T [G] {q} + [Qf{q} + Cn) 
n 

(3.7) 
where 

[H] = Iv,. [PV [D] [Pl dV (3.8) 

[Hb] = Iv,. [PV [D] [Pb] dV (3.9) 

[G] - /av,. [Rf [L] dS (3.10) 

[Ob] = 1 [Rb]T [L] dS av,. (3.11 ) 

[Qf = l {T}T [L] {q} dS - {J'b}T [Gb] {q} 
"S<I,. 

(3.12) 

and 

(3.13) 
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3.2.1 Application of the Variational Principle 

The variational principle states that of ail admis"ible stresses and displacements, the solution 
which satisfies the equilibrium, compatibility and boundary conditions is distinguished by 
the stationary value of the functional with respect to variations in the stresses in the Huite 
clement, and displacements along the element boundaries. 
Differentiation of Equation (3.12) with respect to {~} and {q} therefore, we get, 

a~~c = ~([Il]{p} + [lh]Uh} - [G]{q}) 

Equation (3.14) is zero at a maximum or minimum, at which state, l' is given by 

{~} = [/-1]-1 [G] {q} - [Ilr l [/h] {#b} 

Note that [H] is symmetric so that 

[H] [Hf 

and 

AIso, 

~~;} = ~ ([Q]T _ {j3b}T [G]) 

which, when set to zero yields 

F3.14) 

(:3.15 ) 

(3.16) 

(3.17) 

Substituting Equations (3.15) into Equation (3.7), wc have the final expression of lIme 
as: 

IImc - -~ L: {q}T [Cf [H]-l [G] {q} + L: {q}T [Grr [I/rl [/h] {Jh} -
n n 

~ L {j3d T [Hb]T [Hr l [/hl {;1d + L: ([QjT {q} + en) 
n n 

which becomes 

24 



t 

(3.19) 

where 

(3.20) 

is the element stiffness matrix, 

(3.21 ) 

is the element load vector, and 

En:: ~ L {,Bb}T [Hbf [Rr l [Hb] {Pb} - en 
n 

(3.22) 

is a constant. 
The knowledge of the stiffness matrix and equivalent nodal forces of each element permits 
assembly of the overall stiffness matrix and the load vector of the system. After applying 
the 1;>rescribed boundary constraints. the system can be solved by any standard technique 
to obtain the nodal displacements. 

3.3 Effects of Body Forces on the 
Hybrid Stress Formulation 

The second part of Equation (3.3) represents the contribution to the element stresses due to 
body forces and may be written as 

(3.23) 

where the subscript b refers to body loads and the equation satisfies a particular solution 
of the equilibrium equations. For gravitationalloading - which is usually the cause of body 
loads in geomechanics, the stress vector is given by 
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where 
p = rock density, 
9 = gravitational acceleration, 
Yb = thickness of overburden. 

Matrix inversion is implieJ in the solution for {,ab} in Equation (3.23) ctbow'. Sin cc the 
[Pl matrix is 3x18 for reasons that will be explained litter in Section :1.4, and Equation (3.23) 
is a particular solution of the equilibrium equations, the [Pb] matrix may be chos{'n as the 
fir:~t l hree columns of the [Pl matrix for the dernent. Once tht' [Pb] matrix has bem evaluated 
as described, aU the matrices dud vectors whlch depend on Il are then casily ('ornputcd. Uh} 
can also be solved for from Equation (3.23). 

3.4 Contributions to Equivalent Nodal Forces 

The equivalent nodal forces constitute the load vector which is given by the equation 

(3.24) 

where {Qd = body load contribution to the load vector and Equations (3.21) are the 
contributions from prescribed loads including loads due to initial conditions such as stress, 
temperature or ground water pressure, (see next section). If there are no body loads, all 
body load tenns in Equation (3.21) disappear and only Equation (3.12) remains. 

3.5 Initial Stress Approach 

Initial stresses in geomechanical applications at depth play a great role in the design and 
construction of excavations for rnining and other uses such as for tunnels, underground stor­
ages, underground power plants and permanent waste disposaI facilities. A construction 
sequence in volves the alteration of the state of stress and may involve excavation, dewater­
ing, deposition, and installation of support system. Each of these process~s will alter the 
state of stress in the surrounding medium. In this study, empha5i::; is given to the simulation 
of excavation because it is the most common aspect in geomechanical applications. 

Until recently, finite clement modelling of excavation sequence has been based on the dis­
placement method as originally proposed by Goodman and Brown [45]. Othcr investigators 
who have used variations of this technique are Lightner [31 L Clough and Duncan [46], Mana 
[47] and Christian and Wong [48]. In thlS model, the gcostatic stress, {(Jo}, prior to the start 
of excavation is determined from applied loads which are computed from the gravitationai 
Ioading of the medium. Since this load is vertical, the proper laterai stresses are obtained 
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by the relation 
(3.25) 

where (J'h, is the horizontal stress, (J'v the vertical stress and ko is referred to as the coefficient 
of lateral stress at rest. Poisson's ratio, /l, is then computed from the equation 

/1 
ko=--

1 - /1 
(3.26) 

Excavation is simulated incrementally as shawn in Figure 3.2. In each increment, a stress­
free surface is created by applying equivalent nodal forces on the excavation surface due to 
the increment of excavation. The equivalent nodal forces are then computed from the existing 
state-of-stress and applied with opposite sign to the excavated surface. The displacements, 
stresses and strains are then computed and added to the values for the previous step as 
shawn in Equations (3.27), (3.28) and (3.29) below. 

(J'I = (J'o - L ~(J'J (3.27) 

ql = qo L~qJ (3.28) 

f, = fo - L~fJ (3.29) 

The hybrid stress procedure adopted in this study for the initial stress approach follows 
the scheme illustrated in Figure 3.2. The stresses are computed directly on the boundary 
of the excavation by substituting the boundary coordinates into the assumed stress fields, 
using the excavated elements which have a corrunon boundary with the unexcavated elements. 
The equivalent nodal force'3 are then computed by llsing the magnitudes of the boundary 
stresses and the interpolation functions used for the cl isplacements of particular boundary, 
see Equation (3.6). After each step, the vector {B} Îs accumulated for use in the computation 
of the stresses on the boundary of the excavation in the next step. This method works weB 
for linear elastic media . 
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Chapter 4 

Formulation of the Element Stiffness 
Matrix 

4.1 Sign Convention and Constitutive Relations 

The stresses at any point within a continuum are described by the nine components of the 
stress tensorj however, only six of thern, three normal stresses and three shear stresses are 
independent. There are six strain components which are related to these stress cornponents 
as follows: 

(4.1 ) 

where the DI) are the cornpliance coefficients. In general, there are 21 compliance coeffi­
cients but for isotropic materials, the number of independent coefficients reduces to 2. If a 
state of plane strain is considered, Equation (4.1) for plane strain then becomes 

(4.2) 

where the compliance coefficient matrix, [D], is given in Equation 3.2. Equation (4.2) 
can be inverted to express the stresses in terms of strains. 

The sign convention adopted is the same as in the theory of elasticity and continuum 
mechanics which can be stated as follows: The stress component, 0'1)) is positive if it acts 
in the positive j -direction on a plane whose outward drawn normal points in the positive 
i-direction. It is also positive if the i and J directions are both negatve. By this definition, 
tensile stresses are positive and compressive stresses negative. All the stresses shown in 
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Figure 4.1 are positive. The kinematic analysis of the continuum, under assumption of 
small displaccments, gives the necessary Equations relating the strains to the displacements, 
thus 

au/ax 

= av/ay ( 4.3) 

f xy au/ay + av/ax 
where u and v denote dis placements along the x and y directions respectively. The final equi­
librium of the body un der the given load conditions must satisfy the equations of equilibrium 
which, in the absence of body forces, are given as 

[
a / ax a / ay 1 [ a x T xy 1 = 0 

o 0 Txy a!l 

( 4.4) 

The analyses reported in this thesis were limited to bodies which were loaded within their 
elastic range. 

4.2 Selection of an Admissible Stress Function 

If the domain shown in Figure 3.1 has been discretized into, say, quadrilateral elements of 
arbitrary shapes but having straight sides, it then becomes necessary for the solution of 
plane problems to determine the stresses and displacements at every node of the domain. 
To accomplish this, a suit able stress function that satisfies equilibrium within the element 
boundary should be selected. 

The solutIon of two-dimensional problems in elastic theory reduces to solving the two 
differential equations of equilibriurn and the compatibility equations. Boundary conditions 
imposed on any particular problem are then used to determine the constants of integration. 
When body forces are absent or constant, the usual method of solving these equations is 
to introduce the Airy Stress function. This function uniquely defines the generalized stress 
components at any point within the element. There are many other ways of choosing such 
functions, see, for instance Zienkiewicz [49], Aziz [50], Carnahan et al. [51], Bathe and Wil­
son [52], and Cook [53]. 

Let the body forces be zero. Then the Airy Stress function, <P, is defined as 
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ax a2ip / 8y2 

au ü2
<1> / 8x 2 (4.5) 

Txy -û2
<1> / Dxüy 

The two-dimensional equilibrium equatiùns for zero body forces are, in matrix fonn, as 
follows: 

{ 
ô/ÔX} [ax 

T
Iy 1 = 0 

ô/ay Txy a y 

(tl.6) 

Substituting Equations (4.1) into (4 2) shows that t.he Airy Stress function satisfies the 
equilibrium conditions. 

The two-dimensional compatibility condition is as follows: 

(82/ôX2 + a2jôy')(O"x + ay) = 0 

substituting Equation (4.5) into Equation (4.7) gives 

( 4.7) 

(4.8 ) 

Thus, any function, <1>, which satisfies Equation (4.8) also satisfies the compatibility and 
equilibrium conditions. Two-dimensional problems involving zero body forces thus reduce 
to ::olving a fourth-degree bi-harmonie equation as given in Equation (4.8) above. The Airy 
Stress function is thus a good basis for the construction of finite element equations and was 
used in this thesis along with 8-node isoparametric quadrilateral element as described later. 

4.3 Local and Global Coordinates 

In the context of finite element analysis, It is more cOllvenient to use non-dimensional local 
coordinate system based on the element rathN than use a global system. ln finitc clement 
displacement methods, interpolation fUIlctions arc tls~d to relate the displacements at any 
point within the clement to the nodal displacements. When the same interpolation functions 
are used for transformation of coordinates of the element, the clement is called i~opararnctric. 
Figure 4.2 shows the global (x,y) coordinates and the local (s,t) coordinates of an 8-node 
quadrilateral clement of arbitrary shape. 

The global coordinates vary with the x- and y- values while the local coordinales vary 
between ± 1. Figure 4.3 shows the isoparametric rnapping for an 8-node quadrilateral 
element of arb:trary shape . 
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The quadrilateral is mapped into the unit square. Details of the isoparametric con­
cept appear in references [49] - [53], Akin [54], Press et al. [55], Korn and Korn [56], 
Abramowitz and Stegun [57]. 

A relation between the local and global coordinates for a 2 - D element is expressed as 

{
( x } = { L N, XI } 

Y ,LN,y' 
(4.9) 

where n = 8 for an 8-node quadrilateral element and N, are the interpolation functions. 
There is a one-to-one correspondence between the global coordinates (x, y) and the local 
coordinates (s, t). By using the Chain Rule of differentiation, the following relation can be 
established between the local and global coordinates: 

{
a/as } 
o/Ot 

where the Jacobian, Pl, is defines as 

= P] { %x } 
ô/oy 

[J] = [ox/as oy/os] = [an a
l2

] 

ox/at oy/ot a21 0'22 

(4.10) 

(4.11 ) 

The interpolation functions used with the 8-node isoparametric element can be derived 
from the so caUed Serendipity elements and can be shown to be given as: 

N,(s, t) = (1 + s, s) (1 + t, t) (s, s + t l t - 1) /4 (4.12) 

for the corner nodes where i = 1, 3, 5, and 7. At midside nodes where i = 2, 4, 6 and 8, we 
have: 

Nj(s, t) = s~ (1 - t2
) (1 + s, s) /2 + t~ (1 - 8

2
) (1 + t, t) /2 (4.13) 

The interpolation functions and their first and second derivatives are utilized in the 
formulation of the matrix equations. A complete listing is shown in Appendix E. 

4.4 The Admissible Stress Function in terms of Local 
Coordinates 

The Airy's Stress function ~, can be expressed as follows: 
~ = 1(8, t) = tP(x, y) 
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We represent ~ as a series of terrus involving the local coordinates and the undetermined 
stress multipliers, thus: 

(4.1·1 ) 

These 18 constants can be recognized as dcrivcd from the last four rowa of Pascal's Trian­
gle of order 6 which comprises 21 terrns, with the first 2 rows missil1g. In Pascal's Triangle, 
the first row has l term, the second 2 tenns etc. Thus a Pascal '8 Triangle of order 6 has 
(1 + 2 + 3 + 4 + 5 + 6 =) 21 terms. The missing tenIlS are j3, ;38, and pt which would vanish 
even considering Equation (4.5) w here the strebS representation involves only second order 
differentiation of 8 and t. They are therefore not necessary. It can also be inferred that the 
highest terms to the power of 5 will rcsult in a linear function in ,'l alld t on performing the 
fourth differentiatioll to satisfy the compatibility Equation (4.8). 

By taking the second partial derivatives of 4> with respect to s and t, the [Pl matrÎx can 
be represented as: 

[Pl = ~2 [SI (lZ] - [FI [Jr l [WI) (4.15) 

where ~ = detjJl 
A full derivation of the [Pl matrix is given in Appendix E. 

A description of the hybrid computer prograrn and the associateù rnesh generation anù 
alteration programs ia given in Chapter 5. 

4.5 Consistent Load Vector due to Distributed Loads 

Figure 4.4 illustrates an 8-node quadnlateral clement loaded with uniforrnly varying loaùs 
on one side. The gcneralizcd forces and displaccrnents for an 8-noùe quadrilateral clement 
is shawn in Figure 4.5 

For an element side loaded Wlth uniformly ùi!:ltributeù loadb wx , W II ' the nodal force vector 
lS given by the equation: 
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Figure 4.4: Uniformly Distributed Loacls over an Element Sicle 
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Figure 4.5: Generalized Forces (Q,) and Displacements (q,) for an 8-Node Quadrilatcral 
Hybrid Stress Element 
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F' = J [Sb] { :: } dr ( 4.16) 

where (.Vb] are the shape functions for that side, and dr is an element of length of the 
sicle. When local coordinates are used, one of them will he constant along any given side. 
In what follows, the side 1-2-3 of the element in Figure 4.4 will be used as example. 

F~l Nl 0 

FYI 0 Sl 

Frl .V2 0 
F d = [Nb] -

Fln 0 N 2 

FX3 S3 0 

FY3 0 N3 

dr is an element of length along the loaded side. Since, in general, 
r 2 = x2 + y2, then 

(4.17) 

dr = (x/r)dx + (y/r)dy = dx casf) + dy sinO By combining above expression for dr 
with the isoparametric representation of x and y, it can be shown that 

{

COS 0 } 
dr ;::: (11)[1] . 

sm f) 

where [J] is the Jacohian. The distrihuted loads, W X , wY can he linear or quadratic 
functions of the coordinates, thus, 

W XI 

{ W x 

} = [Cl 
Will 

wli W X3 

W II3 

where, 
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For linear representation, 
Cl = (1 - s)/2, 
C2 = (1 + s)/2, 

[
COl COl (0-'2 [Cl = 

and for quadratic representation, 
Cl - (s2+st)/2, 
C2 = (t 2 - 5t)/2. 

(4.20 ) 

It can be verified that at node 1, U'r = U'j, and at no de 3, W x = W3 5imilar expressions 
will hold for U'I/' 1t is assumed that the values of the distnhuted loads are given at nodes 
1 and 3 only. The integration in Equation (4.16) will be done numerically along the loaded 
side at a specified number of mtegratlOn points. 

4.6 N umericai Integration and the 
Gauss Quadrature Formula 

In general, the mtegratlOn required in the equations presented so far in this thesis involve 
matrices and higher order equatlons. The Gau:'>s quadrature formula has proved to he an 
efficient and accurate method of mtegrating such equatlOfls in finite element analysis, see 
references [53] - [.58]. In considering the evaluation of the definite integral, 1 = J: f(.r)dx, 
hy numf'rIcal integration, Gauss found that the number of points n, mto which the interval 
(a,b) :.hould be divlded for the greatest accuracy should not be equally spaced but should 
be symmetrical wlth respect to the mid point of the interval. 

Let y = f (x). Define a change of van able 

1 1 
x(r) = 2(b - a)r + "2(b + a) (4.21) 

50 that the non-dimensionalized limlts of integratlOn of r become -1 to + 1. The new 
value of y(r) is then given as 

y = f(x) = ![~(b - a)r + ~(b + a)] = t;l(r) 

The original integral now becomes 

1 JI 1 = -(b - a) 1,J(r)dr 
2 1 
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Gauss showed that the integral in Equation (4.23) is given by 

(4.24) 

where WI and ri represent tabulated values of the weight functions and the abscissae 
associated with the n points in the non-dimensional interval (-1,1). Thus, the final result 
of the integration is 

1 = ~(b - aj t HtrllP(r,) 
2 .==1 

(4.25 ) 

Gauss showed further that this equati<.:n will exactly integrate a polynomial of degree 
(2n - 1). In two dimensions, the quadrat'lre formula for 1/J = 'Ij;( a, (3) is found by first 
integrating with respect to a and then with respect to ;3, thus, 

1 = JI JI 'l/;(o:,,3)dad,:3 = t t w.w) l,b(û" p)) 
-1 -1 .==1 J==1 

(4.26) 

The extension to three dimensions is obvious. ~tost of the numerical integration done in 
this thesis was carried out using the four point Gall.ss <-luadrature. Figure 4.6 illu~trates the 
4 x 4 Gauss integration points for an lsoparamctric quadrilateral element. 

4.7 Steps in Isoparametric Hybrid Stress Formulation 

Thus far, the relevaDt equations necessary for the computation of the necessary equations in 
Chapter 3 have been derived. On the element level, we have chosen a vector of functions -
the Airy Stress functions expressed in local coordinates. The~e functions describe the gen­
eralized stress components at any point within a typical element. 

The 8-node quadrilateral element has bem chosen over the triangular varieties mainly 
because it enables higher order equations to be used in conformity with the stress function 
chosen. 

Having formed the [Pl matrix for the element, the [H] matrix Equation (3.8) can then 
be computed, using the [Pl and the [D] matrices. If body forces are present, the [Hbl matrix 
is also computed from [Pb]' Assembly of the [G] and the [Gb] matrÎces follow the same pro­
cedure (Equations (3.10)) (3.11)), such that the [R] and the [Rb] matrices are derived from 
the [Pl and the [Pb] matrices respectively. 

The next important component in the representation of the element stiffness matrix is 
the nodal force vector, expressed by Equation (3.12)The assembly of the nodal force vector 
is achieved by considering the imposed boundary conditions along with the boundary loads 
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acting on the system. 

The stiffness matrix is assembled for the element from a knowledge of the [H] and the [G] 
matrices. Once the stiffness matrix and the load vector for the element have been assembled, 
they are transferred to the global stiffness matrix and the global load vector respectively. 
The solution for the displacements at the nodes then follows routinely from the equation: 

{Q} = [l<]{X} ( 4.27) 

where the vector {X} represents the degree of freedom (d.o.f) displacements. The ver­
satility of isoparametric formulation lies in its capability of expressing the parameters of 
interest as functions of nodal parameters. However, it is rare to have a finite element mesh 
where all the element sides are parallel to the global axes. \Vith the Airy's stress function, <1>, 

expressed as polynomials in sand t local coordinates, its second derivatîves with respect to 
x and y global axes cannot in general, be constant over the el<>ment. The ideal is to express 
<1> as polynomials in local orthogonal cartesian coordinate system, t and 'fJ, unlike the sand 
t which are in general Ilot orthogonal. 

The axes of the local orthogonal system have been obtained by Ahmad and Irons [39] 
by firstly calculating the Jacobian at the centroid of the element and then performing the 
iterating scissors on the [J]T mo.trix to get the best orthogonal at>proximation. Consider a 
quadrilateral element with local axes (s,t) and the point 0 as centre, as shown in Figure 
4.7. 

Let t and 'fJ axes represent an orthogonal system also centred at 0, and let P be any point 
in the element with coordinates P(x,y) in the global system, P(s,t) in the local (s,t) system 
and P( t, 7J) in the local (f,,,,) system. In matrix forrn, the local coordinate transformation 
from the (s,t) sys~em to the (t,,,,) system Îs given by: 

Let 

[ 
ax/as ay/as] 

[J~d 
ax/at ay/Bt 

[ 
8x/8E aY/8E] 

Pf,,] = 
ax/ fJ 7J fjy/f}'fJ 

(4.28) 

(4.29) 

(4.30) 

be the Jacobian in the (s,t) and the (t - Tl) systems respectively. Then, it ran be shown 
that 
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Figure 4.7: Mean Axes System for Stress Function 
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and from Equation (4.28), 

[

at/as 

at/ât 
The required local coordinate axes are obtained from Equation (4.31) as follows' 

- sin Os 1 
cos () 3 

(4.31 ) 

( 4.32) 

( 4.33) 

The mean axes are generally expressed as the transpose of the [J~.fJl matrix. One obvious 
way of defining the (t, 7]) axes is to assume they are parallel to the global system. Then the 
(s,t) system is coincident to the (t, 7]) system and the case is trivial. 

4.8 Computer Implementation 

The following are the steps in the solution by Finite element methods of a problem: 

(a) Define the problem and define its phrsical geometry. 

(b) Generate a (quadrilateral) mesh and assign nodal and element topological properties. 

(c) Assemble the stiffness mJ.trix for each element and transfer into global stiffness array. 

(d) Assemble the Load vector in a sirrùlar manner to the stiffness matrix. 

(e) Solve the resulting algebraic equations for the nodal displacements. 

(f) Solve for nodal stresses or stresses within anyelement. 

Of these six steps, the mesh generation (step b) and the solution for nodal stresses (step 
e) presented the greatest challenge apart from writing the computer code of the hybrid stress 
finite element method . 
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4.8.1 Mesh Generation Codes 

It was apparent early in the rcsearch that a good and an uratt' lllt'sh wa.o; highly lIuportam 
for the correct solution of a problem Ly the fil1lte d('lIH'llt Illt'thud. lt is ouly the "illlp!est of 
meshes thdt Cdn be generatcd by hand a~j(1 CVt'Il tht'II, .t t hurough (h('ck i~ 1\('( C.,:iMY. Tht' 
author spent much t'lTort in dt'vclopinl!; two lllesh gt'lll'r.tI iUIl progr,uIls tltat work UB the :-iiUllt' 

principles, one :,~)(>cifi('ally for gt'Ilt'ratlllg qU<ldrJ!ùt(·r.d !Il('slws OVt'!' Iql)UIlS Sil! rollIlding cir­
cular holes and the other a.s a more gt'Ilt'ral quadnlalt'ral Ilw~h gl'llt'littor uv('r <juadril.tt(·rù! 
or nearly quadnlatcl'al 'i('ctioTIS Both program'\ rf'qulrt' tilt' millimlllll of ltIpllt ,\.~ d('~cril)('d 

in Chapter 5. 

Along with the lIlore gt'neral mesh gt'Ilt'r,ttor. a ~!II,\II progralll th,tt (,Ilablt'~ one to ('[t'att.' 
holes or empty spaces !Il dU alrcady CX1Stlllg llH':-.h was .tl~o wnttt·n. TIlt' mdlllut'ss of tl\ls 
prograrn becomes apparent when 01lt' (\Hl~id('rs ti vpry WIlHIlOII 1I1t't1ll1d of IlJinillg <leq) ore 
bodies, i.e., op('n ~topillg or ~equential excavatlOlI. Ordll1arily, cil.ch Ilt'w 'wq\l('IH (' requirt,s an 

alteration lo a previous mesh. By defiIllng the t'lenlt'nts alld nodt's thtit af(' 10 I)t' ('lilllinated 
in the next Sf'qucncc, the companioll program gO('5 ,tll('<l.d and n·-t'sl,iol!:.hl'" ,L IH'W Illt'sh in 
which the zone forrncrly occupieJ by the elements ,UlJ 110<1('5 18 1I0W void . .' 'l'II<' load v('ctor 

is also automatically altereJ to reHect the Il('W reahty. 

4.8.2 Solution of the Stiffness Equations 

The rtSscmbly of the global stifrne~s matrix aud load vectur l('ads tü a systefll of Iillt'ar 
algebraic equations of the fonn 

[/{]{X} = p'} (1.:3-1) 

where [1\] is the global stiffness rnatrix, {X} IS the vector of ullkllown lIodal dlf,pl,lCP­
ments and {Y} 1S the global load vectür. Tht'se equations arc oftt'Il q\llte lalp;t', of the ord('r 
of thousands in most cases of moderatc to large probleOls, and th" sohitlOIl certainly (,dl:; for 
the use of the computer. It is known that. from:W to .10% of the (Q1Il[:lltt'r tUlle involvt'd in a 
linear finite element alla!ysls is aSSoClat('J with <,o!viug ~illlult alWO\lS 1 qllatiu[}s. III !I01l-IIIW<ir 
and dynamic analysis, as much as ~O(;{ of tllP (UlllpUtt'f tllll<' If, Il:,{·d for t1w .,.Ull(' pllfpO~t·. 

However, certam properties of tllt' '>qudre f,ylllllldflL 1Il,l.tnx III aH fillltt' ('I('lw'llt (Olll!Hl­

tations permit the use of a Humber of 1.('( hlllqll('~ to rt·du( (' Ilot (JIIly tht' '>Olutluil tlllle, but. 

the amount of romput!'r :,torage required to p!'rform the analy'ii~, Fdlll)ét [!)~], \1uIld~il.r cUld 
Powell [.59], .\lf'ycr [GO], George [61], H()()J [ti2], HllIton .mrl OWI'II [{j:J], and Irolls [M] dlllOl1g 

others, have wntten tlbout IHt'thods of .,olvlll~ tlw'lt' typl'~ uf {'quatÎoll!i 

For the hybnd stre~'3 firlltc t'!t'lIwnt rrH'tIlUd. tilt' [/{]lIlatnx i~ 'iy III IrH'tflC , '('lIll-p(J~ltive 
dcfiIllte, spar:.c dnd bdnded. Syrnrnetry (illO\ ... 'i one tu t'( ()[lOIrlIZ(' (JII (OrIlputt'r !'ltorag!' :;IllCC 
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only the elements in the upper or lower triangle need be stored. Because the matrix is positive 
definite, pivoting is never required in order to ensure a stable solution. Banding depends on 
the way the node numbers are assigned and the efficiency with which the the numbering was 
done. Since the solution time varies as the square of the bandwldth, the nodal numbering 
producing the minimum bandwldth results in the most economical solutIOn. There is little 
doubt that the mesh generation programs descnbed above result in the best banding of the 
[K] matrix. The two methods that were used in this thesis are dcscribed below: 

The Skyline Method 

The Skyliue solution method, also referred to as the profile, envelope, or variable bandwidth 
method first appealed to the author by its elegance. The symmetric and spal'se [K] matrix 
is stored in a !incar array as a string of 'active' columns of the upper triangle. The active 
portion of each column is bounded by the diagonal and the furthest non-zero element. A 
second array of pointers holds t he position of the dIagonal clements in the actIve array and 
the algorithm used for solving the equations is the 'io-called modiflecl Chûlt'sky algonthm 
which decomposes the [K] matrix into a lower triangular matrix [L], and a diagonal matrix 
[D] thus, 

[Kj = [LJ[D][LjT (4.35) 

The factorization replaces elements of [K] by elements of [L 1 and [D] matrices. Once 
the [K] matrix has been faetorized as above, the program can be invoked to solve Equation 
(4.34) for any right hand side vector Y. The ~olution veetor IS obtained in a three-stage 
process thus: 

[L]{z} = {Y} 
{b} = [Dt 1{z} 

(forward substitutIOn) 
(scaling) 

[L]T {X} == {b} (back substitutIon) 
A working version of the program was written and tried on several problems. It \\as 

found that the size of the problem affected the time necessary to effect a solution, proba­
bly because of the large data handling overht'ad (addressing, fetching, stonng, etc.). The 
program however, 15 quite accurate for solving jinear simultaneous equation5. ~ost of the 
problems reported in this thesis werc sohed by this method. 

The Frontal Solu tion Schen"le 

This method, first introduced by Irons, [6.1], uses the Gauss Elimmation and back substitu­
tion method to solve Equation (4.21). In doing ~o, however, it first assembles the clement 
stiffness matrix and nodal loads into a global stiffness matrix and load vector. Its main 
feature over other methods is the delayeà mtroduction of variables and thelr accelerated 
eliminat.ion. The active life of anode lasts from the time in wbich it fir~t appears in an 
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element to the tlme it last appears in dl1 e1l'1lH'1lt. 

Thus, the ordering of the noJ('~ is not a~ (rucial ,\!'l ttw olderinp; of lht' t'It'll\(,1l1S, dU 

opposite requirement to that for banded sulutlOn ~ch('Il\t's. rhe core !'ltorage rl'quirt'Illt'1I1s 
are at mûst the same as those for b,mded methuJ!'l. The opt'fi\tioll un lero lut>llici"llt~ afe 

minimal and the total dnthmetlc ùperatlOlls df{' [,'\Ver th.ln with \)tll('r Illt'tlj()d~ 011 tilt' 
other hand, an elaborate hou..,ekt'cping :,.\!-!lt'Ill h rt>qllllt'd fOf th,' froliLd lllC'thod :\ wOlklllP; 
program \\as amcnoed from the frolltal '>llbwullIlt' III t Ill' rcft,ft'Ilt l' [(j.1j It W.l~ ,d..,o found 10 

be quite accurate III ,>olvlIlg ~illlultalj('olh ('qll~t iUIl". Il h ddilllkly [.1~tl'l t.h.lIl the Skylill(' 
method. 

4.8.3 Computer Programs 

A description of the hybrid computer progrdm and tht' étS!'l()( j,lted lIH'sh ~('n('rdtioll and 
alteration programs is givcn 1Il Chapter 5 . 

l 
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Chapter 5 

Hybrid Stress Computer Programmes 

Four programs are described in this chapter. Section 5.1 describes the hybrid stress computer 
program written according to the mathematical developments in the preceding chapters. The 
other three programs were written with the special need to genera,te 8-node quadrilateral 
meshes over mining excavations and for altering the mesh configurations. 

5.1 The Hybrid Stress Computer Code 

5.1.1 General 

Figure 5.1 is a schematic flow chart of the hybrid stress computer code. It is written 
in FORTRAN 77 and can be described in terms of the major subdivisions into which the 
theory of the hybrid stress formulation falls. These subdivisions are, in order of occurrence, 
discretization of the continuum into finite elements, data preparation, assembly of the global 
stiffness matrix and the global load vector, solution for nodal displacements, .ind finally, 
solution for element nodal stresses. Mcsh generation or the di3cretization of the cOl1tinuum 
into finite elements is described in Section 5.2. A brief description of the main subroutines 
in Figure 5.1 follows. The computer code is given in Appendix A. The input file ta the 
hybrid stress finite element program is structured as follows. 

(a) Title line; 

(b) Problem control data (lline); 

(c) Material properties data lines; 

(d) Nodal coordinates and constraints lines; 

(e) Element connectivity and element type lines; 

(f) Distributed loads lines . 
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The input file is prepared by the mesh generation program (see Section 5.3) and is held 
in a designated file which must be present in the system for the program to work. Below is 
a description of the data file. It is freely formatted. 

(a) Line 1: Problem Title Line, format 80A1 

(b) Line 2: Problem specification data line. 
READ NNODE ~NEL NU~lAT NTYPE NPOIN NDIST IPRNT THIC 

NNODE = Total number of nodes 
NNEL = Total number of elements 

~UMAT = Total number of material types 
NTYPE = Problem type parameter, 

= 1 for plane stress 
= 2 for plane strain 

NPOIN = Nodal point load parameter 
o for no point loads present, otherwise, 

= Total number of nodes with point loads 
NDIST = Distributed load parameter 

= 0 for no distributed loads present, otherwise, 
= Total number of nodes with distributed loads 

IPRNT = Print output parameter 
= 0, do not print output 
= l, print output 

THIC = Element thickness, assumed constant. 

(c) NUMAT Lines: Element material properties line(s) 
For each property type, READ PROPS(l) PROPS(2) PROPS(3) 

PROPS(l) = Young's modulus 
PROPS(2) = Poisson's ratio 
PROPS(3) = Density 

(d) NNODE Lines: Nodal coordinate and constraint data. 
These Hnes dcfine the structural geometry of the discretized zone. 
For each node, read N, XORD(N), YORD(N), JDOX(N), JDOY(N) 
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N= 
XORD(N) = 
YORD(N) = 
JDOX(N) = 
JDOY(N) = 
JDOX(N) = 

Node number 
x-coordinate 
y-coordinate 
degree of freedom in x-direction 
degree of freedom in y-direction 
o for unconstrained dis placement in x-direction 
1 for constrained displacement in x-direction 

(e) NNEL Lines: Element type and connectivity data. 
For each element, read NUM, NELTYP, (NLM(J),J= 1,8) 

NUM = Element number 
NELTYP = Element type 

NLM(J) = Jth. no de 
Numbering of elements is counterclockwise 

(f) NPOIN Lines: Point load data lines. 
If NPOIN is positive then , for each node under a point load, 
rcad KNODE XFORCE YFORCE 

KNODE = Node number 
XFORCE = Point load in x-direction 
YFORCE = Point load in y-direction 

(g) NDIST Lines: Distributed load data lines. 
Distributed loads are applied to sorne of the boundary clement sides. If NDIST is 
positive, then follows NDIST lines of data of type: 

~ODE1, NODE2, NODE3, ELNUM, XFORCE1, YFORCEl, XFORCE3, YFORCE3 
where 
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NODEl= 
NODE2 = 
NODE3 = 
ELNUtvl = 

XFORCEI =­
YFORCEl= 
XFORCE3 = 
YFORCE3 = 

node number of first node of element side 
node number of second node of element si de 
node number of third node of element side 
element number 
load in x-direction dt :'-IODE1 
load in y-direction at ~ODE1 
load in x-direction at NODE3 
load in y-direction at NODE3 

5.1.2 Subroutines for Massaging Data Input 

GAUSCO i5 a small suhroutine containing the 4-point Gauss quadrature data. It is called 
by the main program at the start of computation and is held in rnemory throughout the 
execution period. 

The subroutine, INPUT, reads the input data file. The mesh generation program de­
scribed later i8 capable of generating the entire data for a given problem from a minimum 
input information. The INPUT subroutine calls four other subroutines deslgned to complete 
the data preparation section. 

SKDIAG is a subroutme to compute the diagonal element positions in the Skylme vector 
which stores the upper half of the stiffness matrix. This rnethod of storage exclu des aU 
leading zero elements startlTJ.g from the first row of each column. DSLOD lS a subroutine 
for computing the applied load vector, {Q} of Equation (3.11). The subroutine, ELPRO 
computes the compliance matrix for aB the different materials and. 5tores them in a linear 
array termed CAR. In general, the compliance matrix is different for dirrerent material type. 
Assuming linear elastic behaviour of ail materials, the matrix is symmetric and is descnbed 
by three constants. ~fore description IS given in the subroutine in Appendix A. 

OUTPUT is a subroutine which, at the user's chulce, will direct aIl the input data to a 
terminal prînter. It is called by the INPUT subroutine. 

5.1.3 Subroutines for Assembling 
G lobai Stiffl1ess Matrix 

The subroutine ELSTF is called for each t'lement by the main program for the purpose of 
computing the element stiffness mdtrix and summing the upper half of it into the global stiff­
ness vector held in the skyline mode. The two important matrices involved are the [H] and 
[G] matrices of Equdtions (3.8) and (3.10) respectively. These two matrices are computed in 
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the subroutines HMTX and GMTX respectively. Computation is by numerical integration 
using the 4 point Gauss quadrature. Each of these two subroutines caUs the PMTX sub­
routine which in turn calls the shape function subroutine, SHAPEF. The P~1TX subroutine 
computes the [Pl matrix and the SHAPEF subroutme contains the relevant equations of 
the 8-node isoparametric ~hape functions and their derivativcs. L~lTX contains a subset 
of SHAPEF subroutme values computed along the elcrnent sides for which one of the local 
variables is usually ± 1. It is caUed by those subroutines that compute values along element 
sides, namely, DSLOD and G~1TX subroutmes 

The MATI~V 'lubroutine is usrd exdusively to invert the 18x 18 square ;;,yrnmctric [H] 
matrix because it 15 III that [orm that this matnx is used in subsequent equations. 

5.1.4 Subroutines for Solution of 
Nodal Displacements and Stresses 

The two subroutmes, SKYF'AC and SKYSOL were adapted from the solution code by Fellipa 
[58]. SKYFAC factorizes the global stiffness matrix and SKYSOL solves Equation (3.23) for 
{q}, the nodal displacements. The displacement vector replaces the load veLtor and the 
array is then passed to the subroutine STRSOL by tbe main program. This subroutme 
solves for the stress components at any given point within the elt'ment. In the version of the 
program reported in this thesis, these stresses are compu ted at the corner nodes, midside 
nodes and the centre of each element. 

5.2 Program for Meshes over Circular Holes, 
CIRCMESH 

The prograrn takes advantage of the fact that when circular hûles are involved in finite 
element analysis, tlle continuum is often assumed to be uniform with respect to geometric 
and material properties. The resulting synunetry about the axis of the hole rüeans that only 
a quadrant of the continuum need be analyzed. The input into the program consists of five 
lines described below. 
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Line 1: 
Line 2: 
Line 3: 
Line 4: 

Line 5: 

:'-J'NY =. 

RD = 
B~l = 

r\ANG = 

JXL(I,J) = 

J = 
J = 

Title line 
~NY, ~ANG, RD, B~l 
((JXL(l,J),J= 1,2),1= 1,4) 
XL,YB,XR,YT,TH 
ASXX,ASYY 

;.; umber of element sides along x or y axis 
Borehole radius 
y (or x) boundar} magnificat ion factor 
:\' umber of angular su b<.li vi::,ions of 
first quadrant (must be even) 
Condition code for lth. Boundary In J-direction 
0, means Ith. Loundary (an moye in J-directlOn 
l, rneans Ith. boundary Cd.Iluot move in J-direction 
1, means x-djrection 
'2, means y-directIOn 

In general, the left and right boundaries are paraUeJ to the y-axis while the bot tom and 
top boundaries are parallel to the x-axis. 

XL = x-coordinate of left boundary (parallel to y-axis) 
YB = y-coordinate of bottom \:>oundary (parallel to x-axis) 
XR = x-coordinate of right boundary (parallel to y-axis) 
YT = y-coordinate of top boundary (parallel to x-axis) 

ASXX = applied stress in x-direction 
ASYY = applied stress ll1 y-direction 

The number of angular subdivIsion IS kept even for the purpose of symmetry, since the 
program only has to generate the mesh over ·150 arc and then reBect it oyer the 450 li ne to 
complete the generation. Unhke other mesh generation programs, the program first calcu­
lates the length of each radialline from the periphery of the borehole to the outer boundary, 
see Figure 5.2. 

The number of corner nodes on any radial line is constant and equal to NNY + 1. These 
nodes are placed on the radial line in such a way as to increase the density of elements near 
the borehole and create a coarse mesh farther away fwm it. 

If rl, r2, r3, ...... rn are the radlallengths from the ongin to the first, second, third, etc 
corner no de along any given line, the following algorithm is used to compute these lengths: 
n rl = ro, the radius of the hole, and, 
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Figure 5.2: Coordinates of Corner Nodes in F.E. Mesh over Circula.r Holes 

, 
56 



1 

• 

The purpose is to compute the constant, a, from the knowledge of ro and the length of the 
radialline. Once lt is computed, aIl the ri 's are then calculated from the recurrence relation 
above. It can be seen that TI i8 greater that rl_l so tbat smaller elements are generated near 
the ho le and larger ones farther away. 

For any given rI! then, 
x-coordinate of corner no de = ri cos (), 
y-coordinate of ('orner node = ri sin () 

where e i8 the angle oetween the horizontal x-axis and the radial line. Symmetry about 
the 45° line is utIlized in both nodal coordinate generation and element node numbering. 
The midside nodes are computed at the middle points of the element sicles. 

5.3 A General Quadrilateral Mesh 
Generation Program, QUADMESH 

This program will generate an 8-nude quadrildteral mcsh over an array of verticallines whose 
lower end coordinates are speClfied. These end coordinates need not necessarily lie on the 
x-axis (assumed horizontal). The limlts of the program are. 

maximum number of nodes 1000 
maximum number of clements 625 
maximum Humber of sides with specified loads 125 
maximum number of nodes with point loads 500 
maximum number of element property zones 20 
maximum number of different properties 10 

The program essentially recognizes that straight-sided quadrilateral elements can be gen­
erated between two vertical Hnes or edges by drawing lines to join appropriate corner nodes. 
This recognition is Jllustrated in Figure 5.3. 

In each of the illustratIOns, cl(>Il1ents to the left of the diagram have been generated so 
that the nodal points on the left edge are already established. The left edge of the colUIon is 
termed the front edge, The diagraI11H contain ail the possible types of quadrilateral elements 
the prograrn can generate. The continuum to be discrctized is assumed to lie III the first 
quadrant. A concise description of the method of gcnerating the quadrilateral elements 

follows. 

(a) the program reads the specificatIOn of the first vertical !ine whlch may be, say, the 
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y-axis. Since this is the first line read, the program generates the nodes along this line 
and tags the line as the front edge. 

(b) the program then reads the specification of the next bne and tags it the right f.dge. lt 
then locates the first node on the front edge, n Il, which is not above the first node on 
the right edge. nq. and the first ne,de on the front edge, n il, which is not below the 
last node on the nght edge, n rx . Obviously, a line joining TL h to n rl IS the base of the 
quadrilateral and is III a counter clockwise sense. 

(c) the program then examme::, the next three corner nodes on the front edge to determine 
whether a tnrn through 900 ha.s occurred. There are tllfee posslble tums. Fir"t, there 
could be no turn through ~Oo. Then, there may be a clockwise tum to the right 
followed immediately by an upward counter-clockwise tum, or lastly, there may be a 
counter-clockwise tum followed Hnmedlately by an upward clockwise tUrIl. 

(cl) If there has been no tum, thi5 g,lves flse to a quadrdateral elcment with corner nocles 
nlll n q , nq, TIf .. The base of the next element is tagged '112 . n r2 , sec Figure ,5.3 (a). 

(e) Ifthere has been a dûckwise tum through 900 followeJ hyan upward turn, two quaclri­
lateral elements are gencrated as 'lhown in Figure 53 (b) and the base of the next 
element to be generated is tagged n h, - n y3 • 

(f) If there has been a counter-clockwise turn through 900 followed by an upward turn, 
two quadrilateral clements are generated a.s shown in Figure .5.3 (c) and the base of 
the next element to be generated is tagged n f~ - n r )· 

When ail the eleml~nts in the column are generated, the front edge IS then redefined to 
include only those nodes which are fartiœst away from the y-axis and which daylight to the 
right edge of the cor,tinuurn. Examples of the meshes that can be generated by this program 
are shown in Figures 5.'1 and 5.5 . 
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Figure 5.4 
Example of a Simple Mesh 

Generoted by QUADMESH Progrom 
with 3 Vertical Line Input, AD, EF, & GH 

Note progression of front: 
1 st front: AD 

2nd front: ABEFCD 
3rd front: GH 

Elements ore numbered ln the order 
in which they are generated 
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5.3.1 Input Data ta QUADMESH 

The input data into QUADMESH is free formatted and is described below. 

1. Line 1: 
2. Next line/s: 
3. Next line/s: 
4. Next line: 

X Q , YQ, NSUBX, ~SUBY 
If NSUBX 2: 1, : DELX( 1), DELX(2), .. , DELX(NSUBX) 
If ~SUBY ~ 1, : DELY(1), DELY(2), .. , DELY(NSUBY) 
0.0 0.0 0 0 

Steps 1, 2 and 3 above are repeated for aIl vertical lines or sets of vertical lines. Step 4 
ends the ends the vert icalline information necessary for mesh generation only. The program 
is also able to generate material properties, material types and distributed load information 
with a few more lines of input data as described below. 

Next line: NPOIN, NDIST, NUMAT, NTYPE, YDLL, YDLR. XDLT, XDLB 
Next NPOIN lines: NPO(I), XPO(I), YPO(I) 
For each material type (I = 1, ... )NU~.lAT), 
First line: l'M(I), Pfl(J), ~ITYPE(I) 
Second !ine: ZXL(I), ZXRll), Z'lB(I), ZYT(I) 
If there is only one mate rial tYl!e, then, 
Second Une: 0.0 0.0 a 0 0.0 
Displacement Boundary CondItion Codes: 

JXL, JYL, JXB, J'lB, JXR, JYR, JXT, JYT 
This is the end of the input data. 

5.4 A Program for Creating Voids in 
Discretized Media, VOIDMESH 

Creating voids in d. (hScretized medium is often necessary when simulating excavation se­
quences in a mine. The process involves deleting dements whîch represent the void. and the 
nodes common to them. A program was written for this purpose, to be used in conjunction 
with the mesh generation programs descnbed above. Briefty, the initial mesh is generated 
to caver the entire medium with elements. Zones occupied by shafts, tunnels, and stopes are 
known and their boundaries are stored in a file which abo hold3 information of the excava­
tion sequence. 

Creating an excavation will affect items (d), (e) and (f) above. The input file to the 
VOID~1ESH prograrn consists of the elements to be deleted and the affected nodes for each 
excavation. These are arranged in sequence. Creating the void essf:ntially means ignoring 
the affected elements and nodes and updatlllg the rest of the mesh data. The distributed 
loads are usually applied along the boundaries of the continuum and updating the mesh will 
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not affect their magnitudes, only the node numbering of the affected element sides. This 
program is therefore an indispensable part of the mesh generation programs . 
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Chapter 6 

Verification Tests 

6.1 Tests of the Reciprocity Theorem 

Two series of patch tests were conducted using a square element of unit sicle with edges 
parallel to the coordinate axes. These tests were performed to show that the computer 
program is accurate and obeys the reciprocity principle. The form of this principle relevant 
to the developments in this thesis states that if a body is in equilibrium under two 5ets of 
forces, then the work done by the first set of forces .:icting through the displacements of the 
second set of forces is equal to the work done by the second set of forces <1cting through the 
dis placements of the first set of forces, [7]. The tests consis\,ed of subjecting a square plate 
to a uniform load on one edge while the opposite edge was pinned, see Figures 6.l and 6.2. 

Point loads were used in the first series of tests, and distributed loads were used in the 
second series. Each series consisted of paired tests in which the three nodes on any given 
side were pinned while the opposite nodes were loaded, first with compressive loads and then 
reversing the loads to make them tensile. Thus, each series consisted of four paired tests. 
Each pair of tests should yield stresses and displacements which are equal in magnitude but 
opposite in direction. 

U sing Figure 6.1 (a) as an example, noc1 ~s 4 and 8 should bulge out under compressive 
loading and should squeeze in under tens~le loading. This is certainly so in the results shown 
in the Table 6.1. Using a simple one dimensional model, the average stress and displacement 
along the loaded edge (nodes 5, 6 and 7) can be computed as follows: 

where 
v = vertical (y) displacement, 
b = length = 1.0 , 
E = modulus of elasticity = 1.0, 

v = b.l7/ E (6.1 ) 
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a = average stress = P / A, 
A = cross sectional area = 1.0, 
P = average load = -(0.5 + 1.0 + 0.5) = -2.0 

Thus, 
average s~ress = -2.0, and v = -2.0 
Using the computed values from the program for this load case, we have 
v = -1.069 + (-3.224 + 1.069)/3 = -1.787 
whi,::h can be approximated ta -2.0, considering that only one element is used in the analysis. 

Only the displacements and :"tresses obtamed for the load ca~es shown in Figures 6.l(a) -
(d) are shawn in Tables 6.1 - 6.8. The other four load cases shown in Figures 6.2(e) - (h) are 
the clockwise rotations through 90° A Figures G.l(a) - (d) respectively. The results for these 
load cases are similarly the resultE> of the tabulated III ad Cdses rotated clockwise through 90°. 
The results wnfirm the reciprocity principle. 

6.2 The Cantilever Bearn Problem 

The cantilever beam problern IS a useful ber.m problem ta investigate nurnerically because it 
is simple to represent mathematically cspecially when the loading system is simple. jIany 
authon; in the field of ~lechanics have dealt with it, spe Valliapan [65], Popov [66], and 
Kreyszig [67]. Valliapan has considered the case of cl cantilever beam of narrow croS'i-:'CctiOIl 
of width band depth 2d, under a vertical end Joad P appliC'd at the centre O. (jf the cross 
sectional end. In this exarnple, b iJ smaH tompared to '2d 90 that the beaœ can be ,umidered 
to be in a state of plane stress. 0 is the origin of coordinates with the x-axÏs parallel to the 
longitudinal axis of the beam and the y-axis vertical. The length of the beam is L. 

The boundary conditions are then ab follows: 

• O"y = 0 for aU x and y 

• T XlI = 0 at the upper and lower surfaces, that is, y = ±d 

• Txy = P at the so-called neutrai surfr,ce, that. is, y = 0 

If 1 is the moment of inertia about the x-axis, then the following equations of stress hold for 
the beam 50 de::icribed: 
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(6.2) 

The equations for stress are correct only if the boundary force at the free end is distributed 
parabolically. If the end load is a concentrated load, then by virtue of St. Venant 's principle, 
the solution near the end of the beam will Bot be correct. This mea.ns that in a finite element 
analysis of the beam problem, the stresses and displacements at the end of the beam will not 
be correct. This effect can be mitigated by using d. fine mesh. The equations of displacements 
are glven as: 

(6.3) 

The displacements at the so-called neutral surface (y = 0) are 

U x = 0 

(6.4 ) 

In the above expressions, E is modulus of (>lasticity and G is rigidity mo1ulus, 1/ is Poisson's 
ratio. 

G = E/2(1 + 1/) (6.5 ) 

Two computer models were run with the following specifications: 

• p = -20.0 

• L = 60.0 

• 2d = 4.0 

• b = 1.0 

• E::: 1.0E08 

• q::: 0.25, 

• N umber of elements used in first mesh = 10 

• N umber of elements used in second mesh = 20 
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Fi.gure 63 shows a free-body representation of a cantilever beam fixed on the left edge. 

Figure 6.4 shows a 20-element, finite element discretization of the beam. 

Table 69 :,UIlill1anzes the hybrid test results for the displacements. A comparison with 
the exact mathematical ~olution Îs a1so included in the table. The table clearly illustrates 
~hat the results of the hybnd finite element programme are in very good agreement with the 
closed forrn dnalytlcal sùlutions. 

6.3 The Hole-În-a-Plate Problem 

The clrcular holc in a plate problem, Jaeger and Cook [7], Obert and Duvall [68], is a dassic 
case that ha:, bc-en examined extensively in books on the theory of elasticity. It lends itself 
to an analytic sulutluu and lS therefore a proper case that can be verified by the hybrid finite 
element analy::>!s. 

Consider Ô.n mfinite plate of thîckness t with a circular hale of radius ra located with 
centre at the ongin, 0, as shown m Figure 6.5 

Let Sx and S'" be the stresses at infiuity applied in the x- and y- directions respectively. 
At a large distance from the hole, the polar components of stress, (Jr, (Jfj, TrO, are due eatirely 
tü the applied stresses and are given ln Equations 6.6 below. 

TrlJ = ~(ST' - S1l)(1 - 3r04/r 4 + '2r0 2 /r'}.) f'oin '2{} (66) 

At th~ periphery of the borrhole, f(} == r and EquatIOns (6.6) reduce to the following: 

(6.7 ) 

Points A and B (Figure 6.5), dt the peiiphf'ry of the borehole are of special interest 
because at A,e == 1r/2 and at B,e == o. Also, at A, (JO = (Jx and at B, aB = (Ju 

Three cases of applied stresses can be considued thus' 

ïO 
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Figure 6.5: Circülar Hole-in-a-Plate Problem showing Discretized Zone 
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• case (a): 5'J; = 5y = -P, which leads ta a E /< = aYB = -2p, 

case (b): S:r: = 0, which leads to a:r:~ = -Sy, aYB = -3511 , 

case (c): Sr; = 0, which leads ta Gr~ ::::: :3 Sn aYB = -Sr 

In ail cases, (lIB = (jll~ = Trll = 0 
Case (c) is the complement of (ase (b) when the axes are exchanged so that only cases (a) 

and (b) need be tested in a tlmte element analysis. Four meshes of dIfferent finite element 
densities were used as shown in Figures 66 to 6.9 were used. 

The n:eshes were 2:â, 4x4, 6x6 and 8x8 elements, the description indicating that there 
are equal Ilumber of elements àlong the .1'- àIld the y- axis. These meshes were generated 
by the program CIRC.\1ESH. The n'sulb of the hybrid finite element tes's are summarized 
in Tables G.10 alld 6.11. It i:, clear frum the~e tabk:, that the accuracy of the hybrid stress 
mode! it: high and ddequatt' for the types of rcal mming problems it would be employed 
to solve. Figure 6.1 0 ~hows the distnbution of the hOflzontal stress along s/~ction AB of 
Figure 6.9 for case (a). The corresponding horizuntal stre~s distribution along the same 
section for ~'dse (b) is 5hown U1 Figure 6.11 

6.4 The Pure Bearn Bending Problern 

Desai and Abel [69] have analyzed the problem of d beam subjected ta pure bending stresses. 
They used four-node elelllf'nts In a finite element program based on the displacement mode!. 
In thi!; te::,t, the 8-node hybnJ stress progrdrn is u~ed not only tü compare the results obtained 
with those by De::',ti and Abel but <.t!so to cOIlErm that the hybrid stress model conwrges to 
the tight answer rapidly with relatively fewer eléInents. FIgure 6.12 ~hows the plaIl~ stH'SS 
representation of the pure beam bending problcm. Due to synunetry, unly a quarter of the 
section is di~(I'dized as :,hown 1Jl Figure 6 12. The two pOInts of iuterest are the middle of 
the discretized section alld the far CO fIlt'r , rnarked X and Y respectively in Figure 6 12. 

The rnatenal properties u']ed were, as for Dt~Sdi and Abel, 

E = 30 x 106 pSI ( = 207 MPa), lJ ::::: 0,3 and h ::::: 1,0 Îllch 

The results are summarized in Table 6.12. They clearly show that the hybrid stress 
mode! more accurately predicts the results than the displaC'ement model. Also, no improve­
IIlent in accuracy is gained by using greater density of elements [rom the 4-element, 21-node 
discretizatioll. 
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Figure 6.8: 133-Node, 36-Elerncnt Circular Mesh 

75 

----------------------------



• 

8 

Figure 6.9: 255-Node, 64-Element Circular Mesh 
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Table 6.l: Patch Test Displacement Results for Point Loads (from Figures 6.1(a) and (h)) 

-

Figure 6.1(a) Figure 6.1(b) 
Displacements Displacements 

Node X-Disp. Y-Disp. X-Disp. Y-Disp. 

1 O. O. O. O. 
2 O. O. O. O. 
3 O. O. O. O. 

1 4 0.1424 -1.0440 -0.1424 1.0440 
5 0 . .1664 -2.6635 -0.5664 2.6635 
6 -0.0000 -1.6227 0.0000 1.6227 
7 -0.5664 -2.6635 0.5664 2.6635 
8 -0.1424 -1.0440 0.1424 1.0440 

= 

Table 6.2: Patch Test Displacement Result~ f(lr Point Loads (from Figures 6.1(a) and (b)) 

Figure 6.1(a) Figure 6.1 (b) 
Stresses Stresses 

Node Sigma-x Sigma-y Tau-xy 1 Sigma-x Sigma-y Tau-xy 

1 -0.5294 -1.7457 -0.2292 0.52!H 1.7457 0.2292 
2 -0.4396 -1.9444 -0.0000 0.4396 1.9414 0.0000 
3 -0.5294 -1.7457 O.~~92 0.5294 1.7-157 -0.2292 
4 -0.0689 -2.7:357 0.0681 0.0689 2.7357 -0.0681 
5 1.0803 -3.2239 -0.7743 -1.0803 3.22:39 0.7743 
6 0.4887 -1.0690 -0.0000 -0,4887 1.0690 0.0000 
7 1.0803 -3.2239 0.7713 -1.0803 322:Hl -0.7743 
8 -0.0689 -2.7357 -0.0681 0.0689 2.7357 0.0681 

• : 
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Table 6.3: Patch Test Displacement Results for Point Loads (from Figures 6.1(c) and (d)) 

Figure 6.1(c) Figure 6.1 (d) 
Displacements Displacemcnts 

Node X-Disp. Y-Disp. X-Disp. Y-Disp. 

1 -0.5664 2.6635 0.5664 -2.6635 
2 0.0000 1.6227 -0.0000 -1.6227 
3 0.5664 2.6635 -0.5664 -2.6635 
4 0.1424 1.0440 -0.142·1 -1.0440 
5 O. O. O. O. 
6 O. O. o. O. 
7 O. O. O. O. 
8 -0.1424 1.0440 0.1424 -1.0440 

Table 6.4: Patr!l Test Stress Results for Point Loads (from Figures 6.1(c) and (d)) 

Figure 6.1(c) Figure 6.1( d) 
Stresses Stresses 

Node Sigma-x Sigma-y Tau-xy Sigma-x Sigma-y Tau-xy 

1 1.0803 -3.2239 -0.7743 -1.0803 3.2239 0.7743 
2 0.4887 -1.0690 0.0000 -0.4887 1.0690 -0.0000 

1 
3 1.0803 -3.2239 0.7743 -1.0803 ~j,2239 -0.7743 
1 -0.0689 -2 7337 -0.0681 0.0689 2.7357 0.0681 
5 -0.5294 -1.7457 -0.2292 0.5294 1.7457 0.2292 
6 -0.4396 -J .9444 0.0000 0.4396 1.9444 -0.0000 
7 -0.5294 -1.7457 0.2292 0.5294 1.7457 -0.2292 
8 -0.0689 -~.7357 0.0681 0.0689 2.73.57 -0.0681 

• 
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Table 6.5: Patch Test Displacement Results for Distributed Loads (from Figures 6.l(a) and 
(b )) 

Figure 6.1(a) Figure 6.1(b) 
Displacements Displacernents 

Node 1 X-Disp. Y-Disp. X-Disp. Y-Disp. 

1 O. O. O. O. 
2 O. O. O. O. 
3 O. O. o. O. 
4 -0.1270 0.5060 0.1270 -0.5060 
5 -0.1104 0.9723 0.1104 -0.9,23 
6 -0.0000 0.9974 0.0000 -0.9974 
7 0.1104 0.9723 -0.1104 -0.9723 
8 0.1270 0.5060 -0.1270 -0.5060 

Table 6.6: Patch Test Displacement Results for Distributed Loads from Figures 6.1 (c) and 
(d) 

Figure 6.1(c) Figure 6.l( d) 
Displacements Displacements 

Node 1 X-Disp. Y-Disp. X-Disp_ Y-Disp. 

1 -0.1104 0.9723 0.1104 -0.9723 
2 0.0000 0.9974 -0.0000 -0.9974 
3 0.1104 0.9723 -0.1104 -0.9723 
4 0.1270 0.5060 -0.1270 -0.5060 
5 O. O. O. O. 
6 O. O. o. O. 
7 O. O . o. O. • 8 -0.1270 0.5060 0.1270 -0.5060 

82 



• 
Table 6.7: Patch Test Stress Results for Distributed Loacls (from Figures 6.1(a) and (b)) 

Figure 6.1(0.) Figure 6.1(b) 
Stresses Stresses 

Node 1 Sigma-x Sigma-y Tau-xy Sigma-x Sigma-y Tau-xy 

1 0.1921 1.0290 0.1072 -0.1921 -1.0290 -0.1072 
2 0.2674 0.9392 0.0000 -0267·t -0.9:392 -0.0000 
3 0.1921 1.0290 -0.1072 -0.1921 -1.0290 0.1072 
4 -0.0268 0.9898 0.0072 0.0268 -09898 -0.0072 
5 0.0219 0.8723 0.0194 -0.0219 -0.~n3 -U.049·1 
6 0.0250 1.0319 o.oeoo -U.0250 -1.o:n 9 -(}.OOOO 
7 0.0219 0.8723 -00494 -0.0219 -0.8723 0.0494 
8 -0.0268 0.9898 -0.0072 0.0268 -0.9898 0.0072 

Table 6.8: Patch Test Stress RC'lults for Distributed Loacls (from Figures 6.1(c) and (cl)) 

Figure 6.1 ( c) Figure 6.1 (cl) 
Stresses Stre::ises 

Node 1 Sigma-x Sigma-y Tau-xy Sigma-x Sigma-y Tau-xy 

1 -0.0219 -0.8723 -0.0494 0.0219 0.8723 0.0494 
2 -0.0250 -1.0319 -0.0000 0.0250 1.0319 0.0000 
3 -0.0219 -0.8723 0.0494 0.0219 0.8723 -0.0494 
4 0.0268 -0.9898 0.0072 -0.0268 0.9898 -0.0072 
5 -0.1921 -1.0290 -0.1072 0.1921 1.0290 0.1072 
6 -0.2674 -0.9392 0.0000 0.2674 0.9392 -0.0000 
7 -0.1921 -1.0290 0.1072 0.1921 1.0290 -0.1072 
8 0.0268 -0.9898 -0.0072 -0.0268 0.9898 0.0072 
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Table 6.9: Comparative Displacements of the Cantilever Bearn Bending Problem 

Displacements Displacements 
Total No. Total No. at Point A at Point B 
of nodes of elems. (x 10-4 ) (x 10- 4 ) 

U V U v 

Il Il 
Hybrid stress 

solutions 

53 10 0.000 -0.002706 0.000 -0.0008469 

85 20 0.000 -0.002705 0.000 -0.0008460 

1 

Exact solution . 

0.000 -0.002700 0.00 -0.0008438 

Table 6.10: Hybrid Stress Results for Hole-in-Plate Problem, case (a) 

1 1 
Stresses Stresses 

Total No. Total No. at Point A at Point C 
of nodes of elems. Clx CllI (Jx (J1I 

(-2.00) (0.00) (0.00) (-2.00) 

21 4 -1.838 -0.317 -0.317 -1.838 

65 16 -1.974 -0.129 -0.129 -1.974 

133 36 -1.998 -0.093 -0.093 -1.998 

225 64 -2.018 -0.052 -0.052 -2.018 

Note: Values enclosed lU brackets are the theoretlcal values 
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Table 6.11: Hybrid Stress Results for Hole-in-Platc Problem, case (b) 

1 1 
Stresses Stresses 

Total No. Total No. at Point A at Point C 
of nodes of elems. (7x (71/ (7x (71/ 

(-1.00) (0.00) (O.UO) (3.00) 

21 4 -1.838 -0.317 -0.317 -1.838 

65 16 -1.974 -0.129 -0.129 -1.97-1 

133 36 -1.998 -0.09:1 -0.093 -1.998 

225 64 -2.018 -0.052 -0.052 -2.018 

• 
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Table 6.12: Comparative Displaccments of the Cantilever Bearn B,>nding Problem 

-._--

Displ~cements ! 
Displacemu ts 

Total No. Total No. at Point X at Point l' 
of nodes of elems. (x 10-4 ) (x 10-4 ) ..-

U v u u 
',= 

Il 1 

Hybrid stres~ 
solutions 

1 
l' 

1 

53 10 0.000 -0.002706 0.000 -0.0008469 

85 20 0.000 -0.002705 0.000 -0.0008460 

21 4 0.375 -0.319 1.500 -1.275 

65 16 0.375 -0.318 1.498 -1.267 

133 36 0.375 -0.319 1.500 -1.275 

Desai and A bel 
solutions [69] 

25 16 0.3679 -0.31236 1.4552 -1.2399 

Exact solution 

1 0.3750.1 -0.3188\1 1.500 1 -1.275 

• 
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Chapter 7 

Case Histories 

7 .1 Introduction 

The venfication tests reported in Chapter 6 clearly demonstrated that the hybrid stress 
program car. be relied u.ron to perform finite clement analysis of a continuum to the same 
degree of accuracy and at less cost as any other finite clement program with a different 
basis. In arder ta show that it can also be relied upon to carry out practical geomechanics 
type of analysis which typical mining operations perform in their ground control problems, 
two case histories were allalyzed. Both case histories were taken [rom NORANDA Minerais 
operations in the Province of Quebec in Canada. This Chapter is therefore concerncd with 
the correlation of numerical analyses on the two mines carried out by different methods on 
the one hand, and by the hybrid ~tress program on the other. 

NOralld<1 Inc. is a resource based company and mining is among its several are as of 
operatioIl. The analyses described below indicated good correlation betwecn hybrid stress 
results and those from other numerical procedures emp~oyed by Noranda Technology Centre. 
In each of the cases described, the same portion of a mining zone that was analyzed by a 
different numerical method was aiso anaIyzed by the hybrid fini te element program deve1-
oped in this thesis. Direct comparison of stresses and displacements was then made. The 
hybrid stress results revealed greater detail in part due to the 8-node discretization of the 
quadrilateral elements. 

7.2 First Case Study: Geco Conveyor Drive Stability 
Analysis. 

The descriptions in sections 7.2.1 to 7.2.3 inclusive were taken from an internaI report written 
for Noranda Technology Centre by Bawden and Milne [70] . 
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7.2.1 History 

Geco mines is owned and operated by :.Ioranda MineraIs Ine., a natural resource-based 
company with interests in mining mainly in Canada. The Geco Cu-Zn-Ag deposit is in the 
Manitollwadge mining camp, in the Thunder Bay Mining District of northwestern Ontario, 
320 kilometers east of Thunder Bay and about 150 kilometers northwest of Sault Ste :\larie. 
The mining camp lies 5 kilometers east of the town of ~lallltouwadge. Geco ;"'lincs Ltd. 
wa.s amalgamated with ~oranda Mines Ltd. (now ~oranda Inc) in 1964. The regional 
geologieal structure eonsists of a ~road easterly limb of this synform. It consists of one 
verticallenticular, continuous zone of mlllcralization which is interrupted by !:>everal diabase 
dykes and is offset by the Fox Creek Fault. The average horizontal length on any lev el Îs 

approximately 2400 feet with an average width of 65 feet. The bottom of the orebody plunges 
to the east at an average of 35 degrees as it follows the S-shaped uragfold wÎ1ich exists west of 
the orebody on each level. The orebody is made up of a core of massive sulphides consisting of 
pyrites, pyrrhotites, chalcopyrites, galena and minor arnounts of gold. Appreciable amounts 
of silver are present, associated with the chalcopyrites and galena. The remainder of the 
md.Ssive core is made up of wall rock inclusions. 

7.2.2 Mining 

There are three main methods of mining. The moat common method Îs the "bulk" method 
in which 70 ft wide, 300 ft high transverse stopes are taken at 120 and 150 ft intervals. Using 
large blast hales, the primary sUces arc blasted and the broken ore is drawn out the bot tom 
of the rnuck pile while the void which is created ab ove the broken ore is filled wi th waste rock 
supplied from a surface quarry. The fil! material provides support for the weak walls. Upon 
complet ion of the stope, the waste rock fill is stabilized along the rib walls by introducing a 
mixture of hydraulically placed miU sands and cement suitably mixed. 

Blast hole open stoping i8 practiced in the upper parts of the orebody where the transverse 
dimensions are less. Backfill with hydraulic sand lS do ne after the stope i8 completely rnined. 
The above two methods account for about 95% of the ore produced. The remaining .5% is 
mined by cut-and-fUl rnethods in areas where the ore is too narrow ta be mined by the other 
two methods and where more wall support is required. The stopes are typically 9 ft high 
and are taken along the strike. Again, hydraulic sand fiU is used as backfill. 

7.2.3 Stability Problems in the Conveyor Drift 

The following is a description of the stability problems which ultimately led to a stabil­
ity analysis of the mine, using the finite element program, SAP2D, according ta Baw­
den and Milne [70), and Milne [71] . 
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Since 1983, the mine has been carrying out the retreat phase of the transverse stoping, 
i.e., recovering the pillars. Since then, movement was being experienced in the couveyor drift 
and the 1-32 cross cut. The Mining Techllology Division of the Noranda Technolgy Centre 
(NTC), based in ~fontreal then carrieù out field investigations as well as linear elastic finite 
element dIlalysis of the area of cOllcrm. 

Field Observations and Measurements by 
the N oranda Technology Centre 

The field investigations comprised a limited amount of structural mapping and classification 
of the rock types. Three major joint sets were mapped, the most promincnt of which was 
parallel ta the foliation in the rock. Rock classification was donc using the Darton (NGI) and 
the CSIR (R~fR) systems. Closure llwasurements using cxtensometers were also undertaken. 
The results of these !1eld investigations showed that the observed movements were due to the 
continued relaxation of the rock mass towards the stopes. The presence of a surface quarry 
ab ove the mining zone might have caused sorne uplift but the reduction in the vertical stress 
due to this quarry was too small to consider. The relaxation mechanism was explained as 
the loss of a so-called clamping force across the foliation. This clamping forœ was supplied 
by compressive stresses acting across the foliation. \Vith progressive stoping, the stresses are 
dispersed ami the loss of the clamping force rcsul~s in rock failure aloog the foliation. This 
mode of failure is well known at Geco. The backfill could not totally prevent this relaxation 
although it retarded it. 

Computer Analysis by Noranda Technology Centre 

A SAP2D jjlllte element analysis was done to validate the field observations with the follow­
ing assUIuptions according to Bawdt:n and Milne [70], and Milne [71]. Vertical stresses were 
equal to the weight of the rock, meaning that they were gravitational. Bawden and Milne [70] 
claim that these conditions are similar to those cxpected in the Canadaian shield. However, 
it is known that horizonta.l stresses in the shield are quite often larger than can be accounted 
for by gravit y alone. Maximum depth was taken as 420m. 

A value for the Young's modulus of 26 GPa was estimated based on the Rl\1R (CSIR) 
classification scheme. Poisson'8 ratio was taken as 0.30. Values for rock strcngth were not 
needed because the fini te element model assumes a linearly elastic and homogeneous mate­
rial. The main purpose of the fini te dement dnalysis was to show the effect of mining the 
adjacent stope tü the surface, starting from the position it was in 1983 and encling in 1985 
wh en the stope reached the surface. The computer results are illustrated in Figures 7.1, , , 

" 7.6 . 
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A summary of the stress history for the stope and the conveyor drift is given in Ta­
bles 7.1 and 7.2. At the bcginning of the excavation cycle, the conveyor belt drift is quite 
stable. With the nearby stope at îts 1985 position, the maximum stress induced around 
the conveyor drift is less than 1200 psi (8.3 MPa). This level of stress is insufficient to 
induce cracking ami failurc observed in the drift. Figures 7.1, 7.2 and 7.3 show the principal 
stresses in magnitudes and directIOns. The principal stresses around the drift appear to tille 
up pCl'pendicular to thé foliation, thus confirming them as clamping stresses on the foliation. 

As mining progresses to the surface, thcre i5 a rcduction in th,,: principal stresses sufficient 
to cause loosening and relaxation Jrollm! the drift. The::.c observations arc d"'plcted ln the 
Figures 7.4,7 5, (~nd ï.6. Both the major and minor principal stresses dccrease in magnitude 
but are still insutlicicllt ta cause failure The minor principa,l stresses were slightly tensile 
around the dnft. It is clear that the sides of the stop('~; üre un der ~ome tensile stresses while 
the top and bottOIll d the stope .:nc Illldcr cOlllpressive stresses. Figure 7.1 indicates that the 
bot tom left corner of the convcyor dnft and the corner opposite to it are un der compressive 
stresses while the other two corners are undcr tcnsile stresses. 

7.2.4 Hybrid Stress ModeUing 

This was done dS part of the venfication aspect of this thesis. The section of the mine 
analyzed was the same for dw SAP2D analysis but the mesh generation was done using the 
QUADMESH generator described lU Appendix A, starting with the initial position as at 
1983. The same vertical section that was used by the Noranda Technology Centre in the 
SAP2D analysis was also used in this case study. It measured approximately 580 m in the 
horizontal direction by 490 m in the vertical. Displacement and load boundary conditions 
are shown in Figure 7.7, 

Progressive excavation was achieved in four stages as shown in F\gures 7.8 to 7.12. The 
magnitude~ and directions of the principal stresses have beell plotted for the initial position, 
first excavation and the final stage of extellding the stope to the surface. These are shown 
in Figures 7.13,7.14 and 7.15. The challging stress patterns following the excavations are 
summarized in Tables 7.:-J ta 7.6. 

The inset in Table 7.6 describes the not!~s of the conveyor drift. It can be seen that the 
walls of the stope are in tension (Tables 7.3 a;>d 7.4 when the corner nodes for the initial 
and first excavation are ignored). The maximum tensile stress occurs towards the lower end 
of the stope walls and is greater than 6 MPa (870 psi). As stoping progresses, the walls are 
under sufficient tensile stress t.o cause spalling and/or massive failure. The floor and the 
back of the stope are under compressive stresses which increase gradually to a maximum of 
over 11 MPa (1595 psi) as mining progresses (Table 7.5). 
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• The conveyor belt drift on the other hand shows a generally small minimum principal 
stress which is tensile, confirming the results of the SAP2D analysis. However, the maximum 
principal stress is compressive, stélxting off at high values and decreasing to near zero as the 
stope is mined to the surface (Table 7.6). 

The general conclusion to be drawn from this analysis is that the hybrid model gives a 
better and more detailed description of the stress distributions at the various stages of the 
stoping operation and its effects on the conveyor drift. The findings of the SAP2D analysis 
have been duplicated. 

7.3 Second Case History: Norita Transverse Stopes 
Stabil.'ty Analysis 

The descriptions in Sections 7.3.1 to 7.3.3 inclusive were taken from open reports writ­
ten by Chauvin [72] and Goodier and Dube l73] while Sect~on 7.4 is as reported by Baw­
den and Milne [70] and Stoesser [75] for the Noranda Techn(llogy Centre. 

7.3.1 History 

The Norita deposit, operated by Noranda Inc., MatagaulÎ Division, is located 2 kilometers 
north west of the town of Matagami in northern Quebec. Matagam.i town itself lies 180 
kilometers north of Amos, Quebec, in one of the large volcanic centres in the so called 
Abitibi greenstone belt of the Superior Province. 

7.3.2 Geology 

The Norita deposit consists of five massive sulphidcs lenses containing over 4 million tonnes 
of ore grading 4.1% Zinc and 1.8% copper Chauvin [72), Goodier and Dube [73]. The 
orebody was discovered in 1957 but was only brought into production in 1976. Exhaustion 
of the ore is forecast for 1988. The five ore lenses are interbedded in a precambrian volcanic 
succession of rhyolitic and basaltic tuffs which strike approximately E-SE with a sub-vertical 
dip. The sulphide lenses have variable dimensions; the smallest (Upper Zone) has a height 
of 100 m, a strike length of 150 m and a 6 m average thickness across strikei the largest (A 
Zone) which is also the deepest, is 400 m in length, 210 m high aud has a width of 1.2 m in 
its top section and over 25 m in its lower portion. 

7.3.3 Mining Methods and Ground Control Problems 

To the present day, the mine has passed through three distinct phases of ore extractiop. 
These correspond directly to major ground control problems and to minor problems associ-
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ated with dilution. The so-called Phase 1 mining was by the sub level retreat method which 
was used successfully between 1975 and 1978 in mining the Main, Lower and Marker Zones. 
This method was used in the liA" Zone which was discovered in 1977 and which appeared 
weH suited for this type of mining. 

The first sign of gronnd control problems was noticed in 1978 in the form of ground 
movements and spalling in the dill pillar drift of the 8-8 level, Bawden and ~1ilne [74], and 
Stoesser [75]. Varions actions taken to combat this deterioration included introducing extra 
ground support, lowering blast vibrations and thus decrea"ing pillar damage, monitoring 
ground movement and stress changes and computer simulatiJilS of the mining sequence. In 
addition, aIl development drifts were arched 50 as to improve their stability and lower stress 
build-up around them. 

The mining methods changed from sublevel retreat to a modified sublevel caving and 
later ta a transverse longhole open stoping which is still in use. Access to the stopes i~ from 
the footwall drift. Waste fil! was introduced at the top of the lIA" Zone to give sorne support 
to the walls. This ~o-called Phase II mining cycle began about 1981 with the development 
of a waste st ope above the '~A" Zone. The first waste stope was lost as a result of severe 
sloughing of the north and south walls of the 8- 7 sub level which Jed to the 10ss of the waste 
dumping points and the remaining two production sub levels of the Marker Zone. A smaller 
waste stope was developed above the Marker Zone. For simulation purpose, the stopes were 
assumed to be 15 m wide rectangles. 

7.3.4 Instrumentation and Modelling by Noranda Technology 
Centre 

As a result of the deteriorating ground control situation, Noranda Technology Centre was 
consulted in 1985. Initial solution was to install extensometers and stress meters to quantify 
the visual ground movements in the sill pillar, shaft Plllar and central pillar areas. Following 
extensive monitoring, two types of numerical modelling were done, using the MINTAB and 
the Boundary Element AnalY'3is (BEA) programs. 

The MINTAB program was used to simulate the extraction of the ore zone along the 
strikp. on the vertical plane. Initial runs were done with the entire mine as the model but 
after a few simulations it was apparent that mining of the lIA" Zone had little effect on 
the remainder of the levels above it. Further modelling was done on the liA" Zone only. 
The model was correlated to the caving which had occurred before the mining method was 
changed. 

The BEA program was used to complete the model in the thh'd direction, i.e., along the 
strike in a horiz0ntal direction. The computer runs indicated that the pillars between the 
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open stopes had failed, an observation that correlated well with the MINTAB runs and the 
site observations. In these runs, failure was based on the strength of the various L'ock types. 
If the stress was above the strength of the rock, that rock would be deemed to have failed. 

The two models used - lvlINTAB and BEA, have serious limitations some of which are: 

1. no multiple materialsj 

2. no discrete geologic st:ucturesj 

3. no \\post failure" behaviourj 

4. no stress shedding from failed zones, and 

5. only limited al1ùwable movement of excavation boundaries. 

However, they still allow a r~asonable determination of the elastic stress distribution 
around mine openings, 

Modelling the t.ransverse stoping for the lower A zone to about 1986 indicated that 
induced ~tresses bctween the 9 and 10 Ievels, where the extraction ratio was low, would be 
predicted at arounJ 60-80 MPa while in the lower lO-ll levels where the extraction .atios 
were sornewhat higher, stresses would be predictccl between 80 and 100 MPa. The proposed 
transverse mining sequence i8 shawn in Figure 7.16. 

The \\lower stopes" refer to stopes betwccn the 10 and Il levels while the "upper stopes" 
refer to stopes between the 9 and 10 lcvels. The proposed sequence is then ordered as given 
below: 

step 1 lower stop es 61 14, 8, 12 

step 2 upper stopes 6, 14 

step 3 lower stopes 16, 4 

step 4 upper stope 16 

step 5 lower stope 2 

step 6 upper stopes 4, 2 

MINTAB simulations of above stoping sequence showed that at each step of the exca­
vation, stress shedding to adjacent rmars occurred, often beyond th::: estimated strength of 
the pillars. The most highly stressed areas reached peak stress levels of up to 130 MPa as 
shown in Figure 7.17 which shows the stress distribution after mining of the upper stopes 6 
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and 14, and the lower stopes 6, 8, 14 and 12. 

Figure 7.18 shows the MINTAB model results for excavation of aIl the stopes up ta step 
5. At this stage, aH of the lower 10/11 stopes have been excavated and backfilled but backfill 
properties were never included in the modelling. At this stage, the upper level pillars 2 and 4 
have become very highly stressed, as high as 140 MPa. It is certain that these pillars would 
have failed and shed most of this stress ta the east abutment and overlying sill pillar by 
this time. Stress levels in the centre of the main upper level pillar (level 9/10, pillars 8-12), 
however. remain relatively low, indicating that the core of the pillar remaills intact. 

7.3.5 Hybrid Stress Modelling 

The hybrid stress fini te element program was used to run simulations similar ta the BEA 
runs described above. The hybrid model is a horizontal section taken through the lùwer level 
10/11 stopes from Figure 7.16. The section modelled included the shaft and aU the 17 stopes 
and pillars as shawn in Figure 7.19 which also shows the boundary conditions imposed on 
the system. 

Camparison of Figures 7.16 and 7.19 shows that the stope sequencing of the hybrid model 
follows the same order as for the MINTAB runs conducted by the Noranda Technology Cen­
tre. The hybrid modelling was done in four steps as given below: 

step 1 Initial position with only the shaft excavated. 

step 2 Position as at June 1986, with stopes l, 3, 9, ID, 11, 13, 15 and 17 of Figure 7.19 
excavated. 

step 3 Lower stopes 6, 14,8,12 (sequence 1,2, 3, and 4) excavated, and finally, 

step 4 Lower stopes 16, 4 (sequence 5, 6, and 7) excavated. 

The section analyzed has three principal material types with the massive sulphide ore­
body bounded on the south side by rhyolitic tuffs and on the north side by basaltic tuffs. 
Material properties had been determi,1ed in-situ from rock mass classification and from the 
laboratory from tests on intact rock cores by the NTC. As expected, there was a very large 
disparity in the properties with the laboratory measured values about an arder of magni­
tude higher. The values used in the Hybrid simulation faU between the two extremes and 
are shawn in Table 7.7. 

The hybrid stress simulation of the mining of the lower stopes was carried out in four 
stages as described below. The first simulation, described the initial position which was 
assurned ta begin with only the shaft in place. The second simulation described the position 

112 



~ 

~ 

Vl 

".,... • 

J7.110 MPo 37.90 UPo J79 t.lPo 

37.~ .. ~ "" l .,,- )7 ~ , 
90 .... 0 

fIIItw 

r to. 11~ 
~ ____ ~ _________ 14 ~ 

37.90 "'Pa ... ....u on ~ ~ , 
"Po 

., 1!t 5 .4 2 10 4 13 8 , 2 3 9 7., f-

I - - ,----\ 

37.90 MPo .. ... 37. 
~ ..fa\. ~ 

90 "Po 

Figure 7.19: Norita Tra.nsverse Stope Stability Analysis, 
Displacement a.nd Load Boundary Conditions for Hybrid Stress Ana.lysis 



• 

• 

of the transverse stopes as at June 1986 and corresponded with the MINTAB simulation 
described above. During this step, stop es numbered l, :J,9, 10, 11, 13, 15 and 17 were 
mined. The third run corresponded to the excavation of the lower stopes 6,14, Sand 12 
(stope equence 1,2, 3 a.ld 4). In the last simulation, the remaining lower stopes 16, 4 and 
2 (sequence 5, 6 and 7) were taken. Figures 7.20 to 7.23 inclusive show the fini te element 
meshes that were u'3ed al the various stages. 

The original mesh covering the discretized zone without. any excavation was generated 
using the QUADMESH program described in Appendix A. Nfeshes representing the vari­
ous steps of the modelling (Figures 7.20 - 723) were then generated using the companion 
program REVISE to alter the original rnesh. The prograrn REVISE essentially deletes the 
nodes and elements in a specified window of a given mesh and reorders the remaining nodes 
and elements. Three material propcrties were used corresponding ta the specification in the 
reference [70]. 

The results for the lower stopes are summarized in Tables 7.9 to 7.12. The critical areas 
for which stability was analyzed are the shaft, the west abutment, the east abutment and 
stope 2 and 16 which were Bot taken during the transverse stoping as indicated in the tables. 
The stress tensor plots for each step of the simulation are shawn in Figures 7.24 ta 7.27 
inclusive. 

The critical areas examined are best correlated to the MINTAB results with respect to 
the abutments and the pillars. An examination of these results shows that the hybrid stress 
results are slightly higher in magnitude than the values obtained by the MINTAB and BEA 
methods but the trend is essentlally the same and leads to the following observations: 

The Shaft Pillar 

Table 7.9 shows the state of stress of the shaft region during the progress of the excavation. 
The shaft is a narrow slit about 3m wide by Sm long, the west and east walls representing the 
long sides while the north and south walls represent the short sides. It can be surmised from 
the theory of dasticity that there will be a high stress concentration therefore on the north 
and south rockmass surrounding the pillar. This Îs borne out by the results in Table 7.9. In 
general, the stress history shows a peak at about the start of the retreat cycle (June, 1986). 
The tensile stresses are very small compared to the compressi-,re stresses, a maximum value 
of Il MPa occurring in the north and south waHs as of June 1986. Against this small tensile 
stress, everywhere else i8 under high compressive stresses. It is clear from comparison of 
these stresses with the strength values of the various rock types in Table 7.8 that the shaft 
is not endangered '_Iy the transverse stoping although the compressive stresses in the north 
and south walls are rather high. These results do not differ from the MINT AB runs . 
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Stress Tensor Plot, aU Lower Stopes Exca.vated 
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The West and East Abutments 

The west abutment lies irnmediately to the west of the No. 1 Stope and as Bueh, it forms il 

contiguous part of the abutment bt'tween the stope& and the shaft pillar. Ally indicatiolls 
of severe stress~ng of this area nught be expected ta spread towards the shaft in due course 
without remedial action. The east abutment on the other hdlld ddjoms the Nuritd East ore 
zone which had not been rnineJ at the time. Large strc!js concentrations in titis area would 
also not be tolerated. The result of the IIybrid stress analysis is shown in Table 7.10. Before 
startup (Initial Position) the west abutment is still under compressive loads of between 60 
and 70 ~1Pa but thereafter, the stresses change to tewllie and a~sume lllgh values, reaching a 
peak of about 135 ~1Pa at the beginning of June l!)S6. Although they la.ter decline tu about 
MPa tensile at the final simulation, the tensile ::.tresses are cOllsiàen>d high enough to have 
caused failure if no support of sorne kind was instituted. The values for the cast abutment 
follow a pattern similar to that of the west abutmcnt. It is worthy of note that the MINTAB 
simulation put the maximum values for these stresses at 60 . 80 ~IPa for the west abutment 
and at 80 . 100 MPa Îor the east abutment. 

No. 2 Pillar 

The hybrid stress results for the #2 Pillar are shown in Table 7.11 from where it is clear 
that tensile stresses predominate soon after the initial position is established. This pillar is 
best examined in two parts: the western part on the one hand and the central and eastern 
parts on the other. The western part appears to b('ar the highest tensile str~sses which 
seem to peak around June 1986 with a maximu,n value of 149 MPa, With respl~ct to the 
central and eastel'l1 parts of the pillar, the maximum principal stress is small but compressive 
while the minimum principal stress is tensile, with a maximum value of about 60 MPa. The 
explanation seems to be that as the transverSé stoping operation continues, mûre and more 
stopes are being mined ta the east of this pillar. With the support previowlly provided by 
the mined area gone, this pillar acts llke a rad under bending moments with the western 
part under tension and the eastern part undcr compression. The MINTAS results from 
Figure 7.17 shows il. stress regime of 60 - 80 MPa tensile in thlS pillar. Considering the 
hybrid stress results for the central and eastern parts of the pillar (60 MPa as above), thcre 
is a good correlation between the results. 

No. 16 Pillar 

An examination of the stress results for the No. 16 pillar as shown in Table 7.12 shows a 
reverse situation compared to the No. 2 Pillar. Thus, the castern and central parts oi the 
p\llar show stress magnitudes similar to those of the ea=.tefIl and central parts of the No. 2 
pilb.r, while the eastern part of the pillar shows responses similar to the western part of 
the No. 2 pillar. However, the stress magnitudes are highcr lrl the No. 16 pillar than in the 
No. 2 pilIar, a maximum of 176 MPa tensile being rccorded even before the Hnai excavations 
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were taken. The same explanation for the No. 2 pillar seems to be true for the No. 16 
pillar also. Again, the MINTAB results from Figure 7.17 show maximum stresses between 
80 and 120 MPa for this pillar, values which are higher than those for the No" 2 pillar by 
between 20 and 40 MPa. The correlation between the hybrid stress resuits and the MINTAB 
results is also considered ta be good for this pillar. This is the end of the case study on the 
Norita Transverse Stopes Stability Analysis. An analysis for the upper 9/10 level stope was 
considered but was not do ne because the stoping sequence was very similar to that of the 
lower 10/ll Level stopes. The resuIts of such an analysis would therefore have constituted 
a duplicate of the presentation above for the lower 10/11 level stopes . 
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Table 7.1: Summary of SAP2D F.E. Analysis on Geco Conveyor Drift 
Stress History of the Stope from Figs. 7,1 - 7.6 

Analysis by the Noranda Technology Centre 

-

J Initial Position Final Position 
(~IPa) (MPa) 

-0.50 < al < -4.76 0.00 < (71 < -7.58 - -
Walls 

-2.40 < a2 < -4.76 1.:38 < a2 < -2.41 - -

-13.79 < al < -33.79 -13.79 < al < -,-.59.30 - - -
Floor 

-4.80 < a2 < -9.65 -4.76 ~ a2 < -16.55 - -

-9.65 < al < -30.34 -
Back Not Applicable 

-2.40 < - a2 < -11.03 

--" 

Note: Negative Values indicate compressive strellses, 
positive values, tensile 

1:25 



• 

• 

Table 7.2: Summaryof SAP2D F.E. Analysis on Geco Conveyor Drift 
Stress History of the Drift from Figs. 7.1 - 7.6 
Analysis by the Noranda Technology Centre 

Initial Position Final Position 
(MPa) (MPa) 

0'1 < -6.90 0'1 < -2.76 -
Walls 

0'2 """ -2.40 (J2 < -0.67 - -

0'1 < -10.34 (JI '" -2.76 -
Floor 

(J2 "" -2.40 (J2 
,....., -0.67 -

(JI l'V -6.21 (JI '" -2.07 -
Back 

(J2 "" -2.07 (J2 ,..." 0.67 -

Note: Negative Values indicate compressive stresses, 
positive values, tensile 
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Table 7.3: Surnmary of Hybrid Stress F.E. Analysis on GeLo Conveyor Drift 
Stress History of the West Wall of the Stope 

Initial First Final 
Excavation Excavation Excavation 

83 -5.35 -22.49 ·,5.64 -23.00 -7.11 -39.6:3 
84 2.26 1.64 2.40 1.63 :l.51 2.51 
85 6.63 -3.23 5.29 -2.12 6.34 -3.80 
86 1. 76 1.27 3.18 0.23 2.10 0.50 

87 -0.84 -20.87 5.44 -0.03 2.36 -0.60 
88 0.89 -1.85 1.57 0.03 

89 -3.27 -22.17 1.82 0.06 

90 1.77 -0.0 l 
91 1.80 0.02 

92 1.70 -0.00 

93 1.57 -0.00 
94 1.50 0.00 
95 1AG -0.01 

Note: Negative Values indicate compressive stres~es, 
positive values, tensile 
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Table 7.4: Summary of Hybrid Stress F.E. Analysis on Geco Conveyor Drift 
Stress History of the East Wall of the Stope 

Initial First ~~ 
Excavation Excavation Excavation 

103 -1.15 -19. ï2 -1.58 -20.ï3 -11.63 -42.12 
104 4.49 1.86 4.64 1.78 3.69 0.70 
105 5.36 -3.60 4,.62 -2.46 5.40 -5.01 
106 1.85 0.81 1.91 0040 2.24 0.58 
107 -8.27 -26.38 6.01 -1.96 3.72 -1.02 
108 2.10 -8.10 2.90 0.02 
109 11.52 -32.01 3.30 0.04 
110 3.19 -0.01 
III 3.21 C 02 
112 3.20 -0.00 
113 3.19 -0.00 
114 3.20 0.00 
115 3.21 -0.00 

Note: Negative Values indicate compressive stresses, 
positive values, tensile 

128 



• 

, 

Table 7.5: Summary of SAP2D F.E. Analysis on Geco COllveyof Drift 
Stress History of I3ack and Floor Walls of the Stope 

Il ~ Initial Excavation Fi"t Excavation L,,,,t Excavation 

~ Il a, 1 al Il a, r- al ~ a, 1 ~ 
Floor 

Left corner -5.35 -22.49 -5.64 -23.'17 -7.11 
Mid corner -2.20 -9.41 -2.38 -9.65 -6.ag 

Right corner -1.15 -19.72 -1.58 -20.73 ·11.6:3 

Back 

Left corner -0.84 -20.87 -3.27 -22.17 -.J.57 
Mid corner 1.98 -45.73 2.82 -40.73 L57 

Right corner -8.27 -26.38 .} 1..52 -32.01 -U.56 

--

Note: Negative Values indicate compressive :,lres:,es, 
positive values, tensile 

" ' 

-:J9.();} 

-14.11 
··12.11 

-

-25.74 
-41.44 
-28.21 

--
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Table 7.6: Summary of HYBRID F.E. Analysis on Geco Conveyor Drift 
Stress History of the Conveyor Drift 

Initial Excavation First Excavation Last Excavation 

213 -2.12 -11.18 -3.18 -11.72 0.52 0.25 
214 0.79 -1.37 0.74 -1.82 0.02 -0.19 
215 1.99 -4.47 2.50 -3.31 -0.29 -0.56 
225 0.32 -9.66 0.38 -8.61 0.07 -0.20 
226 0.18 -8.47 0.17 -8.05 0.02 -0.20 
239 2.73 -2.46 3.31 -0.90 -0.61 -1.28 

240 Il 0.86 -1.21 0.81 -1.43 0.03 -0.80 
241 -2.27 -9.20 -3.01 -9.65 0.23 -0.07 

215 226 241 

Nodal numbers for 
214 Conveyor belt 240 

Drift 

213 225 239 

Note: Negative Values indicate compressive stresses, 
positive values, tensile 
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Table 7.7: Mechanical Properties of the Main Rock Types . 

Laboratory In-situ RMR Actual 
Measured Classification Values 

Rock values Values Used 
Type E Poisson's E Poisson's E Poisson '3 

(GPa) ratio, v (GPa) ratio, li (GPa) ratio, v 

Massive 232.0 0.164 28.0 - 100.0 0.25 
Sulphides 

Basaltic 95.0 0.261 10.0 - 50.0 0.25 
Tdfs 

Rhyolitic 68.0 0.15 10.0 - 50.0 0.25 
Tuffs 

, 
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Table 7.8: Mechanical Properties of the Main Rock Types 
= 

Compressive Tensile Rupture 
Rock Strength Strength Strength 
Type (MPa) (MPa) (MPa) 

Massive 316.0 30.39 32.90 
Sulphides 

Basaltic 118.00 11.80 37.01 
Tuffs 

Rhyolitic 98.30 15.24 18.14 
Tuffs 

• 



• 

1 

Table 7.9: Summary of Hybrid Stress Analysis on Norita Transverse Stopes 

West Wall 

East Wall 

North Wall 

South Wall 

Stress History of the Shaft Pillar 

Initial Position as at Final 
Position June 19R6 Position 
(MPa) (MPa) (MPa) 

-60.00 ~ 0'1 ~ -15.00 -42.00 ~ 0'1 ~ -38.00 -48.00 ~ 0'1 ~ -3.00 

4.00 ~ 0'2 :s; 6.00 6.00 S 0'2 ~ 8.00 6.00 S 0'2 ~ 7.00 

-69.00 ~ 0'1 S -19.00 -130.00 S 0'1 ~ -9.00 -57.00 ~ 0'1 ~ -10.00 

5.00 ~ 0'2 ~ 8.00 -28.00 ~ 0'2 S 21.00 G.OO S; (J l ::; 9.00 

--

-104.00::; 0'1 ::; -93.00 -137.00 ::; 0'1::; -107.00 -118.00 ::; al ~ -99.00 

-34.00 ~ a2 :s; -24.00 -30.00 ::; 0'2 S Il.00 -:34.00 ~ 0'2 ::; Il.00 

-104.00 ~ 0'1::; -97.00 -1·11.00::; 0'1::; -102.00 -118.00 ~ 0'1 :; --99.00 

-3ï.OO ~ 0'2 ~ -15.00 -:30.00 5 0'2 ~ 11.00 -:J.1.00 ~ 0'2 ~ 11.00 

Note: Negative Values indicatc compressive stresses, 
positive values, tensile 

1 
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Table 7.10: Summary of Hybrid Stress Analysis on Norita Transverse Stopes 

West 
Abutment 

East 
Abutment 

Stress History of the West and East Abutments 

Initial Position as at Final 
Position June 1986 Position 
(MPa) (MPa) (MPa) 

-67.00 ~ (JI ~ -60.00 -31.00 ~ (JI ::; 7.00 -29.00 ~ (JI ~ -9.00 

-13.00 S (J2 ~ -2.00 14.00 ~ (J2 ~ 135.00 13.00 ~ (J2 ::; 92.00 

-58.00 < (JI < -38.00 -22.00 ::; (JI ~ 9.00 -27.00 ~ (JI ~ 14.00 

51.00 < (J2 < 77.00 88.00 ::; (J2 ~ 143.00 123.00 ::; G'2 ~ 161.00 

Note: Negative Values indicate compressive stresses, 
positive values, tensile 



T<lble 7.11: Summary of Hybrid Stress Analysis on Norita Transverse Stopes 
Stress History of the #2 Pillar 

West Wall 

Central 
core 

East Wall 

Initial Position as at Final 
Position June 1986 Position 
(MPa) (MPa) (MPa) 

-49.00 :S 0'1 :S -29.00 -18.00 S; (/1 S; 24.00 -15.00 S; 0'1 ::; '23.00 

5.00 :S (12 S; 13.00 49.00 S (J2 S; 149.00 15.00 S; (J2 S 107.00 

-43.00 S (JI :S - 22.00 -27.00 :S al :S -3.00 

0.00 :;; a2 :S 43.00 37.00 :S 0'2 :S ,59.00 30.00 S 0''2 :::: ·11.00 

- - ---

-38.00 :S 0'1 :S -24.00 -22.00 ~ 0'1 :S 4.00 -1'2.00 S al S 2.00 

-16.00 :S (J2 S 43.00 2.00 ~ (;2 S; ,58.00 -2.00 S; (J2 S ;)1.00 

_L - --

Note: Negative Vdlues indicate cornprc~~ive :,tre~ses, 
posüi ve values, lemile 

• 1 
1 



Table 7.12: Summary of Hybrid Stress Analysis on Norita Transverse Stopes 
Stress History of the #16 Pillar 

West Wall 

Central 
core 

East Wall 

-
Initial Position as at Final 

Position June 1986 Position 
(MPa) (MPa) (MPa) 

-30.00 :s 0'1 ~ -25.00 -60.00 ~ 0'1 ::; -6.00 -20.00 :s 0'1 ~ -3.00 

71.00 ::; 0'2 ~ 91.00 2.00 -:; 0"2 :s 115.00 3.00 ~ 0'2 ::; 116.00 

-49.00 s:; 0'1 ::; -31.00 -17.00 ~ 0'1 ~ 22.00 0.00 ::; 0'1 :s 27.00 

67.00 ::; 0'2 ~ 109.00 

1 

35.00 S; 0"2 S; 198.00 62.00 ::; 0'2 ::; 91.00 

-52.00 ::; 0'1 ~ -37.00 -5.00 ~ 0"1 ::; 36.00 -11.00 S; 0'1 ~ 17,00 

85.00 ::; 0'2 S; 129.00 61.00 ~ 0"2 :s 93.00 50.00 < 0'2 ::; 176.00 

Note: Negative Values indic:üe compressive stresses, 
positive values, tensile 
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Chapter 8 

Discussions and Conclusions 

8.1 Discussions 

A hybrid stress fini te element procedure for mvestigating stability problems \Il the field of 
geomechanics has been described and irnplemented. The theoretical basis\ formulation of the 
computer code and the various tests to verify it have also becn described in detat!. Although 
emphasis has been laid on its use in mining and related field~\ It was pointed out that its basis 
is essentially a continuum whose propertles dnd rcspOllse tü extcrnally impo'H'd fùrcl.'s (an be 
mathematically represented by a set of equations derived from the theory uf (·Idsticity. The 
essential difference between this (hybrid stress) formulation and the traditional displacement 
formulation was pointed out as leading tü the advantdge of using [ewer elemeuts for iL more 
accurate solution. 

The filMI equations to be solved\ as in most cat.cs of filllte clemellt analysis, are for the 
nodal displacements. rfwo solution mcthod3 were investi6ated and IInplemeuted. One of 
them, the so-called Skyline Storage method, rèquiréd the dssembly of the cumplete stiffness 
matirx and therefore\ d larger storage space in the computer. The r('sulting overh(',\.ds in data 
management causes longer delays in problem solution and is therefore ideally suitcd for srnall 
problems. The other method\ terrned the "frontal solutIOn t,cheme", was a.iso impl('mented. 
This method does not require the complete assembly of the stiffness malrix and tlwreforc 
does not use up as much storage as the Skyline rnethod. It is therefore ideally 3uited for 
use with large problems and may be casier ta implement in a srnall de:.ktop computer whef{~ 
data handling efficiency is of crucial importance. 

Several cloaed form solutions ta prublem<; in elasticity werc solvf>d accuratcly, using the 
new code, thus proving and establihhing the veracity of the method. The case histories 
dealt with in Chapter 6 are recent and current cxperiences of Noranda Minerais oIwrations 
in Quebec and Ontario. The results of the hyLrid modelling in both cases confirrn the 
numerical modelling results done on the :-,ame problems by other mcthods althüugh the 

l 
! 



magnitudes of the stresses by the hybrid method were generally higher than those by other 
numerical procedures. 

8.2 Notable Contributions 

The finite element code was formulated in terras of stress and displacements as the prirnary 
unknowns. This i8 particulary relevant in the field of geomechanics where stress i9 the driv­
ing mechanism. 

A particular feature of tlIC formulation has been the derivation of the element stress 
functions (the Alry's Stress Function) in terrns of element local coordinates. This scheme 
involves complex mathematical formul 'ition but has the advantage that the basis of the stdf­
ness matrix computation for each element is the same. It also leads tu less computational 
errors than if the stifl:'ness matrix for each clement were computed on the basis of a set of 
global coordinate axes, especially for il quadrilateral dcment 

Most finite element procedure~ using quadnlateral elements up tdl now have tended 
to concentrate on rectangular f'lements. The acrivatlOn of the relevant equations for a 
generalized quadrilateral !Jas bcen one of the strong points of this research for, it allows 
curved and irregular cdges of the continuum tü be accurately modelled. 

8.3 Suggestions for Future Work 

Potential fields of applications of the hybnd stress finite element method are: in fracture 
mechanics, a fidd which is becoming very important as the role of fractures in the ('oncen­
tration and transmission of stress in rock masses - and consequently in mine design - become 
more apparent; in tluid flow, interface modelling, rock boit modelling, and non-linear mate­
rial response. Most of these fields of applications were not addressed in this thesis and could 
easily farm the basis of further research In the application of the stress hybrid finite clement 
method to geomechanics problems. A non-linear hybnd stress finite element version would 
form the basis of more realistic geomechanics application e:,pecially in the field of mining. 

The computer code was written in FORTRAN 77 and implemented on a IIllcro VAX Il 
computer with a large memory. Although micro VAX II fortran programs are generally 
compatible with the more easily acces~lble IB~l desktop computers, iIIlplementation of this 
code on a smaller computer may reqUlre changes to the size of the vanous arrays uscd in 
the program. The implernclltation of this code in another computer language such as " C' 
would definitely save on computer rnemory and wou Id speed up progranune execution. None 
of these items was attempted in the current research. 
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The present code is for 8-node quadrilateral elements. A ·t-lIodt· qUdorilaterdl clement 
version will be less expensive to ext'cute and should also produce accurdt(' ,Uld acceptable 

results. 

A simple graphies prograrrune coult! !w written to display t he mt'~lws a.nd plot the ~trt'SS('S 
and displacements, rather than the present difficlIlt methud of exporting the output files Lü 

an external graphies package. 

8.4 Conclusions 

The objectives of the research reported in this thesis were met. A hybrid stress fiuite t'Il'ment 
computer code was written, along with rnesh generation and alteration codes. The fillite 
element code was successfully verified and two mining casse histories wef(' (·xalllined . 



• 

• 

Bibliography 

(1] Jumukis,A.R. Rock Afechamcs. Trans Tech Publications, 1983. 

[2] Goodman, E.R. Introduction to Rock Mechantcs. John Wiley and Sons, ~ew York, 
1980. 

[3J Brady, B.H.G. and Brown, E.T. Rock Mechanics for Underground Jfinmg. George Allen 
and Unwin, 1985. 

[4] Bieniawski, Z.T. Rock Mechanzes deslgn in J[ming and tune/mg. A.A. Balkema, Ams­
terdam, 1984. 

[5J Judd, W.R. Rock Stresa, Rock Mechantes and Research, State of Stress ln the Earth 's 
Grust. Elsevier, New York, 1964. 

[6] Hoek, E. and Brown, E.T, Underground Excavations ln Rock. Institution of l\1ining and 
Metal1urgy, London, England, 1980. 

[7] Jaeger, J,C. and Cook, N.G.W. Fundamenlals of Rock Mechanzes. Chapmdn and Hall 
Ltd. and Science Paperbacks, ~ew York. 1971. 

[8] Muskhelishvih, N,L Sorne Basle Problems of the .\fathematzcal Theory of Elasticzty. 
translated by J.R.:VL Radok, Gronmgen, Noordhoff, fourth edition, 1953. 

[9] Goodier, J.N. Concentration of stress around spherical inclusions and flaws. Trans. 
Am. Soc. "Uech. Engrs., 55:39-44, 1953. 

[10] G->odman, R.E. On the di5tnbutlOn of stresses around tunnels in non-homogeneous 
rocks. Proc. Flrst Congress ISRJ/, :H9-255, 1966. 

[11] HelIer, S.R., Srock, J.S., and Bart, R. The Stresses Around (l Rectangu/ar Opening wllh 
Rounded Corners ln a Unlformly Loaded Plate. Technical Report Report 1149, David 
Taylor Model Basin, 1958. 

[12] Greenspan, ~L Effect of a small hale on the stresses in a uniformly loaded plate. 
Quarterly App. Math., 2:60-71, 194-1 . 

1·10 



• 

, 

[13J Timoshenko, S. and Goodier, J \1 Thf07'Y of i:'lasllcdy. \fc(;l(tw-I1dl Book ('u . :;('W 

York, 1951. 

[14] Terzaghi, K. and Itithart Jr., F E. Strl':'~t':, 111 lOt b .uUlllld (.1.\ JI 11''1 Ut'oft dl/Ut/lit -

The Int. J. Sod .\1ech., II 1.57 ·!H\. 1 !).)~. 

[15] Desai, CS. dnd Chn:,tian. C . .vUrltfTlca{ .\ldhods III (,'wftch,tl('u{ FII!l17IftTtII!} ~ld;l,tw, 
Hill Book Co., );ew York, 197i 

[16] Beer, G. dnd \lt't'k, J.i.. Inllnite dOllld.lll t'lements Int. J . .Y/WU,. .\11 tflf)(l.~ FIlIj" 

17'43-52,1981. 

[17] Turner, \1.J., Clough, n.w., \ldftlIl, fi C., ,wd Topp, L.J. StIlfll(,~~ ,llld <idl(·( lIOn 

analysis of complex ~tructurt·s. J. Af'T'OTWld S'n, 2:1:K05~n, 1956. 

[18] Argyris, J. H. Energy theorems ami :,tructu -al aIldoly!SIS. .·\tT'C'1'aft Fll!}l1!U T'I1l!l, n'l :,!.')-
154, 1955. 

[19] Pian, T.H.H. Oerivatiol1 of element stifTn('!'!s Illdlnu's by ,1.."S\1I1\('<I stn'ss di"t riblltiol\s. 
A/AA Journal, 2(7), 1964. 

[20] Pian, T.H .H. and Tong. P. Basl~ of fi III te t'Iemcnt met hods fur .,Olld (Ontllllld. Int 1. 
Nurner J!tthods En!}., 1<3 28, 19t;9. 

[21] Washizu, K. VarwtlOnal .\Icthod.., zn Fla.,llczly llnd IJla .... fIClly jlt'rg,l/IlUIl Pfl'''~, Oxford, 
1068. 

[22J Pian, T H.ll. FormulatIOns of fiUlle t'klllt:'llt methuds for ~()Iid (Ol\tllllla. III Od('11 
l'f al., editor, Recent Adl'anccs ln Jtlltru .\.[d!tvd.., of Structuml E\Tlllly.~18 fwd f)(.'iIIJ11, 

pages 49-83, Cniv. of Ala!>dllld Prt'~..,. '1 \l"< al()()~rl., Ala , l ~)G9 

[23] Pian, T.H.H. Ilybnd .Hodtls, .YUITH nculand ('umplLi/ r' .\ldh()d.~ Hl :-;I/'1tc/lLl'fd ,\lrc!w/!­

les. Fenvers et dl, 19ï3. 

[2,*] Pian, T.H,H. Element ::itiffnt'ss 1l1,ltnr f'" fur !)Ulllld,lIY (UlIlll<ltJlJillty ,wei fur pn''''( rllH'd 
boundary stres~eg. Pmc. ('oTlf ()n \!iltru \///fwd,., 1TL ..,'truc/uml Huit. 1(;\FFl>L-Tlt· 
66-80.),1966. 

[25] Yarnada, Y., Yu~lllfn\lf,l, ); . d.wl Sctk 1lf,ll, '} Plit . .,tl( "tw:,,, "tr,llli rIJ,tlnx ,lfld Ih <lppli· 
catIOn fur the '>Ulutloll (Jf (,l.l.,tl( -pLt.,tl( prubh'//I'" by tlJf' fI/lltl' ('lf'IlI/'lIt IIwthlJd l'if .J 
.\fech Sn., 10 :l·1:3 -:3.'),1. 1!)6tl 

['26] Tong, P. d.nd PldIi. 1 Il II. :\ I,'dfldtluIi,d jJ! Ill( lpk '111'l tlw ((JlI\'('r~t'!j( (' of lilllt(· ('}"Ult'llt 

method !)d~('d on ét.,:,\1111ed ..,trt'..,.., dl..,tnl)ljl\Ull [III .J. lif.s'(){ld,~ Illld Strucrm.'l,~) lfJ:~ ·17~, 

1969 

1 i 1 



• 

• 

[27] Akin, J.E. The generation of elements with ~ingularities. [nt. J. Numer. Jfethods Eng., 
10:1249-1259, 1976. 

[28] Benzley, S.E. Representation of singularities \Vith lsoparametric finite elements. [nt. J. 
Numer. Methods Eng., 8'537-,5<15, 19ï4. 

[29] Roshdy S.B. On the use of isoparametric t1nÎte elements in linear fracture mechanics. 
[nt. 1. Numer·. Afethods Eng., lO:25-3ï, 1976. 

[30J Atluri, S.N., Kobayashi, A.S., and Nakagaki, :'1. An assumed displdcement hybrid finite 
element model for linear fracture mcchanics Int. J. Fracture, 11(2), 19ï5. 

[31] Lightner, J.G. /1 Jfued Finde Element Procedure for SOLl-Structure InteractIOn mclud­
ing SimulatIOn o} ElCavatzon Sequences. PhD thesis, Dept. Civil Eng., Virginia Tech., 

Blacksburg, Va., U.S.A., 1981. 

[32] Goodman, R.E. and Taylor, R.L. and I3rekke, T.L. A mode! for the rncchallics of jointed 
rocks. J. Soû A/ech. and Found. Div" ASCE, Vol. 94(SM3):637 -659, 1968. 

[33) Zienkiewicz, D.C., Valliapan, S., and King, 1 p, Elastoplastic solutions of engineering 
problems 'initial stress', fimte element approach. [nt, J. Numer, .Hethods Eng., 1:75-
100,1969. 

[34] Ghaboussi, J., Wilson, E.L., and Isenberg, J. Finite elements for rock joints and inter­
faces. J. Sozl A/ech. and Found. Eng., AS CE Vol. 9Q(SMIO), 1973. 

[35] Wissman, J.W. and Sprecht, B. Inclusion of hybrid deformation elements in the class 
of simple deforrnation modcls. Int. J . . Vurner. l\fethods Eng., 15:855-866, 1980. 

[36] Cook, R.D. and Ladkany, S.G. Observations regarding assumed stress hybrid plate 
elements. Int. J. Numer. A1ethods in Eng" 8:513-519, 19B. 

[37] Wolf, J .P. Alternate hybrid stress finite element models, lnt. J. Numer. Afethods Eng., 
9:601-615, 1975. 

[38] Spilker, RL. and Munir, N.l. The hybnd stress mode! for thm plates. Int.1. Sumer. 
Methods Eng., 15:1239-1260, 1980. 

[39] Ahmad, S, and Irons, B.M. An assumed !:?tress approach to refined isoparametric finite 
clement in three dimensions. P''iJc. 1974 lnt. Confr. Fmlte El. .\fdhod..,; ln Engmeerwg, 
1974, 

[40] Pian,T.H.H., Tong, P., Luk, C.B., and Spilker, ILL. Elastic-plaè'ltlc analysls by a!:?sumed 
stress hybrid mode!. Proc. 1974 Irll. Confr. Flnzte El J/ethod.-; ln EngmEering, 19ï·!. 

H2 



• 

, 

[41] Barnard, A.J. and Sharman, P.\V. Ela:.tû-pldstlc <Ul.t!y:'IS usiIlg hybrid-:.trt'ss lirlltt' 
clements. [nt. Confr. on FWltel:JUIlt.'Tlts IlL .Von/llllar .so//(l and Structural .\hchIlTlIC.~, 
1,1977. 

[42] Tong, P., Pian, T.H.H., and Lasr}', S.J .. \ hybrid t·jement appro.ddl tu n'iH k probh'lIl:-l 
in plane elasticity. fT/t. J. SUllltr .\/tthods r_'1I9., ï:~Y7-:WK, 1!J73 

[43] Tong, P. An dSsumed str('..,~ hybnd tlnitt' l'lt'lIWllt Ilwt hud [UI ,\Il lIl(()lllIHl'~"'lblt· ,Ul<1 
near- ineom pre~si ble materÎd.1. 1 rl t J. Solld . .., .':it '-IH / Im.-; , S 1 GS Il,1, 1 ~lm 

[44J Spilker, R.L. and .\Iunlf. ~ .\ "'('Il'lld'lJlt y (ulm dlpl,lct'Itlt'Ilt Ir ... ~Jlld-"trt''''''' t·!ellwlIl for 
thm and ll1odt>ralf'ly thick pl,lte~ 1111. J \/Wltf' .\111/10<1., FIUJ, !,') 1'2(il 1'27~, l~jXO 

[-15] Goodman, R.E. and BrowlI, (' B. Dt'ad IOd.d "lft",c,t·S ,t.lld tl\(' 111"td.hi!Jty of "lopt·s. J 
Sod ,\!ech. and Fout!d DIV., A.';CE, 0~I(S.\1 J), 1~)(J:l 

[46j Clough, G.\V and Duncan, .J.\V FIII/tt FluflI lit Ana/ysl .... of J>()f'I .1//111 !lnd (J/d HIVrf' 

Locks. Technic:a.1 Report TE ()~·:l, \' S .\rrny EIlglllt't'l~ \Vilt('r\\AY~ LXjH'lllllt'llt,,1 St,\.­

tlon, 1969. 

[47] ~lana, A I. Flnlte!:'lcmnd :lrw/iF'!.'" of f)u JI FX('(!t'a/wli HtlWl'LOl11' {II Soft ('lay. PhI) 
thesis, Stcl,nford Cniver~lty, Stanford, 1 \)7~. 

[48J Christian, J.T. and \Vong,!.II. Erruls iu ~aIluldtloll ('xedvati()l1~ in 1'!.l.'Jtic llll'dl,l by 
fini te elements. Japanese Sondy of Sod .\!te!tllTlIC8 I1nd FouTldallOTl FlIgll/tt'T'1ll,l/, l:l( 1), 
1973. 

[49] ZienkiewlCk, 0 C. The Fm/te t'hmcnt .\ftlhod lTI I:'ngwu.T'lllf} S'(lf 1/CI .\ld;r,lW IId!. 
:-;t'\\ York, 1~71. 

[50] Aziz, A.K., editor. SymposIUm on Mll.thFlflaflcul Foundatw1!s of the FWllt: Fit 1I!f'TlI 

\fethod wllh Applzcll.twns to }Jartza/ Dzffcll nllal FqUlltlOT!;" l'IIIV of \LiryJ,llld, l!)Î~ 

[.51] Carnahan, 8., Luther, H.A, ,UH! \Vdk('f->, J 0 Applltd .VulIlf1'lc/l1 .\1tt}wd ... .J'Jbll WIIt·y, 
:\ew York, 1969. 

[52] Bat.hf~, K-J. and \Vihon, E L. 'v/WH T'1l'fIl .\1, tltud8 111 FUlltl' /:Ït "If 1/t ,'tlllll!J~I.~ Pr!'lItl( (>­

Hall Ine., :-;ew Jt'r~{''y, l !J76. 

[.s:!] Cook, ILD. COrlcepts and appl/calum., III l/TuU 1:'117111 1/t /tllld!J~/~ .JulllJ \\'I1,'y ,1IId 
SOIlS, lne , :-;('w York, "ccolld ('dltlurl. j ()I~ 1 

[.).1] AklI1, J.E ApplicatiOn and Il/Ip/t7fu rda/lUI! of F/Tl/tf UfTllfut .\1,I1LOd~ ,\(,1<1/'1111< !>rl"''>_ 
Torvnto., l ~~'2 



·I--------------------------------------------------------------................ --~-------

• 

l 

[55] Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vettering, W.T. Numerical Reclpes 
- the Art of Sczentlfic Computmg. Cambridge UnÎv. Press, London, first edition, 1986. 

[56] Korn, G.A. and Korn. TJ,1. .\lathematlcal Handbook for SClentists and Engineers. 
McGraw-Hill Book Co., ~ew York, 1961. 

[57] AbramoWltz. ~1. and Stegun, 1.:-\ Handbook of Mathemafzca/ FunctlOns. Dover Pub. 
Ine., New York., ninth edition, 1!)70. 

[58] Fellipa, C.A. SolutlOn of linear equa,tion~ \Vith skyline-stored symmetric matrix. Com­
puters and Structurf5, 5: 13-29, un,5. 

[59] ~Iondkar, D.P. and Powell, G.H. Towarùs optimal in-core cquation solving. Computers 
and Structures, 531-5..J.~, 19(.1. 

[60] Meyer, C. Solution of linear equations, state-of-the-art. J. St ru ct. Dw., Proc., ASCE 
Vol. 99(S1'7), 1973. 

[61] George, A. A survey of sparse matrix methods in the direct solution of linear equations. 
Proe., Summer Computer SZTnulatwH Confr., 15-20, 1973. 

[62] Hood, P. Frontal solution program for unsymmetrlc matrices. Int. J. Numer. ,\Iethods 
Eng., 1O:3ï9-399, 1976. 

[63J Hinton, E. and Owen, D.R. Flnzte Element Programming. Academic Press, London, 
1977. 

[64] Irons, B.~1. A frontal solution for finite element analysis. fnt. J. ,Vurner .. \lethods Eng., 
2:5-32, 19,'0. 

[65] Valliapan, S. Contmuum J\,[echamcs Fundamentals. A. A. Balkema Pul.,lications, Rot­
terdam, 1981. 

[66] Popov, E. P. Jfechantes of ,Haienals. Prentice Hall Ine., second edition, New Jersey, 
New York, 1978. 

[67J Kreyszig, E. A.dvanced Engineermg ,\[athemalzcs. John Wiley and Sons, Ine., thirc.l 
edition, N~w York, 1972. 

[68] Obert, L. and Duvall, R. Rock .\hchumcs and the Deszgn of Structures zn Rock. John 
Wiley and Sons, Inc , New York, 1976. 

[69] Desai, C.S. and Abel, J.F. Inlroductwn to the Fwzte Element J[ethod. Van :\ostrand 
Reinold Co" Amsterdam, 1972 n 

[70] Bawden, W.F. and ~1ilne, D. Stabddy Analysls of Geeo Conveyor Dnft. Internai 
Research Report RR 86-07: ~-8404, :"1oranda Technology Centre, ~lontreal, 1986. 

1H 



• (71] Milne, D. Rock Mechantes Reuiew at GECO. Interna! Research Report RR 87-0:3: 

• 

~-8404, ~oranda Technology Centre, ~lontrea!, 1987. 

(72] Chauvin, J-P. Ground Control, .\[onltormg and SimulatIOn ta Predlct Ground .\love­
mtnt at Sonta .lIme, .\fatagaml, Quebec. Techlllca! Report, ~oranda. ~line EnglIlcer­
ing FaU Seminar, ~1allltouwadge, Ontano. September 1986. 

(73] Goodier, A. and Dube, R. Lrwnges 111 -thnmg .\{ethods fO Ot'ercome Ground ConJztlùl1s 
ut the Nonta '\[me. Techlllcai Report, 86th. AC:-"1 of the CI~. Ottawa, 1984 

(7'*l Bawden, W.F. and ~1ilne, D. Rock J[echarucs Destgn for .Vorlta .\fme Internai !lest>arlh 
Report RR 86-08: N-8404. :-;oranda Technology Centre \.1ontreal, 1987. 

(75] Stoesser, A.J. Ana/yszs of .Vonta .\ftne and DlSCUSStoTl of .\fI.VElfl.X Dept. of CiVIL 
Eng., U niv. of Toronto, Contract Report for :--.loranda Technolo~y Centrt>, ~lontreal. 
1987 

-6] Appa Rao, T.V S.R., author. An Assumed Stress Ftntte Element J[odel for the Ana/ysl5 
of an AxtSymmetnc Thick- Wailed Pressure Vessel, Ist. lnt. Confr. on Struct. ~lechs. lU 

Reaetor Technology, Thomas A. J a.eger, editor, Commission of the European Co nunu­
nities, Berlin, Gerrnany, 6:315-332, 1971 



• 

• 

Appendix A 

LISTING OF THE HYBRlD STRESS 

COMPUTER CODE, HYBRlD.FOR 

The listing of the hybrld stress computer program. HYBRID.FOR. is 
given in this Appendlx. The program has been descrlbed in Chapter 5. 
*******************.******************************************** 
cc 
CC 
CC 
CC 

A GENERAL PURPOSE LINEAR ELASTIC 
HYBRID STRESS FINITE ELEMENT PROGRAM 

CC THE FOLLOWING LIMITS APPLY: 
CC 
CC MAXIMUM NO. OF NODES 
CC MAXIMUM NO. OF ELEMENTS 
CC MAXIMUM NO. OF NaDES WITH DISPL. CONSTRAINTS 
CC MAXIMUM NO. OF ELEMENT SIDES WITH DISTRIBUTED LOADS 
CC MAXIMUM NO. OF MATERIAL TYPES 
cc 

• 2000 
• 1000 
• 200 
• 100 
• 10 

CC IF ANY OF ABOVE LIMITS IS EXCEEDED. PROGRAM MUST BE RECOMPILED 
CC 
CC IN THIS EDITION. CONSTRAINED ROWS AND COLUMNS OF THE STIFFNESS 
CC MATRIX ARE NOT DELETED. SKYFAC/SKYSOL INVOCATION 1S ON THE 
cc UNREDUCED ST1FFNESS MATR1X. LD VECTOR, AND QSLOD VECTOR. 
cc 
CC****.**********************·*******·************************** 

IMPLICIT REAL*8 (A-H.O-Z) 
COMMON /BLK1/ PP(3.18).DB(3,8).DA(2.8),PB(3.3).SH(8),BD(3).DT 
COMMON IBLK2/ XX(2.8). SS(3.3),GPT(4),GWT(4).KXY(8) 
COMMON /OAKS/ HMX(18.1B).GG(18.16).XLL(2.16),HB(18) 
COMMON /eONS/ THIC.NUMAT,NTYPE,NPOIN,NDIST.NNEL, 

+ NNODE,NEQ,NQP,NWA,MAXBAN,NTOT,IPRNT 
eOMMON /LINE! LIN1,LIN2,LIN3,LIN4,LIN7,LINB.LIN9 
COMMON /SLOKI SE(9).TE(9) 
COMMON ASKY(500000) ,NUMEL(8000),QSLOD(4000). 

+ DISPL(4000) ,LOVEC(4000) , 
+ XORD(2000),YORO(2000). 
+ NELTYP(800),DENS(30),CAR(60) 

LOGICAL EXISTS 
CHARACTER*1 TITLE(80) 
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cc 
CC INITIALIZE VARIABLES 

• CC 
LIN1 • 1 
LIN2 .. 2 

LIN3 :: 3 
LIN4 ... 4 
LIN7 :: 7 
LIN8 :: 8 
LIN9 .. 9 

CC 
CC CHECK TH AT DATA FILE DECLARED NEW ARE NOT EXISTING. 
CC IF THEY EXIST, PURGE THEM FIRST. 
CC 
CC -----------------------------------------------------

INQUIRE(FILE='COUTFILE' ,EXIST=EXISTS) 
IF(EXISTS) THEN 
OPEN(UNIT=LIN1,FILE='COUTFILE' ,STATUS='OLD') 
CLOSE(UNIT=LIN1,STATUS='DELETE') 
ENDIF 
OPEN(UNIT=LIN1,FILE='COUTFILE' ,STATUS='NEW', 

1 FORMR'FORMATTED') 
CC -----------------------------------------------------
CC 

C 
C 

C 

OPEN(UNIT=LIN2.FILE='FILE2' ,STATUS='NEW' • 
1 ACCESS='SEQUENTIAL') 

1 

1 

OPENCUNIT=LIN3,FILE='FILE3 1 ,STATUS""NEW', 
ACCESS='SEQUENTIAL') 

OPEN(UNIT=LIN4,FILE='FILE4' ,STATUS='NEW', 
ACCESS='SEQUENTIAL') 

OPEN(UNIT-LIN7. FILE-' FILE'!) ,STATUS" 'NEW' , 
1 ACCESS='SEQUENTIAL') 

OPEN(UNIT-LIN9,FILE='FILE9' ,STATUS='NEW', 
1 ACCESS·'SEQUENTIAL') 

NQP·4 
CALL GAUSCO(NQP,GPT,GWT) 

LK :: 1 
COD 500 LK .. 1, 8 

CC 
CC CALL THE MESH GENERA TING SUBROUTINE 
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cc 

cc 
CALL INPUT(TITLE,XORD,YORD,QSLOD,NUMEL,LDVEC,NELTYP,DENS,CAR) 

NAMX = NNEL*306 
DO 10 J=l,NWA 
ASKY(J)=O. 

10 CONTINUE 
DO 20 J=l,NEQ 
OISPL(J)=O. 

20 CONTINUE 
CC 
CC COMPUTE ELEMENT STIFFNESS MATRIX. ASSEMBLE INTO GLOBAL ARRAY 
CC 

NUM3 = NUMAT*3 
REWIND LIN2 
READ (LIN2,*) (XORD(I) ,YORD(I),I=l,NNODE) 
READ (LIN2,*) (NELTYP(I),I=l,NNEL) 
READ (L1N2,*) (NUMEL(1),I=l,NTOT) 
READ (LIN2,*) (OENS(I),I=l,NUM3) 
DO 40 NL= 1 J NNEL 
REWIND LIN9 
READ (LIN9,*) (QSLOD(I) ,!=l,NEQ) 
NN == NELTYP(NL) 
RRa = DENS (NN) 
N3 == NN*3 
DO 25 l = 1,3 
DO 25 J == 1,3 
SS(1,J) = 0.0 

25 CONTINUE 
SS(1.1) = CAR(N3-2) 
33(1,2) • CAR(N3-1) 
SS(3,3) = CAR(N3) 
33(2,1) = SS(1,2) 
55(2,2) a 55(1,1) 
Ni = NL*8 - 7 
N2 = Nl + 7 
KK=O 
DO 30 J = Nl,N2 
JJ=NUMEL(J) 
KK = KK+l 
XX(l,KK)=XORD(JJ) 
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XX(2,KK)-YORD(JJ) 
KXY(KK)-JJ 

30 CONTINl'E 

CALL l:.L;:;Œ(NL,NEQ,NQP,NWA,ASKY,QSLOD,LDVEC,THIC,RHO) 
40 CONT UE 

CC 
CC SCALE THE STIFFNESS MATRIX 
CC 

ASMAX =: O. 
DO 60 1 = 1,NWA 
DD • ABS(ASKY(I» 
IF(ASMAX-DD) 50,60,60 

50 ASMAX = DD 
ISP = l 

60 CONTINUE 
CC 

DO 70 1 =: l, NWA 
ASKY(I) :& ASKY(I)/ASMAX 

70 CONTINUE 
CC -----------------------------------------------------

OPEN(UNIT=LIN4,FILE=IFILE4 1 ,STATUS-INEWI , 
1 ACCESS=ISEQUENTIAL') 

WRITE(LIN4,*) (ASKY(I),I=1,NWA), (LDVEC(I),I=l,NEQ+1) 
CC 

CALL SKYFACCASKY,LDVEC,NWA,O,NEQ) 
CC 
CC SCALE THE LOAD VECTOR 
CC 

cc 

CC 

DO 130 l .. 1,NEQ 
QSLOD(I) .. QSLOD(I)!ASMAX 

130 CONTINUE 

GALL SKYSOL(ASKY,LDVEC,NWA,NEQ,O,l,QSLOD,DISPL,NEQ) 

140 CONTINUE 
CC 

CALL STRSOLCDISPL,XORD,YORD,NUMEL,DENS,CAR,NELTYP, 
1 THIC,NUMAT,NTYPE,NPOIN,NDIST,NNEL, 
1 NNODE,NEQ,NQP,NWA,MAXBAN,NTOT,IPRNT) 

500 CONTINUE 

1 
! 
~ 



• 

• 

CLOSECUNIT=LIN2,STATUS=IDELETE') 
CLOSE(UNIT=LIN3,STATUS~IDELETE') 

CLOSECUNIT=LIN4,STATUS=IDELETE') 
CLOSE(UNIT=LIN7,STATUS=IDELETE') 
CLOSE(UNIT=LIN9,STATUS='DELETE') 

STOP 
END 

CC ******************************************************************* 
BLOCK DATA 
IMPLICIT REAL*8 (A-H,O-Z) 
CDMMON IBLOK/ SE(9),TE(9) 
DATA SEI-l, 0, 0,0. 1,0, 1. 0, 1. 0, 0,0, -1. 0, -1, 0, 0,01 
DATA TE/-1.0, -1.0, -1.0, 0,0, 1,0, 1.0, 1.0, 0.0, 0,01 
END 

CC ******************************************.***~*** •• *************** 
SUBROUT1NE ELSTF(NL,NEQ,NQP,NWA,ASKY,QSLOD, 

1 LDVEC,THIC,RHO) 
IMPLIC1T REAL*8 (A-H,O-Z) 

CC 
COMMON /BLK2/ XX(2,8), SS(3,3),GPT(4),GWT(4),KXY(8) 
COMMON /OAKS/ HMX(18,18) ,GG(18,16) ,XLL(2,16) ,HB(18) 
COMMON /L1NE/ L1Nl,LIN2,LIN3,LIN4,LIN7,LIN8,LIN9 
DIMENSION QSLOD(l) .ASKY(NWA),LOVEC(NEQ+l) 
DIMENSION AMX(18,16),BS(16,16),HG(18) 
INTEGER NEQ,NQP,NL,NWA 

cc 
CC FORM THE HMX MATRIX 
CC 

CALL HMTX(NQP,NL) 
CC 
CC INVERT THE H MATRIX 
CC 

CALL MATINV(HMX,18) 
CC 
CC FORM THE GG MATRI X 
CC 

CALL GMTX (QSLOD. NEQ, NL ,NQP ,THIC ,RHO) 
CC 

DO 60 1""1,18 
DO 60 J=l,16 
00=0, 
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cc 

DO 50 K=l,lB 
50 DD=DD+HMX(I,K)*GG(K,J) 

AMX(I, J)=DD 
60 CONTINUE 
65 format(6f12.4) 

WRITE(LIN3,*) AMX 
DO BO 1=1,16 
DO BO J=1,16 
00=0. 
DO 70 K=l,lB 

70 DD=DD+GG(K,I)*AMX(K,J) 
BSO ,J)=OD*THIC 

BO CONTINUE 

CC FORM (HG) = INV.(HMX)*(HB) 
CC 

DO 120 1=1,18 
HG(I):O. 
DO 110 Jal, lB 
HG(I)-HG(I)+HMX(I,J)*HB(J) 

110 CONTINUE 
120 CONTINUE 

WRITE (LIN3 , *) HG 
CC 
CC STORE TRANS. (GG) X (HG) IN FIRST 16 LOCATIONS OF (HB) 
CC 

DO 130 1=1,16 
HB(I)-O. 
DO 130 J=l, lB 
HB(I)=HB(I)+GG(J,I)*HG(J) 

130 CONTINUE 
CC 
CC--- EQUIVALENT NODAL FORCES 
CC SUM APPROPRIATE COMPONENTS OF HB INTO GLOL.\L QSLOD VECTOR ONLY 
CC 

REWIND LINg 
READ (LIN9,*) (QSLOD(I) ,I=l,NEQ) 
DO 140 J=l, 16 
Jl=(J+l)/2 
K=KXY(Jl)*2-MOD(J,2) 
QSLOD(K)=QSLOD(K)+HB(J) 
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140 CONTINUE 
REWIND LIN9 
WRITE (LINg ,*) (QSLOD(I) ,I=l,NEQ) 

cc 
cc BS (16,16) IS ELEMENT STIFFNESS MATRIX. 

CC ELEMENTS OF BS ARE NOW SUMMED INTO ASKY (*) 

cc 
IF(NL.EQ.1) GOTO 145 

145 DO 180 II=l,16 
I=(II+l)/2 
L=KXy(I) 
LL=L*2-MOD(II,2) 
DO 180 JJ=II, 16 
J=(JJ+l)/2 
M=KXY(J) 
MM-M*2-MOD (J J, 2) 
IF (LL-MM) 150,150,160 

150 KK=IABS (LDVEC(MM+ 1) ) +LL-MM 

GOTO 170 
160 KK=IABS(LDVEC(LL+l»-LL+MM 
170 ASKY(KK)=ASKY(KK)+BS(II,JJ) 

180 CONTINUE 
CC 
CC 

RETURN 

END 

cc ***** ** ****** ******** ** * ****** '" * * ***** ** * ******. * ** ****** ** * ******* 

cc 
CC 
CC 

SUBR\JUTINE GAUSCO (N, A, W) 
IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION A(N),W(N) 

N-NO. OF GAUSS POINTS IN ONE DIMENSION 

NLES1=N-1 
GOTO(10,20,30), NLESl 

10 A(1)=-0.577350269189626 
A(2)=-A(1) 
W(1)=1.0 
W (2)011. 0 

GOTO 100 
20 A (1)=-0.774596669241493 
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A(2)-O. 
A(3)=-A(1) 
W(1)=O.555555555555556 

W(2)=O.888888888888889 
W(3)=W(1) 

GOTO 100 
30 A(1)==-0.8611.36311594053 

A(2)--0.339981043584856 
A(3)=-A(2) 
A (4) =-A(t) 
W(1)=0.347854845137454 
W(2)=O.652145154863546 
W(3) =W(2) 
W(4)=W(1) 

100 RETURN 
END 

cc ******************************************************************* 

cc 

cc 

SUBROUT1NE GMTX(qSLOD,NEq,NL,NQP,THIC,RHO) 
IMPLICIT REAL*8 (A-H,O-Z) 

COMMON /BLK1/ PP(3,18) ,OB(3,8) ,DA(2,8) ,PB(3,3) ,SH(8) ,80(3) ,DT 
COMMON /BLK21 XX(2,8), SS(3,3) ,GPT(4),GWT(4),KXY(8) 
COMMON /OAKSI HMX(18 .18) ,GGCi8 ,16) ,XLL(2, 16) ,HB( 18) 
COMMON /LINE/ LIN1,LIN2,LIN3,LIN4,LIN7,L1N8,L1N9 
DIMENSION QSLOD(NEQ) ,GB(16),PC(2),BB(2.3) ,AP(3) ,BP(3),CP(3) 
INTEGER NEq,NQP 

CC INITIAL IZE 
cc 
CC 

cc 

DO 10 1=1,18 
DO 10 J=l,16 

10 GG CI ) J) -0 . 

CC NUMERICAL INTEGRATION OVER EACH ELEMENT SIOE 
CC 

CC 

DO 130 IS-l,4 
DO 15 J=l, 16 

15 GB(J)=O. 

CC COMPUTE LIMITS OF XLL MATRIX 
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Nl=IS*4-3 
N2""Nl+5 

CC 
cc COMPUTE COMPONENTS OF SIDE IN X- AND Y-DIRECTIONS 
CC 

I1-rS*2-1 
13=11+2 
IF(I3.GT.8) 13=13-8 
CY=XX(2,13)-XX(2,Il) 
CX=XX(l,I3)-XX(l,Il) 
RAD=SQRT(CX**2+CY**2) 
CS=CY/RAD 
SC--CX/RAD 
BB(l,l) • cs 
BB(l,2) • 0.0 
B8(l,3) := SC 
BB(2,l) = 0.0 
B8(2,2) .. SC 
BB(2,3) .. CS 

CC 
DO 110 II=1,NQP 

PC( 1) ,. 0.0 

PC(2) • 0.0 
S1-GPT(II) 
TI-SI 
W1=GWT(II) 
GOTO(20,30,40,50), I3 

20 TI=-1.0 
GOTO 60 

30 31=1.0 
GOTO 60 

40 TI-l.0 
GOTO 60 

50 51=-1.0 
CC 
CC NUMERICAL INTEGRATION OVER SIDE 15 
CC 

60 CALL LMTX(SI,TI,XLL,IS) 
CC 

CALL PMTX(S1,TI,PP,PB,BD,DELT,XX,RHO,NL) 
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cc 
CC COMPUTE GAND GB MATRICES 
CC MULTIPLY TRANS. OF BD SY GB AND STORE RESULT AS GB VECTOR 
CC 

DO 70 1=1,18 
DO 65 K = 1,3 
AP(K) = pp (K, I) 

IF C 1. LE . 3) TH EN 
CP(K) = P8(K,I) 
ENDIF 

65 CONTINUE 
DO 67 J = 1,2 
DO 66 K = 1,3 
BP(K) = BB(J ,K) 

66 CONTINUE 

cc 

cc 

CC 

DD .: DOTPRO(AP,BP,3) 
PP(J,I)=RAO * WI * THIC * 00/2.0 

IF(I.LE.3) TH EN 
DO = DOTPRO(CP,BP,3) 
Dl = RAD * WI * DO * THIC/2.0 
PCCJ) = PCCJ) + 01*BO(I) 
ENDIF 

67 CONTINUE 
70 CONTINUE 

DO 90 l • 1,18 
AP(1) ,. PP(1,I) 

AP(2) .: PP(2, 1) 

DO 80 JK .. N 1 , N2 
J:JK 
IF(J.GT.16) J=J-16 
BP (1) = XLL (1, J) 

BP(2) = XLL(2,J) 
GG(l,J) = GG(l,J) + OOTPRD(AP,BP,2) 

80 CONTINUE 
90 CONTINUE 

DO 100 JK = N1,N2 

J=JK 
IF(J.GT.16) J=J-16 
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BP(1) = XLL(l. J) 
BP(2) = XLL(2,J) 
GB(J) = G8eJ) + DOTPRD(PC,BP,2) 

100 CONTINUE 
110 CONTINUE 

CC 
CC--- EQUIVALENT NODAL FORCES 
CC SUM GB VECTOR INTO QSLOD 
CC 

DO 120 JJ = 1,16,2 
Il= (J J+1) /2 
J1=KXY (I1)*2-1 
QSLOD(J1)=QSLOD(J1)-GB(JJ) 
QSLOD(J1+1)=QSLOD(J1+1)-G8(JJ+l) 

120 CONTINUE 
130 CONTINUE 

RETURN 
END 

CC ******************************************************************* 

CC 

cc 
CC 
CC 
CC 
CC 
CC 
CC 
CC 

SUBROUTINE SHAPEF(S,T,DA,08,SH) 
IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION OA(2,8),OB(3,8),SH(8) 

51-(1.-S)/2. 
S2-(1.+S)/2. 

T1=(1.-T)/2. 
T2= (1. +T) /2 . 

SH(I) = SHAPE FUNCTION 
DA (1, I) 
DA(2,I) 
08(1,1) 

= FIRST DERIVATIVE OF SHAPE FUNCTION wrTH RESPECT TO S 
= F1RST DERIVATIVE OF SHAPE FUNCT10N WITH RESPECT TO T 
.. 2ND DERIVATIVE OF SHAPE FUNCTION WITH RESPECT TO S 

08(2,1) - 2ND DERIVATIVE OF SHAPE FUNCT10N WITH RESPECT TO T 
08(3,1) • 2ND DERIVATIVE OF SHAPE FUNCTION WITH RESPECT Ta S & T 

DO 20 J=l,8 
SH(J)=O. 
DO 20 1"1,3 
IF (I.LE.2) DA(1,J)=C. 
OB(I,J)=O. 

20 CONTINUE 
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• cc 
OB(l,l)=T1 
OB( 1,2) =-2. *Tl 
OB(1,3)=T1 
OB(1,5)=T2 
OB(1,6)=-2.*T2 
OBC 1, 7)=T2 

CC 
OB(2,1)=81 
DB(2,3)=82 
OB(2,4)=-2.*S2 
OB(2,5)=S2 
OB(2,7)=Sl 
OB(2,8)=-2.*Sl 

CC 
OB(3,1)=1.25-S2-T2 
OB~J,2)=S 

OE(3,3)=T2-S2-.25 
DB(3,4)=-T 
OB(3,5)=S2+T2-0.75 
OB(3,6)=-S 
OB(3,7)=S2-T2-0.25 
DB(3,8)=T 

CC 
OA(1,1)=Tl*(S+T/2.) 
DA(1,2)=-S*(1.-T) 
DA(1,3)sTl*(S-T/2.) 
DA(l,4)=Tl*(1.+T) 
DA(1,5)=T2*(S+T/2.) 
DA(1,6)=-S*(1.+T) 
OA(1,7)=T2*(S-T!2.) 
OA(l,8)=-T2*(1.-T) 

CC 
OA(2,l)=81*CT+S/2.) 
DA(2,2)=-Sl*(1.+S) 
OA(2,3)-S2*(T-S!2.) 
OA(2,4)=-T*(1.+S) 
DA(2,5)=S2*(T+S!2.) 
OA(2,6)=S2*(1.-S) 
OA(2,7)=Sl*(T-S/2.) 
OA(2,8)=-T*(1.-S) , 
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cc 

cc 

SH(1)=-(1.-S)*(1.-T)*(S+T+1.)/4. 
SH(2)=(1.-S*S)*(1.-T)/2. 
SH(3)=(1.+S)*(1.-T)*(S-T-l.)/4. 
SH(4)-(1.-T*T)*(1.+S)/2. 
SH(5)=(1.+S)*(1.+T)*(S+T-l.)/4. 
SH(6)=(1.-S*S)*(1.+T)/2. 
SH(7)=-(1,-S)*(1.+T)*(S-T+1.)/4. 
SH(8)=(1.-T*T)*(1.-S)/2, 

RETURN 
END 

CC ******************************************************************* 
SUBROUTINE PMTX(S,T,PP,PB,BD,DT,XX,RHO,NN) 
IMPLICIT REAL*8 (A-H,O-Z) 

CC --------------------------------------
CC THIS SUBROUTINE COMPUTES THE P MATRIX 
CC AT AN INTEGRATION POINT 
CC --------------------------------------

COMMON /CONS/ THIC,NUMAT,NTYPE,NPOIN,NDIST,NNEL, 
1 NNODE,NEQ,NQP,NWA,MAXBAN,NTOT,IPRNT 

DIMENSION PP(3,18), PB(3,3), BD(3), XX(2,8) 
DIMENSION DB(3,8),DA(2,8),SH(B) 
DIMENSION QQ(2,18),ABC(3,3),DC(2) ,XJB(2,2) 

cc 
CALL SHAPEFCS,T,OA,DB,SH) 

cc 
CC FORM THE INVERSE OF THE JACOBIAN MATRIX. 
CC DETERMINANT OF JACOBIAN IS DT 
CC 

CC 

DO 20 1=1,2 
DO 20 J=l,2 
XJB(I,J)=O. 
DO 10 K-1,8 

10 XJB(I,J)~XJB(I,J)+DA(I,K)*XX(J,K) 

20 CONTINUE 
DT=XJB(1,1)*XJB(2,2)-XJB(1,2)*XJB(2,1) 

DD = XJB(l,l)/DT 
XJB(l,l) = XJB(2,2)!DT 
XJB(2,2) = DO 
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• XJB(1,2) = -XJB(1,2)/OT 
XJB(2,1) = -XJB(2,1)/OT 

CC 
CC --- [ABC] MATRIX 
GC 

ABC(1,1)=XJB(2,1)**2 
ABC(1,2)=XJB(2,2)**2 
ABC(1,3)~2.*XJB(2,l)*XJB(2,2) 

ABC(2,l)=XJB(1,1)**2 
ABC(2,2)=XJB(1,2)**2 
ABC(2,3)=2.*XJB(l,l)*XJB(l,2) 
ABC(3,1)=-XJB(l,l)*XJB(2,l) 
ABC(3,2)=-XJB(1,2)*XJB(2,2) 
ABC(3,3)=-XJB(1,1)*XJB(2,2)-XJB(1,2)*XJB(2,l) 

CC 
DO 40 I=1,3 
DO 40 J=l,18 
PP(I,J)=O. 
IF(I.LE.2) QQ(I,J)=O. 

40 CONTINUE 
CC 

PP(1,1)=2. 
PP(1,4)=6.*S 
PPO, 6)=2. *T 
PP(1,8)=12.*S*S 
PPO, 11)=2. *T*T 
PP(1, 12)=6. ",S*T 
PP(1,13)=20.*S*S*S 
PP(1.15)=12.*S*S*T 
PP(1,17)=6.*S*T*T 
PP(1,18)=2.*T*T*T 

CC 
PP(2,2)=2. 
PP(2,5)=6.*T 
PP(2,ï)=2.*S 
PP(2, 9) =12. *T*T 
PP(2,10)=6.*S*T 
PP(2,11)=2.*S*S 
PP(2,14)=20.*T*T*T 
PP(2,16)=12.*S*T*T 
PP(2,17)a2.*S*S*S , 
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• PP(2,18)=6.*S*S*T 
CC 

PI :3,3)=1. 
PP(3,6)=2.*S 
PP(3,7)=2.*T 
PP(3,10)=3.*1*1 
PP(3, 11) ==4. *5*1 
PP(3,12)=3.*S*S 
PP(3,15)=4.*S*S*8 
PP(3,16)=4.*1*1*T 
PP(3,17)=6.*S*S*T 
PP(3,18)=6,*S*1*T 

CC 
QQ(1,1)=2.*5 
QQ(1,3)-1 
QQ(1 ,4) =3. *8*8 
00(1,6)=2.*5*1 
QQ(1,7)=1*1 
QQ(l,8)=4.*5*5*8 
QQ(1,10)=1*T*T 
QQ(1,11)=2.*5*T*1 
QQ(l,12)=3.*5*5*1 
QQ(1,13)=5.*S*S*8*8 
00(l,15)=4.*T*S*8*5 
QQ(1,16)=T*T*T*T 
OQ(1,17)=3.*S*S*T*1 
QO(l,18)=2.*8*T*1*T 

CC 
OQ(2,2)==2.*T 
OQ(2,3);5 
QQ(2,5)=3.*T*1 
00(2,6)=5*5 
QQ(2,7)-2.*8*1 
Oq(2,9)-4.*T*1*1 
OQ(2,10)=3.*5*1*T 
QO(2,11)=2.*S*S*1 
00(2,12)=S*S*S 
QQ(2,14)=5.*1*1*1*1 
QQ(2 t 15)=S*5*5*S 
QQ(2,16)=4.*5*1*T*1 
QQ(2,17)=2.*1*5*8*5 
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cc 

CC 

CC 

CC 

DO 60 1=1,2 
DCCI)=o. 
DO 60 JJ=l,8,2 
J = (JJ-1)/2 
DC(I) = DC(I)+O.25*(XX(1,JJ)*(-1.0)**J) 

60 CONTINUE 

Dl=DC(1) 
D2-DC(2) 
DO 70 1=1,2 
DC(I) = D1*XJB(l,1)+D2*XJB(2,I) 

70 CONTINUE 

DO 80 J=l,18 
PP(3,J)=PP(3,J)-DC(1)*QQ(l,J)-DC(2)*QQ(2,J) 

80 CONTINUE 

DO 100 J=l) 18 
Dl=PP(1, J) 
D2=PP(2,J) 
D3=PP(3,J) 
DO 100 1=1,3 
DO = Dl*ABC(I,l)+D2*ABC(1,2)+D3*ABC(I,3) 
PPCI,J) = 00 

100 CONTINUE 
CC 
CC BODY LOAD ARRA YS 
CC 

DO 110 l • 1,3 
BDCI) = O. 
DO 110 J :II 1,3 
PB(I,J) = PP(1,J) 

110 CONTINUE 
CC 

1F(GRAV.EQ.O.O) GOTO 150 
DO 120 1=1,3 
J=I+1 
K=I+2 
IF(J .GT .3) J=J-3 
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IF(K.GT.3) K=K-3 
BO(I) • PB(3,J)*PB(1,K)-PB(3,K)*PB(1,J) 

120 CONTINUE 
CC 

cc 

DET-PB(2,1)*BD(1)+PB(2,2)*BD(2)+PB(2,3)*BD(3) 
IF(DET.EQ.O) iHEN 
WRITE(*,*) 'ZERO DETERMINANT AT BODY LOAD SECTION.' 
WRITE(*,*) 'PROGRAM ABORTS IN SUBROUTINE PMTX' 
STOP 
ENDIF 

Yo=o. 
DO 130 1=1,8 

130 YO=YO+SH(I)*XX(2,I) 
DO 140 1=1,3 
BO(I)=RHO*BD(I)/DET 

140 CONTINUE 
CC 

150 RETURN 
E~D 

CC ******************************************************************* 
SUBROUTINE HMTX(NQP,NL) 

CC 

CC 

IMPLICIT REAL*8 (A-H,O-Z) 

COMMON /BLK1/ PP(3,18),DB(3,8),OA(2,8),PB(3,3),SH(8) ,BO(3),OT 
COMMON /BLK2/ XX(2,8), SS(3,3),GPT(4),GWT(4) ,KXY(8) 
COMMON !OAKS/ HMX(18,18),GG(18,16) ,XLL(2,16) ,HB(lS) 
COMMON /LINE/ LIN1,LIN2,LIN3,LIN4,LIN7,LIN8,LIN9 
DIMENSION PQ(18,3),AP(3),BP(3) ,CP(3) 
INTEGER NQP ,NL 

CC INITIALIZE 
CC 

CC 

RHO • 1. 0 
DO 10 l = 1,18 
HB(I) = 0.0 
DO 10 J • 1,18 
HMX (1, J) =- 0.0 

10 CONTINUE 

CC NUI{ERICAL INTEGRATION PART, AT EVERY INTEGRATION POINT. 
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cc 

------------------------------........................ -.tA 

DO 100 II = 1,NQP 
SI = GPT(II) 
WI = GWT(II) 
DO 100 JJ = 1,NQP 
TI = GPT(J J) 
WJ = GWT(JJ) 

CC FORM THE P MATRIX AT THE INTEGRATION POINT 
CC 

CALL PMTX(S1,T1,PP,PB,BD,DT,XX,RHO,NL) 
CC 
CC 
CC ---- FORM THE P TRANSPOSE X S MATR1X 
CC 

DO 50 1=1,18 
DO 30 K = 1,3 
AP(K) = PP(K,I) 

30 CONTINUE 
DO 50 J=l,.3 
DO 40 K = 1,3 
BP(K) = SS(K,J) 

40 CONTINUE 
PQ(1,J) = DOTPRD(A?,BP,3) 

50 CONTINUE 
CC 
CC --- FORM THE (PQ MATRIX X P TRANSPOSE 
CC 

DO 90 1=1,18 
DO 60 K = 1,3 
AP(K) = PQ(I,K) 

60 CONTINUE 
DO 90 J=1,18 
DO 70 K = 1,3 
BP(K) = PP(K,J) 
IF(J.GT.3) GOTO 70 
CP(K) = PB(K,J) 

70 CONTINUE 
DD = DOTPRD(AP,BP,3) 
HMX(I,J) = HMX(1,J) + DD * WI * WJ * DT 
IF(J.GT.3) GOTO 90 
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DD = DOTPRD(AP,CP,3) 
HB(I)=HB(I) + DD * WI * WJ * DT * BD(J) 

90 CONTINUE 
100 CONTINUE 

CC 
RETURN 
END 

CC ******************************************************************* 
SUBROUTINE LMTXCS.T,XLL,I5) 
IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION XLL(2,16) 

CC 
Sl=(l. -S)/2. 
S2= (1. +S) /2. 
Tl=(1.-T)/2. 
T2=(1.+T)/2. 
DO 20 I=1,2 
DO 20 J=1,16 
XLL (l, J)=O. 

20 CONTINUE 
CC 

GOTO(30.40,50.60),I5 
30 XLL (1,1)=-5*51 

XLL(l,3)=4.*51*S2 
XLL(l,5)=S*52 
XLL(2,2)=XLL(l,1) 
XLL(2,4)=XLL(1,3) 
~IL(2,6)=XLL(l,5) 

GOTO 70 
CC 

40 XLL( l, 5)=-T*Tl 
XLL(l,7)=4.*Tl*T2 
XLL( 1 ,9) =T*T2 
XLL(2,6)=XLL(l,5) 
XLL(2,8)=XLL(l,7) 
XLL(2,10)=XLL(l,9) 
GOTO 70 

CC 
50 XLL(l,9)=S*S2 

XLL(l,11)=4.*Sl*S2 
XLL(1,13)--5*51 
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cc 

XLL(2,10)=XLL(1,9) 
XLL(2,12)=XLL(l,11) 
XLL(2,14)=XLL(1,13) 
GOTO 70 

60 XLL(1,13)=T*T2 
XLL(1,15)=4.*Tl*T2 
XLL(l,l)=-T*T1 
XLL(2,14)=XLL(1,13) 
XLL(2,16)=XLL(1,15) 
XLL(2,2)=XLL(1,1) 

70 CONTINUE 
RETURN 
END 

CC *************~*************************************************** 
SUBROUTINE MATINV(HH,N) 
IMPLICIT REAL*8 (A-H,O-Z) 

CC 
CC THIS ROUTINE INVERTS THE HH MATRIX AND RETURNS IT 
CC ALSO AS HH 
CC 

CC 

CC 

CC 

COMMON !LINE/ LIN1,LIN2,LIN3,LIN4,LIN7,LIN8,LIN9 
DIMENSION HH(N,N) ,A(18,18) 

LlO = 10 

DO 20 I.:1,N 
DO 20 J=1 ,N 
A(I, J) =0.0 
IFCI.NE.J) GOTO 20 
A(I,I)=1.0 

20 CONTINUE 

DO 80 J=l,N 

CC ROW OPERATION. OBTAIN UNITY IN (1,1) POSITION BY 
CC DIVIDING ROW l BY H(I,I) 
CC 

DD=HH(J ,J) 
DO 40 K-i ,N 
HH(J,K)=HH(J,K)/DD 
A(J ,K)=A(J ,K)/DD 
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40 CONTINUE 
CC 
cc eOLUMN OPERATION. FOR THE JTH. ROW OF COLUMN l, 
cc (I.NE.J), ADD -A(J,I) TIMES THE ITH. ROW TO THE 
CC JTH. ROW SO AS TO DETAIN ZEROS IN THE OFF-DIAGONAL 
CC ELEMENTS OF COLUMN I. 
CC 

DO 70 I=l,N 
IF(I.EQ.J) GOTO 70 
OD=HHO,J) 
DO 60 K=l,N 
HH(I,K)=HH(I,K)-HH(J,K)*DD 
A(I,K)=A(I,K)-A(J,K)*DD 

60 CONTINUE 
70 CONTINUE 
80 CONTINUE 

DO 100 I a l,N 
DO 100 J:II1,N 
HH(I, J)=A(I, J) 

100 CONTINUE 
150 CONTINUE 

RETURN 
END 

CC ************************************.****************************** 

C 
CC 

SUBROUTINE INPUT(TITLE,XORD.YORD,QSLOD,NUMEL, 
+ LDVEC,NELTYP,DENS,CAR) 

IMPLICIT REAL*8 (A-H,O-Z) 
COMMON /eONS/ THIC,NUMAT,NTYPE,NPOIN,NDIST,NNEL, 

+ NNODE,NEQ,NQP,NWA,MAXBAN,NTOT,IPRNT 
COMMON /BLK21 XX(2,8), SS(3,3),GPT(4),GWT(4),KXY(8) 
COMMON /LINEI LIN1.LIN2,LIN3,LIN4,LIN7,LIN8,LIN9 
DIMENSION PROPS(8,3) ,DLOAD(200) ,JDSIDE(200) 
DIMENSION NLM(800,8),PL(800,2),JJX(4000) 
DIMENSION NPL(800),JDOF(2000,2) 
DIMENSION XORD(l),YORD(l),QSLOD(l),NUMEL(l),LDVEC(l), 

+ NELTYP(l),DENS(l) ,CAR(l) 
eHARACTER*l TITLE(80) 

CC READ PROBLEM TITLE, PROBLEM SPECIFICATION DATA 
CC 
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OPEN(UNIT=LIN8,FILE='INFILE' ,STATUS='OLD', 
+ ACCESS='SEQUENTIAL 1 ,FORM=IFORMATTED') 

READ(LIN8,1) TITLE 
1 FORMAT(80Al) 

WRITE(*,*) TITLE 
READ(LIN8,*) NNODE,NNEL,NUMAT,NTYPE,NPOIN,NDIST, 

+ IPRNT,THIC 
WRITE(*,*) NNODE,NNEL,NUMAT,NTYPE,NPOIN, 

+ IPRNT , THIC 
cc 
CC INITIAL IZE ARRAYS 
CC 
CC GRAV = O. => THERE ARE NO GRAVITY LOADS 
CC NE. O. => THERE ARE GRAVITY LOADS = ACTUAL VALUE 
CC 
CC QSLOD 
CC 

= NODAL DOF LOADS 

= TOTAL NO. OF NODES 
= TOTAL NO. OF ELEMENTS 

CC NNODE 
CC NNEL 
CC IPRNT 
CC 

= PRINT OUTPUT DATA OPTION 
z 0 => DO NOT PRINT 

CC =: 1 -> PRINT 
CC THIC 
CC DEPTH 
CC 

= ELEMENT THICKNESS, ASSUMED CONSTANT 
= DEPTH OF ORIGIN BELOW SURFACE (NECESSARY IF GRAV > O.) 

CC NUMAT 
CC NTYPE 

= TOTAL NO. OF MATERIAL TYPES 
= PROBLEM TYPE PARAMETER 

CC = 1 => PLANE STRESS 
CC = 2 => PLANE STRAIN 
CC NUMBERING OF THE BOUNDARY EDGES 18 ANTICLOCKWISE, STARTING FROM 
CC THE LEFTMOST VERTICAL BOUNDARY 
CC 

CC 

NEQ = NNODE*2 
DO 2 l = 1,NEQ 
QSLOD(I) = 0.0 

2 CONTINUE 

CC READ ELEMENT PROPERTIES DATA 
C ~' 1., 

CC PROPS(I,l) = YOUNG'S MODULUS FOR MATERIAL TYPE l 
CC PROPS(I,2) = POISSONIS RATIO FOR MATERIAL TYPE l 
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• cc PROPS(I.3) = DENSITY FOR MATERIAL TYPE l 
CC 55(3,3) = COMPLIANCE MATRIX 
CC 

IJ = 0 
DO 10 l ... l,NUMAT 
READ(LIN8,*) (PROPS(I,J) ,J=1,3) 
Da 10 J ... 1,3 

IJ • IJ+1 
CAR(IJ) ... 0.0 

DENS(IJ) =0.0 

10 CONTINUE 
CALL ELPROP(NUMAT,NTYPE,PROPS,CAR,DENS) 

N3 ... NUMAT*3 
CC 
CC READ NODAL DATA 
CC 
cc XORD(I)'" X-COORD1NATE OF NODE r 
Cc YORD(I) = Y-COORDINATE OF NODE l 
CC JDOr(I,l)" x DOF OF NODE l 
CC JDOF(I,2)'" y DOF OF NODE l 
CC JDOF(I,J) = 0 => NODE l IS UNCONSTRAINED IN DIRECT~ON 1 

CC JDOF(I,J) = 1 => NODE l 15 CONSTRAINED IN DIRECTION J 

CC 
NEQ :Il 0 

DO 20 l .. l,NNODE 
READ(LIN8,.) N, XORD(N), YORD(N), JDOF(N,l), JDOF(N,2) 
DO 20 J ". 1,2 
NEQ = NEQ+l 
JJX(NEQ) = JDOF(N,J) 

20 CONTINUE 
cc 
cc READ ELEME~ GEOMETRIe DATA 
CC 
cc NLM(I, J) .. NODE J OF ELEMENT l (l = 1,2, .. ,8) 
cc NELTYP(I) = PROPEBTY TYPE OF ELEMENT l 
CC 

KK = 0 
DO 30 r = l,NNEL 
READ(LIN8,*) N,NELTYP(I),(NLM(I,J),J=1,8) 

30 CONTINUE 
CC 
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CC 

NTOT = 0 
DO 40 l = 1,NNEL 
DO 40 J = 1,8 
NTDT = NTDT+l 
NUMEL(NTOT) = NLM(I,J) 

40 CONTINUE 

CC MAXIMUM HALF BANDWIDTH 
CC 

MAXBAN=2*(NLM(1,5)-NLM(1,1)+1) 
CC 
CC FORM DIAGONAL PUSITION POINTER FOR SKYLINE STOBACE SCHEME 
CC 

CALL SKDIAG(NEQ,NNODE,NNEL,JJX,LOVEC,NUMEL,NTOT,NWA) 
CC 
CC READ LOADING DATA 
CC 
CC NPOIN = NODAL POINT LOAD PARAMETER 
CC = 0 => NO POINT LOAD 
CC > 0 => THERE ARE POINT LOADS 
CC 
CC IF NPOIN > 0, THEN FOLLOWS NPOIN LINES OF DATA OF TYPE 
CC 
CC KNODE XFORCE YFORCE 
CC 
CC WHERE 
CC KNODE = NODAL NUMBER 
CC XFORCE • POINT LOAD IN X-DIRECTION 
CC YFORCE = POINT LOAD IN Y-DIRECTION 
CC 
CC NOIST. DISTRIBUTED LOAD PARAMETER 
CC a 0 => THEnE ARE NO DISTRIBUTED LOADS 
CC > 0 => THERE ARE DISTRIBUTED LOADS ON NDIST BOUNOARY EDGES 
CC 
CC IF NDIST > 0, THEN FOLLOWS NDIST LINES OF DATA OF TYPE 
CC 
CC 
CC 

KSIDE KFUNC FORCEl FORCE2 

CC WHERE 
CC KSIDE = BOUNDARY NUMBER 
CC KFUNC = DISTRIBUTION FUNCTION 
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cc 
cc 
cc 
cc 
cc 

50 
CC 
cc 
cc 
cc 
cc 
cc 
cc 
CC 
cc 
CC 
CC 
Cc 
CC 
CC 
CC 
CC 
CC 
CC 
cc 
CC 

60 

... 1, LINEAR 

.. 2, QUADRATIC 
FORCE1 = DISTRIBUTED LOAD VALUE AT FIRST END 
FORCE2 = DISTRIBUTED LOAD VALUE AT SECOND END 

IF(NPOIN.EQ.O) GOTO 60 
J "'" 0 

CO 50 l = l,NPOIN 
READ(LIN8,*) KK, XF, YF 
J .. J+1 

NPL(J) = KK 
PLU,l) = XF 
PL(J,2) :YF 

QSLOD(KK+KK-l) '" QSLOD(KK+KK-l)+XF 
QSLOD(KK+KK) = QSLOO(KK+KK)+YF 
CONTINUE 

DISTRIBUTED LOAD INPUT 

NOIST = NO. OF SIDES WITH UNIFORMLY DISTRIBUTED LOADS. 
JDSIDE(I,J) : ARRAY DESCRIBING GEOMETRIe PARAMETERS OF ELEMENT 

SIDE WITH UNIFROMLY fnSTRIBUTED LOADS. 
l = 1, 2, ... 1 ND l ST, 
J '" 1,2,3,4 
J = 1 --) FIRST NODE ON T-lE ELEMENT SIDE 
J = 2 --) SECOND NODE ON mE ELEMENT SIDE 
J = 3 --> THIRD NODE ON THE ELEMENT SIDE 
J :: 4 --) ELEMENT NUMBER 

DLOAD(I,J) = JTH COMPONENT OF DISTRIBUTED LOAD ON ITH SIcr 
l : 1,2, .... , NDIST, 
J li< l, --) WX1, X-COMPONENT AT FIRST NODE 
J = 2, --) WY1, Y-COMPONENT AT FIRST NODE 
J :: 3, --) WX3, X -COMPONENT AT THIRD NODE 

J • 4, --) WY3, Y -COMPONENT AT THIRD NODE 

IF(NDIST.EQ.O) GOTO 80 
wnte(*,*) Ireadlng dlstT'lbuted load data' 
00 70 l = 1,NOIST 
Ji ... 4*I-3 
J2 ;: 4*I 
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• READ(LIN8,*) (JDSIDE(J) ,J=J1,J2), (Dr,OAD(J) ,J=11,J2) 
70 CONTINUE 

NDTOT = NDIST*4 
7 FORMAT(4I'7 ,4F10. 3) 

CC 
CALL DSLOD (NUMEL.NTOT.NDTOT,GPT,GWT,QSLOD,XORD,YORD, 

+ DLOAD.JDSIDE,THIC,NQP,NEQ,NNODE) 
CC 

80 CONTINUE 
CC 
CC WRITE OUTPUT FILES FOR OTHER PROCESSES 
CC 

WRITE(LIN9,*) CQSLODCI), 1=1 ,NEQ) 
500 FORMAT(' 1,6F12.4) 

Cc 

WRITE(LIN2,*) (XORD(I) ,YORDeI) ,I=l,NNODE) 
WRITE(LINl,.) (NELT~P(I),I=l,NNEL) 

WRITE(LIN2,*) (NUMEL(I),I=l,NTOT) 
WRITE(LIN2,~) (DENS(I) ,I=1,N3) 

CC PP INT INPUT DATA 
CC 

IF(IPRNT.EQ.O) GOTG 100 
CALL OUTPUT(NLM,NELTYP,NPL,PL,DL,PROPS,DLOAD,JDSIDE, 

1 TITLE,THIC,NUMAT,NTYPE,NPOIN,NDTOT,NNEL, 
1 NNODE,NEQ,NQP,NWA,MAXBAN,NTOT,IPRNT) 

CC 
100 CONTINUE 

RETURN 
END 

CC *************.**********~*******************************~********** 

CC 

SUBROUTINE ELPROP(NUMAT,NTYPE,PROPS,CAR,DENS) 
IMPLICIT REAU8 (A-H,O-Z) 

CC THIS SUBROUTINE COMPUTES THE COMPLIANCE MATRIX FOR ALL THE 
CC DIFFERENT MATERIALS A~D STORES THE.M IN A LINEAR ARRAY CARe*) 
CC 
CC IN GENERAL, THE COMPLIANCE MATRIX WILL BE DIFFERENT FOR EACH 
CC MATERIAL TYPE. ASSUMING LINEAR ELASTIC CASE, THIS MATRIX [S 
CC SYMMETRIC AND 1S DESCRIBED BY THREE CONSTANTS,VIZ 
CC SS(1,l), SS(1,2) AND S3(3,3), 
CC THESE THRE.E CONSTANTS MAY BE COMPUTED FOR EACH MATERIAL TYPE 

171 



• 

• 

CC AND STORED IN A COMPLIANCE ARRAY CAR(31-2) ,CAR(3I-l)AND 
CC CAR(3I) WHERE 
cc 
CC 
CC 
CC 
CC 

cc 

l s 1, 2 , ..., NUMA T , 
CAR(31-2) => S5(1,1) 
CAR(31-1) => SS(1,2) OR SS(2,1) 
CAR(3I) => S5(3,3) 

DIMENSION PROPS(8,3), CAR(l),DENS(l) 

CC GRAV = ACCELERATION DUE TO ~RAVITY (KM/SEC SQ) 
CC 

cc 

GRAV '" 9.80665 
DO N 0:; l,NUMAT 

N3 '" N*3 
YM ,.. PROPS eN , 1) 

PR .. PROPS CN , 2) 
BETA .. YM/(1.0 - PR*PR) 

IF(NTYPE.EQ.2) TH EN 
BETA" BETA*(1.0 - PR)*(l.O - PR)/(1.0 - 2.0*PR) 

ENDIF 

CC COMPLIANCE MATRIX CONSTA""T'S 
CC 

cc 

GAMA" 1.0/(BETA*(1.0 - PR*PR» 
CAR(N3-2) • GAMA 

?:NDDO 

RETURN 
END 

CAR(N3-1) .. -PR*GAMA 
CAR(N3) .. 2.0*(1.0 + PR)/YM 

DENS(N) = GRAV*PROPS(N,3)*1.0E-03 

cc **********************************************************.**** 

+ 
SUBROUTINE DSLOD (NUMEL,NTOT,NDTOT,GPT,GWT,QSLOD,XORD,YORD, 

DLOAD,JDSIOE,THIC,NQP,NEQ,NNODE) 
IMPLICIT REAL*8 (A-H,Q-Z) 

COMMON /LINEI LIN1,LIN2,LIN3,LIN4,LIN7,LIN8,LIN9 
DIMENSION QSLOD(1),GPT(1).GWT(1) 
DIMENSION XORD (1) ,YORD (1) 

DIMENSION NUMEL(l),DLOAD(l),JDSIDE(l) 
DIMENSION XLL(2,16),XX(2,8),KXY(8) 

172 



• DIMENSION CZ(2.4),IX(3) J 12(3), 82(2) 
DIMENSION SH(8) ,DA(2,8) ,DB(3,8) ,AZ(16),WZ(4) 

cc 
NNEL = NT DT /8 

cc 
C WRITE(* ,*) ) IN DSLOD' 
CC 

cc 

CC 

NDIST ;: NDTOT /4 

DO 500 NBD '" 1,NDIST 
NB4 = 4*NBD 
NBl '" NB4-4 
NJ = JDSIDE(NB4) 

IF(NJ.EQ.O) GOTO 500 

CC FORM THE [XX] AND {KXY} ARRAYS 
CC 

cc 

Nl '" NJ*8-7 

N2 '" Ni+7 
KK = 0 
DO 20 J = Nl,N2 
J J=NUMEL(J) 
KK = KK+1 
XX(l,KK)=XORD(JJ) 

XX(2,KK)=YORD(JJ) 
KXY(KK)=JJ 

20 CONTINUE 

CC FORM THE {IZ} AND {WZ} ARRAYS 
CC 

DO 30 l '" 1,4 
WZ(I) = DLOAD(NB1+I) 
IF(I.LE.3) IZ(r) = JDSIOE(NB1+I) 

30 CONTINUE 
CC 

CC LENGTH OF THIS SrOE 
ÇC 

Il = IZ(l) 
12 = IZ(3) 
X1 ;: XORD(Il) -XORD(I2) 
Yl = YORD(Il) -YORD(I2) 
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RADI = SQRT(Xl**2 + Yl**2) 

cc 
CC NODAL NUMBERWG IS SEQUENTIAL FOR THE ELEMENT, lE 

CC 1,2,3, ... ,8 WHERE 
CC SrDE l, (KL = 1), 1S DESCR1BED BY NODES 1.2.3 
CC SrDE 2, (KL = 2). 1S DESCR1BED BY NODES 3.4.5 
CC SrDE 3.(KL ::: 3), 15 DESCRIBED BY NODES 5,6,7 

CC SrDE 4. (KL = 4), 1S DESCR1BED BY NODES 7,8,1 

CC FIND THE KL VALUE FOR THIS SrDE 
CC 

DO 50 l = 1.8,2 
12 = 0+1)/2 
1X(t) :;: KXY(1) 

IX(2) = KXY(1+l) 
Il = 1+2 
IF(Il.GT.8) Il = 11-8 
IX(3) :II KXY(I1) 

CC 
CC COMPARE {IX"} AND {IZ} ARRAYS 

CC 
KL = 3 
DO 40 J = 1,3 
IF(IX(J) . EQ. rZ(J)) KL = KL-l 

40 CONTINUE 
IF(KL.EQ .0) THEN 
KL = I2 
GOTO 60 
ENDIF 

50 CONTINUE 

CC 
60 CONTINUE 

11 = KL*2-1 
12 = 11+2 
Jl '" KXY(I1) 
J2 lit KXY (12) 

CC 
CC NUMERICAL INTEGRATION OVER SIDE KL 

CC 
DO 300 II = l,NQP 
sr = GPT(II) 
TI == SI 

• 17-1 
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WI ,. GWT(II) 
GOTO (70,80,90,100) KL 

70 TI"-l 
GOTO 110 

80 SI-1.0 
GOTO 110 

90 TI=1.0 
GOTO 110 

100 SI=-1.0 
CC 

110 CONTINUE 

CC 

cc 
cc 

CI ,. SI 
IF(ABS(SI).EQ.l.0) CI = TI 

CALL SHAPEF(SI,TI,DA,DB,SH) 
CALL LMTX(SI,TI,XLL,KL) 

CC FORM THE CZ MA TRIX 
CC 

DO 152 l = 1,2 
DO 152 J ,. 1,4 
CZ(I,J) = 0.0 

152 CONTINUE 
CC 

CC 

CZ(l,l) = (1.0-CI)/2.0 
CZ(1,3) = (1.0+CI)/2.0 
CZ(2,2) = (1.0-CI)/2.0 
CZ(2,4) = (1.0+CI)/2.0 

CC [CZ] * {WZ} ,. {BZ} 
CC 

DO 170 l = 1,2 
DO 160 J ,. 1,4 
AZ(J) = CZ(I,J) 

160 CONTINUE 
BZ(I) ,. DOTPRD(AZ,WZ,4) 

170 CONTINUE 
CC 
CC UOW FORM THE CONSISTENT LOAD VECTOR FOR THIS SIDE 
CC 

175 



• 

• 

DO 185 l .. 1,16 
DO a BZ(l)*XLL(l,I) + BZ(2)*XLL(2,I) 
AZ(I) .. DD*THIC*WI*RADI/2.0 

185 CONTINUE 
CC 
CC ASSOCIATE CONSISTENT LOAD VECTOR WrTH GLOBAL LOAD ARRAY 
CC 

DO 210 l .. 1,8 

Il = 1*2 
J = KXY(I);'2 
QSLOO(J-1) = QSLOO(J-l) + AZ(Il-l) 
QSLOO(J) = QSLODeJ) + AZeI1) 

210 CONTINUE 
CC 
300 CONTINUE 
500 CONTINUE 

CC 
RETURN 
END 

cc ******************************************************************* 

cc 

CC 

SUBROUTINE OUTPUT(NLM,NELTYP,NPL,PL,DL, 
1 PROPS,DLOAD,JDSIDE,TITLE, 
1 THIC,NUMAT,NTYPE,NPOIN,NDTOT,NNEL, 
1 NNODE,NEQ,NQP,NWA,MAXBAN,NTOT,IPRNT) 

IMPLICIT REAL*8 (A-H,O-Z) 

COMMON /BLK1/ PP(3,18),DB(3,8),DA(2,8),PB(3,3),SH(8),BO(3),DT 
COMMON /LINE/ LIN1,LIN2,LIN3,LIN4,LIN7,LIN8,LIN9 
DIMENSION DL(4,2),PL(65,2),NLM(64,8),NPL(65) 
DIMENSION NELTYP(1) ,PROPS(NUMAT,l) 
DIMENSION OLOAD(l),JDSIDE(l) 
CHARACTER*l TITLE(80),STAR(80) 

CC PRINT RESULTS 
CC 

NDIST = NDTOT/4 
DO 5 l = 1,80 
STARCI) =) *) 

5 CONTINUE 
IF(IPRNT.EQ.O) GOTO 700 

CC 
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1 
WRITE(LINl j 10) STAR 
WRITE(LIN1,10) (T1TLE(1),1 = 1,80) 
WRITE(LIN1,10) STAR 

10 FORMAT(/,aOA1) 
WR1TE(LIN1,500) NNODE,NNEL,NUMAT,THIC 

cc 
C WRITE(LIN1,530) 
C DO 20 l = 1,NNODE 
C WRITE(LIN1,550) I,XORD(I),YORD(I),JDOF(I,l),JDOF(I,2) 
C 20 CDNTDWE 
cc 
C WRITE(LIN1,510) 
C DO 30 I=l,NNEL 
C WRITE(LIN1,520) I,NELTYP(I),(NLM(1,J),J=l,8) 
C 30 CONTINUE 
CC 
C WRITE(LIN1,650) 
C DO 25 l = 1,NUMAT 
C WRITE(LIN1,615) l, PROPS(I,l),PROPS(I,2),PROPS(I,3) 
C 25 CONTINUE 
cc 
C IF(NTYPE.EQ.l) THEN 
C WRITE(LIN1,580) 
C ELSE 
C WRITE(LIN1,590) 
C ENOlF 
cc 
c IF(NPOIN.GT.O) THEN 
C WRITE(LIN1,610) 
C DO 40 l • 1,NPOIN 
C WRITE(LIN1,620) NPL(I),PL(I,1),PL(I,2) 
C 40 CONTINUE 
C ENOIF 
CC 
C IF(ND1ST.GT.O) THEN 
C WRITE(L1Nl,640) 
C DO 50 l = 1,NOIST 
C J1 = 4*1-3 
C J2 = 4*1 
C WRITE(LIN1,645) JDSIDE(J2),(JOSIDE(J),J=Jl,J2-1), 
C 1 (OLOAD(J),J=Jl,J2) 
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C 50 CONTINUE 
C ENDIF 
CC 
C WRITE(LIN1,560) 
C WRITE(LIN1,570) (LDVEC(I),I=2,NEQ+l) 
CC 
C WRITE(LIN1,675) 
C DO 60 l = l,NEQ,2 
C J : (1+1)/2 
C WRITE(L1Nl,690) J,QSLOD(I),QSLOD(I+1) 
C 60 CONTINUE 
C WRITE(LIN1, 10) STAR 
C WRITE(LIN1,680) 
C WRITE(LIN1,10) STAR 
cc 

c 

500 FORMAT(' 1 ,II,5X,'TOTAL NO. OF NODES 
+ 5X,'TOTAL NO. OF ELEMENTS 
+ 5X,'TOTAL NO. OF MATERIAL TYPES 
+ 5X, 'ELEMENT THICKNESS 

510 FORMAT(" ,/,15X,'ELEMENT NODE NUMBERING' ,l, 
+ ' ELEM ELEM NODEl NODE2 NODE3 NODE4', 
+, NODE5 NODE6 NODE? NODE8' ,l, 
+ 1 ND TYPE' ,/) 

520 FORMAT(I4,4X ~2,8(4X,r3» 

.' ,IlOI, 
·',IlO/, 
.. ' ,Iloi , 
=',Fl0.3/) 

530 FORMAT(/, , NODE X-COORDINATE Y-COORDINATE 
+ 'X-DOF Y-DOF',!) 

540 FORMAT(' ',I5,2(6X,Fl0.5» 
550 FORMAT(" ,I5,2(6X,Fl0.5) ,2(6X,I3» 
560 FORMAT (1 , , l,' DIAGONAL ELEMENT POSITIONS IN THE' 

+ 'SKYLINE VECTOR. ',l,' (NEGATIVE VALUE', 
+ ' INDICATES CONSTRAINED D.O.F)'/) 

570 FORMAT(1017) 
580 FORMAT(/,20X,' PROBLEM TYPE 
590 FORMAT(/,20X,' PROBLEM TYPE 
610 FORMAT(20X,' POINT LOAD DATA' ,l, 

+ 10X, , NODE NO. X-FORCE 
615 FORMAT(10X,I5,8X,F9.3,2(8X,F5.3» 
620 FORMAT(10X,I5,8X,F9.3,5X,F8.3) 

PLANE STRESS' , /) 
PLANE STRAIN' , /) 

Y-FORCE' ,1) 

640 FORMAT(20X,' D1STRIBUTED LOAD DATA',I, 
+ 5Y.,'ELEM. NO. NODE1 NODE2 NODE3 XLOAD1', 
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+ 2X,'YLOADl XLOAD3 YLOAD3' ,/) 
645 FORMAT(2(5X,I5),2(4X,I3),lX,4(lX,F7.2» 
650 FORMAT(/,20X,' ELEMENT MATERIAL PROPERTIES ',//. 

+ 10X, , MATERIAL YOUNG"S POISSON"S DENSITY' ,/, 
+ 10X,' TYPE MOD RATIO CKG/CU .M) , ./) 

675 FORMATC/,10X,' NODAL LOADS './. 
+ J NODE X-LOAD Y-LOAD' ,/) 

680 FORMATC/.l0X,' NODAL DISPLACEMENTS J,/. 
+, NODE X-DISPLACEMENT Y-DISPLACEMENT' ,/) 

690 FORMATC1X,I4,2(6X,El0.3)) 
cc 

700 CONTINUE 
RETURN 
END 

ce ******************************************************************* 
SUBROUTINE SKDIAG(NEQ,NNODE,NNEL,JJX,LDVEC,NUMEL,NTOT,NWA) 
IMPLICIT REAL*8 (A-H,O-Z) 

eOMMON ILINE! LIN1,LIN2,LHI3,LIN4,LIN7.LIN8,LIN9 
DIMENSION JJX(1),LDVEC(1),KH(2000) 
DIMENSION NUMEL(1),JD(2000) 

cc 
ce --- VECTOR LDVEe HOLOS THE POSITION NUMBERS OF THE DIAGONAL ELEMENTS 
cc 

cc 

DO 20 I=l,NNODE 
20 JD(1)=O 

DO 50 II=l,NNEL 
Il = 11*8 - 7 
12 = Il + 7 

cc --- FIND SMALLEST NODE ( = NODE 1) 
cc 

cc 

Nl=100000 
DO 30 J=I1.12 
JJ=NUMEL(J) 
IF(N1.GT.JJ) Ni-JJ 

30 CONTINUE 

cc --- FIND SKYL1NE POSITION 
cc 

NSK=Nl*2-2 
cc 
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cc FIND THOSE NODES WITHOUT SKYLINE 
C HEIGHT OF DIAGONAL ELEMENT BELOW SKYLINE = D.O.F-NSK 
CC 

DO 40 JJ=I1,I2 
J=NUMEL(JJ) 
IF(JD(J) .EQ.1) GOTO 40 
J1=J*2-1 
J2=J*2 
KH(J1)=Jl-NSK 
KH(J2)=J2-NSK 
JD(J)=l 

40 CONTINUE 
50 CONTINUE 

CC 
CC --- ESTABLISH SKYLINE DIAGONAL VECTOR 
CC 

LDVEC(l)=O 
DO 60 I=1,NEQ 
LDVEC(I.1)=LDVEC(I)+KH(I) 

60 CONTINUE 
CC 

NWA=LDVEC(NEQ+1) 
DO 70 l=1,NEQ 
J"I+1 
IF(JJX(I).GT.O) THEN 

LDVEC(I+1)--LDVEC(I+l) 
ENDIF 

70 CONTINUE 
CC 

RETURN 
END 

CC ******************************************************************* 

CC 

SUBROUTINE SKYFAC (A,LD,NWA,NBEG,NEND) 
IMPLICIT REAL*8 (A-H,D-Z) 

CC PERFORMS SYMMETRIC INCORE FACTORIZATION OF A 
CC SPARSE, BANDED, SKYLINE-STORED, SYMMETRIC MATRIX. 
CC 

COMMON /LINE/ LIN1,LIN2,LIN3,LIN4,LIN7,LIN8.LIN9 
DIMENSION A(1), LD(1), V(20000) 
REAL AIJ2, D, EPSMAC, UMAX, UMIN 
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LOG!CAL SINGAB 
EQUIVALENCE (AIJ2,O,DMAX) 

CC 
DATA EPSMAC/l.49E-8/, UMAX Il.001, UMIN 10.6251 

CC 
CC INITIALIZATION 
CC 

REWINO LIN4 
REAO (LIN4,*) (A(I),I=l,NWA), (LD(I),I=l,NENO+l) 

9000 FORMAT(lX,4E20.14) 
909 FORMAT(10I7) 

CC 

IKJ = 0 
SINGAB = .TRUE. 

CC COMPUTE SQUARED LENGTHS OF UNCONSTRAINEO ROWS NBEG+l THRU NENO 
CC 

200 NBEGPl = NBEG+l 
00 1000 l = NBEGP1, NENO 
II = LO(1+1) 
IF(II) 1000,1000,400 

400 ver) = A(II)**2 
M = II-I 
K = MAXO(NBEGP1,IABS(LD(I»-M+l) 
L = MINO(NEND,I) - 1 
IF(K-L) 500,500,1000 

500 DO 800 J = K,L 
IF(LO(J+l» 800,800,600 

600 A1J2 = A(M+J)**2 
ver) • ver) + AIJ2 
v(J) • V(J) + AIJ2 

800 CONTINUE 
1000 CONTINUE 

CC 
CC FACTOR1ZATION SECTION 
CC 

DO 4000 J = NBEGP1,NEND 
CC 
CC COMPUTE KU SUPERDIAGONAL ENTRIES OF JTH COLUMN OF CU] 
CC IF UNCONSTRAINED 
CC 

J J = LD(J+1) 
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IF(JJ) 4000,40CJ,1200 
1200 D = A(JJ) 

JMJ = IABS(LD(J) 
JK = JJ - JMJ 
KU .:: JK - 1 
IF(KU.EQ.O) Garo 2200 
DO 2,:)00 K = l,KU 
l ". J - JK + K 
V(K) = 0.0 
II = LD(I+1) 
IF(II) 2000,2000,1800 

1800 M = MINO(II - IABS(LD(I»,K) - 1 
IJ = JMJ + K 
V(K) = A(IJ) - DOTPRD(A(II-M),V(K-M),M) 
A(IJ) = V(K)*A(II) 

2000 CONTINUE 
CC 
CC COMPUTE DIAGONAL ELEMENT 
CC 

D = D - OOTPRD(A(JMJ+l),V,KU) 
2200 CONTINUE 

CC 
CC SINGULARITY TEST 
CC 

TOLROW = 8.0 * EPSMAC * SQRT(V(J» 
IF(ABS(D).GT.TOLROW) GaTO 2500 
IF(SINGAB) GOTO 6000 
o = TOLROW 

2500 A(JJ) = 1.0/D 
4000 CONTINUE 
5000 CONTINUE 

CC 
REWINO LIN4 
WRITE(LIN4,*) (AO) ,I:O:l,NWA), (LO(I) ,l'''l,NEND+1) 
RETURN 

CC 
CC ERROR EXIT 
CC 
6000 WRITE(*,*) 'FATAL ERROR' 

STOP 
END 
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cc *~***************************************************************** 
SUBROUTINE SKYSOL(A,LD,NWA,N,IOP,IBX,B,X,NQ) 
IMPLICIT REAL*8 (A-H,O-Z) 
COMMON /LINE/ LIN1,LIN2,LIN3,LIN4,LIN7,LIN8,LIN9 

cc 
DIMENSION X(!), A(1), B(1), LD(1) 
REAL BI, BXFAC 
REAL XI, XNORM 
EQUIVALENCE (BI, XI, XNORM) 

cc 
CC INITIALIZATION 
CC 

REWIND (LIN4) 
READ (LIN4,*) (A(I),I=l,NWA), (LD(I),I=l,NQ+l) 

909 FORMAT (10I7) 
9000 FORMAT(lX,4E20 .14) 

KREF = 1 

cc 

BXFAC = 0.0 
IF(IBX.EQ.O) GOTO 200 
BXFAC ,.. 1.0 
DO 150 1 = 1,N 

150 XCI) = Ber) 
200 IF(IOP.GT.O) GOTO 1800 

IF(IBX.EQ.O) GOTO 1100 

CC RHS MODIFICATION 
CC 

DO 1000 1 = l,N 
II :1 LD(I+1) 
IF(II) 300, 1000, 1000 

300 BI = B(I) 
IF(BI.EQ.O.O) GOTO 1000 
II = -II 
K = 1 - II + IABS(LD(I» + 1 

DO 900 J = K,N 
JJ .. LD(J+l) 
IF(JJ) 900,900,400 

400 M la J-l 
IF(M) 500,600,600 

500 X(J) = X(J) - A(II+M)*BI 
GOTO 900 
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• 600 IJ ... J J - M 
IF(IJ-IABS(LD(J)) 900,900,800 

800 X(J) ,.. X(J) - A(IJ)*BI 
900 CONTINUE 

1000 CONTINUE 
CC 
CC FORWARD SUBSTITUTION PASS 
CC 

1100 DO 1500 l = 1,N 
II = LD(I+1) 
IF(II) 1200,1200,1300 

1200 XCI) = 0.0 
GOTO 1500 

1300 IMI = IABS(LD(I» 
M ,.. II - TMI -1 
XCI) ,.. XCI) - DOTPRD(A(IMI+1),X(I-M),M) 

1500 CONTINUE 
IF(IOP.NE.O) GOTO 5000 

CC 
CC SCALING PASS 
CC 

1800 DO 2000 l = 1,N 
II = IABS(LD(I+1» 

2000 XCI) = A(II)*X(I) 
cc 
CC BACK SUBSTITUTION PASS 
CC 

l ,.. N 
DO 3000 K = 1,N 
II ,.. LD(I+l) 
IF(II) 2200,2200,2400 

2200 XCI) • BXFAC*B(I) 
GOTO 2800 

2400 M ... II - IABS(LD(I» -1 
IF(M.EQ.O) GOTO 2800 
DO 2500 J = 1,M 
X(I-J) = X(I-J) - A(II-J)*X(I) 

2500 01NTINUE 
2800 l ,.. l -1 
3000 CONTINUE 
210 FORMAT(lX,I4,6X.E10.3,6X,E10.3) 
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cc 
cc CONSTRAINED RHS RECOVERY 
CC 

4000 IF(IBX.LE.O) GOTO 5000 
DO 4800 l = l, N 
II = LD(I+l) 
IF(II) 4200,4200,4800 

4200 IMI = IABS (LO(I» 
M = -II -lMI -1 
B(I) m OOTPRO(A(IMI+l),X(I-M) ,M) 
DO 4600 J = l,N 
13 = IABS(LO(J+1) + l - J 
IF(IJ-IABS(LD(J)) 4600,4600,4400 

4400 B(I) = B(I) t A(IJ)*X(J) 
4600 CONTINUE 
4800 CONTINUE 
5000 CONTINUE 

REWIND LIN4 
WRITE(LIN4,*) (X(I) ,I=l,NQ) 
RETURN 
END 

CC ******************************************************************* 
SUBROUTINE STRSOL(DISPL,XORO,YORO,NUMEL,DENS,CAR,NELTYP, 

CC 

+ THIC,NUMAT,NTYPE,NPOIN,NDIST,NNEL, 
+ NNODE,NEQ,NQP,NWA,MAXBAN,NTOT,IPRNT) 

IMPLICIT REAL*8 (A-H,O-Z) 
COMMON /BLK1/ PP(3,18) ,DB(3,8),DA(2,8),PB(3,3),SH(8),BD(3),DT 
COMMON /BLK2/ XX(2,8), SS(3,3),GPT(4),GWT(4),KXY(8) 
COMMON /OAKS/ HMX(18,18),GG(18,16),XLL(2,16),HB(18) 
COMMON /LINE/ LIN1,LIN2,LIN3,LIN4,LIN7,LIN8,LIN9 
COMMON /BLQK/ SE(9),TE(9) 
DIMENSION QQ(16),SIG(6),PX(2000),SPX(2000,6) 
DIMENSION AMX(18,16),BMX(18) ,BETA(18), OS(3) 
DIMENSION DENS(l) ,CAR(l),NUMEL(l) ,XORD(l) , 

+ YORD(l),DISPL(l),NELTYP(l) 

NUM3 = NUMAT*3 
REWINO LIN2 
READ (LIN2, * ) 
READ (LIN2, *) 
READ (LIN2, *) 

(XORD(I),YORD(I) ,I=l,NNODE) 
(NELTYP (1) ,I=l,NNEL) 
(NUMEL(I),I=l,NTOT) 
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READ (LIN2,*) (DENS(I) ,I=1,NUM3) 
cc 
CC READ DISPLACEMENT DATA FROM LIN4 AND WRITE 
CC STRESSES AT ELEMENT CENTRES TO IT 
CC 

C 
CC 

cc 
c 

REWIND LIN4 
READ (LIN4, *) (DISPL(I), 1=1 ,NEQ) 
REWIND LIN4 
WRITE(LIN1,630) 
DO 7 l = 1, NEQ , 2 
J = (I+1)/2 
WRITE(LIN1,650) J,XORD(J),YORD(J),DISPL(I),DISPL(I+1) 

7 CONTINUE 
PI=3.141592654 
DO 10 I=l,NNODE 
PX(I) .. O. 
DO 10 J=l,6 
SPXCI,J)=o. 

la CONTINUE 
WRITE(LIN1,260) 

REWIND LIN3 
NAM = 0 
DO 180 II=l,NNEL 
1 = NEL TYP (II ) 
RHO = DENS (I) 

READ(LIN3,*) AMX 
READ(LIN3,*) BMX 

WRITE(LIN1,280) II 
Ni :II !I*8 - 7 
N2 :1 Nl + 7 
JJ .. a 
XTX :a 0.0 
YTY :: 0.0 
DO 20 KK= Nl, N2 
J=NUMEL(KK) 
JJ :: JJ+1 
XX(l,JJ)=XORD(J) 
XX(2,JJ)=YORD(J) 
XTX :: XTX + XORD(J)/8.0 
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CC 

YTY a YTY + YORD(J)/8.0 
KXY(JJ)=J 
JJ1 a JJ*2-1 
JJ2=JJ*2 
J1=J*2-1 
J2=J*2 
QQ(JJ1)=D1SPL(J1) 
QQ(JJ2)=D1SPL(J2) 

20 CONTINUE 

CC ----MATRIX AMX*QQ 
CC 

DO 60 1=1,18 
DO-O. 
DO 40 J=1,16 

40 DO=OO+AMX(I,J)*QQ(J) 
BETA(I)=DD - BMX(1) 

60 CONTINUE 
CC 
CC NOW SOLVE FOR NODAL STRESSES AT ELEMENT CENTRE 
CC AND CORNER NOOES ONLY 
CC 
CC SIO(J) = STRESSES AT NODE l 
CC J = 1 => SIGMA-X 
CC J = 2 => SIGMA-Y 
CC J :: 3 => TAU-XY 
CC J = 4 => S1GMA-1 
CC J :: 5 => SIGMA-2 
CC J = 6 => ANGLE OF S1GMA-1 FROM X-AXIS 
CC 
c WRITE(L1Nl,191) 

DO 140 1=1,9 
DO 75 J = 1,6 
S1G(J) = O. 

75 CONTINUE 
Sl-SE(I) 
Tl-TE(!) 
CALL PMTX(Sl,T1,PP,PB,BO,DELTA,XX,RHO,II) 
Bl = BO(l) 
B2 = BO(2) 
B3 = BO(3) 
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CC 

CC 

DO 80 J = 1,3 
Bo(J) '" B1*PB(J,l) + B2*PB(J,2) + B3*PB(J,3) 

80 CONTINUE 
DO 120 J=l,3 
00=0. 
00 100 K=l, 18 

100 OO=OD+PP(J,K)*BETA(K) 
OS(J)=DD + BOU) 
SIG (J) :: OS (J ) 

120 CONTINUE 

Sl=(05(1)+OS(2»/2. 
82=(08(1)-OS(2»/2. 
S3=oS (3) 
SIG(6)-ATAN2(S3,S2)*90.0/PI 
RS=SQRT(S2**2+S3**2) 
SIG (4)",Sl+RS 
SIG(5):Sl-RS 

CC SUM SIGMA-X, SIGMA-Y AND TAU-XV FOR THE RESPECTIVE NaDES 
CC 

IFeI. LT. 9) TH EN 
LL=KXY(I) 

PX(LL)=PX(LL)+1.0 
DO 125 K=1,3 

SPX(LL,K)=SPX(LL,K)+SIG(K) 
125 CONTINUE 

C WRITE(LIN1,591) KXY(I),(SIG(J),J=l,6) 
ELSE 

C WRITE(LIN1,599) (SIGCJ), J=1, 6) 
CC 
CC WRITE STRESSES AT ELEMENT CENTRE Ta LIN4 
CC 

WRITE(LIN4,*) XTX, YTY, (SIG(J),J=4,6) 
ENDIF 

140 CONT!NUE 
180 CONTINUE 

CC 
CC --- AVERAGE nODAL STRESSES 
CC 

DO 190 I~l,NNOOE 
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c 

IF(PX(I).EQ.O.) GOTO 190 
DO 185 J-l,3 
SPX(I,J)=SPX(I,J)/PX(I) 

185 CONTINUE 
Sl=(SPX(I,l)+SPX(I,2»/2. 
S2-(SPX(I,1)-SPX(I,2»/2. 
IF(S2.EQ.O.) GOTO 190 
S3=SPX(I,3) 
SPX(I,6)=ATAN2(S3,S2)*90.0/PI 
S2=SQRT(S2**2+S3**2) 
SSl=Sl+S2 
SS2=Sl-S2 
SPX(I,4) = SSl 
SPX(I,5) = SS2 

190 CONTINUE 
WRITE(LIN1,192) 
WRITE(LIN1, 191) 
DO 193 1=l,NNODE 
WRITE(LIN1,205) I,(SPX(I,J),J=1,6) 

193 CONTINUE 
CC 
CC OUTPUT STRESSES AT ELEMENT CENTRES 
CC 

REW1ND LIN4 
WRITE(LIN1,300) 
WRITE (LIN1, 640) 
DO 250 r"1,NNEL 
READ (L1N4,*) XTX,YTY, (SIG(J),J=4,6) 
WRITE(LIN1,660) I,XTX, YTY, (SIG(J),J=4,6) 

250 CONTINUE 
192 FORMAT(' ',20X,/,' AVERAGE NODAL STRESSES',) 
191 FORMAT(/,I NODE SIGMA-X SIGMA-Y TAU-XY 

1 IS1GMA-1 S1GMA-2 X-ANGLEI,/) 
300 FORMAT(I 1,20X,/,1 STRESSES AT ELEMENT CENTRESI,) 
591 FORMATe I,'NODE' ,13,5Fl0.4,F10.2) 
599 FORMAT(I' ,'CENTRE' ,5F10.4,F10.2) 
205 FORMAT(I' ,16,5Fl0.4,F10.2,F10.2) 
210 FORMAT(lX,14,2(6X,F10.4» 
260 FORMAT(' ',/,20X,' ELEMENT NODAL STRESSES') 
280 FORMAT(' ',/,20X,' ELEMENT NO. ',I2,n 
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630 FORMAT(/,' NODE X-COORD. Y-COORD. X-DISPL. 
640 FORMAT(/,' ELEM X-CENTR. Y-CENTR. SIGMA-l 

1 'SIGMA-2 X~ANGLEJ ,/) 
650 FORMAT(J J ,I4,2Fl0.2,2F12.6) 
660 FORMAT(J ',I4,2Fl0.2,2X,2Fl0.4,Fl0.2) 

RETURN 
END 

190 
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CC 

Appendix B 

LISTING OF A GENERAL PURPOSE 8-NODE 

QUADRILATERAL MESH GENERATOR, 

OUADMESH 

The listing of a general purposa 8-node quadrilateral mesh 
ganerator called QUADMESH, 18 glVen in thlS appendix. The program 
has bean descrlbed ln Chapter 5. 
CC 
CC A GENERAL PURPOSE a-NODE QUADRILATERAL MESH GENERATOR 
CC 
CC 

CC 

INTEGER NLM(5000) ,JJX(2000) ,JDSIDE(500) 
INTEGER MTYPE(20) ,NODRT(50) ,NODFR(50) ,NOMID(50) ,ND(50) 

INTEGER DLOAD (500) ,NPO (500) ,NSP (100) ,KSP (100) ,NOTEM(50) 
INTEGER NELTYP(1000),JDOX(2000) ,JDOY(2000),LXY(8) 
INTEGER NUMEL,NUMAT,NDIST,NUM,NNODE,LIN, LNP 
REAL xx (2000) ,YY(2000) ,XV(100) , YV (100) 
REAL XPO(500),YPO(500) 
REAL DELX(100) ,DELY(100) ,XF(50) ,YF(50) ,XR(50) 
REAL YR(SO) ,XT(50), YT(50) ,XZ(4) ,YZ(4) 
REAL ZXL(20) ,ZXR(20) ,ZYB(20) ,ZYT(20), YM(10) ,PR(10) 

REAL YDLL, YDLR,XDLT ,XDLB,XR, YT 
CHARACTER*l TITLE(70) 

LIN • 11 
LNP • 12 
OPEN (LIN ,FILE-' meshin 1 , STATUS-' OLD' ,ACCESS= 'SEQUENTIAL ,) 
OPEN (LNP ,FILE-' meshout' ,STATUS-' OLD' ,FORMa: 'FORMATIED') 

cc --------------------------~-------------------------------
cc 
cc THIS PROGRAM WILL GENERATE AN 8-NODE QUADRILATERAL MESH OVER 
CC AN ARRAY OF VERTICAL LINES WHOSE LOWER END COORDINATES ARE 
CC SPECIFIED. THE LIMITS OF THE PRO GRAM ARE: 
Cc 
Cc 
Cc 
cc 

MAXIMUM NO. OF NODES 
MAXIMUM NO, OF ELEMENTS 

Il 1000 
.. 626 

MAXIMUM NO. OF SIDES WITH DISTRIB. LOADS -= 126 
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cc 
cc 
cc 
cc 

MAXIMUM NO. OF NODES WITH POINT LOADS 
MAXIMUM NO. OF ELEMENT PROPERTY ZONES 
MAXIMUM NO. OF DIFFERENT PROPERTIES 

= 500 
= 20 
= 10 

CC IF THE8E MAXIMUM ARE EXCEEDED, PROGRAM WILL ABORT. 
CC 
CC THE INPUT DATA FOR EACH PROBLEM 18 AS FOLLOWS: 
CC 
CC 1. LINE 1 : XO, YO, NSUBX, NSUBY 
CC 
CC 2. NEXT LINE(S), 
CC IF NSUBX IS > 0, DELX(l), DELX(2), ..... , DELX(NSUBX) 
CC 
CC 3. NEXT LINE(8), 
CC IF NSUBY I8 > 0, : DELY(l), DELY(2), ..... , DELY(NSUBY) 
CC 
CC THE ABOVE THREE STEPS ARE REPEATED FOR ALL VERTICAL LINES 
CC OR SETS OF LINES. 
CC 
CC 4. NEXT LINE : 0.0 0 . 0 0 0 
CC THIS ENDS THE VERTICAL LINE INFORMATION. 
CC 
CC 5. NEXT LINE: NPOIN ,NDIST ,NUMAT ,NTYPE, YDLL, YDLR, XDLT ,XDLB 
CC 
CC 6. NEXT NPOIN LINES : NPO(I) ,XPO(I) ,YPO(I) 
CC 
CC 7. FOR EACH MATERIAL TYPE (1 = 1, '" , NUMAT) , 
CC FIRST LINE YM(I),PR(I),MTYPE(I) 
CC SECOND LINE: ZXL(I) ,ZXR(I) ,ZYBCI) ,ZYT(I) 
CC 
CC IF THERE 13 ONLY ONE MATERIAL TYPE, THEN, 
CC SECOND LINE : 0.0 0 .0 0 . 0 0.0 
CC 
CC 8. DISPLACEMENT BOUNDARY CONDITION CODES 
CC : JXL, JYL, JXB 1 JYB, JXR, JYR, JXT, JYT 
CC 
CC THIS 13 THE END OF THE INPUT DATA 

CC -------------------------------------------------------------
CC THE FOLLOWING DEFINITIONS ARE PERTINENT: 
CC 
CC XO = X-COORD. OF VERTICAL LINE 
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cc YO 
CC NSUBX 
CC 

= Y-COORD. OF BOTTOM OF VERTICAL LINE 
= NO. OF SUBDIVS. ALONG X-DJ..tECTION 
;; 0, THERE IS ONLY ONE VERTICAL LINE 

cc NSUBY Il NO. OF SUBOIVS. ALONG Y-DIRECTION 
CC = 0, THERE IS ONLY ONE POINT TO CONSIDER (= TRIVIAL) 
cc DELX* == LENGTH OF SUBOIVS. IN X-DIRECTION, 
CC STARTING FROM LEF! 
CC DELY'" = LENGTH OF SUBOIVS. IN Y-DIRECTION, 
CC STARTING FROM BOTTOM 
CC 
CC XR*, YR* = ARRAY OF NODAL COORDINATES OF RIGHT EDGE NODES 
CC XF*, YF* = ARRAY OF NODAL COORDINATES OF FRONT EDGE NODES 
cc XZ*, YZ* .. ARRAY OF CORNER NODE COORDINATES 
CC OF CURRENT ELEMENT 
CC NRY ;; NO. OF CORNER NODES ON RIGHT EDGE 
CC NF ;; NO. OF CORNER NODES ON FRONT EDGE 
CC NVERT = VERTICAL LINE COUNTER 
CC ICOL ;; COLUMN COUNTER 
CC NOORT* = ARRA Y OF NODE NUMBE.t\S OF RIGHT EDGE CORNER NaDES 
CC NODFR* = AMAY OF NODE NUMBERS OF FRONT EDGE CORNER NaDES 
CC NOMID* = AMAY OF NODE NUMBERS OF MIDSIDE NODES CONNECTING 
CC FRONT AND RIGHT EDGES 
CC NOTEM* = AMAY OF NODE NUMBERS EQUIVALENT TO NOMID* 
CC LASTNODE = LAST NODE COUNTER 
CC 
CC DISTRIBUTED LOAD INFO. 
CC 
CC THE LEFT AND BOTTOM EDGES ARE ASSUMED TO BE AXES OF SYMMETRY 
CC SO THAT DISTRIBUTED LOADS CAN ONLY BE APPLIED ALONG THE TOP 
CC AND RIGHT EDGES. DISTRIBUTED LOADS ALONG THE RIGHT EDGE 
CC ARE ASSUMED TO VARY LINEARLY DOWNWAROS WHILE THOSE ALONG THE 
CC TOP ARE ASSUMED TO BE CONSTANT. 
Cc 
CC XDLT = XLOAD AT TOP RIGHT HANO CORNER OF STRUCTURE, 
CC XDLB = XLOAD AT BOTTOM RIGHT HAND CORNER OF STRUCTURE, 
CC YOLL = YLOAO AT TOP LEFT HAND CORNER OF STRUCTURE, 
CC YOLR = YLOAD AT TOP RIGHT HAND CORNER OF STRUCTURE, 
CC NDIST = TOTAL NO. OF ELEMENT SIDES WITH DISTRIBUTED LOAOS. 
CC ZXL (I) = X -CORD OF LEFT BOUNDARY OF ITH ZONE 
cc ZXR(I) = X-CORD OF RIGHT BOUNDARY OF ITH ZONE 
CC ZYB (1) = Y -CaRO OF BOTTOM BOUNDARY OF ITH ZONE 
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cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 

• 

ZYTO) = X-CORD OF TOP BOUNDARY OF ITH ZONE 
MTYPE(I) ;: MATERIAL TYPE OF ITH ZONE 

PO INT LOAD INFO. 

NPOIN 
NPO(I) 
xPo(I) 
YPO(I) 

= TOTAL NO. OF NOD ES WITH POINT LOAD~ 
= ITH NODE POINT WITH POINT LOAO 
;: X-LOAD ON NPO(I) 
= Y-LOAD ON NPO(I) 

MATERIAL PROPERTY INFO. 

NUMAT = NO. OF DISTINCT ZONES OF THE DISCRETIZED 
DOMAIN WITH OIFF. MATERIAL PROPERTIES 

= TOTAL NO. OF DIFFERENT MATERIALS 
NTYPE = PROBLEM TYPE, 

• 1 -> PLANE STRAIN 
= 2 s> PLANE STRESS 

YM(I) = YOUNG 1 S MODULUS OF ITH MATERIAL TYPE 
PR(I) = POISSONIS RATIO OF ITH MATER1AL TYPE 

DISPLACEMENT SOUNDARY CONDITION CODES 
JXL = X-CONOTION CODE FOR LEFT BOUNDARY 
JYL = Y-CONDTION CODE FOR LEFT BOUNDARY 
JXB = X-CONDTION CODE FOR LOWER BOUNDARY 
JYB = Y-CONDTION CODE FOR LOWER BOUNDARY 
JXR = X-CONDTION CODE FOR RIGHT BOUNDARY 
JYR = Y-CONDTION CODE FOR RIGHT BOUNDARY 
JXT = X-CONDTION CODE FOR TOP BOUNDARY 
JYT = Y-CONDTION CODE FOR TOP BOUNDARY 

VALUE = 1 => NO MOVEMENT ALLOWED IN THE GrVEN DIRECTION, 
VALUE" 0 => MOVEMENT 1S ALLOWED IN THE GIVEN DIRECTION 

INITIALIZATION 

XMAX .. 0.0 
XMIN = 1. OE10 
YMAX ;; 0.0 
YMIN = 1. OE10 
NNODE = 0 
NUM = 0 
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cc 

NUMEL = 0 
JSP .. 0 

LASTNODE = 0 
ICOL :1 0 
JNS :1 0 
NVERT = 0 

DO 5 l = 1,100 
NSP(I) ;: 0 

KSP(I) .. 0 
DELXO) = 0.0 

DELY(I) = 0.0 
5 CONTINUE 

DO 10 I = 1,2000 
10 JJx(I) = 0 

cc 
READ(LIN,15) TITLE 

15 FORMAT(80Al) 
20 READ(LIN,*) XO.YO,NSUBX, NSUBY 

IF(NSUBX.EQ.O.AND.NSUBY.EQ.O) GOTO 500 
IF(NSUBX.NE.O) THEN 

cc 

READ(LIN.*) (DELX(I),I=l,NSUBX) 
ENDIF 
IF(NSUBY.NE.O) THEN 

READ(LIN.*) (DELY(I),I=l,NSUBY) 
ENDIF 

DXX = XO 
INX = a 

25 INX :1 INX+l 
IF(INX,GT,NSUBX+l) GOTO 20 
IF(INX,GT.l) DXX a DXX + DELX(INX-l) 
NRY OK NSUBY+l 
ICOL .. NVERT 
NVERT .. NVERT+l 
XR(l) = DXX 
YR(1) .. YO 
DO 35 l = 1,NSUBY 

XR(I+1) = DXX 
YR(I+l) = ya(I) + DELY(I) 

35 CONTINUE 
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1F(NVERT.EQ.l) THEN 
NF = NRY 

DO 30 l = l,NF 
XF(I) = XR(I) 
YF(I) ::. YR(I) 

30 CONTINUE 

cc 

GOTO 25 
ENDIF 

CC LOCATE F1RST NODE, (NF1), ON FRONT EDGE WHICH IS NOT ABOVE 
CC F1RST NODE, (NR1), ON RIGHT EDGE AND FIRST NODE, (NF2) , ON 
CC FRONT EDGE WH1CH 1S NOT BELOW LAST NODE, (NR), 
CC ON R1GHT EDGE. 
CC 

J = l+NF 
NFO = 0 
NF2 = J 
DO 40 l = l,NF 

J = J-1 
1F(YF(I).LT.YR(l» NFO = NFO+1 

IF(YF(J).GE.YR(NRY» NF2=NF2-1 
40 CONTINUE 

NFl := NFO 
IF(YF(NFO+l) .LE.YR(l» NF1 = NFO+l 

CC 
CC DETERMINE NO. OF EXTRA EDGES GENERATED BY THE FRONT TURNING 
CC THROUGH 90 DEGREES 
CC 

NM = NRY 
IF(ICOL.EQ.l) GOTO 45 

DO 50 l = NF1,NF 
IF(YF(1).EQ.YF(1+1» THEN 

IF(YF(I).GE.YR(l).AND. YF(I) .LE.YR(NRY» NM = NM+1 
ENDIF 

50 CONTINUE 
CC 
CC MAP NODFR* INTO GLOBAL NODE NUMBERS 
CC 

45 CONTINUE 
1F(ICOL.EQ.1) THEN 

NP :II 2 
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cc 

CALL MAP(NODFR,NF,LASTNODE,NP) 
END IF 

cc MAP NOMID* INTO GLOBAL NODE NUMBERS 
cc 

cc 

cc 

NP = 1 
CALL MAP(NOMID,NM,LASTNODE,NP) 

IF(NFO.GT.O) THEN 
JSP = JSP+l 
NSP(JSP) = NOMID(l) 

ENDIF 
IF(NF2.LT.NF) THEN 

JSP = JSP+l 
NSP(JSP) = NOMID(NSUBY+l) 

ENDIF 

CC MAP NOORT* INTO GLOBAL NODE NUMBERS 
CC 

NP = 2 
CALL MAP(NOORT,NRY,LASTNOOE,NP) 

cc 
CC BUILD a-NODE QUADRILATERAL ELEMENTS IN COLUMN 
cc SORT NSP ARRAY IN ASCENDING ORDER W.R.T Y-COORD. 
CC 

DO 19 l = l,MSP-l 
II = KSP (I) 
DO 77 J = I+l,MSP 
JJ = KSP(J) 
IF(YY(II).GT.VY(JJ» TH EN 

KSP(I) = JJ 
KSP(J) '" II 
II .. JJ 

ENDIF 
77 CONTINUE 
79 CONTINUE 

CC 
JR = 1 
JM = 1 
JF = NF1 
ISP = 0 
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DO 90 II = 1,NM-1 
JF1 = JF+1 
JF2 = JF+2 
NUM = NUM+1 

CC 
IF(JF2.GT.NF) JF2=NF 

LXY(l) :: NODFR(JF) 
LXY(2) = NOMID(JM) 

LXY(3) = NODRT(JR) 
LXY(7) = NODFR(JF1) 

LXY(8) = NODFR(JF)+l 
XZ(1) :: XF(JF) 

YZ(l) :: YF(JF) 
XZ(2) = XR(JR) 
YZ(2) :: YR(JR) 

XZ(4) = XF(JF1) 
Y2(4) = YF(JFl) 

CC 
IF(JF1.EQ.JF2) GOTO 600 
IF(YF(JF1)-YF(JF» 400,300,200 

200 IF(YF(JF2)-YF(JF1» 290,250,220 
220 IF(XF(JF1)-XF(JF» 620,600,620 

CC 
CC CASES 1 AND 4 
CC 

600 LXY(4) = NODRT(JR)+l 
LXY(5) :: NODRT(JR+l) 

LXY(6) = NOMIO(JM+l) 
XZ(3) :: XR(JR+1) 

YZ(3) :: YR(JR+l) 
GOTO 60 

CC 
250 IF(XF(JF2)-XF(JF1» 600,280,270 

CC 
CC CASE 3 
CC 

270 LXY(4) :: NOMID(JM+l) 
LXY(5) :: NODFR(JF2) 

ISP = ISP+l 
LXY(6) = KSP(ISP) 

XZ(3) = XF(JF2) , 
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YZ(3) = YF(JF2) 
JF = JF+l 
JR = JR-l 

GOTO 60 
CC 
CC CASES 5 AND 6 
CC 

620 LXY(4) = NODRT(JR)+l 
LXY(5) = NODRT(JR+l) 

LXY(F) = NOMID(JM+l) 
ISP = ISP+l 

LXY(8) = KSP(ISP) 
XZ(3) = XR(JR+l) 

YZ(3) = YR(JR+l) 
GOTO 60 

CC 
CC CASE 2 
CC 

300 LXY(4) = NOMID(JM+l) 
LXY(5) = NODFR(JF2) 

LXY(6) - NODFR(JF1)+1 
ISP = ISP+l 

LXY(8) = KSP(ISP) 
XZ(3) = XF(JF2) 

YZ(3) = YF(JF2) 
JF = JF+1 
JR = JR-l 

GOTO 60 
280 WRITE(*,*) 'ERROR DETECTED AT STATEMENTS 250 - 280 1 

STOP 
290 WRITE(*,*) 'ERROR DETECTED AT STATEMENTS 200 - 290 1 

STOP 
400 WRITE(*,*) 'ERROR DETECTED AT STATEMENT 400 1 

STOP 
CC 

60 CONTINUE 
DO 70 l = 1,8 
NUMEL = NUMEL+l 
NLM(NUMEL) • LXY(I) 

70 CONTINUE 
CC 
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CC NODAL COORDS. OF CORNER NODES 

cc 
JJ = 0 

IA = 8*(NUM-l) 

DO 75 l = 1,8,2 

LL = NLM(IA+I) 

JJ = JJ+l 
IF(JJX(LL) .EQ .1) GOTO 75 

NNODE = NNODE+l 
XX(LL) ,.. XZ(JJ) 

YY (LL) = YZ (J J) 

JJX(LL) = 1 
IF(XMIN.GT.XX(LL» XMIN = XX(LL) 

IF(XMAX.LT,XX(LL» XMAX = XX(LL) 

IF(YMIN.GT.YY(LL» YMIN = YY(LL) 

IF(YMAX.LT,YY(LL» YMAX = YY(LL) 

75 CONTINUE 

cc 
CC NODAL COORDS. OF MIDSIDE NODES 

CC 

DO 80 l = 1,8,2 

J = 1+2 
IF(J.GT.8) J=J-8 

LL = NLM(IA+I+l) 

KK = NLM(IA+I) 

JJ = NLMOA+J) 
IF(JJX(LL) .EQ.1) GOTO 80 
NNODE ,.. NNODE+t 

XX(LL) ,.. (XX(KK)+XX(JJ)/2.0 

YY(LL) = (YY(KK)+YY(JJ»/2.0 

JJX(LL) = 1 

80 CONTINUE 

CC 

JF = JF+l 

JR = JR+l 
JM ZI JM+l 

CC 

90 CONTINUE 
MSP :a 0 

CC 
DO 46 l ,. 1, NM 

1 
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46 NOTEM(I) = NOMIO(I) 
cc 
CC CHECK WHICH OF NSP(*) ELEMENTS LIE ON THE FRONT 
CC 

DO 47 II = l,JSP 
l :1 NSP(Il) 
XV(lI) = XX(I) 
YV(II) = YY(l) 

47 CONTINUE 
CALL CHECK(NSP,JSP.KSP.MSP.XX.YY.NOOFR, 

1 NF ,XV. YV ,LASTNODE) 
CC 
cc UPDATE THE FRONT EOGE 
CC 

JJ = 0 
IF(NF2.EQ.NF) GOTO 105 
DO 100 l = NF2,NF 
JJ = JJ+l 
XT(JJ) = XF(I) 
YT(JJ) = YF(I) 
NO(JJ) = NOOFR(l) 

100 CONTINUE 
CC 

105 NF = 0 
IF(NFO.EQ.O) GOTO 109 
DO 107 l = l,NFl 
NF = NF+l 
XF(NF) = XF(I) 
YF(NF) = YF(I) 
NODFR(NF) = NOOFR(I) 

107 CONTINUE 
CC 

109 DO 110 l = 1,NRY 
NF = NF+l 
XF(NF) = XR(I) 
YF(NF) = YR(I) 
NODFR(NF) :1 NOORT(I) 

110 CONTINUE 
CC 

IF(JJ.EQ.O) GOTO 125 
DO 120 l - l,JJ 
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NF ,. NF+1 
XF(NF) :II XT(I) 
YF (NF) :II YT(I) 
NODFR(NF) = ND(I) 

120 CONTINUE 
125 CONTINUE 

CC 
CC CHECK WHICH OF NSP(*) ELEMENTS LIE ON THE UPDATED FRONT 
CC 

CALL CHECK(NSP,JSP,KSP,MSP,XX,YY,NODFR,NF,XV,YV,LASTNODE) 
CC 

GOTO 25 
500 CONTINUE 

CC 

WRITE(*,*) 'MAXIMUM X-VALUE =', XMAX 
WRITE(*,*) 'MINIMUM X-VALUE =', XMIN 
WRITE(*,*) 'MAXIMUM Y-VALUE =', YMAX 
WRITE(*,*) 'MINIMUM Y-VALUE =', YMIN 

CC NODAL CONSTRAINTS, ELEMENT MATERIAL PROPERTIES 
CC AND DISTRIBUTED LOADS 
CCO 

RE AD (LIN,*) NPOIN,NDIST,NUMAT,NTYPE,YDLL,YDLR,XDLT,XDLB 
NDISZ = 4*NDIST 
IF(NPOIN.GT.O) THEN 

DO 510 l = 1,NPOIN 
510 READ(LIN,*) NPO(I).XPO(I),YPO(I) 

ENDIF 
IF(NUMAT-1) 520,530,530 

520 WRITE(*,*) 'ERROR! NEGATIVE VALUE READ FOR NO.', 
l'OF MATERIAL TYPES', NUMAT 

STOP 
530 DO 550 l = l, NUMAT 

READ (LIN,*) YM(I),PR(I),MTYPE(I) 
550 READ (LIN,*) ZXL(I),ZXR(I),ZYB(T),ZYT(I) 

IF(NUMAT.EQ.l) THEN 
ZXL (1) = XMIN 
ZXL(l) = XMAX 
ZXL(l) = YMIN 
ZXL ( l ) = YMAX 
ENDIF 
READ (LIN, *) JXL, JYL, JXB, JYB. JXR, JYR, JXT, JYT 
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cc 

cc 

CALL MATEL(XX,YY,JDOX,JDOY,NNODE,NUM,NUMEL, 
NLM,NELTYP,JDSIDE,DLOAD,MTYPE,ZXL,NDISZ, 
ZXR,ZYB,ZYT,YDLL,YDLR,XDLT,XDLB,XMAX,XMIN,YMAX, 
JXL, JYL, JXB, JYB, JXR, JYR, JXT, JYT, 
YMIN,LNP,NUMAT,NTYPE,YM,PR,NPOIN,NPO,XPO,YPO,TITLE) 

STOP 
END 

CC---------------------------------------------

cc 

SUBROUTINE MAP(NCELL,NN,LL,IJ) 
DIMENSION NCELL(NN) 

LL .. LL-IJ+1 
DO 50 l = 1,NN 
LL • LL+IJ 
NCELL(I) :II LL 

50 CONTINUE 
RETURN 
END 

cc ---------------------------------------------

CC 

84 
CC 

86 

SUBROUTINE CHECK(NSP,JSP,KSP,MSP,XF,YF,NOD,NF,XV,YV,LL) 
DIMENSION NSP(JSP),KSP(JSP),XF(LL),YF(LL),NOD(NF) 
DIMENSION XV(JSP),YV(JSP) 

DO 86 II a 1,JSP 
XI = XV(II) 
YI = YV(I!) 
DO 84 JJ = 1,NF-l 
J = NOD(JJ) 
K = NOD(JJ+l) 
XJ = (XF(J)+XF(K))/2.0 
YJ .. (YF(J)+YF(K))/2.0 
IF(XI.EQ.XJ.AND.YI.E4.YJ) THEN 
MSP = MSP+l 
KSP(MSP) .. NSP(II) 
GOTO 86 
ENDIF 
CONTINUE 

CONTINUE 

203 



• 

• 

cc 
CC CHECK FOR REPEATED NODES 
CC 

K = MSP 
DO 150 II = 1,MSP-! 
1 = KSP(II) 
DO 140 JJ = II+1,MSP 
J = KSP(JJ) 
IF(I.EQ.J) THEN 
K = JJ-1 
IF(JJ.EQ.MSP) GOTO 140 
DO 130 KK = JJ+1,MSP 
K = K+1 

130 KSP(K) = KSP(KK) 
ENDIF 

140 CONTINUE 
MSP = K 

150 CONTINUE 
CC 

RETURN 
END 

CC ---------------------------------------------

CC 

SUBROUTINE MATEL(XORD,YORD,JDOX,JDOY,NNODE,NNEL,NUMEL, 
+ NLM,NELTYP,JDSIDE,DLOAD,MTYPE,ZXL,NDISZ, 
+ ZXR,ZYB,ZYT,YDLL,YDLR,XDLT,XDLB,XMAX,XMIN,YMAX, 
+ JXL, JYL, JXB, JYB, JXR, JYR, JXT, JYT, 
+ YMIN,LNP,NUMAT,NTYPE,YM,PR,NPOIN,NPO,XPO,YPO,TITLE) 

DIMENSION XORD(NNODE), YORD(NNODE),DLOAD(NDISZ) 
DIMENSION NLM(NUMEL), NELTYP(NNEL),JDOX(NNODE) 
DIMENSION YM(NUMAT), PR(NUMAT),JDOY(NNODE) 
DIMENSION NPO(NPOIN),XPO(NPOIN), YPO(NPOIN) 
INTEGER JDSIDE(NDISZ),MTYPE(NUMAT),NODE(4) 
INTEGER NNEL,NUMAT,NNODE,ML,ML,MT,IN 
REAL ZXL(NUMAT) ,ZXR(NUMAT) ,ZYB(NUMAT) ,ZYT(NUMAT) 
REAL XL,XR,YB,YT,XXL,XXR,YYB,YYT 
CHARACTER*l TITLE(70) 

CC --------------------------------------------------------
CC 
cc 
CC 

YB 
YT 
YBE 

= Y-CORD OF BOTTOM OF STRUCTURE, 
= Y-CORD OF TOP OF STRUCTURE, 
= BOTTOM Y-COORD. OF ELEMENT 
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CC (ASSUMEO PARALLEL TO X-AXIS) 
CC YTE ~ TOP Y-COORD. OF ELEMENT 
CC (ASSUMEO PARALLEL TO X-AXIS) 
CC YDLL = YLOAD AT TOP LEFT CORNER OF ELEMENT, 
CC YOLR = YLOAD AT TOP RIGHT CORNER OF ELEMENT, 
CC XDLT = XLOAO AT TOP RIGHT CORNER OF ELFliENT. 
CC XOLB = XLOAD AT BOTTOM RIGHT CORNER OF ELEMENT, 
CC ----------------------------------------------------

CC 

NDIST = N01SZ/4 
THIC '" 1.0 
NPOIN = 0 
DENS '" -0.0264 
IPRNT = 1 

CC NODAL CONSTRAINTS 
CC 

CC 

DO 10 l '" 1,NNOOE 
JOOXCI) '" 0 
JDOY(I) :: 0 

CC CHECK IF NODE 15 ON LEFT BOUNDARY 
CC 

CC 

1F(XORD(1).EQ.XMIN) THEN 
JOOX(1) :1 JXL 
JOOY(I) = JYL 

ENDIF 

CC CHECK IF NODE IS ON LOWER BOUNDARY 
CC 

CC 

IF(YORD(I).EQ.YMIN) THEN 
JDOX(I) = JXB 
JDOY(I) • JYB 

ENDIF 

CC CHECK IF NODE IS ON R1GHT BOUNDARY 
CC 

CC 

1F(XORD(I).EQ.XMAX) THEN 
JDOX(I) '" JXR 
JDOY(I) = JYR 

EN01F 
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CC CHECK IF NODE 15 ON TOP BOUNDARY 
CC 

cc 

IF(YORD(I) .EQ.YMAX) THEN 
JDDXer) ;;; JXT 
JDOyer) = JYT 

ENDIF 

CC CHECK FOR CORNER NOOES 
CC 

CC 

CC 

CC 

CC 

IF(XORD(I) .EQ.XM1N .ANO. YORD(1).EQ.YMIN) THEN 
1F(JXL.EQ.l .0R.JXB.EQ.l) JODX(1) = 1 
IF(JYL.EQ.l .DR.JYB.EQ.l) JOOY(1) ;;; 1 

EN01F 

IF(XORD(1) .EQ.XMIN .AND. YORD(1).EQ.YMAX) TH EN 
IF(JXL.EQ.l .OR.JXT.EQ.l) JODX(I) • 1 
IF(JYL.EQ.l .DR.JYT.EQ.l) JOOY(I) ;;; 1 

ENDIF 

IF(XORD(I) .EQ.XMAX .ANO. YORD(I).EQ.YMAX) THEN 
IF(JXR.EQ.l .OR.JXT.EQ.l) JDOX(I) = 1 
IF(JYR.EQ.l .0R.JYT.EQ.l) JOOY(1) ;;; 1 

ENOIF 

IF(XORD(I) .EQ.XMAX .AND. YORD(I).EQ.YMIN) TH EN 
IF(JXB.EQ.l .OR.JXR.EQ.l) JODX(I) • 1 
IF(JYB.EQ.l .0R.JYR.EQ.l) JODY(1) • 1 

EN01F 

10 CONTINUE 
CC 
CC ELEMENT MATERIAL PROPERTIES 
CC 

IF(NUMAT.EQ.l) THEN 
DO 20 II • l,NNEL 

20 NELTYP(1I) :: 1 
GOTO 45 

ENDIF 
DO 40 II = l,NNEL 
lA = 8*(11-1) 
ML :: NLM(IA+1) 
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MR .. NLM(IA+3) 
MT .. NLM(IA+5) 
XXL :III XORD(ML) 
XXR = XORD (MR) 
YYB = YORD(ML) 
YYT = YORD (MT) 
DO 30 JJ = l,NUMAT 
XL .. ZXL(JJ) 
XR :: ZXR(JJ) 
YB .. ZYB(J J) 
YT .. ZYT(JJ) 

IF(XXL.GE.XL.AND.XXR.LE.XR) THEN 
IF(YYB.GE.YB.AND.YYT.LE.YT) THEN 

NELTYP(II) = MTYPE(JJ) 
Goro 40 

ENDIF 
ENDIF 

30 CONTINUE 
40 CONTINUE 
45 CONTINUE 

WRITE(LNP,505) TITLE 
WRITE(LNP,500) NNODE,NNEL,NUMAT,NTYPE,NPOIN,NDIST, 

1 IPRNT • THIC 
DO 50 l = l,NUMAT 

50 WRITE(LNP,510) YM(I) , PR(I) , DENS 
DO 55 l = l,NNODE 
WRITE(LNP,80) I,XORD(I).YORD(I),JOOX(I),JOOY(I) 

55 CONTINUE 
CC 

DO 60 l = 1,NNEL 
lA .. 8*1-7 
lB • IA+7 
WRITE(LNP,70) I,NELTYP(I),(NLM(J),J=IA,IB) 

60 CONTINUE 
CC 

70 
80 

CC 

FORMAT(1016) 
FORMAT(I6,2F8.3,215) 

CC DISTRIBUTED LOADS, ASSUMED TO BE APPLIED TO THE 
CC TOP AND/OR RIGHT BOUNDARIES ONLY. 
CC 
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GRAOX == (YOLL-YOLR)/(XMAX-XMIN) 
GRAOY == (XOLT-XOLB)/(YMAX-YMIN) 
DO 90 l .. NDISZ 

90 DLOAD(I) = 0.0 
cc 

II~ .. 0 
DXB == XDLB 
DYL .. YOLL 
DO 160 II = 1,NNEL 
IA .. 8*(II-l) 
DO 150 J J = 1,2 
IJ = JJ*2 
DO 100 KK = 1,3 
IJ = IJ+l 

100 NOOE(KK)" NLM(IA+IJ) 
GOTO(110,130), JJ 

110 CONTINUE 
CC 
CC RIGHT BOUNOARY LOAOS 
cc 

IF(XOLB.EQ.O.O .AND. XDLT.EQ.O.O) GOTO 150 
XN = XORD(NODE(3» 
IF(XN.EQ.XMAX) THEN 

IN .. IN+l 
lB .. 4*IN-4 

DO 120 l = 1,3 
120 JDSIDE(IB+I) • NODE(I) 

JDSIDE(IB+4) == II 
YBB .. YORD(NOOE(l» 

YBT .. YORD(NODE(3» 
OXT = GRADY*(YBT - YBB) + OXB 

DLOAD(IB+l) .. OXB 
DLOAO(IB+3) .. DXT 

DXB .. DXT 
ENDIF 

GOTO 150 
130 CONTINUE 

IF(YDLL.EQ.O.O .AND. YDLR.EQ.O.O) GOTO 160 
CC 
CC TOP BOUNDARY LOADS 
CC 
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YN • YORD(NOoE(3)) 
IF(YN.EQ.YMAX) THEN 

IN ... IN+1 
lB • 4*IN-4 

DO 140 l = 1,3 
140 JDSIDE(IB+I) :: NODE(I) 

JDSIDE(IB+4) • II 
XBR = XORD(NODE(l» 

XBL = XORD(NODE(3) 
DYR = GRAoY*(XBR - XBL) + oYL 

DLOAo(IB+2) ... DYR 
DLOAD(IB+4) = DYL 

DYL :: DYR 
ENDIF 

CC 
150 CONTINUE 
160 CONTINUE 

CC 
IF(NDIST.GT,O) THEM 

DO 170 l ... l,NoIST 
lA = 4*1-3 
lB = IA+3 

170 WR1T~(LNP,180) (JDSIDE(J),J=IA,1B),(DLOAo(J),J=1A,1B) 

CC 
ENDIF 

IF(NPOIN.GT.O) THEN 
DO 175 l = 1,NPOIN 

175 WRITE(LNP,185) NPO(I),XPO(I),YPO(I) 
ENDIF 

CC 
180 FORMAT (415 , 4Fl0.3) 
185 FORMAT(I5, 2Fl0.3) 
505 FORMAT(70A1) 
510 FORMAT(lF12.3,2Fl0.3) 
500 FORMAT(715,F6.2) 

CC 
STOP 
END 
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Appendix C 

LISTING A SPECIAL PURPOSE 8-NODE 

QUADRILATERAL MESH GENERATOR 

OVER CIRCULAR OPENINGS, QUADMESH 

The listing of a speclal purpose 8-node quadrllateral mesh gener­
ator called CIRCMESH, 18 gl ven ln thlS appendlX. The program has 
bean descrlbed in Chapter 5. 
CC •• * ••••• **.*** •• *****.******.********* ••••••••••••••••• 

INPUT IS AS FOLLOWS: cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 

LINE 1: READ(LIN,l) TITLE 
LINE 2: READ(LIN •• ) NNY.NANG.RO,BM 

REAO(LIN,.) «JXL(I.J),J-l,2),I-l,4) 
READ(LIN,.) XL,YB,XR,YT,TH 
READ(LIN,.) ASXX. ASYY 

LINE 3: 
LINE 4: 
LINE 5: 

EXPLANA TI ONS: 

TInE • TInE, NOT MORE mAN 75 CHARACTERS. 

NNY = NO. OF ELEMENT SIDES ALONG X OR Y AXIS 
RO = BOREHOLE RADIUS 
BM - Y (OR X) BOUNDARY MAGNIFICATION FACTOR 
NANG • NO. OF ANGULAR SUBDIVS. OF FIRST QUADRANT 

- (MUST BE EVEN) 

JXL(I,J) - CONDITION CODE FOR BOUNDARY l IN J DIRECTION 
J - 1. MEANS X-DIRECTION 
J • 2, MEANS Y-DIRECTION 

JXL(I,J) • 0, MEANS BOUNDARY CAN MOVE IN J DIRECTION 
• 1, MEANS BOUNDARY CANNOT MOVE IN J DIRECTION 

r-1, BOUNDARY # 1 ( XL • LEFT BOUNDARY X-COORDINATE) 
r"2, BOUNDARY # 2 ( YB .. BOTTOM BOUNDARY Y-COORDINATE) 
I=3, BOUNDARY # 3 ( XR BRIGHT BOUNDARY X-COORDINATE) 
I=4, BOUNDARY # 4 ( YT • TOP BOUNDARY Y-COORDINATE) 
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cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
CC 

ASXX .. APPLIED STRESS IN X-DIRECTION 
ASYY = APPLIED STRESS IN Y-DIRECTION 

OTHER EXPLANATIONS ARE: 

IPRNT • PRINT OUTPUT DATA OPTION 
= 0 => DO NOT PRINT 
= 1 => PRINT 

NUMAT = TOTAL NO. OF MATERIAL TYPES 
NTYPE = PROBLEM TYPE PARAMETER 

= 1 ::) PLANE STRESS 
= 2 =) PLANE STRAIN 

NOIST = NO. OF ELEMENT SIDES WITH DISTRIBUTED LOADS 
NPOIN = NO. OF NaDES WITH POINT LOADS 

cc ---------------------------------------
cc 

cc 

cc 

cc 

CC 

IMPLICIT REAL*8 (A-H,O-Z) 
REAL XORD (225), YORO(225) ,DLOAD(512) , PROPS(3) 
REAL TIUC , XR, YT , ASXX ,ASYY 
INTEGER NLM(64,8),JDSIDE(512),NUMEL(512) ,ELTYP(64) 
INTEGER JJX(450),JDOX(225),JDOY(225),JXL(4,2),MM(10) 
INTEGER NTOT,NNEL,NNODE,NEQ, ISIDE, NSIDE 
LOGICAL LESS, MORE, EXISTS 
CHARACTER*5 TITLE(15) 
PARAMETER (PI=3.141592654) 

LOUT = 4 
LIN .. 3 

LESS ... FALSE. 
MORE • . F ALSE . 

OPEN(LIN, FILE= 'meshin ' , STATUS=' OLD' , FORM=' FORMATTED' ) 

CC CHECK THAT OUTPUT FILE DECLARED NEW DOES NOT ALREADY EXIST. 
CC IF IT EXISTS, PURGE IT FIRST. 
CC 
CC -----------------------------------------------------
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cc 
INQUIRE(FILE-'meshout' ,EXIST-EXISTS) 
IF(EXISTS) THEN 
OPEN(UNIT-LOUT,FILE='meshout',STATUS.'OLD') 
CLOSE(UNIT=LOUT,STATUS='DELETE') 
ENDIF 
OPEN(UNIT=LOUT,FILE='meshout' ,STATUS='NEW', 

1 FORM='FORMATTEDI) 
CC -----------------------------------------------------
CC 
CC READ PROBLEM TITLE 
CC 

READ(LIN,l) TITLE 
WRITE ( * , 1) TITLE 
WRITE(LOUT.l) TITLE 

1 FORMAT(15A5) 
READ(LIN,*) NNY,NANG,RO,BM 
READ(LIN,*) «JXL(I,J) ,J=1,2) ,1=1,4:) 

10 FORMAT(815) 

cc 

cc 

15 FORMAT(215,6Fl0.l) 
20 FORJof.AT(7Fl0. 1) 

1SIDE :s NANG*2 
NSIDE ,.. 0 
PI4=P1/2./FLOAT(NANG) 
NN=-NNY-1 
NP=NNY+l 

ENOIF 

CC TOP EDGE 
CC 

IF(YORO(ISS(1».EQ.YT.AND.YORD(1SS(3») .EQ.YT) THEN 
IF(ASYV.LT.O.O) THEN 

XXYY ,.. ASTI 
ICHEK ,. 2 

EN01F 
END1F 

CC 
80 CONTINUE 

IF (ICHEK . EQ. 0) GOTO 90 
JDS(KK+t) • ISS (1) 
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JDS(KK+2) = 1SS(2) 
JDS(KK+3) = 155(3) 

JDS(KK+4) = NL 
1F(ICHEK.EQ.l) THEN 

DDL(KK+l) = XXYY 
DOL (KK+2) ... 0.0 

DDL(KK+3) = 0.0 
o DL (KI< +4) == XXyy 

ENDIF 
IF(ICHEK.EQ.2) THEN 

DDL(KK+2) = XXyy 

DDL(KK+l) = 0.0 
DDL(KK+3) ... 0.0 

DDL(KK+4) ,. XXYY 
ENDIF 
KK ,. KK+4 

90 CONTINUE 
100 CONTINUE 

CC 

NS = KK 
RETURN 
END 

NLM (NL .6) =IM+l 

NLM (NL. 7) =IL+2 
NLM (NL .8) =IL+l 

DO 28 K ... 1.8 
NTOT = NTOT+l 
NUMEL(NTOT) = NLM(NL,K) 

28 CONTINUE 
IL=IL+2 
IM-IM+l 
IR-IR+2 

30 CONTINUE 
CC 
CC ------- NODAL COORD1NATES 
CC 

cc 

ANG=-PI4 
MANG=NANG/2+ 1 

BMR=BM*RO 
DO 85 J=l,MANG 

213 



1 

• 

CC CALCULATE RADIAL LENGTHS OF CORNER POINTS ON RADIAL LINE 
CC 

ANG"ANG+PI4 
BZ=BM/DCOS(ANG)-1.0 
EPS=0.00001 

XA=0.5 
RISE=1 .0 
LOOP = 0 
DENOM = 1000.0 

50 LOO?" LOOP + 1 
IF(LOOP.GT.2000) THEN 
WRITE(* .*) ITOO MANY LOOPS I! 1 

STOP 
ENDIF 
XA=XA*RISE 
BA = 0.0 
WB = 1. 0 
DO 55 l .. 1, NNY 
WB .. WB*XA 
BA :II BA+WB 

55 CONTINUE 
CC 

59 BAZ = BA-BZ 
IF(BAZ) 60,70,65 

60 LESS = . TRUE . 
CC 

IF(MORE) THEN 
CC 

IF(DABS(BAZ).LE.0.001) GOTO 70 
XA • XA/RISE 

CC 

RISE .. RISE + EPS*DENOM 
DENOM • DENOM/ 10 .0 

MORE ... FALSE. 
ENDIF 

RISE • RI SE + EPS*DENOM 
GOTO 50 

65 MORE" .!RUE. 
CC 

IF(LESS) THEN 
cc 
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• IF(DABS(BAZ).LE.0.001) GOTO 70 
XA :1 XA/RISE 
RISE :1 RISE - EPS*DENOM 
DENOM = DENOM/l0.0 
LESS = . FALSE. 
GOTO 68 

ENDIF 
XA :1 XA/RISE 

68 RISE = RISE - EPS*DENOM 
GOTO 50 

CC 
70 CONTINUE 

CC 
NN=NN+NNY 
MM(J)=NN+2 
WB=-O. 
DO 80 I=l,NP 
WB=WB+RO*XA**(I-l) 
NN-NN+2 
XORD(NN)=WB*DSIN(ANG) 
YORD(NN)=WB*DCOS(ANG) 
IF(DABS(BMR-XORD(NN».LE.EPS) XORD(NN)=BMR 
IF(DABS(BMR-YORD(NN».LE.EPS) YORD(NN)=BMR 

80 CONTINUE 
85 CONTINUE 

CC 
CC NOW ROTATE ABOUT 45 DEGREES TO COMPLETE CORNER COORDS. 
CC 

DO 95 1=2,MANG 
ML=MM(MANG-I+l)-2 
NN=NN+NNY 
DO 90 J=l,NP 
ML=ML+2 
NN=NII+2 
XORD (NN) =YORD(ML) 
YORD(NN)=XORD(ML) 

90 CONTINUE 
95 CONTINUE 

CC 
CC --- INTERMEDIATE NODES 
CC 
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DO 110 n-l,NNEL 
DO 100 JJ=-2.8,2 
J=NLM(II, JJ) 
IF(JJX(J).GT.O) GOTO 100 
Kl=JJ-l 
K2=JJ+l 
IF(K2.GT.7) K2=1 
Jl"NLM(II ,Kl) 
J2=NLMOI,K2) 
XORD(J)=(XORD(Jl)+XORD(J2»/2. 
YORD(J)=(YORD(Jl)+YORD(J2»!2. 
JJX(J)=l 

100 CONTINUE 
110 CONTINUE 

CC 

READ(LIN,*) XL,YB,XR,YT,THIC 
READ(LIN,*) ASXX, ASYY 

CC READ ELEMENT PROPERTIES DATA 
CC 
CC PROPS(l) = YOUNG'S MODULUS FOR MATERIAL TYPE l 
CC PROPS(2) = POISSON'S RATIO FOR MATER1AL TYPE l 
CC PROPS(3) = OENSITY FOR MATERIAL TYPE l 
CC 

CC 
CC 
CC 
CC 

READ(L1N,*) PROPS(1),PROPS(2),PROPS(3) 
IF(ASXX.NE.O.O) NSIDE = NSIDE+ISIDE 
IF(ASYY.NE.O.O) NSIDE = NSIDE+ISIDE 

FORM THE NODAL D.O.F ARRAY, JOOX(I), 
JOOY(1) 0=1,2, ., ,NNODE) 

CC J = 1 MEANS X-DIRECTION 
CC J = 2 MEANS Y-DIRECTION 
cc JDOX(I) = 0 MEANS NODE l 15 NOT CONSTRAINED IN X DIRECTION 
cc JDOX(I) .. 1 MEANS NODE l 1S CONSTRAINED IN X DIRECTION 
CC JDOY(I) = 0 MEANS NODE l 15 NOT CONSTRAINED IN y DIRECTION 
CC JDOY(I) = 1 MEAN5 NODE l IS CONSTRAINED IN Y DIRECTION 
CC 

CC 
DO 165 l = l,NNODE 

X1=(XORD(I)-XL)/2. 
X2=(XORD(I)-XR)/2. 
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cc 

Yl=(YORD(I)-YB)/2. 
Y2-(YORD(I)-YT)/2. 
IF(DABS(X1).LE.O.001) XORD(I)=XL 
IF(DABS(X2).LE.O.001) XORD(I)=XR 
IF(DABS(Y1).LE.O.001) YORD(I)-YB 
IF(DABS(Y2).LE.O.001) YORD(I)-YT 

J = a 
K = 0 
XI = XORD(I) 
YI = YORD(I) 
JDOX(I) = 0 
JOOY(1) = 0 
IF(XI.EQ.XL) THEN 

J = 1 
GOTO 162 

ENOIF 
IF(XI.EQ.XR) THEN 

J = 3 
ENDIF 

162 1F(YI.EQ.YB) THEN 
K = 2 

GOTO 164 
ENDIF 
IF(YI.EQ.YT) THEN 

K = 4 
ENDIF 

164 IF(J.EQ.O.AND.K.EQ.O) GOTO 165 
IFeJ.EQ.1.0R.J.EQ.3) JDOX(I) ::: JXL(J,l) 
IF(K.EQ.2.0R.K.EQ.4) JOOY(1) = JXL(K,2) 

165 CONTINUE 
CC 
CC DISTR1BUTED LOADS 
CC 

CALL SIDELOD(JDSIDE,DLOAO,NSIDE,XORD,YORO,NUMEL, 
1 NNODE,NTOT,ASXX,ASYY,XL,XR,YB,YT) 

cc 
CC MATERIAL TYPE VECTOR, ELTYP(I) 
cc 

DO 167 l ::: 1,NNEL 
ELTYP(I) = 1 
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167 CONTINUE 
NDIST • NSIDE/4 
IPRNT .. 1 
NUMAT .. 1 
NTYPE .. 1 
NPOIN .. 0 

cc 
CC PRINT RESULTS 
CC 

C 

WRITE(LOUT,2) NNODE,NNEL,NUMAT,NTYPE,NPOIN,NDIST, 
1 IPRNT,TH1C 

WRITE(*,2) NNODE,NNEL,NUMAT,NTYPE,NPOIN,NDIST, 
1 IPRNT,THIC 

WRITE(LOUT,241) PROPS(1),PROPS(2),PROPS(3) 
241 FOr~T(3Fl0.4) 

2 FORMAT(7I6,F6.2) 

C WRITE(LOUT,250) NNODE,NNEL,PROPS(1),PROPS(2) , 
CC 1 THIC,PROPS(3) , ASXX,ASYY 
C WRITE(LOUT,280) NNODE 

DO 240 l 2 l,NNODE 
240 WRITE(LOUT,290) I,XORD(I),YORD(I),JDOX(I),JDOY(I) 

C WRITE(LOUT,260) NNEL 
DO 245 I= 1, NNEL 

245 WR1TE(LOUT,270) 1,ELTYP(1),(NLM(1,J),J"l,8) 
CC 

DO 500 l .. l,NSIDE,4 
J .. 1+3 
WRITE(LOUT,410) (JDSIDE(K),K-I,J),(DLOAD(K),K-1,J) 

500 CONTINUE 
410 FORMAï(416,4Fl0.4) 
250 FORMATe" ,II,5X,'TOTAL NO. OF NODES .. ' ,110,/, 

1 5X,'TOTAL NO. OF ELEMENTS ;a' ,110/, 
2 5X,'MODULUS OF ELASTICITY (MPA)·' ,Fl0.2/, 
3 5X,'P01SSONS B~TIO .' ,Fl0.4/, 
4 5X,'ELEMENT THICKNESS CM) a' ,F10.4/, 
5 5X,'MATERIAL DENSITY (MPA/M) 1Il',F10.61, 
8 5X,'APPLIED STRESS IN X-DIRECTION·' ,F10.3/, 
9 5X,'APPLIED STRESS IN Y-DIRECTION·' ,Fl0.3/) 

260 FORMAT ( , J, l, 15X, J ELEMENT NODE UUMBERING J, / , 

1 15X,'TOTAL NO. OF ELEMENTS =' ,13,/, 



• 

, 

1 'ELEM ELEM NODE1 NODE2 NODE3 NODE4', 
1) NODES NODES NODE7 NODES 1 , / , 

l' NO TYPE' ,/) 
270 FORMAT(I4,4X,I2,8(4X,I3» 
280 FORMATC! ,2X, 'TOTAL NO. OF NaDES ... ' ,15,/, 

1 'NODE X-COORDINATE Y-COORDINATE X-DOF 
289 FORMAT(' J,I5,2(6X,Fl0.5» 
290 FORMAT(' I,I5,2(4X,Fl0.5),2(4X,I3» 
350 FORMAT ( 1017) 

STOP 
END 

cc -------------------------------

Y-DDF' ,1) 

SUBROUTINE SIDELOD(JDS,DDL,NS,XORD,YORD,NUM,NN,NTOT, 
1 ASXX,A5YY,XL,XR,YB,YT) 

DIMENSION XORD(NN),YORD(NN),NUM(NTOT) 
DIMENSION JDS(NS),DDL(NS),NLM(8),ISS(3) 
INTEGER KK,NNEL,NN,NS,ICHEK 

cc 
KK = 0 
NNEL = NTDT /8 
NL = 0 
DO 100 II = 1,NTDT,8 
NL = NL+l 
J • II - 1 
DO 50 l = 1,8 
J .. J+l 

50 NLM(I) .. NUMU) 

DO 90 15 = 1,4 
ICHEK = 0 
155(1) = 15*2-1 
ISS (2) = IS*2 
ISS(3) .. IS*2+1 
IF(ISS(3).GT.8) I55(3) = ISS(3)-8 

cc 
CC CHECK IF SIDE CORRESPONDS TD ANY EDGE 
CC 

DO 60 l • 1,3 
Iss(r) • NLM(ISS(I)) 

60 CONTINUE 
cc 
CC LEFT EDGE 
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IF(XORD(ISS(1».EQ.XL.AND.XORD(ISS(3».EQ.XL) TH EN 

IF(ASXX.GT.O.O) THEN 
XXYY = ASXX 
ICHEK = 1 
GOTO 80 

ENDIF 
ENDIF 

CC 
CC RIGHT EDGE 
CC 

IF(XORD(ISS(1».EQ.XR.AND.XORD(ISS(3».EQ.XR) THEN 
IF(ASXX.LT.O.O) TH EN 

XXYY = ASXX 
ICHEK • 1 
GOTO 80 

ENDIF 
ENDIF 

CC 
CC BOTIOM EDGE 
CC 

IF(YORD(ISS(1».EQ.YB.AND.YORD(ISS(3».EQ.YB) THEN 
IF(AS~{.GT.O.O) THEN 

XXYY • ASVY 
ICHEK = 2 
GOTO 80 

ENDIF 
ENDIF 

CC 
CC TOP EDGE 
cc 

IF(YORD(ISS(1».EQ.YT.AND.YORD(ISS(3».EQ.YT) THEN 
IF(ASVY.LT.O.O) THEN 

XXYY • ASVY 
ICHEK ,. 2 

ENDIF 
ENDIF 

CC 
80 CONTINUE 

IF(ICHEK.EQ.O) GOTO 90 
JDS(KK+l) • ISS(l) 

1 
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JDS(KK+2) = ISS(2) 

JDS(KK+3) ;; ISS(3) 

JDS (KK+4) = NL 

IF(ICHEK.EQ.l) THEN 
DDL(KK+l) .. XXyy 

DDL(KK+2) = 0.0 
DDL(KK+3) ;; 0.0 

DDL(KK+4) = XXyy 
ENDrF 
IF(ICHEK.EQ.2) THEN 

DDL(KK+2) ;; XXYY 
DDL(KK+1) = 0.0 

DOL(KK+3) ;; 0.0 
DDL(KK+4) .. XXYY 

ENDIF 
KR == KK+4 

90 CONTINUE 
100 CONTINUE 

NS == KK 

RETURN 
END 
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Appendix D 

LISTING OF A COMPUTER PROGRAM TO 

CREATE EXCAVATIONS IN A FINITE 

ELEMENT ~1ESH, VOID~1ESH 

The listing of a speci~l purpose a-node quadrilateral mesh 
generator called CIRCMl:SH, iB gi ven in thlS appendix. The program 
has been descrlbed ln Ch.:i.pter 5. 
CC 

REAL XORD(2000),YORD(2000) , DLOAD(200,4) 
REAL YM(10),PR(10),DENS(10) 
INTEGER NLM(800,8),IDOF(2000),JDOF(2000),JJX(2000) 
INTEGER ISIDE(200,4),ICELL(200) 
INTEGER DELEM(200) ,NOD(300) ,NNODE,NNEL,IJ,NS 
CHARACTER*14 FILEA,FILEB 
CHARACTER*5 TITLE(15) 
LOGICAL EXrSTS 

CC --------------------------------------------------------------
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 

PROGRAM TO CREATE EXCAVATIONS IN A FINITE ELEMENT MESH. 

THIS 18 OFTEN NECESSARY WHEN SIMULATING EXCAVATION SEQUENCES 
IN A MINE. THE PROCESS INVOLVES DELETEING ELEMENTS AND THE 
NODES COMMON TO THEM, OR, ALTERNATIVELY, DELETING NODES AND 
THE ELEMENTS ATTACHED TO THEM. IT IS NECESSARY TO HAVE A 
COMPUTER PROGRAMME THAT WILL REVISE AN 
EXISTING MESH FOR THIS OPERATION. 

THE INPUT FILE TO THE FRONT PROGRAMME IS 
STRUCTURED AS FOLLOWS: 

1. TITLE LINE 
2. PROBLEM DATA LINE 
3. MATERIAL PROPERTIES LINE(S) 
4. NODAL COORDINATES (AND CONSTRAINT) LINES 
5. ELEMENT CONNECTIVITY (AND TYPE) LINES, AND 
6. POINT AND/OR DISTRIBUTED LOAD LINES 
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cc 
cc 

cc 
cc 
cc 
cc 
cc 
cc 

cc 

cc 

cc 
cc 

cc 
cc 
cc 
cc 
cc 
cc 

cc 
cc 
cc 
cc 
cc 
cc 
cc 
cc 

cc 

cc 

cc 

cc 
cc 
cc 
cc 
cc 

CREATING AN EXCAVATION WILL AFFECT ITEMS 4,5, AND 6 ABOVE. 
IT IS EASIER TD SPECIFY BOTH NODES AND 
ELEMENTS INVaL VED AL THOUGH 

IN THEORY, G IVEN ONL y EITHER THE NaDES OR THE ELEMENTS, THE 
PROGRAM SHOULD BE ABLE TO VERIFY THE OTHER 
MISSING COMPONENTS, 

WE ASSUME THAT THE ITEMS TO BE DELETED ARE RANKED IN ORDER OF 

INCREASING MAGNITUDE, SAY, N(!) ,N(2) ,N(3) J'" ,NCr) , 

(A) NODAL COORDINATE REVISION 

OPERATION (Al) 

NDDES N(l)+l TO N(2)-1 DECREASE BY 1 
NaDES N(2)+1 TO N(3)-1 DECREASE BY 2 

NaDES N(I-l)+l TO N(I) DECREASE BY (1-1) 

(B) ELEMENT CONNECTIVITY REVISION 

OPERATION (Bl) 

ELEMENTS N(l)+l Ta N(2)-1 DECREASE BY 1 
ELEMENTS N(2)+1 TO N(3)-1 DECREASE BY 2 

ELEMENTS N(I-i)+l Ta N(I) DECREASE BY 0-1) 

cc OPERATION (B2) 

cc 

cc IDENTIFY THE ELEMENT NODES AND APPLY OPERATION (Ai) ABOVE. 
cc 
cc 
cc (C) 
cc 

DISTRIBUTED LOAD SIDES REVISION 
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CC FOR EACH LOADED SIDE, 
cc 
cc (1) IDENTIFY THE ELEMENT NO. AND APPLY OPERATION (Bl) ABOVE, 
CC 
CC (2) IDENTIFY THE NODES AND APPLY OPERATION (Al) ABOVE. 
CC 
CC AT THE END OF THE EXERCISE, THE TOTAL NODES AND ELEMENTS CC 
CC WILL BE DECREASED BY THE AMOUNTS DELETED. THE PROGRAM 
CC WRITTEN FOR THIS PURPOSE IS CALLED REVISE.F 
CC 
CC NELD = NO. OF ELEMENTS TO DELETE, (MAX = 200) 

CC DELEM(*) = ARRAY HOLDING THE ELEMENT NUMBERS TO BE DELETED 
CC NOD = NO. OF NODES TO DELETE (MAX = 300) 

CC NOD(*) = AMAY HOLDING THE ELEMENT NUMBERS TO BE DELETED 
CC -------------------------------------------------------______ _ 
CC 

LIN3 = 3 
LINi-7 
LIN2=8 

3 FORMAT(14Al) 
WRITE(*, *) 
WRITE(*.*) 'NAME OF INPUT FILE ?' 
WRITE( *, *) 
READ (*,*) FILEA 
OPEN(LIN3,FILE= FILEA,STATUS='OLD' ,ACCESS='SEQUENTIAL', 
1 FORM=' FORMA TTED' ) 

C WRITE(*,*) 
C WRITE(*,*) 'TOTAL NO. OF ELEMENTS TO DELETE ?' 
C WRITE(*,*) 

READ (LIN3,*) NELD 
C WRITE(*,*) 
C WRITE(*,*) 'ELEMENTS TO DELETE 7' 

C WRITE(*,*) 
READ(LIN3,*) (DELEM(I) ,I=l,NELD) 

C WRITE(*,.) 
C WRITE(*,*) 'TOTAL NO. OF NODES TO DELETE ?' 

C WRITE(*,*) 
READ (LIN3,*) NDD 

C WRITE(*,*) 
C WRITE(*,*) 'NODES TO DELETE ?' 
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C WRITE(*,*) 
READ(LIN3,*) (NOD(I),I=l,NDD) 

C WRITE(*,*) 
C WRITE(*,*) INAME OF OUTPUT FILE ?' 
C WRITE(*,*) 

READ (LIN3,10) FILEB 
cc 
CC SORT DELEM* AND NOD* IN ASCENDING ORDER IF NECESSARY 
CC 

CC 

CALL SORT2(DELEM,NELD) 
CALL SORT2(NOD,NDD) 

OPEN(LIN1,FILE='newdata.dat l ,STATUS='OLD' , 
1 ACCESS=' SEQUENTIAL 1 

, FORM='FORMATTED 1
) 

CC 
CC CHECK THAr OUTPUT FILE 18 NOT ALREADY EXISTING. 
CC IF IT EXISTS, PURGE IT FIRST. 
CC 
CC -----------------------------------------------------

INQUIRE(FILE=FILEB,EXIST=EXISTS) 
IF(EXISTS) THEN 

OPEN(UNIT=LIN2.FILE=FILEB.STATUS='OLD') 
CLOSE(~IT=LIN2.STATUS='DELETE') 

ENDIF 
OPEN(UNIT=LIN2,FILE=FILEB,STATUS='NEW',FORM='FORMATTED') 

CC -----------------------------------------------------
CC 
CC NNODE = NO. OF NODES. 
CC NNEL = NO. OF ELEMENTS. 
CC NS = NO. OF LOADED SIDES. 
CC 

READ(LIN1,10) TITLE 
WRITE(*,10) TITLE 

C WRITE(*,*) 'ENTER NEW TITLE' 
READ (LIN3,10) TITLE 

10 FORMAT(15A5) 
WRITE(LIN2,10) TITLE 
READ(LIN1.*) NNODE,NNEL,N7,N8,N9,NS,Nl,D2 
DO 20 l == 1,N7 
READ(LIN1,*) YM(I),PR(I),DENS(I) 

20 CONTINUE 
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DO 30 l • 1,NNODE 
30 READ(LIN1, *) IJ ,XORD(IJ), YORD(IJ), IDOF(IJ), JDOF(IJ) 

DO 40 l ,. 1, NNEL 
40 READ(LIN1,*) N,JJX(N),(NLM(N,J),J-l,8) 

DO 50 l ,. 1,NS 
50 READ(LIN1,*) (ISIDE(I,J),J=1,4), (DLOAD(I,J),J=1,4) 

cc 
CLOSE (LIN1) 

CC 
CC NODAL COORD. REVISION 
CC 

CALL ALTNOD(XORD,YORD,IDOF,JDOF,NNODE,NOD,NDD) 
CC 
CC ELEMENT CONNECTIVITY REVISION 
CC 

CC 

NZ = 8 
NNDD = NNODE+NDD 

DELEM(NELD+l) ... NNEL+l 
DO 100 II .. 1,NNEL 

DO 70 1 :0 1,8 
70 ICELL(I) = NLM(II,I) 

CC 

J.1 = II 
MINUS = 0 

DO 80 l = 1,NELD+1 

IF(II.EQ.DELEM(I» GOTD 100 
IF(II.LT.DELEM(I» THEN 

MINUS = 1-1 
GOTO 85 

ENDIF 
80 CONTINUE 
85 JJ .. JJ-MINUS 

JJX(JJ) .. JJX(II) 
CALL ALTER(ICELL,NZ,NNDD,NOD,NDD) 
DO 90 l .. 1,8 
NLM(JJ,I) .. ICELLeI) 

90 CONTINUE 
100 CONTINUE 

N'NEL ... JJ 
CC 
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CC LOADED SIDES REVISION 
CC 
cc r;HANGE THE ELEMENT NUMBERS OF THE ELEMENTS CONTAINING 
CC THE SIDES 
CC 

NZ :: NS 
DO 11 0 J = 1 J NS 

110 ICELL(J)" ISIDE(J,4) 
NOT = 0 
CALL ALTERCICELL,NZ,NNEL,DELEM,NELD) 

cc 
DO 120 J = 1,NS 

120 ISIOE(J,4) = ICELL(J) 
CC 

CC 

DO 150 II = 1,NS 
NZ .. 3 

CC CHANGE THE NODE NUMBERS OF THE NODES DESCRIBING THE SIDES 
CC 

~30 

140 
145 
150 

CC 

155 

160 

170 

180 

190 
200 

DO 130 J .. 1,3 
ICELL(J) = ISIOE(II,J) 
NOT" 0 

CALL ALTER(ICELL,NZ,NNDO,NOD,NOD) 
DO 140 J .. 1,3 
ISIOE(II,J) .. ICELL(J) 
FORMATCF12.2,2F12.4) 
CONTINUE 

WRITE(LIN2,*) NNODE,NNEL,N7,N8,N9,NS,Nl,D2 
DO 155 l • l,N7 
WRITE(LIN2,145) YM(I),PR(I),DENS(I) 

CONTINUE 
DO 160 l .. 1,NNOOE 
WRITE(LIN2,200) I,XORO(I) ,YORD(I) ,IOOF(I) ,JOOF(I) 

DO 170 l = l,NNEL 
WRITE(LIN2,210) 1,JJX(I), (NLM(I,J),J=l,8) 

DO 180 l = l,NS 
WRITE (L1N2, 220) (ISIDE (l, J) t J=l, 4), (DLOAD(1, J) t J=l,4) 
CLOSE(LIN2) 
CONTINUE 
FORMATCI5,2Fl0.3,2I5) 
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----------------------------------

210 FORMAT ( 1015) 
220 FORMAT(415,4F10.3) 

CC 
STOP 
END 

CC***************** 

cc 

cc 

SUBROUTINE ALTNOD(XX, YY ,ID, JD, NN, ND, KK) 
DIMENSION XX(NN) ,YY(NN) ,ID(NN) ,JD(NN) ,ND(KK+l) 

ND(KK+l) = NN+l 
DO 50 II = 1,NN 
JJ = II 
MINUS = 0 

DO 30 l = 1, KK + 1 

IF(II.EQ.ND(I)) GOTO 50 
IF(II.LT.ND(I) THEN 

MINUS = 1-1 
GOTO 40 

ENDIF 
30 CONTINUE 
40 JJ = J J-MINUS 

CC 

XX(JJ) = XX(II) 
VY(JJ) = YY(II) 
ID(JJ) .. IOcrI) 
JD(JJ) .. JDCII) 

50 CONTINUE 
NN .. JJ 

RETURN 
END 

CC ------------------------------------------

CC 

CC 

SUBROUTINE ALTER(IC, LL, MM, ND, KK) 
DIMENSION IC(LL),ND(KK+l) 

ND(KK+l) = MM+l 
MINUS = 0 
DO 50 II = 1, LL 
JJ == IC(II) 

DO 30 l .. 1,KK+l 
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IF(JJ.EQ.ND(I» GOTO 50 
IF(JJ.LT.ND(I» THEN 

MINUS • 1-1 
GOTO 40 

ENDIF 
30 CONTINUE 
40 CONTINUE 

cc 
50 CONTINUE 

RETURN 
END 

JJ = JJ-MINUS 
IC(II) :: JJ 

cc ---------------------------------------
SUBROUTINE SORT2(JO,NN) 

cc 
cc SORTS A LINEAR ARRAY OF NN ITEMS IN ASeENDING OROER 
CC IN A DOUBLE-ENDED OPERATION. 
CC THERE ARE NN*(NN+l)/4 ITERATIONS FOR NN EVEN, AND, 
CC (NN-l)*(NN+3)/4 ITERATIONS FOR NN 000. 
CC THIS COMPARES TO NN*(NN+l)/2 ITERATIONS FOR A SINGLE-ENDED 
CC SORT, A SAVING 8F NEARLY 50 PERCENT. 
CC 

CC 

CC 

CC 

DIMENSION JO(200) 

INTEGER JMIN,JMAX,IMIN,IMAX,JJ,KK,ID,IE 

JJ = 0 
KK :: NN+1 
JK :: NN/2 
lE = 10000000 

DO 60 l :& l, JK 
lMIN =- lE 
lMAX • 0 
JMIN == lE 
JMAX • 0 
JJ :: JJ+1 
KK • KK-l 

DO 20 J = J J, KK 
ID = JO(J) 
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CC 

CC 

IF(IMAX.LT.ID) THEN 
JMAX ,. J 

lMAX = ID 
ENDIF 
IF(IMIN.GT.ID) THEN 
JMIN =- J 
IM1N a ID 
ENDIF 

20 CONTINUE 

IF(JMIN. EQ. lE . OR. JMAX. EQ. 0) GOrD 60 
IF(JMIN. EQ. JJ) GOTO 30 
IJ ::; JD(JJ) 
JD(JJ) ~ JD(JMIN) 
JD(JMIN) = IJ 

30 IF(JMAX.EQ.KK) GOTO 40 
IF(JMAX.EQ.JJ) JMAX = JMIN 

CC 

CC 

1J = JD(KK) 
JD(KK) = JD(JMAX) 
JD(JMAX) = IJ 

40 CONTINUE 
60 CONTINUE 

RETURN 
END 



• 

• 

• 

APPENDIX. E 
DERIVATION OF THE rp], [R] AND [L] 

MATRICES 

E.l Formulation of the [P] Matrix 

E.!.! The Jacobian 

There is a one-to-one correspondence between the global coordinates (x, y) and the local 
coordinates (8, t). By using the Chain Rule of differentiation, the following relation can be 
established between the local and global coordinates: 

{ 
a/as } = [J] { â/ax } 
a/at a/ay 

(E.l) 

where the Jacobian, [J], is de fines as 

[ âx/ Os ay/as ] [011 a,,] [J]:: 
- fr21 Ct22 ax/at By/at 

(E.2) 

Note that [J-1]T = (JT]-1 and that 

[ 022 -a" ] / t:. Pt1 
= 

-°21 au 
(E.3) 

where 

By taking the second partial derivatives of the Airy Stress Function cl) with respect to 
local coordinates s and t, it can be shown that 

(EA) 

where 
[A] = [Ao]- [Ar} - [Ali] (E.5) 
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(E.6) 

The components of [A] can he written as follows, 

(E.7) 

where 

(E.8) 

(E.9) 

(E.1O) 

Each of the 2x2 matrices in the expressions above is symmetric and the [B] matrix can 
he expressed entirely in terms of the undetermined stress rnultipliers, (3,. 

Equation ( E.4) can he expanded hy substituting Equations ( E.3) and ( 8.7) mto it to 
yield: 
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which can he expanded and rearranged to yield: 

ax An 
1 

a y = ~2 [5] An (E.12) 

TXII A l2 

where 

2 
0'21 

2 an -20'110'21 

[5) = 2 
0'22 

2 
0'12 -20'120'22 (E.13) 

021 0 22 QnO'12 -(0110'22 + O'12O'2t) 

Equation ( E.5) can he expanded by substituting Equations ( E.7), ( E.8), ( E.9) and 
( E.I0) into it, and the resulting expression can he rearranged to yield: 

where 

An 

A22 - [Z]{P} - [F][Jt 1 (W] {P} 

[Z]{,B} = 

[F]= 

â2~/as2 

a2~/8t2 

â2~/âsat 
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{ 
iJCP / Dx } 

(Jt l [W] {,a} = 
84>/Dy 

( E.l7) 

From equations (E.12), and (E.14), it can be deduced that the [Pl matrix is given by the 
expression: 

[Pl = ~2 [S] (lZ] - [F] [Jt l [W]) (E.18) 

[W] is a 2xlS matrix whose coefficients are functlOIls of sand t as derived from the first 
partial derivative of 4.> with respect ta S dnd t. [Z] is cl 3x18 rnatrix with coefficients as 
functions of s and t, as derived from the second partial derivatives of 4> wi~h rt:"spcct ta s 
and t. 

The matrix, [Pl, when expanded in full results in the following expression: 

82Nd8s 2 ô2N2/8s2 ... 82 Ns/as2 

[F] - fJ2 Nd at2 a2 Nd Dt2 ... 82Ns/at2 

82Nt/8s8t â2Nz/8s8t ... 8ZNg /âsfjt 

where 
Xc = (Xl - X3 + Xs - xr)/4, 
Va = (YI - Y3 +Ys - Yr)/4 

Xl 

X2 

Xg 

YI 

Yz 
0 0 

= 0 0 

Xc Yc 
YB 

(E.l9) 

This leads ta further simplification in the computation of the [Pl matrix. The full ex­
pressions for (W] and [Z] are as follows: 
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2 0 0 

0 2 0 

0 0 

68 0 0 

0 6t 0 

2t 0 28 

0 28 2t 

1282 0 0 

0 12t 2 0 
[Z]T = (E.20) 

0 6st 3t 2 

2t2 28 2 ~st 

68i 0 352 

2083 0 0 

0 20t 3 0 

1282t 0 ~s3 

0 128t2 4t 3 

68t 2 283 68 2t 

2t 3 G.s 2 t G5t l 

, 
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E.2 Formulation of the [C] Matrix 

The [G] and [Gb] are represented by the equations 

[G] = r [Rf[L]ds 
Javn 

where [R] and [Ro] are expressions of the tractions acting on the element side and [L] is 
the expression for the displacement of the side. 

E.2.1 Surface Tractions due to Assumed Stress Fields 

Consider the forces acting on the sides of a typical quadlilateral element ABCD as shawn 
in Figure E.l. 

The boundary surface tractions can be expressed as: 

(E.21 ) 

where 

(E.22) 

The boundary surface tractions can also be expressed as: 

(E.23) 

where, for any particular boundary j, /f] is the direction cosine of the normal to it. 
Consider the boundary surface AB whose outward-drawn normal makes an angle () with the 
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Figure E.l: Generalized Bounda.ry Forces Acting on the Sides of II. Qua.drilatera.l Element 
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Figure E.2: Components of Stress Acting on Side AB of a Quadrilateral Element 
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positive direction of the x-axis as shown in Figure E.2. 

If the stresses acting are ~x, ~1" 'xv as ~hOWIl, tilt'II 

{ 
1~ } __ [<..'080 

T 0 ~ 

o 81110 l 
{a} 

co."o J 
(E.:24) 

where the stresses are glven by Equation (:3 2) and the ~urfa<.e tractions by EqUdtlOll (:l..t) 
of Chapter 3. 
From Equations (3.2), (3..1) of Chaptcr :3, and ( E.21), 

IRI = ~t [ co~<o 

IR.I = ~t [ co;o 

where ~t is the thickness of the clement. 

E.2.2 The [L] Matrix 

o 
8mO 1 
cos(} 

o 

smO 

[Pl (E.25) 

(E.26) 

Consider the inter-element boundary AB of Figure E.l. U sing 8-node isoparametflc d('rnents, 
let the no de numbering be anti-clockwise dS ~hown. Let u", v" be the horizontal and verticdl 
components of the inter-clement displacemcnts and let (u" v,) be the global horizontal ,weI 
vertical components of the displacemellts of 1I0de i where (1 ~ 1 :s: :3). 
Since we are uSlIlg isoparametric formulation, wc ca.n write: 

UI 

VI 

{ U, 

} = { 

r:i .V,u, 

} 
U2 

= [.VAHl (E 27) 
V, Li ,VIL', 1'2 

Uj 

VJ 



• 

• 

where the subscripted cornponents in 

[ :' 0 N2 0 N3 

1:,] [NABl = (E.28) 
NI 0 N2 0 

are the shape functions for nodes l, '2 and 3 respective!y of side AB. Similar expressions 
can be written for the other sides of the quadrilateral element. The 6xl vector of displace­
ments in Equation ( E.27) is precisely part of the l6-cQmponent global dis placement vector, 
{q}, of the element. {q} comprises 2-component global dis placements per node. Thus, the 
inter-element dîsplacements of side AB can be expressed in terms of the entire {q} vector 
by expanding the 2x6 [N AB] matflx to 2x16 by filling the Test of the positions with zeros. 
Thus, if we consider the entire element sicles, numbered l - 4, then, the [L] matrix ls secn to 
be an 8x16 matrix with each side subscribing a 2x16 sub-matnx. 

When the quadrilateral element is expressed in terms of the local (s,t) coordinates as 
shown in Figure E.3, and if we wri te: 

{ 
;; } = ~ { g ~ ; ~ } 
t, 2 (1- t) 
il (l+t) 

(E.29) 
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• then, the complete [L] matrix is givcll by 

-8S, 0 0 0 0 0 

0 -.'j.'l, 0 0 0 0 

48, ~ J 0 0 0 0 0 

0 48,S) 0 0 0 0 

:3s) 0 -il, 0 0 0 

0 8.'1 ) 0 -li, 0 0 

0 0 1 t, l) Ü 0 Ü 

0 0 0 ·1 l, t) 0 0 

[Lf = 
0 0 tt) Ü ,~s ) 0 

0 0 0 tt] 0 8,~ ) 

0 0 0 0 '18,s] 0 

0 0 0 0 0 4S,8] 

0 0 0 0 -88, 0 

0 0 0 0 0 -83, 

0 0 0 0 (J 0 

0 0 0 U (J (J 

E.3 Interpolation Functions for th\~ 
8-Node Quadrilateral Element 

-ft, 0 

0 -li. 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 
( K:IO) 

0 0 

() 0 

0 0 

il] 0 

0 il) 

-li, 0 

0 -li, 

The interpolation f unctions u ~eJ WI th the 8-lloue l 'jopard.lIIet rie e!Prrwn t l an be deri veu from 
the 50 called Serendiplty elemerlts anu (an be ~h()wn tu IH' ~iven ~. 



• 

y 
t 

Figure E.3: Global and Local Coordinate System for Quadrilatera.l Element 
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N,(s, t) := (1 + S, s) (1 + t, t) (s, s + t, t - 1) /4 (E.31 ) 

for the corner nodes where i = l, 3, <5, and 7. At midside nodes where 1 = 2, 4, 6 and 8, we 
have: 

N,(s, t) = 8~ (1 - t 2
) (1 t 8,8) /2 + t; (1 - 8

2 
) (1 + l, t) /2 (E.:J2) 

The interpolation functlOns and their first and ~econd derivatlves are utdized in the 
formulation of the matrix equatiolls. They are shawn in the table below: 

-- , 

N, aNI/as 
r·· --
: aN,/at iJ2N,/D",2 D2N,/D(l\ iJ2 N,/ âsBt 

--~._----- t- 1 , -- - - -t 

l, 
1 1 

1 -s,t,(s + t + 1) 1 !t,(28 + t) 1 1s,(2t + s) 8, 
1 (8, - tJ + 0.25) 1 

2 -28t, -2t, 0 8 

3 sJt,(s - t -1) 1 !t,(2s - t) 1 !sl(2t - s) : t, sJ (tJ - sJ - 0.25) 

4 4s)t,tJ 1 2t,tJ -2sJt 0 , -2s ] -t 
__ L________ .. , - - - -- --- --t 

tJ sJ : (sI - t, + 0.25) 
1 

5 sJtJ(s + t -1) '!tJ(2s + t) , !sJ(2t + s) , 
1 

-----0-1 ---------....-----+----_------ --
6 -28tJ i 2,9,8J -2tJ 0 1 

f 1 

7 s,tJ( -8 + t - 1_~ l~t)(~_=~) 1 ~s,~~ ~ ~ 

__ 8_~ __ 48,t,t) \ -2t,tJ 1 -2t8, 

where 

{ 
;; } = ~ { g ~ ~~ } 
t, 2 (1 - t) 
t] (ltt) 

(E.34) 

Node numbering is sequentially counter clockwise, starting from the node nearest ta the 
bot tom left corner as in Figure 4.2 of Chapter 4 . 
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