
ln compiiance with the
anadian Privacy Legislation

sorne supporting forms
may have been removed from

this disse tion.

hile these forms may be included
in the document page count,

their removal does not represent
any loss of content from the dissertation.

EVOLVE: AN EXTENSIBLE SOFTWARE VISUALIZATION
FRAMEWORK

by
Qin Wang

School of Computer Science
McGill University, Montreal

June 2002

A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Copyright © 2002 by Qin Wang

1+1 National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and
Bibliographie Services

Acquisisitons et
services bibliographiques

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Canada

Your file Votre référence
ISBN: 0-612-88325-6
Our file Notre référence
ISBN: 0-612-88325-6

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou aturement reproduits sans son
autorisation.

Abstract

Existing visualization tools typically do not provide a simple mechanism for adding
new visualization techniques, and are often coupled with inflexible data input mecha
nisms. This thesis presents EVolve, a flexible and extensible framework for visualizing
program characteristics and behaviour. The framework is flexible in the sense that
it can visualize many kinds of data, and it is extensible in the sense that it is quite
straightforward to add new kinds of visualizations.

The overall architecture of the framework consists of the core EVolve platform
that communicates with data sources via a well defined data proto col and which
communicates with visualization methods via a visualization proto col.

Given a data source, an end user can use EVolve as a stand-alone tool by inter
actively creating, configuring and modifying one or more visualizations. A variety of
visualizations are provided in the standard EVolve visualization library. EVolve can
also be used to build custom visualizers by implementing new data sources and/or
new kinds of visualizations.

The thesis presents an overview of the framework, its data proto col and visualiza
tion protocol, and a detailed case study showing how to extend EVolve.

ii

p p

esume

Les outils de visualisation existants ne fournissent habituellement pas un mécanisme
simple pour l'ajout de nouvelles techniques de visualisation, et de plus utilisent sou
vent un mécanisme d'entrée de données inflexible. Cette thèse présente EVolve,
un cadre d'applications flexible et extensible permettant la visualisation des char
actéristiques et du comportement d'une application. Le cadre tire sa flexibilité du
fait qu'il peut visualiser plusieurs types de données et son extensibilité du fait qu'il
est simple d'ajouter de nouveaux types de visualisations.

L'ensemble de l'architecture du cadre est constitué du noyau de la plateforme
EVolve, qui communique avec les sources de données via un protocole de données
bien défini et qui communique avec les méthodes de visualisation via un protocole de
visualisation.

Partant d'une source de données, un utilisateur final peut utiliser EVolve comme
un outil autonome en créant, configurant et modifiant interactivement une ou plusieurs
visualisations. Une variété de visualisations est incluse dans la librairie de visualisa
tion standard d'EVolve. EVolve peut aussi être utilisé dans le but de construire des
visualisateurs sur mesure en implémentant de nouvelles sources de données et/ou de
nouveaux types de visualisation.

La thèse présente un survol du cadre d'applications, de son protocole de données
et de son protocole de visualisation, ainsi qu'une étude de cas détaillée démontrant
comment étendre EVolve.

m

Acknowledgments

This thesis would not be written without the help from others. First of aH, rd like to
give special thanks to my supervisors, Laurie Hendren and Karel Driesen, for giving
me great help in academic research, and providing an kinds of support and consistent
encouragement throughout the course of my study at McGill University.

I would also like to thank aH those people who contributed to EVolve and helped
to make it a reality. In particular, I would like to thank Rhodes Brown for providing
valuable suggestions and great ideas on the design of EVolve, and for being the first
user; John Jorgensen for giving aU kinds of technical support; Bruno Dufour for testing
EVolve and translating the abstract of this thesis to French; and aIl the students of
the CS308-764 course (winter 2002) for using EVolve and giving me essential feedback
to improve it.

Special thanks go to my friends in Montreal, who helped me in various aspects,
and made my life here interesting and colorful. In particular, Huaizhi, Yichi, Michelle,
Vincent, Xiaolong, Hai, Xiangrong, and Sanna.

l'm always thankful to my wonderful family. They are always there when l'm
in trouble, and without their full support, I wouldn't be able to study at McGill.
Thanks Dad, Mom, Feng, Li, Bing, and Peng.

Finally, I would like to thank my wife, Rui, for aH she has done for me and my
family in the last two years. Without her, this thesis would not be possible.

IV

Contents

Abstract ii

Résumé Hi

Acknowledgments iv

1 Introduction 1

1.1 Motivation and Overview . 1

1.2 Background 4

1.3 Thesis Contributions 5

1.3.1 Design 5

1.3.2 Implementation 6

1.3.3 Experimentation 6

1.4 Thesis Organization. . . 6

2 Overview and Basic Concepts 8

2.1 Architectural Design 9

2.2 Data Representation 10

2.2.1 Element, Event, and Entity 10

2.2.2 Element Definition .. 13

2.3 Visualization Characterization 13

v

2.3.1 Subject and Dimension.

2.3.2 Visualization Definition

3 Data Protocol

3.1 Data Source Interface .

3.2 Element Builder

3.2.1 Builder Initialization

3.2.2 Element Creation

3.3 Data Storage

4 Visualization Protocol

4.1 End User Visualization

4.1.1 Bar Chart Visualization

4.1.2 Hot Spot Visualization .

4.1.3 Prediction Visualization

4.2 Creation

4.2.1 Visualization Factory .

4.2.2 Creating Visualization

4.3 Configuration

4.4 Visualizing ..

4.5 Data Manipulation

4.5.1 Reference Dimension

4.5.2 Making Selections .

4.5.3 Sorting.

4.6 Summary ...

5 Case Study: Visualizing Polymorphism

5.1 Problem Description

VI

14

15

17

18

19

21

24

26

27

28

28

30

31

31

32

33

34

36

38

38

39

40

41

53

54

5.2 Implementing the Data Source .. 55

5.2.1 Format of the Data Trace 55

5.2.2 Data Source. 55

5.2.3 Initialization . 56

5.2.4 Definition Building 57

5.2.5 Entity Building 59

5.2.6 Event Building 60

5.3 Implementing the Prediction Visualization 62

5.3.1 Predictor 62

5.3.2 Dimension and Factory . 64

5.3.3 Visualization Creation 65

5.3.4 Configuration 66

5.3.5 Visualizing. . 68

5.3.6 Data Manipulation: Making Selections 70

5.3.7 Data Manipulation: Sorting 72

5.4 Integration . • 6 • 0 ••••••••• 73

6 Related Work 75

7 Conclusions and Future Work 78

A Getting Started 80

B Built-in Visualizations of EVolve 81

B.1 Table 82

B.2 Hot Spot Visualization (Coordinate) 83

B.3 Hot Spot Visualization (Amount) 84

BA Vertical Bar Chart 85

vu

B.5 Horizontal Bar Chart

B.6 Correlation Graph .

B.7 Prediction Visualization

Vlll

86

87

88

ist of Figures

1.1 Software visualization process.

1.2 Structure of EVolve.

2.1 Architecture of EVolve.

2.2 References among elements.

2.3 Class diagram of element, event, and entity.

2.4 Bar chart example.

2.5 Using bar chart and plot chart for coordinates ..

3.1 Relationship between user-defined data source and EVolve.

3.2 Interaction between a data source and an element builder.

3.3 Relationship among the elements of the example.

3.4 Class diagram of element builder.

4.1 Visualization cycle of EVolve.

4.2 Creating a bar chart. . . .

4.3 Configuring the bar chart.

4.4 Bar chart without colOT.

4.5 Making selections on the bar chart.

4.6 Bar chart with colOT.

4.7 Lexical hot spot. ..

lX

1

3

9

10

11

14

16

18

20

20

21

27

42

43

44

45

46

47

4.8 Temporal hot spot ...

4.9 Screen shot of EVolve.

4.10 Relationship between visualization and visualization factory.

4.11 Class diagram of visualization ..

4.12 Configuration dialog.

4.13 An empty hot spot visualization.

4.14 Visualizing phase of the visualization protocol.

4.15 A hot spot visualization.

4.16 Conversion of entity id ..

4.17 Making selections on hot spot visualization.

5.1 Prediction visualization.

5.2 Class diagram of the data source of the case study.

5.3 Predictor factory.

5.4 Configuration dialog of the prediction visualization.

5.5 Making selections on prediction visualization.

B.1 A table.

B.2 A hot spot visualization (coordinate).

B.3 A hot spot visualization (amount).

B.4 A vertical bar chart.

B.5 A horizontal bar chart.

B.6 A correlation graph.

E. 7 A prediction visualization.

x

48

49

50

50

50

51

51

51

52

52

54

56

62

67

70

82

83

84

85

86

87

88

Chapter 1

Introduction

1.1 Motivation and Overview

Object-oriented programming has the advantages of fiexibility and reusability, which
facilitate developing large and complicated software systems. However, the growth of
complexity may make it more difficult to understand the system. This difficulty, in
turn, causes many problems in performance analysis, optimization, and maintenance
of the system. Different kinds of techniques have been used to solve these problems,
and software visualization tools provide one way for programmers to understand the
structure and performance of large software systems.

Figure 1.1 shows one way of representing a software visualization pro cess. First,
the data provider profiles the program and generates trace data that contains infor
mation about sorne characteristics of the program. Then, the visualization provider
analyzes the trace data and pro duces the corresponding visual representation of these
characteristics. Finally, the end user uses the visual representation to facilitate un
derstanding of the program.

(program J (trace data J ••••• _t&.

data provider visualization provider

Figure 1.1: Software visualization process.

1

visu al

representation

end user

For example, to help understanding the run-time memory usage of a program,
the data provider may instrument the source code of the program, so that each time
when an object is created, the type of the object, the size of memory allocated for the
object, and the method which creates the object is recorded in a trace data file. The
trace data is then used by the visualization provider to generate graphs and charts
which can facilitate end users finding the answers to questions such as: "Which types
of objects are allocated most frequently?", "Which methods have allocated most of
the memory?", and so on.

Because of the usefulness and importance of software visualization, many software
visualization systems have been developed in the last decade[l, 3, 17]. These systems
often focus on visualizing a fixed set of program characteristics, and contain several
built-in visualizations that can provide useful information of these characteristics.
However, in sorne cases, users may still want to have additional visualizations so that
they can get a better understanding of their program. Unfortunately, most existing
software visualization systems are designed without flexibility and extensibility in
mind, so adding new visualizations to these systems is difficult, if not impossible, for
the following reasons.

First, in order to transmit the trace data, the data provider and visualization
provider must agree on a certain data proto col. If the system is not extensible, the
data proto col usually has to be modified to support new visualizations. Consequently,
the data provider must change the format of the trace data to fit the new data
protocol, and the old traces have to be updated correspondingly. What's more, the
visualization provider also has to update the old visualizations according to the new
data proto col.

Second, trace data usually contains large amounts of information, so a software
visualization system must provide data manipulating functionalities, such as finding,
partitioning, and filtering subsets of the data, to facilitate end users finding the in
formation they need. These functionalities demand that aU the visualizations in the
system should be able to communicate with each other. Therefore, if the system is
not extensible, ad ding new visualizations to it usually requires updating an the old
visualizations so that they can cooperate with the new ones.

The goal of this work is to provide a software visualization framework that is ex
tensible and flexible. The EVolve framework provides the ability to visualize different
types of trace data, and simplifies the task of implementing new visualizations and
incorporating them into the framework.

The structure of EVolve is shown in Figure 1.2. The essential parts of the frame
work are the EVolve platform, the data protocol, and the visualization proto col. The

2

data source

•
•
•

data source
data

protocol

EVolve

Piatform

visualization

protocol

Figure 1.2: Structure of EVolve.

visualization

visualization

•
•
•

visualization

EVolve platform is the core of the framework. It's the connection between the data
source and the visualizations, and it supports the communication among the visualiza
tions. What's more, the platform provides a set of data manipulating functionalities
for end users.

The extensibility and flexibility of EVolve mainly cornes from the two proto cols.
The EVolve platform receives trace data through the data protocol, which uses a
flexible method to represent the data. The data representation technique used in
EVolve is general enough to represent various kinds of information, and can provide
additional information for the visualizations to interpret the data. Furthermore, the
data proto col doesn't specify the source of the data. Therefore, EVolve can receive
trace data from different kinds of data source, such as a file, a data stream, or a
database.

The visualization proto col han dIes the communication between the platform and
the visualizations. In EVolve, there's no direct interaction among the visualizations,
so adding new visualizations to the framework won't require updating the existing
ones. With the visualization protocol, EVolve can provide data manipulating func
tionalities while still keeping the visualizations independent.

Based on the EVolve framework, we have implemented various visualizations and
data sources, and tested the framework on sever al different tasks for large Java pro
grams. The result of these experiments has verified the extensibility and flexibility of
EVolve.

3

1.2 Background

Roughly speaking, related work of EVolve fans into the following categories1
:

Performance tuning: there are many profiling tools for program performance tun
ing and optimizing (e.g. Jinsight[l], JProbe[2], and Optimizeit[3]), and these
tools often focus on visualizing the usage of system resource, such as CPU time
and memory, to help programmers find the bottleneck of their programs.

Software structure visualizing: many software visualization systems are devel
oped to facilitate reverse engineering, such as Rigi[24] (using SHriMP views[23])
and Moose[ll]. These systems help developers understanding the hierarchy and
structure of their systems by visualizing static information (classes, methods,
fields, and etc.) that is usually obtained from parsing the source code.

Run-time behavior visualizing: sorne software visualization systems, for exam
pIe, Bloom[17], focus on visualizing various sorts of dynamic information (such
as object interaction, memory allocation, and field access) that is collected dur
ing the execution of programs. These systems can provide detailed information
about the run-time behaviour of software, which most performance tuning tools
cannot, and they are mainly used in research fields.

These systems are usually developed to solve sorne specifie problems. Few of
them allow users using their own data source, and even fewer support adding new
visualizations.

As depicted in Figure 1.1, us ers of a software visualization system can take three
kinds of different roles: end user, data provider, and visualization provider. Unlike
most of the above systems, which are designed only for the end users, EVolve can
facilitate aH these three:

1. End users: EVolve provides a set of built-in visualizations to visualize various
types of program characteristics, including both run-time behaviour and static
information. For end users, EVolve helps them visualize their trace data and
find the most important information from it, and it is similar to the other
visualization systems.

2. Data providers: Trace data can be sent to EVolve in two ways. One is using
the bunt-in data source of EVolve directly, which requîres the trace data to be

lChapter 6 discusses related work in detail.

4

stored in files according to a certain format. Another way is that us ers can
implement their own data source, and send trace data to EVolve through the
data proto col. This is convenient for those users who have special requirements.
For data providers, EVolve is a flexible visualization toolkit.

3. Visualization providers: In case the built-in visualizations are not suit able
to visualize sorne specific trace data, or cannot provide enough information,
users can create new visualizations that fit their need, and incorporate them
into EVolve easily. For visualization providers, EVolve is a framework that helps
them implementing various visualization techniques.

EVolve is mainly designed for run-time analysis (such as visualizing object in
teraction, memory allocation, method invocation, polymorphism, etc.), but the ar
chitecture of EVolve is also suit able for visualizing static information. Therefore,
in EVolve, users can combine run-time information with static information to get a
better understanding of their systems.

EVolve is part of the Sable Toolkit for Extensible Profiling (STEP), but it can
work as an independent framework as weIl. Like the other parts of STEP, EVolve is
also implemented in Java.

1.3 Thesis Contributions

The contributions of this thesis are the design, implementation, and experimental
validation of the EVolve framework.

1.3.1 Design

The design of EVolve mainly includes the following:

® A flexible data representation technique that is capable of representing various
types of program characteristics, and can provide additional information for
interpreting the data.

® A data protocol that specifies the communication between the framework and
the data source, allowing the framework to use different kinds of data sources.

5

@ A visualization protocol that specifies the communication between the frame
work and the visualizations, making it easy for users to add new visualizations
to the framework.

1.3.2 Implementation

The implementation of EVolve consists of:

@ The EVolve platform.

@ A data interface and a visualization interface that are implemented according
to the corresponding protocols.

® A set of data manipulating functionalities, such as partitioning and filtering
subsets of the data.

@ A group of built-in visualizations.

The source code and documentation of EVolve are available at:
http://www.sable.mcgill.ca/evolve/

1.3.3 Expe:rimentation

Great effort has been placed in testing the fiexibility and extensibility of EVolve. In
particular, 20 graduate students in an upper level graduate course (C8308-764: Run
time 8upport for Object-Oriented Programming Languages) at McGill used EVolve to
characterize the run-time behaviour of Java programs. This experiment demonstrated
the ease of use and clarity of EVolve for the students claimed that EVolve facilitated
and enhanced program understanding.

Furthermore, various visualization techniques that are used in other software visu
alization systems can be implemented and incorporated into EVolve without changing
any part of the EVolve platform and/or the interfaces.

1.4 Thesis Organization

The rest of the thesis is organized as follows. First, Chapter 2 introduces the archi
tecture of EVolve and sorne basic concepts used in the framework. Then, Chapter

6

3 describes the data proto col of EVolve, and Chapter 4 describes the visualization
protocol, followed by a detailed case study in Chapter 5. Finally, Chapter 6 discusses
sorne related work, and Chapter 7 gives our conclusions and the future work.

7

Chapter 2

Overview and asic Concepts

The extensibility of a software visualization system mainly depends on its architec
ture, and in an extensible framework like EVolve, every visualization should be able
to work independently (not only independent from other visualizations, but also in
dependent from the trace data).

On the other hand, the flexibility of a software visualization system largely de
pends on how the trace data is represented in the system. Therefore, EVolve needs a
data representation technique that is capable of representing various kinds of program
characteristics.

This chapter describes the most fundamental parts of EVolve, the architectural
design and the data representation technique, which make EVolve extensible and
flexible. To make the discussion more concrete, an illustrative example is used in
this chapter. Assume that a user wants to visualize method invocation and object
allocation information that is collected during the execution of a program. For ev
ery method invocation, the following information is included in the trace data: the
method executed, the defining class of this method, and the thread in which the
method is invoked.

For every object allocation, the trace data includes: the type of the object, the
size of memory allocated, the method which creates the object, the defining class of
this method, and the thread in which the object is created.

8

2.1 Architectural Design

As mentioned before, the essential parts of EVolve are the platform, the data protocol,
and the visualization proto col. The relationship among these three parts is shown in
Figure 2.1.

commal'ld

data

data

protocol

data visualization

manager manager

C UI manager J

EVolve platform

Figure 2.1: Architecture of EVolve.

1 selection

l, data .
command

visualization

protocol

The EVolve platform mainly consists of four components: a user-interface manager
that interacts with the end user, a data manager that communicates with the data
source, a visualization manager that controis the visualizations, and a filter that
provides data manipulating functionalities.

The major responsibility of the user-interface manager is sending commands from
the end user to the other components of the platform and controlling the Iayout of the
visualizations. But it also provides other functions such as exporting visualizations
to images and monitoring data processing.

Externally, the data manager communicates with the data source through the
data protocol, and the visualization manager controls the visualizations through the
visualization proto col. The difference is that data manager sends commands to the
data source and receives data from it, while the visualization manager sends both
commands and data to the visualizations. What the visualization manager receives
from the visualizations are subsets of the data that the end user selected in the
visualizations, and these selections are used by the filter to perform data manipulating
operations.

Internally, within each visualization cycle, the data manager first sends data to
the visualization manager, and after the data is visualized in the visualizations, the
visualization manager sends the selections that the end user made to the filter. Then,

9

the filter uses these selections to determine which part of the data should be visual
ized in the next visualization pro cess , and this information is sent back to the data
manager.

Because of this architecture, in EVolve, a visualization can only communicate with
the data source and the other visualizations through the EVolve platform. This means
that there's no direct interaction between the data source and the visualizations, and
there's also no direct interaction among the visualizations themselves. Therefore, the
architecture of EVolve keeps the data source and the visualizations independent, and
this allows EVolve to be extensible.

2.2 Data Representation

2.2.1 Element, Event, and Entity

In EVolve, the basic information unit is called an element, and the trace data is
represented as a sequence of different types of elements. In the example mentioned
at the beginning of this chapter, there are five types of elements: method invocation,
object allocation, method, class, and thread.

Elements are linked together by references, and an element can have sever al refer
ences to another type of elements. Figure 2.2 shows the references among the elements
that are related to object allocation. Note that object allocations have two references
to classes: one indicating the type of the new object, and the other showing the
allocating class.

allocating method

defining
class

allocating
class

object
type

object allocation

Figure 2.2: References among elements.

allocating thread

A reference can be direct or indirect. In Figure 2.2, the allocating class is an
indirect reference because it is the combination of other references (in this case, it's

10

the combination of allocating method and defining class, i.e. the allocating class
of an object allocation is the defining class of the allocating method of that object
allocation), and aH the other references are direct.

In EVolve, an element can be either an event or an entity. Events represent
aH kinds of things that occurred during the execution of programs, such as method
invocation and object allocation. The sequence of events in the trace data indicates
the or der of their occurrence, and changing the sequence will le ad to misinterpreting
the data in visualizations.

On the contrary, entities represent elements that don't "occur", such as methods,
classes, and threads. Unlike events, the sequence of entities in the trace data doesn't
have any specific meaning, and changing it won't affect the visualizations.

Furthermore, events and entities are different in the following aspects:

1. Elements can only have references to entities, events cannot be referred to.

2. Entities usually have names, but events don't.

3. Trace data doesn't contain copies of the same entity, but the same events can
appear many times.

4. Normally, the number of events in a trace is much larger than the number of
entities. (The following sub-section describes this in detail.)

Element

type: Integer
field[] : Integer

y
1 l

1
Event

1
Entity

id: Integer
name : String

Figure 2.3: Class diagram of element, event, and entity.

Figure 2.3 shows the class diagram of element, event, and entity. Every element
has a group of fields, which can be either values related to the element, or references

11

to entities (represented as entity identifier). For example, an object allocation has a
value indicating the size of memory allocated, and references to method, class, and
thread.

An event doesn't contain additional information, but an entity has a name and
an identifier.

Entity vs. Event

As mentioned ab ove , in trace data, the number of events is much larger than the
number of entities. To demonstrate this, we counted the number of elements cre
ated during the execution of six SPEC[4] JVM98 benchmarks of four different types.
Among these elements, classes and methods are entities, while method invocation and
object allocation are events.

Table 2.1 shows the number of each type of elements and Table 2.2 shows the
total number of entities and elements, as well as the percentage of entities among aU
the elements.

1 benchmark 1 class 1 method 1 method invocation 1 object allocation 1

db 155 998 160137 16171
jess 352 1399 667999 66345
mpegaudio 208 1161 1225781 19494
jack 274 1332 3318260 371115
mtrt 207 1129 5572704 311660
compress 179 986 17416524 13913

Table 2.1: Number of different types of elements in six SPEC JVM98 benchmarks.

1 benchmark 1 aH entities 1 an elements 1 percentage 1

db 1153 177461 0.65
jess 1751 736095 0.24
mpegaudio 1369 1246644 0.11
jack 1606 3690981 0.044
mtrt 1336 5885700 0.023
compress 1165 17431602 0.0067

Table 2.2: Percentage of entities among elements.

These two tables also show that:

12

® although there's a big difference among the number of events occurred during
the execution of these benchmarks, the difference among the number of entities
involved is relatively small.

@ for each of the six benchmarks, only less than one percent of the elements are
entities.

@ as the number of elements increases, the percentage of entities among elements
decreases.

2.2.2 Element Definition

Events and entities can represent various kinds of program characteristics. However,
to visualize the elements, visualizations still need addition al information. For exam
pIe, visualizations must know that among the items of an element, which are values
and which are references. Also, if an item is a reference, which type of entity it refers
to. What's more, sorne visualizations are designed to visualize elements that have a
certain property (for example, a tree-like visualization can only visualize entities that
belong to a certain hierarchy), so visualizations also have to know the properties of
the elements.

In EVolve, the additional information is represented by element definitions, and
an element definition consists of the definitions of the fields that belong to the corre
sponding elements.

A field definition indicates whether the field is a reference or not, and if it is, which
type of entity it refers to. What's more, the definition also includes the properties
that the field has, and these properties are checked by visualizations when choosing
the appropriate fields and elements to visualize. The next section discusses this in
detail.

2.3 Visualization Characterization

Corresponding to the data representation technique described above, EVolve also uses
a visualization characterization technique that forms a connection between trace data
and visualizations.

13

2.3.1 Subject and Dimension

In order to visualize the trace data, a visualization has to know which elements should
be visualized, and how to map the fields of these elements to their corresponding visual
representation. In EVolve, the subject and dimensions of a visualization are used to
associate elements and fields with the visual representation.

The subject of a visualization indicates which type of elements it visualizes, and
the visualization manager sends elements to the visualizations according to their
subjects. 80 in EVolve, every visualization only receives elements that belong to its
subject (i.e. method invocation events won't be sent to a visualization that visualizes
object allocations).

The dimensions of a visualization determine how it interprets the elements. To
explain this, assume that a bar chart (Figure 2.4) is used to visualize object alloca
tions. The bar chart has two dimensions, one is its X-axis, the other is the height of
the bars (the Y-axis). For object allocation events, if the type of the object created
is mapped to the X-axis and the size of memory allocated is mapped to the height
of the bars, then the bar chart shows how much memory is allocated for each type
of objects. And if the allocating method is mapped to the X-axis while the size of
memory allocated is still mapped to the height of the bars, then the bar chart shows
how much memory is allocated by each method.

y

memory usage

--I11III. X
object type

Figure 2.4: Bar chart example.

The bar chart is usually depicted as a two-dimensional graph, and the two dimen
sions of the graph are equivalent to the dimensions of the visualization. However,
this is not always the case. For example, the color and texture of the bars can be two
additional dimensions of the bar chart.

14

2.3.2 Visualization Definition

Before visualizing the trace data, the subject and dimensions of a visualization must
be determined according to its definition. The definition of a visualization describes
what kinds of fields can be mapped to its dimensions.

For each dimension of the visualization, only fields that have a certain property
can be mapped to it. For example, in a bar chart, the X-axis is usually used to
represent entities and the height of the bar normally represents additive values. So
to visualize object allocations with a bar chart, object type and allocating method
can be mapped to the X-axis, and the size of memory allocated can be mapped to
the height of the bar. If items are mapped in the opposite way, the bar ch art cannot
work properly. So the visualization definition has to tell what property is required by
each dimension.

The properties used in visualization definitions are the same as those that are
used in element definition, so the data provider and visualization provider must use
the same set of properties. EVolve defines sorne general-purpose properties, and users
also can define new properties that are specific to their requirements.

Amount vs. Coordinate

Two of the predefined properties need to be mentioned here, amount and coordi
nate[20], which represent different types of values. Coordinates are values that repre
sent temporal or spatial points in a particular frame of reference, such as the address
where an object is allocated in memory. On the other hand, amounts are values that
represent certain kinds of quantities, such as the size of memory allocated for an
object. Naturally, coordinates are non-additive and amounts are additive.

It is important to differentiate amounts and coordinates because normally they
should be visualized using different types of visualizations. For example, in the bar
chart, the size (height) of the bars is a quantitative measurement so it should be used
to visualize amounts, and visualizing coordinat es with a bar chart is inappropriate.
Similarly, plot charts are designed to visualize coordinates, and they shouldn't be
used to visualize amounts.

Figure 2.5 shows the use of bar chart and plot chart for visualizing where five
objects are allocated in the memory. The addresses of memory are coordinates, and
it's obvious that using a bar chart for them is inappropriate, because that suggests
certain amounts of memory are allocated. On the contrary, using a plot chart to
visualize the addresses is effective.

15

address address

+

+

+
ABC 0 E abject A B C 0 E abject

Figure 2.5: Using bar chart and plot chart for coordinates.

16

Chapter 3

Data Protocol

In order to use EVolve to visualize trace data, a data source has to create elements
(events and entities) that represent the trace data and send these elements as well as
their definitions to the EVolve platform.

EVolve defines a DataSource interface that specifies the interaction between the
EVolve platform and the data source. By using the DataSource interface, the EVolve
platform can read various types of data traces, and this guarantees the flexibility of
EVolve.

Furthermore, EVolve provides ElementBuilder to simplify the pro cess of defining
and creating elements. Element builders also verify the elements and guarantee that
the EVolve platform will be able to use these elements.

Figure 3.1 depicts the relationship between the user-defined data source (in this
case, the MyDataSource) and EVolve. The user-defined data source needs to im
plement the DataSource interface and use element builders to create elements and
their definitions. These elements and element definitions are then sent to the EVolve
platform through the DataSource interface.

The following two sections describe the DataSource interface and how to use
the ElementBuilder, and the last section of this chapter discusses the data storage
technique used in EVolve.

17

DataSource

MyDataSource

Element
r----------~ EVolve Platform

Element definition

Element
~----------1 ElementBuilder

Element definition

Figure 3.1: Relationship between user-defined data source and EVolve.

3.1 Data Source Interface

The DataSource interface specifies the interaction between the EVolve platform and
the data source. It consists of seven methods that are called by the EVolve platform
to read trace data from the data source, and data providers must implement these
methods according to the specifie format of their data traces.

The first method called by the EVolve platform makes a connection with the data
source:

public void init()
Initializes the data source, such as opening a file or connecting to a database.

The rest of the DataSource interface are actually three pairs of methods that
allow the EVolve platform to read element definitions, entities, and events from the
data source.

The first pair of methods ask the data source to build the element definitions and
then read all the definitions from it. Because the element definitions define the format
and properties of the elements, the EVolve platform reads an these definitions before
starting to read the elements.

public void startBuildDefinition()
Asks the data source to start building the element definitions (both entity def
initions and event definitions). This method is called only once by the EVolve
platform.

public ElementDefinition getNextDefinition()
Gets the next element definition (returns null if an the definitions are sent).

18

The EVolve platform keeps on calling this method until an the definitions are
read.

The other two pairs of methods are similar. After all the element definitions are
received, the EVolve platform first reads aH the entities, then starts to read aIl the
events from the data source.

public void startBuildEntity()
Asks the data source to start building the entities.

public Entity getNextEntity()
Gets the next entity (returns null if an the entities are sent).

public void startBuildEvent()
Asks the data source to start building the events.

public Event getNextEvent()
Gets the next event (returns null if an the events are sent).

The DataSource interface of EVolve is simple and general enough so that data
providers can send various sorts of data traces to the EVolve platform easily.

3.2 Element Builder

As shown in Figure 2.3, internally, the fields of an element are represented as an array
of integers instead of objects. The advantage of this is that it allows the visualizations
to pro cess the elements more efficiently. However, this also makes it more difficult for
data providers to create the elements directly, and makes debugging the data sources
more complicated.

Therefore, EVolve provides the ElementBuilder class to facilitate the pro cess of
defining and creating elements. What's more, the element builder is also a verifying
mechanism that helps data providers to debug their data sources.

The element builder of EVolve is based on the well-known builder pattern[8]. As
shown in Figure 3.2, interaction between a data source and an element builder mainly
consists of two phases, builder initialization, which specifies the format of the elements
that will be created by the builder, and element creation, which creates the elements
according to the format. Each of these two phases has three steps.

19

DataSource

1 Initialize 11>1

1.1 Create Builder 11>1

1.2 Build Field Definition * 11>1

1 3 Build Element Definition 11>1

1

1

L-____ ~2~C~r~e~a~te~E_I~e~m~e~n~t_* ________ I~
2 1 New Element 11>1
2.2 Add Field *

2.3 Build Element 11>1

Figure 3.2: Interaction between a data source and an element builder.

To help explaining these two phases and demonstrating how to use the element
builders, assume that the data source needs to send elements that represent the fol
lowing piece of information to the EVolve platform:

ClassA. MethodAO {
ClassB b = new ClassBO;

}

To do so, the data source must create the following elements: two class entities that
represent ClassA and ClassB, respectively, a method entity that represents MethodA,
and an object allocation event that represents the creation of object b. Figure 3.3

1

l class
1

... 1 MethodA
1

Class B 1 ClassA
1 1

defining

allocating
objec

method
type

1 object allocation 16 abject
size

Figure 3.3: Relationship among the elements of the example.

20

depicts the relationship among these elements.

3.2.1 Builder Initialization

During the builder initialization phase, the data source creates element builders,
specifies the format of the elements that will be created by the builders, and uses the
builders to create element definitions.

Create Builder

In order to create elements and element definitions, the data source must first create
an element builder (either an entity builder or an event builder, as shown in Figure
3.41) for every type of element:

public EntityBuilder(String entityName, String entityDescription)
Creates an entity builder.

public EventBuilder(String eventName, String eventDescription)
Creates an event builder.

ElemenfBuilder

buildValueDefinition()
buildReferenceDefinition()
buildDefinitionO

addValueFieldO
addReferenceFieldO

~
1 1

EntityBuilder EventBuilcier

newEntityO newEventO
buildEntityO buildEventO

Figure 3.4: Class diagram of element builder.

1 Methods included in Figure 3.4 are described in the following sections.

21

There are three types of element in the example ab ove: class, method, and object
allocation. Correspondingly, the data source has to create two entity builders and an
event builder:

EntityBuilder dassBuilder = new EntityBuilder(" Class", null);
EntityBuilder methodBuilder = new EntityBuilder(" Method", null);
EventBuilder aliocationBuilder = new EventBuilder(" Allocation" , "Object allocation");

Note that the allocation builder adds a description2 for allocation events.

Build Definition

After the element builders are created, the data source needs to use the builders to
build field definitions and element definitions. Building the definitions serves two
purposes. First, the data source has to send the element definitions to the EVolve
platform, as required by the DataSource interface. Second, these definitions specify
the format of the elements to be built by the element builders, and this information
allows the builders to validate the trace data when creating elements.

As shown in Figure 3.2, in order to build the element definition, the data source
first has to build aU the field definitions. The related methods are as following:

public FieldDefinition buildValueDefinitionCString fieldName,
String[] fieldProperty, String fieldDescription)
Builds the definition of a value field.

public FieldDefinition buildReferenceDefinitionCString fieldName,
EntityBuilder referenceBuilder, String[] fieldProperty,
String fieldDescription)
Builds the definition of a reference field.

public ElementDefinition buildDefinitionC)
Builds the element definition.

In the above example, class entities don't have any fields (see Figure 3.3), so
there's no field definitions to be built and the element definition of class entities can

2Descriptions of elements and fields are used to help end-users configuring the visualizations, i.e.
selecting the subjects and dimensions of the visualizations. See Chapter 4 for more information on
visualization configuration.

22

be built directly:

ElementDefinition classDefinition = classBuilder.buildDefinitionO;

Method entities have references to their defining classes. This me ans that each
method entity has a reference field indicating its defining class. Therefore, the element
definition of method entities contains a corresponding field definition of a reference
field, and the field definition has to be built before building the element definition of
method entities:

FieldDefinition definingClass = methodBuilder.buildReferenceDefinition(" Defining CI a 55" ,

classBuilder, nuil, "Defining class of the method");

ElementDefinition methodDefinition = methodBuilder.buildDefinitionO;

The above code specifies that the name of the reference field is "Defining Class",
and the description is "Defining class of the method". It also specifies that the field
refers to class entities (by using the builder of class entities as a parameter), and the
field has no specific properties.

As shown in Figure 3.3, an object allocation event has three fields: a value field
representing the size of memory allocated for the object, a reference field indicating
the type of the object, and another reference field indicating the method where the
object is allocated.

Because the allocating method of an object allocation event aiso has a reference to
its own defining class, EVolve will automatically generate an indirect reference from
the object allocation event to the class entity. This indirect reference represents the
allocating class of the object allocation event, and the data source doesn't need to
specify it.

Building the element definition of object allocation events is similar to building
the definition of method entities, except that the object size field has a specifie prop
erty (amount), as shown below:

StringD propertyAmount = {" amount"};

FieldDefinition objectSize = allocationBuilder.buildValueDefinition(" Object Size" ,
propertyAmount, "Size of memory allocated");

23

FieldDefinition objectType = aliocationBuilder.buildReferenceDefinition(" Object Type",
dassBuilder, nu!!, " Type of the object");

FieldDefinition allocatingMethod = aliocationBuilder.buildReferenceDefinition(" Allocating
Method", methodBuilder, null, "Method that creates the object");

ElementDefinition allocation Definition = aliocationBuilder.buildDefinitionO;

In EVolve, value fields don't have default properties, so the data source must
specify the properties when building the field definition of value fields. On the other
hand, reference fields have a default property which indicates that the fields are
references to regular entities.

After the element definitions are built, element builders are ready to create ele
ments.

3.2.2 Element Creation

As shown in Figure 3.2, the element creation phase also consists of three steps. To
create an element, the data source first needs to inform the element builder to start
building a new element. This aiso causes the element builder to initialize its data
verifier.

public void newEntityCString entityName)
Starts building new entity.

public void newEventC)
Starts building new event.

Second, the data source can start to add the fields of the element to the element
builder. To add a field, the data source must provide the corresponding field definition
as the key.

public void addValueFieldCFieldDefinition fieldKey, int value)
Adds a value field.

public void addRefereneeFieldCFieldDefinition fieldKey,
Entity referenee)
Adds a reference field.

24

After all the fields are added correctly (the element builder validates the data
when the fields are added), the data source can get the element from the element
builder.

public Entity buildEntity()
Builds the entity.

public Event buildEvent()
Builds the event.

In the above example, the data source first needs to create two class entities. Be
cause they don't have any fields, the class entities can be created directly:

classBuilder.newEntity(" ClassA");
Entity classA = classBuilder.buildEntityO;

classBuilder.newEntity(" ClassB");
Entity classB = classBuilder.buildEntityO;

To create a method entity, the data source must first add a reference field by
using the corresponding field definition as the key and specifying which entity the
field refers to:

method Bui Ider. newEntity(" MethodA");
method Bu i Ider .add ReferenceField (definingClass. classA);
Entity methodA = methodBuilder.buildEntityO;

The data source can create an allocation event in a similar way (assume that the
size of the object created is 16 bytes):

allocation Builder .newEventO;
allocationBuilder.addValueField(objectSize, 16);
allocationBuilder.addReferenceField(objectType. classB);
allocationBuilder.addReferenceField(aliocatingMethod. methodA);
Event allocation = aliocationBuilder.buildEventO;

Through the DataSource interface, the data source can send these elements to the
EVolve platform after they are built. Chapter 5 presents a detaHed example showing
how to use the element builders to implement the DataSource interface.

25

3.3 Data Storage

In general, a data source can send trace data to the software visualization system
in two different ways. The first is that the trace data is sent only once and the
visualization system stores an the data in memory. This is the most efficient way
when visualizing a small amount of data. However, in sorne cases, especially when
visualizing the run-time behaviour of programs, the trace data generated is often
quite large, thus storing aU the data in memory is infeasible.

The second way is just the opposite, and none of the data is stored in memory.
Therefore, whenever the visualization system needs any information, it has to read
it from the data source. Although this can solve the problem of visualizing large
amounts of data, it's much less efficient when users manipulate the data, because
every operation (such as selecting a subset of the data) requîres reading data from
the data source.

In EVolve, these problems are solved by finding a balance point between these two
extremes, and the strategy used in EVolve is based on the following observations.

First, when selecting subsets of the data, users are usually interested in selecting
a group of entities. For example, users may want to visualize the invocation of a
set of methods, or the allocation of certain types of objects. Therefore, most data
manipulation functionalities only involve entities.

Second, as shown in Table 2.1 and Table 2.2, in most traces, the number of events
is much larger than the number of entities. The difference between the two is usually
over a factor of 100, and it's much higher in large traces.

Due to these factors, in EVolve, element definitions and entities are stored in
memory and only need to be read from the data source once, while events are read
from the data source when necessary (this means that the first five methods of the
DataSource interface are called only once by the EVolve platform and the last two
methods are called when necessary).

This strategy allows end users to manipulate large amount of data efficiently
because EVolve only needs to read the trace data when generating the visual repre
sentation.

26

Chapter 4

Visualization Protocol

As shown in Figure 1.2, the visualization proto col of EVolve specifies the interaction
between the visualizations and the EVolve platform, and it can be viewed as a cycle
(Figure 4.1) consisting of four phases: creation, configuration, visualizing, and data
manipulation.

Creation: during the creation phase, a visualization's definition is sent to the EVolve
platform so that it can be configured in the next phase. The visualization also
needs to be initialized, and one major step of the initialization is creating a
canvas on which the data will be visualized.

Configuration: in the configuration phase, an end user selects the subject and di
mensions of a visualization (i.e. mapping data fields to the dimensions), as weIl
as specifies other parameters (sueh as sample size), eausing the visualization to
update itself.

data manipulation

sort

make selection

specify filter & colour

Figure 4.1: Visualization cycle of EVolve.

27

Visualizing: during the data processing phase, the visualization receives elements
that belong to its subject from the visualization manager, and generates the
visual representation of these elements. This time-consuming phase can be
shared by different visualizations (i.e. the trace data is read only once and sent
to various visualizations).

Data manipulation: in EVolve, an end user can sort the content of a visualization
according to a certain order, make selections in the visualization, and use these
selections for filtering or coloring subsets of the data.

EVolve has a number of built-in visualizations, such as bar charts, hot spot
graphs[7], prediction graphs, etc. End us ers can use EVolve as a stand-alone tool
and create one or more of these built-in visualizations. However, EVolve is also de
signed to be extensible, so the visualization protocol makes it simple to add new kinds
of visualizations.

In this chapter, Section 4.1 gives an overview of a typical end user interaction
with EVolve, and the other sections describe how a visualization provider can build
a new visualization by implementing the four phases of the visualization cycle.

4.1 End User Visualization

Given a data source, an end user can run EVolve as a stand-alone program and
interactively create and modify one or more visualizations of the data. The end user
can select from any data provided by the data source and can visualize using any
visualization currently available.

To create and modify a visualization, the end user goes through the pro cess shown
in Figure 4.1. The following sections illustrate this pro cess using a sequence of screen
shots of EVolve (Figure 4.2 to Figure 4.9). This example shows four different visual
izations of method invocations from the Volano b enchmark [5] .

4.1.1 Bar Chart Visualization

Assume that the end user first wants to use a bar chart to show which invoking
locations are most active. To do so, the end user needs to indicate that he/she wants
to create a bar chart by choosing the corresponding menu item (Figure 4.2) from the
available visualizations; this corresponds to the box labeled create in Figure 4.1.

28

Second, the end user configures the bar chart by specifying which data should be
visualized and which fields should be mapped to the axes (Figure 4.3), i.e. selecting
the subject and dimensions of the bar chart (the configure box in Figure 4.1). The
configuration dialog is generated according to the visualization definition and the
element definitions, so that only valid choices are available in the combo-boxes.

In this case, the end user selects method invocations as the subject of the bar
chart, and maps the location of the invocations to the Y-axis and the number of
invocations to the X-axis. Note that the number of invocations on the X-axis is an
amount, Le. a value than can be summed to produce the total number of invocations.
In EVolve, configuration is optional, and if no configuration is given by the end user
then default choices are made by EVolve.

Until this point no data has actually been displayed. After completing the config
uration, the end user indicates that the data shouid be visualized and the appropriate
visualization is computed and displayed (the visualize box in Figure 4.1). The result
is shown in Figure 4.4.

Note that 88 method invocation locations were each executed up to 479 times.1

The Y-axis of the bar chart shows invocation locations sorted in lexical order, and
the length of the bars on the X-axis indicates the number of times each location was
active in the visualized program run. The bar chart therefore stresses the importance
of an invocation location over the whole program run. Users can find the name of the
method being invoked by placing their mouse over the bars in the chart.

On the first visualization, aIl of the data is displayed in default color (black).
However, the end user may want to perform various data manipulations on the visu
alization (see the data manipulation box in Figure 4.1). He/she may select only parts
of the data (filter), assign colors to different parts of the data, or change the sorting
order on sorne axis.

For the bar ch art example, the end user has selected the corn. volano locations
using the mouse (Figure 4.5), and then assigned the color of this part blue/black2 .

Similarly, he/she has aiso assigned the color of the java locations green/grey. After
specifying the modifications the end user then indicates that the data shouid be re
visualized (i.e. going from the data manipulation box back to the visualize box in
Figure 4.1). Now the bar chart is computed and displayed again, and the new color
scheme is applied (Figure 4.6).

ITo make this example a reasonable size, only 88 method invocation locations are shown here,
the whole benchmark has significantly more invocation locations.

2The electronic version of the thesis includes color images.

29

This proeess of specifying data manipulations and re-visualizing may iterate until
the end user is satisfied with the result. At any point the end user may decide
to completely reconfigure the visualization, and return to the configure step where
different subject or dimensions are assigned to the visualization (Le. going back to
the visualize box).

4.1.2 Hot Spot Visualization

From the bar chart, the end user can easily find the most active invoking locations.
However, a bar ch art cannot provide enough information about the run-time be
haviour of the program, so the end user may also want to use a hot spot visualization.

Figure 4.7 shows a lexical hot spot graph of the same 88 method invocation lo
cations. It is produeed in a similar manner as the bar chart, so only the differenees
with the bar chart are mentioned here. The Y-axis still represents the invocation
locations, and the X-axis indicates time as number of bytecodes executed sinee the
st art of the program (a coordinate) for a total of 1,322,582 executed bytecodes.

A hot spot graph shows when a particular invocation location is active. For
example, from the visualization one can see that the corn. volano method invocations
(blue/black) do not start until about half way into the execution, whereas the first half
of the code has only java method invocations (green/grey). Presumably this shows
that the first phase of the program execution consists of program/ JVM initialization
and class loading, whereas the second half executes mostly corn. volano code, with
some calls to java libraries.

The end user can create another hot spot visualization, a temporal hot spot, as
shown in Figure 4.8. The X-axis of this visualization remains the same as for the
lexical hot spot, encoding time as number of bytecodes executed. The Y-axis shows
the same 88 method invocation locations, but the locations are now sorted by the
time they are first activated (temporal order). A temporal hot spot groups together
invocations that execute together, emphasizing the phases of program execution. The
blue/black3 corn. volano invocations therefore appear clustered together high on the
Y-axis.

Actually, the visualizations used to generate these two hot spot graphs are identi
cal, only the sorting schemes used on their Y-axes are different. EVolve provides two
default sorting schemes (lexical and temporal), but is designed to facilitate painless
integration of other sorting schemes.

3The coloring scheme is kept from the previous step.

30

4.1.3 Prediction Visualization

In order to facilitate the understanding of polymorphism, the end user can use a
prediction visualization that displays the predictability of events (Figure 4.9). In this
case, the prediction visualization shows predictor misses of virtual method invoca
tions. The X-axis and Y-axis are identical to the temporal hot spot graph, but the
visualization provides its own coloring scheme.

Method invocations appear in light blue/light grey when the invoked target method
does not change within the time period visualized (i.e., the invocation is not polymor
phie, therefore, sorne sort of inline cache for virtual method caUs would be expected
to work weIl). On the contrary, method invocations appear in red/black when the
invoked target method does change, representing a polymorphie invocation.

The name "prediction" for this visualization stems from the technique used to
generate the colors: a simple last-value predictor guesses that an invocation location
will invoke the exact same method as the last time it was executed. The blue/grey
are as therefore indicate perfect prediction accuracy, the red/black areas show when
the predictor guesses the wrong target method. More sophisticated and accurate
predictors can be visualized by plugging them into the framework, and more accurate
predictors should reduce the amount of red/black points in the graph.

The visualization in the example shows that the corn. volano invocation locations
exhibit a higher degree of polymorphism than the java methods. For example, in the
startup phase, most invocation locations never change method targets.

The following sections use the hot spot visualization as an example to describe
the implementation of the visualization cycle, and the prediction visualization is used
as a case study in Chapter 5.

4.2 Creation

Compared to the data protocol, the visualization protocol of EVolve is much more
complicated, because it not only involves data transmission and processing, but also
includes end user interaction and the user-interface. Therefore, if the visualization
proto col is simply specified by an interface, visualization providers will have a lot of
work to do to implement a new visualization in EVolve.

Fortunately, most of the work involved in implementing a new visualization is gen
eral to any kind of visualization. Therefore, EVolve provides a Visualization class
which implements an the functions that are general. By extending the Visualization

31

class, visualization providers only need to implement functions that are specific to
their new visualizations.

This section and the following sections describe how to build a new visualization
in EVolve using the Visualization class. The hot spot visualization described in
the previous section is used as an example.

As shown in Figure 4.1, the first phase in the visualization cycle is the creation
phase. During this phase, the visualization is created and initialized, its definition
is sent to the EVolve platform and the canvas where the data will be visualized is
created.

4.2.1 Visualization Factory

End users often need to use several visualizations of the same type at the same time
(in Figure 4.9, two hot spot visualizations are used). Because of this, EVolve uses the
factory pattern[8] to create visualizations.

Figure 4.10 shows the relationship between visualization and visualization factory.
According to this relationship, in order to build a new type of visualization in EVolve,
a visualization provider not only needs to build a visualization by extending the
Visualization class, but also has to build a visualization factory by extending the
VisualizationFactory class.

The VisualizationFactory class has three abstract methods that must be im
plemented:

public String getName()
Gets the name of the visualization.

protected VisualizationDefinition createDefinition()
Creates visualization definition.

public Visualization createVisualization()
Creates a visualization.

For example, here's the visualization factory for hot spot visualization:

public String getNameO {
return "Hot Spot Visualization" ;

}

32

protected VisuaiizationDefinition createDefinitionO {

}

DimensionDefinition[] dimensionDefinition = new DimensionDefinition[2];

1* only fields that are coordinates can be mapped to the X-axis * /
dimensionDefinition[O] = new DimensionDefinition(" X-axis" • If coordinate");

1* only fields that are references can be mapped to the Y-axis * /
dimensionDefinition[l] = new DimensionDefinition(" Y-axis" l "reference");

return new VisualizationDefinition(dimensionDefinition);

public Visualization createVisualizationO {
return new HotSpotVisualizationO;

}

The visualization definition defines the dimensions of a visualization and the prop
erty of these dimensions. A hot spot visualization has two dimensions, its X-axis and
Y-axis. The property of the dimensions determines that only value fields that are
coordinates can be mapped to the X-axis, and any kind of reference field can be
mapped to the Y-axis.

4.2.2 Creating Visualization

Two major fields of the Visualization class are the panel (the canvas where the
data elements are visualized) and the dimensions, as shown in Figure 4.11. During
the creation phase, these two fields must be initialized.

In order to extend the Visualization class, a new visualization must implement
nine abstract methods that are specified by the Visualization class. These methods
belong to the different phases of the visualization cycle. The following two methods
belong to the creation phase and create the panel and dimensions of the visualization,
respectively:

protected JPanel createPanel()
Creates the panel.

protected Dimension[] createDimension()

33

Creates the dimensions.

The following piece of code creates the panel and the dimensions for hot spot
visualization:

private ValueDimension xAxis;
priva te ReferenceDimension yAxis;

protected JPanel createPanelO {
AxesPanel returnVal = new AxesPanelO;
return returnVal;

}

protected Dimension[] createDimensionO {
xAxis = new ValueDimensionO;
yAxis = new ReferenceDimensionO;

Dimension[] retu rnVa 1 = new Dimension[2];
returnVal[O] = xAxis;
returnVal[l] = yAxis;
return returnVal;

}

Note that the hot spot visualization creates an AxesPanel instead of a JPanel.
Because many visualizations use two axes (such as bar chart, plot chart, hot spot
visualization and etc.), EVolve provides AxesPanel to simplify the implementation
of these visualizations. The AxesPanel class extends the JPanel and the following
sections describe how to use it.

The hot spot visualization creates a value dimension (X-axis) and a reference
dimension (Y-axis). In EVolve, the dimensions created by the createDimension
method must conform to the visualization definition created by the createDefini tion
method of the visualization factory.

4.3 Configuration

In EVolve, when the end user needs to configure a visualization, a configuration
dialog (Figure 4.12) is popped up, where the end user can change the title of the

34

visualization, select the subject and dimensions of the visualization, and choose other
parameters.

The Visualization class generates the configuration dialog according to the vi
sualization definition, so that only valid choices are available in the combo-boxes.
For example, because only coordinates can be mapped to the X-axis of the hot spot
visualization, the combo-box that represents the X-axis only provides choices that
are coordinates.

Because the configuration of the title, subject and dimensions is general to aU
kinds of visualizations, it is implemented by the Visualization class. Therefore,
visualization providers only need to implement the following two methods to support
the configuration phase:

protected JPanel createConfigurationPanel()
Creates a panel for parameters input (returns null if the visualization doesn't
need other parameters, such as bar chart).

protected void updateConfiguration()
Updates the visualization according to the configuration.

For hot spot visualization, an end user can specify the sample size (interval) in the
configuration phase, and the code below shows how to add items to the configuration
dialog:

private Înt interval;
private JT extField textl nterva 1

protected JPanel createConfigurationPanelO {
interval = 1000;

}

textlnterval = new JTextField("1000");

JPanel returnVal = new JPanelO;
returnVaLadd(new Jlabel(" Interval:"));
returnVal.add(textlnterval);
return returnVal;

\\Then an end user applies the configuration, the updateConf iguration 0 method
is called, and the hot spot visualization needs to get the interval value from the con
figuration dialog and update the axes panel:

35

protected void updateConfigurationO {

}

1* gets the interval from the dialog * /
interval = Integer.parselnt(textlntervaLgetTextO);

1* gets the name of the axes from the dimensions * /
((AxesPanel)panel) .setName(xAxis.getNameO, yAxis.getNameO);

/* draws an empty graph * /
((AxesPanel)panel) .setlmage(null);
paneLrepaintO;

After the configuration phase, an ernpty hot spot visualization is ready for visu
alizing elernents in the next phase (Figure 4.13).

4.4 Visualizing

The visualizing phase of the visualization proto col consists of three steps. First, before
starting to pro cess the data trace, rnost visualizations need to do sorne preparation
(such as initializing sorne variables). After the preparation, the visualization starts
to receive and pro cess the elernents, and when a11 the elernents are received, the
visualization can generate the visual representation of these elernents. Figure 4.14
shows these three steps.

Correspondingly, the following rnethods of the Visualization class belong to the
visualizing phase:

public void preVisualize()
Prepares for receiving elernents.

protected void receiveElement(Element element)
Receives an elernent.

public void visualize()
Generates the visual representation of the elernents.

For a hot spot visualization, each tirne when an elernent is received, it needs

36

to draw a point on the axes panel. An AxesPanel uses a BufferedImagé as the
content of the panel and EVolve provides an AutoImage to facilitate generating
the BufferedImage. 80 in the first step, a hot spot visualization has to create an
Auto Image:

private Autolmage image;

public void preVisualizeO {
image = new AutolmageO;

}

When an element is received, a visualization can use its dimensions to get the
corresponding fields from the element. If the field is a value, the dimension gets the
value from the element; if the field is an entity, the dimension returns the index of the
entity. The following code shows how a hot spot visualization draws a corresponding
point of an element (the X-position is determined by the value on the X-axis and the
interval, the Y-position is the index of the entity on the Y-axis:

public void receiveElement(Element element) {

}

i mage.setColor(xAxis.getField (element) / i nterva l, Y Axis.getField (element),
EVolve.getColorO) ;

Note that the EVolve .getColorO method returns the color ofthe current element
determined by the filter of EVolve.

After an the elements are received, a hot spot visualization only needs to generate
the BufferedImage from the AutoImage and update the content of the AxesPanel:

public void visualizeO {

}

((AxesPa nel) pa nel) .setl mage(i mage.getl mageO);
panel.repaintO;

Figure 4.15 shows the hot spot visualization after the visualizing phase. From
the graph, an end user can know when a particular invocation location is active. For
example, it is obvious that the execution of the program consists of two major phases,

4BufferedImage is a class included in the java. awt. image package.

37

and most invoking locations that are active during the first phase (the 1eft half) are
no longer active in the second phase (the right half).

4.5 Data Manipulation

EVolve provides three types of data manipulation: filtering, coloring, and sorting.
Filtering and coloring are mainly accomplished by the fiIter of the EVolve platform,
and visualizations only need to allow end users to make selections among the data.
EVolve also simplifies the pro cess of sorting and provides two default sorting schemes:
lexical and temporal.

In EVolve, sorting and making selections only involve entities, so in order to
implement the data manipulation phase, a visualization provider has to understand
the ReferenceDimension class, because reference dimensions represent entities.

4.5.1 Reference Dimension

When an entity is created by an element builder, its id is assigned automatically. How
ever, when implementing a visualization (especially the data manipulation phase), it
is complicated to use the entity id directly. Therefore, for every entity, a reference
dimension generates a corresponding entity index and sorted index to simplify the
implementation of the data manipulation phase, as shown in Figure 4.16.

To generate the entity indices, a reference dimension filters out all the entities
that are unnecessary for a visualization. For example, a data trace may contain 100
methods, but only 10 of them create objects, so for a visualization that shows objects
created by methods, only these 10 method entities are useful while the other 90 are
unnecessary.

Sorted indices indicate the sorted order of the entities under a certain sorting
scheme. Unlike entity indices, which are generated during the visualizing phase,
sorted indices are generated during the data manipulation phase when the end user
applies sorting schemes to the reference dimension.

The following methods of the ReferenceDimension class are related to the con
version of entity id:

public int getMaxEntityNumber()
Gets the maximum number of entities that belong to this dimension (the number

38

of entity ids). For the previous example, this will return 100. Note that this
method can be called in the visualizing and data manipulation phase.

public int getEntityNumber()
Gets the number of entities that are useful (the number of entity indices). For
the previous example, this will return 10. Note that this method should be
called after an the elements are received, i.e. in the data manipulation phase
and the last step of the visualizing phase.

public Entity getEntity(int entitylndex)
Gets the corresponding entity.

public int getSortedlndexCint entitylndex)
Gets the sorted index.

4.5.2 Making Selections

Different types of visualization have different ways for making selections. For example,
an end user can select a group of rows in a table, or select several bars in a bar chart,
or select an area in a hot spot visualization (Figure 4.17).

In EVolve, the following method is called when an end user needs to make a
selection:

public void makeSelection()
Makes a selection of entities.

To implement this method, a hot spot visualization first needs to know which
entities are selected (i.e. which entities are enclosed in the selecting box of Figure
4.17), and then sends the sorted index of these entities to the reference dimension to
make the selection. For example, a hot spot visualization can get the range of the
selection box from the AxesPanel and use its Y-axis to make the selection5 :

public void makeSelectionO {
1* gets the sorted index of the entity that corresponds to the bottom edge * /
int yI = ((AxesPanel)panel).getEndYO;

5Note that this example only uses the top and bottom boundaries of the selecting box, and
ignores the 1eft and right boundaries, Chapter 5 gives an example that also uses the 1eft and right
boundaries.

39

}

j* gets the sorted index of the entity that corresponds to the top edge * j
int y2 = ((AxesPanel)panel).getStartYO;

1* adds ail the entities between the two edges to the selection * j
int[] selection = new int[y2 - yI + 1];
for (int i = yI; i <= y2; i++) {

selection[i - yI] = i;
}

y Axis. makeSelection (selection);

4.5.3 So:rting

When the end user appHes a certain sorting scheme to a reference dimension, the
dimension generates new sorted index of the entities and the following method is
called:

public void sorte)
Sorts the content of the visualization.

N ormally, a visualization needs to sort the content of the visualization according
to the sorted index of the entities (such as rearranging the rows in a table). However,
the Autolmage used by the hot spot visualization can sort the content of the image
automatically:

public void sortO {

}

j* sorts the Y-axis of the image * j
((AxesPanel)panel) .setl mage(image.getSorted 1 mage(null, yAxis) .getlmageO);
panel.repaintO;

The Autolmage can get the sorted indices from reference dimensions and generate
sorted image accordingly.

40

4.6 Summary

This chapter describes the visualization proto col of EVolve and how to build a vi
sualization by extending the Visualization class. To summarize, here are the nine
methods that need to be implemented by the visualization provider:

protected JPanel createPanel()

protected Dimension[] createDimension()

protected JPanel createConfigurationPanel()

protected void updateConfiguration()

public void preVisualize()

protected void receiveElement(Element element)

public void visualize()

public void makeSelection()

public void sorte)

The next chapter gives a complete example showing how to implement a more
complicated visualization in EVolve.

41

Figure 4.2: Creating a bar chart.

42

litle! Isar Chart

r Cfmose subjed '" dimensions·
j

'------- i SUbjed:
Numbel i

--- . 1 X~aIDs: , l
!

! Y·a~is:
l
L~,,>,

Figure 4.3: Configuring the bar chart.

43

[ile 'Y,isualization 1!![indow Help

Bar Chart ~ Method Jmrocltion

INul hw~~I~ ",,~,L~~~'LuuuuJuu>u ~.u:,'.;;' .. ;. ,y,:" .~ ... , ~,;,;;;;;;;.; ; ~u :k..;;.;L

ICOM.wlallo.mbz.A (jwa.io.DatalnpmStream)jI2

Figure 4.4: Bar chart without color.

44

!COM.wlana.mbz.A (jmta.ia,Oatall1pmStream) jl2

Figure 4.5: Making selections on the bar chart.

45

Number of Invocation (479)

Figure 4.6: Bar ch art with color.

46

file ~$U~lilmÜOn Window Help

Chart ~ Method tmrocmion

Number of invocation (479)

ft""

r""!;~""::~,~~,"~;~":,:J '""""""""""",',"'""'"'~"""'""',',
1 Visu~lization finished.

Bytecode (1322582)
--Eœ~------~ m~Eœ~

Figure 4.7: Lexical hot spot.

47

Eiie ïisualilaticm !lù1dow Help

• Method Invocation ri iii

:I11III r

1.
Number of Invocation (479) Bytecode (1322582)

Bytecode (1322582)

Figure 4.8: Temporal hot spot.

48

_ r

l,
Number oflnvocation (479) Bytecode (1322582)

Bytecode (1322582) Bytecode (1322582)

; jwa.net.URlClassl...oader $4.n.m() jl?

Figure 4.9: Screen shot of EVolve.

49

VisualizationFactory
create

Visualization

create
MyVisualizationFactory MyVisualization

Figure 4.10: Relationship between visualization and visualization factory.

Visualizafion

panel: JPanel
dimension[] : Dimension

Dimension

ReferenceDimension

Figure 4.11: Class diagram of visualization.

Choose subjecl 8& dimensions

SUbject: lrMlt'itron

[
-~_.

x.a!d$: .. ~"~~.~"~!" .. ~ .. " . .v. ••

Y.axis:

Imenrat 1..:-:..:°0:...:;0 ____ .---1

Figure 4.12: Configuration dialog.

50

Hot Spot ~ Method Invocatiotl

Bytecode

Figure 4.13: An empty hot spot visualization.

pre-visualize I-----~ receive elements I------,--~

Figure 4.14: Visualizing phase of the visualization proto col.

Spot ~ Method Invocation

e: • .~ 0
:;:;

B , ., \~" mimi ,
0 J -l

" f: dl'
r;:r..
e: m B BI ,

:2
.

~iili ~ J :1 Il mM! .. _l-
e: 11. 1' '1 -. •••

1-.-
Il ~

Bytecode

Figure 4.15: A hot spot visualization.

51

(entity id JI-__ fil_te_r_~{ entity index JI-__ s_o_rt_~~ sorted index

Figure 4.16: Conversion of entity id.

c:::
o

B o
....J

1 .~

1 ~
:? l' i ,d

Il •• Il 1

1 .1. 1

Bytecode

Figure 4.17: Making selections on hot spot visualization.

52

Chapter 5

Case Study: Visualizing
Polymorphism

Chapter 3 and Chapter 4 describes the data proto col and visualization protocol of
EVolve, and how to implement data sources and visualizations. To demonstrate how
to use EVolve solving real problems, this chapter presents a step-by-step example to
serve as a case study.

The goal of this case study is to visualize polymorphism, and it serves the following
purpose:

@ The visualization used in this case study was implemented after the whole frame
work was built. However, adding the new visualization to the framework didn't
require any modification of the framework, and this validates the extensibility
of EVolve.

@ It only took about two hours to implement the new visualization, and this
demonstrates that extending EVolve is easy.

@ Polymorphism is an important characteristic of object-oriented programs, and
the visualization provides a straightforward way to understand it.

Section 5.1 first discusses the problem that needs to be solved in the case study,
and the requirement of the data source and the visualization. Then Section 5.2 and
5.3, respectively, describe the implementation of the data source and the visualization.
Finally, Section 5.4 shows how to integrate the data source and the visualization into
EVolve.

53

5.1 Problem Description

An interesting and important aspect of the run-time behavior of object-oriented pro
grams is polymorphism, especially for system optimizations (such as in-lining). So
the goal of this case study is to provide a visualization technique to facilitate under
standing and comparing different prediction strategies.

To do so, the first step is to generate a data trace that contains information about
method invocations. For each method invocation event, the trace data has to provide
the invoking location and the actual method invoked. There are various ways to
obtain the trace data, such as instrumenting the source code, using an instrumented
JVM (Java Virtual Machine), or using the JVMPI (Java Virtual Machine Profiler
Interface) [25]. The discussion of how to create the trace data is beyond the scope
of this thesis and in this chapter, it is assumed that the trace data is generated and
stored in a file using a certain format.

.,<>,,,,,,, <: J

Bytecode (675032)

Figure 5.1: Prediction visualization.

After the trace data is generated, the data source must be able to read the trace
data and create the corresponding elements: methods, invoking locations, and method
invocations. Obviously, methods and invoking locations are entities, while method

54

invocations are events.

The visualization used in this example is similar to the hot spot visualization
described in Chapter 4, except that it uses a different coloring scheme so that the
color now indicates whether the method invocations are polymorphie or not. As
shown in Figure 5.1, redjblack1 indicates invocations that are polymorphie, white
light bluejlight grey indicates invocations that are monomorphic.

5.2 Implementing the Data Source

5.2.1 Format of the Data Trace

For the case study, assume that the data trace is stored as a pure text file using the
format shown in Table 5.1.

Method Invoked M: methodName methodld
Invoking Location L: locationName locationld
Invocation 1: bytecode locationld methodld

Table 5.1: Format of the data trace.

For example, the following piece of information shows that when executing the
151347th bytecode, method java.lang.Math.maxCint,int) is invoked by method
java. utH. jar . Manifest . readO, and the offset ofthe invoking location within the
method is 18.

M: java.lang.Math.maxCint,int) 115
L: java.util.jar.Manifest.readC)#18 238
1: 151347 238 115

5.2.2 Data Source

The data source of the case study needs to parse the data trace according to the
format described in Table 5.1 and generate the corresponding elements. Because
there are three types of element: method, invocation location, and invocation, the
data source requires three element builders, as shown in Figure 5.2. Furthermore, in

IThe electronic version of this thesis includes color images.

55

order to create the invocation events, the data source also needs to keep track of the
entities created by the entity builders. Therefore, it uses the TreeMap provided in the
java. ut il package to store the entities and their ids (the ids used in the data trace,
not the internaI EVolve entity ids).

1

DataSource
1

Î
DemoSource

methodBuilder: EntityBuilder
locationBuilder: EntityBuilder
invocationBuilder: EventBuilder

methodMap : TreeMap
locationMap : TreeMap

Figure 5.2: Class diagram of the data source of the case study.

5.2.3 Initialization

During the initialization, the data source needs to open a trace data file that is chosen
by the end user using the JFileChooser dialog provided in the j avax. swing pack
age. If the file cannot be opened, or the end user canceled the action, the data source
throws an DataProcessingException defined by EVolve to indicate that there's an
exception occurred when processing the data.

import java.io.*;
import java.util.*;
import javax.swing.*;

public class DemoSource impiements DataSource {
priva te RandomAccessFiie file;

private EntityBuilder methodBuiider;
private EntityBuilder iocationBuiider;

private EventBuiider invocationBuilder;
priva te FieldDefinition invocationBytecode;

56

}

private FieldDefinition invocationLocation;
private FieldDefinition invocationMethod;

private TreeMap methodMap;
private TreeMap locationMap;

public void initO throws DataProcessingException {
JFileChooser fc = new JFileChooserO;

}

1* opens the file chooser * /
if (fc.showOpenDialog(EVolve.getFrameO) ==

JFileChooser.APPROVE_OPTION) {
try {

1* opens the file that the end user chose * /
file = new RandomAccessFile(fc.getSelectedFileO. "r");

} catch (1 0 Exception e) {
throw new DataProcessingException(" File loading failed.");

}
} else {

1* the end user cancels the initialization * /
throw new DataProcessingException(" File loading canceled.");

}

5.2.4 Definition Building

To send the element definitions to the EVolve platform, the data source first needs to
create the element builders and build the element definitions. The element definitions
are stored in an array and are then sent to the EVolve platform one by one.

private ElementDefinition[] definition;
priva te int definitionCounter;

public void startBuildDefinitionO {
definition = new ElementDefinition[3];

methodBuilder = new EntityBuilder(" Method", "Method");

57

}

definition[O] = methodBuilder.buildDefinitionO;

10cationBuilder = new EntityBuilder(" location" l "location in method");
definition[l] = 10cationBuilder.buildDefinitionO;

invocationBuilder = new EventBuilder(" Invocation" l "Method invocation");

1* a value field that represents the bytecode sequence * /
String[] propertyCoordinate = {" coordinate"};
invocationBytecode = invocationBuilder.buildValueDefinition(" Bytecode" 1

propertyCoordinate, Il Bytecode number");

1* a reference field that represents the method invoked * /
invocationMethod = invocationBuilder.buildReferenceDefinition(" Method",

methodBuilder, null, "Method that is invoked");

1* a reference field that represents the invoking location * /
invocation location = invocationBuilder.buildReferenceDefinition(" location" 1

10cationBuilder, null, "Invoking location");

definition[2] = invocationBuilder.buildDefinitionO;

/* initializes the counter of element definitions * /
definitionCounter = -1;

public ElementDefinition getNextDefinitionO {

}

1* sends the element definitions to the EVolve platform * /
definitionCounter++ ;

if (definitionCounter < definition.length) {
/* sends an element definition * /
return definition [definitionCounter];

} else {

}

/* ail the element definitions have been sent * /
return nul!;

58

5.2.5 Entity Building

To facilitate parsing the data trace, the data source needs a getSub CString line,
int part) method2 that returns a certain part of the line. For example, if the
current line is HM: java.lang.Math.maxCint,int) 115", the first part ofthe line is
the name of the method, and the second is the id of the method.

When an entity is built, it also needs to be stored in a TreeMap so that it can be
used later on when building the events.

public void startBuildEntityO throws DataProcessingException {

}

try {
1* starts reading the data trace file from the beginning * /
file.seek(O);
methodMap = new TreeMapO;
locationMap = new TreeMapO;

} catch (IOException e) {
throw new DataProcessingException(" File processing failed.");

}

public Entity getNextEntityO throws DataProcessingException {
try {

1* reads a line From the data trace file * /
String line = file.readlineO;
Entity returnVal = null;

while ((returnVal == nul!) && (line 1= null)) {
char ch = line.charAt(O);
if (ch == 'M') {

1* uses the method name to create a method entity * /
methodBuilder.newEntity(getSub(line, 1));
returnVal = methodBuilder.buildEntityO;

1* stores the method entity in the tree map using its id as key * /
methodMap.put(getSub(line, 2), returnVal);

} else if (ch == 'l') {
1* builds a location entity, same as building a method entity * /
locationBuilder.newEntity(getSub(line, 1));

2Implementation of this method is ignored here.

59

}

}

}

retu rnVa 1 = locationBuilder.buildEntityO;
locationMap.put(getSub(line. 2), returnVal);

if (returnVal == nuli) {

}

1* reads another line if the current line represents an invocation event * /
line = file.readlineO;

return retu rnVa 1;
} catch (lOException e) {

throw new DataProcessingException(" File processing failed.");
}

5.2.6 Event Building

Building the invocation events is similar to building the entities, except that every
invocation event has a value field indicating the bytecode number, and two reference
fields, one indicating the method invoked, the other indicating the invoking location.

public void startBuildEventO throws DataProcessingException {
try {

}

1* starts reading the data trace file from the beginning * /
file.seek(O);

} catch (IOException e) {
throw new DataProcessingException(" File processing failed.");

}

public Entity getNextEventO throws DataProcessingException {
try {

1* reads a line From the data trace file * /
String line = file.readlineO;
Event returnVal = nul!;

while ((returnVal == nul!) && (Iine != null)) {

60

}

}

char ch = line.charAt(O);
if (ch == 'l') {

}

1* starts the create a new invocation event * /
invocation Bu ilder. newEventO;

1* gets the bytecode number from the line and adds a value field * /
invocation Bu ilder .addValueField (invocation Bytecode,

Integer.parselnt(getSub(line, 1)));

1* used the location id to get location entity
and adds a reference field * /

invocation Bu ilder. add ReferenceField (i nvocation location,
(Entity)(locationMap.get(getSub(line, 2))));

1* used the method id to get method entity
and adds a reference field * /

invocation Bu ilder. add ReferenceField (invocation Method,
(Entity)(methodMap.get(getSub(line, 3))));

1* builds the invocation event * /
returnVal = invocationBuilder.buildEventO;

if (returnVal == nul!) {

}

1* reads another line if the current line doesn't represents
an invocation event * /

iine = file.readlineO;

return returnVal;
} catch (IOException e) {

throw new DataProcessingException(" File processing failed.");
}

61

5.3 Implementing the Prediction Visualization

5.3.1 Predictor

One of the design goals of the prediction visualization is to allow users compare
different kinds of prediction strategies. Therefore, the prediction visualization should
be able to use various "plug-in" predictors. This is similar to the way that various
visualizations are "plugged-in" to EVolve, so the predictors are also created using the
factory pattern as shown in Figure 5.3.

PredictorFactory
create

Predictor

create
DefaultPredictorFactory DefaultPredictor

Figure 5.3: Predictor factory.

The PredictorFactory class is simple and it only consists of the following two
abstract methods:

public String getName()
Gets the name of the predicting strategy.

public Visualization createPredictor()
Creates a predictor.

For the predictors, no matter what the predicting strategy is, whenever a target
is touched (i.e. a method is invoked), it makes a prediction according to the previous
targets and tells whether the prediction is correct or not. Therefore, the Predictor
class has these two abstract methods:

public void newTarget(int target)
Receives a new target.

public boolean isCorrect()
Tells if the prediction is correct.

62

For example, here's the factory that creates the default (one-bit) predictors:

public dass DefaultPredictorFactory extends PredictorFactory {
public String getNameO {

}

return "One-Bit Predictor";
}

public Predictor createPredictorO {
return new DefaultPredictorO;

}

The implementation of the one-bit predictor is simple because it only compares
the new target with the previous one, and if they are same, the prediction is correct.
Note that the first time when a predictor is used, it always tells that the prediction
is correct because there's no previous target.

public dass DefaultPredictor extends Predictor {
private int lastTarget;
private boolean correct;

public DefaultPredictorO {

}

lastTarget = Integer.MIN_VALUE;
correct = true;

public String getNameO {
if (target == lastTarget) {

correct = true;
} else {

if (lastTarget != Integer.MIN_VALUE) {
j* miss-prediction occurs * /
correct = false;

}
lastTarget = target;

}
}

public boolean isCorrectO {

63

return correct;
}

}

5.3.2 Dimension and Factory

The first step for implementing a visualization is to determine the dimensions of the
visualization and the property of these dimensions. Like the hot spot visualization,
a prediction visualization also has an X-axis (coordinate) and an Y-axis (entity). In
addition, a prediction visualization needs an additional dimension to represent what
to predict, and only entities can be mapped to this dimension. For method invocation,
the bytecode number should be mapped to the X-axis, the invoking location should
be mapped to the Y-axis, and the method invoked should be mapped to the third
dimension.

A major difference between the factory of prediction visualization and other visu
alization factories is that it needs to allow users adding various predicting strategies
to it (Le. adding various predictor factories), and these predictor factories are used
when creating prediction visualizations, as shown below:

public dass PredictionVizFactory extends VisualizationFactory {
priva te ArrayList factoryList;

public PredictionVizFactoryO {
factoryList = new ArrayListO;

}

public void addPredictorFactory(PredictorFactory factory) {
1* adds a predicting strategy * /
factoryList.add (factory);

}

public public String getNameO {
return "Prediction Visualization";

}

protected VisualizationDefinition createDefinitionO {
DimensionDefinition[] dimension Definition = new DimensionDefinition[3];

64

}

}

dimensionDefinition[O] = new DimensionDefinition(" X-axis" , If coordinate");
dimensionDefinition[l] = new DimensionDefinition(" Y-axis" , If reference");
dimensionDefinition[2] = new DimensionDefinition(" Prediction", "reference");
return new VisualizationDefinition(dimension Definition);

public Visualization createVisualizationO {

}

1* generates an array of predictor factories * /
PredictorFactory[] factory = new PredictorFactory[factorylist.size()];
for (int i = 0; i < factory.length; i++) {

factory[i] = (PredictorFactory)(factorylist.get(i));
}

1* uses the predictor factories to create a prediction visualization * /
return new PredictionViz(factory);

5.3.3 Visualization Creation

The creation of a prediction visualization is similar to that of a hot spot visualiza
tion, except that a prediction visualization needs to know which predictor factories
are available.

public dass PredictionViz extends Visualization {
private ValueDimension xAxis;
private ReferenceDimension yAxis;
private ReferenceDimension prediction;
priva te PredictorFactory[] factory;

public PredictionViz(PredictorFactory[] factory) {
this.factory = factory;

}

protected Dimension[] createDimensionO {
xAxis = new ValueDimensionO;
yAxis = new ReferenceDimensionO;
prediction = new ReferenceDimensionO;

65

}

}

DimensionD returnVal = new Dimension[3];
returnVal[O] = xAxis;
returnVal[l] = yAxis;
returnVal[2] = prediction;
return returnVal;

protected JPanel createPanelO {

}

AxesPanel returnVal = new AxesPanelO;
return returnVal;

5.3.4 Configuration

Compared to the hot spot visualization, during the configuration phase, a prediction
visualization needs to allow end users to choose a predicting strategy from available
ones. Figure 5.4 shows the configuration dialog of prediction visualization, which uses
a combo-box for predictor choosing.

The following code creates the additional configuration panel and receives aH the
parameters from the dialog:

private PredictorFactory selectedFactory;
priva te JComboBox comboPredictor;
private int interval;
private JTextField textlnterval;

protected JPanel createConfigurationPanelO {
1* creates the additional configuration panel * /
JPanel returnVal = new JPanelO;

returnVal.add(new JLabel(" Predictor:"));

1* selects the default predictor factory * /
selectedFactory = factory[O];

66

}

Prediction:

Predictor:

Figure 5.4: Configuration dialog of the prediction visualization.

1* creates a combo-box and and adds ail the available predictor factories to it * /
comboPredictor = new JComboBoxO;
for (int i = 0; i < factory.length; i++) {

comboPredictor.add Item (factory[i] .getNameO);
}
returnVal.add(comboPredictor);

returnVal,add(new JLabel(" Interval:"));

1* the default interval is 1000 * /
interval = 1000;

1* creates the text field for input * /
textlnterval = new JTextField(" 1000");
returnVal.add(textlnterval);

return returnVal;

protected void updateConfigurationO {

67

}

1* selects the predictor factory * /
selected Factory = factory[comboPredictor .getSelected 1 ndexO];

1* gets the interval * /
interval = Integer.parselnt(textlnterval.getTextO);

1* sets the name of the axes * /
((AxesPanel)panel).setName(xAxis.getNameO, yAxis.getNameO);

1* draws an empty graph * /
((AxesPanel)panel) .setlmage(nul!);

panel.repaintO;

5.3.5 Visualizing

Generating a prediction graph is similar to generating a hot spot graph except that
the coloring scheme is different. In a prediction visualization, the color is determined
by the pre di ct ors and every entity on the Y-axis (in this case, the invoking locations)
needs a predictor. Each time when a method is invoked at a location, the index
of the method is sent to the corresponding predictor and the predictor returns the
appropriate color.

For end users, it's also useful to know the range of the graph, i.e. how many
invoking locations have been touched (range of the Y-axis), and totally how many
bytecodes have been executed (range of the X-axis). As shown in Figure 5.1, the
prediction visualization provides this information on its two axes. The range of the
Y-axis can be obtained directly from the reference dimension, but the prediction vi
sualization has to keep track of the maximum value on the X-axis to know the range
of the X-axis.

priva te Color colorRed = new Color(255, 0, 0);
private Color colorBlue = new Color(120, 160, 255);
private Predictor[] predictor;

priva te Autolmage image;
private int xMax;

68

public void preVisualizeO {

}

1* initializes the predictors * /
predictor = new Predictor[yAxis.getMaxEntityNumber()];
for (int i = 0; i < predictor.length; i++) {

predictor[i] = selectedFactory.createPredictorO;
}

image = new AutolmageO;
xMax = 0;

public void receiveElement(Element element) {

}

1* sends the target to the corresponding predictor * /
predictor[y Axis.getField (element)]. new T arget(pred iction .getField(element));

1* calculates the X-position * /
int x = xAxis.getField(element) / interval;

if (pred ictor[y Axis.getField (element)]. isCorrectO) {
if (image.getColor(x, yAxis.getField(element)) == nul!) {

}

1* if the prediction is correct and the corresponding point
hasn't been drawn yet, draws a blue point * /

image.setColor(x, yAxis.getField(element) 1 color8Iue);

} else {
/* miss-prediction occurs, draws a red point * /
i mage.setColor(x, y Axis.getField (element), colorRed);

}

1* keeps track of the maximum value on the X-axis * /
if (xAxis.getField(element) > xMax) {

xM ax = xAxis.getField (element);
}

public void visualizeO {
1* sets the name and range of the axes * /
((AxesPanel)panel).setName(xAxis.getNameO + " (" + xMax + ")" 1

yAxis.getNameO + " (" + yAxis.getEntityNumberO + ")");

69

1* draws the graph using the selected sorting scheme * /
((AxesPanel)panel) .setlmage(image.getSortedlmage(nul!, yAxis) .getlmageO);

}

5.3.6 Data Manipulation: Making Selections

Making selections on a prediction visualization is identical to making a selection on a
hot spot visualization. However, Chapter 4 only introduced how to make a selection of
entities (i.e. only considering the top and bottom edges of the selection box in Figure
5.5), but sometimes end users are also interested in selecting events that occurred
during a certain period of time. For example, in a prediction visualization, an end
user may only want to visualize the events that occurred between the left and right
edges of the selection box.

Prediction -Method Imrocation

Bytecode (675032)

Figure 5.5: Making selections on prediction visualization.

Because events don't have ids, visualization providers cannot specify a certain
event directly. However, because events occurred in a certain sequence, the EVolve

70

platform automatically assigns a sequence number to every event when it reads the
events from the data source, and visualization providers can use the sequence number
to specify a period of time when making selections.

To do so, a visualization needs to keep track of the sequence numbers. For a
prediction visualization, it has to remember the corresponding sequence number of
each point on the X-axis, so that when end users make selections, it knows which
sequence numbers the left and right edges of the selection box represent.

Therefore, the first time when an X-position is touched, the prediction visualiza
tion has to store the corresponding sequence number in a list, and this requires the
following modifications to the visualizing phase:

private ArrayList eventCounter;

public void preVisualizeO {

}

1* uses and array list to keep track of the sequence numbers * /
eventCounter = new ArrayListO;

public void receiveElement(Element element) {
int x = xAxis.getField(element) / interval;
1* keeps track of the sequence numbers * /
while (x >= eventCounter.sizeO) {

eventCounter.add(new Integer(EVolve.getEventCounterO));
}

}

After that, a prediction visualization can use the sequence numbers stored in the
list to specify the time period enclosed in the selection box:

public void makeSelectionO {
1* gets the X-position of the left edge * /
int xl = ((AxesPanel)panel).getStartXO;

1* gets the X-position of the right edge * /
int x2 = ((AxesPanel)panel).getEndXO;

/* gets the sorted index of the entity that corresponds to the bottom edge * /
int yl = ((AxesPanel)panel).getEndYO;

71

}

1* gets the sorted index of the entity that corresponds to the top edge *1
int y2 = ((AxesPanel)panel).getStartYO;

1* adds ail the entities between the two edges to the selection *1
int[] selection = new int[y2 - y1 + 1];
for (int i = y1; i <= y2; i++) {

selection[i - y1] = i;
}

1* makes the selection and specifies the corresponding time period *1
yAxis.makeSelection(selection 1 ((Integer)eventCounter.get(x1)) .intValueO 1

((lnteger)eventCounter.get(x2)). intValueO);

5.3.7 Data Manipulation: Sorting

Sorting a prediction visualization is exactly same to sorting a hot spot visualization.
However, for prediction visualizations, end users may want to know which locations
cause the most miss-predictions. Therefore, prediction visualization needs an addi
tionai sorting scheme on its Y-axis.

In EVolve, adding a sorting scheme is done by ad ding an Enti tyComparator to a
reference dimension. An entity comparator compares entities according to a certain
sorting scheme and EVolve provides a ValueComparator which uses an array of inte
gers to determine the order of the entities. To use the value comparator, a prediction
visualization needs to calculate the number of miss-predictions during the visualizing
phase:

priva te int[] miss;

public void preVisualizeO {

}

1* initializes the miss-prediction counter *1
miss = new int[yAxis.getMaxEntityNumberO];
for (int i = 0; i < miss.length; i++) {

miss[i] = 0;
}

72

public void receiveElement(Element element) {
1* calculates the miss-prediction counter * /

}

if (! predictor[y Axis.getField (element)]. isCorrectO) {
miss[yAxis.getField(element)]++;

}

public void visualizeO {
1* adds a sorting scheme to the Y-axis * /
yAxis.addComparator(new ValueComparator(" Miss Prediction" , false, miss));

}

The comparator is created in the last step of the visualizing phase by giving the
name of the sorting scheme ("Miss Prediction") and specifying the order of sorting
(descending, because the second parameter is false).

5.4 Integration

To use the data source and the prediction visualization, EVolve also needs a wrapping
class that integrates them together:

public dass Main {
1* the entry point * /
public static void main(String[] args) {

1* creates the data source * /
DemoSource dataSource = new DemoSourceO;

1* creates the factory of prediction visualization * /
predictionFactory = new PredictionVizFactoryO;

1* adds the default predicting scheme to the factory * /
predictionFactory.addPredictorFactory{ new DefaultPredictorFactoryO);

VisualizationFactory[] factory = new VisualizationFactory[l];
factory[O] = predictionFactory;

73

}
}

1* starts EVolve using the data source and the factory * /
EVolve.start(dataSource, factory);

The wrapping class provides an entry point which first creates the data source
and the available visualization factories (the example above only creates the factory
of prediction visualization), and then uses them to start EVolve.

74

Chapter 6

Related Work

Software visualization has a long history[15] and many software visualization systems
have been developed including commercial tools (such as JProbe[2] and Optimizeit[3])
which mainly focus on facilitating performance tuning by providing various views to
visualize the run-time usage of system resources, such as CPU time and memory.

Other general purpose software visualization systems include Jinsight[l, 13, 14]
and BLOOM[16, 17]. Jinsight focuses on applying visualization, pattern extraction,
database query, and other techniques to solve problems of performance analysis, mem
ory leak diagnosis, debugging, and general program understanding. Although Jinsight
is not an extensible tool, it provides many useful views to visualize different aspects
of the run-time behaviour of programs.

BLOOM is a system that provides various 2D and 3D visualization strategies and
data analyzing techniques (including a visual query language). The architecture of
BLOOM is extensible and visualizations are independent from data sources. Further
more, BLOOM provides a group of control panels for end users to choose parameters
and specify how the trace data should be visualized in the visualizations.

In the do main for object-oriented program visualization, Jinsight and BLOOM
are closest to EVolve. However, BLOOM emphasizes the richness of visualization
techniques at the cost of user-interface facility, without providing guidance to the
users as to which visualizations are especially revealing for characterizing object
oriented program behaviour. Jinsight, on the contrary, strives to provide a set of
visualizations which are useful for object-oriented program profiling and debugging
(e.g. memory leaks), and emphasizes performance, while not allowing extensions.
EVolve lies somewhat between Jinsight and BLOOM. It facilitates extensions, and
provides a given set of visualization techniques for object-oriented languages, sorne of

75

which are not available in either of the two other tools.

Both BLOOM and EVolve are designed to facilitate users creating various kinds of
visualizations, but the approaches used are different. Here are the major differences
between them:

• BLOOM provides a JVMPI agent for gathering run-time information. The data
is stored in databases and accessed via OQL or SQL queries. Unlike EVolve,
BLOOM doesn't provide a data protocol for data providers, so data traces that
are generated in other ways cannot be visualized in BLOOM easily.

• BLOOM provides several general-purpose visualizations, and users can con
figure the visualizations in many different ways to visualize various kinds of
information. Therefore, a user can use a visualization to solve different types of
problems by choosing different configurations. However, configuring a visual
ization in BLOOM is very complex, especially when solving some complicated
problems. On the contrary, the visualizations of EVolve are designed to solve
specifie problems and visualizing complicated problems in EVolve is more effec
tive and efficient.

• In BLOOM, data manipulation is based on OQL or SQL queries. Although
using queries is convenient for some users, most users prefer a more straight
forward way to manipulate the data. Therefore, EVolve provides a set of data
manipulating operations to facilitate users navigating the information easily.

There are also many software visualization tools that are designed for more specifie
purpose. Shaham[21] and Rojemo[18] provide a technique that helps to find memory
leak by visualizing the lifetime of objects. Jerding[9] presents an efficient way to
visualize the object and class interactions occurred during the execution of programs.
Lange[10] facilitates framework understanding by visualizing design patterns.

Software visualization techniques are also widely used to facilitate reverse en
gineering. Rigi [24] is an interactive tool designed to simplify understanding and
re-document software systems. Moose[ll] is a re-engineering environment that uses
class blueprints to help understanding the pur pose of a class and its inner structure.

Algorithm animation [6, 12, 22] is another major part of software visualization,
and these tools normally generate detailed visualizations that describe the behaviour
of a specifie program and its data, and this allows the users to understand various
algorithms easily.

76

Unlike EVolve, most of the above tools tend not to be extensible-they use built-in
or specifie profiling front-ends to generate trace data and use a fixed set of visualiza
tions to interpret the data.

Extensibility is more often seen in information visualization (vs software visual
ization) systems. These systems tend to concentrate on extensibility, because they
are designed to solve general purpose problems. Visage[19], for example, is an in
formation visualization environment for data-intensive domains that supports and
coordinates multiple visualizations and analysis tools. Furthermore, Visage provides
an interactive tool to facilitate the creation of new visualizations. EVolve is designed
for the much more specifie domain of object-oriented language execution traces.

77

Chapter 7

Conclusions and Future Work

This thesis presented EVolve, an extensible framework for visualizing the char ac
teristics and behaviour of object-oriented programs. The architecture of EVolve is
designed to facilitate the addition of new data sources as weIl as new visualization
techniques. EVolve allows data providers to examine a new data source immediately
using a wide range of visualizations, and allows visualization providers to test a new
visualization technique on a variety of existing sources.

The EVolve framework consists of three major parts:

@ the core EVolve platform connects the data source and the visualizations,
and supports the communication among the visualizations. Furthermore, the
EVolve platform also provides a set of data manipulating functionalities to help
end us ers navigating the data.

@ the data protocol uses a flexible method to represent different kinds of trace
data. Through the data protocol, the EVolve platform can read trace data from
different types of data sources. The data protocol of EVolve is not only flexible
but also efficient so that end users can manipulate large amount of data.

@ the visualization protocol handles the communication between the platform
and the visualizations. Because there is no direct interaction among the vi
sualizations, adding new visualizations to EVolve won't require updating the
existing ones. With the visualization protocol, EVolve can provide data manip
ulating functionalities while still keeping the visualizations independent.

The thesis described the use of EVolve, both as a stand-alone software visual
ization tool, as well as a framework that can be extended easily. For end users,

78

EVolve provides a set of built-in visualizations to visualize various types of program
characteristics, and helps them find the most important information from their trace
data. For data providers and visualization providers, EVolve is a framework that
helps them to visualize different kinds of trace data and/or to implement various new
visualization techniques easily.

The thesis also presented a case study showing how to use EVolve solving real
problems. The case study not only served as a tutorial for data providers and/or vi
sualization providers, but also demonstrated the extensibility and fiexibility of EVolve.

Great effort has been placed in testing EVolve for different types of users. In
particular:

® End users: twenty graduate students at Mc Gill used EVolve to characterize
the run-time behaviour of Java programs. This experiment demonstrated the
ease of use and clarity of EVolve for the students claimed that EVolve facilitated
and enhanced program understanding.

® Data providers: EVolve has been used with traces generated from JVMPI,
a customized Java Virtual Machine, and several internaI formats, and these
experiments demonstrated the fiexibility of EVolve.

® Visualization providers: the extensibility of EVolve was shown by adding
new, custom visualizations without any modifications of the framework. Im
plementing these new visualizations was a straightforward pro cess, requiring
relatively little co ding and minimal time (a few hours).

Future work of EVoIve mainly includes the following:

@ extending EVolve's repertoire of visualization techniques, and testing these vi
sualizations on more data sources. Since extensibility is built-in, the core of the
EVolve platform does not need to change.

@ investigating other user-interface and comparison techniques that may improve
comprehension of the resulting visualizations.

® adding more functionalities to facilitate end users using EVolve, such as saving
the configurations and selections so that they can be shared by different data
traces.

79

Appendix A

Getting Started

The source code and class files of EVolve are available at (a small trace data is also
included): http://www.sable.mcgill.ca/evolve/EVolve.jar

Here's a short description about how to get started:

4& Use the following command to install EVolve:
jar xvf EVolve.jar

4& EVolve requires at least JDK1.4 (available at http://java.sun.com/), because it
uses sever al new features. Start EVolve under the classes directory where it's
installed:
java Main

4& EVolve uses assertions to validate the trace data, so to compile the source code
of EVolve, use the -source 1.4 parameter:

javac -source 1.4 Main.java

4& By default, assertions are disabled to avoid overhead. To enable assertions when
debugging, use:

java -ea Main

80

Appendix B

Built-in Visualizations of EVolve

EVolve now has the following seven built-in visualizations:

e Table

• Hot Spot Visualization (Coordinate)

• Hot Spot Visualization (Amount)

• Vertical Bar Chart

• Horizontal Bar Chart

• Correlation Graph

• Prediction Visualization

81

B.l Table

Figure B.I: A table.

Figure B.I shows a table. A table has two dimensions, the 1eft column and the right
column. The 1eft column contains entities, and the right column shows the summary
of certain amount values related to the entities. For example, Figure B.I provides
information about how many times each method is invoked during the execution of
a program.

(Source code: / evol ve/visualization/Table Viz . java)

82

B.2 Hot Spot Visualization (Coordinate)

J
.)

BI !!!.!!

rr -. . J -.lJ --
Bytecode (1330086)

Figure B.2: A hot spot visualization (coordinate).

A hot spot visualization shows when different events occurred during the execution
of a program. A hot spot visualization has two dimensions, the X-axis and the Y
axis. The Y-axis represents entities and the X-axis represents time in a certain kind
of measurement.

Figure B.2 shows a hot spot visualization and the property of the X-axis is coor
dinate. The visualization shows when each method is invoked and time is measured
as the number of bytecodes executed since the st art of program.

(Source code: / evol ve/visualization/HotSpotCoordinate. java)

83

B.3 Hot Spot Visualization (Amount)

Number of Invocation (33556)

Figure B.3: A hot spot visualization (amount).

Figure B.3 shows another hot spot visualization and it's similar to the one shown
in Figure B.2 except that the property of the X-axis now is amount. So in Figure B.3,
time is measured as the number of invocations occurred since the start of program.

(Source code: 1 evol ve/visualization/HotSpotAmount . java)

84

B.4 Vertical Bar Chart

1\

d L 1 1 IL "
Method Invoked (547) "

Figure B.4: A vertical bar chart.

Like tables, bar charts provide summary of amount values. Figure B.4 shows a
vertical bar chart. Its X-axis represents entities (method invoked) and Y-axis repre
sents amount values (number of invocations). From the graph, it is easy to find which
methods are invoked the most.

(Source code: / evol ve/visualization/BarChartVerti cal. java)

85

B.5 Horizontal Bar Chart

Number oflnvocation (5859)

Figure B.5: A horizontal bar chart.

Figure B.5 shows a bar chart similar to the one shown in Figure B.4 except that
the bars are in horizontal direction. So now the Y-axis represents entities and the
X-axis represents amount values. This visualization is useful especially when working
together with other visualizations whose Y-axis also represents entities (such as the
hot spot visualization), because it's easy to compare the result.

(Source code: / evol ve/visualizat ion/BarChartHorizontal. java)

86

B.6 Correlation Graph

1 • ..
, ..
!.&

.~
• m

m" .. .
," ."

Allocating Method (168)

Figure B.6: A correlation graph.

A correlation graph provides information about the correlation between entities.
For example, Figure B.6 depicts the correlation between the allocating methods and
the type of objects allocated. The correlation visualization uses color to indicate how
often the events occurred (events that are red/black occurred more frequently than
those that are blue/gray).

(Source code: / evol ve/visualization/CorrelationViz. java)

87

B.7 Prediction Visualization

8ytecode (1330086)

Figure B.7: A prediction visualization.

A prediction visualization is similar to a hot spot visualization, except that it uses
color to indicate the predictability of events (red/black indicates miss-predictions).
Figure B.7 shows the predictability of method invocations, so the red points corre
spond to method caUs that are polymorphie and the blue points correspond to those
that are monomorphic.

(Source code: /evolve/visualization/PredictionViz. java)

88

Bibliography

[1] Jinsight. http:j jwww.research.ibm.comjjinsightj.

[2] JProbe. http:j jwww.sitraka.comjsoftwarejjprobej.

[3] Optimizeit. http:j jwww.optimizeit.comj.

[4] Standard Performance Evaluation Corporation. http://www.spec.orgj.

[5] Volano Benchmark. http:j jwww.volano.comjbenchmarks.html.

[6] Marc H. Brown and Robert Sedgewick. Techniques for algorithm animation.
IEEE Software, (1):28-39, 1985.

[7] Karel Driesen, Nagi Basha, David Eng, Matt Holly, John Jorgensen, Georges
Kanaan, Babak Mahdavi, and Qin Wang. Visualizing hot spots in various do
mains. In Software Visualization Workshop in conjunction with the International
Conference on Software Engineering (ICSE 2001)" pages 65-70, 2001. Available
at http:j jwww.cs.mcgill.cajresrchpagesjtech2001.html.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley Publish
ing Company, 1995.

[9] Dean F. Jerding, John T. Stasko, and Thomas BalI. Visualizing interactions in
program executions. In Proceedings of the International Conference on Software
Engineering (ICSE'97), pages 360-371, 1997.

[10] Danny B. Lange and Yuichi Nakamura. Interactive visualization of design
patterns can help in framework understanding. In Proceedings of Conference
on Object-Oriented Programming Systems, Languages and Applications (OOP
SLA '95), pages 342-357, 1995.

89

[11] Michele Lanza and Stéphane Ducasse. A categorization of classes based on the
visualization of their internal structure: the class blueprint. In Proceedings of
Conference on Object-Oriented Programming Systems, Languages and Applica
tions (OOPSLA '01), pages 300-311, 2001.

[12] Ralph L. London and Robert. A. Duisberg. Animating programs using Smalltalk.
Computer, (8):61-71, 1985.

[13] Wim De Pauw, Richard Helm, Doug Kimelman, and John Vlissides. Visu
alizing the behavior of object-oriented systems. In Proceedings of Conference
on Object-Oriented Programming Systems, Languages and Applications (OOP
SLA '93), pages 326-337, 1993.

[14] Wim De Pauw, Nick Mitchell, Martin Robillard, Gary Sevitsky, and
Harini Srinivasan. Drive-by analysis of running programs. In Software
Visualization Workshop in conjunction with the International Conference
on Software Engineering (ICSE 2001), pages 17-22, 2001. Available at
http:j jwww.research.ibm.comjjinsightj.

[15] Blaine A. Priee, Ronald M. Baecker, and Ian S. Small. A principled taxonomy of
software visualization. Journal of Visual Languages and Computing, (3):211-266,
1993.

[16] Steven P. Reiss. Software visualization in the Desert environment. In Proceedings
of the 1998 ACM SIGPLAN - SIGSOFT Workshop on Program Analysis for
Software Tools and Engeneering (PASTE'98), pages 59-66, 1998.

[17] Steven P. Reiss. An overview of BLOOM. In Proceedings of the 2001 ACM
SIGPLAN - SIGSOFT Workshop on Program Analysis for Software Tools and
Engeneering (PASTE'Ol), pages 2-5, 2001.

[18] Niklas R6jemo and Colin Runciman. Lag, drag, void and use-heap profiling and
space-efficient compilation revisited. In Proceedings of the 1996 ACM SIGPLAN
International Conference on Functional Programming (ICFP'96), pages 34-41,
1996.

[19] Steven F. Roth, Peter Lucas, Jeffrey A. Senn, Cristina C. Gomberg, Michael B.
Burks, Philip J. Stroffolino, John A. Kolojejchick, and Carolyn Dunmire. Vis
age: A user interface environment for exploring information. In Proceedings of
Information Visualization, IEEE, pages 3-12, 1996.

90

[20] Steven F. Roth and Joe Mattis. Data characterization for intelligent graphies
presentation. In Proceedings of ACM Conference on Human Factors in Comput
ing Systems (CHP90) , pages 193-200, 1990.

[21] Ran Shaham, Elliot K. Kolodner, and Mooly Sagiv. Heap profiling for space
efficient Java. In Proceedings of SIGPLAN Conference on Programming Language
Design and Implementation (PLDP01) , pages 104-113, 2001.

[22] John T. Stasko. Tango: A framework and system for algorithm animation.
Computer, (9):27-39, 1990.

[23] Margaret-Anne D. Storey and Hausi A. Müller. Manipulating and document
ing software structures using SHriMP views. In Proceedings of International
Conference on Software Maintenance, pages 275-285,1995.

[24] Margaret-Anne D. Storey, Kenny Wong, and Hausi A. Müller. Rigi: A visual
ization environment for reverse engineering. In Proceedings of the International
Conference on Software Engineering (ICSE'9'l), pages 606-607, 1997.

[25] Deepa Viswanathan and Sheng Liang. Java virtual machine profiler interface.
IBM Systems Journal, (1):82-95, 2000.

91

