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Abstract

Online programming platforms have immense potential to improve students’ educational

experience. They make programming more accessible, as no installation is required; and

automatic grading facilities provide students with immediate feedback on their code, allowing

them to to fix bugs and address errors in their understanding right away. However, these

graders tend to focus heavily on the functional correctness of a solution, neglecting other

aspects of students’ code and thereby causing students to miss out on a significant amount

of valuable feedback.

In this thesis, we recount our experience in using the Learn-OCaml online programming

platform to teach functional programming in a second-year university course on programming

languages and paradigms. Moreover, we explore how to leverage Learn-OCaml’s automated

grading infrastructure to make it easy to write more expressive graders that give students

feedback on properties of their code beyond simple input/output correctness, in order to

effectively teach elements of functional programming style. In particular, we present our

extensions to the Learn-OCaml platform that evaluate students on test quality and code

style. We then describe how we used these extensions in a later offering of our course to better

pursue our teaching goals, and provide data from a study on students’ code submissions to

determine how students were using the platform.

By providing our lessons learned over these semesters of using Learn-OCaml, as well as

our new tools and a suite of our own homework problems and associated graders, we aim to

promote functional programming education, enhance students’ educational experience, and

make teaching and learning typed functional programming more accessible to instructors

and students alike all across the globe.



Abrégé

Les plateformes de programmation en ligne ont un potentiel immense d’améliorer l’expérience

éducationnelle des étudiants. Elles offrent une expérience de programmation plus accessible

puisqu’elles ne requièrent pas d’installation de configuration de la part des étudiants. De

plus, les systèmes de notation automatique permettent aux étudiants d’obtenir un retour

d’information immédiat qui leur donne l’opportunité de corriger leurs erreurs et rectifier

directement leur compréhension du problème. Cela dit, ces modules de notation ont tendance

à se concentrer sur l’exactitude du fonctionnement d’une solution aux dépends d’autres

aspects du code. Cela réduit de façon significative la quantité d’information qui pourrait

leur être transmise.

Dans ce mémoire, nous décrivons notre expérience de l’utilisation en ligne de la plate-

forme Learn-OCaml pour enseigner à des étudiants de deuxième année la programmation

fonctionnelle dans le cadre d’un cours sur les langages et les paradigmes de programmation.

De plus, nous explorons de quelle façon nous pouvons utiliser l’infrastructure de notation

automatique de Learn-OCaml pour faciliter l’écriture de modules de notation plus expressifs.

Ces modules, en plus de vérifier l’exactitude du code, permettent effectivement d’enseigner

des éléments de style de la programmation fonctionnelle. En particulier, nous présentons

nos extensions de la plateforme Learn-OCaml qui évaluent les étudiants sur la qualité de

leurs tests et le style de leur code. De plus, nous décrivons comment nous avons utilisé

ces extensions dans le cadre d’un cours pour faciliter l’enseignement de bonnes pratiques de

programmation et faisons l’analyse de données provenant d’une étude sur l’utilisation de la

plateforme par les étudiants grâce à la soumission de leur code.

À travers la présentation des leçons tirées de l’utilisation de la plateforme Learn-OCaml

ainsi que des nouveaux outils et modules de notation que nous avons créés, nous désirons

faire la promotion de l’éducation de la programmation fonctionnelle, améliorer l’expérience



éducationnelle des étudiants et rendre l’enseignement et l’apprentissage de la programmation

fonctionnelle typée plus accessible à la fois aux enseignants et aux étudiants à travers le

monde.
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Chapter 1

Introduction

1.1 Automated grading

As enrollment in computer science programs continues to surge in universities across North

America [Camp et al. 2017], more and more instructors are turning to software systems

to grade their students’ programming assignments. Not only does automating the grading

process save a significant number of instructor and TA hours; it also removes the potential

for grading mistakes and inconsistencies that occur when marking hundreds of assignments

by hand, and allows for a much quicker turnaround time for students. When used effectively,

automated grading has the potential to greatly enhance student learning experiences.

References to automated grading in the literature can be found as early as 1960 by

Hollingsworth [1960], who decribes how student programs written in machine language were

input on punch cards and run through a series of predetermined input/output tests. While

the grading machine was not fully automatic, Hollingsworth states that it incurred significant

time savings: “In general only an eighth as much computer time is required when the grader

is used as is required when each student is expected to run his own program, probably less

than a third as much staff time, and considerably less student time”; in addition, he asserts

that students learned programming “probably better” than they did with the previous system
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of manual grading, though this claim was at the time not backed by evidence.

The use of automated grading in higher education became much more popular near

the turn of the century, with the development of systems such as TRY [Reek 1989], Ceilidh

[Benford et al. 1995] (later CourseMarker [Higgins et al. 2003]), ASSYST [Jackson and Usher

1997], Scheme-robo [Saikkonen et al. 2001], BOSS [Luck and Joy 1999; Joy et al. 2005], and

Marmoset [Spacco et al. 2006]. These systems generally made use of some form of electronic

submission to a grading server which would compile the student’s code, run it through some

instructor-defined tests, and output the results in some form that could be relayed back to the

student. Submission methods ranged from lower-level command-line scripts, to submitting

by email, to using a plugin in an IDE such as Eclipse, to using a full-fledged GUI client with

integrated course management facilities.

The literature around these automated grading systems was largely concerned with their

implementation, with the following concerns being commonly cited:

(1) Privacy of the students’ submitted files and resulting grades;

(2) Data integrity: making sure that student code was not lost or tampered with;

(3) Sandboxing the execution of untrusted code, to prevent malicious or broken student

code from causing harm to the system or gaining unauthorized access to system data.

As these sorts of implementation issues were not as well explored at the time as they are

today, much effort was expended in documenting these concerns and detailing how security

features of the UNIX system, and later of the higher-level programming languages used for

implementation, were used to address them. Meanwhile, relatively little emphasis was placed

on the pedagogical implications of the assessment criteria used by these automated graders,

and the quality and usefulness of the feedback they provided to students.

However, automated grading sytems could potentially have a huge positive impact on

student learning. Some of the above automated assessment systems allowed for repeated

submissions, meaning that after students received their results from the grading server, they
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could modify their code and then resubmit it. This process could be repeated a number of

times (possibly up to an upper limit specified by the instructor). Typically the grading script

would provide students with feedback about the mistakes in their code preventing them from

achieving full marks: for instance, the output from a failed test case, or an error message

raised by their program. This allowed students to iteratively develop their programs and

address errors in their understanding as they came up, according to the feedback provided by

the grader. Having access to immediate feedback on their programs has been recognized to

significantly improve student learning outcomes and engagement with their assignments (see,

e.g., [Sherman et al. 2013; Wilcox 2015; Gramoli et al. 2016]). This potential remained sorely

underexamined and underutilized in the early decades of automated assessment sytems.

1.2 Online programming platforms

Douce et al. [2005] outline the evolution of automated assessment systems over the past

several decades through three broad “generations”. The first-generation systems were the

early attempts at automated grading such as [Hollingsworth 1960], which generally required

a lot of specialized expertise to develop and use, and involved making modifications at the

level of the compiler or the operating system itself. Second-generation systems, which the

authors describe as “tool-based”, were designed to be more accessible for instructors and

students to use, and tended to involve the use of command-line scripts or GUI applications

to submit assignments; the previously-cited assessment systems all initially fell into this cat-

egory. The third generation represented a move to web-based technologies for delivering and

submitting assignments, and these systems generally included course management features

as well. Examples of this group of assessment systems include RoboProf [Daly 1999], the re-

implementation of BOSS [Joy et al. 2005], and, as implied by the name, Web-CAT [Edwards

and Perez-Quinones 2008].

A new trend in this age where distance learning and MOOCs (massive open online
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courses) have been growing increasingly popular are systems that we will refer to as on-

line programming platforms, in which an automated assessment system allowing repeated

submissions is combined with an environment for developing code that runs entirely within

the web browser. Examples of online programming platforms include the environment used

by the popular learning platform Codecademy [Sims and Bubinski 2011], and the Haskell

programming tutor Ask-Elle [Gerdes et al. 2017]. Typically these platforms offer a range

of built-in programming exercises for users to attempt. These exercises are presented in an

interactive environment where the user can read the description of their task, write their

code in an integrated editor, evaluate their code, run the automated grader, and view the

resulting feedback, all in one place. The user’s progress and code are usually saved on the

system’s web server, so that they can resume from any other machine that has internet access

and a web browser.

Online programming platforms offer immense potential to enhance students’ educa-

tional experience in courses with high programming content. In addition to the previously-

mentioned benefits of immediate feedback and allowing iterative code development, having

an entire development environment just a click away in a browser lowers the entry barrier

drastically and makes programming accessible for students of all computing backgrounds.

Students can start programming right away and concentrate on learning the course material,

rather than getting frustrated and bogged down in the technical aspects of installing a new

language and possibly learning a new editor. This is a particularly important consideration

for a lot of typed functional programming languages, such as OCaml, SML, or Haskell, where

few integrated development environments (IDEs) exist, and support across platforms and

operating systems differs widely: OCaml, in particular, is very difficult for students using

Windows to install, and the commonly-used editor for OCaml code is Emacs, which many

early computer science students tend not to feel comfortable using.
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1.3 The Learn-OCaml platform

Since 2015, Paris Diderot University has administered a MOOC called Introduction to Func-

tional Programming in OCaml [Di Cosmo et al. 2015], now colloquially known as “The

OCaml MOOC”. The course introduces learners with some programming experience to key

concepts of statically-typed functional programming over the span of a six-week period. It

has been a great success, with over 7000 students from more than 120 countries enrolled

over the 2015 and 2016 sessions, of which 2418 were active in the course and 588 obtained

a certificate of completion [Canou et al. 2017]; data from the 2017-2019 sessions has not

been published. A significant reason for this success, according to student feedback, is the

interactive exercise environment that was developed specifically for the MOOC. This exercise

environment was later released as an open-source standalone online programming platform

called Learn-OCaml [Canou et al. 2016, 2017].

The Learn-OCaml platform offers students access to an interactive OCaml toplevel, two

styles of tutorials (interactive and non-interactive) that can be written and uploaded by the

course instructor, and a set of instructor-developed programming exercises. In this work we

focus exclusively on the exercise functionality, although we briefly touch upon the tutorials

in our discussion of future directions in Chapter 6.

A view of the exercise functionality as seen by students using the platform is shown in

Figure 1.1a. In the right pane the student is given a description and instructions for the

exercise. In this particular exercise, the student is asked to implement some basic functions

on binary trees to measure their size, height, and number of leaves. On the left is a text

editor, complete with line numbers, syntax highlighting, and automatic indentation, in which

the student writes their solution. Compiler errors and warnings are underlined in red and

yellow, respectively, with the line numbers highlighted in the gutter as in line 11 in the

figure. Hovering over the highlighted portions reveals the error or warning message. Above

the editor is a section containing optional prelude code, such as predefined datatypes and

functions, which is loaded before the student code; for this exercise, the prelude is used to
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define an exception NotImplemented and a datatype for binary trees. The left side of the

screen also contains buttons to compile and typecheck the student’s code; run the automatic

grader on their solution and see the results; reset the contents of the editor to the original code

template provided by the instructor; sync their code to the Learn-OCaml server; download

a copy of their code; and run their code in an OCaml toplevel.

(a) Student exercise view

(b) A sample grader report

Figure 1.1: The Learn-OCaml interface

Automated graders for each exercise are written by the course instructor in OCaml, using
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the high-level grading combinators and lower-level grading primitives provided by Learn-

OCaml’s testing library. These graders produce reports of the format shown in Figure 1.1b:

organized as a hierarchy of foldable sections, with completed sections marked in green and

automatically collapsed, while incomplete sections are expanded and errors are highlighted

by colour-coded messages.

The report in Figure 1.1b was generated by running a simple automated grader on the

student code shown in the editor pane of Figure 1.1a. The grader was written using a high-

level function from the Learn-OCaml grading library to randomly generate inputs for each

function to be tested, call the student’s implementation of each function on the randomized

inputs, and compare the output to that of a model solution. The student’s implementation

of the size function is correct, and thus receives full marks. The implementation of height,

however, is incorrect, since the recursive case erroneously builds on the height of the smaller

subtree instead of the larger one, and thus the function only returns the correct output on

trees where every path to a leaf has the same length. This issue is exposed by randomized

testing and the student receives only half marks for their implementation, along with some

examples of inputs on which their function fails to return the expected output. It is then up

to the student to debug the issue, correct their implementation, and resubmit their code for

grading.

One might remark that this grader is concerned solely with the input/output correctness

of the student’s solution, and indeed this has been a general trend with automated grading.

Many of the automated grading systems referenced in Section 1.1 focused heavily or even

solely on input correctness, since this is the most straightforward property to assess without

human interference. This approach neglects several other aspects of a student’s code that

are important to consider in order to give useful feedback; for instance, input/output testing

cannot determine whether a student used the intended algorithm or good coding practices to

solve a particular problem, or even verify a less nebulous criterion like the use of a particular

language construct such as pattern matching. As a consequence, students miss out on an
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entire class of valuable feedback that is extremely important for their learning.

The bulk of the high-level portion of Learn-OCaml’s grading library focuses on input/out-

put testing, with much of the other functionality being as of yet underdocumented and un-

derdeveloped. Hence graders written for Learn-OCaml tend to take a form similar to the

example grader described above. However, what makes the Learn-OCaml platform truly

interesting, and why it offers so much promise for grading, is that grader code is given access

to the student’s code AST (abstract syntax tree). With this functionality, one could easily

write a grader to examine the student’s code to determine whether they used a required

language construct, or to check for uses of a particular name. Going further, having access

to the AST opens up a number of possibilities for performing static checks on the student’s

code using OCaml’s compiler front-end libraries.

1.4 Related work

The most notable work in making functional programming accessible to beginning students

is undoubtedly the DrScheme project [Findler et al. 1997; Felleisen et al. 1998; Findler et al.

2002]. DrScheme (now known as DrRacket) is a graphical environment for the PLT Scheme

(now called Racket) dialect of Scheme. It was designed as a pedagogic programming envi-

ronment, incorporating features such as precise run-time error locations and clearer error

messages, an algebraic stepper, a transparent REPL (read-eval-print loop), algebraic output

syntax, a static debugger, and syntax checking with lexical scope analysis. Prior to the

introduction of DrScheme, students learning functional programming with Scheme typically

worked with shell-based or Emacs-based programming environments. Using the Handin

Server plugin1, DrRacket can be set up so that students can click a “Handin” button in

the IDE to upload their code to a server, where some instructor-defined tests are run and

the results sent back to the student. The test automation framework allows instructors to

test for input/output correctness, perform syntactic checks on the student’s code AST, and
1https://docs.racket-lang.org/handin-server/
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evaluate the code coverage of student test suites. Student submissions remain on the server

after tests are run for teaching staff to carry out further manual grading if desired. Our work

on the Learn-OCaml platform is in a similar spirit to the DrRacket project: the DrRacket

IDE has made dynamically-typed functional languages in the Scheme family popular in the

university setting, but there exists no such platform for statically-typed functional program-

ming languages in the ML family. DrRacket is also not an online programming platform;

students need to download and install it on their local machines, although it boasts excellent

cross-platform support.

WeScheme [Yoo et al. 2011] is a web-based programming environment for the Scheme

and Racket programming languages that places special emphasis on allowing students to

write interactive, graphical programs, and especially on making it easy for them to share

those programs with others. Unlike Learn-OCaml, it does not include facilities for delivering

or automatically grading exercises, although exercise templates can be distributed using the

sharing functionality.

Pyret2 is a programming language designed for introductory computing education, with

a web-based editor heavily inspired and influenced by WeScheme. In a similar vein, Code-

World3 is a web-based programming environment for an educational variant of Haskell,

including an extensive set of tutorials in a similar style to the Learn-OCaml tutorials. As

with WeScheme, both environments support saving and sharing programs in the cloud, but

neither supports automated grading of exercises.

Another direction in the body of work on automated feedback is the area of intelligent

tutoring systems, which provide students with context-sensitive hints on how to proceed

when they get stuck on a programming problem, automatically generated based on the

code the student has written. Le et al. [2013] provide a review of traditional approaches

to intelligent tutoring system design. Ask-Elle [Gerdes et al. 2017] is an intelligent Haskell

tutor that supports the stepwise development of Haskell programs by allowing students to
2https://www.pyret.org/
3https://code.world/
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insert holes in their programs, which they can incrementally refine based on feedback from

the tutor. Feedback is provided by the instructor in the form of annotated model solutions;

when a student’s code deviates too far from any of the known solutions, the tutor falls back

on randomized input/output testing. A recent trend in other intelligent tutoring systems

is using a data-driven approach in which hints are generated from other students’ solutions

[Barnes and Stamper 2008].

Other automated assessment systems have included facilities for automatically grading

students on how well they test their own code. In these systems, code coverage is typically

used as a metric for measuring the quality of a student’s test suite. Edwards [2003a,b] ob-

serves that automated grading systems that focus heavily on code correctness lead students

to neglect other aspects such as good design, proper use of abstractions, and appropriately

testing their code. He proposes a grading system in which it is the responsibility of the

student to demonstrate the correctness of their own code by providing a set of tests. Sub-

missions are graded based on test validity (correctness of the test cases with respect to the

assignment specification), test completeness (code coverage with respect to the reference

solution), and code correctness (with respect to the student’s own test cases only). This

grading strategy is implemented in the Web-CAT automated assessment system [Edwards

and Perez-Quinones 2008]; Edwards reports on the experience of using Web-CAT in [Ed-

wards and Pérez-Quiñones 2007]. Chen [2004] reports a similar experience as Edwards with

regard to the effect of using an automated grader that heavily emphasizes code correctness;

he addresses this by requiring students to write test cases and grading them using a variant

of mutation testing [DeMillo et al. 1978].

Another dimension of grading students’ tests involves applying them to other students’

implementations to supplement the instructor’s test cases and to evaluate how many bugs

the student tests are able to uncover. Wrenn et al. [2018] provide a review and evaluation of

different models for using student tests to help judge the correctness of other students’ im-

plementations. In a similar vein, the CaptainTeach environment [Politz et al. 2014] requires
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students to follow a multi-stage development process for each program they write, in which

they first write a test suite for the program, then review some other students’ test suites and

provide feedback; only after this may they begin working on an implementation.

The question of what constitutes “good programming style”, and how this could be quan-

tified, has historically been a subject of active debate. Oman and Cook [1990] proposed a

taxonomy for categorizing various facets of programming style; they suggested that this can

be used as a basis for evaluating style, and as a framework for teaching students general

principles of good programming style. In 1982, Rees [1982] presented STYLE, an automatic

assessment tool for evaluating style of Pascal programs. Assessment was based on simple

and easy-to-calculate syntactic metrics such as the amount of comments, length and variety

of variable names, whitespace usage, and number of labels and gotos. Berry and Meek-

ings [1985] built on this to create a style analyzer for C, which served as a basis for style

checking functionalities in larger automated assessment systems such as Ceilidh [Benford

et al. 1995] and ASSYST [Jackson and Usher 1997]. Ala-Mutka et al. [2004] developed a

style analyzer for C++ based on the marking scheme proposed by Rees, which was used in

several programming courses with favourable response from students. It was also integrated

with Ceilidh [Benford et al. 1995] to combine style checking with evaluation of a program’s

functional correctness.

On the functional programming side, Michaelson [1996] develops a notion of semantic

programming style, as opposed to syntactic programming style which is the focus of the

previously-mentioned style assessors. While syntactic programming style is concerned with

criteria such as identifier names and use of whitespace, Michaelson characterizes semantic

programming style as “the use of appropriate [language] constructs”: for example, using

pattern matching as opposed to explicit data selectors, and using boolean values directly

instead of comparing them to true or false. He develops a style checker for SML based on

a list of AST rewrite rules, which suggests semantic-preserving transformation to students’

code for better style.
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Other tools exist that suggest code refactorings in the sense of Michaelson’s style checker.

Examples of these include Tidier, for Erlang Sagonas and Avgerinos [2009], and HLint4, for

Haskell. Tidier functions simlarly to Michaelson’s style checker, suggesting a variety of

program transformations based on ideas such as using appropriate language constructs and

making good use of pattern matching. HLint focuses heavily on pointing out functional

equivalences, such as replacing concat (map f x) with concatMap f x, though it includes

rules for several of the transformations Michaelson proposes as well. The set of checks can

be extended with custom rules added via a configuration file.

Following a method similar to the data-driven approach used by some intelligent tutoring

systems, Choudhury et al. [2016] developed a system for functions written in Python that

clustered student submissions based on AST similarity to group students that used the same

strategy to solve a particular problem, and then allowed instructors to annotate these clusters

with a style rating and guidance for the student. Once the system was seeded with this data,

future student submissions could be automatically assigned to a cluster and given guidance

accordingly. The system also automatically generated hints on language structures that could

be added to or removed from a submission to improve its style, based on calculating a path

from the student’s submission to one of the solutions considered the “best”. In a randomized

controlled trial experiment, the authors found that students using the system showed a

statistically-significant greater improvement in their code style compared to students given

only a style guide written by the course staff.

1.5 Contributions

At McGill University, many computer science students take the course COMP 302: Pro-

gramming Languages and Paradigms in their second year. The goal of the course is to

provide a new perspective on fundamental concepts that are common in many programming

languages through the lens of functional programming. It has historically been taught in a
4https://github.com/ndmitchell/hlint
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variety of functional programming languages including Scheme, F#, and SML, and is now

taught primarily in OCaml.

Enrollment in COMP 302 has increased nearly tenfold over the past several years: the

course has grown from only 38 students in the Fall 2006 term to a record enrollment of 347

in Fall 2018. A history of enrollment numbers since 2006 can be found in Figure 1.2. It

is particularly noteworthy that twice in recent years (Winter 2017 and Winter 2019) the

number of students in the course at the end of the term has exceeded the set enrollment cap

due to high demand.
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Figure 1.2: COMP 302 enrollment since 2006

As the number of students in the course has grown larger and larger, it has become

less and less manageable to grade all of their assignments by hand. Grading takes up

an increasingly large percentage of the teaching assistants’ workloads, and the turnaround

times become so long that the benefit students derive from the graders’ comments is severely

diminished: by the time they receive feedback on their code, students are often busy working

on a later assignment and are no longer as interested in the previous ones. Occasionally

students will continue to make the same error on many assignments in a row before being

given feedback on this error on the first one.

To combat this problem, we began using the Learn-OCaml platform to deliver and grade
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students’ programming assignments in COMP 302. We piloted the use of the platform in

our course in the Fall 2018 term. To our knowledge, we are the first institution to use

Learn-OCaml in a university classroom environment. This brings with it a different set

of challenges than one would encounter automatically grading students’ assignments in a

MOOC, where results are typically simply “pass” or “fail”.

In this thesis, we report on our experience in using the Learn-OCaml platform in COMP

302 over the Fall 2018, Winter 2019, and Fall 2019 academic terms. Topics covered in our

course and evaluated using Learn-OCaml include: higher-order functions; stateful vs. state-

free computation; modelling objects and closures; using exceptions and continuations to defer

control; organizing and re-using code with modules and functors; and lazy programming. We

discuss which concepts were easy to test using the platform and which were unexpectedly

difficult; problems that arose when students started using the grader in ways other than

what was intended; and the extensions to the platform that our experience motivated in

order to better accomplish our teaching goals. Our concrete contributions are the following:

(1) We describe how we used the built-in functionality of the Learn-OCaml grading library

to evaluate students on a variety of functional programming concepts (Chapter 2). We

drew several lessons in writing good automated graders as we gained more experience

with how students used the platform and implemented our own extensions to Learn-

OCaml; we discuss here also how we applied these lessons in the Fall 2019 term.

(2) We release a repository5 of homework problems and associated graders used in our

course, available upon request, for use by other instructors wishing to incorporate

Learn-OCaml into their curriculum. We envision this repository as a sort of online

textbook, providing instructors with homework problems and their solutions, with the

hope that others using Learn-OCaml might also contribute their own assignments and

graders.
5https://gitlab.cs.mcgill.ca/teaching-fp/learn-ocaml-repository — access can be granted by

contacting the authors.
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(3) In order to emphasize good software testing practices, even in the presence of an

automated grader, we provide a mutation testing framework for Learn-OCaml (Chapter

3), employing a strategy very similar to that of Chen [2004]. This framework can be

used by instructors to require students to write unit tests for every function they

implement, and evaluate these test cases on both correctness and coverage. It has

been merged into the official distribution of Learn-OCaml.

(4) We present a set of extensions we have written for Learn-OCaml’s grading library

(Chapter 4). In particular, to teach students about good functional programming

style, we release an extensible framework that supports style checking and provides

suggestions (Chapter 4.3), heavily inspired by the SML style checker by Michaelson

[1996].

(5) We evaluate the effectiveness of the above extensions to the Learn-OCaml platform

by presenting the data collected when they were deployed in the Fall 2019 offering of

the course (Chapter 5). We discuss student perceptions of the new tools, trends we

discovered in how students were using the automated graders, and how these behaviours

changed over the course of the semester.

In summary, we provide an account of our own experience and extend the out-of-the-

box functionality of the Learn-OCaml platform in order to promote functional programming

education, enhance students’ educational experience, and make teaching and learning typed

functional programming more accessible to both instructors and students.
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Chapter 2

Learn-OCaml and Our Curriculum

In this chapter, we describe how we have used the built-in features of the Learn-OCaml

platform for delivering homework assignments in the Fall 2018, Winter 2019, and Fall 2019

terms. We discuss specific concepts in a programming languages course that were easy or

difficult to evaluate using the automated grading library, and how switching to this mode of

delivering assignments affected the course experience for students and teaching assistants in

general. The lessons taken from this discussion will motivate the extensions to the platform

that we describe in Chapters 3 and 4. We later deployed these extensions and made use of

them in many of our assignments in the Fall 2019 term; we discuss the changes we made

to the course between iterations in light of our earlier experience in Chapters 3 and 4, and

evaluate the impact of these extensions in Chapter 5.

2.1 Functional programming concepts

We have used the Learn-OCaml platform to grade a total of 23 homework assignments over

3 offerings of COMP 302. Here we highlight some of the main concepts these exercises tested

and how we made use of the built-in aspects of the platform’s grading library to evaluate

students on these topics. After releasing some of these assignments it became clear when

crucial aspects of the graders were overlooked, so we discuss also how these graders have
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been improved for future iterations of the course.

Datatypes and Pattern Matching In Fall 2018, we introduced the students to user-

defined datatypes by defining the types suit and rank as variant types, a playing card as a

pair of a rank and a suit, and a hand as a linked list of cards as in Figure 2.1, inspired by

an example in Harper [2013]. In the related exercise, students were asked to write functions

to compare two cards by their rank, then by their suit and rank, and then to sort a hand of

cards.

type suit = Clubs | Spades | Hearts | Diamonds
type rank = Six | Seven | Eight | Nine

| Ten | Jack | Queen | King | Ace
type card = rank * suit
type hand = Empty | Hand of card * hand

Figure 2.1: Datatype definition for a hand of playing cards

The built-in functionality of the Learn-OCaml platform worked quite well for this exercise.

The grading library provided us with the student’s code AST, and a simple syntactic check

could determine whether the student used pattern matching to implement their functions.

Input/output testing was then sufficient to verify that the student’s code worked as intended.

There was one issue we did not anticipate: several students tried to brute-force a function

to compare two cards by writing a pattern matching with a case for each of the 81 possible

pairs of ranks. This is easy to prevent by extending the syntactic check to confirm that the

pattern matching contains a reasonable number of cases, and our grader has been modified to

do this. To give an idea of the scope of this issue, we found that 63% percent of submissions

used more than the 10 pattern matching cases that were needed for our solution.

For the last problem of this part of the exercise, students were asked to write a function

to shuffle a hand of cards. As stated, this question is clearly not a good fit for automated

grading, since one cannot tell simply by looking at the output of the function whether a list

has indeed been shuffled in an unbiased manner. We addressed this by specifically requiring

students to implement a modified version of the Fisher-Yates shuffle [Fisher and Yates 1948]:
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(1) Let ` be the list of items to be shuffled, and let `′ be an empty list.

(2) Randomly select a valid index i from the list ` of items to be shuffled, using the built-in

function Random.int.

(3) Remove the item x at index i from `. Place x at the end of the list `′ of shuffled items.

(4) Repeat steps (2)-(3) until ` is empty. `′ is now a list of the elements of `, in the order

that they were randomly selected.

The high-level testing functions provided by the Learn-OCaml grading libraries allow us

to specify some behaviour that should be carried out before a test case is executed. We used

this to seed the random number generator with a constant before carrying out each test case,

to ensure that the Random.int function would give the same outputs when called by both

the student’s implementation and the reference solution. It then sufficed to compare these

outputs for structural equality. This was very simple to implement using the built-in grading

libraries, taking only a few extra lines of code. A disadvantage of this approach was that it

was difficult for students to debug their code if they had made a mistake in implementing the

Fisher-Yates shuffle as described, since the output of their shuffle function would in many

cases still appear to be a randomly-shuffled list. This is, however, more of a drawback of the

question itself than of the grading format, since similar difficulties would present themselves

when submitting an implementation to be graded manually: students would be unaware

that something was wrong with their implementation until receiving their grade. All in all,

we do not think that automated grading presented much of an issue with this exercise.

Higher-Order Functions Questions where we required students to use particular higher-

order functions appeared, at first, to be relatively easy to test. A popular homework question

in Fall 2018 (according to an end-of-term survey) was one where we defined a type cupcake

as a pair of a price (float) and a list of ingredients (given as a variant type) as in Figure

2.2. Students were asked to write a function allergy_free, which takes as input a list
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of cupcakes and a list allergens of ingredients, and returns a list of only those cupcakes

that do not contain any of the items in allergens. They were required to implement this

function using the higher-order functions List.filter, List.for_all, and List.exists.

type price = float
type ingredient = Nuts | Gluten | Soy | Dairy
type cupcake = Cupcake of price * ingredient list

Figure 2.2: Datatype definition of a cupcake made up of possible allergens

In most cases, we were able to verify that an implementation met those requirements

fairly easily with a simple syntactic check on the code AST. The AST checking functionality

of the grading library allowed us to easily find the binding for allergy_free, and traverse

the AST of the body of the function to find calls to the required functions without needing

to implement any of the traversal logic ourselves, or indeed even needing to understand very

much about the representation of the parse tree.

However, this strategy of checking that a call to the desired function syntactically oc-

curs within the function body raises both false positives and false negatives. Students soon

discovered that they could get around this check by inserting spurious calls to the required

functions within their code: for instance, they could assign the results of calling these func-

tions to variables that they never used, or throw them away entirely; or they could call the

required functions in a branch of a conditional expression that execution would never reach.

On the other hand, some students wrote one or more helper functions outside the body of

allergy_free in which they used some of the required List functions. The AST check did

not detect these usages, since they occurred syntactically outside the body of allergy_free.

This issue became more pronounced later on in the course, when students were more inclined

to write their own helper functions.

One improvement we have made to the grader for future sessions is dynamically verifying

whether the required functions are called during execution of the student’s code. Learn-

OCaml allows us to provide some code that should be executed before the student code or

reference solution are loaded into the testing environment: this is similar to the prelude code,
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except that it is hidden from the student. We used this to instrument the necessary functions

in the List module to increment some internal references when called. By checking the values

stored in these references during grading, we can verify if the student’s code has indeed called

List.filter, List.for_all, and List.exists. This allows us to give students credit for

using the required functions in non-local helper functions, while giving no credit to students

who include unused calls to these functions in sections of dead code. It does not, however,

address the exploit of calling the required functions and then not using the results; and this

approach does not work when we would like to enforce that students make use of a function

they have defined previously in the exercise, since we do not have access to the function

before testing in order to instrument it. We discuss this issue further in Chapter 4.

A second, more difficult problem, was when we did not want to specify which functions

the students should use, but instead state that they should make appropriate use of higher-

order functions in their code. For instance, we might want to tell students to look up the

documentation for the OCaml List module and decide on the best higher-order functions

to use for the situation. It is clearly infeasible to make a list of all possible higher-order

functions a student could use to check against, and since the grading library gives us access

to only the untyped AST, we have no other way of checking if a function used in the code is

indeed a higher-order function.

We have attempted to get around this by instead forbidding the rec keyword that indi-

cates a recursive function, so that implementations using manual recursion are not accepted.

One drawback of this approach is that students can simply write a non-local recursive helper

function and then call it within the function body: since the rec keyword does not syntacti-

cally occur within the body of the function, the grader is unable to detect it without writing

a lot of extra code. Another, larger, issue is that we do not have a way of emphasizing

which higher-order functions may be appropriate for a particular situation: for instance,

that one should prefer more specialized functions like List.map or List.for_all over us-

ing List.fold_left to essentially re-implement those functions. This is an issue which is
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difficult to address using automated grading; a possible solution would be to gather student

submissions over several terms and identify common patterns which we could then program

into the grader. We may, however, simply need to accept that this kind of problem is not

well-suited to fully automatic grading.

Modelling Objects with Closures One homework assignment asked students to write

a function new_account which, given an initial password, would return a new value of type

bank_account as defined in Figure 2.3. All operations on a bank account required that the

correct password be given along with the operation, and providing the wrong password three

times in a row was supposed to lock the account, not allowing any more operations to be

performed. Problems involving modelling objects with state using closures are generally not

difficult to grade automatically, just as it is not difficult to test implementations of simple

classes in an object-oriented language.

type passwd = string
type bank_account = {

update_passwd : passwd -> passwd -> unit;
retrieve : passwd -> int -> unit;
deposit : passwd -> int -> unit;
balance : passwd -> int

}

Figure 2.3: Definition of a bank account “object”

The unexpected difficulties in grading this assignment came from the fact that student

code returned a bank account “object”, which was a record of several functions. The high-

level utilities in Learn-OCaml’s grading library focus on comparing the output of running

the student’s code to some expected output; in this case the outputs were “objects” which

we wished to run our own series of tests on, instead of simple values that we would want to

compare to some others. Testing the outputs in this way while providing the students with

informative feedback required us to copy a lot of code from the grading library and modify

it slightly for our purposes. This was a problem that came up repeatedly in other contexts

and is not specific to the topic of modelling objects.
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References and State In Fall 2019, students were asked to implement two functions

add_head and remove for doubly-linked lists, defined as in Figure 2.4. Each node contains

some data and references to its previous and next nodes in the list. The main challenge

for students in this exercise was that they were instructed not to duplicate any nodes in

memory; so students had to be very careful when setting previous and next pointers, and

needed to have a clear understanding of how values versus references to values are stored in

memory to do well on the assignment.

type ’a llist =
| Nil
| Cons of ’a * ’a lcell * ’a lcell

and ’a lcell = (’a llist) ref

Figure 2.4: Definition of a doubly-linked list

Similarly to the previously-mentioned extra work required for grading “objects”, the

grader for this assignment involved a lot of code duplicated from the built-in grading libraries,

since we were interested not in the outputs of the add_head and remove functions (which

were simply the unit value), but in how these functions modified the list they were given.

While the grading libraries include some resources for testing functions that mutate their

inputs, these are specialized only for single-argument functions, and also do not allow us the

flexibility to test sequences of operations on a single list.

However, working at such a low level gave us a lot of fine-grained control over the output

of the grader, which we were able to use to our advantage. The default printed representation

of cyclic data in OCaml is not very informative: cyclic references within a data structure

are printed simply as <cycle>, without specifying what the cyclic reference is. An example

of a doubly-linked list containing two elements, "first" and "second", printed using this

representation, is given in Figure 2.5a. It is impossible to tell simply from looking at this

representation whether this list has been properly constructed without duplicating any data

in memory, since this information is obscured by the <cycle> marker. We adjusted how

doubly-linked lists, and in particular memory locations, were printed in the grading reports
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{ contents =
Cons ("first",

{ contents = Nil},
{ contents =

Cons (" second ",
{ contents = <cycle >},
{ contents = Nil })})}

(a)

@1:{ contents =
Cons ("first",

@2:{ contents = Nil},
@3:{ contents =

Cons (" second ",
@4:{ contents =

Cons ("first",
<@2 >,
<@3 >)},

@5:{ contents = Nil })})}

(b)

Figure 2.5: Printed representation of a doubly-linked list, by the REPL and by our grader

to make it easier for students to understand when nodes were being duplicated in memory;

Figure 2.5b shows how the same doubly-linked list is printed by our grader. Reference cells

are now tagged with numeric identifiers, and these identifiers are used to mark each cyclic

reference. With this expanded representation, it is clear that data in this particular doubly-

linked list has been duplicated in memory: the second node of the list contains a duplicate

copy of the first node in its previous field (indicated by the memory reference labelled with

the number 4). For comparison, the desired structure of this list is as follows:

@1:{ contents =
Cons ("first",

@2:{ contents = Nil},
@3:{ contents =

Cons (" second ",
<@1 >,
@4:{ contents = Nil })})}

Note that the previous field of the second node now points to the place in memory where

the first node is stored, so that no data is duplicated.

On a short quiz following the due date for this exercise, the two multiple-choice questions

relating to how data is laid out in memory were answered correctly by about 78% and 77%

of students respectively. More data would be needed to make a solid conclusion, but this

gives us a bit of a positive sign that, aided by the grader’s feedback, most students were able

to acquire a basic understanding of what is typically a very difficult concept in this course.
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Control Flow In Fall 2018, students implemented a parser for a simple arithmetic lan-

guage twice: once using exceptions for control flow, and once using continuations. These

parsers were implemented as a set of mutually-recursive functions defined at the top level.

Both implementations very easy to test using the built-in functionality of the grading library.

Since the testing functions by default compare exceptions raised by the student’s code and

the solution as part of input/output testing, the only extra work we had to do in this case was

adjust how exceptions carrying more complex values like lists were printed, so that the feed-

back given to the students was properly meaningful. In the case of the implementation using

continuations, testing the student’s code with a few predefined continuations with different

output types was sufficient to confirm that they were indeed calling the given continuation

with the expected inputs.

However, we had a different experience in Fall 2019, when we asked students to implement

a function find_path for finding a path between two nodes in a graph, using first exceptions

and then continuations for control flow. With the parsing example from Fall 2018, there

was a very clear set of recursive helper functions to decompose the problem into: one recur-

sive helper function should be implemented for each non-terminal symbol in the language’s

grammar. However, when it comes to the find_path problem the decomposition is not so

clear, as there is no single “canonical” solution. This was an issue because we did not want

to constrain students into following any particular problem-solving strategy by telling them

how they should decompose the problem. We therefore could not pre-define any recursive

helper functions at the top level for students to implement; students were told to decide

on their own strategy and define recursive helper functions appropriately. This meant that

for the implementation using continuations, the grader could not call the students’ helper

functions and thus the argument continuations were not exposed to the grader, so we could

not test students’ continuation use as we did with the parser in Fall 2018.

We attempted instead to test continuation use indirectly by strongly emphasizing that

students should make use of continuations to make their implementation tail-recursive, and
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calling their function on a graph containing only a single very large path between two end-

points to check if this trigged a stack overflow. A proper tail-recursive implementation should

use constant stack space and thus execute without issue even on this large input. Unfor-

tunately, this did not work out very well in practice: Learn-OCaml uses the js_of_ocaml

library [Vouillon and Balat 2014] to compile students’ OCaml code to JavaScript that is then

run in the browser, and JavaScript does not support tail call optimization. The js_of_ocaml

compiler performs tail call optimization of some common tail call patterns, but even slight

variations on those result in stack overflows, and some tail calls are not optimized at all.

It turned out that this was far too unstable for our purposes: students would experience

stack overflow errors on correct tail-recursive implementations, triggered by factors such as

continuations that were not eta-reduced, or even just by using certain browsers. All in all,

this did not provide for a useful learning experience, and in the future it would be best to

stick with problems such as the parser with an obvious implementation strategy by which

we can directly test students’ use of continuations provided as argument.

Lazy Programming One of the final assignments of the Fall 2018 term focused on lazy

lists, as defined in Figure 2.6. Delayed computation is modelled by a function that takes

an input of type unit; lazy lists are defined as a record of a head element and the delayed

computation for the tail of the list. Students were asked to implement map, append, and

flatten functions for lazy lists, and then to use these to write a function permute which

lazily computes all the permutations of a given (non-lazy) list.

type ’a susp = Susp of (unit -> ’a)
let force (Susp s) = s ()
type ’a lazy_list = {

hd: ’a;
tl: (’a lazy_list option ) susp

}

Figure 2.6: Definitions for lazy computation

Students were also tasked with implementing a function hailstones that lazily generates
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(a) Default printed representation of a lazy list

(b) Output of our custom lazy list comparator

Figure 2.7: Grading reports for functions involving lazy lists

the hailstone sequence (also known as the Collatz sequence) starting from a given positive

integer. The hailstone sequence (ai)i∈N starting from a positive integer n is defined as follows:

a0 = n

ai+1 =


ai

2 ai is even

3ai + 1 ai is odd

For up to extremely large values of n, the hailstone sequence starting from n has been checked

to always eventually reach the cycle 4, 2, 1, 4, 2, 1, · · · . However, while it is conjectured that

this is true for all positive integers n, this has not been proven; thus students were asked to

generate the sequences using lazy lists.

Automatically grading these functions was predictably quite difficult, since potentially

infinite structures were involved. One difficulty was in simply giving the students meaningful

feedback. Lazy lists, by their definition, do not have an easy-to-read printed representation,

and since they have the potential to be infinite, naïvely trying to print out the elements of a

lazy list is not practical. The default printed representation of a lazy list is shown in Figure

2.7a, and is clearly not useful to students trying to replicate a failed test case. An acceptable

solution might be to print out the elements of the list only up to a certain bound. At the
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moment, doing this requires writing a fair amount of extra boilerplate code, as Learn-OCaml

does not provide a hook into its high-level testing functions for adding custom messages to

the test reports based on the test inputs.

Comparing a lazy list against an expected output could not be done with 100% certainty,

as the structures involved could be infinite. Indeed, in the case of the hailstones function,

all outputs were expected to represent infinite sequences. We wrote a custom tester that

steps through two lazy lists to compare them pairwise until a certain value is reached (in

the case of hailstones, that value was 1). An example error report given by this tester is

shown in Figure 2.7b.

An unexpected situation arose due to some students’ temptation to use references and

fall back upon the imperative programming practices they were used to in order to solve

some of the problems. Students attempted to think about their implementations in terms of

list indices and imperatively looping through the elements of a list instead of by decomposing

the structure of a lazy list. They did this by mutating a reference storing a current index

within the delayed computations of their lazy lists. Thus upon traversing parts of their

lists once everything appeared to be in order to the grader, but their functions were in fact

incorrect: due to the side effects encoded in their delayed computations, accessing the tails

of their lists a second time would yield incorrect results. We found that about 8% of final

student submissions made use of the assignment operator (:=). For future iterations of this

assignment we have forbidden the use of := by redefining it to raise an exception stating that

it should not be used in this exercise; we hope that this will be sufficient to deter students

from trying to use mutation when we do not intend them to.

Modules In Fall 2019, we had students practice working with modules and functors by

having them use modules to separate distinct units of measurement, so that the type system

would raise an error if one unwittingly tried to combine, for example, operations on meters

with operations on miles. Students wrote an implementation of the module type METRIC, as
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given in Figure 2.8a, using floating-point numbers, and used this implementation to create

representations for meters, kilometers, feet, and miles. They then implemented a functor

Speed, parameterized by a METRIC, for performing speed calculations over a given metric;

the module type SPEED of the instantiations of Speed is given in Figure 2.8b.

module type METRIC =
sig

type t

val unit: t
val plus: t -> t -> t
val prod: float -> t -> t
val to_float : t -> float
val from_float : float -> t

end

(a)

module type SPEED =
sig

type s
type distance

val speed:
distance -> Hour.t -> s

val average : s list -> s
val to_float : s -> float

end

(b)

Figure 2.8: Definitions of modules for working with metrics

It took us a lot of work to modify the original version of this assignment to one suited for

automated grading. In order to ensure type safety, the high-level functions of the grading

libraries require us to provide the expected type for each of the student’s functions that we

wish to call for testing purposes. These provided types must exist independently of the stu-

dent implementation, meaning that we cannot provide the name of a type that the student

is supposed to implement. We therefore could not directly test any module functions involv-

ing an abstract type using the library’s high-level graders; even when the module provided

conversion functions (such as to_float in the signatures METRIC and SPEED), we could not

utilize these functions as the abstract type of course appeared in their type signatures.

Using the library function test_module_property, which gives us access to the student’s

module implementation as a first-class module if we can provide that module’s signature, it

would be possible to manually call and grade the student’s implementation by using their con-

version functions when necessary. There also exists a library function test_student_code,

which can be used to package the entirety of the student’s code file into a module which can

then be tested similarly. However, using these functions would require us to re-implement a
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lot of the functionality of the library’s higher-level grading functions; and the error messages

these functions provide, which are on the level of a module signature mismatch, tend to

be quite verbose and confusing for students to read and understand. We chose instead to

expose the type t in the implementation of METRIC that students were to fill in, so that we

could test their functions with inputs and outputs of type float, and then required students

to keep the type abstract for the metrics defined using this implementation by repackaging

them with the METRIC signature. A library function allowed us to test each of their metrics

to check that the type t was indeed abstract.

We ran into another issue when trying to test implementations of the Speed functor.

Since functors are not first-class values in OCaml, we could not retrieve the Speed func-

tor in our grader code as we could with a module. Exposing the types s and distance

would also not have been enough, as the type distance was being implemented as the ab-

stract type t of the students’ miles and kilometers metrics. We instead added two functions

speed_as_float: float -> float and average_as_float: float list -> float to

the module type SPEED and pre-implemented these functions in the code template to com-

pose with the relevant conversion functions, and added a line to the template instantiating

the Speed functor with a dummy METRIC implementation. We were then able to grade this

instantiated module as normal.

Finally, we wanted students to implement a module providing conversion functions be-

tween specific pairs of units, such as converting miles to kilometers. However, we ended up

removing this question from the assignment since we could not find a way to grade it without

inserting yet more boilerplate code into the template. Since the type of the module would

involve types defined by the student in the assignment, there was no way for us to use any

of the built-in high-level grading functions to access it. We would instead need to define

several functions at the top level to perform the relevant type conversions before and after

calling functions of the conversion module, trusting students not to modify them, which we

ultimately decided against.
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All in all, we ended up simplifying or removing several elements of this assignment in

order to make it suitable for automated grading without needing to write a large amount

of grader code. There was a lot of code that we would prefer for students to have to write

themselves, such as module declarations, prewritten in the template in order to make sure

the correct types were exposed to the grader, and that students would be able to compile

and grade their partially-completed assignments without needing to comment out any of the

given code. This somewhat diluted the purpose of the assignment, as the actual functions

students needed to implement within their modules were themselves quite simple. In the

future we may prefer to use the test_student_code function previously described, though

it requires us to implement a lot of the grading infrastructure ourselves.

Programming Language Implementation At the end of each term, we give students

one or more exercises in which they implement parts of a compiler or interpreter, such as

type-checking, type unification, code generation, or evaluation, for a small toy language.

Features of the language generally include integer and boolean values, conditional expres-

sions, function abstraction and application, let-expressions, and recursion; additional con-

cepts such as tuple construction and deconstruction, n-ary lambdas, and more sophisticated

let-expressions are swapped in each term.

Writing graders for these assignments was very similar to the experience one might have

writing an automated grader for a programming course without using a platform such as

Learn-OCaml, as we did not make use of any additional features such as AST inspection or

fully randomized testing. Our graders were simply written as a series of preset test cases on

which we executed the student’s functions and compared the output to that of the model

solution (if necessary, after normalizing both into a form such as de Bruijn [De Bruijn 1972]).

In Fall 2018 these test cases were completely hard-coded, and hidden from students in the

grader output to prevent them from hard-coding these cases into their functions to obtain

full marks. Students’ reactions to the hidden test cases were generally negative, and many
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expressed frustration with them in the end-of-term survey. Indeed, completely hiding the

tests from students gives up many of the benefits of automated feedback that we are using

Learn-OCaml for in the first place; so in the Fall 2019 term, we instead wrote a generator for

each individual test case which would generate randomized expressions of the toy language

with a certain desired structure: for instance a function abstraction where all bound variables

are referred to in the function body, or a series of nested let-expressions in which a variable

is shadowed. Writing these generators took, as expected, quite a bit of extra effort and

lines of code, though we expect that most of them can be reused for future iterations of the

assignment.

2.2 General lessons

Apart from the lessons learned about writing effective graders for a variety of important

concepts in a programming languages course, we found several takeaways about writing and

using automated graders in general, which we summarize here. Many of these issues have

been previously encountered by instructors introducing automated grading into their courses,

and indeed several of them seem blatantly obvious after the fact; but as they are not well-

documented in the functional programming community, we expect that many instructors

making the switch to automated grading in their functional programming courses would

experience them as we did.

Writing Graders is Difficult and Time-Consuming In Fall 2018, we released assign-

ments on the Learn-OCaml platform weekly, and the graders were written by the teaching

assistants during the term. It became clear very early on that this was not a sustainable

practice. We would like to emphasize that letting the selection of high-level functions pro-

vided by the grading library prescribe the criteria for the graders, and simply writing grader

code accordingly, is not sufficient to write a good grader. Writing an effective grader requires:

(1) Deciding on a sufficient set of test cases and how to weight them;
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(2) Determining what syntactic checks should be performed on the student’s code;

(3) Anticipating unusual solutions that students may come up with to the homework prob-

lems, and making sure that the planned grading procedures will handle them properly;

(4) Actually implementing the grader;

(5) Thoroughly testing the grader.

Notably, implementing the graders using the libraries provided by Learn-OCaml is only

a small part of the process. We have also omitted a step (0) of deciding if an assignment

is even suited to automated grading at all. An example of an assignment that may not be

suitable would be one that requires students to define their own datatype and then write

functions that take values of this type as input or return them as output. Since the datatype

is declared in the student’s code, we cannot generate values of that type in the grader, nor do

we have anything to compare values of that type to if they are returned as output. It could

be possible to test this code by requiring students to do the extra work of writing conversion

functions between the new datatype and some type built in to OCaml, but particularly for

earlier assignments we would prefer not to do this.

Other assignments that may be unsuitable for automated grading are those that allow

students a significant measure of creative freedom in their design. It is always tempting

to allow students more leeway rather than restricting them to a particular implementation,

but it is our experience that this does not go well with automated grading: we find that

the programming problems that work best for automated grading are those with strict and

rigorous specifications. Attempting to give students more freedom tended to result in graders

that involved considerably larger amounts of code and were yet more brittle. For instance,

asking students to write an implementation using high-order functions of their choice from

a particular set, instead of restricting them to the exact ones that are used in a particular

model solution, meant that we had to program a set of alternative solutions into the grader,

and reject any others that students came up with without a clear reason.
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It is also infeasible to keep coming up with graders for new assignment problems year

after year. Therefore, we have started a repository of pre-written graders, starting with the

ones we have written for the Fall 2018 and Fall 2019 terms, that can be re-used over the

years. As a contribution of this thesis, we release this repository to other instructors teaching

courses in OCaml upon request1. We hope for this to be a starting point for a bank of tried

and tested homework assignments that can be shared among instructors in the community

at large, making adoption of the Learn-OCaml platform more accessible to those who wish

to make the switch.

Circumventing Grader Requirements We found it quite difficult to enforce properties

of students’ implementations such as requiring or forbidding them to use certain functions,

or banning the use of manual recursion, that could not be straightforwardly verified by

input/output testing. However much effort we put into detecting violations of such require-

ments, enterprising students were able to find their way around them, whether it was by

defining other helper functions at the top level or using a required function in a throwaway

fashion to trick the grader. At some point, expending the additional effort to try to make

the graders as foolproof as possible was just not worth the increasingly diminishing returns

in trying to imitate what would appear an obvious exploit to a human grader.

In the Fall 2019 term, we decided to switch instead to a method of semi-automated

grading (see, e.g., [Jackson 2000; Tremblay and Labonté 2003]), where we had TAs screen

assignment submissions after the deadline to ensure that students were not skirting the

requirements (intentionally or unknowingly), and post a summary of common mistakes stu-

dents made after screening was done. With this change, we also shifted our focus from

trying to account for all possible ways students could get around the grader requirements,

to instead providing clear requirements and feedback so that students were unlikely to fail

to meet requirements without being aware that they were doing so, and so that TAs could
1https://gitlab.cs.mcgill.ca/teaching-fp/learn-ocaml-repository — access can be granted by

contacting the authors.
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Figure 2.9: Number of submissions that received a grade deduction during TA screening,
per assignment.

glean as much information as possible by quickly glancing at a student’s grading report.

The number of submissions receiving grade deductions during TA screening varied wildly

between assignments, as can be seen in Figure 2.9. We suspect that much of this variance

is due to the fact that each assignment was screened by a different TA, and strictness of

screening was not consistent between different assignments; thus we do not think any useful

conclusions can be made from this data.

Student reception to the summaries of common mistakes that were posted after each

screening were somewhat positive, according to an end-of-term survey. Several students

were not aware that we had been posting these summaries at all, while others found the

summaries too long and did not read them. A few students said that they had not made

any of the mistakes described in these summaries, and so did not find them useful.

Improper Use of the Grader A major issue we experienced over the course of the Fall

2018 term was that students were becoming over-reliant on the automated grader and using

it as a substitute for testing their code on their own. The Learn-OCaml platform provides

an interactive toplevel for students to test their code; however, in an end-of-term survey,

35% of students responded that they used the toplevel to test their code “rarely” or “never”.

On earlier assignments, students could get away with writing their programs by trial

and error based on the grader’s feedback. Later assignments where the questions were more

complicated made this strategy much more difficult and prohibitively time-consuming. A

common complaint throughout the term was that the grader did not give the expected output
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for failed test cases, and students were thus required to figure out the expected outputs

themselves. This phenomenon has been previously observed when relying on automated

grading for programming assignments; for some examples, see Edwards [2003b]; Chen [2004].

One possible solution to this problem is to limit the number of times students can run

the grader on their submissions, thus requiring them to test their code carefully before using

up one of their limited tries. This has been observed by Pettit et al. [2015] to increase the

average quality of student submissions. This is not possible to do in Learn-OCaml at the

moment, as all grading takes place client-side in the student’s browser, which makes such

restrictions easy for an enterprising student to bypass. Creation of new accounts on the

Learn-OCaml system is also unrestricted, so students can create multiple accounts to get

around grading limits as well.

We decided to take a different route starting in the Fall 2019 term, in which we require

students to write their own tests and make use of the automated testing infrastructure to

grade students on their test quality. A similar approach has been tried in a third-year

computer organization course by Chen [2004] at the University of Michigan, and is still in

use in the course today. We give details on this solution, and how we have implemented it

as a library for Learn-OCaml, in Chapter 3.

In addition, to make sure that students were aware of the existence of the toplevel and

how to use it, we placed extra emphasis on the toplevel in the Fall 2019 term by using a

newly-added “playground” mode of the Learn-OCaml platform in our lectures. This mode

allowed instructors to write lecture code in an editor pane on one half of their screen, and

send their code to an interactive toplevel pane on the other half of the screen to be evaluated,

similar to the setup an OCaml programmer might use while editing OCaml code in Emacs.

We evaluate the impact the above measures had on our students in Chapter 5.

Limitations of the Grading Library The grading library that Learn-OCaml provides

specializes in testing input/output correctness against a solution and in performing simple
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syntactic checks on the student’s code: for instance, checking that a certain name occurs

syntactically in the body of a function, or verifying that a function is implemented without

using for loops. More complicated syntactic checks one might like to perform, such as

checking if a certain call is a tail call, are doable with the library’s provided functionality,

but require users to write a lot of extra code from scratch.

A major syntactic property of a student’s code that we wish to evaluate is code style. The

meaning of code style is subjective among instructors, but it is commonly taken into account

in some form when grading programming assignments manually; when using Learn-OCaml’s

provided library out of the box, students miss out on this entire class of valuable feedback.

Again, writing style checks is possible with the current grader library, but involves a lot of

extra code.

We have written extensions for Learn-OCaml’s grading library to mitigate this issue,

which we discuss in Chapter 4 and evaluate in Chapter 5.
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Chapter 3

Encouraging Students to Write Tests

As mentioned in Chapter 2.2, a drawback of having a readily-accessible automatic grader

for our homework assignments was that it was tempting for students to rely solely on the

grader to tell them if their code was correct, instead of testing their own code thoroughly.

This led to students treating assignments as a game of trial and error between themselves

and the grader, in which they would repeatedly make small changes to their code and rerun

the grader to “see what happens”. Anecdotally, it was very rare for us to see students testing

their own code in the OCaml toplevel.

We have implemented an extension to the Learn-OCaml platform similar to the idea

described in Chen [2004], by which we can leverage the automated grader to evaluate students

not only on their code, but also on unit tests that they write for it. The approach used by

our extension is to assess the quality of a student’s tests using a strategy based on mutation

testing DeMillo et al. [1978].

3.1 Mutation testing

Mutation testing is a method of testing used in the software development industry to evaluate

the quality of a test suite and design new tests with which to extend it. In short, mutation

testing works by introducing bugs into the programmer’s code, and then running the test
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suite on the modified code to verify whether the tests are able to detect the newly-introduced

bugs. If the modified code, known as a mutant, continues to pass all of the tests, then the

test suite is deemed insufficient, and the programmer extends the test suite with one or more

new test cases designed to expose the issue. If the mutant is flagged by the tests, the test

suite is said to have killed the mutant. The quality of the test suite is then assessed by the

percentage of mutants that are killed during the process of mutation testing.

For example, consider the implementation of a simple exponentiation function pow that

works on non-negative integers, such that pow n k evaluates to nk for all non-negative in-

tegers n and k (we do not care what pow 0 0 returns). Suppose that we have access to an

exponentiation operator ** that does exactly this, so a programmer implements the function

simply by writing:

let pow n k = n ** k

The programmer then designs a set of test cases for the pow function as in the following

table: she asserts that pow 4 1 should evaluate to 4, pow 0 5 should evaluate to 0, and pow

2 2 should evaluate to 4. As these test cases are indeed true to the specification of pow, and

the implementation of the pow function correctly adheres to the specification, her function

passes all of the test cases.

n k Expected Actual

4 1 4 4

0 5 0 0

2 2 4 4

Now, however, suppose that the programmer has made a small mistake when writing the

definition of pow, and has instead written:

let pow n k = n * k

Notice that instead of the exponentiation operator (**), the programmer has accidentally

written the multiplication operator (*).
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This implementation of pow does not meet the specification, but it still passes all of the

programmer’s tests: the test suite is not strong enough to be able to distinguish multiplica-

tion from exponentiation. In order to improve the quality of her tests, the programmer adds

a new test asserting that pow 2 3 should evaluate to 8. Since 2 * 3 evaluates to 6 and not

8, her test suite now reports an issue with her implementation.

n k Expected Actual

4 1 4 4

0 5 0 0

2 2 4 4

2 3 8 6

Mutant generation is typically done automatically by mutation testing frameworks such

as the PIT [Coles et al. 2016] framework for Java, or MuCheck [Le et al. 2014] for Haskell.

These frameworks make small changes to the programmer’s code (or the generated bytecode,

in the case of PIT) by applying mutation operations such as replacing a variable reference

with a constant, negating a boolean expression, or replacing one mathematical operator

with another. The idea behind this, as originally presented by DeMillo et al. [1978], is

the competent programmer hypothesis, which posits that (professional) programmers create

programs that are close to being correct, and most faults they introduce into their programs

are caused by small errors in syntax. The intent of applying mutation operators, then, is to

imitate common programming errors.

Unfortunately, for mutation testing to be effective, a large number of mutants need to be

generated, and many of these mutants may be superfluous. The process of generating such a

large amount of mutants and running tests over them is computationally very expensive for a

codebase of non-trivial size. Increasingly more attention has been devoted to techniques for

reducing the cost of mutation testing, for instance by generating mutants more selectively;

for a survey on developments in the field, one can consult [Jia and Harman 2011].
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3.2 Automatically grading students’ tests

Our extension to the Learn-OCaml platform uses a variation on mutation testing to grade

students on the quality of their tests. Suppose that we wish the student to write tests for

the function pow as specified above. The student provides a set of test cases as a list of

input/expected output pairs, as shown in Figure 3.1a. The set of tests indicated in the

Figure is the same as initial test suite given in the previous mutation testing example.

let pow_tests = [
((4, 1), 4);
((0, 5), 0);
((2, 2), 4)

]

(a) A set of sample unit tests

let pow n k = n * k

let rec pow n k =
if k = 0 then 0
else if k = 1 then n
else n * pow n (k - 1)

(b) A set of sample mutants

Figure 3.1: Using our mutation testing extension in Learn-OCaml

Programmed into the grader is a set of mutants of some reference implementations of

the pow function, as given in Figure 3.1b. The first mutant is the one previously discussed,

which multiplies its inputs instead of performing exponentiation. The second has a typo

in the consequent of the first if-expression, returning 0 instead of 1 in the base case of

exponentiation by zero. When adding a mutant to the grader, the instructor chooses a text

description for the mutant that will be displayed once it has been killed, as well as how many

points students should receive for killing that mutant.

When the grader is run, it first checks the student’s tests for correctness by running them

against the correct solution code, as seen in the first section of the report in Figure 3.2a.

Once all of the student’s tests have been deemed correct, the test suite is next evaluated

for quality by running it against each of the given mutants. The feedback report, as seen in

the second section of the report in Figure 3.2a, informs the student of how many mutants

her test suite has killed, and how many her test suite was not able to detect. The student

may then revisit her tests and think harder about what cases she may not be covering, and

extend her test suite accordingly. Figure 3.2b shows the resulting report when the student
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(a)

(b)

(c)

Figure 3.2: Grading reports generated by our mutation testing extension

adds the test case ((2, 3), 8), asserting that pow 2 3 should evaluate to 8: the test suite

is now able to kill the first mutant, but not the second. Finally, the student may realize

that she has not included a test for the base case, and add the test case ((4, 0), 1); the

resulting report (with the first section of the report collapsed for space reasons) is shown in

Figure 3.2c.

Optionally, instructors may choose for the grader to also run the submitted test suite on

the student’s own code, with these results displayed in a separate section of the report.

Compared to the software development setting, in which a large number of mutants are
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automatically generated based off of the programmer’s implementation to see what kinds of

bugs their test suite can uncover, we already know what a desired solution looks like, and

what kinds of inputs we want our students to test. We can thus write a small number of

very specific mutants manually while writing our graders, and use these for mutation testing.

Writing the mutants manually allows us to isolate certain cases that we want to make sure

students are testing for. Mutation testing is thus ideal here since we can achieve a high level

of effectiveness with a low computational cost.

3.3 Our mutation testing extension in practice

We deployed our fork of the Learn-OCaml platform along with the mutation testing extension

for use in the Fall 2019 offering of COMP 302. Having students write their unit tests as

input/output pairs was simple enough that we could have them start writing tests straight

away on their very first homework assignment, given a proper template.

Aside from the obvious purpose of using the framework to have students write tests for

their own functions, we also used the mutation testing functionality to have students write

test cases for pre-implemented functions that they would later be using in their code. For

instance, in one exercise we provided students with a higher-order function tabulate such

that tabulate f n evaluates to the list [f 0; f 1; ...; f n] (in later versions of OCaml

than the one used by the Learn-OCaml platform, this is included in the standard library as

List.init). Before using it in their code, we asked students to write a few test cases for

tabulate to confirm that they understood how the function worked. We supplied the grader

with two mutants: one that gave incorrect results for n = 0, and one that produced the list

[f 0; f 1; ...; f (n - 1)] for non-zero inputs n. This ensured that students were able

to correctly provide the output of tabulate in an example of each of these cases before

they proceeded to use it in later questions. In previous years students have had issues with

off-by-one errors when using the tabulate function, since it, possibly unintuitively, produces
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a list of length n + 1 rather than of length n. As this time students needed to explicitly

confirm their understanding of the output before using tabulate, we did not encounter such

an issue with this exercise.

We attempted to use the mutation testing functionality to require students to write tests

for their own functions as often as we could. Unfortunately, there were some cases in which

writing unit tests using the framework did not make sense, or where students’ test-writing

capabilities were restricted. Since students’ test cases are provided in (homogenous) lists,

they were restricted to a single concrete type for polymorphic functions: for instance, tests

for a function of type ’a list -> ’a would be restricted to a single instantiation of the

type, such as testing only instances of the function at type int list -> int. This was

somewhat concerning as we have historically had students submit functions that they had

accidentally made monomorphic, not understanding that there was an issue because the

example inputs we provided were all only for a single instantiation of the function’s type.

While we were able to verify that students’ functions were indeed polymorphic when testing

their actual implementations, it would have been ideal to have students demonstrate that

they understood how their functions should operate on differently-typed inputs.

Another issue caused by the fact that tests were encoded as homegenous lists of in-

put/output pairs was that we could not ask students to write test cases for inputs that were

expected to raise exceptions. In earlier assignments, this was not such a big deal because

most of the functions students had to implement raised exceptions only when given inputs

we were not interested in: for instance, a function computing factors of a positive number,

which raised a Domain exception when given non-positive inputs. In these cases we were not

interested in having students test these inputs at all. However, in later assignments the cases

in which student implementations were expected to raise exceptions were just as significant

as the non-error scenarios: for example, when implementing evaluation and type inference

for a toy programming language, students were asked to raise specific exceptions in the case

of runtime or type errors. In this assignment we would have liked students to be able to
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submit test cases for these kinds of inputs themselves, instead of only having these cases

tested by our own grader. It would be possible to modify the mutation testing framework

to allow specifying tests for exception cases, by using the result variant type as defined

in the Learn-OCaml testing libraries and writing functions assert_ok and assert_err to

create test cases (in order to hide the extra complexity of this datatype from the student),

according to the specification in Figure 3.3. This change would also slightly simplify the

formula of test cases, as students would no longer need to write their tests as nested pairs

when testing functions that take multiple inputs. We are strongly considering making this

change for future terms.

type ’a result =
| Ok of ’a
| Error of exn

val assert_ok :
’a -> ’b -> ’a * ’b result

val assert_err :
’a -> exn -> ’a * ’b result

Figure 3.3: Modifying the mutation testing library to support testing error cases

Finally, there were some situations in which asking students to write test cases did not

seem particularly instructive due to the nature of the inputs and outputs of the functions

they were writing. An example of this is an assignment in which students were working with

matrices (represented as nested lists) of floating-point numbers and using them to perform

statistical calculations. Here we were not particularly interested in the exact numbers that

students were calculating, but in how they were using higher-order functions to process lists

of lists; and we did not think it very useful for students to manually calculate the desired

output values in order to construct test cases. We thus did not require students to write test

cases; we instead simply reminded them that they were expected, as always, to test their

own code, and hoped that they did so.

As another example, in a later assignment we asked students to implement a function

find_path which would return a single path with no cycles between two given vertices in a

graph. Since there could be multiple valid outputs to a given call to find_path, it did not

make much sense to ask students to provide test cases with specific outputs.
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We were able to evaluate students’ test suites for significant parts of 4 of the 6 homework

assignments we gave in the Fall 2019 term. In each of these assignments we asked students

to write some test cases for their functions before they began implementing them, although

unfortunately the Learn-OCaml platform allowed us no way of enforcing that they should

do so. We tried to further encourage students to write tests before implementing by hiding

all information about our own tests performed on each student’s code, except for the final

grade, until the student achieved full marks on their test cases by uncovering all of our

mutants with their test suite. This meant that students did not have access to our own tests

until they had written sufficiently strong test suites of their own. Despite these measures,

we found that a few students were implementing their functions first and then using those

functions themselves to generate expected outputs for their test cases, which is something

we are unable to prevent without being able to enforce the order in which students complete

parts of their assignments.

We also encouraged students to make use of the testing infrastructure to experiment

with how they thought the functions they were asked to implement should work, by writing

test cases and then using the grader to verify their understanding against the solution. If

the expected output of a student’s test case did not match the actual output produced by

the solution, the grader would alert them that their test was incorrect, although it would

not provide them the actual expected output as given by the reference implementation. It

would then be up to the student to go back and fix their test by rereading the assignment

specification and thinking through what the actual output should be for their test case.

For each assignment, we carefully thought through the mutants that we included for each

function. There are two main approaches we explored for creating mutants:

(1) Generating mutants by making small changes to one of the reference solutions, true to

the original idea of mutation testing: we generally found that this method did not give

us very useful mutants when we tried to follow it for our earlier assignments. Making

small changes to the reference solutions tended to result in very unspecific mutants
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let rec sum_up l =
match l with
| [] -> 0
| x :: xs -> x + sum_up xs

(a) Correct implementation of sum_up

let rec sum_up l =
match l with
| [] -> 2
| x :: xs -> x + sum_up xs

let rec sum_up l =
match l with
| [] -> 0
| x :: xs -> x * sum_up xs

(b) Mutants created using method (1)

let sum_up l =
match l with
| [] -> raise Fail
| _ -> Solution . sum_up l

let sum_up l =
match l with
| _ :: _ -> raise Fail
| _ -> Solution . sum_up l

(c) Mutants created using method (2)

Figure 3.4: Mutants of a function for summing up the elements of a list

that produced incorrect results for every input or almost every input, as the functions

we were asking students for these assignments were generally short, simple, recursive

implementations.

As an example, consider using this method to generate mutants of a reference imple-

mentation of a function sum_up (Figure 3.4a) which calculates the sum of the elements

in a list using manual recursion. Some such mutants are shown in Figure 3.4b. The first

mutant incorrectly returns 2 in the base case instead of 0, meaning that the function

returns an incorrect result for all possible inputs; this is clearly not a useful mutant,

as it can be exposed by any test case whatsoever. The second mutant incorrectly per-

forms multiplication instead of addition; combined with the (now correct) base case,

this means that the mutant will return 0 for all inputs. This mutant is somewhat more

useful, as it can be exposed by any non-empty list in which the sum of the elements

is not zero, but this extra side condition is not particularly intuitive to students, and

is not a particular class of input that we are very interested in having students test

specifically.

(2) Generating mutants by deciding on a particular class of input, and then writing func-
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tions that raise an error upon encountering that exact class of input, while falling

through to the reference implementation to process all other inputs: this was the

method that we preferred to use throughout the term. While these function defini-

tions were contrived and not actually “mutants” in the original sense of the word, they

allowed us to express exactly what classes of inputs we wanted students to test, and

write mutants that would fail on only those inputs. For example, some mutants gener-

ated from the implementation in Figure 3.4a are given in Figure 3.4c: the first mutant

fails on the empty list, and the second mutant fails on all non-empty lists, precisely

specifying the two categories of inputs we would like students to test. If, in addition,

we wanted to make sure students were testing a list with at least two elements, we

could easily write a new function that fails only on lists with more than one element

in the same fashion.

As calling the mutants generated by method (2) “buggy implementations” is somewhat

misleading to the students, and these functions are no longer really “mutants” at all, we will

likely rethink how we present this testing functionality to students in the future.

We discuss how students used the mutation testing framework, and evaluate how useful

it was to their learning, in Chapter 5.
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Chapter 4

Writing More Powerful Graders More

Easily

As it stands, the grading library provided by the Learn-OCaml platform has a lot of poten-

tial for writing powerful graders, since it allows graders to access the student’s code AST.

However, the library only provides helpers for carrying out simple and context-free syntactic

checks on the parse tree. In order to take full advantage of having access to the AST, users

are required to write a lot of extra code to perform more sophisticated checks on the syntax

tree, and this code needs to be copied and pasted into each grader separately. There have

also been situations where we would like to have access to the full typed AST: for instance

to make use of scoping information, or because we might want to look at types to determine

whether a student is using higher-order functions without knowing which specific functions

we are looking for. We have therefore written a new module for the grading library that

provides graders with an augmented version of the parse tree, annotated with typing and

scoping information. Over the course of our first term using the platform, we used this

module to write several extensions aimed at increasing the out-of-the-box functionality of

Learn-OCaml’s syntax checking, so that future users of the platform can more easily write

powerful and expressive graders. We describe our annotated parse tree structure, and our
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extensions implemented using it, in this chapter.

A general theme that has been mentioned before, and will come up multiple times in this

chapter, is that our automatic analyses are neither sound (raising no false negatives) nor

complete (raising no false positives), nor do we find it worthwhile to strive to achieve either

of these properties. As discussed in Chapter 2.2, we have found that some students will work

very hard and come up with very inventive solutions to bypass grader requirements on the

structure of their code. We consider seeking to cut off all possible exploits to be misplaced

effort, and instead advocate for a semi-automated grading strategy where automated grading

reports are supplemented by manual human screening. False negatives are more concerning,

but we have found it easy enough to design our assignments so that specific grader extensions

are not used in contexts where false negatives may come up.

4.1 Implementation of Grader Extensions

The Learn-OCaml grading libraries give us access to the student’s untyped AST in our

grader code, represented using the datatypes from the OCaml compiler’s internal Parsetree

module. However, as mentioned previously, there are many instances where we would benefit

from having access to type information in our graders. By design, grader code is only run

on code that successfully typechecks. Therefore, we can make use of the compiler front-end

to build up an instance of the compiler’s internal Typedtree structure from the student’s

code AST, thereby gaining access to typing and scoping information for all identifiers.

However, the Typedtree structure is difficult to work with: libraries exist for easily

pattern matching on and constructing Parsetree (untyped AST) fragments, but no such

resources exist for working with the Typedtree. Additionally, during the process of con-

structing the typed AST, the untyped AST goes through a normalization process that is

non-invertible: for instance, optional arguments to functions are filled in with their default

values, labelled (keyword) arguments and record fields are sorted in alphabetical order, and
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functions created using the fun construct are rewritten to use the function construct in-

stead. Since we are specifically analyzing student code for features such as the use of certain

code constructs, it is crucial for the representation of the student’s code to be as close to its

orignal form as possible. This is also very important for us to be able to provide students

with clear and accurate error messages. Thus working with the Typedtree structure was

not an option for us.

We have instead implemented our own augmented version of the OCaml parse tree, which

we call Typed_ast to differentiate from the internal Typedtree structure of the OCaml com-

piler. The Typed_ast is structurally identical to the Parsetree structure: the difference is

that some additional fields are added to some nodes in the tree to store scoping and typing

information from the Typedtree. For instance, the type of expressions in the Parsetree

includes the variant for identifiers Pexp_ident of Longident.t loc, while the corresponding

variant in the Typed_ast is Sexp_ident of Path.t * Longident.t loc: the added field of type

Path.t contains additional scoping information discovered during the typing process, in-

cluding the identifier’s full resolved module path and a unique stamp so that shadowed

identifiers can be distinguished. Each expression node in the Typed_ast is also annotated

with its inferred type, and the typing environment in which it was checked.

The Typed_ast is constructed from the Parsetree structure by first invoking the type-

checking component of the OCaml compiler’s front-end to construct a Typedtree; as men-

tioned previously, the grader is only run on code that typechecks, so this process always

succeeds. We then traverse the untyped and typed ASTs in parallel via a series of mutually-

recursive functions that handle different components of the AST: expressions, patterns, mod-

ule expressions, etc. Since we have access to the untyped AST, we can map components of

the Typedtree back to their original untyped forms, which allows us to “undo” the parts of

AST normalization during the typing process that we previously described as non-invertible.

The result is an instance of the Typed_ast structure corresponding to the student’s code

being graded.
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Our Typed_ast structure covers only a subset of the OCaml language that we use in

our course. In particular, it does not include imperative constructs such as for and while

loops, nor any of OCaml’s object-oriented features. It would not be difficult to extend the

Typed_ast to add these constructs, but we are not currently interested in doing so.

Along with the data structure itself, our module provides several functions for working

with the Typed_ast, many of which are similar to the ones provided by Learn-OCaml itself

for working with untyped ASTs. We describe some of the most important ones below:

• tast_of_parsetree_expression and parsetree_of_tast_expression perform con-

versions between the Typed_ast and Parsetree, for interfacing with the functions

from the grading libraries.

• find_binding, analogous to the function of the same name provided by the grading

library for untyped ASTs, finds the top-level binding for a given name and retrieves

the scoping information for that identifier, the rec flag, and the syntax tree for the

binding expression.

• ast_check_expr, analogous to the function of the same name provided by the grading

library for untyped ASTs, allows users to easily traverse a Typed_ast by specifying

stateless functions that should be called on expressions, patterns, etc. without needing

to implement any of the recursive traversal logic.

• variables, bound_variables, and free_variables calculate the sets of all variables,

all bound variables, and all free variables, respectively, occurring within a given ex-

pression.

• Various helpers are provided for constructing Typed_ast fragments, which are partic-

ularly useful for performing comparisons with concrete expressions for functions such

as ast_check_expr.
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All of the extensions to the grading libraries that we will discuss in this chapter have

been implemented atop our augmented Typed_ast structure, so that they are scope-safe: no

extra effort is needed to take variable shadowing into account, since scoping information is

included with all identifiers in the Typed_ast. Access to the additional typing and scoping

information opens up a variety of new avenues for writing grader code aside from the ones

described in this chapter. For instance, one can use it to check that a student is using

higher-order functions, or that they are not using any functions involving the unit type

(which would suggest that the student is trying to program imperatively). We believe that

making this information available to instructors writing graders is an extremely important

step in making it easier for instructors using Learn-OCaml to write powerful and expressive

graders.

4.2 Checking tail recursion

Tail recursion is one of the first topics we cover in COMP 302; multiple questions on the first

couple of exercises specifically ask students to implement certain functions in a tail-recursive

manner. Thus one of the first issues we encountered when using the platform was: How can

we check that a student’s implementation is actually tail recursive?

The first, dynamic, approach that we used was simply to call their function with an

extremely large input; if their function was not tail recursive, this would result in a stack

overflow which the platform would detect. This seemed to work well enough for a while,

although it would have been desirable to have a way of pointing out which recursive call was

not a tail call.

However, we ran into a problem in the Winter 2019 term when we gave an example using

exponentiation by repeated squaring, as implemented in Figure 4.1, and asked students to

implement a tail-recursive version of this algorithm. By design, exponentiation by repeated

squaring uses stack space logarithmic in k, so that giving even the largest possible integer
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value for k as argument to the non-tail-recursive implementation in the figure will not result

in a stack overflow. This means that we cannot try to verify that a student’s implementation

is indeed tail recursive using a dynamic approach.

let rec fast_pow n k =
if k = 0 then 1
else if k mod 2 = 1 then

n * fast_pow n (k - 1)
else

let x = fast_pow n (k / 2) in
x * x

Figure 4.1: Exponentiation by repeated squaring

As described in Chapter 2.1, we also had issues with an exercise in Fall 2019 where we

asked students to implement a function tail-recursively using continuations, since students’

code is compiled to Javascript using the js_of_ocaml compiler, which only performs tail

call optimization on some common tail call patterns. This meant that some tail-recursive

implementations were still triggering stack overflows on large inputs when running the grader,

making our dynamic verification method extremely unreliable.

The OCaml compiler features a [@tailcall] annotation which can be added to recursive

calls so that the compiler will emit a warning if they are not tail calls; however, in the grader

we do not have access to compiler warnings, and we would prefer students not to need to

annotate all of their recursive calls.

We have thus written our own syntactic check which attempts to determine if a function

is tail recursive and incorporated it as part of a library in Learn-OCaml. The problem of

determining whether or not a function is tail recursive is undecideable in the general case

due to factors like aliasing and mutation, and we do not attempt to address such factors in

our implementation. However, we feel that our implementation is sufficient for handling the

scenarios that most often come up in practice with student code. Given an identifier and

a syntax tree, we recursively traverse the syntax tree for function calls to the identifier in

question and check if any such function call occurs outside of tail position. If so, we flag

it as an error and provide the student with the context in which the function call appears,
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to explain why the given call is not a tail call. Since we perform our analysis over the

Typed_ast, we do not explicitly need to keep track of any variable shadowing; we simply

use the scoping information of identifiers in the typed tree to find all recursive calls to the

desired function.

As an example, consider an attempt to implement exponentiation by repeated squaring

tail-recursively using the helper function fast_pow_tl given in Figure 4.2a. This function

is not tail recursive, since a recursive call to fast_pow_tl appears in a binding of a let-

expression on line 6. Our syntactic check, when given the fast_pow_tl identifier and the

syntax tree of the function body, generates a report as shown in Figure 4.2b, informing the

student that a recursive call has been found outside of tail position and pinpointing the

location where this happens.

1 let rec fast_pow_tl n k acc =
2 if k = 0 then acc
3 else if k mod 2 = 1 then
4 fast_pow_tl n (k - 1) (n * acc)
5 else
6 let x = fast_pow_tl n (k / 2) acc in
7 x * x

(a) Attempt to implement exponentiation by repeated squaring tail-recursively

(b) Grading report generated for the implementation in (a)

Figure 4.2: Tail recursion checking in Learn-OCaml

Our solution has a few drawbacks. The first is that our implementation needs to be

given the identifier and syntax tree for the particular function to which all recursive calls

should be tail calls. As this function is typically defined as an inner auxiliary helper, we

need to do some extra work in our grader to search the student code for their helper function

to obtain its name and code AST; and in the case of an implementation involving multiple

mutually-recursive helper functions, we need to make sure that we are looking at all of them.

54



let rec pow n k =
if k = 0 then 1
else n * pow n (k - 1)

let rec pow_aux n k acc =
pow n k

let pow_tl n k =
pow_aux n k 1

Figure 4.3: An implementation erroneously accepted as “tail-recursive” by our grader

We opted instead to require students to define their helper functions at the top level with

specific names, so that we could find them easily.

Another issue, which has come up multiple times in different forms in Chapter 2.1,

is that students could define some other, non-local helper function that has the desired

input/output behaviour but is not tail-recursive, and simply refer to this function within

their implementation, as in Figure 4.3. In this example, the student is asked to implement a

function pow_tl for performing exponentiation on non-negative integers, by writing a tail-

recursive helper function pow_aux. The student instead defines another helper function pow

that is not tail-recursive and uses this to implement pow_aux. No recursive call to pow_aux

appears within its body; so, of course, our implementation does not find any recursive call

to pow_aux that is not in tail position, and deems the student’s code acceptable. We discuss

the general idea of tracking non-local dependencies in Chapter 4.4.

We used our new library in the Fall 2019 term for one question on the first homework

assignment in which students were asked to write a function to compute Fibonacci numbers

tail-recursively. TAs manually screened students’ submissions after the homework deadline

and found that only a single submission out of over 300 implemented the function in a non-

tail-recursive manner that was mistakenly accepted by the grader. The implementation used

a trick similar to the one presented in Figure 4.3.
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4.3 Style checking

One major class of feedback students miss out on when their code is graded automatically

is feedback on their code style. What constitutes good style is a subject of debate: it can

concern identifier names, use of whitespace, comments, number of characters in a line, etc.

Michaelson [1996] proposes a linguistic characterization of functional programming style, by

which style guidelines are categorized into four levels:

(1) The lexical level, which deals with the naming of identifiers.

(2) The syntactic level, which deals with issues of layout such as indentation, whitespace

usage, and line length.

(3) The semantic level, which deals with the use of appropriate language constructs.

(4) The pragmatic level, which deals with documentation, such as comments, assertions,

and type annotations.

The previously-named style issues are examples of style on the lexical and syntactic

level. What we are particularly interested in, however, is teaching students good style on a

semantic level. By “semantics” here we refer to the intended purpose of specific language

constructs. Good style on a semantic level can thus be described as “making appropriate

use of language constructs”: for instance, in a typed functional programming setting this

includes using pattern matching instead of explicit selectors when appropriate; making use

of partial application instead of defining eta-expanded functions as inputs to higher-order

functions such as List.map; and not making comparisons with boolean values.

It is our experience that semantic style errors that students make are often rooted in

conceptual misunderstandings about the constructs in question. As an example, consider

the following function, which checks if an integer n is odd:

let odd n =

if n mod 2 = 1 then true
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else false

This could be written more elegantly as:

let odd n =

n mod 2 = 1

However, students will sometimes write the former due to confusion about how conditional

expressions relate to boolean values, particularly since they are used to using boolean val-

ues to regular control flow constructs rather than as first-class values in their own re-

gard. Even after being given a general warning never to write expressions of the form

if �boolean-expression� then true else false some students will continue to do so. We

believe that this is due to students not connecting this general form to specific instances of

it that they write in their code. It is this observation that led us to the design of our style-

checking extension to the Learn-OCaml platform: we believe that continuously emphasizing

ideas of good style to our students with examples involving their own code is of greater help

to them than simply providing general rules.

Inspired by Michaelson [1996]’s work on a style checker for SML, we have implemented a

style checker as a program that traverses the student’s code AST and suggests the application

of various rewrite rules in order to improve the style of the student’s code. Feedback from

the style analyzer is given in two categories: warnings describe style issues where we feel that

our rewritings should always be applied, while suggestions describe those more subjective

issues of code style, where the student may or may not wish to apply the given rewriting.

Our extension contains several built-in style rules that can be enabled by default, as

well as providing high-level functions for instructors to easily specify their own context-free

rewrite rules, and lower-level functions for writing more complex checks that require context,

such as counting the nesting depth of conditional expressions. We describe here the formal

rewrite rules that we have implemented.

Simple boolean rewritings
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e = true =⇒ e

e = false =⇒ not e

if e then true else false =⇒ e

if e then false else true =⇒ not e

These four rules deal with the unnecessary comparison of a boolean expression to true or

false, and the unnecessary use of a branching conditional expression to construct a boolean

value, as described previously. All four rules are categorized as warnings.

Boolean operators over conditional expressions

if e1 then true else e2 =⇒ e1 || e2

if e1 then e2 else false =⇒ e1 && e2

These next two rules suggest using the operators || (boolean disjunction) and && (boolean

conjunction) in place of the equivalent conditional expressions. To avoid producing overly-

complex and unreadable rewritings, these rules are only applied when the sub-expressions e1

and e2 are relatively “simple”, or formally, when the syntax tree for each sub-expression has

height at most 2. Both of these rules are categorized as suggestions; one might choose not to

apply these transformations if the formulation as a conditional expression better expresses

the intent of the code.

Single-clause pattern matchings as pattern-matching lets

match e1 with
| pat -> e2

=⇒ let pat = e1 in
e2

After learning about pattern matching, the construct that tends to stick in our students’

heads the most is, naturally, the match expression, since most of the examples we deal with

in class involve pattern matching over datatypes with multiple constructors. Secondary to

many students is the fact that function headers and let-expressions also allow for pattern
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matching on values. We have thus introduced this rule, categorized as a warning, which

reminds students that a match expression with only a single clause would be better written

as a pattern-matching let.

Simple list rewritings

[e1] @ e2 =⇒ e1 :: e2

e @ [] =⇒ e

[] @ e =⇒ e

These three rules deal with confusion about the :: (“cons”) and @ (append) operators

when dealing with lists. We find that many students struggle to correctly use the cons

operator, which prepends an element to a list; often they will try to use it to concatenate

two lists, or to append an element to the end of a list. Eventually some students will give

up on using cons altogether, preferring to stick to the more familiar append operation for

concatenating lists. They will thus write code putting an element e1 into a singleton list so

that a list e2 can be appended to it, which is equivalent to using the cons operator. The

first of these three checks will alert students that they may use the cons operator instead,

though it is categorized as only a suggestion since we do not consider this a serious style

issue. This check is not actually context-free: it will not be triggered if a singleton list is

appended to another list as pair of a chain of appends, for instance as in the expression e1

@ [e2] @ e3.

The latter two rules deal with the appending of a list with an empty list ([]), which of

course has no effect. While appending an empty list on the right (e @ []) does not cause

much of a loss of efficiency, appending an empty list on the left ([] @ e) is an operation

which takes time linear in the length of e. Both of these checks are categorized as warnings.

Pattern matching over explicit selectors

if e = []
then e1
else e2

=⇒
match e with
| [] -> e1
| hd :: tl -> e2 ′∗
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∗ where e2 = [List.hd e / hd, List.tl e / tl] e2′

This rule (taken from Michaelson [1996]), which is categorized as a warning, emphasizes

that pattern matching on the structure of a list is strictly preferable to comparing it to the

empty list and using the explicit list selectors List.hd and List.tl to decompose it.

Eta reduction

fun pats1 pats2 ->
e pats2

=⇒ fun pats1 -> e∗∗

∗∗ where no pattern variable from pats2 appears free in e

One concept that we have found students new to functional programming struggle to

understand, and to use when appropriate, is that of partial function application: for instance,

that the function fun x -> 1 + x could instead be written as (+) 1, or that the function

fun lst -> List.fold_left (+) 0 lst (which sums up the elements of a list) could instead

be written as List.fold_left (+) 0. This comes up most often when students are passing a

function (typically one written as a previous part of the exercise in question) as argument

to a higher-order function; very elegant solutions tend to be possible for these questions by

using partial application. The process of factoring out the arguments to a function that do

not need to be explicitly specified in this way is called eta reduction, and a function in which

all arguments are explicitly specified is said to be fully eta-expanded. This rule is categorized

as a suggestion, since one might sometimes prefer to write an eta-expanded version of a

function for readability purposes.

Indeed, there are some cases in which performing eta reduction does not preserve the

semantics of an expression. One example is when the type of an eta-reduced function is

weakened by OCaml’s value restriction, which is a restriction on polymorphism of expressions

that are not syntactically values, such as function applications. A full description of the value

restriction is outside the scope of this thesis; however, consider the definition of the following

function map_ident, which maps the identity function onto a list:
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let map_ident = List.map (fun x -> x)

One might expect map_ident to have the polymorphic type ’a list -> ’a list, but the

inferred type is instead ’_a list -> ’_a list, which is a weakly polymorphic type. Once

map_ident is applied to a list, the type variable ’_a is replaced by a concrete type, so the

function is in fact monomorphic. However, if the definition of map_ident is eta-expanded,

as follows:

let map_ident l = List.map (fun x -> x) l

then the type of map_ident is inferred to be polymorphic as expected. Thus applying an eta

reduction here would in fact change the semantics of the function. This is one place where we

can take advantage of the capabilities of the Typed_ast: since the style checker has access to

the typing environment in which each expression is type-checked, and to the type-checking

capabilities of the OCaml compiler, we can run the type-checker on our suggested rewritten

expressions to ensure that the type of the expression has not changed after the eta reduction.

If we find that our transformation has weakened the polymorphic type of a function, we will

not suggest that eta reduction.

The other situation in which eta reduction can change the semantics of a function is

when the function has side effects that occur before all arguments are supplied. For example,

consider the following function, which, given an integer init, returns a “counter”: a function

that increments an internal counter (initialized to init) each time it is called, and returns

the counter’s new value.

let make_counter init =

let counter = ref init in

fun () -> incr init; init

The type of make_counter is int -> unit -> int, so one might think that the (rather

contrived) function fun () -> make_counter 0 () could be eta-reduced, without changing the

semantics, to make_counter 0. However, the two expressions have different semantics: the
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first function will return 1 each time it is called, while the second will increment an internal

counter whenever it is called, returning a different value each time. Detecting such cases

where eta reduction should not be applied is beyond the scope of our style checker, but

thankfully these cases do not arise very often in our assignments.

For assignments where functions may have side effects that occur in this manner, we prefer

to simply turn off the eta reduction check, since we can not determine for sure whether

a function has side effects even with additional typing information from the Typed_ast.

However, the presence of the unit type in a function’s signature strongly implies that a

function will have some sort of side effect, though we cannot determine when in the process

of applying the function these effects may be triggered; thus one could consider modifying

the eta reduction check so that it does not suggest partial applications of functions with the

unit type in their signature.

Non-rewrite rules In addition to the rewrite rules listed previously, we have also included

checks that will emit a warning if the student’s code uses more than a given number of cases

in any one pattern matching or conditional expression. This threshold is configurable by the

instructor.

The implications of using the Typed_ast to implement our style checker, rather than

the untyped Parsetree or OCaml’s Typedtree structure, extend beyond its use in the eta-

reduction check. Since the style checker applies rewrite rules to the student’s code AST and

prints code back to the student to suggest certain transformations, it is very important that

the AST is as close in structure to the student’s original code as possible; thus the Typed_ast

was much better suited for this extension than the OCaml compiler’s Typedtree. Some of our

transformations, such as the ones on boolean expressions, introduce references to predefined

identifiers (e.g. &&, ||, not) that could potentially be overshadowed by another definition

in the context in which the transformation occurs. Using the typing environments that

annotate each expression node, we can check that any identifiers we are introducing have
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Figure 4.4: Sample feedback report from our style checker

not been overshadowed, and avoid suggesting their use if they have been. Thus, for instance,

the style checker will not make any suggestions for the following expression:

let not x = false in

if b then false else true

even though, if not had not been overshadowed, it would have suggested rewriting the

conditional expression as not b.

When the style checking extension is enabled in Learn-OCaml, a section on code style

is added to the student’s feedback report whenever they run the autograder on their code.

A sample such report can be found in Figure 4.4, applying some of the previously-discussed

rewritings. Note that the two categories of style feedback are differentiated in the report:

warnings are those with a yellow background, while suggestions are those with a gray back-

ground. Applications of the rewrite rules can be accompanied by some optional further

explanation, as specified by the instructor writing the checker.

Feedback reports are instances of a user-defined datatype in OCaml, so using features

already present in Learn-OCaml’s grading library, it is possible to have the style report con-

tribute points to the student’s grade, or to refuse to grade the functionality of the student’s
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code if they have more than a certain number of warnings. When we deployed the style

checking extension in the Fall 2019 term of COMP 302, we had the grader apply a blan-

ket 1-point penalty to submissions triggering at least one style warning (yellow background

only); we hypothesized that the desire to see a perfect score would incentivize students to

pay attention to the style report and make corrections to their code. We report on how

effective this was, as well as the usefulness of the style checker in general, in Chapter 5.

4.4 Dependency analysis

As has been discussed many times by this point, it became clear over our time using Learn-

OCaml that we needed a way of transitively analyzing the functions that a student’s im-

plementation depends upon. When we require students to make use of a certain function

or language feature, we need to be able to check any non-local helper functions the student

may have written, rather than just looking at the body of the submitted function itself; and

conversely, when we forbid students from using a particular function or construct, we need to

make sure students aren’t tricking the grader by hiding this usage within some other helper

function that they then call within their implementation.

For instance, suppose we asked students to implement a function sum_abs which, given

a list of integers, returns the sum of the absolute values of the items in the list, using the

built-in functions List.map and List.fold_left. A student might implement sum_abs as

in Figure 4.5a, by writing two helper functions: absolutes, which takes the absolute value

of each item in a list (where abs is the integer absolute value function), and sum_up, which

adds up the items in a list. If we were to grade this example by analyzing only the body

of sum_abs itself, we would not find any usage of List.map or List.fold_left; however,

the student has certainly made good use of those functions, and should be awarded full

credit. On the other hand, if we wanted (for some reason) to forbid the usage of these list

functions, the student would erroneously be given full marks, as the calls to List.map and
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let absolutes lst =
List.map abs lst

let sum_up lst =
List. fold_left (+) 0 lst

let sum_abs lst =
sum_up ( absolutes lst)

(a) Implementation of a function to sum
the absolute values of the items in a list

sum_abs

sum_up

List.fold_left +

absolutes

List.map abs

(b) Dependency graph corresponding to the im-
plementation in (a)

Figure 4.5: Example of a dependency graph

List.fold_left are hidden within non-local helper functions.

To address this problem, we have extended the Learn-OCaml libraries with a function

for generating a dependency graph from a given code AST. A dependency graph is a directed

graph with vertices corresponding to the identifiers of predefined variables and the AST’s

top-level bindings. An edge exists from a vertex v1 to a vertex v2 if and only if the variable

v2 is used in the expression side of the binding of the variable v1. In this case, we say that

v1 directly depends on v2. If there exists a path in the dependency graph from a vertex v1

to a vertex v2, we say that v1 depends on v2. A dependency graph may contain cycles and

even self-loops, expressing dependencies that arise from recursive definitions.

As an example, the dependency graph corresponding to the code for sum_abs above would

have 7 vertices, connected as illustrated in Figure 4.5b. This graph expresses that sum_abs

directly depends on sum_up (which, in turn, directly depends on List.fold_left and +)

and absolutes (which, in turn, directly depends on List.map and abs). Thus sum_abs also

transitively depends on the functions List.fold_left, List.map, +, and abs.

Given an AST, our implementation generates a dependency graph by traversing each

top-level definition to determine the dependencies of the bound variables introduced by that

definition. We do this by exploring the expression side of the binding and building an internal

dependency graph for the variables (both local and non-local) that appear in the expression.

Since we use the Typed_ast, no extra work is necessary to keep track of the shadowing
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of variables; different variables with the same name are easily differentiated. We use this

internal dependency graph to collect all of the free variables used in the binding expression;

this also allows us to perform a basic unused variable analysis, since expressions with results

that are discarded (as in, for example, let _ = f x in ...) do not contribute anything to the

internal graph. Edges are then added to the graph between each bound variable introduced

by the definition, and each free variable that appears in the expression side of the binding.

Once we have a dependency graph, we can determine what free variables a particular function

f depends upon by performing a breadth-first search starting from the vertex corresponding

to f and keeping track of all visited vertices; the set of all visited vertices is precisely the set

of f’s dependencies.

With access to the dependency graph for the student’s code, we can track the usage of

required or forbidden functions even when this occurs in non-local helper functions. We

can also more thoroughly check whether a particular language feature has been used in an

implementation, by analyzing not only the body of one particular function, but also the

bodies of all of its (non-predefined) dependencies.

Our method for calculating the variables that should be counted as “used” by a particular

function for grading purposes is neither sound nor complete. It is not sound because it is

still possible to trick the grader into believing a variable has been used when it has not:

for instance by using OCaml’s ignore function, or creating a function like it, which simply

discards its argument. It is not complete because if an expression is evaluated only for its

side effects, with the results being discarded, the variables in that expression will not be

considered as having been “used”.

We considered these deficiencies in our dependency graph method acceptable for our pur-

poses, and made use of this extension for writing graders in the Fall 2019 term. As described

in Chapter 2.2, we manually screened the auto-graded submissions after the assignment dead-

lines passed. In an exercise on higher-order list functions, where students were instructed

to implement functions on matrices using particular higher-order functions, we found that 4
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students had tricked the grader by inserting an unnecessary usage of a required higher-order

function into their code, out of nearly 300 submissions. We received no complaints that the

grader was deducting marks for not using a required function when the function had, in fact,

been used.

Very recently, an idea quite similar to our method of dependency checking has been

implemented as a tool for automatically grading Haskell programs [de Vries 2019].
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Chapter 5

Evaluation

In the Fall 2019 offering of COMP 302, we made use of the extensions to the Learn-OCaml

platform described in Chapters 3 and 4 to design and write graders for the 6 homework

assignments given that term. We invited students taking the course to enroll in a study to

help us improve the platform by allowing us access to the data from all of their submissions

to the autograder for each assignment over the course of the term. After removing students

who either dropped the course, alternated between different Learn-OCaml accounts to work

on their assignments (which would make their progress difficult to trace), or attempted 3 or

fewer of the homework assignments, we were left with 71 students participating in our study

out of the 299 enrolled in the course. We also administered a survey at the end of the term

on students’ experiences using the Learn-OCaml platform, to which 201 out of 299 students

responded.

In this chapter, we present visualizations of the data we gathered from students’ home-

work submissions, along with our observations. Note that a rigorous scientific study judging

the effectiveness of our extensions to the platform is outside the scope of this thesis; such a

study would need to be carefully planned in advance and span multiple years, collecting data

from students working on assignments with and without our extensions, in a more controlled

environment with confounding factors sufficiently addressed. We therefore do not claim to
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be able to come to any solid conclusions based on our data, but instead point out interesting

trends that occur in our data and speculate on the possible reasons behind them. We also

discuss the responses to our survey on using the platform, and compare them to the results

from a very similar survey filled out by students in the Fall 2018 term, before we deployed

any of our extensions to Learn-OCaml.

5.1 Mining data from homework submissions

Each account (“token”) created on the Learn-OCaml platform is given its own Git repository.

A new commit is made to this repository whenever the student modifies their account (e.g.

changing their nickname), manually syncs their work, or runs the autograder of a currently

active assignment. The data stored in this commit includes the student’s submission, the

grade it was given by the autograder, and the automatically-generated feedback report for

the student’s code. The feedback report, stored as a JSON object, provides us with a

wealth of information: using our knowledge of the structure of sub-reports generated by

our extensions, we can traverse the feedback report to gather useful statistics such as the

number of style suggestions and warnings, the implementation and mutation testing scores

on specific questions, and even the identifiers of the exact mutants detected by the student’s

submission. Thus, by going through their tokens’ commit histories, we can trace students’

progress as they work on their assignments and get a picture of how they are using the

Learn-OCaml platform, and our extensions in particular. We have done this for the 71

students who consented for their data to be used in our study. In this section we present

some visualizations of the data we collected.

5.1.1 Number of grading attempts

Over the course of the term, our students were given 6 homework assignments, each covering

some core functional programming concepts:

69



0

100

200

300

400

500

1 2 3 4 5 6
Assignment

N
um

be
r 

of
 a

tte
m

pt
s

(a)

0

50

100

150

200

250

1 2 3 4 5 6
Assignment

N
um

be
r 

of
 a

tte
m

pt
s

(b)

Figure 5.1: Distribution of the number of times students ran the auto-grader for each assign-
ment. Figure (a) displays the full range of data including outliers, while Figure (b) displays
the data with outliers removed, but still considered for statistical calculations.

• Homework 1: Basic OCaml; simple recursion and tail recursion

• Homework 2: Pattern matching and recursion on lists; user-defined datatypes

• Homework 3: Using higher-order functions

• Homework 4: Writing higher-order functions; references and state

• Homework 5: Modules; control flow using exceptions and continuations

• Homework 6: Programming language implementation

Figure 5.1 shows the distribution of the number of times each student successfully ran

the auto-grader for each homework assignment. A “successful” run of the grader is one in

which the grader is able to produce a full grading report; a grader run may be unsuccessful if

the student attempts to grade code that does not typecheck, if the student aborts the grader

before it is finished running (which usually means the student’s code has entered an infinite

loop), or if an internal error occurs in the browser’s JavaScript engine while executing the

student’s code. We observe that the median number of attempts was noticeably higher on

assignments 2, 4, and 6, with medians of 54, 61, and 122 attempts respectively; assignment

5 then had a median of 37 attempts; while assignments 1 and 3 took most students a
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relatively low number of attempts, with medians of 17 and 22, respectively. There are a

couple of factors which may account for some of this difference:

(1) Assignments 2, 4, and 6 each contained at least one question that students particularly

seemed to have trouble with, as evidenced by questions asked on the discussion boards:

• On assignment 2, students had to write tests for and implement a function

over propositional formulas (defined using a user-defined datatype) which would

rewrite a formula by recursively applying a set of rewrite rules. Students had

particular difficulty thinking of the class of test case in which multiple rewrite

rules needed to be applied.

• On assignment 4, students needed to implement a function remove for a doubly-

linked list defined using references as pointers without duplicating any data cells

in memory, which required a strong understanding of how their linked structures

were represented in memory.

• Assignment 6 required students to implement programming language concepts

such as type-checking and evaluation for a toy language. The topic of program-

ming language fundamentals is generally new to all of our students at this stage

and students have historically considered the assignment on this to be the most

challenging.

(2) We note also that Assignments 1, 2, and 6 were the ones that focused the most on

having students write their own test cases, although since it was the first homework,

Assignment 1 was relatively easy. Assignment 4 required students to write some test

cases that they were able to come up with fairly easily, while we did not consider

writing tests for most of the functions in Assignments 3 and 5 to be very instructive

(see Chapter 3.3). When students found themselves stuck trying to think of test cases

to expose a particular mutant, they would end up running the grader several times
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trying out test cases until they found one that worked. This may partially explain the

lower number of attempts for Assignments 3 and 5.

5.1.2 Use of the mutation testing functionality

hw1 hw2 hw4 hw6

Figure 5.2: Distribution of the (approximate) number of grading attempts for functions for
which students were required to submit both test cases and an implementation. Students
are grouped based on whether they appeared to start by writing tests or by writing an
implementation. The histogram shows how many students fell into each category for each
function.

To visualize how students were using the mutation testing functionality, and how effective

it was at encouraging test-driven development, we roughly categorized students into two

groups for each homework question where they were required to submit both test cases and
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an implementation: test-focused and implementation-focused. Students were considered to

be following a test-focused strategy for a question if either: a) they obtained a score of 100%

on their tests on their first grading attempt for that question, but did not score 100% on their

implementation on that same attempt; or b) the difference between their normalized test

and implementation scores was non-negative and non-decreasing over their first two grading

attempts for that question, and positive on their second attempt. Intuitively, this criteria

means that the student’s scores on their test cases were increasing at a faster rate than their

grade on their implementation. Conversely, students were considered to be following an

implementation-focused strategy for a question if either: a) they obtained a score of 100% on

their implementation on their first grading attempt but did not score 100% on their tests on

that same attempt; or b) the difference between their normalized test and implementation

scores was non-positive and non-increasing over their first two grading attempts for that

question, and negative on their second attempt. Students that did not meet either criterion

for a particular question were not sorted into a category for that question.

Since we did not specify a threshold for the difference between a student’s test and

implementation scores for that student to be considered test-focused or implementation-

focused, and these criteria are in general not very rigorous, this is only a very rough basis

for categorization. In addition, looking at a student’s test and implementation scores gives

us only part of the picture; it would be more informative to look at the submitted code itself

to see how much the test cases and function implementation were being changed between

grading attempts, though this would come with its own challenges of tracing and checking

the code of any helper functions as well (similar to the discussion in Chapter 4.4). As

our data collection scripts were not written in OCaml, having them inter-operate with our

dependency analysis functions would require significant effort, and would be better suited for

a future study. One particularly illustrative example of how relying just on scores can give

a skewed picture was a question on the first homework assignment in which students were

asked to write tests for and then implement a function fib_tl which calculated Fibonacci
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numbers tail-recursively. Student solutions were given 0 by the grader if they were not tail-

recursive; thus even if a student was attempting the implementation first, this would not

show in their scores if they did not achieve a tail-recursive solution on their first try. Since

the classifications were likely to be inaccurate for this question, we have omitted it from our

results.

The upper graph in Figure 5.2 shows the distribution of the approximate number of grad-

ing attempts for each function where students were required to submit both test cases and

an implementation (besides fib_tl, as mentioned above), for students that were considered

test-focused versus those that were considered implementation-focused. The lower histogram

displays the number of students that fell into each category for each function. The number

of grading attempts a student made for a particular function was calculated by counting

the number of grading attempts from the first time the student received a non-zero score

on either their tests or implementation, until the time the student achieved their maximum

combined test and implementation score for that question. Note that this does not include

any later attempts at running the grader without an increase in score if the student does not

reach 100% and continues trying; and if a student alternates between working on multiple

questions on an assignments, these numbers would be inflated. As before, a better approach

in the future would be to look at which functions are being modified in the code itself.

The histogram shows that more students appeared to follow a test-first approach than

an implementation-first approach for each of the functions displayed, indicating that we may

have successfully encouraged students to at least start working on questions by writing a

test case instead of jumping straight into the implementation. However, following a test-first

approach does not appear to decrease the number of grading attempts a student made when

compared to those who followed an implementation-first approach; in fact, the data appears

to suggest that students following a test-first approach ran the grader more times on average

than those who focused on the implementation first. It is possible that this is due to the

larger number of students following a test-first approach for most of the questions, leading to
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a larger sample size and more possibility for variation compared to the students following an

implementation-first approach. For the two questions that had a relatively small difference

between the number of students following each approach (max_factor and fold_tree), the

median number of grader runs between the two categories seems quite similar; for a third

function, eval, which had a difference of fewer than 10 students between the two categories,

the median number of grader runs is a bit smaller for students who followed a test-first

approach compared to an implementation-first approach. Meanwhile, all of the functions

with a difference of 20 or more students between the test-first and implementation-first

categories (psum, binToInt, nnf, map_tree, unused_vars, subst, and infer) all had a

higher median number of grader runs from the students in the test-first category versus the

implementation-first category. It would therefore be interesting to see more data on this over

the next several runs of the course to try to determine if a judgement can be made on how

the approach a student follows affects the number of times they run the grader.

Another, more informative, direction would be to have some students implement these

functions without being instructed to write tests or being given access to any of the mutation

testing functionality, while other students would be required to submit test cases and be

graded on them before being allowed to start on their implementation. We could then

compare the number of grading attempts each group of students makes before achieving

their maximum score on their implementation and see if there is a difference between the

students that wrote test cases and those that did not, without some of the confounding

factors in our study as discussed above.

5.1.3 Use of the style checker

As discussed in Chapter 4.3, our style checking extension provided students with a style

report along with their grading report each time they ran the grader, which gave them

suggestions on how to rewrite their code to achieve better functional programming style.

We have collected data on students’ style reports on each of their grading attempts for the
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Figure 5.3

first five homework assignments (the style checker was mistakenly not enabled on the final

assignment).

For each student on each assignment, we calculated the percentage of grading attempts

where students triggered at least one style suggestion or warning from the style checker.

The distribution of these percentages for each homework assignment can be seen in Figure

5.3. We have graphed students who did not trigger any style suggestions or warnings on any

of their grading attempts (0% column) and those who triggered at least one suggestion or

warning on every single one of their grading attempts (100% column) in their own columns

as we find these two categories to be of specific importance. Students in the 0% category

are those who never made any style errors that would be detected by our style checking

extension on a particular assignment, while those in the 100% category are those who either

never attempted to follow the suggestions given by the style checker, or were unsuccessful in

doing so.

It was quite a surprise to see that 48 out of 71 students in the study triggered no style

suggestions or warnings at all on the first assignment, since this was their first experience

with writing their own OCaml code. One of the questions on the first assignment involved

writing a function to compute the largest factor of a positive integer n smaller than n itself;
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while students would likely be able to easily understand how to implement this using a

loop in the imperative languages that they had previous experience with, the challenge

with this question was thinking about the process in a recursive manner. Another question

required students to write a function to compute fibonacci numbers tail-recursively, which

posed similar challenges. We expected most students to stumble upon style warnings or

suggestions while experimenting to figure out how to approach these questions. It is very

possible that students were making other sorts of style mistakes that our style checker does

not detect at the moment; it could be valuable future work to look at students’ submissions

manually to come up with further ways to extend our style checker. Overall the results for the

first homework assignment seem quite positive, with the majority of students triggering style

suggestions or warnings at most one-third of the time, which suggests that students were

taking feedback from the style checker into account and fixing their style mistakes without

too much delay. The second homework assignment also appears similar in this regard.

The third homework assignment is where the results begin to shift. The number of

students who did not trigger any style suggestions or warnings at all drops to only 1. We

believe this is likely because the third homework assignment focused on using higher-order

functions, and students needed to provide partially-applied versions of their own functions

as arguments to functions like List.map and List.fold_left. We have found that partial

application is a concept that students have historically had trouble applying consistently

to their work, so it is quite likely that a lot of students initially tried to use eta-expanded

versions of their functions as arguments to higher-order functions, triggering eta-reduction

suggestions from the style checker. The relatively low number of students whose submissions

triggered style suggestions or warnings more than two-thirds of the time suggests that most

students were taking the feedback from the style checker into account and partially-applying

their functions accordingly.

The most dramatic change in distribution occurs in the results for the fifth homework

assignment, where the majority of students triggered style suggestions or warnings for 100%
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of their submissions. In the fifth assignment, students were required to write a module

implementing operations on a “metric”, represented internally using floating-point numbers

and operations (see Modules in Chapter 2.1). The signature for this module included

functions for adding two values of the metric’s internal type t as well as multiplying by

a scalar floating-point number, which were implemented simply by using OCaml’s built-in

floating-point operations as follows:

let plus x y = x +. y

let prod s x = s *. x

As the given template code included the stubs let plus x y = raise NotImplemented and

let prod s x = raise NotImplemented, students naturally just filled in the function bodies and

then ran the grader, resulting in the style checker suggesting that these definitions be eta-

reduced as follows:

let plus= (+.)

let prod = ( *. )

We believe that most students simply ignored these suggestions because they did not

understand them. While students are expected to be more familiar with the concept of

partial application at this point of the course, it is our experience that students find it

difficult to let go of the notion that built-in operators such as + and - are special constructs

of the language (as is true in the languages they are used to, such as Python and Java), rather

than functions like any others with some special syntax for convenience. The requirement

that these built-in operators need to be surrounded by parentheses to be treated as names

likely adds to this confusion. In addition, we find that students tend to be reluctant to modify

the headers of function stubs given in the template code, believing that it may invalidate

their submissions in the eyes of the grader. We believe it is very likely that the significant

shift in distribution on this assignment is due to students not acting on the style checker’s

suggestions to eta-reduce these functions. On one hand, this is somewhat encouraging as

it indicates that students are not simply blindly copying style suggestions that they do not
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(a) (b)

Figure 5.4: Distribution of the maximum number of style warnings/suggestions students
triggered at once for each assignment. Figure (a) displays the full range of data including
outliers, while Figure (b) displays the data with outliers removed, but still considered for
statistical calculations.

understand. On the other hand, we would like students to be able to learn from the style

suggestions they are given. It might be helpful to explicitly include reading these style

suggestions, trying to understand why they are being given, and asking questions if unsure,

as an ungraded part of this specific assignment to encourage more students to ask about

style suggestions they do not understand.

Figure 5.4 shows the distribution of the maximum number of style warnings/suggestions

each student triggered for a single submission, for each assignment. This data serves to

complement the observations made from the previous graph: the median maximum number

of style warnings triggered at once on the first assignment was 0, and the the third and fifth

assignments had noticeably higher medians. On the fifth assignment, the median value is 4

style warnings/suggestions at one time, while the first and third quartiles were 3 and 5 style

warnings/suggestions at once, respectively. As discussed above, we expect that the cause

of many students’ style warnings/suggestions were eta-reduction suggestions pertaining to

simple functions students needed to implement within a module operating on floating-point
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Figure 5.5: Distribution of the number of style suggestions triggered by students’ final sub-
missions for each assignment. Figure (a) displays the full range of data including outliers,
while Figure (b) displays the data with outliers removed, but still considered for statistical
calculations.

numbers; there were 3 such functions (plus, prod, and toString), so this data fits within an

expected model where students triggered these 3 eta-reduction suggestions, ignored them,

and proceeded to trigger 0-2 more style warnings in a single grader run over the course of

the assignment.

Figure 5.5 shows the distribution of the number of style suggestions (not including style

warnings) triggered by each student’s final submission for each assignment. Our graders for

each assignment deducted a single point from the student’s score if the style checker produced

any style warnings (as opposed to suggestions, as described in Chapter 4.3), in order to

encourage students to fix the style corrections that we found particularly important. As a

result of this, only 3 final submissions (out of 354) over the entire semester triggered a style

warning from the grader; the rest triggered only style suggestions, or no warnings/suggestions

from the style checker at all. We have thus graphed only the number of style suggestions

reported for students’ final submissions here. The data shows that the majority of students

addressed all of their style warnings by their final submissions for assignments 1, 2, and 4,
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with the students who did not do so being outliers. As with the previous graphs, we see

noticeably different results for assignments 3 and 5. We suspect that these two assignments

are different because they were the two assignments where students were likely to trigger

eta-reduction suggestions from the style checker; assignment 3 was about using higher-order

functions, while assignment 5 involved implementing a simple module as we have described

previously. This suggests that we should focus extra attention on making the concept of

eta-reduction clear to our students.

One thing that is noticeably missing from our data is definite statistics on what kinds

of style warnings/suggestions students were triggering, which would allow us to make some

stronger conclusions rather than simply suspecting the major cause of many students’ style

warnings. For the purpose of future studies, it would be very useful to add some sort of

“error code” to the warnings/suggestions given by the style checker, so that we can easily

determine automatically which classes of warnings and suggestions are present in a grading

report and make use of this when visualizing our data.

We have also graphed students’ grade trajectories for each assignment against the number

of style warnings they triggered on each grader run to see how these two factors interacted.

To protect the privacy of our students, we cannot publish these graphs; however, we can

share observations we have made from looking at them. The most interesting thing that we

noticed with some students was a pattern of students’ grades decreasing at the same time as

their number of style warnings/suggestions decreased, suggesting that some students were

trying to follow the advice given by the style checker, but mistakenly changing the logic

of their code in the process. We would then sometimes see the student’s grade return to

its previous value on the next grader run, with the style warning/suggestion re-introduced

and remaining for quite some time, suggesting that students would then give up on trying

to correct style errors since they could not figure out how to do so without changing the

behaviour of their code. In Figure 5.6 we have tried to summarize how often students

were able to successfully follow guidance from the style checker versus how often they failed
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Figure 5.6: Outcomes of students’ attempts to address style warnings/suggestions given by
the grader on each assignment. “Successful” attempts were those that fixed the flagged
code without a decrease in grade, while “failed” attempts were those where the code was
corrected, but the student’s overall assignment grade decreased in the process.

to do so. We have approximated these situations from our data as follows: a student was

considered to have “successfully” fixed a style warning/suggestion if, between two consecutive

runs of the grader, their number of style warnings/suggestions decreased, but their grade did

not decrease. A student was considered to have “failed” to fix a style warning/suggestion

if, between two consecutive runs of the grader, the number of style warnings/suggestions

decreased, but their grade decreased as well. Since this does not take into account that

a student may have fixed a style warning/suggestion but introduced another at the same

time, or that a student may have written large amounts of code between grader runs so that

an increase/decrease in grade does not necessarily indicate success or failure at addressing

a style warning/suggestion, this is not a fully accurate measure of how successful students

were at incorporating feedback from the style checker. However, since we found that a lot
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of students tended to make small changes to their code aimed at fixing one thing at a time,

we think that this measure is still useful. Figure 5.6 indicates that failures to fix style errors

were relatively uncommon. Once again, it would be useful to collect data on what kinds of

style errors were associated with successful and unsuccessful corrections, to determine what

particular classes of style suggestions/warnings students had trouble addressing.

5.2 End-of-term student survey

At the end of both the Fall 2018 and Fall 2019 terms of COMP 302, we asked students to

complete a short survey on their experiences with using Learn-OCaml for their homework

assignments during the term. The survey responses were anonymous to all teaching staff

and all questions on the survey were optional. Students were offered a 1% grade increase

for the entire class if 75% of enrolled students (relaxed to around 67% in Fall 2019 due

to a late survey release) submitted a response, to incentivize our students to complete the

survey. In Fall 2018 we received responses from 275 out of 347 enrolled students, and in Fall

2019 we received responses from 200 out of 299 enrolled students. In this section we discuss

the relevant survey results, including a comparison between responses in Fall 2018 and Fall

2019 for shared questions, and some additional questions added in Fall 2019 related to our

mutation testing and style checking extensions.

As discussed in Chapter 2.2, we found that students were not making as much use of

the toplevel as we would have liked in the Fall 2018 term, as evidenced by the results of the

survey. We addressed this in the Fall 2019 term by demonstrating the usage of the Learn-

OCaml toplevel regularly in lectures. Figure 5.7 shows the responses to a survey question

“How often did you use the OCaml toplevel to test your assignment code?” from students

in the Fall 2018 and Fall 2019 offerings of COMP 302. Compared to the Fall 2018 responses,

the responses from Fall 2019 see weight shift from students who answered that they used

the OCaml toplevel “never”, “rarely”, or “occasionally”, to answering that they used the
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How often did you use the OCaml toplevel to
test your assignment code?
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0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

Answer

P
er

ce
nt

ag
e 

of
 r

es
po

ns
es

Year

2018

2019

Figure 5.7: Responses to a survey question on how often students used the OCaml toplevel
to test their own assignment code, asked in both Fall 2018 and Fall 2019. The light blue
bars correspond to the Fall 2018 students’ answers, while the dark blue bars correspond to
the Fall 2019 students’ answers. Response counts are graphed as percentages rather than
raw numbers for the purpose of comparison.

toplevel “often”. In total the percentage of students who answered “Often” increased from

around 28.36% in Fall 2018 to around 36.79% in Fall 2019, which is a promising sign that

our changes made to emphasize use of the toplevel in Learn-OCaml were effective.

There was also a set of more general questions asked in both Fall 2018 and Fall 2019

pertaining to the use of auto-grading in COMP 302. As shown in Figure 5.8, students were

asked to rate how much they agreed or disagreed with a series of statements relating to using

Learn-OCaml. Ratings were given on a Likert scale, translated to numbers for our graphs

with 1 meaning “strongly disagree” and 5 meaning “strongly agree”. One observation to be

made when comparing numbers between Fall 2018 and Fall 2019 is that students tended

to agree more that the error messages from the grader were clear and helpful in Fall 2019

as compared to Fall 2018; this implies that individual adjustments we made to our graders

as described in Chapter 2.1, for instance the custom printing of doubly-linked lists, were

generally well-received. On the other three graphs, we find that the percentage of students

responding positively (answers 4-5) seems roughly similar across the two course offerings.

Observing the bottom two graphs in the figure, which indicate how positively students felt
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I prefer having smaller and more frequent
auto-graded assignments on Learn-OCaml

to having larger, manually-graded
assignments.

I would want to use something like the
Learn-OCaml platform in future

programming courses.

The error messages from the grader were
clear and helpful.

Running the grader helped me clarify the
requirements for some of the questions.
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Figure 5.8: Responses to survey questions relating to students’ general experiences with
auto-grading, asked in both Fall 2018 and Fall 2019. Students were were asked to indicate
how much they agreed or disagreed with each statement on a Likert scale; these answers
are translated to numbers on the graphs where 1 corresponds to “strongly disagree” and 5
corresponds to “strongly agree”.

about using the Learn-OCaml platform in COMP 302, we notice that students tended less

towards extreme opinions (“strongly disagree” or “strongly agree”) in Fall 2019 as compared

to Fall 2018.

In the Fall 2019 survey we also asked some questions to determine how students felt

about the mutation testing functionality. The responses to these questions are shown in

Figure 5.9. As before, students were asked to indicate how much they agreed or disagreed

with a series of statements on a Likert scale, translated to numbers for our graphs with 1

meaning “strongly disagree” and 5 meaning “strongly agree”. The large number of students
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I found writing test cases useful
for understanding what the

inputs and outputs of my functions
were supposed to be.

I found writing test cases useful
for thinking about the cases

I should consider when writing
my functions.

I found writing test cases annoying.
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Figure 5.9: Responess to survey questions relating to the mutation testing extension intro-
duced in Fall 2019. Students were asked to indicate how much they agreed or disagreed with
each statement on a Likert scale; these answers are translated to numbers on the graphs
where 1 corresponds to “strongly disagree” and 5 corresponds to “strongly agree”.

answering that they found writing test cases to be annoying is hardly a surprise. However,

there was also a generally positive response to the other two statements, pertaining to how

useful students found it to write test cases using the mutation testing extension. This

indicates that students did understand and appreciate the value in writing test cases before

writing their code despite finding the practice annoying, which we consider to be a win.

Finally, we asked a couple of questions to determine when students were writing their

test cases, and when students were addressing style warnings/suggestions as provided by the

style checker. Responses to these questions are graphed in Figure 5.10. The exact text of

the questions and response options are not shown on the graph, but instead shortened to

save horizontal space.

As graphed in Figure 5.10a, we asked students, “Did you usually write your test cases

before or after you implemented the function they were supposed to be testing?”? Students

were given the answer options “Before”, “After”, “An even mix of both”, and “Not sure /

don’t remember”; only 1 student answered “Not sure”, which has been omitted from the

graph. The majority of students answered that they wrote their test cases before imple-
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Figure 5.10: Responses to survey questions relating to how students used the mutation
testing (a) and style checking (b) extensions introduced in Fall 2019. Questions and response
options on the graphs do not exactly correspond to the questions and response options that
students were shown on the survey, but have been shortened to save horizontal space.

menting their functions, with about a quarter answering that they did an even mix of both,

which roughly agrees with our earlier findings from examining the number of students in our

survey who appeared to be taking a “tests-first” versus “implementation-first” approach.

As graphed in Figure 5.10b, we asked students, “Which of the following best describes

how you used the feedback from the style checker (the style reports at the bottom of the

grading feedback)?”. Students were given the following answer options: “I fixed style issues

as soon as they came up” (graphed as “Right away”), “I put off fixing style issues until I was

done writing my code” (graphed as “After writing code”), “Somewhere in between” (graphed

as “In between”), and “Not sure / don’t remember” (21 responses, omitted). Answers to

this question were more evenly-distributed, with similar number of students answering that

they fixed their style suggestions/warnings right away and that they waited until they were

finished writing all of their code.
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Chapter 6

Conclusion

In Fall 2018, we began using the Learn-OCaml online programming platform to deliver

automatically-graded homework assignments in COMP 302, the introductory undergraduate

course on programming languages and paradigms at McGill University. In this thesis we

have given a detailed account of our experience in using Learn-OCaml out of the box as

instructors new to using automated grading. We have described the concepts tested in

these online homework assignments, and the issues we encountered as students became over-

reliant on the grader’s automated feedback and began focusing on the correctness of their

code above all else, as this was the only criteria the grader judged them by. This motivated

us to write extensions for Learn-OCaml to 1) encourage students to test their own code by

grading students on how many bugs their test suites were able to catch; and 2) make it

easier for us to write graders that provide automated feedback on properties of code besides

simple input/output correctness, such as functional programming style. We have reported

on how we used these extensions in the Fall 2019 offering of COMP 302 to better pursue

these teaching goals, and on how these extensions were received by our students. Finally,

we have provided data gained from a study of the grader submissions made by a subset

of our students and observed that our extensions appear to have been somewhat effective

in encouraging desired testing behaviours in our students; we have followed this up with a
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discussion on changes that could be made to improve this result further in future offerings

of our course.

It is our hope that the experiences shared in this thesis, along with our shared repository

of homework problems and extensions to the Learn-OCaml platform, will make it easier for

other instructors unfamiliar with automated grading to offer high-quality functional pro-

gramming courses to a wider audience, so that we can promote best functional programming

practices for students everywhere.

6.1 Future work

The work we have done on the Learn-OCaml platform is just a start. There still remains

much that can be done to make Learn-OCaml a more effective tool for teaching and learning

functional programming, in the directions of improving usability for students, making it

easier for instructors to write exercises, and simplifying the use of the platform for semi-

automated grading, to name a few. In the future, there are several projects that we would

like to see come to fruition; some are currently being worked on by undergraduate research

students, while others require a larger commitment.

Interactive lessons As briefly mentioned in Chapter 1, in addition to the exercise func-

tionality, the Learn-OCaml platform allows instructors to create interactive tutorials for their

students. These tutorials function as a sort of interactive textbook, including paragraphs

of text interspersed with code snippets that students can click to send to the toplevel to

be evaluated. Compared to the exercises, which are the main feature of Learn-OCaml, the

tutorial component of the platform is quite underdeveloped. We would like to see this func-

tionality expanded, and the interface made more user-friendly, so that we can convert our

course notes to this format to help facilitate independent learning.
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Student-friendly error messages The error messages raised by the OCaml type-checker

are a common source of confusion for our students, due to the type-checker’s left-to-right

bias when inferring types resulting in errors that they may not expect. For instance, when

inferring the type for a conditional expression if b then e1 else e2, the type-checker will

infer a type for the expression e1 and then try to unify this with the type of e2. If unification

fails, the type-checker will always flag the expression e2 as causing the error, even though the

issue may in fact stem from the expression e1. Researchers have taken multiple approaches to

this problem, such as suggesting modifications to the type inference algorithm [Charguéraud

2015] and creating systems for interactive type debugging [Tsushima and Asai 2011; Chitil

2001]. It would be extremely useful to explore how these could be integrated into the Learn-

OCaml system.

Typed holes We encourage our students to develop their programs incrementally by “fol-

lowing the types”; as such, it would be quite useful to be able to type-check and evaluate

partial programs, as in the live programming environment Hazel Omar et al. [2017, 2019].

Being able to insert typed holes into incomplete programs would allow students to check, for

example, the type of an argument that they need to provide to a function, or the type that a

certain sub-expression needs to evaluate to in order for the full expression to have a desired

type. Additionally, the dynamic semantics that Hazel incorporates for typed holes allows

evaluation to proceed around these holes, and even around ill-typed expressions, making it

easier for students to debug their programs and understand the compile-time and run-time

errors they may experience.

Incremental stepping Somewhat related to the above, the DrRacket environment in-

cludes an algebraic stepper1 which allows students to step through their code and visual-

ize what conceptionally happens when evaluating a given program. Cong and Asai [2016]

presents an implementation of a stepper for a small subset of OCaml, implemented in a fork
1https://docs.racket-lang.org/stepper/index.html
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of the Caml language. Expanding this to a larger subset of the language, and implement-

ing this in OCaml so that it can be integrated with the Learn-OCaml system, would allow

students to explore how different expressions are evaluated and demystify this process for

them.

Complexity analysis Aside from correctness, test quality, and code style, another metric

of student code that would be useful to assess automatically is time complexity. Hoffmann

et al.’s work on automatically analyzing resource bounds of OCaml programs has led to

the development of Resource Aware ML (RAML) Hoffmann et al. [2012, 2017], a resource-

aware version of the OCaml language. Currently only a subset of OCaml is supported and

the language is not ready for deployment in a learning setting. In the future it would be

interesting to see if these ideas could be ported to Learn-OCaml.

Semi-automated grading Learn-OCaml features a rudimentary system for instructors

to view and browse student submissions for their homework assignments, but it is quite

underdeveloped and not very convenient to use. We would like to either flesh out this

functionality so that teaching assistants can more easily navigate students’ submissions for

a particular exercise, or integrate the grading reports produced by Learn-OCaml with some

external system for course management. The latter seems a particularly good direction to

explore, so that the focus of the Learn-OCaml platform can remain on delivering exercises

and tutorials rather than being split on course management utilities.
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