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Abstract

.-\. chain is a sequence of rigid rods or links consecutively connected at their endjoints.

about which they rnay fotate freely. _-\ planar chain is a chain whose links lie in the

plane. with links allowed ta cross o\-er one another. For a chain r constrained to lie

in a ('onfinin~ region P. the reachability problem for r is to determine. given a point

pEP and an initial configuration of r inside P. whether r can be mo\'ed within P

sa that the endjoint of r rcaches p. and if sa. how this can be done,

This thesis solves the reachability problem of a planar chain r confined within a

convex obtuse polygon P. a COIl\'ex polygon whose interior angles each measure ii/2

or rnorc. In particlllar. wc propose a uniform approach in which the geometry of r

and its confining region Pare studied togf'ther. \\'(' tise this to ohtain a family of

pairs (r. P). which is largest possible in sorne sense. sa that the reachability problenl

for each pair in the family can he solved quickly. vVe also examine the properties of

the reachable region of r in such a pair.

This thesis also presents n~configuration results for an n-link plan~lf chain r
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inside a cîrcle. vVe show that if each link of r is less than the radius of its confining

circle. then r can be moved hetween any of its configurations inside the circle in

Our results demoustrate how to design short link chaius within a given confining

en\Oironment in orcIer to enSllre fast reconfi~urationo
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Résumé

Cne chaîne est llne suite de tiges rigides ou d'arètes consécuti\'ement attachées

à leurs extrémités, autour desquelles elles sont libres de se nl<Hn·oir. Cne dwine

planaire en est une dont les arètes sont dans le plan, les croisements d' arètes étant

permis, Pour une chaîne r contenue dans une région P, le problème d'accessibilité

pour r est de déterminer, étant donné un point pEP et une configuration initiale

de r à lïntérieur de P. si r peut être bougée à lïntérieur de P de telle sorte qllf'

l'extrémité de r coincide an~c P. pt si oui, de quellp fa<;oll on peut s'y prendre.

Cf'tte thèse résouds le problème cl 'accessibilité pour une chaine planaire r cir-

conscrite dans un polygone convexe obtu.5 P, un polygone con\'exe dont les angles

internes nlesurent li/2 ou plus. En particulier. nous proposons une approche uni-

fornle dans laquelle la géonlétrie de r et de la région P sont étudiées ensemble.

~DUS utilisons ceci pour obtenir une fanülle de paires (r. P), nlëL"(imale dans certain

cas, pour lesquelles le problènlC d~accessibilité peut se résoudre rapidernent. \"ous

examinons aussi les propriétés de la région accessible de r pour de telles paires.
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Cette thèse présente aussi des résultats de reconfiguration pour une chaîne planaire

r à n arètes à lïntérieur ({"un cercle. ~ous rnontrons que si chaque arète de r est

plus petite que le rayon du cercle circonscrit. alors r peut être déplacée entre deux

configurations quelconques dans le cercle en temps O( n2 ).

:\'05 résultats démontrent comment construire des chaines avec de petites arètes

à l'intérieur cl 'un environnenlcnt donné pour assurer des reconfigurations rapides.
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Chapter 1

Introduction

This thesis concerns algorithnlic rnotion planning fronl a geonletric point of \'iew, In

this chapter. we first review prf'vious work pertinent ta the thesis and then descrihp

our abjecti\'cs.

1.1 Previous Work

\Vith the advent of industrial automation and robotics. designing efficient algorithms

for moving objects in 2- or :3- dimensional space subject ta certain constraints has

beconle increasingly important, The mover·.) prObleTTl is thp following: given the

initial and desired final configurations of an objpct in 2- or =3-dinlcnsional spacc.

and given a detailed description of obstacles in the space. cleternline if thcre is

an obstacle-avoicling continuous nlotion of the abject from the initial to the final

1
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configuration: find such a motion if it exists.

This problenl has lWPH studied by many rpsearchers. 5pp [xynOa]. rAY90b].

[Kor85]. [Lat91]. [5Y87J. [55H87J. [\\lli85] for sun'pys. Sdn\"élrtz and Sharir [5583]

and Canny [Can88] provided very general exact methods to solve the mover's prob-

lem_ However ~ the methods do not provide polynornial time aIgorithnls. much less

linear tirne algorithms.

In gPIlPral. the [non~r"S problpms in which the ohject has an unbounded nunlbf'r

Il of df'grees of freedom. i.e .. problenls in which Tl is part of tllP input for a problern

instance. are computationally intractable in the sense that such problems are often

~P-hard or PSPACE hard. Even when the objects are \-ery simple. n degree of

freeclorn problenls rnay remain ~P- or PSPACE hard. See [S·Y87]. [H.J\V85], [\VZ8D].

[Rfliïn] and [.JP85] for (\xanlplps. If the nunll)pr li of d('~rpPs of fr('('cinIn is hOlluded.

theu in IHallY cases the general methods of [5583] and [CanSS] proddp polynoluial

time algorithms. although these may be far from practical. These results suggest

that the feature that often nlakes motion planning intractable is the unboundedness

of the number of degrees of freedom.

Thcrefore. to find fast n\configuration algorithrns it is essential to unclerstand

what relationships het\n~en nlo\-ing abjects and their pnyirOnnlents enable sonle

problems to be solved quickly in spite of having arbitrarily many degrees of freedom.

Se\'eral examples of fast reconfigllration have been pro\-ided for variants of the

2
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mo\'er's problen1. in which a linkage. and particularly. a chain or an aTm. is con-

sidered as the object. See [\rhi92] for a survey. .-\ tinkage is a collection of rigic1

rods or links connected together at their endjoints. .-\ planar linkage has its links

confined to th~ plane: links may cross oyer one another and the locations of certain

joints may be required to remain fixed to the plane. A chain is Cl sequence of links

consecutin{y connected at their endjoints, A C!v8ed chain is a chain such that the

two endjoints are connected together. An ann is Cl chain in which a fixed location

is associated with one endjoint of the chain.

For a linkage r constrained to lie in a confinin3 region P. the reac!lability problern

for r is ta deterrnine. gin~Il a point pEP and an initial configuration of r. whether

r can be' nlo\'ecl within P so that the t'ncijoillt of r l'caches p: and if so. ho\\' rhis

can he done,

Hopcroft. Joseph and \\11itesides first studied the r('configuration and reacha-

bility problelns for Tl-link linkages. In [H.l\\-S..tJ. they proved that the reachability

prDblern for a planar linkage \"ith no confining region is PSP.-\CE hare1. .Joseph and

Plantinga [.JPS51 pro\'ed that the reachability probleru fur a chain rIlO\'ing within

a certain non-COIn'ex constraining en\'ironment is PSP.-\CE hard. In [H.J\Y85].

Hopcroft. Joseph and \\-hitesides showed that the reachability problem for a pla-

nar arm constrained by arbitrary polygonal walls is :,\P-hard. Howcver. when the

constraint is an enclosing circle. they gave an algorithnl to solve the reachability
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problem in O( n2
) tirne. They also gave an algorithm to move the arm to any reach-

able configuration in O( n:l
) time. In (KK86]. Kantabutra and Kosaraju improved

the running time by reducing O(n:J) to O(rz).

In (L\\"91]. [L\Y02) and [L\\-005]. Lpnhart and \Vhitesicles inw~stigatf~d the n~eon-

figuration of closf'd chains and presented Cl linear tilIlP algorithnl for rpconfigur-

ing closed chains in d-dinlensional space. _-\lso. Kantabutra ([Kan92] and [Kan95])

presented linear time algorithms for reconfiguring certain anns and chains inside

squares.

Confininp; pn\OirOnnlents (Oontaining acnte anglps prespnt special difficultirs due

to the facr t hat links rHay bpconle stllck when t hey point iuto a corIler. This phe-

nomenon was studied by van Kreveld. Snoe.yink and \Yhitesides [K5\\"905]° Here

the problem of folding an l-ruler-an n-link chain whose links aIl ha\"e equal length

l-onto one link inside an equilateral triangle of unit side was considered. In spite of

the sinlplified situatioll. an ullllsuai pheIlorllenon o('Curs. For \"pry smalllink ICIlp;ths.

the chain can always 1)(' foldcd. Of course for link Ipngrhs dosE' to L. the' chain can-

not always be folded. However. this property alternates not once but twice as link

length increases from 0 ta 1.

50 far. algorithms for fast reconfiguration have been gÏ\°en for special situations

that only in,ooke \Opry sirnple <'onfining regions: circlcs. squares. equilateral triangles.

or no confining region at aIl. Recently \\"hitesides and Pei [\\"P96] greatly extended

-l



·r..

authors problem linkage confining bound on tiTlle complexity
regzon link length decide mO'ue

Hopcroft. reconfi~uration arm circle diametcr () (n.'2) 1 0 (,,:1)
.Joseph.

1\ \'hi tesides
1

i 1

1 !

Kantabutra. reconfi~uration 1 arm 1 circle i dianlCter 1

1 O(n)
1

1
1

Kosaraju
1

1
1 i 1 1

1 : 1

Lenhart. reconfiguration closed none 1 none 1 O(n) O( Tl)
\Vhitesides chain

1

i
Kantabutra reconfiguration arm 1 square half of the 1 O( Tl)

1
sicle length 1

1 Kreveld. folding [-ruler rqllilateral [ ::; (' ~ 0.-183. O{l) O(n)

Snoeyink. triangle of 1/2 < l ~ .../3/2
i\Yhitesides , nnit sicle 1 1

1

Kantabutra reachability chain sqllan~ 1 side length ()( Tl)
1

1

\\"hitesides. i rcachability chain con\'ex length of the O( Tl)

Pci 1 obtuse shortest sicle

1
) polygon

Table 1.1: Fast algorithnls for reconfiguring TZ-link linkages

the previous results by providing a polynonlial algorithnl to solve the reachability

probleIIl of certain n-linkpd planaI' chains confined within an Tll-sidC'd ('()Tll)(~X obtuse

fJolygon" a conn'x polygon whose interior angles ail mcaSllre ;;-/"2 or [l}orp.

\Ve summarize several fast reconfiguration results for various linkages in Table

1.1.

This thesis makes the point that by designing short link chains within a giyen

eonfining en\"Îronnlent. one ('an obtain fast [('configuration algorithms. \\"e propose

a unifornl approach in which the geonletry of a chain and its confining region are

studied in a coorclinatecl way. Our results significantly contribllte to understanding

.)
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what relationships between abjects and their confining environments ensure that

typically hard reconfiguratiou problems Iwcornp pasy.

1.2 Objectives

1.2.1 Notation

Before praceeding furtfIer. wc introduce terrninology and notation. illustrated in

Figure 1.1. For an n-link chain [ \Vith consecuti\'e joints Ao. .... An. the initial and

final joints A o and .-ln are called endjoints and the others are called intermediate

joints. The link between .-li-l and AI (1 ::; i ::; Tl) is denoted by LI' and the

length of LI is denoted by II' The angle at internlediate joint AI' denoted by ni'

is that deterrniul'd hy rotating LI about AI cOIlILterc1ockwisp ta bring LI to LI~l'

.-\u interrncdiate joint .-ll is callcel a :;tnlight joint if ni = ~ and is caIled a bendin!J

joint otherwise. In particular. ...l.i is called a clo.';ed joint if Qi = O. r is said to be

folded if its each intCrIllCdiate jaint is eithcr straight or dosed. The subchain of r

with joints Ai . .-li~l~"" AJ(i < j) is denoted by [(i.j). Subchain [(i.j) is said to

he .'5traight. dcnoted by [AL ..... A)]. if its links fonn a straight Hne spgrnent with

aIl intcrior joints straight. :\150. wc tIse [.-1. Bl ta denate a single link chain ha\'ing

joints .-l and B.

\Ve denote Bla..Xl-:;i-:;TI {id by 'max and say that [ 15 bounded by b. denoted by

6
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Figure l.1: ~otation for chains.

r -< b. if lmax < b.

\'Oc denote the distance between t\Vo points J'. y by d(.r. y): the line they cle-

tf'rrrlÏne by ((.LY): thp liue sp~rncnt th('y detf'rrniIlP by .r!]: and the lpngth of this

scgrrlent by I.ryl = d(J~. !J). \\"e denote the distancE' between two parallellines II and

\'OC Ilse P to denote a simple polygon and use \ ° to denote the set of its \·ertices.

\'OC regard polygons as :2-dinlPnsional dosed sets and denote the boundary of P by

DP. For.r.!J E DP. Wf' dPIlotP the ('otlIltPrclock"'isfl polygoual chain frOIu .1" to !J h.\·

Ch(x. y). For p E DP. wc denotc a sicle of P containing p by 8(p). \\"P denotp the

length of the shortest sicle of P by Smin' \'Oe define the width of P as the minimuill

possible distance hetween t\\"o parallel lines of support of P and denote it by iL'.

\'Oc denotc a. circlc centered at 0 \Vith radius r by C(o. r). or simply br C if o."

arc clear fronl the context. For a l.'ircle C and two points .r..Il E C. wc use xIl to
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denote the counterclock\vise arc from l to y. and we use d(i'y) ta denote the measure

of .ry in degrees,

For a closed region R in 2 dimensions. L'max(P) denotes a point of R farthest

from p. and drrw.r.(p) denotes r/{p. l'rtll1x(p) J. ()1)\·i()I1Sl~·. if R is a polygon. l'rruzx(P) lS

a ,'('rtex of R farthest fronl p.

For an n-link chain r confined by a closed region R. the set of points of R that

are reachable by ATl from each possible initial configuration of r. Le., no nlattpr

where r initially fies. is calleel the reachable region of An and is denotf'd by Rr(.-ln)'

unreachable reyioll uf A", .-\. point p E R is said ta be an l-relLclwblt~ point if

P E Rr (.-ln) for eypry r -< l no matter where r initially lies. Thp set of l-reachable

points in R. denoted by R l • is called thfl l-reachable rpgion of R, and if R l = R, R is

said to be l-reachable.

1.2.2 lVlotivation

Let r be an n-link chain confined by a 2-dirnensional c10sed region R. not necessarily

con"ex. and let p E R. '\"e are particularly interpsted in the following condition:

For each i with l ~ i ~ n.

Tl

II - L 1] ~ dma.r(P)·
]=t+l

8



1

This condition enjoys sorne nice properties related to the reachability of A!l' as

described in the follo\,-ing.

Property 1 (*) l.o; independent of the initial configuration of f.

Property 2 (*) can be tested in O(n) time wheneverdma:x(p) is giuen. Furthermore.

if R is a polygon. then (*) can be tested in O( n) ti-me.

Property 3 (*) i.<; (l neceS8ar!J condition for p to he reaclzable hy An'

Ta see the necessity of (*). note that if this condition is not sarisfipd for sorne ;.

then Ai cannot lie within R when An lies at p.

The property helow shows that the study of reachable regions would be greatly

simplified if (*) wpre also sllfficient for An ta reach p.

Property 4 If for evel~tj p E R. (*) i8 a 8ajficiellt condition for.-l n to reach p. then

there exists a .'iingle link chain f' = [A~. A'I] such that Rr(An) = Rr'(A~).

Proof: Take i' = nla."{l~i~n {li - 2:.J=i+lij } as the length of [.-!~. A'I]' From Prop-

erty 3. we have

Tl

P ERr(.-ln) {::=::> 'vi i (1 ::; i ::; n). li - LIJ:S rirruu ([J) ~
J=H-L

n

[' = ma.x { 1i - L lj} :s dma:x (p) {::::::::} P E Rp ( .-1'd . 0
l<r<n j=i+l

9



These nice properties nlotinlte our irl\-estigation of the dosed regions and con-

fined chains for which (*) sen-es as a 8ufficient as well as a necessan' condition for

An to reach p.

In general. howpver. ("') is far from being sufficient to test the reachability of .--ln.

which usually depends on the initial configuration of r. Indt'ed. ("') is so rnild that

it cannat en~Il gllarant('(\ the PxistPIlCP of a configuration of r i[lsidf~ R in which .-tH

touches p. as Figurp L~ shows.

This figure shows an equilateral triangle 6 with unit side. which confines a

folded ~-link chain r hadng joints .-t. B. C. Links of r have lengths 1 and l/~.

respE'ctin~ly. for ('ndjoint C' and any \'ertex l: of 6. clearly condition (*) halds. But

it is ÎrIlpossible to place C' at l'.

v

\

\

/ \
"

AI \

c \.8R

Figure 1.2: It is impossible to place C at v.

Intuitively~ it is canceivable that if the link lengths of r are aIl sufficiently small

111 camparison to same rueaSllre of its confining region. r caulel he recanfigured

10



r....

within R sa that An reaches p. Hence in such situations. the reachability of r

would be independent of its initial configuration and (*) would give a simple test for

reachability.

Therefore. it is of interest to investigate. gi\'en a confining environnleIlt. ho\\"

short the links of rare reCf'Uired to be in arder to ensure the \"<llidity of (*) to test

the reachability of An. when neither the geometry of r nor its initial configuration

are specified.

Kantabutra [Kan95] proved that if r is confined to Cl. square and if r is bounded by

the side length of the square. then (*) is sufficient for An to reach p. This inspired

our further investigation of Inon~ general cases in which (*) senT' as a sufficient

condition as weIl.

As mentioned previously. confining regions in\'olving acute angles. at which a

link can jam. present special difficulties for reconfiguring chains. \Ve thus consic1er

conuex obtw;e polygon8. a notion of our invention. as the confinin~ regions. _-\ l"On\T'X

obtuse polygon is a conn'x polygun whose interior an~les are aIl at least IT /2. In

[\VP96]. we generalized I\:antablltra's result from squares to arbitrary convex obtuse

polygons.

In this thesis. we in\-estigate how to compute il bound on r that depends on its

givE'n confining region so that the reachability of r can be easily deternlÎned. In

particular. wc consider a convex obtuse polygon as the confining region and ask ho\\"

Il



small a bound on r is needed sa that (*) is a sufficient and necessary condition for

An to reach p.

\ \"p adopt the follo,,"ing philosophy cornInon. for ~xarnple. in engineering: hy

llnderstanding where difficulties lie. we can plan ho\\" to él\'oid theIn. Hence. our

study of reachability is novel in that we consider. given a confining environment.

ho\\" to design chains in order ta satisfy certain desirable properties: in particular Wp

show ho\\" ta design chains sa that reachability problerns hecoulc casier. This in tllrn

sllggests a lLTlifonn approach to [e('lmfigurat ion rhat 0nablf's ilS to go hp~'()nd dH'

discovery of individllal spf'cial cases for which hard reachability problcIllS l)flcorne

easy.

1.2.3 Results and Organization

·r•

Gi\"C'Il a Sinlpl{1 polygon P. Wp propose tlH~ fol1o\\'ing conditioIls. which \\'ill tl1rn out

to be interdependent. to bound the link lengths of r inside P.

Condition (S): (*) is sufficient for An ta reach [J.

Based on Condition (S). wc define an "S" hound 1/; (lli follows:

/)"". = sup {b 1 If r -< h. r satisfies (S) }.

Condition (F): Let [A. El he Cl single link chain with both A and B on 8P. Then

A can he moved completely around the entire 8P in either direction and with no

backtracking while B remains on 8P.

12



Based on Condition (F). we define an "F" bOllnd bF as fo11ows:

bF = sup{ b 1 If [.-1. Bl -< b. [.-1. E} satisfies (F) }.

Condition (C): For any 0 E 8P, C(o. r) intersects 8P at exactly two points.

Based on Condition (C). we define a "C" bound be as follows:

be = sup{ ri If r' < r. C(o. r') satisfies (C) }

\ \llile (S) is intend{'d to find a hOllnd of r so t hat (*) tf'sts [(lachablity. Wf' llS{'

(F) and (C) as the prprnisp for (S). In particular. \n' will sho'\\' rhat (C) ÏInplies

(F) and that (F) implies (S) ..-\150 we will show that (F) characterizes the convex

obtuse property of a sinlple polygon and that (C) characterizes the obtuse property

of a con\"ex polygon.

One of the IIlain l"(lsults in this thesis is du" follo\\"ill~. ",heu tlw <"onfining rf'gion

P is a COn\T'X obtuse polygon.

C F S
.., mm ~ b = b ~ b ~ IL'.

The rest of this thesis is organized as follows.

In Chapter :2 and Chapt(~r :3. w(' ('onsi<1er CUIl\"('X obtuse polyg;ons as the confining

regions. Chapter:2 charactf'rizes 1/' and uses this to show that .'Jrnw ~ 1/' = br:. It

proves that bC = LL' for an.\" rcgular :2k-gon. It also shows that (F) characterizes the

con\'ex obtuse property of a simple polygon and that (C) characterizes the obtuse

13



property of a canvex polygone

Chapter 3 shows that be ~ bS by giving a polynomial time aigorithm to bring

An to any of its reachable points.

Chapter -1 examines the properties of the reachable region of r. HerE' we eonsider

general conn'x polygons as the confining rpgions and pron~ t hat Ir"" ::; fL". \ rfl use

this ta describe the shapes of reachable reglons. \\"e also charactf'rize l-reachahle

convex palygons for l :s bS
•

Chapter 5 handles reconfiguration of chains within circles. In particular. we show

that if r is bounded hy the radius r of the circle. then r can he mOVf~d between any

of its configurations insicip dU' circ1f' in ()( ,,'2) tinU'. CO[lSpqIH:'ntly. Wf' are ablp tu

provp that any r -< 1" inside thp circle l'an he folded and t hat an.'" joint of r -( ,.

can reach any point inside the cirde. \Ve treat circles as the extrerne case of nice

confining environments as circles have no corners. \\"e believe that our results shed

light on ho\\" the combination of short link chains and nier confining en\'ironments

('nsures fast [(lconfignrat ion.

Chapter G conc1ucies with a sunlnlary of the results ln this thesis and prespnts

problems for future research.

1-1



Chapter 2

Chain Geometry

This chapter studies the geoilletry of chains and their confining COll\·ex obtuse poly-

gons in a uniform. coordinatpd way sa that condition (*) tests the reachability.

Section 2.1 characterizes 1/'. Section :2.2 pro\"ps that .';mm :::; Il~ and that bC = iL'

for regular 2k-gons. Sl'ction 2.:3 shows that bC = bF and that bath (F) and (C)

eharactcrize COIl\'ex obtuse polygons.

Assumptions: Throughout this and the next chapter. wp assunlc. unless otherwisc

stated. that r clenotes an Tl-link chain and P denotes an m-sided convex obtuse

polygon. r is confined by P and joints of r illay lie on ûP.

15



2.1 Characterizing bG

.-\. key observation about be is the following.

Lemma 2.1 Lel I . .lJ E ÛP. If y ri. ~. and .r!J ..L s(y). then 1/' ::; Ixyj.

Proof: Let ILL' he the sicle containing y. \Vithout loss of generality. assunle that

.r. Il. L' is a left turn. as Figure :2.1 shows.

/
(

\

\
li

x

y

\
\

)

Figure :2.1: C(.r. j.ryl) intersects DP at thref' points.

Then C'(L·.j.ryl) intersects DP at!J. It also intersccts ('!L(C.L·). Cfl(I.I1) at sorn('

points .: . .:'. respectin~ly. Since L'. y. U are distinct. so are :;.!J. :;'. Thus ('(.r.I.l'yl)

intersccts âP at mon' rhan r\\"o points. Henn'//'::; i·rYi.

\Ve will characterize 1/' by pro\'ing that be is indeed the greatest lower bouncl of

aIl such xlis. To this end. we need sorne preliminaries.

16



Gi\'en p E ûP and 8(p). we define l; as the line through p perpendicular ta s(p).

In these terms. we ha\'e

Lemma 2.2 Let p E âP and s(p) be given. If p ri. \'. ft" intersects DP at exactly

t?L'O points p and pU. If p E \'. l~ intersect.'j the sicles of P that are non-adjacent to

.-;(p) nt p.xactly ont' point. Finally.

Proof: Since P is convex. if p ri. \ -. l~ n 8P contains exactly t\Vo points. Since P is

obtuse. if pEl". ri intersects the sicles of P that are non-adjacent ta s(p) at exactly

OUf' point.

Let (l1. llO) he the pair achic\"ing the Illinirllunl of {d( l'. (,0) 1 i' '-- \'}. Considpr

p ri. \' and the side Ut L"2 containing p. Then clearly.

~ate that

•

The result hence follows.

17
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The width of an n point set was first introduced and studied by Houle and

Toussaint. In [HT88]. they proved the follo\ving.

Fact 2.1 Let P be fL .';imple polygon. Then the width of P is the minim'Urn di.stance

hetween twa parailel fine.:; of support of P. of IL'hich one pa.o;.';e.'; lhrouyh fl vertex and

the other passes through a side.

By applying this. we have

Corollary 2.1 Inin"'::l" d( c. L'O) ~ IL'.

Proof: By Fact 2.1. there exists two parallel lines of support of P. one pa~ses

through a \'ertex and the other passes through a side. achie\'ing; the width LL'. \\ïth-

out loss of generality. assunle t hat li passes through \'ertex il and l:! passes through

side Ct L'"]. and that u. L'I. L':! is a left turn. as Figure 2.2 shows.

Let 1 he the perpendicular hisector of VI L'2 and let y = 1n L'l":!. Then 1 intersects

C'h( l':!. L'I) at sonle point I. Since lL./:! are support lines of P aehie\'ing the width.

\\'e are no\\" reac..ly to characterize bC .

Theorem 2.1 be = mint'El" d(v. 1'°).

o

Praof: Let Il-' = min"El' d(v. VO). For any p E DP and p r; \". by Lemma 2.1.

18
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\Ve now verify that he :::; be . i.e.. \:Ir < be . 'va E 8P. C(o. r) n DP has exactly

two points.

.-\ssume otherwise. \re first clairn that C(o. r) n 8P has at least two points. If

HOt. P "'Olild falI into a half circlc detenllined by C(u. r) and the lirlP through .-;{p).

TheIl r 2: iL'. Heuce Il-' > iL'. This contradicts Corollary :2.1.

~ow suppose C'(o. r) n 8P has at least three points. say. .r.,/J.':. \\ïthout loss

of generality. assume that .r. o.': is a right turn and that L' • .l).': are consecuti\'e

intersection points on C(o. r). i,e.. IZ intersects 8P at no points other than .r. y. ::.

Then each of Ch(.r. y). C/z(y . .:) is either corupletely outside or inside C'(o. r). \\"e

prove the result by these two cases.

19
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(a) (b)

Figure 2.3: Two cases: Ch(.r.y) and Ch(y.:) are bath conlpletely olltside C(o. r)

or one of them is completely insicle C'( o. ,.).

Case 1: Ch(.r.!i) and Ch(!J.:) ar(' hoth C'omp!<'TP!Y olltside C'(o. rI. as shown in (a)

of Figure 2.3.

Then y ri. \. and hence s(y) is tangent to ('(o. r). 50 r = layl. By Lemnla 2.2.

loul ~ he. Henee ,. ~ bC'. This contradicts the assumption.

Case 2: C'h(.r. y) or C'h(y . .:) is cOlllpletely inside C(o. r).

\\Ïthout los5 of generality. assume that Ch(.!".!J) is cornpletely inside C(o. r). as

shown in (b) of Figure 2.3. Then there exists a point fi E Ch(.r. y) snch that l(o. q) is

perpendicular to s(q). By Lemma 2.2. loql ~ he. ~ote that r ~ loql. hence r > be .

Contradiction. o
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Corollary 2.2 be :::; 11J.

Proof: By Theorem 2.1 and Corollary 2.1.

2.2 Bounds on bC

o

Before proceeding to show that be = bF . we present two essential results by applying

Theorem 2.1. The first shows that. for any convex obtuse polygon. we can use Srnm

as the bound of r to satisfy (C) and the the second shows that. for an~: regular

2k-gon. this hOllnd l'an he pllshed to re. Thesp two rpsllits dflIIlanstratc that Smm

and rL' an" tight bOllnds on 1/'.

\ Ve first present a crucial property of convex obtuse polygans.

Lemma 2.3 If.r and .'J lie on non-adjacent sùles of P. then IIyl ~ .';rnm. Further-

m01·e. if each intel'ior angle of P rnea.';ures > 7ï/2. then I·cyl > .')mlTl'

Proof: First. wc show that I.ryl ~ ."Îmm • Lf't 81 ..... '2 he the sicles of P containing.r.!J,

respectively. Let fl.f'.! he the lines determined by 81. s'}.. respectively. \\ïthout loss

of generality~ assume that L,Il n l'}.. y is a right turn. as Figure 2.-1 shows.

Let Q be Ch(y. .1"). Let L'max be the vertex of Q farthest fronl .l'Y and let l be the

line through r'mc!.I parallel to .'CY. Let U. t' be thE' \'ertices adjacent to t.'rnrL.r· Sinn' ..... 1

anù 8'}. are non-adjacent sidfls. at least one of Il. L' is on Q. \\ïthout 10ss of gcnerality.

assume that u E Q, as shawn in Figure 2.-1. \Ve consider t\Vo cases.
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Fig;ure ~.-l: _-\ C'rucial property of convex obtuse polygons

Case 1: d(u.l) = O. Then Il E 1. From L'ma.x Eland.ry Ill. we get .rl} Il UL"ma.r' By

the definition of Q ~ we ha\"e

CasE' 2: d(/l.l) > o. Let l'})(' the liw' thru1L~h U parallpl to .r.ll and IN l'ne) = {1l.U'}.

Then jX!J1 ~ l/lu'l.

~ote that ll.l'ma.x.u' form a triangle. Since P is convex obtuse. L.UL'maxU' ~ 71"/2.

Thus this angle is the largest interior angle of 6uL'maxll and hence /lU' is the longest

side of 6uL'rnaxll. So we lUl\"e iuu'! > IUL'maxl. Therefore.

luu'l > lut'maxl ~ Smiw

Hence Ixyl > -"min'

:\ext. we show that l.ry[ > Smin if each interior angle of P measures > ïr /2.
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Fi~ure 2..5: fLyl > STlIlTZ if each interior angle of P meaSllrps> ;r/2 .

.-\ssume otherwise. Then Ixyl = 8mm for sorne x. !J on non-adjacent sicles. FraIn

the above proof. this may hold only in Case 1. in which u Eland Iryl ~ 1ut'max 1 2:

-"mm. Hence Ixul == IUl.'maxl· SA il Ill'!..

Since P is obtuse. :.-IUL'max and LUL'rnaxll are aIl 2: 7"1/2. Since II ill"l' L.L"Ilt'ma.r +

!..YL'ma.rU == ÎÏ. TItus ~J:IlL'ma.r = ':".lJl.'maxU == ÎÏ /2. Rpfer to Figur(' 2.5. This contra-

dicts the assunlption. o

Theorem 2.2 8 m in :s he. Furtherrnore~ if each interior angle of P rnea8ure.O; > ÎÏ /2.

C
8 mm < b .

Proof: By Theorenl 2.1. 1/' = miIl e -::\' d(l'.l'O). L(·t (u, UO) hp the pair achic\'ing

the rninimum of {d( l.'. rD) Il' E \'}. By Lemma 2.2. u and U
U lie on non-adjacPIlt

sides. By Lemma 2.3. Srnin ~ d(u. uO) == hG. and if each interior angle of P measures

> il/2 ~ 8 mm < d( u. uO) == bG. The result hence fo11ow5. o

r
'..

The above theorem shows that Smin can always be used as the bound of r to
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satisfy (C) and in case each interior angle of P measures > if /2. this bound can be

improved.

It is of interest to find convex obtuse polygons in which hC = iL'. As "'e will sho\v

that hC :S hS
::; lI:. be woulel achicyp its maxirnnm and aIl gaps among bC . hF • IL'

would be closf'd in sueh poly~ons. The then[('m belo\\' pro\'idps ('xanlplps of such

convex obtuse polygons.

Theorem 2.3 Let P be a regular 2k-gon. Then bC = li'.

Proof: Since P is regular. d( t'. L'O) is the same for aIl L' Et". Since P has 2k sicles.

each sicle is parallel to its opposite sicle. Hence d(,'. L'u) = n'. S.v Theorern 2.1.

o

\Ye remark that the abon" theorem suggests sirnilar results for reconfiguring

chains inside circles. which can be regarded as the limits of regular :2k-gons. \\Oc will

discnss the reconfiguration of chains within circles in [IlOre detail in Chapter 5.

2.3

This section presents the main result in this chapter: bC = bF . \Ve first pro\'e the

following lemma.

Lemma 2.4 Let r = [.-1. B]. Suppose t!lat A. B lie ut p. Cf E iJP, respectively. and

that L'. v' are vertice.s adjacent ta q (q rnay he a vertex or not). Then if either i.pql'
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or i.pqv' is > ÎÏ /2. .-l can he moved away from p along 8P in either direction while

B remains on aP.

Proof: Let f1 be the vertex that we want A. to move toward. \Vithout loss of

generality. assume that both u. p. q and p. q. u are both left turns. See Figure 2.6.

Since either Lpqv or Lpqv' is > ÎÏ /2. neither of them is ÎÏ/2. Let 0: = !... upq. let

J = /...pqe and let J' = I...pf/I". \Yp consider two cases.

Case 1: 0' 2: ÎÏ /2. \rfl further consider two snhcasps.

l
v

li
-A

(a)

B q

a
li

-A

(b)

\"

Figure 2.6: Case 1: Q 2: TI /2.

Case la: .3 < ÎÏ /2. Then while keeping B on L'q . .-l can be rno\'ed away frorn p along

8P in snch a way that Ct increases and .3 decreases. Spe (a) of Figure 2.6.

Case 1b: J > if/2. Thus 3' < ÎÏ /2. Then while keeping B on (je'. .-1. can be

moved away From p along 8P in such a way that bath ct and .3 increase, See (b) of

Figure 2.6,
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Case 2: a < ïï /2. \Ve furthf'r consider two subcases.

v'

li
-A

(a)

v

p
-A

(b)

p

Figure 2.7: Case 2: Cl < ii/2.

Case 2a: .j < 7i /2. Thus.i f > ii /2. Then while keeping B on (je' . .-l can be

rno\'ed away fronl p along DP in such a way that bath Cl and j increase. Sl'e (a) of

Figure 2.7.

Case 2b: .3 > ii/2. Then while keeping B on L'fi • .-l can be mO\'ed away l'rom p along

ap in such a way that Cl increases and J decreases. Sce (b) of Figurc 2.7.

This eornpletes the proof.

Proof: First, '\'e show that bC ::; bF • i.e .. any single link chain r = [.-1. Bl ha"ing

length l < bC satisfies (F).
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Suppose that .-1.. B initiaUy lie at p. q E ap~ respectively. Let c. c' be the vertices

adjacent to q. \Ve consider two cases.

Case 1: q ~ \". In this ('asp. WfI show that until B reaches sorne vertex. A can be

nlo\'ed along ôP in either direction while keeping B on DP.

Since l < be . by Lemma 2.1. pq 1- L'V'. Hence either L.pqc or Lpqz/ is > 7ï /2. By

Lemma 2.4. .-1. can be Ino\'ed away from p in either direction along ÔP while keeping

B on 8P. .-\lso by Lelnma 2.1. r remains not perpendicular ta L'L" until B reaches

L' or c'. Sa by Lemma 2.-1. .-1 can be mavrd along 8P in any direction while kf'eping

B on ô P until B reachcs some \·ertcx.

Case 2: q E ~". In this casC. we show that A. can be nlo\"ed away from p along 8P

in either direction while keeping B on 8P.

To see this. we daim that either LpqL' or LpqL,I is > ';ï /2. .-\ssurne otherwise.

TheIl ~{}{J'.' and :'{)(ll-' arp a11 ~ -:i/"!.. If one of then!. say. _{}(fl' = 7ï /2. then by

Theorcrll 2.1 and Lernrna 2.2. be ~ Ipql = 1. Contradiction. Hence ':'f)(fL' and Lpqr'

are bath < 7ï/2 .

.-\lso note that q E C'(p. Ipql) n ÔP: thus P has to lie campletely inside C(p. Ipql}

for atherwise C(p. Ipql) n ôP has at least three points. Therefore. P faUs inta a half

circle deterrniued by C'(P.lpfll) and the line throll~h '-;([1). as Figure 2.8 shows.

Let l' be the tangent line of t he halE cirdc parallel to .-;(p). Then l'and ..,(p) are

parallellines of support of P. Since d(l'.s(p)) = Ipql.lpql 2: lC. Thus be > Ipql2: /L'.

,)
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Figurfl 2.8: Plies completely inside a half circle.

This contradiets Corollary 2.2. Hence the daim.

Fronl the dainl and Lcrnnlêl 2.1. A can he rIlo\·cd away frorn fJ along DP in either

direction while keeping B ou 8P.

\'ote that in Case 2. A leaving p implies B leaving q. Hence by the abo\'e two

cases. .-t can be mO\'ed conlpletely around DP in either direction while keeping B

on DP. So ll~ ::; hF .

\'ext. we show that bF :s be . [f not. then bC < 1/" for SOIlle P anù we now

consider such a P. Then for any l with
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and any single link chain r = [.-1. BJ having length f. r satisfies (F). \\"e show that

this is impossible.

To see this. note that by Theorern 2.1. there exists u E \- snch that hC = d( u. UO).

Suppose that t'. e' are vertices adjacent to u and that iL'. iL,! are yprtices adjacent to

liO. \\Ïthout 10ss of generality. assnrne that uU il 1. Il e' and that IL. uo. lC' is a right

turH. as Figure ~.9 shows.

t'

w

v
il X

Then for .r ElU:' sufficiently dose to il. .ru E UO tL". Hence 1 uuu1 > i·L'~·o 1. Therefore

hC > jxxol. This contradicts Theorenl 2.1 or Lemma 2.2. Hence the daim.

:\'"ote that Lvuuo < ïi/2. Thus for u' E llO w' sufficiently close ta uO. Lt'u u' < Ti /2.

as Figure 2.10 shows. From the daim. Luu'uo < ii/2~ and clearly Li/ur' < ii/2.
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Figure :2.10: .-1 cannot be moved towards uo.

Consider a single link chain r whose joints .-1. B lie at Il'. Il. rf'sp('('tin"lly. Then.

But A. cannot be rno\'ed towarcls IlO any more along iJP. o

Our nflxt result shows that the farnily of COllvex obtuse polygons is the largest

family of simple polygons for which condition (F) holds non-trivially. and is the

largest family of convex polygons for which condition (C) holds non-triyially.

Theorem 2.5 (1) Let P be a si'mple polygon. Then bF > 0 if and only if P lS

convex obtuse.

(2) Let P be (l convex polY.rJon. The'n be > 0 if flnd only if P lS COTlvex obtuse.

Proof: (1) If P is convex obtuse. by Theorern 2.-1. hF

bG 2:: -"min> O. Hence bF > O.

30
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Fignrp 2.11: 1JF = 0 if P is nf'ithf'r eon\"pX [lor obtllsp.

If P is not con\"ex. then there exists an interior angle. say. !..UL'U' > o. See (a)

of Figure 2.11. For l > () small enough. let r be the single link chain having length

of land consisting of joints .-1. B which lif' at t:. c' E L'iL'. Then A cannat be rnoved

towards IL while keepin~ B on ûP. Hence bF = o.

If P is not obtuse. then there exists an interior anglp. say. ~/U'1l' < 7i/2. See (h)

of Figure 2.11. For l > 0 sufficiently srnall. consider il single link chain r = [.-1. B]

having length 1 as follows: .-1. B lie at p Ecu. q E CIL'. rcsp('cti\'ply and pq 1.. L'Il'.

Then .-1 cannat he BlOW'cl towards li while keeping il on 8P. Hencp. bF = o.

(2) If P is COll\'PX obtllSfI. by Theowlu 2.2. l/-~ ~ ·'imln > O.

If P is Ilot obtns(~. then therp p.xists an intPrior angle. say, ~ IU'II' < ~ /2. Sel'

Figure 2.12. For 1 > 0 sufficiently small. let 0 Ecu. q E L'IL' with oq 1.. vte and

loqj = l. Then C'(o~ 1) intersects vu at two points and iIltersects uw at one point.

ThllS be = o.
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Figure :2.12: bC = 0 if P is fiat obtuse.
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Chapter 3

Reachability Algorithm

This chapter presents the reachability algorithm bringing .-ln ta any of its reachable

points. This gi\"es an algorithmic proof for be ::; hS
.

Section 3.1 defines nornlal forms and simple nlotÎons. Section 3.2 shows that

any r -<: {l" can IH' broll.e;ht to R:\F (ro be df'fincd). S('ct ion :3.:3 shows that any

r -< {l' which is already in R:\F can be brought ta T~F-ia (to be c1("fined) for sonle

lo. Section 3.-1 presents the reachability algorithnl for r -< he which is already in

T:\F-ia.

\Ye n~call that tlw Assumptions from Chapter 2 hold throughout this ehaptcr.
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3.1 Preliminaries

3.1.1 Normal Forms

\YP define three special configurations for a n-link chain r as follows. refer to Fig-

ure 3.1.

1. Rirn !Vormal FOrTn (dpnotpd R~F): r is in R:\'F if aB its joints lie on ùP.

2. k-Bending Rirn ~V()rmal Fonn (denoted k-BR:\'F): r is in k-BR.\"F if therp. pxists

k joints Ai l' .... Aile such that

(2) for any j with 0 < j < n and j 1= il ..... ik • o.) = 7i .

:3. Tait .Vo17nal Fonn Il'dlt indp-x i (d<'IlotPd T:\'F-i): r is in T\"F-; if tlH'rp exists i

with i < Il snch that

(1) A o_.... Ai lie on aP and Ai lies at a vertex of P:

(2) r(i. n) is straight.

From the abo\'(' definitions. W~ havf':

Observation 3.1 r is in k-BRiVF f07' sorne Il: if and only if aliintpT7nediate jo-lnl.<;

of rare e'ither .<;t.,.aight or un ap.

Observation 3.2 r is in n-BRNF if and only if r ù; in RNF.
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(a) RNF Cb) 4-BRNF (c) TNF-2

Figure 3.1: Examples of normal forms.

Observation 3.3 r is in O-BRNF if and only if r is a straight chain with no joint.~

on ûP.

Bringing a chain bOllnucd by Il' to norrnal fonns plays a crucial roll' in our

reachability algorithm. described in Section 3.-1. The next two sections elaborate

on moving such a chain to normal forms. \Ve first give an equi\'alent of Condition

(F). which will be referrcd to repeatedly later.

Lemma 3.1 The following condition (F~) i.-; cl{uivalent to (F).

Condition (F~): Let r !Je an n-link chain in R1VF. Then urzy joint Al of r can be

nLoved along any path on aP 'while keeping r in R1VF.

Proof: (F) foIIows trivially from (F'). \Ve no\\" verify that (F) irnplies (F').

First. wc consider the endjoints. Since the joint labPls can be re\"f~rsed. it sufficf's

to consider An. \ \"e proceed by induction on fl.
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If n = 1. then [ has only one link and the result is irnmediate from (F). Suppose

that the result is true for any (n - 1)-link chain. and no\\' ('onsider an n-link chain

[. \ïew [ êt..'i t\Va subchaius [( n - 1. f!) and r (O. n - 1) connecting at Art - I . Given

any path T on ôP. hy the induction base. Art of [(n - 1. n) ('an tra\"pl along T while

r(n - 1. Tl) remains in R~F. This yieids a path T'on 8P that .-ln-I travels. By

the induction hypothesis. A n - l of r(O~ Tl - 1) can travel along T' while r(o. Tl - 1)

remains in R:\F. So "-ln can tra\-el along T while [ remains in R~F and the induction

is complete.

\"ext. we consicipr an intcrnlf'diate joint .-lI (0 < i < Tl). Gin'n any peU h ;- ou

àP. view r as two sllbchains [(O. i) and r(i. n) connecting at .-li- Then bath Ai of

r(o. i) and .-lL of [(l. n) can travel along T while r(o. i) and f(i, Tl) renlain in RXF.

Thus .-li of r can travel along T while r renlains in R~F. This conlpletes the pronf.

o

3.1.2 Simple lVlotions

Ta analyze the time complexity of our motion planning algorithms. it is essential

ta define one or more kinds of simple motions 50 that complicated rnotions cau

he deconlposed iuto a sequence of sirnplp ones. Snch a dpC'omposition aiso gin:~s liS

sornething to connt. and hence sonlC measure of the conlplexity of physicai rnovenlcnt

itself. Here is list of criteria, based on [HJ\Y85], for ··good'~ simple motions of a
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linkage.

Criteria:

1. The description of the motion should uniquely deternlÎne the geometric move-

ment of aIl parts of the linkage.

.) The motion should lw the one whose description can be coniputed.

3. [f ft joint an~le changes. it should change monotonically. [n other words.

a motion in which an angle changes non-monotonically should he reg;arded as a

conibination of sirnple nlotions. This eliminates oscillating motion as candidates for

siniple motions.

\rith tlwse criteria in rnind. wc define a sirnple rnotion of a chain as follows.

Definition 3.1 .-1 :;ùnple TTwliOTl of a chain lS (J. r:01llin1UJ fi:; rnotion dnring which

al rTlost four angle:; change.

This type of simple Illotion was also used in [HJ\\·S5]. Howe\·er. the sirnple

Inotions chospn shollid not lH' liIIlit ing: it ShOllld he possible to carry out any n'COIl-

figuration in ternIS of the sinlple n10tion5 anülahle ta the algorithnl. [ndeed. other

types of sinlple motions were aisa used. Refer ta [L\V92] and [KS\Y95].

Figure conventions: In sorDe rDulti-part figures. the parts are intended to show

possibilities for configurations. but the chain depicted may not be the sanle in aIl

:3'ï



parts of the figure . .-\150. an unfilled circle 0 at a joint indicates that the joint is ta

be kept fixed during sanIe motion of r.

3.2 Bringing a Chain to RNF

The key idea of the algorithnl for bringing a chain r -<: IJF to R:\F is to use k-BR~F

as a bridge. :\[ore specifical1y. we will show that if r takes the form [Ao•.....-ln]

\Vith ..1.0 and An on DP (a special :2-BR:\"F). then r can be brought to :3-BR:\"F

while kpeping Ao fixed. I3y applying this manoeu\"re to \'arious sllbchains of r. it is

possible to bring r to -l-BR~F. to ;,)-BR.\"F ..... and finally. to Tl-BR~F. which is

just R\"F.

This algorithm consists of three main phases. which wc descrilw in thf' next three

lernmas.

A~.I

(a'

/~
/

/

\
\

lb, (cl

r..

Figure 3.2: .-\n initial configuration (a) and twa possible final configurations (b) and
(c) for Lemma :3.:2
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Lemma 3.2 For an n-link chain [. suppose that .-10 ., .•• A k - 1 lie on DP. Then

whûe Ao. .... .-lk-l reTTzain fixed. r can he moved to a configuration in which either A k

lies on DP or for souze n' > k . .-ln l lies on DP und r(k. Il') i.-; strfLight. Furthermore.

thi.'; can he done witlz O( Tl) sùnple TTlotions. See Figu1"f! ,J.2.

Praof: If initially r is already in the expected configuration. then wc are done.

Otherwise we proceed as follows.

Let h he the highest index snch that [(k. Il) is strsight. Then k + l < Il < n.

\Vp show tht' resuIt by induction on h' = Tl - h.

For h' = O. i.e.. for Iz = n. the configuration of r is as sho\vn in (a) of Figure :3.3.

Fix .-lo, .. " Ak and rotate [Ab . ... An] about Ak counterclockwise until .-ln hits DP

or nk straightens ta 7ï. If .-\.k hits DP first. then wc are clone. [f Ok straightens ta

;T first. tfH'n r (k - 1. nI lw("o[ncs straight. [n this casp. fix .-ln..... A k -1 and rotate

[A k -1, .... An] about. .-lk -1 couHu'rciockwise until .-ln hi ts i.JP and wC' t IlPn <'st ahlish

the induction base with n' = n. This requires O( 1) simple motions.

Suppose that the result halds for any \'alue less than h' > 0: wc now show the

resuit halds for h'. i.e.. for h = n - h' < n. Fix .-to..... A.k - 1 and .-th + 1••••• An. and

rotate A.k about .-lk-l su t hat. Ak lllon's away from A"-l llIltil .-ll,: hits ;]P. or Ah

hits DP. or (Ill straightPIls ta /7. Only 0(1) simple motions are neecled. Se(' (b) of

Figure 3.3.

If A.k hits 8P first. then we are done. If Ah hits 8P first. then the result halds
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laI h=n Iblh<n

Figun> =3.:3: E3ring Ah (Il > k) rn ;)P \\"ith [A k .. ..• Ah] straight

with n' = h. If Oh straightens to IT first. then r(k. h + 1) becomes straight. In

this case. by the induction hypothesis. r can be moved to a configuration in which

either Ak lies on 8P or for sorne n' > k. An' lies on oP and [(h:. n') is straight. .-\.ll

1 together. ()( Tl) simple [notion suffice. This completps tlH' induction. o

Lemma 3.3 For an Tl-Link r;hain r -< bF . 811ppO.'ie lhat At) -ll und An lie on ùP

and thal r(l. k) and r(k. n) are .,;traight. for sorne l < k < n.

Then while An rernains fixed and [(O.l) remains in R1VF. and while [Al ..... .-lk]

and [A k • .. " . An) rernain 8traight. [ can be moved to a configuration in which .-1 k

(~ithel' lÙ~8 on iJ P or !lu.'; Clk = 7i"" Fnrthe17rwre. lhis cuu be done with O( rTlTl) 8irrzple

rnotions. See Figure .1.4.

Praof: If initially [ is already in the expected configuration. then wc are done.

Otherwise we proceed as follows.

Keeping An fixed. and keeping [Ai ..... Ak] and [Ak~"" An] straight. nlove ·-ll

.to
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Figure 3.-1: .-\n initial configuration (a) and two possible final configurations (b) and
(c) for Lemma 3.3. In (b) and (c). SOUle joints are folded and sorne links o\·erlap.

towards .-ln along oP. By LemUla 3.1. this can he done while .-lo ..... Al remain on

DP. Continue this procpss until A k hits ùP. or (}k straightPIls ta 7ï. or .-li coïncides

\Vith .-ln. Since P has lTl sicles and 1 :S Tl and f(O.i) llndergoes no backtracking.

O( mn) simple rHotions suffice.

If A k hits ap or Ok straightens to 7ï first. then Wp are done. If.-l l coincides with

An first. then [Al ..... Ad and [Ak... .. An] coincide. In this case. Fix Al and .-ln. and

rotate [.-lk ..... Au] and [Al ..... .-lk] cOllnterclockwise about .-ln untU .-lk hits oP.

.-\11 together. at nlost O(rnn) simple rnotions are needed. o

(
•

Lemma 3.4 For an n -link chain r -< bF. suppose that ...10 •... • .-ll and An lie on aP

and that f(l. n) i8 straight. for sorne l < n.

Then for any k wüh l < k < Tl. r (:an bp. moved to fl (·onfi.'J1lration in which Ao..... A~

and Ak lie on oP llnd r(l'.k) lS stnlight. for sorne l' :S l. A/oreoveT. du.riTlg thi..;
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reconfiguration. An can be kept fixed~ [...lk •.•.• An] can be kept .15tra'ight. and [(0.1')

can be kept in RiVF. Furthermore. this can be done with O( mn"2) simple motions.

See Figure ,'J.5.

An

A,

An

1
1

A,·

Figure 3.5: The initial (a) and final (b) configurations for Lemnla =3.-1

Proof: If initially [ is already in the expected configuration. then wc are clone.

Ot herwise Wf' proceed as follo\\·s.

Throllghotl t the proof. Art will remain fixed. and [A f •• ••• A1.'] and [...l k ....• An]

will remain straight. \Ve consider two cases.

Case 1: Initially Al and An lie on adjacent sicles. Let Si and Sn he the sides that .-lI

and An lie on. respectively. Let L' be the \'ertex where SI and Sn meet. \\ïthout 105s

of generality. assume that Al. C. An initially form a right tl1rn. See Figure =3.6,

Keeping Ac . .-lA;. An a right turn. ruo\'e Al along .cic towarcis l'. By Lemma 3.1. this

can be done while ...10 • •.•• Al remain on 8P, Since P is obtuse. the interior angle

at L' is ~ ir /2. Thus the distance between Al and An is decreasing. Hence Lak is
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FigllI"(' :3.6: :\Io\-ing Al towards An along DP.

decreasing and .-lk is Illoving towards 8P. Continue this process until A k hits 8P

and choose [' = 1.

In this case. only O( 'Hn) simple nlotions arr' np(-'dpd.

Case 2: Initially A. i and A rI lie on non-adjacent sides. \rp show the result h~'

ind uction on 1.

\
"\.~__--'-':"P~/l --'

Figure 3. ï: Rotating [Ao ~hl about Ak ·

For [ = O. let Po be the point where Ao initially lies. Kceping Po . .-lo . .-lk collinear.

-13



rotate [.-lk' .... .-lnj about An cOllnterclockwise. as Figure :3. 7 shows. Since the dis-

tance bet\veen A k and Po is increasing. the above rotation is possible. Continue

this process until Ak hits ap. Then fix Ak • '" • •-1.n • and rotate [...10 , .... A k ] about

A k counterclockwise llntil .-lo hits ap. \Ve then establish the induction base \Vith

If = l = 0 and only O( 1) simple motions are reqllirl'd.

Suppose that the rl'suIt holds for aIl indices less than 1 > 0: Wl' now pronCl the

result for 1. Fix Ao•.... A l - l • and rotate [Ak..... .-ln] about An 50 that A k rnoves

away from A l - l . as Figure 3.8 sho\vs.

Figure :3.8: Rotating [A k • .... An] about An 50 that .-lk moves away from Ar- I .

\re clairll the following. which wc will establish at the end of the proof.

Claim: During this rotation. Al will not hit ap before Ak hits 8P or Ql straightens

ta ii.

From the daim. the above process terminates when Ak hits 8P or QI straightens

to il. as shawn in (a). (h) of Figure 3.9. respectively.



•,l

(a) (h)

Figure 3.9: .-lk hits 8P first in (a): Qi straightens to ir first in (b).

If .-lk hits DP first. fix .-\k-", . .-t n and BIO\T' [(O. k) in accordancl' with Lprnma :3.=3,

Then eithcr Ai hits DP or Qi straightens ta ir. and wc chouse l' = 1 or l' = 1 - 1.

respectively. This requires O( mn) sinlple motions.

If Qi straightcns to ir first. fix .-ln and move r in accordance with Lemma 3.3.

Then either .-lk hits oP or o.k straightens ta ir. If.-tk hits DP first. Wp choose l' = 1-1

and O(lTUl) siluple Inotions arC' iIlyoh'('<1. If Clk straightl'flS rI) -;:- first. rh<'Il ru - l. ll)

beconles straight. In this case. if Al -1 and .-t n lie on adjacent sicles. thL'n lJy Case 1.

we conclude with [' = 1 - 1: if Ai-! and An lie on non-adjacent sides. then by the

induction hypothesis. we conclude with sorne l' ::s; l - 1 < l.

In this case. at nlOst rTln + m(n -1) + ···.+rn E O(rnn'2) simple motions are

need.

Proof of the Claim: Let Pi. Pk he the points where Al ~ A.k initially lie. respectively,
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be the intersection points of Cdol. rd and DP. C'dOk. rd and OP that Al. A k nlO\"f~

towards. respectively. See Figure :3.10.

, /..
,,

,,

r..

Figure :J.I0: Cill:ie 1: Ok is outsicle C'/.

Then Dl. Ok are the points where A l - L. .-ln initially lie and rernain fixed. respec-

tivcly. :\.1so rl. rk are the lengths of [.-ll-L' Ad. [.-h -ln]. respecti\·ply. By as-

surnption. Ok and Pl lie on non-adjacent sides. \\"e prO\'e the result by two cases.

Case 1: Ok is outside C'l. as Figure 3.10 shows.

\\ïthout 10ss of gencrality. wc assume that Ol~ Pl. Ok form a right turn. i.e.. initially

Ql < Ji. \Ve show the result by contradiction.

Suppose Al hits 8P first. i.e .. Al rcaches f l while .-\k lies at sorne qk EPktk' as
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shawn in the dotted line in Figure 3.10. SinCf~ Ok is olltside Cl. Ok and Pl are on the

same side of l(tl- ad· Hence Ok~ Pk- Pl are aU on the same sicle of l(ll. ad and 50 are

Ob qk- Pl· ~ote that Oc. Ph Ok form a right turn~ hence al- li- qk form a left turn. i.e..

Gc 2: ÎÏ in this configuration.

Since Oc changes continuously_ there exists sorne intermediate configuration in

which Oc == 71. This rneans that Oc straightens to 71 bpfore ...lI hits DP. Contradiction.

Case 2: Ok is inside or on Cl' as Figure 3.11 shows.

s'

,
,,

1

1

\ /
\ 1

t l '. t kl

'- \, \

" ', "

- - ~

pl"', ,

, An

,
,

1

1

1

1

1

1

,,

Figure 3.11: Case 2: Ok is inside or on Cl.

\\ïthollt loss of generality. we assume that Dl- Pl. Ok form a left turn. \Ve show



that A k hits ap firs!.

- ~-

Ot.Pc.Pt is a (pft turn. So d(ptÏÏ[) < ÎÏ. Hence d(P1Ptl = 2ii- P,Pt> 7ï.

Since p~ EP1Pl' 01. p~. p't is also a left turn. 50 rl(p~p'd < :7. Thereforf'.

- ,-
P1Pl>P1P'l

..-
,

(3.1)

(3.2)

Fronl (3.1) and (3.2L we conclude that when A k lies at C/k. Al lies at sorne ql

inside PlP~~ as shawn in the datted line in Figure :3.11. Hence when Ak rcaches tk'

-
Al lies at SOIIIP point inside Pltl- Therefare Ak hits 8P first. o

Corollary 3.1 For an n-link chain r -< bF. suppose. as in Lernrna 3.4. lhat Ao~ .... Al

and A.n lie on ap and that r(l. n) is straight. for sorne l < n. Then while An remains
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fixed. r can be rnoved to RiVF with O(rTln:J ) .,;imple motion,;.

Proof: By induction on n. If Tl = 2. the re::mlt is tri\'ially trne. Suppose that the

result hoIds for n < n': we now show that result holds for Tl = n',

First. we move An'-l to OP while keeping An' fixed as fo11ow5. If An'-l is

already on oP. then we are done. Othenvise. fix An' and move r in accordance with

Lemnla 3,-!. Then r can he lIlo\'ecl ta a configuration in which .-lo. , , .. .-ll' and .-ln'-l

lie on iJP and r(l'.n' - 1) is straight. for SOIne [' ::; n' - 1. This rflquires ()(TTln:!)

simple motions. See Figure 3.12.

Figure 3.12: Bringing r to RXF,

:\"ext. by the induction hypothesis. [(O. n' -1) can oe mo\'ed to R::\F while An'_ l

renlains fixed. Hence r can he 11l0\'ed ta R~F while .-l~ renulÎns fixeu, .-\11 together.

mn2 + m(n - 1)2 + ... + ,Tl E O(mn3 ) simple motion suffice,

·r
•

This completes the induction proof.

-l!)
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Corollary 3.2 Any chain r ~ bF in l-BRiVF can be moved ta R/VF with O(mn-l)

simple "~otians.

Proof: If l = fl. then r is already in R~F. If l < fl. supposp AIl ..... .-lll (0 <

il < .. , < il < Il) arp aIl internlediate joints on J P. If.-ll) is not on iJP. t hen fix

.-li 1 • .-li1-l ..... .-ln and rotate [.-lo..... Ail J about .-lll l:ounterclockwise until Ao hits

DP. Similarly.-ln can be moved ta 8P. This requires O( 1) simple motions.

xow fix .-li 1 • AlI ~ 1. ·.· • .-ln and nlo\"e r (O. il) in aCl:ordance with CoroUary 3.1.

Then r(o. il) cau he' [Ilon~d to RXF with O(rni=n simple motions. Xext. fix .-ho! . .-li2~1 •

. . . . .-ln and Illun' r (O. i"2) in accordance with CoroIlary :3.1. Then r (O. i"2) l:an he

moved ta RXF with O( rni]) sinlple motion. Repeat this process llIltil r is in RXF.

AlI together. m,(! + ,ni] + ... + mil E O( mn-l ) simple motions suffice.

xow "OC are ready to present a crucial resul t in the foUowing.

o

r

Thearem 3.1 AllY chain r -< li"" GLU !Ji-! moued to R.VF with ()( rnn- l ) ,o;-impir; TTLO-

tions.

Praof: \Ve give an algorithmic proof. The algorithm consists of an initial step. in

which .-lo is brought to DP. foUowed by a main step. in which the lowest inclexed

joint Ilot on DP is brought ta DP. The main step is repeated until aU joints lie on

ôP.

initial .,;tep: \Ve bring .-10 ta ôP as follows. For k - 1. 2..... fix A k and rotate
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[.-lo..... .-lk] about Ak· Repeat this process until either .-to hits 8P or the entire

chain [ becon1es straight. If [ straightens before An hits 8P. slid(' the straightened

r along the line it deternliues towards û P nntU AI) hits uP. This requires ()( n)

simple motions.

main step: For .-\k not on 8P and [(O. k - 1) in R~F. bring .-tk ta uP as folIows.

Fix Ao. .... Ak - 1 and mo\'(' [ in accordance with Lemn1a :3.2. TheIl [ can be n10\"ed

tn a confignration in which f'itIH~r A k lifls on DP or for sorne n' > k. A~ lies on ôP

and [(h:. n') is straight. and this requires O(n) sinlple cnotions.

In the latter case. fix .-t~ ..... An and move [(O. n') in accordance with Lemma :3.3.

Then with O(mn) simple motions. either A k hits ap or ('i.k straightens ta il. If flk

straightens ta il first. fix .-l~ ..... An and 010\'(' [(O. n') in accordance \Vith Corol-

lary 3.1. This puts A k un DP with ()( mn:!) simplp motions.

iteration stP[J";: Onc(' Ao..... Ak - l . Ak lie on ùP. rcppat the cnain stPp to brin~ th(l

.-tk---1 ..... .-ln in turn ta ôP.

A.1I toget her. at cnost T!ln:3 + Tn( n - 1):1 + ... + III E ()( Tn rfl ) siolple olotions are

r

needed.
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3.3 Bringing a Chain ta TNF-io

This subsection shows that any chain bounded by be can be rnoyed ta T~F-ia for

sorne la. First. we have

Lemma 3.5 Let r -< be he rz single link chain in R1VF. Su.ppo8e lhat r ha,.; joints

.-1. B which lie al./". y. n",-speclively. If tllt~re t-'J."ists (l point pEP wüh I.rpl ~ I.ryl.

then il i..; possible to rnove r onto .rp hy fixing.r and rotating r tL/JOut .1".

Proof: ft suffices to show that B will fiot hit ôP in the desired rotation.

Assume otherwise. Suppose that {(.c. p) n ôP = {.r. q} and that q. .r.!J is a right

tllrn. as Figurp 3.1:3 shows.

:
X:'A

/r------:.~( ~B~:.y

/
/

'. / :'

Y\""" ,',:-.,.:
p: '---, -- .. -

'1:

Figure 3.13: r can be moved onto xp by fixing .r and rotatÎng r about x.



Then there exists sorne y' E Ch(q. y) with Ixy'l = l.cyl. ~ote that since Ixql ~

lxpl ~ [xy!. there exists sorne y" E Ch(x. q) with l·ry"l == Ixyl· Since.li . .11'.11" are

distinct. C'(x.!xyl) n BP has at (east three points. This contradiets r -< 1/', 0

Theorem 3.2 Let r -< 1/' he an n-link chain. Sl1,ppn."w theTf~ p.:ri.,;ts (l point fJ E P,

a ueriex t'of P and an index i ü < Tl such that

Then with O( rnu-') "ùnple motion.s, r can be rnoved to T;VF-io in which ...l io lie:, at

c.

Proof: Bring r ta R~F in accordance with Theorem 3.l, Then. keeping r in R.\"F.

move A ,o around DP to l.' in accordance with Lernrna 3,l. This requires O( rnn-')

simple motions.

tivcly. as Figure :3.1-1 shows, Thpn [J10 = L', \\'p clainl that. fur any ft wirh io :S k < n.

d(p. pd > lk+l + ... + I rl •

Ta see this. note that in 6PVPk' we have
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Figure :3.14: Bringing Ln onto Pn-lP' Point Pio and joint Ain are at t· .

.-\Iso d(p. L') 2: lio+ l + lio-r'2 + ... + ln. Therefore.

Hence the daim.

\ \Op no\\" rcconfigure r as folluws. Tu l)('gill. brilll2; [.-tn_ l' .-lu] outo t h(' lillP sflgIIlPnt

Pn-[P. Tu do this. fix .-\.0.· ... An- l and l'otate Lrz about A n- l llntil [A n- l • A rz ] and

p hecome collinear. Gnly O( 1) simple motions are needed. Sce Figure 3.14.

From the clainI. d(p. Pn _d > ln. :\150 [ -< he. By Lemma 3..5. .-ln will not hit

DP during this rotation. .-\lso fronl d(P.Pn-d > ln. An lies on PPn-l when [.--l,l-l. An]

and P becona> collinear.

~pxt. straighten [(rz-:2.11) and bring it onto Pn-'2P as follows. Fixing .--la.···. A n-"2

and keeping [An_l~An].pcollinear~ratate Ln- 1 about Au -'2 until f(n-2. n) becomes

straight. .-\gain. only O( 1) simple motions are needed. See Figure 3.15.
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.... , ' \

... "
, "
''\

p

Figure 3.15: Straightening [(n - 2. n) onto Pn-2P'

\\"c show that neither .-l.n-l [lor An will hit OP during this reconfiguration. For

A n - t . this follows from d(Pn-'!.'P) > ln-t + ln > ln-t and Lenlnla :3.5. \\,p no\\"

consider An.

Let qn- t be the point where A n - t lies at a stage of the reconfiguration. as shown

in Figure :3.15. It suffices to show that .-ln remains on lJn-tP. i.e .. d((/n-t. p) > ln.

Ta sec this. Ilote that in Dqn-tPn-"2P' d(l/n-t.P) > d(Pn-:l'P) - d(qn-I~Pn-'l)' By

the clain!. d(Pn-"2'P) > ln-t -r ln. _-\150 d(qn-l.Pn-2) = ln-l' Therefore. d(qn-t.P) >

.-\t the end of the reconfiguration~f(Tl- 2. n) becomes straight and collinear \Vith

p. .-\lso by d(Pn-'l' p) > ln-l + 'n' .-ln lies on PPn-2'

Repeat this process until r(io~ Tl) is straightcned onto l'p. This puts r in T='iF-io

-
with Aio at v. :\.11 together, O(n1.n,l) simple motions are needed.

55

o



3.4 Reachable Points

\Ye now givE' our main n~sult in this chapter.

Theorem 3.3 1/' ~ 1)"<;, i. e.. if r -< he. then (*) l.'; a .'iuiJicient and necessaï!J

condition for An to reach p.

Fllrthennore. if p i8 reachable by .-ln' then .-ln can he moved to p with O( mn· l ) simple

motions.

Praof: The necessity of (*) follows triviall:v frorn Property:3. \'ow wC' show the

sufficiency by giving an aigorithm to bring .-ln to p \Vith O( fTlT(l) simple Illotions.

Let io be the least index such that

n

L lj ~ dmax (p).
J=ll)~l

:\"ote that taking- i = Il in (*) gives ln ~ dmux(p). so i ü < Il. In accordancc \\'ith

Theorenl 3.2. IlIO\'e r ta T:\"F-io with A.io at t'rna.Ap) = l.', This requircs O( Til Tl
1

)

simple motions.

If lü = O. then r is straight. Slide r along l (". p) towards p Hnt il An reaches p.

If io > O. rnove .-lio-l along OP rowards V while keeping [Alo •.•.• An] straight and

collinear with p, By Lernrna :3.1. this can be done while f(O. io) rernains in R\"F,

Continue this process llntil An rcaches p or A io - L reaches ", This requif(~s O( nUL)

simple motions. See (et) of Figure 3.16,
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Figure :3.16: ~Io\'ing AIO tu " and thcn bringing Llo colliIH'ar with ('p.

If An reaches p first. then we are done. If .--lio reaches L' first. let Pin be the point

where .--lia lies. Then.

Fixing .--lo ..... .--lln-l and keeping [A ia . .... An] straight and collinear \Vith p. ro-

tate Lin about A io - l ' This requires O( 1) simple motions. See (b) of Figure :3.16.

\Ve daim that. before Llo is collinear with L'p. .-tin will not hit DP and .-ln will

rprleh p.

To see this. wc consicier two cases.

Case 1: lia::; dmax(P). Since r -< be . by Lemma 3.5. .-lia will not hit OP before L io

is collinear \Vith vp. \Ve now show that An will reach p first.
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.-\SSllme otherwise. i.e.. that L ro becomes rollinear with ['P first. Then r(io - 1. Tl)

is straight and collinear with L'p. as shown in (a) of Figure 3.1 ï. By definition of io•

Or.

Let qia he the point where ...lia lies. Then d(c.p) -lin = d(qio'p). Therefore.

(:3.2)

From (3.1) and (:3.2). thprp pxists sorne int{3rmediate configuration in which Aio

lies at f io and ['-\,1)' .... .-l"j is strai~ht and collinear with [J. Sllch thar

This inlplies that An lies at p in this interrnediatc configuration. Contradiction.

Ca~e 2: llo > dma.r(P)· Ll't 1(L'.p) n DP = {c. L"}. as shawn in (b) of Figure 3.17.

Clparly l' is the n'l'tex fllrthest fronl L". HenC(~ dmu.x(e') = iL'L'l Gy Lenlnla -Llo

U' ~ dma.r(v' ). By Corollary 2.2. be ~ iL'. Hence r -< Icc'I and lio < IL'L"I. By

Lernma 3.5. .-lio will not hit 8P before Lio is collinear with vp. \Ve no\\" show that

.-ln will reach p first.

Assume otherwise. i.e.. that L io becoInes collinear with cp first. TheIl [.-llo-l' .-lio]'

[...lia ~ ...• An] are collinear with cp and A io is dused. a~ shawn in (Il) of Figure :3.1 ï.
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(a)

i
1

1

l'

~

~
~
''\---------_~

(h)

l

Figure :3.17: Llo :S dmax(P) in (a) and LlO> rfrnllx(p) in (b).

Or.

Let fJio be the point where A io lies. Then lio - d(c.p) = d(qLO'P), Therefore.

From (3.1) and (3.:3). there exists sorne interrnediate configuration in which .4. 10

lies at sorne tio and [A io ' .... An] is collinear with p. snch that

This irnplies that An lies at p in this interrnediate configuration. Contradiction.
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AlI together. O( nln·1) simple motion suffice. This completes the proof. 0
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Chapter 4

Reachable Regions

This chapter investigates the properties of reachable regiolls of l'hains. \"e consider

general con\'px poly~ons as t1)(' C'onfining rcgions throughollt this chaptrr.

Section -1.1 pro\"ps that Ir'"i ~ ri' and that if P is l-n'achahlp. tlH'1l 1 5 Il'. Section

-1.2 describes the shapes of reachable regions and shows that they are linearly ordered

by set inclusion. Section ..1.3 rendIs sorne basic facts about the minirnal spanning

circle of a corn'ex polygon. This pro\'ides background for Section -1. ..1. which char-

acterizes l-reachable C()Iln~x polygons for 1 ::; !J'''' and illustratcs the applications of

this resuIt. Section -1.-1 also characterizes the center of the rninirnal spanning cirele

of a convex polygon fronl a reachability point of \'iew.

Assumptions: Throughout this Chapter. wc assume. unless otherwise stated. that

r denotes an n-link chain and P denotes an rTl-sided COIl\"eX polygon. [ is confined
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by P and joints of r nlay lif' on ôP.

Ta show I/i < iL'. WfI need the following.

Lemma 4.1 If p E 8P. then lC < dma.xUJ). Furlheïrnorr. if i' El'. then iL' <

Proof: Far any p E 8P. Plies completely inside C(p. dma.r(P)). Hence P faUs into

a half circ1<' determiIH-'d by C'(p.drnu.r(p)) and the lirlP 1 throllgh .-;(p). So P Iif's

between 1 and Cl tan~erlt lin<' of C' paral1f'} to 1. WllOSP distanc(' is d"HL.C(P). Thus

iL' :::; dmax (p).

Let L' E l" and let li. Li' be the \"ertÏces adjacent to L'. Suppose that l is the

line through t'IL' and that l' is the line thraugh L' perpendicular to 1. Let e' be a

H'rtpx fllrthest froIll 1 ancllf't Il'. iL" 1)(' thp \"(~rti('(ls arijan'nr to l". \\lrhout loss of

generality. assunlC that il. c. Il: and ll.". u'. L" arf' both Ipft turns. S('f' Figurp -L 1.

\Ye consider two cases.

Case 1: v' ~ l'. Let ffl be the line through v' parallei to l. as shown in Figure -l.1.

B.y definition of e'. points u' and t.L" are each on or below 1". Hcncp [" and 1 are

support lines of P. Sinn' c' ~ l'. d(l".!) is strictl~· If'sS than dma..A l'). the radius of

62



•

•_1

•

l'

v

~v \
/ ' \"

C (/ ll~ \~\
- - - - \ - - - - - - - - - - - - - - - ~-: l~~ - - - - - - - - j---

\ /
\ 1

'\ /

Figure ·1.1: Case 1: v' ri l'

C'. Therefore.

r'

Case 2: ,,1 E l'. Let ."i(IlI'),";(lL',,') IlP tlu' angles of 'li'. /J'l" with n's()('('t to /. rpsp('c-

ti vely. \ Ve further consider two subcases.

Case :2a: 8(UV) 2:: 8(U't"). ati shown in (a) of Figure -1.2.

Let II be the line through Ut' and let 1'2 he the Hne through l"~ parallel to 11'

Since S(lU':) 2: :;(lL'I"). II and /.]. are parallellines OfSllpport of P. \"ot(' that l"!. is not

parallel to l. Hellee 1'2 is Ilot tangent to C'. Sa d(l1./2 ) is strictly lesti than dmax(t').
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v
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c

y
.;.. (a)

Figure ·1.2: Case 2: c' El'.

the radius of cr. Thef(lforC'.

Case 2b: :;(Ul.') < s(u'c'). as shawn in (b) of Figure -1.2.

(b)

Let II he the Hne thraugh c'u' and let l"2 be the line through L' parallel ta lI'

Since :;( ut') < ..,( Il' e'). Il and l'}. are parallellines of support uf P . .\"ote that II is not

parallel ta 1. Hence fi is not tangent ta C. So d(lI.I'2) is strictly less than dmax(c).

the radius of C. Therefare.
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This cOlnpletes the proof. o

:\"ote that iL' = dmax(P) rnay hold if p Ft \ -. To see this. let p be the midpoint of

a side in an equilateral triangle.

Theorem 4.1 bS :s; IL'.

Praof: .-\SSllnle otlH'rwisp. Then /L' < bS for sorne P and WP IlOW consider such a

P. Then for any 1 with

and any single link chain r [.-1. Bl with lcngth L. r satisfies (S). \\'p show that

... this is inlpossible .

By Fact 1.1. t hf'n' f'xists r\\"o paraild liues 11 ,/'2 ()f support of P. OUe passmg

through a vertex and the other passing through a sicle. achic\"ing the wiclth 1/'.

Suppose that Il passes through \Oertex u and l'!. passes through sicle Cl L':!. Let 1 be

the line throllgh L':! perpendicular to L'l L':!. \\ïthout los5 of generality. assume that

Let l'~ lw the '-('l'tex furthest fronl 1"2. Gy LeuuIlél -LI. 1/' < d/1la.r( 1''2)' Hf'IlC<'

L'~ ~ L. First. assume that l.'~ is on the left of 1. as shawn in Figure -1.3.

Let u be the rightmost vertex of P. with l"2 regarded as horizontal. .-\lso hy

Lemma -l.l. IL' < dma.r (L'). Take ( > 0 sufficiently small such t hat
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Figure -1.3: B cannat reach L'.

Let r = [.-1. B} have length of lL' + E. By the convexity of P. line segment L''2L'~

lies inside P. Sinee lL' + f < dmax (L'';1) = d(L''2' u~). it is possible ta place r on l'';1I'~

with A at Z'';1. as Fignre -1.:3 shows. Consider this as the initial configuration of r.

\\'p daim that 1.' rt Rd B). i.p.. that B cannot n'adl ".

Ta see this. \'iew r as il \'C'ctor .-lB and defille ft as tlu' angle formpd by rotating 1

to .-lB counterclockwise. as shown in Figure -1.3. Since z·~ is on the left of l. initially

TI /2 < 0: < if.

If Z' E Rr(B). sinee l' is the rightmost \·ertex. when B reaches l'. either 2ïï 2:

n > :3il/2 or () < a < 7ï /2. as shawn in the upper. lower dotted Hnes in Figure -1.:3.

respect i\-ely.
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Since a changes continuously. there exists sorne intermediate configuration of r

in which either a = :3ii/2 or (l = ÎÏ /2. i.e.. r is perpendiclliar to l'2. This is not

possible, Hence the daiIll .

.\"ote that dma,I( c) > iL' + f. Hence r does not satisfy (S). Contradiction,

For the case that L'~ is on the right of l. the proof is sirnilar. o

\'·e rernark that 1/' may he considerably lcss than n', as illustrated in Figure -1.-1.

[n this figure, the polygan P is constructed by cutting off three congruent tiny right

triangles of an equilau'ral triangle 6 with unit sidf'. Thus iL' = V3/~ - f for son1('

snlall E. \\'e clainl that IF'" < Il.' in P.

Ta see this, consider a 3-link chain r ha\'ing joints .-\. B, C. D whose initial con-

figuration is as fallows: B, C are at the nlidpaints of two sicles of 6.. respecti \"(~ly:

.-1. D are at two right cornf'rs of 6.. respecti\'ely, Then r -< L/2. [f Ir'" = Il'. then the

top \·ertcx of /\ is [('Clchahl(1 by D. But this is irnpossihl(l as r is ("orllp1E'tf'ly stu("k.

8 .... ..

A

Figure 404: bS < IL'.
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One consequence of the above theorenl is the following. which shows that lL'-

reachability is the rnost one couId hope for.

Corollary 4.1 If P is l- reachable. then 1 ::; LL'.

Proof: If not. then l > le. For any l' with IL' < l' < 1. since P is l-reachable. P is

['-reachable. Then for any r -< l'. r can reach each point of P. Thprefore l' < 1/'.

By Theorern -t 1. b.'·; ::; li'. 50 l' ::; Il.'. Cuntradiction.

4.2 Properties of Reachable Regions

Propcrty -l from Chapter 1 shows the equin'l.lence of the reachability between an

Tl-link chain and Cl single link chain. This snggcsts the following.

Definition 4.1 Let r -< bS be an Il-lin/.; chain and let Il, .... 1Tl be the LinA: lengths of

the equivalent chain of r.

In terrns of the abo\'e definition. Property -l can he restated as fo11ows: Rd An) =

Since le ~ ln > 0 and le ::; li for each i. wc have

Observation 4.1 0 < lt! ::; 'max.

From the above observation. we have
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Observation 4.2 If r -< b. lken r e -<. o.

The following lernma shows that each point on the boundary of P is bS -reachable.

Lemma 4.2 8P ç Pb:;'

Proof: Let r -< bS be an n-link chaiIl and If't rt' = [.-1. BI f)(' it~ <'qlli"aleut ('hain.

By Obsen'ation -L2. re -< bS. By Theorem -1.1. bS ::; fL". Hence r~ -< U'. i.e..

le < iL'. For any p E 8P. by Lemma ..L1. w ::; dma.r(P). Thus le :::; dmax(P). Since

r -< bS. (*) is satisfied. Henre p E Rr,,(B) = Rr(.-lrz). So p is bS-reachable. Thus

o

Theorem 4.2 Let r -< Ir"-. Then R r (Arz) i,8 either e'mpty or' hw; boundar7J conlposed

of atm08t rn circular arc.'; centered al certain vertices of P and ail hauing radiu..; le.

Proof: Let r e = [.-l. B] be the equi\"alent chain of r. Since Rd.-lrz)

rrz
Rr " (B) = {pip E P. rlma.rtIJ) < tt'} = n{plp E P. d(p. Cl) < r}.

z=L

Rrd B).

Xote that for cach i. {plp E P. d(p. ud < le} is the subset of P inside the circle

centered at L"i \Vith radius le. By Lemma ..1.2. each point of 8P is bS-reachable and

heuce is le-reachable. Thus for each i. {pjp E P~ d(p. ud < le} n8P = 0. The result

r..
hence fo11o\\"s.
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\Vp remark that the number of circular arcs bounding the unreachable reglan

for different chains sharing the same P may change. as shawn in Figure .:1.5. This

figure shows a convex 5-gon that is nearly regular. The salid and dashed arcs show

the construction eurvcs for tht> boundary of thf' unreachablt' n1g;ion of a longer and

a shortcr single link chain. rpspectÎ\"ply. \"ote t hat the boundary of thl' llnreachahlc

region of the longer link chain is composed of five circular arcs. whereas the boundary

of the unreachable region of the shorter link chain is composed of three circular arcs.

~ ,
, " /

/ , 'X'" ','\ !, , " " !
\ 1 ' ~ , .. ... ~ \ "l, /

\-JV ~~I
Figure -1.5: The circular arc number of unreachable rcgions may change

Theorem 4.3 Ail Rr(An ) with r ~ bS are tineurly oniered by set indu.sion.
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Proof: Let f. t he rl. il chains. respecti\'ely and both bounded by bS . It suffices to

show that one of Rr{.-lrz). Ri-(An) contains the other.

Let ft> = [A. B]. ft' = [A. E] be the ('quinl1(~Ilt chaius of r. t. respecti\·ely. Sup-

pose r e and te haye lengths of le and le. respectively. Then

Suppose je ~ ft' and <'onsicier P ERr" (B). By Obseryation -1.2. ft' ~ bS . HE'nce

Therefore Rr.. (B) ç Rt .. (B),

Similarly Rf"" (B) ç Rr.. (B) if le ~ je. This cornpletes the proof. o

Definition 4.2 Lel r -< Ir>; !Je an Tl-linA: chain confined within P. ~Ve .';ay tkat r l8

cO\'pring for P or ('on~rs P. denoted by f r- P. if Rr (.-1 n ) = P.

By the previous IprIllna. the unreachable regions of the nonco\'ering ('hains are

aisa linearly ordered by set inclusion, The supremum ofthese regions. Ur-<bS.r!iP RrC-ln).

is dearly the conlplenlent of Pbs. In Section -lA. wc will show that the infinlunl of

these regions. nr -<b-'>' .r";'p Rr(.-l,J. is a unique point that is "hardest reachablp" (tn

he defined). ",hich coincides with the center of the' IlliniIllal spanning; cirde of P.
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4.3 Minimal Spanning Circles

'0•

In this section. we re\'iew sorne well-known properties of minirnal spanning circles

of convex pob-gons. This provides needed background for the next section. Refer

to [RT5ï] for details.

Let P be a conyex polygon. .-\ ..,panning cil'c!e of P is Cl cirde C such that each

\-prtex of Plies either inside or on C' . .-\ minirruLl .-;!HlTLlliu!I ('irele of P is il spanning

eirc1e of P ha\-ing rniniulllIn radius.

Fact 4.1 Ever?} convex polygon P has a minimal ,..;panning circle. which Z,'J 'Unzq'Ue.

The notion of the minimal spanning circle call be generalized to a set of Tl points.

and the corrpsponding results still hold. See [RT.jï] for n~fereIlces. [PS8.j] and

[.\Ieg83] show that thp nlÏnirnal spanning cirde of an n-point Sf't t:an he construetpd

in 8(n) time.

Fact 4.2 .-l 8panrâng circle C of a convex polygon P is the minirnal spanning cirde

of P if and only if C pU8"es through two diarnetr-lcally oppo8ite pf:rtice.., (i. f'. thr: line

.-;cgrnent betwt-:cn the t wo I:(~,.tice."i dt-:fine,'; (l di(lm(~lt;r of C/ or through three "fTtict-:8

that define an aC'llt(~ triangle.

Corollary 4.2 Let P be a convex polygon and let C(o. r) be its rninimal spanning

circle, Then u E P llnd r = dmax(o).

-.')
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Corollary 4.3 Lel P be fL conver poly[]on. Then the ccnÜJr of ils minimal s[Janning

circle is the unique point 0 E P al which dmax ( 0) achieves ils ntinimum.

Corollary -1.3 shows that the problem of determining the minimal spanning circle

of a COn\T'X polygon P is f'qni\"alent to that of seeking a point whose nl<Lxinléd distance

to the n~rtices of P is nlinirnal. Snppose \T'rticps denotp the locations of llSf'rs. then

the point to be sought is a kind of optimal position to place a public facility. This

is the minimax problenl in Operational Research. a dassical problem ,vith \Vide

applications. Sec [:\"Cïl] and [TSRBïl J for references.

4.4 l-Reachability

r•

\Ye now give our rIlain result in this chapter.

Theorem 4.4 Let P be lL eonvex [Joly[]on !lnd let ('(o. ,.) he il:; minimal 8panning

ârcle. Then for an!} 1 ::; Ir"·. the following are Equivalent.

( 1) P is l-rellchfLble:

(2) 0 i.s l-reachable:

(.'3) l ::; r.

Proof: (1) =:::} (2) 8".- Corollary --1.2. 0 E P. Since P is l-reachable. () is l-reachable.

(2) =:::} (:3) By contradiction. If 1 > r. thf'll thpre pxists l' with l > l' > r.
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Consider a single link chain r = [.-1. Bl having length l'. By Corollary -1.2.

r = dmax(o). Hence l' > dma.z:(o). By Property 3 from Chapter 1. 0 tf. Rr(B). Thus

o is not l'-reachable. 50 0 is not l-reachable.

(3) ==> (l) By Corollary -1.2. r = dma.z: (0). ThllS 1 :::; d"w.r (()). For any pEP. by

Corollary -1.:3. dma.z:(o) :S drna.z:(P). Hence 1 :::; dma.z:(P).

Let r -< 1 be an Tl-link chain and let r e = [A. Bl be the equivalent chain of r.

By Observation -1.2. rt' -< l. 50 l~ < 1 ::; dma.z:(P). SinC(~ r -< hS•. (*) is satisfied.

Therefore.

50 p is l-reachable. Hence P is l-reachable.

Corollary 4.4 Let P he a. convex polygon and let r be the radius of ilsminirnal

:;panning circle. If IL' ::; r. then P i.'i bS -reachable.

Furthe1ïTUJ1·e. if P Î:i (~()nrex obtuse with 1/' = IC. then P i.i) Ic-n~achable if tLnd only

if Lr ::; r.

Proof: By Theorem .t.I. bS
::; Il.'. Hence bS

::; r. By Theorern -1A. P is h'''·-reachable.

If P is eonvex obtuse and be = IL'. then Ir'" = il'. By Theorem -1.-1. P is IL'-

reachable if and only if iL' ::; r. o

\Ve no\\" illustrate applications of the ahove in the next three theorems. Our

results suggest that the shape of P detennines its l-reachability.
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Theorem 4.5 Let 6. be a triangle with an interior angle > iT /2. Then 6. is b""-

reachable.

Proof: \""ote that le of 6. is the rninimum hei~ht and that the radius r of thE' rninimal

spanniug circle of 6. is half of the longest sicle. Hence iL' :::; r. By Corollary ..1.-1. D.

is bS-reachable.

Observation 4.3 Convex obtuse quadrilaterals are exactly rectangles.

o

Theorem 4.6 Let P he CL rectangle having sùles fl. b with (l > b. Then P lS lL'-

reachable if and ouly if a/b ;::: V3.

Proof: Let C(o. r) be the minimal spanning circle of P. ('(o. r) is dearly the

circumscribed circle of P. Hence r = .ja"2 + b"2/2. \"ote that in P. be = IL' = b. Bv

Corollary -1.-1.

Pis 1- reachable {=:} Ir:::; r {::::::::> b:S Va"2 +/)"2/2 <===;> alb 2: v'3.

The abo\'e theorem shows that a rectangle LS ll'-reachable if and only if it 1S

"slim'~ enollgh.

Theorem 4.7 Let P Iw fl COfll.'CX obtuse rTl-yon. If lTZ > .j. then P i8 ""rr111l -reachablc.

Proof: Suppose L'L. L'"2' •••• Cm are aU the \'ertices of P and C (o. ,.) is the rninimal

spanning circle of P. Let Qt. Q2~" .• Qm be the angles formed between Olh and OL'2.

OL'2 and OL':J~ ... • OVrn and OVt ~ respectively. Sec Figure -l.6.

75



7
/

/

/ \
1
1

0
\

/ i... ... 1( a a.,
...

\V \
m. al )m

\
\

/\
\

\

\

v \'
1

.,

Figure -1.6: P is smin-reachable if it has more than .j sicles.

Since L~~l Qi = Liï. there exists ia with Qio ::; 2iï/m. Since lTl ~ 6.

< .) 1 <.) '6 /'3°lo __71/"l __71j =-;:"

\\ïthollt loss of generality. aSSUIne that in = 1. Then in 60L'1 L''2'

Therefore. one of ,-01'1 (''l. -O/''.!L'l is at least 71/3. \\-ithollt loss of generality. élSSUIIH'

Therefore
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By Corollary -1.:2. dmax ((J) = r. Hence.

Since P is convex obtuse. Srnzn :S bS . By Theorem-l.-l. P is 8 rnzn -reachable. 0

\'"ext we characterize the center of the rninirnal spanning circ!e as the harclest

reachable point of a conn~x polygon. defined in the following.

Definition 4.3 Suppo::;~ P i.-; not bS -reachable. A point (} EPi:; the hardest reach-

able point if for any Tl-link chain r. 0 E Rr (.-ln) implie.s that r ~ P.

Theorem 4.8 Let P Iw (l r:OTU'p:[ polygoTl that is not Ir"" -r{'(u'!lflble and Id C he it...;

rninirnal spanninq cirâe lL'ith radiu.'; ,.. Then the fn!lowùzg an' f'.(jU iVlllf-: nt.

(1) 0 is the center of C:

(2) (} is the harde.';l reachable point:

(.'1) 0 is the injirnurn of TlOTl-ernply unreachable region.-;. i. e.. (} = nr ..;b-'" .r'?'? Rd An)·

Proof: First. wc sho\\' the l'qlli\'alence of (1) and (:2).

(1) ==> (2) For any pEP. by Corollary -1.3. dmux(o) :S dmax(P)·

For an Tl-link chain r -< b~"·. if 0 E Rr(An ). then for any i with l :S i :::; TL

n

li - L lj:S dmax(o) :S dmax(P)·
J=i~l

ThllS P E Rr (.-ln). 50 0 is the hardest ff~achable point.
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(2) ==;.. (1) Let o· be the center of C. If 0 =1 o·. by Corollary -1.3. dma.r(o·) < dmax(o).

Since P is not bS -reachable. by Theorem ..L-1. r < bS . By Corollary -1.2. r =

Take l with

Let r = (.-L BI he a single link chain of length l. Then o· rf. Rd B) but 0 E Rd B).

50 0 is not the hardest reachable point. Contradiction.

\"ext. wC' show tllP f1qlli\ïllencp of (3) and (1). To this ('nel. wC' first clairn that. if

p is not the cpnter of C. then

p ~ n Rr (.-1 rJ.
r --<b:5 .rffP

Ta see this. note that fronl the proof of (2) ===::} 1L). we get the following. Let 0

he the center of C and let p =i= o. Then for sorne r = [.-\. E]. 0 ~ Rr(B). p E RrlB).

Hencp r tf P. p ~ Rd B). Thus

p rf. n Rr(.-ln ).
r --<bS.ntP

Hence the daim.

(3) ===> (l) ImnlediatC' fronl the daim.

(1) ==;.. (:3) Gy the dairn. it suffices ta show that

o E n Rr(An ).

r -<bS .rff?
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For any chain r with r -< bS and r fi P. there exists p tf. Rd .-ln). By the

equivalence of (1) and (~). 01. Rd.-ln). i.e.. 0 E Rr(.-ln). Therefore.

o E n Rr(.-ln)·
r-:b:-j.PfP

This completes the proof. o

Corollary 4.5 Suppose lltal P is not bS -reachable. Then P has a unique hardesl

reachable point.

l

,r
.L

Proof: By Theorem -1.8 and Fact -l.l.
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Chapter 5

Reconfiguring Chains inside

Circles

This chapter hancl1es rl'collfi~llration of chains within cirdps. \\"f' tn'at eirc1es as

the extreme case of nice confining en\"ironments and belie\"e that our results provide

insights on ho\\" to design short link chains within a given confining region in order

to ensure fast reconfiguration.

S('ction .5.1 shows thar urzy n-link chain r confincd within C'(O. r). whosp links

maybc as long as the diarneter of C. can he brollght ta Rirn :\orrnal Forrn (R:\F)

with O(n) simple nlotions. Except for the running tirne and the bound on r. the

result is similar ta that of Section :3.2. This enables us ta present similar reachability

results for chains inside cîrcles. Section 5.2 shows that r -< r already in R~F can be
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brought to "right orientecl Rim :\ormal Form (r-R:\F)"" (to be defined) with O(n:!)

simple motions. This yields the main result of this dlapter in Section 5.3: r -< r

implies r can be moyed between any of its configurations insicle C with O( n:!) simple

rnotions. Section 5.3 also illustrates two applications of this [Psult that dpmonstrate

that the hound on r to pnSllre only oru' <'<[lli\';l!p[l("P da:;:; of configuratiolls of r is

best in sorne sense.

Assumptions: Throllghout this chapter. r denotes an n-link chain confined inside

eircle C' (o. ,.) lluless otherwise stated. .Joints of r may lie on C·.

·1 5.1 Bringing a Chain ta RNF

·r..

\Ve define Rim :\ormal Form for a chain inside a circle in a sinlilar way to what we

did in Section 3.1 for a chain inside a con\'ex obtuse polygon.

Definition 5.1 A chain ifl."'iide a circle is in Rinl :\ornlal Forrn. de710ted R:\F. if

ail ils joint.,; lif'. on C·.

\\'e can gÎ\'e an algorithm for bringing r to R.\'F inside a circle similar ta our

reachability algorithnl for r inside a convex obtuse polygon. The fact that circles

are '~corner free'~ enables us to give an algorithrIl that praduces O( Tl) simple motions

in O( Tl) conlputation tinle. Abu note that for this R~F result. wc need not restrict

the lengths of r to he any less than the diarneter of the confining circle.
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\Ve outline the main steps of the algorithm bringing r to R~F in the following.

Observation 5.1 Let r be an n-Link chain in R~VF. Then any joint of r can he

moved alorlY lLllY patIL OTl C' lL'itIL O( 1) ..;in~plf? motion,; while keeping r in R1VF.

Lemma 5.1 Let r be an Tl -Link chain. Then.-1o can be brollght to C' with ()( rd

simple motions.

Lemma 5.2 For an n-link chain r . .';uppose that .-la ..... .-lk-l lie on C. Then whiLe

.-lo ..... .-lk-l n~TTuzi71 fi:.rpd. r can he rnoved to a configuration in which edher A k lies

on C' or for sorne rn > k . .-lm lie.,; on C and r (k. m) is slnlight. Fnrthe'Tïnore. this

•1
~

can done wüh O( n) siTnple "~vtion.r;. See Fiyure 5.1 .

An

~

Al.- 1

A".

\

~\
l '

1

\

\
\

~,/ .-\,,\
l '
1

(al lb) (c)

Figure 5.1: An initial configuration (a) and two possible final configurations (b) and
(c) for Lemnla .3.2

Proof: Similar to Lemma 3.2. o
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Lemma 5.3 For an n-link chain r -< bF . suppose that A o• . '" Al and An lie on C

and that [U.k) and [(k.n) flre .'"itraight. forsoTne l < k < f1.

Then while An rernaiw; fixed and [(O.l) reTnains in RjVF. flnd while [Al, .... .-tk ] and

[A k • •..• An) remain .straight. A k can be brought to C. Furlhermore. this can be done

with O( 1) simple TT~otions. See Figure 5.2.

An
1

/ '"i \

1 \
\
\
1

-1
1
1

\ Œk

d\ Ak

\

\
",
"

Figure 5.2: Bring A k t.o C.

Proof: If initially .-tk is already on C. then we are done. Othen\'isp Wf\ procf'ed as

fo110\\'5.

Keeping A r1 fixed. and kecping [Al" . .. A k ) and [A k • ...• An] straight. [no\'e Al

towards An along C until A k hits C. or Ok straightens ta iL or Al coincides with An'

By Observation 5.1. this can be done with O( 1) sirnple motions while Ao..... Al
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remain aIl Cf.

If A k hits C first. then we are dane. [f Ok straightens ta il first. then keeping .-ln

fixed. keeping Al on C. and keeping [Al .... _AkI and [.-lk- ... _An] straight. nlO\-e Ak

away from 0 until .-lk hits C. By Observation .j.l. this can he done with O( 1) simple

rnations. [f Al coincides with .-ln first. then [Al ..... .-lk] and [.-1. k- .... .-lnI coïncide.

III this case. fix Al and .-ln- and rotate [Ak.. . , _An] and [.-ll' " . " . .-\.k] COllIlterdockwisf'

about .-ln until .-lk hits Cf. _-\ll together. O( 1) sirnple motions sufficp..

The abo\"e three lemmas yield the follawing. for which the proaf is similar ta

Theorem 3.1 and is thus omitted.

Theorern 5.1 A.ny Tl-Link chain inside C(o. r) can be 'moved to RiVF with O(n)

8irnple motions.

From the above thearem. the reachability algorithm for r inside a caIlVPX obtuse

polygon can be extended in a straightfarward way to hancHe r inside a circlc. \ rp

mention the follo\\'ing~ for which wc ornit details of the proof.

Theorem 5.2 Lel r !Je an Tl -link chain iuside C( o. ,.). For any p in.-;idc Cf. condition

(*) is a 8ufficient and uecessary condition for .-ln to reach p.

Furthermore. An cau he broll.gltt to any of its reachable points wüh O(n) sirnple

motions.
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5.2 Bringing a Chain to r-RNF

For any given configuration of a chain inside a circle. we extend the definition of

orientation of a single link in [H.J\\985] to a definition of orientation of a straight

linp segment corupospd of one or mon' links.

Definition 5.2 Let r be a chain inside Cf. Suppose that ru. j) is straight and that l

is the !-ine containing r( i. j). AS.'iUTne that l intersects C at Pi and PJ. with Ai doser

ta Pi. Then r (i. j) is said to ha.ve right orientation if p;{Jr'5:.Pj-Pi. Left orientation

can be defined .'iirràlarly. Rf~fer tn Figure .5..1.

f

PJ:

1 / A: \..\!.. J \(

\/
1 ( \

A j ,,"

\

Ai/ ; \ 1
1 \

J
1

1

//

A·1.

P- "
,

1, , p:
l,

(a) right orientation (b) left orientation

Figure .3.:3: Orientations
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Clearly we have the following.

Observation 5.2 [.-li . .-i) 1 l!Jing on fl diarneter has bath orientations. ~'vfoTeover.

while staying :;traight. [.-l( ..-\.) J can change ils orientation only by rnoving ta a con-

figuration in which il lies along some diameter.

Based on the above definitioll. we define right oriented R.\"F (left oriented RXF)

as follows.

Definition 5.3 A chain in R1VF i.,; in ri~ht oriented R\"F (left oriented R:\"F).

denoted r-RXF (l-R:\"F). if ils links aU have right (left) orù!ntation.-;.

The following is immediate from Observation .j.1.

Observation 5.3 Lei r he an Tl-link chain in r-R1VF. Then lLny joint of r can !Je

moved along (Lny path on C with O( 1) 8irnple motions while keeping r in r-R1VF.

The key idea of the algorithm moving r ~ r between any of its configurations

inside ('(o. r) is to take r-R.\"F as a bridge. The rest of this section elahorates on

nlo\-ing such a r ta r-R\"F. First. we have

Lemma 5.4 Suppose t!lat r = [.-l()~ .-ln] has right orientation and f!znt hath .-\0 and

.-\.n initially lie on C. Then white An remains fixed and while ...la re'fnains on C. r

can be rnoved to r-R1VF with O(n) .sùnple motions.
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Proof: By induction on Tl. The result is trivially true when n == 1. Suppose that

the result holds for any Tl < m: we now show the result ho1ds for m.

Keeping Am fixed. keeping Ao on C'. and keeping [Ao. Am- t1 straight. rotate Lm

about Am counterclockwise Ilntil A m- t hits C'. as Figure .=JA shows.

Fignre 5.-1: .\Io\"e A 111 - 1 to C'.

C1early bath Lm and [Ao• Am-tl retain their orientations..\lso this is done with

O( 1) sinlp1e rnotions. Then fixing A m - l . Am and keeping Ao on C·. hy t he induction

hypothesis. [Ao. Am - tl can bp rno\"(ld ta r-R.~F with O( T11) sinlplc motions. This

completes the induction proof.

The following is the key step for bringing r -< r ta r-R~F.

o

Lemma 5.5 Let r be an n-link chain in RNF. Suppose that r(o. n - l} i.~ in r-RNF

and that Ln has left orientation. Then while An remains fixed. r can be moved to
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r-RiVF with O( n) ...,ùnple motions.

Proof: \Ve sho,v the result by considering two cases.

Case 1: ln ::; ln-l' as Figure .5.5 shows.

An A n-2~

"

An-II' " \\/ " :.: \
1 -.- - - - 0 \\ .,,)
\ J
~~

Figure 5.5: Case 1: ln ::; ln-l.

Fixing .-ln. II10'"e .-ln-:1 along C clock,,"ise llntil 0n-l straightens to 7ï. SiIlce ln < r

and ln-r < r. ln + ln-l < "2,.. Hence A n-:! cannat reach the point diarnetrically

opposite ta .-ln. Sinn-' tlH' distance between An -2 and .-ln in(Tf'aSes. O'n-l increases.

Therefore. the abon~ reconfiguration is possible. By Obseryation .5.3. this can be

done with 0(1) simple motions while r(o. n - 2) remains in r-R~F.

~ote that An renlains fixed . .-ln-2 rernains on C and ln ::; ln -l' Sa Ln- l cannat

lie on a diameter in the above process. By Observation 5.2. L n - l n~tains right

orientation in the ahan' process. Hence [A n - 2 • .-ln 1 has ri~ht orientation at the end

88



of this process. :'\ext. in accordance with Lemma 5.-1. mo\'e [An-2~ ...ln] to r-R~F

while ...ln remains fixed and An- 2 rernains on C. By Observation 5.3. this can be

done with 0(1) simple rnotions while r(o. n - 2) remains in r-R:'\F.

Thus in this case. r ("an bp rno\'ed to r-R:\F with ()( 1) simple motions.

Case 2: ln > ln-l' as Figure 5.6 shows.

A .,A nn-_

A n- I

l '-.'
~ - - - - - - - ,< - ----..... - -.- --

o

'\

\
1

1

r...

Figure 5.6: Case 2: ln > ln-l'

Fixing An. mo\'c An - 2 along C counterclockwise until Gn-l straightens to ïï.

This is possible for the same reason as in Case 1. .-\.150 by Observation 5.3. this can

be done with 0(1) sinlple rnotions while r(O.rz-2) remains in r-R:\F.

\"ote that ...ln renlains fixed. An-:! remains on C and Ln > ln-l' Sa Ln cannat lie

on a diameter in the abo\'e pl'ocess. By Obsen'atioll 5.:2. Lrl l'ctains left orientation

in the above process. Hence [An-2~ .-l'lI has left orientation at the end of this process.
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If ln-1 + ln :S ln-2~ since ln-2 < r. by Case 1. r can be moved to r-R~F with

O( 1) simple motions.

If ln-1 + ln > In-"2' we further consider two subcases.

Case 2a: In-'2 + (ln-1 + ln) > 2r. Fixing An and keeping [A n-'2' An] straight. move

A n - 3 along C counterclockwise until .-1n - 2 hits C'. as (a) of Figure 5.7 shows. This

is possible since In- 2 + (ln-1 + ln) > 2r. By Observation .5.3. this can be done with

0(1) simple motions while r(O.n - 3) remains in r-R:.iF.

Since .-1 n -'2 mon~s along C counterclockwise. [A n -'2' An] rotates about A.n coun-

terclockwise. Since In - 1 + ln :S 2r. [.-1n-2~ An] lies on a diameter at sorne monlent

during the above process and passes from left orientation ta right orientation. .\"ext.

in accordance with Lemma 5...1. move [An-'2~ An] to r-RXF while .-ln rernains fixed

and .-1 n -'2 rernains on C. By Observation 5.3. this can be done with 0(1) sinlple

nlotions while rco.Tl - 2) rprnains in r-RXF.

Thus in this subcase. r can bp rnon~cl. \\'hile An r('rnains fixed. to r-RXF with

O( 1) simple motions.

Case 2b: ln-2 + (ln-1 + ln) :S 2r. Fixing An and keeping [An-2~ .-1n] straight. move

A n - 3 along C counterclockwise until 0n-2 straightens to 7ï. as (b) of Figure 5. ( sho\vs.

For the same reason as above. this is possible and can be done with 0(1) simple

nlotions while r(o. Tl - 3) remains in r-RXF . .-\lso [A n - 3 • An] has left orientation at

the end of this process.
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Figure .J.7: Two subcases of Case 2

Rplwat this procpss lllltii r is in r-R.\"F or the entin~ r becomes straight. In the

latter case. fixing .-ln and keeping ['-\'0, An] straight. rotate [.-lo. An] about .-10 coun-

terclockwise until Ao hits C. Then ['-\'0' An] has right orientation. By Lemma 5.-!.

[Ao~ AnI can be moved to r-R:\F while An remains fixed and Ao remains on C.

Thus in this case. r can be moved to r-R.:\F with O(l!) sinlple [notions. 0

.\"o\\" we presflnt a n'suit that gin~s risc to t he main [('suIt in t his ("haptpr.

Theorem 5.3 Let r -< r be an n-link chain. Then r ca1l be rnoved to r-R1VF with

O(n2 ) simple motion.<;.

91



y

.\.

Proof: First. mo\'e [ ro R:\'F in accordance with Theorem .J.1. This requires O(n)

simple motions.

If L l has left orientation. then fix AL, .-h ..... An and rotate L l about AI coun-

terclockwise until Ao hits C'. This puts L L in right orientation.

Suppose that LI, L"2' .... Lk - I aIl ha\'e right orientations and that Lk has left

orientation. Fix A k . Ak~l' ...• A'l and nlO\'p [(O. k) in accordancp "'ith Lemma ,J ..)

to put [(O. k) in r-RXF. This requires O(k) simple motions,

Repeat the abo\'e process until [ is in r-R~F. .-\.11 together. at [nost 1+2+· . ·+rz E

O(n2 ) simple motions are neecled. o

1
5.3 Main Result

Definition 5.4 Two configuT'ations of a chain are f'quivalent if one can be contin-

uously moved to the other.

The fol1owing is ob\'ious.

Observation 5.4 Definition 5.4 defines an ef/uivalence relatio7l on the .'if'.t of config-

urations of a chain r, Furthermore. if [ can be moved frorTt an initial configuration

ta a final configuration~ then r can be rnoved from the final configuration to the

initial configuration with sa·me number of simple motions.

~ow we present the Iuain result in this chapter.
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Theorem 5.4 Let r -< r he an n-link chain. Then r has only one Equivalence clas:;

of configurations. Furthernlore. r can be rnoved between uny of ils configuration.';

inside C with O(n 2
) simple motions.

Proof: By TheorerIl 5.3. Obseryatioll 5.-1 and Obspn'ation .5.:3. o

r

~ext we use the preceding theorern to obtain two results by examining possible

configurations of r -< r within C(o. r). Our results suggest that the bound r on r

to ensure only one equivalence class of configurations of r is best in sorne sense.

Of aIl the C'onfiguratiolls of il chain. the folded oue in which aIl interior joint

angles are either 7ï or 0 is of particular inter('st. In [H.J\\"85]. Hopcroft. Joseph and

\Vhitesides proved the following.

Fact 5.1 ([H.J\Y85]) Any rz-link chain r can befolded into lengtll < 2lrna.r wdh ()(n)

sirnplemotions if tllerc i.-; no conjining region. Furthennore. for any length le.';.'; than

:s 21max' there exist.-; a r havilllj 1ma.r tltat cannut !Je folded illlo Ihat ü~nyth.

Consequently~ we have the following.

Theorem 5.5 Let r -< r be an n-link chain in.c;ide C (o. r). Then r can always he

folded within C with Q(n:?) sirnple motions.

FlLrthermore. for anY r' > r. there exi.'its u. r -<: r' s'Uch thu.t r cannot be follied

within C.
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Proof: Since any folded configuration of length ~ 2,. tits in Cf. by Fact .3.1 and

r -< r. a folded configuration of r within C is possible. By Theorem 5.-1:. r can he

moved to this configuration with O(n:!) simple rnotions.

The second part of theorem fo11ows trivially from Faet 5.1.

:\"ote that the time complexity for folding r inside C is O(n'2).

o

1

r....

The results of [KS\V95} for folding chains of links onta a single link are for

chaim.; whosp links arr' of ['qllaI length. \""otP that. by Theorem ·J.2. this situation

is tri \"Ïal for circles as confining regions. as an~' chains of ('quai lengt h links at most

the diameter can always be folded onto a single link.

\Ve conclude by presenting a reachability result for r -< r.

Theorem 5.6 Let r he (ln n -link chain inside C( o. ,.). Then no rnatter where r

initiall:IJ lies within C. anJj arbdra'7J joint of r nl1l reach (lUY arhitl'ary point iruride

C if and only if r -< r.

Furthermore. any joint of r -< r can be brought to any point inside C with O(n'2)

simple Tnotion.,;.

Proof: First. we show the "ir~ part. ~ote that for any p inside C. r ~ drrlllx(P). B~'

Theorern .J.2. the result holds for the endjoints.

For an intermediate joint Ai (0 < i < n). vie\\' r as two subchains r(O~ i) and

r(i, n) connected at Ai. Sinee r ~ r. we have [(O. i) ~ rand [(i. n) -< r. Hence
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l

bath r(O, i) and ru. Tl) satisfy condition (*). By Theorem 5.2. p is reachable by

bath .-li of [(O. i) and .-ll of r(i. 11.).

Therefore. there is a configuration of r in which .-li lies at p. By Thearem 5...l.

no matter where r initially lies. r can be mO\'ed to this configuration with O(n:!)

simple motions,

Ta show the 'OUIlly if" part. notp that. if r ~ r do('s Ilot hold, tlu'Il t herp f'xists

sorne liuk. say, LI" with length II > r. Clearly.-ll cannat touch o. thp cpnter of C·. 0
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Chapter 6

Conclusion

6.1 Summary of the Results

\Ve no\\" briefly sumruarize the results in this thesis.

\ Ve have st udied the re!:unfiguration and reachability problerll for planar chains

within t,'"O types of confining rcgions: corl\'ex obtuse pob-gOIlS and circles. \\'c have

investigated ho\\" to design short link chains within a given en"ironrnent 50 that an

obviously necessary condition of reachability is sufficient as weIl. \Ve have demon-

strated that this approach enabled us to go bcyond previolls stlldies of anonlalous

special cases and provided insight inta general reconfiguration probleru.

In Chapter 1. wc defined. given a sinlple polygon P as the cunfining regioll. three

interdependent bOllnds on the rnaximum link length of r inside P. narnely~ bS
• bF

.
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Chapter 2 and 3 considered convex obtuse polygons as the confining regions. In

Chapter 2. we characterized be and proved that "'mm ::; he = hF . where -"mm is the

length of the shortest side of P. \\·e also proved that be achie\'es its ma\:imum li'.

the \Vidth of P. if P is a regular 2k-gon,

In Chapter 3. we presented a polynomial tirne algorithnl bringing the endjoints

of r to any of their reachahle points. This ~a\"e an algorithmic proof for he ::; bS .

In Chapter -1. wC' C'onsidered general ('on\'px polygons as the confining; regions and

flxamined the properties of reachable regions. \\'e pro\'ed that bS
::; iL', \\'(' described

the shapes of reachable regions and showed that they are linearly ordered by set

inclusion. \re den~loped the notion of l-reachahle COIl"PX polygons and characterized

snch polygom; for 1 ::; 1/;.

In Chapter 5. \\"P considered circles as the confining regiolls. \\'p pro\"(~d that if

each link of r has length less than the radius of the confining circle. then r has only

one equi\'alence class of configurations.

6.2 Problems for Future Research

Below wc gi\'e a list of problenls for fut ure research.

(1) Determine the bound on r. which is confined within a convex polygon P. sa
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that r has only one equivalence class of configurations. \\-e e\"en don"t know what

is the bound of r to a\"oid completely stuck configurations of r inside P.

(2) Generalize the results we have obtained in this thesis to :3 dimensions. This is

of particular interest in practice.

(3) Investigate the reachabilit.y problern for planar anns iIlSidt' ('on\'px oht llse poly-

gons,

(4) Consider the reconfiguration problem for planar chains if links are not allowed to

cross over one another. There has been little known for the reconfiguration probIenl

llnder this more restrictive type of motions.
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