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Abstract:

Several methods with software tools have been developed to estimate nonlinear

mixed-effects models. However, fewer have addressed the issue when nonlinear mixed-

effects models are implicitly expressed as a set of ordinary differential equations

(ODE’s) while these ODE’s have no closed-form solutions. The main objective of

this thesis is to solve this problem based on the framework of the generalized profiling

method proposed by Ramsay, Hooker, Campbell, and Cao (2007).

Four types of parameters are identified and estimated in a cascaded way by a

multiple-level nested optimization. In the outermost level, the smoothing parame-

ter λ is selected by the criterion of generalized cross-validation (GCV). In the outer

level, the structural parameters, including the fixed effects β, the variance-covariance

matrix for random effects Ψ, and the residual variance σ2, are optimized by a crite-

rion based on a first-order Taylor expansion of the nonlinear function. In the middle

level, the random effects b are optimized by the penalized nonlinear least squares.

In the inner level, the coefficients of basis function expansions c are optimized by

penalized smoothing with the penalty defined by ODE’s. Consequently, some types

of parameters are expressed as explicit or implicit functions of other parameters.

The dimensionality of the parameter space is reduced, and the optimization surface

becomes smoother. The Newton-Raphson algorithm is applied to estimate parame-

ters for each level of optimization with gradients and Hessian matrices worked out

analytically with the Implicit Function Theorem.

Our method, along with MATLAB codes, is tested by estimating several compart-

ment models in pharmacokinetics from both simulated and real data sets. Results are

compared with the true values or estimates obtained by the package nlme in R, and

it turns out that the generalized profiling method can achieve reasonable estimates

without solving ODE’s directly.
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Résumé:

Il n’y a aucune solution de exacte pour beaucoup de modèles non-linéaires à effets

mixtes exprimés comme un ensemble d’équations ordinaires (ODE’s) en modèles de

compartiment. Cette thèse passe en revue plusieurs méthodes et outils courants de

logiciel pour modèles non-linéaires à effets mixtes, et explore une nouvelle manière

d’estimer des effets mixtes non-linéaires en modèles de compartiment basée sur le

cadre de la méthode de profilage généralisée proposée par Ramsay, Hooker, Campbell,

et Cao (2007).

Quatre types de paramètres sont identifiés et estimés d’en cascade par une opti-

misation de multiple-niveau: le paramètre regularisateur est choisi par le critère de

la contre-vérification généralisée (GCV); les paramètres structuraux, y compris les

effets fixes, la matrice de variance-covariance pour les effets aléatoires, et la variance

résiduelle sont optimisés par un critère basé sur une expansion de premier ordre de

Taylor de fonction non-linéaire; les effets aléatoires sont optimisés par une methode

des moindres carrés non-linéaires pénalisés; et les coefficients d’expansions de fonction

de base sont optimisés par un lissage pénalisé avec la pénalité définie par l’equation

differentielle. En conséquence, certains des paramètres sont exprimés en tant que fonc-

tions explicites ou implicites d’autres paramètres. La dimensionnalité de l’espace des

paramètres est réduite, et la surface d’optimisation devient plus lisse. L’algorithme

de Newton-Raphson est appliqué aux paramètres d’évaluation pour chaque niveau

d’optimisation, où le théorème des fonctions implicites est employé couramment pour

établir les gradients et les matrices de Hessiennes de facon analytiques.

La méthode proposée et des codes de MATLAB sont examinés par des applications

à plusieurs modèles de compartiment en pharmacocinétique sur des donnees simulées

et vraies. Des résultats sont comparés aux valeurs ou aux évaluations vraies obtenues

par paquet nlme du logiciel R, indiquant que la méthode de profilage généralisée peut

réaliser des évaluations raisonnables sans résoudre l’equation differentielle.
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Chapter 1

Background and the organization

of the thesis

1.1 Pharmacokinetics/pharmacodynamics

Pharmacology includes the study of interactions between an organism and substances

residing within it to produce a change in functions. These substances can be vari-

ous compounds, such as nutrients, metabolites, endogenous, and toxins, and the

organism might be humans or animals. However, most applications focus on drug

substances within humans. Pharmacokinetics and pharmacodynamics are two im-

portant branches in pharmacology; see Gabrielsson and Weiner (2000) and Sheiner

and Wakefield (1999) for further references. For convenience, we often use the abbre-

viations “PK/PD” for “pharmacokinetics/pharmacodynamics” in this thesis.

The analysis of PK/PD data is concerned with the concentration-time curve,

which describes the relationship between the dosing regimen and the body’s exposure

to a drug. Pharmacokinetics is dedicated to the study of the effect of the body on

the drug. In other words, pharmacokinetic studies the time course of substances,

and their mechanisms and kinetics within a biological system as a function of time.

Concentrations over time are determined by the rate and extent of the processes of

absorption, distribution, metabolism, and excretion, and these four processes are often

abbreviated as ADME. Pharmacokinetics analysis is also concerned with determining
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whether a variation in dose is required over subpopulations with different exposures

based on individual-specific covariates, e.g. age, size, concomitant medications, and

kidney function.

The information obtained by pharmacokinetic models has various uses, such as

correlating drug doses with pharmacological and toxic responses and determining an

optimum dose level for an individual. The ultimate goal of studying pharmacokinetics

is to balance the efficacy and toxicity of a drug and optimize drug therapy, including

dose, dosage regimen, and dosage form. In other words, knowledge of pharmacokinetic

principles is essential to optimize the therapeutic effects of medicines and minimize

the frequency of unwanted effects.

In contrast to pharmacokinetics, pharmacodynamics is concerned with the effects

of a drug on the body. Pharmacodynamics associates dose-response relationships

of drug effect with drug concentration, dose, time, patient characteristics, and the

molecular mechanisms of drug activity. Applications in this thesis mainly focus on

the pharmacokinetics data and their analyses.

ADME is an acronym in pharmacokinetics for absorption, distribution, metabolism,

and excretion, which describes the disposition of a pharmaceutical compound within

an animal or human body. Gabrielsson and Weiner (2000) is a general reference on

PK/PD analysis.

Absorption is the process by which the intact drug proceeds from the site of

administration to the blood circulation. Drugs are usually administrated through a

subcutaneous injection or the oral route. For example, in the absorption process of

an oral adminstration, the drug passes through intestinal membranes to enter the

bloodstream where its concentration is usually measured.

The drug is carried to its site of action once it enters the bloodstream . Distri-

bution describes this process during which the drug diffuses or is transferred from

the bloodstream into various tissues and organs, which is important to ensure the

drug efficacy. Drug uptake into the tissues might return to the general circulation

system, i.e. systemic circulation. Distribution of the drug throughout the body is

characterized by the volume of distribution which is defined as the amount of drug

2



in the body divided by the drug concentration.

The irreversible processes by which a drug is prevented from reaching its effector

site are collectively referred to as elimination, including two sub-processes, metabolism

and excretion. During the sub-process of metabolism, drugs are converted or trans-

formed into compounds which are easier to eliminate. In most cases, metabolism

inactivates the pharmacological response of a drug; however, in some cases, metabo-

lites can be pharmacologically active as well. Although liver is the main metabolizing

organ in the body, metabolism can also occur in intestine, blood, and other organs.

The sub-process of excretion describes the removal of the drug and metabolites pri-

marily by the kidneys and feces through forms of urine and bile, respectively.

Although ADME sub-processes generally follow the above sequence, they are not

discrete events and may occur simultaneously; that is, one sub-process is still occur-

ring while the next one begins. For example, a sustained release drug may still be

distributing drug while previously absorbed drug is being eliminated.

The pharmacokinetic sub-processes ADME of a drug are specified in terms of

measurable parameters such as plasma concentration, biological half-life, and rate

constants. Since the precise site of action is often unknown, the concentration of

the drug is usually monitored by following the drug concentration in the plasma and

other suitable body fluids. These measurements are statistically correlated with the

effects of drugs on humans.

1.2 Pharmacokinetic data

As an example of pharmacokinetic data, we consider a pharmacokinetic study focus-

ing on protease inhibitor combinations of indinavir (IDV) and ritonavir (RTV). This

study investigated the steady state pharmacokinetics of the 600/100 mg and 400/100

mg twice-daily IDV/RTV combinations in 16 healthy volunteers. Serial plasma sam-

pling was performed at time points 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0

and 12.0 hours after drug administration. A reference on this study is Wasmuth,

la Porte, Schneider, Burger, and Rockstroh (2004).
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Figure 1.1 shows the relationship between plasma concentrations of indinavir

(IDV) and time since drug administration in a pharmacokinetic study of protease

inhibitor combinations of 600 mg indinavir and 100 mg ritonavir (RTV) in 16 healthy

volunteers. As can be seen in Figure 1.1, drug concentration-time profiles exhibit

a similar profile for all subjects: the drug concentrations are rising rapidly before

achieving their peaks, and then declining gradually. Nevertheless, peak concentra-

tion, rise, and decay vary significantly from subject to subject because of different

age, sex, and other factors. In statistical analysis, unequally spaced samples, and

missing data often cause some difficulties and might need special models. A notice-

able feature about the data collection is that serial plasma sampling is not performed

at equally spaced time points considering the high costs of experiments as well as the

unique characteristics of the concentration curves. Drug concentrations are measured

once every 0.5 hour in the first 3 hours, every 1 hour in the following 3 hours, and

every 2 hours in the last 6 hours. In this way, not only the sharp curves shortly

after drug administration can be captured through the intensive sampling, but also

the costs can be reduced greatly because the sparse data will suffice for the declining

curves. Another feature about this data is the presence of some missing data. One

data point is missing for the 10th subject, and all the data are missing for the 12th

subject.
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Figure 1.1: Plasma concentrations of indinavir versus time since administration of

600 mg indinavir plus 100 mg ritonavir

1.3 Compartment pharmacokinetic models

The compartment models represent a biological system describing pharmacokinetic

behavior as a finite number of components referred to as compartments. Davidian

and Giltinan (1995, 2003) and Seber and Wild (1988) are good references on this

topic. A compartment is defined as a group of tissues that have a similar blood

flow and drug affinity. Ideally, the compartments in the model would represent real,
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Figure 1.2: One-compartment model with first-order absorption and first-order elim-
ination.

identifiable components of the body. For example, the systemic circulation in the

body is identified as the blood compartment, i.e. the central compartment; organs or

tissues with similar kinetic characteristics is amalgamated as the tissue compartment,

i.e. the peripheral compartment. A compartment is described as open if it leaks to

the environment, otherwise it is closed. In pharmacokinetics, most models have at

least one open compartment with the first-order elimination.

All compartment models share the following assumptions, as described in Kinabo

and McKellar (1989). First, the compartments communicate with each other by

reversible processes. Second, rate constants are used to measure the rate of entry

and exit of a drug from a compartment. Third, the drug is distributed rapidly and

homogeneously within a compartment.

Mathematically, the compartment models are often expressed by a system of dif-

ferential equations in terms of pharmacokinetic parameters describing the volume of

specific compartments, the rate of change of the amounts or concentrations of sub-

stances in each compartment. Usually, the transfer rate of a drug from one compart-

ment to another is assumed as the first-order kinetics, which means that the rate of

change of a drug from a specific compartment to another is proportional to its concen-

tration within the source compartment. The solutions of these differential equations

provide a formal mathematical description of the amounts or concentrations in the

compartments at any time as a function of the parameters. Since in compartment

models the mathematical functions or differential equations are employed regardless
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to any mechanistic aspects of the modeled biological system, great care must be ex-

ercised in extrapolating outside of the measured domain. Several methods have been

proposed to estimate parameters in compartment models; see Bates and Watts (1988)

for further references.

One-compartment models and two-compartment models are the most commonly

used compartment models in pharmacokinetics. The simplest models are one-compartment

models, in which the compartment represents the circulatory system and all the tis-

sues are perfused rapidly by the drug. Elimination of a drug is assumed to occur only

from this central compartment since the processes associated with elimination occur

mainly in the plasma and the highly perfused tissues of the liver and kidney; that is,

in one-compartment model, an agent is introduced into a single body compartment

from which it is also eliminated. However, if drugs exhibit a slow equilibration with

peripheral tissues, it is superior to use a two-compartment model to describe the

distribution of drug from the central compartment to the tissue compartment.

For an orally-administered drug, the biological system can be described as a one-

compartment model with first-order absorption and elimination rates, which can be

represented graphically as a compartment or system diagram as in Figure 1.2. In this

model, the body is represented as a single blood compartment. Let t be the time after

administration of drug. At the initial time, t = 0, an oral dose D is instantaneously

delivered into the blood compartment from a hypothetical absorption site, e.g. the

stomach or the gut, resulting in a drug concentration Ca(t) at time t. Meanwhile, we

can measure the concentration of the drug in the blood compartment at time t. Drug

transfers into the blood compartment at absorption rate constant ka which is defined

as the negative rate of change of the drug concentration at the absorption site. Drug

is eliminated at elimination rate constant ke, also called the fractional rate constant,

which is associated with the drug concentration in the blood eliminated per unit time

from the body. The bioavailability of the drug B describes the rate and extent of

drug input, which is assumed to be 1 in this thesis. The volume of distribution V

represents the apparent instantaneous dilution space of an instantaneously absorbed

dose. Assuming the first-order kinetics, the drug concentrations at the absorption
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site and in the blood, denoted by [Ca(t), C(t)]T , can be described by the following

linear system of differential equations:

dCa(t)

dt
= −kaCa(t), Ca(0) = B

D

V
dC(t)

dt
= kaCa(t) − keC(t), C(0) = 0. (1.1)

Equation (1.2) gives the analytical solution of these two differential equations

for C(t). This function describes the nonlinear relationship between the drug con-

centration in the blood compartment and three pharmacokinetical parameters: the

absorption rate ka, the elimination rate ke, and the volume of distribution V .

C(t) =
BDka

V (ka − ke)
[exp(−ket) − exp(−kat)]. (1.2)

1.4 Population pharmacokinetics

Population pharmacokinetics modeling and analysis were first introduced in the con-

text of the study of pharmaceutical agents (Sheiner, Rosenberg, and Melmon 1972),

which focused primarily on mechanisms of pharmacokinetic behavior in the popula-

tion rather than in any specific individual. The population pharmacokinetics devel-

oped based on the need to set dosing recommendations for a population. Actually,

both the whole population and the variability among individuals are considered in the

population pharmacokinetics. One of the purposes of population pharmacokinetics

was to analyze routine clinical data for individualizing dosage regimens. Please refer

to Sheiner, Rosenberg, and Marathe (1977), Beal and Sheiner (1982), and Sheiner

and Ludden (1992).

A simple illustration can be seen in the data set of the drug indinavir in Figure

1.1, given orally in the same dose to all subjects. Although the drug concentration-

time curves exhibit a similar profile for all subjects, peak concentration achieved,
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rise, and decay vary significantly from subject to subject, which may be attributed

to variability in the values of [ka, ke, V ]T across individuals.

1.4.1 Three sub-models in population pharmacokinetics

Population pharmacokinetic models contain three sub-models: structural, statistical

and covariate (the Food and Drug Administration 1999). The structural pharmacoki-

netic sub-model describes the overall trend in the data using parameters of fixed ef-

fects. The statistical sub-model accounts for variability by using two levels of random

effects, inter-individual variability and residual variability. The covariate sub-model

expresses relationships between covariates and model parameters.

The structural part of a mixed-effects model in pharmacokinetics data analysis

describes the properties of a drug which are shared among all individuals in a pop-

ulation. For example, for a pharmacokinetic one-compartment model, the structural

model includes fixed effects such as rates of absorption, elimination, and clearance

that belong to an average individual in the population.

In population pharmacokinetics, the structural part (including residual error) of

a mixed-effects model is written in Equation (1.3). Let yij be the j-th observation

for the i-th individual; Xij is the j-th value of the independent variables for the i-th

individual, e.g. time and dose at certain time point j; β are the model parameters;

f(·) is the function describing the structural PK model that relates the independent

variables, Xij , to the response given the parameters β; εij is the residual error for

the j-th observation of the i-th individual; and σ2 is the variance of the unexplained

residual. The residual error is introduced to handle with unexplained variability.

yij = f(Xij,β, εij), εij = N(0, σ2). (1.3)

The statistical sub-model considers the variability by using different levels of

random effects, including inter-individual variability, intra-individual variability, and

inter-occasion variability.

The inter-individual variability describes the non-explainable difference, or the
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biological population variability of the model parameter between the individuals that

cannot be explained solely in terms of the measurable independent variables. This

means that the individual parameter value varies from the typical population pa-

rameter value to a random extent. In Equation (1.4), βi denotes the parameters

of the i-th individual, expressed as a function g of fixed effects parameters β and

inter-individual random effects bi describing the variability of the parameters be-

tween individuals. Random effects bi are assumed to be normally distributed with

mean zero and variance-covariance matrix Ψ.

yij = f(Xij,βi, εij)

βi = g(β,bi)

bi = N(0,Ψ). (1.4)

The inter-occasion variability defines another level of random effects accounting

for variation between study occasions, which can be defined as each dosing interval

in multiple dose studies or each treatment period of a cross-over study can be defined

as an occasion. It is necessary to have more than one measurement per individual

per occasion to assess the the inter-occasion variability of a specific parameter. Let

ηik denote the unexplained inter-occasion variability for the i-th individual and k-th

occasion. In this case, the parameters of the i-th individual and k-th occasion, βik,

is expressed as a function, h, of β, bi, and ηik. The inter-occasion variability ηik

is assumed to follow a normal distribution with mean zero and variance-covariance

matrix Ω.

βik = h(β,bi, ηik)

ηik = N(0,Ω). (1.5)

Intra-individual variability, i.e. residual variability, εij in Equation (1.3) and (1.4),

describes the extent of deviation between the observed and the predicted value by
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the model, including the inter-individual variability and the inter-occasion variability.

The residual variability might be caused by errors in the documentation of the dosing

and blood sampling times, analytical errors, structural model approximations in the

models and other factors. The simplest model describing the residual variability is

the additive error model in Equation (1.6):

yij = f(Xij ,βi) + εij. (1.6)

The covariate sub-model expresses the relationship between covariates and model

parameters. Covariates are individual-specific variables that describe the patients’

demographics, disease status or environmental factors. The parameter covariate re-

lation can explain the variability in pharmacokinetic model parameters to a certain

extent. Let zi denote the individual-specific covariates for the i-th individual. The

function g is expressed as follows:

βi = g(zi,β,bi). (1.7)

1.4.2 Methods for population PK/PD modeling

The simplest method to perform population PK/PD modeling is to estimate popula-

tion mean parameters by treating all data as if they arose from the same individual.

That is, this method assumes that parameters for all individuals are all equal to their

mean values in the population. Moreover, the entire structure of intra-individual and

inter-individual variability is ignored. Therefore, Sheiner and Beal (1980) refer to

this method as the naive pooled data method and present evidence demonstrating its

poor performance in the context of compartment PK models.

Standard Two-Stage (Steimer et al. 1984) is one of the common methods to per-

form population PK/PD modeling. Given complete PK/PD profiles for a certain

number of subjects, the model is identified separately for all subjects, obtaining indi-

vidual estimates of the parameters, and the sample mean and variances are calculated

using the individual estimated parameters. The Standard Two-Stage method is sim-
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ple and intuitive, but it has several limits and drawbacks. This method is often used

to analyze PK data from studies involving intensive sampling performed on a limited

number of individuals; it ignores the precision of the individual estimates; it generally

overestimates the population variance.

Bayesian estimation uses prior distribution of parameters in a population of sub-

jects and data from an individual to estimate the individual’s parameters. Since

there are two sources of variability, inter- and intra- individuals, that are empirically

observed in the data, it is a natural way to use the Bayesian hierarchical framework

involving two stages. In the first stage, the relationship between concentration and

time is modeled for each individual, addressing the intra-individual variability. In the

second stage the inter-individual variability is accommodated through the specifica-

tion of a model for the individuals’ parameter vector. In the Bayesian hierarchical

model, a third stage is incorporated to indicate the prior for the population parame-

ters from the first and second stages. A comprehensive reference on Bayesian inference

is Gelman et al. (2004).

Nonlinear mixed-effects models use a hierarchical model structure, which allows

for simultaneous estimation of the inter- and intra-individual variability (random

effects) as well as the influence of measured covariates on the fixed effects parameters.

This method enables the analysis of PK/PD data from both sparse-sampled and

unbalanced study designs. The nonlinear mixed-effects modeling approach is typically

the preferred method in population PK/PD modeling because it provides reliable

predictions of the variability and because it is the only practical method for analyzing

data from multiple studies in a single data analysis (Davidian and Giltinan (1995,

2003)).

1.5 Objectives and organization of the thesis

The primary objectives of this thesis are to estimate nonlinear mixed-effects models

with the generalized profiling method and to explore its application to pharmacoki-

netics. Specifically, this thesis investigates the nonlinear mixed effects models in forms
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of ordinary differential equations (ODE’s) generated from the compartment models in

pharmacokinetics. Accordingly, general MATLAB programs are geared towards esti-

mating parameters in ODE’s from the compartment models. Methods and software

tools are tested on both simulated and real data sets in pharmacokinetics. Results

are verified and compared with true values or parameter estimates obtained by the

package nlme in R/SPLUS. The structure of this thesis is organized as follows.

Chapter 2 provides a literature review of the nonlinear mixed effects models and

some of existing software tools. We review several methods that approximate the inte-

gration of the likelihood, including the first-order method, the conditional first-order

approximation, Laplacian approximation, and the Lindstrom and Bates algorithm.

This chapter also introduces several widely used software tools in pharmacokinetics,

including NONMEM, nlme/nlmeODE in R, PROC NLMIXED in SAS, and PKbugs.

Chapter 3 introduces how to estimate nonlinear mixed-effects models expressed by

differential equations with the generalized profiling method. Preliminary techniques

for functional data analysis are introduced, mainly including basis function expansions

and the penalized smoothing. Based on the framework of the generalized profiling

method, we propose a way to estimate nonlinear mixed effects in compartment models

without solving ODE’s. Four types of parameters are identified and are optimized by

a multiple-level optimization in a cascaded way.

Chapter 4 implements simulations for three compartment pharmacokinetic mod-

els, including a one-compartment elimination model, a one-compartment model with

first-order absorption and elimination, and a two-compartment open model. Data

characteristics are described and results of estimates are compared with true values.

Applications to two real data sets in pharmacokinetics are provided in Chapter 5.

Finally, Chapter 6 gives the conclusions and discusses some directions of the future

work.
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Chapter 2

Nonlinear mixed-effects models

and software

2.1 Nonlinear mixed-effects models

The nonlinear mixed-effects (NLME) framework is widely used in modeling repeated

measurements data, where measurements are obtained for a number of individuals at

series of time points. Nonlinear mixed-effects models incorporate both the population

and individual-specific characteristics, which are represented by fixed-effects parame-

ters and random-effects parameters, respectively. Nonlinear mixed effects models were

originally introduced in the population pharmacokinetic settings, and since then a lot

of research has been done on this topic; see Pinheiro and Bates (2000) for further

references.

Let yij denote the j-th observed response for the i-th individual measured at time

point tij , i = 1, 2, · · · , N , j = 1, 2, · · · , ni. In the pharmacokinetic settings, tij is the

time after drug administration when the j-th drug concentration for the i-th subject

is measured. This thesis considers time as the only dynamic explanatory variable in

the model, but methodologies can be extended to a more general case with multiple

dynamic covariates.

We consider the Gaussian-based two-stage nonlinear mixed-effects model expressed

in Equation (2.1) and Equation (2.2). Let y = [yi1, · · · , yini
]T . The mean function
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f(·) describes the within-individual behavior, which depends on a r × 1 vector of

individual-specific parameters for the i-th individual, βi, and a covariate vector zi.

The parameter βi is a r-dimensional function depending on an p× 1 vector of fixed

effects, β, and a q× 1 vector of random effects bi associated with the i-th individual.

A common special case is that there is a linear relationship between βi and fixed and

random effects. Equation (2.2) describes how element of βi vary among individuals,

due both to systematic association with individual attributes in Ai, a design matrix,

and to unexplained variation in the population of individuals, e.g. biological vari-

ation, represented by bi. Bi is a design matrix typically involving only zeros and

ones allowing some elements of βi to have no associated random effects. The random

effects b
′
is are assumed to arise from a common distribution with mean 0 and variance

Ψ.

For the i-th individual, let εij be the intra-individual error of the measurement

uncertainty associated with the observed response at time point tij, and εi = [εi1, εi2,

· · · , εini
]T . These random errors are assumed to be independently distributed with

zero mean and constant variance across all measurements, shown in Equation (2.1).

Individual yi = f(zi,βi) + εi, εi ∼ N(0, σ2I), (2.1)

Population βi = Aiβ +Bibi; bi ∼ N(0,Ψ), i = 1, · · · , N. (2.2)

Assuming normality of the responses and random effects, the marginal likelihood

of β, Ψ, σ2 for the i-th individual can be written as in Equation (2.3).

P (yi|β, σ2,Ψ) =

∫
P (yi|bi,β, σ

2)P (bi|Ψ)dbi (2.3)

=

∫
(2πσ2)−N/2 exp

{
−1

2

{
(yi − f(zi,βi))

Tσ−2(yi − f(zi,βi)) + bT
i Ψ−1bi

}}
dbi.

We denote the log-likelihood of β and bi as follows

li(β,Ψ, σ
2,bi,yi) =

1

2

{
(yi − f(zi,βi))

Tσ−2(yi − f(zi,βi)) + bT
i Ψ−1bi

}
. (2.4)
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The empirical Bayes estimates b̂i satisfy the following equation:

∂li
∂bi

∣∣∣∣ ˆbi

= 0, i = 1, · · · , N. (2.5)

The parameters involved in the NLME model ideally can be estimated by maxi-

mizing this likelihood function, given by Equation (2.3). If f(·) is a linear function

in terms of parameters βi, the integral in Equation (2.3) can be evaluated to obtain

an analytic expression. However, more often in the case of NLME models, f(·) is a

nonlinear function of parameters βi, making it impossible to obtain an analytic ex-

pression for the integral described in Equation (2.3) and therefore classical approach

such as maximum likelihood method for parameter estimation becomes analytically

intractable.

Many methods have been proposed to approximate the integration of the likeli-

hood. A common approach to handle the integral with respect to bi in Equation (2.3)

involves linearization of the nonlinear model. Generally, these methods differ in their

assumptions regarding the distribution of the random effects, including the inter- and

intra-individual variability, and in approximations used to deal with inter-individual

random effects. These methods includes the first-order method, the conditional first-

order linearization, Laplacian approximation, Lindstrom and Bates algorithm, as-

suming various linear approximations to the nonlinear model. Roe (1997) provide a

systematic comparisons of estimates of these methods.

The First-order method was first developed for analysing population pharmacoki-

netic data; see Beal and Sheiner (1982) for further references. It approximates the

nonlinear model with a model that is linear in all iter-individual random effects,

obtained by using a first-order Taylor expansion in all the inter-individual random

effects bi about 0; parameter estimates are obtained using extended least squares.

The conditional first-order linearization is roughly the first-order method, but the

first-order Taylor series expansion is about conditional estimates, i.e. empirical Bayes

estimates, of the inter-individual random effects, b̂i, rather than about bi = 0. The

contribution of the second-order partial derivatives is usually negligible compared to
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that of the square of the first-order partial derivatives because the second-order Taylor

expansion in Equation (2.6) is about the value of bi which minimizes li. Lindstrom

and Bates (1990) and Wolfinger (1993) are good references on this method.

The Laplacian method of evaluating the exact marginal likelihood consists of using

a second-order Taylor expansion of li around the empirical Bayes estimate bi which

minimizes li, i.e. the mode of the posterior distribution for bi given β,Ψ, and σ2.

We denote the first and second derivatives of li as follows:

l
′
i =

∂li
∂bi

l
′′
i =

∂2li

∂bi∂b
T
i

.

Thus

li ≈ li(b̂i) + l
′
i(b̂i)

T (bi − b̂i) +
1

2
(bi − b̂i)

T l
′′
i (b̂i)(bi − b̂i)

= li(b̂i) +
1

2
(bi − b̂i)

T l
′′
i (b̂i)(bi − b̂i), (2.6)

Consequently, the integral in Equation (2.3) can be approximated by Equation

(2.7); see Davidian and Giltinan (1995), Wolfinger (1993), and Vonesh (1996) for

further readings.

∫
exp(−li)dbi ≈ (2π)q/2|l′′i (b̂i)|−1/2 exp{li(b̂i)}. (2.7)

The Lindstrom and Bates algorithm can be derived using Laplacian approxima-

tion. The method uses a first-order Taylor expansion about the conditional esti-

mates of the inter-individual random effects. The estimation algorithm alternates

between two steps: a penalized nonlinear least-squares (PNLS) step and a linear

mixed-effects (LME) step. For the simplicity of calculation, we express the random

effects variance-covariance matrix in terms of the relative precision factor Δ, which

satisfies Ψ−1 = σ−2ΔT Δ.

In the PNLS step, the conditional random effects bi and the conditional estimates
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of the fixed effects β based on the current estimate of Ψ are obtained by minimizing

the PNLS objective function as follows

OPNLS =

N∑
i=1

(yi − fi(zi,βi))
T (yi − fi(zi,βi)) + bT

i ΔT Δbi, (2.8)

In order to update the estimate of Ψ, the mean function f(·) is linearized in the LME

step using a first-order Taylor expansion around the current estimates of β and the

conditional estimates of the random effects bi denoted by b̂i. The approximative log-

likelihood function for the estimation of Ψ in the LME step can thereby be written

as

logLLME(β, σ2,Δ) = −
∑N

i ni

2
log 2πσ2 − 1

2

N∑
i=1

{
log

(∣∣∣∣I +
∂fi

∂bT
i

Δ−1Δ−T ∂f
T
i

∂bTi

∣∣∣∣
)

+

[
yi − fi +

∂fi

∂bT
i

b̂i

]T (
I +

∂fi

∂bT
i

Δ−1Δ−T ∂f
T
i

∂bT
i

)−1 [
yi − fi +

∂fi

∂bT
i

b̂i

]}
.(2.9)

The Bayesian approach to population pharmacokinetic modeling computes the

posterior distribution of the parameters given the observed data assuming hyperprior

distributions of the parameters. This method is based on the calculation of the

full conditional probability distribution of the parameters, including b, Ψ, and σ2.

More references on Bayesian analysis and its applications to pharmacokinetics include

Gelman et al. (2004), Davidian and Giltinan (2003), Lunn, Best, Thomas, Wakefield,

and Spiegelhalter (2002), and Wakefield (1996).

In the Bayesian framework, prior knowledge based on previous studies can be

introduced by specifying appropriate prior distributions for parameters. Bayesian

inferences consider all the parameters, including both random effects and fixed effects,

as random because they are taken to have probability distributions.

To implement the Bayesian inferences for nonlinear mixed-effects models, a prior

distribution must be indicated for the structural parameters θ = (β, Ψ, σ2), which

is denoted by P (θ) = P (β, Ψ, σ2). This prior is often called a hyperprior in the
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context of population analysis. There is no prior specified for the random effects

bi, i = 1, · · · , N . The joint posterior density of all of β, Ψ, σ2, b is given by:

P (β,Ψ, σ2,b|y) =

∑N
i=1 P (yi|bi; σ

2)P (bi|β,Ψ)P (β,Ψ, σ2)∫ ∫ ∫ ∫ ∑N
i=1 P (yi|bi; σ2)P (bi|β,Ψ)P (β,Ψ, σ2)dbdβdΨdσ2

.(2.10)

2.2 Software

Many software tools have been developed and applied to pharmacokinetics. This

section introduces NONMEM, nlme/nlmeODE in R, PROC NLMIXED in SAS, and

PKbugs. While PKbugs uses the Bayesian method, NONMEM, nlme and PROC

NLMIXED are parametric non-Bayesian likelihood approaches proposing different

approximations of the population likelihood function. More references on PK/PD

software tools can be found in Pillai, Mentre, and Steimer (2005).

2.2.1 NONMEM

Software NONMEM was developed by Beal and Sheiner (1980) and has been widely

used by practitioners to implement PK/PD data analysis. The NONMEM program

performs maximum likelihood estimation based on several approximation methods

of the log-likelihood function, including first-order, first-order conditional estimation

method, and the Laplacian method. A more recent reference is Beal and Sheiner

(1994).

NONMEM has various attractive features, thus it is regarded as the gold-standard

software for population PK/PD data analysis. The most prominent advantage is that

it has many libraries for fitting standard PK/PD compartment models. Immediate

analyses are easily implemented based on these models. Moreover, multiple and

complicated dosing history can be specified in models. Another feature is its ability

of fitting models expressed by ordinary differential equations. In addition, NONMEM

runs in many types of operating systems, and computation is fast because it is written

in the compiled language Fortran. Generally, NONMEM is quite accurate, stable,
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flexible, and fast to fit PK/PD models.

However, models in NONMEM run in a batch mode, and this increases the dif-

ficulty of using it. In addition, graphics for diagnostics are line-printer style so that

users usually have to employ some external packages.

2.2.2 nlme

The R/S-PLUS software package nlme, developed by J. Pinheiro, D. Bates and M.

Lindstrom, is used to fit nonlinear mixed-effects models. The package nlme imple-

ments the Lindstrom and Bates algorithm described previously. A detailed description

of nlme and some example functions are given in Pinheiro and Bates (2000).

The package nlme is not specifically designed for PK/PD models in which there

are only two levels of random effects. Instead, the package nlme is capable of fitting

multiple-level models in other fields. Another benefit of nlme is that many functions

can be used to implement model checking and plotting. Moreover, models in nlme

can be modified and updated due to the object-oriented programming.

One disadvantage of nlme is that it is difficult to fit multiple-dose models. nlme

itself cannot handle compartment models expressed by ODE’s without closed-form

solutions. It was necessary to implement an ODE solver to be able to handle these

nonlinear PK/PD models. For that purpose, the nlmeODE package (Tornφ et al.

2004) was developed by combining nlme with the odesolve package (Setzer 2003) in R.

The odesolve package provides an interface to the Fortan ODE solver Isoda (Petzold

1983), which can be used to solve initial value problems for systems of first-order

ODE’s. Computation times are usually significantly longer using nlme together with

nlmeODE compared to NONMEM because R is an interpreted language.

2.2.3 SAS NLMIXED

The current version of statistical software SAS includes the procedure NLMIXED for

fitting nonlinear mixed-effects models. The procedure NLMIXED can use the first-

order approximation to approximate the log-likelihood function, but this procedure
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uses the numerical integration approximation method, adaptive Gaussian quadrature,

as the default method to optimize the objective function. This method can be viewed

as giving the exact answer to the optimization problem, but it leads to a high com-

putation load. All of the parameters, including the random effects and fixed effects,

are optimized by an iterative process, finding the maximum likelihood estimates of

the fixed effects for these values, re-estimating the random effects, then going back

to the fixed effects. However, the NLMIXED procedure is quite sensitive to starting

values and parameterization of the model (Pillai et al. 2005).

2.2.4 PKBugs

PKBugs was developed by Dave Lunn at the Department of Epidemiology and Pub-

lic Health of Imperial College at St Mary’s Hospital London; see PKBugs (2004) for

further references. PKBugs is an efficient and user-friendly interface for specifying

complex population PK/PD models within the widely-used WinBUGS (Bayesian in-

ference Using Gibbs Sampling) software. The software and manuals for both PKBugs

and WinBUGS are currently free, and are available at http://www.cran.r-project.org.

WinBUGS is a powerful tool of Bayesian modeling to analyze arbitrarily Bayesian

full probability models using techniques like Markov chain Monte Carlo (MCMC). It

is possible to specify population PK/PD models using WinBUGS directly, but high-

level programming skills are required and models would be too complicated for many

practitioners in the field of population PK/PD.

PKBugs alleviates these difficulties of model specification by providing a user-

friendly interface between users and WinBUGS. Practitioners can specify a PK/PD

model by a series of simple dialogue boxes and menu commands. PKBugs can parse

the specified model and generate the pseudo-code of WinBUGS. It can also convert

NONMEM data files into the format used in WinBUGS. In this way, WinBUGS will

implement the rest analysis and return results.
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Chapter 3

Estimating nonlinear mixed-effects

models by the generalized profiling

method

This chapter begins with a brief introduction to functional data analysis (FDA) be-

cause the generalized profiling method is developed to deal with functional data. Some

techniques of FDA are briefly discussed, mainly including basis function expansions

and the penalized smoothing.

The generalized profiling method was proposed by Ramsay, Hooker, Campbell,

and Cao (2007). This method has been applied to several fields, such as adaptive

penalized smoothing, generalized semiparametric additive models, estimating differ-

ential equations, and Bayesian analysis. Detailed applications can be found in Cao

(2006). This thesis explores the application to nonlinear mixed-effects models ex-

pressed by ODE’s based on the framework of the generalized profiling method. Dif-

ferent types of parameters are identified and optimized through a nested multiple-level

optimization.
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3.1 Introduction to functional data analysis

Functional data analysis converts a set of data into infinite-dimensional curves and

surfaces instead of looking at data individually. These functional data might be

complicated in some ways; for example, they might not be equally spaced. Even

though there are only discrete observations, it is often desired to use functions to

reflect a smooth variation in the measured variable. An important theme of FDA is

its many uses of derivatives. Derivatives are often of direct interest, or some features

of data can be better illustrated by derivatives of certain orders. Therefore, it is

better to think of the records as functions instead of observations in discrete time.

Ramsay and Silverman (2005) can be consulted for further details.

FDA represents noisy observations in discrete time points with a linear combina-

tion of basis functions. The commonly used basis systems include splines, Fourier

bases, wavelet bases, polynomial bases, polygonal bases, step-function bases, and

constant bases. Basis approximation provides a good estimation for functional data

given that the basis functions can describe the essential characteristics of data. For

instance, the Fourier basis system is often used for periodic data while the spline

system is usually used for non-periodic data.

Smoothing is used to describe the process of converting discrete observations into

functions, and the discrete values are assumed to be subject to observational errors.

The roughness penalized smoothing method is widely used, which provides a good

approximation to functional data as well as continuous control of the smoothness. It

is especially useful to estimate derivatives. After smoothing, the dimension is reduced

from the number of observations, n, per subject to the number of basis functions, J ,

used to represent functional data. However, the number of basis functions may be

larger than the number of observations when the underlying functions are difficult to

approximate because of sharp changes, discontinuity, or other features. In this case,

a penalty term is used to control the roughness of estimated functions in order to

avoid the problem of overfitting. The penalty term can be defined by a derivative of

some order. Moreover, differential equations can also be applied to define the penalty
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term in penalized smoothing, leading to better estimates for smooth functions and

their derivatives Ramsay and Silverman (2002).

It is helpful to compare functional data analysis with time series analysis and

longitudinal data analysis. Time series analysis usually requires time points between

observations to be equally spaced. Differencing is widely used in time series analy-

sis. In contrast, derivatives are the most popular elements in FDA. Compared with

longitudinal data analysis, functional data analysis requires more frequent observa-

tions and the time variable itself usually does not appear as an explicit covariate in

functional models while some covariates and parameters can often be functions of

time.

3.2 Nonlinear mixed-effects models involving ODE’s

In a general compartment model consisting of K components, we write concentrations

of K compartments at time t for the i-th individual as xi(t) = (xi1(t), · · · , xiK(t))T .

We denote fixed-effects parameters as β = [β1, · · · , βp]
T , and random-effects param-

eters bi = [bi1, · · · , biq]T ∼ Normal(0,Ψ). Let Mi be the K × K system transfer

matrix containing the rate constants. The concentrations satisfy the linear system of

differential equations as follows

dxi(t)

dt
= Mixi(t). (3.1)

For example, in the pharmacokinetic one-compartment model with first-order ab-

sorption and elimination, xi(t) is a vector of the concentrations at the absorption site

and in the blood at time t for the ith individual. The transfer matrix Mi contains

both fixed effects and random effects. Let bi = [bi1, bi2]
T be a vector of random-effects

parameters and let β = [ka, ke]
T be a vector of fixed-effects parameters for the ab-

sorption rate constant and elimination rate constant. The transfer matrix Mi can be
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expressed as follows

Mi =

⎡
⎣ −(ka + bi1) 0

ka + bi1 −(ke + bi2)

⎤
⎦ . (3.2)

Let yijk, i = 1, · · · , N , j = 1, · · · , ni, k = 1, · · · , K, be the observation of the

k-th component at time tj for the i-th subject. The nonlinear mixed-effects models

involving ODE’s can be expressed as follows:

yijk = xik(tij) + εij ,

εij ∼ Normal(0, σ2)

i = 1, · · · , N ; j = 1, · · · , ni; k = 1, · · · , K. (3.3)

Let yij = [yij1, · · · , yijK]T , Equation (3.3) can be rewritten as

yij = xi(tij) + εi,

εi ∼ Normal(0,Σ), Σ = σ2I

i = 1, · · · , N ; j = 1, · · · , ni, (3.4)

It is easy to implement parameter estimation, model fitting and verification if

ODE’s can be solved analytically. However, very few real-world ODE’s can be solved

analytically, and numerical approximation is almost the only option in the large and

realistic world of nonlinear ODE’s and non-stationary processes.

Although many methods have been proposed to estimate parameters in ODE’s

without closed-form solutions, there are many drawbacks when fitting noisy data. A

commonly used method is the nonlinear optimization procedure. Using this method,

the computations are usually intensive because ODE’s are repeatedly numerically

solved when updating the parameter values and initial values of components. More-

over, initial values of components become additional parameters to estimate. Finally,

this procedure relies heavily on the quality of the starting values for parameters and

the initial values of components. As a result, the algorithms can be easily trapped in
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local minima, and ODE’s may not even be solvable in some cases. The other com-

mon method is the Bayesian approach, which can also handle mixed-effects models.

However, this method shares the same shortcoming with many current methods in

terms of the intensive computation. In addition, it is difficult to select appropriate

initial values and priors.

In the generalized profiling method, data are smoothed by a linear combination of

basis functions penalized by its fidelity to ODE’s. A smoothing parameter reconciles

the trade-off between fitting the data and fidelity to ODE’s. Parameters are divided

into several levels, and optimized by different criteria in different levels. Through a

nested optimization, the dimensionality of the parameter space is reduced by treating

one group of parameters as an explicit or implicit function of other parameters, and

thereby the optimization surface becomes smoother.

The generalized profiling method has several advantages in comparison with other

methods. First, ODE’s do not have to be solved, and therefore the initial values of

components are not needed. In addition, this method can also work satisfactorily

when some components are not observable. Finally, the process of estimation is very

stable because functional relationships among parameters are worked out analytically.

Both the gradient and Hessian matrices for the optimization criteria can be calculated

analytically using the Implicit Function Theorem, which definitely speeds up the

computation.

3.3 Basis function expansions for ODE solutions

A basis function system is a set of known functions φl, l = 1, · · · , J , that are used to

approximate any function by a weighted sum or linear combination on the condition

that the number of functions J is large enough. Functions φl, l = 1, · · · , J , are called

bases and are mathematically independent of each other, that is, none of them can

be written as a linear combination of other bases in the set. The basis approximation

for a function z(t) is a linear expansion in terms of J known basis functions φl and a

26



series of coefficients cl for each basis, shown in Equation (3.5).

z(t) =
J∑

l=1

clφl(t). (3.5)

Let c be a vector of length J with each element as one of the coefficients and φ be

a vector with its elements as one of the basis functions. In the vector and matrix

version, Equation (3.5) can be expressed as

z(t) = cT φ(t) = φ(t)Tc. (3.6)

For compartment models, we use the same basis function system to approximate

all the components of the concentration function xi for the i-th individual as follows,

xik(t) =

Ji∑
l=1

ciklφil(t) = cT
ikφi(t), (3.7)

where Ji is the number of basis functions in vector φi(t), coefficients of basis functions

cik = (cik1, · · · , cikJ)T , and basis functions φi(t) = (φi1(t), · · · , φiJi
(t)). Define the

ni × Ji matrix Φi as containing the values of the basis functions at the times tij , j =

1, · · · , ni. We define Φi as a matrix of (Kni) × (KJi) as follows

Φi = IK ⊗ Φi,

where ⊗ is the Kronecker product. Let ci = [cT
i1, · · · , cT

iK ]T . All the observations for

the i-th individual can be approximated as xi = Φici. We define φi as a matrix as

follows

φi(t) = IK ⊗ φi(t).

The values of the function xi(t) at time t is obtained by

xi(t) = φi(t)
Tci.
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For the future use, we define a differential operator L of xi(t) as

Lxi(t) =
dxi(t)

dt
−Mixi(t). (3.8)

In terms of basis functions, the above equation becomes

Liφi(t)
Tci =

dφi(t)
Tci

dt
−Miφi(t)

Tci

and Liφi(t) =
dφi(t)

dt
− φi(t)M

T
i . (3.9)

For simplicity , let yi = (yT
i1, · · · ,yT

ini
)T , y = (yT

1 , · · · ,yT
N)T , x = (xT

1 , · · · ,xT
N )T , and

Lx(t) = (Lx1(t)
T , · · · , LxN(t)T )T . Furthermore, we denote Φ as the block diagonal

matrix of Φ1, · · · ,ΦN .

3.4 Estimation with the generalized profiling method

In the model expressed by Equation (3.4), there are four types of parameters to be

estimated: coefficients c defining basis function expansions; random effects b; fixed

effects β, a variance-covariance matrix for random effects, Ψ, and residual variance σ2;

a smoothing parameter λ. These parameters are treated hierarchically in four different

classes of parameters that we refer to as a parameter cascade. The fixed effects β,

variance-covariance matrix Ψ, and residual variance σ2 are structural in the sense of

being of primary interest. The coefficients c and random effects b are considered

nuisance parameters that are essential for fitting the data but usually not of direct

concern. The sizes of nuisance parameters vary with the number of observations, and

other aspects of the structure of the data; the number of nuisance parameters can be

orders of magnitude larger than the number of structural parameters.

To simplify the computation, we define the relative precision factor Δ satisfying

ΔT Δ = Ψ−1σ2, and we estimate the parameters Δ and σ2 instead of Ψ and σ2.

Structural parameters, including β, Δ, and σ2, are denoted as θ. Based on the

above discussion, it is reasonable to define the four levels of parameters in a cascaded
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way: coefficients of basis function expansions c are defined as functions ĉ(b, θ, λ)

depending on b, θ, and λ; random effects b are defined as functions b̂(θ, λ) conditional

on θ and λ; the structural parameters θ are defined as functions θ̂(λ) conditional

on λ. To realize these parameter estimates, four different criteria are optimized

in our generalized profiling procedure, where the criteria are J(c|b, θ, λ), H(b|θ, λ),

G(θ|λ), and F (λ) for the coefficients of basis function expansions, random effects, and

structural parameters, and the smoothing parameter, respectively. We shall refer to

J(c|b, θ, λ) as the inner criterion at the inner optimization level; we refer to H(b|θ, λ)

as the random-effects criterion at the middle optimization level; we refer to G(θ|λ) the

structural criterion at the outer optimization level; we refer to F (λ) as the smoothing

criterion at the outermost optimization level. The inner criterion J(c|b, θ, λ) is based

on an error sum of squares (SSE), or other suitable measures of the quality of the fit

to data, plus a regularization or smoothing term that defines smoothness in terms of

c through which the criterion will also depend on the random-effects parameters b,

structural parameters θ, and the complexity parameter λ. The nuisance parameter

vector c is removed from the parameter space by defining the inner optimization

conditional on b, θ, and λ. Each time b, θ, and λ are changed, the fitting criterion

J(c|b, θ, λ) is re-optimized with respect to c alone. The amount of regularization

is controlled by the smoothing parameter λ. The random-effects criterion H(b|θ, λ)

defines fit to the data conditional on θ, and λ. This criterion is also regularized, but

the regularization term is defined as a function of b rather than as a function of c,

called a penalized nonlinear least squares. The structural criterion G(θ|λ) is then

optimized with respect to the structural parameters alone. The smoothing criterion

F (λ) is optimized with respect to λ.

In our generalized profiling method, the Newton-Raphson method is applied in

each level of optimization, and the gradient and Hessian matrix are worked out analyt-

ically with the Implicit Function Theorem so that the optimization process converges

quickly and stably.

As a consequence of these conditional optimizations, the nuisance parameter vec-

tor c is removed from the parameter space as an independent parameter by defining

29



it through the inner optimization as a function of b, θ, and λ. In a similar way,

the random effects vector b is removed from the parameter space through the ran-

dom effects optimization as a function of θ and λ, and the structural parameters

θ is removed from the parameter space through the structural optimization as a

function of λ. The smoothing parameter λ is selected by the criterion of generalized

cross-validation (GCV). Our final parameter estimates become the functional cascade

ĉ(b̂(θ̂(λ̂))), b̂(θ̂(λ̂)), θ̂(λ̂), and λ̂ defined by the optimization with respect to criterion

J,H , G, and F respectively.

In the following, we introduce our selection of the optimization criteria to fit non-

linear mixed-effects models and some computational techniques. After introducing

basis function expansions for the solution functions of ODE’s, we begin with the in-

ner criterion defined by the penalized smoothing. Then we introduce the penalized

nonlinear least squares for random effects. For the structural parameters, two situ-

ations are considered. In the first situation, Δ and σ2 are assumed known and not

of interest, and structural parameters only contain the fixed-effects parameters. A

more complicated situation is to estimate not only random effects b and fixed effects

β, but also the relative precision factor Δ and σ2. Finally, the criterion GCV for the

smoothing parameter is described.

3.4.1 Penalized smoothing with the penalty defined by ODE’s

The fitting function can be estimated by minimizing the sum of squared errors (SSE),

which can be written as:

SSE = (y − x)TW(y − x), (3.10)

where W is a diagonal matrix with diagonal values of either 0 or 1; values are 0 for

unobservable or missing observations, and 1 for measured observations.

The basis system must not only fit the data, but also have the capacity to ap-

proximate ODE solutions and derivatives involved in ODE’s. To avoid the problem

of over-fitting, smoothing often requires a penalty term to penalize the roughness of
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the smooth function. For instance, in order to obtain a fitting function, the penalty

term can be defined in terms of the differential operator Lx(t).

PEN1 =

∫
(Lx(t))T (Lx(t))dt. (3.11)

The fitting criterion to estimate the fitting function is therefore composed of SSE and

the penalty term. A smoothing parameter λ controls the trade off of fitting the data

and infidelity to ODE’s.

J(c|θ,b, λ) = (y − x)TW(y − x) + λ

∫
(Lx(t))T (Lx(t))dt.

We define R =
∫

(Lφ(t))T (Lφ(t))dt, the previous equation can be rewritten as

J(c|b, θ, λ) = (y − Φc)TW(y −Φc) + λcTR(b, θ, λ)c.

In this case, we can minimize the fitting criterion J(c|b, θ, λ) and derive the analytical

form of the coefficient vector c as:

ĉ(b, θ, λ) = [ΦTWΦ + λR(b, θ, λ)]−1ΦTWy. (3.12)

If an explicit solution for c is not possible, we can still define this function implicitly

by optimizing a penalized or regularized fitting function like J(c|b, θ, λ) each time we

change the value of random effects or fixed-effects parameters. When the functional

relationship is implicit in this way, the Implicit Function Theorem permits the explicit

gradient and Hessian calculations that are essential for fast optimization.

Numerical integration

When L is a nonlinear differential operator, we can approximate the penalty term as:

PEN1 ≈
J∑

j=1

vj(Lφ(tj))(Lφ(tj))
T , (3.13)
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where tj is a quadrature point and vj is the corresponding quadrature weight. Let

ξl be a unique knot location, the evaluation points tj can be chosen by dividing

each interval [ξl, ξl+1] into the odd number of equal-sized intervals, say r, and the

quadrature weight vj = [1, 4, 2, 4, 1](ξl+1− ξl)/5 by Simpson’s rule. In our experience,

the integrals can be satisfactorily approximated using r = 5. In practice, the total

quadrature points and weights along with the corresponding basis function values can

be saved at the beginning of the computation in order to save computation time. The

speed of computation can be further improved by using the sparse matrix methods

in MATLAB if a B-spline basis function is used.

3.4.2 Optimizing random effects b

The optimization criterion for the random effects H(b|θ, λ) is the penalized nonlinear

least squares. This fitting criterion is composed of the sum of squared errors (SSE)

conditional on θ and λ, and a penalty term on the random effects b.

H(b|θ, λ) = SSE(b|θ, λ) + PEN2(b|θ, λ)

= (y − x)T W (y − x) + bT ΔT Δb

= yT [I − A(b|θ, λ)]TW[I −A(b|θ, λ)]y + bT ΔT Δb.

where the smoothing matrix A(b|θ, λ) = Φ[ΦTWΦ + λR(b|θ, λ)]−1ΦTW.

Since for each b, θ, and λ, we can estimate c as an explicit function of b, θ, and λ,

the fitting criterion H can be regarded as a function of b alone conditional on θ and λ.

However, the estimate b̂(θ, λ) can not be expressed as an explicit function of θ and λ.

By calculating the gradient and Hessian of H(b|θ, λ), the Newton-Raphson method

is applied to find the estimate b̂(θ, λ). Details of the calculations are provided in the

Appendix.

32



3.4.3 Criterion when the structural parameters only have β

If Δ and σ2 are assumed known and not of interest, structural parameters only contain

the fixed effects parameters; that is, θ = β. In this case, the structural optimization

criterion G(θ|λ) is defined by the sum of squared errors (SSE) only.

G(θ|λ) = SSE(θ|λ)

= (y − x)T W (y − x)

= yT [I −A(b̂(θ, λ), θ|λ)]TW[I −A(b̂(θ, λ), θ|λ)]y. (3.14)

where the smoothing matrix

A(b̂(θ, λ), θ|λ) = Φ[ΦTWΦ + λR(b̂(θ, λ), θ|λ)]−1ΦTW. (3.15)

Newton-Raphson method is used again to find the estimate β̂. Since the estimate

b̂(θ, λ) can not be expressed as an explicit function of θ and λ, the Implicit Function

Theorem is applied to calculate the gradient and Hessian matrix with respect to β.

The total derivative of G(β, b̂(β|λ)) with respect to β is as follows

dG(β, b̂(β, λ)|λ)

dβ
=

∂G(β, b̂(β, λ)|λ)

∂β
+
∂G(β, b̂(β, λ)|λ)

∂b̂
· ∂b̂(β, λ)

∂β
.

The formula of
dG(β,

ˆb(β,λ)|λ)

dβ
involves the term

∂
ˆb(β,λ)

∂β
. If the inner optimization

leads to an explicit solution for b̂(β, λ), the gradient is readily available. But if not,

the Implicit Function Theorem can be applied to find
∂

ˆb(β,λ)

∂β
.

Since the optimal parameter b̂ satisfying

∂H(b|β, λ)

∂b
= 0, (3.16)

and b̂ is a function of β, we can take the derivative with respect to β on Equation
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3.16 about b̂ as follows:

d

dβ

(
∂H(b|β, λ)

∂b

∣∣∣∣ ˆb
)

=
∂2H(b|β, λ)

∂b∂β

∣∣∣∣ ˆb +
∂2H(b|β, λ)

∂b∂bT

∣∣∣∣ ˆb · ∂b̂(β|λ)

∂β
= 0. (3.17)

which holds since
∂H(b|β,λ)

∂b

∣∣∣ ˆb is a function of β that is identically 0. Assuming

that
∣∣∣ ∂2H(b|β,λ)

∂b∂bT

∣∣∣ ˆb
∣∣∣ �= 0, we obtain the following equation from the Implicit Function

Theorem

∂b̂(β|λ)

∂β
= −

[
∂2H(b|β, λ)

∂b∂bT

∣∣∣∣ ˆb
]−1 [

∂2H(b|β, λ)

∂b∂β

∣∣∣∣ ˆb
]
. (3.18)

Details of the gradient and Hessian matrices in each level are provided in the Ap-

pendix.

3.4.4 Criterion when structural parameters are β,Δ, and σ2

This criterion is based on a first-order Taylor expansion of the nonlinear function xi

around the current value of β and the optimized b by the criterion H(b|θ, λ).

We define

Σ(Δ) = I +
∂xi

∂bT
i

∣∣∣∣ ˆb Δ−1Δ−T ∂xi

∂bT
i

∣∣∣∣ ˆb
T

, (3.19)

and the optimization criterion is a function of β, Δ, and σ2 conditional on the smooth-

ing parameter λ, as shown in Equation 3.20.

GLME(θ|λ) = −
∑N

i ni

2
log 2πσ2 − 1

2

N∑
i=1

{log (|Σ(Δ)|)

+

[
yi − xi +

∂xi

∂bT
i

∣∣∣∣ ˆb b̂i

]T

(Σ(Δ))−1

[
yi − xi +

∂xi

∂bT
i

∣∣∣∣ ˆb b̂i

]}
. (3.20)

We make the assumption that the variance-covariance matrix Ψ of random effects

is positive-definite, which ensures that a Δ will exist. In the optimization process, we

need to parameterize Δ to guarantee that it is positive-definite. Let S be a positive-
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definite, symmetric matrix; it can be expressed as the matrix exponential of another

symmetric matrix D as follows

S = eD = I +D +
D2

2!
+
D3

3!
+ · · · (3.21)

If S is called the matrix exponential of D, D is the matrix logarithm of S. One

way of evaluating the matrix logarithm D is to calculate an eigenvalue-eigenvector

decomposition. There is a nonsingular matrix of eigenvectors, U , and a diagonal

matrix of eigenvalues, Λ = diag(λ1, · · · , λq), such that

S = UΛU−1. (3.22)

If S is positive-definite, then all the diagonal elements of Λ must be positive. The

matrix logarithm of Λ is the diagonal matrix in which diagonal elements are the

logarithms of the corresponding elements of Λ. We denote this by log Λ as follows

D = logS = U log ΛU−1. (3.23)

In this thesis, we only consider the simple situation where Ψ is a diagonal ma-

trix, and therefore Δ is also a diagonal matrix. We parameterize Δ in terms of

δ = [δ1, · · · , δq]T , which are the logarithms of the diagonal values of the matrix Δ,

shown in Equation 3.24. In this way, δ become unconstrained parameters during the

optimizations.

Δ = diag(eδ1 , · · · , eδq). (3.24)

3.4.5 Criterion for the smoothing parameter λ

It is very important to choose an appropriate value for the smoothing parameter.

When the smoothing parameter is too small, the fitted curves tend to be rough. On

the other hand, the fitted curve is far from observations if the smoothing parameter is

too large, since there is too much weight on the roughness penalty and the fitted curve
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is forced to be very smooth. The generalized cross-validation (GCV) is a widely-used

criterion to find the optimal value of the smoothing parameter, which minimizes mean

square errors (MSE) between fitted curves and the data.

Let m be the total number of observations for all individuals, and define the degree

of freedom as follows

dfe(λ) = m− trace
(
Φ(ΦTΦ + λR)−1ΦTW

)
.

The fourth-level optimization criterion GCV is

F (λ) = GCV(λ) =

[
m

m− dfe(λ)

] [
SSE

m− dfe(λ)

]
,

where

SSE(λ) = yT [I −A(λ)]TW[I − A(λ)]y.

3.5 Inference and predictions

With the optimization criterion GLME(θ|λ), the distribution of the maximum likeli-

hood estimators β̂ of the fixed effects can be expressed in Equation (3.25) (Pinheiro

and Bates 2000).

β ∼ Normal

⎛
⎝β, σ2

[
N∑

i=1

∂xi

∂βT

∣∣∣∣
T

ˆβ
Σi(Δ)−1 ∂xi

∂βT

∣∣∣∣ ˆβ

]−1
⎞
⎠ . (3.25)

Through the optimization, the estimates of the coefficients for the basis functions

are obtained as follows

ĉ(β̂, b̂, λ̂) = [ΦTWΦ + λR(β̂, b̂, λ̂)]−1ΦTWy. (3.26)
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Therefore, the predicted value at time t is

x̂(t) = φ(t)T ĉ.

Numerically solving ODE’s relies on initial values, which are the values of ODE

components at the first time point, usually time t = 0. A small change in initial values

results in a large difference in the numerical ODE solutions. However, observations

in real life, including the observed initial values, usually have some measurement

error, and it is dangerous to use the first observations as the initial values directly.

Moreover, some components in ODE’s are not observable, in which case there is no

way to observe the initial values for these components.

The byproduct of the generalized profiling method is that the fitted curves for all

components can be obtained using the ODE parameter estimates. The estimates for

initial values are obtained by evaluating the fitted curves for all components at the

first time point. The initial values x(0) can be estimated as

x̂(0) = φ(0)T ĉ.
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Chapter 4

Simulations

This chapter aims to validate the proposed nonlinear mixed-effects models by the

generalized profiling method with simulated data sets for three compartment pharma-

cokinetic models. These models are introduced briefly together with their structural

parameters. In the following, we estimate random-effects parameters b, fixed-effects

parameters β and the smoothing parameter λ with a fixed relative precision factor Δ

and residual variance σ2 by a four-level optimization for the one-compartment model

with first-order absorption and elimination. Then we estimate b, β, Δ, and σ2 by a

three-level optimization for three compartment models with a fixed λ. Finally, this

chapter gives some discussions on several practical issues, such as derived parameters,

identifiability, and starting values.

4.1 Compartment pharmacokinetic models

Pharmacokinetics is an important application field of the nonlinear mixed-effects

models expressed by ODE’s. This section considers three pharmacokinetic mod-

els used in the following sections, including a one-compartment elimination model,

a one-compartment model with first-order absorption and elimination, and a two-

compartment open model.

The simplest compartment model is a one-compartment elimination model with

the first-order elimination rate ke. For injected drugs, the process of absorption tends

38



to be very short and neglectful, and all the tissues are perfused rapidly by the drug.

Therefore, the whole body can be represented by a single compartment, the central

compartment. Let C(t) be the drug concentration in this central compartment at

time t after drug administration. This model can be described by the differential

equation as follows

dC(t)

dt
= −keC(t). (4.1)

With an initial value of the drug concentration C(0), the solution to this differential

equation is

C(t) = C(0) · exp(−ket). (4.2)

A one-compartment model with first-order absorption and elimination can be used

to represent more complicated pharmacokinetic processes. For orally-administered

drugs, the process of absorption might take a long time to complete. It is reasonable

to consider the absorption rate ka besides the elimination rate ke. Let [Ca(t), C(t)]T

be a vector representing the drug concentration at the absorption site and in the

blood at time t. The dose is known and denoted by D. This thesis assumes that the

bioavailability of the drug, B, is always equal to 1. The volume of distribution V

represents the apparent instantaneous dilution space of an instantaneously absorbed

dose. The one-compartment model with the first-order absorption rate ka and the

first-order elimination rate ke can be expressed by two differential equations as follows.

dCa(t)

dt
= −kaCa(t), Ca(0) = B

D

V
,

dC(t)

dt
= kaCa(t) − keC(t). (4.3)

These two differential equations in Equation (4.3) can be solved analytically, as

shown in Equation (4.4). In a general case, numerical methods are often needed to
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Figure 4.1: A diagram of a two-compartment model. Compartment 1 is the central
compartment; compartment 2 is the tissue compartment.

obtain solutions of ODE’s when differential equations cannot be solved analytically.

Ca(t) = Ca(0) exp(−kat)

C(t) = Ca(0)
ka

(ka − ke)
[exp(−ket) − exp(−kat)] + C(0) exp(−ket). (4.4)

If drugs exhibit a slow equilibration with peripheral tissues, a two-compartment

model can be used to describe the distribution of drugs from the central compart-

ment to the tissue compartment. Figure 4.1 shows a diagram of a two-compartment

model expressed by ODE’s in Equation (4.5); Compartment 1 represents the central

compartment with the drug concentration C(t), and Compartment 2 symbolizes the

peripheral compartment with the drug concentration C2(t). The process of distri-

bution is represented by the rate constants k12 and k21; the process of elimination

is represented by the rate constant ke. For this model, solutions are obtained using

numerical methods in our simulations.

dC(t)

dt
= −(ke + k12)C(t) + k21C2(t),

dC2(t)

dt
= k12C(t) − k21C2(t), C2(0) = 0. (4.5)

A property of the compartment pharmacokinetic models is that the absorption
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rate and the elimination rate must be positive, and concentrations must not be nega-

tive. Using logarithms of parameters in the model are a common and effective way to

ensure positive values while keeping the optimization problem unconstrained. This

thesis parameterizes models in terms of the logarithms of rate constants. As an exam-

ple of this parameter transform, we consider the transfer matrix for the i-th individual

in the one-compartment model with first-order absorption and elimination as follows

Mi =

⎡
⎣ − exp(ln(ka) + bi1) 0

exp(ln(ka) + bi1) − exp(ln(ke) + bi2)

⎤
⎦ ,

where random effects bi = [bi1, bi2] ∼ Normal(0,Ψ).

In addition, to ensure a positive-definite matrix, we parameterize the relative

precision factor Δ, a diagonal matrix in this thesis, as the logarithms of its diagonal

values, denoted by δ or [δ1, · · · , δq]T . For the same reason, we parameterize the

residual variance σ2 as its logarithm. Particularly, the parameters are [ln(ke), δ,

ln(σ2)]T in the one-compartment elimination model, [ln(ka), ln(ke), δ1, δ2, ln(σ2)]T in

the one-compartment model with first-order absorption and elimination, and [ln(ke),

ln(k12), ln(k21), δ1, δ2, δ3, ln(σ2)]T in the two-compartment open model.

4.2 Estimating mixed effects and the smoothing

parameter with a fixed relative precision factor

This section investigates the estimates of coefficients of basis functions c, random

effects b, fixed effects β, and the smoothing parameter λ through a four-level op-

timization with a fixed relative precision factor Δ for the one-compartment model

with first-order absorption and elimination. In the inner level, nuisance parameters

c are optimized by penalized smoothing defined by ODE’s; in the middle level, ran-

dom effects b are optimized by a penalized nonlinear least squares; in the outer level,

fixed effects β are optimized by the sum of squared errors; in the outermost level, the

smoothing parameter λ is optimized by the criterion of generalized cross-validation
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(GCV).

We assume that the data sets are generated in the following pharmacokinetical

scenario. An oral drug is given to 16 healthy individuals with the same dose D = 10.

After drug administration, the drug concentrations C(t) in the blood are measured

at 11 time points, 0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 6, 7, 9, and 12 hours. Although

we can simulate the drug concentration Ca(t) at the absorption site in simulations, it

is impossible to measure them in real data sets.

For the population, we assume that the absorption rate ka and the elimination

rate ke are 1.65 and 0.25, respectively. In other words, the fixed-effects parameters β,

logarithms of ka and ke, are [0.5,−1.4]T . For all individuals, the initial values of the

drug concentrations in the blood, C(0), are assumed to be 0, and the initial values

for the drug concentrations at the absorption site, Ca(0), are supposed to be 10.

For each simulation, we assume that 16 individuals are drawn from the population

randomly. The random-effects parameters bi, i = 1, · · · , 16, are assumed to follow

a normal distribution with mean 0 and variance-covariance Ψ. For simplicity, Ψ is

assumed to be a diagonal matrix, with diagonal values [0.04, 0.01]T in this section.

Data are supposed to be subject to measurement errors, which is simulated by adding

noise from a normal distribution with mean 0 and variance 0.04.

Under these assumptions on the parameters and initial values, solutions to the

differential equations in Equation (4.3) are given by red solid lines in Figure 4.2. As

can be seen, the drug concentration at the absorption site, Ca(t), decreases from 10

to 0 very quickly, and all drugs are absorbed after about 4 hours after drug admin-

istration. Meanwhile, the drug concentration in the blood, C(t), is going up rapidly

at the beginning of absorption, and reaches the maximum point within 2 hours. Af-

ter that, it goes down slowly to a small value in 12 hours after drug administration.

Figure 4.2 also illustrates one typical simulated data set based on the above setting

of parameters. The blue circles are the simulated data points for each individual at

particular time points. A connected blue curve represents all the observations for an

individual. As can be seen, all the individuals share a similar shape represented by

the population curve with certain variability.
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Figure 4.2: One typical simulated data for a one-compartment model with first-
order absorption and elimination with ka = 1.65, ke = 0.25, σ2 = 0.04,Ψ =
diag([0.04, 0.01]).

It is important to select an appropriate smoothing parameter to obtain good

estimates. We begin with investigating the behavior of GCV to validate the estimate

of λ. For the typical simulated data set shown in Figure 4.2, Figure 4.3 shows values of

GCV under different values of the smoothing parameter λ. These values of GCV are

evaluated when λ is 2r, r = 1, · · · , 13, with the true values of structural parameters.

The left panel displays GCV versus log(λ) with both of the two components of data,

the drug concentration at the absorption site Ca(t) and the drug concentration in the

blood C(t). GCV is minimized when the smoothing parameter λ is around 512 with a

minimum value 0.0427. In contrast, the right panel displays GCV versus log(λ) with

only one component C(t). The minimum value 0.0460 is obtained when λ is around

512.

For both of the two plots of GCV, there are relative large intervals for λ having

similar values of GCV. This feature of flatting GCV might cause problems when

we use it as the outermost criterion to estimate λ through a four-level optimization

because it is highly likely that the process of optimization cannot converge to a unique
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Figure 4.3: The left panel displays the generalized cross-validation (GCV) criterion
versus log(λ) of the model with both of the two components; the right panel displays
GCV versus log(λ) of the model with only the drug concentrations in the blood.

Figure 4.4: The Boxplots of the estimated ln(ka) and ln(ke) with a smoothing pa-
rameter chosen by GCV, where the dots represent the true values. The left two plots
show the results with two components, and the right two plots show those with one
component.
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solution. To see this, we conduct the four-level optimization to estimate λ with the

two components of data. The starting value for λ is 10; the random starting values

for β are [0.57,−1.36]T ; random starting values are chosen from the standard normal

distribution for the random-effects parameters b. As a result, the estimate for the

smoothing parameter, λ̂, is 213. For comparison, we use the same data set to estimate

λ again with a different set of starting values. The starting value for λ is set to be

5000; the random starting values of β are [0.61,−1.33]T ; starting values of b are

selected randomly from a normal distribution. The new estimate λ̂ is 1629, which is

different from the previous estimate.

Based on the above results and discussion, it is not efficient to estimate the smooth-

ing parameter λ by GCV in a four-level optimization. There is often a large interval

instead of a unique point for the optimized λ based on GCV. Moreover, four levels of

optimization are much more time-consuming than a three-level optimization because

cascaded relationships among the parameters will become more complicated with the

increase of levels of optimization. Each time of updating λ leads to a three-level op-

timization. Therefore, we choose a smoothing parameter either from the range from

100 to 10000 arbitrarily, or by minimizing values of GCV for a few numbers of λ. In

this section, the smoothing parameter λ is chosen by minimizing GCV when λ is 2r,

r = 1, · · · , 13.

The left two plots in Figure 4.4 show the boxplots for the estimated fixed-effects

parameters β from 100 simulations with the two components of data. The medians

of estimates for ln(ka) and ln(ke) are 0.50 and -1.40, respectively, which are almost

identical to the true values. The estimates tend to be unbiased with only small biases,

0.0025 and 0.0018, respectively. The experimental 95% confidence intervals (CI’s) are

(0.39, 0.60) for ln(ka), and (−1.45,−1.35) for ln(ke). The standard deviations (SD’s)

are 0.054 and 0.027 for ln(ka) and ln(ke), respectively. Estimates also seem very stable

based on the fact that the confidence intervals and SD’s are relatively small.

In contrast, the right two plots in Figure 4.4 show the boxplots for the estimated

fixed-effects parameters ln(ka) and ln(ke) with only one component of data, C(t).

The medians of estimates for ln(ka) and ln(ke) are 0.50 and -1.39, respectively, which
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are also very close to the true values with small biases 0.0005 and 0.0071. The

experimental 95% confidence intervals are (0.41, 0.60) for ln(ka), and (−1.46,−1.34)

for ln(ke). The standard deviations over these 100 simulations are 0.053 and 0.030

for ln(ka) and ln(ke), respectively. Therefore, we can obtain similar results by using

only one component of data.

4.3 Estimating random effects and all the struc-

tural parameters with a fixed smoothing pa-

rameter

This section tests our method of estimating random effects b, fixed effects β, the log-

arithms of the diagonal values of the relative precision factor, δ, and the logarithm of

residual variance, ln(σ2), with a fixed smoothing parameter λ through the three-level

optimization. In the inner level, nuisance parameters c are optimized by penalized

smoothing defined by ODE’s; in the middle level, random effects b are optimized by

a penalized nonlinear least squares; in the outer level, the structural parameters θ

are optimized by a criterion based on a first-order Taylor expansion of the nonlinear

function. Based on the discussion in the previous section, we won’t use a four-level

optimization to choose λ. Instead, λ is chosen arbitrarily in the range from 100 to

10000. We consider simulations for the one-compartment elimination model, the one-

compartment model with absorption and elimination, and the two-compartment open

model.

4.3.1 The one-compartment elimination model

For the one-compartment elimination model, we estimate structural parameters [ln(ke),

δ, ln(σ2)]T with a fixed λ using simulations under three different settings in Table 4.1.

This table shows the number of subjects, N ; the initial values of drug concentration

at absorption site, Ca(0); structural parameters in the original scale, including ke, Ψ,

and σ2; parameters in the process of optimization, including ln(ke), δ, and ln(σ2).
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Figure 4.5: Typical simulated data sets of the one-compartment elimination model
for Setting 1, Setting 2, and Setting 3 in Table 4.1 (from top to bottom).
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For simplicity, we assume that drug concentrations are measured at the same series

of time points for all subjects. However, the generalized profiling method can also

consider measurements at different time points for different individuals, which is often

the case for the real data sets.

Figure 4.5 illustrates graphically one typical simulated data set for each setting

in Table 4.1. The red solid lines represent solutions of the differential equations with

the assumed parameters, and the connected blue circles represent observations for

an individual at a series of time points. As can be seen, all the individuals share

a similar concentration-time curve with certain variability. Particularly, Setting 3

has the highest elimination rate and smallest variance for random effects. Setting 1

and Setting 2 have slower elimination rates, and they have the same variance for the

random effects, while the residual variance of Setting 2 is much higher.

Table 4.1: Simulation settings for the one-compartment elimination model

Parameter Setting 1 Setting 2 Setting 3
N 16 12 12
Ca(0) 10 10 10
ke 0.3 0.14 1.65
Ψ 0.04 0.04 0.01
σ2 0.04 0.36 0.04
ln(ke) -1.2 -2 0.5
δ 0 1.10 0.69
ln(σ2) -3.22 -1.02 -3.22

Time points
Setting 1 (13) 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6 , 8, 10, 12
Setting 2 (11) 0, 0.25, 0.57, 1.12, 2.02, 3.82, 5.1, 7.03, 9.05, 12.12, 24.37
Setting 3 (12) 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 10

For each setting in Table 4.1, 100 simulated data sets are generated, and param-

eters are estimated with a fixed smoothing parameter λ = 1000. Table 4.2 gives true

values, median estimates, experimental 95% confidence intervals (CI’s), standard de-

viations (SD’s), and estimated biases under the three settings of the one-compartment

elimination model in Table 4.1; Figure 4.6 shows the boxplots of all the parameter

estimates. Compared with the true values marked by blue dots, the median estimates
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for the fixed-effects parameter ln(ke) represented by the red horizontal lines are very

accurate under the three settings. Moreover, with short confidence intervals and small

standard deviations, estimates for ln(ke) seem very stable. Estimates of δ are almost

unbiased but with relatively larger intervals. The logarithms of the residual vari-

ance, ln(σ2), are underestimated with short confidence intervals and small standard

deviations.

Table 4.2: Parameter estimates for the one-compartment elimination model with
λ = 1000

Setting 1
Parameter True Estimates 95% CI SD Bias
ln(ke) -1.2 -1.20 (-1.29, -1.10) 0.045 0.0047
δ 0 0 (-0.27, 0.49) 0.19 0.0087
ln(σ2) -3.22 -3.30 (-3.55, -3.09) 0.12 0.080

Setting 2
Parameter True Estimates 95% CI SD Bias
ln(ke) -2 -2.00 (-2.11, -1.86) 0.060 0.0028
δ 1.10 1.12 (0.62, 1.88) 0.34 0.0086
ln(σ2) -1.02 -1.13 (-1.45, -0.91) 0.14 0.11

Setting 3
Parameter True Estimates 95% CI SD Bias
ln(ke) 0.5 0.50 (0.44, 0.56) 0.031 0.0011
δ 0.69 0.64 (0.29, 1.40) 0.30 0.046
ln(σ2) -3.22 -3.33 (-3.58, -3.06) 0.14 0.11

4.3.2 The one-compartment model with first-order absorp-

tion and elimination

For the one-compartment model with first-order absorption and elimination, we test

our method using simulations under three settings. Let [ψ1, ψ2]
T be the diagonal

values of the variance-covariance matrix Ψ for random effects, and let [δ1, δ2]
T be the

logarithms of the diagonal values of the relative precision factor Δ. Table 4.3 shows

the number of subjects, N ; the initial values of drug concentration at absorption

site, Ca(t); structural parameters in the original scale, including ka, ke, ψ1, ψ2, and

σ2, and parameters in the optimization, including ln(ka), ln(ke), δ1, δ2, and ln(σ2).

49



Figure 4.6: Boxplots of the estimated structural parameters for the one-compartment
elimination model, where the dots represent the true values. From top to bottom:
Setting 1, Setting 2, and Setting 3 in Table 4.1.
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Parameters of Setting 1 are selected arbitrarily, while parameters of Setting 2 and

Setting 3 are chosen to represent the characteristics of the real data sets in the next

Chapter. For simplicity, we assume that drug concentrations are measured at the

same series of time points for all individuals.

Table 4.3: Simulation settings for the one-compartment model with first-order ab-
sorption and the elimination

Parameter Setting 1 Setting 2 Setting 3
N 12 12 16
Ca(0) 10 10 10
ka 1.65 1.65 0.905
ke 0.25 0.09 0.301
ψ1 0.04 0.40 0.25
ψ2 0.01 0.017 0.01
σ2 0.04 0.46 0.04
ln(ka) 0.5 0.5 -0.1
ln(ke) -1.4 -2.4 -1.2
δ1 0 0.076 -0.92
δ2 0.69 1.65 0.69
ln(σ2) -3.22 -0.77 -3.22

Time points
Setting 1 (12) 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6 , 8, 10.
Setting 2 (11) 0, 0.25, 0.57, 1.12, 2.02, 3.82, 5.1, 7.03, 9.05, 12.12, 24.37.
Setting 3 (13) 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3, 4, 5, 6, 8, 10, 12.

Figure 4.7 illustrates graphically one typical simulated data set for each setting

in Table 4.3. The red solid lines represent solutions of the differential equations with

the assumed parameters, and the connected blue circles represent observations for an

individual at a series of time points. As can be seen, all the individuals share a similar

concentration-time curve with certain variability. Setting 1 and Setting 2 have higher

absorption rates than Setting 3. Setting 3 has the highest elimination rate while

Setting 2 has the lowest value. In contrast to the absorption rates, all of the three

settings have relative small variances for random effects of the elimination rates.

Setting 2 owns the highest variances for random effects among the three settings

while Setting 1 has the smallest values. Setting 3 has more individuals and more

observations per subject than the other settings.
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Figure 4.7: Typical simulated data sets of the one-compartment model with first-
order absorption and elimination for Setting 1, Setting 2, and Setting 3 in Table 4.3
(from top to bottom).
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Although we can use both of the two components of the simulated data to estimate

parameters, it is more realistic to use only the drug concentration in the blood, C(t),

to test our method. For comparison, we estimate parameters under Setting 1 using

two components and just one component, respectively. In this example, we estimate

b, δ, and ln(σ2) using 100 simulated data sets with a fixed λ = 100. Table 4.4

shows true values, median estimates, experimental 95% confidence intervals, standard

deviations, and estimated biases under Setting 1; Figure 4.8 illustrates the boxplots for

the estimates. Except for the underestimated residual variance, both of the two sets

of estimates are close to the true values. However, the estimates with two components

of data are more accurate than those with only one component, and CI’s are shorter

and SD’s are relatively smaller.

Table 4.4: Results of parameter estimates for setting 1 of the one-compartment model
with first-order absorption and elimination with λ = 100

Two components
Parameter True Estimate 95% CI SD Bias
ln(ka) 0.5 0.50 (0.40, 0.62) 0.058 0.0023
ln(ke) -1.4 -1.40 (-1.47, -1.33) 0.033 0.0015
δ1 0 -0.026 (-0.36, 0.48) 0.20 0.026
δ2 0.69 0.70 (0.35, 1.33) 0.24 0.012
ln(σ2) -3.22 -3.33 (-3.49, -3.20) 0.085 0.11

One component
Parameter True Estimate 95% CI SD Bias
ln(ka) 0.5 0.51 (0.39, 0.62) 0.062 0.0097
ln(ke) -1.4 -1.40 (-1.47, -1.35) 0.035 0.0036
δ1 0 -0.041 (-0.46, 0.46) 0.24 0.041
δ2 0.69 0.62 (0.14, 1.67) 0.42 0.066
ln(σ2) -3.22 -3.46 (-3.71, -3.25) 0.12 0.24

To better validate estimates by the generalized profiling method with only one

component of data, Table 4.5 summarizes results of 100 simulations for Setting 2

and Setting 3 in Table 4.3, and boxplots of these estimates are shown in Figure 4.9.

Median estimates are close to the true values. The estimates of the elimination rate

ln(ke) are more accurate than those of the absorption rate ln(ka). This is probably

because the number of observations during the elimination process is larger than that
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Figure 4.8: Boxplots of the estimated structural parameters for the one-compartment
model with first-order absorption and elimination, where the dots represent the true
values. The upper panel: with two components; the lower panel: with only one
component.
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during the absorption process. These results should be improved by choosing a more

appropriate smoothing parameter λ or having more data points.

Table 4.5: Median estimates of parameters for Setting 2 and Setting 3 of the one-
compartment model with first-order absorption and elimination with λ = 1000 using
only one component of data

Setting 2
Parameter True Estimate 95% CI SD Bias
ln(ka) 0.5 0.47 (0.14, 0.83) 0.19 0.028
ln(ke) -2.4 -2.40 (-2.53, -1.25) 0.063 0.0038
δ1 0.076 0.12 (-0.36, 0.63) 0.25 0.046
δ2 1.65 1.52 (0.77, 7.69) 2.12 0.13
ln(σ2) -0.77 -1.02 (-1.35, -0.70) 0.18 0.25

Setting 3
Parameter True Estimate 95% CI SD Bias
ln(ka) -0.1 -0.11 (-0.32, 0.13) 0.12 0.015
ln(ke) -1.2 -1.19 (-1.24, -1.14) 0.024 0.012
δ1 -0.92 -0.87 (-1.21, -0.54) 0.18 0.050
δ2 0.69 0.66 (0.26, 1.23) 0.25 0.030
ln(σ2) -3.22 -3.28 (-3.46, -3.17) 0.074 0.060

4.3.3 The two-compartment open model

We use one simulation setting to validate the performance of our method for the

two-compartment open model. Let [δ1, δ2, δ3]
T be logarithms of the diagonal values

of the relative precision factor Δ. A total of 10 observations per subject are simu-

lated for 12 individuals at time points, 0, 0.25, 0.57, 1.12, 2.02, 3.82, 5.1, 7.03, 9.05,

and 12.12 hours. Initial values of drug concentration at absorption site Ca(t) are as-

sumed to be 8 for all individuals. Structural parameters in the optimization include

ln(ke), ln(k12), ln(k21), δ1, δ2, δ3, and ln(σ2).

With a fixed λ = 1000, Table 4.6 shows true values and median estimates, ex-

perimental 95% confidence intervals, standard deviations, and estimated biases of

parameters from 100 simulations for the two-compartment open model. One set of

typical simulated data is shown in Figure 4.10. Figure 4.11 illustrates the boxplots

for these estimates. Only one component, C(t), is used in estimating parameters. As
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Figure 4.9: Boxplots of the estimated structural parameters for the one-compartment
model with first-order absorption and elimination, where the dots represent the true
values. The upper panel: Setting 2; the lower panel: Setting 3.
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Figure 4.10: One typical simulated data sets of the two-compartment open model.

can be seen, median estimates for the fixed effects, [ln(ke), ln(k12), ln(k21)]
T , are

close to the true values and relatively stable. Median estimates for the logarithms of

the diagonal values of the relative precision factor, [δ1, δ2, δ3]
T , are also close to the

true values, but they are quite instable with large experimental confidence intervals

and standard deviations. The residual variance is underestimated, but the estimate

is stable.

Table 4.6: Parameter estimates for the two-compartment open model with λ = 1000

Parameter True Estimate 95% CI SD Bias
ln(ke) -2 -1.99 (-2.17, -1.65) 0.11 0.011
ln(k12) -0.4 -0.40 (-0.59, -0.15) 0.11 0.0007
ln(k21) -0.2 -0.21 (-0.56, -0.042) 0.12 0.0076
δ1 0 -0.011 (-0.66, 4.40) 1.31 0.011
δ2 0 -0.073 (-0.68, 5.038) 1.59 0.073
δ3 0 -0.24 (-1.01, 4.48) 1.66 0.24
ln(σ2) -4.61 -4.86 (-5.18, -4.56) 0.15 0.25
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Figure 4.11: Boxplots of the estimated structural parameters for the two-
compartment open model, where the dots represent the true values.

4.4 Discussion

The generalized profiling method of estimating nonlinear mixed-effects models ex-

pressed by ODE’s has been validated by three compartment models in pharmacoki-

netics. Simulated data sets have been generated for each compartment model under

different settings of parameters. We have compared the estimates with true values

and illustrated boxplots for all the estimates. This section considers several practical

issues related to fitting compartment models, including the problem of identifiability,

derived parameters, and starting values for parameters. Further discussions on these

topics can be found in Bates and Watts (1988).

4.4.1 Derived parameters

We consider several derived parameters of interest in pharmacokinetic practice for the

one-compartment model with first-order absorption and elimination. For this model

expressed by ODE’s, there are only two fixed-effects parameters, the absorption rate

58



constant ka and the elimination rate constant ke, to be estimated directly. However,

we can also estimate the initial values of the differential equations Ca(0), which has

been introduced in the previous chapter. Based on the relationship among parameters,

some interesting parameters can be derived from these estimates.

The half-life, t1/2, associated with the elimination rate constant ke is

t1/2 =
ln2

ke
≈ 0.693

ke
. (4.6)

The second derived quantity of interest in pharmacological studies is the volume

of distribution V , which represents the apparent instantaneous dilution space of an

instantaneously absorbed dose D. With a bolus injection, the dose D at the drug

administration time is known, and the concentration Ca(0) can be estimated. These

are related by

Ca(0) =
D

V
. (4.7)

Therefore, the volume of distribution V can be estimated by

V =
D

Ca(0)
. (4.8)

The total body clearance, Cl, represents the volume of the fluid, blood or plasma,

that is totally cleared of its content of drug per unit time. (e.g., mL/min or L/min).

Cl =
Dke

Ca(0)
. (4.9)

Another derived quantity of interest in pharmacological studies is the area under

the curve (AUC). For many simple compartment models this is equal to the initial

concentration in the injection compartment, say Ca(0), divided by the elimination

rate, say ke, so

AUC =
Ca(0)

ke
. (4.10)
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Parameter Cmax is the maximum or peak concentration of a drug observed after

its administration. Parameter Cmin is the minimum or trough concentration of a drug

observed after its administration and just prior to the administration of a subsequent

dose.

4.4.2 Identifiability

A noticeable problem when fitting the model with only drug concentrations in the

blood is that different settings of the starting values might lead to exchangeable pa-

rameter estimates. Although these different sets of parameters give different predicted

values for the unobserved component, they obtain the same predicted responses for

the observed component(s). Since we cannot evaluate the unobserved components,

problems occur when choosing correct estimates from discrete sets of parameters,

which is called the problem of identifiability.

We study the problem of identifiability of the one-compartment model with first

order absorption and elimination rates by investigating the ODE solution of the drug

concentrations in the blood:

C(t) =
Dkake

Cl(ka − ke)
[exp(−ket) − exp(−kat)] + C(0) exp(−ket). (4.11)

As can be seen, when C(0) is 0, solutions [ka, ke, Cl]
T and [ke, ka, Cl]

T are ex-

changeable.

In order to solve this problem of identifiability, one common way is to put some

constraints on the parameters. In practice, we usually have some prior knowledge

about the parameters to be estimated. In this case, we have known that the elimina-

tion rate is smaller than the absorption rate. Therefore, we could force 0 ≤ ke ≤ ka

with the following parameter transformations

ke = exp(θe) (4.12)

ka = exp(θe)(1 + exp(θa)). (4.13)
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Alternatively, in this example, we can try different sets of starting values, and

chose the estimates that match our prior knowledge.

4.4.3 Starting values

In the simulations of this section, starting values are usually chosen randomly from the

standard normal distribution. For the one-compartment model with first-order ab-

sorption and elimination, a unique set of estimates is obtained using different starting

values if both of the two components of data are used in the optimization. However,

as discussed in the previous subsection, two discrete sets of estimates are achieved

when different starting values are tried. In simulations, since the initial values of

concentration in the blood are 0 for all individuals, the two sets of estimates are

exchangeable. We start the optimization with random starting values, and exchange

the estimates to ensure that the elimination rate is slower than the absorption rate.

In the case of simulations, we can also use starting values that are close to the true

values or results from the previous studies. Alternatively, we can always start with a

simple model, such as a one-compartment model, and extend it, which is illustrated

in Bates and Watts (1988).
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Chapter 5

Applications to two real data sets

In this chapter, we analyze two real data sets using the one-compartment model

with first-order absorption and elimination expressed by ODE’s with the generalized

profiling method. As an illustration, the first section analyzes the widely used data

set in pharmacokinetics, the theophylline data set. The second section gives the

results for antiretroviral drugs, combinations of indinavir (IDV) and ritonavir (RTV),

to treat HIV-positive patients.

5.1 Theophylline data

For the theophylline data, twelve subjects are given oral doses of theophylline. Serum

concentrations are measured at 11 time points over the next 25 hours after drug

administration. This data set can be obtained from the R package nlme by the name

Theoph, containing 5 columns as follows: theophylline concentration in the sample

(mg/L), time since drug administration when the sample was drawn (hr), a factor

identifying the subject, weight of the subject (Kg), and dose administered to the

subject (mg/Kg).

Pinheiro and Bates (2000) have explored the theophylline data set by fitting it

to the one-compartment open model with first-order absorption and elimination by

the R package nlme. In contrast to the generalized profiling method, solutions of

ODE’s have to be worked out for the drug concentration C(t) at time t after drug
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administration before the analysis by nlme. In this case, C(t) is a nonlinear function

of the absorption rate ka, the elimination rate ke, and the total body clearance Cl,

as shown in Equation (5.1).

C(t) =
Dkake

Cl(ka − ke)
[exp(−ket) − exp(−kat)]. (5.1)

To ensure the positive rate constants, logarithms of parameters are estimated

instead in the analysis; that is, the vector of fixed-effects parameters is [ln(ka), ln(ke),

ln(Cl)]T . The package nlme gives the estimates for fixed effects, standard deviations

for the fixed effects, random effects, and residuals. Based on these estimates and

relationships among parameters, the estimates for δ are derived for the purpose of

comparison with those results by the generalized profiling method. Meanwhile, ψ1

and ψ2, variances of the absorption rate and the elimination rate, are the diagonal

values of the matrix Ψ which can be obtained using the relationship ΔT Δ = Ψ−1σ2.

Table 5.1: Estimates for the structural parameters with different λ by the generalized
profiling method and estimates for two models in nlme

The generalized profiling method nlme
λ 100 400 1000 10000 Model 1 Model 2

GCV 0.57 0.55 0.56 0.86 - -
ln(ka) 0.49 0.48 0.47 0.31 0.45 0.47
ln(ke) -2.46 -2.45 -2.45 -2.42 -2.43 -2.45
δ1 0.029 0.076 0.11 0.70 0.067 0.097
δ2 1.88 1.76 1.76 5.72 1.65 10.48

ln(σ2) -0.92 -0.89 -0.87 -0.46 -0.77 -0.69
ka 1.63 1.62 1.61 1.36 1.57 1.59
ke 0.086 0.086 0.086 0.089 0.089 0.086
ψ1 0.38 0.35 0.34 0.16 0.41 0.41
ψ2 0.0093 0.012 0.012 <1e-5 0.017 <1e-5
σ2 0.40 0.41 0.42 0.63 0.46 0.50

We estimate ln(ka), ln(ke), δ1, δ2, and ln(σ2) with different values of λ, as

shown in Table 5.1. Initially, values of GCV are evaluated when λ is 100, 1000, and

10000, respectively, resulting that the best estimate of λ is 1000. A better λ is found

by further searching around 1000, which results λ = 400. As can be seen, values of
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GCV are quite similar in the range from 100 to 1000, and estimates for the structural

parameters are close to each other. However, GCV becomes much larger when λ is

10000, which results in very different estimates of parameters. We also list estimates

of two models by nlme in R in which all of the parameters, ln(ka), ln(ke), and ln(Cl),

have mixed effects. For Model 1, the whole variance-covariance matrix for random

effects, Ψ, is estimated. In contrast, Ψ is assumed to be a diagonal matrix in Model

2.

Based on the GCV criterion, we choose results when the smoothing parameter

is 400 to compare with estimates by nlme. For the two models by nlme, estimates

of the fixed effects ka and ke are closer to Model 2 because the generalized profiling

method uses the same assumption on Ψ which is a diagonal matrix. However, the

estimates of the relative precision factor are not very close to each other. In addition,

the relative precision factor is estimated directly in the generalized profiling method,

while nlme derives it using relationships among parameters. Therefore, further in-

vestigation is needed to compare results from the generalized profiling method and

nlme. The diagonal values of the variance-covariance matrix for the random effects

Ψ and the residual variance σ2 are less than the estimates by nlme. These values

are underestimated in the generalized profiling method because we use the maximum

likelihood estimate while nlme employs the restricted maximum likelihood estimate

(REML).

We can obtain the individual-specific parameters based on the estimates of both

the fixed-effects parameters and random-effects parameters. For the fitted model with

a smoothing parameter λ = 400, Table 5.2 shows the individual-specific estimates for

some pharmacokinetic parameters of interest. Those parameters include the initial

value for the drug concentration at the absorption site, Ca(0); the absorption rate,

ka; the elimination rate, ke; the clearance, Cl; the volume of distribution, V ; the

half-time, T1/2; the area under the curve, AUC. As can be seen, there are certain

variability for these parameters from individual to individual, which is very useful for

individualizing dosage regimens.

The adequacy of the fitted model is better visualized by displaying the fitted and
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Table 5.2: Estimates of parameters for individuals with λ = 400

Subject Ca(0) ka ke Cl V T1/2 AUC
1 11.59 1.50 0.072 0.029 0.34 9.60 160.5
2 10.11 2.15 0.091 0.037 0.43 7.58 110.6
3 9.27 2.30 0.085 0.042 0.48 8.15 109.1
4 10.83 1.28 0.086 0.034 0.40 8.06 126.0
5 12.63 1.60 0.086 0.039 0.46 7.97 145.4
6 7.86 1.36 0.088 0.043 0.50 7.87 89.2
7 9.43 0.84 0.087 0.045 0.52 7.94 108.2
8 8.83 1.44 0.087 0.044 0.51 7.94 101.2
9 7.71 5.43 0.088 0.034 0.40 7.79 86.8

10 12.78 0.64 0.081 0.037 0.43 8.50 156.9
11 7.76 3.72 0.090 0.054 0.63 7.63 85.5
12 13.11 1.01 0.090 0.034 0.40 7.63 144.3

observed values in the same plot. Figure 5.1 displays both the population predictions

obtained by setting the random effects to zero and the individual-specific predictions

using both random effects and fixed effects. Observations marked by blue circles only

exist for the plasma concentrations of theophylline, while the concentrations at the ab-

sorption site is unobservable. However, the unobserved components can be predicted

in the generalized profiling method. The red solid lines represent individual-specific

predictions while the black dashed lines represent the population predictions. As can

be seen, the individual-specific predictions follow the observed closely, indicating that

the nonlinear mixed-effects model explains the drug concentrations well.

After fitting the model to the data, it is important to examine if the two basic

distributional assumptions underlying the nonlinear mixed-effects model remain valid.

First, the within-group errors are independent and identically normally distributed

with mean zero and variance σ2, and they are independent of the random effects.

Second, the random effects are normally distributed with mean zero and variance-

covariance matrix Ψ and are independent for the different groups.

Because we usually have only a small number of individuals with a few obser-

vations, we cannot reliably test assumptions about the random-effects distribution

and the independence of the within-group errors. However, a plot of the residuals
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Figure 5.1: Observations (blue circles), population predictions (black dashed lines),
and individual-specific predictions (red solid lines) of concentrations of theophylline
versus time since administration. Top panel: concentrations at absorption site; bot-
tom panel: plasma concentrations.
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Figure 5.2: Residuals versus fitted values and residuals versus time.

Figure 5.3: Estimates of random effects for ln(ka) (top panel) and ln(ke) (bottom
panel) corresponding to 12 subjects.
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versus the fitted values provides a useful tool for assessing the assumptions of nor-

mality and thus determine the adequacy of the model. Residuals represent the part

of the observation that is not explained by the fitted model, which are defined as

the difference between the observed values and predicted or fitted values. An easy

way to check independence for data collected over time, i.e. a time series, is to plot

the residuals against time indices and look for any suggestive patterns. Figure 5.2

shows the plots of residuals versus fitted values and residuals versus time. As can

be seen, the residuals are generally distributed symmetrically around zero, with an

approximately constant variance. The plot does not indicate any violations of the

assumptions for the within-group error. There are no particular trends in the plot

of residuals against time. A few large residuals within the first two hours after drug

administration might be caused by intense observations in the process of absorption

and sparse observations in the process of elimination. Moreover, no systematic pat-

tern can be observed from Figure 5.3, showing the random effects ln(ka) and ln(ke)

corresponding to 12 subjects.

5.2 Combinations of indinavir and ritonavir

This pharmacokinetical study of antiretroviral drugs intends to understand the widely

used protease inhibitor combinations of indinavir (IDV) and ritonavir (RTV) to treat

HIV-positive patients. The data sets, provided by Dr. Charles la Porte, were an-

alyzed in Wasmuth, la Porte, Schneider, Burger, and Rockstroh (2004) using non-

compartment analysis. For this example, we cannot give results by the package nlme

to compare with the generalized profiling method because nlme indicates that there

are errors of singular gradients.

Efficacy, toxicity, and costs of drugs are all important issues in clinical practice.

The ultimate goal of pharmacokinetical studies is to balance the efficacy and toxicity

of drugs, and therefore find the optimum dosage for particular patients. Although

better efficacy can be usually obtained by increasing the drug dosage, it is not feasible

for a successful long-period treatment due to drug toxicity, adherence issues, and high
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costs. Currently HIV/AIDS needs a lifelong treatment, but antiretroviral drugs are

not accessible to many HIV-positive patients because of the high costs. Consequently,

it is important to study pharmacokinetics in order to reduce the toxicity and costs

by lowering the amount of drug dosage, while the antiviral activity is preserved.

This pharmacokinetical study was designed to compare two combinations of indi-

navir and ritonavir, 400/100 mg IDV/RTV combination and 600/100 mg IDV/RTV

combination. Pharmacokinetics and tolerability of IDV/RTV twice daily were as-

sessed in a randomized crossover design in 16 healthy volunteers. Each dosage was

taken twice daily for 2 weeks before 12 hours pharmacokinetics were obtained. Serial

plasma sampling was performed at 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0

and 12.0 hours after drug administration. Table B.1 gives the data set of 400/100 mg

IDV/RTV combination, which is referred to as Treatment 1; Table B.2 provides the

data set of 600/100 mg IDV/RTV combination, which is referred to as Treatment 2.

Table 5.3 and Table 5.4 give estimates of structural parameters and several derived

parameters of indinavir and ritonavior for the two treatments, respectively, by the

generalized profiling method. The smoothing parameter λ is selected from 100, 1000,

and 10000 by minimizing the values of GCV. Direct parameters include the loga-

rithms of the population absorption rate and population elimination rate, ln(ka) and

ln(ke); logarithms of the diagonal values of the relative precision factor, δ1 and δ2; the

logarithm of the residual variance, ln(σ2). For convenience of interpretation, pharma-

cokinetic parameters in the original scale are also listed in the table. Parameters ψ1

and ψ2 are variances for random effects of the absorption rate and elimination rate,

respectively. The other pharmacokinetic parameters are calculated for individuals

using the estimated fixed effects and random effects. Geometric means of individ-

ual estimates and ranges are given for the following parameters: initial values of

the concentration at the absorption site, Ca(0); the area under the curve, AUC; the

trough concentration of the drug, Cmin; the peak concentration of the drug, Cmax;

the half-life, t1/2; the total body clearance, Cl; the volume of distribution, V .

For the drug indinavir, the absorption rate ka for the population in Treatment 1

is higher than that in Treatment 2, while the elimination rate ke remains the same
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Table 5.3: Summary of steady-state pharmacokinetic parameters of indinavir

Parameter Treatment 1 (400/100 mg) Treatment 2 (600/100 mg)
λ 1000 10000
ln(ka) -0.11 -0.54
ln(ke) -1.08 -1.08
δ1 -0.46 0.16
δ2 1.08 2.35
ln(σ2) -1.73 0.89
ka 0.90 0.58
ke 0.34 0.34
ψ1 0.44 0.30
ψ2 0.020 0.0037
σ2 0.18 0.41
Geometric mean of individual estimates (range)
Ca(0) (mg/l) 6.50(3.62 - 10.94) 11.77 (6.69 - 18.00)
AUC (h.mg/l) 18.31 (9.80 - 31.90) 33.23(19.23 - 53.27)
Cmin (mg/l) 0.24 (0.050 - 0.56) 0.59 (0.13 - 1.44)
Cmax (mg/l) 3.65 (2.39 - 5.12) 5.77 (3.87 - 8.35)
t1/2 (h) 2.03 (1.88 - 2.35) 2.03 (1.99 - 2.07)
Cl (l/h) 21.80 (12.48 - 37.67) 18.04 (11.36 - 30.57)
V (l) 63.88 ( 36.58 - 110.42) 52.96 (33.34 - 89.75)
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in the two populations. Variances for the random effects of ka and ke are higher

in Treatment 1 than in Treatment 2. For both Treatment 1 and Treatment 2, the

variance of ka is larger than that of ke. The residual variance in Treatment 1 is less

than that in Treatment 2. The geometric mean of the half-time, t1/2, is identical for

the two treatments, but Treatment 2 has a shorter range. Treatment 1 has slightly

larger geometric means of the body clearance Cl and the volume of distribution V

with wider ranges than Treatment 2.

The exposure to drug is measured by several pharmacokinetic parameters, in-

cluding the highest plasma concentration Cmax, the trough concentration Cmin, and

the area under the concentration-time curve AUC. As can be seen in Table 5.3, all

of these three parameters show that the exposure to IDV is reduced after reduc-

tion of IDV dose from 600 mg to 400 mg twice daily. The geometric mean value of

the individual-specific estimates of AUC has been reduced by almost a half from 33

h.mg/l.

The antiviral efficacy of IDV is assumed to be dependent on the trough concentra-

tion values, Cmin , which should be kept above a certain threshold in order to obtain

and maintain adequate suppression of viral replication. Trough concentrations below

this threshold will lead to a high risk of possible viral replication and resistance de-

velopment in case of HIV infection. Therefore, it is essential to control the resulting

Cmin value of IDV for the reduced dose. A threshold of 0.10 mg/l is usually assumed

to be adequate for IDV in patients. From the results in Table 5.3, the mean values of

Cmin for both of the two treatments are above this threshold. All values of Cmin for

subjects with Treatment 2 are above 0.10 mg/l threshold, while 2 out of 16 subjects

with Treatment 1 are below this threshold.

For the drug ritonavior, the absorption rate ka for the population in Treatment

1 is much higher than that in Treatment 2, while the elimination rate ke is slightly

higher than that in Treatment 2. Variances for the random effects of ka and ke are

higher in Treatment 1 than in Treatment 2. For both Treatment 1 and Treatment

2, the variance of ka is larger than that of ke. The residual variance in Treatment 1

is less than that in Treatment 2. Treatment 1 has a smaller geometric mean of the
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half-time, t1/2, than Treatment 2, but Treatment 2 has a shorter range. Treatment

1 has slightly smaller geometric means of the body clearance Cl and the volume of

distribution V with shorter ranges than Treatment 2.

While antiviral efficacy depends on Cmin, the development of IDV-related toxicity

depends on the height of plasma levels, Cmax. Higher peak plasma levels of IDV

will lead to more side effects. IDV plasma concentrations above 8 mg/l are generally

associated with severe side effects. From the results in Table 5.3, the mean values

of Cmax for both of the two treatments are below this threshold. None of values of

Cmax with Treatment 1 are above 8 mg/l threshold, while 2 out of 16 subjects with

Treatment 2 are above this threshold.

Similar to IDV, the exposure to RTV is reduced after reduction of IDV dose

because IDV has an inhibiting effect on the metabolism of RTV. As can be seen from

Table 5.4, the trough concentration values Cmin has been reduced by almost a half

after reduction of IDV dose from 600 mg to 400 mg twice daily, and the area under

the concentration-time curve AUC has been reduced by about 25%. However, values

of Cmax remain almost the same for the two treatments.

The fitted models are illustrated in Figure 5.4 - 5.7. If the individual-specific

predictions follow the observed closely, the data can be fitted by the nonlinear mixed-

effects model well. As can be seen, the one-compartment open model with first-order

absorption and elimination can fit indinavir better than ritonavir. For individuals

with a “delay” in the response time, the fitted curves are not as good as others,

which might be improved by considering the delay time as parameters to estimate.
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Table 5.4: Summary of steady-state pharmacokinetic parameters of ritonavior

Parameter Treatment 1 (400/100 mg) Treatment 2 (600/100 mg)
λ 1000 100
ln(ka) -0.32 -0.94
ln(ke) -1.59 -1.75
δ1 -1.46 -0.92
δ2 0.032 5.54
ln(σ2) -3.35 -2.49
ka 0.72 0.39
ke 0.20 0.17
ψ1 0.65 0.53
ψ2 0.033 <1e-5
σ2 0.035 0.083
Geometric mean of individual estimates (range)
Ca(0) (mg/l) 2.08 (0.87 - 3.36) 2.50 (1.18, 6.70)
AUC (h.mg/l) 9.47 (4.20 - 20.29) 12.68 (6.75 - 38.40)
Cmin (mg/l) 0.32 (0.11 - 0.82) 0.61 (0.25 - 1.80)
Cmax (mg/l) 1.51 (0.67 - 3.16) 1.60 (0.77 - 2.94)
t1/2 (h) 3.36 (2.91 - 4.36) 3.98 (3.98 - 3.98)
Cl (l/h) 41.90 (24.37 - 94.24) 47.33 (15.63 - 88.84)
V (l) 204.52 (118.96 - 460.01) 271.43 (89.61, 509.48)
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Figure 5.4: Observations (blue circles), population predictions (black dashed lines),

and individual-specific predictions (red solid lines) of concentrations of indinavir ver-

sus time since administration of 400 mg indinavir plus 100 mg ritonavir. Top panel:

concentrations at absorption site; bottom panel: plasma concentrations.
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Figure 5.5: Observations (blue circles), population predictions (black dashed lines),

and individual-specific predictions (red solid lines) of concentrations of indinavir ver-

sus time since administration of 600 mg indinavir plus 100 mg ritonavir. Top panel:

concentrations at absorption site; bottom panel: plasma concentrations.
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Figure 5.6: Observations (blue circles), population predictions (black dashed lines),

and individual-specific predictions (red solid lines) of concentrations of ritonavir ver-

sus time since administration of 400 mg indinavir plus 100 mg ritonavir. Top panel:

concentrations at absorption site; bottom panel: plasma concentrations.
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Figure 5.7: Observations (blue circles), population predictions (black dashed lines),

and individual-specific predictions (red solid lines) of concentrations of ritonavir ver-

sus time since administration of 600 mg indinavir plus 100 mg ritonavir. Top panel:

concentrations at absorption site; bottom panel: plasma concentrations.
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Chapter 6

Conclusions and conjectures

This thesis has explored the nonlinear mixed-effects models (NLME) involving the

first-order differential equations based on the framework of the generalized profil-

ing method. The generalized profiling method has been validated by simulations for

three compartment pharmacokinetic models, indicating that the estimates are gen-

erally unbiased for the fixed effects β and the relative precision factor Δ with an

appropriate smoothing parameter λ, but the maximum likelihood estimate used in

the generalized profiling method tends to underestimate the residual variance σ2.

The restricted maximum likelihood (REML) estimates should be preferred to obtain

unbiased estimates in future work. For the real theophylline data, we have obtained

similar estimates with those using the package nlme in R/S-PLUS except that we un-

derestimate the residual variance σ2; For the real IDV/RTV data set, we also acquire

reasonable estimates while nlme fails with this data set.

Conventional methods for estimating nonlinear mixed-effects models require an-

alytical solutions for ODE’s. With the obtained ODE solutions, non-Bayesian ap-

proaches maximize the (restricted) likelihood of structural parameters based on a

variety of approximation methods, such as the first-order method, the conditional

first-order linearization, Laplacian approximation, and the Lindstrom and Bates al-

gorithm. In contrast, the Bayesian method considers the full probability distribution

of random effects b and structural parameters [β, Ψ, σ2]T , and obtains inferences by

techniques like MCMC.
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In contrast to the conventional methods, the generalized profiling method uses

smoothing splines to approximate ODE solutions with linear combinations of ba-

sis functions. It then optimizes the coefficients to basis functions instead of solving

ODE’s analytically or numerically, which makes our method particularly appealing

for ODE’s without analytical solutions. In addition, the generalized profiling method

can estimate both initial values and unobserved components of ODE’s. This is par-

ticularly useful for the examples of compartment pharmacokinetic models, where we

can only observe the drug concentrations in the central compartment. Furthermore,

we can include some prior knowledge by choosing appropriate basis functions. For

example, B-splines can have more knots in the interval where the curves are sharp and

complicated. For simplicity, this thesis doesn’t explore the effect of knot selection,

which will leave for future work.

The estimation process in the generalized profiling method is different from con-

ventional methods. We choose the similar optimization criteria when estimating ran-

dom effects and structural parameters in the generalized profiling method as those

in the two steps in the Lindstrom and Bates algorithm. In both methods, random

effects b are optimized by a penalized nonlinear least squares, and structural param-

eters θ are optimized by the likelihood based on a first-order Taylor expansion of the

mean function around the current estimate of θ and the optimized b. However, the

generalized profiling method implements a nested multiple-level optimization, while

Lindstrom and Bates algorithm employs a process of alternating between two steps.

Although we only analyze two real data sets, estimates by the generalized profiling

method seem more robust and stable based on the fact that the package nlme has

failed to analyze the data sets of IDV/RTV combinations. The robustness and sta-

bility of our estimates are probably caused by the analytic gradients and Hessian

matrices worked out with the implicit function theorem.

The smoothing parameter λ is selected by the criterion GCV, which is a reason-

able criterion as illustrated by examples. However, it is much more time-consuming

to conduct a four-level optimization than a three-level one, since updating λ in each

time leads to a three-level optimization. The Newton-Raphson algorithm is applied
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to estimate parameters with the gradients and Hessian matrices written out analyt-

ically for each level of optimization. Some groups of parameters are expressed as an

explicit or implicit function of other parameters by the implicit function theorem if

necessary. However, cascaded relationships among the parameters will become much

more complicated with the increase of levels of optimization. Moreover, the curve of

GCV versus λ tends to have a flat region, which makes the process of optimization

hard to converge to a unique estimate. In future work, better criteria for optimizing

the smoothing parameter need to be explored.

Parameter transforms are widely used to estimate rate constants in compart-

ment models to ensure positive values while keeping the optimization problem un-

constrained. This thesis only uses the logarithms for rate constants, and it will be

even better if we can also work on the logarithms of concentrations to avoid negative

values.

In the examples of this thesis, we assume that all parameters have mixed effects,

including random effects and fixed effects. It is desirable if we can indicate which

group of parameters have random effects. The initial values of ODE components are

estimated individually, but it is not clear how to estimate mixed effects for them. The

generalized profiling method considers the structural sub-model and statistical sub-

model while the covariate sub-model hasn’t been included. In principle, covariates

can be included into a compartment model by indicating them in its transfer matrix.

More examples are needed to consider flexible mixed effects and covariates.

Although the current models and the corresponding MATLAB codes are developed

for compartment models expressed by first-order ODE’s, it is possible to improve

them to fit more complicated ODE’s, which only need more applications of Implicit

Function Theorem to derive the total derivatives.

More parameters can be estimated to improve the accuracy of models in future

work. As shown in the real data, time delay makes the analysis more challenging.

Although it is still not clear how to estimate the time delay effectively, one possible

way is to treat it as a local parameter for each individual and estimate it with random

effects b at the same level of optimization. This thesis assumes that the variance-
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covariance matrix for random effects, Ψ, is a diagonal matrix, but the whole matrix

can be estimated through more complicated matrix transform to ensure a positive-

definite matrix.

The most complicated compartment model in this thesis includes two differen-

tial equations, one of which is unobservable, with three fixed parameters and their

corresponding random effects. We believe the generalized profiling method can be

more desirable for more complicated ODE’s. Moreover, more software tools besides

R should be compared with the generalized profiling method for further evaluation.
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Appendix A

Derivative Calculations

The Newton-Raphson algorithm is used to the optimization of random effects and

structural effects. In the following, we write out the optimization criteria along with

the major steps of the gradients and Hessian matrices.

A.1 The inner optimization level to estimate c

The coefficients of basis function expansions c are optimized by penalized smoothing

with the penalty defined by ODE’s, which is written as follows

J(c|b, θ, λ) =

N∑
i=1

{
(yi − xi)

TW(yi − xi) + λ

∫
(Lxi(t))

T (Lxi(t))dt

}
. (A.1)

Then the coefficient vector for the i-th individual, ci, is obtained by minimizing

the criterion J(c|b, θ, λ) analytically as follows

ĉi(b, θ, λ) = [ΦT
i WΦi + λRi(b, θ, λ)]−1ΦT

i Wyi. (A.2)

where

Ri(b, θ, λ) =

∫
Lφi(t)Lφi(t)

Tdt. (A.3)
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and

Lφi(t) =
dφi(t)

dt
− φi(t)M

T
i . (A.4)

A.2 The middle optimization level to estimate b

The optimization criterion for the random effects, H(b|θ, λ), is the penalized nonlin-

ear least squares as follows

H(b|θ, λ) (A.5)

=

N∑
i

{
(yi − xi)

T W (yi − xi) + bT
i ΔT Δbi

}

=
N∑
i

{
yT

i [I − Ai(b|θ, λ)]TW[I −Ai(b|θ, λ)]yi + bT
i ΔT Δbi

}
. (A.6)

where the smoothing matrix Ai(b|θ, λ) = Φi[Φ
T
i WΦi + λRi(b|θ, λ)]−1ΦT

i W.

The gradient of H(b|θ, λ) with respect to bi is

dH

dbi
=

dSSEi(b|θ, λ)

dbi
+ 2ΔT Δbi.

The Hessian matrix of H(b|θ, λ) with respect to bi is

d2H

db2
i

=
dSSE2

i (b|θ, λ)

db2
i

+ 2ΔT Δ.

A.3 The outer optimization level

A.3.1 Estimating β

The optimization criterion for the fixed effects, G(β|λ), is the sum of squared errors

as follows
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G(β|λ) =

N∑
i=1

SSEi(β|λ)

=
N∑

i=1

(yi − xi)
T W (yi − xi)

=

N∑
i=1

yT
i [I −Ai(b̂(β, λ),β|λ)]TW[I −Ai(b̂(β, λ),β|λ)]yi. (A.7)

where the smoothing matrix

Ai(b̂(β, λ),β|λ) = Φi[Φ
T
i WΦi + λRi(b̂(β, λ),β|λ)]−1ΦT

i W. (A.8)

The gradient of G(β|λ) is calculated using

dSSEi(b̂(β, λ),β)|λ
dβ

=
∂SSEi(b,β, λ)

∂β

∣∣∣∣ ˆb +
∂SSEi(b,β, λ)

∂bi

∣∣∣∣ ˆb
db̂i(β, λ)

dβ
, (A.9)

where

∂b̂i(β, λ)

∂β

= −
[
∂2SSEi(b,β, λ)

∂b2
i

∣∣∣∣ ˆb +
∂PEN2(β,b, λ)

∂b2
i

∣∣∣∣ ˆb
]−1 [

∂2SSEi(β,b, λ)

∂bi∂β

∣∣∣∣ ˆb
]
.(A.10)

The Hessian matrix of G(β|λ) is calculated by

d2SSEi(b̂(β, λ),β|λ)

dβkdβl

=
∂2SSEi(b,β, λ)

∂βk∂βl

∣∣∣∣ ˆb +
∂SSE2

i (b̂(β, λ),β|λ)

∂βk∂b̂i

· ∂b̂i(β, λ)

∂βl

+

[
∂SSE2

i (b̂(β, λ),β|λ)

∂b̂i∂βl

+
∂SSE2

i (b̂(β, λ),β|λ)

∂b̂i∂b̂i

T
· ∂b̂i(β, λ)

∂βl

]
∂b̂i(β, λ)

∂βk

+
∂SSEi(b̂(β, λ),β|λ)

∂b̂

∂2b̂(β, λ)

∂βk∂βl

. (A.11)
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where

∂b̂2
i

∂βk∂βl

= −
[
∂2SSEi

∂b̂i∂b̂i

+
∂2PEN2i

∂b̂i∂b̂i

]−1
[

∂3SSEi

∂b̂i∂βk∂βl

+
∂3SSEi

∂b̂i∂βk∂b̂i

∂b̂i

∂βl

+

q∑
m=1

(
∂3SSEi

∂b̂i∂b̂im∂b̂i

· ∂b̂i

∂βl

+
∂3SSEi

∂b̂i∂b̂im∂βl

)
· ∂b̂im

∂βk

]
. (A.12)

A.3.2 Estimating θ = [β, δ, σ2]T

We define

ωi = yi − xi +
∂xi

∂bT
i

∣∣∣∣ ˆb b̂i, (A.13)

and

Σ(Δ) = I +
∂xi

∂bT
i

∣∣∣∣ ˆb Δ−1Δ−T ∂xi

∂bT
i

∣∣∣∣ ˆb
T

. (A.14)

The criterionGLME(θ|λ) is based on a first-order Taylor expansion of the nonlinear

function x around the current value of β and the optimized b.

GLME(θ|λ)

=

∑N
i ni

2
log 2πσ2 +

1

2

N∑
i=1

{
log (|Σ(Δ)|) + σ−2ωT

i (Σ(Δ))−1 ωi

}
. (A.15)

The gradient of GLME(θ|λ) with respect to σ2 is

dGLME(θ|λ)

dσ2
=

∑N
i ni

2σ2
− 1

2σ4

N∑
i=1

ωT
i (Σ(Δ))−1 ωi. (A.16)
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The gradient of GLME(θ|λ) with respect to β is

dGLME(θ|λ)

dβ
=
∂GLME(θ|λ)

∂β
+

N∑
i=1

∂GLME(θ|λ)

∂bi

∂bi

∂β
. (A.17)

The gradient of GLME(θ|λ) with respect to δ is

dGLME(θ|λ)

dδ
=
∂GLME(θ|λ)

∂δ
+

N∑
i=1

∂GLME(θ|λ)

∂bi

∂bi

∂δ
. (A.18)

The following formulas are needed to calculate the gradient of GLME(θ|λ).

∂GLME(θ|λ)

∂βj

=
1

2

N∑
i=1

{
trace

(
Σ(Δ)−1∂Σ(Δ)

∂βj

)

+ σ−2

[
∂ωi

∂βj

T

Σ(Δ)−1ωi + ωT
i

∂Σ(Δ)−1

∂βj
ωi + ωT

i Σ(Δ)−1∂ωi

∂βj

]}
. (A.19)

∂GLME(θ|λ)

∂δj

=
1

2

N∑
i=1

{
trace

(
Σ(Δ)−1∂Σ(Δ)

∂δj

)

+ σ−2

[
∂ωi

∂δj

T

Σ(Δ)−1ωi + ωT
i

∂Σ(Δ)−1

∂δj
ωi + ωT

i Σ(Δ)−1∂ωi

∂δj

]}
. (A.20)

∂GLME(θ|λ)

∂bij

=
1

2

{
trace

(
Σ(Δ)−1∂Σ(Δ)

∂bij

)

+ σ−2

[
∂ωi

∂bij

T

Σ(Δ)−1ωi + ωT
i

∂Σ(Δ)−1

∂bij
ωi + ωT

i Σ(Δ)−1∂ωi

∂bij

]}
. (A.21)
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∂b̂i

∂β
= −

[
∂2Hi(b|θ, λ)

∂b2
i

∣∣∣∣ ˆb
]−1 [

∂2Hi(b|θ, λ)

∂bi∂β

∣∣∣∣ ˆb
]
. (A.22)

∂b̂i

∂δ
= −

[
∂2Hi(b|θ, λ)

∂b2
i

∣∣∣∣ ˆb
]−1 [

∂2Hi(b|θ, λ)

∂bi∂δ

∣∣∣∣ ˆb
]
. (A.23)

A.4 The outermost optimization level to estimate

λ

The smoothing parameter λ is optimized by generalized cross-validation (GCV) as

follows:

F (λ) = GCV(λ) =

[
m

m− df(λ)

] [
SSE

m− df(λ)

]
,

where m is the total number of observations for all individuals,

SSE(λ) =

N∑
i=1

yT
i [I − Ai(λ)]TW[I − Ai(λ)]yi,

and the degree of freedom is

dfe(λ) = m−
N∑

i=1

trace
(
Φi(Φ

T
i Φi + λRi)

−1ΦT
i W

)
.

The gradient of GCV is

dGCV(λ)

dλ
= m

[
dfe

dSSE

dλ
− 2SSE

ddfe

dλ

]
dfe−3.
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where

ddfe(λ)

dλ
= −

N∑
i=1

Tr

(
dAi

dλ

)
,

∂SSE(λ)

∂λ
= −

N∑
i=1

yT
i

([
dAi

dλ

]T

W[I − Ai] + [I − Ai]
TW

[
dAi

dλ

])
yi.

The Hessian matrix of GCV(λ) is:

d2GCV(λ)

dλ2
=

m

dfe2 · d
2SSE

dλ2
− 2mSSE

dfe3 · d
2dfe

dλ2

+
6mSSE

dfe4 ·
[
d dfe

dλ

]2

− 4m

dfe3 · d dfe

dλ
· d SSE

dλ
, (A.24)

where

d2dfe

dλ2
= −

N∑
i=1

[
Tr

(
d2Ai

dλ2

)]
, (A.25)

and

d2SSE(λ)

dλ2
(A.26)

=
N∑

i=1

yT
i

[
2

(
dAi

dλ

)T (
dAi

dλ

)
−
(
d2Ai

dλ2

)T

(I − Ai) − (I − Ai)

(
d2Ai

dλ2

)T
]

yi.
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Appendix B

Data sets used in examples
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