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Abstract

A chain is a sequence of rigid rods or links consecutively connected at their endjoints.
about which they may rotate freely. A planar chain is a chain whose links lie in the
plane. with links allowed to cross over one another. For a chain [" constrained to lie
in a confining region P. the reachability problem for I is to determine. given a point
p € P and an initial configuration of ' inside P. whether [ can be moved within P
so that the endjoint of T reaches p. and if so. how this can be done.

This thesis solves the reachability problem of a planar chain I’ confined within a
conver obtuse polygon P. a convex polvgon whose interior angles each measure 7/2
or more. [n particular. we propose a uniform approach in which the geometry of T’
and its confining region P are studied together. We use this to obtain a family of
pairs (. P). which is largest possible in some sense. so that the reachability problem
for each pair in the family can be solved quickly. We also examine the properties of
the reachable region of I' in such a pair.

This thesis also presents reconfiguration results for an rn-link planar chain T

il
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inside a circle. We show that if each link of I is less than the radius of its confining
circle. then [' can be moved between any of its configurations inside the circle in
O(n?*) time.

Our results demonstrate how to design short link chains within a given confining

environment in order to ensure fast reconfiguration.
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Résumé

Une chaine est une suite de tiges rigides ou d’aretes consécutivement attachées
a leurs extrémités. autour desquelles elles sont libres de se mouvoir. Une chaine
planaire en est une dont les arétes sont dans le plan. les croisements d aretes étant
permis. Pour une chaine [’ contenue dans une région P. le probléeme d’accessibilité
pour [ est de déterminer. étant donné un point p € P et une configuration initiale
de [' a I'intérieur de P. si [ peut etre bougée a l'intérieur de P de telle sorte que
extrémité de [ coincide avece P. et si oui. de quelle facon on peut s’y prendre.
Cette these résouds le probléme d'accessibilité pour une chaine planaire [ cir-
conscrite dans un polygone convere obtus P. un polvgone convexe dont les angles
internes mesurent /2 ou plus. En particulier. nous proposons une approche uni-
forme dans laquelle la géométrie de [ et de la région P sont étudiées ensemble.
Nous utilisons ceci pour obtenir une famille de paires (I'. 7). maximale dans certain
cas. pour lesquelles le probleme d’accessibilité peut se résoudre rapidement. Nous

examinons aussi les propriétés de la région accessible de I’ pour de telles paires.

v
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Cette these présente aussi des résultats de reconfiguration pour une chaine planaire
[ a n aretes a U'intérieur d'un cercle. Nous montrons que si chaque arete de I' est
plus petite que le ravon du cercle circonscrit. alors [ peut étre déplacée entre deux
configurations quelconques dans le cercle en temps O(n?).

Nos résultats démontrent comment construire des chaines avec de petites aretes

a l'intérieur d'un environnement donné pour assurer des reconfigurations rapides.

vi
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Chapter 1

Introduction

This thesis concerns algorithmic motion planning from a geometric point of view. In
this chapter. we first review previous work pertinent to the thesis and then describe

our objectives.

1.1 Previous Work

With the advent of industrial automation and robotics. designing efficient algorithms
for moving objects in 2- or 3- dimensional space subject to certain constraints has
become increasingly important. The mover’s problem is the following: given the
initial and desired final configurations of an object in 2- or 3-dimensional space.
and given a detailed description of obstacles in the space. determine if there is

an obstacle-avoiding continuous motion of the object from the initial to the final



4

’ Aﬂlg‘

configuration: find such a motion if it exists.

This problem has been studied by many researchers. See [AY90al. [AY90b].
(Kor85]. [Lat91]. [SY87]. [SSH87]. [Whi83] for surveys. Schwartz and Sharir [SS83]
and Canny [Can88| provided verv general exact methods to solve the mover’s prob-
lem. However. the methods do not provide polynomial time algorithms. much less
linear time algorithms.

[n general. the mover’s problems in which the object has an unbounded number
n of degrees of freedom. i.e.. problems in which n is part of the input for a problem
instance. are computationally intractable in the sense that such problems are often
NP-hard or PSPACE hard. Even when the objects are very simple. n degree of
freedom problems may remain NP- or PSPACE hard. See [SY87]. [HJW85]. [WZ89].
[Rei79] and [JP85] for examples. If the number n of degrees of freedom is bounded.
then in many cases the general methods of [SS83] and [Can88] provide polynomial
time algorithms. although these mayv be far from practical. These results suggest
that the feature that often makes motion planning intractable is the unboundedness
of the number of degrees of freedom.

Therefore. to find fast reconfiguration algorithms it is essential to understand

what relationships between moving objects and their environments enable some

problems to be solved quickly in spite of having arbitrarily many degrees of freedom.

Several examples of fast reconfiguration have been provided for variants of the

[§V]
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mover's problem. in which a linkage. and particularly. a chain or an arm. is con-
sidered as the object. See [Whi92] for a survev. A linkage is a collection of rigid
rods or links connected together at their endjoints. A planar linkage has its links
confined to the plane: links may cross over one another and the locations of certain
Jjoints may be required to remain fixed to the plane. A chain is a sequence of links
consecutively connected at their endjoints. A closed chain is a chain such that the
two endjoints are connected together. An arm is a chain in which a fixed location
is associated with one endjoint of the chain.

For a linkage I constrained to lie in a confining region P. the reachability problem
for I is to determine. given a point p € P and an initial configuration of ['. whether
[ can be moved within £ so that the endjoint of [ reaches p: and if so. how rthis
can bhe done.

Hopcroft. Joseph and Whitesides first studied the reconfiguration and reacha-
bility problems for n-link linkages. In [HJW84]. thev proved that the reachability
problem for a planar linkage with no confining region is PSPACE hard. Joseph and
Plantinga [JP83] proved that the reachability problem for a chain moving within
a certain non-convex constraining environment is PSPACE hard. In [HJWS83).
Hopcroft. Joseph and Whitesides showed that the reachability problem for a pla-
nar arm constrained by arbitrary polvgonal walls is NP-hard. However. when the

constraint is an enclosing circle. theyv gave an algorithm to solve the reachability
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problem in O(n?) time. They also gave an algorithm to move the arm to any reach-
able configuration in O(n*) time. In [KK86|. Kantabutra and Kosaraju improved
the running time by reducing O(n?) to O(n).

In [LWO1]. [LW92] and [LW95]. Lenhart and Whitesides investigated the recon-
figuration of closed chains and presented a linear time algorithm for reconfigur-
ing closed chains in d-dimensional space. Also. Kantabutra ([Kan92] and [Kan95])
presented linear time algorithms for reconfiguring certain arms and chains inside
squares.

Confining environments containing acute angles present special difficulties due
to the fact that links may become stuck when they point into a corner. This phe-
nomenon was studied by van Kreveld. Snoeyvink and Whitesides [KSW95]. Here
the problem of folding an /-ruler—an n-link chain whose links all have equal length
[—onto one link inside an equilateral triangle of unit side was considered. In spite of
the simplified situation. an unusual phenomenon occurs. For very small link lengths.
the chain can always be folded. Of course for link lengths close to L. the chain can-
not always be folded. However. this property alternates not once but twice as link
length increases from 0 to 1.

So far. algorithms for fast reconfiguration have been given for special situations
that only involve very simple confining regions: circles. squares. equilateral triangles.

or no confining region at all. Recently Whitesides and Pei [WP96] greatly extended
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authors problem linkage | confining | bound on time complerity

region link length decide | move
Hopcroft. reconfiguration | arm circle diameter ' O(n®) | O(n?)
Joseph. ;
Whitesides ; | !
Kantabutra. | reconfiguration | arm circle | diameter | | Ofn)
Kosaraju J
Lenhart. reconfiguration | closed | none none O(n) | O(n)
Whitesides chain
Kantabutra | reconfiguration | arm square half of the O(n)

side length

Kreveld. folding [-ruler | equilateral | [ < ¢ = (0.483. O(1) | O(n)
Snoevink. triangle of | 1/2 < 1 < /3/2
Whitesides unit side
Kantabutra | reachability chain | square side length O(n)
Whitesides. | reachability chain | convex length of the O(n)
Pei obtuse shortest side

polvgon

Table 1.1: Fast algorithms for reconfiguring n-link linkages

polygon. a convex polygon whose interior angles all measure /2 or more.

the previous results by providing a polynomial algorithm to solve the reachability

problem of certain n-linked planar chains confined within an m-sided conver obtuse

We summarize several fast reconfiguration results for various linkages in Table

L.I.

This thesis makes the point that by designing short link chains within a given

confining environment. one can obtain fast reconfiguration algorithms. We propose
a uniform approach in which the geometry of a chain and its confining region are

studied in a coordinated way. Our results significantly contribute to understanding
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what relationships between objects and their confining environments ensure that

tvpically hard reconfiguration problems become casy.

1.2 Objectives

1.2.1 Notation

Before proceeding further. we introduce terminology and notation. illustrated in
Figure 1.1. For an n-link chain ' with consecutive joints Ag...... 4,.. the initial and
final joints 4 and 4, are called endjoints and the others are called intermediate
joints. The link between A;,_, and A, (1 < i < n) is denoted by L,. and the
length of L, is denoted by /,. The angle at intermediate joint A4,. denoted by «.
is that determined by rotating L, about 4, counterclockwise to bring L, to L,.,.
An intermediate joint 4, is called a straight joint if a; = = and is called a bending
joint otherwise. In particular. A; is called a closed joint if a; = 0. T is said to be
folded if its each intermediate joint is either straight or closed. The subchain of [
with joints A;. 4, ...... 4,(i < j) is denoted by I'(i.j). Subchain I'(:. ) is said to
be straight. denoted by [4,...... 4,]. if its links form a straight line segment with
all interior joints straight. Also. we use [A. B] to denote a single link chain having
joints 4 and B.

We denote max <icn{li} by lner and say that I' is bounded by b. denoted by



b

Figure 1.1: Notation for chains.

[ <bif Ler <b.

We denote the distance between two points r.y by d(r.y): the line thev de-
termine by /(.. y): the line segment they determine by ry: and the length of this
segment by |ryl = d(r.y). We denote the distance between two parallel lines {; and
[y by d(l;.1,).

We use P to denote a simple polvgon and use 1™ to denote the set of its vertices.
We regard polygons as 2-dimensional closed sets and denote the boundary of P by
JP. For .y € dP. we denote the counterclockwise polvgonal chain from » to y by
Ch(r.y). For p € P. we denote a side of P containing p by s(p). We denote the
length of the shortest side of P by s,,,,. We define the width of P as the minimum
possible distance between two parallel lines of support of P and denote it by w.

We denote a circle centered at o with radius r by C'(o. r). or simply by C if o.r

are clear from the context. For a circle €' and two points r.y € C. we use ry to

~1



FYH

by

denote the counterclockwise arc from r to y. and we use d(ry) to denote the measure
of ry in degrees.

For a closed region R in 2 dimensions. t,,..(p) denotes a point of R farthest
from p. and d,.(p) denotes d(p. vy (p)i. Obviously. if R is a polvgon. .. (p) is
a vertex of R farthest from p.

For an n-link chain [ confined by a closed region R. the set of points of R that
are reachable by A, from each possible initial configuration of I'. i.e.. no matter
where [ initially lies. is called the reachable region of 4, and is denoted bv Rr(4,).
The complement of Rr(-A,) with respect to R. denoted by Rp(A,). is called the
unreachable region of A,. A point p € R is said to be an l-reachable point if
p € Rr(A,) for everv I < [ no matter where [ initially lies. The set of [-reachable
points in R. denoted by Ry. is called the [-reachable region of R. and if Ry = R. R is

said to be [-reachable.

1.2.2 Motivation

Let I be an n-link chain confined by a 2-dimensional closed region R. not necessarily

convex. and let p € R. We are particularly interested in the following condition:

For each i unth 1 < i < n.

l: - Z lj S (lmuz(p)' (k)

J=1+1
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This condition enjoys some nice properties related to the reachability of A.,. as

described in the following.
Property 1 (*) is independent of the initial configuration of T.

Property 2 (x) can be tested in O{n) time whenever d,,.-(p) is given. Furthermore.

if R is a polygon. then () can be tested in O(n) time.
Property 3 (%) is a necessary condition for p to be reachable by A,.

To see the necessity of (=). note that if this condition is not satistied for some /.
then 4; cannot lie within R when A, lies at p.
The property below shows that the study of reachable regions would be greatly

simplified if (*) were also sufficient for A4, to reach p.

Property 4 [f for every p € R. (%) s a suffictent condition for A, to reach p. then

there exists a single link chain " = [A]. A}] such that Rr(4,) = Rr(4Y).

Proof: Take I' = maxi<i<n{{i — X7_,;,;} as the length of [Aj. 4}]. From Prop-

erty 3. we have

Sl < dpar(p) =

J=t+1

p € Rr(4,) <= Vil <i<n).l

' = Irg{t(x {l; - Z l]} < dmaz(p) = pE Rr'(’_lll)' s
Stan =i+l
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These nice properties motivate our investigation of the closed regions and con-
fined chains for which (*) serves as a sufficient as well as a necessary condition for
A, to reach p.

In general. however. (x) is far from being sufficient to test the reachability of A,.
which usually depends on the initial configuration of ['. Indeed. (*) is so mild that
it cannot even guarantee the existence of a configuration of [ inside R in which A,
touches p. as Figure 1.2 shows.

This figure shows an equilateral triangle A with unit side. which confines a
folded 2-link chain [ having joints A.B.C. Links of [ have lengths 1 and 1/2.
respectively. For endjoint " and any vertex ¢ of A. clearly condition (*) holds. But

it is impossible to place C at ¢.

// \\

/ C \g

Figure 1.2: It is impossible to place C" at v.

[ntuitively, it is conceivable that if the link lengths of [ are all sufficiently small
in comparison to some measure of its confining region. [’ could be reconfigured

10
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within /£ so that -, reaches p. Hence in such situations. the reachabilitv of "
would be independent of its initial configuration and (=) would give a simple test for
reachability.

Therefore. it is of interest to investigate. given a confining environment. how
short the links of [ are required to be in order to ensure the validity of () to test
the reachability of A4,. when neither the geometry of [ nor its initial configuration
are specified.

Kantabutra [Kan95] proved that if [" is confined to a square and if I is bounded by
the side length of the square. then (x) is sufficient for 4, to reach p. This inspired
our further investigation of more general cases in which () serve as a sufficient
condition as well.

As mentioned previously. confining regions involving acute angles. at which a
link can jam. present special difficulties for reconfiguring chains. We thus consider
conver obtuse polygons. a notion of our invention. as the confining regions. A convex
obtuse polygon is a convex polvgon whose interior angles are ail at least /2. In
[WP96]|. we generalized Kantabutra’s result from squares to arbitrary convex obtuse
polvgons.

[n this thesis. we investigate how to compute a bound on I that depends on its
given confining region so that the reachability of [ can be easily determined. In

particular. we consider a convex obtuse polygon as the confining region and ask how

11
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small a bound on I is needed so that () is a sufficient and necessary condition for
A, to reach p.

We adopt the following philosophy common. for example. in engineering: by
understanding where difficulties lie. we can plan how to avoid them. Hence. our
study of reachability is novel in that we consider. given a confining environment.
how to design chains in order to satisfy certain desirable properties: in particular we
show how to design chains so that reachability problems become easier. This in turn
suggests a uniform approach to reconfiguration that enables s to go bevond the
discovery of individual special cases for which hard reachability problems become

easy.

1.2.3 Results and Organization

Given a simple polvgon P. we propose the following conditions. which will turn out

to be interdependent. to bound the link lengths of I inside P.

Condition (S): () is sufficient for 4, to reach p.
Based on Condition (S). we define an ~S™ bound 4” as follows:

b> =sup{b| If T < b.T satisfies (S) }.

Condition (F): Let [A4. B] be a single link chain with both 4 and B on 9P. Then
4 can be moved completely around the entire P in either direction and with no

backtracking while B remains on 9P.
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Based on Condition (F). we define an "F” bound b* as follows:

bt = sup{b| If [4. B} < b. [A. B] satisfies (F) }.

Condition (C): For any o € dP. C(o.r) intersects P at exactly two points.
Based on Condition (C). we define a “C” bound 6% as follows:

b¢ = sup{r| If r' < r.C(o.r") satisfies (C) }

While (S) is intended to find a bound of [ so that () tests reachablity. we use
(F) and (C) as the premise for (S). In particular. we will show rhat (C) implies
(F) and that (F) implies (S). Also we will show that (F) characterizes the convex
obtuse property of a simple polygon and that (C) characterizes the obtuse property

of a convex polvgon.

One of the main results in this thesis is the following. when the confining region

P is a convex obtuse polyvgon.

Smin < bC =0 <b° <.

The rest of this thesis is organized as follows.

In Chapter 2 and Chapter 3. we consider convex obtuse polygons as the confining
regions. Chapter 2 characterizes b and uses this to show that s,,, < b = bF. It
proves that ¢ = w for any regular 2k-gon. It also shows that (F) characterizes the

convex obtuse property of a simple polvgon and that (C) characterizes the obtuse

13
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property of a convex polvgon.

Chapter 3 shows that 4 < b° by giving a polynomial time algorithm to bring
A, to any of its reachable points.

Chapter 4 examines the properties of the reachable region of [. Here we consider
general convex polyvgons as the confining regions and prove that 5% < w. We use
this to describe the shapes of reachable regions. We also characterize [-reachable
convex polyvgons for [ < b5.

Chapter 5 handles reconfiguration of chains within circles. In particular. we show
that if ' is bounded by the radius r of the circle. then ' can be moved between any
of its configurations inside the circle in O(n?) time. Consequently. we are able ro
prove that any [ < r inside the circle can be folded and that any joint of [ < r
can reach any point inside the circle. We treat circles as the extreme case of nice
confining environments as circles have no corners. We believe that our results shed
light on how the combination of short link chains and nice confining environments
ensures fast reconfiguration.

Chapter 6 concludes with a summary of the results in this thesis and presents

problems for future research.

14
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Chapter 2

Chain Geometry

This chapter studies the geometry of chains and their confining convex obtuse poly-
gons in a uniform. coordinated way so that condition (x) tests the reachability.
Section 2.1 characterizes . Section 2.2 proves that s,,, < b and that b =
for regular 2k-gons. Section 2.3 shows that b = bf and that both (F) and (C)
characterize convex obtuse polvgons.

Assumptions: Throughout this and the next chapter. we assume. unless otherwise

stated. that [ denotes an n-link chain and P denotes an m-sided convex obtuse

polvgon. [ is confined by P and joints of [ may lie on dP.
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2.1 Characterizing b¢
A key observation about 4 is the following.
Lemma 2.1 Let r.y € IP. If y € V" and ry L s(y). then b < jry|.

Proof: Let ur be the side containing y. Without loss of generality. assume that

L., v is a left turn. as Figure 2.1 shows.

i y V

Figure 2.1: C(r.|ry]) intersects P at three points.

Then C'(x.|ry]) intersects P at y. It also intersects Ch(v..r). Ch(c. u) at some
points z.z'. respectively. Since v.y.u are distinct. so are z.y.z'. Thus C(r.|ry|)
intersects dP at more than two points. Hence b < Lyl 0O

We will characterize b¢ by proving that b is indeed the greatest lower bound of

all such ry's. To this end. we need some preliminaries.

16
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Given p € P and s(p). we define [ as the line through p perpendicular to s(p).

In these terms. we have

Lemma 2.2 Let p € OP and s(p) be given. If p € V", [ intersects AP at ezactly
two points p and p®. Ifp<s 1 . [; intersects the sides of P that are non-adjacent to

s(p) at exactly one point. Finally.

ind(c.®y = inf d(p.p°).
e (vt pgl'.pei)P((p v

Proof: Since P is convex. if p € 1. [; N 9P contains exactly two points. Since P is
obtuse. if p € 1. [pL intersects the sides of P that are non-adjacent to s(p) at exactly

one point.
Let (u.u") be the pair achieving the minimum of {d(c. ")} € 17}, Consider

p € V7 and the side v, vy containing p. Then clearly.
min{d(v,. v?). d(v.. 1;‘_3)} < d(p.p°).
Hence d(u. u®) < d(p. p°). Therefore.

{(u.u’) < _inf d(p.p°).
dlu.u”) < p&"l'gei)P((p D)

Note that

. 0y _ 0
p_»,}},géapd(p'p ) =d(u. w).

The result hence follows. C

17
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The width of an n point set was first introduced and studied by Houle and

Toussaint. In {HT88]. they proved the following.

Fact 2.1 Let P be a simple polygon. Then the width of P is the minimum distance
between two parallel lines of support of P. of which one passes through a verter and

the other passes through a side.
By applying this. we have
Corollary 2.1 min,«- d{v. %) < w.

Proof: By Fact 2.1. there exists two parallel lines of support of P. one passes
through a vertex and the other passes through a side. achieving the width w. With-
out loss of generality. assume that [; passes through vertex u and [, passes through
side vius. and that u.vy. vy is a left turn. as Figure 2.2 shows.

Let [ be the perpendicular bisector of v{vy and let y = [N vyea. Then ! intersects
C'h(ry. ) at some point r. Since [;.[, are support lines of P achieving the width.
leyl < w. By Lemma 2.2, mingey- d(v.e?) < joy| < w. a

We are now ready to characterize €.
Theorem 2.1 b = min.cy- d(e. t'°).

Proof: Let h¢ = min.ci-d(v.v). For any p € P and p € 1. by Lemma 2.1.
b < d(p, p°). Hence b < infpgypegp d(p, p°). By Lemma 2.2, b < €.

18
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Figure 2.2: mingey d(v.e”) < w.

We now verify that b€ < bC. je.. Vr < bC. Yo € 9P. Clo.r) N P has exactly
two points.

Assume otherwise. We first claim that C(o.r)N 3P has at least two points. If
not. P would fall into a half circle determined by C'(0. ) and the line through s(p).
Then r > w. Hence b > w. This contradicts Corollary 2.1.

Now suppose C'(0.r) N P has at least three points. sayv. r.y.:. Without loss
of generality. assume that r.0.z is a right turn and that r.y.: are consecutive
intersection points on C'(o.r). i.e.. rz intersects P at no points other than r.y. z.
Then each of Ch(r.y).Ch(y. z) is either completely outside or inside C(o.r). We

prove the result by these two cases.

19
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(a) (b)

Figure 2.3: Two cases: Ch(r.y) and Ch(y.z) are both completely outside C(o. r)
or one of them is completely inside C'(o.r).

Case 1: Ch(x.y) and Ch(y. ) are borh completely outside C'{o.r). as shown in {(a)
of Figure 2.3.

Then y € V" and hence s(y) is tangent to C(o.r). So r = |oy|. By Lemma 2.2.
loy| > bC. Hence r > HC. This contradicts the assumption.
Case 2: Ch(x.y) or Ch(y. z) is completely inside C'(o.r).

Without loss of generality. assume that Ch(r. y) is completely inside C(o.r). as
shown in (b) of Figure 2.3. Then there exists a point ¢ € Ch(x. y} such that [(o.q) is
perpendicular to s(¢). By Lemma 2.2, |og| > bC. Note that r > |og|. hence r > &C.

Contradiction. O
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Corollary 2.2 5% < w.

Proof: By Theorem 2.1 and Corollary 2.1. a

2.2 Bounds on ¢

Before proceeding to show that b = b . we present two essential results by applving
Theorem 2.1. The first shows that. for any convex obtuse polvgon. we can use s,
as the bound of T' to satisfv (C) and the the second shows that. for any regular
2k-gon. this bound can be pushed to w. These two results demonstrate that s,,,,
and w are tight bounds on b,

\We first present a crucial property of convex obtuse polyvgons.

Lemma 2.3 [fr and y lie on non-adjacent sides of P. then |ry| > snum. Further-

more. if each interior angle of P measures > 7 /2. then |{ry| > spun.

Proof: First. we show that [ry| > s, Let 5050 be the sides of P coutaining r. y.
respectively. Let {;.[, be the lines determined by 5. s,. respectively. Without loss
of generality. assume that r./; N {,.y is a right turn. as Figure 2.4 shows.

Let Q be Ch(y.r). Let vy, be the vertex of @ farthest from ry and let { be the
line through ., parallel to ry. Let w. v be the vertices adjacent to t,,,,. Since s,
and s, are non-adjacent sides. at least one of «. ¢ is on 2. Without loss of generality.
assume that u € @, as shown in Figure 2.4. We consider two cases.

21
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Figure 2.4: A crucial property of convex obtuse polvgons

Case 1: d(u.l) = 0. Then u € [. From tpar € { and xy || L. we get ry || utma:. By

the definition of (). we have

I‘[?jl 2 IUL'maIl 2 S"llll’

Case 2: d(u.l) > 0. Let I’ be the line through « parallel to .y and let '0Q = {u. u'}.
Then |zy| > |uu'|.

Note that . t'ypec. ¢’ form a triangle. Since P is convex obtuse. Lutmg tt' > 7/2.
Thus this angle is the largest interior angle of Autp, -4’ and hence wu’ is the longest

side of Aut e tt’. So we have juu'l > |ut |- Therefore.

'U(t,l > 'uvma.rl Z Smin-

Hence [zy| > $min-

Next. we show that |ry| > snin if each interior angle of P measures > w/2.

[SV]
(V]
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Figure 2.5: |xy| > s,., if each interior angle of P measures> 7/2.

Assume otherwise. Then |ry| = s, for some z. y on non-adjacent sides. From

the above proof. this may hold only in Case 1. in which u € [ and |ry| > lutmez| >

Smin- Hence |zy| = [utmaz|. So {) |} L.
Since P is obtuse. rutmer and Zyvmpezu are all > 7/2. Since (| {| 1y, crut;,e,: +
LYUmartt = 7. Thus _rutimer = SYytmert = 7/2. Refer to Figure 2.5. This contra-
(]

dicts the assumption.

Theorem 2.2 s, < b®. Furthermore, if each interior angle of P measures > /2

Smin < bC.
Proof: By Theorem 2.1. b = min.zy d(r.0?). Let (w.u") be the pair achieving
- Lemma 2.2. u and ¢’ lie on non-adjacent

the minimum of {d(v.:%)|e € 17}. By
bC. and if each interior angle of P measures

sides. Bv Lemma 2.3. Spin < d(u. u°)
> 7/2. Smin < d(u. u®) = . The result hence follows. O

The above theorem shows that s, can always be used as the bound of T to

23
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satisfy (C) and in case each interior angle of P measures > /2. this bound can be
improved.

It is of interest to find convex obtuse polygons in which b = . As we will show
that 6¢ < »¥ < w. 5 would achieve its maximum and all gaps among €. b% . 1w
would be closed in such polvgons. The theorem below provides examples of such

convex obtuse polyvgons.
Theorem 2.3 Let P be a reqular 2k-gon. Then b€ = 1.

Proof: Since P is regular. d(v. ¢?) is the same for all v € 1", Since P has 2k sides.
each side is parallel to its opposite side. Hence d(v. ') = w. Byv Theorem 2.1.
¢ = w. O

We remark that the above theorem suggests similar results for reconfiguring
chains inside circles. which can be regarded as the limits of regular 2k-gons. We will

discuss the reconfiguration of chains within circles in more detail in Chapter 5.

2.3 ¢ =pf

This section presents the main result in this chapter: 5 = 5. We first prove the

following lemma.

Lemma 2.4 Let [ = [4A. B]. Suppose that A. B lie ut p.q € OP. respectively. and
that v.v' are vertices adjacent to q (¢ may be a verter or not). Then if either ipqr
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or ipqt’ s > 7/2. A can be moved away from p along P in either direction while

B remains on dP.

Proof: Let u be the vertex that we want 4 to move toward. Without loss of
generality. assume that both u.p.q and p.q.v are both left turns. See Figure 2.6.
Since either Zpqu or /pquv’ is > 7/2. neither of them is 7/2. Let a = Zupq. let
3 = Ipquv and let 3" = ‘pqi’. We consider two cases.

Case 1: a > x/2. We further consider two subcases.

) B

i P u

(a) (b)

Figure 2.6: Case 1: a > 7/2.

Case la: 3 < 7/2. Then while keeping B on vg. 4 can be moved away from p along
JP in such a way that a increases and . decreases. See (a) of Figure 2.6.

Case lb: 3 > w/2. Thus J < #/2. Then while keeping B on g¢'. A can be
moved away from p along OP in such a way that both a and .7 increase. See (b) of

Figure 2.6.

(8}
(1}
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Case 2: a < 7/2. We further consider two subcases.

u u 2

Figure 2.7: Case 2: a < 7/2.

Case 2a: 3 < 7/2. Thus . > 7/2. Then while keeping B on ¢u’. 4 can be
moved away from p along 9P in such a wayv that both a and .J increase. See (a) of
Figure 2.7.

Case 2b: .7 > 7/2. Then while keeping B on vq. 4 can be moved away from p along

AP in such a way that a increases and 3 decreases. See (b) of Figure 2.7.

L]

This completes the proof.

Theorem 2.4 ¢ = bF.

Proof: First. we show that 6¢ < bF. i.e.. any single link chain ' = [A. B| having

length [ < b© satisfies (F).
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Suppose that . B initially lie at p.q € dP. respectively. Let v. ¢’ be the vertices
adjacent to q. We consider two cases.

Case 1: ¢ € V". In this case. we show that until B reaches some vertex. A4 can be
moved along dP in either direction while keeping B on 0P.

Since [ < b¢. by Lemma 2.1. pg £ vv’. Hence either /pqu or ipqv'is > 7/2. By
Lemma 2.4. A can be moved away from p in either direction along 9P while keeping
B on dP. Also by Lemma 2.1. I' remains not perpendicular to vv’ until B reaches
v or v/. So by Lemma 2.4. 4 can be moved along dP in any direction while keeping
B on JP until B reaches some vertex.

Case 2: ¢ € V'. In this case. we show that A can be moved away from p along dP
in either direction while keeping B on 9P.

To see this. we claim that either ipgr or ipgt’ is > 7/2. Assume otherwise.
Then :pgr and Ipge’ are all < 7/2. If one of them. sav. _pgr = 7/2. then by
Theorem 2.1 and Lemma 2.2. b < |pg] = {. Contradiction. Hence _pqu and £pqr’
are both < 7/2.

Also note that ¢ € C'(p. |pg|) N IP: thus P has to lie completely inside C'{p. |pq|)
for otherwise C(p. |pq|) NOP has at least three points. Therefore. P falls into a half
circle determined by C'{p. |pg]) and the line through s(p). as Figure 2.8 shows.

Let I be the tangent line of the half circle parallel to s(p). Then I' and s(p) are

parallel lines of support of P. Since d(!'.s(p)} = |pq|. |pqg] > w. Thus b¢ > |pq| > w.

o
=1
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Figure 2.8: P lies completely inside a half circle.

This contradicts Corollary 2.2. Hence the claim.

From the claim and Lemma 2.1. 4 can be moved away from p along 9P in either
direction while keeping B on dP.

Note that in Case 2. A leaving p implies B leaving q. Hence by the above two
cases. - can be moved completely around JP in either direction while keeping B

on dP. So bS < bF.

Next. we show that b7 < <. If not. then 0¢ < b for some P and we now

consider such a P. Then for any [ with

B¢ < | < bf
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and any single link chain [ = [4. B} having length /. [ satisfies (F). e show that
this is impossible.
To see this. note that by Theorem 2.1. there exists u € 17 such that ¢ = d(u. u°).
Suppose that v. ¢’ are vertices adjacent to u and that w. «’ are vertices adjacent to
0 0

u?. Without loss of generality. assume that «%u L we’ and that «. 0’ '’ is a right

turn. as Figure 2.9 shows.

u X

Figure 2.9: {uu®| > |rr°

We claim that Zea’w’ > 7/2. Otherwise Zua”

w' < =720 as shown in Figure 2.9.
Then for £ € ue’ sufficiently close to u. ¥ € u®uw’. Hence juu"| > [rzY]. Therefore
b¢ > |rz°|. This contradicts Theorem 2.1 or Lemma 2.2. Hence the claim.

Note that Zvuu® < /2. Thus for ' € u®w’ sufficiently close to u?. Zvuu’ < 7/2.

as Figure 2.10 shows. From the claim. Zuu'u® < 7/2. and clearly Zu'ut’ < /2.
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Figure 2.10: A cannot be moved towards u°.

Consider a single link chain [ whose joints A. B lie at «’. u. respectively. Then.
b = Juud| < |uu'] < b7

But A cannot be moved towards u? any more along JP. a

Our next result shows that the family of convex obtuse polvgons is the largest
family of simple polvgons for which condition (F) holds non-trivially. and is the

largest family of convex polygons for which condition (C) holds non-trivially.

Theorem 2.5 (1) Let P be a simple polygon. Then b¥ > 0 if and only if P is
conver obtuse.

(2) Let P be u conver polygon. Then b > 0 if and only if P is conver obtuse.

Proof: (1) If P is convex obtuse. by Theorem 2.4. b = <. By Theorem 2.2.
bC > spin > 0. Hence b¥ > 0.
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(a) (b)

Figure 2.11: 4% = 0 if P is neither convex nor obtuse.

[f P is not convex. then there exists an interior angle. say. Zucu > 7. See (a)
of Figure 2.11. For [ > 0 small enough. let [ be the single link chain having length
of [ and consisting of joints 4. B which lie at .+’ € vw. Then A cannot be moved
towards u while keeping B on dP. Hence b = 0.

I[f P is not obtuse. then there exists an interior angle. sav. _uvw < 7/2. See (b)
of Figure 2.11. For { > 0 sufficiently small. consider a single link chain [ = [4. B]
having length [ as follows: A. B lie at p € vu.q € cw. respectively and pg L v

Then A cannot be moved towards u while keeping B on dP. Hence b7 = 0.

(2) If P is convex obtuse. by Theorem 2.2, 5% > 5, > 0.

If P is not obtuse. then there exists an interior angle. say. _wecw < =/2. See
Figure 2.12. For [ > 0 sufficiently small. let 0 € vu.q € vw with og L ve and
log| = {. Then C{o.!) intersects vu at two points and intersects vw at one point.

Thus ¢ = 0. a

31



P

P

W

Figure 2.12: b = 0 if P is not obtuse.
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Chapter 3

Reachability Algorithm

This chapter presents the reachability algorithm bringing 4, to any of its reachable
points. This gives an algorithmic proof for ¢ < b°.

Section 3.1 defines normal forms and simple motions. Section 3.2 shows that
anv [ < 6% can be bronght to RNF {to be defined). Section 3.3 shows that any
[ < b which is already in RNF can be brought to TNF-i; (to be defined) for some
ig. Section 3.4 presents the reachabilitv algorithm for I' < 6% which is already in
TNF-ig.

We recall that the Assumptions from Chapter 2 hold throughout this chapter.
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3.1 Preliminaries

3.1.1 Normal Forms

We define three special configurations for a n-link chain [ as follows. refer to Fig-
ure 3.1.
1. Rim Normal Form (denoted RNF): T is in RNF if all its joints lie on OP.
2. k-Bending Rim Normal Form (denoted A-BRNF): [ is in £-BRNF if there exists
k joints A, ...... 4;, such that

(1) Ao 4,, lie on dP:

(2) forany j withO < j<nand j#i..... 0k, =7.
3. Tuil Normal Form with inder i (denoted TNFEF-/): T'is in TNF-/ if there exists ¢
with ¢ < n such that

(1) Ag...... 4; lie on P and A, lies at a vertex of P:

(2) T'(i.n) is straight.

From the above definitions. we have:

Observation 3.1 [ is in k-BRNF for some k if and only if all intermediate joints

of T are either straight or on OP.

Observation 3.2 I is in n-BRNF if and only +f [ is in RNF.
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(a) RNF (b) 4-BRNF

Figure 3.1: Examples of normal forms.

Observation 3.3 [ is in 0-BRNF if and only if I is a straight chain with no joints

on JP.

Bringing a chain bounded by 6 to normal forms plavs a crucial role in our
reachability algorithm. described in Section 3.4. The next two sections elaborate
on moving such a chain to normal forms. We first give an equivalent of Condition

(F). which will be referred to repeatedly later.

Lemma 3.1 The following condition (F°) is equivalent to (F).
Condition (F’): Let I be an n-link chain in RNF. Then any joint A, of I can be

moved along any path on JP while keeping I' in RNF.

Proof: (F) follows trivially from (F’). We now verify that (F) implies (F’).
First. we consider the endjoints. Since the joint labels can be reversed. it suffices
to consider A,. We proceed by induction on n.
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If n = 1. then [" has only one link and the result is immediate from (F). Suppose
that the result is true for anv (n — 1)-link chain. and now consider an n-link chain
[. View [" as two subchains ['(n — 1.n) and ['(0.n — 1) connecting at 4,_,. Given
any path 7 on dP. by the induction base. 4, of ['(n — 1. n) can travel along r while
[(n — 1.n) remains in RNF. This vields a path 7 on dP that A4, travels. By
the induction hypothesis. 4,_; of ['(0.n — 1) can travel along 7' while ['(0.n — 1)
remains in RNF. So A, can travel along 7 while [’ remains in RNF and the induction
is complete.

Next. we consider an intermediate joint 4, (0 </ < n). Given any path 7 on
JP. view ' as two subchains ['(0.¢{) and ['(i.n) connecting at 4;. Then both A4; of
[(0.i) and A, of ['(i. n) can travel along 7 while ['(0.{) and ['(i, n) remain in RNF.
Thus A4; of ' can travel along 7 while I’ remains in RNF. This completes the proof.

a

3.1.2 Simple Motions

To analyze the time complexity of our motion planning algorithms. it is essential
to define one or more kinds of simple motions so that complicated motions can
be decomposed into a sequence of simple ones. Such a decomposition also gives us
something to count. and hence some measure of the complexity of physical movement

itself. Here is list of criteria, based on [HJW83], for “good” simple motions of a
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linkage.
Criteria:

1. The description of the motion should uniquely determine the geometric move-
ment of all parts of the linkage.

2. The motion should be the one whose description can be computed.

3. If a joint angle changes. it should change monotonicallv. [n other words.
a motion in which an angle changes non-monotonically should be regarded as a
combination of simple motions. This eliminates oscillating motion as candidates for

simple motions.

With these criteria in mind. we define a simple motion of a chain as follows.

Definition 3.1 A simple motion of a chain is a continwous motion during which

at most four angles change.

This tyvpe of simple motion was also used in [HJW83]. However. the simple
motions chosen should not be limiring: it should be possible to carry out any recon-
figuration in terms of the simple motions available to the algorithm. Indeed. other

types of simple motions were also used. Refer to [LW92] and [KSW95].

Figure conventions: In some multi-part figures. the parts are intended to show

possibilities for configurations. but the chain depicted may not be the same in all
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parts of the figure. Also. an unfilled circle o at a joint indicates that the joint is to

be kept fixed during some motion of I".

3.2 Bringing a Chain to RNF

The key idea of the algorithm for bringing a chain I < 6" to RNF is to use k-BRNF
as a bridge. More specifically. we will show that if [ takes the form [d,...... 1,]
with 4y and 4, on 9P (a special 2-BRNF). then [ can be brought to 3-BRNF
while keeping 4, fixed. By applyving this manoeuvre to various subchains of T. it is
possible to bring ' to 4-BRNF. to 3-BRNF. .. .. and finally. to n-BRNF. which is
just RNF.

This algorithm consists of three main phases. which we describe in the next three

lemmas.

Ay

(a) (b) ()

Figure 3.2: An initial configuration (a) and two possible final configurations (b) and
(¢) for Lemma 3.2
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Lemma 3.2 For an n-link chain I'. suppose that Hq...... Ak lie on OP. Then
while Aqg. .. ... 141 remain fized. I can be moved to a configuration in which either A
lies on P or for some n' > k. Ay lies on OP and U(k. ') is straight. Furthermore.

this can be done with O(n) simple motions. See Figure 3.2

Proof: If initially [' is already in the expected configuration. then we are done.
Otherwise we proceed as follows.

Let h be the highest index such that ['(k. &) is strsight. Then £ +1 < h < n.
We show the result by induction on ' =n — h.

For ' = 0. i.e.. for h = n. the configuration of I' is as shown in (a) of Figure 3.3.
Fix dq,..... 4% and rotate [Ag. .. ... 1,] about A counterclockwise until A, hits P
or «y straightens to 7. If A; hits 9P first. then we are done. If ay straightens to
7 first. then [(A — 1. n) becomes straight. In this case. fix Aq...... 4, and rotate
[Akopeno. . 4,] about A;_ counterclockwise until A4,, hits 9P and we then establish
the induction base with n’ = n. This requires O(1) simple motions.

Suppose that the result holds for any value less than A" > 0: we now show the
result holds for A'. i.e.. forh=n—h < n. Fix H4...... e and Apq. ... 1,. and
rotate Ag about Ag_; so that A; moves away from A4, _; until A; hits OP. or 4,
hits OP. or a, straightens to m. Only O(1) simple motions are needed. See (b) of
Figure 3.3.

If 4, hits QP first. then we are done. If A, hits P first, then the result holds
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(b} h<n

ta) h=n

Figure 3.3: Bring A,(h > k) ro P with [44.... .. 1] straight

with n’ = h. If a; straightens to 7 first. then ['(k.h + 1) becomes straight. In
this case. by the induction hypothesis. [' can be moved to a configuration in which
either Ay lies on @P or for some n’ > k. A, lies on P and [(k.n') is straight. All

together. O(n) simple motion suffice. This completes the induction. 0

Lemma 3.3 For an n-link chain T < bF. suppose that 4. .. ... 4; and 4, lie on 0P
and that T(l.k) and T'(k.n) are straight. for some | < k < n.

Then while A, remains fired and I'(0.l) remains in RNF. and while [4,...... Ak ]
and [Ag.. ... 1,] remain straight. T can be moved to a configuration in which Ay
etther lies on OP or hus ap = «. Furthermore. this can be done with O(mnn) simple

motions. See Figure 4.4.

Proof: If initially [ is already in the expected configuration. then we are done.
Otherwise we proceed as follows.
Keeping A, fixed. and keeping [4,...... 4] and [Ag...... 4,] straight. move 4,
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A, A,

(b) (c)

(a)

Figure 3.4: An initial configuration (a) and two possible final configurations (b) and
(c) for Lemma 3.3. In (b) and (c). some joints are folded and some links overlap.

towards A, along 9P. By Lemma 3.1. this can be done while 4,...... 4, remain on
dP. Continue this process until 4, hits JP. or oy straightens to 7. or A; coincides
with 4,,. Since P has m sides and [ < n and [(0./) undergoes no backtracking.
O(mn) simple motions suffice.

If ¢ hits @P or a, straightens to = first. then we are done. If 4; coincides with
A, first. then [A. ... .. ] and [Ag. .00 1,] coincide. In this case. fix 4; and A,. and
rotate [dg...... 1,] and [4,.... .. 4x] counterclockwise about 4, until A4, hits 9P.

All together. at most O(mn) simple motions are needed. d

Lemma 3.4 For an n-link chain T < b". suppose that A,. .. ... 1, and A, lie on OP
and that ['(l.n) is straight. for somel < n.
Then for any k with < k < n. [ can be moved to a configuration in which 4. .. .. 4,

and Ay lie on OP and T(U'. k) is straight. for some ! < . Moreover. during this
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reconfiguration. A, can be kept fized, [Ag...... 1] can be kept straight. and T (0.0")
can be kept in RNF. Furthermore. this can be done with O(mn?) simple motions.

See Figure 3.5.

(h)

(a)

Figure 3.5: The initial (a) and final (b) configurations for Lemma 3.4

Proof: If initially I' is already in the expected configuration. then we are done.
Otherwise we proceed as follows.
Throughout the proof. A4, will remain fixed. and [4,...... 4] and (450004,
will remain straight. We consider two cases.
Case 1: Initially 4; and A, lie on adjacent sides. Let s, and s, be the sides that 4,
and A, lie on. respectively. Let v be the vertex where s; and s, meet. Without loss
of generality. assume that 4;.v. 4, initially form a right turn. See Figure 3.6.
Keeping ;. Ax. 4, a right turn. move 4, along s; towards v. By Lemma 3.1. this
can be done while Ag,..... 4; remain on JP. Since P is obtuse. the interior angle

at v is > 7/2. Thus the distance between A; and A, is decreasing. Hence Zoy is

12
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Figure 3.6: Moving A; towards 4, along OP.

decreasing and Ay is moving towards JP. Continue this process until A; hits 9P
and choose I’ = 1.

[n this case. only O(mn) simple motions are needed.

y
- Case 2: Initially 4; and A, lie on non-adjacent sides. We show the result by
induction on /.
Figure 3.7: Rotating [Ag...... 1] about .
For { = 0. let py be the point where A4 initially lies. Keeping pg. 4g. A4 collinear.
&
aH
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rotate [Ag... ... -ln] about A4, counterclockwise. as Figure 3.7 shows. Since the dis-
tance between A and pg is increasing. the above rotation is possible. Continue
this process until A; hits 9P. Then fix A4...... An. and rotate [Ho...... 1¢] about
Ar counterclockwise until 4g hits dP. We then establish the induction base with
[ =1 =0 and only O(1) simple motions are required.

Suppose that the result holds for all indices less than [ > 0: we now prove the
result for [. Fix Ag...... 4;-1. and rotate [Ag...... 4,] about A4, so that 4, moves

away from 4;_,. as Figure 3.8 shows.

A

Figure 3.8: Rotating [A¢...... 1.] about A, so that 4; moves awayv from A,_,.

We claim the following. which we will establish at the end of the proof.
Claim: During this rotation. 4, will not hit P before 4 hits P or ¢, straightens
to .

From the claim. the above process terminates when 4 hits P or o straightens
to «. as shown in (a). {b) of Figure 3.9. respectively.
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(a) (b)

Figure 3.9: 4; hits 9P first in (a): o straightens to = first in (b).

If 44 hits OP first. fix A4 .. ... 4, and move ['(0. &) in accordance with Lemma 3.3.
Then either A; hits dP or «a; straightens to 7. and we choose I’ =/l or ' =1 - 1.
respectively. This requires O(mn) simple motions.

If a; straightens to = first. fix 4, and move [ in accordance with Lemma 3.3.
Then either A hits P or oy straightens to 7. If 44 hits 9P first. we choose " =1—1
and O(mn) simple motions are involved. [f ag straightens to = first. then U7 = 1. n)
becomes straight. In this case. if 4;_; and A, lie on adjacent sides. then by Case 1.
we conclude with " =1 — 1: if 4;-, and A, lie on non-adjacent sides. then by the
induction hvpothesis. we conclude with some I' <! -1 < [.

In this case. at most mn + m(n — 1) +---.+m € O(mn?) simple motions are

need.

Proof of the Claim: Let p,. pr be the points where ;. A, initially lic. respectively.
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Let Ci(or. r1). Ci(ok. i) be the circles that 4. 44 travel along. respectively. Let ¢,. ¢,
be the intersection points of Ci{o;. r) and OP. Cilog. ri) and 9P that 4;. 4x move

towards. respectively. See Figure 3.10.

Figure 3.10: Case 1: o is outside C'.

Then o;. 04 are the points where A,_;. 4, initiallyv lie and remain fixed. respec-
tively. Also ry.rp are the lengths of {4, A, {Ak... ... 1,]. respectively. By as-
sumption. or and p; lie on non-adjacent sides. We prove the result by two cases.
Case 1: oy is outside (. as Figure 3.10 shows.

Without loss of generality. we assume that o;, p;. o form a right turn. i.e.. initially
a; < w. We show the result by contradiction.

Suppose A; hits 9P first, i.e.. 4; reaches t; while 4 lies at some g ep;tk. as
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shown in the dotted line in Figure 3.10. Since o is outside Cj. o and p; are on the
same side of [(¢;.0;). Hence ok, px. py are all on the same side of [(¢;. o;) and so are
Ok, gk p1- Note that o;. p;, o form a right turn. hence o;. ¢;. g form a left turn. i.e..
a; > « in this configuration.

Since a; changes continuously. there exists some intermediate configuration in
which a; = 7. This means that o; straightens to 7 before 4, hits 9P. Contradiction.

Case 2: o is inside or on (). as Figure 3.11 shows.

_Q
Nl
R
\
/?
s
/

Ve
7 .
\‘ , « ? \ S “'
Y \ ’
tl N [kl Ol\' 1
U A,“ !
. \ ’ .
S NEEN N .
\ ' / ’
N v C :
RN ! P 3 .
N P
N \ \ .
\\ I N -
~ . .
I \ .-
Pro Te-la L. -
' --'\ - -
: pl .

Figure 3.11: Case 2: o is inside or on (7.

Without loss of generality. we assume that o. pr.ox form a left turn. We show
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that A hits 9P first.
Suppose that {(ox. p1) N Cr = {p;. P} and l(ok. qx) N Ce = {p}. V', } (P} ep:ﬁ,}. Then
or.pr- P is a left turn. So r/(p:f),) < 7. Hence d(ﬁ;),} = 27— p,qﬁ,> 7.
Since p; Ep,}),. o. pj- Py is also a left turn. So d(pjp’;) < =. Therefore.
B> P
ie. py + P> piBy + pip'y- Thus pipi>pip;.

In Noeppy. we have pipjox = Lpplpy > LpipiDy = Epipiox. Hence logpr] > |oxp)l.

Le.. |ogpr| + |pepi] > jokqe| + |akpyl- Since |ogpi| = |orgr] = re. we get

ipepi| > |qipl. (3.1)

In Aogpigr. we have |ogpe| + [prpr| = |oxprd < |owge] + lgkpl. Since |ogpe| =
lowqr| = re. we get

ipept| < |qepil. (3.2)

From (3.1) and (3.2). we conclude that when A lies at ¢r. A; lies at some g

inside p;p;. as shown in the dotted line in Figure 3.11. Hence when Ay reaches #.

A, lies at some point inside pt,. Therefore Ax hits 9P first. O

Corollary 3.1 For an n-link chain T < bF . suppose. asin Lemma 3.4. that Aq. . . . . . 4
and A, lie on 9P and that ['(l. n) is straight. for some!l < n. Then while 4, remains
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fized. T can be moved to RNF with O(mn?) simple motions.

Proof: By induction on n. If n = 2. the result is trivially true. Suppose that the
result holds for n < n’: we now show that result holds for n = n’.

First. we move Ad,_, to dP while keeping 4, fixed as follows. If 4,._, is
already on JP. then we are done. Otherwise. fix 4, and move I" in accordance with
Lemma 3.4. Then I can be moved to a configuration in which 4y...... 4y and A, _,
lie on 9P and [({'.n" — 1) is straight. for some !’ < n’ — 1. This requires O(mn*)

simple motions. See Figure 3.12.

Figure 3.12: Bringing [’ to RNF.

Next. by the induction hypothesis. [(0.n' — 1) can be moved to RNF while A, _;
remains fixed. Hence [ can be moved to RNF while 4] remains fixed. All together.
mn? + m(n — 1)*> + --- + m € O(mn®) simple motion suffice.

This completes the induction proof. a
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Corollary 3.2 Any chain [ < b in [-BRNF can be moved to RNF with O(mn*)

simple motions.

Proof: [f ! = n. then ' is already in RNF. If [ < n. suppose 4, ...... 1,0 <
I < ... <y < n)are all intermediate joints on dP. If 4, is not on JP. then fix

A

IS PR B 4, and rotate [4q...... 4.,] about 4,, counterclockwise until 4, hits
JP. Similarly 4, can be moved to dP. This requires O(1) simple motions.

Now fix 4;,.4d;,-1. .... 4, and move ['(0.:;) in accordance with Corollary 3.1.
Then (0. {;) can be moved to RNF with O(mi}) simple motions. Next. fix A;,. A, ..
..... 4, and move [(0.:,) in accordance with Corollary 3.1. Then [(0.:,) can be
moved to RNF with O(m:}) simple motion . Repeat this process until I is in RNF.

All together. mi? + mi + -+ - + mi} € O(mn') simple motions suffice. a

Now we are ready to present a crucial result in the following.

Theorem 3.1 Any chain T < bf" can be moved to RNF with O(mn*) simple mo-

tions.

Proof: We give an algorithmic proof. The algorithm consists of an initial step. in
which g is brought to dP. followed by a main step. in which the lowest indexed
joint not on JP is brought to dP. The main step is repeated until all joints lie on
aP.

initial step: We bring 4o to dP as follows. For £k = 1,2..... fix 4 and rotate

20



>

Py

(Hg... ... 4] about 4. Repeat this process until either 4, hits P or the entire
chain [ becomes straight. If I straightens before 4, hits dP. slide the straightened
[' along the line it determines towards dP until 4, hits dP. This requires O(n)

simple motions.

main step: For A not on dP and I'(0.k£ — 1) in RNF. bring Ax to dP as follows.
Fix Ag...... 44—, and move I in accordance with Lemma 3.2. Then [ can be moved
to a configuration in which either 4y lies on dP or for some n’ > k. 4 lies on 9P
and [(k.n') is straight. and this requires O(n) simple motions.

In the latter case. fix A,...... 4, and move [(0. n’) in accordance with Lemma 3.3.
Then with O(mn) simple motions. either A, hits dP or «y straightens to 7. If g
straightens to = first. fix AJ...... 4, and move [(0.n') in accordance with Corol-

lary 3.1. This puts Ax on 9P with O(mn?) simple motions.

iteration steps: Once Ay, .. ... 1. g lie on P, repeat the main step to bring the
Apaie . i, in turn to 9P.
All together. at most mn* + m(n — 1)* +--- + m € O(mn*) simple motions are

needed. .
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3.3 Bringing a Chain to TNF-i,

This subsection shows that any chain bounded by 5 can be moved to TNF-i, for

some ly. First. we have

Lemma 3.5 Let [ < b be a single link chain in RNF. Suppose that T has joints
A. B which lie at r.y. respectively. If there exists « point p € P with |rpl > |ryl.

then it is possible to move [ onto rp by firing r and rotating U about r.

Proof: It suffices to show that B will not hit P in the desired rotation.
Assume otherwise. Suppose that {(r.p) NP = {r.¢} and that ¢. r.y is a right

turn. as Figure 3.13 shows.

Figure 3.13: [ can be moved onto zp by fixing r and rotating [ about r.

Ot
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Then there exists some y' € Ch(g.y) with |ry’| = |lry|. Note that since |rq| >

lrpl > |ryl. there exists some y” € Ch(x.q) with |ry”| = |zy|. Since y.y'y" are
distinct. C'(r.|ry|) N OP has at least three points. This contradicts T < h<. c

Theorem 3.2 Let [ < 0" be an n-link chain. Suppose there erists a point p € P.

a verter v of P and an indec iy < n such that
d(p.v) > ligey + ligea + -+ + 5.

Then with O{mn*) simple motions. [ can be moved to TNF-iy in which A, lies at

Proof: Bring [ to RNF in accordance with Theorem 3.1. Then. keeping I" in RNF.
move A,, around JP to ¢ in accordance with Lemma 3.1. This requires O(mn*)

simple motions.
Lot p.pig-1----. pn be the points that A4, .4, ... 1, now occupy. respec-

tively. as Figure 3.14 shows. Then p,, = v. We claim that. for any & with 1y < & < n.
d(p.pr) > leey + -+ -+ 0.
To see this. note that in Apvpy. we have

dip.pr) > d(p.v) — d(v.pg).
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Figure 3.14: Bringing L, onto p,_p. Point p,, and joint 4;, are at v.

Note that 4,,. A4 lie at ¢. pi. respectively. Hence d(v.py) </, -1+l +---+k.

Also d(p.v) > ;g1 + lig—2 + - - - + {. Therefore.
d(p-Pk) > (lin+l + liq+2 +oee Tt ln) - (lio+l + lim'-‘z +eer+ lk) = lk:—l +--o+

Hence the claim.

We now reconfigure [ as follows. To begin. bring {4, ;. 4,i onto the line segment
Pn—1p. To do this. fix dg...... 4,-1 and rotate L, about A,_, until {4, ;. 4,] and
p become collinear. Only O(1) simple motions are needed. Sce Figure 3.14.

From the claim. d(p. pn_1) > ln. Also T < 6%, By Lemma 3.5. A, will not hit
JP during this rotation. Also from d(p. pa_;) > ln. 4, lies on pp,—y when [4,_;. A,
and p become collinear.

Next. straighten ['(n—2. n) and bring it onto p,_.p as follows. Fixing Aq...... S P
and keeping [4,-. 4,]. p collinear. rotate L,_; about 4, _, until ['(n—2.n) becomes
straight. Again. only O(1) simple motions are needed. See Figure 3.15.
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Figure 3.15: Straightening ['(n — 2. n) onto p,_»p.

We show that neither 4, _; nor A, will hit P during this reconfiguration. For
A, _i. this follows from d(p,—2.p) > -y + 1, > {1 and Lemma 3.5. We now
consider 4,.

Let ¢,_; be the point where A,_; lies at a stage of the reconfiguration. as shown
in Figure 3.15. It suffices to show that A4, remains on ¢,_p. i.e.. d(gn-1.p) > {,.

To see this. note that in Dqp—1pn-ap. dlgn_1.p) > dpp_s.p) — d(gn-1.pn-2). By
the claim. d(pp_s.p) > l_1 + {n. Also d(qu_1.pn-2) = lu—;. Therefore. d(g,_;.p) >
(lnoy +1n) = ooy = L5,

At the end of the reconfiguration, I'(n —2. n) becomes straight and collinear with
p. Also by d(p,_s.p) >l + . Ap lies on ppn_s.

Repeat this process until ['(ig. n) is straightened onto ¢p. This puts I' in TNF-¢,

with 4, at v. All together, O(mn') simple motions are needed. o
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3.4 Reachable Points

We now give our main result in this chapter.

Theorem 3.3 b° < b, ie. if T < b°. then (%) is a sufficient and necessary
condition for A, to reach p.
Furthermore. if p is reachable by A,. then 4, can be moved to p with O(mn*) simple

motions.

Proof: The necessity of () follows triviallv from Property 3. Now we show the
sufficiency by giving an algorithm to bring A, to p with O(mn') simple motions.

Let iy be the least index such that

Z lj i dmar(p)-

J=wrl

Note that taking : = n in (%) gives [, < dper(p). 50 g < n. In accordance with
Theorem 3.2. move [ to TNF-iy with 4, at v,..(p) = v. This requires O(mn?)
simple motions.

If ip = 0. then I is straight. Slide T along (. p) towards p until 4, reaches p.

If iy > 0. move A,,_, along P towards v while keeping {4,,...... 4,.] straight and
collinear with p. By Lemma 3.1. this can be done while ['(0.:)) remains in RNF.
Continue this process until 4, reaches p or 4, reaches . This requires O(mn)

simple motions. See (a) of Figure 3.16.
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(a) (b

Figure 3.16: Moving A,, to v and then bringing L,, collinear with rp.

If 4, reaches p first. then we are done. If 4,, reaches v first. let p,, be the point

where 4,, lies. Then.

[ e+ Ly < d(piy.p)- (3.1)

in-1 -
Fixing Aq...... 1,,-1 and keeping [4;,..... d,] straight and collinear with p. ro-
tate L, about A,,_;. This requires O(1l) simple motions. See (b} of Figure 3.16.
We claim that. before L, is collinear with vp. A, will not hit 9P and A4, will
reach p.
To see this. we consider two cases.
Case 1: i, < dmaz(p). Since [ < 5. by Lemma 3.5. 4;, will not hit P before L,

is collinear with vp. We now show that A, will reach p first.

[\ |
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Assume otherwise. i.e.. that L,, becomes coilinear with »p first. Then ['({y—1.n)

is straight and collinear with vp. as shown in (a) of Figure 3.17. By definition of ¢.

lig + ligst + -+ - + Iy > dmaz (p) =d(v. p).

lo-1 + -+ >dlr.p) =1,

Let q;, be the point where 4,  lies. Then d(v.p) —{;, = d(q;,-p). Therefore.

lio"—l +"'+ln > ([(([,‘0.[)). (3_))

From (3.1) and (3.2). there exists some intermediate configuration in which 4;,

lies at t;, and [.-l,,] ...... -l,l] is straight and collinear with p. such chat
g1 + -+ -+ 1 = d(¢i,.p)-

This implies that A4, lies at p in this intermediate configuration. Contradiction.
Case 2: li; > dipar(p). Let {e.p) NOP = {v.v'}. as shown in (b) of Figure 3.17.
Clearly ¢ is the vertex furthest from ¢’. Hence d,,..(¢') = {ve’|. By Lemma 4.1,
w < dmar(v'). By Corollary 2.2, ¢ < w. Hence [ < |v¢!| and [, < |r¢/|. By
Lemma 3.5. 4;, will not hit P before L, is collinear with vp. \We now show that
A, will reach p first.

Assume otherwise. i.c.. that L,, becomes collinear with vp first. Then {4,,_,. 4;,].
[Aigsevn- 1,] are collinear with vp and A, is closed. as shown in (b) of Figure 3.17.
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(a) (b)

Figure 3.17: l,, < dpaz(p) in (a) and {,, > djpac(p) in (b).

/m - ([z.,-l +e /rz) S (lmu.z(‘”) = d("°[))~

Ligwt + -+ 1y 2 1y —d(v.p).

Let ¢, be the point where 4,, lies. Then {,, — d(c.p) = d(q,- p). Therefore.

to

ltg-rl + -+ ln. Z fl((lm-l’)- (33)

From (3.1) and (3.3). there exists some intermediate configuration in which A4,

lies at some t;, and [4,,.....Ap] is collinear with p. such that

lu)-.-l Ralhiidie ln = d(’u;-p)'

This implies that 4, lies at p in this intermediate configuration. Contradiction.
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All together. O(mn') simple motion suffice. This completes the proof.
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Chapter 4

Reachable Regions

This chapter investigates the properties of reachable regions of chains. We consider
general convex polvgons as the confining regions throughout this chapter.

Section -b.1 proves that ¥ < w and that if P is [-reachable. then I < w. Section
4.2 describes the shapes of reachable regions and shows that they are linearly ordered
by set inclusion. Section 4.3 recalls some basic facts about the minimal spanning
circle of a convex polvgon. This provides background for Section 4.4. which char-
acterizes [-reachable convex polvgons for [ < b° and illustrates the applications of
this result. Section 4.4 also characterizes the center of the minimal spanning circle
of a convex polvgon from a reachability point of view.

Assumptions: Throughout this Chapter, we assume. unless otherwise stated. that

[ denotes an n-link chain and P denotes an m-sided convex polygon. I is confined
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by P and joints of [’ may lie on 9P.

4.1 b’ <w

To show % < w. we need the following.

Lemma 4.1 If p € OP. then w < dy.(p). Furthermore. if v € V. then v <

dmaz(t).

Proof: For any p € dP. P lies completely inside C'(p. dynar-(p)). Hence P falls into
a half circle determined by Clp. d,.-(p}) and the line I through s(p). So P lies
between [ and a tangenrt line of ¢ parallel to {. whose distance is d,,,.(p). Thus
w < dmar(P)-

Let v € 17 and let w.w be the vertices adjacent to v. Suppose that [ is the
line through vw and that I’ is the line through v perpendicular to [. Let ¢’ be a
vertex furthest from / and let o', ' be the vertices adjacent to . Without loss of
generality, assume that u. c.w and w’. ¢’ ¢ are both left turns. See Figure 4.1.

We consider two cases.

Case 1: v’ € I'. Let !” be the line through ' parallel to [. as shown in Figure 4.1.
By definition of t’. points v’ and uw’ are each on or below {”. Hence !" and [ are

siupport lines of P. Since ' & U'. d(I". 1) is strictly less than d,,..(¢). the radius of
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Figure 1.1: Case 1: /¢ '

C'. Therefore.

w < d(l". 1) < dpar(r).

Case 2: " € l'. Let s(ur).s(u't") be the angles of ur. u'¢" with respect to /. respec-
tively. We further consider two subcases.
Case 2a: s(uv) > s(u'v’). as shown in (a) of Figure 1.2.

Let [} be the line through wue and let [, be the line through /' parallel to [;.
Since s(uv) > s(u'c’). [} and [, are parallel lines of support of P. Note that /, is not

parallel to [. Hence I, is not tangent to C'. So d(!,.[l») is strictly less than d,..(v).
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(a) (b)

Figure 4.2: Case 2: ' € ['.

the radius of C'. Therefore.

w S d(ll Zl) < dmul‘(v)‘

Case 2b: s(ur) < s(u't"). as shown in (b) of Figure 4.2.

Let [, be the line through ¢'u’ and let [, be the line through ¢ parallel to /;.
Since s(uv) < s(u't’). [, and [, are parallel lines of support of P. Note that /| is not
parallel to [. Hence [, is not tangent to C'. So d({,.{,) is strictly less than d.(v).

the radius of C. Therefore.

w < d(lllz) < dma::(u)'
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This completes the proof. a
Note that w = dpa,(p) may hold if p € 1", To see this. let p be the midpoint of

a side in an equilateral triangle.

Theorem 4.1 »° < .

Proof: Assume otherwise. Then w < #° for some P and we now consider such a
P. Then for any { with

w<l<b®

and any single link chain [ = [A. B] with length [. [ satisfies (S). We show that
this is impossible.

By Fact 2.1. there exists two parallel lines ;. 0, of support of . one passing
through a vertex and the other passing through a side. achieving the width .
Suppose that [, passes through vertex u and [, passes through side ¢yv,. Let [ be
the line through ¢, perpendicular to vy, Without loss of generality. assume that
[, is above [,. See Figure 4.3.

Let ¢ be the vertex furthest from . By Lemma 4.1. v < d,,0,.(02). Hence
vh & [. First. assume that ¢ is on the left of /. as shown in Figure 4.3.

Let v be the rightmost vertex of P. with [, regarded as horizontal. Also by

Lemma 4.1, w < dpq-(v). Take € > 0 sufficiently small such that

w + € < min{dmar(t2). dpar(t)}.
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Figure 4.3: B cannot reach v.

Let [ = [4. B] have length of w + €. By the convexity of P. line segment vat}
lies inside P. Since w + ¢ < dpar(t2) = d(ra.v)h). it is possible to place [ on rar)
with 4 at vy, as Figure 4.3 shows. Counsider this as the initial configuration of T'.
We claim that ¢ € Rp(B). i.e.. that B cannot reach .

To sce this. view [ as a vector AB and define a as the angle formed by rotating !
to AB counterclockwise. as shown in Figure 4.3. Since v is on the left of {. initially

/2 <a<m.
If v € Rr(B). since v is the rightmost vertex. when B reaches r. either 27 >

a >37/2 or 0 < @ < 7/2. as shown in the upper. lower dotted lines in Figure 4.3.

respectively.
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Since a changes continuously. there exists some intermediate configuration of [
in which either &« = 37/2 or @ = 7/2. i.e.. [ is perpendicular to [,. This is not
possible. Hence the claim.

Note that d,,.(v) > w + €. Hence I' does not satistv (S). Contradiction.

For the case that ¢} is on the right of [. the proof is similar. a

We remark that #° may be considerably less than w. as illustrated in Figure 4.4.
[n this figure. the polygon P is constructed by cutting off three congruent tiny right
triangles of an equilateral triangle A with unit side. Thus « = v/3/2 — ¢ for some
small e. We claim that ° < w in P.

To see this. consider a 3-link chain [ having joints A. B.C. D whose initial con-
figuration is as follows: B.C are at the midpoints of two sides of A. respectively:
A. D are at two right corners of A. respectively. Then [ < [/2. If b = w. then the

top vertex of & is reachable by D. But this is impossible as [ is completely stuck.

/

Figure 4.4: b° < w.
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One consequence of the above theorem is the following. which shows that w-

reachability is the most one could hope for.
Corollary 4.1 If P is l-reachable. then | < w.

Proof: If not. then [ > . For any !’ with w < ' < [. since P is l-reachable. P is
l'-reachable. Then for any ' < /. T can reach each point of P. Therefore I’ < b%.

By Theorem 4.1. 4™ < . So I' < w. Contradiction. 3

4.2 Properties of Reachable Regions

Property 4 from Chapter 1 shows the equivalence of the reachability between an

n-link chain and a single link chain. This suggests the following.

Definition 4.1 Let T < 6° he an n-link chain and let 1. . . .. [, be the link lengths of
[. We call the single link chain T¢ = [4. B] of length [* = max,<i<a{li - o L}

the equivalent chain of I'.

In terms of the above definition. Property 4 can be restated as follows: Ri-(A4,) =
R[‘c (B).

Since [* > [, > 0 and [ < [; for each i. we have
Observation 4.1 0 < [* < [ -

From the above observation. we have
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Observation 4.2 [f[ < b. then ¢ < b.

The following lemma shows that each point on the boundary of P is °-reachable.
Lemma 4.2 dP C Pps.

Proof: Let I' < b* be an n-link chain and let T* = {4, Bl be its equivalent chain.
Then Rr(A,) = Rr-(B).

By Observation 4.2. ['* < 5. By Theorem 4.1. ¥ < w. Hence [* < w. ie..
[ < w. For any p € 9P. bv Lemma 4.1. w < dpe:(p). Thus ¢ < dpar(p). Since
[ < b°. (%) is satisfied. Hence p € Rp-(B) = Rr(A4,). So pis b°-reachable. Thus

AP C Pys. C

Theorem 4.2 Let T < b". Then Rr(A4,) is either empty or has boundary composed

of at most m circular arcs centered at certain vertices of P and all having radius [°.

Proof: Let I'* = [4. B] be the equivalent chain of [. Since Rp(A4,) = Rr-(B).

Rr(4,) = Rr-(B). By Observation 4.2. [* < b°. Therefore.

Re-(B) = {pip € Podmar(p) <} = ({plp € Pdip.v,) <[}
=1
Note that for each i. {p|p € P.d(p.v;) < (*} is the subset of P inside the circle

centered at v; with radius ¢. By Lemma 4.2. each point of P is b%-reachable and

hence is (¢-reachable. Thus for each i. {p|p € P.d(p.v;}) < (¢} NIP = 0. The result

hence follows. 0
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We remark that the number of circular arcs bounding the unreachable region
for different chains sharing the same P may change. as shown in Figure 4.5. This
figure shows a convex J-gon that is nearly regular. The solid and dashed arcs show
the construction curves for the boundary of the unreachable region of a longer and
a shorter single link chain. respectively. Note that the boundary of the unreachable
region of the longer link chain is composed of five circular arcs. whereas the boundary

of the unreachable region of the shorter link chain is composed of three circular arcs.

Figure 4.5: The circular arc number of unreachable regions may change

Theorem 4.3 All Rp(A,) with T < b° are linearly ordered by set inclusion.
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Proof: Let [.[" be n.n chains. respectively and both bounded by . It suffices to
show that one of Rr(4,). Rz(4ds) contains the other.

Let [* = [4. B].[" = [4. B] be the equivalent chains of T. L. respectively. Sup-

pose ['¢ and ¢ have lengths of (¢ and e respectively. Then
Rr(An) = Rr-(B). Re(4s) = Rp.(B).

Suppose ¢ < [¢ and consider p € Ry-(B). By Observation 4.2. ['* < . Hence

I* < dipar(p). S0 1° < dpar(p). Again by Observation 4.2. [ < 7. Sop < Rr.(B).

Therefore Rp-(B) C Ry (B).

a

Similarly Ry.(B) C Rr-(B) if [* < [*. This completes the proof.

Definition 4.2 Let I < &% be an n-link chain confined within P. We say that U is

covering for P or covers P. denoted by ' = P. if Rr(A4d,) = P.

By the previous lemma. the unreachable regions of the noncovering chains are

also linearly ordered by set inclusion. The supremum of these regions. Ur_.ps rop Rr(An).

is clearly the complement of Ps. In Section {4.4. we will show that the infimum of

these regions. Nr_ys rvp Br(-n). is a unique point that is “hardest reachable™ (to

be defined). which coincides with the center of the minimal spanning circle of P.
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4.3 Minimal Spanning Circles

In this section. we review some well-known properties of minimal spanning circles
of convex polvgons. This provides needed background for the next section. Refer
to [RT57] for details.

Let P be a convex polyvgon. A spanning circle of P is a circle C such that each
vertex of P lies either inside or on C. A munimal spanning circle of P is a spanning

circle of P having minimum radius.
Fact 4.1 Every conver polygon P has a minimal spanning circle. which is unique.

The notion of the minimal spanning circle can be generalized to a set of n points.
and the corresponding results still hold. See [RT57] for references. [PS85] and

[Meg83] show that the minimal spanning circle of an n-point ser can be constructed

in ©(n) time.

Fact 4.2 4 spanning circle C of a convex polygon P is the minimal spanning circle
of P if and only if C' pusses through two diametrically opposite vertices (i.e. the line
seqment between the two vertices defines a diameter of C ) or through three vertices

that define an acute triangle.

Corollary 4.2 Let P be a conver polygon and let C(o.r) be its minimal spanning

circle. Then o € P and r = d42(0).

~1
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Corollary 4.3 Let P be a conver polygon. Then the center of its minimal spanning

circle is the unique point 0 € P at which dq.(0) achieves its minimum.

Corollary 4.3 shows that the problem of determining the minimal spanning circle
of a convex polygon P is equivalent to that of seeking a point whose maximal distance
to the vertices of P is minimal. Suppose vertices denote the locations of users. then
the point to be sought is a kind of optimal position to place a public facility. This
is the minamaz problem in Operational Research. a classical problem with wide

applications. See [NC71] and [TSRBT71] for references.

4.4 [-Reachability

We now give our main result in this chapter.

Theorem 4.4 Let P be a conver polygon and let C(o.r) be its minimal spanning
cirele. Then for any | < b°. the following are equivalent.

(1) P is l-reachable:

(2) o is l-reachable:

(3)1 <r.
Proof: (1) = (2) By Corollary 1.2. 0 € P. Since P is [-reachable. o is [-reachable.

(2) = (3) By contradiction. If [ > r. then there exists [" with [ > ' > r.

3
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Consider a single link chain I' = [A4. B] having length {'. By Corollary 4.2,
r = dmez(0). Hence l' > d,,4.(0). By Property 3 from Chapter 1. o € Rr(B). Thus

o is not {'-reachable. So 0 is not {-reachable.

(3) = (1) By Corollary 4.2. r = d,pe-(0). Thus | < d,4r(0). For any p € P. by
Corollary 4.3. dimar(0) < dipar(p). Hence | < dpq.(p).

Let ' < [ be an n-link chain and let I'* = [A. B] be the equivalent chain of I'.
By Observation 4.2. ['* < [. So I* < [ < dya:(p). Since T < b¥. (%) is satisfied.

Therefore.

pER-(B)=Re(d,).

(]

So p is [-reachable. Hence P is {-reachable.

Corollary 4.4 Let P be a convexr polygon and let r be the radius of its minimal
spanning circle. If w < r. then P is b -reachable.
Furthermore. if P is convezr obtuse with b = w. then P is w-reachable if and only

fuw<r.

Proof: By Theorem 4.1. b° < w. Hence b° < r. By Theorem 4.4. P is b°-reachable.
If P is convex obtuse and 6 = w. then b = w. By Theorem 4.4. P is w-

reachable if and only if w < r. O

We now illustrate applications of the above in the next three theorems. Our
results suggest that the shape of P determines its [-reachability.
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Theorem 4.5 Let A be a triangle with an interior angle > 7/2. Then A is b°-

reachable.

Proof: Note that w of A is the minimum height and that the radius r of the minimal
spanning circle of A is half of the longest side. Hence w < r. By Corollary 1.4. A

is b%-reachable. a
Observation 4.3 Conver obtuse quadrilaterals are exactly rectangles.

Theorem 4.6 Let P be a rectangle having sides a. b with a > b. Then P is w-

reachable if and only if a/b > /3.

Proof: Let C(o0.r) be the minimal spanning circle of P. C(o.r) is clearly the
circumscribed circle of P. Hence r = va* + b?/2. Note that in P. b = w = b. By

Corollary 4.4.
Pis! — reachable &= v < r == b < Va2 +1?/2 = a/b > V3. -
The above theorem shows that a rectangle is w-reachable if and only if it is
“slim”™ enough.
Theorem 4.7 Let P he a conver obtuse m-gon. Ifin > 5. then P is s,,,,-reachable.

Proof: Suppose v;.ta..... v, are all the vertices of P and C(o.r) is the minimal

spanning circle of P. Let ay.a,..... o, be the angles formed between ov, and ovs.

ovy and ovg, .. .. ov,, and ov,, respectively. See Figure 1.6.
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Figure 4.6: P is sy,-reachable if it has more than 5 sides

Since 3%, a, = 2. there exists i, with «,, < 27/m. Since m > 6.

(hy < 27/m < 2x/6 = /3.

— .

Without loss of generality. assume that ¢y = 1. Then in Doeje,.

lryovy = < 7 /3.

Note that Zvjovs+ Zovita+ Lovaty = 7. hence Zovita+ Zovaty 2

Therefore. one of _ovyvs. 2oy, is at least 7/3. Without loss of generality. assume

that Zov vy > 7/3. We then have

Luvyovy < LovUs.

Therefore

|ereaf < foua|.
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By Corollary 4.2, d,,..(0) = r. Hence.

Smin < fr1ta] < lova] = d(0. 12) < dmez(0) = 1.

Since P is convex obtuse. Sy, < b°. By Theoremd.4. P is s,,,;,-reachable. c

Next we characterize the center of the minimal spanning circle as the hardest

reachable point of a convex polygon. defined in the following.

Definition 4.3 Suppose P is not b°-reachable. A point o € P is the hardest reach-

able point if for any n-link chain ['. 0o € Rr(A,) implies that T = P.

Theorem 4.8 Let P he a conver polygon that is not b -reachable and let C be its
minimal spanning circle with radius r. Then the following are equivalent.

(1) o is the center of C':

(2) o is the hardest reachable point:

(3) o is the infimum of non-empty unreachable reqions. i.e.. 0 = Nr_ps rop Rre(dn)-

Proof: First. we show the equivalence of (1) and (2).
(1) = (2) For any p € P. by Corollary 4.3. dinar(0) < diac(p)-

For an n-link chain [ < %, if 0 € Rr(A4,). then for any i with 1 < i< n.

[l - Z lj < dma:(o) < drnru:(p}'

Thus p € Rr(4,). So o is the hardest reachable point.
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(2) = (1) Let 0" be the center of C. If 0 # 0. by Corollary 1.3. d;0:(0%) < dmaz(0).
Since P is not b°-reachable. by Theorem +.4. r < 4. By Corollary 4.2. r =
Amaz(0"). Thus dpyar(0") < b”.
Take [ with
Anaz(07) < { < min{daz(0). b}
Let I' = [A. B] be a single link chain of length /. Then o® &€ Rr(B) but o € Rr(B).

So o is not the hardest reachable point. Contradiction.

Next. we show the equivalence of (3) and (1). To this end. we first claim that. if

p is not the center of C'. then

pg€ [} Re(4n).

C<63.TyP

To see this. note that from the proof of (2) = (1). we get the following. Let o
be the center of C' and let p # o. Then for some [ = [4. B]. o & Ri-(B).p € Rr(B).

Hence I' i/ P.p & R (B). Thus

D g ﬂ RI('ln)

F<b3.IP

Hence the claim.
(3) = (1) Immediate from the claim.

(1) = (3) By the claim. it suffices to show that

0c m Rl"(-'ln)'

r<b6S.CHP
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For any chain [ with [ < ° and [ & P. there exists p € Rr(A,). By the

equivalence of (1) and (2). 0 € Rr(A4,). i.e.. 0 € Rr(4,). Therefore.

0 < R['(—‘[n)-
C<b>.I%P

This completes the proof. a

Corollary 4.5 Suppose that P is not b°-reachable. Then P has a unique hardest

reachable point.

0

Proof: By Theorem 4.8 and Fact 1.1.
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Chapter 5

Reconfiguring Chains inside

Circles

This chapter handles reconfiguration of chains within circles. We treat circles as
the extreme case of nice confining environments and believe that our results provide
insights on how to design short link chains within a given confining region in order
to ensure fast reconfiguration.

Section 3.1 shows that any n-link chain ' confined within C'(0.r). whose links
maybe as long as the diameter of C'. can be brought to Rim Normal Forin (RNF)
with O(n) simple motions. Except for the running time and the bound on ['. the
result is similar to that of Section 3.2. This enables us to present similar reachab:lity

results for chains inside circles. Section 5.2 shows that [ < r already in RNF can be
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brought to “right oriented Rim Normal Form (r-RNF)™ (to be defined) with O(n?)
simple motions. This vields the main result of this chapter in Section 5.3: I’ < r
implies I' can be moved between any of its configurations inside C with O(n?) simple
motions. Section 3.3 also illustrates two applications of this result that demonstrate
that the bound on ' to ensure only one equivalence class of confisurations of T is

best in some sense.

Assumptions: Throughout this chapter. [ denotes an n-link chain confined inside

circle C'(0. r) unless otherwise stated. Joints of [’ may lie on C.

5.1 Bringing a Chain to RNF

We define Rim Normal Form for a chain inside a circle in a similar way to what we

did in Section 3.1 for a chain inside a convex obtuse polvgon.

Definition 5.1 A chain inside a circle is in Rim Normal Form. denoted RNF. if

all its joints lie on C.

We can give an algorithm for bringing [' to RNF inside a circle similar to our
reachability algorithm for [ inside a convex obtuse polvgon. The fact that circles
are “corner free” enables us to give an algorithm that produces O{n) simple motions
in O(n) computation time. Also note that for this RNF result. we need not restrict
the lengths of T' to be any less than the diameter of the confining circle.
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We outline the main steps of the algorithm bringing [ to RNF in the following.

Observation 5.1 Let [ be an n-link chain in RNF. Then any joint of T can be

moved along any path on C with O(1) simple motions while keeping T in RNF.

Lemma 5.1 Let ' bhe an n-link chain. Then Ay can be brought to C with O(n)

stmple motions.

Lemma 5.2 For an n-link chain . suppose that 4,...... 11 lie on C'. Then while
Aot 41 remain fired. I can he moved to a configuration in which either A, lies
on C or for some m > k. A, lies on C and T(k.m) is straight. Furthermore. this

can done with O(n) simple motions. See Figure 3.1.

(a) (b) ()

Figure 5.1: An initial configuration (a) and two possible final configurations (b) and
(c¢) for Lemma 5.2

Proof: Similar to Lemma 3.2. a
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Lemma 5.3 For an n-link chain T < bF. suppose that Ay. .. ... 4; and 4, lie on C
and that U(I. k) and [(k.n) are straight. for some | < k < n.
Then while A, remains fired and T(0.1) remains in RNF. and while [4,.. ... Ax] and

[ VR 1,| remain straight. Ay can be brought to C. Furthermore. this can be done

with O(1) simple motions. See Figure 3.2.

Figure 5.2: Bring 4 to C.

Proof: If initially 4 is already on C. then we are done. Otherwise we proceed as
follows.

Keeping A, fixed. and keeping [4;...... 4] and [Ag. ..o 1, straight. move 4,
towards A, along C until 4; hits C. or a4 straightens to 7. or ; coincides with A,.

By Observation 3.1. this can be done with O(1) simple motions while dg...... 4,

83



by

remain on C'.
If A4 hits C first. then we are done. [f a; straightens to 7 first. then keeping 4,
fixed. keeping 4; on C'. and keeping [4,...... 1e] and [He ..o 1,.] straight. move A,

away from o until A4 hits C. By Observation 5.1. this can be done with O(1) simple

motions. [f 4; coincides with A, first. then [4;...... 1] and [Ag.. .o 1,] coincide.
In this case. fix 4; and H4,. and rotate {44...... 1,] and (A ..o 44} counterclockwise
about A4, until A, hits C'. All together. O(1) simple motions suffice. C

The above three lemmas vield the following. for which the proof is similar to

Theorem 3.1 and is thus omitted.

Theorem 5.1 Any n-link chain inside C(o.r) can be moved to RNF with O(n)

simple motions.

From the above theorem. the reachability algorithm for ' inside a convex obtuse
polvgon can be extended in a straightforward way to handle I" inside a circle. We

mention the following, for which we omit details of the proof.

Theorem 5.2 Let [ be an n-link chain inside C(o.r). For any p inside C. condition
(%) is a sufficient and necessary condition for A, to reach p.
Furthermore, A, can be brought to any of its reachable points with O(n) simple

motions.
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5.2 Bringing a Chain to »-RNF

For any given configuration of a chain inside a circle. we extend the definition of
orientation of a single link in [HJW83] to a definition of orientation of a straight

line segment composed of one or more links.

Definition 5.2 Let [ be a chain inside C'. Suppose that [ (i. j) is straight and that |
is the line containing ['(i. j). Assume that | intersects C at p; and p,. with A, closer
to pi. Then ['(i.j) is said to have right orientation if p,})} gp;p,-. Left crientation

can be defined similarly. Refer to Figure 5.3.

(a) right orientation (b) left orientation

Figure 5.3: Orientations
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Clearly we have the following.

Observation 5.2 {4,. 4,] lying on a diameter has both orientations. Moreover.
while staying straight. [4,. A;] can change its orientation only by moving to a con-

figuration in which it lies along some diameter.

Based on the above definition. we define right oriented RNF (left oriented RNF)

as follows.

Definition 5.3 4 chain in RNF is in right oriented RNF (left oriented RNF).

denoted r-RNF (1-RNF). if its links all have right (left) orientations.

The following is immediate from Observation 5.1.

Observation 5.3 Let [ be an n-link chain in r-RNF. Then any joint of I can be

moved along any path on C' with O(1) simple motions while keeping I' in r-RNF.

The kev idea of the algorithm moving [’ < r between any of its configurations
inside C'{o.r) is to take r-RNF as a bridge. The rest of this section elaborates on

moving such a [ to r-RNF. First. we have

Lemma 5.4 Suppose that T = [4y. A,] has right orientation and that both Aq and
A, initially lie on C. Then while A, remains fired and while Aq remains on C. T

can be moved to r-RNF with O(n) simple motions.
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Proof: By induction on n. The result is trivially true when n = 1. Suppose that
the result holds for any n < m: we now show the result holds for m.
Keeping A4,, fixed. keeping Ay on C. and keeping [Ay. 4,,_|] straight. rotate L,,

about 4, counterclockwise until 4,,_; hits C'. as Figure 5.4 shows.

Figure 5.4: Move 4,,_; to C.

Clearly both L, and [Hg. 4,,-] retain their orientations. Also this is done with
O(1) simple motions. Then fixing 4,,_,. 4, and keeping 4, on C'. by the induction
hypothesis. [4y. 4,,-1] can be moved to r-RNF with O(m) simple motions. This

completes the induction proof. aQ
The following is the key step for bringing [ < r to r-RNF.
Lemma 5.5 Let [ be an n-link chain in RNF. Suppose that T(0.n—1)} is inr-RNF

and that L, has left orientation. Then while A, remains fired. [ can be moved to

37



>

»e

r-RNF with O(n) simple motions.

Proof: We show the result by considering two cases.

Case 1: I, <l,_,. as Figure 5.5 shows.

Figure 5.5: Case 1: [, < {,_|.

Fixing 4,,. move 4,_, along C clockwise until a,,_; straightens to =. Since (,, < r
and [, < r. l, +1,-, < 2r. Hence 4,_, cannot reach the point diametrically
opposite to A,. Since the distance between 4,_, and 4, increases. «,,_; increases.
Therefore. the above reconfiguration is possible. By Observation 5.3. this can be
done with O(1) simple motions while I'(0. n - 2) remains in r-RNF.

Note that 4, remains fixed. 4, _» remains on C and [, < [,_,. So L,_, cannot
lie on a diameter in the above process. By Observation 5.2. L,_; retains right
orientation in the above process. Hence {4, _». 4,| has right orientation at the end
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of this process. Next. in accordance with Lemma 5.4. move [4,_,. 4,] to r-RNF
while A4, remains fixed and A,_, remains on C. By Observation 3.3. this can be
done with O(1) simple motions while ['(0.n — 2) remains in r-RNF.

Thus in this case. [ can be moved to r-RNF with O(1) simple motions.

Case 2: [, > [,_,. as Figure 5.6 shows.

(]

Figure 5.6: Case 2: [, > [,,_;.

Fixing 4,. move A,_, along C counterclockwise until «,_, straightens to 7.
This is possible for the same reason as in Case 1. Also by Observation 5.3. this can
be done with O(1) simple motions while ['(0.n — 2) remains in r-RNF.

Note that 4, remains fixed. 4,_» remains on C and [, > {,,_;. So L, cannot lie
on a diameter in the above process. By Observation 5.2. L, retains left orientation

in the above process. Hence [, _,. A,] has left orientation at the end of this process.

P4
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If i,y + 1, <l,_y, since [,_, < r. by Case 1. [ can be moved to r-RNF with
O(1) simple motions.

Ifl,_y +1, >[,_,. we further consider two subcases.

Case 2a: l,_y + {l,—1 +{,) > 2r. Fixing A, and keeping {4,_,. 4,] straight. move
An_3 along C counterclockwise until 4,_, hits C'. as (a) of Figure 5.7 shows. This
is possible since l,_» + ({,,-; + ) > 2r. By Observation 5.3. this can be done with
O(1) simple motions while ['(0. n — 3) remains in r-RNF.

Since A,.., moves along C' counterclockwise. [4,_,. 4,] rotates about 4, coun-
terclockwise. Since [, + [, < 2r. [d,_s. A,] lies on a diameter at some moment
during the above process and passes from left orientation to right orientation. Next.
in accordance with Lemma 5.4. move [4,_s. 4,] to r-RNF while 4, remains fixed
and A,_» remains on . By Observation 3.3. this can be done with O(1) simple
motions while ['(0.n — 2) remains in r-RNF.

Thus in this subcase. I can be moved. while A4, remains fixed. to r-RNF with
O(1) simple motions.

Case 2b: l,_» + (I,_, + 1) < 2r. Fixing A, and keeping [A,_», A,] straight. move
A, _3along C counterclockwise until a,_- straightens to «. as (b) of Figure 5.7 shows.
For the same reason as above. this is possible and can be done with O(1) simple

motions while ['(0.n — 3) remains in r-RNF. Also [4,_3. 4,] has left orientation at

the end of this process.
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(a)

Figure 5.7: Two subcases of Case 2

Repeat this process until [ is in r-RNF or the entire [ becomes straight. In the
latter case. fixing 4, and keeping {dq. A,] straight. rotate [4q. 4,] about 4, coun-
terclockwise until Ay hits C. Then [4g. A,] has right orientation. By Lemma 5.4.
[o. A,] can be moved to r-RNF while A, remains fixed and 4y remains on C.

Thus in this case. I' can be moved to r-RNF with O(n) simple motions. a

Now we present a result that gives rise to the main result in rhis chaprer.

Theorem 5.3 Let I < r be an n-link chain. Then U can be moved to r-RNF with

O(n?) simple motions.
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Proof: First. move I ro RNF in accordance with Theorem 5.1. This requires O(n)
simple motions.

If L, has left orientation. then fix 4,. d,...... 4, and rotate L; about 4, coun-
terclockwise until Ay hits C'. This puts L, in right orientation.

Suppose that L. L,..... Li-; all have right orientations and that L; has left
orientation. Fix Ag. Ag_(..... 4, and move ['(0.4) in accordance with Lemma 5.5
to put [{0. k) in r-RNF. This requires O(k) simple motions.

Repeat the above process until I' is in r-RNF. All together. at most 1+2+---+n €

O(n?) simple motions are needed. a

5.3 Main Result

Definition 5.4 Two configurations of a chain are equivalent if one can be contin-

uously moved to the other.
The following is obvious.

Observation 5.4 Definition 3.4 defines an equivalence relation on the set of config-
urations of a chain . Furthermore. if U can be moved from an initial configuration
to a final configuration, then [ can be moved from the final configuration to the

initial configuration with same number of simple motions.

Now we present the main result in this chapter.
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Theorem 5.4 Let [ < r be an n-link chain. Then [’ has only one equivalence class
of configurations. Furthermore. I' can be moved between any of its confiqgurations

inside C with O(n?) simple motions.

Proof: By Theorem 5.3. Observation 5.4 and Observation 5.3. a

Next we use the preceding theorem to obtain two results by examining possible
configurations of [’ < r within C(o.r). Our results suggest that the bound r on T
to ensure only one equivalence class of configurations of I is best in some sense.

Of all the configurations of a chain. the folded one in which all interior joint
angles are either x or 0 is of particular interest. In [HJWS5]. Hopcroft. Joseph and

Whitesides proved the following.

Fact 5.1 ([HJW85]) Any n-link chain T can be folded into length < 20, with O(n)
stmple motions if there is no confining region. Furthermore. for any length less than

< 2 ez there exists a T having (. that cannot be folded into that length.

Consequently, we have the following.

Theorem 5.5 Let [ < r he an n-link chain inside C(o.r). Then I can always be
folded within C with O{n*) simple motions.
Furthermore, for any r’ > r. there ecrists a [ < 1’ such that T cannot be folded

within C.
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Proof: Since any folded configuration of length < 2r fits in C'. by Fact 5.1 and
[ < r. a folded configuration of [' within C is possible. By Theorem 5.4. [ can be
moved to this configuration with O(n?) simple motions.

The second part of theorem follows trivially from Fact 5.1. O

Note that the time complexity for folding [ inside C is O(n?).

The results of [KSW95] for folding chains of links onto a single link are for
chains whose links are of equal length. Note that. by Theorem 5.2. this situation
is trivial for circles as confining regions. as any chains of equal length links at most
the diameter can always be folded onto a single link.

We conclude by presenting a reachability result for I < r.

Theorem 5.6 Let [ he an n-link chaiflz instde C(o.r). Then no matter where [
initially lies within C. any arbitrary joint of U can reach any arbitrary point inside
C ifand only if T < r.

Furthermore. any joint of T < r can be brought to any point inside C with O(n?)

stmple motions.

Proof: First. we show the “if" part. Note that for any p inside C'. r < d,,,.(p). By
Theorem 5.2, the result holds for the endjoints.
For an intermediate joint A; (0 < { < n}. view [ as two subchains I'(0.:{) and

['(i,n) connected at A;. Since [ < r. we have ['(0.{) < r and ['(:.n) < r. Hence
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both ['(0.:) and ['(i. n) satisfy condition (). By Theorem 5.2. p is reachable by
both A4; of ['(0.¢) and A, of ['(i. n).

Therefore. there is a configuration of I' in which A; lies at p. By Theorem 3.4.
no matter where [ initially lies. [ can be moved to this configuration with O(n?)

simple motions.

To show the ~only if ™ part. note that if [ < r does not hold. then there exists

some link. sav. L,. with length /, > r. Clearly 4, cannot touch o. the center of C. T
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Chapter 6

Conclusion

6.1 Summary of the Results

\We now briefly summarize the results in this thesis.

We have studied the reconfiguration and reachability problem for planar chains
within two types of confining regions: convex obtuse polvgons and circles. We have
investigated how to design short link chains within a given environment so that an
obviously necessarv condition of reachability is sufficient as well. We have demon-
strated that this approach enabled us to go bevond previous studies of anomalous
special cases and provided insight into general reconfiguration problem.

In Chapter 1. we defined. given a simple polvgon P as the confining region. three

interdependent bounds on the maximum link length of [ inside P. namely, 6%. b%.
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and b€

Chapter 2 and 3 considered convex obtuse polvgons as the confining regions. In
Chapter 2. we characterized b¢ and proved that s, < #¢ = bf. where s,,,, is the
length of the shortest side of P. We also proved that 5% achieves its maximum w.
the width of P. if P is a regular 2k-gon.

In Chapter 3. we presented a polynomial time algorithm bringing the endjoints
of [ to any of their reachable points. This gave an algorithmic proof for # < b7,

In Chapter 1. we considered general convex polyvgons as the confining regions and
examined the properties of reachable regions. We proved that 6° < . We described
the shapes of reachable regions and showed that theyv are linearly ordered by set
inclusion. We developed the notion of [-reachable convex polyvgons and characterized
such polygons for [ < b7.

In Chapter 5. we considered circles as the confining regions. \We proved that if
each link of [ has length less than the radius of the confining circle. then I' has only

one equivalence class of configurations.

6.2 Problems for Future Research

Below we give a list of problems for future research.

(1) Determine the bound on ['. which is confined within a convex polygon P. so
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that I' has only one equivalence class of configurations. We even don’t know what
is the bound of I to avoid completely stuck configurations of [" inside P.

{2) Generalize the results we have obtained in this thesis to 3 dimensions. This is
of particular interest in practice.

(3) Investigate the reachability problem for planar arms inside convex obtuse polyv-
gons.

(4) Consider the reconfiguration problem for planar chains if links are not allowed to

cross over one another. There has been little known for the reconfiguration problem

under this more restrictive type of motions.
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