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Abstract 

The optimization of dig-limits is an important step in grade control and short-term mine planning 

due to its crucial role in enhancing the profitability and efficiency of open-pit mining operations 

by reducing ore loss and dilution. This thesis, through its three journal papers, investigates the 

challenges posed by blast movement and spatial heterogeneity in ore and waste classification 

through accounting for these factors when determining optimal dig-limits. The first study 

introduces a methodology to quantify uncertainty in blast movement and its impact on dig-limits 

optimization. Using measurement data from blast movement monitoring balls and multivariate 

distributions fitted via D-vine copula, blast movement realizations are generated through Monte 

Carlo simulation. A mixed-integer linear programming model then determines optimal dig-limits, 

resulting in a probabilistic ore probability map. The case study reveals that neglecting blast 

movement can lead to a significant overestimation of expected profit. 

The second study emphasizes the importance of managing ore loss and dilution, which 

significantly impacts the economic, environmental, and technical outcomes of mining operations. 

By calculating the newly proposed global and local spatial entropy indices, the study assesses the 

influence of spatial heterogeneity on ore loss and dilution. High global spatial entropy index values 

correlate with increased ore loss and dilution, indicating potential profit reduction. The local spatial 

entropy index is used to identify areas that are suitable for installing blast monitoring balls to 

reduce material misclassification due to blast movement. Case studies demonstrate the relationship 

between spatial entropy, cut-off grades, blast movement, and profit, highlighting the necessity for 

controlled blasting in specific bench sections to mitigate profit reduction. 

The third study presents an integrated workflow for optimizing dig-limits under grade and blast 

movement uncertainties. By incorporating multivariate geostatistical simulation workflows, 
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including Projection Pursuit Multivariate Transformation and Sequential Gaussian Simulation, the 

study captures spatial uncertainties in grade distribution and blast movement. The Maximum 

Expected Profit method is utilized to determine optimal material destinations, enhancing mining 

profitability. The newly proposed risk-based dig-limits optimization model accommodates mining 

equipment selectivity, irregular bench shapes, and varying orebody orientations, ensuring reliable 

post-blast material classifications and improved project profitability and operational efficiency. A 

case study on a porphyry copper deposit illustrates the significant impact of blast movement on 

ore loss and dilution, underscoring the need for accurate blast movement modeling in grade control 

procedures and presenting the outcomes of the integrated workflow proposed in this study. 

Through these studies, this thesis provides comprehensive methodologies to address blast 

movement and spatial heterogeneity challenges in dig-limits optimization, ultimately contributing 

to more profitable and efficient open-pit mining operations.  
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Résumé 

L'optimisation des limites d'excavation est une étape importante dans le contrôle de la teneur et la 

planification à court terme des mines en raison de son rôle crucial dans l'amélioration de la 

rentabilité et de l'efficacité des opérations minières à ciel ouvert, en réduisant la perte de minerai 

et la dilution. Cette thèse, à travers ses trois articles de journal, examine les défis posés par les 

mouvements de la masse dynamitée et l'hétérogénéité spatiale dans le cadre de la classification des 

zones de minerai et de stériles, en tenant compte de ces facteurs lors de la détermination des limites 

d'excavation optimales. La première étude présente une méthodologie pour quantifier l'incertitude 

des mouvements de la masse dynamitée et son impact sur l'optimisation des limites d'excavation. 

En utilisant des données de mesure provenant de balles de surveillance du mouvement de la masse 

dynamitée et des distributions multivariées ajustées via l’utilisation de copules D-vine, des 

réalisations de mouvement de la masse dynamitée sont générées par simulation de Monte Carlo. 

Un modèle de programmation linéaire mixte en nombres entiers détermine ensuite les limites 

d'excavation optimales, ce qui donne une carte de la probabilité de présence de minerai. L'étude 

de cas révèle que négliger le mouvement de la masse dynamitée peut conduire à une surestimation 

significative du profit attendu. 

La deuxième étude met l'accent sur l'importance de la gestion des pertes de minerai et de la 

dilution, qui impactent de manière significative les résultats économiques, environnementaux et 

techniques des opérations minières. En calculant les nouveaux indices globaux et locaux d'entropie 

spatiale proposés, l'étude évalue l'influence de l'hétérogénéité spatiale sur les pertes de minerai et 

la dilution. Des valeurs élevées de l'indice global d'entropie spatiale sont corrélées à une 

augmentation des pertes de minerai et de la dilution, indiquant une réduction potentielle du profit. 

L'indice local d'entropie spatiale est utilisé pour identifier les zones adaptées à l'installation de 
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balles de surveillance du mouvement de la masse dynamitée afin de réduire la mauvaise 

classification des matériaux due aux mouvements. Les études de cas illustrent les relations entre 

l'entropie spatiale, les teneurs de coupure, le mouvement de la masse dynamitée et le profit, 

soulignant la nécessité d'un dynamitage contrôlé dans des sections spécifiques des bancs miniers 

pour atténuer la réduction des profits. 

La troisième étude présente un flux de travail intégré pour optimiser les limites d'excavation en 

tenant compte des incertitudes de teneur et de mouvement de la masse dynamitée. En incorporant 

des flux de travail de simulation géostatistique multivariée, incluant l’utilisation de la 

transformation multivariée par poursuite de projection et la simulation séquentielle gaussienne, 

l'étude capture les incertitudes spatiales dans la distribution des teneurs et le mouvement de la 

masse dynamitée. La méthode de l’espérance de profit maximum est utilisée pour déterminer les 

destinations optimales des matériaux, améliorant ainsi la rentabilité d’exploitation. Le nouveau 

modèle d'optimisation des limites d'excavation basé sur les risques prend en compte la sélectivité 

des équipements miniers, les formes irrégulières des bancs miniers et les orientations variées des 

corps minéralisés, assurant des classifications fiables des matériaux après dynamitage et 

améliorant la rentabilité et l'efficacité opérationnelle du projet. Une étude de cas sur un gisement 

de cuivre porphyrique illustre l'impact significatif du mouvement de la masse dynamitée sur les 

pertes de minerai et la dilution, soulignant la nécessité d'un modèle précis de mouvement de la 

masse dynamitée dans les procédures de contrôle de la teneur et présentant les résultats du flux de 

travail intégré proposé dans cette étude. 

À travers ces études, cette thèse fournit des méthodologies complètes pour relever les défis liés au 

mouvement de la masse dynamitée et à l'hétérogénéité spatiale dans l'optimisation des limites 

d'excavation, contribuant ainsi à des opérations minières à ciel ouvert plus rentables et efficaces.  
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Chapter 1: Introduction 

1.1 OVERVIEW 

Ore-waste classification is an essential part of grade control and short-term mine planning that 

aims to maximize profit from mining operations by sending blasted materials to their optimal 

destinations and minimizing ore loss and dilution. The ore-waste classification should also 

consider a number of operational factors such as equipment selectivity and blast movement to 

delineate ore from waste. This classification involves creating a block model with a block size 

equal or smaller than the selective mining unit size that shows the spatial distribution of ore and 

waste zones within an open-pit bench. Due to the small size of these blocks, they are grouped into 

larger, spatially coherent clusters called dig-limits, which are mined by large mining equipment. 

The block model generated to classify ore and waste is normally referred to as grade control block 

model and it is used as the base for short-term mine planning. Misclassifying selective mining 

units can lead to significant ore losses and dilution, especially when ore and waste are visually 

indistinguishable, as is often the case with precious metal deposits. Blast movements further 

complicate accurate ore-waste boundary determination, adding uncertainty that can result in 

financial losses. Therefore, accurate modeling of blast movement is crucial for determining 

optimal dig-limits. 

Current methods for determining dig-limits often rely on the expertise of grade control geologists 

who manually digitize ore and waste polygons, guided by rock types, cut-off grades, and economic 

factors. However, this manual process is subjective, time-consuming, and suboptimal. Various 

heuristic and metaheuristic algorithms, such as simulated annealing, genetic algorithms, and 

greedy searches, have been proposed to address these limitations, but they often fail to guarantee 
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optimal results and require careful parameter selection. The same applies to spatial clustering 

methods, which attempt to identify spatially coherent blocks sharing the same characteristics but 

still suffer from subjectivity in selecting hyperparameters. Alternatively, mixed-integer 

programming has been used to determine dig-limits but it suffers from high computational costs. 

Blast movement significantly impacts ore loss and dilution, yet many dig-limits optimization 

techniques fail to account for it. Accurate modeling of blast movements is essential for practical 

and profitable mining operations. Approaches to modeling blast movements include multi-physical 

simulations, physical field measurements to measure blast movement distance and direction, and 

machine learning techniques. Each of these approaches has its challenges, such as high 

computational cost and the need for good number of physical field measurements to track the 

movement of blasted materials within the blasted bench section. 

To reduce ore loss and dilution, various strategies can be employed, including improved blasting 

designs, accurate orebody characterization, and optimized grade control procedures. 

Understanding ore heterogeneity can help assess the degree of expected ore loss and dilution pre-

blast. The same concept can be used post-blast to assess the changes in ore loss and dilution due 

to blast movement. In fact, developing customized indices to measure the spatial heterogeneity of 

ore and waste on bench sections at the scale of selective mining unit is not explored in literature 

and requires further studying.  

The implementation of grade control procedures that integrate blast movement modeling and dig-

limits optimization is vital for minimizing ore loss and dilution. Effective grade control practices 

ensure accurate short-term production schedules, and this leads to maximize profitability. 

Deterministic estimation methods such as Ordinary Kriging and Inverse Distance are commonly 

used for grade control models, but they can introduce bias and suboptimal decisions when it comes 
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to determine optimal blasted material destinations. Geostatistical simulation techniques offer a 

better alternative by producing equiprobable grade values at every location in the bench section, 

and these simulated values will generate optimal destinations of material under uncertainty that 

also account for asymmetric profit functions when metallurgical recovery and grade show 

nonlinear relationship. 

Uncertainty in blast movement, originating from factors like inconsistent blast designs and rock 

mass heterogeneity, must be captured and managed to improve grade control and dig-limits 

optimization. Although blast movement uncertainty is considered an important contributor to 

understanding better ore loss and dilution uncertainties, it has never been incorporated in dig-limits 

optimization to generate the optimal destination of blasted material under uncertainty. Aside from 

blast movement uncertainty, grade uncertainty is also considered one of the main sources of 

uncertainty that has significant impact on material classification and dig-limits optimization 

especially when dealing with erratically distributed orebodies. 

This thesis proposes an integrated approach that combines grade and blast movement uncertainties 

to determine optimal dig-limits. Blast movement uncertainty is modeled on flitch-by-flitch basis 

as well as block-by-block basis to capture uncertainty in differential blast movement. The effect 

of blast movement uncertainty on dig-limits is investigated in this thesis. The proposed 

methodology extends to propose customized spatial entropy indices to describe ore and waste 

heterogeneity with an aim to understand the relationship between spatial entropy and cut-off grade, 

blast movement, and dig-limits optimization outcomes, and how these factors impact project 

profitability. This thesis is developed to enhance ore recovery, reduce dilution and ore loss, and 

improve the overall efficiency of open-pit mining operations. 
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1.2 RESEARCH OBJECTIVES 

The primary aim of this PhD thesis is to advance the field of grade control and short-term mine 

planning by addressing the complexities introduced by blast movement and spatial heterogeneity 

of ore and waste on dig-limits optimization outcomes such as ore loss and dilution. This research 

focuses on developing innovative methods and workflows to determine optimal dig-limits that 

improve ore recovery, reduce waste, and maximize profit.  

Outlined below are the proposed objectives to reach this target: 

• Develop an integrated approach that combines grade and blast movement uncertainties to 

determine optimal dig-limits. 

• Quantify the risk associated with blast movement and evaluate its effects on profit, dilution, 

and ore losses in bench sections. 

• Develop customized spatial entropy indices for describing the spatial heterogeneity of ore 

and waste at the selective mining unit scale within bench sections and use them to 

understand better ore loss and dilution. 

• Quantify the relationship between cut-off grade, spatial entropy, and the running time and 

outcomes of dig-limits optimization. 

• Model differential blast movement and capture uncertainty on a block-by-block basis. 

• Improve the dig-limits optimization model by accounting for multi-destinations, irregular 

bench shapes, higher shovel selectivity near bench free faces, and various orebody 

orientations while ensuring that the outcomes of the dig-limits optimization remain 

optimal. 
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1.3 ORIGINAL CONTRIBUTIONS 

The following points represent the original contributions of this PhD thesis: 

• Investigating the impact of blast movement uncertainty on dig-limits optimization 

outcomes such as profit, dilution, and ore loss. 

• Developing new spatial entropy indices that describe the spatial heterogeneity of ore and 

waste at the selective mining unit scale within bench sections and use them to understand 

better how pre-blast and post-blast ore heterogeneity impact ore loss and dilution. 

• Proposing an integrated workflow that considers grade and blast movement uncertainties 

in determining optimal dig-limits. It also models stochastically differential blast movement 

on block-by-block basis to generate more accurate representations of actual blast 

movement.  

• Improved the dig-limits optimization model to account for multi-destinations, irregular 

bench shapes, enhanced shovel selectivity near bench free faces, and various orebody 

orientations. These improvements make the optimization model more robust and adaptable 

to real-world mining conditions, thereby increasing operational efficiency and 

effectiveness. 

1.4 THESIS OUTLINE 

The outline of this thesis provides a comprehensive understanding of dig-limit optimization in 

open-pit mining, emphasizing the challenges and solutions related to blast movement and spatial 

heterogeneity. The detailed outline is presented below. 

Chapter 1 provides a general background on grade control operations and their importance in 

open-pit mining. It introduces key concepts such as dig-limits optimization, blast movement, 
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material classification, and spatial entropy, explaining their roles in effective grade control. 

Additionally, this chapter outlines the research motivation, objectives, and original contributions 

of the thesis. 

Chapter 2 provides comprehensive information related to grade control procedures that include, 

geostatistical modeling of grade control blocks models, modeling blast movement, dig-limits 

optimization, material classification, and spatial entropy and its application in mining. 

Chapter 3 introduces a methodology for optimizing dig-limits in mine planning by accounting for 

blast movement, which traditional pre-blast dig-limits often ignore. Blast movement causes ore 

loss and dilution, leading to financial losses. The proposed method uses blast movement data from 

monitoring balls and applies statistical modeling and Monte Carlo simulation to predict these 

movements. A mixed-integer linear programming model optimizes dig-limits based on these 

predictions, producing an ore probability map. A case study shows that including blast movement 

in dig-limit calculations significantly reduces profit overestimation and identifies high-risk areas 

for misallocation. 

Chapter 4 explores the impact of spatial heterogeneity on ore loss and dilution in open-pit mining, 

which significantly affects the economic and operational success of mining projects. It focuses on 

uncontrollable factors by applying the concept of spatial entropy to measure heterogeneity at the 

scale of selective mining units. The study uses global spatial entropy to evaluate the potential for 

ore loss and dilution and local spatial entropy to guide the placement of blast movement monitoring 

balls. High global spatial entropy values indicate a greater risk of ore loss and dilution, thus 

reducing profit. The research investigates how changes in cut-off grades, blast movement, and dig-

limit optimization affect spatial entropy and profit. The results highlight the importance of 



Chapter 1 

 

7 

controlled blasting in specific bench sections to manage ore loss and dilution, revealing an 

exponential increase in profit reduction with higher global spatial entropy. 

Chapter 5 presents a comprehensive workflow for optimizing dig-limits in open-pit mining, 

considering the uncertainties of grade distribution and blast movement. The methodology 

integrates these uncertainties to improve material classification and destination optimization, 

aiming to minimize ore loss and dilution. It uses multivariate geostatistical simulation, including 

Projection Pursuit Multivariate Transformation and Sequential Gaussian Simulation, to model 

blast movement accurately. The Maximum Expected Profit method determines the optimal 

destinations for materials, enhancing overall mining profitability. A case study on a porphyry 

copper deposit demonstrates the significant impact of blast movement on ore loss and dilution, 

highlighting the necessity of accurate blast movement modeling. The workflow ensures reliable 

post-blast material classifications, reducing suboptimal decisions and improving both profitability 

and operational efficiency. 

Chapter 6 concludes the research and indicates the future avenues of the research. 
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Chapter 2: Literature Review 

In this section, the literature on the grade control process is presented. This review covers data 

collection in grade control, the creation of grade control models using geostatistics, open pit 

blasting, blast movement modeling, dig-limit optimization, material classification that 

discriminates between various ore and waste types, and spatial entropy, which describes the degree 

of spatial heterogeneity in the orebody and how it might be used to quantify ore loss and dilution. 

Detailed reviews of each topic are provided in their respective sections. 

2.1 GRADE CONTROL 

Grade control operations are an essential part of open pit mining that directly impacts the economic 

viability of mining operations. It involves the accurate classification of mined material into 

different material types, such as ore and waste, based on their economic value. The primary goal 

is to ensure that high-grade ore is sent to the mill for processing, while low-grade material is 

designated as waste and directed to the dump. This classification process relies heavily on assays 

of drill samples taken from blastholes or infill drilling reverse circulation (RC) holes, which are 

then used to estimate the grade distribution within the orebody. Effective grade control minimizes 

dilution (the contamination of ore with waste) and ore loss (the misclassification of ore as waste), 

thereby optimizing the overall economic returns of the mining operation (Hmoud and Kumral, 

2022; 2023; Rossi and Deutsch, 2013). 

In open pit mining, the accuracy of grade control is influenced by several factors, including the 

geological complexity of the orebody, the quality of the sampling data, and the effectiveness of the 

interpolation techniques used. In open pit mines, controlling ore grade relies on sampling from 

blastholes or additional infill drilling (Abzalov, 2016). Grade control drilling commonly uses RC 
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or open hole percussion drill rigs (Abzalov et al. 2010). These methods are favored due to the 

limited time available for drilling and the need to collect large volumes of representative samples. 

Mine logistics constraints demand low-cost drilling techniques with high drilling rates that do not 

compromise sample quality. Auger drilling can also be employed for grade control in soft ground 

conditions, enabling the use of auger drilling (Abzalov and Bower 2014). An alternative approach 

is direct sampling from mine faces or using shallow trenches and winzes. Although this method 

was extensively used in the past, it has largely been replaced by grade control drilling. The high 

density of grade control data distribution enables the most accurate determination of ore body 

contacts and delineation of internal waste contours. 

According to Rossi and Deustch (2013), a number of methods have been proposed to construct 

grade control block models: (1) conventional methos; (2) kriging-based methods; (3) simulation-

based methods. Conventional methods used for grade control include blast hole averaging, inverse 

distance methods, and nearest-neighbor-based methods. Kriging-based methods that are typically 

used in constructing grade control models are Ordinary Kriging and Indicator Kriging. Kriging 

methods provide estimates that minimize estimation variance and produces unbiased estimate. 

Simulation-based methods aim to optimally select ore and waste according to different optimality 

criteria. It is also valuable when dealing with several material types and destinations. 

2.2 GEOSTATISTICAL MODELING OF GRADE CONTROL BLOCK MODELS 

Kriged-based methods and simulation-based methods are part of the geostatistical modeling 

approaches that can be applied to construct grade control block models. To understand these 

approaches, a brief literature review on the origin and development of geostatistics is provided. 
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Krige (1951) was a pioneer in the statistical valuation of mineral deposits. Matheron (1963) 

developed the theory of regionalized variables and unbiased spatial estimation, naming it Kriging 

in honor of Danie Krige for his contributions to mineral resource valuation. Kriging theory is well 

documented in literature and its application in mining is discussed by a number of authors (David, 

1977; Isaaks & Srivastava, 1989; Journel & Huijbregts, 1978). 

Kriging remains a cornerstone of geostatistical approaches in grade control due to its ability to 

provide unbiased estimates with minimum variance. Ordinary Kriging and Simple Kriging have 

been developed to address different aspects of grade estimation. Each Kriging method has its 

strengths and is suited to specific types of data and geological conditions. Simple kriging assumes 

that the mean is known and stationary (Rossi and Deutsch, 2014; Isaaks and Srivastava, 1989). 

Ordinary Kriging constrains the weights to samples in the search range to sum to 1 to remove the 

need for the global known mean (Rossi and Deutsch, 2014; Isaaks and Srivastava, 1989). 

Indicator Kriging (Journel & Huijbregts, 1978) is another form of Kriging that convert grade into 

binary variable based on a cut-off and interpolate the binary variable to predict probability of 

exceeding cut-off grade and it is used as well to delineate ore from waste in grade control models 

(Abzalov, 2016). 

In addition to these Simple, Ordinary, and Indicator Kriging methods, other multivariate 

geostatistical techniques, such as Cokriging (Isaaks and Srivastava, 1989), have been employed to 

enhance grade control. Cokriging models variables of interest while honoring their spatial 

relationships (Rossi and Deutsch, 2014).  

Geostatistical simulation is a method used to model spatial uncertainty in ore grades, allowing for 

the assessment of economic consequences for decisions made under uncertainty (Deutsch et al., 



Chapter 2 

 
 

11 

2000; Glacken, 1996; Isaaks, 1991; Neufeld et al., 2005; Richmond, 2003). Techniques such as 

Sequential Gaussian Simulation (SGS) (Isaaks, 1991) capture the spatial uncertainty of grade 

distribution, enabling mining engineers and grade control geologists to better understand the risks 

of ore loss and dilution and develop more accurate grade control block models that reproduce grade 

histograms and variograms. Other methods such as Turning Bands (Journel, 1974), and Partial 

Differential Equations Simulation (Lindgren et al., 2011) are used as well to generate realizations 

of grade distribution. However, SGS is the most widely used method in the mining and petroleum 

industries. 

SGS models spatial uncertainty by generating multiple realizations of a continuous variable such 

as ore grade. This method involves transforming the ore grade data into a normal distribution, then 

sequentially simulating values at unsampled locations based on the spatial structure summarized 

by a variogram model. Each location is simulated by drawing from a Gaussian distribution 

conditioned on both the original data and previously simulated values to maintain spatial 

dependencies. Finally, the simulated values are back-transformed to their original units and 

validated to ensure the quality of the simulation. This process results in a suite of equally probable 

spatial distributions, providing a detailed picture of grade variability within the bench and allowing 

for the assessment of risks and uncertainties in grade control decisions (Isaaks, 1991; Deutsch & 

Journal, 1998; Goovaerts, 1997; Chilès & Delfiner, 1999). 

2.3 OPEN PIT BLASTING 

Open pit blasting is a critical operation in surface mining, involving the controlled use of 

explosives to break rock for extraction. The design and execution of blasts in open pit mines 

significantly impact safety, efficiency, and economic performance. This section provides an 
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overview of open pit blast design, the blasting mechanism, and various blasting techniques, 

including cast blasting, pre-splitting, and cushion blasting, drawing on well-established literature. 

The design of an open pit blast is a complex process involving careful planning to achieve the 

desired fragmentation while minimizing adverse effects such as ground vibrations, fly rock, and 

air overpressure. Key elements of blast design include the determination of blast patterns, hole 

diameters, burden, spacing, explosive type, and the amount of explosive charge per hole. 

Blast patterns are typically designed based on the geology of the rock mass, the required 

fragmentation, and the desired bench configuration. Burden and spacing are critical parameters 

influencing the blast's effectiveness. Burden refers to the distance from the blast hole to the free 

face, while spacing is the distance between adjacent blast holes. A well-designed burden and 

spacing ensure that the explosive energy is effectively transmitted through the rock, resulting in 

uniform fragmentation (Jimeno et al., 1995). Figure 2.1 presents a schematic of a bench section, 

illustrating an example of blast design and highlighting the key terms used in describing the design. 
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Figure 2.1: Example of bench section layout showing blast design (from Nobel, 2010). 

The explosive charge is determined based on the rock's characteristics, such as its density, strength, 

and elasticity. Modern blasting techniques often involve the use of electronic detonators, which 

allow for precise timing of the blast sequence, optimizing fragmentation and reducing 

environmental impacts (Persson et al., 1994). 

The blasting mechanism involves the rapid release of energy from the explosive material, 

generating a shock wave that propagates through the rock mass. This shock wave causes the rock 

to fracture, leading to fragmentation. The blast's effectiveness is influenced by several factors, 

including the type of explosive used, the initiation sequence, and the rock's properties (Persson et 

al., 1994). 

When an explosive is detonated, it produces high-pressure gases that expand rapidly, generating a 

shock wave that travels at supersonic speed through the rock. This wave induces compressive and 
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tensile stresses in the rock, leading to crack formation. The cracks propagate through the rock, 

causing it to break into smaller fragments. The fragment size is determined by the explosive's 

energy, the blast holes' spacing, and the rock's natural fracture system (Langefors & Kihlström, 

1978). 

Controlled blasting techniques, such as pre-splitting, cushion blasting, and trim blasting, are often 

employed to manage the extent of fragmentation and reduce damage to the surrounding rock. 

These techniques involve creating a series of closely spaced blast holes that are detonated in a 

specific sequence to create a smooth final wall in the pit, minimizing overbreak and enhancing pit 

wall stability (Ash, 1980). 

Pre-splitting is a controlled blasting technique used to create a clean separation between the final 

pit wall and the rest of the rock mass. This method involves drilling a row of closely spaced holes 

along the final excavation line, which are then lightly charged and detonated before the main blast. 

The purpose of pre-splitting is to induce a controlled crack in the rock, reducing the risk of 

overbreak and ensuring a stable pit wall (Hustrulid, 1999). 

Pre-splitting is particularly useful in situations where wall stability is critical, such as in steeply 

dipping rock formations or when dealing with highly fractured rock masses. This technique 

minimizes damage to the final wall, preserving its structural integrity and reducing the likelihood 

of slope failures (Chiappetta, 1990). 

Cushion blasting, also known as smooth blasting, is another controlled blasting technique used to 

achieve a smooth final wall in an open pit. This method involves placing a series of lightly charged 

blast holes along the final excavation boundary, with the holes spaced more closely together than 
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in conventional blasting. The light charges produce minimal fracturing, reducing the risk of 

overbreak and creating a smoother final surface (Persson et al., 1994). 

Cushion blasting is often used in conjunction with other blasting techniques, such as pre-splitting, 

to enhance wall stability and reduce the potential for backbreak. The smooth walls created by 

cushion blasting are beneficial in maintaining long-term pit wall stability, particularly in operations 

where the final wall will be exposed for extended periods (Chiappetta, 1990). 

Trim blasting, also known as perimeter blasting, is similar to cushion blasting but is used primarily 

for trimming the final pit walls. It involves the use of smaller explosive charges and closer hole 

spacing to minimize overbreak and achieve a clean wall surface. Trim blasting is typically 

conducted as a secondary operation after the main blast to refine the pit wall and ensure it meets 

the desired design specifications (Ash, 1980). 

Trim blasting is particularly useful in finalizing the geometry of the pit wall and is often used in 

combination with other techniques like pre-splitting and cushion blasting. This method helps to 

ensure that the final wall is stable and free from loose rock, which could pose a safety hazard 

during mining operations (Wyllie & Mah, 2004). 

Another important blasting technique that is widely used in coal mining that aims to move a large 

volume of overburden material into a pre-determined area without the need for additional handling. 

This method effectively reduces the need for costly material handling equipment and increases 

overall mining efficiency (Wyllie & Mah, 2004). 

In cast blasting, the design is tailored to maximize the horizontal displacement of the blasted 

material, known as "casting." The blast design typically involves larger hole diameters, increased 

burden and spacing, and higher explosive charges compared to conventional blasts. The timing 
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sequence is also critical in cast blasting, as it determines the direction and extent of material 

displacement (Wyllie & Mah, 2004). 

The primary advantage of cast blasting is its ability to reduce the overall cost of stripping by 

minimizing the need for draglines, shovels, or trucks to move the material. By casting a significant 

portion of the overburden directly into the spoil pile, the method streamlines the process, leading 

to faster overburden removal and improved production rates (Dyno Nobel, 2020). 

2.4 BLAST MOVEMENT 

The movement of blasted material significantly affects grade control accuracy. When a blast is 

initiated, the explosive energy fractures the rock and displaces it, causing movement of the 

material. This movement can result in the mixing of ore and waste, leading to dilution and ore loss 

if not properly accounted for. Understanding and managing blast movement is essential for 

maintaining the integrity of grade control. 

One key aspect to manage blast movement in order to reduce ore loss and dilution is to model it. 

Hmoud and Kumral (2023) categorized blast movement modeling approaches into four main 

types: (1) multi-physical simulations, (2) heuristic methods, (3) machine learning models, and (4) 

stochastic methods. Each of these approaches has unique strengths and limitations, and their 

applicability depends on various factors, including the complexity of the geological conditions and 

the availability of computational resources. 

2.4.1 Multi-Physical Simulations 

Multi-physical simulations integrate various physical processes to model blast dynamics. These 

simulations consider factors such as explosive energy, rock mass properties, and blast design 

parameters to predict the movement of blasted material.  
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One of the primary challenges in using multi-physical simulations to model blast movement in 

open pit mines is the difficulty in accurately gathering all necessary input parameters due to the 

complexity of the simulation. This process often requires extensive computational time, which is 

impractical given the frequency of blasting operations. Additionally, the variability of rock mass 

properties and blast conditions adds to the complexity, making it challenging to develop accurate 

models without extensive field data. However, with the advancement of cloud and parallel 

computing, solving these complex simulations in a short time is applicable. 

Zou and Jun (2021) investigated the rock fragmentation movement during bench blasting, 

emphasizing its importance alongside blast fragmentation. They aimed to understand the shape of 

the muckpile post-blast. Traditional methods for modeling rock fragmentation movement are 

force-based and computationally intensive. In this study, they extended the position-based 

dynamics (PBD) method to simulate rock fragmentation movement in production blasting, 

describing rock mass displacement within a rigid-body dynamics framework. The model 

discretizes the rock mass volume into small, irregularly shaped blocks using a Voronoi algorithm, 

assigning velocity to each block based on blast energy. The PBD method then simulates the 

movement, collision, and landing of the blocks. A practical bench blasting case was simulated to 

validate the PBD method, successfully reproducing and analyzing the movement of rock 

fragmentation to form the final muckpile. 

Yu et al. (2022) investigated blast movement, a major cause of ore loss and dilution in mines that 

rely on pre-blast ore boundaries for shovel loading. The study used a simulation approach 

combining the finite element method for blast loading calculations and the bonded-particle method 

for bench blasting simulation. They obtained micro-mechanical parameters, equivalent blast 

loading, and wave velocity, then analyzed particle velocity distribution, accumulation process, and 



Chapter 2 

 
 

18 

blast movement characteristics for single-hole and four-hole bench blasting. The study also 

examined the effects of burden and bench height on blast movement. Using colorful rock strips to 

model the bench, they observed that rock strips far from the bench face exhibited a fold-back 

stacking phenomenon, with blast movement distance increasing from the bench floor to the 

blasthole bottom, peaking at the bottom of the stemming section. Rock strips near the bench face 

showed a forward flapping state due to natural accumulation under gravity. The study found that 

blast movement became more pronounced with increasing bench height, decreasing burden, and 

decreasing distance from the bench face. The numerical results were validated using maximum 

throw distance calculations, blast movement measurements, and actual muckpile profiles. 

Gharib et al. (2017) explores the flow characteristics and wear prediction of Herschel-Bulkley non-

Newtonian fluids, specifically focusing on paste backfill as it flows through pipe elbows. The 

Herschel-Bulkley model, which characterizes non-Newtonian fluids that exhibit both solid-like 

and fluid-like behaviors depending on shear stress, is employed to analyze how flow dynamics and 

pipe geometry influence both the wear and efficiency of material transport. The research highlights 

the importance of understanding fluid rheology and optimizing pipe designs in industrial settings 

such as mining, where materials like paste backfill are commonly used. By predicting wear 

patterns and flow behavior, the study provides valuable insights into prolonging pipeline lifespan 

and improving overall operational efficiency. 

This approach to modeling non-Newtonian fluids and predicting wear can be extended to the 

context of blast modeling in multiphysics simulations, particularly in understanding the behavior 

of detonation gases and rock fragmentation. Blasting phenomena involve complex interactions 

between high-pressure gases and fractured rock, where the expansion of gases and flow of 

fragmented material through rock voids can be conceptualized using principles from fluid 



Chapter 2 

 
 

19 

dynamics. Similar to the erosion and wear predictions in the study, wear and damage to rock 

structures post-blast can be modeled using analogous techniques. The integration of multiphysics 

models combining fluid dynamics, solid mechanics, and thermal effects can help predict rock 

breakage patterns, gas flow behavior, and long-term wear on mine structures, offering a 

comprehensive framework for optimizing blasting operations in mining. 

Bharathan et al. (2019) investigates the pressure loss and friction factor in non-Newtonian mine 

paste backfill, using a combination of modeling, loop tests, and mine field data to comprehensively 

assess the flow behavior of these complex materials. This research is particularly relevant in 

underground mining, where paste backfill—a non-Newtonian material—must be transported 

through pipelines. The authors employed empirical models and field tests to understand how 

factors like flow rate, pipe diameter, and rheological properties of the paste affect pressure loss 

and friction factor. Their findings provide critical insights into optimizing pipeline design and 

operational efficiency in paste backfill applications, offering practical solutions for minimizing 

energy consumption and wear in mine infrastructure. 

The modeling approach used in this study shares strong parallels with techniques applied in 

multiphysics simulations of blasting, where gas expansion and debris flow interact with fractured 

rock in complex, non-linear ways. In both cases, understanding the flow behavior of non-

Newtonian materials, whether paste backfill or detonation gases, can inform more accurate 

predictions of pressure losses, material wear, and system performance. The integration of empirical 

models with field data, as demonstrated in this research, highlights the importance of combining 

theoretical and practical approaches in mining operations. Extending these methods to blasting 

phenomena can help in predicting post-blast material flow and optimizing mine design to enhance 

both safety and operational efficiency. 
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2.4.2 Heuristic methods 

Heuristic methods provide quicker sub-optimal solutions for modeling blast movement by 

combining empirical rules with physical field measurements, such as post-blast topography. These 

methods are often used when quick, approximate solutions are needed, and they can be 

implemented with relatively low computational resources. However, they lack guaranteed 

optimality and do not fully capture the uncertainty in blast movement predictions. 

Isaaks et al. (2014b) addressed the issue of blast movement in mining, which contributes to ore 

loss and dilution. They discussed the use of blast movement monitoring (BMM) devices, which 

track material movement during blasting. These devices provide vectors showing the magnitude 

and direction of movement. The paper presented a method to model post-blast muck piles, 

accounting for both displacement and internal dilution using simulated annealing. They re-blocked 

the pre-blast ore control block model into smaller sub-blocks, displaced them using simulated 

BMM vectors, and then aggregated these into new ore control model blocks. This approach 

allowed for the design of new dig lines based on the updated ore grades. A case study was included 

to demonstrate the method's effectiveness.  

Vasylchuk and Deutsch (2019b) developed an optimization algorithm to model blast movement in 

3-D using pre- and post-blast topography grids and direct blast movement measurements. The 

problem is framed as an optimization assignment problem and solved with a heuristic algorithm 

for approximate solutions within a reasonable time. The paper details the objective function and 

optimization process and provides an example demonstrating the modeling steps. The realistic 

blast movement model enhances grade control by improving the positioning of dig lines and 

accurately determining the correct destination for mined rock, making it suitable for mapping pre-
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blast grades, categories, expected profit, or other information onto the post-blast muckpile 

configuration. 

2.4.3 Machine learning models 

Machine learning models use historical data to predict blast movements. These models can analyze 

large datasets to identify patterns and correlations that may not be apparent through traditional 

methods. When current geological and blast design conditions mirror the historical data used in 

training, machine learning models can provide accurate predictions. While machine learning 

models are effective in predicting blast movements under consistent geological conditions, they 

may not yield reliable predictions for deposits with varying characteristics and blast designs. 

Additionally, these models often do not capture and quantify the uncertainty in blast movement 

predictions, which can limit their applicability in risk-sensitive mining operations. 

Yu et al. (2019) focused on the indirect and accurate determination of blast-induced rock 

movement to reduce ore loss, dilution, and environmental impact. The study aimed to predict rock 

movement at the Husab Uranium Mine in Namibia, Coeur Rochester Mine in the USA, and 

Phoenix Mine in the USA, proposing three new hybrid models using a genetic algorithm (GA), 

artificial bee colony algorithm (ABC), cuckoo search algorithm (CS), and support vector 

regression (SVR). These models, GA-SVR, ABC-SVR, and CS-SVR, utilized eight typical 

blasting parameters as input variables and horizontal blast-induced rock movement as the output 

variable. The models' predictive performances were assessed using three metrics: the correlation 

coefficient, mean square error, and variance account for. The results demonstrated that the GA-

SVR, ABC-SVR, and CS-SVR models provided satisfactory predictions of rock movement, with 

the GA-SVR model outperforming the GWO-SVR, CS-SVR, and artificial neural network (ANN) 

models in both predictive performance and calculation speed. 
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Yu et al. (2020) investigated the distribution law and prediction of blast-induced rock movement 

to address the issue of ore loss and dilution when using a pre-blast ore boundary for shovel 

guidance. Due to difficulties in measuring the post-blast ore boundary, the study applied a blast 

movement monitoring system to collect accurate data during four blast movement trials. Statistical 

analysis, an ANN model, a random forest (RF) model, and a gray wolf optimizer algorithm–

support vector regression (GWO-SVR) model were used to analyze the collected data. The results 

indicated that horizontal, vertical, and 3D movements first increased and then decreased, with 

maximum displacement occurring near the top of the charging section. A good linear relationship 

was found between horizontal and 3D movements, suggesting that horizontal movement can be 

used to guide shoveling and reduce ore loss and dilution. Additionally, the GWO-SVR model 

outperformed the ANN and RF models in accuracy. The study concluded that blast-induced rock 

movement can be controlled by adjusting the burden and spacing and reducing power factor 

variables during mining. 

Yu et al. (2024) proposed a multilayer dig-limit approach to address ore and profit losses caused 

by rock fragment movement during blasting in complex-orebody hard rock open-pit mines. This 

method integrates blast movement into dig-limit optimization using machine learning and heuristic 

algorithms. The study predicts blast movement distances and directions, determines the post-blast 

ore boundary, and calculates an optimized dig-limit for maximum profit. A case study showed that 

this approach improves ore recovery and economic profit compared to manual methods. The study 

also found that reducing equipment size, increasing the number of layers, and decreasing the 

powder factor can further minimize ore and profit losses. 
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2.4.4 Stochastic methods 

Stochastic modeling techniques utilize data from physical field measurements of blasted benches 

to create representative multivariate statistical distributions. These distributions capture the 

uncertainty in blast movements, particularly near ore zones, and help identify areas at high risk of 

material misclassification. 

Hmoud and Kumral (2022) investigated the uncertainty in blast movement using D-vine Copula 

and Monte Carlo simulation on a flitch-by-flitch basis and integrate that with dig-limits 

optimization to understand the effect of blast movement uncertainty on dig-limits realizations. 

They used field data from blast movement monitoring balls to model blast movements. A mixed-

integer linear programming model determined optimal dig-limits for economic block models 

adjusted with these realizations. Their case study compared scenarios with and without considering 

blast movement, revealing that ignoring blast movement can overestimate expected profit by 

65.3%. The study also identified high-risk areas for ore and waste misallocation post-blasting. 

2.5 MATERIAL-TYPE CLASSIFICATION 

Material-type classification in mining is a critical task that involves determining the optimal 

destination for blasted material based on a production plan. This classification ensures that ore is 

sent to the processing plant while waste is sent to the waste dump, optimizing the economic return 

of mining operations. Under conditions of grade uncertainty, several methods have been proposed 

in the literature to determine the optimal material type: (1) average simulation, (2) minimum 

expected loss (MEL), (3) maximum expected profit (MEP), and (4) MEL and MEP with risk 

coefficients. This literature review examines these methods in detail, highlighting their 

applications, strengths, and limitations. 
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The average simulation method assigns the destination of a block in a mine bench based on the 

average of the simulated grade values within that block. This method is closely related to ordinary 

kriging, as both approaches use the mean of grade values to estimate the economic potential of a 

block. However, average simulation is particularly advantageous when dealing with skewed grade 

distributions, as it can better reproduce the histograms of such distributions and provide more 

representative results that accurately capture high-grade values (Verly, 2005). 

The MEL method determines the optimal destination for a block by calculating the expected costs 

associated with assigning the block to all possible destinations, then selecting the destination that 

minimizes the expected loss across all possible scenarios (Verly, 2005; Isaaks, 1991; Srivastava, 

1987; Vasylchuk & Deutsch, 2018).  

The MEP method determines the optimal destination of a block by calculating the expected profits 

associated with assigning the block to all possible destinations, then selecting the destination that 

maximizes the expected profit (Glacken, 1996; Deutsch et al., 2000; Neufeld et al., 2005). the 

mining cost to the calculation of the MEP in which a lost opportunity cost is added in case material 

is classified falsely as waste (Deutsch et al., 2000). 

Neufeld er al. (2005) applied the MEP with different costs of mining ore and waste. Positive and 

negative profit values were calculated based on a cut-off grade in which positive profit value occur 

when grade exceeds the cut-off grade. The cost of processing waste is used to scale negative profit 

values. When the calculated profit values are positive, then material will be classified as ore, 

otherwise the material is classified as waste. 
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Glacken (1996) modified the MEL and proposed coefficients for underestimation and 

overestimation decisions that are chosen based on the mining operation and its way of treating 

waste material as ore and sending ore to the waste dump. 

Dimitrakopoulos and Godoy (2014) added risk coefficients to both MEL and MEP methods to 

ensure that specific operational requirements are met, such as increasing the likelihood of sending 

ore with some chance of being waste to the processing plant or reducing the chance of sending 

waste to the waste dump. 

The addition of risk coefficients allows for more flexible and tailored classification decisions that 

account for the specific risk tolerance and operational objectives of a mining operation. These 

coefficients adjust the profit and loss functions to reflect the desired risk profile, ensuring that 

classification decisions are aligned with the overall strategic goals of the mine (Dimitrakopoulos 

& Godoy, 2014). 

Applying risk coefficients requires continuous updating, as operational policies may change 

throughout the life cycle of the mine. This dynamic nature can make the application of risk 

coefficients challenging in practice, requiring robust data management and real-time decision-

making capabilities (Dimitrakopoulos & Godoy, 2014). 

Vasylchuk and Deutsch (2018) proposed a modification to the MEL method in which if ore and 

waste decisions were correct then loss is assigned a value of zero. Otherwise, the loss is calculated 

as the difference between the cut-off grade and the grade of the variable at the block. They also 

proposed that underestimation and overestimation coefficient can be added to the calculation as 

per Glacken (1996). 
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In scenarios with a linear profit function and no specific risk coefficients, average simulation, 

MEL, and MEP methods tend to provide similar results. However, when dealing with non-linear 

profit functions, such as when the recovery model is not a linear function of grade, the MEP method 

is generally considered the best approach for determining optimal destinations under uncertainty 

(Verly, 2005). 

2.6 DIG-LIMITS OPTIMIZATION 

In daily open-pit mining operations, short-term plans are essential for delineating ore and waste 

SMUs. Misclassification of these units can lead to dilution or ore loss. These plans must ensure 

that consecutive SMUs' ore or waste decisions align with the equipment size while maximizing 

profit. This optimization is crucial, especially when dealing with valuable metals and significant 

dilution or loss. 

Hmoud and Kumral (2023) categorized dig-limits optimization methods into five main categories: 

(1) exact methods, (2) heuristic methods, (3) metaheuristic methods, (4) hybrid methods, and (5) 

spatial clustering methods.  

2.6.1 Exact methods 

Exact methods, such as mixed-integer programming (MIP), ensure optimal solutions for dig-limits 

optimization. These methods involve formulating the optimization problem as a mathematical 

model and solving it using exact algorithms. MIP is a powerful optimization technique that can 

generate optimal dig-limits by considering various constraints and objectives. However, MIP 

suffers from long processing times, especially when the moving window that enforces equipment 

selectivity is large. Despite these challenges, advancements in parallel computing and high-

performance computers have made it increasingly feasible to use MIP for generating optimal dig-

limits. 
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Kumral (2015) developed a decision-making tool to minimize losses from misclassification of 

mining parcels, which relies on estimated or simulated values from sparse data. The research 

converted a non-linear optimization problem into a MIP problem and solved it using a standard 

MIP optimization engine. A case study with gold and silver variables demonstrated the approach's 

effectiveness compared to conventional grade control methods. The study provided a practical 

solution for grade quality control, enhancing profit and operational efficiency, and introduced the 

use of target grades instead of cut-off grades, addressing common challenges in mining operations. 

Sari and Kumral (2017) developed a method to optimize dig-limits in open-pit mining by creating 

ore-waste boundaries that loaders can handle effectively. They formulated this problem as mixed-

integer linear programming problem with an objective function that aims to maximize profit while 

considering equipment selectivity. A case study on seven bench sectors in a gold mine showed the 

method's practicality and potential to increase operational value. The optimized design deviated 

by only 6.4% from a manual design by a mining engineer, demonstrating its efficiency. 

Hmoud and Kumral (2022) adopted Sari and Kumral (2017) MIP dig-limit optimization model 

after coding it in Python to assess the impact of blast movement uncertainty of dig-limits 

optimization outcomes. They conclude that blast movement uncertainty has significant impact on 

dig-limits optimization outcomes that can result in ore loss and dilution that leads to significant 

profit reduction. 

Nelis et al. (2022) introduced a new approach to address the mining cut definition problem, 

incorporating geometallurgical interactions in short-term mine planning for open-pit operations. 

The process involves aggregating blocks into clusters that are extracted and processed as single 

units, considering operational constraints of loading equipment selectivity and aiming to maximize 

operational objectives. Utilizing mixed integer programming and a model inspired by column 
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generation, their approach defines decision variables directly on the set of all feasible cuts. This 

eliminates the need for linear approximations of geometallurgical behavior, allowing the use of 

any nonlinear function. An industry-sized dataset demonstrated that the model could be solved in 

a reasonable time, with results showing that nonlinear recovery functions significantly influence 

destination policy and expected profit. The study concluded that the traditional free selection 

policy based on cutoff grade is suboptimal when geometallurgical interactions are taken into 

account. 

Nelis and Morales (2022) addressed the challenge faced by short-term open pit planners in 

designing feasible production schedules that meet processing, mining, and operational constraints 

while maximizing profit or total metal produced. These schedules must align with long-term 

production plans and incorporate new blasthole sampling data. Traditionally, this task has been 

performed with limited optimization tools, risking suboptimal results. The authors proposed an 

optimization model that simultaneously tackles operational and scheduling issues by defining 

mining cut configurations and production schedules. The model uses representative SMUs as 

potential locations for mining cuts, assigning each SMU to a specific location. Tested with a real 

case study, the model successfully generated mining cuts and extraction sequences that fulfilled 

all constraints, including access restrictions due to ramp locations on each bench. The design 

captured most of the profit, providing a valuable guide for short-term mine planners. 

Faraj (2024) emphasizes the need for accurately classifying material types before mining, as 

current manual practices for drawing ore/waste dig limits are subjective and lead to significant 

dilution and ore loss. Using two weeks of production data from a homogeneous Cu porphyry and 

a heterogeneous Manto-type Cu deposit, the study compares the variability in hand-drawn dig 

limits by 20 professionals with optimal ore-waste delineation. The author adopted Sari and Kumral 
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(2017) dig-limits optimization model in this paper. Results show that manual dig-limits result in 

profits ranging by 3.7% and 5.9% for homogeneous and heterogeneous deposits, respectively, 

whereas optimal delineation increases profits by 1.9% and 7.0%. The main drivers of ore loss and 

dilution are identified as natural variability, diggability, and selectivity. The study recommends 

integrating dig limit optimization algorithms to reduce subjectivity and improve profitability. 

2.6.2 Heuristic methods 

Heuristic methods, like exact methods, aim to optimally separate ore from waste to maximize 

operational efficiency and profit while respecting equipment selectivity. Unlike exact methods, 

heuristic approaches generate near-optimal solutions without guaranteeing absolute optimality. 

However, their strength lies in producing these solutions within a reasonable timeframe, making 

them highly efficient and practical for real-world applications. 

Richmond and Beasley (2004) proposed greedy local search heuristics to estimate financially 

efficient dig-lines in mining operations. These heuristics use a floating circle-based perturbation 

mechanism to generate alternate dig-lines while ensuring mining equipment constraints are met. 

The financial payoffs for these alternate dig-lines are evaluated using a mean-downside risk 

efficiency model, based on distributions from multiple conditional simulations. Computational 

results indicated that equipment constraints significantly increase financial risk for a given 

expected payoff and that the heuristic efficient frontier is sensitive to the mining strategy. The 

study found that mining waste material at transitions before mining ore material minimizes upfront 

operating costs, maximizes profit for a given financial risk level, and frees milling capacity. 

Wilde and Deutsch (2015) addressed the challenge of predicting recoverable reserves before 

mining begins, a crucial aspect of ore reserve estimation. They proposed a new method called 

Feasibility Grade Control (FGC), which automates the process and is applicable during feasibility 
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studies. FGC eliminates the need for the time-consuming creation of initial dig limits while 

establishing dilution and ore loss. The study demonstrated that the results of FGC are nearly 

identical to traditional methods but are more realistic and efficient, saving significant professional 

time. 

Vasylchuk and Deutsch (2019a) introduced an algorithm to optimize the classification of surface 

mine material while considering excavating constraints. Using high-resolution expected profit 

models, the algorithm generates classification maps tailored to site-specific rectangular excavating 

constraints. Traditional analytical solutions are ineffective for this optimization problem, so the 

authors developed a practical heuristic algorithm that quickly determines the optimal material 

destination under realistic constraints. The optimization process is fast, achieving up to 98–99% 

of the total expected profit compared to free selection. This algorithm is a practical tool for short-

term grade control and managing multiple realizations in long-term resource estimation. 

2.6.3 Metaheuristic methods 

Norrena and Deutsch (2000) proposed an optimization approach for determining dig limits in grade 

control that considers mineral grades, economic costs, and mining equipment selectivity. The 

authors used simulated annealing to optimize dig limits, combining constraints of maximum 

profitability and equipment capabilities. They recommended geostatistical techniques to map 

expected profits and account for grade uncertainty. The optimization balances dilution and ore 

waste to maximize profit, incorporating an equipment curve to quantify mining equipment 

limitations. This approach demonstrated effective results and highlighted areas for future 

improvement.  

Isaaks et al. (2014a) highlighted that traditional grade control methods focus on blasthole sampling 

and ore control block model (OCM) grade estimation, often neglecting dig-limits design. 



Chapter 2 

 
 

31 

Misclassification of block grades, leading to financial loss, is commonly addressed using 

maximum profit selection (MPS). However, dig-limits design can also misclassify OCM blocks, 

even if initially classified correctly by MPS, as blocks are rarely mineable individually by ore type. 

The authors proposed an algorithm for constrained optimum dig-limits, which evaluates 

misclassifications through loss functions or MPS, minimizing financial losses while adhering to 

minimum mining width constraints. A case study demonstrated the benefits of this approach. 

Ruiseco (2016) developed a GA approach to approximate optimal dig-limits, considering grade 

control data, equipment constraints, and processing and mining costs. The GA demonstrated 

robustness and flexibility across various cases and complexities. The paper outlines the success of 

the GA application in two separate studies and further explores its flexibility and potential 

applications in equipment sizing in a third study. 

Ruiseco et al. (2016) introduced an optimization approach using a GA to approximate optimal dig-

limits on a bench, considering grade control data, equipment constraints, and processing and 

mining costs. A case study was conducted on a sample disseminated nickel bench in a two-

destination, single ore-type deposit. The results demonstrated that the GA-based approach was 

effective for dig-limit optimization, outperforming traditional hand-drawn methods. 

Ruiseco and Kumral (2017) examined the impact of varying equipment sizes on practical dig-

limits in a highly variable bench with gold and copper in a sulfide/oxide deposit. They used a GA-

based dig-limits optimization in this study. While current equipment sizing methods consider block 

dilution, they do not address the effects of selectivity changes. The study revealed that the 

relationship between selectivity, profit, and equipment size is nonlinear, with significant break 

points occurring when using insufficiently selective equipment. The proposed technique provides 
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a method for sizing mine equipment in complex deposits, considering the interplay between 

productivity and grade distribution.  

Williams et al. (2021) investigated using a CNN to evaluate the clustering of SMUs, which were 

optimized using a GA for mine bench dig limits. These limits categorize SMUs into waste and 

processing categories, ensuring feasible and profitable extraction. While the GA method is 

effective, it is time-consuming and costly. The study aimed to reduce the high computational costs 

by employing deep learning to assess the quality of GA-computed dig limits, significantly cutting 

down the time, which can account for up to 70% of total computation time. A case study with a 

mine bench containing multiple destinations and 420 SMUs demonstrated that the CNN accurately 

predicted clustering quality and reduced computation time by 3900%, making the process more 

efficient for short-term mine planning. 

2.6.4 Hybrid methods 

The hybrid approach leverages the strengths of both exact optimization methods, such as MIP, and 

near-optimal methods, such as metaheuristic algorithms. Initially, the exact method explores the 

solution space, and after a certain number of iterations, it stops to provide an initial solution. This 

solution is then refined by the metaheuristic methods, which start with an acceptable solution and 

aim to find a near-optimal solution in a shorter time frame. This strategy efficiently combines the 

precision of exact methods with the speed of metaheuristics to deliver practical and timely 

solutions. 

Deutsch (2017) proposed a hybrid approach by combining branch and bound with simulated 

annealing to determine the dig-limits. In this approach, when the branch and bound need many 

iterations, simulated annealing takes part resulting in sub-optimal solutions. This proposed method 
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could solve big computational problems in a relatively short time. However, they do not guarantee 

optimality, and they require careful selection for input parameters to obtain near-optimal results. 

2.6.5 Spatial clustering methods 

Spatial clustering offers an alternative method for generating dig-limits that effectively separate 

different materials. This approach is commonly used to create production schedules by dividing 

open-pit benches into clusters and grouping blocks with similar characteristics to form dig-limits. 

However, these methods do not necessarily find optimal dig-limits for distinguishing ore from 

waste. Additionally, they require careful selection of input clustering parameters, such as the 

desired number of clusters, making the resulting solution highly subjective. 

Tabesh and Askari-Nasab (2011) addressed the challenge of using exact optimization methods for 

open pit production scheduling due to the large size of real mining problems, which makes them 

intractable. The paper aimed to develop, implement, verify, and validate a clustering algorithm for 

block aggregation to aid in production scheduling. This algorithm aggregates blocks into selective 

mining units based on a similarity index defined by rock types, ore grades, and distances between 

blocks. A two-stage clustering approach, utilizing an agglomerative hierarchical algorithm and 

tabu search, was developed and tested. A case study on an iron ore life-of-mine production 

schedule validated the algorithm, demonstrating that the size and shape of aggregated blocks can 

affect the project's net present value by 10-15% and significantly impact the practicality of the 

generated long-term production schedules. 

Tabesh and Askari-Nasab (2013) focused on the multiple stages in mining operations where 

engineers draw polygons to guide operations. Traditionally drawn by hand based on the engineer’s 

expertise, these polygons can benefit from automatic procedures to enhance quality and reduce 

effort. Long-term planning requires large polygons for mining cuts, while short-term planning 
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needs mineable shapes that are homogenous in grades and rock types to accurately estimate 

material quality and dilution. The mining direction also influences the desired polygon shapes. To 

address these issues, the authors introduced a clustering algorithm with shape control that can 

generate guidelines for both long-term and short-term planning by adjusting its parameters. The 

algorithm was tested on two small datasets, and its performance was further evaluated on a real 

gold deposit using different mining strategies. The evaluation considered homogeneity of grade, 

rock types, determined destinations, and run times, demonstrating the algorithm's effectiveness. 

Tabesh and Askari-Naseb (2019) highlighted the importance of incorporating geological 

uncertainty into mine production planning. While advances in mathematical models and heuristic 

approaches have improved the ability to address simpler scheduling problems, more complex 

instances that incorporate uncertainty remain challenging. Aggregating blocks can reduce solution 

times. This paper presents four variations of the agglomerative hierarchical clustering algorithm: 

one based on deterministic estimates and three using a possible worlds approach that leverages 

geostatistical realizations to form aggregates considering geological properties and uncertainties. 

Case studies demonstrated that uncertainty-based algorithms create aggregates less susceptible to 

uncertainties, while the proposed algorithm produces controlled-size, minable shapes. 

Salman et al. (2021) explored clustering approaches used to group similar objects for enhanced 

analysis and decision-making, specifically focusing on short-term planning in open-pit mines. In 

this context, clustering aims to aggregate blocks based on attributes like geochemical grades, rock 

types, and geometallurgical parameters, while adhering to constraints such as cluster shape, size, 

mining direction alignment, destination, and rock type homogeneity. This method helps reduce the 

computational cost of optimizing short-term mine plans. Previous studies have not fully addressed 

mining-specific constraints in clustering. The paper introduces a novel block clustering heuristic 
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that honors a comprehensive set of mining block aggregation requirements and constraints, 

including clustering adjacent blocks, achieving high destination homogeneity, controlled cluster 

size, consistency with mining direction, and creating mineable shapes with homogeneous rock 

types. The algorithm's application on two datasets demonstrated its efficiency in generating 

reasonable block clusters while satisfying the predefined constraints. 

2.7 SPATIAL ENTROPY 

The mining industry constantly seeks to minimize ore loss and dilution, which are critical factors 

impacting operational efficiency and profitability. A key aspect influencing these factors is the 

spatial heterogeneity of the orebody at the selective mining unit (SMU) scale. Spatial heterogeneity 

refers to the variation in grade distribution within the orebody, which directly affects the distinction 

between ore and waste. This review delves into the concept of entropy, its application in measuring 

spatial heterogeneity, and various methodologies proposed over the years to account for spatial 

data in entropy calculations. 

The concept of entropy, originating in thermodynamics, has been adapted for various scientific 

fields to measure the degree of disorder or heterogeneity in a system. Shannon (1948) introduced 

entropy in information theory as a measure of the information content in a signal. Shannon's 

entropy quantifies the expected value of the information contained in a message. In the context of 

mining and geospatial data, Shannon's entropy can be adapted to measure the heterogeneity of 

grade distributions within an orebody, providing a way to quantify the disorder and variability in 

the spatial distribution of ore and waste. 

Entropy has been widely applied in various scientific disciplines. For example, in ecology, Patil & 

Taillie (1982) used entropy to measure biodiversity and the distribution of species within an 
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ecosystem. In their paper, an intrinsic diversity ordering of communities is defined and shown to 

be equivalent to stochastic ordering. This provides a mean of comparing the diversity of different 

communities. It also developed the concept of the sensitivity of a diversity index to rare species 

which helps in understanding how changes in a rare species may affect over diversity in a 

community. 

Similarly, in hydrology and hydrogeology, Aghakouchak (2014) explored the integration of 

entropy theory and copulas to enhance probability inference in hydrology and climatology. The 

paper reviews and categorizes existing entropy-copula models into three main groups based on 

their structures, providing a numerical example to demonstrate their formulation and 

implementation. It discusses the potential applications of these models in hydrology and 

climatology, including an example application to flood frequency analysis. By combining entropy 

and copula concepts, the study leverages the strengths of both methods to better describe the 

probability distribution and dependence structure of multiple dependent variables. 

Butera et al. (2018) investigated the impact of transmissivity fluctuations in heterogeneous porous 

media, treating transmissivity as a spatial stochastic variable. These fluctuations induce 

stochasticity in groundwater velocity and transport features. The study emphasizes the importance 

of understanding the relationships between variables characterizing flow and transport, noting that 

while linear relationships are easier to manage, the interdependence of these variables becomes 

increasingly nonlinear with greater heterogeneity. The work highlights the significance of 

nonlinear linkages, proposing information theory tools to detect their presence. By comparing the 

cross-covariance function and mutual information, the study contrasts the amount of linear and 

nonlinear linkage. To avoid analytical approximations, data from Monte Carlo simulations of 
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heterogeneous transmissivity fields were analyzed, revealing that nonlinear components can be 

significant even when cross-covariance values are nil. 

Manchuk et al. (2021) assessed groundwater quality and geochemical changes in the Athabasca 

region of Alberta, Canada, using data from over 5,000 wells collected from the 1950s to 2014. 

They developed bootstrap techniques to detect changes, finding increased anomalies in Cl, total 

dissolved solids, B, and naphthenic acids, and decreased SO4 anomalies in the McMurray 

formation between 2003 and 2008. The study revealed sampling biases in several formations, 

suggesting the need for expanded sampling. It identified wells for continued observation based on 

entropy and relative magnitude of time series, focusing on wells with low measurements and low 

entropy near active industry lease boundaries. 

Singh (1997) examined the applications of entropy theory in hydrology and water resources. The 

paper reviews recent contributions of entropy in hydrological modeling and water resources, 

highlighting the usefulness and versatility of the entropy concept in these fields. The author reflects 

on both the strengths and limitations of the entropy concept and concludes with comments on its 

implications for developing countries.  

The application of entropy in geology is also well-documented in literature. Freizi et al. (2017) 

introduced a new hybrid method for assigning evidential weights in mineral potential mapping by 

combining the Analytical Hierarchy Process (AHP) with Shannon Entropy weighting. They 

applied this approach to a case study for porphyry-Cu potential mapping in Markazi Province, 

Iran. Geo-datasets were gathered, and evidence layers were generated for integration using the 

TOPSIS method with the combined AHP–Shannon Entropy weighting. The resulting mineral 

potential map was evaluated through field checking and chemical analysis of samples, revealing 

two outcrops with evidence of a porphyry system in areas with high potential values. There was 
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also a strong correlation between high potential values and the copper content of field samples, 

demonstrating the effectiveness of the AHP–Shannon Entropy weighting method for mineral 

potential mapping. 

Liu et al. (2021) investigated the Xiadian orogenic gold deposit in the Jiaodong Peninsula, Eastern 

China, which is associated with the Zhaoping detachment fault. Through field investigation, 3D 

modeling, spatial analysis, and prospectivity modeling using a multi-layer perceptron deep neural 

network, they explored the relationship between gold mineralization and structural deformation. 

The deep neural network with multilayer perceptron and cross-entropy loss is calculated and 

minimized to train the models. They found that gold mineralization primarily occurs in convex 

segments of the fault footwall within 150 meters of the fault buffer, where the dip is gentle. High-

grade sulfide vein ore is typically located in steeply dipping fracture-fill areas distal to the fault. 

Their study identified six potential gold targets and demonstrated the effectiveness of 3D 

prospectivity modeling in understanding the orogenic gold spatial distribution and structural 

controls. 

Zhang et al. (2021) investigated the use of convolutional neural networks (CNN) for mineral 

prospectivity mapping by integrating multi-geoinformation with unsupervised convolutional auto-

encoder networks (CAE). They employed cross-entropy to fit the CNN model. Two CAE networks 

were built to identify high-error patches of a tif image, representing prospective areas, and low-

error patches as non-prospective. By adjusting the CAE architecture, training epochs, and evidence 

map combinations, reliable results were achieved. The area under the receiver operating 

characteristic curve (AUC) indicated that high reconstructed errors matched prospective areas. 

These were then used in CNN modeling, showing a strong spatial correlation with known gold 

deposits. The results, including training loss, accuracy, and favorability maps, were comparable to 
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previous studies, demonstrating the method's feasibility. This approach of using CAE to extract 

spatial signatures for CNN learning shows promise for mineral prospectivity mapping. 

However, traditional entropy measures do not account for the spatial location of data points, 

treating datasets with identical probability mass functions but different spatial configurations as 

having the same entropy. This limitation led to the development of spatial entropy indices, which 

incorporate spatial location to provide a more accurate measure of heterogeneity.  

Theil (1972) introduced a spatial entropy measure to quantify inequality or diversity in spatial 

distributions. In the context of social and administrative sciences, spatial entropy quantifies the 

unpredictability or heterogeneity of a given distribution at a certain location, such as income 

distribution, demographic characteristics, or resource allocation for certain cities or countries. 

Higher entropy indicates greater diversity and randomness, reflecting a more even distribution 

across categories, whereas lower entropy suggests more predictability and concentration in certain 

categories. 

Batty (1974) addressed a significant issue in information theory concerning the derivation of a 

continuous measure of entropy from the discrete measure. While many analysts have noted the 

incompleteness of Shannon's treatment of this problem, few have reworked his analysis. Batty 

proposed a new measure of discrete entropy that explicitly incorporates interval size, termed 

spatial entropy, which is fundamental to geography. This measure was first demonstrated through 

its application to one- and two-dimensional aggregation problems. Batty then explored the 

implications of this statistic for Wilson’s entropy-maximizing method, reinterpreted Theil’s 

aggregation statistic in spatial terms, and suggested heuristics for designing real and idealized 

spatial systems where entropy is maximized. 



Chapter 2 

 
 

40 

Batty (1976) introduced an approach to measuring locational phenomena within a spatial hierarchy 

using entropy statistics. The paper derives several statistics suitable for studying spatial 

aggregation, which are then decomposed at different levels of the spatial hierarchy using 

decomposition principles initially applied by Theil. These decomposition statistics are compared 

with variance analysis methods used by Moellering and Tobler (1972) and the spatial entropy 

measure suggested by Curry (1971). The application of these statistics is illustrated with data from 

the Reading subregion and New York City. The paper concludes by analyzing the potential role of 

entropy and information in addressing problems related to equal-area zoning. 

Batty (2010) examined the use of entropy measures in geographical analysis, focusing on the 

concept of human systems in equilibrium. He discussed how entropy maximizing, similar to 

equilibrium statistical mechanics, provides a framework for location and interaction models, as 

popularized by Wilson (1970). Batty reviewed two extensions: introducing "spatial entropy" to 

account for spatial variation and decomposing/nesting entropy to capture variations at different 

scales. He identified gaps in substantive interpretations of entropy for various geographical shapes 

and sizes and the dynamics of generating probability distributions, such as power laws in complex 

systems. Batty called for further research to link entropy maximizing, entropy measure 

interpretations, and equilibrium distribution dynamics, emphasizing the need for new entropy 

measures that illustrate how equilibrium spatial distributions result from dynamic processes 

reaching a steady state. 

Anselin (1995) addressed the need for new exploratory data analysis techniques in geographic 

information systems (GIS) to focus on the spatial aspects of data. He introduced a general class of 

local indicators of spatial association (LISA) to identify local patterns of spatial association. LISA 

statistics decompose global indicators, such as Moran’s I, into the contributions of individual 
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observations. These statistics serve two main purposes: identifying local pockets of nonstationarity 

or hot spots, similar to the Gi and G* statistics of Getis and Ord (1992) and assessing the influence 

of individual locations on the global statistics and identifying outliers. Anselin evaluated the 

properties of a LISA statistic through the local Moran, applying it to the spatial pattern of conflict 

in different countries and in several Monte Carlo simulations. 

Karlström and Ceccato (2000) developed a new measure of spatial association called the S 

statistics, based on information theory by defining a spatially weighted entropy measure that 

considers spatial configuration. The S statistics have an intuitive interpretation and fulfill the 

expected properties of an entropy measure. This global measure of spatial association can be 

decomposed into LISA. The new measure was tested using employment data from the culture 

sector in Stockholm County and compared with existing global and local spatial association 

measures. The S statistics demonstrated similarities to Moran’s I and Getis-Ord Gi statistics, with 

the local Si statistics showing significant spatial association akin to the Gi statistic but with the 

advantage of aggregation to a global measure. The S statistics can also be extended to bivariate 

distributions, and the commonly used Bayesian empirical approach can be interpreted as a 

Kullback-Leibler divergence measure. One advantage of the S statistics is that they select only the 

most robust clusters, eliminating smaller clusters that might inflate the global measure. 

O'Neill et al. (1988) developed three indices of landscape pattern using information theory and 

fractal geometry to quantify spatial patterns that correlate with ecological processes. Using 

digitized maps, these indices were calculated for 94 quadrangles covering most of the eastern 

United States. The study demonstrated that the indices are reasonably independent of each other 

and effectively capture major features of landscape patterns. One of the indices, the fractal 

dimension, was found to correlate with the degree of human manipulation of the landscape. This 
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research provides valuable tools for quantifying and understanding the spatial patterns in landscape 

ecology. 

Claramunt (2005) conducted a preliminary study to explore a representation of spatial information 

diversity that supports the analysis of spatial structures. This approach is based on Shannon’s 

information theory, which offers a quantitative method for evaluating diversity in one-dimensional 

spaces. Claramunt introduced a measure of spatial diversity, extending Shannon’s measure and 

incorporating principles from the First Law of Geography. The study examined and illustrated the 

properties and unique aspects of spatial diversity compared to conventional measures. 

Relationships between spatial diversity and notions of order and cohesion were also discussed. 

The potential for combining spatial diversity with other diversity measures for ecological, social, 

and economic studies was highlighted, although further validation and experimentation are needed.  

Li and Claramunt (2006) introduced a spatial decision tree to address the limitations of 

conventional decision trees when applied to geographical datasets affected by spatial 

autocorrelation. Conventional decision trees often underperform in these scenarios because they 

do not account for spatial distribution. The proposed spatial decision tree incorporates a spatial 

diversity coefficient that measures the spatial entropy of a geo-referenced dataset, extending the 

conventional notion of entropy to include spatial autocorrelation phenomena. This integration 

results in a classification process tailored to geographical data. The potential of this approach was 

demonstrated through a case study focused on classifying an agricultural dataset in China. 

Li and Reynolds (1993) addressed the limitations of the contagion index proposed by O'Neill et 

al. (1988), which was designed to quantify spatial patterns of landscapes but proved to be 

insensitive to changes in spatial patterns. They introduced a new contagion index that corrects a 

mathematical error in the original formulation. The error was identified and corrected 
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mathematically. Both the original and new contagion indices were then evaluated against simulated 

landscapes to demonstrate the improved sensitivity and accuracy of the new index in quantifying 

spatial patterns. 

Parresol and Edwards (2014) emphasized the importance of studying spatial patterns of landscapes 

to quantify human impact, predict wildlife effects, and describe landscape features. A robust 

landscape index should measure both the composition and configuration of landscape diversity. 

They critiqued the use of relative contagion indices in landscape ecology, demonstrating through 

simulated landscapes that these indices are mathematically untenable. To address this, they 

developed a new entropy contagion index (Γ). They derived the distributional properties of Γ̂, 

showing it to be asymptotically unbiased, consistent, and normally distributed. A variance formula 

for Γ̂ was also derived using the delta method. As an application, they analyzed the patterns and 

changes in forest types across four soil-geologic landform strata on the 80,000 ha Savannah River 

Site in South Carolina, USA. Using one-way analysis of variance for hypothesis testing of 

contagion among strata, they provided insights for managers to meet structural objectives based 

on differences in contagion across the strata. 

Riitters et al. (1996) investigated the landscape contagion index, which measures the degree of 

clumping of attributes on raster maps by computing the frequencies of adjacent attribute pairs. 

They highlighted that subtle differences in tabulating attribute adjacencies can affect the 

applicability of the standard index formula, leading to potentially incomparable published index 

values. The paper derived formulas for the contagion index that accommodate different methods 

of tabulating attribute adjacencies, both with and without preserving the order of pixels in pairs 

and using two methods of determining pixel adjacency. When pixel order is preserved, the standard 

formula is obtained. Without preserving pixel order, a new formula is derived due to the reduced 
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number of possible attribute adjacency states. Additionally, they found that estimated contagion is 

smaller when each pixel pair is counted twice instead of once, as this double-counting makes the 

attribute adjacency matrix symmetric across the main diagonal. 

Leibovici (2009) addresse the challenge of identifying geographical patterns by analyzing the 

spatial configuration and distribution of events, objects, or their attributes. Traditional measures, 

like Shannon entropy, shed light on data organization but fall short in describing spatial 

organization. The paper advances spatial entropy by focusing on the co-occurrence of categories 

at multiple orders, treating adjacency as a second-order co-occurrence with zero collocation 

distance. Leibovici introduces a spatial entropy measure that incorporates multivariate data with 

covariates, allowing for flexible spatial interaction models between attributes. By using a 

multivariate multinomial distribution of collocations, this approach assesses interactions through 

an entropy formula, where the collocation distance serves as a scale factor for spatial organization 

analysis. 

Leibovici et al. (2014) examined how to characterize the distribution of spatially observed entities 

by their geometries and attributes using Shannon entropy, which is widely applied in fields like 

ecology, regional sciences, epidemiology, and image analysis. They extended entropy measures by 

incorporating spatial patterns from topological and metric properties, using distance-ratios and co-

occurrences of observed classes. The research introduced new indices and explored their 

applications as global and local indices in spatio-temporal domains. By employing a multiplicative 

space-time integration approach at macro and micro levels, they developed spatio-temporal 

entropy indices that combine co-occurrence and distance-ratio methods. This framework supports 

spatio-temporal clustering, providing a structured perspective on the distribution of class instances. 

The methodology was demonstrated with simulated data evolutions of three classes over seven-
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time stamps, and preliminary results were discussed for a study of conflicting maritime activities 

in the Bay of Brest, exploring spatio-temporal patterns of a categorical variable representing 

conflicts between maritime activities. 

In geostatistics, Journel and Deutsch (1993) investigated the relationship between maximum prior 

entropy and response distribution. They introduced a global spatial entropy measure that calculates 

entropy at various lag distances for a set of discrete variables, providing a comprehensive measure 

of spatial entropy. However, this measure was not designed to quantify entropy at a local level, 

such as SMU scale. Their method calculates entropy for all possible pairs separated by specific lag 

distances within a defined area of interest. To quantify local spatial entropy at specific locations 

and account only for relevant pairs, their spatial entropy formulation needs modification. This 

adjustment would enable the calculation of both global and local spatial entropy, enhancing its 

applicability to more localized analyses. 

Altieri et al. (2017) explored the concept of entropy, originally introduced in information theory 

and popularized through Shannon's formula to measure heterogeneity among observations. They 

focused on incorporating spatial components into entropy measures, addressing the limitation that 

traditional indices are computed based on a chosen distance. By extending Shannon's entropy for 

categorical variables to include space as a second dimension, the study investigated the properties 

of residual entropy and mutual information. This approach allowed the extension of univariate 

entropy measures to bivariate distributions, ensuring a well-defined probabilistic meaning for all 

components. Consequently, a spatial entropy measure satisfying the additivity property was 

developed, with global residual entropy being the sum of partial entropies based on different 

distance classes. Mutual information, which measures the information added by the inclusion of 
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space, also demonstrated additivity. A comparative study is presented to compare the new indices 

to Leibovici indices and Shannon Entropy. 

Altieri et al. (2018) examined the use of entropy in applied sciences to measure the heterogeneity 

of observations, focusing on recent attempts to develop entropy measures for spatial data to capture 

the influence of space on variable outcomes. They identified limitations in these developments, 

such as the computation of indices conditional on a single distance and the lack of additivity 

between local and global spatial measures. The study reviewed recent univariate distribution-based 

approaches and introduced a new method linked to bivariate distributions. Firstly, they 

decomposed Shannon’s entropy into spatial mutual information, which accounts for the role of 

space in determining variable outcomes, and spatial global residual entropy, which summarizes 

the remaining heterogeneity of the variable. Both terms satisfy the additivity property, being sums 

of partial entropies measured at different distance classes. The proposed indices were applied to 

measure the spatial entropy of a marked point pattern of rainforest tree species, demonstrating that 

the new entropy measures are more informative and address a broader set of questions than existing 

literature proposals. 

Altieri et al. (2019) addressed the inefficiency in urban diffusion, a significant concern for 

biologists, urban specialists, planners, and statisticians in both developed and developing 

countries. Urban sprawl, often identified as chaotic urban expansion, is linked to the concept of 

entropy. The paper employed a rigorous spatial entropy-based approach to measure urban sprawl 

associated with the diffusion of metropolitan cities. To assess the effectiveness of the measures, a 

comparative study was conducted on archetypical urban scenarios, followed by the application of 

the measures to quantify the degree of disorder in the urban expansion of three European cities. 
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The results were easily interpretable and could be used as absolute measures of urban sprawl or 

for comparative analysis over space and time. 

Altieri et al. (2021) reviewed a selection of spatial entropy indices, including some recent ones, 

designed to handle spatial data on variables with a finite number of categories. While the paper 

focuses on biodiversity data, the methods are applicable to other environmental phenomena. They 

introduced the new R package SpatEntropy, which computes spatial entropy measures, extending 

traditional entropy measures to their spatial versions. This package works with both areal and point 

data. The paper includes a practical section where the package is applied to two types of 

environmental data: tree biodiversity and urban expansion. The results demonstrate that 

SpatEntropy is a user-friendly and valuable tool for researchers and practitioners working with 

spatial entropy measures. 

 Zhang et al. (2020) explored the formation mechanisms of vegetation patterns, key self-organized 

structures in ecological systems, traditionally attributed to dynamic bifurcations. They examined 

how statistical indicators, specifically Shannon entropy and the contagion index, influence the 

regularity of these patterns. Unlike previous studies that used randomly generated patterns or 

vegetation maps, they simulated the formation of vegetation patterns using a discrete vegetation-

sand model under different bifurcation scenarios. The corresponding Shannon entropy and 

contagion index of these simulated patterns were calculated using modified formulas. The study 

revealed that the variation trends of Shannon entropy and the contagion index are closely linked 

to the formation stages of vegetation patterns. Additionally, the different final values of these 

indicators in various patterns can help determine the dominant bifurcation when both bifurcations 

are present. 
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Hmoud and Kumral (2023) emphasized the crucial role of effective management of ore loss and 

dilution for successful grade control and short-term mine planning, given their significant 

economic, environmental, and technical impacts on open-pit mining operations. The paper applies 

the spatial entropy concept to capture ore heterogeneity at the scale of selective mining units. They 

use global spatial entropy to assess the impact of spatial heterogeneity between ore and waste 

blocks on ore loss and dilution, while local spatial entropy guides the allocation of blast movement 

monitoring balls pre-blast. High global spatial entropy values indicate a higher potential for ore 

loss and dilution, which reduces profit. The study also explores the relationships between spatial 

entropy, cut-off grades, blast movement, dig-limits optimization model running time, and profit 

through various case studies. Results indicate that changes in cut-off grade and blast movement 

significantly affect spatial entropy post-blasting, increasing ore loss, dilution, and profit reduction, 

thus highlighting the need for controlled blasting in specific bench sections. Additionally, they 

demonstrate an exponential increase in profit reduction due to ore loss and dilution with rising 

global spatial entropy. 
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Chapter 3: Effect of Blast Movement Uncertainty on Dig-Limits 

Optimization in Open Pit Mines 

 

3.1 ABSTRACT 

The determination of dig-limits is one of the most critical steps in grade control and short-term 

mine planning. Dig-limit optimization aims to identify blasted materials to their optimal 

destinations while honoring equipment selectivity. The dig-limits determined in the pre-blast stage 

are not operational in the post-blast stage due to blast movement. Based on the blast design 

configuration and rock characteristics, blasted materials will move in certain directions. The 

magnitude of blast movement in those directions varies across bench levels called flitches. Dig-

limits without incorporating blast movement can cause ore losses and dilution, leading to severe 

financial losses. In this paper, a new methodology is proposed for quantifying uncertainty in blast 

movement and assessing the impact on dig-limits optimization. Blast movements are modeled by 

using measurement data obtained from blast movement monitoring balls that are installed in blast 

holes. The multivariate distributions for measured blast movements across flitches are fitted using 

D-vine copula and blast movement realizations generated using Monte Carlo simulation. A mixed-

integer programming model is used to determine the optimal dig-limits for all economic block 

models corrected and adjusted with blast movements realizations. An ore probability map is 

generated showing locations of ore and waste blocks in a probabilistic fashion. A case study for 

demonstrating the proposed methodology is presented. In this case study, two scenarios are 

investigated; the first scenario incorporates blast movement in determining dig-limits, while the 

second scenario discards blast movement effect on dig-limits. The result of this comparison shows 

that discarding the blast movement when determining dig-limits can lead to over-estimating the 
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expected profit by 65.3% on average when compared with the other scenario that incorporates 

blast movement. The post-blasting ore and waste areas with a high-risk of being misallocated by 

the dig-limits are identified. 

3.2 INTRODUCTION 

Ore-waste classification is an essential part of grade control and short-term mine planning. It aims 

to maximize profit from short-term mining operations by sending the blasted materials to their 

optimal destinations and reducing ore losses and dilution while honoring the selectivity of mining 

equipment. A block model is generated to understand the spatial distribution of ore and waste zones 

within a bench. This model is a simplified representation of the bench, and it consists of a number 

of small computer-generated blocks called selective mining units (SMUs). SMUs are the smallest 

volumes of materials on which ore-waste classification decisions are made (Sinclair & Blackwell, 

2006). These SMUs are too small to be mined by themselves. Therefore, SMUs are grouped 

together into spatially coherent clusters called dig-limits that can be mined by large mining 

equipment. The misclassification of SMUs can cause severe ore losses and dilution issues that lead 

to significant financial losses. This misclassification problem becomes even more evident when 

ore cannot be visually distinguished from waste during mining operations, such as in most (if not 

all) gold deposits. During bench blasting, ore and waste blasted rocks are moved by the blast in 

various directions and distances throughout the blasted section of the bench. It becomes difficult 

to quantify the distance of this blast movement accurately as a consequence of the variations of 

geologic and rock properties. These variations may add uncertainty in ore and waste boundary 

exactness, resulting in financial losses. Therefore, assessing blast movement uncertainty is 

considered a crucial predecessor step before determining optimal dig-limits. If dig-limits are 
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determined pre-blast, they will have a limited or no operational use post-blast due to blast 

movements. 

Most of the current methods applied to determine dig-limits are based on the experience of the 

grade control geologists who manually digitize ore and waste polygons on a bench-by-bench basis. 

Their judgment on the shape of dig-limits is guided by rock types and cut-off grade that varies 

according to deposit type, ore recoveries, and other economic factors such as commodity price and 

operational costs. However, this manual determination of dig-limits suffers from several 

limitations: (1) it is subjective, (2) it takes a relatively long time to manually digitize dig-limits, 

(3) it does not produce optimal dig-limits that maximizes profit, (4) it does not correctly account 

for the differential blast movements within a bench among flitches, and (5) it does not account for 

the unavoidable uncertainty in modeling blast movement. These limitations may result in profit 

losses caused by dilution and ore loss. 

To overcome these limitations in solving the dig-limits problem, various methods have been 

proposed in the literature. Most of these proposed methods rely on heuristics and metaheuristics 

algorithms such as simulated annealing (Deutsch, 2017; Isaaks, Treloar, et al., 2014; Norrena & 

Deutsch, 2000), genetic algorithms (Ruiseco, 2016; Ruiseco & Kumral, 2017; Ruiseco et al., 2016; 

Williams et al., 2021), heuristics (Richmond & Beasley, 2004; Vasylchuk & Deutsch, 2018, 

2019a), greedy searches (Wilde & Deutsch, 2015), or they adopted a hybrid approach such as 

combining branch and bound with simulated annealing to determine the dig-limits (Deutsch, 

2017). In this approach, when the branch and bound need many iterations, simulated annealing 

takes part resulting in sub-optimal solutions. These techniques could solve big computational 

problems in a relatively short time. However, they do not guarantee optimality, and they require 

careful selection for input parameters to obtain near-optimal results. 
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Another way of solving dig-limits problem could be spatial clustering. Tabesh and Askari-Nasab 

(2011) proposed a hierarchical clustering algorithm for generating dig-limits based on a similarity 

index that includes distance between blocks, rock types, destinations, metal grade, and other 

attributes to produce spatially coherent clusters or dig-limits. The generated clusters are refined in 

a later stage using a Tabu search. However, this post-processing step reduces cluster homogeneity 

and increases ore loss and dilution. Tabesh and Askari-Nasab (2013) proposed another spatial 

hierarchical clustering algorithm to define spatially coherent groups of blocks used at different 

stages of mine planning. Their algorithm accounts for mining shapes and the direction of mining 

when creating these clusters. Tabesh and Askari-Nasab (2019) extended their proposed spatial 

clustering algorithm to account for geological uncertainty and proved that it could be implemented 

on real-size block models and generate clusters within a reasonable processing time. Salman et al. 

(2021) explored a block clustering algorithm based on the K-means clustering algorithm to define 

dig-limits. This algorithm aggregates blocks with a similar grade, rock types, spatial proximity and 

generates clusters with controllable sizes used as dig-limits.  

These clustering approaches summarized above are used to produce quick mine schedules by 

dividing open-pit benches into a number of clusters and grouping blocks with the same 

characteristics together to form dig-limits. However, these approaches do not find optimal dig-

limits when forming their clusters to separate ore from waste. They also require careful selection 

for input clustering parameters, such as the desired number of clusters, making the solution very 

subjective. Furthermore, the dig-limits optimization problem is formulated as a mixed-integer 

programming (MIP) problem (Kumral, 2015; Nelis & Morales, 2021; Sari & Kumral, 2018). These 

models guarantee optimality, but they usually require a longer time to find the optimal solutions.  
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Many dig-limits optimization techniques do not account for blast movement when determining 

optimal dig-limits. Therefore, the determination of dig-limits ignoring blast movements will not 

be practical (Engmann et al., 2013; Thornton et al., 2005). The possible dilution associated with 

blast movement can be minimized if blast movement is considered appropriately (Yennamani, 

2010; Zhang, 1994). As a result of incorporating blast movement in determining dig-limits, ore 

recovery can increase because mined materials are sent to their optimal destinations (Gilbride, 

1995; Harris, 1997; Taylor & Firth, 2003). 

Modeling blast movements throughout the bench section is an essential step for determining 

optimal dig-limits. There are three approaches for modeling blast movements in literature: (1) by 

conducting a multi-physical simulation of blast movements (Zou & Jun, 2021), (2) by modeling 

blast movements using physical field measurements (Isaaks et al., 2014; Vasylchuk & Deutsch, 

2019b; Yu et al., 2021), and (3) by the machine learning techniques on the previous blast movement 

information to predict future blast movement in the mine (Yu et al., 2020; Yu et al., 2021). Physical 

field measurements will also be required for validating multi-physics simulation models of blast 

movement. Furthermore, these measurements may be used for machine learning applications for 

training purposes. If the mechanism behind the blast movement distance is not well-quantified, 

there will be high ore losses and dilution levels. Given that blasting is a relatively cheap process 

in mining, the operations tend to overbreak rock, leading to turbulent movements. In other words, 

the benefit acquired by small particle size through blasting can be lost due to loss and dilution. 

No matter what approach is used for modeling blast movements, there will be inevitable 

uncertainty associated with the direction and distance of the movement. Rosa and Thornton (2011) 

remarked that blast movements are uncertain because of inconsistencies of blast design and the 

rock mass characteristics. They emphasized the fact that accurate calculation of the movement is 
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not possible if there are no detailed physical field measurements. Moreover, there would be 

inevitable human factor issues and geologic fluctuations. As a matter of fact, no method precisely 

guarantees predictions for blast movements. When physical field measurements are not available, 

evaluating the risk associated with rock movement uncertainty will be essential to quantify dilution 

and loss. 

Based on previous research conducted on modeling blast movement, the uncertainty in blast 

movement remains unstudied. For this reason, this research is proposed to assess the effect of blast 

movement uncertainty on dig limit optimization while honoring the selectivity of mining 

equipment. The originality of this paper is two-fold: (i) a combined approach of blast movements 

and the dig-limit optimization, and (ii) the quantification of risk attributed to blast movement in 

bench sections such that the effects of blast movement uncertainty on profit, dilution, and ore 

losses are measured.  

The paper was organized as follows. The proposed methodology is elaborated in the next section, 

followed by a case study demonstrating the importance of incorporating blast movement in dig-

limits optimization. Finally, the conclusions and future work are provided. 

3.3 METHODOLOGY 

The methods in this paper are based on combined approaches: MIP, the simulation of the blast 

movements through Monte-Carlo simulations (MCS) using the D-vine copula, and statistical 

analysis. Figure 3.1 summarizes the methodology used in this research. 
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Figure 3.1: Flow chart summarizing the proposed methodology 
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A grade control block model is formed using the exploration drill holes and blast holes resource 

database. The estimation methods such as Ordinary Kriging can be used to estimate ore grades and 

produce a grade control block model. Ordinary Kriging (OK) is one of the most widely used 

interpolation techniques. In the context of resource estimation, the OK estimates the grade at an 

SMU location by using a variogram model and grade data in the neighborhood of the estimation 

location. The variogram model provides OK with covariance values used to assign weights for the 

neighboring grade data to estimate the unknown grade value at an SMU location. This process is 

repeated until all SMUs in the grade control block model are estimated. The most significant 

advantage of using OK is that it is the best linear unbiased estimation technique compared to other 

techniques such as inverse distance. This grade control block model should cover the investigated 

section of the bench that needs to be blasted. When creating the grade control block model, the 

number of SMUs in the vertical direction should equal the number of bench levels called flitches.  

This grade control block model is transformed into an economic block model by applying various 

parameters, including cost, price, recovery, and metal quantity, to all SMUs. The principal input 

parameters used in generating an economic block model are operational costs, metal price, and ore 

recovery. These parameters are used to calculate a break-even cut-off grade (COGB.E.) and compute 

the profit. COGB.E. is calculated using Equation 3.1. 

 𝐶𝑂𝐺𝐵.𝐸. =
𝐶𝑝 + 𝐶𝑚

𝑝 ∗ 𝑟
 (3.1) 

 

Where 𝐶𝑝 is the processing cost per tonne, 𝐶𝑚 is the mining cost per tonne, 𝑝 is the metal price, 

and 𝑟 is the ore recovery. 𝐶𝑂𝐺𝐵.𝐸. is used to distinguish ore SMUs from waste SMUs because it 
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includes the cost of mining which is vital to calculate the profit of all SMUs in the economic block 

model. The profit obtained from an ore SMU is calculated through Eq 3.2.  

 𝑃𝑖,𝑗 = 𝑝 ∗ 𝑚𝑖,𝑗 ∗ 𝑟 − 𝑡 ∗ (𝐶𝑝 + 𝐶𝑚) (3.2) 

 

Where 𝑃𝑖,𝑗 is the profit of SMU located in i and j on a bench if it is assessed as ore,  𝑚𝑖,𝑗 is the 

contained metal of SMU i, j, and 𝑡 is SMU tonnage. If the mined material is considered waste 

based on 𝐶𝑂𝐺𝐵.𝐸., then the profit generated from mining this waste SMU is calculated using Eq 

3.3 

 𝑊𝑖,𝑗 = − 𝑡 ∗ 𝐶𝑚 (3.3) 

 

Where 𝑊𝑖,𝑗 is the extraction cost of SMU located in i and j on a bench if it is assessed as waste. 

After generating an economic block model, two initial input parameters must be specified: (1) blast 

movement direction and distance, and (2) minimum mining width. The direction and magnitude 

of blast movement are estimated from physical field measurements using blast movement monitor 

(BMM) balls. Minimum mining width must be specified based on the selectivity of the equipment 

used for mining the bench. 

The extent of horizontal blast movement is different in each flitch because of the blast design and 

rock characteristics. In general, most explosives are placed in the mid-holes. This placement results 

in the blasted rocks in the middle flitches of the bench moving further than the upper and lower 

flitches. These differential movements generate a D-like shape structure prior to settling a new 

location. Figure 3.2 illustrates a typical D-like shape of blast movements. The number of flitches 
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depends on the blasting design and SMU sizes used in the estimation stage. Typically, the direction 

of blast movement is parallel to the initiation direction of the blast (Gilbride, 1995). 

 

Figure 3.2: Schematic diagram illustrating the expected D-like shape of a blasted bench with 

three flitches. 

Even though the use of BMM balls in determining the magnitude of blast movement is considered 

one of the best and the most reliable sources of blast movement information, the measurements of 

blast movement obtained from these balls remain uncertain because (1) BMM balls do not cover 

the entire blasted section of the bench, (2) it is difficult to determine the locations of the BMM 

balls post-blasting, and (3) the blast movement distances associated with the balls varies even 

within the same flitch. For this reason, the uncertainty in modeling blast movement needs to be 

quantified before determining any dig-limits because it significantly impacts ore loss, dilution, 

and, subsequently, mine profit.  
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After bench blasting, the new locations of the BMM balls are determined, and they are used to 

calculate the magnitude and the overall direction of blast movement. To help modeling blast 

movement across bench flitches, blast movement data collected from BMM balls are grouped 

together based on the bench flitch located within. Then, a multivariate statistical distribution is 

fitted to the blast movement measurements across these flitches. This multivariate distribution 

honors the existing correlations between flitch movements. Applying MCS to the fitted 

multivariate distribution of blast movement measurements, several blast movement realizations 

are generated. These realizations yield the expected D-like shape from blast movements. There is 

always a chance to produce unexpected shapes because of issues emerging from the fluctuations 

in blast design, rock and geologic features that affect the magnitude of blast movement.  

In this paper, the multivariate relationships between blast movements of bench flitches are modeled 

using vine copula (D-vine), a subclass of regular vine copula (R-vine), which was proposed by 

Aas et al. (2009). This method preserves the multivariate associations between the blast 

movements of bench flitches using bivariate copulas and a nested set of trees. Figure 3.3 shows an 

example of D-vine copula trees for the blast movement measurements of three flitches where F1 

is blast movement for Flitch1, F2 is blast movement for Flitch2, and F3 is blast movement for 

Flitch3. F1F2 and F2F3 are the bivariate blast movement copula distributions between Flitch1-

Flicth2 and Flitch2-Flitch3. F1F3|F2 is the Flitch1 and flitch3 bivariate copula distribution given 

Flitch2 blast movement. Bivariate copulas are functions that describe the dependency among two 

one-dimensional distributions. If both marginal distributions and copula are known, then the entire 

bivariate distribution of those two one-dimensional distributions is also known. Following Sklar’s 

theorem (Sklar, 1959), if H(x,y) is a two-dimensional distribution function with marginal 
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distribution functions F(x) and G(y), then there exists a copula C that can be calculated as in Eq 

3.4. 

 𝐻(𝑥, 𝑦) = 𝐶(𝐹(𝑥), 𝐺(𝑦))              ∀ 𝑥, 𝑦 𝑖𝑛 𝑅 (3.4) 

 

When applying copulas to blast movement scenarios F(x) and G(y), which are two continuous 

marginal distributions, they will represent blast movement magnitudes in two bench flitches. 

Based on Sklar’s theorem, if both marginal distributions are continuous, then a unique copula must 

exist. 

Copulas are used for modeling complex multivariate relationships. They have been applied to solve 

a limited number of mining-related problems (Ardian & Kumral, 2020; Singh et al., 2021). In this 

paper, the way modeling blast movement across flitches is different from the abovementioned 

references. The D-vine copula is selected instead of the canonical vine copula (C-vine). This 

difference lies in capturing blast movement correlation between the flitches. This decision of 

selecting a D-vine copula is made due to the nature of the problem in which all flitch movements 

are equally important. No flitch movement controls all other flitch movements when rocks are 

blasted. The C-vine copula is only used in fitting multivariate distributions when one variable 

controls several other variables. This situation does not exist in the blast movement problem. 

A number of well-known bivariate copula distributions can be used to fit bivariate relationships of 

blast movements between flitches such as Gaussian and Archimedean copulas. The Gaussian 

copula is used to model linear bivariate relationships. On the other hand, Archimedean copulas are 

used to model non-linear or heteroscedastic bivariate relationships. Clayton, Frank, and Gumbel 

are good examples of Archimedean copulas.  These bivariate Archimedean distributions have a 
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single parameter that controls the degree of dependence (θ). The parameter θ of the Archimedean 

copula is the leading and only parameter used in constructing a bivariate Archimedean distribution, 

and it indicates the association between random variables. The parameter θ can be derived from 

Kendall's Tau correlation coefficient due to its ability to disentangle the marginal distribution 

effect, which is suitable for non-parametric methods (Chemen & Teilly, 1999; Frees & Valdez, 

1998). Kendall’s Tau correlation coefficient is computed using Equation 3.5. 

 

 Kendall correlation coefficient 

=  
2(𝑛𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 − 𝑛𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡)

𝑛(𝑛 − 1)
 

(3.5) 

 

Where ncondordant is the number of concordant pairs, ndiscordant is the number of discordant pairs, and 

n is the sample size. For Clayton, Frank, and Gumbel copulas, the value of θ can be calculated by 

Equations 3.6, 3.7, and 3.8, respectively (Genest & Favre, 2007). 

 𝜃 =
2𝜏

(1 − 𝜏)
 (3.6) 

   

 

𝜃 =
1

(1 − 𝜏)
 

 

(3.7) 

   

 

[𝑌1(𝜃) − 1]

𝜃
=
(1 − 𝜏)

4
 

 

(3.8) 
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Where 𝑌1(𝜃) is the Debye’s model that can be estimated using Equation 3.9 (Genest & Favre, 

2007). 

 𝑌𝑘(𝜃) =
1

𝜃
∫

𝑡

𝑒𝑡 −1
𝑑𝑡 

𝜃

0

 (3.9) 

 

 

Figure 3.3: Example of D-vine copula trees for three flitches blast movements. 

 

For modeling Archimedean-type copulas (e.g., Clayton, Gumbel, and Frank), Nelsen (2007) 

provided the models as given in Equations 3.10, 3.11, and 3.12, respectively. 

 𝐶 = [𝑚𝑎𝑥(𝑢−𝜃 + 𝑣−𝜃 − 1, 0)]
−
1
𝜃 (3.10) 

   

 
𝐶 = 𝑒

(−[(−𝑙𝑛𝑢)𝜃+(−𝑙𝑛𝑣)𝜃]
1
𝜃)

 

 

(3.11) 
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𝐶 = −

1

𝜃
ln (1 +

(𝑒(−𝜃𝑢) − 1) (𝑒(−𝜃𝑣)  − 1)

𝑒(−𝜃) − 1
) 

 

(3.12) 

where C is the bivariate copula function. In order to estimate copula, the original values of the two 

one-dimensional distributions are converted to u and v. Then, u and v follow a uniform distribution 

with [0,1]. Examples of Gaussian and Archimedean copulas are presented in Figure 3.4. 

Most phenomena in nature exhibit non-linear or heteroscedastic behavior. The linearity assumption 

is typically considered to simplify most real-life problems. Therefore, the Clayton model is highly 

recommended for modeling blast movements data across flitches where blast movement 

correlations between these flitches are stronger near blast holes. They get weaker and weaker when 

the distance becomes larger from the nearby blast holes. 

The proposed methodology can deal with blast movements in any direction. First, the azimuth 

angle of the overall blast movement direction is initiated as an input parameter. Then, all pre-blast 

blocks will be moved to the direction specified. Blast movement simulations generated by D-vine 

copula multivariate distribution are reflected on the block monetary values, including the 

geological properties of the deposit, grade, metal quantity, and block profits. Later, the SMUs 

within the block model are further divided into smaller sizes. Thus, small SMU movements can be 

captured, and the accuracy of dig-limit optimization is increased. In the end, a post-blast block 

model is yielded to submit to dig-limit optimization module.  
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Figure 3.4: Examples of widely used bivariate copulas distributions. 

Before running dig-limits optimization, the 3D post-blast economic block models are transformed 

into 2D economic block models.  In doing so, the x and y coordinates of their centroids are kept 

the same, and the contained metal values of all SMUs are added such that a 2D model is obtained. 

This step reduces the size of the dig-limits optimization problem significantly. This step will not 

have an impact on the final dig-limits because dig-limits are drawn on 2D maps, and they are not 

determined on a flitch-by-flitch basis. Another important step to further reduce the size of dig-

limits optimization processing time is that of re-gridding the small SMUs.  In this step, SMUs are 

re-grided back to their original SMU size, and the total amount of contained metal and profit are 

calculated for these re-gridded SMUs. This re-gridding step may slightly increase ore loss and 

dilution applied to the SMU model. As a result of this step, 2D post-blast economic block models 

are generated that contain the amount of contained metal at original SMU support. Finally, those 

re-gridded 2D economic block models are used as an input to the dig-limits optimization model to 
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generate a number of dig-limits realizations corresponding to the number of post-blast 2D 

economic block models. 

The formulation of dig-limit optimization used in this research is based on the MIP model 

developed by Sari and Kumral (2018). This model was re-coded using Python 3.8 and run on the 

CPLEX solver (IBM, 2021). The objective function is to maximize the profit of the blasted section 

of the bench while satisfying equipment selectivity constraints. To describe this approach in simple 

words, equipment dimensions are defined as an n x n frame where n represents the number of 

SMUs in x and y directions. Every SMU should be assigned to a frame in which all SMUs in it are 

either ore SMUs or waste SMUs. A frame is called a valid frame if all SMUs inside it are either 

ore or waste. If an SMU belongs to more than one frame, it should be assigned at least one valid 

frame. The dig-limits optimization model is formulated as: 

   Maximize  ∑∑[𝑥𝑖,𝑗 𝑃𝑖,𝑗  + (1 − 𝑥𝑖 ,𝑗 ) 𝑊𝑖,𝑗 
]

𝐷𝑦

𝑗=1

𝐷𝑥

𝑖=1

 (3.13) 

Where 𝑥𝑖 ,𝑗 is a binary decision variable at i,j SMU, and 𝑃𝑖,𝑗 is the economic value of SMU i,j when 

mined as ore, 𝑊𝑖,𝑗 is the economic value of SMU i,j when mined as waste. The i and j are SMU 

indices in x and y directions, respectively. 

Subject to 

 

𝑏𝑖,𝑗,𝑓𝑎,𝑓𝑏 = ∑∑𝑥𝑖−𝑓𝑎+𝛾,𝑗−𝑓𝑏+𝛿

𝑛−1

𝛿=0

𝑛−1

𝛾=0

   

  𝑓𝑎 = 0,… , 𝑛 − 1; 𝑖 = 1, … , 𝐷𝑥;  𝑓𝑏 = 0,…𝑛 − 1;  𝑗 = 1,… , 𝐷𝑦  

(3.14) 

Where 𝛾 and 𝛿 are the frame index in x and y directions, respectively, 𝑏𝑖,𝑗,𝑓𝑎,𝑓𝑏 is a decision variable 

that represents the total number of SMUs (xij) at (i, j) locations that belong to a frame where 
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𝑖 − 𝑓𝑎 + 𝑛 ≤ 𝐷𝑋 ,  

 𝑗 − 𝑓𝑏 + 𝑛 ≤ 𝐷𝑦, 

  𝑖 − 𝑓𝑎 ≥ 0, 

  𝑗 − 𝑓𝑗 ≥ 0 

(3.15) 

Dx and Dy are the number of SMUs in the x-direction and y-direction, respectively, n is the 

minimum mining width in SMU terms, fa and fb are frame indices in x and y directions, respectively. 

The decision variable 𝑏𝑖 ,𝑗 ,𝑓𝑥 ,𝑓𝑦 is transformed a new binary decision variable, 𝑣𝑖 ,𝑗 ,𝑓𝑎 ,𝑓𝑏 , 

controlling if a frame is valid: 

 𝑣𝑖 ,𝑗 ,𝑓𝑎 ,𝑓𝑏= {
1, if 𝑏𝑖,𝑗 ,𝑓𝑎 ,𝑓𝑏 = 0 or 𝑏𝑖 ,𝑗 ,𝑓𝑎 ,𝑓𝑏= 𝑛2 

0,                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.16) 

 

Where 𝑣𝑖 ,𝑗 ,𝑓𝑎 ,𝑓𝑏  is a valid frame.  This constraint ensures that an SMU is assigned at least to one 

valid frame 

 ∑ ∑ 𝑣𝑖 ,𝑗 ,𝑓𝑎 ,𝑓𝑏

𝑛−1

𝑓𝑏=0

𝑛−1

𝑓𝑎=0

≥ 1      𝑖 = 1,… , 𝐷𝑥;   𝑗 = 1, … , 𝐷𝑦   (3.17) 

 

To remove incomplete frames at the corners, the following constraints are added. 

 𝑏𝑖 ,𝑗 ,𝑓𝑎 ,𝑓𝑏 = −1     𝑖 = 1,… , 𝐷𝑥;  𝑗 = 1,… , 𝐷𝑦;  𝑓𝑏 = 0,…𝑛 − 1   (3.18) 

Where 

 𝑖 − 𝑓𝑎 + 𝑛 > 𝐷𝑥   𝑜𝑟  𝑖 − 𝑓𝑎 < 0 (3.19) 
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 𝑏𝑖,𝑗 ,𝑓𝑎 ,𝑓𝑏 = −1         𝑖 = 1,… , 𝐷𝑥;  𝑗 = 1,… , 𝐷𝑦;  𝑓𝑎 = 0,…𝑛 − 1  (3.20) 

Where 

 𝑗 − 𝑓𝑏 + 𝑛 > 𝐷𝑦  𝑜𝑟  𝑗 − 𝑓𝑏 < 0 (3.21) 

   

After running dig-limits optimization using all 2D economic block models generated from the N 

blast movement realizations, N number of dig-limits realizations are generated. Those N 

realizations of dig-limits are used to calculate the probability of having ore and waste for all SMUs. 

Furthermore, uncertainty in ore loss and dilution amounts can be quantified, and profit distribution 

can be generated for the blasted section of the bench. 

3.4 CASE STUDY 

In this section, a case study demonstrates the impact of the blast movement uncertainty on dig-

limits optimization. First, a 3D grade control block model is generated from blasting hole data at 

a porphyry gold mine. The block model definition is summarized in Table 3.1. Next, this block 

model is used to generate an economic block model applying a cut-off grade based on economic 

and metallurgical input parameters listed in Table 3.2. 
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Table 3.1: Block model properties. 

Item Unit X Y Z 

Block size  (m) 5 5 5 

Number of blocks in a 

direction 

 40 40 3 

Minimum centroids  (m) 2.5 2.5 2.5 

Maximum centroids  (m) 197.5 197.5 12.5 

Azimuth  (degree) 0 

Dip  (degree) 0 

 

Table 3.2: Parameter values used for cut-off grade and block economics values. 

Item Unit Value 

Gold price  ($/gram) 60 

Mining cost  ($/tonne) 5 

Processing cost  ($/tonne) 20 

Ore recovery  (%) 70 

Rock bulk density  (tonne/m3) 2.65 

 

The section of the bench under consideration is partitioned into three flitches.  Each flitch has a 

thickness of 5 m. Blast movement data are simulated from 51 BMM ball field measurements, 

including the three flitches at 17 locations. In other words, each blast hole has three BMM balls.  

The movement direction is North-East (45° azimuth) toward the two free faces of the bench on the 
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north and east sides. The direction of movement is ascertained by comparing the pre-blast locations 

of BMM balls against their post-blast locations. The blast movements data were best fitted to 

triangular distributions, which are widely used in engineering simulations. It is a helpful 

distribution because it has the fixed minimum and maximum values, unlike the normal distribution 

and other distributions where their minimum and maximum values go to positive and negative 

infinity. The selection of a distribution extending to both infinities (e.g., normal distribution) might 

generate unrepresentative results. In this case, a truncated normal distribution could have been 

used. These distributions are used to fit Clayton bivariate copulas and D-vine multivariate copulas 

between flitches blast movements. MCS is then used to generate 1,000 realizations of blast 

movements from the fitted D-vine copula distribution to check the reproduction of multivariate 

relationships between flitch movements.  

Figure 3.5 shows the results of simulating blast movement realizations through MCS using a D-

vine copula where the lines represent the fitted triangular distributions for the three flitches. In 

Figure 3.5,  𝑛 is the number of realizations, 𝜇𝑥 is the mean of the simulated realizations, 𝑋50  is 

the median of the simulated realizations, 𝜎 is the standard deviation, 𝐶𝑉 is the coefficient of 

variation, 𝑋𝑚𝑖𝑛 is the minimum value, and 𝑋𝑚𝑎𝑥 is the maximum value. Figure 3.6 shows if the 

multivariate relationships between blast movements are agreed upon after simulating blast 

movement realizations from the D-vine copula. Comparing the observed movements from BMM 

balls and the simulated blast movements realizations using MCS is presented in Figure 3.7. These 

movements were applied to the centroids of the blocks in flitches at depths of 2.5 m, 7.5 m, and 

12.5 m. The sound reproduction of the multivariate input relationships between BMM 

measurements and simulated realizations is observed in Figure 3.6 and Figure 3.7. 



Chapter 3 

 
 

70 

 

Figure 3.5: Checking the reproduction of univariate blast movement distributions after 

simulation. 

 

Figure 3.6: Checking the reproduction of multivariate relationships between blast movement 

data. 
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Figure 3.7: Checking the reproduction of input blast movement measurements with simulated 

realizations. 

One hundred blast movement realizations are submitted to the dig-limits optimization model to 

determine the optimal destinations for the SMUs while honoring equipment selectivity. A 

minimum mining width of 10 m by 10 m is selected to represent the selectivity of the shovel's 

bucket used to mine the section of the bench. The optimal dig-limits for the 100 blast movement 

realizations are produced and then used to generate the ore probability map. Figure 3.8 summarizes 

the results of the proposed methodology, starting from identifying pre-blast destinations, 

simulating blast movement realizations, identifying post-blast destinations, applying dig-limits 

optimization of post-blast 2D economic block models and generating post-blast dig-limits 

realizations, and finally producing the ore probability map. 
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Figure 3.8: Summary of the proposed methodology. 

 

As seen in Figure 3.8, the ore probability map was generated. In the map, the areas shown in yellow 

and navy blues are certain ore and waste areas, respectively. The greenish areas might be either 

ore or waste, and they will be referred to as risk areas in this paper. These risk areas need special 

attention when determining the best destination for their materials. This ore probability map can 

be used to determine areas in which a careful grade control sampling program should be 

implemented. This map helps optimize the number of grade control samples so that grade control 

geologists can design a sampling program that focuses on a more detailed sampling of high-risk 

areas. As a result of producing an ore probability map, risk areas are identified (Figure 3.9). This 

ore risk map can be used to reduce the number of check samples taken during grade control, and 

this will result in reducing the cost and the time needed in assaying certain ore and waste areas; 

thus, increasing the profit from mining this section of the bench. It is apparent that the spatial 

distribution of risky areas relies on three factors: (1) the degree of heterogeneity of the 

mineralization, (2) the difference in the magnitude of blast movement across flitches, and (3) the 

cut-off grade. A low degree of heterogeneity will reduce the number of risky areas in the blasted 

section of the bench. A high cut-off grade generates more isolated ore areas than a low cut-off 
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grade, increasing the risk areas. Having a significant difference in blast movement magnitude 

across flitches increases the dilution and ore losses, which also increases the risk areas. 

Additionally, the best locations for installing BMM balls can be determined using ore risk maps. 

In fact, BMM balls are known for their high costs and their intermediate recovery rate after 

blasting. Therefore, identifying high-risk areas before blasting brings more valuable information 

on the magnitude and direction of blast movement at those uncertain locations and can reduce the 

extra cost attributed to installing BMM balls at low-risk areas. To generate blast movements 

realizations and produce ore risk maps, grade control geologists can utilize their knowledge and 

experience from previous blasting operations conducted on benches with similar geological 

features and blast designs. This pre-blast study will enable grade control geologists to generate ore 

risk maps and determine high-risk areas within the bench that are considered ideal locations for 

installing BMM balls.  
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Figure 3.9: The areas with high-risk probability in determining ore-waste selective mining units 

(shown in brown). 

To show the effect of ignoring blast movement impact on dig-limits optimization, another scenario 

is investigated where the same proposed dig-limits optimization model is applied on the same 

grade control block model using the same input parameters but without considering blast 

movement. Figure 3.10 shows the results of this scenario where original ore and waste SMUs are 

compared to their optimal pre-blast destinations after applying dig-limits optimization. 
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Figure 3.10: Map of the original selective mining units’ destinations on the left and the optimized 

pre-blast units’ destinations on the right. 

The results of running dig-limit optimization on a pre-blast economic block model show that 

equipment selectivity increases the amount of ore loss by 3.2% and dilution by 35.4%. Neglecting 

this amount of ore loss and dilution will lead to an over-estimate of the profit from approximately 

$2.36 Million to $2.80 Million (15.7% profit over-estimation). 

In this case study, the equipment selectivity is considered relatively low when it is compared to the 

size of SMUs.  The low equipment selectivity (1) increases dilution by adding extra waste to the 

mined ore, and (2) increases ore losses by mining small portions of the ore as waste while mining 

the surrounding waste and then sending it to the waste dump. Consequently, the low equipment 

selectivity decreases the profit obtained from mining. The problem of profit decrease is further 

accelerated when the effect of blast movements is ignored in the dig-limit optimization. To 

understand the effect of neglecting blast movements when determining optimum dig-limits, the 

profit values calculated for each optimized dig-limits realization are compared with the single 
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profit value obtained when no blast movements are considered. The comparison result shows that 

the profit obtained from single optimum dig-limits that ignored blast movements is over-estimated 

by 65.3% when compared to the expected profit value where blast movements are incorporated 

into the process. Figure 3.11-a denotes the distribution of profit realizations when blast movements 

are considered in determining dig-limits. Figure 3.11-b presents the distribution of profit over-

estimation caused by neglecting the effect of blast movements. 

 

Figure 3.11: (a) Histogram of profit distribution; (b) Histogram of profit over-estimation. 

Modeling blast movement prior to running dig-limits optimization has a significant impact on 

resulting dig-limits. The results obtained from this study should not be generalized for all mineral 

deposits because mineral deposits vary in the spatial distribution of their mineralization, cut-off 

grade, and blast designs. However, this study shows the importance of incorporating blast 

movement when determining optimal dig-limits to generate a more realistic assessment of the 
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expected profit. In addition, the reconciliation programs at the mine should include blast 

movements when tracking ore and waste at stockpiles and the process plant. 

3.5 CONCLUSION AND FUTURE WORK 

Quantifying risk in the dig-limits optimization to account for the unavoidable uncertainty in blast 

movement prediction is important for grade control and short-term mine planning. The paper's 

contribution lies on quantifying the uncertainty attributed to blast movements on the optimal dig-

limits through a copula-based simulation approach. Physical field measurements for blast 

movement obtained from BMM balls are used to furnish the multivariate blast movement 

distributions for a number of flitches within benches using a D-vine copula. The realizations of 

blast movements are generated through MCS after fitting a D-vine copula distribution to the blast 

movements of flitches. The MIP algorithm has been utilized to find the optimal dig-limits for all 

blast movements realizations. The ore probability map is generated showing locations of ore and 

waste in a probabilistic fashion. The expected profit from a modeled bench was over-estimated by 

65.3% on average when blast movement was disregarded in comparison to the expected profit 

modeled from the same bench when the blast movement realizations are incorporated in the 

proposed workflow. High-risk ore and waste areas post-blasting are identified from the ore 

probability map. Due care should be taken when mining these uncertain (high-risk) areas.  

Future work will focus on adding geological uncertainty in conjunction with the blast movement 

uncertainty to produce optimal dig-limits. Further, the proposed methodology will be extended to 

cover more than two destinations. At the same time, local variations in the direction of blast 

movement will be modeled and added to the proposed workflow. With the advanced development 

in parallel computing, aggregation/disaggregation, and decomposition methods such as nested 

Bender decompositions, the solutions that can be generated in an acceptable time will be explored. 
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3.7 NEXT STEPS 

After examining the impact of blast movement uncertainty on dig-limits optimization outcomes, 

this research will now focus on understanding how blast movement affects ore heterogeneity post-

blasting. To achieve this, both global and local spatial entropy indices, calculated at a scale 

equivalent to the selective mining unit, are proposed. These indices will be used to investigate the 

relationship between blast movement horizontal distance, ore heterogeneity, ore loss, dilution, and 

the resulting profit reduction through a series of case studies. The outcomes of this study will 

provide insights into how controlled blasting can mitigate the increase in post-blast spatial entropy, 

thereby reducing ore loss and dilution in specific bench sections and increase mining operations 

profitability.
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Chapter 4: Spatial Entropy for Quantifying Ore Loss and Dilution 

in Open Pit Mines 

 

4.1 ABSTRACT 

Effective management of ore loss and dilution is essential for successful grade control and short-

term mine planning due to their significant impact on the economic, environmental, and technical 

aspects of open-pit mining operations. Factors influencing ore loss and dilution fall into two 

categories: (i) controllable factors like mine equipment selectivity and blast design and (ii) 

uncontrollable factors such as spatial heterogeneity of ore and waste blocks on a bench. This paper 

focuses on the second category by applying spatial entropy concept to capture heterogeneity at the 

scale of selective mining units. In this paper, global spatial entropy is used to assess the impact of 

spatial heterogeneity between ore and waste blocks on the magnitude of ore loss and dilution, 

while the local spatial entropy can guide the allocation of blast movement monitoring balls pre-

blast. High values of the global spatial entropy indicate increasing potential of ore loss and dilution, 

which reduce profit. Furthermore, the study investigates the relationship between spatial entropy, 

cut-off grades, blast movement, dig-limits optimization model running time, and profit through a 

number of case studies. The results show that changes in cut-off grade and blast movement can 

significantly affect spatial entropy post-blasting and increase ore loss, dilution, and profit 

reduction, revealing the need for controlled blasting at specific bench sections. Additionally, the 

results demonstrate an exponential increase in profit reduction due to ore loss and dilution with a 

rising global spatial entropy. 
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4.2 INTRODUCTION 

Controlling ore loss and dilution is a vital issue in grade control and short-term mine planning due 

to its significant impact on the profitability of mining projects. Dilution refers to mixing waste 

material with the ore that will be sent to the processing plant. Ore loss is defined as ore material 

not separated from the waste and sent to the waste dump. Ore loss and dilution are classified as 

planned and unplanned. Shovel size and capability, to a certain degree, govern planned ore loss 

and dilution. On the other hand, uncertainty in blast movement also causes unplanned ore loss and 

dilution, which are rather difficult to control by grade control geologists and short-term mine 

planning engineers. In addition to shovel size and blast movement, the misclassification of ore and 

waste significantly contributes to ore loss and dilution. This misclassification occurs due to the 

limitations of estimation and simulation methods, data scarcity, assaying errors, and grade control 

methods. Consequently, the mined material is sent to the wrong destination.  

The consequences of ore loss and dilution are quite distinct. Ore loss is an opportunity cost, where 

the potential profit that could be gained from processing a block is missed. Dilution represents a 

cash cost where a block that does not contain sufficient metal to generate a profit is still processed. 

Dilution has economic, environmental, and technical impacts. It increases operational costs, 

energy consumption, and tailing quantities (Zarshenas & Saeedi, 2016). 

Reducing dilution in mining operations can reduce the project's carbon footprint, material handling 

costs, and the unnecessary processing of waste materials. This can be achieved through improved 

blasting designs, equipment sizing, more accurate orebody characterization, and improved grade 

control procedures (Zarshenas & Saeedi, 2016; Dowd & Dare-Bryan, 2018) 
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Several factors determine the level of ore loss and dilution in any mining operation, including the 

shape of the orebody, the spatial distribution of ore and waste zones within the orebody, equipment 

selectivity, blast movement, and the selected mining method (Marinin et al., 2021). Some of these 

factors, such as the shape of the orebody and the spatial distribution of ore and waste zones, may 

vary locally within the same deposit, leading to varying degrees of ore loss and dilution within the 

same mine. While these locally varying factors are typically considered uncontrollable, equipment 

selectivity, blast design, and the selected mining method are regarded as controllable factors that 

can be controlled to minimize ore loss and dilution; thus, reducing material misclassification. 

It is impossible to eliminate ore loss and dilution entirely. Therefore, this paper employs the 

concept of spatial entropy to help assess the magnitude of potential ore loss and dilution pre-

blasting. Local analysis of spatial entropy can also guide the selection of areas within the bench 

section that require careful blast movement monitoring to reduce ore-waste misclassification. This 

research uses a cut-off grade to discriminate blocks into ore and waste and calculate global and 

local spatial entropy indices at specific bench sections. These indices can be used as an early 

warning system alerting grade control geologists, short-term mine planning engineers, and blasting 

engineers to identify possible ore loss and dilution problems in a bench section. To reduce the 

negative impact of ore loss and dilution, the following processes can be optimized:    

(1) Dig-limits delineation: Implement a solution for dig-limits that effectively reduces ore loss 

and dilution that honors equipment selectivity. 

(2) Blast design: Develop a blasting design strategy that mitigates the increase in ore loss and 

dilution due to blast movement. 
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The degree of acceptable ore loss and dilution may vary from one mine site to another (Pakalnis 

et al., 1996). Therefore, it is crucial for mining operations to minimize ore loss and dilution to an 

acceptable degree, if possible, to enhance the profitability of the project. 

Dig-limits optimization aims to quantify, control, and reduce the amount of planned ore loss and 

dilution in open pit mines. These dig-limits establish boundaries that separate ore from waste, 

ensuring that the blasted materials are sent to their optimal destinations to maximize profits while 

honouring equipment selectivity and accounting for blast movement (Hmoud & Kumral, 2022). 

Numerous methods have been proposed in the literature to address the dig-limits problem. These 

methods can be classified into five groups: (1) exact methods (e.g., mixed-integer programming 

(MIP) (Hmoud & Kumral, 2022; Kumral, 2015; Nelis et al., 2022; Nelis & Morales, 2022; Sari & 

Kumral, 2017)); (2) heuristics (Richmond & Beasley, 2004;  Vasylchuk &  Deutsch, 2019a; Wilde 

& Deutsch, 2015); (3) metaheuristics (e.g., simulated annealing ( Isaaks et al., 2014a; Isaaks et al., 

2014b; Norrena & Deutsch, 2000; van Duijvenbode & Shishvan, 2022); genetic algorithms 

(Ruiseco, 2016; Ruiseco & Kumral, 2017; Ruiseco et al., 2016; Williams et al., 2021); (4) hybrid 

approach combining MIP and metaheuristics (Deutsch, 2017); and (5) spatial clustering (Salman 

et al., 2021; Tabesh & Askari-Nasab, 2011, 2013; Tabesh & Askari-Nasab, 2019). 

MIP guarantees optimal solutions. However, these solutions require high computational cost and 

long processing times to reach optimality. The required time to solve dig-limit problem is case-

specific and highly dependent on entropy. With the advancements in high-performance computing, 

using MIP to generate reasonably fast optimal results is achievable if entropy is low. Otherwise, 

near-optimal solutions for the dig-limits problem are obtained using heuristics and metaheuristics 

algorithms. These algorithms are relatively fast when compared to MIP. However, the results of 

these methods are highly sensitive to the selected input parameters. Therefore, hyperparameter 
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tuning is essential for achieving acceptable results with these algorithms. However, since the 

solution to this problem is unknown in advance, tuning the hyperparameters becomes a challenging 

task. 

Deutsch (2017) combined MIP and metaheuristics methods in a workflow. This hybrid approach 

ensures reasonable starting solutions for the MIP from the initial solutions of the non-optimal MIP 

to increase the chances of reaching an acceptable near-optimal solution for the dig-limits problem 

within a reasonable time. The MIP in this approach is forced to stop at a pre-specified gap value 

or after a certain time to generate non-optimal but acceptable solutions for the metaheuristics. Like 

heuristic and metaheuristic algorithms, this approach is also prone to non-optimal solutions and is 

sensitive to input parameters, limiting its ability to deliver guaranteed optimal results consistently. 

Nevertheless, near-optimality is guaranteed. 

Additionally, spatial clustering techniques are used to solve the dig-limits problem (Tabesh & 

Askari-Nasab, 2011, 2013; Tabesh & Askari-Nasab, 2019). These approaches rely on generating 

dig-limits based on hierarchical or k-means clustering, which is based on the distance between 

blocks, rock types, material destinations, metal grade and the shape of the mining cuts as input to 

generate spatial clusters that delineate dig-limits. However, a refinement stage may be needed to 

homogenize the spatial cluster to form coherent zones, and this step increases the ore loss and 

dilution. The advantage of these approaches is in their ability to generate dig-limits in a fast time, 

but they do not guarantee optimality. Additionally, selecting input clustering parameters, such as 

the desired number of clusters, requires careful consideration. This subjectivity introduces 

uncertainty that must be captured and managed to ensure the outcomes of the spatial clustering 

algorithms are meaningful and reliable. 
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Blast movement is another critical factor that affects ore loss and dilution. However, most dig-

limits optimization techniques and workflows do not account for blast movement when 

determining optimal dig-limits. Therefore, any mathematically optimized dig-limits that ignore 

blast movements are not operationally optimal (Engmann et al., 2013; Hmoud & Kumral, 2022; 

Thornton et al., 2005). Incorporating blast movement into dig-limit optimization process will also 

reduce misclassification (Zhang, 1994; Yennamani, 2010). Furthermore, monitoring blast 

movements can increase ore recoveries and controlling head grade in mineral processing (Gilbride, 

1995; Harris, 1997; Taylor & Firth, 2003). 

Modeling blast movements prior to running any dig-limits optimization algorithm is essential to 

capture ore and waste zones post-blasting. There are four main approaches for modeling blast 

movements in the literature: (1) the multi-physical simulation of blast movements that requires 

physical field measurements to validate the multi-physical model (Yu et al., 2022; Zou & Jun, 

2020); (2) modeling blast movements using heuristics and physical field measurements (Isaaks et 

al., 2014a; Isaaks et al., 2014b; Vasylchuk & Deutsch, 2019b); (3) training machine learning 

algorithms on blast movement information obtained from previously blasted benches (Yu et al., 

2020; Yu et al., 2019); and (4) stochastic modeling of blast movement using Monte Carlo 

simulation and physical field measurements obtained from blast movement monitoring (BMM) 

balls (Hmoud & Kumral, 2022).  

The main limitation of using a multi-physics simulation to model blast movement is the challenge 

of accurately collecting all necessary input parameters. Due to the complex nature of the 

simulation, it can be difficult to ensure that all relevant parameters are included and accounted for 

in order to generate acceptable blast movement models. Additionally, the current multi-physical 

simulators require significant computational time to generate a blast movement model. The 
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importance of generating a blast movement model in a short time is essential when considering 

the nature of the blast operation that is performed a few times a week in a mine. Blast movement 

modeling using heuristics and physical field measurements such as post-blast topography surfaces 

is a faster solution to model blast movement. However, heuristics do not guarantee optimality, and 

how much they deviate from optimality is unknown. Moreover, not all mining operations perform 

post-blast topography surveys of their blasted bench sections before delineating dig-limits. 

Applying machine learning predictive modeling to predict future blast movement from historical 

blast information is also another potential solution for modeling blast movement. It may generate 

an acceptable prediction of blast movement when the geology and the blast design of the bench to 

be blasted are similar to some of the historical blast information that was used to train the blast 

movement predictive models. However, every deposit has unique geological characteristics and a 

degree of heterogeneity that vary within the same deposit at different zones. Therefore, training a 

machine learning algorithm to predict blast movement based on historical blast data for deposits 

with different geology and blast designs may not be accurate enough, especially when uncertainty 

in the predicted movement is not captured and managed. 

Uncertainty in the blast movement can be attributed to the inconsistencies in blast design, the 

heterogeneity of blasted rock mass, the incomplete knowledge of geology, and human factors. It 

is highly unlikely to get accurate models of blast movements using only theoretical modeling 

approaches without obtaining physical field measurements before blasting any bench section (La 

Rosa & Thornton, 2011). As a result, using stochastic modeling techniques that use blast movement 

data obtained from physical field measurements coming from the same blasted bench is considered 

a reasonable solution for this problem (Hmoud & Kumral, 2022). However, achieving adequate 

coverage of these physical field measurements in bench sections, including all flitches, is 
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necessary. This helps construct representative multivariate statistical distributions encompassing 

blast movement uncertainty, particularly around ore zones. It also aids in identifying high-risk 

areas of material misclassification, demanding meticulous grade control sampling protocols. 

As emphasized before, the magnitude of ore loss and dilution depends on the degree of spatial 

heterogeneity within the orebody at the selective mining unit (SMU) scale. The degree of spatial 

heterogeneity of ore and waste is influenced by the spatial distribution of grade and the cut-off 

grade that separates ore from waste. As an attempt to measure the degree of spatial heterogeneity 

between ore and waste, the concept of entropy is used. Entropy is a concept that originated first in 

thermodynamics to describe the state of gases or fluids within a system and the distribution 

probability of molecules. The special use of entropy was adapted from information theory by 

Claude E. Shannon as a measure of information contained in a given signal (Shannon, 1948). When 

computing the disorder of a system, also known as heterogeneity in more geological terminology, 

for a set of units (e.g., locations) with a finite number of categories (e.g., mined material 

destinations), a standard way to assess this heterogeneity is to compute entropy. Over the years, 

the Shannon entropy has been widely used in many applied sciences, such as ecology and 

geography (Hoeting et al., 2000; Patil & Taillie, 1982), hydrology and hydrogeology 

(Aghakouchak, 2014; Butera et al., 2018; Manchuk et al., 2021; Singh, 1997) and geology (Feizi 

et al., 2017; Liu et al., 2021; Zhang et al., 2021).  

All previously mentioned applications of entropy do not consider the spatial location of data. 

Therefore, datasets with the same probability mass functions, but different spatial configurations 

will have the same entropy values. However, the need to have a measure of entropy that accounts 

for the spatial location of data emerged over the years. These spatial entropy indices are calculated 

only on categorical variables, which make them suitable for measuring the heterogeneity of ore 
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and waste zones within the orebody. Theil (1972) introduced the concept of spatial entropy to 

measure the level of inequality or diversity in the distribution of variables across space. Batty 

(1974, 1976, 2010) extended Theil (1972) and developed a spatial entropy measure that is 

restricted only to one category at a time by applying partitioning for the spatial system to define a 

representative number of subareas to conduct further spatial analysis and measure spatial entropy 

for these unequal space partitions of these subareas. Karlström and Ceccato (2000) modified Batty 

(1974, 1976) to satisfy the property of additivity to ensure that all local spatial entropy measures 

sum to the exact global spatial entropy measure following the idea of Local Indices of Spatial 

Association (LISA) proposed by Anselin (1995). O'Neill et al. (1988) developed spatial entropy 

indices that quantify landscape heterogeneity to discriminate among major landscape types. They 

also proposed the contagion index that measures the extent to which locations with the same 

categorical variable are spatially clustered. Claramunt (2005) and Li and Claramunt (2006) 

proposed a measure of spatial diversity that accounts for the spatial configuration as a weight factor 

in the Shannon entropy. This weight factor is the ratio of the average distance between pairs of a 

particular category (intra-distance) to the average distance of those pairs with different categories 

(extra-distance). Leibovici (2009) and Leibovici et al. (2014) extended the work of O'Neill et al. 

(1988) and Claramunt (2005) to account for the multivariate distribution of co-occurrences at 

various distances. A number of contagion indices are proposed in literature based on the spatial 

entropy concept (Li & Reynolds, 1993; Parresol & Edwards, 2014; Riitters et al., 1996; Zhang et 

al., 2020).  

Altieri et al. (2017, 2018, 2019, 2021) proposed a spatial entropy measure extending beyond two 

categories and simultaneously considering multiple distance ranges. In their approach, the total 

entropy measure (akin to Shannon's entropy) is broken down into spatial mutual information, 
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revealing how categorical data cluster in space, and spatial global residual entropy, summarizing 

the variability in the variable's spatial distribution. However, mutual information can be 

compromised by weak spatial correlation between distant categories, potentially yielding 

misleading low values. This means that spatial mutual information might seem insignificant even 

if certain categories cluster strongly in close proximity. Mutual information and spatial global 

residual entropy can be further divided into distinct components describing specific distance 

intervals. Despite these enhancements, the partial spatial residual entropy, capturing spatial 

heterogeneity at short distances, cannot quantify entropy at precise locations. Nonetheless, it can 

provide a summary of heterogeneity between pairs within short distance intervals across the area 

of interest.  

In geostatistics, Journel and Deutsch (1993) explored the relationship between the maximum prior 

entropy and the response distribution. They introduced a global spatial entropy measure that 

calculates entropy at various lag distances for a set of discrete variables. Their spatial entropy 

measure provided a global measure of spatial entropy and it was not aimed to quantify entropy at 

a local level (i.e., SMUs). Additionally, their spatial entropy calculates entropy for all possible 

pairs separated by a certain number of lag distances within a certain area of interest. Their spatial 

entropy formulation needs to be modified to quantify local spatial entropy at certain locations with 

the surrounding SMUs and only account for relevant pairs when calculating spatial entropy both 

globally and locally.  

Our research customizes the spatial entropy formulation to account for the scale of equipment 

selectivity when measuring global and local spatial entropy. This adjustment aims to enhance the 

accuracy of assessing ore loss and dilution on both global and local scales. Furthermore, it 

calculates local spatial entropy measure by considering only the blocks surrounding every block 
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within the block model that are located inside all possible SMUs around that block. This approach 

provides a more refined assessment of entropy at each location within the block model by 

considering only relevant pairs and removing irrelevant pairs from the calculation. The number of 

blocks used are determined by the size of the SMU. 

It is also important to note that the optimization of blast design should consider the impact of 

orebody heterogeneity resulting from the spatial distribution of ore and waste blocks within the 

bench sections, because it may cause issues related to ore loss, dilution, and material 

misclassification resulting in significant profit reduction (Dowd & Dare-Bryan, 2018). 

Based on previous research on estimating ore loss and dilution, the relationships among orebody 

spatial heterogeneity, cut-off grade, blast movement, and dig-limits optimization running time 

remain unstudied. This paper builds upon Hmoud and Kumral’s (2022) study which investigated 

the incorporation of blast movement uncertainty into dig-limits optimization workflow. The 

originality of this paper is four-fold: (1) applying customized spatial entropy indices to describe 

the spatial heterogeneity of ore and waste at the SMU scale within bench sections; (2) quantifying 

the relationship among cut-off grade, spatial entropy, and dig-limits optimization running time and 

outcomes; (3) investigating the impact of blast movement on spatial entropy and profit reduction; 

and (4) showing how spatial entropy can be used to guide blast design to influence control on the 

magnitude of ore loss and dilution. 

The organization of this paper is as follows: The proposed methodology is elaborated upon in the 

next section. Next, case studies that demonstrate the application of spatial entropy to understand 

the impact of cut-off grade and blast movement on the level of ore loss and dilution are presented. 

These case studies also explore how spatial entropy can explain the variability in dig-limits 
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optimization running time. Finally, the results are discussed, conclusions are drawn, and avenues 

for future research are proposed. 

4.3 METHODOLOGY 

This section offers a comprehensive overview of the spatial entropy concept and demonstrates how 

it was adapted to quantify spatial heterogeneity both globally and locally at the SMU scale. To 

demonstrate the proposed methodology, a block model, which is a numerical representation of an 

orebody, is generated. The blocks constituting the block model are typically half the size of the 

SMU, aiming for a finer resolution of the block model that allows for a more accurate 

representation of the deposit's heterogeneity. Spatial heterogeneity between ore and waste within 

a bench section can be explored by applying a cut-off grade to the blocks that have grade estimates. 

This process reveals how the degree of heterogeneity can vary locally, contingent on factors like 

the type of mineralization, location within the mineral system, and the applied cut-off grade. Figure 

4.1 displays three distinct scenarios of spatial heterogeneity of ore and waste blocks within a bench 

section. 
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Figure 4.1: Three simulated benches showing different degrees of spatial heterogeneity between 

ore and waste blocks. a) low degree of spatial heterogeneity; b) medium degree of spatial 

heterogeneity; and c) high degree of spatial heterogeneity. 

To explain the concept of entropy, the following notation is adopted. Let 𝐼 = ⟦1, 𝑁𝑒𝑎𝑠𝑡⟧, 𝑁𝑒𝑎𝑠𝑡 ∈

ℕ, which represents the set of block indexes in the east direction. Similarly, 𝑙𝑒𝑡 𝐽 =

⟦1, 𝑁𝑛𝑜𝑟𝑡ℎ⟧,𝑁𝑛𝑜𝑟𝑡ℎ ∈ ℕ, denotes the set of block indexes in the north direction. The 2-dimensional 

grade control block model consists of the set of blocks 𝐵 = 𝐼 × 𝐽 = {𝑏𝑖,𝑗 = (𝑖, 𝑗), ∀ 𝑖 ∈ 𝐼, ∀ 𝑗 ∈ J}. 

Each block 𝑏𝑖,𝑗 ∈ 𝐵 is associated with the event of having a specific block category 𝑐𝑖,𝑗 ∈ 𝛺, where 

𝛺 = {𝜔0, 𝜔1} is the set of possible outcome categories for a given block representing waste and 

ore, respectively. A discrete random variable 𝑋: 𝛺 → {0,1} is defined to model block category such 

that 𝑋: 𝜔 ∈ 𝛺 ↦  𝑋(𝜔) ∈ {0,1} donates the occurrence of either waste or ore category, 

respectively. The probability of a block having the ore or waste category is calculated as 

ℙ(𝑋 = 𝑘) = ℙ𝑋(𝑘) =
𝑐𝑎𝑟𝑑(𝑓−1({𝜔𝑘}))

𝑐𝑎𝑟𝑑(𝐵)
, ∀𝑘 ∈ {0,1}, where 𝑓: 𝐵 → 𝛺 maps each block to its 
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associated category realization and 𝑐𝑎𝑟𝑑 refers to cardinality which describes the number of items 

in a given set. Given ℙ(𝑋 = 1), the probability of having a waste block  ℙ(𝑋 = 0) can be 

determined as ℙ(𝑋 = 0) = 1 − ℙ(𝑋 = 1). According to Cover and Thomas (2006), Shannon’s 

entropy for two categories can be defined as 

𝐻𝑋(𝑋) =  ℙ(𝑋 = 0) ∗ 𝑙𝑜𝑔2(ℙ(𝑋 = 0)
−1) + ℙ(𝑋 = 1) ∗ 𝑙𝑜𝑔2(ℙ(𝑋 = 1)

−1) ∈ [0,1] (4.1) 

To better explain how Shannon’s entropy concept is tailored to capture the spatial heterogeneity of 

ore and waste blocks within a bench section at the SMU scale, the following steps are taken. First, 

a frame 𝑊𝑖,𝑗 = {𝑏𝑖+𝑘,𝑗+𝑘, ∀𝑘 ∈ ⟦−1,1⟧, ∀ 𝑖 ∈ 𝐼, ∀ 𝑗 ∈ J } is defined. This frame surrounds 𝑏𝑖,𝑗 and 

includes all blocks that might be combined with 𝑏𝑖,𝑗 to form an SMU. For example, when the SMU 

size is 2-block by 2-block, the blocks that might be considered part of the SMU surrounding 𝑏𝑖,𝑗 

will form a 3-block by 3-block frame in which 𝑏𝑖,𝑗 is at the centroid of this frame. P𝑖,𝑗, ∀ 𝑖 ∈ 𝐼, ∀ 𝑗 ∈

J represents the set of admissible pairs inside the frame 𝑊𝑖,𝑗 and is donated by  P𝑖,𝑗 =

{(𝑏𝑖,𝑗, 𝑏𝑖+𝑘,𝑗+𝑙), ∀(𝑘, 𝑙) ∈ ⟦−1,1⟧
2\(0,0)}. The set of possible pairs of block category outcomes is 

denoted by 𝛺′ = {𝜔′0, 𝜔
′
1}, where 𝜔′0 and 𝜔′1 correspond to the events of having pairs of blocks 

with different and same categories, respectively. To obtain the associated category realization for 

each pair, the application 𝑔𝑖,𝑗 is used and defined as 𝑔𝑖,𝑗: P𝑖,𝑗 → 𝛺′ and 

 𝑔𝑖,𝑗: (𝑏, 𝑏′) ↦  {
𝜔′0,        𝑖𝑓 𝑓(𝑏) ≠ 𝑓(𝑏

′)

𝜔′1,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. This application defines pairs of blocks with both 

different and identical categories and utilizes this information to calculate their probabilities in 

order to derive the local spatial entropy index.  

A discrete random variable 𝑍𝑖,𝑗, ∀ 𝑖 ∈ 𝐼, ∀ 𝑗 ∈ J, 𝑍𝑖,𝑗: 𝛺′ → {0,1}, 𝑍𝑖,𝑗: 𝜔 ∈ 𝛺′ ↦  𝑍𝑖,𝑗(𝜔) ∈ {0,1} 

is represented to correspond to the pairs of block categories within the frame 𝑊𝑖,𝑗. This discrete 
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random variable is used to measure local spatial entropy at 𝑏𝑖,𝑗 inside the frame 𝑊𝑖,𝑗. The 

probability of having pairs of the same or different categories is calculated using ℙ(𝑍𝑖,𝑗 = 𝑘′) =

ℙ𝑍𝑖,𝑗(𝑘
′) =

𝑐𝑎𝑟𝑑(𝑔𝑖,𝑗
−1({𝜔

𝑘′
}))

𝑐𝑎𝑟𝑑(𝑃𝑖,𝑗)
, ∀𝑘′ ∈ {0,1}. The probability of pairs with different categories can 

be calculated by subtracting the probability of pairs with the same categories from 1, and it equals 

ℙ(𝑍𝑖,𝑗 = 0) = 1 − ℙ(𝑍𝑖,𝑗 = 1). Figure 4.2 depicts a schematic describing how ℙ𝑍𝑖,𝑗 is calculated 

around 𝑏𝑖,𝑗 that is surrounded by a frame 𝑊𝑖,𝑗. 

 

Figure 4.2: Schematic describing the calculation of local spatial entropy probabilities within 

known SMU size. 

To define the Local Spatial Entropy Index (LSEI) as a measure of local entropy for each block, the 

following equation is proposed: 

ℎ𝑖,𝑗(𝑍𝑖,𝑗) = ℙ(𝑍𝑖,𝑗 = 0) ∗ 𝑙𝑜𝑔2 (ℙ(𝑍𝑖,𝑗 = 0)
−1
) + ℙ(𝑍𝑖,𝑗 = 1) ∗ 𝑙𝑜𝑔2 (ℙ(𝑍𝑖,𝑗 = 1)

−1
)

∈ [0,1], ∀ 𝑖 ∈ 𝐼, ∀ 𝑗 ∈ J 

(4.2) 

Where ℎ𝑖,𝑗(𝑍𝑖,𝑗) represents LSEI at 𝑏𝑖,𝑗. The following equation is proposed to measure Local 

Spatial Information Index (LSII) at each block: 



Chapter 4 

 
 

97 

𝑖𝑖,𝑗(𝑍𝑖,𝑗) = 1 − ℎ𝑖,𝑗 ∈ [0,1] (4.3) 

Where 𝑖𝑖,𝑗(𝑍𝑖,𝑗) represents LSII at 𝑏𝑖,𝑗. To calculate the Global Spatial Entropy Index (GSEI) for 

the entire bench section, the expected value of all Local Spatial Entropy Index (LSEI) values is 

computed. The GSEI is defined as: 

𝐻 = ∑ ∑
ℎ𝑍𝑖,𝑗(𝑍𝑖,𝑗)

𝑁𝑒𝑎𝑠𝑡 ∗ 𝑁𝑛𝑜𝑟𝑡ℎ

𝑁𝑛𝑜𝑟𝑡ℎ

𝑗=1

𝑁𝑒𝑎𝑠𝑡

𝑖=1

∈ [0,1] (4.4) 

Where 𝐻  represents GSEI. Moreover, the Global Spatial Information Index (GSII) is calculated 

by computing the expected value of LSII, and it is defined as: 

𝐼 = ∑ ∑
𝑖𝑍𝑖,𝑗(𝑍𝑖,𝑗)

𝑁𝑒𝑎𝑠𝑡 ∗ 𝑁𝑛𝑜𝑟𝑡ℎ

𝑁𝑛𝑜𝑟𝑡ℎ

𝑗=1

𝑁𝑒𝑎𝑠𝑡

𝑖=1

=  1 − 𝐻 ∈ [0,1] (4.5) 

 

Where 𝐼 represents GSII. The GSII index reflects the degree of spatial continuity or clustering 

between ore and waste blocks. The impact of spatial entropy on ore loss, dilution, dig-limits 

running time, and profit is investigated using the derived spatial entropy indices that take into 

consideration equipment selectivity, cut-off grade, and blast movement. This study provides a 

comprehensive evaluation of the potential ore loss and dilution related to specific bench sections 

and identifies opportunities to control ore loss and dilution using the concept of spatial entropy. 

This paper adopts dig-limits optimization incorporating blast movement methodology from 

Hmoud and Kumral (2022). Additionally, it uses the concept of spatial entropy to quantify ore and 

waste spatial heterogeneity within selective mining units. Spatial entropy has a significant impact 

on ore loss, dilution, and ultimately, mining profitability. The dig-limits optimization model itself 

was developed by Sari and Kumral (2017) and re-coded using Python 3.8, running on the CPLEX 
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solver (IBM, 2021). The dig-limits optimization problem is modeled as a MIP model, aiming to 

maximize the profit from the blasted section of the bench while adhering to equipment selectivity 

constraints. Equipment selectivity is represented in a 2-block by 2-block configuration in both the 

east and north directions within a grade control block model. Blast movement scenarios are applied 

to the grade control block model, and spatial entropy is calculated before and after blasting to 

understand the impact of spatial entropy, cut-off grade, and blast movement on ore loss, dilution, 

dig-limits optimization running time, and profit. The following section presents several case 

studies and discusses the applied workflow. 

4.4 CASE STUDIES 

This section presents a series of case studies that evaluate the effectiveness of global and local 

spatial entropy indices in assessing the extent of profit reduction resulting from dilution and ore 

loss across various levels of spatial heterogeneity, cut-off grades, and blast movement scenarios. 

These indices were applied to a simulated gold mine bench section. The conditional simulation 

model utilized gold grade values obtained from an actual mine operation in North America, with 

the mine name withheld due to data confidentiality. The simulated block model mimics the grade 

control block model at that bench section. 

Using simulated benches in this study is essential because real-world data may not capture the 

required range of spatial heterogeneity levels required for the study. The study encompasses a 

spectrum from low to high levels of spatial heterogeneity, and using simulated benches ensures 

that each of these simulated benches contains the same amount of contained metals for accurate 

comparison purposes. 
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The subsequent sections provide detailed information on the data generation process for each 

study, along with their corresponding findings. 

4.4.1 Local and global spatial entropy indices 

A bench section with simulated gold grade values was constructed to assess the adequacy of the 

proposed local and global spatial entropy indices. The bench was simulated using unconditional 

sequential Gaussian simulation (Deutsch & Journel, 1998), and the simulated Gaussian values on 

the bench were transformed into gold grades using actual gold grade values from a real mine. The 

unconditional simulation aimed to generate one realization with the lowest level of spatial 

heterogeneity, where ore was situated on the eastern side of the bench while waste was on the 

western side. The block size of the simulated grade control block model was set at half the size of 

the SMU. This configuration served as the base case for assessing spatial heterogeneity. The 

parameters regarding the grade control block model definition are given in Table 4.1. A cut-off 

grade of 0.45 g/t was applied to differentiate between ore and waste. Economic and metallurgical 

parameters for calculating the cut-off grade are summarized in Table 4.2. 

The same information used in Table 4.2 was employed to construct an economic block model 

specifically for dig-limits optimization purposes. 
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Table 4.1: Grade Control block model definition. 

Item Unit X Y Z 

Block size (m) 2.5 2.5 15 

Number of blocks in a 

direction 

 40 30 1 

Minimum centroids (m) 1.25 1.25 7.5 

Maximum centroids (m) 98.75 73.75 7.5 

Azimuth (degree) 0   

Dip (degree) 0   

 

Table 4.2: Parameter values used for cut-off grade calculation and block economics values. 

Item Unit Value 

Gold price ($/gram) 53.1 

Mining cost ($/tonne) 3.0 

Processing cost ($/tonne) 16.7 

Ore recovery (%) 81.9 

Rock bulk density (tonne/ m3) 2.7 

 

After generating the base case grade control block model, blocks were shuffled to generate various 

degrees of spatial heterogeneity while ensuring that the total amount of gold within the bench 

remained constant, and the only difference was the spatial distribution of grade values. Figure 4.3 
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describes generating the base case (i.e., the lowest), low, medium, and high spatial heterogeneity 

grade control block models resulting from the shuffling process.  

 

Figure 4.3: Summary of the proposed methodology to generate grade control block models with 

various spatial heterogeneity levels. 

The proposed GSEI, GSII, and LSEI were calculated for the low, medium, and high spatial 

heterogeneity scenarios. The result of this comparison is summarized in Figure 4.4. As shown in 

Figure 4.4a-c, the three spatial heterogeneity scenarios have the same Shannon’s entropy with a 

value of 0.5. However, the GSEI calculated for each scenario properly reflects the degree of spatial 

heterogeneity. The GSII, on the other hand, provides a good measure of spatial continuity or 

clustering. These two indices provide reasonable global measures of spatial heterogeneity. 

To obtain an accurate assessment of the level of spatial heterogeneity at a specific location, the 

LSEI can be used. The calculated LSEI results for the three spatial heterogeneity scenarios are 
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shown in Figure 4.4d-f. These calculations were performed using a frame size of 3-blocks by 3-

blocks, representing an SMU size of 5m. 

 

Figure 4.4: Comparison between Shannon’s entropy, GSEI, GSII and LSEI for three bench 

sections with low, medium, and high spatial heterogeneity levels. 

The optimal allocation of BMM balls is an essential aspect of reducing ore loss and dilution. A 

cost-benefit analysis conducted by Loeb and Thornton (2014) demonstrates that increasing the 

number of BMM balls, up to 100 and 250 balls in their case study, would effectively reduce ore-

waste loss and dilution while remaining cost-effective. However, in practical implementation, 

installing many BMM balls becomes impractical due to the time required for installing and 

recovering BMM balls in each blast, which can result in operational delays. Therefore, 
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incorporating information obtained from the LSEI maps, in conjunction with a cost-benefit 

analysis of installing BMM balls at high LSEI locations, can guide the optimization of the 

installation process. Focusing on locations with high LSEI values improves the allocation decision 

of BMM balls, leading to a higher return on investment. 

4.4.2 Impact of spatial entropy on ore loss and dilution 

As can be seen from the previous discussions, the proposed indices for measuring the level of 

global and local spatial heterogeneity informed dig-limit optimization and blast movement 

monitoring. In this section, the relationship between GSEI and ore loss and dilution was further 

investigated. This study used previously simulated bench sections with varying GSEI values, 

representing different degrees of spatial heterogeneity. Profit reduction was used as a proxy to 

represent the overall percentage of ore loss and dilution post-blasting. The profit reduction was 

calculated for each scenario after applying dig-limits optimization, taking equipment selectivity 

into account to ensure that the profit values closely align with what can be achieved during mining 

operations. The findings of this experiment are summarized in Figure 4.5. 
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Figure 4.5: Relationship between GSEI and profit reduction calculated after applying dig-limits. 

The result of this study indicates that as GSEI increases, ore loss and dilution also increase, leading 

to reduced profits. The relationship between GSEI and profit reduction exhibits exponential 

behaviour. It was noticed in this study that increasing the GSEI led to an increase in dig-limits 

optimization running time. Therefore, the next section will investigate this relationship in more 

detail. 
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4.4.3 Impact of spatial entropy of dig-limits optimization performance 

Running dig-limits optimization models can be slow in some instances, particularly when 

employing an exact method to generate optimal dig-limits. In this exercise, the dig-limits 

optimization model is applied to several simulated benches, each exhibiting varying degrees of 

spatial heterogeneity. The runtime of the model, along with the GSEI, is measured for each 

scenario. The dig-limits optimization model was executed on a laptop equipped with an Intel(R) 

Core(TM) i7-7700HQ CPU running at 2.81GHz, a 64-bit operating system, and 32 GB of RAM. 

The results of this experiment are illustrated in Figure 4.6. 

 

Figure 4.6: Relationship between GSEI and dig-limits optimization running time. 
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While the runtime can be considered reasonable for regular bench section sizes, it should be noted 

that geological, chemical, and physical controls over orebodies result in some degree of spatial 

structure. Consequently, most deposits have lower spatial entropy values than those expected for 

randomly distributed noise, and this helps to manage the runtime of the optimization process. 

However, the assessment of ore loss and dilution may change over the life of mine due to changing 

cut-off grades because of changing commodity prices and mining and processing costs. The next 

section will investigate these relationships. 

4.4.4 Impact of cut-off grade on spatial entropy and dig-limits optimization performance 

To assess the impact of cut-off grade on spatial entropy and dig-limits optimization runtime, the 

base case grade control block model with the lowest GSEI was subjected to several scenarios of 

cut-off grade values, ranging from 0.25 g/t to 1.5 g/t. The model had ore and waste separated in 

the middle with a 0.45 g/t cut-off grade. GSEI was calculated for each scenario, and the dig-limits 

optimization model was executed for all scenarios to measure its runtime. Figure 4.7 presents the 

results of this experiment.  
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Figure 4.7: Results of running dig-limits optimization model on various scenarios of cut-off 

grade values on GSEI and running time. 

The results of this experiment reveal that the scenario with the lowest GSEI value, where ore and 

waste blocks are entirely separated, is associated with the shortest running time. However, when 

the cut-off grade value is either below or above 0.45 g/t, both running time and GSEI increase 

significantly. 

The assessment of spatial heterogeneity should always be updated following the change in any 

economic and metallurgical parameters that impact the cut-off grade. The aim is to have a block 

model with bench sections that are assigned GSEI values to assess the expected level of dilution 

and ore loss and mitigate any potential increase in them by optimizing the blast design to reduce 

them while taking into consideration the cost of applying these designs in actual operations and 

prioritize those sections that should be given due care. 
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4.4.5 Impact of blast movement on ore loss and dilution 

It is obvious that the more blast movement we have in our blasts, the higher the ore loss and dilution 

occur. However, it is also worth exploring the magnitude of expected ore loss and dilution pre-

blasting to help design blasts. This section will discuss the relationship between blast movement 

and ore loss and dilution through several possible scenarios of blast movement that may occur on 

a bench section. 

This study simulated blast movement scenarios with varying degrees of movement. These 

simulated blast movement scenarios were applied to the base case bench section. This base case 

bench section, which is 15m thick, is divided into five flitches, each with a thickness of 3m and 

has one-fifth of the contained metal. Figure 4.8 shows a schematic representation of the bench 

section with flitches. Figure 4.9 shows the simulated blast movement scenarios that range from 

low blast movement to high blast movement. The blast movement magnitudes were chosen to 

cover all possible movements, including an extreme movement with 35m to ensure that the results 

cover a wide range of potential movements in actual mining operations.  

 

Figure 4.8: Schematic showing the shape of the bench section with the flitches. 
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Figure 4.9: Magnitude of simulated blast movement for each flitch where the points in black 

represent the centroid of each flitch in each scenario. 

The simulated blast movement scenarios play a critical role in determining the impact of blast 

movement control on the project economics and how this relates to the original orebody 

heterogeneity and cut-off grade. Through these blast movement simulations, this study can assess 

how controlling blast movement can improve project profitability and how this varies across 

different levels of spatial heterogeneity and cut-off grades. 

This study aims to analyze the effect of blast movement on ore loss and dilution, beginning with a 

fixed spatial distribution of ore and waste blocks in the block model with a known spatial entropy 

index. This analysis is proposed as a preliminary step towards examining the impact of varying 

degrees of spatial entropy and blast movement on ore loss, dilution, and profit in the following 

section. 
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To achieve this, five different scenarios of blast movements, ranging from low to high blast 

movement, were applied to the block model with a direction towards the east. These blast 

movement scenarios were discussed earlier in the data preparation section. Figure 4.10 shows the 

final location of ore and waste blocks after blasting for each scenario. 

 

Figure 4.10: Scenarios of ore and waste distribution post-blast based on blast movement 

scenarios applied to the block model with a blast movement toward the east; scenario 1 has the 

lowest blast movement, while scenario 5 has the highest blast movement. 
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The dig-limits optimization model was implemented on these five blast scenarios (ranging from 

low to high movement), and the profit reduction percentages obtained after executing the dig-

limits optimization for each scenario are summarized in Figure 4.11. 

 

Figure 4.11: Profit reduction caused by the five blast movement scenarios after applying dig-

limits optimization. 

The study’s results show that increasing the magnitude of blast movement leads to a reduction in 

profit due to the resulting increase in ore loss and dilution caused by the movement when spatial 

entropy pre-blast is kept constant. The profit reduction resulting from ore loss and dilution is 

attributed to post-blast spatial entropy.  
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Blast engineers who work with this information to design better blasts or at least to have an idea 

of the magnitude of expected dilution and ore loss before blasting and communicate this to the 

short-term mine planning engineers and mineral processing engineers. Also, by knowing the 

expected magnitude of post-blast movement in advance, the LSEI can highlight areas requiring 

installing BMM balls. The same study can be conducted on various types of mineral deposits that 

have various shapes and spatial continuities of ore and waste within the benches.  

4.4.6 Controlling blast movement for profit maximization in mining operations 

For this study, seven grade control block models were generated, each with varying levels of spatial 

heterogeneity (ranging from low to high GSEI), while maintaining their total contained metal. 

Each of these block models had five blast movement scenarios applied, as discussed in the previous 

section, ranging from low to high blast movement. Consequently, 35 scenarios of block models 

with different levels of spatial heterogeneity and blast movement were created. The dig-limits 

optimization model was applied to all scenarios to measure the amount of profit reduction resulting 

from post-blast spatial entropy index impact on the magnitude of ore loss and dilution. Figure 4.12 

shows the relationship between pre-blast GSEI and post-blast profit reduction for all blast 

movement scenarios obtained after running dig-limits optimization model.  
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Figure 4.12: Relationships between profit reduction, pre-blast GSEI and blast movement 

scenarios 

The study results indicate that profit reduction due to ore loss and dilution increases with increasing 

pre-blast GSEI. Additionally, while maintaining the same pre-blast GSEI, a higher magnitude of 

blast movement results in greater profit reduction due to increased mixing between ore and waste 

blocks, leading to increased ore loss and dilution. However, when pre-blast GSEI exceeds 0.9, the 
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effect of blast movement on profit reduction is negligible. By implementing controlled blasting, 

blast engineers can ensure that the profit reduction due to ore loss and dilution remains below a 

designated threshold set by their mining companies. For example, if the accepted profit reduction 

due to ore loss and dilution is 10%, then a pre-blast GSEI value of 0.5 always falls below this 

threshold, irrespective of the magnitude of blast movement. Furthermore, choosing a blast design 

that minimizes blast movement can reduce profit reduction from 8.4% to 4%. However, if the pre-

blast GSEI value is 0.8, the only way to achieve a profit reduction value below 10% is by 

controlling the blast movement and selecting a blast design with low blast movement.  

4.5 DISCUSSION 

Spatial entropy plays a crucial role in identifying bench sections that need customized blasting 

designs to minimize blast movement and guide the allocation of BMM balls within the bench, 

resulting in improved profitability through reduced ore loss and dilution.  

To optimize blasting in mining operations, it is recommended to apply an indicator variable that 

shows which bench sections require careful blasting designs. This indicator variable relies on GSEI 

and blast movement information obtained from various blast designs. The threshold value of GSEI 

in which controlled blasting should be implemented in that bench section to meet ore loss and 

dilution requirements will vary from mine to another. Such sections should be identified in 

advance, and the indicator variable should be updated during the life-of-mine plan in response to 

changes in commodity price, mining and processing costs, and ore recoveries. Controlled blasting 

techniques, such as cushion or pre-splitting techniques, can be considered. However, a cost-benefit 

analysis should be conducted before implementing any controlled blasting design to justify the 

extra cost of implementing such designs during mining operations. Some bench sections may 

require controlled blasting methods due to the significant impacts of changes in cut-off grade on 
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GSEI. This approach enables blasting engineers to revisit their blast designs and methods when 

warranted in order to help reduce ore loss and dilution and improve mining operations' efficiency. 

Conversely, this proposed method helps the blasting engineer to identify where the cost and effort 

required to execute a particular controlled blasting design do not justify the potential gain. 

The study results further reinforce the significance of understanding the proposed GSEI in 

achieving profit maximization in mining operations through implementing controlled blasting 

techniques on the problematic bench sections where high levels of ore loss and dilution are 

expected. Applying the proposed approach can lead to more efficient mining operations, resulting 

in cost reductions and improved profitability. 

4.6 CONCLUSION AND FUTURE WORK 

This paper employs Shannon's entropy principle to quantify global and local spatial heterogeneity 

within ore and waste regions in open pit mining. Our tailored spatial entropy indices precisely 

measure SMU-scale heterogeneity, offering crucial insights into potential ore loss and dilution. 

Case studies demonstrate the indices' efficacy in assessing spatial heterogeneity across various 

bench sections, informing blast engineers about expected ore loss and dilution while guiding BMM 

ball allocation. 

The study found that the computational time required to solve the dig-limits optimization problem 

also increases exponentially with rising spatial entropy, but the overall computational time remains 

acceptable when the grade control block size is equal to half the size of SMU. The scenario with 

the lowest spatial entropy value, where ore and waste blocks are entirely separated, is associated 

with the shortest running time. However, running time and spatial entropy increase significantly 

when the cut-off grade exceeds certain limits that vary from bench to bench. 
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The study also demonstrated that an increase in the magnitude of blast movement leads to more 

profit reduction due to the resulting increase in ore loss and dilution. However, controlling blast 

movement can improve project profitability, particularly at different levels of spatial heterogeneity 

and cut-off grades. 

Future work could focus on understanding the economics of blast design and when to apply special 

blast designs that reduce blast movement. The formulation of spatial entropy in this paper can also 

be extended to more than two categories (i.e., more than ore and waste). A holistic optimization 

approach that aims to maximize mining operation profitability by taking in consideration various 

scenarios of blast movement, fragmentation size, cost of loading, hauling, and crushing could be 

investigated. 

4.7 REFERENCES 

Aghakouchak, A. (2014). Entropy–copula in hydrology and climatology. Journal of 

Hydrometeorology, 15(6), 2176–2189. 

Altieri, L., Cocchi, D., & Roli, G. (2017). The use of spatial information in entropy measures. 

arXiv preprint, arXiv:1703.06001. 

Altieri, L., Cocchi, D., & Roli, G. (2018). A new approach to spatial entropy measures. 

Environmental and Ecological Statistics, 25, 95–110. 

Altieri, L., Cocchi, D., & Roli, G. (2019). Measuring heterogeneity in urban expansion via spatial 

entropy. Environmetrics, 30(2), e2548. 

Altieri, L., Cocchi, D., & Roli, G. (2021). Spatial entropy for biodiversity and environmental data: 

The R-package SpatEntropy. Environmental Modelling & Software, 144, 105149. 

Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27(2), 

93–115. 

Batty, M. (1974). Spatial entropy. Geographical Analysis, 6(1), 1–31. 

Batty, M. (1976). Entropy in spatial aggregation. Geographical Analysis, 8(1), 1–21. 



Chapter 4 

 
 

117 

Batty, M. (2010). Space, scale, and scaling in entropy maximizing. Geographical Analysis, 42(4), 

395–421. 

Butera, I., Vallivero, L., & Ridolfi, L. (2018). Mutual information analysis to approach 

nonlinearity in groundwater stochastic fields. Stochastic Environmental Research and Risk 

Assessment, 32(10), 2933–2942. 

Claramunt, C. (2005). A spatial form of diversity. In Proceedings of Spatial Information Theory: 

International Conference, COSIT 2005, Ellicottville, NY, USA, September 14–18, 2005 (pp. 218–

231). Springer Berlin Heidelberg. 

Cover, T. M., & Thomas, J. A. (2006). Elements of information theory. Wiley-Interscience. 

Deutsch, C. V., & Journel, A. G. (1998). GSLIB: Geostatistical software library and user’s guide 

(2nd ed.). Oxford University Press. 

Deutsch, M. (2017). A branch and bound algorithm for open pit grade control polygon 

optimization. In Proceedings of the 38th International Symposium on the Applications of 

Computers and Operations Research in the Mineral Industry (APCOM), Golden, Colorado, USA 

(pp. 14–18). 

Dowd, P. A., & Dare-Bryan, P. C. (2018). Planning, designing and optimising production using 

geostatistical simulation. In R. Dimitrakopoulos (Ed.), Advances in Applied Strategic Mine 

Planning. Springer, Cham. https://doi.org/10.1007/978-3-319-69320-0_26 

Engmann, E., Ako, S., Bisiaux, B., Rogers, W., & Kanchibotla, S. (2013). Measurement and 

modelling of blast movement to reduce ore losses and dilution at Ahafo Gold Mine in Ghana. 

Ghana Mining Journal, 14, 27–36. 

Feizi, F., Karbalaei-Ramezanali, A., & Tusi, H. (2017). Mineral potential mapping via TOPSIS 

with hybrid AHP–Shannon entropy weighting of evidence: A case study for porphyry-cu, 

Farmahin area, Markazi Province, Iran. Natural Resources Research, 26(4), 553–570. 

Gilbride, L. J. (1995). Blast-induced rock movement modelling for bench blasting in Nevada open-

pit mines. (Doctoral dissertation, University of Nevada, Reno). 

Harris, G. W. (1997). Measurement of blast-induced rock movement in surface mines using 

magnetic geophysics. (Master’s thesis, University of Nevada, Reno). 

Hmoud, S., & Kumral, M. (2022). Effect of blast movement uncertainty on dig-limits optimization 

in open-pit mines. Natural Resources Research, 31(1), 163–178. https://doi.org/10.1007/s11053-

021-09998-z 

Hoeting, J. A., Leecaster, M., & Bowden, D. (2000). An improved model for spatially correlated 

binary responses. Journal of Agricultural, Biological, and Environmental Statistics, 5, 102–114. 

https://doi.org/10.1007/978-3-319-69320-0_26
https://doi.org/10.1007/s11053-021-09998-z
https://doi.org/10.1007/s11053-021-09998-z


Chapter 4 

 
 

118 

IBM. (2021). IBM ILOG CPLEX Optimization Studio 20.1.0 documentation. 

https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer 

Isaaks, E., Barr, R., & Handayani, O. (2014). Modeling blast movement for grade control. In 

Proceedings of the 9th International Mining Geology Conference (pp. 433–440). Adelaide, 

Australia. 

Isaaks, E., Treloar, I., & Elenbaas, T. (2014). Optimum dig lines for open pit grade control. In 

Proceedings of the 9th International Mining Geology Conference (pp. 425–432). Adelaide, 

Australia. 

Journel, A. G., & Deutsch, C. V. (1993). Entropy and spatial disorder. Mathematical Geology, 

25(3), 329–355. 

Karlström, A., & Ceccato, V. (2000). A new information theoretical measure of global and local 

spatial association. The Review of Regional Research, 22, 13–40. 

Kumral, M. (2015). Grade control in multi-variable ore deposits as a quality management problem 

under uncertainty. International Journal of Quality & Reliability Management, 32(4), 334–345. 

La Rosa, D., & Thornton, D. (2011). Blast movement modelling and measurement. In Proceedings 

of the 35th APCOM Symposium (pp. 297–310). Wollongong, NSW. 

Leibovici, D. G. (2009). Defining spatial entropy from multivariate distributions of co-

occurrences. In Proceedings of Spatial Information Theory: 9th International Conference, COSIT 

2009, Aber Wrac’h, France, September 21–25, 2009 (pp. 392–404). Springer Berlin Heidelberg. 

Leibovici, D. G., Claramunt, C., Le Guyader, D., & Brosset, D. (2014). Local and global spatio-

temporal entropy indices based on distance-ratios and co-occurrences distributions. International 

Journal of Geographical Information Science, 28(5), 1061–1084. 

Li, H., & Reynolds, J. F. (1993). A new contagion index to quantify spatial patterns of landscapes. 

Landscape Ecology, 8(3), 155–162. 

https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer


Chapter 4 

 
 

119 

Li, X., & Claramunt, C. (2006). A spatial entropy-based decision tree for classification of 

geographical information. Transactions in GIS, 10(3), 451–467. 

Liu, Z., Chen, J., Mao, X., Tang, L., Yu, S., Deng, H., Wang, J., Liu, Y., Li, S., & Bayless, R. C. 

(2021). Spatial association between orogenic gold mineralization and structures revealed by 3D 

prospectivity modeling: A case study of the Xiadian gold deposit, Jiaodong Peninsula, China. 

Natural Resources Research, 30(6), 3987–4007. 

Loeb, J., & Thornton, D. (2014). A cost-benefit analysis to explore the optimal number of blast 

movement monitoring locations. In Proceedings of the Ninth International Mining Geology 

Conference (pp. 441–450). Melbourne, Australia. 

Manchuk, J. G., Birks, J. S., McClain, C. N., Bayegnak, G., Gibson, J. J., & Deutsch, C. V. (2021). 

Estimating stable measured values and detecting anomalies in groundwater geochemistry time 

series data across the Athabasca Oil Sands Area, Canada. Natural Resources Research, 30(2), 

1755–1779. 

Marinin, M., Marinina, O., & Wolniak, R. (2021). Assessing the impact of losses and dilution on 

the cost chain: Case study of gold ore deposits. Sustainability, 13(7), 3830. 

Nelis, G., Meunier, F., & Morales, N. (2022). Column generation for mining cut definition with 

geometallurgical interactions. Natural Resources Research, 31(1), 131–148. 

Nelis, G., & Morales, N. (2022). A mathematical model for the scheduling and definition of mining 

cuts in short-term mine planning. Optimization and Engineering, 23(1), 233–257. 



Chapter 4 

 
 

120 

Norrena, K., & Deutsch, C. (2000). Automatic determination of dig limits subject to geostatistical, 

economical and equipment constraints. Center for Computational Geostatistics (CCG), University 

of Alberta, Edmonton, Alberta, Canada. 

O’Neill, R. V., Krummel, J., Gardner, R., Sugihara, G., Jackson, B., DeAngelis, D., Milne, B., 

Turner, M. G., Zygmunt, B., & Christensen, S. (1988). Indices of landscape pattern. Landscape 

Ecology, 1(3), 153–162. 

Pakalnis, R., Poulin, R., & Hadjigeorgiou, J. (1996). Quantifying the cost of dilution in 

underground mines. International Journal of Rock Mechanics and Mining Sciences & 

Geomechanics Abstracts, 33(3), 291–308. 

Parresol, B. R., & Edwards, L. A. (2014). An entropy-based contagion index and its sampling 

properties for landscape analysis. Entropy, 16(4), 1842–1859. 

Patil, G., & Taillie, C. (1982). Diversity as a concept and its measurement. Journal of the American 

Statistical Association, 77(379), 548–561. 

Richmond, A., & Beasley, J. (2004). Financially efficient dig-line delineation incorporating 

equipment constraints and grade uncertainty. International Journal of Surface Mining, 

Reclamation and Environment, 18(2), 99–121. 

Riitters, K. H., O’Neill, R. V., Wickham, J. D., & Jones, K. B. (1996). A note on contagion indices 

for landscape analysis. Landscape Ecology, 11(4), 197–202. 

Ruiseco, J. R. (2016). Dig-limit optimization in open pit mines through genetic algorithms. 

(Master’s thesis, McGill University, Canada). 



Chapter 4 

 
 

121 

Ruiseco, J. R., & Kumral, M. (2017). A practical approach to mine equipment sizing in relation to 

dig-limit optimization in complex orebodies: Multi-rock type, multi-process, and multi-metal case. 

Natural Resources Research, 26(1), 23–35. 

Ruiseco, J. R., Williams, J., & Kumral, M. (2016). Optimizing ore–waste dig-limits as part of 

operational mine planning through genetic algorithms. Natural Resources Research, 25(4), 473–

485. https://doi.org/10.1007/s11053-016-9296-1 

Salman, S., Muhammad, K., Khan, A., & Glass, H. J. (2021). A block aggregation method for 

short-term planning of open pit mining with multiple processing destinations. Minerals, 11(3), 288. 

Sari, Y. A., & Kumral, M. (2017). Dig-limits optimization through mixed-integer linear 

programming in open-pit mines. Journal of the Operational Research Society, 69(2), 171–182. 

https://doi.org/10.1057/s41274-017-0201-z 

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical 

Journal, 27(3), 379–423. 

Singh, V. (1997). The use of entropy in hydrology and water resources. Hydrological Processes, 

11(6), 587–626. 

Tabesh, M., & Askari-Nasab, H. (2011). Two-stage clustering algorithm for block aggregation in 

open pit mines. Mining Technology, 120(3), 158–169. 

Tabesh, M., & Askari-Nasab, H. (2013). Automatic creation of mining polygons using hierarchical 

clustering techniques. Journal of Mining Science, 49(3), 426–440. 

Tabesh, M., & Askari-Nasab, H. (2019). Clustering mining blocks in presence of geological 

uncertainty. Mining Technology, 49, 426–440. 

https://doi.org/10.1007/s11053-016-9296-1
https://doi.org/10.1057/s41274-017-0201-z


Chapter 4 

 
 

122 

Taylor, D., & Firth, I. (2003). Utilization of blast movement measurements in grade control. In 

Proceedings of the 31st APCOM Symposium, Ed. Camisani-Calzolari (pp. 243–247). South Africa. 

Theil, H. (1972). Statistical decomposition analysis: With applications in the social and 

administrative sciences. North-Holland Publishing Company. 

Thornton, D., Sprott, D., & Brunton, I. (2005). Measuring blast movement to reduce loss and 

dilution. In Proceedings of the International Society of Explosives Engineers Annual Conference, 

Ed. Jerry Wallace, Orlando, Florida, Feb 6–9, 2005. Cleveland, Ohio, USA. 

van Duijvenbode, J., & Shishvan, M. (2022). Stochastic analysis of dig limit optimization using 

simulated annealing. Journal of the Southern African Institute of Mining and Metallurgy, 122(2), 

715–724. 

Vasylchuk, Y. V., & Deutsch, C. V. (2019a). Approximate blast movement modelling for improved 

grade control. Mining Technology, 128(3), 152–161. 

https://doi.org/10.1080/25726668.2019.1583843 

Vasylchuk, Y. V., & Deutsch, C. V. (2019b). Optimization of surface mining dig limits with a 

practical heuristic algorithm. Mining, Metallurgy & Exploration, 36(4), 773–784. 

Wilde, B., & Deutsch, C. V. (2015). A short note comparing feasibility grade control with dig limit 

grade control. Report of Center for Computational Geostatistics. The University of Alberta. 

Williams, J., Singh, J., Kumral, M., & Ruiseco, J. R. (2021). Exploring deep learning for dig-limit 

optimization in open-pit mines. Natural Resources Research, 30(3), 2085–2101. 

Yennamani, A. L. (2010). Blast-induced rock movement measurement for grade control at the 

Phoenix mine. (Master’s thesis, University of Nevada, Reno). 

https://doi.org/10.1080/25726668.2019.1583843


Chapter 4 

 
 

123 

Yu, Z., Shi, X., Zhang, Z., Gou, Y., Miao, X., & Kalipi, I. (2022). Numerical investigation of blast-

induced rock movement characteristics in open-pit bench blasting using bonded-particle method. 

Rock Mechanics and Rock Engineering, 55(6), 3599–3619. 

Yu, Z., Shi, X., Zhou, J., Chen, X., Miao, X., Teng, B., & Ipangelwa, T. (2020). Prediction of blast-

induced rock movement during bench blasting: Use of gray wolf optimizer and support vector 

regression. Natural Resources Research, 29(2), 843–865. 

Yu, Z., Shi, X., Zhou, J., Rao, D., Chen, X., Dong, W., Miao, X., & Ipangelwa, T. (2019). 

Feasibility of the indirect determination of blast-induced rock movement based on three new 

hybrid intelligent models. Engineering with Computers, 1–16. 

Zarshenas, Y., & Saeedi, G. (2016). Risk assessment of dilution in open pit mines. Arabian Journal 

of Geosciences, 9(3), 1–11. 

Zarshenas, Y., & Saeedi, G. (2017). Determination of optimum cutoff grade with considering 

dilution. Arabian Journal of Geosciences, 10, 1–7. 

Zhang, F., Yao, L., Zhou, W., You, Q., Zhang, H. (2020). Using Shannon entropy and contagion 

index to interpret pattern self-organization in a dynamic vegetation-sand model. IEEE Access, 8, 

17221–17230. 

Zhang, S. (1994). Rock movement due to blasting and its impact on ore grade control in Nevada 

open pit gold mines. (Doctoral dissertation, University of Nevada, Reno). 

Zhang, S., Carranza, E., Wei, H., Xiao, K., Yang, F., Xiang, J., Zhang, S., & Xu, Y. (2021). Data-

driven mineral prospectivity mapping by joint application of unsupervised convolutional auto-



Chapter 4 

 
 

124 

encoder network and supervised convolutional neural network. Natural Resources Research, 

30(2), 1011–1031. 

Zou, Z., & Jun, Y. (2020). Modelling blast movement and muckpile formation with the position-

based dynamics method. International Journal of Mining, Reclamation and Environment, 1–12. 

https://doi.org/10.1080/17480930.2020.1835210 

 

4.8 NEXT STEPS 

This chapter introduced the concept of spatial entropy as a method to assess ore loss and dilution 

in open-pit mines. By comparing post-blast spatial entropy to pre-blast spatial entropy, we gain an 

understanding of the impact of blast movement on ore loss and dilution at the selective mining unit 

scale. Blast movement remains a key factor affecting ore loss and dilution, and from the previous 

chapter, it is evident that modeling blast movement without considering uncertainty can result in 

suboptimal decisions regarding material types and dig-limits. The next chapter will focus on 

incorporating sources of uncertainty, such as grade uncertainty and blast movement uncertainty, 

into material classification post-blasting and dig-limits optimization. It will also aim to improve 

the current dig-limits optimization model to account for multiple destinations, irregular bench 

section shapes, and different orebody orientations. A case study demonstrating the new model and 

its improvements will be presented.

https://doi.org/10.1080/17480930.2020.1835210
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Chapter 5: Risk-based Optimization of Post-blast Dig-limits 

Incorporating Blast Movement and Grade Uncertainties with 

Multiple Destinations in Open-pit Mines 

 

5.1 ABSTRACT 

Dig-limits optimization is one of the most important steps in the grade control process at open-pit 

mines. It aims to send blasted materials to their optimal destinations to maximize the profitability 

of mining projects. Grade and blast movement are key uncertainties affecting the optimal 

determination of dig-limits. This paper presents an integrated workflow for optimizing dig-limits 

under grade and blast movement uncertainties. The proposed methodology incorporates these 

uncertainties into the grade control process to enhance material classification and destination 

optimization, thereby minimizing ore loss and dilution. A multivariate geostatistical simulation 

workflow is developed to capture spatial uncertainties in grade distribution and blast movement 

distance and direction. Through applying Projection Pursuit Multivariate Transformation and 

Sequential Gaussian Simulation for modeling blast movement distances at all locations and flitches 

within the bench section, the anticipated D-like shape from blasting is reproduced, and uncertainty 

is quantified. The Maximum Expected Profit method effectively determines optimal material 

destinations under uncertainty improving overall mining profitability. The proposed risk-based 

dig-limits optimization model honors mining equipment selectivity, irregular bench shapes, and 

varying orebody orientations, resulting in operational and economically viable dig-limits. A case 

study on a porphyry copper deposit demonstrated the significant impact of blast movement on ore 

loss and dilution, emphasizing the need for accurate blast movement modeling and its integration 
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into grade control procedures. By accounting for differential blast movement, the proposed 

workflow ensures reliable post-blast material classifications, reducing suboptimal decisions, thus, 

improving project profitability and operational efficiency.   

5.2 INTRODUCTION 

Grade control is one of the most important operations in open-pit mines. It aims to classify blasted 

materials into several material types and send them to their optimal destinations, thereby 

minimizing ore loss and dilution, and maximizing the profitability of these mines (Abzalov, 2016). 

Grade control operations include: (1) drilling blast holes or, in certain cases, reverse circulation 

(RC) holes; (2) sampling from drilled core or cuttings; (3) assaying the collected samples; (4) 

estimating grades on a grade control block model; (5) classifying rocks into material types (e.g., 

ore, waste, oxides, sulfides, etc.); (6) modeling blast movement; and (7) setting optimized post-

blast dig-limits.  

The accuracy of grade control operations is influenced by a number of factors, including sampling 

error, bias in grade estimation, selectivity requirement, and blast movement (Dimitrakopoulos and 

Godoy, 2014). Uncertainty in blast movement also leads to unplanned ore loss and dilution 

challenges that grade control geologists and short-term mine planning engineers find difficult to 

manage. Blast movement uncertainty is not typically integrated into grade control procedures and 

the decision-making process.  

The need for an integrated grade control workflow that accounts for both grade and blast 

movement uncertainties has become increasingly important in the mining industry. As orebodies 

become more complex and operational constraints evolve, there is a growing need to enhance 

traditional grade control methods to further optimize dig-limits. Incorporating these uncertainties 
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into the grade control process ensures that both ore recovery and economic outcomes are 

optimized, reducing the risk of costly ore losses and unanticipated dilution. Such an integrated 

approach not only improves the accuracy of short-term mine planning but also enhances the overall 

operational efficiency by changing static grade control models into dynamic models that accounts 

to real mining conditions from blast movement and equipment selectivity. The development of a 

robust, uncertainty-informed workflow is critical for the modern mining industry, where precise 

and timely decisions have a direct impact on mine profitability and sustainability. 

This paper focuses on considering grade and blast movement uncertainties to determine optimal 

dig-limits with more than two destinations under equipment selectivity constraint. By optimizing 

dig-limits while considering these uncertainties, ore loss and dilution can be reduced, which in 

turn will improve the overall profitability of the project. 

The originality of this paper is four-fold: (1) develop an integrated workflow that considers grade 

and blast movement uncertainties in determining optimal post-blast dig-limits; (2) modeling 

differential blast movement and capturing the uncertainty in the movement on a block-by-block 

basis; (3) determining material types under grade and blast movement uncertainties; (4) improving 

the dig-limits optimization model to consider multi-destinations, irregular bench shapes, the option 

of shovels being more selective at zones close to the free face side of the bench, and considering 

various orebody orientations. 

The organization of this paper is as follows: The next section provides a general background on 

the key topics relevant to this study. Following that, the proposed methodology is described in 

detail. A case study is then presented to illustrate the application of the newly developed integrated 

approach for determining dig-limits under both grade and blast movement uncertainties. Finally, 
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the paper presents and discusses the results, draws conclusions, and suggests directions for future 

research. 

5.3 BACKGROUND 

5.3.1 Grade control models 

The accuracy of the grade control model has a significant impact on ore–waste classification on a 

bench. To improve the accuracy of grade control procedures and models, several critical aspects 

must be taken into account: (1) Grade uncertainty should be quantified at the bench scale, while 

ensuring that grade realizations are unbiased (Verly, 2005); (2) Material-type classification must 

consider the movement of blasted materials (Hmoud & Kumral, 2022, 2023, Vasylchuk and 

Deutsch, 2019); (3) Blasted materials should be accurately classified into various types, taking into 

account grade uncertainty and the non-linear and asymmetric profit functions (Srivastava, 1987; 

Isaaks, 2001;  Verly, 2005); and (4) The optimal destinations for blasted materials should be 

determined at the selective mining unit (SMU) scale, which is controlled by equipment selectivity 

(Hmoud & Kumral, 2022, 2023). The outcomes of effective grade control practices enable short-

term planning engineers to develop more accurate short-term production schedules, thereby 

maximizing mill utilization and project profit. 

One key step in grade control procedures is to generate grade control models. Linear estimation 

methods such as Ordinary Kriging and Inverse Distance are widely used to build grade control 

models because of their simplicity (Dimitrakopoulos & Godoy, 2014; Godoy, Dimitrakopoulos, & 

Costa, 2001). The issue with using linear estimation techniques to determine material types and 

destinations based on cut-off grades is that these techniques assume equal penalties for 

underestimation and overestimation of profit. This assumption becomes particularly problematic 

when dealing with complex, non-linear, and asymmetric profit functions (i.e., losses from sending 
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ore to waste dump do not equal losses from sending waste to processing plant), and this behavior 

of profit functions leads to biased and suboptimal decisions (Srivastava, 1987; Isaaks, Treloar, & 

Elenbaas, 2014; Vasylchuk & Deutsch, 2016). 

Geostatistical simulation techniques can overcome the issue of bias in predicting profit. 

Geostatistical simulation techniques (Alabert, 1987; Isaaks, 1990) produces a range of 

equiprobable grade values at all locations within a mining bench section that is planned for 

blasting. Sequential Gaussian Simulation (SGS) is a widely used spatial simulation technique that 

generates equiprobable realizations of a spatially distributed variable, such as ore grade in a 

mineral deposit (Journel & Deutsch, 1992). It works by sequentially simulating values at 

unsampled locations, conditioning each simulation on both the original sample data and the 

previously simulated values. This process ensures that the simulation preserves both the 

declustered histogram of the input data and the spatial continuity model, which is captured by a 

variogram model that measures spatial dissimilarity of the variable over distance. In case of 

simulating polymetallic mineral deposits, projection pursuit multivariate transformation (PPMT) 

is one of the methods used to simulate multiple elements while preserving their non-linear 

multivariate relationships (Barnett et al., 2014).  

Grade uncertainty is the result of incomplete information of the geology at a scale equal or smaller 

than the SMU size. The simulated grade values can be used to assess better the profit of any grade 

control decision (e.g., sending low-grade material to the waste dump, stockpile, or mill). Moreover, 

geostatistical simulation facilitates the determination of profit when using asymmetric or non-

linear profit functions, allowing for more accurate and precise decisions in grade control. 

Consequently, this ensures that the blasted materials are sent to their optimal destinations. The 

profit function can be calculated as well for multiple elements, and this requires using multivariate 
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geostatistical simulation methods. Vasylchuk (2018) proposed a multivariate simulation workflow 

with locally varying anisotropy to accurately predict grade uncertainty in the presence of multiple 

grade variables that go into the profit function calculation with an internal validation check to 

ensure reasonable automatic results. 

5.3.2 Material-type classification 

After quantifying grade uncertainty, material type classification is normally carried out to enable 

determining the right destination for blasted material based on the production plan. A number of 

methods were proposed in the literature to determine the optimal material-type under grade 

uncertainty: (1) average simulation (Verly, 2005); (2) minimum expected loss (MEL) (Isaaks, 

1990; Vasylchuk and Deutsch, 2018); (3) maximum expected profit (MEP) (Glacken, 1996, 

Deutsch et al, 2000, Neufeld et al, 2005), (4) MEL and MEP with risk coefficients (Glacken, 1996, 

Dimitrakopoulos and Godoy, 2014).  

The average simulation method assigns the destination of a block in a mine bench based on the 

average of the simulated values within that block based on a cut-off grade. The average of the 

simulated grade values is equivalent to the ordinary kriging estimate; therefore, the final 

destinations determined using the average simulation and ordinary kriging are expected to be very 

similar as well when domains are stationary. The model of average simulation values is known as 

the E-Type model. However, it is noted that average simulation method has the capability to 

reproduce the histograms of skewed distribution better, therefore it may generate more 

representative results that capture the high grades and translate that into profit more accurately 

(Verly, 2005). The MEL method determines the optimal destination for a block by calculating the 

expected costs associated with assigning the block to all possible destinations. It then selects the 

destination that minimizes the expected loss across all possible destinations. MEP method 
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determines the optimal destination of a block by calculating the expected profits associated with 

assigning the block to all possible destinations, then selecting the destination that maximizes the 

expected profit across all possible destinations. Risk coefficients can also be added to profit and 

loss functions to ensure that some specific mine requirements are met, such as increasing the 

chance of sending waste to the processing plant or reducing the chance of sending waste to the 

waste dump. The choice of coefficient values depends on the operations; some operations are 

willing to take some risk and send waste that has some chance of being ore to the processing plant 

and others may prefer to send ore with some chance of being waste to the waste dump. Applying 

these coefficients requires continuous updating because these policies may change during the life 

cycle of the mine and this might make applying these risk coefficient hard in mining operations. 

In the presence of a linear profit function with no clear coefficients to apply to profit and loss 

functions, average simulation, the MEL and the MEP methods provide similar results. However, 

when the profit function is nonlinear such as when the recovery model is not a linear function of 

grade, the MEP method becomes the best approach for determining optimal destinations under 

uncertainty (Verly, 2005). 

5.3.3 Blast movement 

Another important source of uncertainty that is normally not accounted for is coupled with blast 

movements. Hmoud and Kumral (2023) showed that blast movements affect the results of ore loss 

and dilution, thus impacting dig-limits outcomes. Dig-limit optimization formulation that ignores 

blast movements results in unexpected loss and dilution (Engmann et al., 2013; Hmoud & Kumral, 

2022; Thornton et al., 2005). Integrating blast movement in the dig-limits optimization process 

will also reduce material misclassification (Zhang, 1994; Yennamani, 2010). Additionally, using 

blast movement monitoring (BMM) balls can enhance ore recovery and control head grade in 
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mineral processing plants (Harris, 1997; Gilbride, 1995; Taylor & Firth, 2003). Hmoud and 

Kumral (2023) grouped blast movement modeling approaches into four categories: (1) the multi-

physical simulation (Yu et al., 2022; Zou & Jun, 2020); (2) heuristics methods (Isaaks et al., 2014a; 

Isaaks et al., 2014b; Vasylchuk & Deutsch, 2019b); (3) machine learning models (Yu et al., 2019, 

Yu et al., 2020; Yu et al., 2024); and (4) stochastic methods (Hmoud & Kumral, 2022, 2023). 

The primary challenge in using multi-physics simulations to model blast movement in open pit 

mines is the difficulty in accurately gathering all necessary input parameters due to the complexity 

of the simulation. This process often requires extensive computational time, which is impractical 

given the frequency of blasting operations. Alternatively, heuristic methods combined with 

physical field measurements like post-blast topography, provide quicker solutions, though they 

lack guaranteed optimality and they do not capture uncertainty in the predicted movements. 

Additionally, not all mining operations conduct post-blast topography surveys, which is a 

requirement for setting dig-limits accurately under these methods. Using machine learning to 

predict blast movements based on historical data can be effective when current geological and blast 

design conditions mirror the historical data used in training. However, these methods might not 

yield reliable predictions for deposits with varying geological characteristics and blast designs, 

particularly if these models do not capture and quantify uncertainty in blast movement predictions. 

Uncertainty in blast movement arises from various factors such as (1) imperfections in blast 

designs, (2) the heterogeneity of the rock mass, (3) incomplete geological knowledge, and (4) 

human error. Theoretical blast movement modeling approaches alone are unlikely to yield accurate 

models of blast movements without physical field measurements taken before blasting any bench 

section (La Rosa & Thornton, 2011). Stochastic modeling techniques that utilize data from 

physical measurements of the specific blasted bench offer a viable solution (Hmoud & Kumral, 
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2022, 2023). However, comprehensive coverage of these measurements across bench sections, 

including all flitches, is required. This comprehensive data collection enables the creation of 

representative multivariate statistical distributions that capture the uncertainty in blast movements, 

particularly near ore zones, and helps identify areas with high-risk of material misclassification 

that require careful grade control sampling protocols. The current stochastic blast movement 

technique proposed by Hmoud and Kumral (2022) applied movements on a flitch-by-flitch basis 

without considering differential blast movement within the same flitch. Differential blast 

movement refers to the modeling of blasted materials on a block-by-block basis, where each block 

has its own distinct movement distance and direction. To the authors' knowledge, no research has 

been conducted on modeling and capturing the uncertainty in differential blast movement. 

5.3.4 Dig-limits optimization 

While incorporating blast movement models into grade control is considered important, optimizing 

dig-limits is another important component of good grade control models. The methodology for 

defining dig-limits has evolved significantly in recent decades, transitioning from manual drawing 

to sophisticated automated processes utilizing mathematical algorithms. Manual drawing, being 

subjective and difficult to revise, fails to adequately minimize ore loss and dilution, and does not 

consider the selectivity of mining equipment (Faraj, 2024). The objective of optimizing dig-limits 

is to measure, manage, and reduce the anticipated ore loss and dilution within open-pit mining 

operations. These limits define the separation between ore and waste, directing blasted materials 

to their most profitable destinations, thereby enhancing revenue while considering equipment 

selectivity and blast movement (Hmoud & Kumral, 2022). Hmoud and Kumral (2023) grouped 

dig-limits optimization into five main categories: (1) exact methods, such as mixed-integer 

programming (MIP) (Hmoud & Kumral, 2022; Kumral, 2015; Nelis et al., 2022; Nelis & Morales, 
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2022; Sari & Kumral, 2017); (2) heuristic algorithms (Richmond & Beasley, 2004;  Vasylchuk &  

Deutsch, 2019a; Wilde & Deutsch, 2015); (3) metaheuristic techniques, including simulated 

annealing ( Isaaks et al., 2014a; Isaaks et al., 2014b; Norrena & Deutsch, 2000; van Duijvenbode 

& Shishvan, 2022) and genetic algorithms (Ruiseco, 2016; Ruiseco & Kumral, 2017; Ruiseco et 

al., 2016; Williams et al., 2021); (4) hybrid models that combine MIP with metaheuristics 

(Deutsch, 2017); and (5) methods based on spatial clustering (Salman et al., 2021; Tabesh & 

Askari-Nasab, 2011, 2013; Tabesh & Askari-Nasab, 2019).  

Exact methods such as MIP ensure optimality, but they require long processing times, especially 

when the moving window that enforces equipment selectivity is large. However, with 

advancements in parallel computing and high-performance computers, using MIP to generate 

optimal dig-limits has become achievable. Heuristics, metaheuristics, and hybrid methods provide 

near-optimal solutions when the problem size increases, offering faster solutions. One challenge 

with these methods is the optimal selection of hyperparameters, which requires fine-tuning. The 

same issues appear when using spatial clustering methods to determine dig-limits. However, unlike 

heuristics, metaheuristics, and hybrid methods, near-optimal solutions are not guaranteed with 

spatial clustering methods. 

5.3.5 Fully integrated grade control workflow 

Integrating all grade control steps into one workflow, from estimating and simulating grade on a 

bench, to classifying blasted materials into several material types, and modeling blast movement, 

to finally optimizing dig-limits, is important for any grade control model to be considered practical. 

A good example of this integrated approach can be found in Vasylchuk (2018), where the author 

highlighted the importance of improving grade predictions, considering uncertainty in material 

classification, accounting for blast movement deterministically using a heuristic algorithm, 
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optimizing material destinations at a scale smaller than the SMU size by applying a heuristic dig-

limits optimization model to determine the final destinations for materials considering equipment 

selectivity. These improvements aimed to minimize ore loss and dilution, ultimately enhancing the 

overall efficiency of mining operations. However, blast movement uncertainty was not considered 

in the proposed workflow. Moreover, a heuristic method for modeling dig-limits is used that does 

not ensure optimality. 

Despite previous research on grade control procedures, the uncertainty in blast movement and its 

implications for determining optimal material types and dig-limits have not been studied. 

Additionally, existing models for determining optimal dig-limits using MIP fail to address irregular 

bench shapes, various mining directions, and increased selectivity for shovels in zones near the 

bench's free face. This paper aims to address these challenges by proposing a new solution. 

Building on the work of Hmoud and Kumral (2022, 2023), this study takes a step forward by 

incorporating blast movement and grade uncertainties in determining optimal dig-limits, while also 

addressing the gaps and issues identified in previous research. 

 

5.4 METHODOLOGY 

The proposed integrated workflow in this paper for modeling dig-limits under blast movement and 

grade uncertainties is divided into six main steps: (1) data gathering and processing; (2) 

geostatistical modeling of grade and blast movement uncertainties; (3) generation of post-blast 

grade realizations; (4) converting 3D post-blast block models to 2D block models; (5) post-blast 

material-type classification under uncertainty; (6) dig-limits optimization. Figure 5.1 presents a 
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flowchart that summarizes the proposed workflow. Details on each of these steps are discussed in 

the next subsections. 

5.4.1 Data gathering and processing 

In the proposed workflow, two sources of information are required to model blast movement and 

grade uncertainties to optimize dig-limits: (1) blast hole or RC drilling data, and (2) BMM balls 

measurement data. Blast holes provide valuable information related to grade at very short sample 

spacings which are used to generate grade control models using geostatistical techniques. To 

enhance the accuracy of the drilling data used to generate grade control models, RC drilling is 

sometimes performed, wherein samples from multiple depths within the bench are collected and 

sent to a laboratory for assay analysis. In addition to grade, other details such as rock type can be 

recorded for each sample, and that helps in the development of high -accuracy geostatistical grade 

control models. 

The BMM balls measurement data contain the pre-blast and post-blast locations of BMM balls. 

This information enables grade control geologists to track materials after blasting and provides 

insights into the movement distance and direction of blasted materials at various flitches and 

locations within the bench section. This data will be used to model differential blast movement on 

a block-by-block basis, where each block in the pre-blast grade control model has distributions of 

possible blast movement distances and directions. These blast movement distances and directions 

distributions can then be used to generate post-blast realizations of grade distribution within the 

bench section. 
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Figure 5.1: Flowchart with the proposed methodology. 
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5.4.2 Geostatistical modeling of grade and blast movement uncertainties 

Several methods have been proposed to model spatial uncertainty, such as SGS (Journel & 

Deutsch, 1992; Goovaerts, 1997; Chiles & Delfiner, 1999), Turning Bands (Journel, 1974), and 

Partial Differential Equations Simulation (Lindgren et al., 2011). Among these, SGS is the most 

widely used method in the mining and petroleum industries. 

SGS models spatial uncertainty by generating multiple realizations of a continuous variable. This 

method involves transforming data to a normal distribution, then sequentially simulating values at 

unsampled locations based on the spatial structure summarized by the variogram. Each location is 

simulated by drawing from a Gaussian distribution conditioned on both original data and 

previously simulated values to maintain spatial dependencies. Finally, the simulated values are 

back-transformed to their original units and validated to ensure the quality of the simulation. This 

process results in a suite of equally probable spatial distributions, providing a detailed picture of 

grade variability within the bench and allowing for the assessment of risks and uncertainties in 

grade control decisions. 

In the presence of multi-element deposits, multivariate simulation techniques can build 

geostatistical realizations that reflect the uncertainty in grade values for those elements while 

respecting their correlations. Methods such as co-simulation using linear model of 

coregionalization (LMC) (Journel & Huijbregts, 1978) help model these relationships. However, 

co-simulation using LMC operates under the assumption that all relationships are multivariate 

Gaussian, which impacts outcomes when nonlinear relationships exist in the data. Additionally, 

fitting a large number of direct and cross variograms is challenging, as they must be modeled to 

ensure positive definite results when solving the normal equation matrices to estimate the 
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conditional mean and variance for the simulation and to draw realizations from that distribution 

using Monte Carlo methods. 

An alternative approach involves decorrelating the variables before simulating them independently 

and then back-transforming them to reproduce the original correlations. Examples include 

minimum/maximum autocorrelation factors (MAF) (Desbarats & Dimitrakopoulos, 2000) and 

PPMT (Barnett et al., 2014). PPMT begins by applying a normal score transformation to each 

variable, followed by data sphering to reduce correlations and standardize variance. The method 

then searches for the least Gaussian projection to identify non-normal features across all 

projections. Each variable is simulated independently using SGS. The final step involves a back-

transformation, which uses recorded tables from the Gaussian mapping to transform the non-

Gaussian distributions back into their original units while maintaining the spatial relationships 

between data points. This approach avoids the need for modeling cross-variograms and allows for 

the accurate simulation of complex, correlated data. Due to its ability of modeling non-linear 

complex data, the PPMT method is used as part of the simulation workflow proposed in this paper.  

Modeling blast movement at all locations within the blasted bench section requires modeling blast 

movement distances and directions. PPMT accompanied with SGS is used to model multivariate 

relationships between blast movement distances that vary from one location to another within the 

bench section and between flitches to produce the D-like shape resulting from explosives installed 

in the middle of the bench, causing the middle part to move further relative to the top and bottom 

flitches. Horizontal distance values obtained from BMM balls for each flitch represent a 

continuous variable, and PPMT helps model these variables while respecting their correlations. 

Figure 5.2 shows the main steps for generating simulated data using PPMT. 
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To smooth the simulated values when back-transformed, a kernel density estimate (KDE) (Parzen, 

1962) can fit the sparse movement data. Values from the fitted distribution can then be sampled 

using a Gibbs Sampler (Geman & Geman, 1984). PPMT uses these simulated values to back-

transform the fitted KDE and smooth the simulated values. This step is not implemented in the 

proposed workflow. 

 

Figure 5.2: Decorrelation workflow using PPMT and Sequential Gaussian Simulation for 

modeling blast movement distances between Flitch 1 and Flitch 2 as an example. 

Another important component of blast movement is the direction of the movement. The direction 

can be determined by comparing the pre-blast and post-blast locations of BMM balls to calculate 
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the azimuth of movement. Alternatively, a direction perpendicular to the detonation lines, going in 

the opposite direction of the blast sequence, can also be used to infer the movement direction. 

When BMM balls show relatively small variations in directions, blast movement direction 

uncertainty might not be significant, and a fixed direction of movement can be applied. However, 

when the directions of movement vary significantly due to the blast design or unexpected 

geological features that impact the movement direction, then modeling stochastically blast 

movement direction using SGS will be a useful exercise and should be part of the proposed 

integrated workflow. 

Azimuth values obtained from BMM measurements can be divided into two components: a sine 

component and a cosine component, which are calculated as follows: 

𝜃 = tan−1 (
sin (𝜃)

cos (𝜃)
)𝑚𝑜𝑑 360 (5.1) 

In this equation, 𝜃 represents the azimuth of the movement in radians, and the mod 360 ensures 

that the back-transformed angles remain between 0 and 360°. These components can be simulated 

using PPMT in case of strong correlation. The simulated components are then used to calculate the 

azimuth at every location on a block model. Increasing the number of BMM balls helps in 

improving the modeling of variograms in the presence of sparse or limited data, as well as reducing 

uncertainty in blast movement models.  

5.4.3 Generation of post-blast grade realizations 

After stochastically modeling grade and blast movement distances and directions on a block-by-

block basis using geostatistical simulation, the pre-blast grade blocks are relocated to their post-

blast positions based on the realizations of blast movement distances and directions. To achieve 

this, each grade realization is randomly associated with a corresponding blast movement distance 
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and direction realization. It is important to note that grade, blast movement direction, and distance 

are uncorrelated at any location. Therefore, it is appropriate to combine realizations, one from each 

variable, to facilitate generating post-blast grade realizations.   

In each of these post-blast realizations, the post-blast block locations are calculated as follows: 

𝑈𝑝𝑜𝑠𝑡𝑏𝑙𝑎𝑠𝑡 = 𝑈𝑝𝑟𝑒𝑏𝑙𝑎𝑠𝑡 + (𝑉𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ∗  𝐷) (5.2) 

where 𝑈𝑝𝑜𝑠𝑡𝑏𝑙𝑎𝑠𝑡 = (𝑋𝑝𝑜𝑠𝑡𝑏𝑙𝑎𝑠𝑡, 𝑌𝑝𝑜𝑠𝑡𝑏𝑙𝑎𝑠𝑡) represents the coordinates of the block centroid after 

blast, and 𝑈𝑝𝑟𝑒𝑏𝑙𝑎𝑠𝑡 = (𝑋𝑝𝑟𝑒𝑏𝑙𝑎𝑠𝑡, 𝑌𝑝𝑟𝑒𝑏𝑙𝑎𝑠𝑡) represents the coordinates of the block centroid before 

blasting. The vector 𝑉𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = (𝑋𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡, 𝑌𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡) corresponds to the unit direction vector 

of the blast movement, where 𝑋𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 and 𝑌𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 are the components of the direction in 

the X- and Y- axes, respectively, and 𝐷 is the horizontal movement distance. 

By applying this method on a flitch-by-flitch basis, each block within the flitch is moved to its 

post-blast location in each realization while accounting to the differential blast movement that 

varies depending on the location of the block within the bench section and the flitch. Figure 5.3 

illustrates the concept of differential blast movement, where the movement is longer near the free 

face area in the direction of the blast and shorter near the adjacent non-blasted bench section in the 

opposite direction.  
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Figure 5.3: Schematic demonstrating the differential blast movement in the blasted section of the 

bench. 

The outcomes of this step are realizations of grade values at post-blast locations. Essentially, this 

means generating post-blast grade control block models that reflect the uncertainty in grade and 

the associated blast movement distances and directions. These realizations will be used to quantify 

grade uncertainty at all locations within the blasted section of the bench. 

Since this simulation is purely geostatistical and does not account for physical interactions between 

blocks, some blocks may end up sharing the same post-blast location. However, this will not 

impact the dig-limits optimization, which is treated as a 2D problem and is unaffected by changes 

in elevation. Consequently, the total contained metal and tonnage at each X and Y location will 

remain unchanged. 

Blocks near adjacent bench sections that are not yet blasted can be assigned a fixed direction to 

prevent blasted blocks from ending up on top of the non-blasted areas. The extent to which these 

blocks will have a fixed direction can be determined by understanding the maximum influence 

distance of the blast, as measured from the BMM balls. 
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5.4.4 Converting 3D post-blast block models to 2D block models 

Before running classifying material into types under uncertainty and running the risk-based dig-

limits optimization, the 3D post-blast grade block models are converted into 2D block models. In 

this process, the x and y coordinates of the centroids remain unchanged, while the metal content 

from all SMUs with the same x and y coordinates is aggregated to create 2D block models that 

represent post-blast grade realizations. This conversion simplifies the dig-limits optimization 

problem significantly and does not affect the final dig-limits because the optimization operates on 

the entire bench rather than a flitch-by-flitch basis.  

To further reduce the optimization processing time, smaller blocks in the X and Y directions are 

re-gridded to form bigger blocks with a size equal to one-half or one-third of the SMU size. The 

total metal content, tonnage, and grade are recalculated for the re-gridded blocks. While this re-

gridding may slightly increase ore loss and dilution, it generates 2D post-blast models that maintain 

the metal content at the original SMU scale. These 2D block models will be used next to determine 

classify materials into types under uncertainty and determine optimal risk-based dig-limits. 

5.4.5 Post-blast material-type classification under uncertainty 

The MEP method (Glacken, 1996, Deutsch et al, 2000, Neufeld et al, 2005) is used in this 

workflow because of its ability to find the optimal destination under uncertainty, regardless of 

whether the profit function is linear or non-linear. At each block 𝑏𝑖,𝑗∀ 𝑖 ∈ {1,… , 𝑋}, 𝑗 ∈ {1,… , 𝑌} 

inside the bench. 𝑘𝑖,𝑗 is an indicator variable to identify blocks that are blasted within the bench 

(in-bench) and separate them from air blocks and adjacent non-blasted bench sections (out-of-

bench) following this expression: 

𝑘𝑖,𝑗 = {
1, 𝑏𝑙𝑜𝑐𝑘 𝑏𝑖,𝑗 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑙𝑎𝑠𝑡𝑒𝑑 𝑏𝑒𝑛𝑐ℎ

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                           
 (5.3) 



Chapter 5 

 

145 

Where  𝑘𝑖,𝑗 is the indicator that identifies whether block 𝑏𝑖,𝑗 is in the blasted section of the bench 

or not. An Air block is a block that has zero chance of having blasted material moved to it. 

There are 𝑙 ∈ 𝐿 number of simulated grade values 𝑧𝑙  ∈ 𝑍. Profit for sending a block 𝑏𝑖,𝑗  to  𝑑 ∈

𝐷 of destinations for all grade realization are calculated as follows: 

𝑃𝑑(𝑏𝑖,𝑗) = 𝐸 {𝑃𝑑(𝑏𝑖,𝑗, 𝑍)}, ∀  𝑍 = {𝑧1, … , 𝑧𝑙}, 𝑑 = {1,… , 𝐷}, 𝑖 = {1,… , 𝑋}, 𝑗

= {1,… , 𝑌} 𝑖𝑓 𝑘𝑖,𝑗 = 1 

(5.4) 

 

The optimal destination of block 𝑏𝑖,𝑗 is the destination that has the maximum profit compared to 

all other profits calculated for other destinations for this block, and it is expressed as: 

𝑑optimal(𝑏𝑖,𝑗) = arg max
𝑑∈{1,…,𝐷}

𝑃𝑑 (𝑏𝑖,𝑗) ∀𝑖 ∈ {1,… , 𝑋},  𝑗 ∈ {1, … , 𝑌} if 𝑘𝑖,𝑗 = 1 (5.5) 

 

The optimal destinations for these blocks are determined post-blast, prior to running the dig-limits 

optimization model. These destinations are then used within the dig-limits optimization model to 

assign expected profit values for sending materials to all possible destinations. Figure 5.4a shows 

a 2D post-blast grade control model with blocks assigned to their optimal destinations using MEP 

method. Figure 5.4b shows the in-bench and out-of-bench blocks based on the 𝑘𝑖,𝑗 indicator.  

5.4.6 Risk-based dig-limits optimization model 

Before running the dig-limits optimization model to identify the final optimal destinations of 

blocks that honor account for equipment selectivity, a pre-processing step should be applied to 

identify blocks that do not meet the minimum mining width constraint. These blocks can be either 

(1) confined between other blocks on unmined bench sections or (2) located at the free face, where 
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more selective mining can be performed using the same shovel or a smaller dozer. The optimal 

destinations for these problematic blocks have already been determined using the MEP method 

during the material classification step. 

Equipment selectivity in this context is represented by a moving frame around each block in the 

grade control block model. This moving frame encompasses a certain number of blocks in the x-

direction 𝑛𝑥  and y-direction 𝑛𝑦, reflecting the selectivity of the mining equipment and the SMU 

size. A block is considered problematic if none of the frames around it meet the in-bench condition, 

which requires at least one frame to have all its blocks within the blasted bench section. 

Blocks at the free face zone that do not meet the minimum mining width requirement will be 

flagged as problematic because they can be mined more selectively using a shovel or a dozer. 

Additionally, blocks that are surrounded by non-blasted adjacent bench sections and are smaller 

than the minimum mining width requirement will also be flagged as problematic and described as 

confined blocks. These blocks will be processed as confined blocks and can be mined later once 

the adjacent bench section is blasted. 

Problematic blocks are removed from the dig-limits optimization model and will be added back 

later, after identifying the optimal destinations of blocks that meet the minimum mining width 

requirement. For example, as shown in Figure 5.4c, the two types of problematic blocks described 

above are identified in this bench section: (1) one block is confined between blocks from a non-

blasted bench section and is less than the minimum mining width of 2x2 blocks, and (2) two blocks 

in the free face area have a minimum mining width less than 2x2 blocks. Figure 5.4d shows the 

processed destinations of blocks before running the dig-limits optimization. Table 5.1 describes 

the indices used in defining the pre-processing step variables and the dig-limits optimization 

model. 
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Figure 5.4: Plan views of a post-blast bench section showing pre-processing steps to generate 

optimal dig-limits with a minimum width of 2x2 blocks. 

Table 5.1: Description of pre-processing and dig-limits optimization model indices 

Index Description Sets 

𝑖 Block index in the X direction 𝑖 ∈ {1,… , 𝑋} 

𝑗 Block index in the Y direction 𝑗 ∈ {1,… , 𝑌} 

𝑑 Destination index 𝑑 ∈ {1,… , 𝐷} 

𝑓𝑥 Frame index in the X direction 𝑓𝑥 ∈ {1,… , 𝑛𝑥} 

𝑓𝑦 Frame index in the Y direction 𝑓𝑦 ∈ {1,… , 𝑛𝑦} 

𝛼 Frame offset index in the X direction 𝛼 ∈ {1,… , 𝑛𝑥} 

𝛽 Frame offset index in the Y direction 𝛽 ∈ {1,… , 𝑛𝑦} 
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Mathematically, the confined and free face blocks are identified by first defining the following 

indicators: 

𝐴𝑖,𝑗 = {
1, 𝐴𝑖𝑟              
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, ∀ 𝑖, 𝑗 (5.6) 

 

In which 𝐴𝑖,𝑗 is an indicator variable that represent blocks of air, and 

 

𝐴𝐵𝑖,𝑗 = {
1, 𝐴𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑏𝑒𝑛𝑐ℎ 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           

, ∀ 𝑖, 𝑗 (5.7) 

 

Where 𝐴𝐵𝑖,𝑗 represents the blocks adjacent to the blasted bench section. For identifying free face 

blocks, the following indicator can be calculated as 

𝐹𝐹𝑖,𝑗 = {
1,   𝑖𝑓 ∑ ∑ 𝐴𝑖−𝑓𝑥+𝛼,𝑗−𝑓𝑦+𝛽 > 0 𝑎𝑛𝑑 𝑘𝑖,𝑗 = 1

𝑓𝑦
𝛽

𝑓𝑥
𝛼  

0,                                                              𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, ∀ 𝑖, 𝑗  (5.8) 

 

Where 𝐹𝐹𝑖,𝑗 is an indicator for a free face block that can me mined in a more selective way using 

a dozer and front load equipment at block 𝑏𝑖,𝑗 within the blasted section of the bench. For 

determining confined blocks, another indicator variable is calculated as follows: 

𝐶𝐵𝑖,𝑗 = 

{
 

 
1,    𝑖𝑓 ∑∑𝐴𝐵𝑖−𝑓𝑥+𝛼,𝑗−𝑓𝑦+𝛽 > 0

𝑓𝑦

𝛽

𝑓𝑥

𝛼

 𝑎𝑛𝑑 𝑘𝑖,𝑗 = 1  

0,                                                              𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    

, ∀ 𝑖, 𝑗 (5.9) 
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Where 𝐶𝐵𝑖,𝑗 represents an indicator variable for confined blocks at 𝑏𝑖,𝑗 within the blasted bench 

section. Indicators 𝐹𝐹𝑖,𝑗 and 𝐶𝐵𝑖,𝑗 are then used to remove problematic blocks before running the 

risk-based dig-limits optimization model to ensure that the minimum mining width constraint is 

met knowing that these blocks are added back for any economical assessment and destination 

identification. 

A new formulation for the dig-limits optimization model is used in this research. The new risk-

based dig-limits optimization model allows for processing outcomes of the MEP method, working 

with more than two destinations, irregular bench shapes, and various orebody orientations and 

mining directions. The objective function is to maximize the expected profit of mining these blocks 

within the bench while satisfying equipment selectivity constraint. Description of model decision 

variables is found in Table 5.2.  

Table 5.2: Description of dig-limits optimization model decision variables. 

Decision Variable Type Values Description 

𝑋𝑖,𝑗,𝑑 Binary {0,1} 

1 if material is sent to 

destination d and 0 

otherwise 

𝑡𝑖,𝑗,𝑑,𝑓𝑥,𝑓𝑦 Integer ⟦−1, 𝑛𝑥 ∗ 𝑛𝑦⟧ 

Total of X values 

inside a frame for 

destination d 

𝑣𝑖,𝑗,𝑑,𝑓𝑥,𝑓𝑦 Binary {0,1} 

1 if a valid frame for 

destination d and 0 

otherwise 
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In this model, a frame is considered valid if all blocks in the frame have the same destination. Each 

block within a bench should be assigned to at least one valid frame. The model aims to find the 

frames that maximize profit and meet the minimum mining width constraint. The dig-limits 

optimization model is formulated as follows:  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒∑∑∑𝑋𝑖,𝑗,𝑑  𝑃𝑖,𝑗,𝑑 , ∀ 𝑘𝑖,𝑗 = 1

𝐷

𝑑=1

𝑌

𝑗=1

𝑋

𝑖=1

 (5.10) 

Where 𝑘𝑖,𝑗 is the indicator that identifies whether block 𝑏𝑖,𝑗 is in the blasted section of the bench 

or not. 𝑃𝑖,𝑗,𝑑 is the profit value of sending block 𝑏𝑖,𝑗 block represented by 𝑋𝑖,𝑗,𝑑 to destination 𝑑 for 

all blocks with expected profit values inside the blasted section of the bench. 

Subject to: 

𝑡𝑖,𝑗,𝑑,𝑓𝑥,𝑓𝑦

= 

{
  
 

  
 
∑∑𝑋𝑖−𝑓𝑥+𝛼,𝑗−𝑓𝑦+𝛽

𝑓𝑦

𝛽

𝑓𝑥

𝛼

 ∀𝑖, 𝑗, 𝑑, 𝑖𝑓 ∑∑𝑘𝑖−𝑓𝑥+𝛼,𝑗−𝑓𝑦+𝛽 = 𝑛𝑥 ∗ 𝑛𝑦

𝑓𝑦

𝛽

𝑓𝑥

𝛼

 

−1,                                                              𝑖𝑓 ∑∑𝑘𝑖−𝑓𝑥+𝛼,𝑗−𝑓𝑦+𝛽 < 𝑛𝑥 ∗ 𝑛𝑦

𝑓𝑦

𝛽

𝑓𝑥

𝛼

 

(5.11) 

 

This represents a constraint on the model to ensure that only complete frames are included in the 

search for the optimal solution. All incomplete frames are disregarded. To test the validity of the 

frame, in which all blocks within the frame are sent to the same destination, the following indicator 

variable is introduced: 
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𝑣𝑖,𝑗,𝑑,𝑓𝑥,𝑓𝑦 = {
1, 𝑖𝑓 𝑡𝑖,𝑗,𝑑,𝑓𝑥,𝑓𝑦 = 0 | 𝑡𝑖,𝑗,𝑑,𝑓𝑥,𝑓𝑦 = 𝑛𝑥 ∗ 𝑛𝑦             

 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                              
 (5.12) 

 

The following constraint ensures that only frames with blocks with same destinations are 

considered as valid frames: 

∑ ∑ 𝑣𝑖,𝑗,𝑑,𝑓𝑥,𝑓𝑦  ≥ 1, ∀𝑖, 𝑗, 𝑑

𝑛𝑦

𝑓𝑦=1

𝑛𝑥

𝑓𝑥=1

 (5.13) 

 

And to ensure that every block is sent to one destination only, the following constraint is 

introduced: 

∑𝑋𝑖,𝑗,𝑑 = 1, ∀𝑖, 𝑗

𝐷

𝑑=1

 𝑖𝑓 𝑘𝑖,𝑗 = 1 (5.14) 

After finding optimal destinations of blocks considering equipment selectivity, problematic blocks 

with their optimal destinations from MEP step are added back to the bench section and actual final 

profit is calculated from sending all blasted blocks to their final optimal destinations. Figure 5.4e 

shows the result of applying the dig-limit optimization model with 2 blocks by 2 blocks minimum 

mining width to find optimal destinations. 

To account for the direction of mining when optimizing dig-limits, a rotation matrix can be applied 

to the bench before the dig-limits optimization pre-processing step. This aligns the direction of 

mining with the principal directions (north-south and east-west). The dig-limits optimization 

model can then be executed on the rotated blocks, and the results can be visualized in the original 
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coordinate system afterward. This step ensures that the optimization frames align with the mining 

direction.  

5.5 CASE STUDY 

This section presents a case study demonstrating the proposed integrated workflow for optimizing 

dig-limits under grade and blast movement uncertainties. First, a 3D grade control block model 

with a resolution of 0.5m X0.5m X 3m was generated from the blast hole resource database at a 

porphyry copper mine. The block model definition is summarized in Table 5.3. The generated 

grade control block model is including extra air blocks to accommodate the muck pile shape post 

blasting. Fifty BMM ball field measurements were simulated to cover the five flitches at ten 

locations within the bench section. The simulated BMM measurements preserve honor the 

correlation between flitches in terms of distance and generate the D-like shape anticipated from 

the blast. Figure 5.5 provides a plan view of the simulated bench section layout. As shown in 

Figure 5, 168 blast holes and 10 monitoring holes, which only had BMM balls installed without 

explosives, were used in this blast. The bench was divided into five flitches, with 5 BMM balls at 

each monitoring hole covering the five flitches. The flitches are numbered from top to bottom, 1 

to 5. The overall movement direction was towards the west, with minor deviations. The direction 

of movement was determined by comparing the pre-blast and post-blast locations of the BMM 

balls. 
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Table 5.3: Block model properties 

Item Unit X Y Z 

Block size (m) 0.5 0.5 3 

Number of blocks in a 

direction 

 350 240 20 

Minimum centroids (m) -43.75 -18.75 1.5 

Maximum centroids (m) 131.25 101.25 61.5 

Azimuth (degree) 0 

Dip (degree) 0 

 

 

 

Figure 5.5: Bench layout showing blast holes and BMM balls holes location. 
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SGS was used to simulate 50 realizations of copper grade from the blast holes. These realizations 

were validated by checking histogram and variogram reproduction, which showed good 

reproduction of input statistics. Additionally, fifty realizations of blast movement distances were 

simulated using PPMT and SGS, ensuring that relationships between flitch movements at every 

BMM location were respected. Blast movement distances were validated through histogram and 

variogram reproduction. Furthermore, the blast movement distances simulation was validated by 

comparing the bivariate distributions of movements between all flitches in one of the realizations 

to the actual blast movement distances obtained from BMM balls. The results of this comparison 

are summarized in Figure 5.6. 
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Figure 5.6: Testing correlation reproduction between flitch movements in the simulated data 

against the real BMM data. 

The outcomes of the flitch movement distance simulation show good reproduction of multivariate 

relationships compared to actual data, as evidenced by the shape of the distribution and the 

reproduction of similar Spearman correlations 𝜌𝑠 (Spearman, 1961).  It is also noted that some 

correlations might be impacted due to the non-smooth histograms of the real BMM measurement 
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data during the simulation back-transformation process. Histogram smoothing can be applied to 

overcome this challenge. Overall, highly correlated flitch movement distances were reproduced. 

If movements were simulated independently, most correlations would be close to zero, and the D-

like shape resulting from having explosives in the middle part of the bench, which pushes rocks 

further, would not be achievable. 

The direction of movement is simulated using SGS, with each location's movement direction 

divided into sine and cosine components The sine and cosine components were simulated using 

SGS and PPMT, then Equation 5.1 was used to calculate to derive the azimuth values for each 

realization. Minor deviations from the 270o azimuth were observed in the data. The decision to 

simulate movement direction is made to demonstrate the full integrated workflow. Direction 

simulation is only recommended when significant changes in movement direction occur due to 

blast design or unforeseen factors. Blast movement direction realizations were post-processed to 

prevent blocks from moving over the adjacent bench sections. This post-processing step involved 

assigning a fixed direction value of 270o azimuth to blocks within 20m of the north and south 

bench section borders, which is consistent with the maximum movement distance observed from 

the BMM balls in the middle flitch.  

As a result of the simulation step, a total of 50 realizations of grade, blast movement distance and 

direction were generated. Figure 5.7 presents a 3D perspective of the bench section with 

realizations of grade, blast movement distance and directions. 
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Figure 5.7: 3D perspective of the bench section showing Copper, blast movement distance, and 

direction realizations. 

For each realization, the simulated grade values at every block in the grade control block model 

are relocated based on a corresponding realization of blast movement distance and direction to 

generate a post-blast grade realization. This process was applied to all fifty grade realizations, 

resulting in fifty post-blast grade realizations. Ore loss and dilution were calculated for each 

realization, and the range of possible ore loss and dilution values is shown in Figure 5.8. 
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Figure 5.8: Ore loss and dilution calculated on post-blast realizations. 

Based on the ore loss and dilution realizations, ore loss due to blast movement is expected to be 

2.6%, with a minimum value of 2% and a maximum of 3.3%. Dilution is expected to be 6.4%, 

with a minimum value of 5.7% and a maximum of 8%. 

When dealing with multiple destinations, comparing the pre-blast tonnage of each destination to 

the post-blast tonnage provides more detailed insights than summarizing results solely in terms of 

ore loss and dilution. To facilitate this comparison, a material-change classification matrix is 

proposed to summarize the impact of blast movement on the tonnage of different material types or 

classes and their respective destinations. This matrix compares the percentage difference between 

post-blast tonnage and pre-blast tonnage for each material type and destination. For post-blast 

realizations, a material-change classification matrix is computed for each realization. The average 

change in tonnage for post-blast material relative to pre-blast tonnage is calculated and shown in 

Figure 5.9. 
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Figure 5.9: Material-change classification matrices showing expected values and coefficient of 

variation. 

The results show that 47.4% of the waste is expected to be moved to the low-grade class and 0.5% 

to the high-grade class due to dilution caused by blasting. The low-grade class is expected to lose 

4.9% of ore to the waste dump while converting 15.8% of low-grade ore to high-grade ore through 

dilution. No loss of high-grade ore to waste is expected; however, 22.2% of high-grade ore is 

expected to be processed as low-grade. The coefficient of variation (CV) is used as a measure of 

uncertainty for the expected material-change values, and the uncertainty in material-change 

classification is considered low in this case. 

When translating material-change classification into dollar value to assess its impact on profit 

reduction under uncertainty, it is observed that the expected profit pre-blast was reduced from 3.8 

million USD to 3.6 million USD, reflecting an expected profit reduction percentage of 4.3%. The 

distributions of pre-blast profits, post-blast profits, and profit reduction are presented in Figure 

5.10. 
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Figure 5.10: Histograms showing pre-blast profits, post-blast profits, and profit reduction 

percentages. 

After generating post-blast realizations and assessing uncertainty in ore loss and dilution caused 

by grade and blast movement uncertainties, the 3D block model is converted into a 2D model by 

summing tonnage and contained metal vertically at each XY location in the post-blast grade control 

block model. To reduce computational costs, the 2D block model was regridded to 5m x 4m in the 

X and Y directions, respectively, to align with the east-west mining direction.  

Destinations based on MEP were determined. Table 5.4 summarized the economical and 

metallurgical parameters used to calculate the profit for each destination.  
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Table 5.4: Cutoff grade and block economics parameters. 

Item Unit Value 

Copper price $/lb 3.5 

Mining cost $/tonne 3 

Low grade processing cost $/tonne 14 

High grade processing cost $/tonne 25.5 

Low grade recovery % 60 

High grade recovery % 90 

Rock bulk density tonne/m3 2.7 

 

After determining blasted material destinations based on the MEP method, dig-limits optimization 

was executed to ensure that materials are sent to their optimal destinations while accounting for 

equipment selectivity. In this case study, equipment selectivity for this mine is 8m, requiring the 

dig-limits optimization to apply a 3-block by 2-block constraint in the X- and Y-directions, 

respectively, to ensure that mining selectivity and direction are considered. No coordinate rotation 

is applied since the mining direction is aligned with the principal directions. The pre-processing 

step, which aims to identify confined blocks and free face blocks that can be mined more 

selectively, did not identify any blocks that may cause issues during the dig-limits optimization 

step. The economic and metallurgical parameters used in the dig-limits optimization model are the 

same as those used to determine material destinations based on the MEP method. The outcome 

destinations from the MEP method and the risk-based dig-limits optimization are shown in Figure 

5.11. 
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Figure 5.11: Maximum expected profit 2D destinations and risk-based dig-limits optimization 

destinations. 

The results from comparing material destinations due to equipment selectivity relative to MEP 

destinations are summarized as material-change classification matrix in Figure 5.12. 
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Figure 5.12: Material-change classification matrix between Maximum Expected Profit 

classification against Risk-based dig-limits classification due to equipment selectivity. 

Destinations based on dig-limits optimization resulted in converting 0.1% of low-grade material 

to waste and 6.3% of high-grade material to low-grade. Other than these changes, materials 

retained their original destinations as determined by the MEP method. The expected profit from 

mining and processing this bench section decreased from USD 3,548,300 based on MEP 

destinations to USD 3,544,800 after applying dig-limits optimization, representing a profit 

reduction of 0.1%. 

In this case study, it is noted that the impact of blast movement on profit reduction is much more 

significant compared to equipment selectivity. This is expected in the presence of a porphyry 
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copper deposit, which exhibits more spatial continuity compared to nuggety gold deposits. Care 

should be taken before blasting bench sections to minimize blast movement, thereby reducing ore 

loss, dilution, and changes in material classes due to material mixing during the blast. 

It is also worth mentioning that the impact of dig-limits optimization on profit reduction can be 

more pronounced in heterogeneous orebodies (Hmoud and Kumral, 2023). Therefore, capturing 

both sources of ore loss and dilution as part of the standard grade control procedure is essential. 

Each deposit is unique, and this assessment should be conducted at every mine and within different 

zones of the deposit to better understand the main factors controlling ore loss and dilution, as it is 

difficult to generalize rules for this. 

Moreover, the importance of adopting this workflow becomes more significant in the presence of 

a nonlinear profit function. For example, when the grade-recovery relationship is not linear, it is 

necessary to use a stochastic method such as the MEP method to determine material destinations 

under uncertainty without bias. 

5.6 DISCUSSION 

Implementing the proposed integrated grade control workflow offers mining projects a more 

efficient, accurate, and responsive approach to short-term mine planning. This approach can be 

deployed on a cloud-based platform, providing users with easy access to generate optimal risk-

based dig-limits while accounting for grade and blast movement uncertainties. The platform 

facilitates the rapid integration of assay data from blast holes or grade control samples, along with 

BMM ball measurement data, to update a dynamic grade control model that predicts the location 

and grade of displaced material post-blasting. This will allow grade control geologists and short-
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term mine planning engineers to make more informed decisions and improve operational 

efficiency on a daily basis. 

The benefits of this integrated approach extend beyond operational efficiency. By reducing ore 

loss and dilution through more precise material classification, mining projects can recover more 

valuable material, improving overall profitability. The streamlined process minimizes errors in 

destination planning, allowing for quicker, more informed decisions. As the workflow adapts to 

real-time mining conditions, it ensures that geological models align closely with what is happening 

on the ground, reducing the risks associated with grade and blast movement uncertainty. This 

ultimately leads to more consistent production outcomes, lower waste handling costs, and better 

financial performance for mining projects. 

In addition to operational and economic gains, this workflow contributes to sustainability in 

mining. By recovering more resources and reducing waste, it helps lower the environmental impact 

of mining operations. With better material classification, less waste ends up in processing, which 

means less water and energy are needed for downstream tasks like milling and refining. This also 

leads to lower energy use for transporting and disposing of materials, cutting down on fuel 

consumption and emissions. Additionally, by extending the life of the mine and reducing the need 

to re-handle materials, the proposed workflow helps save energy, reduce wear on equipment, and 

moves us one step closer to more sustainable mining. 

5.7 CONCLUSIONS AND FUTURE WORK 

This paper presents an integrated workflow for optimizing dig-limits under grade and blast 

movement uncertainties in open-pit mining operations. The methodology incorporates these 

uncertainties into the grade control process to enhance material-type classification and destination 
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optimization with a goal of minimizing ore loss and dilution. Key findings include the effective 

use of SGS associated with PPMT to capture spatial uncertainties in blast movement distances and 

directions. This approach ensures accurate representation of inherent data variability and 

correlations, providing a robust foundation for subsequent analyses and ensures that the D-like 

shape resulting from blasting is produced without using physical simulation that is computationally 

expensive and do not capture uncertainty. The MEP method is demonstrated as an effective 

approach for determining optimal material-type classification under uncertainty, thereby 

improving overall mining profitability. The importance of using the MEP method becomes more 

pronounced when dealing with non-linear profit functions. The risk-based dig-limits optimization 

model successfully incorporates equipment selectivity, irregular bench shapes, and varying mining 

directions that may reflect different orebody orientations, resulting in practical and economically 

viable dig-limits. A case study on a porphyry copper mine is presented to highlight the significant 

impact of blast movement on ore loss and dilution, emphasizing the need for capturing blast 

movement uncertainty and integrate this uncertainty into dig-limits optimization workflow and 

grade control procedures. By accounting for differential blast movement and its uncertainties, the 

proposed workflow ensures reliable post-blast material classifications, reducing the risk of 

suboptimal decisions. The practical viability and effectiveness of the workflow in real-world 

scenarios are demonstrated, showing that incorporating blast movement uncertainty leads to more 

accurate assessments of ore loss and dilution, providing valuable insights for mine planning and 

operations. 

In conclusion, integrating grade and blast movement uncertainties into the grade control process 

enhances material classification accuracy and dig-limits optimization, resulting in improved 

economic outcomes and operational efficiency. Future research should focus on refining blast 
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movement models to work faster with larger moving frames, exploring their applicability to 

various ore deposits, and developing automated tools to streamline the implementation of this 

integrated approach. Incorporating variogram and histogram uncertainties of blast movement 

distance and direction into the workflow, given the limited BMM ball measurements, will help 

better capture parameter uncertainty and the overall uncertainty in blast movement. Additionally, 

linking stochastic dig-limits results to short-term mine planning, especially when multiple benches 

are mined simultaneously, and considering blending, would further enhance operational planning. 

Furthermore, advancements in BMM ball technology, particularly in reducing their cost, would 

enable the installation of more sensors in each blast, providing more accurate real-time blast 

movement assessments and reducing modeling uncertainty. Developing accurate and cost-

effective BMM balls that can be installed in multiple holes and screened through sorters without 

needing extraction before mining the muck-pile would significantly enhance this workflow and 

save time. Additionally, developing automated tools to streamline this integrated approach would 

further benefit the mining industry by reducing manual interventions and improving decision-

making processes. 
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Chapter 6 Conclusions and future work 

6.1 CONCLUSIONS 

This research has contributed to the field of dig-limit optimization by quantifying and integrating 

grade and blast movements uncertainties in determining optimal dig-limits, with a focus on spatial 

heterogeneity. A number of conclusions can be drawn from this research. 

First, a copula-based simulation approach was effectively used to quantify blast movement 

uncertainty on a flitch-by-flitch basis, helping to capture its impact on dig-limit optimization 

outcomes and identify areas with a high risk of ore loss and dilution. Incorporating blast movement 

realizations significantly improved the estimation of ore loss and dilution, providing a more 

accurate profit assessment that closely reflects reality. Identifying high-risk material 

misclassification areas in advance is crucial to ensure that careful grade control procedures are 

applied in these areas, reducing ore loss and dilution and ultimately increasing project profitability. 

Second, Shannon's entropy principle was successfully used to quantify spatial heterogeneity 

between ore and waste on a bench-by-bench basis at the scale of selective mining units. Two 

indices measuring spatial entropy globally and locally were introduced and tested through case 

studies, proving useful in quantifying spatial heterogeneity linked to ore loss and dilution. 

Understanding the relationship between spatial heterogeneity, blast movement, ore loss, and 

dilution is essential for predicting the level of ore loss and dilution due to ore spatial heterogeneity 

and blast movement. By identifying bench sections with increased spatial heterogeneity post-blast, 

controlled blasting can be applied to these benches to reduce blast movement, thereby reducing 

dilution and ore losses, and enhancing project profitability.  
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Third, incorporating grade and blast movement uncertainties into the grade control process 

enhances material-type classification and dig-limit optimization outcomes. This integration results 

in a better assessment of ore loss and dilution, thus providing a more accurate profit assessment. 

The methodologies developed in this thesis were applied to a range of deposit types, illustrating 

their adaptability across different geological settings. This demonstrates that the workflow is not 

restricted to a specific deposit type and can be applied broadly without significant modification.  

Finally, the proposed methodologies aim to optimize material destinations, contributing to more 

sustainable mining practices by improving resource efficiency and reducing waste. The workflows 

developed in this thesis support more precise material classification and routing, minimizing the 

processing of low-value material, reducing energy consumption, and lowering the overall 

environmental impact. These advancements demonstrate how this research aligns with the mining 

industry's broader goals of responsible and sustainable mining. 

6.2 FUTURE WORK 

Building upon the findings and methodologies developed in this thesis, several avenues for future 

research and development can be identified. Improving the performance of dig-limit optimization 

models could be achieved by exploring advanced computational methods such as parallel 

computing, aggregation/disaggregation, and nested Bender decompositions, particularly for larger 

frames and more complex deposits. 

The decision to use exact methods, specifically mixed-integer linear programming, was based on 

the manageable problem size, which allowed for efficient computation within a short timeframe 

for scenarios involving frames of up to 3 blocks by 3 blocks. However, scaling this approach to 

larger frames presents significant computational challenges. Overcoming these limitations will 
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require successful implementation of the aforementioned advanced techniques. An alternative 

approach involves leveraging metaheuristic, heuristic, or Bayesian optimization methods. While 

these methods may not guarantee optimality, they offer the potential to generate high-quality 

solutions in a shorter timeframe. Given the inherent uncertainties in input parameters, the trade-

off between computational efficiency and guaranteed optimality may be acceptable, as it aligns 

more closely with realistic decision-making scenarios. 

Additionally, accounting for the angle of repose, which impacts the degree of dilution when 

extracting blasted material in certain mining directions, could be added to the model to generate 

more accurate dig-limits. Extending the application of spatial entropy to more than two categories, 

such as multiple ore types and waste, would allow for a more comprehensive assessment of spatial 

heterogeneity. 

Refining blast movement models to work faster with larger moving frames and exploring their 

applicability to various ore deposits would also be beneficial, while incorporating variogram and 

histogram uncertainties of blast movement distance and direction into the workflow would help 

capture parameter uncertainty more effectively. 

Technological advancements in blast movement monitoring, particularly in reducing the cost and 

improving the accuracy of blast movement monitoring balls, would enable the installation of more 

sensors in each blast, providing more accurate real-time blast movement assessments and reducing 

modeling uncertainty. Developing automated tools to streamline the integrated approach for dig-

limit optimization would reduce manual interventions and improve decision-making processes, 

ultimately benefiting the mining industry by enhancing operational efficiency and economic 

outcomes. 
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The recent advancement of parallel computing may facilitate the multiphysics modeling of blast 

movement in reasonable times, and investigating the applicability of using a stochastic approach 

in modeling blast movement using multiphysics simulation models is an area worth exploring. By 

using these multiphysics simulation models, the need for blast movement monitoring balls may 

reduce over time and eventually become unnecessary. Future work should focus on investigating 

the incorporation of non-Newtonian fluid models, such as the Herschel-Bulkley model, into 

multiphysics simulations of blasting phenomena. This might provide a better representation of the 

complex interactions between detonation gases and fractured rock, particularly in predicting gas 

expansion and blast movement.  

Additionally, linking geometallurgy to blast movement can provide valuable information that can 

be used to characterize the physical characteristics of the rock, enabling better modeling of blast 

movement. Attributes such as unconfined compressional strength can be predicted on a block-by-

block basis using machine learning techniques, increasing the accuracy of physical blast movement 

simulation models.  

Geometallurgical models can also be used to identify different material types that require specific 

processing methods. For example, they can help distinguish between oxides and sulfides, hard and 

soft rocks, or ores that contain harmful elements such as arsenic and heavy metals or have the 

potential to cause acid-rock drainage. By integrating this into the dig-limit optimization models, 

the objective function can be adjusted to direct these materials to the right destinations. This can 

contribute to building more sustainable mining operations. 

Finally, linking stochastic dig-limit results to short-term mine planning, especially when multiple 

benches are mined simultaneously and blending is considered, would further enhance operational 

planning. Investigating holistic optimization approaches that consider various operational 
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scenarios, including blast movement, fragmentation size, and the cost of loading, hauling, and 

crushing, could further improve decision-making. Addressing these future research directions will 

refine and expand the methodologies and findings from this thesis, contributing to more efficient 

and profitable mining operations in the face of inherent uncertainties.
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