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Evolution of Two-Dimensional Electromagnetic
Devices Using a Novel Genome Structure
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Department of Electrical & Computer Engineering, McGill University, Montreal, Quebec H3A 2A7, Canada

The majority of evolutionary algorithm applications in electromagnetic design have focused on optimization of device dimensions. This
approach preconceives the final device shape. To facilitate the evolution of complex and creative designs through genetic algorithms, a
novel genome and genetic operators are introduced. They are then used to evolve a patch antenna for dual-frequency operation. The
final design that emerges has a fitness roughly triple that of the standard approach.

Index Terms—Electromagnetic optimization, genetic algorithms (GAs), patch antennas.

I. INTRODUCTION

ENERATING designs through genetic algorithms (GAs)
Ghas had much success in recent years [1]. The vast ma-
jority of design problems that are tackled with GAs place a
heavy emphasis on the optimization of preconceived shapes
through parametrization of device dimensions. In this direct
encoding scheme, each feature in the phenotype (device) is
directly represented in the genotype.

There are alternate ways of performing the mapping between
the genome on which the GA operates and the final design.
Much of this work involving artificial embryogenies (AE) is
focused on achieving high levels of complexity (e.g., large
commercial buildings [2]), while avoiding an intractable geno-
typic search space. Many of the recent contributions either deal
with cell-chemistry approaches, which mimic how physical
structures emerge in biology, or grammatical approaches,
which evolve sets of rules in the form of grammatical rewrite
systems [2]. A major difficulty is in the design of these AEs,
which continues to be an art.

Consider the design of 2-D metal structures that can be fully
described in a grid. Placing atoms in this 2-D design space can
lead to all possible designs of structures. The obvious direct
mapping between genes and atoms would of course lead to an
intractable genotypic search space. This fully general approach
is not within our grasp anyway due to limitations in manufac-
turing technology. But if huge advances in complexity can be
achieved by transforming the mapping between genotype and
phenotype [2], then perhaps other advantages can also be ob-
tained through the use of novel AEs.

II. TRADITIONAL PARAMETRIC DESIGN

The E-shaped patch antenna, shown in Fig. 1, is a well-known
configuration [3]. It has an interesting feature in its two slots.
These slots have the effect of increasing the path of the current
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Fig. 1. Geometry of E-shaped patch antenna.

from the feeding point to the top and bottom sections of the
antenna, causing a dual resonant behavior [3].

Earlier work on parametric optimization of this configuration
(H, H’, and W parameters in Fig. 1) yielded dual-frequency op-
eration at 2.21/2.58 GHz [4]. Adapting the design to new re-
quirements is not necessarily straightforward; using the same
starting design and ranges as in [4], would lead to unsatisfactory
optimization results for other frequencies, such as 3.5/4.5 GHz.
One of the main obstacles with this parametric approach is the
expert knowledge required for selecting the initial configuration
for a particular design problem. To overcome this obstacle, more
versatile mappings are desirable [5]-[7]. In subsequent sections
we will investigate whether novel genome structures are able
to overcome the limitations associated with the parametric op-
timization of this antenna shape.

III. BINARY GRID DESIGN

The binary grid approach is a step toward removing con-
straints on the final shape of the device. The concept is straight-
forward; to divide the design space into a grid of cells. The sub-
sequent GA optimization operates on a binary genome where
each bit represents one of the cells. This “on/off” approach to
placement of metal has been applied successfully in the design
of a multitude of devices, including patch antennas [5], [6], and
filters [7].

IV. NEW QUADTREE-BASED GENOME

One major drawback of the binary grid approach is that
the level of discretization must be pre-defined. A very fine
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Fig. 2. Quadtree data structure.
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Fig. 3. Crossover operator (a) and structural mutation operators (b), adapted
for quadtree-based genome.

discretization may lead to an extensive search time, and a very
coarse discretization may not be able to reach the level of detail
required to meet specifications. There may be performance
benefits in evolving not only structural details, but also the
representation of the structure within the genome. Hence, we
introduce a quadtree-based genome (Fig. 2).

The quadtree is based on a recursive decomposition of space.
It yields a repetitive pattern, where increased resolution implies
increasing the depth of the tree. Through variations in its tree
structure, this form of variable-length genome allows search
through new and different search spaces. This is in contrast
to the fixed binary genome search space. To enable quadtree
evolution, specialized crossover and mutation operators were
implemented.

A standard tree-based crossover operator would select two
nodes at random (one in each parent), and create offspring by
swapping subtrees. This approach would not be appropriate here
because features from different sections of the design space
would be exchanged. The solution is to assign to each node a
code as shown in Fig. 2. A crossover site can then be selected
in one parent, and crossover only proceeds if the same code is
found in the second parent.

Three mutation operators, designed to operate on subtrees and
on terminal nodes, were implemented. The structural “additive”
and “destructive” mutators are shown in Fig. 3(b). These muta-
tors have the ability to alter the levels of discretization of large
sections of the design. The additive mutator replaces a terminal
node by a random single level subtree. The destructive mutator
is analogous except that the subtree is deleted and the remaining
node is assigned a random bit. A third “terminal flip” mutator
flips the binary values of the terminal nodes according to the
mutation probability. For a given call of the mutation routine,
only a single one of these mutators is executed.

V. PERFORMANCE OF NEW GENOME

The proposed system is intended to allow the discovery of an
efficient problem specific genotype-device mapping while not
excluding any potential solutions. The GA is steady-state with
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TABLE I
DESIGNS FROM GENOME STRUCTURES

Mean time cost
98.9 mins
95.2 mins

Mean simulations
1003
1100

Mean fitness
17.93 dB
6.52 dB

Genome
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Binary
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Fig. 4. Evolutionary performance of genome structures.

replacement set to 0.1. The population and number of genera-
tions are both 100. Crossover and mutation probabilities are 0.7
and 0.05, respectively. Note that with the variety of mutation
operators, the mutation probability must be interpreted accord-
ingly. The GA operates on a tree of maximum depth 5 (including
the root node), which implies a maximum discretization of 16
x 16 cells in the design space.

Tests were carried out for a 32 X 32 mm design space. For
symmetry, the second half of the antenna is obtained by reflec-
tion. The antenna is fed at the center of the full region. The goal
of the design process is to optimize the worst |Sq1| (dB) at 2
frequencies: 3.5 GHz and 4.5 GHz. Symbolically, the objective
function to be minimized is

max

objective =
3.5,4.5 GHz

(|S11laB) - ()

Table I shows an almost threefold advantage of the hierar-
chical quadtree approach over the standard binary encoding,
for similar simulation time costs. The term “fitness” is simply
the absolute value of the objective function (1). Note that the
number of simulations is slightly higher for the binary approach.
With 256 bits and a mutation probability set to 0.05, a bit flip
is almost always executed in the binary genome, triggering a
re-evaluation of the fitness. Because of its variable length, the
quadtree genome is less likely to be modified through mutation.
Still, the time costs are comparable partly because of the extra
overhead associated with the specialized crossover and muta-
tion operators of the quadtree genome. This is an intrinsic cost
of advanced mappings.

Other results that compare the binary encoding with the new
quadtree approach are shown in Fig. 4. Each of the six curves is
based on data from more than 20 GA runs. Clearly the binary ap-
proach is unable to effectively search the size 2256 search space.
Meanwhile, even the evolution of the worst quadtree is able to
significantly outperform the best binary evolution. Part of the ef-
fect of the hierarchical, variable-length quadtree genome is seen
in Figs. 5, 6. The highest fitness individuals after 100 genera-
tions typically have a number of terminal nodes below 25, and
an average metal patch size that is about 16 times greater than
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Fig. 5. Number of terminal nodes in quadtree-based designs.
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Fig. 6. Average size of terminal node metal in quadtree-based designs.
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Fig.7. Comparison of generated patch designs. Best quadtree design (a). Worst
quadtree design (b). Best binary design (c).
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Fig. 8. Antenna performance corresponding to Fig. 7 designs.

the standard 2 x 2 mm binary cell. This is in contrast to the fully
populated 256 bits that the binary encoding is continually oper-
ating on. Fig. 8 shows the performance over a frequency range
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Fig. 9. Comparison of fitness changes caused by mutation operators.
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operators.

10F | — Terminal Flip
= Additive
winn- Destructive

Fitness change

0 50 100 150 200 250 300 350
Sample

Fig. 11. Comparison of (ordered) fitness changes caused by mutation routines
within quadtree mutation operator.

corresponding to the designs given in Fig. 7. Most of the gener-
ated binary designs were fragmented and perhaps more difficult
to manufacture [e.g., Fig. 7(c)].

Figs. 9, 10 explore the effect of the mutation operator for
about 1000 mutations. Fig. 9 is based on the number of “hits” in
a fitness change bin. While the standard flip mutator of the bi-
nary genome is narrowly distributed around 0, the quadtree mu-
tator implemented for this study is able to create much greater
perturbations to the upside. In Fig. 10, the data is first ordered in
terms of increasing fitness change. We see that there are perhaps
200 samples (downside) and 100 samples (upside) that produce
a meaningful change to the design for both mutators. Many of
these ~100 fitness improvements caused by a single quadtree
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Fig. 12. Intermediate steps leading to full quadtree design.

TABLE II
PERFORMANCE OF INTERMEDIATE AND FULL DESIGNS
. Siil (dB Syl (dB
Design 55 Gtz (15 Gitzy

Design 0 -7.43 -17.27
Design 1 -8.15 -16.84
Design 2 -8.23 -26.76
Full (Fig. 7a) -25.59 -27.85
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Fig. 13. Performance of antenna designs shown in Fig. 12.

mutation (fraction of a second) are greater than the expected
fitness values from a standard binary GA after 95.2 min of com-
putation (6.52 dB in Table I).

The behavior of the component routines within the quadtree
mutator is provided in Fig. 11. The “terminal flip” mutator is
directly analogous to the standard binary flip mutator except that
it operates on terminal nodes of the variable-size tree. It does
not suffer from the limited success rate of the standard binary
mutator, suggesting that the novel genome structure and mutator
work well in tandem.

VI. ENHANCEMENTS TO E-SHAPED PATCH ANTENNA

It is interesting to note that the most successful designs that
were evolved [e.g., Fig. 7(a)] are actually a rediscovery of the
well-known E-shaped antenna with enhancements. In this sec-
tion we investigate how significant are the enhancements to the
overall performance. This is achieved by starting with a design
resembling the E-shaped patch, and incrementally adding fea-
tures until the design of Fig. 7(a) is obtained. Fig. 12 shows the
sequence of increments. As seen in Fig. 13, “Design 0” and “De-
sign 1”” have comparable performance, but are relatively poor at
the lower 3.5 GHz design frequency. The resonances appear to
be shifted by ~0.1 GHz from the desired locations. “Design 2”
improves on the depth and location of the higher resonance, but
the 3.5 GHz performance continues to be disappointing. The
“Full Design” achieves excellent depth and location of reso-
nances for both 3.5 and 4.5 GHz (Table II, Fig. 13). By com-
paring “Design 2” with the “Full Design” in Fig. 12, it seems
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that the improvement in depth and location at 3.5 GHz comes
from the inclusion of 6 cells (3 upper and 3 lower), which are
not present in the standard E-shaped patch [3]. While the series
of steps in Fig. 12 is surely not the one that was followed by the
GA, it does suggest that the enhancements to the usual E-shaped
patch are important to the success of the final design.

There are of course limits to manufacturing. Cells that are
connected only at isolated points to the rest of the patch may be
problematic for several reasons.

For example, imprecise etching may lead to small channels
which allow current into the vertex-connected regions and lead
to discrepancies with the current distribution from method-of-
moments simulation software [5]. Thus, it is advisable to verify
the performance of final designs with prototypes. Alternatively,
the fitness function may be modified so that problematic features
are avoided. It appears that a side-effect of the quadtree-based
genome is a reduction in fragmentation, which is welcome from
the standpoint of manufacturing.

VII. CONCLUSION

This work has attempted to demonstrate that significant per-
formance advantages can be obtained by carefully designing the
genome and genetic operators within GAs. A novel genome
structure and genetic operators were presented and shown to
routinely outperform the standard mapping by almost a factor
of three. As well, they were able to rediscover and improve
upon a well-known configuration. The final designs were less
fragmented than those from the standard approach, and thus
seem easier to manufacture. The variable-length quadtree-based
genome has the potential to become increasingly valuable as
more general, non-parametric design strategies appear and the
search spaces become larger.
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