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Abstract

The optimization of dig-limits is an important step in grade control and short-term mine planning
due to its crucial role in enhancing the profitability and efficiency of open-pit mining operations
by reducing ore loss and dilution. This thesis, through its three journal papers, investigates the
challenges posed by blast movement and spatial heterogeneity in ore and waste classification
through accounting for these factors when determining optimal dig-limits. The first study
introduces a methodology to quantify uncertainty in blast movement and its impact on dig-limits
optimization. Using measurement data from blast movement monitoring balls and multivariate
distributions fitted via D-vine copula, blast movement realizations are generated through Monte
Carlo simulation. A mixed-integer linear programming model then determines optimal dig-limits,
resulting in a probabilistic ore probability map. The case study reveals that neglecting blast

movement can lead to a significant overestimation of expected profit.

The second study emphasizes the importance of managing ore loss and dilution, which
significantly impacts the economic, environmental, and technical outcomes of mining operations.
By calculating the newly proposed global and local spatial entropy indices, the study assesses the
influence of spatial heterogeneity on ore loss and dilution. High global spatial entropy index values
correlate with increased ore loss and dilution, indicating potential profit reduction. The local spatial
entropy index is used to identify areas that are suitable for installing blast monitoring balls to
reduce material misclassification due to blast movement. Case studies demonstrate the relationship
between spatial entropy, cut-off grades, blast movement, and profit, highlighting the necessity for

controlled blasting in specific bench sections to mitigate profit reduction.

The third study presents an integrated workflow for optimizing dig-limits under grade and blast

movement uncertainties. By incorporating multivariate geostatistical simulation workflows,
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including Projection Pursuit Multivariate Transformation and Sequential Gaussian Simulation, the
study captures spatial uncertainties in grade distribution and blast movement. The Maximum
Expected Profit method is utilized to determine optimal material destinations, enhancing mining
profitability. The newly proposed risk-based dig-limits optimization model accommodates mining
equipment selectivity, irregular bench shapes, and varying orebody orientations, ensuring reliable
post-blast material classifications and improved project profitability and operational efficiency. A
case study on a porphyry copper deposit illustrates the significant impact of blast movement on
ore loss and dilution, underscoring the need for accurate blast movement modeling in grade control

procedures and presenting the outcomes of the integrated workflow proposed in this study.

Through these studies, this thesis provides comprehensive methodologies to address blast
movement and spatial heterogeneity challenges in dig-limits optimization, ultimately contributing

to more profitable and efficient open-pit mining operations.
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Résumé

L'optimisation des limites d'excavation est une étape importante dans le contrdle de la teneur et la
planification a court terme des mines en raison de son role crucial dans l'amélioration de la
rentabilité et de 1'efficacité des opérations minicres a ciel ouvert, en réduisant la perte de minerai
et la dilution. Cette thése, a travers ses trois articles de journal, examine les défis posés par les
mouvements de la masse dynamitée et I'hétérogénéité spatiale dans le cadre de la classification des
zones de minerai et de stériles, en tenant compte de ces facteurs lors de la détermination des limites
d'excavation optimales. La premicre étude présente une méthodologie pour quantifier I'incertitude
des mouvements de la masse dynamitée et son impact sur 'optimisation des limites d'excavation.
En utilisant des données de mesure provenant de balles de surveillance du mouvement de la masse
dynamitée et des distributions multivariées ajustées via ’utilisation de copules D-vine, des
réalisations de mouvement de la masse dynamitée sont générées par simulation de Monte Carlo.
Un modele de programmation linéaire mixte en nombres entiers détermine ensuite les limites
d'excavation optimales, ce qui donne une carte de la probabilité de présence de minerai. L'étude
de cas révele que négliger le mouvement de la masse dynamitée peut conduire a une surestimation

significative du profit attendu.

La deuxieme étude met l'accent sur l'importance de la gestion des pertes de minerai et de la
dilution, qui impactent de maniere significative les résultats économiques, environnementaux et
techniques des opérations minieres. En calculant les nouveaux indices globaux et locaux d'entropie
spatiale proposés, I'é¢tude évalue l'influence de I'hétérogénéité spatiale sur les pertes de minerai et
la dilution. Des valeurs ¢élevées de l'indice global d'entropie spatiale sont corrélées a une
augmentation des pertes de minerai et de la dilution, indiquant une réduction potentielle du profit.

L'indice local d'entropie spatiale est utilisé¢ pour identifier les zones adaptées a l'installation de



balles de surveillance du mouvement de la masse dynamitée afin de réduire la mauvaise
classification des matériaux due aux mouvements. Les études de cas illustrent les relations entre
'entropie spatiale, les teneurs de coupure, le mouvement de la masse dynamitée et le profit,
soulignant la nécessité d'un dynamitage contrélé dans des sections spécifiques des bancs miniers

pour atténuer la réduction des profits.

La troisiéme étude présente un flux de travail intégré pour optimiser les limites d'excavation en
tenant compte des incertitudes de teneur et de mouvement de la masse dynamitée. En incorporant
des flux de travail de simulation géostatistique multivariée, incluant I’utilisation de la
transformation multivariée par poursuite de projection et la simulation séquentielle gaussienne,
I'étude capture les incertitudes spatiales dans la distribution des teneurs et le mouvement de la
masse dynamitée. La méthode de I’espérance de profit maximum est utilisée pour déterminer les
destinations optimales des matériaux, améliorant ainsi la rentabilité¢ d’exploitation. Le nouveau
modele d'optimisation des limites d'excavation basé sur les risques prend en compte la sélectivité
des équipements miniers, les formes irréguliéres des bancs miniers et les orientations variées des
corps minéralisés, assurant des classifications fiables des matériaux aprés dynamitage et
améliorant la rentabilité et 1'efficacité opérationnelle du projet. Une étude de cas sur un gisement
de cuivre porphyrique illustre lI'impact significatif du mouvement de la masse dynamitée sur les
pertes de minerai et la dilution, soulignant la nécessité d'un modele précis de mouvement de la
masse dynamitée dans les procédures de contrdle de la teneur et présentant les résultats du flux de

travail intégré proposé dans cette étude.

A travers ces études, cette thése fournit des méthodologies complétes pour relever les défis liés au
mouvement de la masse dynamitée et a 1'hétérogénéité spatiale dans l'optimisation des limites

d'excavation, contribuant ainsi a des opérations minieres a ciel ouvert plus rentables et efficaces.
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Chapter 1

Chapter 1: Introduction
1.1 OVERVIEW

Ore-waste classification is an essential part of grade control and short-term mine planning that
aims to maximize profit from mining operations by sending blasted materials to their optimal
destinations and minimizing ore loss and dilution. The ore-waste classification should also
consider a number of operational factors such as equipment selectivity and blast movement to
delineate ore from waste. This classification involves creating a block model with a block size
equal or smaller than the selective mining unit size that shows the spatial distribution of ore and
waste zones within an open-pit bench. Due to the small size of these blocks, they are grouped into
larger, spatially coherent clusters called dig-limits, which are mined by large mining equipment.
The block model generated to classify ore and waste is normally referred to as grade control block
model and it is used as the base for short-term mine planning. Misclassifying selective mining
units can lead to significant ore losses and dilution, especially when ore and waste are visually
indistinguishable, as is often the case with precious metal deposits. Blast movements further
complicate accurate ore-waste boundary determination, adding uncertainty that can result in
financial losses. Therefore, accurate modeling of blast movement is crucial for determining

optimal dig-limits.

Current methods for determining dig-limits often rely on the expertise of grade control geologists
who manually digitize ore and waste polygons, guided by rock types, cut-off grades, and economic
factors. However, this manual process is subjective, time-consuming, and suboptimal. Various
heuristic and metaheuristic algorithms, such as simulated annealing, genetic algorithms, and

greedy searches, have been proposed to address these limitations, but they often fail to guarantee
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optimal results and require careful parameter selection. The same applies to spatial clustering
methods, which attempt to identify spatially coherent blocks sharing the same characteristics but
still suffer from subjectivity in selecting hyperparameters. Alternatively, mixed-integer

programming has been used to determine dig-limits but it suffers from high computational costs.

Blast movement significantly impacts ore loss and dilution, yet many dig-limits optimization
techniques fail to account for it. Accurate modeling of blast movements is essential for practical
and profitable mining operations. Approaches to modeling blast movements include multi-physical
simulations, physical field measurements to measure blast movement distance and direction, and
machine learning techniques. Each of these approaches has its challenges, such as high
computational cost and the need for good number of physical field measurements to track the

movement of blasted materials within the blasted bench section.

To reduce ore loss and dilution, various strategies can be employed, including improved blasting
designs, accurate orebody characterization, and optimized grade control procedures.
Understanding ore heterogeneity can help assess the degree of expected ore loss and dilution pre-
blast. The same concept can be used post-blast to assess the changes in ore loss and dilution due
to blast movement. In fact, developing customized indices to measure the spatial heterogeneity of
ore and waste on bench sections at the scale of selective mining unit is not explored in literature

and requires further studying.

The implementation of grade control procedures that integrate blast movement modeling and dig-
limits optimization is vital for minimizing ore loss and dilution. Effective grade control practices
ensure accurate short-term production schedules, and this leads to maximize profitability.
Deterministic estimation methods such as Ordinary Kriging and Inverse Distance are commonly

used for grade control models, but they can introduce bias and suboptimal decisions when it comes
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to determine optimal blasted material destinations. Geostatistical simulation techniques offer a
better alternative by producing equiprobable grade values at every location in the bench section,
and these simulated values will generate optimal destinations of material under uncertainty that
also account for asymmetric profit functions when metallurgical recovery and grade show

nonlinear relationship.

Uncertainty in blast movement, originating from factors like inconsistent blast designs and rock
mass heterogeneity, must be captured and managed to improve grade control and dig-limits
optimization. Although blast movement uncertainty is considered an important contributor to
understanding better ore loss and dilution uncertainties, it has never been incorporated in dig-limits
optimization to generate the optimal destination of blasted material under uncertainty. Aside from
blast movement uncertainty, grade uncertainty is also considered one of the main sources of
uncertainty that has significant impact on material classification and dig-limits optimization

especially when dealing with erratically distributed orebodies.

This thesis proposes an integrated approach that combines grade and blast movement uncertainties
to determine optimal dig-limits. Blast movement uncertainty is modeled on flitch-by-flitch basis
as well as block-by-block basis to capture uncertainty in differential blast movement. The effect
of blast movement uncertainty on dig-limits is investigated in this thesis. The proposed
methodology extends to propose customized spatial entropy indices to describe ore and waste
heterogeneity with an aim to understand the relationship between spatial entropy and cut-off grade,
blast movement, and dig-limits optimization outcomes, and how these factors impact project
profitability. This thesis is developed to enhance ore recovery, reduce dilution and ore loss, and

improve the overall efficiency of open-pit mining operations.



Chapter 1

1.2 RESEARCH OBJECTIVES

The primary aim of this PhD thesis is to advance the field of grade control and short-term mine
planning by addressing the complexities introduced by blast movement and spatial heterogeneity
of ore and waste on dig-limits optimization outcomes such as ore loss and dilution. This research
focuses on developing innovative methods and workflows to determine optimal dig-limits that

improve ore recovery, reduce waste, and maximize profit.

Outlined below are the proposed objectives to reach this target:

e Develop an integrated approach that combines grade and blast movement uncertainties to
determine optimal dig-limits.

¢ Quantify the risk associated with blast movement and evaluate its effects on profit, dilution,
and ore losses in bench sections.

e Develop customized spatial entropy indices for describing the spatial heterogeneity of ore
and waste at the selective mining unit scale within bench sections and use them to
understand better ore loss and dilution.

e Quantify the relationship between cut-off grade, spatial entropy, and the running time and
outcomes of dig-limits optimization.

e Model differential blast movement and capture uncertainty on a block-by-block basis.

e Improve the dig-limits optimization model by accounting for multi-destinations, irregular
bench shapes, higher shovel selectivity near bench free faces, and various orebody
orientations while ensuring that the outcomes of the dig-limits optimization remain

optimal.
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1.3 ORIGINAL CONTRIBUTIONS

The following points represent the original contributions of this PhD thesis:

e Investigating the impact of blast movement uncertainty on dig-limits optimization
outcomes such as profit, dilution, and ore loss.

e Developing new spatial entropy indices that describe the spatial heterogeneity of ore and
waste at the selective mining unit scale within bench sections and use them to understand
better how pre-blast and post-blast ore heterogeneity impact ore loss and dilution.

e Proposing an integrated workflow that considers grade and blast movement uncertainties
in determining optimal dig-limits. It also models stochastically differential blast movement
on block-by-block basis to generate more accurate representations of actual blast
movement.

e Improved the dig-limits optimization model to account for multi-destinations, irregular
bench shapes, enhanced shovel selectivity near bench free faces, and various orebody
orientations. These improvements make the optimization model more robust and adaptable
to real-world mining conditions, thereby increasing operational efficiency and

effectiveness.

1.4 THESIS OUTLINE

The outline of this thesis provides a comprehensive understanding of dig-limit optimization in
open-pit mining, emphasizing the challenges and solutions related to blast movement and spatial

heterogeneity. The detailed outline is presented below.

Chapter 1 provides a general background on grade control operations and their importance in

open-pit mining. It introduces key concepts such as dig-limits optimization, blast movement,
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material classification, and spatial entropy, explaining their roles in effective grade control.
Additionally, this chapter outlines the research motivation, objectives, and original contributions

of the thesis.

Chapter 2 provides comprehensive information related to grade control procedures that include,
geostatistical modeling of grade control blocks models, modeling blast movement, dig-limits

optimization, material classification, and spatial entropy and its application in mining.

Chapter 3 introduces a methodology for optimizing dig-limits in mine planning by accounting for
blast movement, which traditional pre-blast dig-limits often ignore. Blast movement causes ore
loss and dilution, leading to financial losses. The proposed method uses blast movement data from
monitoring balls and applies statistical modeling and Monte Carlo simulation to predict these
movements. A mixed-integer linear programming model optimizes dig-limits based on these
predictions, producing an ore probability map. A case study shows that including blast movement
in dig-limit calculations significantly reduces profit overestimation and identifies high-risk areas

for misallocation.

Chapter 4 explores the impact of spatial heterogeneity on ore loss and dilution in open-pit mining,
which significantly affects the economic and operational success of mining projects. It focuses on
uncontrollable factors by applying the concept of spatial entropy to measure heterogeneity at the
scale of selective mining units. The study uses global spatial entropy to evaluate the potential for
ore loss and dilution and local spatial entropy to guide the placement of blast movement monitoring
balls. High global spatial entropy values indicate a greater risk of ore loss and dilution, thus
reducing profit. The research investigates how changes in cut-off grades, blast movement, and dig-

limit optimization affect spatial entropy and profit. The results highlight the importance of
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controlled blasting in specific bench sections to manage ore loss and dilution, revealing an

exponential increase in profit reduction with higher global spatial entropy.

Chapter 5 presents a comprehensive workflow for optimizing dig-limits in open-pit mining,
considering the uncertainties of grade distribution and blast movement. The methodology
integrates these uncertainties to improve material classification and destination optimization,
aiming to minimize ore loss and dilution. It uses multivariate geostatistical simulation, including
Projection Pursuit Multivariate Transformation and Sequential Gaussian Simulation, to model
blast movement accurately. The Maximum Expected Profit method determines the optimal
destinations for materials, enhancing overall mining profitability. A case study on a porphyry
copper deposit demonstrates the significant impact of blast movement on ore loss and dilution,
highlighting the necessity of accurate blast movement modeling. The workflow ensures reliable
post-blast material classifications, reducing suboptimal decisions and improving both profitability

and operational efficiency.

Chapter 6 concludes the research and indicates the future avenues of the research.
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Chapter 2: Literature Review

In this section, the literature on the grade control process is presented. This review covers data
collection in grade control, the creation of grade control models using geostatistics, open pit
blasting, blast movement modeling, dig-limit optimization, material classification that
discriminates between various ore and waste types, and spatial entropy, which describes the degree
of spatial heterogeneity in the orebody and how it might be used to quantify ore loss and dilution.

Detailed reviews of each topic are provided in their respective sections.

2.1 GRADE CONTROL

Grade control operations are an essential part of open pit mining that directly impacts the economic
viability of mining operations. It involves the accurate classification of mined material into
different material types, such as ore and waste, based on their economic value. The primary goal
is to ensure that high-grade ore is sent to the mill for processing, while low-grade material is
designated as waste and directed to the dump. This classification process relies heavily on assays
of drill samples taken from blastholes or infill drilling reverse circulation (RC) holes, which are
then used to estimate the grade distribution within the orebody. Effective grade control minimizes
dilution (the contamination of ore with waste) and ore loss (the misclassification of ore as waste),
thereby optimizing the overall economic returns of the mining operation (Hmoud and Kumral,

2022; 2023; Rossi and Deutsch, 2013).

In open pit mining, the accuracy of grade control is influenced by several factors, including the
geological complexity of the orebody, the quality of the sampling data, and the effectiveness of the
interpolation techniques used. In open pit mines, controlling ore grade relies on sampling from

blastholes or additional infill drilling (Abzalov, 2016). Grade control drilling commonly uses RC
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or open hole percussion drill rigs (Abzalov et al. 2010). These methods are favored due to the
limited time available for drilling and the need to collect large volumes of representative samples.
Mine logistics constraints demand low-cost drilling techniques with high drilling rates that do not
compromise sample quality. Auger drilling can also be employed for grade control in soft ground
conditions, enabling the use of auger drilling (Abzalov and Bower 2014). An alternative approach
is direct sampling from mine faces or using shallow trenches and winzes. Although this method
was extensively used in the past, it has largely been replaced by grade control drilling. The high
density of grade control data distribution enables the most accurate determination of ore body

contacts and delineation of internal waste contours.

According to Rossi and Deustch (2013), a number of methods have been proposed to construct
grade control block models: (1) conventional methos; (2) kriging-based methods; (3) simulation-
based methods. Conventional methods used for grade control include blast hole averaging, inverse
distance methods, and nearest-neighbor-based methods. Kriging-based methods that are typically
used in constructing grade control models are Ordinary Kriging and Indicator Kriging. Kriging
methods provide estimates that minimize estimation variance and produces unbiased estimate.
Simulation-based methods aim to optimally select ore and waste according to different optimality

criteria. It is also valuable when dealing with several material types and destinations.

2.2 GEOSTATISTICAL MODELING OF GRADE CONTROL BLOCK MODELS

Kriged-based methods and simulation-based methods are part of the geostatistical modeling
approaches that can be applied to construct grade control block models. To understand these

approaches, a brief literature review on the origin and development of geostatistics is provided.
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Krige (1951) was a pioneer in the statistical valuation of mineral deposits. Matheron (1963)
developed the theory of regionalized variables and unbiased spatial estimation, naming it Kriging
in honor of Danie Krige for his contributions to mineral resource valuation. Kriging theory is well
documented in literature and its application in mining is discussed by a number of authors (David,

1977, Isaaks & Srivastava, 1989; Journel & Huijbregts, 1978).

Kriging remains a cornerstone of geostatistical approaches in grade control due to its ability to
provide unbiased estimates with minimum variance. Ordinary Kriging and Simple Kriging have
been developed to address different aspects of grade estimation. Each Kriging method has its
strengths and is suited to specific types of data and geological conditions. Simple kriging assumes
that the mean is known and stationary (Rossi and Deutsch, 2014; Isaaks and Srivastava, 1989).
Ordinary Kriging constrains the weights to samples in the search range to sum to 1 to remove the

need for the global known mean (Rossi and Deutsch, 2014; Isaaks and Srivastava, 1989).

Indicator Kriging (Journel & Huijbregts, 1978) is another form of Kriging that convert grade into
binary variable based on a cut-off and interpolate the binary variable to predict probability of
exceeding cut-off grade and it is used as well to delineate ore from waste in grade control models

(Abzalov, 2016).

In addition to these Simple, Ordinary, and Indicator Kriging methods, other multivariate
geostatistical techniques, such as Cokriging (Isaaks and Srivastava, 1989), have been employed to
enhance grade control. Cokriging models variables of interest while honoring their spatial

relationships (Rossi and Deutsch, 2014).

Geostatistical simulation is a method used to model spatial uncertainty in ore grades, allowing for

the assessment of economic consequences for decisions made under uncertainty (Deutsch et al.,

10
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2000; Glacken, 1996; Isaaks, 1991; Neufeld et al., 2005; Richmond, 2003). Techniques such as
Sequential Gaussian Simulation (SGS) (Isaaks, 1991) capture the spatial uncertainty of grade
distribution, enabling mining engineers and grade control geologists to better understand the risks
of ore loss and dilution and develop more accurate grade control block models that reproduce grade
histograms and variograms. Other methods such as Turning Bands (Journel, 1974), and Partial
Differential Equations Simulation (Lindgren et al., 2011) are used as well to generate realizations
of grade distribution. However, SGS is the most widely used method in the mining and petroleum

industries.

SGS models spatial uncertainty by generating multiple realizations of a continuous variable such
as ore grade. This method involves transforming the ore grade data into a normal distribution, then
sequentially simulating values at unsampled locations based on the spatial structure summarized
by a variogram model. Each location is simulated by drawing from a Gaussian distribution
conditioned on both the original data and previously simulated values to maintain spatial
dependencies. Finally, the simulated values are back-transformed to their original units and
validated to ensure the quality of the simulation. This process results in a suite of equally probable
spatial distributions, providing a detailed picture of grade variability within the bench and allowing
for the assessment of risks and uncertainties in grade control decisions (Isaaks, 1991; Deutsch &

Journal, 1998; Goovaerts, 1997; Chilés & Delfiner, 1999).

2.3 OPEN PIT BLASTING

Open pit blasting is a critical operation in surface mining, involving the controlled use of
explosives to break rock for extraction. The design and execution of blasts in open pit mines

significantly impact safety, efficiency, and economic performance. This section provides an

11
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overview of open pit blast design, the blasting mechanism, and various blasting techniques,

including cast blasting, pre-splitting, and cushion blasting, drawing on well-established literature.

The design of an open pit blast is a complex process involving careful planning to achieve the
desired fragmentation while minimizing adverse effects such as ground vibrations, fly rock, and
air overpressure. Key elements of blast design include the determination of blast patterns, hole

diameters, burden, spacing, explosive type, and the amount of explosive charge per hole.

Blast patterns are typically designed based on the geology of the rock mass, the required
fragmentation, and the desired bench configuration. Burden and spacing are critical parameters
influencing the blast's effectiveness. Burden refers to the distance from the blast hole to the free
face, while spacing is the distance between adjacent blast holes. A well-designed burden and
spacing ensure that the explosive energy is effectively transmitted through the rock, resulting in
uniform fragmentation (Jimeno et al., 1995). Figure 2.1 presents a schematic of a bench section,

illustrating an example of blast design and highlighting the key terms used in describing the design.

12



Chapter 2

-
-
-

Loe Burde\n% <_* @ed Spacing (S)
_ - . .___r | H?‘Ie Diameter (D)
@

-~

=~ Backbreak New Crest
) ® bl S~ ~< & (After Mucking) -
Sy

- @
sempeignt 5L) o e -y
-

Bench Height
(BH)

~

Face Angle (FA)

Subdrill (SD) F ol

Figure 2.1: Example of bench section layout showing blast design (from Nobel, 2010).

The explosive charge is determined based on the rock's characteristics, such as its density, strength,
and elasticity. Modern blasting techniques often involve the use of electronic detonators, which
allow for precise timing of the blast sequence, optimizing fragmentation and reducing

environmental impacts (Persson et al., 1994).

The blasting mechanism involves the rapid release of energy from the explosive material,
generating a shock wave that propagates through the rock mass. This shock wave causes the rock
to fracture, leading to fragmentation. The blast's effectiveness is influenced by several factors,
including the type of explosive used, the initiation sequence, and the rock's properties (Persson et

al., 1994).

When an explosive is detonated, it produces high-pressure gases that expand rapidly, generating a

shock wave that travels at supersonic speed through the rock. This wave induces compressive and

13
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tensile stresses in the rock, leading to crack formation. The cracks propagate through the rock,
causing it to break into smaller fragments. The fragment size is determined by the explosive's
energy, the blast holes' spacing, and the rock's natural fracture system (Langefors & Kihlstrom,

1978).

Controlled blasting techniques, such as pre-splitting, cushion blasting, and trim blasting, are often
employed to manage the extent of fragmentation and reduce damage to the surrounding rock.
These techniques involve creating a series of closely spaced blast holes that are detonated in a
specific sequence to create a smooth final wall in the pit, minimizing overbreak and enhancing pit

wall stability (Ash, 1980).

Pre-splitting is a controlled blasting technique used to create a clean separation between the final
pit wall and the rest of the rock mass. This method involves drilling a row of closely spaced holes
along the final excavation line, which are then lightly charged and detonated before the main blast.
The purpose of pre-splitting is to induce a controlled crack in the rock, reducing the risk of

overbreak and ensuring a stable pit wall (Hustrulid, 1999).

Pre-splitting is particularly useful in situations where wall stability is critical, such as in steeply
dipping rock formations or when dealing with highly fractured rock masses. This technique
minimizes damage to the final wall, preserving its structural integrity and reducing the likelihood

of slope failures (Chiappetta, 1990).

Cushion blasting, also known as smooth blasting, is another controlled blasting technique used to
achieve a smooth final wall in an open pit. This method involves placing a series of lightly charged

blast holes along the final excavation boundary, with the holes spaced more closely together than

14
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in conventional blasting. The light charges produce minimal fracturing, reducing the risk of

overbreak and creating a smoother final surface (Persson et al., 1994).

Cushion blasting is often used in conjunction with other blasting techniques, such as pre-splitting,
to enhance wall stability and reduce the potential for backbreak. The smooth walls created by
cushion blasting are beneficial in maintaining long-term pit wall stability, particularly in operations

where the final wall will be exposed for extended periods (Chiappetta, 1990).

Trim blasting, also known as perimeter blasting, is similar to cushion blasting but is used primarily
for trimming the final pit walls. It involves the use of smaller explosive charges and closer hole
spacing to minimize overbreak and achieve a clean wall surface. Trim blasting is typically
conducted as a secondary operation after the main blast to refine the pit wall and ensure it meets

the desired design specifications (Ash, 1980).

Trim blasting is particularly useful in finalizing the geometry of the pit wall and is often used in
combination with other techniques like pre-splitting and cushion blasting. This method helps to
ensure that the final wall is stable and free from loose rock, which could pose a safety hazard

during mining operations (Wyllie & Mah, 2004).

Another important blasting technique that is widely used in coal mining that aims to move a large
volume of overburden material into a pre-determined area without the need for additional handling.
This method effectively reduces the need for costly material handling equipment and increases

overall mining efficiency (Wyllie & Mah, 2004).

In cast blasting, the design is tailored to maximize the horizontal displacement of the blasted
material, known as "casting." The blast design typically involves larger hole diameters, increased

burden and spacing, and higher explosive charges compared to conventional blasts. The timing
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sequence is also critical in cast blasting, as it determines the direction and extent of material

displacement (Wyllie & Mah, 2004).

The primary advantage of cast blasting is its ability to reduce the overall cost of stripping by
minimizing the need for draglines, shovels, or trucks to move the material. By casting a significant
portion of the overburden directly into the spoil pile, the method streamlines the process, leading

to faster overburden removal and improved production rates (Dyno Nobel, 2020).

2.4 BLAST MOVEMENT

The movement of blasted material significantly affects grade control accuracy. When a blast is
initiated, the explosive energy fractures the rock and displaces it, causing movement of the
material. This movement can result in the mixing of ore and waste, leading to dilution and ore loss
if not properly accounted for. Understanding and managing blast movement is essential for

maintaining the integrity of grade control.

One key aspect to manage blast movement in order to reduce ore loss and dilution is to model it.
Hmoud and Kumral (2023) categorized blast movement modeling approaches into four main
types: (1) multi-physical simulations, (2) heuristic methods, (3) machine learning models, and (4)
stochastic methods. Each of these approaches has unique strengths and limitations, and their
applicability depends on various factors, including the complexity of the geological conditions and

the availability of computational resources.

2.4.1 Multi-Physical Simulations

Multi-physical simulations integrate various physical processes to model blast dynamics. These
simulations consider factors such as explosive energy, rock mass properties, and blast design

parameters to predict the movement of blasted material.
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One of the primary challenges in using multi-physical simulations to model blast movement in
open pit mines is the difficulty in accurately gathering all necessary input parameters due to the
complexity of the simulation. This process often requires extensive computational time, which is
impractical given the frequency of blasting operations. Additionally, the variability of rock mass
properties and blast conditions adds to the complexity, making it challenging to develop accurate
models without extensive field data. However, with the advancement of cloud and parallel

computing, solving these complex simulations in a short time is applicable.

Zou and Jun (2021) investigated the rock fragmentation movement during bench blasting,
emphasizing its importance alongside blast fragmentation. They aimed to understand the shape of
the muckpile post-blast. Traditional methods for modeling rock fragmentation movement are
force-based and computationally intensive. In this study, they extended the position-based
dynamics (PBD) method to simulate rock fragmentation movement in production blasting,
describing rock mass displacement within a rigid-body dynamics framework. The model
discretizes the rock mass volume into small, irregularly shaped blocks using a Voronoi algorithm,
assigning velocity to each block based on blast energy. The PBD method then simulates the
movement, collision, and landing of the blocks. A practical bench blasting case was simulated to
validate the PBD method, successfully reproducing and analyzing the movement of rock

fragmentation to form the final muckpile.

Yu et al. (2022) investigated blast movement, a major cause of ore loss and dilution in mines that
rely on pre-blast ore boundaries for shovel loading. The study used a simulation approach
combining the finite element method for blast loading calculations and the bonded-particle method
for bench blasting simulation. They obtained micro-mechanical parameters, equivalent blast

loading, and wave velocity, then analyzed particle velocity distribution, accumulation process, and
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blast movement characteristics for single-hole and four-hole bench blasting. The study also
examined the effects of burden and bench height on blast movement. Using colorful rock strips to
model the bench, they observed that rock strips far from the bench face exhibited a fold-back
stacking phenomenon, with blast movement distance increasing from the bench floor to the
blasthole bottom, peaking at the bottom of the stemming section. Rock strips near the bench face
showed a forward flapping state due to natural accumulation under gravity. The study found that
blast movement became more pronounced with increasing bench height, decreasing burden, and
decreasing distance from the bench face. The numerical results were validated using maximum

throw distance calculations, blast movement measurements, and actual muckpile profiles.

Gharib et al. (2017) explores the flow characteristics and wear prediction of Herschel-Bulkley non-
Newtonian fluids, specifically focusing on paste backfill as it flows through pipe elbows. The
Herschel-Bulkley model, which characterizes non-Newtonian fluids that exhibit both solid-like
and fluid-like behaviors depending on shear stress, is employed to analyze how flow dynamics and
pipe geometry influence both the wear and efficiency of material transport. The research highlights
the importance of understanding fluid rheology and optimizing pipe designs in industrial settings
such as mining, where materials like paste backfill are commonly used. By predicting wear
patterns and flow behavior, the study provides valuable insights into prolonging pipeline lifespan

and improving overall operational efficiency.

This approach to modeling non-Newtonian fluids and predicting wear can be extended to the
context of blast modeling in multiphysics simulations, particularly in understanding the behavior
of detonation gases and rock fragmentation. Blasting phenomena involve complex interactions
between high-pressure gases and fractured rock, where the expansion of gases and flow of

fragmented material through rock voids can be conceptualized using principles from fluid

18



Chapter 2

dynamics. Similar to the erosion and wear predictions in the study, wear and damage to rock
structures post-blast can be modeled using analogous techniques. The integration of multiphysics
models combining fluid dynamics, solid mechanics, and thermal effects can help predict rock
breakage patterns, gas flow behavior, and long-term wear on mine structures, offering a

comprehensive framework for optimizing blasting operations in mining.

Bharathan et al. (2019) investigates the pressure loss and friction factor in non-Newtonian mine
paste backfill, using a combination of modeling, loop tests, and mine field data to comprehensively
assess the flow behavior of these complex materials. This research is particularly relevant in
underground mining, where paste backfill—a non-Newtonian material—must be transported
through pipelines. The authors employed empirical models and field tests to understand how
factors like flow rate, pipe diameter, and rheological properties of the paste affect pressure loss
and friction factor. Their findings provide critical insights into optimizing pipeline design and
operational efficiency in paste backfill applications, offering practical solutions for minimizing

energy consumption and wear in mine infrastructure.

The modeling approach used in this study shares strong parallels with techniques applied in
multiphysics simulations of blasting, where gas expansion and debris flow interact with fractured
rock in complex, non-linear ways. In both cases, understanding the flow behavior of non-
Newtonian materials, whether paste backfill or detonation gases, can inform more accurate
predictions of pressure losses, material wear, and system performance. The integration of empirical
models with field data, as demonstrated in this research, highlights the importance of combining
theoretical and practical approaches in mining operations. Extending these methods to blasting
phenomena can help in predicting post-blast material flow and optimizing mine design to enhance

both safety and operational efficiency.
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2.4.2 Heuristic methods

Heuristic methods provide quicker sub-optimal solutions for modeling blast movement by
combining empirical rules with physical field measurements, such as post-blast topography. These
methods are often used when quick, approximate solutions are needed, and they can be
implemented with relatively low computational resources. However, they lack guaranteed

optimality and do not fully capture the uncertainty in blast movement predictions.

Isaaks et al. (2014b) addressed the issue of blast movement in mining, which contributes to ore
loss and dilution. They discussed the use of blast movement monitoring (BMM) devices, which
track material movement during blasting. These devices provide vectors showing the magnitude
and direction of movement. The paper presented a method to model post-blast muck piles,
accounting for both displacement and internal dilution using simulated annealing. They re-blocked
the pre-blast ore control block model into smaller sub-blocks, displaced them using simulated
BMM vectors, and then aggregated these into new ore control model blocks. This approach
allowed for the design of new dig lines based on the updated ore grades. A case study was included

to demonstrate the method's effectiveness.

Vasylchuk and Deutsch (2019b) developed an optimization algorithm to model blast movement in
3-D using pre- and post-blast topography grids and direct blast movement measurements. The
problem is framed as an optimization assignment problem and solved with a heuristic algorithm
for approximate solutions within a reasonable time. The paper details the objective function and
optimization process and provides an example demonstrating the modeling steps. The realistic
blast movement model enhances grade control by improving the positioning of dig lines and

accurately determining the correct destination for mined rock, making it suitable for mapping pre-
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blast grades, categories, expected profit, or other information onto the post-blast muckpile

configuration.

2.4.3 Machine learning models

Machine learning models use historical data to predict blast movements. These models can analyze
large datasets to identify patterns and correlations that may not be apparent through traditional
methods. When current geological and blast design conditions mirror the historical data used in
training, machine learning models can provide accurate predictions. While machine learning
models are effective in predicting blast movements under consistent geological conditions, they
may not yield reliable predictions for deposits with varying characteristics and blast designs.
Additionally, these models often do not capture and quantify the uncertainty in blast movement

predictions, which can limit their applicability in risk-sensitive mining operations.

Yu et al. (2019) focused on the indirect and accurate determination of blast-induced rock
movement to reduce ore loss, dilution, and environmental impact. The study aimed to predict rock
movement at the Husab Uranium Mine in Namibia, Coeur Rochester Mine in the USA, and
Phoenix Mine in the USA, proposing three new hybrid models using a genetic algorithm (GA),
artificial bee colony algorithm (ABC), cuckoo search algorithm (CS), and support vector
regression (SVR). These models, GA-SVR, ABC-SVR, and CS-SVR, utilized eight typical
blasting parameters as input variables and horizontal blast-induced rock movement as the output
variable. The models' predictive performances were assessed using three metrics: the correlation
coefficient, mean square error, and variance account for. The results demonstrated that the GA-
SVR, ABC-SVR, and CS-SVR models provided satisfactory predictions of rock movement, with
the GA-SVR model outperforming the GWO-SVR, CS-SVR, and artificial neural network (ANN)

models in both predictive performance and calculation speed.
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Yu et al. (2020) investigated the distribution law and prediction of blast-induced rock movement
to address the issue of ore loss and dilution when using a pre-blast ore boundary for shovel
guidance. Due to difficulties in measuring the post-blast ore boundary, the study applied a blast
movement monitoring system to collect accurate data during four blast movement trials. Statistical
analysis, an ANN model, a random forest (RF) model, and a gray wolf optimizer algorithm—
support vector regression (GWO-SVR) model were used to analyze the collected data. The results
indicated that horizontal, vertical, and 3D movements first increased and then decreased, with
maximum displacement occurring near the top of the charging section. A good linear relationship
was found between horizontal and 3D movements, suggesting that horizontal movement can be
used to guide shoveling and reduce ore loss and dilution. Additionally, the GWO-SVR model
outperformed the ANN and RF models in accuracy. The study concluded that blast-induced rock
movement can be controlled by adjusting the burden and spacing and reducing power factor

variables during mining.

Yu et al. (2024) proposed a multilayer dig-limit approach to address ore and profit losses caused
by rock fragment movement during blasting in complex-orebody hard rock open-pit mines. This
method integrates blast movement into dig-limit optimization using machine learning and heuristic
algorithms. The study predicts blast movement distances and directions, determines the post-blast
ore boundary, and calculates an optimized dig-limit for maximum profit. A case study showed that
this approach improves ore recovery and economic profit compared to manual methods. The study
also found that reducing equipment size, increasing the number of layers, and decreasing the

powder factor can further minimize ore and profit losses.
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2.4.4 Stochastic methods

Stochastic modeling techniques utilize data from physical field measurements of blasted benches
to create representative multivariate statistical distributions. These distributions capture the
uncertainty in blast movements, particularly near ore zones, and help identify areas at high risk of

material misclassification.

Hmoud and Kumral (2022) investigated the uncertainty in blast movement using D-vine Copula
and Monte Carlo simulation on a flitch-by-flitch basis and integrate that with dig-limits
optimization to understand the effect of blast movement uncertainty on dig-limits realizations.
They used field data from blast movement monitoring balls to model blast movements. A mixed-
integer linear programming model determined optimal dig-limits for economic block models
adjusted with these realizations. Their case study compared scenarios with and without considering
blast movement, revealing that ignoring blast movement can overestimate expected profit by

65.3%. The study also identified high-risk areas for ore and waste misallocation post-blasting.

2.5 MATERIAL-TYPE CLASSIFICATION

Material-type classification in mining is a critical task that involves determining the optimal
destination for blasted material based on a production plan. This classification ensures that ore is
sent to the processing plant while waste is sent to the waste dump, optimizing the economic return
of mining operations. Under conditions of grade uncertainty, several methods have been proposed
in the literature to determine the optimal material type: (1) average simulation, (2) minimum
expected loss (MEL), (3) maximum expected profit (MEP), and (4) MEL and MEP with risk
coefficients. This literature review examines these methods in detail, highlighting their

applications, strengths, and limitations.
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The average simulation method assigns the destination of a block in a mine bench based on the
average of the simulated grade values within that block. This method is closely related to ordinary
kriging, as both approaches use the mean of grade values to estimate the economic potential of a
block. However, average simulation is particularly advantageous when dealing with skewed grade
distributions, as it can better reproduce the histograms of such distributions and provide more

representative results that accurately capture high-grade values (Verly, 2005).

The MEL method determines the optimal destination for a block by calculating the expected costs
associated with assigning the block to all possible destinations, then selecting the destination that
minimizes the expected loss across all possible scenarios (Verly, 2005; Isaaks, 1991; Srivastava,

1987; Vasylchuk & Deutsch, 2018).

The MEP method determines the optimal destination of a block by calculating the expected profits
associated with assigning the block to all possible destinations, then selecting the destination that
maximizes the expected profit (Glacken, 1996; Deutsch et al., 2000; Neufeld et al., 2005). the
mining cost to the calculation of the MEP in which a lost opportunity cost is added in case material

is classified falsely as waste (Deutsch et al., 2000).

Neufeld er al. (2005) applied the MEP with different costs of mining ore and waste. Positive and
negative profit values were calculated based on a cut-off grade in which positive profit value occur
when grade exceeds the cut-off grade. The cost of processing waste is used to scale negative profit
values. When the calculated profit values are positive, then material will be classified as ore,

otherwise the material is classified as waste.
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Glacken (1996) modified the MEL and proposed coefficients for underestimation and
overestimation decisions that are chosen based on the mining operation and its way of treating

waste material as ore and sending ore to the waste dump.

Dimitrakopoulos and Godoy (2014) added risk coefficients to both MEL and MEP methods to
ensure that specific operational requirements are met, such as increasing the likelihood of sending
ore with some chance of being waste to the processing plant or reducing the chance of sending

waste to the waste dump.

The addition of risk coefficients allows for more flexible and tailored classification decisions that
account for the specific risk tolerance and operational objectives of a mining operation. These
coefficients adjust the profit and loss functions to reflect the desired risk profile, ensuring that
classification decisions are aligned with the overall strategic goals of the mine (Dimitrakopoulos

& Godoy, 2014).

Applying risk coefficients requires continuous updating, as operational policies may change
throughout the life cycle of the mine. This dynamic nature can make the application of risk
coefficients challenging in practice, requiring robust data management and real-time decision-

making capabilities (Dimitrakopoulos & Godoy, 2014).

Vasylchuk and Deutsch (2018) proposed a modification to the MEL method in which if ore and
waste decisions were correct then loss is assigned a value of zero. Otherwise, the loss is calculated
as the difference between the cut-off grade and the grade of the variable at the block. They also
proposed that underestimation and overestimation coefficient can be added to the calculation as

per Glacken (1996).
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In scenarios with a linear profit function and no specific risk coefficients, average simulation,
MEL, and MEP methods tend to provide similar results. However, when dealing with non-linear
profit functions, such as when the recovery model is not a linear function of grade, the MEP method
is generally considered the best approach for determining optimal destinations under uncertainty

(Verly, 2005).

2.6 DIG-LIMITS OPTIMIZATION

In daily open-pit mining operations, short-term plans are essential for delineating ore and waste
SMUs. Misclassification of these units can lead to dilution or ore loss. These plans must ensure
that consecutive SMUs' ore or waste decisions align with the equipment size while maximizing
profit. This optimization is crucial, especially when dealing with valuable metals and significant

dilution or loss.

Hmoud and Kumral (2023) categorized dig-limits optimization methods into five main categories:
(1) exact methods, (2) heuristic methods, (3) metaheuristic methods, (4) hybrid methods, and (5)

spatial clustering methods.

2.6.1 Exact methods

Exact methods, such as mixed-integer programming (MIP), ensure optimal solutions for dig-limits
optimization. These methods involve formulating the optimization problem as a mathematical
model and solving it using exact algorithms. MIP is a powerful optimization technique that can
generate optimal dig-limits by considering various constraints and objectives. However, MIP
suffers from long processing times, especially when the moving window that enforces equipment
selectivity is large. Despite these challenges, advancements in parallel computing and high-
performance computers have made it increasingly feasible to use MIP for generating optimal dig-

limits.
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Kumral (2015) developed a decision-making tool to minimize losses from misclassification of
mining parcels, which relies on estimated or simulated values from sparse data. The research
converted a non-linear optimization problem into a MIP problem and solved it using a standard
MIP optimization engine. A case study with gold and silver variables demonstrated the approach's
effectiveness compared to conventional grade control methods. The study provided a practical
solution for grade quality control, enhancing profit and operational efficiency, and introduced the

use of target grades instead of cut-off grades, addressing common challenges in mining operations.

Sari and Kumral (2017) developed a method to optimize dig-limits in open-pit mining by creating
ore-waste boundaries that loaders can handle effectively. They formulated this problem as mixed-
integer linear programming problem with an objective function that aims to maximize profit while
considering equipment selectivity. A case study on seven bench sectors in a gold mine showed the
method's practicality and potential to increase operational value. The optimized design deviated

by only 6.4% from a manual design by a mining engineer, demonstrating its efficiency.

Hmoud and Kumral (2022) adopted Sari and Kumral (2017) MIP dig-limit optimization model
after coding it in Python to assess the impact of blast movement uncertainty of dig-limits
optimization outcomes. They conclude that blast movement uncertainty has significant impact on
dig-limits optimization outcomes that can result in ore loss and dilution that leads to significant

profit reduction.

Nelis et al. (2022) introduced a new approach to address the mining cut definition problem,
incorporating geometallurgical interactions in short-term mine planning for open-pit operations.
The process involves aggregating blocks into clusters that are extracted and processed as single
units, considering operational constraints of loading equipment selectivity and aiming to maximize

operational objectives. Utilizing mixed integer programming and a model inspired by column
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generation, their approach defines decision variables directly on the set of all feasible cuts. This
eliminates the need for linear approximations of geometallurgical behavior, allowing the use of
any nonlinear function. An industry-sized dataset demonstrated that the model could be solved in
a reasonable time, with results showing that nonlinear recovery functions significantly influence
destination policy and expected profit. The study concluded that the traditional free selection
policy based on cutoff grade is suboptimal when geometallurgical interactions are taken into

account.

Nelis and Morales (2022) addressed the challenge faced by short-term open pit planners in
designing feasible production schedules that meet processing, mining, and operational constraints
while maximizing profit or total metal produced. These schedules must align with long-term
production plans and incorporate new blasthole sampling data. Traditionally, this task has been
performed with limited optimization tools, risking suboptimal results. The authors proposed an
optimization model that simultaneously tackles operational and scheduling issues by defining
mining cut configurations and production schedules. The model uses representative SMUs as
potential locations for mining cuts, assigning each SMU to a specific location. Tested with a real
case study, the model successfully generated mining cuts and extraction sequences that fulfilled
all constraints, including access restrictions due to ramp locations on each bench. The design

captured most of the profit, providing a valuable guide for short-term mine planners.

Faraj (2024) emphasizes the need for accurately classifying material types before mining, as
current manual practices for drawing ore/waste dig limits are subjective and lead to significant
dilution and ore loss. Using two weeks of production data from a homogeneous Cu porphyry and
a heterogeneous Manto-type Cu deposit, the study compares the variability in hand-drawn dig

limits by 20 professionals with optimal ore-waste delineation. The author adopted Sari and Kumral
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(2017) dig-limits optimization model in this paper. Results show that manual dig-limits result in
profits ranging by 3.7% and 5.9% for homogeneous and heterogeneous deposits, respectively,
whereas optimal delineation increases profits by 1.9% and 7.0%. The main drivers of ore loss and
dilution are identified as natural variability, diggability, and selectivity. The study recommends

integrating dig limit optimization algorithms to reduce subjectivity and improve profitability.

2.6.2 Heuristic methods

Heuristic methods, like exact methods, aim to optimally separate ore from waste to maximize
operational efficiency and profit while respecting equipment selectivity. Unlike exact methods,
heuristic approaches generate near-optimal solutions without guaranteeing absolute optimality.
However, their strength lies in producing these solutions within a reasonable timeframe, making

them highly efficient and practical for real-world applications.

Richmond and Beasley (2004) proposed greedy local search heuristics to estimate financially
efficient dig-lines in mining operations. These heuristics use a floating circle-based perturbation
mechanism to generate alternate dig-lines while ensuring mining equipment constraints are met.
The financial payoffs for these alternate dig-lines are evaluated using a mean-downside risk
efficiency model, based on distributions from multiple conditional simulations. Computational
results indicated that equipment constraints significantly increase financial risk for a given
expected payoff and that the heuristic efficient frontier is sensitive to the mining strategy. The
study found that mining waste material at transitions before mining ore material minimizes upfront

operating costs, maximizes profit for a given financial risk level, and frees milling capacity.

Wilde and Deutsch (2015) addressed the challenge of predicting recoverable reserves before
mining begins, a crucial aspect of ore reserve estimation. They proposed a new method called

Feasibility Grade Control (FGC), which automates the process and is applicable during feasibility
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studies. FGC eliminates the need for the time-consuming creation of initial dig limits while
establishing dilution and ore loss. The study demonstrated that the results of FGC are nearly
identical to traditional methods but are more realistic and efficient, saving significant professional

time.

Vasylchuk and Deutsch (2019a) introduced an algorithm to optimize the classification of surface
mine material while considering excavating constraints. Using high-resolution expected profit
models, the algorithm generates classification maps tailored to site-specific rectangular excavating
constraints. Traditional analytical solutions are ineffective for this optimization problem, so the
authors developed a practical heuristic algorithm that quickly determines the optimal material
destination under realistic constraints. The optimization process is fast, achieving up to 98-99%
of the total expected profit compared to free selection. This algorithm is a practical tool for short-

term grade control and managing multiple realizations in long-term resource estimation.

2.6.3 Metaheuristic methods

Norrena and Deutsch (2000) proposed an optimization approach for determining dig limits in grade
control that considers mineral grades, economic costs, and mining equipment selectivity. The
authors used simulated annealing to optimize dig limits, combining constraints of maximum
profitability and equipment capabilities. They recommended geostatistical techniques to map
expected profits and account for grade uncertainty. The optimization balances dilution and ore
waste to maximize profit, incorporating an equipment curve to quantify mining equipment
limitations. This approach demonstrated effective results and highlighted areas for future

improvement.

Isaaks et al. (2014a) highlighted that traditional grade control methods focus on blasthole sampling

and ore control block model (OCM) grade estimation, often neglecting dig-limits design.
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Misclassification of block grades, leading to financial loss, is commonly addressed using
maximum profit selection (MPS). However, dig-limits design can also misclassify OCM blocks,
even if initially classified correctly by MPS, as blocks are rarely mineable individually by ore type.
The authors proposed an algorithm for constrained optimum dig-limits, which evaluates
misclassifications through loss functions or MPS, minimizing financial losses while adhering to

minimum mining width constraints. A case study demonstrated the benefits of this approach.

Ruiseco (2016) developed a GA approach to approximate optimal dig-limits, considering grade
control data, equipment constraints, and processing and mining costs. The GA demonstrated
robustness and flexibility across various cases and complexities. The paper outlines the success of
the GA application in two separate studies and further explores its flexibility and potential

applications in equipment sizing in a third study.

Ruiseco et al. (2016) introduced an optimization approach using a GA to approximate optimal dig-
limits on a bench, considering grade control data, equipment constraints, and processing and
mining costs. A case study was conducted on a sample disseminated nickel bench in a two-
destination, single ore-type deposit. The results demonstrated that the GA-based approach was

effective for dig-limit optimization, outperforming traditional hand-drawn methods.

Ruiseco and Kumral (2017) examined the impact of varying equipment sizes on practical dig-
limits in a highly variable bench with gold and copper in a sulfide/oxide deposit. They used a GA-
based dig-limits optimization in this study. While current equipment sizing methods consider block
dilution, they do not address the effects of selectivity changes. The study revealed that the
relationship between selectivity, profit, and equipment size is nonlinear, with significant break

points occurring when using insufficiently selective equipment. The proposed technique provides
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a method for sizing mine equipment in complex deposits, considering the interplay between

productivity and grade distribution.

Williams et al. (2021) investigated using a CNN to evaluate the clustering of SMUs, which were
optimized using a GA for mine bench dig limits. These limits categorize SMUs into waste and
processing categories, ensuring feasible and profitable extraction. While the GA method is
effective, it is time-consuming and costly. The study aimed to reduce the high computational costs
by employing deep learning to assess the quality of GA-computed dig limits, significantly cutting
down the time, which can account for up to 70% of total computation time. A case study with a
mine bench containing multiple destinations and 420 SMUs demonstrated that the CNN accurately
predicted clustering quality and reduced computation time by 3900%, making the process more

efficient for short-term mine planning.

2.6.4 Hybrid methods

The hybrid approach leverages the strengths of both exact optimization methods, such as MIP, and
near-optimal methods, such as metaheuristic algorithms. Initially, the exact method explores the
solution space, and after a certain number of iterations, it stops to provide an initial solution. This
solution is then refined by the metaheuristic methods, which start with an acceptable solution and
aim to find a near-optimal solution in a shorter time frame. This strategy efficiently combines the
precision of exact methods with the speed of metaheuristics to deliver practical and timely

solutions.

Deutsch (2017) proposed a hybrid approach by combining branch and bound with simulated
annealing to determine the dig-limits. In this approach, when the branch and bound need many

iterations, simulated annealing takes part resulting in sub-optimal solutions. This proposed method
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could solve big computational problems in a relatively short time. However, they do not guarantee

optimality, and they require careful selection for input parameters to obtain near-optimal results.

2.6.5 Spatial clustering methods

Spatial clustering offers an alternative method for generating dig-limits that effectively separate
different materials. This approach is commonly used to create production schedules by dividing
open-pit benches into clusters and grouping blocks with similar characteristics to form dig-limits.
However, these methods do not necessarily find optimal dig-limits for distinguishing ore from
waste. Additionally, they require careful selection of input clustering parameters, such as the

desired number of clusters, making the resulting solution highly subjective.

Tabesh and Askari-Nasab (2011) addressed the challenge of using exact optimization methods for
open pit production scheduling due to the large size of real mining problems, which makes them
intractable. The paper aimed to develop, implement, verify, and validate a clustering algorithm for
block aggregation to aid in production scheduling. This algorithm aggregates blocks into selective
mining units based on a similarity index defined by rock types, ore grades, and distances between
blocks. A two-stage clustering approach, utilizing an agglomerative hierarchical algorithm and
tabu search, was developed and tested. A case study on an iron ore life-of-mine production
schedule validated the algorithm, demonstrating that the size and shape of aggregated blocks can
affect the project's net present value by 10-15% and significantly impact the practicality of the

generated long-term production schedules.

Tabesh and Askari-Nasab (2013) focused on the multiple stages in mining operations where
engineers draw polygons to guide operations. Traditionally drawn by hand based on the engineer’s
expertise, these polygons can benefit from automatic procedures to enhance quality and reduce

effort. Long-term planning requires large polygons for mining cuts, while short-term planning
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needs mineable shapes that are homogenous in grades and rock types to accurately estimate
material quality and dilution. The mining direction also influences the desired polygon shapes. To
address these issues, the authors introduced a clustering algorithm with shape control that can
generate guidelines for both long-term and short-term planning by adjusting its parameters. The
algorithm was tested on two small datasets, and its performance was further evaluated on a real
gold deposit using different mining strategies. The evaluation considered homogeneity of grade,

rock types, determined destinations, and run times, demonstrating the algorithm's effectiveness.

Tabesh and Askari-Naseb (2019) highlighted the importance of incorporating geological
uncertainty into mine production planning. While advances in mathematical models and heuristic
approaches have improved the ability to address simpler scheduling problems, more complex
instances that incorporate uncertainty remain challenging. Aggregating blocks can reduce solution
times. This paper presents four variations of the agglomerative hierarchical clustering algorithm:
one based on deterministic estimates and three using a possible worlds approach that leverages
geostatistical realizations to form aggregates considering geological properties and uncertainties.
Case studies demonstrated that uncertainty-based algorithms create aggregates less susceptible to

uncertainties, while the proposed algorithm produces controlled-size, minable shapes.

Salman et al. (2021) explored clustering approaches used to group similar objects for enhanced
analysis and decision-making, specifically focusing on short-term planning in open-pit mines. In
this context, clustering aims to aggregate blocks based on attributes like geochemical grades, rock
types, and geometallurgical parameters, while adhering to constraints such as cluster shape, size,
mining direction alignment, destination, and rock type homogeneity. This method helps reduce the
computational cost of optimizing short-term mine plans. Previous studies have not fully addressed

mining-specific constraints in clustering. The paper introduces a novel block clustering heuristic
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that honors a comprehensive set of mining block aggregation requirements and constraints,
including clustering adjacent blocks, achieving high destination homogeneity, controlled cluster
size, consistency with mining direction, and creating mineable shapes with homogeneous rock
types. The algorithm's application on two datasets demonstrated its efficiency in generating

reasonable block clusters while satisfying the predefined constraints.

2.7 SPATIAL ENTROPY

The mining industry constantly seeks to minimize ore loss and dilution, which are critical factors
impacting operational efficiency and profitability. A key aspect influencing these factors is the
spatial heterogeneity of the orebody at the selective mining unit (SMU) scale. Spatial heterogeneity
refers to the variation in grade distribution within the orebody, which directly affects the distinction
between ore and waste. This review delves into the concept of entropy, its application in measuring
spatial heterogeneity, and various methodologies proposed over the years to account for spatial

data in entropy calculations.

The concept of entropy, originating in thermodynamics, has been adapted for various scientific
fields to measure the degree of disorder or heterogeneity in a system. Shannon (1948) introduced
entropy in information theory as a measure of the information content in a signal. Shannon's
entropy quantifies the expected value of the information contained in a message. In the context of
mining and geospatial data, Shannon's entropy can be adapted to measure the heterogeneity of
grade distributions within an orebody, providing a way to quantify the disorder and variability in

the spatial distribution of ore and waste.

Entropy has been widely applied in various scientific disciplines. For example, in ecology, Patil &

Taillie (1982) used entropy to measure biodiversity and the distribution of species within an
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ecosystem. In their paper, an intrinsic diversity ordering of communities is defined and shown to
be equivalent to stochastic ordering. This provides a mean of comparing the diversity of different
communities. It also developed the concept of the sensitivity of a diversity index to rare species
which helps in understanding how changes in a rare species may affect over diversity in a

community.

Similarly, in hydrology and hydrogeology, Aghakouchak (2014) explored the integration of
entropy theory and copulas to enhance probability inference in hydrology and climatology. The
paper reviews and categorizes existing entropy-copula models into three main groups based on
their structures, providing a numerical example to demonstrate their formulation and
implementation. It discusses the potential applications of these models in hydrology and
climatology, including an example application to flood frequency analysis. By combining entropy
and copula concepts, the study leverages the strengths of both methods to better describe the

probability distribution and dependence structure of multiple dependent variables.

Butera et al. (2018) investigated the impact of transmissivity fluctuations in heterogeneous porous
media, treating transmissivity as a spatial stochastic variable. These fluctuations induce
stochasticity in groundwater velocity and transport features. The study emphasizes the importance
of understanding the relationships between variables characterizing flow and transport, noting that
while linear relationships are easier to manage, the interdependence of these variables becomes
increasingly nonlinear with greater heterogeneity. The work highlights the significance of
nonlinear linkages, proposing information theory tools to detect their presence. By comparing the
cross-covariance function and mutual information, the study contrasts the amount of linear and

nonlinear linkage. To avoid analytical approximations, data from Monte Carlo simulations of
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heterogeneous transmissivity fields were analyzed, revealing that nonlinear components can be

significant even when cross-covariance values are nil.

Manchuk et al. (2021) assessed groundwater quality and geochemical changes in the Athabasca
region of Alberta, Canada, using data from over 5,000 wells collected from the 1950s to 2014.
They developed bootstrap techniques to detect changes, finding increased anomalies in Cl, total
dissolved solids, B, and naphthenic acids, and decreased SO4 anomalies in the McMurray
formation between 2003 and 2008. The study revealed sampling biases in several formations,
suggesting the need for expanded sampling. It identified wells for continued observation based on
entropy and relative magnitude of time series, focusing on wells with low measurements and low

entropy near active industry lease boundaries.

Singh (1997) examined the applications of entropy theory in hydrology and water resources. The
paper reviews recent contributions of entropy in hydrological modeling and water resources,
highlighting the usefulness and versatility of the entropy concept in these fields. The author reflects
on both the strengths and limitations of the entropy concept and concludes with comments on its

implications for developing countries.

The application of entropy in geology is also well-documented in literature. Freizi et al. (2017)
introduced a new hybrid method for assigning evidential weights in mineral potential mapping by
combining the Analytical Hierarchy Process (AHP) with Shannon Entropy weighting. They
applied this approach to a case study for porphyry-Cu potential mapping in Markazi Province,
Iran. Geo-datasets were gathered, and evidence layers were generated for integration using the
TOPSIS method with the combined AHP—Shannon Entropy weighting. The resulting mineral
potential map was evaluated through field checking and chemical analysis of samples, revealing

two outcrops with evidence of a porphyry system in areas with high potential values. There was
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also a strong correlation between high potential values and the copper content of field samples,
demonstrating the effectiveness of the AHP—Shannon Entropy weighting method for mineral

potential mapping.

Liu et al. (2021) investigated the Xiadian orogenic gold deposit in the Jiaodong Peninsula, Eastern
China, which is associated with the Zhaoping detachment fault. Through field investigation, 3D
modeling, spatial analysis, and prospectivity modeling using a multi-layer perceptron deep neural
network, they explored the relationship between gold mineralization and structural deformation.
The deep neural network with multilayer perceptron and cross-entropy loss is calculated and
minimized to train the models. They found that gold mineralization primarily occurs in convex
segments of the fault footwall within 150 meters of the fault buffer, where the dip is gentle. High-
grade sulfide vein ore is typically located in steeply dipping fracture-fill areas distal to the fault.
Their study identified six potential gold targets and demonstrated the effectiveness of 3D
prospectivity modeling in understanding the orogenic gold spatial distribution and structural

controls.

Zhang et al. (2021) investigated the use of convolutional neural networks (CNN) for mineral
prospectivity mapping by integrating multi-geoinformation with unsupervised convolutional auto-
encoder networks (CAE). They employed cross-entropy to fit the CNN model. Two CAE networks
were built to identify high-error patches of a tif image, representing prospective areas, and low-
error patches as non-prospective. By adjusting the CAE architecture, training epochs, and evidence
map combinations, reliable results were achieved. The area under the receiver operating
characteristic curve (AUC) indicated that high reconstructed errors matched prospective areas.
These were then used in CNN modeling, showing a strong spatial correlation with known gold

deposits. The results, including training loss, accuracy, and favorability maps, were comparable to
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previous studies, demonstrating the method's feasibility. This approach of using CAE to extract

spatial signatures for CNN learning shows promise for mineral prospectivity mapping.

However, traditional entropy measures do not account for the spatial location of data points,
treating datasets with identical probability mass functions but different spatial configurations as
having the same entropy. This limitation led to the development of spatial entropy indices, which

incorporate spatial location to provide a more accurate measure of heterogeneity.

Theil (1972) introduced a spatial entropy measure to quantify inequality or diversity in spatial
distributions. In the context of social and administrative sciences, spatial entropy quantifies the
unpredictability or heterogeneity of a given distribution at a certain location, such as income
distribution, demographic characteristics, or resource allocation for certain cities or countries.
Higher entropy indicates greater diversity and randomness, reflecting a more even distribution
across categories, whereas lower entropy suggests more predictability and concentration in certain

categories.

Batty (1974) addressed a significant issue in information theory concerning the derivation of a
continuous measure of entropy from the discrete measure. While many analysts have noted the
incompleteness of Shannon's treatment of this problem, few have reworked his analysis. Batty
proposed a new measure of discrete entropy that explicitly incorporates interval size, termed
spatial entropy, which is fundamental to geography. This measure was first demonstrated through
its application to one- and two-dimensional aggregation problems. Batty then explored the
implications of this statistic for Wilson’s entropy-maximizing method, reinterpreted Theil’s
aggregation statistic in spatial terms, and suggested heuristics for designing real and idealized

spatial systems where entropy is maximized.
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Batty (1976) introduced an approach to measuring locational phenomena within a spatial hierarchy
using entropy statistics. The paper derives several statistics suitable for studying spatial
aggregation, which are then decomposed at different levels of the spatial hierarchy using
decomposition principles initially applied by Theil. These decomposition statistics are compared
with variance analysis methods used by Moellering and Tobler (1972) and the spatial entropy
measure suggested by Curry (1971). The application of these statistics is illustrated with data from
the Reading subregion and New York City. The paper concludes by analyzing the potential role of

entropy and information in addressing problems related to equal-area zoning.

Batty (2010) examined the use of entropy measures in geographical analysis, focusing on the
concept of human systems in equilibrium. He discussed how entropy maximizing, similar to
equilibrium statistical mechanics, provides a framework for location and interaction models, as
popularized by Wilson (1970). Batty reviewed two extensions: introducing "spatial entropy" to
account for spatial variation and decomposing/nesting entropy to capture variations at different
scales. He identified gaps in substantive interpretations of entropy for various geographical shapes
and sizes and the dynamics of generating probability distributions, such as power laws in complex
systems. Batty called for further research to link entropy maximizing, entropy measure
interpretations, and equilibrium distribution dynamics, emphasizing the need for new entropy
measures that illustrate how equilibrium spatial distributions result from dynamic processes

reaching a steady state.

Anselin (1995) addressed the need for new exploratory data analysis techniques in geographic
information systems (GIS) to focus on the spatial aspects of data. He introduced a general class of
local indicators of spatial association (LISA) to identify local patterns of spatial association. LISA

statistics decompose global indicators, such as Moran’s I, into the contributions of individual
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observations. These statistics serve two main purposes: identifying local pockets of nonstationarity
or hot spots, similar to the Gi and G* statistics of Getis and Ord (1992) and assessing the influence
of individual locations on the global statistics and identifying outliers. Anselin evaluated the
properties of a LISA statistic through the local Moran, applying it to the spatial pattern of conflict

in different countries and in several Monte Carlo simulations.

Karlstrom and Ceccato (2000) developed a new measure of spatial association called the S
statistics, based on information theory by defining a spatially weighted entropy measure that
considers spatial configuration. The S statistics have an intuitive interpretation and fulfill the
expected properties of an entropy measure. This global measure of spatial association can be
decomposed into LISA. The new measure was tested using employment data from the culture
sector in Stockholm County and compared with existing global and local spatial association
measures. The S statistics demonstrated similarities to Moran’s I and Getis-Ord Gi statistics, with
the local Si statistics showing significant spatial association akin to the Gi statistic but with the
advantage of aggregation to a global measure. The S statistics can also be extended to bivariate
distributions, and the commonly used Bayesian empirical approach can be interpreted as a
Kullback-Leibler divergence measure. One advantage of the S statistics is that they select only the

most robust clusters, eliminating smaller clusters that might inflate the global measure.

O'Neill et al. (1988) developed three indices of landscape pattern using information theory and
fractal geometry to quantify spatial patterns that correlate with ecological processes. Using
digitized maps, these indices were calculated for 94 quadrangles covering most of the eastern
United States. The study demonstrated that the indices are reasonably independent of each other
and effectively capture major features of landscape patterns. One of the indices, the fractal

dimension, was found to correlate with the degree of human manipulation of the landscape. This
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research provides valuable tools for quantifying and understanding the spatial patterns in landscape

ecology.

Claramunt (2005) conducted a preliminary study to explore a representation of spatial information
diversity that supports the analysis of spatial structures. This approach is based on Shannon’s
information theory, which offers a quantitative method for evaluating diversity in one-dimensional
spaces. Claramunt introduced a measure of spatial diversity, extending Shannon’s measure and
incorporating principles from the First Law of Geography. The study examined and illustrated the
properties and unique aspects of spatial diversity compared to conventional measures.
Relationships between spatial diversity and notions of order and cohesion were also discussed.
The potential for combining spatial diversity with other diversity measures for ecological, social,

and economic studies was highlighted, although further validation and experimentation are needed.

Li and Claramunt (2006) introduced a spatial decision tree to address the limitations of
conventional decision trees when applied to geographical datasets affected by spatial
autocorrelation. Conventional decision trees often underperform in these scenarios because they
do not account for spatial distribution. The proposed spatial decision tree incorporates a spatial
diversity coefficient that measures the spatial entropy of a geo-referenced dataset, extending the
conventional notion of entropy to include spatial autocorrelation phenomena. This integration
results in a classification process tailored to geographical data. The potential of this approach was

demonstrated through a case study focused on classifying an agricultural dataset in China.

Li and Reynolds (1993) addressed the limitations of the contagion index proposed by O'Neill et
al. (1988), which was designed to quantify spatial patterns of landscapes but proved to be
insensitive to changes in spatial patterns. They introduced a new contagion index that corrects a

mathematical error in the original formulation. The error was identified and corrected
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mathematically. Both the original and new contagion indices were then evaluated against simulated
landscapes to demonstrate the improved sensitivity and accuracy of the new index in quantifying

spatial patterns.

Parresol and Edwards (2014) emphasized the importance of studying spatial patterns of landscapes
to quantify human impact, predict wildlife effects, and describe landscape features. A robust
landscape index should measure both the composition and configuration of landscape diversity.
They critiqued the use of relative contagion indices in landscape ecology, demonstrating through
simulated landscapes that these indices are mathematically untenable. To address this, they
developed a new entropy contagion index (I'). They derived the distributional properties of T,
showing it to be asymptotically unbiased, consistent, and normally distributed. A variance formula
for I" was also derived using the delta method. As an application, they analyzed the patterns and
changes in forest types across four soil-geologic landform strata on the 80,000 ha Savannah River
Site in South Carolina, USA. Using one-way analysis of variance for hypothesis testing of
contagion among strata, they provided insights for managers to meet structural objectives based

on differences in contagion across the strata.

Riitters et al. (1996) investigated the landscape contagion index, which measures the degree of
clumping of attributes on raster maps by computing the frequencies of adjacent attribute pairs.
They highlighted that subtle differences in tabulating attribute adjacencies can affect the
applicability of the standard index formula, leading to potentially incomparable published index
values. The paper derived formulas for the contagion index that accommodate different methods
of tabulating attribute adjacencies, both with and without preserving the order of pixels in pairs
and using two methods of determining pixel adjacency. When pixel order is preserved, the standard

formula is obtained. Without preserving pixel order, a new formula is derived due to the reduced
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number of possible attribute adjacency states. Additionally, they found that estimated contagion is
smaller when each pixel pair is counted twice instead of once, as this double-counting makes the

attribute adjacency matrix symmetric across the main diagonal.

Leibovici (2009) addresse the challenge of identifying geographical patterns by analyzing the
spatial configuration and distribution of events, objects, or their attributes. Traditional measures,
like Shannon entropy, shed light on data organization but fall short in describing spatial
organization. The paper advances spatial entropy by focusing on the co-occurrence of categories
at multiple orders, treating adjacency as a second-order co-occurrence with zero collocation
distance. Leibovici introduces a spatial entropy measure that incorporates multivariate data with
covariates, allowing for flexible spatial interaction models between attributes. By using a
multivariate multinomial distribution of collocations, this approach assesses interactions through
an entropy formula, where the collocation distance serves as a scale factor for spatial organization

analysis.

Leibovici et al. (2014) examined how to characterize the distribution of spatially observed entities
by their geometries and attributes using Shannon entropy, which is widely applied in fields like
ecology, regional sciences, epidemiology, and image analysis. They extended entropy measures by
incorporating spatial patterns from topological and metric properties, using distance-ratios and co-
occurrences of observed classes. The research introduced new indices and explored their
applications as global and local indices in spatio-temporal domains. By employing a multiplicative
space-time integration approach at macro and micro levels, they developed spatio-temporal
entropy indices that combine co-occurrence and distance-ratio methods. This framework supports
spatio-temporal clustering, providing a structured perspective on the distribution of class instances.

The methodology was demonstrated with simulated data evolutions of three classes over seven-
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time stamps, and preliminary results were discussed for a study of conflicting maritime activities
in the Bay of Brest, exploring spatio-temporal patterns of a categorical variable representing

conflicts between maritime activities.

In geostatistics, Journel and Deutsch (1993) investigated the relationship between maximum prior
entropy and response distribution. They introduced a global spatial entropy measure that calculates
entropy at various lag distances for a set of discrete variables, providing a comprehensive measure
of spatial entropy. However, this measure was not designed to quantify entropy at a local level,
such as SMU scale. Their method calculates entropy for all possible pairs separated by specific lag
distances within a defined area of interest. To quantify local spatial entropy at specific locations
and account only for relevant pairs, their spatial entropy formulation needs modification. This
adjustment would enable the calculation of both global and local spatial entropy, enhancing its

applicability to more localized analyses.

Altieri et al. (2017) explored the concept of entropy, originally introduced in information theory
and popularized through Shannon's formula to measure heterogeneity among observations. They
focused on incorporating spatial components into entropy measures, addressing the limitation that
traditional indices are computed based on a chosen distance. By extending Shannon's entropy for
categorical variables to include space as a second dimension, the study investigated the properties
of residual entropy and mutual information. This approach allowed the extension of univariate
entropy measures to bivariate distributions, ensuring a well-defined probabilistic meaning for all
components. Consequently, a spatial entropy measure satisfying the additivity property was
developed, with global residual entropy being the sum of partial entropies based on different

distance classes. Mutual information, which measures the information added by the inclusion of
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space, also demonstrated additivity. A comparative study is presented to compare the new indices

to Leibovici indices and Shannon Entropy.

Altieri et al. (2018) examined the use of entropy in applied sciences to measure the heterogeneity
of observations, focusing on recent attempts to develop entropy measures for spatial data to capture
the influence of space on variable outcomes. They identified limitations in these developments,
such as the computation of indices conditional on a single distance and the lack of additivity
between local and global spatial measures. The study reviewed recent univariate distribution-based
approaches and introduced a new method linked to bivariate distributions. Firstly, they
decomposed Shannon’s entropy into spatial mutual information, which accounts for the role of
space in determining variable outcomes, and spatial global residual entropy, which summarizes
the remaining heterogeneity of the variable. Both terms satisfy the additivity property, being sums
of partial entropies measured at different distance classes. The proposed indices were applied to
measure the spatial entropy of a marked point pattern of rainforest tree species, demonstrating that
the new entropy measures are more informative and address a broader set of questions than existing

literature proposals.

Altieri et al. (2019) addressed the inefficiency in urban diffusion, a significant concern for
biologists, urban specialists, planners, and statisticians in both developed and developing
countries. Urban sprawl, often identified as chaotic urban expansion, is linked to the concept of
entropy. The paper employed a rigorous spatial entropy-based approach to measure urban sprawl
associated with the diffusion of metropolitan cities. To assess the effectiveness of the measures, a
comparative study was conducted on archetypical urban scenarios, followed by the application of

the measures to quantify the degree of disorder in the urban expansion of three European cities.
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The results were easily interpretable and could be used as absolute measures of urban sprawl or

for comparative analysis over space and time.

Altieri et al. (2021) reviewed a selection of spatial entropy indices, including some recent ones,
designed to handle spatial data on variables with a finite number of categories. While the paper
focuses on biodiversity data, the methods are applicable to other environmental phenomena. They
introduced the new R package SpatEntropy, which computes spatial entropy measures, extending
traditional entropy measures to their spatial versions. This package works with both areal and point
data. The paper includes a practical section where the package is applied to two types of
environmental data: tree biodiversity and urban expansion. The results demonstrate that
SpatEntropy is a user-friendly and valuable tool for researchers and practitioners working with

spatial entropy measures.

Zhang et al. (2020) explored the formation mechanisms of vegetation patterns, key self-organized
structures in ecological systems, traditionally attributed to dynamic bifurcations. They examined
how statistical indicators, specifically Shannon entropy and the contagion index, influence the
regularity of these patterns. Unlike previous studies that used randomly generated patterns or
vegetation maps, they simulated the formation of vegetation patterns using a discrete vegetation-
sand model under different bifurcation scenarios. The corresponding Shannon entropy and
contagion index of these simulated patterns were calculated using modified formulas. The study
revealed that the variation trends of Shannon entropy and the contagion index are closely linked
to the formation stages of vegetation patterns. Additionally, the different final values of these
indicators in various patterns can help determine the dominant bifurcation when both bifurcations

are present.
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Hmoud and Kumral (2023) emphasized the crucial role of effective management of ore loss and
dilution for successful grade control and short-term mine planning, given their significant
economic, environmental, and technical impacts on open-pit mining operations. The paper applies
the spatial entropy concept to capture ore heterogeneity at the scale of selective mining units. They
use global spatial entropy to assess the impact of spatial heterogeneity between ore and waste
blocks on ore loss and dilution, while local spatial entropy guides the allocation of blast movement
monitoring balls pre-blast. High global spatial entropy values indicate a higher potential for ore
loss and dilution, which reduces profit. The study also explores the relationships between spatial
entropy, cut-off grades, blast movement, dig-limits optimization model running time, and profit
through various case studies. Results indicate that changes in cut-off grade and blast movement
significantly affect spatial entropy post-blasting, increasing ore loss, dilution, and profit reduction,
thus highlighting the need for controlled blasting in specific bench sections. Additionally, they
demonstrate an exponential increase in profit reduction due to ore loss and dilution with rising

global spatial entropy.
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Chapter 3: Effect of Blast Movement Uncertainty on Dig-Limits

Optimization in Open Pit Mines

3.1 ABSTRACT

The determination of dig-limits is one of the most critical steps in grade control and short-term
mine planning. Dig-limit optimization aims to identify blasted materials to their optimal
destinations while honoring equipment selectivity. The dig-limits determined in the pre-blast stage
are not operational in the post-blast stage due to blast movement. Based on the blast design
configuration and rock characteristics, blasted materials will move in certain directions. The
magnitude of blast movement in those directions varies across bench levels called flitches. Dig-
limits without incorporating blast movement can cause ore losses and dilution, leading to severe
financial losses. In this paper, a new methodology is proposed for quantifying uncertainty in blast
movement and assessing the impact on dig-limits optimization. Blast movements are modeled by
using measurement data obtained from blast movement monitoring balls that are installed in blast
holes. The multivariate distributions for measured blast movements across flitches are fitted using
D-vine copula and blast movement realizations generated using Monte Carlo simulation. A mixed-
integer programming model is used to determine the optimal dig-limits for all economic block
models corrected and adjusted with blast movements realizations. An ore probability map is
generated showing locations of ore and waste blocks in a probabilistic fashion. A case study for
demonstrating the proposed methodology is presented. In this case study, two scenarios are
investigated; the first scenario incorporates blast movement in determining dig-limits, while the
second scenario discards blast movement effect on dig-limits. The result of this comparison shows

that discarding the blast movement when determining dig-limits can lead to over-estimating the
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expected profit by 65.3% on average when compared with the other scenario that incorporates
blast movement. The post-blasting ore and waste areas with a high-risk of being misallocated by

the dig-limits are identified.

3.2 INTRODUCTION

Ore-waste classification is an essential part of grade control and short-term mine planning. It aims
to maximize profit from short-term mining operations by sending the blasted materials to their
optimal destinations and reducing ore losses and dilution while honoring the selectivity of mining
equipment. A block model is generated to understand the spatial distribution of ore and waste zones
within a bench. This model is a simplified representation of the bench, and it consists of a number
of small computer-generated blocks called selective mining units (SMUs). SMUs are the smallest
volumes of materials on which ore-waste classification decisions are made (Sinclair & Blackwell,
2006). These SMUs are too small to be mined by themselves. Therefore, SMUs are grouped
together into spatially coherent clusters called dig-limits that can be mined by large mining
equipment. The misclassification of SMUSs can cause severe ore losses and dilution issues that lead
to significant financial losses. This misclassification problem becomes even more evident when
ore cannot be visually distinguished from waste during mining operations, such as in most (if not
all) gold deposits. During bench blasting, ore and waste blasted rocks are moved by the blast in
various directions and distances throughout the blasted section of the bench. It becomes difficult
to quantify the distance of this blast movement accurately as a consequence of the variations of
geologic and rock properties. These variations may add uncertainty in ore and waste boundary
exactness, resulting in financial losses. Therefore, assessing blast movement uncertainty is

considered a crucial predecessor step before determining optimal dig-limits. If dig-limits are
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determined pre-blast, they will have a limited or no operational use post-blast due to blast

movements.

Most of the current methods applied to determine dig-limits are based on the experience of the
grade control geologists who manually digitize ore and waste polygons on a bench-by-bench basis.
Their judgment on the shape of dig-limits is guided by rock types and cut-oft grade that varies
according to deposit type, ore recoveries, and other economic factors such as commodity price and
operational costs. However, this manual determination of dig-limits suffers from several
limitations: (1) it is subjective, (2) it takes a relatively long time to manually digitize dig-limits,
(3) it does not produce optimal dig-limits that maximizes profit, (4) it does not correctly account
for the differential blast movements within a bench among flitches, and (5) it does not account for
the unavoidable uncertainty in modeling blast movement. These limitations may result in profit

losses caused by dilution and ore loss.

To overcome these limitations in solving the dig-limits problem, various methods have been
proposed in the literature. Most of these proposed methods rely on heuristics and metaheuristics
algorithms such as simulated annealing (Deutsch, 2017; Isaaks, Treloar, et al., 2014; Norrena &
Deutsch, 2000), genetic algorithms (Ruiseco, 2016; Ruiseco & Kumral, 2017; Ruiseco et al., 2016;
Williams et al., 2021), heuristics (Richmond & Beasley, 2004; Vasylchuk & Deutsch, 2018,
2019a), greedy searches (Wilde & Deutsch, 2015), or they adopted a hybrid approach such as
combining branch and bound with simulated annealing to determine the dig-limits (Deutsch,
2017). In this approach, when the branch and bound need many iterations, simulated annealing
takes part resulting in sub-optimal solutions. These techniques could solve big computational
problems in a relatively short time. However, they do not guarantee optimality, and they require

careful selection for input parameters to obtain near-optimal results.
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Another way of solving dig-limits problem could be spatial clustering. Tabesh and Askari-Nasab
(2011) proposed a hierarchical clustering algorithm for generating dig-limits based on a similarity
index that includes distance between blocks, rock types, destinations, metal grade, and other
attributes to produce spatially coherent clusters or dig-limits. The generated clusters are refined in
a later stage using a Tabu search. However, this post-processing step reduces cluster homogeneity
and increases ore loss and dilution. Tabesh and Askari-Nasab (2013) proposed another spatial
hierarchical clustering algorithm to define spatially coherent groups of blocks used at different
stages of mine planning. Their algorithm accounts for mining shapes and the direction of mining
when creating these clusters. Tabesh and Askari-Nasab (2019) extended their proposed spatial
clustering algorithm to account for geological uncertainty and proved that it could be implemented
on real-size block models and generate clusters within a reasonable processing time. Salman et al.
(2021) explored a block clustering algorithm based on the K-means clustering algorithm to define
dig-limits. This algorithm aggregates blocks with a similar grade, rock types, spatial proximity and

generates clusters with controllable sizes used as dig-limits.

These clustering approaches summarized above are used to produce quick mine schedules by
dividing open-pit benches into a number of clusters and grouping blocks with the same
characteristics together to form dig-limits. However, these approaches do not find optimal dig-
limits when forming their clusters to separate ore from waste. They also require careful selection
for input clustering parameters, such as the desired number of clusters, making the solution very
subjective. Furthermore, the dig-limits optimization problem is formulated as a mixed-integer
programming (MIP) problem (Kumral, 2015; Nelis & Morales, 2021; Sari & Kumral, 2018). These

models guarantee optimality, but they usually require a longer time to find the optimal solutions.
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Many dig-limits optimization techniques do not account for blast movement when determining
optimal dig-limits. Therefore, the determination of dig-limits ignoring blast movements will not
be practical (Engmann et al., 2013; Thornton et al., 2005). The possible dilution associated with
blast movement can be minimized if blast movement is considered appropriately (Yennamani,
2010; Zhang, 1994). As a result of incorporating blast movement in determining dig-limits, ore
recovery can increase because mined materials are sent to their optimal destinations (Gilbride,

1995; Harris, 1997; Taylor & Firth, 2003).

Modeling blast movements throughout the bench section is an essential step for determining
optimal dig-limits. There are three approaches for modeling blast movements in literature: (1) by
conducting a multi-physical simulation of blast movements (Zou & Jun, 2021), (2) by modeling
blast movements using physical field measurements (Isaaks et al., 2014; Vasylchuk & Deutsch,
2019b; Yuetal., 2021), and (3) by the machine learning techniques on the previous blast movement
information to predict future blast movement in the mine (Yu et al., 2020; Yu et al., 2021). Physical
field measurements will also be required for validating multi-physics simulation models of blast
movement. Furthermore, these measurements may be used for machine learning applications for
training purposes. If the mechanism behind the blast movement distance is not well-quantified,
there will be high ore losses and dilution levels. Given that blasting is a relatively cheap process
in mining, the operations tend to overbreak rock, leading to turbulent movements. In other words,

the benefit acquired by small particle size through blasting can be lost due to loss and dilution.

No matter what approach is used for modeling blast movements, there will be inevitable
uncertainty associated with the direction and distance of the movement. Rosa and Thornton (2011)
remarked that blast movements are uncertain because of inconsistencies of blast design and the

rock mass characteristics. They emphasized the fact that accurate calculation of the movement is
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not possible if there are no detailed physical field measurements. Moreover, there would be
inevitable human factor issues and geologic fluctuations. As a matter of fact, no method precisely
guarantees predictions for blast movements. When physical field measurements are not available,
evaluating the risk associated with rock movement uncertainty will be essential to quantify dilution

and loss.

Based on previous research conducted on modeling blast movement, the uncertainty in blast
movement remains unstudied. For this reason, this research is proposed to assess the effect of blast
movement uncertainty on dig limit optimization while honoring the selectivity of mining
equipment. The originality of this paper is two-fold: (i) a combined approach of blast movements
and the dig-limit optimization, and (i1) the quantification of risk attributed to blast movement in
bench sections such that the effects of blast movement uncertainty on profit, dilution, and ore

losses are measured.

The paper was organized as follows. The proposed methodology is elaborated in the next section,
followed by a case study demonstrating the importance of incorporating blast movement in dig-

limits optimization. Finally, the conclusions and future work are provided.

3.3 METHODOLOGY

The methods in this paper are based on combined approaches: MIP, the simulation of the blast
movements through Monte-Carlo simulations (MCS) using the D-vine copula, and statistical

analysis. Figure 3.1 summarizes the methodology used in this research.
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Figure 3.1: Flow chart summarizing the proposed methodology
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A grade control block model is formed using the exploration drill holes and blast holes resource
database. The estimation methods such as Ordinary Kriging can be used to estimate ore grades and
produce a grade control block model. Ordinary Kriging (OK) is one of the most widely used
interpolation techniques. In the context of resource estimation, the OK estimates the grade at an
SMU location by using a variogram model and grade data in the neighborhood of the estimation
location. The variogram model provides OK with covariance values used to assign weights for the
neighboring grade data to estimate the unknown grade value at an SMU location. This process is
repeated until all SMUs in the grade control block model are estimated. The most significant
advantage of using OK is that it is the best linear unbiased estimation technique compared to other
techniques such as inverse distance. This grade control block model should cover the investigated
section of the bench that needs to be blasted. When creating the grade control block model, the

number of SMUSs in the vertical direction should equal the number of bench levels called flitches.

This grade control block model is transformed into an economic block model by applying various
parameters, including cost, price, recovery, and metal quantity, to all SMUSs. The principal input
parameters used in generating an economic block model are operational costs, metal price, and ore
recovery. These parameters are used to calculate a break-even cut-off grade (COGs ) and compute
the profit. COG3k. is calculated using Equation 3.1.

Cp+ Cm

COGpg =
B.E. DT

3.1)

Where C, is the processing cost per tonne, C;, is the mining cost per tonne, p is the metal price,

and r is the ore recovery. COGpg 5 is used to distinguish ore SMUs from waste SMUs because it
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includes the cost of mining which is vital to calculate the profit of all SMUs in the economic block

model. The profit obtained from an ore SMU is calculated through Eq 3.2.

Pij=pxmy;xr—tx(Cp+ Cp) (3.2)

Where P; ; is the profit of SMU located in i and j on a bench if it is assessed as ore, m; ; is the

contained metal of SMU i, j, and t is SMU tonnage. If the mined material is considered waste
based on COGg g, then the profit generated from mining this waste SMU is calculated using Eq

33

Where W, ; is the extraction cost of SMU located in i and j on a bench if it is assessed as waste.
After generating an economic block model, two initial input parameters must be specified: (1) blast
movement direction and distance, and (2) minimum mining width. The direction and magnitude
of blast movement are estimated from physical field measurements using blast movement monitor
(BMM) balls. Minimum mining width must be specified based on the selectivity of the equipment

used for mining the bench.

The extent of horizontal blast movement is different in each flitch because of the blast design and
rock characteristics. In general, most explosives are placed in the mid-holes. This placement results
in the blasted rocks in the middle flitches of the bench moving further than the upper and lower
flitches. These differential movements generate a D-like shape structure prior to settling a new

location. Figure 3.2 illustrates a typical D-like shape of blast movements. The number of flitches
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depends on the blasting design and SMU sizes used in the estimation stage. Typically, the direction

of blast movement is parallel to the initiation direction of the blast (Gilbride, 1995).

Figure 3.2: Schematic diagram illustrating the expected D-like shape of a blasted bench with

three flitches.

Even though the use of BMM balls in determining the magnitude of blast movement is considered
one of the best and the most reliable sources of blast movement information, the measurements of
blast movement obtained from these balls remain uncertain because (1) BMM balls do not cover
the entire blasted section of the bench, (2) it is difficult to determine the locations of the BMM
balls post-blasting, and (3) the blast movement distances associated with the balls varies even
within the same flitch. For this reason, the uncertainty in modeling blast movement needs to be
quantified before determining any dig-limits because it significantly impacts ore loss, dilution,

and, subsequently, mine profit.
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After bench blasting, the new locations of the BMM balls are determined, and they are used to
calculate the magnitude and the overall direction of blast movement. To help modeling blast
movement across bench flitches, blast movement data collected from BMM balls are grouped
together based on the bench flitch located within. Then, a multivariate statistical distribution is
fitted to the blast movement measurements across these flitches. This multivariate distribution
honors the existing correlations between flitch movements. Applying MCS to the fitted
multivariate distribution of blast movement measurements, several blast movement realizations
are generated. These realizations yield the expected D-like shape from blast movements. There is
always a chance to produce unexpected shapes because of issues emerging from the fluctuations

in blast design, rock and geologic features that affect the magnitude of blast movement.

In this paper, the multivariate relationships between blast movements of bench flitches are modeled
using vine copula (D-vine), a subclass of regular vine copula (R-vine), which was proposed by
Aas et al. (2009). This method preserves the multivariate associations between the blast
movements of bench flitches using bivariate copulas and a nested set of trees. Figure 3.3 shows an
example of D-vine copula trees for the blast movement measurements of three flitches where F1
is blast movement for Flitchl, F2 is blast movement for Flitch2, and F3 is blast movement for
Flitch3. F1F2 and F2F3 are the bivariate blast movement copula distributions between Flitch1-
Flicth2 and Flitch2-Flitch3. F1F3|F2 is the Flitchl and flitch3 bivariate copula distribution given
Flitch2 blast movement. Bivariate copulas are functions that describe the dependency among two
one-dimensional distributions. If both marginal distributions and copula are known, then the entire
bivariate distribution of those two one-dimensional distributions is also known. Following Sklar’s

theorem (Sklar, 1959), if H(x,y) is a two-dimensional distribution function with marginal
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distribution functions F(x) and G(y), then there exists a copula C that can be calculated as in Eq

3.4.

H(x,y) = C(F(x),6(¥)) Vx,yinR (3.4)

When applying copulas to blast movement scenarios F(x) and G(y), which are two continuous
marginal distributions, they will represent blast movement magnitudes in two bench flitches.
Based on Sklar’s theorem, if both marginal distributions are continuous, then a unique copula must

exist.

Copulas are used for modeling complex multivariate relationships. They have been applied to solve
a limited number of mining-related problems (Ardian & Kumral, 2020; Singh et al., 2021). In this
paper, the way modeling blast movement across flitches is different from the abovementioned
references. The D-vine copula is selected instead of the canonical vine copula (C-vine). This
difference lies in capturing blast movement correlation between the flitches. This decision of
selecting a D-vine copula is made due to the nature of the problem in which all flitch movements
are equally important. No flitch movement controls all other flitch movements when rocks are
blasted. The C-vine copula is only used in fitting multivariate distributions when one variable

controls several other variables. This situation does not exist in the blast movement problem.

A number of well-known bivariate copula distributions can be used to fit bivariate relationships of
blast movements between flitches such as Gaussian and Archimedean copulas. The Gaussian
copula is used to model linear bivariate relationships. On the other hand, Archimedean copulas are
used to model non-linear or heteroscedastic bivariate relationships. Clayton, Frank, and Gumbel

are good examples of Archimedean copulas. These bivariate Archimedean distributions have a
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single parameter that controls the degree of dependence (6). The parameter 6 of the Archimedean
copula is the leading and only parameter used in constructing a bivariate Archimedean distribution,
and it indicates the association between random variables. The parameter € can be derived from
Kendall's Tau correlation coefficient due to its ability to disentangle the marginal distribution
effect, which is suitable for non-parametric methods (Chemen & Teilly, 1999; Frees & Valdez,

1998). Kendall’s Tau correlation coefficient is computed using Equation 3.5.

Kendall correlation coefficient

(3.5)

_ 2(nconcordant - ndiscordant)
nn—1)

Where ncondordant 18 the number of concordant pairs, #discordant 1 the number of discordant pairs, and
n is the sample size. For Clayton, Frank, and Gumbel copulas, the value of @ can be calculated by

Equations 3.6, 3.7, and 3.8, respectively (Genest & Favre, 2007).

2T
0 =a-5 (3.6)
g1
(-7 3.7)
@®) -1 _(1-1)
g 4 (3.8)
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Where Y;(0) is the Debye’s model that can be estimated using Equation 3.9 (Genest & Favre,

2007).

1 t
Y, (6) = Efo ——dt (3.9)

Tree 1

Tree 2

F1F3 | F2

Figure 3.3: Example of D-vine copula trees for three flitches blast movements.

For modeling Archimedean-type copulas (e.g., Clayton, Gumbel, and Frank), Nelsen (2007)

provided the models as given in Equations 3.10, 3.11, and 3.12, respectively.

C = [max(u‘g +v7f—1, O)]_% (3.10)

1
(— [(—lnu)e +(—lnv)9]§>
C=e

(3.11)
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€= o —1

1 (1 N (eCW —1) (e — 1))

(3.12)

where C is the bivariate copula function. In order to estimate copula, the original values of the two
one-dimensional distributions are converted to # and v. Then, u and v follow a uniform distribution

with [0,1]. Examples of Gaussian and Archimedean copulas are presented in Figure 3.4.

Most phenomena in nature exhibit non-linear or heteroscedastic behavior. The linearity assumption
is typically considered to simplify most real-life problems. Therefore, the Clayton model is highly
recommended for modeling blast movements data across flitches where blast movement
correlations between these flitches are stronger near blast holes. They get weaker and weaker when

the distance becomes larger from the nearby blast holes.

The proposed methodology can deal with blast movements in any direction. First, the azimuth
angle of the overall blast movement direction is initiated as an input parameter. Then, all pre-blast
blocks will be moved to the direction specified. Blast movement simulations generated by D-vine
copula multivariate distribution are reflected on the block monetary values, including the
geological properties of the deposit, grade, metal quantity, and block profits. Later, the SMUs
within the block model are further divided into smaller sizes. Thus, small SMU movements can be
captured, and the accuracy of dig-limit optimization is increased. In the end, a post-blast block

model is yielded to submit to dig-limit optimization module.
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Figure 3.4: Examples of widely used bivariate copulas distributions.

Before running dig-limits optimization, the 3D post-blast economic block models are transformed
into 2D economic block models. In doing so, the x and y coordinates of their centroids are kept
the same, and the contained metal values of all SMUs are added such that a 2D model is obtained.
This step reduces the size of the dig-limits optimization problem significantly. This step will not
have an impact on the final dig-limits because dig-limits are drawn on 2D maps, and they are not
determined on a flitch-by-flitch basis. Another important step to further reduce the size of dig-
limits optimization processing time is that of re-gridding the small SMUs. In this step, SMUs are
re-grided back to their original SMU size, and the total amount of contained metal and profit are
calculated for these re-gridded SMUs. This re-gridding step may slightly increase ore loss and
dilution applied to the SMU model. As a result of this step, 2D post-blast economic block models
are generated that contain the amount of contained metal at original SMU support. Finally, those

re-gridded 2D economic block models are used as an input to the dig-limits optimization model to
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generate a number of dig-limits realizations corresponding to the number of post-blast 2D

economic block models.

The formulation of dig-limit optimization used in this research is based on the MIP model
developed by Sari and Kumral (2018). This model was re-coded using Python 3.8 and run on the
CPLEX solver (IBM, 2021). The objective function is to maximize the profit of the blasted section
of the bench while satisfying equipment selectivity constraints. To describe this approach in simple
words, equipment dimensions are defined as an n x n frame where n represents the number of
SMUs in x and y directions. Every SMU should be assigned to a frame in which all SMUs in it are
either ore SMUs or waste SMUs. A frame is called a valid frame if all SMUs inside it are either
ore or waste. If an SMU belongs to more than one frame, it should be assigned at least one valid

frame. The dig-limits optimization model is formulated as:

Dy Dy

Maximize ZZ[Xi,jPi’j +(1_xl'j)Wl,]] (313)

i=1 j=1
Where x;,; is a binary decision variable at ;,; SMU, and P; ; is the economic value of SMU i,j when
mined as ore, W; ; is the economic value of SMU i,j when mined as waste. The i and j are SMU

indices in x and y directions, respectively.

Subject to
n-1n-1
bijfasy = Z Xi—fyt7,j~fi+6
= (3.14)
fo=0,.on—1i=1,..,Dg fy,=0,.n—1;j=1,..,D,

Where y and § are the frame index in x and y directions, respectively, b; j r ¢, is a decision variable

that represents the total number of SMUSs (x;) at (i, j) locations that belong to a frame where
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i — fo+n <Dy,
j — fb +n< Dy,
(3.15)
i—fa=0,
j—fi=0
Dy and D, are the number of SMUs in the x-direction and y-direction, respectively, n is the

minimum mining width in SMU terms, £, and f; are frame indices in x and y directions, respectively.

The decision variable b;, jrfxofy is transformed a new binary decision variable, v;, jofarfb

controlling if a frame is valid:

1, ifbi'j'fa'fb: Oorbi:j;fa:fb:nz

Viyifarfh = 3.16
bjefarfb {O, otherwise (3.16)

Where v;, jofarfb is a valid frame. This constraint ensures that an SMU is assigned at least to one

valid frame

n-1 n—-1

Z vl!] 'fa be 2 1 l = 1; ---;Dx; _] = 1! "'lDy (3’17)

=0 0

S

a
S
o
I

To remove incomplete frames at the corners, the following constraints are added.

bi;j:farsz _1 i=11""Dx;j=1""’Dy; szo'n_l (318)

Where

i—fao+n>D,ori—f, <0 (3.19)
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bi'j:fa'fb = —1 i = 1, ...,Dx; ] = 1, ...,Dy} fa = 0, .n—1 (320)

Where

j—fb+n>Dy0rj—fb<0 (3.21)

After running dig-limits optimization using all 2D economic block models generated from the N
blast movement realizations, N number of dig-limits realizations are generated. Those N
realizations of dig-limits are used to calculate the probability of having ore and waste for all SMUSs.
Furthermore, uncertainty in ore loss and dilution amounts can be quantified, and profit distribution

can be generated for the blasted section of the bench.

3.4 CASE STUDY

In this section, a case study demonstrates the impact of the blast movement uncertainty on dig-
limits optimization. First, a 3D grade control block model is generated from blasting hole data at
a porphyry gold mine. The block model definition is summarized in Table 3.1. Next, this block
model is used to generate an economic block model applying a cut-off grade based on economic

and metallurgical input parameters listed in Table 3.2.
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Table 3.1: Block model properties.

Item Unit X Y Z
Block size (m) 5 5 5
Number of blocks in a 40 40 3
direction

Minimum centroids (m) 2.5 2.5 2.5
Maximum centroids (m) 197.5 197.5 12.5
Azimuth (degree) 0

Dip (degree) 0

Table 3.2: Parameter values used for cut-off grade and block economics values.

Item Unit Value
Gold price ($/gram) 60
Mining cost ($/tonne) 5
Processing cost ($/tonne) 20
Ore recovery (%) 70
Rock bulk density (tonne/m?) 2.65

The section of the bench under consideration is partitioned into three flitches. Each flitch has a
thickness of 5 m. Blast movement data are simulated from 51 BMM ball field measurements,
including the three flitches at 17 locations. In other words, each blast hole has three BMM balls.

The movement direction is North-East (45° azimuth) toward the two free faces of the bench on the
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north and east sides. The direction of movement is ascertained by comparing the pre-blast locations
of BMM balls against their post-blast locations. The blast movements data were best fitted to
triangular distributions, which are widely used in engineering simulations. It is a helpful
distribution because it has the fixed minimum and maximum values, unlike the normal distribution
and other distributions where their minimum and maximum values go to positive and negative
infinity. The selection of a distribution extending to both infinities (e.g., normal distribution) might
generate unrepresentative results. In this case, a truncated normal distribution could have been
used. These distributions are used to fit Clayton bivariate copulas and D-vine multivariate copulas
between flitches blast movements. MCS is then used to generate 1,000 realizations of blast
movements from the fitted D-vine copula distribution to check the reproduction of multivariate

relationships between flitch movements.

Figure 3.5 shows the results of simulating blast movement realizations through MCS using a D-
vine copula where the lines represent the fitted triangular distributions for the three flitches. In
Figure 3.5, n is the number of realizations, p, is the mean of the simulated realizations, X5, is
the median of the simulated realizations, o is the standard deviation, CV 1is the coefficient of
variation, X,,;,, 1s the minimum value, and X,,,, is the maximum value. Figure 3.6 shows if the
multivariate relationships between blast movements are agreed upon after simulating blast
movement realizations from the D-vine copula. Comparing the observed movements from BMM
balls and the simulated blast movements realizations using MCS is presented in Figure 3.7. These
movements were applied to the centroids of the blocks in flitches at depths of 2.5 m, 7.5 m, and
12.5 m. The sound reproduction of the multivariate input relationships between BMM

measurements and simulated realizations is observed in Figure 3.6 and Figure 3.7.
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Figure 3.7: Checking the reproduction of input blast movement measurements with simulated

realizations.

One hundred blast movement realizations are submitted to the dig-limits optimization model to
determine the optimal destinations for the SMUs while honoring equipment selectivity. A
minimum mining width of 10 m by 10 m is selected to represent the selectivity of the shovel's
bucket used to mine the section of the bench. The optimal dig-limits for the 100 blast movement
realizations are produced and then used to generate the ore probability map. Figure 3.8 summarizes
the results of the proposed methodology, starting from identifying pre-blast destinations,
simulating blast movement realizations, identifying post-blast destinations, applying dig-limits
optimization of post-blast 2D economic block models and generating post-blast dig-limits

realizations, and finally producing the ore probability map.
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Figure 3.8: Summary of the proposed methodology.

As seen in Figure 3.8, the ore probability map was generated. In the map, the areas shown in yellow
and navy blues are certain ore and waste areas, respectively. The greenish areas might be either
ore or waste, and they will be referred to as risk areas in this paper. These risk areas need special
attention when determining the best destination for their materials. This ore probability map can
be used to determine areas in which a careful grade control sampling program should be
implemented. This map helps optimize the number of grade control samples so that grade control
geologists can design a sampling program that focuses on a more detailed sampling of high-risk
areas. As a result of producing an ore probability map, risk areas are identified (Figure 3.9). This
ore risk map can be used to reduce the number of check samples taken during grade control, and
this will result in reducing the cost and the time needed in assaying certain ore and waste areas;
thus, increasing the profit from mining this section of the bench. It is apparent that the spatial
distribution of risky areas relies on three factors: (1) the degree of heterogeneity of the
mineralization, (2) the difference in the magnitude of blast movement across flitches, and (3) the
cut-off grade. A low degree of heterogeneity will reduce the number of risky areas in the blasted

section of the bench. A high cut-off grade generates more isolated ore areas than a low cut-off
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grade, increasing the risk areas. Having a significant difference in blast movement magnitude

across flitches increases the dilution and ore losses, which also increases the risk areas.

Additionally, the best locations for installing BMM balls can be determined using ore risk maps.
In fact, BMM balls are known for their high costs and their intermediate recovery rate after
blasting. Therefore, identifying high-risk areas before blasting brings more valuable information
on the magnitude and direction of blast movement at those uncertain locations and can reduce the
extra cost attributed to installing BMM balls at low-risk areas. To generate blast movements
realizations and produce ore risk maps, grade control geologists can utilize their knowledge and
experience from previous blasting operations conducted on benches with similar geological
features and blast designs. This pre-blast study will enable grade control geologists to generate ore
risk maps and determine high-risk areas within the bench that are considered ideal locations for

installing BMM balls.

73



Chapter 3

Risk Areas

Northing (m)

0 50 100 150 200
Easting (m)

Figure 3.9: The areas with high-risk probability in determining ore-waste selective mining units

(shown in brown).

To show the effect of ignoring blast movement impact on dig-limits optimization, another scenario
is investigated where the same proposed dig-limits optimization model is applied on the same
grade control block model using the same input parameters but without considering blast
movement. Figure 3.10 shows the results of this scenario where original ore and waste SMUs are

compared to their optimal pre-blast destinations after applying dig-limits optimization.
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Figure 3.10: Map of the original selective mining units’ destinations on the left and the optimized

pre-blast units’ destinations on the right.

The results of running dig-limit optimization on a pre-blast economic block model show that
equipment selectivity increases the amount of ore loss by 3.2% and dilution by 35.4%. Neglecting
this amount of ore loss and dilution will lead to an over-estimate of the profit from approximately

$2.36 Million to $2.80 Million (15.7% profit over-estimation).

In this case study, the equipment selectivity is considered relatively low when it is compared to the
size of SMUs. The low equipment selectivity (1) increases dilution by adding extra waste to the
mined ore, and (2) increases ore losses by mining small portions of the ore as waste while mining
the surrounding waste and then sending it to the waste dump. Consequently, the low equipment
selectivity decreases the profit obtained from mining. The problem of profit decrease is further
accelerated when the effect of blast movements is ignored in the dig-limit optimization. To
understand the effect of neglecting blast movements when determining optimum dig-limits, the

profit values calculated for each optimized dig-limits realization are compared with the single
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profit value obtained when no blast movements are considered. The comparison result shows that
the profit obtained from single optimum dig-limits that ignored blast movements is over-estimated
by 65.3% when compared to the expected profit value where blast movements are incorporated
into the process. Figure 3.11-a denotes the distribution of profit realizations when blast movements
are considered in determining dig-limits. Figure 3.11-b presents the distribution of profit over-

estimation caused by neglecting the effect of blast movements.
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Figure 3.11: (a) Histogram of profit distribution; (b) Histogram of profit over-estimation.

Modeling blast movement prior to running dig-limits optimization has a significant impact on
resulting dig-limits. The results obtained from this study should not be generalized for all mineral
deposits because mineral deposits vary in the spatial distribution of their mineralization, cut-off
grade, and blast designs. However, this study shows the importance of incorporating blast

movement when determining optimal dig-limits to generate a more realistic assessment of the
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expected profit. In addition, the reconciliation programs at the mine should include blast

movements when tracking ore and waste at stockpiles and the process plant.

3.5 CONCLUSION AND FUTURE WORK

Quantifying risk in the dig-limits optimization to account for the unavoidable uncertainty in blast
movement prediction is important for grade control and short-term mine planning. The paper's
contribution lies on quantifying the uncertainty attributed to blast movements on the optimal dig-
limits through a copula-based simulation approach. Physical field measurements for blast
movement obtained from BMM balls are used to furnish the multivariate blast movement
distributions for a number of flitches within benches using a D-vine copula. The realizations of
blast movements are generated through MCS after fitting a D-vine copula distribution to the blast
movements of flitches. The MIP algorithm has been utilized to find the optimal dig-limits for all
blast movements realizations. The ore probability map is generated showing locations of ore and
waste in a probabilistic fashion. The expected profit from a modeled bench was over-estimated by
65.3% on average when blast movement was disregarded in comparison to the expected profit
modeled from the same bench when the blast movement realizations are incorporated in the
proposed workflow. High-risk ore and waste areas post-blasting are identified from the ore

probability map. Due care should be taken when mining these uncertain (high-risk) areas.

Future work will focus on adding geological uncertainty in conjunction with the blast movement
uncertainty to produce optimal dig-limits. Further, the proposed methodology will be extended to
cover more than two destinations. At the same time, local variations in the direction of blast
movement will be modeled and added to the proposed workflow. With the advanced development
in parallel computing, aggregation/disaggregation, and decomposition methods such as nested

Bender decompositions, the solutions that can be generated in an acceptable time will be explored.
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3.7 NEXT STEPS

After examining the impact of blast movement uncertainty on dig-limits optimization outcomes,
this research will now focus on understanding how blast movement affects ore heterogeneity post-
blasting. To achieve this, both global and local spatial entropy indices, calculated at a scale
equivalent to the selective mining unit, are proposed. These indices will be used to investigate the
relationship between blast movement horizontal distance, ore heterogeneity, ore loss, dilution, and
the resulting profit reduction through a series of case studies. The outcomes of this study will
provide insights into how controlled blasting can mitigate the increase in post-blast spatial entropy,
thereby reducing ore loss and dilution in specific bench sections and increase mining operations

profitability.
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Chapter 4

Chapter 4: Spatial Entropy for Quantifying Ore Loss and Dilution
in Open Pit Mines

4.1 ABSTRACT

Effective management of ore loss and dilution is essential for successful grade control and short-
term mine planning due to their significant impact on the economic, environmental, and technical
aspects of open-pit mining operations. Factors influencing ore loss and dilution fall into two
categories: (i) controllable factors like mine equipment selectivity and blast design and (ii)
uncontrollable factors such as spatial heterogeneity of ore and waste blocks on a bench. This paper
focuses on the second category by applying spatial entropy concept to capture heterogeneity at the
scale of selective mining units. In this paper, global spatial entropy is used to assess the impact of
spatial heterogeneity between ore and waste blocks on the magnitude of ore loss and dilution,
while the local spatial entropy can guide the allocation of blast movement monitoring balls pre-
blast. High values of the global spatial entropy indicate increasing potential of ore loss and dilution,
which reduce profit. Furthermore, the study investigates the relationship between spatial entropy,
cut-off grades, blast movement, dig-limits optimization model running time, and profit through a
number of case studies. The results show that changes in cut-off grade and blast movement can
significantly affect spatial entropy post-blasting and increase ore loss, dilution, and profit
reduction, revealing the need for controlled blasting at specific bench sections. Additionally, the
results demonstrate an exponential increase in profit reduction due to ore loss and dilution with a

rising global spatial entropy.
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4.2 INTRODUCTION

Controlling ore loss and dilution is a vital issue in grade control and short-term mine planning due
to its significant impact on the profitability of mining projects. Dilution refers to mixing waste
material with the ore that will be sent to the processing plant. Ore loss is defined as ore material
not separated from the waste and sent to the waste dump. Ore loss and dilution are classified as
planned and unplanned. Shovel size and capability, to a certain degree, govern planned ore loss
and dilution. On the other hand, uncertainty in blast movement also causes unplanned ore loss and
dilution, which are rather difficult to control by grade control geologists and short-term mine
planning engineers. In addition to shovel size and blast movement, the misclassification of ore and
waste significantly contributes to ore loss and dilution. This misclassification occurs due to the
limitations of estimation and simulation methods, data scarcity, assaying errors, and grade control

methods. Consequently, the mined material is sent to the wrong destination.

The consequences of ore loss and dilution are quite distinct. Ore loss is an opportunity cost, where
the potential profit that could be gained from processing a block is missed. Dilution represents a
cash cost where a block that does not contain sufficient metal to generate a profit is still processed.
Dilution has economic, environmental, and technical impacts. It increases operational costs,

energy consumption, and tailing quantities (Zarshenas & Saeedi, 2016).

Reducing dilution in mining operations can reduce the project's carbon footprint, material handling
costs, and the unnecessary processing of waste materials. This can be achieved through improved
blasting designs, equipment sizing, more accurate orebody characterization, and improved grade

control procedures (Zarshenas & Saeedi, 2016; Dowd & Dare-Bryan, 2018)
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Several factors determine the level of ore loss and dilution in any mining operation, including the
shape of the orebody, the spatial distribution of ore and waste zones within the orebody, equipment
selectivity, blast movement, and the selected mining method (Marinin et al., 2021). Some of these
factors, such as the shape of the orebody and the spatial distribution of ore and waste zones, may
vary locally within the same deposit, leading to varying degrees of ore loss and dilution within the
same mine. While these locally varying factors are typically considered uncontrollable, equipment
selectivity, blast design, and the selected mining method are regarded as controllable factors that

can be controlled to minimize ore loss and dilution; thus, reducing material misclassification.

It is impossible to eliminate ore loss and dilution entirely. Therefore, this paper employs the
concept of spatial entropy to help assess the magnitude of potential ore loss and dilution pre-
blasting. Local analysis of spatial entropy can also guide the selection of areas within the bench
section that require careful blast movement monitoring to reduce ore-waste misclassification. This
research uses a cut-off grade to discriminate blocks into ore and waste and calculate global and
local spatial entropy indices at specific bench sections. These indices can be used as an early
warning system alerting grade control geologists, short-term mine planning engineers, and blasting
engineers to identify possible ore loss and dilution problems in a bench section. To reduce the

negative impact of ore loss and dilution, the following processes can be optimized:

(1) Dig-limits delineation: Implement a solution for dig-limits that effectively reduces ore loss
and dilution that honors equipment selectivity.
(2) Blast design: Develop a blasting design strategy that mitigates the increase in ore loss and

dilution due to blast movement.
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The degree of acceptable ore loss and dilution may vary from one mine site to another (Pakalnis
et al., 1996). Therefore, it is crucial for mining operations to minimize ore loss and dilution to an

acceptable degree, if possible, to enhance the profitability of the project.

Dig-limits optimization aims to quantify, control, and reduce the amount of planned ore loss and
dilution in open pit mines. These dig-limits establish boundaries that separate ore from waste,
ensuring that the blasted materials are sent to their optimal destinations to maximize profits while
honouring equipment selectivity and accounting for blast movement (Hmoud & Kumral, 2022).
Numerous methods have been proposed in the literature to address the dig-limits problem. These
methods can be classified into five groups: (1) exact methods (e.g., mixed-integer programming
(MIP) (Hmoud & Kumral, 2022; Kumral, 2015; Nelis et al., 2022; Nelis & Morales, 2022; Sari &
Kumral, 2017)); (2) heuristics (Richmond & Beasley, 2004; Vasylchuk & Deutsch, 2019a; Wilde
& Deutsch, 2015); (3) metaheuristics (e.g., simulated annealing ( Isaaks et al., 2014a; Isaaks et al.,
2014b; Norrena & Deutsch, 2000; van Duijvenbode & Shishvan, 2022); genetic algorithms
(Ruiseco, 2016; Ruiseco & Kumral, 2017; Ruiseco et al., 2016; Williams et al., 2021); (4) hybrid
approach combining MIP and metaheuristics (Deutsch, 2017); and (5) spatial clustering (Salman

et al., 2021; Tabesh & Askari-Nasab, 2011, 2013; Tabesh & Askari-Nasab, 2019).

MIP guarantees optimal solutions. However, these solutions require high computational cost and
long processing times to reach optimality. The required time to solve dig-limit problem is case-
specific and highly dependent on entropy. With the advancements in high-performance computing,
using MIP to generate reasonably fast optimal results is achievable if entropy is low. Otherwise,
near-optimal solutions for the dig-limits problem are obtained using heuristics and metaheuristics
algorithms. These algorithms are relatively fast when compared to MIP. However, the results of

these methods are highly sensitive to the selected input parameters. Therefore, hyperparameter
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tuning is essential for achieving acceptable results with these algorithms. However, since the
solution to this problem is unknown in advance, tuning the hyperparameters becomes a challenging

task.

Deutsch (2017) combined MIP and metaheuristics methods in a workflow. This hybrid approach
ensures reasonable starting solutions for the MIP from the initial solutions of the non-optimal MIP
to increase the chances of reaching an acceptable near-optimal solution for the dig-limits problem
within a reasonable time. The MIP in this approach is forced to stop at a pre-specified gap value
or after a certain time to generate non-optimal but acceptable solutions for the metaheuristics. Like
heuristic and metaheuristic algorithms, this approach is also prone to non-optimal solutions and is
sensitive to input parameters, limiting its ability to deliver guaranteed optimal results consistently.

Nevertheless, near-optimality is guaranteed.

Additionally, spatial clustering techniques are used to solve the dig-limits problem (Tabesh &
Askari-Nasab, 2011, 2013; Tabesh & Askari-Nasab, 2019). These approaches rely on generating
dig-limits based on hierarchical or k-means clustering, which is based on the distance between
blocks, rock types, material destinations, metal grade and the shape of the mining cuts as input to
generate spatial clusters that delineate dig-limits. However, a refinement stage may be needed to
homogenize the spatial cluster to form coherent zones, and this step increases the ore loss and
dilution. The advantage of these approaches is in their ability to generate dig-limits in a fast time,
but they do not guarantee optimality. Additionally, selecting input clustering parameters, such as
the desired number of clusters, requires careful consideration. This subjectivity introduces
uncertainty that must be captured and managed to ensure the outcomes of the spatial clustering

algorithms are meaningful and reliable.
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Blast movement is another critical factor that affects ore loss and dilution. However, most dig-
limits optimization techniques and workflows do not account for blast movement when
determining optimal dig-limits. Therefore, any mathematically optimized dig-limits that ignore
blast movements are not operationally optimal (Engmann et al., 2013; Hmoud & Kumral, 2022;
Thornton et al., 2005). Incorporating blast movement into dig-limit optimization process will also
reduce misclassification (Zhang, 1994; Yennamani, 2010). Furthermore, monitoring blast
movements can increase ore recoveries and controlling head grade in mineral processing (Gilbride,

1995; Harris, 1997; Taylor & Firth, 2003).

Modeling blast movements prior to running any dig-limits optimization algorithm is essential to
capture ore and waste zones post-blasting. There are four main approaches for modeling blast
movements in the literature: (1) the multi-physical simulation of blast movements that requires
physical field measurements to validate the multi-physical model (Yu et al., 2022; Zou & Jun,
2020); (2) modeling blast movements using heuristics and physical field measurements (Isaaks et
al., 2014a; Isaaks et al., 2014b; Vasylchuk & Deutsch, 2019b); (3) training machine learning
algorithms on blast movement information obtained from previously blasted benches (Yu et al.,
2020; Yu et al., 2019); and (4) stochastic modeling of blast movement using Monte Carlo
simulation and physical field measurements obtained from blast movement monitoring (BMM)

balls (Hmoud & Kumral, 2022).

The main limitation of using a multi-physics simulation to model blast movement is the challenge
of accurately collecting all necessary input parameters. Due to the complex nature of the
simulation, it can be difficult to ensure that all relevant parameters are included and accounted for
in order to generate acceptable blast movement models. Additionally, the current multi-physical

simulators require significant computational time to generate a blast movement model. The
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importance of generating a blast movement model in a short time is essential when considering
the nature of the blast operation that is performed a few times a week in a mine. Blast movement
modeling using heuristics and physical field measurements such as post-blast topography surfaces
is a faster solution to model blast movement. However, heuristics do not guarantee optimality, and
how much they deviate from optimality is unknown. Moreover, not all mining operations perform
post-blast topography surveys of their blasted bench sections before delineating dig-limits.
Applying machine learning predictive modeling to predict future blast movement from historical
blast information is also another potential solution for modeling blast movement. It may generate
an acceptable prediction of blast movement when the geology and the blast design of the bench to
be blasted are similar to some of the historical blast information that was used to train the blast
movement predictive models. However, every deposit has unique geological characteristics and a
degree of heterogeneity that vary within the same deposit at different zones. Therefore, training a
machine learning algorithm to predict blast movement based on historical blast data for deposits
with different geology and blast designs may not be accurate enough, especially when uncertainty

in the predicted movement is not captured and managed.

Uncertainty in the blast movement can be attributed to the inconsistencies in blast design, the
heterogeneity of blasted rock mass, the incomplete knowledge of geology, and human factors. It
is highly unlikely to get accurate models of blast movements using only theoretical modeling
approaches without obtaining physical field measurements before blasting any bench section (La
Rosa & Thornton, 2011). As a result, using stochastic modeling techniques that use blast movement
data obtained from physical field measurements coming from the same blasted bench is considered
a reasonable solution for this problem (Hmoud & Kumral, 2022). However, achieving adequate

coverage of these physical field measurements in bench sections, including all flitches, is
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necessary. This helps construct representative multivariate statistical distributions encompassing
blast movement uncertainty, particularly around ore zones. It also aids in identifying high-risk

areas of material misclassification, demanding meticulous grade control sampling protocols.

As emphasized before, the magnitude of ore loss and dilution depends on the degree of spatial
heterogeneity within the orebody at the selective mining unit (SMU) scale. The degree of spatial
heterogeneity of ore and waste is influenced by the spatial distribution of grade and the cut-off
grade that separates ore from waste. As an attempt to measure the degree of spatial heterogeneity
between ore and waste, the concept of entropy is used. Entropy is a concept that originated first in
thermodynamics to describe the state of gases or fluids within a system and the distribution
probability of molecules. The special use of entropy was adapted from information theory by
Claude E. Shannon as a measure of information contained in a given signal (Shannon, 1948). When
computing the disorder of a system, also known as heterogeneity in more geological terminology,
for a set of units (e.g., locations) with a finite number of categories (e.g., mined material
destinations), a standard way to assess this heterogeneity is to compute entropy. Over the years,
the Shannon entropy has been widely used in many applied sciences, such as ecology and
geography (Hoeting et al., 2000; Patil & Taillie, 1982), hydrology and hydrogeology
(Aghakouchak, 2014; Butera et al., 2018; Manchuk et al., 2021; Singh, 1997) and geology (Feizi

etal., 2017; Liu et al., 2021; Zhang et al., 2021).

All previously mentioned applications of entropy do not consider the spatial location of data.
Therefore, datasets with the same probability mass functions, but different spatial configurations
will have the same entropy values. However, the need to have a measure of entropy that accounts
for the spatial location of data emerged over the years. These spatial entropy indices are calculated

only on categorical variables, which make them suitable for measuring the heterogeneity of ore

89



Chapter 4

and waste zones within the orebody. Theil (1972) introduced the concept of spatial entropy to
measure the level of inequality or diversity in the distribution of variables across space. Batty
(1974, 1976, 2010) extended Theil (1972) and developed a spatial entropy measure that is
restricted only to one category at a time by applying partitioning for the spatial system to define a
representative number of subareas to conduct further spatial analysis and measure spatial entropy
for these unequal space partitions of these subareas. Karlstrom and Ceccato (2000) modified Batty
(1974, 1976) to satisfy the property of additivity to ensure that all local spatial entropy measures
sum to the exact global spatial entropy measure following the idea of Local Indices of Spatial
Association (LISA) proposed by Anselin (1995). O'Neill et al. (1988) developed spatial entropy
indices that quantify landscape heterogeneity to discriminate among major landscape types. They
also proposed the contagion index that measures the extent to which locations with the same
categorical variable are spatially clustered. Claramunt (2005) and Li and Claramunt (2006)
proposed a measure of spatial diversity that accounts for the spatial configuration as a weight factor
in the Shannon entropy. This weight factor is the ratio of the average distance between pairs of a
particular category (intra-distance) to the average distance of those pairs with different categories
(extra-distance). Leibovici (2009) and Leibovici et al. (2014) extended the work of O'Neill et al.
(1988) and Claramunt (2005) to account for the multivariate distribution of co-occurrences at
various distances. A number of contagion indices are proposed in literature based on the spatial
entropy concept (Li & Reynolds, 1993; Parresol & Edwards, 2014; Riitters et al., 1996; Zhang et

al., 2020).

Altieri et al. (2017, 2018, 2019, 2021) proposed a spatial entropy measure extending beyond two
categories and simultaneously considering multiple distance ranges. In their approach, the total

entropy measure (akin to Shannon's entropy) is broken down into spatial mutual information,
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revealing how categorical data cluster in space, and spatial global residual entropy, summarizing
the variability in the variable's spatial distribution. However, mutual information can be
compromised by weak spatial correlation between distant categories, potentially yielding
misleading low values. This means that spatial mutual information might seem insignificant even
if certain categories cluster strongly in close proximity. Mutual information and spatial global
residual entropy can be further divided into distinct components describing specific distance
intervals. Despite these enhancements, the partial spatial residual entropy, capturing spatial
heterogeneity at short distances, cannot quantify entropy at precise locations. Nonetheless, it can
provide a summary of heterogeneity between pairs within short distance intervals across the area

of interest.

In geostatistics, Journel and Deutsch (1993) explored the relationship between the maximum prior
entropy and the response distribution. They introduced a global spatial entropy measure that
calculates entropy at various lag distances for a set of discrete variables. Their spatial entropy
measure provided a global measure of spatial entropy and it was not aimed to quantify entropy at
a local level (i.e., SMUs). Additionally, their spatial entropy calculates entropy for all possible
pairs separated by a certain number of lag distances within a certain area of interest. Their spatial
entropy formulation needs to be modified to quantify local spatial entropy at certain locations with
the surrounding SMUs and only account for relevant pairs when calculating spatial entropy both

globally and locally.

Our research customizes the spatial entropy formulation to account for the scale of equipment
selectivity when measuring global and local spatial entropy. This adjustment aims to enhance the
accuracy of assessing ore loss and dilution on both global and local scales. Furthermore, it

calculates local spatial entropy measure by considering only the blocks surrounding every block
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within the block model that are located inside all possible SMUs around that block. This approach
provides a more refined assessment of entropy at each location within the block model by
considering only relevant pairs and removing irrelevant pairs from the calculation. The number of

blocks used are determined by the size of the SMU.

It is also important to note that the optimization of blast design should consider the impact of
orebody heterogeneity resulting from the spatial distribution of ore and waste blocks within the
bench sections, because it may cause issues related to ore loss, dilution, and material

misclassification resulting in significant profit reduction (Dowd & Dare-Bryan, 2018).

Based on previous research on estimating ore loss and dilution, the relationships among orebody
spatial heterogeneity, cut-off grade, blast movement, and dig-limits optimization running time
remain unstudied. This paper builds upon Hmoud and Kumral’s (2022) study which investigated
the incorporation of blast movement uncertainty into dig-limits optimization workflow. The
originality of this paper is four-fold: (1) applying customized spatial entropy indices to describe
the spatial heterogeneity of ore and waste at the SMU scale within bench sections; (2) quantifying
the relationship among cut-off grade, spatial entropy, and dig-limits optimization running time and
outcomes; (3) investigating the impact of blast movement on spatial entropy and profit reduction;
and (4) showing how spatial entropy can be used to guide blast design to influence control on the

magnitude of ore loss and dilution.

The organization of this paper is as follows: The proposed methodology is elaborated upon in the
next section. Next, case studies that demonstrate the application of spatial entropy to understand
the impact of cut-off grade and blast movement on the level of ore loss and dilution are presented.

These case studies also explore how spatial entropy can explain the variability in dig-limits
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optimization running time. Finally, the results are discussed, conclusions are drawn, and avenues

for future research are proposed.

43 METHODOLOGY

This section offers a comprehensive overview of the spatial entropy concept and demonstrates how
it was adapted to quantify spatial heterogeneity both globally and locally at the SMU scale. To
demonstrate the proposed methodology, a block model, which is a numerical representation of an
orebody, is generated. The blocks constituting the block model are typically half the size of the
SMU, aiming for a finer resolution of the block model that allows for a more accurate
representation of the deposit's heterogeneity. Spatial heterogeneity between ore and waste within
a bench section can be explored by applying a cut-off grade to the blocks that have grade estimates.
This process reveals how the degree of heterogeneity can vary locally, contingent on factors like
the type of mineralization, location within the mineral system, and the applied cut-off grade. Figure
4.1 displays three distinct scenarios of spatial heterogeneity of ore and waste blocks within a bench

section.
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Figure 4.1: Three simulated benches showing different degrees of spatial heterogeneity between
ore and waste blocks. a) low degree of spatial heterogeneity; b) medium degree of spatial

heterogeneity; and c¢) high degree of spatial heterogeneity.

To explain the concept of entropy, the following notation is adopted. Let I = [1, Negst], Neast €
N, which represents the set of block indexes in the east direction. Similarly, let] =
[1, Nportnl, Nporen € N, denotes the set of block indexes in the north direction. The 2-dimensional
grade control block model consists of the set of blocks B =1 X | = {bi_]- =(i,j),VielLVje ]}.
Eachblock b; ; € B is associated with the event of having a specific block category ¢; j € {2, where
N = {wy, w,} is the set of possible outcome categories for a given block representing waste and
ore, respectively. A discrete random variable X: 2 — {0,1} is defined to model block category such
that X:w € 2 » X(w) € {0,1} donates the occurrence of either waste or ore category,
respectively. The probability of a block having the ore or waste category is calculated as

card(f (o))

]P(X - k) - ]P)X(k) - card(B)

,Vk € {0,1}, where f:B — 2 maps each block to its
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associated category realization and card refers to cardinality which describes the number of items
in a given set. Given P(X = 1), the probability of having a waste block P(X = 0) can be
determined as P(X = 0) =1 — P(X = 1). According to Cover and Thomas (2006), Shannon’s

entropy for two categories can be defined as

Hy(X) = P(X = 0) xlog,(P(X =0)™) + P(X = 1) xlog,(P(X =1)"Y) € [0,1] (4.1

To better explain how Shannon’s entropy concept is tailored to capture the spatial heterogeneity of
ore and waste blocks within a bench section at the SMU scale, the following steps are taken. First,
a frame W;; = {bi+k'j+k, vk e [-1,1],Viel,Vj €] } is defined. This frame surrounds b; ; and
includes all blocks that might be combined with b; ; to form an SMU. For example, when the SMU
size is 2-block by 2-block, the blocks that might be considered part of the SMU surrounding b;

will form a 3-block by 3-block frame in which b; j is at the centroid of this frame. P; pVieLVje

] represents the set of admissible pairs inside the frame W;; and is donated by P;; =
{(bi,j, bi+k,j+l)r V(k,1) € [[—1,1]]2\(0,0)}. The set of possible pairs of block category outcomes is
denoted by 2" = {w’'y, w'1}, where w’, and w'; correspond to the events of having pairs of blocks
with different and same categories, respectively. To obtain the associated category realization for

each pair, the application g; ; is used and defined as g; ;: P; j — 2’ and

w'o,  if f(b) # f(b)

gij: (b,b) » {w,l’ otherwise . This application defines pairs of blocks with both

different and identical categories and utilizes this information to calculate their probabilities in

order to derive the local spatial entropy index.

A discrete random variable Z; j, Vi€ I,Vj €], Z; ;: ' > {01}, Z; j: w € 2" v Z; j(w) € {0,1}

is represented to correspond to the pairs of block categories within the frame W; ;. This discrete
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random variable is used to measure local spatial entropy at b;; inside the frame W;;. The
probability of having pairs of the same or different categories is calculated using ]P’(Zi, = k’) =

card(gi,j‘l({wk:}))
card(P; ;)

Pz, ; (k") = ,Vk' € {0,1}. The probability of pairs with different categories can
be calculated by subtracting the probability of pairs with the same categories from 1, and it equals

IP(ZL-' = O) =1- IP(Z ij= 1). Figure 4.2 depicts a schematic describing how Pz, is calculated

around b; ; that is surrounded by a frame W, ;.

P 3 set of pairs around b 5

bs when SMU = 2 * 2 blocks b3

w

S

w

=]

1+b1 2 3 1 2 3 4 5 6 1 2 3 a 5 6

4 5 6
j . oOre . Waste P(z,,=1)=1/8 P(Z;=1)=6/8
P(Z33=0)=17/8 P(Z33=0)=2/8

Figure 4.2: Schematic describing the calculation of local spatial entropy probabilities within

known SMU size.

To define the Local Spatial Entropy Index (LSEI) as a measure of local entropy for each block, the

following equation is proposed:

hij(Zi;) = P(Z,; = 0) x log, (P(Z,; = 0) ") + P(Z;; = 1) x log, (P(Z;; = 1))
4.2)
€[01],Viel,Vj€E]

Where h; ; (Zl-, ]-) represents LSEI at b; ;. The following equation is proposed to measure Local

Spatial Information Index (LSII) at each block:

96



Chapter 4

i1j(Zi;) = 1—hy; €[0,1] (4.3)

Where i; ; (Z ) represents LSII at b; ;. To calculate the Global Spatial Entropy Index (GSEI) for

the entire bench section, the expected value of all Local Spatial Entropy Index (LSEI) values is

computed. The GSEI is defined as:

Neast Nnorth

h,. (Z;
E E Py i) g (4.4)
i Neast * Nnorth

Where H represents GSEIL. Moreover, the Global Spatial Information Index (GSII) is calculated

by computing the expected value of LSII, and it is defined as:

Neast Nnorth

iz, (Zi))
Izz ZZ“—”=1—He[0,1] 4.5)
Neast * Nnoren

i=1 j=1

Where I represents GSII. The GSII index reflects the degree of spatial continuity or clustering
between ore and waste blocks. The impact of spatial entropy on ore loss, dilution, dig-limits
running time, and profit is investigated using the derived spatial entropy indices that take into
consideration equipment selectivity, cut-off grade, and blast movement. This study provides a
comprehensive evaluation of the potential ore loss and dilution related to specific bench sections

and identifies opportunities to control ore loss and dilution using the concept of spatial entropy.

This paper adopts dig-limits optimization incorporating blast movement methodology from
Hmoud and Kumral (2022). Additionally, it uses the concept of spatial entropy to quantify ore and
waste spatial heterogeneity within selective mining units. Spatial entropy has a significant impact
on ore loss, dilution, and ultimately, mining profitability. The dig-limits optimization model itself

was developed by Sari and Kumral (2017) and re-coded using Python 3.8, running on the CPLEX
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solver (IBM, 2021). The dig-limits optimization problem is modeled as a MIP model, aiming to
maximize the profit from the blasted section of the bench while adhering to equipment selectivity
constraints. Equipment selectivity is represented in a 2-block by 2-block configuration in both the
east and north directions within a grade control block model. Blast movement scenarios are applied
to the grade control block model, and spatial entropy is calculated before and after blasting to
understand the impact of spatial entropy, cut-off grade, and blast movement on ore loss, dilution,
dig-limits optimization running time, and profit. The following section presents several case

studies and discusses the applied workflow.

4.4 CASE STUDIES

This section presents a series of case studies that evaluate the effectiveness of global and local
spatial entropy indices in assessing the extent of profit reduction resulting from dilution and ore
loss across various levels of spatial heterogeneity, cut-off grades, and blast movement scenarios.
These indices were applied to a simulated gold mine bench section. The conditional simulation
model utilized gold grade values obtained from an actual mine operation in North America, with
the mine name withheld due to data confidentiality. The simulated block model mimics the grade

control block model at that bench section.

Using simulated benches in this study is essential because real-world data may not capture the
required range of spatial heterogeneity levels required for the study. The study encompasses a
spectrum from low to high levels of spatial heterogeneity, and using simulated benches ensures
that each of these simulated benches contains the same amount of contained metals for accurate

comparison purposes.
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The subsequent sections provide detailed information on the data generation process for each

study, along with their corresponding findings.

4.4.1 Local and global spatial entropy indices

A bench section with simulated gold grade values was constructed to assess the adequacy of the
proposed local and global spatial entropy indices. The bench was simulated using unconditional
sequential Gaussian simulation (Deutsch & Journel, 1998), and the simulated Gaussian values on
the bench were transformed into gold grades using actual gold grade values from a real mine. The
unconditional simulation aimed to generate one realization with the lowest level of spatial
heterogeneity, where ore was situated on the eastern side of the bench while waste was on the
western side. The block size of the simulated grade control block model was set at half the size of
the SMU. This configuration served as the base case for assessing spatial heterogeneity. The
parameters regarding the grade control block model definition are given in Table 4.1. A cut-off
grade of 0.45 g/t was applied to differentiate between ore and waste. Economic and metallurgical

parameters for calculating the cut-off grade are summarized in Table 4.2.

The same information used in Table 4.2 was employed to construct an economic block model

specifically for dig-limits optimization purposes.
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Table 4.1: Grade Control block model definition.

Item Unit X Y Z
Block size (m) 2.5 2.5 15
Number of blocks in a 40 30 1
direction

Minimum centroids (m) 1.25 1.25 7.5
Maximum centroids (m) 98.75 73.75 7.5
Azimuth (degree) | 0

Dip (degree) | 0

Table 4.2: Parameter values used for cut-off grade calculation and block economics values.

Item Unit Value
Gold price ($/gram) 53.1
Mining cost ($/tonne) 3.0
Processing cost ($/tonne) 16.7
Ore recovery (%) 81.9
Rock bulk density (tonne/ m?) 2.7

After generating the base case grade control block model, blocks were shuffled to generate various

degrees of spatial heterogeneity while ensuring that the total amount of gold within the bench

remained constant, and the only difference was the spatial distribution of grade values. Figure 4.3
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describes generating the base case (i.e., the lowest), low, medium, and high spatial heterogeneity

grade control block models resulting from the shuffling process.
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Figure 4.3: Summary of the proposed methodology to generate grade control block models with

various spatial heterogeneity levels.

The proposed GSEI, GSII, and LSEI were calculated for the low, medium, and high spatial
heterogeneity scenarios. The result of this comparison is summarized in Figure 4.4. As shown in
Figure 4.4a-c, the three spatial heterogeneity scenarios have the same Shannon’s entropy with a
value of 0.5. However, the GSEI calculated for each scenario properly reflects the degree of spatial
heterogeneity. The GSII, on the other hand, provides a good measure of spatial continuity or

clustering. These two indices provide reasonable global measures of spatial heterogeneity.

To obtain an accurate assessment of the level of spatial heterogeneity at a specific location, the

LSEI can be used. The calculated LSEI results for the three spatial heterogeneity scenarios are
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shown in Figure 4.4d-f. These calculations were performed using a frame size of 3-blocks by 3-

blocks, representing an SMU size of Sm.

a) Shannon’s Entropy = 0.50 b) Shannon’s Entropy = 0.50 C) Shannon’s Entropy = 0.50
GSEI=0.30 GSEl =0.82 GSEI = 0.99
GSIl=0.70 GSI =0.18 GSIl=0.01
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Figure 4.4: Comparison between Shannon’s entropy, GSEI, GSII and LSEI for three bench

sections with low, medium, and high spatial heterogeneity levels.

The optimal allocation of BMM balls is an essential aspect of reducing ore loss and dilution. A
cost-benefit analysis conducted by Loeb and Thornton (2014) demonstrates that increasing the
number of BMM balls, up to 100 and 250 balls in their case study, would effectively reduce ore-
waste loss and dilution while remaining cost-effective. However, in practical implementation,
installing many BMM balls becomes impractical due to the time required for installing and

recovering BMM balls in each blast, which can result in operational delays. Therefore,
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incorporating information obtained from the LSEI maps, in conjunction with a cost-benefit
analysis of installing BMM balls at high LSEI locations, can guide the optimization of the
installation process. Focusing on locations with high LSEI values improves the allocation decision

of BMM balls, leading to a higher return on investment.

4.4.2 TImpact of spatial entropy on ore loss and dilution

As can be seen from the previous discussions, the proposed indices for measuring the level of
global and local spatial heterogeneity informed dig-limit optimization and blast movement
monitoring. In this section, the relationship between GSEI and ore loss and dilution was further
investigated. This study used previously simulated bench sections with varying GSEI values,
representing different degrees of spatial heterogeneity. Profit reduction was used as a proxy to
represent the overall percentage of ore loss and dilution post-blasting. The profit reduction was
calculated for each scenario after applying dig-limits optimization, taking equipment selectivity
into account to ensure that the profit values closely align with what can be achieved during mining

operations. The findings of this experiment are summarized in Figure 4.5.
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Figure 4.5: Relationship between GSEI and profit reduction calculated after applying dig-limits.

The result of this study indicates that as GSEI increases, ore loss and dilution also increase, leading
to reduced profits. The relationship between GSEI and profit reduction exhibits exponential
behaviour. It was noticed in this study that increasing the GSEI led to an increase in dig-limits
optimization running time. Therefore, the next section will investigate this relationship in more

detail.
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4.4.3 Impact of spatial entropy of dig-limits optimization performance

Running dig-limits optimization models can be slow in some instances, particularly when

employing an exact method to generate optimal dig-limits. In this exercise, the dig-limits

optimization model is applied to several simulated benches, each exhibiting varying degrees of

spatial heterogeneity. The runtime of the model, along with the GSEI, is measured for each

scenario. The dig-limits optimization model was executed on a laptop equipped with an Intel(R)

Core(TM) 17-7700HQ CPU running at 2.81GHz, a 64-bit operating system, and 32 GB of RAM.

The results of this experiment are illustrated in Figure 4.6.
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Figure 4.6: Relationship between GSEI and dig-limits optimization running time.
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While the runtime can be considered reasonable for regular bench section sizes, it should be noted
that geological, chemical, and physical controls over orebodies result in some degree of spatial
structure. Consequently, most deposits have lower spatial entropy values than those expected for

randomly distributed noise, and this helps to manage the runtime of the optimization process.

However, the assessment of ore loss and dilution may change over the life of mine due to changing
cut-off grades because of changing commodity prices and mining and processing costs. The next

section will investigate these relationships.

4.4.4 Impact of cut-off grade on spatial entropy and dig-limits optimization performance

To assess the impact of cut-off grade on spatial entropy and dig-limits optimization runtime, the
base case grade control block model with the lowest GSEI was subjected to several scenarios of
cut-off grade values, ranging from 0.25 g/t to 1.5 g/t. The model had ore and waste separated in
the middle with a 0.45 g/t cut-off grade. GSEI was calculated for each scenario, and the dig-limits
optimization model was executed for all scenarios to measure its runtime. Figure 4.7 presents the

results of this experiment.
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Figure 4.7: Results of running dig-limits optimization model on various scenarios of cut-off

grade values on GSEI and running time.

The results of this experiment reveal that the scenario with the lowest GSEI value, where ore and
waste blocks are entirely separated, is associated with the shortest running time. However, when
the cut-off grade value is either below or above 0.45 g/t, both running time and GSEI increase

significantly.

The assessment of spatial heterogeneity should always be updated following the change in any
economic and metallurgical parameters that impact the cut-off grade. The aim is to have a block
model with bench sections that are assigned GSEI values to assess the expected level of dilution
and ore loss and mitigate any potential increase in them by optimizing the blast design to reduce
them while taking into consideration the cost of applying these designs in actual operations and

prioritize those sections that should be given due care.
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4.4.5 Impact of blast movement on ore loss and dilution

It is obvious that the more blast movement we have in our blasts, the higher the ore loss and dilution
occur. However, it is also worth exploring the magnitude of expected ore loss and dilution pre-
blasting to help design blasts. This section will discuss the relationship between blast movement
and ore loss and dilution through several possible scenarios of blast movement that may occur on

a bench section.

This study simulated blast movement scenarios with varying degrees of movement. These
simulated blast movement scenarios were applied to the base case bench section. This base case
bench section, which is 15m thick, is divided into five flitches, each with a thickness of 3m and
has one-fifth of the contained metal. Figure 4.8 shows a schematic representation of the bench
section with flitches. Figure 4.9 shows the simulated blast movement scenarios that range from
low blast movement to high blast movement. The blast movement magnitudes were chosen to
cover all possible movements, including an extreme movement with 35m to ensure that the results

cover a wide range of potential movements in actual mining operations.

Pre-blast Post-blast

Flitch 1 \ Flitch 1 \

Movement direction

Flitch 2 Flitch 2
Flitch 3 % Flitch 3
Flitch 4 Flitch 4

Flitch 5 / Flitch 5 /

Figure 4.8: Schematic showing the shape of the bench section with the flitches.
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Figure 4.9: Magnitude of simulated blast movement for each flitch where the points in black

represent the centroid of each flitch in each scenario.

The simulated blast movement scenarios play a critical role in determining the impact of blast
movement control on the project economics and how this relates to the original orebody
heterogeneity and cut-off grade. Through these blast movement simulations, this study can assess
how controlling blast movement can improve project profitability and how this varies across

different levels of spatial heterogeneity and cut-off grades.

This study aims to analyze the effect of blast movement on ore loss and dilution, beginning with a
fixed spatial distribution of ore and waste blocks in the block model with a known spatial entropy
index. This analysis is proposed as a preliminary step towards examining the impact of varying

degrees of spatial entropy and blast movement on ore loss, dilution, and profit in the following

section.
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To achieve this, five different scenarios of blast movements, ranging from low to high blast
movement, were applied to the block model with a direction towards the east. These blast
movement scenarios were discussed earlier in the data preparation section. Figure 4.10 shows the

final location of ore and waste blocks after blasting for each scenario.
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Figure 4.10: Scenarios of ore and waste distribution post-blast based on blast movement
scenarios applied to the block model with a blast movement toward the east; scenario 1 has the

lowest blast movement, while scenario 5 has the highest blast movement.
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The dig-limits optimization model was implemented on these five blast scenarios (ranging from
low to high movement), and the profit reduction percentages obtained after executing the dig-

limits optimization for each scenario are summarized in Figure 4.11.

5

4
3
2
1
N
0 1 2 3 4 5

Elast Movement Scenario

Profit Reduction (%)

Figure 4.11: Profit reduction caused by the five blast movement scenarios after applying dig-

limits optimization.

The study’s results show that increasing the magnitude of blast movement leads to a reduction in
profit due to the resulting increase in ore loss and dilution caused by the movement when spatial
entropy pre-blast is kept constant. The profit reduction resulting from ore loss and dilution is

attributed to post-blast spatial entropy.
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Blast engineers who work with this information to design better blasts or at least to have an idea
of the magnitude of expected dilution and ore loss before blasting and communicate this to the
short-term mine planning engineers and mineral processing engineers. Also, by knowing the
expected magnitude of post-blast movement in advance, the LSEI can highlight areas requiring
installing BMM balls. The same study can be conducted on various types of mineral deposits that

have various shapes and spatial continuities of ore and waste within the benches.

4.4.6 Controlling blast movement for profit maximization in mining operations

For this study, seven grade control block models were generated, each with varying levels of spatial
heterogeneity (ranging from low to high GSEI), while maintaining their total contained metal.
Each of these block models had five blast movement scenarios applied, as discussed in the previous
section, ranging from low to high blast movement. Consequently, 35 scenarios of block models
with different levels of spatial heterogeneity and blast movement were created. The dig-limits
optimization model was applied to all scenarios to measure the amount of profit reduction resulting
from post-blast spatial entropy index impact on the magnitude of ore loss and dilution. Figure 4.12
shows the relationship between pre-blast GSEI and post-blast profit reduction for all blast

movement scenarios obtained after running dig-limits optimization model.
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Figure 4.12: Relationships between profit reduction, pre-blast GSEI and blast movement

scenarios

The study results indicate that profit reduction due to ore loss and dilution increases with increasing
pre-blast GSEI. Additionally, while maintaining the same pre-blast GSEI, a higher magnitude of
blast movement results in greater profit reduction due to increased mixing between ore and waste

blocks, leading to increased ore loss and dilution. However, when pre-blast GSEI exceeds 0.9, the
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effect of blast movement on profit reduction is negligible. By implementing controlled blasting,
blast engineers can ensure that the profit reduction due to ore loss and dilution remains below a
designated threshold set by their mining companies. For example, if the accepted profit reduction
due to ore loss and dilution is 10%, then a pre-blast GSEI value of 0.5 always falls below this
threshold, irrespective of the magnitude of blast movement. Furthermore, choosing a blast design
that minimizes blast movement can reduce profit reduction from 8.4% to 4%. However, if the pre-
blast GSEI value is 0.8, the only way to achieve a profit reduction value below 10% is by

controlling the blast movement and selecting a blast design with low blast movement.

4.5 DISCUSSION

Spatial entropy plays a crucial role in identifying bench sections that need customized blasting
designs to minimize blast movement and guide the allocation of BMM balls within the bench,

resulting in improved profitability through reduced ore loss and dilution.

To optimize blasting in mining operations, it is recommended to apply an indicator variable that
shows which bench sections require careful blasting designs. This indicator variable relies on GSEI
and blast movement information obtained from various blast designs. The threshold value of GSEI
in which controlled blasting should be implemented in that bench section to meet ore loss and
dilution requirements will vary from mine to another. Such sections should be identified in
advance, and the indicator variable should be updated during the life-of-mine plan in response to
changes in commodity price, mining and processing costs, and ore recoveries. Controlled blasting
techniques, such as cushion or pre-splitting techniques, can be considered. However, a cost-benefit
analysis should be conducted before implementing any controlled blasting design to justify the
extra cost of implementing such designs during mining operations. Some bench sections may

require controlled blasting methods due to the significant impacts of changes in cut-off grade on
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GSEI. This approach enables blasting engineers to revisit their blast designs and methods when
warranted in order to help reduce ore loss and dilution and improve mining operations' efficiency.
Conversely, this proposed method helps the blasting engineer to identify where the cost and effort

required to execute a particular controlled blasting design do not justify the potential gain.

The study results further reinforce the significance of understanding the proposed GSEI in
achieving profit maximization in mining operations through implementing controlled blasting
techniques on the problematic bench sections where high levels of ore loss and dilution are
expected. Applying the proposed approach can lead to more efficient mining operations, resulting

in cost reductions and improved profitability.

4.6 CONCLUSION AND FUTURE WORK

This paper employs Shannon's entropy principle to quantify global and local spatial heterogeneity
within ore and waste regions in open pit mining. Our tailored spatial entropy indices precisely
measure SMU-scale heterogeneity, offering crucial insights into potential ore loss and dilution.
Case studies demonstrate the indices' efficacy in assessing spatial heterogeneity across various
bench sections, informing blast engineers about expected ore loss and dilution while guiding BMM

ball allocation.

The study found that the computational time required to solve the dig-limits optimization problem
also increases exponentially with rising spatial entropy, but the overall computational time remains
acceptable when the grade control block size is equal to half the size of SMU. The scenario with
the lowest spatial entropy value, where ore and waste blocks are entirely separated, is associated
with the shortest running time. However, running time and spatial entropy increase significantly

when the cut-off grade exceeds certain limits that vary from bench to bench.
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The study also demonstrated that an increase in the magnitude of blast movement leads to more
profit reduction due to the resulting increase in ore loss and dilution. However, controlling blast
movement can improve project profitability, particularly at different levels of spatial heterogeneity

and cut-off grades.

Future work could focus on understanding the economics of blast design and when to apply special
blast designs that reduce blast movement. The formulation of spatial entropy in this paper can also
be extended to more than two categories (i.e., more than ore and waste). A holistic optimization
approach that aims to maximize mining operation profitability by taking in consideration various
scenarios of blast movement, fragmentation size, cost of loading, hauling, and crushing could be

investigated.
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4.8 NEXT STEPS

This chapter introduced the concept of spatial entropy as a method to assess ore loss and dilution
in open-pit mines. By comparing post-blast spatial entropy to pre-blast spatial entropy, we gain an
understanding of the impact of blast movement on ore loss and dilution at the selective mining unit
scale. Blast movement remains a key factor affecting ore loss and dilution, and from the previous
chapter, it is evident that modeling blast movement without considering uncertainty can result in
suboptimal decisions regarding material types and dig-limits. The next chapter will focus on
incorporating sources of uncertainty, such as grade uncertainty and blast movement uncertainty,
into material classification post-blasting and dig-limits optimization. It will also aim to improve
the current dig-limits optimization model to account for multiple destinations, irregular bench
section shapes, and different orebody orientations. A case study demonstrating the new model and

its improvements will be presented.
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Chapter 5: Risk-based Optimization of Post-blast Dig-limits
Incorporating Blast Movement and Grade Uncertainties with

Multiple Destinations in Open-pit Mines

5.1 ABSTRACT

Dig-limits optimization is one of the most important steps in the grade control process at open-pit
mines. It aims to send blasted materials to their optimal destinations to maximize the profitability
of mining projects. Grade and blast movement are key uncertainties affecting the optimal
determination of dig-limits. This paper presents an integrated workflow for optimizing dig-limits
under grade and blast movement uncertainties. The proposed methodology incorporates these
uncertainties into the grade control process to enhance material classification and destination
optimization, thereby minimizing ore loss and dilution. A multivariate geostatistical simulation
workflow is developed to capture spatial uncertainties in grade distribution and blast movement
distance and direction. Through applying Projection Pursuit Multivariate Transformation and
Sequential Gaussian Simulation for modeling blast movement distances at all locations and flitches
within the bench section, the anticipated D-like shape from blasting is reproduced, and uncertainty
is quantified. The Maximum Expected Profit method effectively determines optimal material
destinations under uncertainty improving overall mining profitability. The proposed risk-based
dig-limits optimization model honors mining equipment selectivity, irregular bench shapes, and
varying orebody orientations, resulting in operational and economically viable dig-limits. A case
study on a porphyry copper deposit demonstrated the significant impact of blast movement on ore

loss and dilution, emphasizing the need for accurate blast movement modeling and its integration
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into grade control procedures. By accounting for differential blast movement, the proposed
workflow ensures reliable post-blast material classifications, reducing suboptimal decisions, thus,

improving project profitability and operational efficiency.

5.2 INTRODUCTION

Grade control is one of the most important operations in open-pit mines. It aims to classify blasted
materials into several material types and send them to their optimal destinations, thereby
minimizing ore loss and dilution, and maximizing the profitability of these mines (Abzalov, 2016).
Grade control operations include: (1) drilling blast holes or, in certain cases, reverse circulation
(RC) holes; (2) sampling from drilled core or cuttings; (3) assaying the collected samples; (4)
estimating grades on a grade control block model; (5) classifying rocks into material types (e.g.,
ore, waste, oxides, sulfides, etc.); (6) modeling blast movement; and (7) setting optimized post-

blast dig-limits.

The accuracy of grade control operations is influenced by a number of factors, including sampling
error, bias in grade estimation, selectivity requirement, and blast movement (Dimitrakopoulos and
Godoy, 2014). Uncertainty in blast movement also leads to unplanned ore loss and dilution
challenges that grade control geologists and short-term mine planning engineers find difficult to
manage. Blast movement uncertainty is not typically integrated into grade control procedures and

the decision-making process.

The need for an integrated grade control workflow that accounts for both grade and blast
movement uncertainties has become increasingly important in the mining industry. As orebodies
become more complex and operational constraints evolve, there is a growing need to enhance

traditional grade control methods to further optimize dig-limits. Incorporating these uncertainties
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into the grade control process ensures that both ore recovery and economic outcomes are
optimized, reducing the risk of costly ore losses and unanticipated dilution. Such an integrated
approach not only improves the accuracy of short-term mine planning but also enhances the overall
operational efficiency by changing static grade control models into dynamic models that accounts
to real mining conditions from blast movement and equipment selectivity. The development of a
robust, uncertainty-informed workflow is critical for the modern mining industry, where precise

and timely decisions have a direct impact on mine profitability and sustainability.

This paper focuses on considering grade and blast movement uncertainties to determine optimal
dig-limits with more than two destinations under equipment selectivity constraint. By optimizing
dig-limits while considering these uncertainties, ore loss and dilution can be reduced, which in

turn will improve the overall profitability of the project.

The originality of this paper is four-fold: (1) develop an integrated workflow that considers grade
and blast movement uncertainties in determining optimal post-blast dig-limits; (2) modeling
differential blast movement and capturing the uncertainty in the movement on a block-by-block
basis; (3) determining material types under grade and blast movement uncertainties; (4) improving
the dig-limits optimization model to consider multi-destinations, irregular bench shapes, the option
of shovels being more selective at zones close to the free face side of the bench, and considering

various orebody orientations.

The organization of this paper is as follows: The next section provides a general background on
the key topics relevant to this study. Following that, the proposed methodology is described in
detail. A case study is then presented to illustrate the application of the newly developed integrated

approach for determining dig-limits under both grade and blast movement uncertainties. Finally,
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the paper presents and discusses the results, draws conclusions, and suggests directions for future

research.

5.3 BACKGROUND

5.3.1 Grade control models

The accuracy of the grade control model has a significant impact on ore—waste classification on a
bench. To improve the accuracy of grade control procedures and models, several critical aspects
must be taken into account: (1) Grade uncertainty should be quantified at the bench scale, while
ensuring that grade realizations are unbiased (Verly, 2005); (2) Material-type classification must
consider the movement of blasted materials (Hmoud & Kumral, 2022, 2023, Vasylchuk and
Deutsch, 2019); (3) Blasted materials should be accurately classified into various types, taking into
account grade uncertainty and the non-linear and asymmetric profit functions (Srivastava, 1987;
Isaaks, 2001; Verly, 2005); and (4) The optimal destinations for blasted materials should be
determined at the selective mining unit (SMU) scale, which is controlled by equipment selectivity
(Hmoud & Kumral, 2022, 2023). The outcomes of effective grade control practices enable short-
term planning engineers to develop more accurate short-term production schedules, thereby

maximizing mill utilization and project profit.

One key step in grade control procedures is to generate grade control models. Linear estimation
methods such as Ordinary Kriging and Inverse Distance are widely used to build grade control
models because of their simplicity (Dimitrakopoulos & Godoy, 2014; Godoy, Dimitrakopoulos, &
Costa, 2001). The issue with using linear estimation techniques to determine material types and
destinations based on cut-off grades is that these techniques assume equal penalties for
underestimation and overestimation of profit. This assumption becomes particularly problematic

when dealing with complex, non-linear, and asymmetric profit functions (i.e., losses from sending
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ore to waste dump do not equal losses from sending waste to processing plant), and this behavior
of profit functions leads to biased and suboptimal decisions (Srivastava, 1987; Isaaks, Treloar, &

Elenbaas, 2014; Vasylchuk & Deutsch, 2016).

Geostatistical simulation techniques can overcome the issue of bias in predicting profit.
Geostatistical simulation techniques (Alabert, 1987; Isaaks, 1990) produces a range of
equiprobable grade values at all locations within a mining bench section that is planned for
blasting. Sequential Gaussian Simulation (SGS) is a widely used spatial simulation technique that
generates equiprobable realizations of a spatially distributed variable, such as ore grade in a
mineral deposit (Journel & Deutsch, 1992). It works by sequentially simulating values at
unsampled locations, conditioning each simulation on both the original sample data and the
previously simulated values. This process ensures that the simulation preserves both the
declustered histogram of the input data and the spatial continuity model, which is captured by a
variogram model that measures spatial dissimilarity of the variable over distance. In case of
simulating polymetallic mineral deposits, projection pursuit multivariate transformation (PPMT)
is one of the methods used to simulate multiple elements while preserving their non-linear

multivariate relationships (Barnett et al., 2014).

Grade uncertainty is the result of incomplete information of the geology at a scale equal or smaller
than the SMU size. The simulated grade values can be used to assess better the profit of any grade
control decision (e.g., sending low-grade material to the waste dump, stockpile, or mill). Moreover,
geostatistical simulation facilitates the determination of profit when using asymmetric or non-
linear profit functions, allowing for more accurate and precise decisions in grade control.
Consequently, this ensures that the blasted materials are sent to their optimal destinations. The

profit function can be calculated as well for multiple elements, and this requires using multivariate
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geostatistical simulation methods. Vasylchuk (2018) proposed a multivariate simulation workflow
with locally varying anisotropy to accurately predict grade uncertainty in the presence of multiple
grade variables that go into the profit function calculation with an internal validation check to

ensure reasonable automatic results.

5.3.2 Material-type classification

After quantifying grade uncertainty, material type classification is normally carried out to enable
determining the right destination for blasted material based on the production plan. A number of
methods were proposed in the literature to determine the optimal material-type under grade
uncertainty: (1) average simulation (Verly, 2005); (2) minimum expected loss (MEL) (Isaaks,
1990; Vasylchuk and Deutsch, 2018); (3) maximum expected profit (MEP) (Glacken, 1996,
Deutsch et al, 2000, Neufeld et al, 2005), (4) MEL and MEP with risk coefficients (Glacken, 1996,

Dimitrakopoulos and Godoy, 2014).

The average simulation method assigns the destination of a block in a mine bench based on the
average of the simulated values within that block based on a cut-off grade. The average of the
simulated grade values is equivalent to the ordinary kriging estimate; therefore, the final
destinations determined using the average simulation and ordinary kriging are expected to be very
similar as well when domains are stationary. The model of average simulation values is known as
the E-Type model. However, it is noted that average simulation method has the capability to
reproduce the histograms of skewed distribution better, therefore it may generate more
representative results that capture the high grades and translate that into profit more accurately
(Verly, 2005). The MEL method determines the optimal destination for a block by calculating the
expected costs associated with assigning the block to all possible destinations. It then selects the

destination that minimizes the expected loss across all possible destinations. MEP method
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determines the optimal destination of a block by calculating the expected profits associated with
assigning the block to all possible destinations, then selecting the destination that maximizes the
expected profit across all possible destinations. Risk coefficients can also be added to profit and
loss functions to ensure that some specific mine requirements are met, such as increasing the
chance of sending waste to the processing plant or reducing the chance of sending waste to the
waste dump. The choice of coefficient values depends on the operations; some operations are
willing to take some risk and send waste that has some chance of being ore to the processing plant
and others may prefer to send ore with some chance of being waste to the waste dump. Applying
these coefficients requires continuous updating because these policies may change during the life
cycle of the mine and this might make applying these risk coefficient hard in mining operations.
In the presence of a linear profit function with no clear coefficients to apply to profit and loss
functions, average simulation, the MEL and the MEP methods provide similar results. However,
when the profit function is nonlinear such as when the recovery model is not a linear function of
grade, the MEP method becomes the best approach for determining optimal destinations under

uncertainty (Verly, 2005).

5.3.3 Blast movement

Another important source of uncertainty that is normally not accounted for is coupled with blast
movements. Hmoud and Kumral (2023) showed that blast movements affect the results of ore loss
and dilution, thus impacting dig-limits outcomes. Dig-limit optimization formulation that ignores
blast movements results in unexpected loss and dilution (Engmann et al., 2013; Hmoud & Kumral,
2022; Thornton et al., 2005). Integrating blast movement in the dig-limits optimization process
will also reduce material misclassification (Zhang, 1994; Yennamani, 2010). Additionally, using

blast movement monitoring (BMM) balls can enhance ore recovery and control head grade in
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mineral processing plants (Harris, 1997; Gilbride, 1995; Taylor & Firth, 2003). Hmoud and
Kumral (2023) grouped blast movement modeling approaches into four categories: (1) the multi-
physical simulation (Yu et al., 2022; Zou & Jun, 2020); (2) heuristics methods (Isaaks et al., 2014a;
Isaaks et al., 2014b; Vasylchuk & Deutsch, 2019b); (3) machine learning models (Yu et al., 2019,

Yu et al., 2020; Yu et al., 2024); and (4) stochastic methods (Hmoud & Kumral, 2022, 2023).

The primary challenge in using multi-physics simulations to model blast movement in open pit
mines is the difficulty in accurately gathering all necessary input parameters due to the complexity
of the simulation. This process often requires extensive computational time, which is impractical
given the frequency of blasting operations. Alternatively, heuristic methods combined with
physical field measurements like post-blast topography, provide quicker solutions, though they
lack guaranteed optimality and they do not capture uncertainty in the predicted movements.
Additionally, not all mining operations conduct post-blast topography surveys, which is a
requirement for setting dig-limits accurately under these methods. Using machine learning to
predict blast movements based on historical data can be effective when current geological and blast
design conditions mirror the historical data used in training. However, these methods might not
yield reliable predictions for deposits with varying geological characteristics and blast designs,

particularly if these models do not capture and quantify uncertainty in blast movement predictions.

Uncertainty in blast movement arises from various factors such as (1) imperfections in blast
designs, (2) the heterogeneity of the rock mass, (3) incomplete geological knowledge, and (4)
human error. Theoretical blast movement modeling approaches alone are unlikely to yield accurate
models of blast movements without physical field measurements taken before blasting any bench
section (La Rosa & Thornton, 2011). Stochastic modeling techniques that utilize data from

physical measurements of the specific blasted bench offer a viable solution (Hmoud & Kumral,
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2022, 2023). However, comprehensive coverage of these measurements across bench sections,
including all flitches, is required. This comprehensive data collection enables the creation of
representative multivariate statistical distributions that capture the uncertainty in blast movements,
particularly near ore zones, and helps identify areas with high-risk of material misclassification
that require careful grade control sampling protocols. The current stochastic blast movement
technique proposed by Hmoud and Kumral (2022) applied movements on a flitch-by-flitch basis
without considering differential blast movement within the same flitch. Differential blast
movement refers to the modeling of blasted materials on a block-by-block basis, where each block
has its own distinct movement distance and direction. To the authors' knowledge, no research has

been conducted on modeling and capturing the uncertainty in differential blast movement.

5.3.4 Dig-limits optimization

While incorporating blast movement models into grade control is considered important, optimizing
dig-limits is another important component of good grade control models. The methodology for
defining dig-limits has evolved significantly in recent decades, transitioning from manual drawing
to sophisticated automated processes utilizing mathematical algorithms. Manual drawing, being
subjective and difficult to revise, fails to adequately minimize ore loss and dilution, and does not
consider the selectivity of mining equipment (Faraj, 2024). The objective of optimizing dig-limits
is to measure, manage, and reduce the anticipated ore loss and dilution within open-pit mining
operations. These limits define the separation between ore and waste, directing blasted materials
to their most profitable destinations, thereby enhancing revenue while considering equipment
selectivity and blast movement (Hmoud & Kumral, 2022). Hmoud and Kumral (2023) grouped
dig-limits optimization into five main categories: (1) exact methods, such as mixed-integer

programming (MIP) (Hmoud & Kumral, 2022; Kumral, 2015; Nelis et al., 2022; Nelis & Morales,
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2022; Sari & Kumral, 2017); (2) heuristic algorithms (Richmond & Beasley, 2004; Vasylchuk &
Deutsch, 2019a; Wilde & Deutsch, 2015); (3) metaheuristic techniques, including simulated
annealing ( Isaaks et al., 2014a; Isaaks et al., 2014b; Norrena & Deutsch, 2000; van Duijvenbode
& Shishvan, 2022) and genetic algorithms (Ruiseco, 2016; Ruiseco & Kumral, 2017; Ruiseco et
al., 2016; Williams et al., 2021); (4) hybrid models that combine MIP with metaheuristics
(Deutsch, 2017); and (5) methods based on spatial clustering (Salman et al., 2021; Tabesh &

Askari-Nasab, 2011, 2013; Tabesh & Askari-Nasab, 2019).

Exact methods such as MIP ensure optimality, but they require long processing times, especially
when the moving window that enforces equipment selectivity is large. However, with
advancements in parallel computing and high-performance computers, using MIP to generate
optimal dig-limits has become achievable. Heuristics, metaheuristics, and hybrid methods provide
near-optimal solutions when the problem size increases, offering faster solutions. One challenge
with these methods is the optimal selection of hyperparameters, which requires fine-tuning. The
same issues appear when using spatial clustering methods to determine dig-limits. However, unlike
heuristics, metaheuristics, and hybrid methods, near-optimal solutions are not guaranteed with

spatial clustering methods.

5.3.5 Fully integrated grade control workflow

Integrating all grade control steps into one workflow, from estimating and simulating grade on a
bench, to classifying blasted materials into several material types, and modeling blast movement,
to finally optimizing dig-limits, is important for any grade control model to be considered practical.
A good example of this integrated approach can be found in Vasylchuk (2018), where the author
highlighted the importance of improving grade predictions, considering uncertainty in material

classification, accounting for blast movement deterministically using a heuristic algorithm,
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optimizing material destinations at a scale smaller than the SMU size by applying a heuristic dig-
limits optimization model to determine the final destinations for materials considering equipment
selectivity. These improvements aimed to minimize ore loss and dilution, ultimately enhancing the
overall efficiency of mining operations. However, blast movement uncertainty was not considered
in the proposed workflow. Moreover, a heuristic method for modeling dig-limits is used that does

not ensure optimality.

Despite previous research on grade control procedures, the uncertainty in blast movement and its
implications for determining optimal material types and dig-limits have not been studied.
Additionally, existing models for determining optimal dig-limits using MIP fail to address irregular
bench shapes, various mining directions, and increased selectivity for shovels in zones near the
bench's free face. This paper aims to address these challenges by proposing a new solution.
Building on the work of Hmoud and Kumral (2022, 2023), this study takes a step forward by
incorporating blast movement and grade uncertainties in determining optimal dig-limits, while also

addressing the gaps and issues identified in previous research.

54 METHODOLOGY

The proposed integrated workflow in this paper for modeling dig-limits under blast movement and
grade uncertainties is divided into six main steps: (1) data gathering and processing; (2)
geostatistical modeling of grade and blast movement uncertainties; (3) generation of post-blast
grade realizations; (4) converting 3D post-blast block models to 2D block models; (5) post-blast

material-type classification under uncertainty; (6) dig-limits optimization. Figure 5.1 presents a

135



Chapter 5

flowchart that summarizes the proposed workflow. Details on each of these steps are discussed in

the next subsections.

5.4.1 Data gathering and processing

In the proposed workflow, two sources of information are required to model blast movement and
grade uncertainties to optimize dig-limits: (1) blast hole or RC drilling data, and (2) BMM balls
measurement data. Blast holes provide valuable information related to grade at very short sample
spacings which are used to generate grade control models using geostatistical techniques. To
enhance the accuracy of the drilling data used to generate grade control models, RC drilling is
sometimes performed, wherein samples from multiple depths within the bench are collected and
sent to a laboratory for assay analysis. In addition to grade, other details such as rock type can be
recorded for each sample, and that helps in the development of high -accuracy geostatistical grade

control models.

The BMM balls measurement data contain the pre-blast and post-blast locations of BMM balls.
This information enables grade control geologists to track materials after blasting and provides
insights into the movement distance and direction of blasted materials at various flitches and
locations within the bench section. This data will be used to model differential blast movement on
a block-by-block basis, where each block in the pre-blast grade control model has distributions of
possible blast movement distances and directions. These blast movement distances and directions
distributions can then be used to generate post-blast realizations of grade distribution within the

bench section.
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Figure 5.1: Flowchart with the proposed methodology.
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5.4.2 Geostatistical modeling of grade and blast movement uncertainties

Several methods have been proposed to model spatial uncertainty, such as SGS (Journel &
Deutsch, 1992; Goovaerts, 1997; Chiles & Delfiner, 1999), Turning Bands (Journel, 1974), and
Partial Differential Equations Simulation (Lindgren et al., 2011). Among these, SGS is the most

widely used method in the mining and petroleum industries.

SGS models spatial uncertainty by generating multiple realizations of a continuous variable. This
method involves transforming data to a normal distribution, then sequentially simulating values at
unsampled locations based on the spatial structure summarized by the variogram. Each location is
simulated by drawing from a Gaussian distribution conditioned on both original data and
previously simulated values to maintain spatial dependencies. Finally, the simulated values are
back-transformed to their original units and validated to ensure the quality of the simulation. This
process results in a suite of equally probable spatial distributions, providing a detailed picture of
grade variability within the bench and allowing for the assessment of risks and uncertainties in

grade control decisions.

In the presence of multi-element deposits, multivariate simulation techniques can build
geostatistical realizations that reflect the uncertainty in grade values for those elements while
respecting their correlations. Methods such as co-simulation using linear model of
coregionalization (LMC) (Journel & Huijbregts, 1978) help model these relationships. However,
co-simulation using LMC operates under the assumption that all relationships are multivariate
Gaussian, which impacts outcomes when nonlinear relationships exist in the data. Additionally,
fitting a large number of direct and cross variograms is challenging, as they must be modeled to

ensure positive definite results when solving the normal equation matrices to estimate the
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conditional mean and variance for the simulation and to draw realizations from that distribution

using Monte Carlo methods.

An alternative approach involves decorrelating the variables before simulating them independently
and then back-transforming them to reproduce the original correlations. Examples include
minimum/maximum autocorrelation factors (MAF) (Desbarats & Dimitrakopoulos, 2000) and
PPMT (Barnett et al., 2014). PPMT begins by applying a normal score transformation to each
variable, followed by data sphering to reduce correlations and standardize variance. The method
then searches for the least Gaussian projection to identify non-normal features across all
projections. Each variable is simulated independently using SGS. The final step involves a back-
transformation, which uses recorded tables from the Gaussian mapping to transform the non-
Gaussian distributions back into their original units while maintaining the spatial relationships
between data points. This approach avoids the need for modeling cross-variograms and allows for
the accurate simulation of complex, correlated data. Due to its ability of modeling non-linear

complex data, the PPMT method is used as part of the simulation workflow proposed in this paper.

Modeling blast movement at all locations within the blasted bench section requires modeling blast
movement distances and directions. PPMT accompanied with SGS is used to model multivariate
relationships between blast movement distances that vary from one location to another within the
bench section and between flitches to produce the D-like shape resulting from explosives installed
in the middle of the bench, causing the middle part to move further relative to the top and bottom
flitches. Horizontal distance values obtained from BMM balls for each flitch represent a
continuous variable, and PPMT helps model these variables while respecting their correlations.

Figure 5.2 shows the main steps for generating simulated data using PPMT.

139



Chapter 5

To smooth the simulated values when back-transformed, a kernel density estimate (KDE) (Parzen,

1962) can fit the sparse movement data. Values from the fitted distribution can then be sampled

using a Gibbs Sampler (Geman & Geman, 1984). PPMT uses these simulated values to back-

transform the fitted KDE and smooth the simulated values. This step is not implemented in the

proposed workflow.

_ 18 .
=
‘U-J’ L]
@ 161
s °
S
-é‘ 14 A ®
=
L]
212
v
3
< 104 .
o [
)
o 89
~
=
2 61 e
o Real Movement
" o? ®  Correlation: 0.98
4 6 8 10 12 14 16 18

Flitch 1 Blast Movement Distance (m)

204
L ]
® @
,é_ LA ] o L
£ "~ g0, *
o @ .-’ L]
£ 16 P gk,
i r 0%, * o
& o o %G @
o L Pl 1
w144 L) L) *
c . (]
£ * e
= I
g 12 . .‘... &
)
=5 P .Q.- ..
o 3
8 R A
@ 0o, o * P
~ " b4 b P
fr= . { «® Simulated Movement
26 o L] F ®  Correlation: 0.92
[ L P [ Real Movement
P N ®  Correlation: 0.98
4 6 8 10 12 14 16 18 20

Flitch 1 Blast Movement Distance (m)

PPMT
Transformation

—)

PPMT
Back-transformation

S

PPMT: Flitch 2 Blast Movement Distance (m)

PPMT: Flitch 2 Blast Movement Distance (m)

o
n

e
o

1
o
in

1
-
=}

1
=
wn

N

-

(=}

|
-

|
[N}

PPMT Transformed Movement
™ ®  Correlation: -0.05

-2.0

15 -10 -05 00 05 10
PPMT: Flitch 1 Blast Movement Distance (m)

Independent
Sequential Gaussian
Simulation

Simulated PPMT Movement

Correlation: 0.02

L PPMT Transformed Movement
®  Correlation: -0.05

=3

= ] 0 1 2 3
PPMT: Flitch 1 Blast Movement Distance (m)

Figure 5.2: Decorrelation workflow using PPMT and Sequential Gaussian Simulation for

modeling blast movement distances between Flitch 1 and Flitch 2 as an example.

Another important component of blast movement is the direction of the movement. The direction

can be determined by comparing the pre-blast and post-blast locations of BMM balls to calculate
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the azimuth of movement. Alternatively, a direction perpendicular to the detonation lines, going in
the opposite direction of the blast sequence, can also be used to infer the movement direction.
When BMM balls show relatively small variations in directions, blast movement direction
uncertainty might not be significant, and a fixed direction of movement can be applied. However,
when the directions of movement vary significantly due to the blast design or unexpected
geological features that impact the movement direction, then modeling stochastically blast
movement direction using SGS will be a useful exercise and should be part of the proposed

integrated workflow.

Azimuth values obtained from BMM measurements can be divided into two components: a sine

component and a cosine component, which are calculated as follows:

0 — tan-1 (sin @)

o (9)) mod 360 (5.1)

In this equation, 8 represents the azimuth of the movement in radians, and the mod 360 ensures
that the back-transformed angles remain between 0 and 360°. These components can be simulated
using PPMT in case of strong correlation. The simulated components are then used to calculate the
azimuth at every location on a block model. Increasing the number of BMM balls helps in
improving the modeling of variograms in the presence of sparse or limited data, as well as reducing

uncertainty in blast movement models.

5.4.3 Generation of post-blast grade realizations

After stochastically modeling grade and blast movement distances and directions on a block-by-
block basis using geostatistical simulation, the pre-blast grade blocks are relocated to their post-
blast positions based on the realizations of blast movement distances and directions. To achieve

this, each grade realization is randomly associated with a corresponding blast movement distance
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and direction realization. It is important to note that grade, blast movement direction, and distance
are uncorrelated at any location. Therefore, it is appropriate to combine realizations, one from each

variable, to facilitate generating post-blast grade realizations.

In each of these post-blast realizations, the post-blast block locations are calculated as follows:

Upostblast = Upreblast + (Vcomponent * D) (52)

where Upostbiast = (Xpostbiasts Ypostbiast) represents the coordinates of the block centroid after
blast, and Upyepiast = (Xprebiasts Yprebiast) represents the coordinates of the block centroid before
blasting. The vector Viirection = (Xcomponents Yeomponent) corresponds to the unit direction vector
of the blast movement, where X omponent and Yeomponens are the components of the direction in

the X- and Y- axes, respectively, and D is the horizontal movement distance.

By applying this method on a flitch-by-flitch basis, each block within the flitch is moved to its
post-blast location in each realization while accounting to the differential blast movement that
varies depending on the location of the block within the bench section and the flitch. Figure 5.3
illustrates the concept of differential blast movement, where the movement is longer near the free
face area in the direction of the blast and shorter near the adjacent non-blasted bench section in the

opposite direction.
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Figure 5.3: Schematic demonstrating the differential blast movement in the blasted section of the

bench.

The outcomes of this step are realizations of grade values at post-blast locations. Essentially, this
means generating post-blast grade control block models that reflect the uncertainty in grade and
the associated blast movement distances and directions. These realizations will be used to quantify

grade uncertainty at all locations within the blasted section of the bench.

Since this simulation is purely geostatistical and does not account for physical interactions between
blocks, some blocks may end up sharing the same post-blast location. However, this will not
impact the dig-limits optimization, which is treated as a 2D problem and is unaffected by changes
in elevation. Consequently, the total contained metal and tonnage at each X and Y location will

remain unchanged.

Blocks near adjacent bench sections that are not yet blasted can be assigned a fixed direction to
prevent blasted blocks from ending up on top of the non-blasted areas. The extent to which these
blocks will have a fixed direction can be determined by understanding the maximum influence

distance of the blast, as measured from the BMM balls.
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5.4.4 Converting 3D post-blast block models to 2D block models

Before running classifying material into types under uncertainty and running the risk-based dig-
limits optimization, the 3D post-blast grade block models are converted into 2D block models. In
this process, the x and y coordinates of the centroids remain unchanged, while the metal content
from all SMUs with the same x and y coordinates is aggregated to create 2D block models that
represent post-blast grade realizations. This conversion simplifies the dig-limits optimization
problem significantly and does not affect the final dig-limits because the optimization operates on

the entire bench rather than a flitch-by-flitch basis.

To further reduce the optimization processing time, smaller blocks in the X and Y directions are
re-gridded to form bigger blocks with a size equal to one-half or one-third of the SMU size. The
total metal content, tonnage, and grade are recalculated for the re-gridded blocks. While this re-
gridding may slightly increase ore loss and dilution, it generates 2D post-blast models that maintain
the metal content at the original SMU scale. These 2D block models will be used next to determine

classify materials into types under uncertainty and determine optimal risk-based dig-limits.

5.4.5 Post-blast material-type classification under uncertainty

The MEP method (Glacken, 1996, Deutsch et al, 2000, Neufeld et al, 2005) is used in this
workflow because of its ability to find the optimal destination under uncertainty, regardless of
whether the profit function is linear or non-linear. At each block b; ;Vi € {1,...,X},j € {1,...,Y}
inside the bench. k; ; is an indicator variable to identify blocks that are blasted within the bench
(in-bench) and separate them from air blocks and adjacent non-blasted bench sections (out-of-

bench) following this expression:

k) = {1, block b; ; is in the blasted bench 53)

0, otherwise
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Where k; ; is the indicator that identifies whether block b; ; is in the blasted section of the bench

or not. An Air block is a block that has zero chance of having blasted material moved to it.

There are | € L number of simulated grade values z; € Z. Profit for sending a block b; ; to d €

D of destinations for all grade realization are calculated as follows:

Py(bi;) =E{Pa(bi;, Z)}V Z ={zy, ...,z },d ={1,..,D},i = {1, ..., X}, )
(5.4)
= {1, ,Y} lf ki,j =1

The optimal destination of block b; ; is the destination that has the maximum profit compared to

all other profits calculated for other destinations for this block, and it is expressed as:

dopﬁma](bi,j)=argd€r{r}g§D}Pd(bi_j) Vie{l,..,X}, je{l,..,Y}ifk;=1 (55

The optimal destinations for these blocks are determined post-blast, prior to running the dig-limits
optimization model. These destinations are then used within the dig-limits optimization model to
assign expected profit values for sending materials to all possible destinations. Figure 5.4a shows
a 2D post-blast grade control model with blocks assigned to their optimal destinations using MEP

method. Figure 5.4b shows the in-bench and out-of-bench blocks based on the k; ; indicator.

5.4.6 Risk-based dig-limits optimization model

Before running the dig-limits optimization model to identify the final optimal destinations of
blocks that honor account for equipment selectivity, a pre-processing step should be applied to
identify blocks that do not meet the minimum mining width constraint. These blocks can be either

(1) confined between other blocks on unmined bench sections or (2) located at the free face, where
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more selective mining can be performed using the same shovel or a smaller dozer. The optimal
destinations for these problematic blocks have already been determined using the MEP method

during the material classification step.

Equipment selectivity in this context is represented by a moving frame around each block in the
grade control block model. This moving frame encompasses a certain number of blocks in the x-
direction n, and y-direction n,, reflecting the selectivity of the mining equipment and the SMU
size. A block is considered problematic if none of the frames around it meet the in-bench condition,

which requires at least one frame to have all its blocks within the blasted bench section.

Blocks at the free face zone that do not meet the minimum mining width requirement will be
flagged as problematic because they can be mined more selectively using a shovel or a dozer.
Additionally, blocks that are surrounded by non-blasted adjacent bench sections and are smaller
than the minimum mining width requirement will also be flagged as problematic and described as
confined blocks. These blocks will be processed as confined blocks and can be mined later once

the adjacent bench section is blasted.

Problematic blocks are removed from the dig-limits optimization model and will be added back
later, after identifying the optimal destinations of blocks that meet the minimum mining width
requirement. For example, as shown in Figure 5.4c, the two types of problematic blocks described
above are identified in this bench section: (1) one block is confined between blocks from a non-
blasted bench section and is less than the minimum mining width of 2x2 blocks, and (2) two blocks
in the free face area have a minimum mining width less than 2x2 blocks. Figure 5.4d shows the
processed destinations of blocks before running the dig-limits optimization. Table 5.1 describes
the indices used in defining the pre-processing step variables and the dig-limits optimization

model.
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Figure 5.4: Plan views of a post-blast bench section showing pre-processing steps to generate

optimal dig-limits with a minimum width of 2x2 blocks.

Table 5.1: Description of pre-processing and dig-limits optimization model indices

Index Description Sets
i Block index in the X direction iefl,..,X}
Ji Block index in the Y direction jef{l, .., Y}
d Destination index def{l,..,D}
fx Frame index in the X direction fr €{1,...,n,}
fy Frame index in the Y direction fy € {1, . ny}
a Frame offset index in the X direction a€{l,..,n,.}
B Frame offset index in the Y direction p € {1, ,ny}
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Mathematically, the confined and free face blocks are identified by first defining the following

indicators:

1, Air

A= {O, Otherwise’ Vij (5-6)

In which A; ; is an indicator variable that represent blocks of air, and

1, Adjacent bench section

AByj = {O, Otherwise

. Yij (5.7)

Where AB; ; represents the blocks adjacent to the blasted bench section. For identifying free face
blocks, the following indicator can be calculated as

. e o
' 0, Otherwise

Where FF; ; is an indicator for a free face block that can me mined in a more selective way using
a dozer and front load equipment at block b;; within the blasted section of the bench. For

determining confined blocks, another indicator variable is calculated as follows:

fx Ty
CBi,j — 1, lf ZZABi_fx"'a:j_fy"'ﬁ > 0 and ki,j =1 v l,] (59)
a B

0, Otherwise
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Where CB; ; represents an indicator variable for confined blocks at b; ; within the blasted bench
section. Indicators FF; ; and CB;; are then used to remove problematic blocks before running the
risk-based dig-limits optimization model to ensure that the minimum mining width constraint is
met knowing that these blocks are added back for any economical assessment and destination

identification.

A new formulation for the dig-limits optimization model is used in this research. The new risk-
based dig-limits optimization model allows for processing outcomes of the MEP method, working
with more than two destinations, irregular bench shapes, and various orebody orientations and
mining directions. The objective function is to maximize the expected profit of mining these blocks
within the bench while satisfying equipment selectivity constraint. Description of model decision

variables is found in Table 5.2.

Table 5.2: Description of dig-limits optimization model decision variables.

Decision Variable Type Values Description

1 if material is sent to
Xija Binary {0,1} destination 4 and 0

otherwise

Total of X values
tij,d fofy Integer [[—1, Ny * ny]] inside a frame for

destination d

1 if a valid frame for
Vi j.d.fofy Binary {0,1} destination d and 0

otherwise
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In this model, a frame is considered valid if all blocks in the frame have the same destination. Each
block within a bench should be assigned to at least one valid frame. The model aims to find the
frames that maximize profit and meet the minimum mining width constraint. The dig-limits

optimization model is formulated as follows:

X Y D
Maximize ZZZ XijaPija Vk;j=1 (5.10)

i=1j=1d=1
Where k; ; is the indicator that identifies whether block b; ; is in the blasted section of the bench
or not. P; ; 4 is the profit value of sending block b; ; block represented by X; ; 4 to destination d for

all blocks with expected profit values inside the blasted section of the bench.

Subject to:

tijdfofy

( fx fy Jx Ty

Z z Xi-feraj-fy+p Vi doIf Z Z Kicferaj-fyrp = T * My (5.11)

_ ) @F « F
- fx fy

-1, if Z Z ki—fx+a,j—fy+ﬁ <Ny * My,

\ a B

This represents a constraint on the model to ensure that only complete frames are included in the
search for the optimal solution. All incomplete frames are disregarded. To test the validity of the
frame, in which all blocks within the frame are sent to the same destination, the following indicator

variable 1s introduced:
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L iftijags =0l tijars = M*ny

. _ 5.12
Lj.d.fx.fy {0, otherwise ( |

The following constraint ensures that only frames with blocks with same destinations are

considered as valid frames:

n, Ny
z Vijaffy, 21 Vij.d (5.13)
fx—lfy=1

And to ensure that every block is sent to one destination only, the following constraint is

introduced:

D
ZXi’j’d = 1, VL,_] lf ki,j = 1 (514)
d=1

After finding optimal destinations of blocks considering equipment selectivity, problematic blocks
with their optimal destinations from MEP step are added back to the bench section and actual final
profit is calculated from sending all blasted blocks to their final optimal destinations. Figure 5.4e
shows the result of applying the dig-limit optimization model with 2 blocks by 2 blocks minimum

mining width to find optimal destinations.

To account for the direction of mining when optimizing dig-limits, a rotation matrix can be applied
to the bench before the dig-limits optimization pre-processing step. This aligns the direction of
mining with the principal directions (north-south and east-west). The dig-limits optimization

model can then be executed on the rotated blocks, and the results can be visualized in the original
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coordinate system afterward. This step ensures that the optimization frames align with the mining

direction.

5.5 CASE STUDY

This section presents a case study demonstrating the proposed integrated workflow for optimizing
dig-limits under grade and blast movement uncertainties. First, a 3D grade control block model
with a resolution of 0.5m X0.5m X 3m was generated from the blast hole resource database at a
porphyry copper mine. The block model definition is summarized in Table 5.3. The generated
grade control block model is including extra air blocks to accommodate the muck pile shape post
blasting. Fifty BMM ball field measurements were simulated to cover the five flitches at ten
locations within the bench section. The simulated BMM measurements preserve honor the
correlation between flitches in terms of distance and generate the D-like shape anticipated from
the blast. Figure 5.5 provides a plan view of the simulated bench section layout. As shown in
Figure 5, 168 blast holes and 10 monitoring holes, which only had BMM balls installed without
explosives, were used in this blast. The bench was divided into five flitches, with 5 BMM balls at
each monitoring hole covering the five flitches. The flitches are numbered from top to bottom, 1
to 5. The overall movement direction was towards the west, with minor deviations. The direction
of movement was determined by comparing the pre-blast and post-blast locations of the BMM

balls.

152



Chapter 5

Table 5.3: Block model properties

Item Unit X Y V4
Block size (m) 0.5 0.5 3
Number of blocks in a
350 240 20
direction
Minimum centroids (m) -43.75 -18.75 1.5
Maximum centroids (m) 131.25 101.25 61.5
Azimuth (degree) 0
Dip (degree) 0

Bench Layout

100 ]
80 Free Space
60
E
_g 40 Adjacent Bench
£
(o)
=
20
0 Bench To Be Blasted
s Blast Holes
e BMM Balls Holes
—-40 -20 0 20 40 60

Easting (m)

Figure 5.5: Bench layout showing blast holes and BMM balls holes location.
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SGS was used to simulate 50 realizations of copper grade from the blast holes. These realizations
were validated by checking histogram and variogram reproduction, which showed good
reproduction of input statistics. Additionally, fifty realizations of blast movement distances were
simulated using PPMT and SGS, ensuring that relationships between flitch movements at every
BMM location were respected. Blast movement distances were validated through histogram and
variogram reproduction. Furthermore, the blast movement distances simulation was validated by
comparing the bivariate distributions of movements between all flitches in one of the realizations
to the actual blast movement distances obtained from BMM balls. The results of this comparison

are summarized in Figure 5.6.
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Figure 5.6: Testing correlation reproduction between flitch movements in the simulated data

against the real BMM data.

The outcomes of the flitch movement distance simulation show good reproduction of multivariate
relationships compared to actual data, as evidenced by the shape of the distribution and the
reproduction of similar Spearman correlations pg (Spearman, 1961). It is also noted that some

correlations might be impacted due to the non-smooth histograms of the real BMM measurement
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data during the simulation back-transformation process. Histogram smoothing can be applied to
overcome this challenge. Overall, highly correlated flitch movement distances were reproduced.
If movements were simulated independently, most correlations would be close to zero, and the D-
like shape resulting from having explosives in the middle part of the bench, which pushes rocks

further, would not be achievable.

The direction of movement is simulated using SGS, with each location's movement direction
divided into sine and cosine components The sine and cosine components were simulated using
SGS and PPMT, then Equation 5.1 was used to calculate to derive the azimuth values for each
realization. Minor deviations from the 270° azimuth were observed in the data. The decision to
simulate movement direction is made to demonstrate the full integrated workflow. Direction
simulation is only recommended when significant changes in movement direction occur due to
blast design or unforeseen factors. Blast movement direction realizations were post-processed to
prevent blocks from moving over the adjacent bench sections. This post-processing step involved
assigning a fixed direction value of 270° azimuth to blocks within 20m of the north and south
bench section borders, which is consistent with the maximum movement distance observed from

the BMM balls in the middle flitch.

As a result of the simulation step, a total of 50 realizations of grade, blast movement distance and
direction were generated. Figure 5.7 presents a 3D perspective of the bench section with

realizations of grade, blast movement distance and directions.
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Figure 5.7: 3D perspective of the bench section showing Copper, blast movement distance, and

direction realizations.

For each realization, the simulated grade values at every block in the grade control block model
are relocated based on a corresponding realization of blast movement distance and direction to
generate a post-blast grade realization. This process was applied to all fifty grade realizations,
resulting in fifty post-blast grade realizations. Ore loss and dilution were calculated for each

realization, and the range of possible ore loss and dilution values is shown in Figure 5.8.
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Figure 5.8: Ore loss and dilution calculated on post-blast realizations.

Based on the ore loss and dilution realizations, ore loss due to blast movement is expected to be
2.6%, with a minimum value of 2% and a maximum of 3.3%. Dilution is expected to be 6.4%,

with a minimum value of 5.7% and a maximum of 8%.

When dealing with multiple destinations, comparing the pre-blast tonnage of each destination to
the post-blast tonnage provides more detailed insights than summarizing results solely in terms of
ore loss and dilution. To facilitate this comparison, a material-change classification matrix is
proposed to summarize the impact of blast movement on the tonnage of different material types or
classes and their respective destinations. This matrix compares the percentage difference between
post-blast tonnage and pre-blast tonnage for each material type and destination. For post-blast
realizations, a material-change classification matrix is computed for each realization. The average
change in tonnage for post-blast material relative to pre-blast tonnage is calculated and shown in

Figure 5.9.
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Figure 5.9: Material-change classification matrices showing expected values and coefficient of

variation.

The results show that 47.4% of the waste is expected to be moved to the low-grade class and 0.5%
to the high-grade class due to dilution caused by blasting. The low-grade class is expected to lose
4.9% of ore to the waste dump while converting 15.8% of low-grade ore to high-grade ore through
dilution. No loss of high-grade ore to waste is expected; however, 22.2% of high-grade ore is
expected to be processed as low-grade. The coefficient of variation (CV) is used as a measure of
uncertainty for the expected material-change values, and the uncertainty in material-change

classification is considered low in this case.

When translating material-change classification into dollar value to assess its impact on profit
reduction under uncertainty, it is observed that the expected profit pre-blast was reduced from 3.8
million USD to 3.6 million USD, reflecting an expected profit reduction percentage of 4.3%. The
distributions of pre-blast profits, post-blast profits, and profit reduction are presented in Figure

5.10.
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Figure 5.10: Histograms showing pre-blast profits, post-blast profits, and profit reduction

percentages.

After generating post-blast realizations and assessing uncertainty in ore loss and dilution caused

by grade and blast movement uncertainties, the 3D block model is converted into a 2D model by

summing tonnage and contained metal vertically at each XY location in the post-blast grade control

block model. To reduce computational costs, the 2D block model was regridded to Sm x 4m in the

X and Y directions, respectively, to align with the east-west mining direction.

Destinations based on MEP were determined. Table 5.4 summarized the economical and

metallurgical parameters used to calculate the profit for each destination.

160



Chapter 5

Table 5.4: Cutoff grade and block economics parameters.

Item Unit Value
Copper price $/1b 3.5
Mining cost $/tonne 3
Low grade processing cost $/tonne 14
High grade processing cost $/tonne 25.5
Low grade recovery % 60
High grade recovery % 90
Rock bulk density tonne/m’ 2.7

After determining blasted material destinations based on the MEP method, dig-limits optimization
was executed to ensure that materials are sent to their optimal destinations while accounting for
equipment selectivity. In this case study, equipment selectivity for this mine is 8m, requiring the
dig-limits optimization to apply a 3-block by 2-block constraint in the X- and Y-directions,
respectively, to ensure that mining selectivity and direction are considered. No coordinate rotation
is applied since the mining direction is aligned with the principal directions. The pre-processing
step, which aims to identify confined blocks and free face blocks that can be mined more
selectively, did not identify any blocks that may cause issues during the dig-limits optimization
step. The economic and metallurgical parameters used in the dig-limits optimization model are the
same as those used to determine material destinations based on the MEP method. The outcome

destinations from the MEP method and the risk-based dig-limits optimization are shown in Figure

5.11.
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Figure 5.11: Maximum expected profit 2D destinations and risk-based dig-limits optimization

destinations.

The results from comparing material destinations due to equipment selectivity relative to MEP

destinations are summarized as material-change classification matrix in Figure 5.12.
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Material-Change Classification Matrix
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Figure 5.12: Material-change classification matrix between Maximum Expected Profit

classification against Risk-based dig-limits classification due to equipment selectivity.

Destinations based on dig-limits optimization resulted in converting 0.1% of low-grade material
to waste and 6.3% of high-grade material to low-grade. Other than these changes, materials
retained their original destinations as determined by the MEP method. The expected profit from
mining and processing this bench section decreased from USD 3,548,300 based on MEP
destinations to USD 3,544,800 after applying dig-limits optimization, representing a profit

reduction of 0.1%.

In this case study, it is noted that the impact of blast movement on profit reduction is much more

significant compared to equipment selectivity. This is expected in the presence of a porphyry
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copper deposit, which exhibits more spatial continuity compared to nuggety gold deposits. Care
should be taken before blasting bench sections to minimize blast movement, thereby reducing ore

loss, dilution, and changes in material classes due to material mixing during the blast.

It is also worth mentioning that the impact of dig-limits optimization on profit reduction can be
more pronounced in heterogeneous orebodies (Hmoud and Kumral, 2023). Therefore, capturing
both sources of ore loss and dilution as part of the standard grade control procedure is essential.
Each deposit is unique, and this assessment should be conducted at every mine and within different
zones of the deposit to better understand the main factors controlling ore loss and dilution, as it is

difficult to generalize rules for this.

Moreover, the importance of adopting this workflow becomes more significant in the presence of
a nonlinear profit function. For example, when the grade-recovery relationship is not linear, it is
necessary to use a stochastic method such as the MEP method to determine material destinations

under uncertainty without bias.

5.6 DISCUSSION

Implementing the proposed integrated grade control workflow offers mining projects a more
efficient, accurate, and responsive approach to short-term mine planning. This approach can be
deployed on a cloud-based platform, providing users with easy access to generate optimal risk-
based dig-limits while accounting for grade and blast movement uncertainties. The platform
facilitates the rapid integration of assay data from blast holes or grade control samples, along with
BMM ball measurement data, to update a dynamic grade control model that predicts the location

and grade of displaced material post-blasting. This will allow grade control geologists and short-
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term mine planning engineers to make more informed decisions and improve operational

efficiency on a daily basis.

The benefits of this integrated approach extend beyond operational efficiency. By reducing ore
loss and dilution through more precise material classification, mining projects can recover more
valuable material, improving overall profitability. The streamlined process minimizes errors in
destination planning, allowing for quicker, more informed decisions. As the workflow adapts to
real-time mining conditions, it ensures that geological models align closely with what is happening
on the ground, reducing the risks associated with grade and blast movement uncertainty. This
ultimately leads to more consistent production outcomes, lower waste handling costs, and better

financial performance for mining projects.

In addition to operational and economic gains, this workflow contributes to sustainability in
mining. By recovering more resources and reducing waste, it helps lower the environmental impact
of mining operations. With better material classification, less waste ends up in processing, which
means less water and energy are needed for downstream tasks like milling and refining. This also
leads to lower energy use for transporting and disposing of materials, cutting down on fuel
consumption and emissions. Additionally, by extending the life of the mine and reducing the need
to re-handle materials, the proposed workflow helps save energy, reduce wear on equipment, and

moves us one step closer to more sustainable mining.

5.7 CONCLUSIONS AND FUTURE WORK

This paper presents an integrated workflow for optimizing dig-limits under grade and blast
movement uncertainties in open-pit mining operations. The methodology incorporates these

uncertainties into the grade control process to enhance material-type classification and destination
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optimization with a goal of minimizing ore loss and dilution. Key findings include the effective
use of SGS associated with PPMT to capture spatial uncertainties in blast movement distances and
directions. This approach ensures accurate representation of inherent data variability and
correlations, providing a robust foundation for subsequent analyses and ensures that the D-like
shape resulting from blasting is produced without using physical simulation that is computationally
expensive and do not capture uncertainty. The MEP method is demonstrated as an effective
approach for determining optimal material-type classification under uncertainty, thereby
improving overall mining profitability. The importance of using the MEP method becomes more
pronounced when dealing with non-linear profit functions. The risk-based dig-limits optimization
model successfully incorporates equipment selectivity, irregular bench shapes, and varying mining
directions that may reflect different orebody orientations, resulting in practical and economically
viable dig-limits. A case study on a porphyry copper mine is presented to highlight the significant
impact of blast movement on ore loss and dilution, emphasizing the need for capturing blast
movement uncertainty and integrate this uncertainty into dig-limits optimization workflow and
grade control procedures. By accounting for differential blast movement and its uncertainties, the
proposed workflow ensures reliable post-blast material classifications, reducing the risk of
suboptimal decisions. The practical viability and effectiveness of the workflow in real-world
scenarios are demonstrated, showing that incorporating blast movement uncertainty leads to more
accurate assessments of ore loss and dilution, providing valuable insights for mine planning and

operations.

In conclusion, integrating grade and blast movement uncertainties into the grade control process
enhances material classification accuracy and dig-limits optimization, resulting in improved

economic outcomes and operational efficiency. Future research should focus on refining blast
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movement models to work faster with larger moving frames, exploring their applicability to
various ore deposits, and developing automated tools to streamline the implementation of this
integrated approach. Incorporating variogram and histogram uncertainties of blast movement
distance and direction into the workflow, given the limited BMM ball measurements, will help
better capture parameter uncertainty and the overall uncertainty in blast movement. Additionally,
linking stochastic dig-limits results to short-term mine planning, especially when multiple benches

are mined simultaneously, and considering blending, would further enhance operational planning.

Furthermore, advancements in BMM ball technology, particularly in reducing their cost, would
enable the installation of more sensors in each blast, providing more accurate real-time blast
movement assessments and reducing modeling uncertainty. Developing accurate and cost-
effective BMM balls that can be installed in multiple holes and screened through sorters without
needing extraction before mining the muck-pile would significantly enhance this workflow and
save time. Additionally, developing automated tools to streamline this integrated approach would
further benefit the mining industry by reducing manual interventions and improving decision-

making processes.
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Chapter 6 Conclusions and future work
6.1 CONCLUSIONS

This research has contributed to the field of dig-limit optimization by quantifying and integrating
grade and blast movements uncertainties in determining optimal dig-limits, with a focus on spatial

heterogeneity. A number of conclusions can be drawn from this research.

First, a copula-based simulation approach was effectively used to quantify blast movement
uncertainty on a flitch-by-flitch basis, helping to capture its impact on dig-limit optimization
outcomes and identify areas with a high risk of ore loss and dilution. Incorporating blast movement
realizations significantly improved the estimation of ore loss and dilution, providing a more
accurate profit assessment that closely reflects reality. Identifying high-risk material
misclassification areas in advance is crucial to ensure that careful grade control procedures are

applied in these areas, reducing ore loss and dilution and ultimately increasing project profitability.

Second, Shannon's entropy principle was successfully used to quantify spatial heterogeneity
between ore and waste on a bench-by-bench basis at the scale of selective mining units. Two
indices measuring spatial entropy globally and locally were introduced and tested through case
studies, proving useful in quantifying spatial heterogeneity linked to ore loss and dilution.
Understanding the relationship between spatial heterogeneity, blast movement, ore loss, and
dilution is essential for predicting the level of ore loss and dilution due to ore spatial heterogeneity
and blast movement. By identifying bench sections with increased spatial heterogeneity post-blast,
controlled blasting can be applied to these benches to reduce blast movement, thereby reducing

dilution and ore losses, and enhancing project profitability.
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Third, incorporating grade and blast movement uncertainties into the grade control process
enhances material-type classification and dig-limit optimization outcomes. This integration results

in a better assessment of ore loss and dilution, thus providing a more accurate profit assessment.

The methodologies developed in this thesis were applied to a range of deposit types, illustrating
their adaptability across different geological settings. This demonstrates that the workflow is not

restricted to a specific deposit type and can be applied broadly without significant modification.

Finally, the proposed methodologies aim to optimize material destinations, contributing to more
sustainable mining practices by improving resource efficiency and reducing waste. The workflows
developed in this thesis support more precise material classification and routing, minimizing the
processing of low-value material, reducing energy consumption, and lowering the overall
environmental impact. These advancements demonstrate how this research aligns with the mining

industry's broader goals of responsible and sustainable mining.

6.2 FUTURE WORK

Building upon the findings and methodologies developed in this thesis, several avenues for future
research and development can be identified. Improving the performance of dig-limit optimization
models could be achieved by exploring advanced computational methods such as parallel
computing, aggregation/disaggregation, and nested Bender decompositions, particularly for larger

frames and more complex deposits.

The decision to use exact methods, specifically mixed-integer linear programming, was based on
the manageable problem size, which allowed for efficient computation within a short timeframe
for scenarios involving frames of up to 3 blocks by 3 blocks. However, scaling this approach to

larger frames presents significant computational challenges. Overcoming these limitations will
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require successful implementation of the aforementioned advanced techniques. An alternative
approach involves leveraging metaheuristic, heuristic, or Bayesian optimization methods. While
these methods may not guarantee optimality, they offer the potential to generate high-quality
solutions in a shorter timeframe. Given the inherent uncertainties in input parameters, the trade-
off between computational efficiency and guaranteed optimality may be acceptable, as it aligns

more closely with realistic decision-making scenarios.

Additionally, accounting for the angle of repose, which impacts the degree of dilution when
extracting blasted material in certain mining directions, could be added to the model to generate
more accurate dig-limits. Extending the application of spatial entropy to more than two categories,
such as multiple ore types and waste, would allow for a more comprehensive assessment of spatial

heterogeneity.

Refining blast movement models to work faster with larger moving frames and exploring their
applicability to various ore deposits would also be beneficial, while incorporating variogram and
histogram uncertainties of blast movement distance and direction into the workflow would help

capture parameter uncertainty more effectively.

Technological advancements in blast movement monitoring, particularly in reducing the cost and
improving the accuracy of blast movement monitoring balls, would enable the installation of more
sensors in each blast, providing more accurate real-time blast movement assessments and reducing
modeling uncertainty. Developing automated tools to streamline the integrated approach for dig-
limit optimization would reduce manual interventions and improve decision-making processes,
ultimately benefiting the mining industry by enhancing operational efficiency and economic

outcomes.
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The recent advancement of parallel computing may facilitate the multiphysics modeling of blast
movement in reasonable times, and investigating the applicability of using a stochastic approach
in modeling blast movement using multiphysics simulation models is an area worth exploring. By
using these multiphysics simulation models, the need for blast movement monitoring balls may
reduce over time and eventually become unnecessary. Future work should focus on investigating
the incorporation of non-Newtonian fluid models, such as the Herschel-Bulkley model, into
multiphysics simulations of blasting phenomena. This might provide a better representation of the
complex interactions between detonation gases and fractured rock, particularly in predicting gas

expansion and blast movement.

Additionally, linking geometallurgy to blast movement can provide valuable information that can
be used to characterize the physical characteristics of the rock, enabling better modeling of blast
movement. Attributes such as unconfined compressional strength can be predicted on a block-by-
block basis using machine learning techniques, increasing the accuracy of physical blast movement

simulation models.

Geometallurgical models can also be used to identify different material types that require specific
processing methods. For example, they can help distinguish between oxides and sulfides, hard and
soft rocks, or ores that contain harmful elements such as arsenic and heavy metals or have the
potential to cause acid-rock drainage. By integrating this into the dig-limit optimization models,
the objective function can be adjusted to direct these materials to the right destinations. This can

contribute to building more sustainable mining operations.

Finally, linking stochastic dig-limit results to short-term mine planning, especially when multiple
benches are mined simultaneously and blending is considered, would further enhance operational

planning. Investigating holistic optimization approaches that consider various operational
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scenarios, including blast movement, fragmentation size, and the cost of loading, hauling, and
crushing, could further improve decision-making. Addressing these future research directions will
refine and expand the methodologies and findings from this thesis, contributing to more efficient

and profitable mining operations in the face of inherent uncertainties.
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