
/' Marrow Stromal Cells As "Universal Donor Cells" 

For Myocardial Regenerative Therapy 

By 

RODy R. Atoui, MD CM 

Divisions of Cardiac Surgery and Surgical Research 

McGill University 

Montreal, Quebec, Canada 

July 17, 2007 

A thesis submitted ta the Faculty of Graduate Studies and Research in partial 

fuifillment of the requirements for the degree of Mas ter of Science in 

Experimental Surgery 

© Copyright 2007. AlI rights reserved. 

1 



1+1 Libraryand 
Archives Canada 

Bibliothèque et 
Archives Canada 

Published Heritage 
Branch 

Direction du 
Patrimoine de l'édition 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

ln compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

• •• 
Canada 

AVIS: 

Your file Votre référence 
ISBN: 978-0-494-38386-5 
Our file Notre référence 
ISBN: 978-0-494-38386-5 

L'auteur a accordé une licence non exclusive 
permettant à la Bibliothèque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par télécommunication ou par l'Internet, prêter, 
distribuer et vendre des thèses partout dans 
le monde, à des fins commerciales ou autres, 
sur support microforme, papier, électronique 
et/ou autres formats. 

L'auteur conserve la propriété du droit d'auteur 
et des droits moraux qui protège cette thèse. 
Ni la thèse ni des extraits substantiels de 
celle-ci ne doivent être imprimés ou autrement 
reproduits sans son autorisation. 

Conformément à la loi canadienne 
sur la protection de la vie privée, 
quelques formulaires secondaires 
ont été enlevés de cette thèse. 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



PREFACE 

The experiments leading to this thesis were an performed at the University Surgical 

Clinic and Laboratories of the Montreal General Hospital, McGill University Health Center 

and funded by a grant from the Heart and Stroke Foundation of Quebec (HSFQ) and Fonds de 

la Recherche en Sante du Quebec (FRSQ). 

This thesis starts with an introduction (Chapter 1) which includes a detailed review of 

the literature explaining the scientific basis for this work. It includes information that was 

recently published as a chapter entitled Bone Marrow Stromal Cel!s in Myocardial 

Regeneration and the Role of Cel! Signaling (Atoui R, Chiu RCJ and Shum-Tim D) In 

Artificial cens, Cell Engineering and Therapy, Prakash S (ed.) Woodhead Publisher, 2006. 

The results from Chapter II were presented at the McGill Cardiovascular Research Day in 

January 2006, at the Mc Gill Annual Biomedical Graduate Conference in February 2006, at the 

Salon National de la Recherche in Sherbrooke in March 2006 and at the Terrence Donnelly 

Research Day in Toronto in April 2006. In addition, these results were granted the first prize 

for best presentation at both the Mc Gill Fraser Gurd Research Day in May 2006, and the 

Montreal Children's Hospital Annual Research Day in May 2006. 

These results were aiso presented at the Surgicai Forum of the American College of Surgeons 

held in Chicago in October 2006, at the Scientific Sessions of the American Heart Association 

Congress heid in Chicago in November 2006, and at the 16th World Congress of the World 

Society of Cardiothoracic Surgeons in Ottawa in August 2006. 
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Chapter II was recently submitted as a single manuscript: Marrow Stromal Cells as Universal 

Donor Cells [or Myocardial Regenerative Therapy: their Unique Immune Tolerance. (Atoui R, 

Asenjo JF, Duong M, Chen G, Chiu RCJ, and Shum-Tim D) in the peer-reviewedjournal The 

Journal ofThoracic and Cardiovascular Surgery. 
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ABSTRACT 

BACKGROUND Recently rodent and porcine bone marrow stromal cells (MSCs) have been 

reported to be uniquely immune tolerant. In order to confirm these findings in human cells, we 

tested the hypothesis that human MSCs are also immune tolerant, such that they can be useful 

as "universal donor cells' for myocardial regenerative therapy. 

METHODS Immunocompetent female rats underwent left coronary ligations (n=90). They 

were randomized into 3 groups. In Group l, lac-Z labeled male human MSCs were implanted 

into the peri-infarcted area. In Group II and III isogenic rat MSCs or culture medium were 

injected respectively. Echocardiography was carried out to assess cardiac function, and the 

specimens were examined serially for up to 8 weeks with immunohistochemistry, FISH and 

PCR to examine MSCs survival and differentiation. 

RESUL TS Human MSCs were found to survive within the rat myocardium without 

immunosuppression. This was confirmed by PCR and FISH test. No cellular infiltration 

characteristic of immune rejection was noted. Sorne of these cells appeared to express 

cardiomyocyte-specific markers such as troponin-Ic and connexin-43. Furthermore, the 

implanted MSCs significantly contributed to the improvement in ventricular function and 

attenuated LV remodeling. 

CONCLUSIONS Human MSC survived within this xenogeneic environment, and contributed 

to the improvement in cardiac function. Our findings support the feasibility of using these cells 

as "universal donor cells" for xeno- or allo-geneic cell therapy, as they can be tested, prepared 

and stored well in advance for urgent use. Allogeneic MSCs from healthy donors may be 

particularly useful for severely ill or elderly patients whose own MSCs could be dysfunctional. 
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RÉSUMÉ 

INTRODUCTION Plusieurs études ont récemment démontré la tolérance immunologique 

des cellules souches stromales (CSS) issues de rongeurs et de porcinés. Pour confirmer ces 

résultats chez les cellules humaines, l'étude actuelle évalue l'effet des CSS humaines sur la 

régénération du myocarde chez des rats immunocompétents et étudie la possibilité d'utiliser 

ces CSS comme « donatrices universelles» à la suite d'un infarctus. 

MÉTHODES Après avoir créé des infarctus par ligation coronarienne, les rats (n=90) ont été 

divisés en 3 groupes. Dans le groupe l, des CSS humaines ont été directement injectées dans le 

myocarde. Dans le groupe II, des CSS de rats ont été implantées autour de la zone de 

l'infarctus. Le groupe III a servi de groupe contrôle. La fonction cardiaque a été évaluée par 

échocardiographie transthoracique et les spécimens ont été examinés à des intervalles de temps 

différents par immunohistochimie, hybridation in situ fluorescente (FISH) et réaction en chaîne 

de polymérase (PCR) pour évaluer la survie et la différenciation des CSS humaines. 

RÉSUL TATS Nous confirmons la survie des CSS humaines dans le myocarde du rat sans 

immunosuppression. Ces résultats ont été confirmés par PCR et FISH. Aucune infiltration 

cellulaire charactérisant un rejet immunologique a été démontrée. De plus, certaines cellules 

ont démontré l'expression de marqueurs spécifiques aux cardiomyocytes comme le troponine­

IC et le connexin-43. Ces résultats sont également accompagnés d'une amélioration 

significative de la fonction cardiaque et du remodelage ventriculaire. 

CONCLUSIONS Les CSS humaines ont survécu dans cet environement xénogénique et ont 

contribué à l'amélioration significative de la fonction cardiaque. Nos résultats soutiennent la 

praticabilité d'employer ces cellules comme "cellules universelles" pour la xéno- ou allo-
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génique transplantation cellulaire, car elles peuvent être bien testées, préparées et stockées à 

l'avance pour un éventuel usage urgent. Les CSS de donneurs en bonne santé peuvent être 

particulièrement utiles pour les patients sévèrement malades dont les CSS sont probablement 

dysfonctionnelles. 
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Chapter 1 

INTRODUCTION AND BACKGROUND 
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Myocardial infarction remains a widespread and important cause of morbidity and mortality 

amongst adults, accounting for more than 15 million new cases worldwide each year l
. The 10ss 

of cardiomyocytes that results, combined with the limited endogenous repair mechanism, sets 

into play the remodeling process that ultimately leads to progressive heart failure. End-stage 

heart failure still has a grave prognosis with an estimated 5-year mortality rate of 60%2. 

In addition to medical therapy, the management of heart failure currently includes the use of 

mechanical ventricular assist devices, pacing for ventricular synchronization, and other 

surgical techniques such as ventricular resection, and mitral valve repair. Heart transplantation 

has been successful, but only benefits few patients due to limited donor supply. A novel 

approach currently under intensive investigation is cellular transplantation which is directly 

aimed to overcome the problem of myocardial cellioss. We first introduced the term "cellular 

cardiomyoplasty" in 1995 to indicate this new therapeutic strategy consisting of replacing dead 

cardiomyocytes with newly functional contracting cells3
. This method consists of transplanting 

cells into the infarcted area of the myocardium to 1) increase or preserve the number of 

cardiomyocytes , 2) to improve vascular supply, and 3) to augment the contractile function of 

the injured myocardium. 

Since its introduction, several infarct models performed on rodents, sheep, dogs, swme or 

monkeys have shown that the transplantation of a wide range of stem cells and progenitor cells 

is possible and contributes to the improvement in the ventricular function. Notable among the 

donor cells are the satellite cells3 1 myoblasts4 derived from the skeletal muscle, embryonic 

stern cells5
, adult marrow stern cells6 (MSCs), dermal fibroblasts, fetal or neonatal 

cardiomyocytes7
, other BM-derived cells (CD34+), and proendothelial cells8

• 
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In this introduction, we will focus on the role of marrow stromai cells in myocardiai 

regeneration, their effect in various experimental models of myocardial injury and we will 

review the most updated information regarding the cellular and molecular signaling 

mechanisms for these MSCs to be recruited to the injury site and then undergo "milieu-

dependent" or in situ differentiation9
. Furthermore, we will introduce the recent concept of 

MSCs immunotolerance and explore the evidence and the different mechanisms proposed for 

this property. 

Cellular cardiomyoplasty and myocardial repair 

The ideal candidate donor cell would be a ceIl that can relatively be easily obtained, and 

expanded. Once implanted, it can home to the injury site, proliferate and differentiate into 

morphologically and functionally normal cardiomyocyte. As mentioned above, various types 

of ceIls have been administered to an ischemic myocardium and studies by different groups 

have repeatedly documented the successful engraftment of these cells in adult myocardium. 

Furthermore, most of these studies have also shown an improvement in the ventricular function 

ft 1 · d . d' 1 d' . 1 10 Il a er transp antatlOn an are summanze III severa goo reVlew artlc es ' . 

One clear division of the stem cell family is between those found in the embryo, known as 

embryonic stem cells (ES), and those found in adult somatic tissue. Skeletal myoblasts can be 

isolated from adult muscle and expanded in culture 12. In the early 1990s, our laboratory 

reported the first successful transplantation of satellite ceIls into the injured myocardium3
. 

Since then, several other groups have reproduced this finding, both on animal models and since 

2001, in clinical trials on humans13
• Although it still remains controversial, their long-term 

clinical utility may be limited by the finding that these cells are capable to only differentiate 
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into mature skeletal myofibers and unable to form functional gap junctions with the host 

cardiomyofibers7
, 14, 15. Fetal cardiomyocytes and ES cell-derived cardiomyocytes have also 

been transplanted5
, 16. However, major ethical, moral and legal limitations as well as shortage 

of donors and the issue of chronic rejection hinder their clinical use. Thus in this introduction, 

we will focus our discussion on the marrow derived stem cells (MSCs) as the donor cells for 

cellular cardiomyoplasty. 

As opposed to other cell types, MSCs appear to possess sorne unique properties. They can be 

harvested and handled relatively easily, multiplied in culture, and implanted without 

encountering immuno-rejection, as will be further discussed later. Furthermore, they have been 

shown to differentiate into several lineages, including the cardiomyocytic phenotype17
. With 

this apparent plasticity, MSCs could be an ideal cellular source for cell therapy. 

Marrow stromal cells as adult stem cells 

A stem cell is generally defined as a primitive cell capable of self-renewal, and able to undergo 

pluripotent differentiation when exposed to the appropriate conditions. 

Bone marrow stromal cells (MSCs), also called "stromal stem cells", "marrow progenitor 

cells", "marrow mononuclear cens", "mesenchymal stem cens" and "marrow-derived adult 

stem cells" essentiany represent a heterogeneous population of fibroblast-like cens, which can 

be found in the bone marrow (BM) stroma. There is evidence that at least sorne "adult stem 

cells" isolated from muscle, skin, adipose tissue, and peripheral blood originated from the bone 

marrow. Furthermore, the pluripotent stem cells derived from the amniotic fluid, placenta, and 

umbilical cord blood shows sorne characteristics similar to those of MSCs. 
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The MSCs residing in the bone marrow were previously believed to play only supportive roles 

for hematopoiesis by expressing various cytokines, growth factors and adhesion molecules. 

Cohnheim in the 19th century first implied the presence of these cells in the blood and their 

possible role in wound repairl8
. Friedenstein and his group were the first in the early 1970s to 

better de scribe these MSCs in a number of species, including mice, rats, rab bits, guinea pigs, 

hamsters and humans, showing their differentiation potential into cells of mesenchymal lineage 

inc1uding chrondrocytes, osteoblasts, myocytes and adipocytes l9
, 20, 21. Because these cells 

appeared clonaI in nature, they were initially termed colony-forming unit fibroblasts (CFU-F). 

Isolation of MSCs was then undertaken by CapIan who described a technique still used today 

by isolating the cens that adhered to the bottom of the plates when the bone marrow cens are 

cultured in vitro22
• Furthermore, several in vivo and in vitro studies have confirmed the 

pluripotent potential of these cells and have observed the presence of injected MSCs in host 

adipose tissue, lung, cartilage, central nervous system, liver, spleen, thymus and skeletal 

musclé3,24,25,26,27,28. In the last few years, studies have also shown the capacity of these MSCs 

to differentiate into cells of lineages other than mesenchymal, such as hepatocytes23
, kidney, 

and ev en early astrocytes29
. 

1- MSCs characteristics and subpopulations 

Although MSCs pluripotent potential has been demonstrated in many studies, controversy still 

exists as to what proportion of these cells is truly pluripotent. Thus, although they are 

collectively called marrow-stromal cells, not an stromal cells are pluripoteneo. In fact, it was 

reported that up to one-third of the initial adherent stromal colonies are truly polypotent31
• 

Plating studies confirm the rarity of MSCs in the adult bone marrow, representing 
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approximately 0.01 % to 0.05% of the nucleated cells, being much less abundant than their 

hematopoietic counterpart32
• Nonetheless both cell types appear to contribute to myocardial 

repalf. 

The human MSCs can be cloned and expanded to greater than 1 million-fold and still retain the 

ability to differentiate into several mesenchymal lineages. After isolating human MSCs from 

over 600 patients, Pittenger and his co-workers have shown that these cells behaved as a 

homogenous population, and retained their multilineage potential for several passages, 

although not indefinitely3!. 

Unlike hematopoietic cells, MSCs are CD34- and CD45-. Although still not fully identified, 

sorne other characteristic MSCs surface markers include CD29, CD44, CD71, CD90, CD 106, 

CD120a, CD 124, SH2, SH3 and SH4-69. It is important to keep in mind that this is an 

incomplete Iist, and as mentioned above, sorne variation has been seen from laboratory to 

laboratory3o. In fact there is currently considerable confusion regarding the definition and 

composition of such cells. For this reason, no unique phenotype has been identified that allows 

the reproducible isolation of MSCs with predictable lineage differentiation. The reasons behind 

such uncertainty lie primarily in the experimental conditions used such as the heterogeneity of 

culture conditions, cell separation techniques and different molecular cell markers used by 

various investigators. Thus, whi1e the principle of clonaI hornogeneity is used by sorne experts 

to define these cells3!, others use a different combination of molecular cell markers such as c­

kit+/Lin- cells32
, Sac-l + Lin-/cKit+ cells33

, c-kit+/CD34- cells34 etc. Furthermore, early studies 

suggested a common precursor between the hematopoietic and mesenchymal lineages36, 

identified as CD34+, CD38-, HLA DR-. Waller and his group further subdivided the two 

lineages based on the CD50 marker; thus defining MSCs precursors as CD50-, CD34+ cells3
? 

18 



Because of such differences, it is often difficult to compare the findings among different 

studies35. Standardization of such classifications is of paramount importance as it will be very 

helpful in the further exploration of the mechanisms of MSCs differentiation. 

One possible reason behind this confusion might be because probably, only fully mature cells 

can be characterized by a defined set of specific markers. In fact, because of their 

undifferentiated state, a constantly changing set of markers may be continuously defining the 

"labile" phenotype of MSCs. 

2- Pathophysiological role of MSCs in cardiac in jury 

In contrast to the ES cells, whose goal is to develop a new organism, cumulative information 

gathered during the past several years suggests that adult stern cells participate in tissue growth 

and repair throughout postnatal life38
,39. In fact, there is currently ample evidence suggesting 

that MSCs can be recruited from the BM to various tissues to participate in tissue repair and 

regeneration in response to either apoptosis or tissue injury40,41. In fact, progenitor stern cells 

have been shown to be recruited from the BM to contribute to angiogenesis in wound healing, 

vascularization post myocardial ischemia, and even growth of certain tumors42. 

A hypothesis driven by our laboratory to explain the role of MSCs in the bone marrow is that 

they serve as "reserve" cells to participate in tissue repair when needed43 . Indeed, several 

studies have shown that MSCs differentiation occurs almost exclusively in organs that have 

been damaged. For instance, differentiation to endothelial cells, hepatocytes, and myoblasts is 

. f . h . . h' d 1 d h·..26 44 45 l h' .. se en III cases 0 lSC em1a, cur OSlS an muscu ar ystrop y , , . n t lS case, 1t lS 

hypothesized that upon injury, stem cells can proliferate in vivo and are then recruited to the 

injured environment. There, they will differentiate in response to local cues38,46 (see below). 
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Several evidence published in the last several years has confirmed this pathophysiological role 

of marrow-derived adult stem cens. Orlic and his group have shown that labeled MSCs can be 

mobilized within hours of myocardial infarction to home to the injured myocardium47. 

Furthermore, by using a coronary artery ligation model, Bittira et al. from our laboratory38, 

demonstrated that in response to a myocardial injury, labeled MSCs are recruited from the 

bone marrow, traffic through the circulation to home to the peri-infarct area within hours to 

days. In the following weeks, these MSCs underwent "milieu-dependent" differentiation and 

expressed various phenotypes including cardiomyocytes, myofibroblasts, endothelial and 

smooth muscle cells. Our hypothesis is that each type of ceIl is somehow involved in the 

pathophysiological process following myocardial infarction. For instance, newly formed 

endothelial cells can participate in the process of angiogenesis; cardiomyocytes can 

functionally integrate into the myocardium; and myofibroblasts can contribute to scar 

maturation, which favorably alters the remodeling process. 

It is important to keep in mind that this hypothesis, although appears very credible, can only 

explain part of the mechanism since it is clear that the se cens do not always fully repair the 

damaged myocardium, as evidenced by the clinical consequences of a myocardial infarct. 

Further questions remain to be answered. For instance, it is known that immediately after birth, 

a low level of quiescent progenitor cells, including stem cell precursors, are released into the 

peripheral circulation48. Although it has been shown that these circulating stem cens can 

repopulate areas of damaged bone marrow and thymus, the exact physiological role of these 

cens and their fate are currently unknown. 
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Plasticity of adult MSCs: milieu-dependent differentiation 

Plasticity describes a property that allows adult stem cells, assumed until recently to be 

committed to a fixed lineage, to switch to produce other specialized sets of cells appropriate to 

their new microenvironment49. To explain this, Verfaillie proposed a hypothesis in which these 

MSCs can proliferate and differentiate in response to local cues provided by the environment 

they are recruited t046. 

Stem cells have been identified in most organ tissues. The best studied so far is the 

hematopoietic stem cell (HSC)47. Several studies have shown that HSC can repopulate the 

hematopoietic cell pool when transplanted into lethally irradiated animaIs or humans48,49. Many 

studies later confirmed the differentiation potential of the MSCs with respect to the 

mesenchymallineage, in particular bone and cartilage35. For instance, it was found that human 

MSCs can express genes characteristic of both the osteoblastic and adipocytic lineages, thus 

clearly indicating their progenitor phenotype50. Furthermore, it was also clear that 

differentiated human adventicular reticular cells can mature into adipocytes upon 

pharmacological myelosuppression in vivo. These cells are thus able to switch phenotypes 

among two terminal stages within the progeny of the MSCS51 . This finding may highlight the 

plasticity of the bone marrow stroma and distinguishes it from the hematopoietic system in 

which such shifts among differentiated cells do not occur. 

Historically, the connection between the bone marrow and osteogenesis was first observed in 

the 19th century, and later revived by Friedenstein and his group21. It was clear from these 

series of experiments that the extent of bone formation varies broadly depending on the 

transplantation conditions. Placement of the cells into diffusion chambers allowed the flow of 
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nutrients, but not the movement of host cells, The production of mesenchymal lineage 

following transplantation confirmed that the differentiation capacity lays with the donor 

MSCs52
, This finding was later confirmed by Owen and his group on rabbit bone marrow 

cells53
. Since these initial observations, more definitive evidence for the multipotential 

differentiation of the MSCs have been reported by other investigators showing the ability of 

the MSCs to repopulate several nonhematopoietic tissues, such as skeletal myoblasts25
,26, 

neuronal cells27
,54, cardiomyocytes32

,55, endothelial cells32
, hepatocytes23

, and lung, gut, kidney, 

pancreas and skin epithelia28
, Taken together, these studies show that transplanted MSCs have 

different fates according to the microenvironment to which they locate, They expressed a 

smooth muscle phenotype in the scar which was absent from the vessels where an endothelial 

phenotype was displayed, In the noninfarcted myocardium, they exhibited a cardiomyocyte 

phenotype, 

It is however important to keep in mind that most of these studies did not conclusively 

demonstrate that a single cell could differentiate into different cell lineages, Although some 

studies have shown that the involved cell populations were rich in hematopoietic stem cells26
,44, 

they did not identify the exact phenotype of the cell capable of differentiating, 

Cardiomyocytic differentiation of MSCs 

Data from a number of laboratories have shown that MSCs, once exposed to a variety of 

physiological or non-physiological stimuli, differentiate into cells with a cardiomyocytic 

phenotype exhibiting a myotube-like structure with typical sarcomeres, be positive for markers 

specific for cardiomyocytes, expressing multiple contractile proteins and displaying sinus 

d l'k d '1 Il l'k' , 1 5657585960 no e- 1 e an ventncu ar ce - 1 e actIOn potentla s ' , , , , 
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1- In-vitro studies 

Wakitani and his group were the first to show that a hypomethylating agent, 5-azacytidine, can 

convert rat MSCs to multinucleated myotubes that contracted when exposed to acetylcholine 

and stained positively for skeletal muscle-specifie myosin59
. Another landmark study by 

Makino et al. established a cardiomyocytic celllineage after treating MSCs with 5-azacytidine, 

expressing cardiomyocyte-specific genes, with evidence of ventricular like action potentials56 

and expressing p-adrenergie and muscarinic reeeptors61
• However, 5-azaeytidine is known to 

be toxie in vivo. 

In order to determine the nature of the possible in vivo signaIs involved, Tomita and his group 

used a co-culture system and found that when the labeled-MSCs were co-cultured with 

cardiomyocytes, only with direct cell-to-cell contact could they induce cardiomyocytic 

differentiation. Separating the two populations with a filter shield, hence allowing the passage 

of macromolecules but preventing direct cell-to-cell contact, failed to induce such 

differentiation62
. These results are consistent with the hypothesis, described above, that cell-to­

cell contact may play a crucial role in the milieu dependent differentiation of MSCs, relaying 

cardiac environmental signaIs. Furthermore, other studies have shown the presence of specifie 

gap junctions allowing direct cell-to-ceU contact between the implanted human MSCs and 

ventricular myocytes63
, as well as the remarkable cellular and molecular similarity between 

"true" cardiac cells in culture and the cardiomyocytic-like cell that differentiated from MSCs64
. 
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2- Animal in-vivo studies 

To confirm the in-vitro studies mentioned above, many laboratories, including ours looked at 

the potential of the MSCs to differentiate in vivo into functional cardiomyocytes. 

Tomita and his coworkers were the first to report the differentiation of rat MSC into myogenic 

cells expressing cardiac-specific genes65
. After creating ischemic rat myocardium, 5-

azacytidine-pretreated MSCs were observed in the transplanted area but not in the control scars. 

Furthermore, a higher degree of angiogenesis, a smaller transmural scar as weIl as an improved 

ventricular function was observed in the transplanted group. It should be noted that bone 

marrow, as opposed to a purified population ofMSCs was used in this study. 

In our laboratory, we explored the hypothesis that MSCs, when implanted, will choose to 

express a specifie phenotype based on the principle of milieu-dependent differentiation66
. If 

this is the case, we would not need to pre-treat the MSCs with 5-azacytidine to induce the 

cardiomyocytic phenotype. In our experiment, we implanted labeled MSCs near the peri­

infarct area in rats. It was noted that the stem cells surrounded by scar tissue appear to 

differentiate into fibroblasts, whereas those in direct contact with native cardiomyocytes 

expressed phenotypic molecular markers specifie to cardiomyocytes such as connexin 43 and 

troponin I_C66
. This finding supported our hypothesis that these ceIls received signaIs from 

neighboring cells to express phenotypes specifie to their microenvironment. Thus, depending 

on the surrounding milieu, our ceIls appear to have differentiated into cardiomyocytes, 

fibroblasts, endothelial cells or adipocytes. From an evolution point of view, one can postulate 

that by obtaining such signaIs from the surrounding neighborhood, MSCs may avoid 

undergoing heterotopic differentiation 43. 
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It is of interest to note that if one injects 5-azacytidine pre-treated MSCs into the scar tissue of 

an injured myocardium, cardiomyogenic differentiation of these cells can still occur within the 

scar. One can thus suggest that such a pre-treatment in vitro can alter MSCs gene expression 

such that these cells will no longer respond to microenvironmental signaIs, but rather undergo 

lineage-specific differentiation58, 65. 

In another series of experiments, Wang et al. in our laboratory injected male rats with labeled 

rat MSCs and showed that these cells will develop into cells morphologically similar to 

cardiomyocytes, exhibiting organized contractile fibers6. This view appeared consistent with 

our subsequent studl7
, whereby MSCs were injected directly into the coronary arteries of an 

ischemic rat myocardium. These cells were subsequently found to migrate out of the coronary 

vasculature and differentiate into cells of multiple lineages, depending on their 

microenvironment. These studies further supported the hypothesis that the fate of the implanted 

MSCs is defined by its cardiac microenvironment, thus consolidated the concept of "milieu-

dependent" differentiation, a term that was originally suggested by Edelman in relation to 

b . 9 em ryogenesls . 

These findings were subsequently confirmed by many laboratories around the world. Pittenger 

and his group used a swine myocardial infarction model and demonstrated the differentiation 

of MSCs toward a myogenic lineage with expression of a-actinin, troponin-T and 

tropomyosin68 resulting in an improved overallieft ventricular function. Furthermore, Orlic et 

al. injected labeled Lin-/ckit+ cells from male mice into an ischemic female mice 

myocardium32 and found newly formed Y -containing myocytes occupying up to 2/3 of the 

infarct area. Similar findings were obtained by Toma et al. using adult mice17, and by Davani 

and his group69. In a swine model, investigators have used MR fluoroscopy to identify target 
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sites on the myocardium in order to guide their injections. In these studies, not only MSCs 

were shown to engraft and express several cardiac markers, but a significant improvement in 

the ventricular function was also noted accompanied with a reduction in wall thinning68
,70. 

Moreover, Kawada et al. transplanted labeled MSCs into the BM of a mouse ischemic model 

that was treated with G-CSF. They were then able to demonstrate the presence of labeled cells 

in the ischemic myocardium, suggesting that most of the labeled cardiomyocytes originated 

from the implanted MSCS71
. 

Other studies focusing on gender mismatched human heart transplants, have found a wide 

difference in the estimate of the levels of Y chromosome-containing cells ranging from 0.04% 

to 18%72,73. The discrepancies in the amount of chimerism among different groups are most 

likely due to technical differences. Although these results are still controversiaC4
, they 

highlighted the repair function of extracardiac stem cells and their potential of regenerating the 

injured myocardium. 

In addition, recent studies evaluating the effect of MSCs on myocardial perfusion have also 

shown the ability of these cells to enhance neovascularization. Implanted MSCs were shown to 

express von Willebrand factor (vWF), vascular endothelial growth factor (VEGF) and other 

proteins indication ongoing angiogenesis32
,75. Kinnaird et al. recently showed that MSCs 

secreted a variety of angiogenic cytokines such as fibroblast growth factor (FGF), VEGF, 

Insulin-like growth factor (lGF), hepatocyte growth factor (HGF), matrix metalloproteinases 

(MMP), platelet-derived growth factor (PDGF), IL-l, angiopoetin, TGF-~, TNF-a and many 

others, most of which are upregulated following a myocardial infarction and probably 

contribute to stimulating neovascularization following a myocardial infarction76
,77. Among all 

these factors, VEGF seems to be the key regulatory cytokine orchestrating endogenous 
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neovascularization by modulating stem cell migration and proliferation76• Not only it 

stimulates the development of microvessels, but it also contributes to endothelial cell survival 

through VEGF -mediated phosphorylation of protein kinase Band nitric oxide synthase 

proteins 77 . 

In a recent study, Tang et al. highlighted the paracrine action of the engrafted MSCs in the 

ischemic myocardium and the resulting stimulation of neovascularization77
. They also showed 

that the release ofbFGF, VEGF and SDF-l not only leads to efficient vascular regeneration but 

also attenuates the apoptotic pathway by downregulating the prosurvival protein Bax. Finally, 

it was shown that local injection of MSCs-derived conditioned media alone containing several 

arteriogenic cytokines can enhance collateral perfusion in a murine mode! of hindlimb 

ischemia, hence highlighting the important role ofparacrine signaling76
. 

3- Trans-differentiation vs. fusion 

The studies reviewed above support the idea of MSCs differentiation. However, this concept 

has been challenged recently with the demonstration of cell fusion whereby a new cell is 

derived from the fusion of the implanted cell and a native host cell. Several in vitro and in vivo 

studies published in the last few years78
,79,80 showed that cell fusion can be responsible for a 

certain percentage of phenotypic changes observed following transplantation. Terada and his 

group demonstrated the presence of polyploidy DNA content when female BM cells were co­

cultured with male ES cells 78. Although still highly controversial, it is important to keep in 

mind that the frequency of this phenomenon varied widely among different studies and can not 

by itself explain aIl the significant regeneration observed in previous studies. In any case, 
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future studies must examme this mechanism with ngor m order to better understand the 

mechanisms of cellular transplantation. 

Furthermore, in the last several years, compelling evidence has emerged showing the potential 

of cardiomyocytes to reenter the cell cycle and undergo mitosis81
,82. To add more to this 

confusion, the concept of resident cardiac stem cells was recently introduced as we1l83
,84,85. It 

has recently been shown that, in the regions adjacent to the infarcts, 4% of myocyte nuclei 

expressed the Ki-67 cell proliferation marker77
. Despite their ability of giving rise to 

endothelial cells, smooth muscle cells and functional cardiomyocytes67
, their physiologicai role 

appears so far minimal. 

4- Improvement in ventricular function 

Most of these previous studies have noted an improvement in the ventricular function in the 

transplanted group. It is of interest to note that even the experiments that did not show 

extensive myocytic differentiation did nonetheless show an improvement in the global 

functioning of the heart. How can these cells, without apparent connection to the native 

myocardium contribute to the improvement in ventricular function remains perplexing. A 

number of mechanisms have been proposed86 and include contraction of the implanted cells, 

changes in the extracellular matrix by an autocrine mechanism, with an improvement in the 

elastic property of the transplanted region, thus limiting the remodeling process; and an 

enhancement of the angiogenesis in order to rescue hibernating myocardium. 
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Cell signaling and mechanisms of differentiation 

A number of studies analyzed the signaling mechanisms involving stem cells' regulation and 

proliferation. Most of these reports focused on HSC signaling. However, as we will see, and 

perhaps not surprisingly, many of the factors and pathways involved have also been shown to 

be implicated in MSCs differentiation. 

A number of studies have tried to analyze the endogenous and environmental factors that are 

involved in the regulation of stem cells, inc1uding inflammatory cytokines, growth factors, 

surface receptors, proteases, transcription factors, telomerase activities, hypoxia-responding 

proteins and stem cell-matrix interaction. Furthermore, Lapidot and Petit even suggested the 

existence of a dynamic situation in which there is a constant turnover, proliferation, migration 

and homing of stem cells as part of their developmental program, a process that may even be 

linked to the dynamic interaction between osteoblasts/osteoc1asts in BM remodeling48
. 

Interestingly, G-CSF stimulation induced both MSCs mobilization and osteoc1ast-mediated 

BM resorption95
. 

1- Stem cell mobilization 

Several previous studies focusing on knock-out embryos revealed the critical roles of SDF-Ia, 

a member of the CXC chemokine family that was shown to bind to its 7-transmembrane­

spanning G protein-coupied receptor CXCR4. !ts constitutive expression in various tissues as 

weIl as its highly conserved amino acid sequences between different species highlights its 

important biologicai roIe, namely in cardiogenesis, stem cell hematopoiesis, vasculogenesis, 

and cerebral development48
. These studies confirmed the role of SDF-l as the key regulator of 
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stem cell trafficking between the BM and the peripheral circulation. In fact, Peled et al. have 

demonstrated in a series of studies that SDF-l/CXCR4 interactions not only tightly regulate 

stem ceUs homing but are also involved in transendothelial migration by mobilizing progenitor 

stem cells and activation of major integrins such as LFA-l, VLA-4 and VLA-5 mediating ceU­

to-ceU and ceU-to-matrix interactions in response to tissue stress or injury 96,97,98. 

The mobilization process whereby stem ceUs are released from the BM was first documented 

in 1970s and has been shown to be induced both in animaIs and humans by a wide number of 

molecules, incIuding cytokines such as G-CSF, GM-CSF, interleukin IL-7, IL-3, IL-12, stem 

ceU factor (SCF) and flt-3 ligand; chemokines like IL-8, Mip-la, Gro~, or SDF-l and a variety 

of chemotherapeutic agents. For instance, IL-8, which is secreted in response to SDF-l 

stimulation, is believed to stimulate stem ceU mobilization by activating MMP-9 and the 

integrin LFA_1 99
,100,101,102. Similarly, it was found that both SDF-l and steel factor act 

cooperatively to attract progenitor stem ceUs from the bone marow35
• Furthermore, Sweeney et 

al. recently found that sulfated polysaccharides can increase the levels of SDF-l which can 

ultimately result in an up regulation of the MSCs mobilizationl03
. In this study, they 

demonstrated that these polysaccharides compete for SDF-l binding to the BM endothelium. 

Furthermore, Yamaguchi et al. confirmed the hypothesis that 10caUy administered SDF-l can, 

by augmenting the levels of endothelial progenitor ceUs to the site of ischemia, enhance the 

efficacy of neovascularization after systemic EPC transplantation 104. 

Although the exact mechanism of mobilization remains not fully understood, it is believed to 

be a multi-step process whereby a key process involves the disruption of the adhesion 

interactions between the stem cells and the BM when stimulated by specifie signaIs such as an 

ischemic injury or stress. In fact, Papayannopoulou et al. demonstrated the critical role of 
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VLA-4 in the mobilization process105 and several previous studies have shown the role of 

proteolytic enzymes such as elastases, peptidases, cathepsins G, MMP-2 and MMP-9 in 

inactivating SDF -1 by cleaving part of its N-terminus. Furthermore, a recent study showed that 

the increase in the level of cathepsin Gand elastase correlate with stem cell mobilzation106
. In 

accordance with these studies, Petit and her group demonstrated the proteolytic degradation of 

SDF-l by elastase induced by G-CSF, accompanied by a graduaI increase in CXCR4 

expression on bone marrow cells107
. Studies by Moore et al. confirmed further the critical role 

ofMMP-2 and MMP-9, as well as their natural tissue inhibitors (TIMP) in allowing SDF-l and 

G-CSF mediated stem cell mobilization108
. The importance of these metalloproteinases is also 

highlighted by their role in maintaining low levels of surface CXCR4 to keep the stem cells in 

the circulation109
. Furthermore, Heissig and his groupllO showed that the activation of MMP-9 

is followed by the release of SCF into the circulation, which is essential for SDF-l mediated 

stem cell mobilization and proliferation. 

Finally, Flores et al. 11 
1 recently highlighted the role of telomerase Tert and telomere length as 

critical determinants in the mobilization and proliferation of epidermal stem cells for their 

niches. 

2- BM: niche for HSC 

Engraftment of the stem cells in the bone marrow can be seen as the end of a complex series of 

events in which circulating HSC are first recruited by the BM vasculature followed by their 

transendothelial migration into the extravascular hematopoietic cords of the marrowl12
. Once 

in the BM, the regulation of HSC proliferation and differentiation occurs by a complex 

interplay of cells, growth factors, adhesion molecules and other signaIs, not yet fully 
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understood. This is then followed by lodgment whereby cells selectively migrate to a suitable 

niche in the extravascular compartment of the BM. 

Previous studies suggested key roles for P-selectin113
, E-selectin114

, the ~l integrin very late 

antigen-4 (VLA_4)1l5, SDF-l and CXCR4116
, in the homing ofHSC to the bone marrow. Thus, 

to home to the BM, stem cells must first roll on E and P sleectins, which are expressed on the 

BM vascular cells. After their adhesion to the vessel wall via the major integrins (VLA-4 ,-5 

and LFA-l) and their vascular ligands (VCAM-l and ICAM-l), they extravasate into the 

hematopoietic compartment. Almost each of these previous steps has been shown to be 

activated by SDF-l ll7
. 

Furthermore, recent data demonstrate that flt-3 ligand plays an important role in the 

proliferation ofHSC in tightly regulating the actions ofVLA-4 and VLA_5 118
. AIso, Driessen 

and coworkers recently confirmed the transmembrane isoform of SCF as important in the 

lodgment ofHSC in their niche1l9
. 

In another recent study, Mohle and his group showed that other non-peptide mediators such as 

cysteinyl-leukotriene receptor CysLTl similarly stimulate HSC migration 120. Also, Netelenbos 

et al. introduced the role of proteoglycans such as heparin and dermatan sulfate in HSC homing 

by showing their attachment to SDF-l l2l
. The glycosaminoglycan hyaluronic acid (HA) 

recently found to be synthesized by HSC, was also found to have a key role on their migration 

and engraftment122. Hence, it seems that the processes of mobilization and homing are "mirror 

images" involving the same molecules in "opposite directions,,123. Thus, by activating adhesion 

molecules, SDF-l plays an important role in homing of the stem cells and engraftment in the 

BM. On the other hand, desensitization of the SDF-l/CXCR4 pathway is required for the 

successful mobilization ofthe stem cells from the BM. 
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Other studies have focused on the impact of cytokine exposure on the homing mechanism. 

Ahmed et al. 124 reported that cytokine-activated CD34+ cells (with IL-3, IL-6 and SCF) 

showed irreversible impaired homing ability, possibly through the induction of pro-apoptotic 

genes such as Fas/CD95 125. Furthermore, Zheng et al. reported significant upregulation in the 

concentrations of homing-related signaIs such as CD49, CD54, CXCR4, MMP-4 and MMP-2 

when stem ceUs were shortly exposed to SCP126. 

Although these findings can give us sorne insight into the mechanism of stem cell mobilization, 

it is clear that many more studies are needed to fully understand this complex event that 

invoives the interplay between severai adhesion molecules, chemo-cytokines, proteolytic 

enzymes and the BM. Clinically, this is very relevant since it is possible that the manipulation 

of SDF-lICXCR-4 interactions, as weIl as the simultaneous infusion of stromal cells with the 

hematopoietic component could improve the outcome ofhuman BM transplantations127
• In fact, 

several studies are currently underway taking advantage of the MSCs in autologous and 

alIogeneic transplantation48
. 

3- Interactions between MSCs and HSC 

As we described previously, the interactions between MSCs, HSC as weIl as other mediators in 

the BM are important in the homing and proliferation process. In fact, several studies have 

identified numerous receptors on MSCs important for celI adhesion with HSC and the rest of 

the extracelIular matrix such as ICAM, VCAM, platelet endothelial ceU adhesion molecule 

PECAM, L-and P-selectins. It is also likely that the adhesive interactions that occur between 

HSC and MSCs help not only in the homing and engraftment of the HSCs in the BM, but are 

also involved in the proliferation and differentiation process ofprogenitor cells112
. For instance, 
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several studies have identified a number of growth factors, expressed in MSCs cultures which 

are associated with hematopoietic support such as IL-6, IL-Il, LIF, CSF, G-CSF, GM-CSF 

and SCP128
, Purthermore, Calvi and his group recently highlighted the role of osteoblasts, 

present within the endosteal region, as key cellular elements in influencing stem cell 

differentiation through Notch activation90
, Purther pathways involving both MSCs and HSC 

have been shown to have an important impact on stem ceIl differentiation and proliferation 

such as the Wnt signaling pathway129 as weIl as the bone morphogenic protein receptor type 

lA activation of specifie osteoblastic cells13
0, 

Homing of the MSCs to the infarcted site 

One of the most intriguing properties of MSCs is their ability to home to sites of inflammation 

or tissue damage, Although the steps responsible for this migration have yet to be fully 

elucidated, it entails a 2-step process whereby stem cells first bind to their adhesive complexes 

around the injury zone, followed by local chemotaxis to the site of engraftmentl3l 
, This 

phenomenon has been demonstrated in various settings inciuding infarcted hearts132
, cerebral 

ischemia133
, and bone fractures 134, In fact, Saito et al. from our laboratory were the first to 

demonstrate that MSCs administered intravenously engraft within the infarcted myocardium, 

whereas those injected in healthy rats, home to the bone marrow132
, In another study, Sorger et 

al. 135 showed the remarkable specificity with which MSCs can home to infarcted regions, 

Although the specific factors responsible for this migration have not yet been defined clearly, 

further complexity is added by a recent finding suggesting that expansion of murine MSCs in 

culture may actually diminish their homing ability l36, 
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As we saw previously, SDF-l and its receptor CXCR4 are required for stem ceUs to home to 

the BM, Their role in coronary artery disease is less clear. Previous studies have shown the 

expression of SDF-l in atherosclerotic plaques, its upregulation in the heart early after MI as 

weU as the increase in neovascularization foUowing its exogenous expression l3l
, Askari et al. 

further reinforced the role of SDF-l in stem ceU homing in a study whereby cardiac fibroblasts 

expressing SDFl were transplanted into the infarcted regions of rat hearts 137 , After using G-

CSF to mobilize stem ceUs, a significant homing of c-kit ceUs to the injured area as well as an 

improved cardiac function was found in treated animaIs, Orlic and his group have also 

demonstrated the upregulation ofMSCs homing and differentiation with the use ofG-CSF47, In 

this study, a 250-fold increase in the levels of Lin-/c-kit+ ceUs as weU as an improvement in 

the ventricular function were found in rats that were pretreated with G-CSF and SCF, A similar 

finding was obtained when granulocyte-macrophage stimulating factor (GM-CSF) was used138
, 

Although the exact mechanism is yet to be understood, Harada et al. recently showed that this 

G-CSF -mediated stem cell mobilization and improvement in cardiac function occur through 

the activation of the Jak/Stat pathway in the cardiomyocytes, hence inducing a number of 

antiapoptotic proteins and angiogenic factors 139
, 

Other than SDF-l, SCF is also involved in the regulation of stem cells migration by binding to 

its tyrosine kinase receptor, c-kit, which is expressed on a variety of stem celllines1,140, This is 

confirmed by further studies showing the role of SCF in the induction of the expression of 

CXCR4 on human CD34+ ceUs resulting in an increase in their migration in response to 

SDFl 116
, A wide variety of chemokines have actually been shown to modulate such migration; 

however the large st response was se en with u and p SDFl 141 , Furthermore, it is important to 

realize that although SDF-l is required in stem cell mobilization to the injured site, it is not 
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singularly sufficient, hence reflecting the need for additional factors. In fact, patients with 

acute coronary syndromes have elevated levels of many factors other than SDF-I including 

MMP-2, MMP-9, ICAM, and VCAM131
• 

As we saw previously, cell-to-cell interactions as well as other environmental factors 

involving a combination of paracrine growth factors promote stem cell migration and 

differentiation. Eghbali-Webb has recently reviewed the role of cardiac fibroblasts in 

regulating myocardial regeneration by the release of various soluble factors within the 

extracellular matrix such as VEGF, FGF, TGF-f3I, PDGF, and MMPs, highlighting the 

coordinated cell-to-cell and cell-to-environment interactions 142. It is also possible that the 

hypoxia following an ischemic insult can enhance the expression of some adhesion molecules 

and thus facilitates MSCs migration. For instance, the increase in MMP-9 level following the 

use of mobilizing agents such as SDF-I, VEGF and G-CSF or after a myocardial infarction, 

leads to an up-regulation of soluble kit, which ultimately results in an increase in MSCs 

mobilization and proliferation143
,144. 

It is of interest to note that MacDonald et al. in our laboratory have observed that MSCs which 

can migrate to the acutely injured site can lose this ability in chronic scar tissue, when the 

inflammatory mediators have probably subsided145
. 

The clinical application ofmodulating the SFI-CXCR4 axis to improve stem cell homing using 

monoclonal antibodies or antagonists against CXCR4 remains to be determined144
• 

Furthermore, strategies to improve the engraftment of BM stem cells into the ischemic areas by 

the local administration of SDF -1 remains to be fully investigated. Finally, it was proposed that 

in order for the implanted stem cells to survive in the ischemic myocardium, one must also 

control the different factors that influence apoptosis, inc1uding cytokines and growth factors 

36 



(such as HGF, GATA-4), expression of apoptosis-regulating genes (such as Fas, p53 and 

caspases) mitochondrial dysfunction, telomerase activities and hypoxia-responding proteins 

(such as hypoxia-inducible factor HIF-l and erythropoietin)146. 

Therapeutic use of MSCs 

The recognition of the broad growth and differentiation potential of MSCs and their relative 

ease of handling has opened the door to several clinical applications. 

In the hematological field, clinical studies have progressed farthest in the use of human MSC 

in repopulating the BM stroma after myeloablative therapy, in conjunction with the 

reconstitution of the hematopoietic system with BM transplantation 128. 

Furthermore, the ability of MSCs to proliferate makes it an excellent target for retroviral gene 

therapy 147. In several studies, it was shown that stromal cells can be efficiently transduced 

with a variety of growth factors and hematological factors such as VEGF, VWF, factor VIII or 

XI 35,148,149,150. Schwartz et al. were able to engineer MSCs expressing L-DOPA when 

implanted into the brain in a rat model ofParkinson's disease l51 . 

In the last few years, > 10 clinical trials around the worldI52,153,154,155 have been completed and 

several are ongoing to assess the effect of autologous BM cells transplantation after acute 

myocardial infarction. With the exception of one l56, aIl others showed encouraging results, 

with a significant increase in the ejection fraction and myocardial viability and a decrease in 

end-systolic L V volumes. It is of interest to note that in most of these trials, a heterogenous 

fraction of BM mononuclear cells was used, containing Band T lymphocytes, myeloid cells, 

endothelial cells and a low number of hematopoietic and MSCs. However, sorne of these trials 

involved purified fractions of cells such as' CD34+ or CD133+ progenitors, as well as skeletal 

37 



myoblasts. Furthermore, different delivery techniques were used, concomitant with medical 

therapy, angioplasty or coronary artery bypass surgery. In a recent randomized trial, Chen et al. 

injected MSCs directly into the coronaries of patients post myocardial infarctions157
• It was 

found that treated patients had a decrease in the proportion of hypokinetic and akinetic 

segments, as well as a significant improvement in the ventricular function and wall motion. 

All of the studies mentioned above are limited by their small sample size and nonrandomized 

design. However, a large randomized controlled clinical trial has now been reported75 
new. In 

this study, 60 patients underwent percutaneous coronary intervention with stent implantation 

for acutemyocardial infarction. They were randomized into 2 groups, either receiving or not 

autologous BM-MNCs. All patients received standard pharmacological treatment. After 6 

months, the authors reported a significant increase in the ejection fraction in the cell-treated 

patients. However, the left ventricular diastolic volume was not different between groups, 

indicating a lack of improvement of ventricular remodeling during follow-up. No adverse 

events have been reported so far in this study. 

Finally in addition to an these trials mentioned earlier, MSCs and allogeneic bone marrow 

transplantation have also been used, although with limited success so far, in various 

mitochondrial defects and inborn metabolic diseases158
• 

1- Adverse events 

To date, publications regarding adverse events in experimental studies have been relatively rare. 

However, the development of microinfarction has been reported when infusing MSCs directly 

into a dog's coronary artery78. Adverse calcification has also been shown to be a rare problem a 

in a rat modef9 and is probably due to the differentiated state of the MSCs used. 
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ln phase 1 trial using skeletal myoblasts, ventricular arrhythmias developed, probably due to 

the lack of gap junctions between transplanted myoblasts and host cardiomyocytes and to the 

difference between the action potential of the two cell types68 . 

ln contrast, arrhythmias were not per se a problem with clinical trials using BM-MNC. The 

major concern with these trials may be the development of angiogenic neoplasias since 

endothelial-progenitor cells can contribute to tumor neovascularisation67
. However, this 

adverse event has not been yet reported in clinical trials. 

One recent triaI'6 has been stopped because of the unacceptable rate of stent restenosis that 

accompanied the improvement in ventricular function. The authors hypothesized that this event 

might be due to the differentiation of progenitor cells into smooth muscle cells within the 

stented segment. 

Unique immunotolerant properties 

Another fascinating aspect of stem cell therapy involves the recent findings that MSCs may 

have a unique immunological capacity to induce tolerance in immunocompetent allotransplants 

or even xenotransplant recipients132,161. These properties may limit the ability of the recipient 

immune system to recognize and reject allogeneic or gene-modified MSC following 

transplantation. 

Immunologically, MSCs share cell surface markers with thymie epithelium. The express 

adhesion molecules involved in T-cell interaction including VCAM-l, ICAM-l and LFA_3 162
. 

ln addition, MSCs express intermediate levels of major histocompatibility complex (MHC) 

class 1 molecules, negligibly low level of MHC class II and Fas ligand and no costimulatory 

molecules such as B7-1, B7-2, CD-40 or CD40 ligand163
,31. The presence ofthese cell surface 
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markers, along with the findings that MSC are customary residents of the bone marrow 

microenvironment, suggests that MSCs may play an important role in the immunoregulation 

provided by the bone marrow microenvironment. 

Although the exact underlying immunological mechanism is not yet weIl understood, the 

"Danger Model" theory of Matzinger 168 was invoked in our laboratory to try to explain the 

unexpected findings. In addition to the action of veto cells and to the proposed role of 

tryptophan catabolizing enzyme indole amine 2,3-dioxygenase (IDO)-mediated tryptophan 

degradation in MSC-mediated immunosuppression169
, Pittenger and his group recently 

reported that human MSCs can secrete PGE2, hence altering the cytokine secretion profile of 

dendritic cells, naïve and cytotoxic T lymphocytes, and NK cells l7O
, namely by inhibiting 

TNFa and IFN-y and by stimulating IL-IO secretion to modulate the immune cell response. By 

doing so, they inhibit the maturation and migration of various antigen-presenting cells and alter 

the expression of several receptors necessary for antigen capture and processing17o. 

Furthermore, by increasing IL-4 secretion, they acce1erate a shift from a majority of 

proinflammatory Thl cells toward an increase in anti-inflammatory TH2 cells l70
. 

1- In-vitro studies 

Data supporting the contention that MSCs avoid allogeneic response has come from a large 

body of in-vitro experiments involving co-culture or mixed lymphocyte reactions (MLR). 

Evidence from these studies on human, baboon and murine MSCs indicate that the use of 

mismatched MSCs does not provoke a proliferative T cell response in allogeneic MLR, thus 

suggestive of an immunosuppressive role for MSCs 161,162,167,171. 
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This suppression of mixed lymphocyte reaction in vitro between MHC-mismatched stimulator 

and responder cells by MSCs appears to arise from both contact-dependent172 and soluble 

factors!73 including hepatocyte growth factor (HGF) and transforming-growth factor pl (TGB­

~1)17l. This immunosuppressive effect is retained even when co-stimulatory signaIs are added 

to the culture to upregulate the expression ofMHC classII 163 or when T-cells are re-challenged 

by the same MSCs172
. These actions have been shown to be partially mediated through the 

generation of CDS+ regulatory cells and by inhibiting the formation of cytotoxic T 

lymphocytes 173 . 

Other experimental settings suggest that even when precultured with interferon-y to fully 

express MHC class II or in the presence of CD-28 mediated costimulation, MSCs still escaped 

recognition by alloreactive T cells pointing to their potential role as unique nonprofessional 

antigen-presenting cells161 ,163,174. 

2- In-vivo studies 

MSCs isolated from humans and other mammalian species including baboon, canine, caprine 

and rodents do not elicit a proliferative response from allogeneic lymphocytes l62
. 

The major limit to any solid organ graft survival is T cell recognition by the recipient of 

alloantigens, such as MHC antigens. There are 2 mechanisms mediating this powerful response: 

"direct" recognition, involved recognition by recipient CDS+ or CD4+ T ceUs of donor MHC 

class 1 or II molecules, and "indirect" mechanism involving recognition of peptides from the 

allogeneic tissue. Recipient antigen presenting cells (APC) such as dendritic cells (DC) process 

alloantigen into peptides and present these to naïve T cells on self-MHC molecules. There is 

supporting evidence from both in-vitro and in-vivo studies that show that MSCs avoid normal 
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alloresponses. Koc et al. showed no evidence of alloreactive T cells and no incidence of graft 

versus host disease when allogeneic MSCs were infused into patients with Hurler's syndrome 

or metachromatic leukodystrophy l75. 

Horwitz and colleagues reported that donor MSCs contributed to bone remodeling after 

allogeneic stem cell transplantation in 3 children with osteogenesis imperfecta176
. This is 

supported by data from Bartholomew et al. who showed that in-vivo administration of 

allogeneic MSCs prolonged third party skin graft survival in immunocompetent baboons l62
. 

Furthermore, other groups have reported that it can also prevent the rejection of allogeneic B 16 

mouse melanoma cells in immunocompetent C3H mice, and attenuate graft-versus-host disease 

in mice and humans I69
,177. Human MSCs have been observed to successfully engraft in brains 

of albino rats l78 as weIl as in utero in sheep l64, even after the fetuses became 

immunocompetent. 

In our laboratory, Saito et al. 132 transplanted labeled mice MSCs into adult fully 

immunocompetent rats, thus producing stable cardiac chimeras for at least 12 weeks without 

any immunosuppression and with no evidence of rejection. Furthermore, Macdonald et al from 

our group have shown that not only stable chimeras are formed in which MSCs retained their 

ability to be recruited to the injured myocardium, but that the overall ventricular function is 

improvedl65
. These findings were once again replicated by Luo et al from our lab who 

confirmed the survival of pig MSCs into fully immunocompetent rat myocardium for up to 6 

months after transplantation (personal communication). This is confirmed by recent findings 

showing the successful engraftment of allogeneic MSCs into infarcted rat myocardium for as 

long as 6 months 179. 
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More recent work by Aggarwal and Pittenger supported the feasibility of MSCs transplantation 

showing that MSCs altered the phenotypes of specifie immune ceIl subtypes thereby creating a 

tolerogenic environment170
• 

It is of interest to note that LeBlanc et al. have shown that not only undifferentiated but also 

differentiated MSCs have immunosuppressive effects in third-party mixed lymphocyte cultures 

which appear to be aIloantigen independent161
• 

Proposed mechanisms of immunotolerance 

AU these observations support the concept that MSCs may be immunoprivileged and have 

unique immunotolerant properties with c1early defined therapeutic implications. 

Although these data show that successful use of allogeneic MSCs in regenerative therapy is 

possible, such approaches are unlikely to be broadly acceptable until it is understood why these 

MSCs aren't rejected. This question has been the subject of intense studies and three candidate 

inter-related mechanisms are emerging180
• MSCs appear to evade rejection by 1) being 

hypoimmunogenic; 2) modulating T ceU phenotype and 3) immunosuppressing the local 

environment. 

1- MSCs as hypoimmunogenic ceUs 

Although there is a continuous controversy surrounding the exact composition of ceIl surface 

markers on MSCs, most studies de scribe MSCs as MHC class l positive (intermediate levels) 

and MHC class II negative. The expression of class l MHC on these MSCs is important 

because it protects these cells from certain NK cell mechanisms of deletion. As MHC class II 

proteins are potent alloantigens, their lack of expression on MSCs, under non-inflammatory 
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conditions, is another important factor by allowing them to escape recognition by alloreactive 

CD4+ T cells. In addition to this, MSCs do not appear to express the co-stimulatory molecules 

CD40, CD40L, CD80 or CD86 for effector T cell inductionl63
. 

2- Effect of MSCs on the function of DC and other APC 

Dendritic cells (De) play important role in directing cellular and humoral immune responses 

against self and non-self antigens and contribute to the establishment of tolerance, especially in 

the periphery. Several studies have demonstrated that MSCs could prevent normal allogeneic 

responses by modulating DC function. Zhang et al 181 provides evidence that MSCs interfere 

with DC maturation by down-regulating CDla, CD40, CD80, CD86 and HLA-DR expression. 

These findings were confirmed by Beyth et al. 182 who suggest that human MSCs converted 

APC into a suppressor cell via cell-to-cell contact, thus locking the DC into an immature state 

and thereby inducing peripheral tolerance. Similarly, Jiang et al. 183 reported that MSCs 

maintain DC in an immature state by inhibiting the upregulation ofIL-12p70. All these results 

suggest that MSCs may be mediating allogeneic tolerance by directing APC toward a 

suppressor phenotype that results in an attenuated T ceIl response. 

3- MSCs modulate the function T helper cells 

Evidence has emerged that MSCs can also interact directly with T cells to suppress 

alloreactivity. The regular process of antigen specific CD4+ T cell induction requires antigen 

capture and processing by APC, followed by a process of maturation and trafficking to local 

lymph nodes l80
. There is evidence showing that MSCs can direct CD4+ T cells to a suppressive 

phenotype. Di Nicola et al.171 as weIl as Tse et al. 163 showed that MSCs strongly suppressed 
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CD4+ T cells in MLR, and attenuated the proliferation of T cell subsets. Studies of T cell 

differentiation have shown that in the presence of human MSCs, Thl secretion of INF-y 

dropped by 50% compared to controls. Conversely, effector T cells undergoing Th2 

differentiation showed a significant increase in IL-4 secretion when co-cultured with human 

MSCs. These findings suggest an important counter-regulatory and anti-inflammatory role by 

directing cytokine-mediated immunity180. Furthermore, sorne studies have shown that MSCs 

influence control over cell division cycle pathways in cells of immunological relevance. 

Glennie et al. 185 have shown that T cells stimulated in co-cultures with MSCs exhibit an 

extensive inhibition of cyc1in D2 and an upregulation of the cyc1in dependent kinase inhibitor 

p27kipt
. 

4- MSCs modulate CDS+ T cells and NK cells 

The role of MSCs on CDS+ T cells and NK cells has also been addressed. There is evidence 

that MSCs inhibit the formation of CDS+ T cells and appear to evade NK cell targeting 

mechanisms185
• Furthermore, Rasmusson et al. 173 showed that NK cells in co-culture did not 

recognize MSCs although their lytic properties were still present. 

5- Cytokines secreted by MSCs 

The characterization of cytokines produced by MSCs is still provisional and is hindered by 

lack of standardization in isolation and culture conditions180
. Sorne reports showed that MSCs 

do constitutively express mRNA for cytokines such as IL-6,-7,-S,-11,-12,-14,-27, leukemia 

inhibitory factor, macrophage colony stimulating factor and stem cell factor186
• Although their 

role is still not fully understood, sorne of these cytokines provide critical cell-cell interactions 
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and promote HSC differentiation. As we saw previously, MSCs can also secrete other peptides 

such as HGF which is likely to contribute to creating a local immunosuppressive 

environment171 ,174. 

Although this remains controversial, IL-l 0 seems to be constitutively expressed by MSCs. This 

interleukin has a well-documented role in T cell regulation and in the promotion of the 

suppressor phenotype180
• IL-lO can also antagonize IL-12 during induction of inflammatory 

immune responses. 

Similarly, TGF-pl seems to also be involved in T cell suppression by working with HGF in 

promoting the allo-escaping phenotype. Di Nicola et al. 171 showed that neutralizing antibodies 

to HGF and TGF-pl restored the proliferative response in MLR suggesting that these factors 

are at least partially responsive,. 

Furthermore, MSCs constitutively express PGE-2, which can influence numerous immune 

functions including suppression of B cell activation and induction of suppressor T cell 

formation l87
. Although there is evidence for PGE-2 secretion by MSCs, there is controversy 

surrounding the role of PGE-2 in inducing T cell suppression. Other prostaglandins and 

eicosanoids could definitely be involved in influencing alloresponses l80
• 

In contrast to immunosuppression through the secretion of soluble factors, suppression may 

also be mediated by withdrawal of factors in the microenvironment necessary for active 

immune responses. Indoleamine 2,3-dioxygenase (IDO) is known to catabolize L-tryptophan 

thereby depleting an essential amino acid from the local environmentl69
. Recent evidence has 

shown that this mechanism is exploited by the mammalian fetal allograft to suppress T cell 

.. d .. 180 actIvItyan prevent reJectlOn . 
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To summarize, three broad mechanisms seem to contribute to this immunotolerance property. 

Firstly, MSCs are hypoimmunogenic, often lacking MHC class II and co-stimulatory molecule 

expression. Secondly, these stem cells prevent T ceIl responses indirectly through modulation 

of dendritic cells and directly by disrupting NK as weIl as CD8+ and CD4+ T cell function. 

Thirdly, MSCs induce a direct immunosuppressive effect on the local environment through the 

production of prostaglandins and IL-l 0 as well as by the expression of 2,3-dioxygenase which 

depletes the local milieu of tryptophan. This suppression mechanism appears to have no 

immunologic restriction because both autologous and third-party MSCs equally induce 

lymphocyte proliferation 167,188. 

In order to understand better the mechanisms involved and the hierarchy of signaIs that control 

immunosuppression, research from other fields has been informative. In fact, in addition to the 

mechanisms involved in the maternaI acceptance of the fetal allograft, the ways tumors evade 

our immune system may also reflect the survival mechanisms of MSCs. 

6- MSCs immuno-modulatory properties and similarities with tumor evasion 

Escape from immune surveillance is believed to be a primary feature of malignant disease in 

humans. Studies have shown that tumors develop multifactorial strategies to escape immune 

deletionI89
• These strategies may provide cIues to how MSCs promote tolerogenic mechanisms 

during allogeneic engraftment. As seen with MSCs, modulation of turnor antigen expression, 

particularly MHC class 1 and II, accompanied by po or or non-expression of co-stimulatory 

molecules is a particularly common component of tumor immune evasionI80
. Furthermore, 

tumor cells have been shown to directly modulate DC and T cell function. Freshly isolated 

tumor-infiltrating T cells are usually inactive against autologous cancer cells but can be 
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reactivated in-vitro by the addition of IL_2189
. Studies on MSCs by LeBlanc et al. 174 showed 

striking paraUe1s to this form of suppression by showing an inhibition ofthe expression ofIL-2 

receptor thereby limiting T cell activation. 

Tumors can also suppress CD4+ T cell activity through secretion of immunosuppressive factors 

including TGF-Pl, PGE-3 and IL-lO. Studies have shown that tumor-derived prostaglandins 

increased the production of inhibitory cytokines such as IL-lO, while suppressing Il-l2 which 

is necessary for effective host cell-mediated antitumor immune response189
. 

Despite similarities between MSCs and tumor ceUs, there are important differences between 

the se 2 populations of ceUs. One fundamental difference resides in the control of cell division 

and apoptosis, which are tightly regulated in MSCs but dysregulated in tumor ceIls180
. 

Furthermore, it is weIl documented that sorne tumor cells use FasL expression to escape 

immune recognition 180. However, it seems that direct induction of apoptotic deletion is not a 

factor involved in MSCs interaction with T cells. It appears that MSCs retain certain aspects of 

the fetal allograft that promote tolerance, sorne of these mechanisms may be reactivated in 

neoplasia, the key difference being that MSCs perform these functions in an ordered and 

controlled way, whereas tumor cells do so in a manner that by definition has escaped normal 

cell controls189
. 

For myocardial regeneration, MSCs may then be exploited as "univers al donor cells" that can 

be isolated and expanded from donors irrespective of their MHC haplotype, tested for their 

functional capabilities weU in advance, and be stored as an "off-the-shelf' reagent for 

immediate use when needed on any patient after an acute myocardial infarction. 

Such cells can aiso be of great value in patients with genetic defects as weIl as in the sick 

elderly patients whose own MSCs may be dysfunctional. Furthermore, in older patients with 
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malignant diseases as well as hematological or bone disorders, sufficient MSCs may not be 

obtained for autologous use174
• Moreover, simultaneous transplantation of MSCs might 

enhance hematopoietic engraftment after bone marrow transplantation!90 and might therefore 

be useful in controlling host-versus-graft diseases in clinical situations in which engraftment 

failure is high, such as HLA-mismatched sibling or umbilical cord blood transplantation. 

Can differentiation still occur in a xenogenelc or allogeneic 

microenvironment? 

Several studies indicate that pluripotent cells from one species can respond to signaIs from the 

microenvironment of another species and differentiate in situ into cells with mature phenotypes. 

This concept has been confirmed by Fukuhara et al.!9! who co-cultured mouse MSCs with rat 

cardiomyocytes and showed that mouse MSCs could differentiate into cardiomyocytes when 

direct cell-to-cell contact was allowed. 

1- Why are the differentiated mature cells derived from xeno- or allogeneic stem cells 

not rejected? 

If, as described previously, the hypoimmunogenicity of donor MSCs is the reason shy these 

cells are not rejected soon after implantation, why are stem cells that have fully differentiated 

into mature cardiomyocytes still tolerated ev en though they now have lost the characteristics of 

stem cells and fully express histocompatibility antigens like any other differentiated cells? 

The classic concept of transplant immune response is that the recipient's T cell with unique 

MHC receptor will bind with a specific allo- or xenogeneic, which signaIs the T cell to be 

activated and to proliferate. According to this scenario, there is no reason why differentiated 

cells should not be rejected. 
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In an attempt to better understand this concept, the "stealth immune tolerance" hypothesis was 

proposed by our lab192
, which is an extension of the "danger model" theory proposed by 

Matzinger168 who suggested that immune rejection of a transplanted organ is not due to 

mismatched MHC antigens from the donor organ alone, but also due to the presence of "danger 

signal" serving as the co-stimulant factor, as a result of an invasive surgical transplant 

procedure. Thus the "stealth immune tolerance" hypothesis is based on the fact that, in the 

particular scenario of stem cell transplantation, the expression of new foreign antigens on the 

maturing cells is temporally dissociated from the danger signaIs derived from the injury 

inflicted by an invasive implantation procedure. This is because it takes many weeks for the 

implanted cells to mature and fully express their MHC antigens. Thus, in cell transplantation, 

by the time the implanted cells differentiate, the effects to tissue injury would have subsided, 

so that the immune synapsis receives only the first "recognition" signal without the second 

"activation" signal l92
. According to the classic view of immunology and to the two-signal 

theory for immune synapsis, the T cells undergo apoptosis, and the implanted cells, now fully 

differentiated, are still tolerated. 

It is important to note that this view although credible, remains so far a hypothetical one and 

that further in vitro study are currently underway to better understand this concept. 

Conclusion 

This introduction reviews the "state of the art" in stem cell research and highlights the finding 

that undifferentiated adult stem cells are not determined progenitor cells with limited 

differentiation potential. Rather, these cells seem to possess a much broader capacity for 

cellular differentiation that is dependent on the microenvironment of the engrafted site. As we 
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saw, a number of developmental regulatory pathways appear, perhaps not surprisingly, to be 

redundantly involved in regulating cell fates, engraftment, migration, lodgment, proliferation 

and differentiation. Although the basic mechanisms may be conserved among different stem 

celllines, it is important to note that the cellular input of self-renewal or differentiation may be 

unique and confined to this particular stem cell and its microenvironmental niche. Furthermore, 

the multilineage potential of MSCs, their ability to elude detection by the host's immune 

system, and their relative ease of expansion in culture make MSCs transplantation a fascinating 

new approach for the management ofheart disease. Ideally, MSCs can be harvested, expanded, 

and cryopreserved, ready for injection into patients following myocardial infarction. 
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Study Rationale: 

Background information 

Coronary artery disease accounts for 50% of aIl cardiovascular deaths and remains a major 

cause of morbidity and mortalityl. Cellular transplantation is a promising strategy that can 

improve heart function through several mechanisms including myogenesis2
, angiogenesis3 and 

through paracrine effects attenuating left ventricular remodeling 4,5. In recent years, we and 

others have reported that autologous marrow stem ceIls (MSCs), when transplanted into 

infarcted myocardium, can differentiate into cells of various phenotypes and improve 

ventricular function4,6-9. The observed beneficial effects of cell transplantation have then led to 

many human clinical trials lO-13. 

Despite the promising early results, such clinical application remains limited by the logistic, 

economic and timing issues when harvesting autologous cells from elderly sick patients. 

Furthermore, a number of recent studies have documented a significantly reduced capacity for 

neovascularization, proliferation and differentiation as well as increased levels of apoptosis in 

vitro and in vivo in MSCs obtained from elderly donors and from patients with diabetes or 

ischemic heart disease I4
-
18

. These impairments clearly limit the therapeutic potential of 

autologous MSCs and highlight therefore the clinical advantages of "univers al donor cells" for 

cellular transplantation. 

Recently rodent and porcine MSCs have been reported to be uniquely immune tolerant, both in 

the in vitro mixed lymphocyte co-culture studies l9
,20 and in the in vivo aIlo- and xeno-transplant 

models4,21-24. Although there is a substantive body of literature that supports the notion that 

human MSCs are immunosuppressive in vitro, it is not yet clearly proven whether their 
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immunoprivileged properties are retained universally in vivo, and whether these cells still 

possess their ability to improve ventricular function within a xenogeneic environment. Thus we 

transplanted human MSCs into infarcted rat myocardium without the use of any 

immunosuppression and evaluated whether these cells could survive, differentiate and 

contribute to the improvement in heart function. 

Objectives of this research project are: 

To implant human MSCs into infarcted rat myocardium without immunosuppression and to see 

whether these cells 1) survive, 2) differentiate and 3) contribute to the improvement in the 

overall cardiac function 
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Animais 

Immunocompetent female syngeneic Lewis rats (200-250 g, Charles River, Quebec, Canada) 

were used in this study. AlI procedures were approved by the Institutional Animal Care 

Committee at the McGill University Health Center and performed by one author (R.A.) in 

compliance with the Guide for the Care and Use of Laboratory animaIs published by the US 

National Institutes of Health (NIH publication No. 85-23, revised 1996) and the Guide to the 

Care and Use of Experimental AnimaIs of the Canadian Council on Animal Care. 

Experimental design 

A total of 90 female rats underwent open-che st coronary artery ligations and were randomly 

assigned to 3 groups (figure 1). In group l (n=40), lac-Z labeled human male MSCs (3 x 106
) 

were injected directly into the peri-ischemic region of rat myocardium 5 minutes after ligation 

of the proximalleft coronary artery. In group II (n=10), lac-Z labeled isogenic rat MSCs (3 x 

106
) were similarly injected around the peri-infarcted myocardial region. In group III (n=lO), a 

similar volume of cell-free culture medium was injected into control animaIs after coronary 

ligation. No immunosuppression was given at any time. AlI animaIs underwent blinded 

assessment with transthoracic echocardiography at 4-5 days after implantation and 8 weeks 

after injection. Heart specimens from group l were serially harvested at 1, 3, 6 and 8 weeks and 

processed for immunohistochemical and polymerase chain reaction (PCR) analyses. Rats in 

group II and III were sacrificed 8 weeks after cell implantation. 

Additionally, fully differentiated human male fibroblasts (3 x 106
) were directly injected into 

infarcted rat myocardium and served as immunologie controls (group IV, n=12). Hearts were 

serially harvested and examined for the presence of cellular infiltration and surviving labeled 

fibroblasts by immunohistochemistry and PCR analyses. 
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Cell Isolation, culture and labeling 

Rat MSCs 

Isolation and culture of rat MSCs were performed according to Caplan's method25
• Briefly, 

after an overdose of pentobarbital (lOOmg/kg) given intraperitoneally, bone marrow stromal 

cells were harvested by flushing the femurs and tibias with Dulbecco Modified Eagle Medium 

(DMEM) supplemented with 10% fetal bovine serum and antibiotics (lOOU/mL penicillin G, 

1 00 ~g/mg streptomycin, 0.25 ~g amphotericin B; AlI obtained from Gibro Laboratories, 

Boston, MA) in a humidified atmosphere of 5% CO2. 

Whole marrow was plated in tissue culture dishes, medium was replaced every 3 days and the 

nonadherent cells were discarded. Each primary culture was passaged twice to 3 new plates, 

and the cell density of the colonies was grown to approximately 90% confluence. To prevent 

the MSCs from differentiating or slowing their rate of division, each primary culture was 

replated to 3 new plates when the cell density within colonies became 80% to 90% confluent, 

approximately 2 weeks after seeding. 

Once these cells were nearly confluent, MSCs were transfected as described previously 26 with 

pMFG-lac Z plasmid containing p-galactosidase gene for identification of the transplanted cells 

in the myocardial scar tissue. The resulting MSCs expressing lacZ were expanded for 4 weeks 

before transplantation. The cells were allowed to proliferate until at least a 70% confluence 

was achieved before using them for transduction in order to achieve a high retrovirus titer. 

Twenty-four hours before transduction, the MSCs were trypsinized with 0.05% Trypsin + 0.53 

mM EDTA (Gibco Labs) and replated. The next day, these cells were transduced with lac Z 

retroviral particles twice per day for 3 consecutive days with lipofectamine (3~L of 
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lipofectamine 2mg/mL solution for each 1mL of virus medium). At each transduction, the 

MSCs medium was replaced with the supernatant from the lacZ-GP + AM 12 ceIls. 

HumanMSCs 

Human MSCs were isolated, cultured and prepared by Cambrex Inc?7. Briefly, bone marrow 

aspirates were passed through a density and hematopoietic ceIls, fibroblasts, and other 

nonadherent ceIls were washed away during medium changes. The remaining purified MSCs 

population was further expanded in culture to form a clonaI homogeneous population of cells, 

fully characterized by specifie ceIl s.urface markers using flow cytometry, being uniformly 

positive for CD 166, CD 105, CD44, CD29 and negative for hematopoeitic markers such as 

CDI4, CD34 and CD45. Furthermore, their capacity to differentiate along adipogenic, 

chondrogenic, and osteogenic lineages was assessed as described e1sewhere26 . They were then 

shipped to our laboratory at 4°C for cell transplantation. Upon arrivaI, the cells were 

resuspended in DMEM supplemented with 10% FBS. After transfecting them with lac-Z 

encoding gene, they were maintained in a humidified atmosphere containing 5% C02. 

Human fibroblasts 

Human fibroblasts were harvested by outgrowth from a piece of chest skin taken from male 

donors. Attached cells in culture flasks were then transfected with lac Z reporter gene as 

described above. 
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X-gal staining for detection of p-galactosidase activity 

Seventy-two hours after the last transduction, MSCs were trypsinized and parts of the cells 

were plated in a 35-mm dish for histochemical staining for p-galactosidase activity, in order to 

determine the percentage of cells expressing p-galactosidase. The medium was aspirated from 

the plates and the cells rinsed with PBS. The cells were fixed at 4°C in fix solution (2% 

formaldehyde and 0.2% glutaraldehyde in PBS) for 15 minutes and rerinsed with PBS. 

Staining for p-gal was performed with a solution containing 1 mg/mL 5-bromo-4-chloro-3-

indoyl-p-D-galactoside (Xgal), 1 mmol/L ethyleneglycol-bis(p-aminoethyl-ether)-N,N'­

tetraacetic acid, 5 mmol/L K3Fe(CN)6, 5 mmol/L ~Fe(CN)60 . 3H20, 2mmol/L magnesium 

chloride, and 0.01 % sodium deoxycholate was added. The cells were then incubated at 37°C 

and protected from light for 16 hours. The presence of blue-labeled cells was then confirmed 

under phase microscopy. 

Preparation of ceUs for injection 

Cells isolated from the rat bone marrow, as well as human MSCs were cultured in complete 

medium in tissue culture dishes. After labeling, the medium was aspirated and the cells were 

washed with 6mL of Hank's balanced salt solution (HBSS). The HBSS was aspirated and 2mL 

of trypsin-EDT A was added to detach the cells from the bottom of the dish. The detached cell 

suspension was then placed in a flask with 2mL of complete medium and placed in a 

hemocytometer for counting. A volume consisting of 3xl06 cells was then collected and 

centrifuged at 2500 rpm for 5 minutes. The supematant was discarded and the cell pellet 

resuspended in 0.5 cm3 of complete medium. 
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Creation of the infarction and transplantation of MSCs 

Female rats were anesthetized with 5% isoflurane (MTC Pharmaceuticals, Cambridge, Ontario, 

Canada). AnimaIs were intubated with an 18-gauge intravenous catheter and connected to a 

Harvard rodent ventilator (Harvard Apparatus Co. Inc, Boston, MA) at 85 breaths/minute. 

Anesthesia was maintained with 3% isoflurane and oxygen at 5-6L1min. 

A 1.5 cm left anterolateral thoracotomy was performed in the fifth intercostals space under 

sterile conditions to expose the heart, and the left coronary artery was ligated approximately 1 

to 2 mm from its origin with a 7-0 polypropylene suture (Ethicon, Inc, Somerville, NJ) (figure 

2). Successful performance of coronary occlusion was verified by observation of the 

development of a pale color in the left ventricle after ligation. Under direct vision, human male 

MSCs and rat MSCs (3 x 106 cells suspended in 150 ~L Dulbecco Modified Eagle Medium) 

were injected directly at 3 different sites into the peri-infarcted area of the left ventricle using a 

28-gauge insulin syringe 5 minutes after coronary artery ligation. Small blebs under the 

injected area were confirmed in every case. An equal volume of cell-free culture medium and 

fibroblasts (3 x 106
) were injected into the control animaIs (group III and IV) respectively. 

After achieving hemostasis, the muscle layers and skin were closed separately with 4-0 

mono filament sutures. Once spontaneous respiration resumed, the animaIs were extubated and 

placed in a temperature-controlled chamber until they resumed full alertness and mobility. 

Furthermore, Buprenorphine hydrochloride (0.01 to 0.05mg/kg SC) was given postoperatively 

for pain. 
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FunctionaI Assessment 

Transthoracic echocardiography was perforrned on all surviving animaIs in group l (n=23), II 

(n=10) and III (n=10) at 4-5 days (baseline) and at 8 weeks after coronary ligation. 

Echocardiograrns were obtained with a commercially available system (Sonosite, Titan­

Washington) equipped with a 15-MHz transducer. We decided a priori to exclude any rat that 

had an ejection fraction above 45% after the tirst echocardiogram. After sedating the animaIs 

with 2% isoflurane, echocardiography was perforrned as described elsewhere28
. Briefly, 

parastemal long- and short-axis views were obtained with both M-mode and 2-dimensional 

images. End-diastolic (LVEDD) and end-systolic (LVESD) diarneters of the LV were 

measured with M-mode tracings between the anterior and posterior walls from the short-axis 

view just below the level of the papillary muscles of the mitral valve. This was done according 

to the American Society of Echocardiology leading-edge method from at least 3 consecutive 

cardiac cycles28
• Fractional shortening (FS) was determined as [(LVEDD-LVESD)/LVEDD] x 

100 (%). LV end-diastolic volume (LVEDV) was calculated as 7.0 x LVEDD3 
/ (2.4+LVEDD), 

and LV end-systolic volume (LVESV) as 7.0 x LVESD3 
/ (2.4+LVESD. The ejection fraction 

(EF) was estimated as (LVEDV-LVESV) / LVESV x 100 (%). 

All measurements were perforrned by one experienced observer who was blinded to the 

treatment groups. 

Tissue processing and staining for p-galactosidase activity 

Hearts from group l were serially harvested at different time intervals for up to 8 weeks. Five 

rats were sacriticed at 1 week, 12 rats at 3 weeks, 13 rats at 6 weeks and 10 rats at 8 weeks. All 

the hearts from group II and III were processed 8 weeks after cell implantation (n=10 each). 
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Specimens were serially harvested at 1,3, 5, 8, 10, 12 and 14 days in group IV and processed 

for histological analyses. 

The hearts were collected and rinsed with PBS, fixed in 2% paraformaldehyde and stained for 

~-galactosidase activity as described previouslr6
. After X-gal staining, the hearts were cut 

longitudinally and embedded in paraffin. 

Histological and Immunohistochemical Analyses 

SeriaI coronal sections of 5 !lm in thickness were then mounted on a set of gelatin-coated glass 

slides such that seriaI sections could be used for different stains. A series of section from each 

heart specimen were stained with hematoxylin and eosin to depict nuclei, cytoplasm and 

connective tissue and assess cell survival as weIl as the extent of cellular infiltration. In order 

to examine the extent of differentiation, immunohistochemical staining on other seriaI sections 

from each heart was done as previously described26 using cardiomyocyte-specific markers for 

troponin IC (Santa-Cruz Biotechnology Inc, Santa Cruz, Calit) and connexin-43 (Zymed 

Laboratories, Inc, San Francisco, CA). Cellular infiltration was detected by hematoxylin and 

eosin staining and confirmed by staining with CD68 monoclonal antibodies against 

macrophages (Abcam Inc, Cambridge, MA). 

1- Hematoxylin and Eosin 

A series of sections from each heart specimen were stained with hematoxylin and eosin in the 

following method: 

Staining procedure 

1- Xylene 2 minutes 
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2- Xylene 2 minutes 

3-100% alcohol 2 minutes 

4- 100% alcohol 2 minutes 

5- 95% alcohol 2 minutes 

6- 80% alcohol 2 minutes 

7 - 70% alcohol 2 minutes 

8- Tap water wash 2 minutes 

9- Distilled water 6 dips 

10- Harris' Hematoxylin Up to 5 minutes if necessary* 

11- Tap water 2 minutes or until clear 

12- Acid alcohol 3 dips 
70% aleohol 1000ee + hydroehlorie aeid, eoncentrated 10ee) 

13 - Tap water 2 minutes 

14- Ammonia water 7 dips 
2 ml NH40H + Il of distilled water 

15- Tap water 2 minutes 

16- Eosin 1 dip 

17- 100% alcohol 2 dips 

18- 100% alcohol 2 dips 

19- 95% alcohol 2 dips 

20- Xylene 2 minutes 

21- Xylene 2 minutes 

22- Slides were then dried and coverslips applied with Perimount mounting media (Fisher 

Scientific) 
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* Slides may be dipped in Hematoxylin for 1-2 minutes at a time, then rinsed under tap water 

and viewed under a light microscope for adequate staining 

Immunostaining 

Immunostaining with anti-connexin 43, troponin I-c and CD-68 was performed III the 

following manner: 

Dewaxing parajjin slides 

1- Incubate slides in xylene 

2- Incubate slides in xylene 

3- 100 % ethanol twice 

4- 95% ethanol twice 

5- Wash in deionized water 

5 minutes 

5 minutes 

10 minutes each 

10 minutes each 

5 minutes 

Heat-induced epitope retrieval (for Connexin 43 only) 

1- After slides were deparaffinized as described above, they were washed with distilled 

water 3 times for 2 minutes each 

2- Slides were put in a slide rack and placed in a 1 L glass beaker containing 500 mL of 

0.01 M citrate buffer 

3- The beaker was placed on a hot plate and the solution heated it boiled for 10 minutes 

4- After heating, the beaker was removed from removed from the hot plate and allowed to 

cool down for at least 10-20 minutes at room temperature 

5- Slides were rinsed with PBS and the immunostaining protocol started 
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Immunoperoxidase staining procedure 

AlI steps were carried out at room temperature in a humidified chamber 

Blocking endogenous peroxidase activity 

1- Slides were incubated for 10 minutes in 0.3% hydrogen peroxide diluted in methanol at 

room temperature to quench endogenous peroxidase activity 

2- Slides were washed with PBS twice for 5 minutes each 

3- A tissue adhesion pen was used to encirc1e aIl specimens on the slide 

Blocking non-specifie antigenicity 

Sections were incubated for 1 hour with 1.5% blocking serum in PBS. Excess 

blocking serum was blotted from all slides 

Primary antibody application 

Sections were incubated with primary antibody overnight in a humidified chamber at 

4°C. Optimal antibody concentrations were determined by titration, diluted in 1.5% 

blocking serum in PBS. Optimal antibody concentrations for troponin I-C and 

connexin-43 used were 1 )..tg/mL. 

Secondary antibody application 

Slides were washed with PBS 3 times, for 5 minutes each time after the application of 

primary antibody. Sections were incubated for one hour with 10)..tL of biotinylated 

secondary antibody at a concentration of l)..tg/mL (alpha-rabbit IgG made in goat, 

Vector laboratories). 
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ABC Horseradish peroxidase application 

1- ABC solution was mixed and allowed to stand for 15 minutes prior to use. ABC 

solution consisted of 1 f.tL avidin (solution A) in 998 f.tL of 10% lamb serum/PBS 

with If.tL botinylated horseradish peroxidase solution (solution B). 

2- Slides were washed 3 times with PBS 

3- Sections were incubated with 100f.tL of 1: 1 000 ABC solution at room temperature 

for 60 minutes 

4- Slides were washed with 3 changes of PBS for 5 minutes each 

Chromagen visualization 

1- Diaminobenzidine tetrahydrochloride (DAB) solution consisted of 100 mL 0.1 M 

tris, pH 7.6; 11.1 mM D-glucose; 7.5 mM NH4CI; 60 units glucose oxidase; and 

1.16 mM DAB 

2- Slides were incubated in solution at room temperature for 5-10 minutes 

3- The AEC substrate kit for peroxidase was prepared as follows: 

a. 2 drops of Buffer Stock solution was added to 5 mL of distilled water and 

mixed well 

b. 3 drops of AEC stock solution were added and mixed weIl 

c. 2 drops of hydrogen peroxide solution was added and mixed weIl 

d. Tissue sections were incubated with the substrate at room temperature until 

suitable staining developed. Development times varied based on the tissue 

thickness and were determined by incubating sections 2 minutes at a time, 

stopping the reaction in distilled water and then viewing of the colored 

reaction product under light microscopy 
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Counterstaining after immunostaining 

Counterstaining after immunostaining was performed with Hematoxylin alone in order 

to show the morphology of the labeled cells in relation to surrounding myocardium. 

The procedure is as follows: 

1- Distilled water rinse 

2- Harris' Hematoxylin 

3- Tap water 

4- Acid alcohol 

5- Tap water 

6- Ammonia water 

7- Tap water 

6 dips 

Up to 5 minutes 

2 minutes or until clear 

Dips 

2 minutes 

7 dips 

2 minutes 

8- Slides were then dried and coverslipped with Permount mounting medium. 

Cells derived from the implanted MSCs or fibroblasts (lac-Z IabeIed) were identified by their 

blue nuclei under Olympus light microscopy (BX41-TF, Olympus, Tokyo, Japan). Digital 

images were then transferred to a computer equipped with Image Pro Software (Media 

Cybernetics, Silver Spring, MD). 

Furthermore, the fluorescent in situ hybridization technique (FISH) was used to confirm our 

results by allowing the detection of nucleic acid sequences specifie to the hum an Y 

chromosome. The FISH procedure has been previously described29
• 

In brief, the paraffin slides were baked at 60°C for 2 hours, and after removing the paraffin, the 

rehydration process was performed using 95%, 70% and 50% ethanol respectively. The sI ides 
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were microwave-treated in citrate buffer (10 mmol/L, pH 6) for 1.5 minutes at 750W followed 

by 4.5 minutes at 50W. A mixture of 0.5 mL pepsin and 50 mL of HCI (150 I-lg/mL) was 

applied to each slide and incubated at 37°C for 20 minutes and in 2 x sodium citrate-sodium 

chloride buffer (SSC) with 0.1 % igepal for 10 minutes. The slides were then incubated in 1 % 

formaldehyde/50mmol/L MgClz/PBS for 10 minutes at 20°C and in PBS for another 5 minutes, 

following by dehydration. Then 31lL FISH probe cocktail (Vysis Inc, Downers Grove) was 

applied to each section. After this step, simultaneous denaturation of probe and target DNA 

was carried out at 74°C for 10 minutes. The slides were then incubated ovemight in a 

humidified chamber at 39°C to allow hybridization of probe and target DNA. After several 

washes, the remaining probe molecules were stained with antifade containing 4,6-diamino-2-

phenylindole (DAPI). Slides were then examined by an independent observer using an 

Olympus fluorescent microscope (Tokyo, Japan). 

PCR analysis 

Random samples from group l and IV were also processed for PCR analysis to confirm the 

survival of the implanted male cells into female hearts at different time intervals. This method 

was previously shown to be highly sensitive and specific for the detection of viable 

transplanted celIs3o
• 

Genomic DNA was purified using Dneasy (Quiagen, Valencia, CA) according to the 

manufacturer's instructions and the presence of living human male cells in female hearts was 

confirmed by targeting a specifie micro satellite sequence within the human Y chromosome 

(DYS390). The primer pairs used were TATATTTTACACATTTTTGGGCC and 

TGACAGTAAAATGAACACATTGC. A pair of primers for rat aconitase gene was used as a 

85 



control (forward: 5' -TTTCAAACCCTGTCAACAAATG-3'; reverse: 5'-

CTTCCAAGTGAGCGAAGACC-3') in parallel PCR reactions and genomic DNA from both 

male human MSCs and infarcted female rat heart tissues with no MSCs implantation were 

processed as a positive and negative control respectively. 

The PCR reaction mixture contained 150nM of each primer and 100 ng of sample DNA 

template with the following thermal protocol: 5 minutes activation step at 95°C for the 

HotStarTaq Plus DNA polymerase (Quiagen, Valencia, CA) followed by 35 cycles of 

denaturation (94°C for 30sec), annealing (58°C for 30 sec) and extension (72°C for 1 min) as 

weIl as a final extension step (72°C for 10 min). 

Statistical Analysis 

AU data are expressed as mean ± SEM. Repeated echocardiographic variables at 4-5 days and 

after 8 weeks were compared by means of l-way repeated-measures analysis of variance 

(ANOVA). If a significant F ratio was obtained, a Bonferroni post hoc test was used to assess 

pair-wise differences. A value of P<0.05 was considered statistically significant. 
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Chapter 3 

RESULTS 
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MSCs culture 

MSCs (rat and hum an) proliferated in the culture medium, adhered to the bottom of the culture 

dish, and developed spindle-shaped morphology (figure 3). They were observed under phase 

microscopy and assessed for proliferation and morphology at each medium change. To trace 

the fate of MSCs after implantation, the ceUs were transfected with replication-defective 

retrovirus carrying the laeZ reporter gene. B-galactosidase staining in vitro demonstrated that 

transfection efficiency was nearly 100% and 80% in rat and human MSCs respectively (figure 

4). 

Mortality and sam pie size 

The overaU mortality was 20% (18/90) occurrmg mainly during the first 48 hours after 

coronary ligation. There was no significant difference in the mortality rate among the different 

groups. No late postoperative death was observed. Furthermore, there were neither transplant­

related mortalities nor morbidities associated with immunorejection. 

Echocardiographic measurements were do ne in 43 rats, histological and immunohistochemical 

analyses in 72 rats and PCR in 20 rats. AU rats had an EF < 45% after ligation and were aU 

therefore included in the analyses. 

Histologie and immunohistoehemieal assessment of engrafted eells 

Gross examination of the infarcted hearts revealed a fibrous scar in the left ventricle that was 

clearly delineated from the normal myocardium. After x-gal staining, aU hearts in group land 

II revealed sparse areas of blue discoloration suggesting the presence of labeled ceUs. This was 

in contrast with the hearts in the control group (figure 5). 
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As could be expected, isogenic rat MSCs were shown to engraft within the injured rat 

myocardium (figure 6A). 

Histologie examination of seriaI sections of group 1 confirmed the successful engraftment of 

human MSCs within the xenogeneic environment at 1, 3, 6 and 8 weeks after cell implantation 

(figures 6 and 7). This finding was primarily assessed by histochemistry and confirmed by 

FISH analyses (figure 8). 

It is of interest to note that at 1 and 3 weeks, the MSCs were scattered throughout the ventric1e 

having different shapes and sizes (figures 6B and 7 A). However, at 6 and especially at 8 

weeks, sorne transplanted cells started to acquire a more elongated and mature phenotype and 

to align with other host cardiomyocytes (figures 6C and D). Furthermore, positive connexin-

43 staining was found between grafted cells and neighboring host cardiomyocytes (figure 7D). 

Although a mild inflammatory reaction was seen as expected in aIl groups at an early stage, no 

significant inflammatory response suggestive of immune rejection remained in any cross­

sections of group 1 after 1 week, ev en after the expression of cardiac-specific markers. This 

was in contrast with Group IV where extensive mononuc1ear cellular and macrophage 

infiltration was noted early after xenogeneic fibroblast implantation (figures 9A-C). This was 

accompanied by a rapid loss of labeled fibroblasts with time, with none remaining 8 days after 

ligation. 

PCR results 

In addition to Xgal staining, we confirmed the survival of human MSCs within the 

xenotransplant environment with PCR, targeting a specifie region within the human Y 

chromosome. Genomic DNA purified from the recipients' left ventric1es was amplified and the 
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DNA product was detected at aH time points in aH samples that were randomly harvested from 

rats in group l (figure 10). This was in contrast with hearts from group IV where human 

fibroblasts were implanted. In this group, no gene product could be amplified beyond 8 days. 

This finding correlated with the histological results. Furthermore, as expected, genomic DNA 

from female rats (group III) produced no detectable PCR product. 

Assessment of cardiac function 

The left ventricular ejection fraction (EF), fractional shortening (FS) and left ventricular end­

systolic (L VESD) and end-diastolic diameters (L VEDD) measurements were not significantly 

different among the 3 groups preoperatively. However, it should be noted that this model 

resulted in severe cardiac injury with reductions in contractile function and dilatation of the left 

ventricle noted in aH groups to a similar degree 3-4 days after infarction (figure 11). 

Six to eight weeks after ceH implantation, a significant improvement on the EF and FS was 

observed in groups 1 and 2 compared with the control group (p<O.OO 1) indicating a beneficial 

effect of transplantation (figure 12). Furthermore, a significant increase in the ejection fraction 

from 35.2%±5.5% to 43.8%±6.1 % (P<O.OOI), and in fractional shortening (15.1 %±2.8% to 

17.4%±3.6%; P=0.04) were noted in group lover time. Similar changes were se en in group II. 

In contrast, there was a reduction in the ejection fraction (36.7%±4.1 % to 25.6%±5.7%; 

P=0.002) and fractional shortening (14.7%±2.1% to 9.5%±1.1%; P=0.002) in group III. 

Although the LV dimensions were similar in aH groups 3-4 days after ligation, they continued 

to worsen over time in group III whereas these parameters were steady in the transplanted 

groups indicating a favorable effect on LV remodeling (figure 12). This was also apparent on 
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gross morpho1ogy (figure 13). Although a trend cou1d easi1y be observed in both diameters in 

the transp1anted groups, statistica1 significance was reached with on1y LVESD. 
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Chapter 4 

DISCUSSION 
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The major findings of this study were that 1) human MSCs implanted into infarcted rat 

myocardium survived for at least 8 weeks, as demonstrated by histochemistry, and confirmed 

by in situ hybridization and PCR analyses; 2) no significant inflammatory reaction was seen in 

the MSC-transplanted rats, despite the lack of any immunosuppressive therapy; and 3) the 

implanted MSCs significantly contributed to the improvement in ventricular function and 

attenuated LV remodeling. 

Survival of Implanted Ce Ils 

Perhaps the most significant observation in this study was the successful engraftment and 

survival of human MSCs in a xenogeneic immunocompetent environment for at least 8 weeks 

after implantation. It is important to emphasize that clinically, we would still favor the use of 

allogeneic MSCs for cellular transplantation, thus to avoid risks such as trans-species viral 

infections. However, we decided to confirm their immunotolerance property in an extreme 

xenogeneic mismatch model, since this would be immunologically more challenging. 

We previously reported the formation of stable cardiac chimera in a mice_to_rat22
,31 and pig-to­

rat23 models. However, in this current study, we used a clonally homogeneous population of 

human MSCs, fully characterized by specifie cell surface markers and by their confirmed 

potential to differentiate in vitro into multiple celllineages28
. 

In accordance with our previous results using mice22
,31 or pig MSCS23

, no significant 

inflammatory reaction was observed in the MSC-transplanted groups. This also confirms the in 

vitro findings reported by Grinnemo et al. where human MSCs were tolerated when co­

cultured with rat lymphocytes32
. However, this was in contrast with our immunological control 

group where human male fibroblasts were implanted. In this case, and as expected, a massive 
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macrophage and mono cellular infiltration was seen early after implantation and the human 

fibroblasts were rapidly rejected and eliminated. 

Extent of differentiation 

In this current study, we again confirmed the importance of the microenvironment to supply 

the proper conditions for cardiomyocytic differentiation of the MSCs. These results are 

consistent with previous observations reported by our group6,8,26 and by other 

laboratories2,4,7,9,28,33,34. It is of interest to note that at 3 weeks, none of the p-gal+ cells 

expressed cardiac-specific markers. At 6 weeks, some transplanted cells were shown to acquire 

a more mature elongated phenotype and to better integrate within the cardiomyocytic network. 

This was more apparent at 8 weeks after transplantation when sorne cells started to express 

cardiac-specific markers and to develop connexin 43-positive gap junctions with other host 

cardiomyocytes. Although the extent of complete differentiation was not observed in all the 

slides, sorne transplanted cells seemed to acquire with time a more mature phenotype, 

appearing more rod-shaped with a centrally located nuclei and aligning themselves within the 

muscle fibers. 

Orlic et al? reported that intramyocardial injection of bone marrow-derived cells Ied to the 

regeneration of >60% of contracting myocardium. Similarly, after transplanting MSCs into rat 

myocardium, Tomita et al.7 reported the expression of cardiac-specific proteins 8 weeks later. 

This was aiso confirmed by Toma et a1. 33 and Min et a1. 34 after implanting human MSCs in 

immunosuppressed rat and pig model, respectively. In contrast, Balsam et a1.35 and Murry et 

a1.36 reported fusion of implanted cells with the host cells, without evidence of donor cell 

differentiation. Thus, whether MSCs could fully differentiate into cardiomyocytes remains 
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controversial. It may be note d, however, the cells used by Balsam et al and Murry et al appear 

to be the CD 34-positive hematopoietic stem cells (HSCs), while our cells are CD 34-negative 

MSCs obtained from the marrow stroma, which characteristically adhere to culture dish, in 

contrast to the HSCs. 

Our results also confirmed in vivo the concept that the "milieu-dependent differentiation" may 

not be species specifie. Fukuhara et al.37 had shown that co-culture of mouse MSCs with rat 

cardiomyocytes could successfully induce the former to undergo cardiomyocytic 

differentiation. 

Our results reported here were in contrast with those of Grinnemo et al.32 who similarly 

transplanted human MSCs into infarcted rat myocardium. In their study, human MSCs could 

not be detected 1 week after implantation and a massive infiltration was observed in the 

immunocompetent rats. However there seems to be sorne subtle differences in our 

experimental designs. For example, in their study, MSCs were harvested from the sternum of 

patients undergoing cardiac surgery32. Such patients tend to be oider and sick. A number of 

recent studies have shown that MSCs harvested from elderly patients and from patients with 

coronary artery disease exhibit a lower capacity for differentiation, survival and proliferationl4o 

17. In our study, human MSCs were collected from young healthy donors with no history of 

cardiac or other systemic diseases. In fact, the same group had previously demonstrated the 

. 1 . f h MSC' 1" d' 192038 It' f' t 1mmunoto erant propert1es 0 uman s m severa zn vItro stu les ' '. lS 0 mteres to 

note that in aU these studies, as well as in the in vitro studies by others 39, human MSCs used 
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were harvested from young healthy donors. Still, further studies to clarify reasons for such 

contradictory findings will be highly desirable. 

The immunotolerance property of MSCs 

Our findings of MSCs immune privilege are consistent with many recent observations made in 

the in vitro mixed lymphocyte co-culture studies19
-
21

. In addition to being hypoimmunogenic 

and expressing low levels ofMHC antigens and co-stimulatory molecules4o
, both differentiated 

and undifferentiated MSCs have been shown to suppress allo- and xeno-reactive 

lymphoproliferative responses and to modulate T and NK cell activity by altering the cytokine 

secretion profile of antigen-presenting cells19
,30,41. The secretion of anti-inflarnmatory 

cytokines may also augment the immunosuppressive effects of regulatory T cells. In addition 

to this in vitro evidence, there is mounting observations that MSCs are immuno-privileged 

cells in vivo as well. The injection of allogeneic MSCs in baboons was tolerated without 

immunosuppression42
, was shown to prolong skin graft surviva121

, to alleviate auto immune 

disorders43
, to engraft in the brains of albino rats44 and to reduce severe graft-versus host 

disease during bone marrow allotransplantations45
. Furthermore, Liechty et al. reported the 

survival of hum an MSCs in fetal sheep and their differentiation along multiple lineages, even 

after the development of immune competence46
. Additionally, our group had reported 

. 1 "1 l' 22 d . 23 1 d 1 prevlOus y Simi ar resu ts III mouse-to-rat an pig-to-rat xenotransp ant mo e s. 

Effects of MSCs on Cardiac Function 

In the present study, MSCs transplantation was accompanied by a significant improvement in 

ventricular function which was greater in the MSC-transplanted groups at aIl time points. 
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These results extend the previously reported findings of MSCs transplantation in several other 

studies in animal models6
,9,34 and in humans lO

-
13

. Although the exact mechanism for improved 

heart function was not determined in this study, it has been suggested that heart function might 

be improved by the contractile properties of the neocardiomyocytes2
,6, by preventing 

ventricular remodeling and dilatation4
, enhancing neoangiogenesis3

,4,7, and through other 

paracrine mechanisms altering the extracellular matrix and reducing scar formation and 

expansion5
,48. Based on the small number of cells retained after implantation49 and given the 

magnitude of the effects on ventricular function, it is likely that the improvement in regional 

function se en in our study probably resulted from a combination of these factors, although 

further mechanistic studies are definitively warranted. 

Furthermore, our observations suggest that, in addition to the improved contractile function, 

MSCs contributed as weIl in attenuating LV remodeling and preventing L V dilatation as 

demonstrated by the relative stabilization of the L V dimensions in the transplanted groups over 

time. This is consistent with our previous findings31 and may be related to the paracrine action 

of engrafted MSCs after myocardial infarction involving a number of angiogenic and growth 

factors, and the downregulation of proapoptotic proteins5
,47,48. 

Study Limitations 

This study has severallimitations. Although we did not quantitatively assess ceIl survival after 

injection, we and others have previously demonstrated that a relatively small proportion of cells 

is retained after injection, mainly because of mechanical losses attributed to the injection of 
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cells into a beating heart49
• This important issue is under intensive study by us to improve the 

efficiency of cell delivery. 

Although we did not assess the question of chronic rejection, we confirmed the survival of 

these cells for up to 6 months after transplantation in a previous study implanting pig MSCs 

into rat myocardium23
. Recently, a similar finding in an allogeneic mode1 was reported also by 

Dai et a1.4
• Further studies will however be required to determine whether the survival of 

human MSCs and their beneficial effects are preserved with longer follow-up. 

Conclusion 

In summary, our present study is the first, to our knowledge, to confirm the in vivo 

immunotolerance property of human MSCs and their contribution in improving heart function 

in an extreme mode1 of xenogeneic mismatch. By attenuating contractile dysfunction and 

pathologie remodeling, these cells significantly contributed to a remarkable recovery in 

ventricular performance after myocardial infarction. 

The potential importance of these findings for the treatment of ischemic heart disease is 

apparent. In addition to their powerful replicative capacity, MSCs can easily be harvested from 

bone marrows, expanded ex vivo, and differentiated into many cell type lineages, if desired. 

Another recent and important attribute that was confirmed in this study is their unique 

immunotolerance pro pert y and their ability to be transplanted in an allo- or xenogeneic setting. 

We suggest that this unique attribute would allow these cells to be used as "universal donor 

cells" with fascinating therapeutic implications. From a clinical perspective, these cells could 

be harvested and mass-produced well in advance, tested for their functional capabilities, and 
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stored as a standardized ceIl population for immediate "off the shelf" use on any patient 

without delay following an acute myocardial infarction. Such logistic advantages are not 

available with the use of autologous MSCs which is currently the cell source of choice. 

Perhaps more importantly, since such allogeneic MSCs can be obtained from young healthy 

donors, they could be of great value in patients with genetic cardiomyopathies and in the 

elderly patients with ischemic heart disease or diabetes whose own MSCs could to be 

dysfunctional. 
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FIGURES 

Figure 1 

Experimental design 

1week (N =5) 

3 weeks (N =12) 

6 weeks (N =13) 

8 weeks (N =10) 

~ 

Group III 

Group IV 

Human male 
fibroblasts (N=12) 

Group Il Ligation + culture medium 
(N=10) 

Ligation + rat MSC 

(N = 10) 

\ / 
Immunohlstochemlstry + 
transthoracic echo at 8 wks 

Immunohlstochemlstry 

No immunosuppression used 
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Figure 2 

After exposing the heart via a left thoracotomy incision, the left coronary artery was ligated 

proximally with a 7.0 polypropylene suture (in blue). A pale infarcted area could be seen in the 

LV (white arrow). 
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Figure 3 

Spindle-shape appearance of MSCs in a culture dish 

Figure 4: 

X-gal staining of labeled human MSCs in culture flasks 
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Figure 5 

Gross heart specimen after human MSCs implantation and staining for ~-galactosidase activity. 

Note the blue discoloration seen around the infarcted area (A). 

(B) represents a transmural scar lesion 1 week after coronary ligation (Original magnification 

xIOO). 
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Figure 6 

Representative sections (stained with H&E and X-gal) of rat myocardium with evidence of 

engraftment ofhuman MSCs (in blue) harvested at 1(B); 6 (C) and 8 weeks (D) after coronary 

ligation. A represents a section with rat MSCs implantation. 

At 6 and 8 weeks, ~-gal positive cells were more elongated and aligned within the muscle 

fibers compared to the cells harvested at an earlier stage. Note the absence of any significant 

inflammatory reaction despite the lack of immunosuppression. 

Original magnification: x 100 (A and B); x400 (C and D). 
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Figure 7 

Sections of infarcted myocardium immunostained with antibodies against troponin IC (A) 

connexin-43 (B-D). Note the connexin-43 positive gap junctions (white arrows) between an 

engrafted cell and host cardiomyocytes (blue arrow) (D). 

Original magnification: x 100 (A and B); x400 (C and D). 
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Figure 8 

Sections taken 8 weeks after human MSCs transplantation. In situ hybridization of the Y 

chromosome in human MSCs stains red (x100). 

106 



Figure 9 

Extensive cellular infiltration noted at 3 (A) and 8 (C) days after transplantation of human 

fibroblasts. Only few surviving labeled fibroblasts were found at 8 days. Immunostaining with 

CD68 showing massive infiltration of macrophages (brown spots) at 5 days after injection of 

fibroblasts (B). This is in contrast to the minimal infiltration seen at 1 week after human MSCs 

transplantation (D (x100). 

Arrows point to the cellular infiltration around the implanted cells. 
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Figure 10 

PCR product specifie for the human Y chromosome (DYS390 sequence). On the left, a positive 

band is seen in aIl the female rat hearts that were transplanted with human male MSCs at 6 

(Tl,T2) and 8 weeks (T3-5) after coronary ligation. Human male MSCs and myocardium from 

untreated female rats were used as positive (P) and negative (U) controls respectively. 

On the right, a positive band is se en in rat hearts after human fibroblasts implantation at 3 (FI) 

and 5 days (F2) after ligation. A very light signal is se en at 8 days after ligation (F3). No signal 

is seen in the samples taken at 10 (F4) and 12 days (F5), suggesting complete rejection of the 

human fibroblasts. Human male skin fibroblasts and myocardium from untreated female rats 

were used as positive (P) and negative controls (U) respectively. 
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Figure 11 

Representative echocardiograms of infarcted rat hearts with culture medium injection (top) and 

human MSCs implantation (bottom). Note the difference in the movement of the anterior wall. 
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Figure 12 

Contribution of MSCs to ventricular function and LV remodeling. At 8 weeks after MSCs 

implantation, EF and FS were significantly higher in the MSC-transplanted groups (1 and II) 

and continued to dec1ine in the control group (III). 

No significant changes in the L VESD and L VEDD in the MSCs transplanted groups over time, 

in contrast with the increase in both dimensions over time in the control group. 

p < 0.05 when compared to group III at 8 weeks after ligation; t p < 0.05 when compared to 

results at 3-4 days post ligation. Data are represented as mean ± SEM. 
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Figure 13 

Representative photomicrograph of infarcted heart specimens taken 8 weeks after culture­

medium injection (A) and human MSCs transplantation (B). (C) represents a normal rat heart. 
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Chapter 5 

FUTURE DIRECTIONS 
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Cellular therapy will definitely play a major role in the future clinical practice. The attractive 

characteristics of cells as tissue building units and the accumulating experience with cell 

culture, handling, and genetic engineering will promote cell therapy in various fields of 

medicine. 

Recent clinical trials have shown the feasibility of adult autologous cell therapy in patients 

following a myocardial infarction. However, interventions aimed at enhancing donor cell 

retenti on, survival, homing and proliferation are still definitely required to achieve a better 

level of cardiomyocyte engraftment. 

The multilineage potential of MSCs, their ability to elude detection by the ho st' s immune 

system, and their relative ease of expansion in culture make MSCs transplantation a fascinating 

new approach for the management ofheart disease. Ideally, MSCs can be harvested, expanded, 

and cryopreserved, ready for injection into any patient following an acute myocardial 

infarction. 

Several unresolved questions are still however open for future research. In addition to defining 

which stem cell is best suitable, we must also define which patient groups are suitable for this 

therapy, and what is the optimum timing, the optimal angiogenic milieu, the dosage and the 

method of delivery. Furthermore, long-term side effects and arrhythmogenic potential are still 

unknown as most of the clinical studies are fairly recent. Further fundamental questions 

relating to the biology of MSCs are still unresolved. What are the specific signaIs and 

mechanisms involved in their homing, engraftment and differentiation? What are the exact 

mechanisms behind the improvement in ventricular function? What are the potential benefits of 

such therapy in nonischemic heart failure? In addition, rigorous criteria are needed to better 
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assess the efficacy of cellular cardiomyoplasty, as weIl as the long-term stability and function 

of the transplanted cells. 

It is therefore clear that, in spite of the great promise of stem-cell cardiomyoplasty, many 

challenges remain to be solved. Investigations at both experimental and clinical levels are 

being pursued, and it is hoped that this fascinating therapeutic approach could prove to be a 

potent therapeutic to01 aimed to deal with the fai1ing human heart. 
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