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Abstract

The filtration mechanics of the slip casting and filter pressing ceramic forming
processes are analyzed so that better cintrol can be achieved over these processes.
The rheological behaviour of alumina suspensions with different solids loadings, par-
ticle size distributions and amounts of deflocculant as well as the effects that these
suspensions have on the filtration process were studied.

During slip casting the formation of the filter cake occurs as a result of the
capillary suction pressure of the pores in the plaster of Paiis molds. Thetefore, the
mold microstructure, density, permeability, suction pressure and the effects that these
mold properties have on the filtration process are analyzed as a function of the plas-
ter/water ratio used to form the molds.

During filtration, as the cake thickness increases with casting time, fine particles
can be carried along with the filtrate and deposited within the filter cake and/or filter
medium thereby clogging and reducing the permeabilities of the porous media  This
in turn affects the growth rate as well as the permeability, density and porosity of
the cake. Evidence of cake and filter medium clogging was obtained by (1) SEM
analysis of cakes and filter media, (2) surface area measurements of cross-sections of
cakes, and (3) measurements of cake thickness as a function of casting time.

A computer model consisting of a network of tubes with a random size distri-
bution has been developed to simulate the filtration process. The model accounts
for porous media clogging due to: (1) fine particles depositing on the pore walls and

gradually reducing the pore radii and (2) pores trapping particles larger than the pore
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openings. The network model shows that the permeability of the porous medium is
dependent upon its pore size distribution rather than its average pore size. The mode)
also illustrates that minor changes in the pore size distribution due to clogging can

significantly affect its permeability and casting rate,
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Résumé

La mécanique de filtration des procédés de formation de céramiques par coulage
el par passage au filtre-presse a été analysée afine de parven a un melleur controle
de ces processus. On a donc étudié le comportement rhéologique de suspensions
d’alumine avec différentes teneurs en solides, granulométries et quantités de défloculants,
ainsi que les effets de ces suspensions sur la filtration.

Pendant la coulée en barbotine, la formation du gateau de filtre-presse résulte de
la tension capillaire des pores dans les moules en platre de Paris On a donc analysé la
microstructure des moules, la densité, la perméabilité, la pression d'aspiration et les
effets que ces proprieétés des moules ont sur le procédé de filtration en tenant compte
du rapport platre/eau utilisé pour former les moules.

Pendant la filtration, I'épaisseur du gateau augmente en fonction du temps; de
fines particules peuvent donc étre entrainées avec le filtrat et s'accumuler & 'imtéricun
du gateau et(ou) du milieu filtrant, ce qui provoque un engorgement ct rédut la
perméabilité du milieu poreux. Ce dernier phénomeme affecte a son tour le taux de
croissance ainsi que la perméabilité, Ja densité et la porosité du gateau. Nous avons
démontré qu'il y a engorgement dans le gateau et le milieu filtrant par (1) analyse au
microscope électronique a balayage des gateaux et milieux filtrants; (2) mesuice de la
superficie de coupes de gateaux; (3) mesure de I’épaisseur du gateau en fonction de
la durée de coulée.

Un modeéle informatique consistant en un réseau de tubes de dimensions réparties

de maniere aléatoire a été mis au point pour simuler le procédé de filtration. Ce
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modele tient compte de ’engorgement du milieu poreux da: (1) & 'accurnulation de
fines particules dans les parois des pores et 4 la diminution graduelle du rayon de
celles-ci; (2) a ’obturation des pores par des particules de taille supérieure aux pores.
Ce modele de réseau montre que la perméabilité du milieu poreux est fonction de la
répartition des pores selon leur taille plutét que de la taille moyenne des pores. Le
modele montre également que de petites variations dans la répartition de la taille des
pores par suite de I'engorgement de celles-ci peut avoir un effet appreéciable sur la

perméabilité et le taux de coulée.
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Chapter 1

INTRODUCTION

Advanced, structural ceramics exhibit valuable properties such as high strength
(often at high temperature), and resistance to abrasion and corrosion. The fabrication
of ceramic products of high reliability involves four basic stages: (1) raw materials,
(2) forming well-compacted shapes (green bodies), (3) densification and (4) final
machining. At present ceramic shape-forming is the most poorly understood in a
scientific context This is the most unforgiving stage of the overall process, because
miciostructural defects present in the green body cannot be easily eliminated. and
therefore carry through to the subsequent two stages, resulting in a defective ceramic
article.!: 2

The present thesis studies the filtration mechanics of slip casting and filter
pressing of alumina (Al,0;) powder. Slip casting is a shape forming method now
being used in the advanced ceramic industry to produce high strength products with
complex shapes. The ceramic green body is formed by pouring a slip composed of
micron sized powder and liquid into a plaster of Paris (gypsum) mold. The mold
behaves like a sponge and withdraws the liquid (filtrate) from the slip to form a
consolidated compact (also referred to as a cake) on the surface of the mold. The
cake thickness and the depth of penetration of the filtrate into the mold both increase

with casting time. Once the desired cake thickness is achieved and the excess slip is

poured off, the cake is removed, dried and then sintered to obtain the final ceramic
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product. The selection and processing of the powder as well as the slip and mold
preparation all greatly affect the overall process. At present, slip casting is still
somewhat of an art, therefore, to reliably reproduce advanced ceramic products a
clearer understanding of the filtration mechanics must be achieved. Filter pressing is
a shape forming process similar to slip casting except that an external air pressure
or a vacuum is applied to the slip and a permeable membrane is used as the filter
medium.

During the filtration process, the filtrate may transport fine particles through
the filter cake. The fine particles may be completely leached out o1 may be 1e-
deposited and cause clogging in the cake.

The objectives of this research work are:

1. To study the rheology of alumina (Al,03) slips with diflerent particle size distii-
butions.
2. Tostudy the effect that slip rheology and mold preparation have on the cake green

densities and rate of cake growth.

3. To obtain qualitative and quantitative evidence that the filter medium can be-
come clogged due to particles depositing in its pores and that the cake can become
clogged due to fine particles migrating through the cake and accurnulating near

the cake-filter medium interface.

4. To develop a random tube model to simulate the filtration process taking into

account clogging.

This thesis is divided into eight chapters and the presentation is as follows.
Chapter 2 provides a literature review of the ceramic fabrication process and filtration

theory applied to filter pressing and slip casting. Chapter 3 presents an experimen-
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tal study of the rheological behaviour of alumina slips with different solids loadings,
particle-size distributions and amounts of deflocculant. Filtration experiments and
their results are discussed in Chapter 4. Chapter 5 provides quantitative and quali-
tative evidence of cake and filter medium clogging. A description and results of the
random tube computer model to simulate filtration are presented in Chapter 6. In
Chapter 7 the tube model is developed further to simulate the cake build-up pro-
cess taking into account the clogging effects. Chapter 8 is a summary of the thesis

and some sample computer programs that were developed to simulate the filtration

process are listed in the appendices.




Chapter 2

LITERATURE REVIEW

2.1 THE CERAMIC FABRICATION PROCESS

The ceramic fabrication process can be seen as consisting of three stages. The
fabrication process begins with finely ground powder. The ceramic powder is then
consolidated into a green body (or green compact). The green body is then formed

into a dense product by sintering.

21.1 ALUMINA

The raw materials and their preparation are critical factors which affect the
forming and firing processes of ceramic components. One must be concerned with
both the particle size and the particle size distribution of the raw materials. Naturally
occurring minerals can be refined or new compositions synthesized so that they are
of highly controlled compesition and structure.

Alumina (Al;03) is the ceramic powder that was used for all of the experimental
work presented in this thesis. Alumina is the most universally used and the cheapest
of the high-temperature single-component ceramics. Melting at 2050°C, it remains
refractory up to 1900°C and is not attacked by molten metals and slags. It has good
mechanical strength and abrasion resistance and has excellent electrical properties

(high electrical resistivity and high dielectric strength).3
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Most alumina powder is produced from the mineral bauxite by the Bayer pro-
cess. Bauxite is primarily colloidal aluminum hydroxide (Al(OH)3) intimately rixed
with iron hydroxide (FeOH) and other impurities. This process involves leaching
with a sodium hydroxide (NaOH) solution to produce sodium aluminate (NaAlO,)
followed by controlled precipitation of aluminum hydroxide through careful seeding
which has a purity of 99.5 to 99.8%. The resulting fine-particle-size aluminum hy-

droxide can then be thermally converted to alpha alumina powder.?
24I(0H); 25 ALO; + 3H,0 (2.1)

Several comminution (particle size reduction) methods such as: ball milling,
attrition milling, vibratory milling, shatterbox milling and fluid energy milling can

be applied to produce fine-grained alumina powders.

2.1.2 SHAPE FORMING METHODS

The ceramic industry employs many forming methods such as: pressing, injec-
tion and extrusion molding, tape forming, slip casting and filter pressing. Pressing,

slip casting and filter pressing will be presented in the following sections.

2.1.2.1 Compaction by Pressing

Most polycrystalline ceramic products (non-clay based) are formed by dry uni-
axial pressing, where less than 2% moisture is present and a pressure between 20-150
MPa is applied. Other pressing processes include: (1) dry isostatic pressing (less
than 2% moisture) where a pressure between 30-700 MPa is applied; and (2) semidry
pressing which is often used with 5 to 20% moisture where a pressure between 7-100

MPa is applied.
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Uniaxial pressing involves the compaction of powder into a die by applying
pressure uniaxially. With this method production rates as high as 5,000 pieces/minute
with dimensional tolerances to +/- 1% can be achieved. The disadvantage of this
process arises from lack of uniformity in green-density caused by friction at the die
walls.

With isostatic pressing, the powder is contained in a flexible mold and pressure
is applied through a fluid. The absence of die-wall friction leads to a uniform density
throughout the sample. Furthermore, long tubes and rods can be readily produced
because the pressure can be applied across the long axis. The primary disadvantages
of isostatic pressing are a limited production rate and difficulty in achieving close
tolerances.

Complicated shapes cannot be made conveniently with isostatic and uniaxial

pressing.5' 6,78

2.1.2.2 Slip Casting and Filter Pressing

Slip casting of clay wares is generally conceded to have originated somewhere
between the years 1700 and 1740.% Alumina was the first non-clay material to which
slip-casting was applied. It was documented in a patent by Count Schwerin, published
in 1910.3 Slip casting of advanced ceramics offers the possibility of producing complex
shapes with precise tolerances. Furthermore, slip cast pieces often have a higher and
more uniform density than pressed ones.

Slip casting refers to the filling of a plaster of Paris mold, a negative of the
desired shape, with a slip consisting of a suspension of fine (micrometer size) ceramic
powder in liquid. The porous nature of the mold provides a capillary (suction) pres-
sure in the range of 100-200 kPal0. 11. 12, 13 and this capillary action causes liquid

(filtrate) to be withdrawn from the slip. As the liquid penetrates th» mold, a cast
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(also referred to as a cake) is simultaneously formed on the plaster surface. The
depth of liquid penetration into the mold and cake thickness both increase wi*h time.
Figure 2.1 illustrates schematically the slip casting process. Sometimes to increase
the casting rate, an air pressure is applied to the slip (pressure casting). The selec-
tion and processing of the powder as well as the slip and mold preparation must be
carefully controlled to reliably reproduce advanced ceramic products.

The slip casting process may be divided into two classes: (1) drain casting,
in which the slip is poured into the mold, left a short time, and then drained out,
leaving a thin shell against the inside of the mold (see Figure 2.2); and (2) solid
casting, in which the mold is filled with a slip and left until it casts into a solid piece
(see Figure 2.3).

About 30 years ago there was a controversy about whether casting of clay slips
could be attributed to both the physical capillary action of the mold and a chemical
interaction between the mold and slip that leads to local flocculation of the latter by
migrating calcium jons from the mold to the developing cast.14- 116 The chemical
process, however was shown not to play a major role in the development of the
cast. 11 1517 Currently it is accepted that slip casting is a dewatering process.

Filter pressing is a shape forming process similar to slip casting except that an
external air pressure or vacuum is applied to the slip and a permeable membrane is
used as the filter medium.! Filter pressing is commonly used by chemical engineers
to remove unwanted solids from liquids (or vice versa). The green compact formed
by the chemical engineer is frequently discarded as waste. Despite the different uses
that the chemical engineer and ceramist have for the compact they share common
goals with slip casting and filter pressing. The ceramst’s goals are to maximize green

density and casting rate and similarly the chemical engineer wishes to minimize water




(b)

Figure 2.1:  Slip casting: (a) fill mold with slip; (b) mold extracts liquid, forms
compact along mold walls (After Ref. 4).

(a)

Figure 2.2:  Drain casting: (a) excess slip is drained; (b) and casting is removed
after partial drying (after Ref. 4).

(b)

(a)

Figure 2.3:  Solid casting: (a) casts into a solid piece; (b) and casting is removed
after partial drying.

8




content in the cake and maximize the filtration rate. Because of the similarity in the
processes the ceramists have recently become interested in filter pressing and can

borrow theory and techniques from the chemical engineering filtration literature.18

2.1.3 DENSIFICATION

Green compacts are converted into a dense polycrystalline solid by a process
known as sintering. Sintering is essentially a removal of the pores between the starting
particles which results in: (1) shrinkage of the compact, (2) growth of the primary
grains and (3) strong bonding between adjacent particles. The primary driving force
for densification of a compacted powder at high temperature is the reduction in
surface free energy. Differential surface curvature causes material to be transported
to the contact region between touching particles and is described by the Gibbs-Kelvin

equation:

AG = WVl ~ )

R, R

where AG is the change in free energy on going across the curved interface, 7, is
the surface energy per unit area, V,, is the atomic volume of the mobile species and
Ry and R, are the radii of the surface curvatures of the particles and the contact
area between the two touching particles, respectively (see Figure 2.4). The radius R,
is negative and small and R, is positive and large, therefore the free energy of the
system will decrease (AG is negative) when mass is transferred to the region where
the two particles contact one another.? This mass transport will lead to shrinkage
and densification. As sintering proceeds a grain boundary forms for particles that are
crystals.

Once initially touching particles sinter, adjacent sintered grains will have dif-

ferent radii of curvature that will drive interparticle mass transport and will result

ey




Figure 2.4: Schematic illustration of material transport.

in grain coarsening (grain growth). That is, smaller grains will disappear as larger
grains grow. Therefore in a great majority of cases, two basic macroscopic aspects
of densification may be distinguished. In the initial stage, adhesion of initially loose
grains increases and a decrease in the volume fraction of pores takes place due to
rearrangement of grains in the powder. The grains become more closely packed. At
the next stage, pores are completely eliminated by the approach of grain centers and
increase of the area of contact between the grains, due to mass transport from the
intergrain contacts towards the pores.

Diffusion can consist of movement of vacancies along a surface o1 grain boundary
or through the volume of the material. Surface diffusion may contribute to an increase
in area of the grain contacts and, in this way, to greater cohesion of the assembly
of grains. Surface diffusion can change the pore shape only and not the volume
fraction of the pores (i.e., no shrinkage). Volume diffusion whether along the grain
boundaries, or through the bulk volume of the grains, does result in shrinkage (see

Figure 2.5).19: 20, 21
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Figure 2.5: Surface and volume diffusion during sintering (after Ref. 19).

2.1.3.1 Effects of Particle Size and Green Microstructure

When sintering, the particle size and size distribution are important variables
for achieving the optimuin properties in the final powder compact. Typically, the
finer the powder and the greater its surface area, the lower are the temperature and
shorter time required for densification. This can be shown by the mathematical model

developed by Kingery which determines the sintering rate.!®

AL 20y,e3D" -
T = (S e (23)

where AL/L, is the linear shrinkage (i.e. sintering rate), a2 the atomic volume of the
diffusing vacancy, D* the self-diffusing coeflicient, k the Boltzmann constant, T' the
temperature, r the particle radius (assuming equal-size spherical starting particles)

and ! is time.
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porosity

sintered microstructure

green microstructure

Figure 2.6: Schematic representation of a uniform green microstructure and the
resulting uniform sintered microstructure.

For various Bayer alumina powders, a tenfold reduction in particle size reduces

the sintering temperature by approximately 200 °C (with all else held constant)??

and 0.01 ym powders will sinter 10° - 108 times faster than micron size powders.%3 A
long time at a high temperature results in increased grain growth and lower strength.
To optimize strength, a powder that can be densified quickly with minimal grain
growth is desired.

In most cases the objective of the consolidation step is to achieve maximum
particle packing and uniformity, so that minimum shrinkage and minimum residual
porosity will result from sintering. Figure 2.6 schematically illustrates that a uniform
green microstructure can result in a dense sintered ceramic with the grain size slightly
larger than the particle size.

A controlled optimum particle size distribution is required to achieve maximum,

reproducible strength. The strength is controlled by flaws in the material. A single

particle which is significantly larger than the other particles in the distribution can

12



become the critical flaw that limits the strength of the final component. Similarly, a
large void resulting from a nonhomogeneous particle size distribution or from particles
too close to the same size may not be eliminated during sintering and may become
the strength-limiting flaw.

Submicrometer-sized particles are sintered to reduce the sintering temperature
and to obtain a fine-grain microstructure. A major problem of submicrometer-sized
particulate technology is that in this size range particles spontaneously agglomer-
ate due to van der Waals attractive forces. As a result, when these agglomerated
units are used as the building blocks of a green compact, wide variations in pore-size
distribution are inevitably introduced into the compact. Hard agglomerates retard
sintering. Large voids result, caused by poor packing around aggregates (bridging.of
aggregates). Such voids, much larger than the surrounding grains, cannot be removed
during sintering; as there is no driving force for elimination of such oversize porosity.
Inhomogeneous sintering results due to a non-uniform packing density. Figure 2.7
schematically illustrates the effects that a non-uniform green microstructure has on
the sintered microstructure. The small particles tend to dissolve into the larger ones,
and allows the grain boundaries to pull away from the pores. Around isolated ag-
gregates, the inhomogeneous shrinkage creates local microstresses which can lead to

crack formation.24: 29

2.2 COLLOIDAL SUSPENSIONS

The formation of ceramic components with submicron size particles requires
control over particle-particle interactions. In dry shape forming processes the particle-

particle interactions are difficult to control because submicron size powders in the dry
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porosity

green microstructure sintered microstructure

Figure 2.7:  Schematic representation of a sintered microstructure with dense and
porous regions resulting from a non-uniform green rnicrostructure.

state spontaneously agglomerate due to van der Waals attractive forces which can
result in heterogeneous microstructures.

Filtration of colloidal suspensions allow control over particle-particle mterac-
tions. The stability of a suspension with respect to flocculation depends on the rel-
ative magnitude of the attractive and repulsive forces of the particles involved. The
state of dispersion of colloial suspensions influence particle packing during filtiation
and the resulting microstructure development during sintering.

In a poorly deflocculated suspension individual particles can form agglomerates
that are referred to as “first-generation” agglomerates and aggregates of these first-
generation agglomerates form “second-generation” agglomerates and so on. This con-
cept of hierarchical agglomeration is schematically illustrated in Figure 2.8. Ascending
levels of agglomerate hierarchy respectively associate with ascending sizes of interag-
glomerate pores. Schilling and Aksay?0 have shown that multi-generation agglom-

erates formed 1n the suspension can retain their shape in the filter cakes and the
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Figure 2.8: Schematic illustration of hierarchical agglomeration.

resulting sintered microstructures uniquely evolve according to the particle packing
of the green microstructure. Well dispersed suspensions produce green microstruc-
tures mainly with first-generation pores that subsequently evolve during sintering into
a dense ceramic with grains slightly larger than the particle size. In contrast, floc-
culated suspensions produce fewer first-generation pores and more second-generation
pores resulting in a less densely packed and more open framework.

Often deflocculants are used to disperse a ceramic suspension. Deflocculants
can be in the form of an electrolyte, polymer (long-chain molecules) or polyelectrolyte
(ionic polymer). Therefore, a suspension can be dispersed through particle-particle
repulsive forces resulting from electrostatic interaction, the interaction of polymers

or a combination of both.27: 28
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2.2.1 VAN DER WAALS FORCES

London showed that an attraction exists between all molecules (van der Waals
attraction). The van der Waals force may be visualized by the following. In a neutral
molecule the electrons geneiate a rapidly fluctuating dipole moment The frequency
of the fluctuation is of the order of 10'® o1 10'® per second. Intaaction of these
fluctuating dipoles between molecules leads to attraction.2

The van der Waals attraction energy between two spheres of the same nature,

with radius r and center-to-center distance d., is given by:27

~Hy, 2r 2r? d? — 4r?
—_— - 9
= (d3-4r2 + 7 + In( T )) (2.4)

V;m =

where H, is the Hamaker constant, which depends on the properties of the particles
and dispersion medium. Its value generally varies between about 1072 J and 10-'% J.
For the shortest distance d between the sphere surfaces not greater than 10 nm to

20 nm and when d < r, van der Waals attraction energy can be approximated by:30

_ —HAT‘
aft ~ 12(1 .

(2.5)

2.2.2 ELECTROSTATIC FORCES

In most cases, when an electrolyte is added to a suspension, the colloidal par-
ticles will possess an electrostatic charge due too a tightly adhering layer (Stern
layer) adjacent to the particle surface which contains adsorbed ions. Oxidc surfaces
in an aqueous medium are generally charged positively under acidic and negatively
under basic conditions.2® However, a colloidal solution as a whole must be electri-

cally neutral because the charge of the particles is neutralized by an equal amount
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particle

Figure 2.9: Electrically charged particle surrounded by a diffuse double Jayer.

of counter-charges (or counter-ions) in the system. The excess of counter-ions will
be centered around the charged particle, forming a so-called diffuse double layer or
electrical double layer around it (see Figure 2.9).31

When two of these such particles approach each other, their double layers start
to overlap, giving rise to a repulsive force which increases with the inverse of the dis-
tance between the particles. As illustrated in Figure 2.10, the electrostatic repulsion
falls off as an exponential function of the distance between the particles. The distance

at which the repulsive forces become significant increases with the thickness of the

electrical double layer, 1/7:32 33

eeoMrT
l/n= (prf:f;a)m (2.6)

where ¢, is the permittivity of the vacuum, € is the relative permittivity” (= dielectric

*for water £ = 80
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Figure 2.10: Schematic representation of the diffuse double layer model.

constant) of the dispersion medium, Mg is the gas constant, T is the absolute tem-
perature, F is the Faraday constant, n, and z, are the concentration and the charge
number of the ions of type 7 in the dispersion medium. For symmetrical electrolytes

(only one electrolyte with ions of charge number +z and —z),

1/n~3x107% " ? (m) atT=298K (2.7)

where n, is in units of moles/liter. For small zeta potentials, ( and small values of

exp(—nd) an approximation for the electrostatic repulsion is:

Ve = 2ree,r(? exp (—nd). (2.8)

The zeta-potential is the potential at the plane of shear. It is assumed that liquid

18



within the plane of shear is bound to the surface. The plane of shear and Stern plane

are nearly identical.l: 34

The higher the zeta potential of the particles, the larger are the repulsive forces

between two approaching particles. A simplified relationship exists between (, the

surface charge, J,, and the diffuse double layer thickness for spherical partizles:30. 33

Jy 1 1
(=

oA l/n)' (29)

As the electrolyte concentration in a suspension is increased the surface charge density
will increase (thereby increasing () if the potential determining ions are of the same
charge sign as the particles. However, this causes the diffuse double layer thickness
to decrease (thereby decreasing (). Therefore, there is an optimum amount of an

electrolyte that can be added to a suspension to produce maximum deflocculation.

2.2.3 FORCES DUE TO POLYMERS

Adding polymers to a colloidal suspension affects the stability of the suspension.
Adsorption of polymers onto the particles either stabilize or destabilize the dispersion.
When two polymer-coated particles approach one another repulsion (steric hindrance)
can occur due to two effects: (1) If the length of the dangling chains or loops is
larger than the distance between the surfaces, their segment density distribution
and segment configuration will change (volume restriction effect). This will lead
to a decrease in entropy (i.e., decrease in disorder). (2) Furthermore, because the
concentration of the polymer will be higher in the gap than in the solution, there
exists an osmotic pressure difference between the gap and the bulk resulting in an
increase in enthalpy. In general the quantitative influence of the osmotic effect is the

more important of the two. The change in the Gibbs free energy, AG, of the system
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is given by:
AG = AFyg — TAEs (2.10)

where Ey is the enthalpy, T the absolute temperature, and Eg the entropy. The force

between two colloidal particles in the presence of a polymer can be found from:

-dAG
dr

F, = : (2.11)
Repulsion increases with the chain length, with the quality of the solvency of the
dispersion medium for the chains and with the number of chains per unit area.

Polymers can lead to attraction rather than repulsion if the particles are only
partly covered with a polymer, and the adsorbed polymer forms a macromolecular
bridge by adsorbing on two particles simultaneously (bridging flocculation). Attrac-
tion can also occur if the particles are suspended in a poor solvent where the in
tramolecular expansion factor, y 1s less than 1. The intramolecular expansion factor
is a measure of the solvency of the dispersion medium for the stabilizing polymers. At
x = 1 the repulsive potential is 0. A decrease in solvency of the dispersion medium
leads to contraction and increased entanglement of the polymer coil

Polymers may have no affimty to the surface of a colloidal particle and 1emain
free in the solution. Repulsion will occur between two approaching particles because
the free polymers must be squeezed out of the gap between the particles (depletion
stabilization). However, at small separations the gap contains no polymer and there-
fore an osmotic-pressure difference exists between the gap and solution. This results
in an attraction between the particles due to the liquid wanting to leave the gap

(depletion flocculation).%
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2.3 THEORY OF SLIP CASTING AND FILTER
PRESSING

The theory of slip casting and filter pressing is governed by the laws of flow
through porous media.3” 38 During filtration, the solid particles originally suspended
in the filtrate are deposited at the surface of the filter medium while the filtrate passes
through it. A pressure gradient across the filter cake and medium is required to drive
the filtrate through the two porous media. In filter pressing the pressure gradient can
be due to an externally applied pressure. In slip casting the pressure gradient results
from the porous structure of the mold. The frictional force due to the filtrate balances
the driving force due to the pressure gradient. The frictional forces, therefore control
the flow rate and rate of cake deposition. An understanding of the interplay of the
hydraulic pressure, flow resistance and flow rate are essential to the theory of slip
casting and filter pressing.

Some of the earlier studies lealing with the mechanics of colloidal consolida-
tion incorrectly treated the case as a diffusional process.3% 40 In 1957, Adcock and
McDowallll were the first to analyze the slip casting process as a filtration problem.
However, their model only considered the flow of the filtrate through an incompress-
ible cake and neglected the flow resistance of the mold. Dal and Deen!? later improved
the slip casting model by taking into account the resistance to flow that occurs due
to both the cake and mold. Their model was later verified by Aksay and Schi]ling.13

Tiller and co-workers have also studied and analyzed the internal flow mech-
anism in cakes formed by slip casting!! and filter pressing.4*-50 Tiller has further
extended the slip casting model to account for cake compressibility.

It is customary to divide the mathematical analysis of filter operations into two

parts; (a) the mechanism of flow within the cake and (b) the external conditions
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Figure 2.11:  Schematic diagram of (a) a compressible and (b) an incompressible
cake structure.

imposed upon the filter cake by the filtering system.** In analyzing the internal flow
(i.e., within the cake itself) it must be recognized that the distribution of hydraulic
pressure, F; and cake porosity are functions of distance through the cake, x whereas
the volume of filtrate per unit area, W and cake thickness, L are functions of time, {.

It is well established that flocculated slips always result in a cake that is more
loosely packed at the cake-slip interface than at the filter medium-cake interface. The
compressible cake is characterized by variation in porosity with distance through the
cake. However, deflocculated slips result in a more uniform density throughout the
thickness of the cake.?8

Figure 2.11 illustrates schematically a flocculated (compressible) and a defloc-

culated (incompressible) cake structure. Flow is from the slip through the cake and
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through the filter medium. For a compressible cake (Figure 2.11(a)), maximum poros-
ity occurs at the cake-slip interface (z = L). The drag force imparted to the particles
results in a compaction process that causes the porosity to decrease; thus, the poros-
ity is a minimum at the filter medium-cake interface. For an incompressible cake

(Figure 2.11(b)), the porosity is constant throughout the cake.

2.3.1 PRESSURE DISTRIBUTION

The applied pressure, P or more specifically for slip casting, the capillary suction
pressure of the mold, causes the filtrate to flow into the mold leaving behind layers of
deposit (cake) through which subsequent liquid must flow. The hydraulic pressure,
P, drops throughout the cake and mold due to the liquid flowing frictionally past the
particles of both the cake and mold. The positive pressure developed at the cake-slip
interface due to the head of the slip is negligible compared to the suction pressure.
Therefore, the drop in hydraulic pressure from the cake-slip interface to the liquid-
vapor interface in the mold (or filter medium) is equal to the suction pressure of the
mold (or applied pressure). This pressure drop is the sum of the drops across the
cake, AP, and mold, AP,.:

P = AP, + AP, (2.12)

Figure 2.12 shows a schematic diagram of the pressure distribution.

2.3.2 VARIATIONS IN CAKE DENSITY

The particle size, shape, size distribution, solids content of the slip as well as
the degree of stability (in terms of flocculation) all affect the cake density. Cakes of
equivalent masses may have different volumes. Therefore, a material balance based

upon volume is required for the slip, cake and filtrate.
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Figure 2.12:  Schematic diagram of the pressure distribution across the cake and
mold for an incompressible cake.

The volume of slip must equal the volume of cake plus the volume of filtrate.

A volumetric balance on a unit cross-sectional area gives:

o yw (2.13)
€5l €eav
and
We = €qy L (2.14)

where w, is the volume of solids per unit area in the cake, L is the cake thickness, ¢,
and €., are the volume fractions of solids in the slip and cake, respectively and W
is the volume of filtrate per unit area. Substituting equation (2.14) into (2.13) and
rearranging yields:

W = L(€qy/€st — 1) (2.15)
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For slip casting where the filtrate is permeating a distance L,, into a mold:

W = emLn (2.16)

where ¢,, can be considered to be constant and is the volume fraction of water in
the wetted part of the mold. The cake thickness can be related to L,, by combining

equations (2.15) and (2.16):

Lm 6¢:¢m/fal -1
—_—= 2.17
i7 - (2.17)

These volume balance relationships are combined with flow equations in the following

section to obtain an expression for the growth rate of the cake thickness.

2.3.3 FLOW THROUGH PGROUS MEDIA

Flow through porous media is described by Darcy’s law:

dP,
— —HalK (2.18)

where p is the viscosity of the filtrate, q is the apparent flow rate per unit arca and
dP,/dz is the pressure gradient. The proportionality factor K is called the perme-
ability and only depends on the structure of the porous medium. The flow rate, ¢ is
the same in both the mold and cake. By integrating the above equation over the cake

thickness the pressure drop across the cake, AP, is determined:
0 L
/ 4P =AP.= ]0 pq/Kdz = pqL/K. (2.19)

where K. is the permeability of the cake. Similarly, by integrating equation (2.18)

over the depth of penetration of the filtrate into the mold, L., the following expression
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is obtained for AP,,:

-P, 0
= P - = dx = ¢ 92
/ _ dPi=P-AP. / L nafKde = pgLn /K, (2.20)

where K, is the permeability. By dividing equation (2.19) by (2.20) and solving for
AP, yields:

P
P.= 21
A= KTk 1 (221)
Substituting equation (2.17) into (2.21) yields:
P
AP. = - (2.22)
lcauf’:gl"l ('\A:'_) + 1

For compressible cakes, Tiller has considered K, and €., to be unique functions of
APF.. Equation (2.22) shows that AP, is independent of time and is therefore a
constant. As soon as liquid penetrates the mold and a cake begins to form, the equi-
librium AP, is reached and remains constant throughout the process. Consequently,
€cav and K. also remain constant.

In filter pressing, the medium (filter paper) has a constant resistance (L, /K ,)
since L,, is constant but the cake resistance (L/K.) increases with time. As the cake

builds up, A P. increases with time.

2.3.4 GROWTH RATE OF CAKE THICKNESS

Using Darcy’s law a relationship for the variation of cake thickness with time

can be found. From equations (2.15), (2.19) and (2.22) it is found that:

dW dL P
g=— = “(fcau/fsl - l) = —— . (2.23)
t ot pL((feelia=l( Ly 4 ;L)
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Integrating the above equation shows that the cake thickness is proportional to the

square root of the casting time:

2Pt/ u

L? = _
(fc“”/fsl - 1)(t + %_H)
- (2.24)

where B is a constant.

2.4 MIGRATION OF FINE PARTICLES

The filtration process is not as straightforward as the above theory indicates.
As described by Heertjes%0, two important conditions that can lead to results different
from those predicted by theory is: (1) The filter medium resistance is not just that
of the medium but results from cake and filter medium interactions at the start of
filtration. (2) Fine particles can migrate in the cake.

The beginning of cake filtration is usually different from the rest of the process
and depends on interactions between the particles of the slip and filter medium. In
general, the filter medium is inhomogeneous. The pores of plaster of Paris molds or
filter paper are not uniform in size and are unevenly distributed over the surface.
Therefore, over the surface of the filter medium, the local flow-rate of the filtrate will
show large differences leading to inhomogeneity of the cake.

During filtration the permeability of the filter medium need not be constant.
Some particles, depending on the ratio of pore diameter to particle diameter can either
enter a pore or cover the pore opening. Clogging of the filter medium pores will cause

a decrease in filter medium permeability. The filter medium permeability will also
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decrease if particles that are very small with respect to the pore diameter adsorb onto
the pore walls and reduce the pore radii. A derivation of the so-called blocking laws
for filter media are presented by Hermia.5” Rushton and Hassan® have studied filter
medium clogging and bridging as a functior: of the medium pore structure, filtration
velocity and slip concentration. They found that medium clogging is reduced with
increase in slip concentration and filtration velocity.

Another effect which perturbs the simple theory is that of the migration of fine
particles. The filtration theory assumes that when a suspension is passed through
a filter medium the solid particles are deposited layer upon layer to form the cake.
However, fine particles present in the slip can migrate through the cake. These
particles may be completely leached out or may re-deposit in the cake and/or filter
medium. The re-deposited fines can clog the free flow paths of the cake and/or filter
medium and thus influence the cake and filter medium permeabilities.

Tiller and co-workers*¥ 45 have shown that during the filtration of liquefied
coal: (1) The permeability of the filter medium can decrease throughout the entire
filtration process. (2) Variation in local cake permeability can occur due to deposition
of small particles migrating through the pores.

Notebaert et al.9 as well as Karr and Keinath?™ have studied clogging in filtia-
tion experiments. They observed deviations from straight line plots of total resistance
versus volume of filtrate These deviations were a result of cake and filter medium
clogging.

At present clogging during filtration is not fully understood. To account for
migration and deposition of fine particles Tiller and Chow?? have only suggested
some empirical equations to describe the cake and filter resistances and no analyses

of clogging during slip casting has yet been developed.
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Chapter 3

RHEOLOGY OF ALUMINA SLIPS WITH
DIFFERENT PARTICLE SIZE
DISTRIBUTIONS

It is widely recognized that the characteristics of the slip plays a major role in de-
termining the characteristics of the green microstructure formed during
filtration.15 62-65 Upiformity of the green microstructure is essential for producing
a compact with a high uniform density. Sintering of ideally packed green microstruc-
tures results in significantly reduced sintering temperatures, very little grain growth,
reduced defect size and most importantly, a reliable final product. Control over the
rheology (i.e., dispersion) of the slip is required to obtain a uniform microstructure.
As discussed in the literature review, deflocculants in the form of an electrolyte, poly-
mer or polyelectrolyte can be used to disperse colloidal suspensions. Particle-particle
repulsion helps assure both the breakup of the soft agglomerates held together by van
der Waals forces and the formation of a well-dispersed suspension. A knowledge of
the rheological behaviour of susp :nsions is essential to gain quality control over the
stability of the suspensions.

An experimental study of the rheological behaviour of alumina slips with dif-
ferent solids loadings, particle-size distributions, and amounts of deflocculant will be
presented in this Chapter. Filtration experiments will demonstrate that the rheology

of a slip greatly affects the green density and growth rate of the cake.
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Figure 3.1:  Particle size distribution curves for the fine and coarse alumina
powders.

3.1 POWDER CHARACTERISTICS

A coarse (C-71FG), fine (A-16SG) and a mixture of these two grades of alumina
powders were used for the rheological study and filtration experiments. The particle
size distribution of each powder as measured by X-ray sedimentation (i.e., sedigraph)
is shown in Figure 3.1 The coarse and fine powders had median particle sizes of
4.2 pym and 0.4 pm, respectively. Table 3.1 is a summary of the characteristics of the
alumina powders.

Two types of deflocculants were used: (1) sodium polymethacrylate in an aque-
ous solution (Darvan 7), and (2) hydrochloric acid (HCl). Viscosity measurements

were carried out to analyze the state of deflocculation of the alumina shps A model
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Table 3.1: Properties of aluminas

| Powder Grade 1 _CT7IFG | A-165G |

[ALOs, % 9.5+ 99.5+
Na,03, % 0.3 0.08
Median Particle size* 4.2 0.4
Surface Area, m?/g 1 9
Thermal Reactivity nonreactive | reactive
Purity intermediate high
Supplier Alcan Alcoa

*Measured by X-ray sedimentation
Source: Adapted from references 51, 52, and 53.

115 Rheomat viscometer, fitted with a cup and bob was used for the viscosity mea-

surements.

3.2 DEFLOCCULATION AND VISCOSITY

Viscosity u is defined as the ratio of the applied shear stress, 7 to the shear

rate, y:

(3.1)

210

Figure 3.2 shows different types of rheological behaviour. For a Newtonian fluid such
as water, the viscosity is a material constant; there is a linear relation between r and
3 and its viscosity is low. If ¢ small amount of particles is added and if they stay well
dispersed in the water then a low Newtonian viscosity is still measured.

When the concentration of the suspension is increased, there are two possibili-

ties:
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Figure 3.2: Different types of rheological behaviour.

(1) The system is an unstable, flocculated suspension, which means that the parti-
cles are aggregated. A shearing force has to overcome the structural forces. If this
happens at a critical value of the shearing stress (i.e., the yield stress beyond which
flow occurs more readily) a Bingham type of flow, or plastic behaviour occurs. If the
structural forces are less well defined, a more continuous curve is measured and this
type of flow is referred to as pseudo-plastic (or shear thinning)

(2) The system is deflocculated and for low rates of shear the fluid shows Newtonian
behaviour, as no structural network is built up. However, with increasing shear rate
the viscosity increases. This flow behaviour is referred to as dilatancy (or shear thick-
ening). Dilatancy occurs when the concentration of a stable suspension is increased.
A high shearing force presses the particles together in an irregular pattern and, as a

result, the resistance to flow increases quickly with shearing stress.
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Thixotropy can occur both in stable and in unstable suspensions. During flow
there is continuous disruption and re-linking of interparticle bonds. The re-linking
has a certain relaxation time and at high shear rates no re-linking occurs, resulting
in a decrease in viscosity. Therefore, the “up” and “down” shear rate versus shear
stress curves differ because of time effects. In many ceramic suspensions there is a
combination of the different types of rheological behaviour described above.

Deflocculation depends on the forces of attraction and repulsion between the
particles. The suspension viscosity changes with the amount of deflocculant added.
The lower the viscosity of a suspension for a given solids loading the better defloc-
culated it is because decreased flocculation increases the amount of liquid available
in the slip for shear. Anderson and Murray®® have shown that a low viscosity of a

suspension is associated with a high zeta potential (i.e., well deflocculated) of the

particles and vice versa.

3.2.1 ALUMINA SUSPENSIONS

To explain the rheological behaviour of alumina slips an understanding of the
chemistry of alumina-water systems is essential. Particles present in the suspensions
can be divided into two classes: those particles having colloidal dimensions that affect
the rheological behaviour of the suspension upon addition of a deflocculant, and those
particles larger than colloidal size that are inert and act as a filler in the suspension.
A colloid is considered to be approxir-~tely 1 um or less but this upper limit is
somewhat arbitrary.

Each particle of alumina of colloidal size holds an attached water layer, and
possesses a net charge at the outer edge of this layer due to the presence of prefer-
entially adsorbed ions on the surface of the particle and counterions in the medium

surrounding the particle.
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In an acidic slip the preferentially adsorbed ions are hydrogen ions (H+).56. 57
In a basic slip, the hydroxyl ions (OH™) are preferentially adsorbed or, for car-
boxylated (COO™~) based polymers it is the carboxylate ions that are preferentially

adsorbed %8 99

3.2.1.1 Hydrochloric Acid

The surface crystal structure of alumina is shown in Figure 3.3. When hy-
drochloric acid (HCI) is added to the alumina suspensions, HCI dissociates in the
presence of water to produce hydrogen cations (H*) and chloride anions (Cl~). As
the acid is added to the suspension, the hydrogen cations are adsorbed onto the
surface of the alumina particles and the chloride anions act as the countercharges
forming the diffuse layer surrounding the positively charged alumina particles (see
Figure 3.3). This system gives rise to repulsive forces between particles and, under

proper conditions, deflocculation results.

3.2.1.2 Darvan 7

Darvan 7 1s a sodium polymethacrylate 1n an aqueous solution (1.e., polyelec-
trolyte) and has a pH of approximately 10. The chemical structure of sodium poly-
methacrylate 60 is shown in Figure 3.4. Because this ionic polymer has ionizable side
groups (COONa) it will deflocculate the alumina suspensions both by electrostatic
effects and polymeric adsorption.

Upon the addition of Darvan 7 to the slip hydroxyl (OH~) as well as the poly-
mers will tend to be adsorbed onto the alumina. ‘I'he carboxylate (COQO~) anions and
sodium (Na*) cations will dissociate producing charged polymer side groups and will
give the particles a negative surface charge. Since the suspension as a whole must be

electrically neutral, the excess of positive ions (Na*) over negative ions (COO~) that
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Figure 3.5:  Schematic illustration of alumina suspension deflocculated using
Darvan 7.

exist in the solution will surround the particles to form a diffuse layer of positively
charged ions (see Figure 3.5). Thus, under appropriate conditions this system will

produce repulsive forces between the particles.

3.3 SLIP RHEOLOGY

Figures 3.6, 3.7, 3.8 are graphs of viscosity versus volume concentration of
Darvan 7 for A-16SG (fine powder) slips with different volume solids loadings, ¢,.

Volume concentration is defined as the volume of deflocculant per unit volume of slip
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Figure 3.7: Viscosity versus deflocculant concentration for A-16SG slips; ¢, = 0.43.
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Figure 3.8: Viscosity versus deflocculant concentration for A-16SG slips; ¢, = 0.47.

and solids loading is defined as the volume of solids per unit volume of slip. The graphs
show that slip viscosity initially decreases with increasing concentrations of Darvan 7
and, after a minimum in viscosity is reached (i.e., maximum deflocculation), a levelling
off followed by a gradual increase in viscosity occurs. The viscosity versus deflocculant
concentration curves for the C-T1IFG (coarse) powder and a 50/50 mixture of the
coarse and fine powder had similar shapes to the A-165G curves.

An increase in the amount of Darvan 7 added to the slip can result in two
opposing electrostatic effects: (1) an increase in the zeta potential (i.e., decreases
viscosity) because of an increase in the surface charge density and (2) a decrease in
the zeta potential (i.e., increases viscosity) because the diffuse layer is compressed. It
is also known that for adsorbing non-ionic polymers there is a compromise between
attractive and repulsive forces. The repulsive forces arise from changes in entropy of

the system when two surfaces coated with the polymer approach one another, begin to
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interpenetrate and compress during the collision process. The attractive forces result
from polymer bridging (segment-segment interaction). As a result nf the opposing
attractive and repulsive forces due to electrostatic and polymeric effects there is an
optimum amount of Darvan 7 that must be added to the alumina slips to maximize
deflocculation (i.e., minimize viscosity). This is illustrated in Figures 3.6-3.8.

The addition of Darvan 7 has much less effect on slip viscosity at a high shear
rate (curve (2) in Figures 3.6-3.8). The differences in the viscosities for the two
curves can be attributed to the shear-thinning (i.e., 4 decreasing with increase in %)
behaviour of the slips. Shear thinning can be a characteristic of a flocculated slip
since, under low shear rate conditions, liquid is immobilized in the interparticulate
void space of the flocs and floc networks. As the shear rate is increased, the flocs and
floc networks break down and the entrapped liquid is released.6! This shear thinning
behaviour is illustrated in Figure 3.9. It is a graph of viscosity versus shear rate for
A-16SG slips that contained an amount of Darvan 7 that maximized deflocculation
(curve (1)) and poorly deflocculated the slip (curve (2)). Curve (2) is shear thinning
to a much greater extent than compared to curve (1).

The viscosity is also dependent upon the solids loading, ¢, of the slip as shown ia
Figure 3.10. The A-16SG slips in Figure 3.10 are at maximum deflocculation. With
an increase in ¢, the effective separation of the particles is reduced and increased
interference between the particles causes an increase in the viscosity. The graph also
shows that the slips are all shear thinning and this behaviour is more pronounced
with increase in solids loading. Despite the large repulsive forces, the formation of
flocs and floc networks is unavoidable under conditions of high solids loadings and
low shear rates.

A-165G slips were also deflocculated with hydrochloric acid (HCI). Figure 3.11
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is a graph of viscosity versus HCI volume concentration. As was also found for Darvan
7; viscosity decreased with increase HC] concentration and after a minimum viscosity
was reached the viscosity gradually increased with increase in HCI concentration.
The minimum viscosities obtained for the Darvan 7 and HCl slips are approximately
equal.

The A-16SG powder has a larger proportion of colloidal-size particles than the
C-T1FG powder (Figure 3.1); therefore, each powder and the mixture of powders
exhibit different rheological properties. Figure 3.12 shows viscosity versus shear rate
curves for the three grades of alumina powder. The slips were at maximum defloccu-
lation.

The slip that consisted of coarse (C-71FG) powder (curve (1)) was shear thick-

ening. Shear thickening can be attributed to the solids forming a close-packed system.
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Therefore, when the slip is subjected to a shear stress, the solids packing is disturbed
and the packing density decreases. The liquid must flow through the narrow passages
and fill the voids. At low shear rates, this occurs easily; however, at high shear rates,
the flow becomes disordered, leading to an increase in viscosity.?6: 61 The particles
must be deflocculated and be able to move freely over one another to assume these
closed packed positions. The slip was well deflocculated due to the small fraction of
colloidal particles in the C-71FG powder. Shear thickening was found to be more
pronounced with increase in solids loading as a result of the smaller particle-particle
separation distances.

Slips that contained a 50/50 mixture of coarse and fine alumina were initially
shear thinning with an increase in the shear rate, reached a minimum viscosity, and

then began to slightly shear thicken (curve (3)). This would appear to he a combi-
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nation of curves (1) and (2), as might be expected.
In the following chapter it will be shown how the rheological properties of these

slips affect the green microstructure and casting behaviour during filtration.
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Chapter 4

EXPERIMENTAL INVESTIGATION OF
PARAMETERS THAT AFFECT THE
FILTRATION PROCESS

4.1 SLIP CASTING AND FILTER PRESSING
EXPERIMENTS

To analyze the slip casting process one-dimensionally, beds of plaster of Paris
about 70 mm deep were cast in 25 mm diameter glass tubes (see Figure 4.1). The
tubes with the beds of plaster were dried at 80 °C to constant weights before use.
During filtration, due to the difference in solids concentrations between the slip and
cake, the slip-cake interface could be seen with the aid of a bright Iight. To analyze
the rate of cake growth, the slip was poured into the tube and measurements of the
cake thickness, L, as a function of time, t, were made. After the process had been
allowed to continue for 1 hour. the excess slip was poured off the crke The cake and
the glass tube were dried and then the cake was removed from the tube so that its
green density could be measured.

The experimental filter pressing assembly consists of a 40 mm (inner) diameter
clear Plexiglass tube fitted with a perforated Plexiglass bottom plate. Filter paper
rests on top of a metal grid that rests on top of the perforated Plexiglass plate. The
top of the tube is capped by a horizontal plate that has an air inlet and a slip inlet.

The slip inlet is sealed by a plug after the slip has been poured into the filter press
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Figure 4.1: Slip casting apparatus.

(sec Figure 4.2). The filter pressing operation is carried out by applying a steady
air pressure to the top free surface of the slip. The filtrate drains out of the slip
through the perforated bottom plate and the cake deposits on the filter medium.
The lower section of the apparatus can be easily separated from the upper section
to facilitate removal of the cake. Again, as with the slip casting experiments, the
boundary between the cake and slip could be seen with the aid of a bright light and
therefore the cake growth rate could be studied.

In tlus chapter, results of slip casting experiments will be presented and in the

following chapter most of the results pertain to filter pressing experiments.
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4.2 PLASTER OF PARIS MOLDS

Plaster of Paris is prepared commercially by calcining naturally occurring gyp-
sum (calcium sulphate di-hydrate; CaSO, - 2H,0) at approximately 160 °C until
about three-quarters of the water of crystallization has been driven ott, leaving cal-

cium sulphate hemi-hydrate (CaSO4 - 0.5H,0) as the product:?1 72
CaS04-2H,0 = CaS0,4 - 0.5H,0 + 1.5H,0. (4.1)

Molds are formed by mixing water with the hemi-hydrate. At room temperature
the solution is super-saturated with the calcium sulphate di-hydrate and so the di-
hydrate crystallizes out and sets into a porous solid. The microstructure of the mold
plays a vital role in the slip casting process because it is the mold pore structure that
provides the capillary suction pressure and therefore affects the growth rate of the
cake.

Capillary pressure is ejual to:
P=o,c0s0/m (4.2)

where o, is the surface tension of water, cos 6 defines the degree of wetting of the
capillary walls and m is the hydraulic radius of the pores. The hydraulic radius, m
is defined as the quotient of the volume and the internal surface area of the pores.

Therefore, for complete wetting (cos# = 1) of a circular tube of diameter, d,:
P =40,/d;. (4.3)

In general, the finer the pore structure the greater the capillary pressure.
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4.2.1 PLASTER/WATER RATIO

The microstructure of the mold 1s affected by the amount of water mixed with
the plaster of Paris powder (i.e., plaster/water ratio) and also by the stuniing 1ate and
stirring time.”3 Figure 4.3 shows that the mold density incieases significantly with
the plaster/water ratio.

The microstructures of molds with different densities were examined to observe
qualitatively what effect the change in mold density had on the pore structure Fig-
ure 4.4 shows SEM micrographs of molds with three different densities. The gypsum
crystals of the mold with the low plaster/water ratio of 0.9 (Figure 4 4(A)) have the
largest aspect ratios and these lath shaped crystals are randomly stacked in bun-
dles. However, the crystals of the mold with the high plaster/water ratio of 2.1

(Figure 4.4(C)) have much smaller aspect ratios and have a more disorderly crystal

48



packing arrangement.

Experiments were carried out to examine how the plaster/water ratio (i.e., mold
density) affects the suction pressure and hence the filtration process.

According to Darcy’s law, the suction pressure, P can be determined if the

permeability, K, of the mold and the flow rate, ¢ of water through the mold are

known:
Ly
P = ﬂql—{:. (4.4)
The flow rate can be expressed as:
dL,,
q= Cm"'zt_' (45)

where ¢,,, as defined earlier in section (2.3.2), is the fraction of water in the wetted

p rt of the mold. Hence, the suction pressure can be expressed by the ratio of the

square of L,, and time, t:

L pem
P==p. T (4.6)

To obtain values for L%/t and ,,, water was poured into the glass tube and
mold assembly. Measurements were then taken of the depth of penetration of the
water, L., and drop in head of water in the tube, (H, — H,) as a function of time, ¢,
(sec Figure 4.5). The volume fraction of water in the wetted section of the mold, ¢,,
is given by the following ratio:

(HO—H,)

m —1
Ly,

(4.7)

The permeabilities of the saturated molds were measured by using a method

similar to the “falling head” permeability test used for fine-grained soil permeability
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Figure 4.5: Depth of penetration of water into the mold, L,,, and drop in head of
water in tube at time, t,.

measurements.’? The experimental set-up is shown in Figure 4.6. The molds were
tested in the glass tubes that they were originally formed in. The length of the mold
is L, and has a cross-sectional area A. A cork with a standpipe of internal area A,
is connected to the top of the tube. The tube rests on a coarse wire grid and sits
in a dish filled with water. The water drains into the dish and spills over its sides.
The dish serves as constant level reservoir. The standpipe is filled with water and a
measurement is made of the time t, for the water level (relative to the water level in
the dish) to fall from H, to H,. At any intermediate time ¢t the water level in the
standpipe is given by H and its rate of change by —dH/dt. At time t the difference
in total head between the top and bottom of the mold is H. Therefore, applying

Darcy’s law:

dH AKnyH
- A = L (4.8)
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Figure 4.7: Mold adsorption rate of water as a function of mold density.

and applying the limits of integration yields,

A /H: dH AK,,,—,/ i 1.9)

[

By integrating equation 4.9 it is found that:

Aal‘Lm HO
m = ——2]p — 4,
K i In 7 (4.10)

Figures 4.7-4.10 show graphs of L2 /t, ¢, K, and P as a function of mold
density, respectively. With increase in mold density, L% /t, ¢, and K., all decrease.
Figure 4.8 shows that the values of ¢,, are lower than the mold porosities™ implying

that all the pores are not completely filled with water. The mold porosities are

*density of gypsum = 2.32 g/cm®
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represented in Figure 4.8 by the dashed line. The experimental data for the suction
pressure results are in the range of 100 kPa (see Figure 4.10). The results imply
a slight increase in pressure with increase in mold density but these results are not
totally conclusive due to the large scatter in the data.

During slip casting part of the suction pressure is required to overcome the
resistance to flow in the pores of the mold. Equation(2.21) of section (2.3.3) showed
that the pressure drop across the cake, AP,, or in other words the pressure available

for cake formation is equal to the following expression:

P

= Ik (LK) + 1 (4.11)

AP,

This expression shows that the larger the permeability of the mold the greater pro-

portion of the suction pressure is available for cake formation.
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Fine pores exert a high suction pressure but also a high resistance to flow
thereby reducing the fraction of the suction pressure available for cake formation.
Hence the rate of cake buildup, (L?/t) does not necessarily increase with suction
pressure. The ratio, (LmK.)/(LKy) is critical to determining the extent to which
the suction pressure contributes to cake formation.

A-16SG slips were cast using molds formed with different plaster/water ratios to
examine the effects the different mold microstructures have on the filtration process
The experimentally measured permeabilities of the A-165G cakes are of the order of
1 x 107! m? and ratios of L,, /L are typically about 2. The K,, versus mold density
graph (see Figure 4.9) shows that K,, ranges from about 200x107!* m? to 3x10~*
m? for mold densities ranging from about 0.7 to 1.1 g/cm®. The low mold densities
have significantly higher permeabilities than the cake permeabilities and therefore the
suction pressure exerted by the mold is almost completely utilized for cake formation

(see Table 4.1). However, with increase in mold density the mold resistance becomes

Table 4.1: AP./P* for different values of K,
K., x 10% (m2) 200 100 10 5 1 0.5 0.1
AP,/ P* 0.999 | 0.998 | 0.980 | 0.962 | 0.833 | 0.714 | 0.333
*Lm/L=2 and K,=1x 10716 q?

mcre significant and more of the suction pressure of the mold is used to overcome
flow resistance in the mold.

Figure 4.11 is a graph of constant B (= L?/t) and cake density versus mold
density for A-16SG slips. As the plaster/water ratio increases (i.e., increase in mold
density), cake density remains constant and constant B showed only a very slight,
if any, trend of an increase. There was some variability in these results as was also

found for the suction pressure results. Figure 4.10 showed that the increase in suc-
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Figure 4.11:  Effect of mold density on the cake green density and constant

B(= L%*/t) for A-16SG slips; ¢, = 0.39.
tion pressure with mold density was minor but still more significant than what was
found for constant B. A possible explanation for this is that as the suction pres-
sure increases with mold density, the fraction of pressure utilized to overcome flow
resistance in the mold becomes more important at the higher mold densities thereby

negating the increase in pressure available for cake formation.

4.3 INFLUENCE OF PARTICLE SIZE DISTRIBUTION
ON CAKE DENSITIES

The porosity for randomly packed unagglomerated mono-sized particles is ap-
proximately 40% regardless of the particle diameter.> However, mixing fire particles

with coarser particles allows the fines to fill the voids between the coarse particles.
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Figure 4.12:  Cake green density versus slip voiume solids loading (mold formed
using a plaster/water (g/g) ratio of 1.5).

The wider and more continuous the particle size distribution, the lower the voids
volume of the system.

Figure 4.12 is a graph of cake density versus shp volume solids fraction, ¢
for the coarse (C-7T1FQG), fine (A-165G), and 50/50 mixture of the coarse and fine
alumina powders being analyzed. All the slips contained an amount of Darvan 7 that
produced a minimum 1n viscosity. As expected, this graph shows that the compacts
containing a 50/50 nuxture of the alumina powders give the highest green densities
for all slip solids loadings.

The degree of flocculation in the slips also affects the cake green densities.
Hauth®7 has analyzed the variation in alumina cake green decnsities (produced by
slip casting) with the change in degree of flocculation in the slips. With all else
held constant, it appears that the greater the flocculation 1 a slip, the higher 1o the

porosity a.ad, therefore, the higher the cake permeability and lower the green density.
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As discussed in Chapter 3, the A-16SG slips, at minimum viscosity, were found to
be shear thinning, which could suggest that some degree of flocculation exists. The
<hear-thinning behaviour increased with an increase in solids loading. This explains
why the densities of the A-16SG cakes decrease with an increase i1n €.

The densities of the C-T1FG cakes increase with an 1ncrease in solids loading.
In Chapter 3, slips containing an amount of Darvan 7 that produced a minimum in
viscosity showed shear-thickening behaviour, and this behaviour became more pro-
nounced as the solids loading was increased. Shear-thickening behaviour is a charac-
teristic of a slip that forms a close-packed solids arrangement. Therefore, the cake
green density increases with an increase in shear-thickening behaviour.

Equation (2.24) of section (2.3 1) implies, in general, that constant B should
increase with ¢, or K, or decrease with cake density with all else held constant. Plots
of constant B versus slip solids loading are presented in Figure 4.13. The rates of
cake buildup for A-165G slips increase. due to flocculation, with solids loading; this
is the critical parameter causing the cake density to decrease.

The rate of cake buildup of C-71FG slips increases shghtly with solids loading,
even though the cake densities are also increasing. It is important to note that an
increase in cake density does not always assure a decrease in /.. Permeability is very
sensitive to the pore size distribution. In Chapter 6, a computer model will show
that two cakes with the same porosity and mean pore size can have very different
permeabilities The model found that the wider the pore size distribution the lower
the cake permeability. Therefore, the very slight increase in constant B for the C-
T1FG slips can possibly be attributed to two factors: (1) the increase in ¢y is more
critical in affecting constant B than is the cake density and (2) even though the cake

density is increasing with ¢,;, cake permeability may not be decreasing. The denser
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packing arrangement may also be more uniform, negating any decrease in I.. The
cake density and constant B values are relatively constant for the 50/50 alurmina
mixture due to a combination of effects: (1) the C-TIFG powder forming a tighter
packing arrangement and (2) the A-16SG powder forming more flocs with incicase in

solids loading.
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Chapter 5

EXPERIMENTAL OBSERVATIONS OF
MIGRATION OF FINE PARTICLES

Experimental work that has been carried out -hows qualitatively and quanti-
tatively that a cake and/or filter medium can become clogged due to fine particles
migrating through the cake and accumulating near the cake-filter medium interface.

This in turn will affect the growth rate of cake thickness as well as the permeability,

density and porosity of the cake.

5.1 SEM CAKE MICROSTRUCTURES

Slip cast and filter pressed alumina cakes were examined using a scanning elec-
tron microscope (SEM) to illustrate cake clogging.

Three grades of alumina powder were used for most of the filtration experiments:
(1) a coarse powder (C-71FG), (2) a fine powder (A-16SG) and (3) a wide particle
size distribution powder (A-17). The A-17 powder is commonly used for slip casting.
The C-71FG, A-165G and A-17 powders have mediau paiticle sizes of 4.2 pin, U4
pm, and 3.0 - 3.5 um, respectively. The slips had a volume solids loading, €,; = 0.39
and were deflocculated with Darvan 7.

SEM micrographs of alumina microstructures illustrate that a higher concentra-

tion of fine particles can accumulate at the bottom section of a cake. Figure 5.1 shows
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micrographs of longitudinal cross-sections of a green cake consisting of 90 % coarse
and 10 % fine alumina. The slip was filter pressed at 345 kPa (50 psi). Micrograph
(A) shows an area near the top surface of the cake and is relatively free of fine par-
ticles. Micrograph (B) is of the same magnification and shows a cross-section at the
bottom of the cake near the interface with the filter paper. The fine particles that
have percolated to the bottom of the cake are quite evident. Figure 5.2 1s a micro-
graph of a top view of the powder that has remained on the filter paper after the cake
was separated from the filter paper. The micrograph shows that a large amount of
fines have accumulated at the cake bottom. Figure 5.3 is a micrograph of the powder
that passed through the filter paper along with the filtrate. The micrograph shows
that most of the powder that passed through the filter paper is fine. During the
filtration process, a cloudy filtrate was cbserved indicating that powder was passing
through the filter paper along with the filtrate.

The micrographs in Figure 5.4 show longitudinal cross-sections of a green slip
cast A-17 cake. These micrographs again show that a higher concentration of fines
has accumulated at the bottom of the cak>. Presintered and sintered filter pressed
A-17 cakes were also examined. These cakes were sectioned and polished prior to
SEM examination (see Figures 5.5 and 5.6). The micrographs show that a thin layer
(about 10 um) with a higher concentration of fine particles has accumulated at the
cake bottom. Above this layer the cake microstructure is quite uniform.

To further illustrate the percolation of fine particles during filtration shps con-
sisting of 20% unground yttria (¥203) and 79% C-71 unground alumina and 1% C-
T1FG alumina were slip cast. Composite slips were cast so that by using SEM back
scattering imagery and carbon coating the samples the yttria and alumina could be

distinguished on the micrograph. Yttria was also chosen to be combined with alumina
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Figure 5.1:

Longitudinal cross-sections of a cake (A) near the top surface and (B)

near the bottom surface (90% C-71FG and 10% A-165G, filter paper

pore size = 2.5 um).
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Figure 5.2 Top view of powder remaining on filter paper (90% ¢ 71FG and 104
A-165G, tilter paper pore size = 23 g and P2 = 315 L)

Figure 5.3:  Powder that passed through filter paper (90% C-TIFG and 10%,
A-165G; filter paper pore size = 2.5 jun, and P = 343 kPa).
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Figure 5.4 Longitudinal cross-sections of a slip cast A-17 cake (A) near the top
surface and (B) near the bottom surface.
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dgure 3.9:

Longituinal cross-sections (A) near the middle and (13) near the
bottom surface of an A-17 cake The cake was presintered at 1500 VC
for one hour (filter paper pore size = (.1 pi, and 2= 315 kPa)
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towards
bottom

Longitudinal cross-section of an A-17 cake. Sintered at 1750 °C' for
one hour (filter paper pore size = 0.1 umn, and P = 345 kPa).

Figuie 5.6

because of their siular deflocculation behaviour and relatively similar densities. Yt-
tria and alununa have densities of 5.01 g/cm® and 3.98 g/cm?, respectively. A small
amount of C-TIFG powder was added to the ship to help hold the cast together. Fig-
ure 5 7 shows micrographs of longitudinal sections near the middle (micrograph (A))
and bottom (micrograph (B)) of the cake. The atomic numbers of aluminum and
yitim are Band 39, respectively. Yttria shows up as the hight colored powdered
and alumina as the dark powder on the micrograph as a result of vttrium having
a higher atome number than aluminum. The particle size of the yttria powder is
approximately 2 yun and has agglomerates of the order of 10 p#m whereas the size of
the agglomerates for the unground C-71 powder are of the order of 100 pm. The mi-
crographs clearlv show that thereis a much higher concentration of the yttria powder

and C-7TIFG powder in micrograph (B). Again, these results illustrate that some of
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Figure 5.8:  Particle size distribution curves for a longitudinal cross-section of a
C-T1FG cake.

the finer powder (1.e., yttrnia and C-T1IFG) can percolate through the cake and deposit

near the cake-filter medium interface.

5.2 QUANTITATIVE ANALYSIS

e AR Ermaratde b

5.2.1 SEM IMAGE ANALYSIS

A cahe consisting of C-71FG powder was slip cast so that quantitative data
could be obtained for the concentration differences of fines in the top and bottom
sections of the cake. Curves (1) and (2) in Figure 5.8 were obtained by using image
analysis on SEM micrographs. The curves illustrate that there is a shift from a
coarser to a finer particle size distribution from the top to the bottom of the cake. :;

This analysis also confirms that fine particles can be transported by the filtrate to
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the bottom of the cake leading to non-uniformity in the cake density.

5.2.2 SURFACE AREA MEASUREMENTS

The concentration gradients of fines from the top to the bottom of filter pressed
cakes were analyzed by taken “single point BET” surface area measurements of cake
sections.

The ratio of the filter medium pore size to diameter of fines will determne
whether or not the fines will pass through the filter medium. Therefore, the type of
medium used will affect the migration of fines during filtration.

Slips consisting of 20% A-16SG (fine) and 80% C-71FG (coarse) alumina powder
were cast using different filter pressures and filter papers with different mean pore
sizes. The slips had a volume solids fraction, €,; = 0.39 Each cake wa; then divided
transversely 1nto sections from the bettom to the top of the cake. lhie surtace arcas
of the sections were then measured. Figure 5.9 is a graph of surface area versus cake
depth. A cake depth equal to zero refers to the cake-filter paper interface (i.e., cake
bottorn). The filter paper had a mean pore size equal to 0.1 pm. The ships were cast
using a filter pressure of 140 kPa (20 psi), 275 kPa (40 psi), and 550 kPa (80 psi). All
three cases show a trend of having a higher surfacc area near the cake bottom than in
the rest of the cake where the surface area is rather constant. The higher surtace arca
at the cake bottom indicates that some of the fine particles have migrated through
the cake to its bottom.

Figure 5.10 is also a graph of surface area versus cake depth. However, for these
experiments, a coarser filter paper was used. It had a mean pore size of 2.5 ym. The
graph shows that the cake has a higher surface area near its bottom for the slips
pressed at 35 kPa (5 psi), 140 kPa (20 psi), and 275 kPa (40 psi). L'he surtace areas

of the particles near the cake bottoms in this figure are not as high as for the surface
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Figure 5.9:  Surface area versus distance above cake bottom 20/80 mixture of
A-165G/C-T1FG powder. Filter paper pore size = 0.1 pm. The dashed
line shows the surface area for powder before being filter pressed.

areas near the cake bottoms in Figure 5.9. In Figure 5.16 the surface areas of the cake
pressed at 550 kPa (80 psi) are relatively constant across the depth of the cake. As a
result of using coarser filter paper some of the fine particles were driven right thiough
the filter paper and others only penetrated and clogged the filter paper. During the
filtration process it was observed that the filtrate was cloudy indicating that powder
was passing through the filter medium along with the filtrate.

Surface area measurements were taken for the A-16SG and C- 71FG powder.
A 20/80 mixture of the A-16SG/C-T1FG powder has & surface area of 2.75 m*/g.
This value is shown by the dashed line in Figures 5.9 and 5.10. Both these figures
show that the surface area measurements are higher than 2.75 m?/g near the cake
bottom and are lower than 2.75 m?/g further out in the cake. In Figure 5.10 there

is only a small increase in surface area near the cake bottom. However, the surface
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Figure 5.10: Surface area versus distance above cake bottom. 20/80 mixture of
A-165SG/C-71FG powder. Filter paper pore size = 2.5 um. The
dashed line shows the surface area for powder before being filter

pressed.

areas are less than 2.75 m?/g further away from the cake bottom, which implies that
some of the fine particles have migrated through the cake and into and/or through
the filter medium. Surface area measurements were also found to be higher near the
cake bottom for A-17 cakes as shown in Figure 5.11.

To illustrate the migration of fine particles through filter paper, a slip consist-
ing of a 50/50 mixture of the C-71FG (coarse) and A-16SG (fine) powder was filter
pressed at 550 kPa (80 psi) (see Figure 5.12). This mixture of powder, prior to being
filter pressed has a surface area of 5.32 m?/g ~nd is shown by a dashed line on the
graph. The filter paper had a mean pore size of 0.22 um. The pore size of the paper
is large enough to allow the fine particles to pass through the paper but small enough
to prevent the larger particles from passing through the paper. The graph shows that

there was a small increase in surface area near the bottom of the cake. With 50% of
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Figure 5.11:  Surface area for an A-17 cake versus distance above cake bottom.
Filter paper pore size = 2.5 um. The dashed line shows the surface
area for A-17 alumina powder before being filter pressed

the powder being fine, enough filtered through the medium (= 0.05 g, 0.125% of the
original weight of the solids) to enable a surface area measurement to be taken. This
powder had a surface area of 10.67 m?/g or an equivalent particle diameter size equal

to 0.14 pum implying that some of the fine particles did percolate thiough the cake

and filter paper. The particle size distribution of the slip as well as the pore size of

the filter medium affects the filtration process.

5.3 FILTRATION EQUATIONS

In Chapter 2 (section 2.3) it was shown that:

dw
- P=AP,+ AP, =p(Lp/Kn + L/K,_.)—-‘-i—t— (5.1)
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Figure 5.12:  Surface area versus distance above cake bottom. 50/50 mixture of
C-71FG and A-165SG powder. Filter paper pore size = 0.22 ym. The
dashed line shows the surface area for powder before being filtered
pressed.

and

W = L(ews/ €1 — 1) (5.2)

In this analysis it will be considered that the resistance to filtration of the filter
medium, L,,/K,, is part of the cake. The 2.5 um and 0.1 um pore size filter papers
that were used for the filter pressing experiments have permeabilities equal to 1.5 x
10~ m? and 4.5 x 107'® m?, respectively. The permeabilities of both filter papers
are greater than the cake permeabilities and it takes no more than a couple of seconds
before the cake becomes thicker than the filter paper. Therefore, the resistance to
filtration of a filter medium that is not clogged is negugible compared to the resistance
to filtration of the filter cake. If the filter medium is clogged it is in fact due to the

nature of the slip. It is therefore logical to add this extra resistance to the overall
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resistance of the cake. Hence, equation (5.1) reduces to:

dW dL PI"GUC

_di_ = (Ccav/esl - I)Et_ = ,UL (53)

where K, is the permeability of the system. Assuming that K,,. and ¢, are

constant and integrating equation (5.3) yields:

[ 2PKu

_m-t=3t (5.4)

where B is a constant. The cake thickness squared, L? is proportional to time, ¢t. This
equation is only valid for an incompressible cake that has a constant permeability or
in other words when no cake clogging occurs. In the analysis to follow of clogging
during filtration the cakes are assumed to be incompressible since the cakes were cast

from well deflocculated slips.

53.1 CAKE THICKNESS VERSUS TIME

If no cake or filter medium clogging occurs, then a plot of Int versus In L data
should produce a line with a slope equal to two. Slopes different from this can
infer that cake and/or filter medium clogging has occurred due to deposition of fine,
migrating particles.

Figure 5.13 is a graph of Int versus In L. The slips consisted of 20% A-165G
(fine) and 80% C-71FG (coarse) powder and had a volume solids loading, €, = 0.39.
The filter paper used had a mean pore size of 2.5um and the slips were filter pressed
at different pressures. The slopes obtained for these four plots varied from 1.83 to
2.26. Figure 5.14 is a graph of Int versus In L. For this set of experiments the filter

paper had a mean pore size of 0.1um. The slopes in this figure are all greater than
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Figure 5.13:  Time, t versus cake thickness, L for cakes consisting of 20% A-16SG
and 80% C-71FG powder. Filter paper pore size = 2.5 um. Slopes of
lines for Int versus In L data are indicated on the graph.

two. The pores of the filter paper are finer than the fine particles and therefore the
fines should not be able to penetrate the filter paper.

The physical meaning of the difference in slope, n of the graphs of In ¢ versus In L
needs to be addressed. A slope inferior to two could impiy that the filter medium
and/ot cake is clogged very early during pressing while a slope greater than two
could imply progressive clogging. To explain this concept further the permeabilities
of the cake and filter medium will be considered for the following three cases (see
Figure 5.15):

(1) No Clogging

(2) Progressive Clogging

(3) Rapid Initial Clogging

The medium and cake permeability will remain constant throughout the filtra-
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Figure 5.14:  Time, t versus cake thickness, L for cakes consisting of 20% A-165G
and 80% C-71FG powder. Filter paper pore size = 0.1 um Slopes of
lines fitted for the Int versus In L data are indicated on the graph.

tion process if no clogging in the cake or filter medium occurs. The average perme-
ability of the system will almost be equal to the cake permeability because the filter
medium permeability is much greater than K, (see Figure 5.15(a)).

If the fine particles are larger than the pores of the medium, the coarser particles
will form some larger pores and the fine migrating particles can progressively clog
the pores near the bottom of the cake. The pores near the cake bottom will get
smaller and smaller thereby tending to decrease the permeability with increase i
time. Progressive clogging will result in a slope greater than two for a plot of In¢
versus In L (see Figure 5.15(B)).

If particles are equal to the diameter of the pores of the filter mediumn these
pores can become rapidly clogged in the initial phase of filtration resulting in a sharp

decrease in permeability of the medium. As the cake gets thicker less and less clogging
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will occur in the filter medium and therefore the medium permeability will become
constant (see Figure 5.15(c)). A slope less than two can also occur if the bottom
layers of a cake becomes rapidly clogged in the early stages. As the filtration velocities
decrease with time less particle migration and clogging can occur.

It is very possible for cake and filter medium clogging to occur at the same time.
Therefore, a slope greater than, equal to, or less than two can result depending upon

which clogging mechanism is most significant.

5.3.2 PERMEABILITY

From the graphs of Int versus In L it was shown that:
t=CL" (5.5)

where C and n are constants. Differentiating the above equation and substituting it

into equation (5.3) yields:
Kave = oo (€canfeat — 1)L~ (5.6)
PCn

Experimental constants were found for C' and n for the data presented in Fig
ures 5.13 and 5.14 by using regressional analysis. The slips had a solids loading,
¢s = 0.39. The solids loadings of the cakes, €., (= 0.58) were determined by mea-
suring the cake densities. Figures 5.16 and 5.17 are graphs of cake permeability as a
function of L for the experimental data presented in Figures 5.13 and 5.14, respec-
tively. The filter paper used for the experiments in Figure 5.16 had a mean pore size
of 2.5 um. Two of the permeability curves are decreasing and two are increasing with

L. Figure 5.16 implies that both cake and mediumn clogging can occur. In Figure 5.17,

79




20% A-16SG & 80% C—71FG powder
fiter paper = 2.5 um pore size

18.0

E15.0

L B I

12.0

Keve X 10"

0.0 2.0 4.0 6.0 8.0
CAKE THICKNESS (mm)

Figure 5.16:  Permeability, K,,. versus cake thickness, L. Filter paper pore size =

2.5 pm.
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Figure 5.17:  Permeability, K,,. versus cake thickness, L. Filter paper pore size =
0.1 pm.
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Figure 5.18: Permeability K,,. versus filter pressing pressure, P for cakes
consisting of 20% A-16SG and 80% C-7T1FG.

where the filter paper had a mean pore size of 0.1 um, the curves imply that the cakes

were progressively being clogged.

Tables 5.1 and 5.2 list values of n, C and equations for Iy, for different filter
pressing pressures and Figure 5.18 1s a graph of K,,. versus filter pressing pressure
(at L = 5 mm). In Tables 5.1 and 5.2, filter paper pore sizes of 2.5 um and 0.1 pm
were used, respectively. The tables and Figure 5.18 imply that K,,. 15 independent of
filtration pressures between 70 kPa to 550 kPa Both tables suggest that cake clogging
has occurred but 1t appears that more medium clogging resulted with the larger pore
sized filter paper. These results imply that the permeabilities are independent of the
filter pressing pressure, and that there can be some variabihity m permeability 1esults
from run to run. Figures 5.19 ana 5.20 show the variability in permeability, for filter

pressing experiments repeated under the same conditions.
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Table 5.1: Values of n, C and K,,. as a function of L.

| FILTER PAPER PORE SIZE=25um |
PRESSURE || n C K,
(kPa) (sec/m") (m?)
70 1.94 [ 9.08 x 107 | 4.03 x 1017 [+0-06
140 2.26 {6.76 x 107 | 1.03 x 10-17[-026
205 2.04 [ 6.00 x 107 | 1.94 x 10-17[-0-04
275 2.0713.36 x 107 | 2.55 x 10~17[-007
345 1.99 [ 1.94 x 107 | 3.69 x 10-17L+001
415 2.093.07 x107 | 185 x 10717[-099
480 1.95 [ 893 x 10° | 583 x 10-17[+005
550 1.832.12 x 10° | 2.29 x 10-18[+0 17

*Lisn units of m

Table 5.2: Values of n, C and K,,. as a function of L.

[ FILTER PAPER PORE SIZE = 0.1 gm

[ PRESSURE | n C N

I (kPa) (sec/m™) (m?)
70 2.51 [9.08 x 108 [ 3.12 x 10-1BL-051
140 2.0316.59 x 107 | 2.66 x 10~17[-003
205 2.29[9.95 x 107 | 1.04 x 10-17[~029
275 2.17[7.50 x 107 | 1.10 x 10-17L-017
345 2.40[2.24 x 108 [ 2.65x 1018040
415 2.2219.55 x 107 | 5.5 x 10-8L-022
480 2.3278.55 x 107 | 5.12 x 10-18[-032
550 2.3217.20 x 107 | 532 x 10-18-032

*Lismmunitsofm
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Figure 5.19:  Curves of permeability, K,,. versus cake thickness, L for experiments
repeated under the same conditions. Filter paper pore size = 2.5 um.
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Figure 5.20:  Curves of permeability, K,,. versus cake thickness, L for experiments
repeated under the same conditions. Filter paper pore size = 0.1 un.
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Figure 5.21:  Longitudinal section of 2.5 um pore size filter paper. Used to filter
press an A-17 slip. Arrow indicates paper/cake interface
(P = 345 kPa).

5.4 FILTER MEDIUM CLOGGING

It will be shown in this SEM study that the 2.5 ym filter paper can become
clogged due to particles penetrating and filling the pores. After the cake was filter
pressed, the filter paper was separated from the cake. The filter paper was then
vacuum resin impregnated and a longitudinal section was polished and prepared for
further SEM examination. The micrographs showed that the particles were pene-
trating the filter paper. The depth of penetration however was only approximately
10 pm - 20 pm (see Figure 5.21). In section 5.1 the microstructures of the cakes were
found to have a layer about 10 pm thick at the cake bottom with a high concentration
of fines. Clogging appears to occur very close to the cake-filter medium interface. It
is this thin clogged layer that is essentially determining the filtration rate. The per-

meability curves were shown to tend to level off early in the filtration process (after
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Figure 5.22:  Top views of three layers of 2.5 pm pote sized filter paper after heing,
used to filter press (at 345 kPa) a slip with a 20/80 mixtuie of A-165C
and C-T1FG powder. (A) First layer (i.e., laver in contact with cahke)

approximately 1 mm). The process 1s very seusitive to the degree of dogemp that

occurs in the cake-medium interface region.

5.4.1 FILTER PRESSING WITH MULTI-LAYERED FILTER
PAPERS

Three layers of 2.3 um pore paper was used during filter pressing to study
whether particles pass through the filter paper and collect on the fower filter paper
layers leading to clogging of the system. ‘These experiments ate an casv way 1o analyze
the clogging that could occurin a plaster of Paris mold during slip casting. I'igure 5.22
shows top views of micrographs for the three layers of paper.  The second and third
layers of the filter medium showed that small amounts of powder did accumulate on
the paper. The permeability results (see Figure 5.23) are similar to the tesults where

only 1 layer of paper was used (refet to IFigures 5.16 and 5.19). Therelote, most of
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Figure 5.23:  Permeability, K,,. versus cake thickness, L. Threc layers of 2.5 um
pore sized filter paper was used to filter press (at 345 kPa) a slip with
a 20/80 mixture of A-165G and C-7T1FG powder

the filter medium clogging occurs in a very thin layer (approximately 10 gm - 20 um)
at the cake-filter medium interface.

When two layers of filter paper were used; the top layer being the 2.5 um pore
paper and 0.1 pm pore paper being the bottom layer, it was found that some of the
fine particles percolated through the upper layer and deposited on the 0.1 um pore
paper. The micrographs in Figure 5.24 show top views of:

(1) The side of the 2.5 um pore paper that was in contact with the cake (micrograph
(A)).

(2) The side of the 2.5 um pore paper that was in contact with the bottom filter
paper layer (i.e., bottom side) {micrograph (B)).

(3) The side of the 0.1 um pore paper that was in contact with the top filter pape

layer {micrographs (C) and (D)).
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Significantly more particles deposited on the second filter paper layer (0.1 um pore
paper) than did in the previous experiment where the same pore sized filter paper
(2.5 pm) was used for all the layers. When the same pore sized filter paper is used
for all the layers the particles that percolate through the top filter paper layer also
tend to be transported right through the other layers. This is due to the much lower
concentration of particles being filtered in the lower filter paper layers compared to
the particle concentration of the slip. Initially, during filtration many particles are
arriving at the same time at the cake-filter medium interface resulting in blocking
ar< bridging of the pores of the filter medium. With the very dilute suspension being
filtered in the lower filter paper layers cac. particle moves separately from the others
and will easily follow the streamlines of flow directed towards the pores in the filter.
The result will be that a particle, depending on the ratio of pore diameter to particle
diameter, will either enter and pass through the pore or will cover the pore opening.
Therefore, more particles were deposited on the second layer of the 0.1 um pore paper
as compared to the 2.5 um pore paper. The permeability results (see Figure 5.25) for
this experiment show that progressive clogging has occurred.

Experiments were also performed using a coarser filter paper (Whatman 1) that
has an 11 pm particle size retention for the top layer, a 2.5 um pore paper for the
middle layer and a 0.1 um pore paper for the bottom layer. Micrographs of top views
of the filter papers are shown in Figure 5.26. Powder penetrated the top layer paper
and some powder migrated through the top layer and deposited on the 2.5 um pore
paper. Furthermore, some of the powder has also migrated through the middle layer
and deposited on the 0.1 um pore paper. With the coarser filter paper used in this
experiment significantly more particle migration through the filter medium occurred

compared to the experiments where a 2.5 um pore sized filter paper was used for
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Figure 5.24:

Figure 5.24:

Top views of two layers of hiter paper after being used to filter pross
(at 345 kPa) an A-17 slip. (A) st layer - 2.5 jm pore paper that
was in contact with the cake.

N . - oY Y
(B) View of bottom side of the first layer (i.e., side that was in
contact with bottom filter paper layer.
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Figure 5.24: (D) Second layer but at a lower magnification than for
micrograph (C).
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, 18.0 - A—17 alumina powder 345 kPa
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% Figure 5.25: N, versus L Two layers of 25 jm and 001 g ilter paper ased
- (A-17 shp, P = 345 kPa) Dashed curve - one layer of 25 jan filte
! paper.

(A) RS
» L 2

Figuie 5.26:  Top views of thice layers of filter paper after bheing used to filter
press (at 345 kPa) an A-17 slip. (A) First layer - 11 pn particle size
retention that was in contact with the cahe.
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IMigure 5.26:  (C') Third layer - 0.1 gm pore size filter paper (i.e., layer furthest
away from cake).



- A=17 .
18.0 17 alumina powder 345 kPa
a - == 1 layer of 2.5 um fiter paper
£15.0 —_— 3 Loyers of filter paper
1 loyer = 11 um pore size
~ 12.0 2, loyer = 2.5 um pore size
o . 3" layer = 0.1 um pore size
—
9.0
X
o
3 6.0
A4
30 F NSs-eo
0.0 S S N ISR SRR T S
0.0 2.0 4.0 6.0 8.0

CAKE THICKNESS (mm)

Figure 5.27:  K,,. versus L. Three layers of 11 um, 2.5 um, and 0.1 um filter
paper used (A-17 slip, P = 345 kPa) Dashed curve - one layer of 2.5
pm filter paper.

the top layer of the filter medium The permeability results (see Figure 5.27) show
that progressive clogging has occurred. In Figure 5.26 the slip was filter pressed for 2
hours. Slips were also pressed for shorter times to illustrate the continuous migration
of particles through the top and middle filter paper layers. Figures 5.28 and 5 29 show
top views of the middle and bottom paper layers for ships cast foi one minute and 10
seconds, respectively Figures 5.28 and 5.29 show that particles have accurnulated on
the middle and bottom paper layers, however significantly more particle migration

has occurred in Figure 5.26.
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Figure 3 28 SEM of filter paper after being used to filter press (at 345 kPa) an
A-17 ship for one minute. The top. nnddle and bottom fhilter paper
layers had pore sizes of 11 gm, 2.5 pm and 0.1 g, respectively. (A)
Top view of the middle filter paper layer. (B) Top view of the bottom
laver.

94



o

SN A

k.

Figuie 5.29-

(B) I AN e

Tavd, ~gam i T

24 kY
TR
PSR ﬁ

SEM of filter paper after being used to hlter press (at 315 MNPy an
A-17 slip for 10 seconds. The top. mddle and hottom filter paper
layers had pore sizes of 11 AL 25 pand B3 s respectively (A
Top view of the nuddle filter paper layer (13) Top view of the botton
layer

945




Chapter 6

RANDOM TUBE MODEL TO SIMULATE
FILTRATION

6.1 PERMEABILITY OF POROUS MEDIA

Darcy’s law in Chapter 2 showed that the superficial velocity, g is proportional
to the pressure gradient, d P;/dr and inversely proportional to the viscosity, u of the
filtrate:

q= -Il-:-dPI/d:t (6.1)

where permeability, K is the proportionality constant and only depends on the struc-
ture of the porous medium. The above equation implies that resistance to flow is
entirely due to viscous drag. Darcy’s law has been found to be valid for laminar
flow where the particle Reynolds number, R is less than approximately 20 or for a
modified Reynolds number, R®,, less than 2.37 ™ The Reynolds number and modified

Reynolds number are defined as:

R = G2 (6.2)
7
and
_ P9
R = p(1 = v)S, (63)
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where d;, is the particle diameter, p; is the density of the filtrate, v is the porosity
and S, is the specific surface (i.e., surface area per unit volume of solid).
Reynolds number, R is employed in the following equation to emphasize that

the resistance to flow is entirely due to viscous drag:

Cr=FR (6.4)

where C} is a constant and F is the friction factor:

4P dp

F=% prq?

(6.5)

From Darcy’s law, it is found that K has units of (length)? and Equation (6.4) implies
that K is proportional to the square of the particle diameter. However, other features
of the porous media are also important. The Kozeny-Carman equation describes K

in terms of the porosity, v specific surface of the porous medium, S, and the Kozeny

constant, .75, 37,76
3

v
If the porous media is an assembly of spheres then:
S, =6/d, (6.7)
and therefore,
[
= 2 6.8
K h(l - »)?236 (68)

The Kozeny constant, A is tnade up of two terms, a shape factor and the tortuosity and
it is found in practice that k is approximately 5.0 for many different systems.’® The

Kozeny-Carman equation was first derived by assuming that the fluid flow through the
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consolidated layer could be modeled as a bundle of capillary tubes using Poiseuille’s
Law modified in terms of a hydraulic radius and an assumed tortuosity of flow. An
important limitation of the Kozeny-Carman equation is that the pores must be ran-
domly distributed and be reasonably uniform.

Quite often filter cakes can have a distribution of pore sizes and an average
pore size should not be used to describe the flow through filter cakes. Furthermore,
experimental work has demonstrated that during the filtration of ceramic powders
there is a certain unpredictability about the process even when a knowledge of the

size distribution and the physical chemistry of the powder is available.

6.2 RANDOM TUBE MODEL

A computer model has been developed to simulate the filtration process. The
filtration model takes into account variations in cake microstructures by using a two-
dimensional network of tubes with different radii size distributions in a regular square
lattice arrangement. An example of the network used in this study is shown in
Figure 6.1. The network setup was first proposed by Leitzelement et al.”’ to model
deep bed filtiation. Deep bed filtration is an engineering process in which a large
volume of hquid containing a small concentration of fine particles in a suspension
is clarified by passage through a bed of granular material such as sand (e.g. water
purification).

Fluid flow in the network can be calculated on a computer by solving a series

of simultaneous equations derived by using a matrix expression for Darcy’s law and
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Figure 6.1: Two dimensional tube network.
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applying electrical network theory:" 78

[Q) = [2]7'[P] (6.9)

where the column vector [@] contains the flows in all n loops in the network, [P]
matrix is a column vector containing the imposed pressure drop as the first element
with all the other elements being zero and [Z], a square n X n matrix, is an operator
which acts as the resistance of the whole network.

The number of solutions required for the flow distribution in the tubes is equal
to the total number of loops in the network. One can see that this method is feasible
for a small network but the size of the network is limited by the RAM memory of
the computer. For example, using a computer with 6 megabytes of memory, the
largest network which can be handled is one that has 55 rows and 6 loops per row, a
total of 715 tubes. This is a rather small network and is not sufficiently large to be

representative of fluid flow through a cake.

479, 80, 81

An alternative approach using the Hardy-Cross Metho was chosen to

solve the network.

6.2.1 HARDY-CROSS METHOD

The Hardy-Cross Method is a methcd of successive approximations based on
satisfying the following conditions (see Figure 6.2): (1) At any node, the total inflow
must equal the total outflow. This condition satisfies the continuity equation. (2)
Between any two nodes the total pressure drop is independent of the path taken.
Therefore, the sum of the pressure drops around each loop must be zero.

To solve the network, flows are initially assumed for each tube so that continuity

is satisfied at each node. Then a successive computational procedure is used to correct
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AP, + AP,"-AP3 + AF,

Figure 6.2: Flow conditions for the Hardy-Cross Method.

the assumed flows to satisfy condition (2).
Laminar flow through circular tubes is described by the Hagen-Poiseuille equa-

tion:

AP = (220 (6.10)

where p is the viscosity of the filtrate, L the tube length, R tube radius, Q volumetric
flow rate and AP is the pressure drop. Therefore, the flow resistance is proportional
to L/R*. To calculate flows in the network it has been assumed that the length of
each tube is proportional to its radius. Thus, the flow resistance is proportional to
1/R3.

In any individual loop, the total pressure drop in the clockwise direction is

the sum of pressure drops in all tubes that carry flow in the clockwise direction
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(subscript cl) around the loop,
SAP, = zc,,%’ (6.11)
cl

where C,, is a constant. Similarly, the loss of head in the counterclockwise direction

(subscript cc) is,

QCC
EAP. =ZCugs (6.12)

The difference between Equations (6.11) and (6.12) is the loop’s closure error of the
first trial. One must determine a flow correction AQ); which when subtracted from
@ and added to @, will equalize the two pressure drops. Thus, AQ) must satisfy

the following equation:
1 1
5—(Qu=- Q) = Eo(Qu + AQ). (6.13)
Rcl Rcc

From this relationship we may solve for AQ:

(E‘T)ch - (ﬁ!:c?:)Qcc

AQ = tu (6.14)

] 1
R, T RS

A second approximation is estimated for the flow distribution using AQ. These
successive corrections are found for each loop in the entire network until AQ and the
difference between AP, and A P.. becomes negligibly small.

After having solved for the flows, the permeability of the network can then be
calculated by applying Darcy’s Law:

- H
dP/dz = 2. (6.15)




¢ 9

The permeability, K is normalized relative to the permeability of a network with all

tubes having a tube radius of 1.0 um, K,:

1/AP
1/AP,

K/K, = (6.16)

where AP is the pressure drop across the network and AF, is the pressure drop
across a network with the same total inflow rate and same network grid size as for
the network in question, but with all tubes in this network having a radius, R, equal
tol prmn. The pressure drop, AP across the network was calculated along each column

¢ and then averaged:

Co I 1
AP = T ¥ E?TQ" (6.17)
41

where 7 is the tube layer, J is the total number of layers, I is the total number of
columns and R,, and @Q;, are the radius and flow rate, respectively of tube ji. The

pressure drop, AP, is equal to the following:
AP,=C, J Qo (6.18)

where @, is the flow rate through the tubes for a network with all the tubes having

a radius, R, = 1.0um. Therefore, the following expression is obtained for K/ K :

AP,
AP
I

= WEQIE L Q)

=1 =1 s

1
= QLY 7 (6.19)

K/K, =

A

The computer program is listed in Appendix A.
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The main advantage of the Hardy-Cross Method is that large networks con-
taining more than 10,000 tubes can be modeled using a microcomputer with only
640 kilobytes of RAM memory and thus this network size s more representative of
flow through a porous cake. The Hardy-Cross Method, however due to its iterative
approach to solve for the flows in the network still requires a lot of CPU time. Some
of the computer programs that will be presented in later sections to describe the fil-
tration process can take approximately three days to run on an IBM microcomputer
with an 80386 processor. Because of the slow speed of the microcomputer and the
large number of runs that were required most of the computer runs were performed
on the CRAY X-MP (with 8 megabytes of memory and 2 processors) supercomputer
located at the Dorval Weather Station. The CRAY solved the networks on the order

ol 200 times faster than compared to the 80386 microcomputel

6.3 RANDOM NUMBER GENERATOR

Tube radii of the network having the following size distribution functions were
studied: (1) Gaussian (normal), (2) log-normal and (3) Rayleigh. A randomn num-
ber generator function was incorporated into the computer program. The random
numbers were generated using the rejection method.®2 The rejection method requires
choosing a finite comparison function, f(z) that is everywhere greater than the prob-
ability distribution, p(z) that one wishes to generate. It is essential to choose a
comparison function whose indefinite integral is known analytically, and is also ana-
lytically invertible to give z as a function of the area under the comparison function
to the left of 2. Select a random uniform deviate between 0 and the total area, A,

under f(r) and use it to obtain a corresponding z;. A second uniform deviate be-
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Figure 6.3: Rejection method for generating a random deviate z from a known
probability distribution p(z) that is everywhere less than some other
function f(z) (after Ref. 82).

tween 0 and f(z,) is selected to obtain the y; coordinate. Now, if p(z1) is greater than
¥1 then the z, value is accepted. If p(z,) is less than y;, the z, value is rejected and
the selection process is repeated until the z, value is accepted. Figure 6.3 illustrates
the procedure. To choose uniform random deviates between 0.0 and 1.0 a “portable”

function routine based on the algorithm of Presst? was used.

6.3.1 DISTRIBUTIONS

Random tube sizes were generated for the following three probability density

functions:83: 84

: 1 1 (Z—pm)\?
. = — (=—=m - < 6.20
Gaussian : p,(z) 7 exp 5 ( ) ] 00 <r <00 (6.20)
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where u,, and o are the mean and standard deviation, respectively, of the variate.

1 l(lnm-—,\m 2 0 < 6.2
\/2_”£Iexp =3 -—E <z < oo (6.21)

Log — normal : pi(z) =
where )\, and { are the mean and standard deviation, respectively, of Inz.

Rayleigh - p.(z) = 2a’rexp(-a’R%) 1 >0 (6.22)

1

where a! = %yu,, is a characteristic tube radius.
 La

The comparison curve, f(z) chosen for these distributions is:

Co
1+ (z —2,)*/a}

flz) = (6.23)

wherce a,, ¢, and z, are constants. The total area under this curve is:

oo c,a’
Atol = / ? i 2 dl‘
-0 @2 4+ (T - 2,)

- I— X
Col, tan ! ( )
a -0

= CoQ,T. (6.24)

00

Therefore,

)

L [{T—T
ca,mU = cya,tan”! ( °)
Qo ~00

Coly [tem"l (-{I—E—E) + %w] (6.25)

where U is a uniform deviate between 0 and 1. Equation (6.25) is invertible to give
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2; as a function of the area under f(z) to the left of z:

Ty =aotan ((U - 1/2)7) + 2, (6.26)

Therefore, the x-coordinate of an area-uniform random point under f(z) is given by
Equation (6.26) or more simply if a phase shift of 1/27 is applied one can use the
following equation:

T, = a,tan(wl’) + z,. (6 27)

The constants a,, ¢, and z, are chosen such that f(z) is everywhere greater than
p(z). The ratio of accepted to rejected points is the ratio of the area under p to the
area between p and f.

To verify that the random number generator gives good 1epresentations of the
theoretical probability density functions, frequency histograms were generated usimg
the random number generator. Figures 6.4, 6.5 and 6.6 show examples of frequency
histograms along with the theoretical probability density curves. For each histogram,
2000 numbers were generated. The figures show that the random number generator

generates numbers that fit the density function curves very well.

6.4 FLOW CALCULATIONS

The network model was analyzed with various tube size distributions. Figure 6.7
shows examples of a Gaussian, log-normal and a Rayleigh distribution, each with a
mode = 1.0 um. The permeabilities, K calculated for the three examples are all
different and the reasons for this will be discussed in the following sections The K

values in the figure are given relative to the permeability of a network in which all
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INgure 6.4:  Frequency histogram generated using the random number generator
and the theoretical probability density function curve for a Gaussian
(normal) distribution (o = 0.6, g, = 1.0).
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{ Figure 6.5:  Frequency histogram generated using the random number generator
and the theoretical probability density function curve for a log-normal
distribution (£ = 0.6, A, = 0).
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Figure 6.7:

Permeabilities for networks with Gaussian, log-normal and Rayleigh

TUBE RADIUS (mm)

tube size distributions (mode = 1 um)

the tubes have a uniform size of 1.0 ym, K,.

6.4.1 GAUSSIAN DISTRIBUTION

The tube radii of the networks were filled with Gaussian distributions. Each
network had a modal and mean radius = 1.0 um but different standard deviations.
Negative tube radii occur for the distributions with standard deviations greater than
0.3. Therefore, tube radii were restricted to the range between 0.05 and 1.95 pm.
By choosing this range, negative tube radii are avoided and the modal and mean
tube size of 1.0 um is still conserved (see Figure 6.8). Figure 6.9 is a graph of
the dimensionless permeability, K/K, versus the number of tubes in the network.
The calculation for each K/ K, value was repeated 10 times and then averaged. A

different seed number was used in the random number generator for each repeated
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Figure 6.8: Gaussian probability density functions.

run. Figure 6.9 shows that the results for each standard deviation stabilizes only when
more than approximately 2000 tubes are used in the network. Therefore, a network
with at least 2000 tubes should be used to obtain meaningiul results. Figure 6.9 also
illustrates that the permeability values of a network f{or the same median pote size
depends on the standard deviation of the pore size distribution. As the standard
deviation of the distribution varies from 0 to 1.0, the permeability of the network
decreases by a factor of 1.37.

It is interesting to note that the mean resistance of the tubes in the network,
1/R3 is very different from the resistance to filtration of the network, K /K. Fig:
ure 6.10 shows graphs of K,/K and 1/R® versus standaid deviation tor netwouks
consisting of 199 rows and 49 tubes per row (i.e. 9751 tubes). The graph shows that

1/ R3 increases at a much greater rate than K,/ K with inciease in standard deviation.
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Figure 6.11:  Histogram of the mean flow rates in a networh with a Gaussian tube
size distribution where g, = 1.0 um and 0 = 0.2 (network size =
199 rows and 49 tubes per row).

Figures 6.11, 6.12, and 6 13 are histograms of the mean volumetric flow rate, Q
through tubes in the networh< for a given tube size class The netwoiks were filled
with different Gaussian tube size distributions. The Q values in the figures are given
relative to (), where @, 1s the volumnetric flow rate in a tube il all tubes i the network
had a uniform size of 1 um. In general, as would be expected, the mean volumetiic
flow rate, @ increases with the tube radius. These network results are compared with
Q/Q, values for tube radii arranged in parallel in a single layer (see Figuies 6 14
and 6.15). Figures 6.14 and 6 15 show histograms for Gaussian distributions with
standard deviations of 0.2 and | 0 with the tubes artanged i parallel. The 1esults
were calculated based on a flow resistance of L/R* where L = 1.0 um and 1/1* as
was used in the network model since the model assumed L to be proportional to R. It

is interesting to note that the Q/Q, values for tubes arranged in parallel are smalle:

113



ﬁ 2
b GAUSSIAN
mean * 1.0
- 05 ]
1.5 e =
O
lo —
——
06f - ~
—
0 4__.—1—?7_ 1 J‘ BRI I _‘1 e 1 b 1 11t b
O o025 05 075 10 126 1.5 175 20
TUBE RADIUS (pm)
figure 6.12:  Histogram of the mean flow rates in a network with a Gaussian tube
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Figure 6.14: Histogram of mean tube flow rate for 9751 tubes arranged in parallcl

The tubes have a Gaussian size distribution with g, = 1.0 g ang
o = 0.2.
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- Figure 6.15:  Histogram of mean tube flow rate for 9751 tubes arranged in parallel.
.. The tubes have a Gaussian size distribution with g, = 1.0 um and
c = 1.0
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Figure 6.16:  Histogram of coeflicient of variation, COV of mean flow rate versus
tube radius. Gaussian tube size distribution, g, = 1.0 um and
o = 0.2 (network size = 199 rows and 49 tubes per row).

in the small tubes and increase to much larger values in the large tubes compared
to the results obtained in the network model. Again, these results illustrate that the
pore size distribution and pore arrangement can significantly affect flow rates.
There can be large variations in the flow rates in the tubes for a given tube
size. Figures 6.16, 6.17 and 6.18 are histograms of the coefficient of variation. COV
of Q/Q, versus tube radius. For a narrow tube size distribution (¢ = 0.2), the
COV versus tube radius histogram is quite uniform with a COV of about 0.3 (see
Figure 6.16). With increase in the tube size distribution spread, the COV values
increase. Furthermore, with a wide distribution the COV values are the greatest
for the small tubes (see Figures 6.17 and 6.18). The distribution with a standard
deviation of 1.0 has a COV of 1.4 for tubes between 0.05 and 0.15 ym and then

tends to level off to about 0.85 with increase in tube size. These COV values are
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Figure 6.17:  Histogram of coefficient of variation, COV of mean flow rate versus

tube radius. Gaussian tube size distribution, g, = 1.0 gm and
o = 0.5 (network size = 199 rows and 49 tubes per row).
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Figure 6.18:  Histogram of coefficient of variation, COV of mean flow rate versus
tube radius. Gaussian tube size distribution, y,, = 1.0 pm and
¢ = 1.0 (network size = 199 rows and 49 tubes per row).
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significantly higher than found for a narrow distribution.

In general, flow through the larger pores are favoured, thereby reducing the
effect of the high resistance to flow in the smaller pores, however the high COV val-
ues for wide tube size distributions show that some of the small tubes have fairly
high flow rates causing high pressure drops in these tubes and therefore reducing the
overall permeability of the network. The spread of the distribution in the network
affects the flow pattern and in filtration theory it is insufficient to know only the
average pore size or average pore resistance to flow. The configuration of the network
must be included in the averaging procedure. The flow in a given tube depends not

only on the size of the tube being considered but also on the size of the tubes around it.

6.5 LOG-NORMAL DISTRIBUTION

Often ceramic powc ars have log-normal size distributions. It has been found
that the pore size distribution can be correlated to the particle size distribution
for random-sphere packings. For a narrow particle size distribution the pore size
distribution has a similar, if not wider, size distribution.8® Under filtration conditions
the log-notmal distribution mimics the pore size distribution fairly well.86. 87.26

Log-normal tube radii distributions, with different standard deviations, were
used in the networks. The median of each distribution was determined so that the
peaks of the distributions all occurred at 1.0 pm (see Figure 6.19). Figure 6.20 shows
curves of K,/K, the mean resistance, 1/R3 and the resistance to flow calculated from
the mean pore size, 1 /-ﬁa versus the standard deviation of the In (tube radius) for the
log-normal distributions. Even though the curve for 1—/_123- is increasing, the K /K

curve is decreasing. Furthermore, the graph shows that l/-l-i’-3 decreases at a much
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Figure 6.19: Log-normal probability density functions. Mode = 1.0 pm.
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Figure 6.20:  Curves of K,,/K, 1/R3 and 1/72—3 versus the standard deviation of the

In (tube radius), € for log-normal distributions. Mode = 1.0 pm
(network size = 199 rows and 49 tubes per row).
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Figure 6.21:  Permeability versus standard deviation of the In (tube radwus), £ for
log-normal distributions. Mean = 1.0 um (network size = 199 rows

and 49 tubes per row)

greater rate than A,/ with increase in standard deviation. By introducing a few
larger tubes to the network the filtration resistance is decreased substantially. On
the other hand, as illustrated in Figure 6.20, introducing a few smaller tubes to the
network still has a significant effect on the filtration resistance. Even though the
K,/ K curve is decreasing due to larger tubes being introduced to the network the
K,/ K values are still greater than the l/ﬁ3 values for a particular standard deviation
due to the smaller pores.

Figure 6.21 is a graph of K/K, versus standard deviation. The curve decreases
with standard deviation. The distributions all had a mean tube radius = 1.0 um
(see Figure 6.22). With increase in standard deviation the modal tube size decreases.
The mean tube size remains constant however with increase in standard deviation

smaller tubes are introduced to the network and even though the larger tubes help
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Figure 6.22: Log-normal probability density functions. Mean = 1.0 um.

reduce the effect of the high resistance created by the small tubes it is not suffice to
prevent the permeability of the network to drop. These results again emphasize that
distributions of pore sizes cannot be simply accounted for by an average pore size.
Schilling and Aksay?® have illustrated how processing parameters such as in-
terparticle potential and particle size distribution affect the cake permeability and
microstructure evolution throughout casting. As discussed in the literature review
they found that well dispersed suspensions produced a bimodal pore size distribu-
tion reflecting the presence of first-generation agglomerates surrounded by second-
generation pores. They suggested that densely packed individual particles form first-
generation agglomerates, and aggregates of these first-generation agglomerates formn
larger second-generation agglomerates. A poorly dispersed suspension produced a
cast that exhibited larger second-generation pores and a smoother distribution of

pore sizes. The pore size distribution curves are shown in Figure 6.23. Due to the

121



100.0

-
80.0 |-
R - @ WELL DISPERSED
()5' u
S 60.0 N
L »
- L
S 400 . POORLY DISPERSED
2 "
(e ‘&
20.0 hN
DT T 8~ _
0.0 BN NEER IL!II]I]JJ\JTﬂj-I-l_bEQI|
0.0 0.5 1.0 1.5 20 2.5 3.0
PORE SIZE (um)
Figure 6.23:  Pore size distributions for partially sintered slip cast alumina

specimens prepared from well dispersed and poorly dispersed
specimens (after Ref. 26).

larger second-generation pores the permeability of the cast prepared from the poorly
dispersed suspension was found to be approximately 60 times greater than the per-
meability of the cast prepared from the well dispersed suspension. As shown earlier in
Figure 6.20 as the standard deviation of the distribution increased, which sirnulates
an increase in flocculation of a porous cake, the permeability increased.

The network model was used to study the effects that first and second-generation
agglomerates have on permeability. Figure 6.24 shows two distributions both with a
median tube radius = 1.0 gm, mean = 1.3 gm and maximum peaks occurring at 0.5
pm. The permeabilities however were found to be quite different for the two cases.
The permeabilities, K/ K, were equal to 0.501 and .946 for curve (1) and (2), respec-
tively. Curve (1) which produced the lower permeability had a greater proportion

of first-generation agglomerates whereas curve (2) had a smooth distribution with
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Figuie 6.24. For both curves the median = 1.0 um, mean = 1.3 pm and mode =
0.5 um. Curve (1) simulates first and second generation agglomerates
and curve (2) has a smooth but wider distribution.

a few larger pores. These results show that only minor variations in the pore size
distribution are required to affect the permeability and this, in turn, influences the

casting rate, as was shown experimentally by Schilling and Aksay.

6.6 BEHAVIOUR UNDER FIXED POROSITY
CONDITIONS

As shown earlier by the Kozeny-Carman equation (refer to Equation (6.6)) the
porosity of a porous medium affects the permeability. So fai, the network permeabihity
results presented in this thesis have been calculated based upon a fixed number of
tubes in the network. However, by varying the pore size distributions and using a

fixed number of tubes the total tube pore volume will vary and this will change the
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porosity of the system.

In this section, permeability results for different pore size distributions will be
presented. But, rather than the networks being comprised of a fixed total number of

tubes the networks will have a constant pore volume.

6.6.1 METHODOLOGY

In order to obtain a fixed tube pore volume the following procedure is performed

on a network with a fixed number of layers and tubes per layer:

(1) The total tube volume of network is calculated.

(2) Tubes are blocked off so flow can not pass through them.

(3) Tubes are blocked off until the volume of tubes remaining to participate in flow
equals the desired fixed volume.

The computer programs use different schemes for choosing the tubes to be
blocked off. The scheme chosen depends upon the number of tubes required to be
blocked off. One program attempts to achieve the desired network volume by using
the following scheme. Even numbered tubes at specified intervals are selected to
be blocked off (see Figure 6.25). The interval at which the tubes are selected at is
decreased until a sufficient number of tubes are blocked off. The smallest interval
being every second tube in every second layer where the even number tubes in the
first and last tube of each layer is not removed. If with this scheme an insufficient
number of tubes are blocked off the following alternative scheme is employed. Four
tubes that meet at a node are blocked off. The nodes are chosen at specified intervals
(see Figure 6.26). If enough pipes are stili not removed then this network volume
is further reduced by removing 24 (or 112 if necessary) tubes that are concentrated
around a node (see Figure 6.27). See Appendix B for a sample computer program
listing.
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Foure £25: Even numbered tubes are blocked off to obtain the desired total
network tube volume,

Figure 6.26:  Four tubes that meet at a node are blocked off to obtain the desied
total network tube volume.
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Figure 6.27: Twenty-four tubes that are concentrated around a node are blocked
off.

6.6.2 RESULTS

Networks were filled with Gaussian tube radius distributions and the tube radii
were restricted to the range between 0.05 and 1.95 um. Tubes were blocked off until
the network tube volume, V was equal to V, where V, is the volume if all tubes in the
unblocked original network had a radius = 1.0 pm. Figure 6.28 is a graph of K/ K,
versus standard deviation of the tube radius, 0. Again as in previous sections the
calculation for each K/ K, value was repeated 10 times and then averaged. A different
seed in the random numb-r generator was used for each repeated run. Figure 6.28 also
shows a graph of the p/:rcentage of tubes blocked off in the network versus standard
deviation. With increase in standard deviation the percentage of tubes blocked off
increases and K/K, decreases. These permeability results are substantially lower

than the results presented in Section 6.4.1 where the network model was based on a
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Figure 6.28: Graphs of permeability and percent of tubes blocked off in the
network versus standard deviation of the tube radius, o for Gaussian
(normal) distributions (network size = 49 rows and 49 tubes per row).

constant number of tubes rather than on a constant network volume As more and
more tubes are blocked off with increase in standard deviation of the tube radius,
inevitably more and more tubes will be connected in series. Therefore, the smaller
tubes will play an important role in determining the permeability of the network.

Networks were also filled with log-normal tube size distributions. The networks
all had values of V)V, = 1.0. Figure 6.29 is a graph of K/K, versus the standard
deviation of the In (tube radius), £ where the radii were restricted to values less than
3.0 um. The log-normal distributions would have a median = 1.0 um if there was
no restriction on the maximum tube size. The graph shows that there is a large
reduction in permeability with increase in standard deviation.

Figure 6.30 shows graphs of K/Ko versus standard deviation for two types of

log-normal distributions. For curve (1), the distribution had a modal value equal to
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1.0 pum, average radius of 1.0 pm and tubes were restricted to radii less than 1.85
pm. For curve (2), the average radius was 1.0 um and tubes were restricted to radii
less than 5.0 um. The modal value for curve (2) decreases with standard deviation.
Again, Figure 6.30 shows that the permeability decreases with increase in standard
deviation. Figure 6.30 shows, however that the reduction in permeability is much
greater for curve (2) even though the distributions for both curves had an average
radius = 1.0 um. Thhis is a result of the wider distribution and decrease in the modal
value with increase in standard deviation for curve (2)

The permeability results demonstrate that for a given porosity the permeability
results can differ greatly depending upon the pore size distribution.

Figure 6.31 is a graph of K/K, versus V[V, for log-normal distributions with
different standard deviations where the average radius = 1.0 pum. As would be ex-
pected K/ K, increases with V/V, and for a given V/V, value, K/K, drops with

increase in the standard deviation.
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Chapter 7

RANDOM TUBE MODEL OF CLOGGING
DURING FILTRATION

During slip casting and filter pressing it has often been assumed that there is
no motion of fine particles within the cake as it builds up with time. In other words,
the particles are deposited layer upon layer with no relative motion between them.

Experimental work demonstrates that fine particles can be carried along with
the filtrate and deposited within the cake and/or filter medium thereby clogging and
reducing the permeabilities of the porous media. This in turn will affect the 1ate of
cake growth as well as the density and porosity of the cake

Permeability reduction due to clogging can occur if* (1) particles larger in size
than a given pore size are trapped by the pore thus reducing its area and/or (2) as a
result of fine particles depositing on the pore walls and gradually reducing the pore
radii (see Figure 7.1).

A computer model consisting of a network of tubes with a log-normal tube size
distribution was developed to simulate the cake build-up process taking into account
the clogging effects. The model will illustrate that minor changes in the pore size

distribution due to clogging can significantly affect its permeability and casting rate.
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and gradually reduce the pore radii.

Figure 7.1: Schematic illustration of porous medium clogging.
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7.1 CAKE BUILD-UP MODEL

To simulate the cake build-up process, initially a fixed number of rows and loops
per row are used in the network to represent a unit cake layer. The fluid flow and
the permeability in the network is calculated using the same algorithm as was used in
Section (6.2.1). Then additional tubes are added to the network and the fluid flows
through the tubes and permeability of the network are again calculated. The process
continues with more and more tubes being added to the network to simulate the cake
build-up process (see Figure 7.2).

If no clogging occurs the permeability, K should be constant with increase in
network length as shown in Figure 7.3. The K values are given relative to the perme-
ability of a network with all tubes having a uniform size of 1.0 um, k', The tube radii
of the network were filled with a log-normal distribution having a standard deviation,
£ equal to 0.6 and a median=1.0 um. Computer runs were carried out using six rows
by 49, 101 and 201 tubes per row as a unit cake layer. The curves tend to become
constant after approximately three layers. The graph shows that the computer model
is accurate except in the very early stages (i.e. less than three layers) due to the small
number of tubes in the network. The model will be further developed 1n the following
sections to account for clogging during filtration. A unit layer consisting of six rows

and 49 tubes per row will be used in the following models.

7.2 PROGRESSIVE CLOGGING DUE TO
DEPOSITION ON PORE WALLS

The rates of deposition of particles within a porous medium are determined by

the forces of interaction between the porous medium (i.e. cake and filter medium),
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Schematic illustration of the network model simulating the cake
build-up process.
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Figure 7.3: Permeability versus number of layers. No clogging.

the carrier fluid, and the suspended particles.8 Such interaction occurs due to:

1. London-van der Waals attraction,

[

. Double-layer repulsion, and

(9

. Hydrodynzmic forces.

Adsorption of colloidal particles in porous media is very sensitive to the type
of interaction between the electrostatic double layers surrounding the particles and
the porous medium. Furthermore, this sensitivity depends, in addition, on the con-
vective field that carries the particles.39 The case where the forces of interaction are
completely attractive or where there is no appreciable energy barner (V. < 10kT)
will be used in the model.

When the forces of interaction are completely attractive the domnant resis-

tance to particle transfer lies in the diffusion boundary layer. The particle flux to
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the capillary surface is provided by the perfect sink solution derived by Levich for

Poiseuille ﬂow,90

| ou,
7' =0.67pD (DRI ) (7.1)
14

where u, is the mean fluid velocity in a pore of radius R, and [, is the distance along
the pore. The derivation of equation (7.1) is given in Appendix C. The number of

particles per pore volume, p is defined as:
p = number of particles/TR?L (7.2)

where L is the length of the pore. The diffusion constant, D is given by:

kT
D=== (7.3)

where k is the Boltzmann’s constant = 1.3805 x 10~2 J/K, T is the absolute tem-

perature and f is a friction coeflicient. For spheres:
f=6mur (7.4)

where 7 1s the particle radius. The diffusion constant, D is the proportional to 1/r:

_ 2161 x 107"°

r

D (m?/sec) (7.5)

when T = 298 K. Equation (7.1) can be integrated over the pore surface area to

obtain the fraction of suspended particles depositing per second:
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y = 2D RL/ (7.6)

The fraction of suspended particles depositing per pore, )’ is given by:

N = AL/u,. (7.7)

The fraction of suspended particles depositing per second increases with inter-
stitial velocity. However, it is suggested that there exists a critical velocity, u. such
that particles of size r can no longer adhere to the walls of the pores in the filter
cake.9! Hydrodynamic forces in the direction perpendicular to the flow, Fy, will exist
for non-spherical particles. It is assumed that the upper bound of this force is equal

to that in the flow direction and is given by:%1

Fy = 1.7 x 6ruru,. (7.8)

When Fy reaches a critical value F*, the particles of size r can no longer deposit on
the surface. The dominant force in adhesion is the London-van der Waals force of
attraction.92 Using the flatplate-sphere system, the London-van der Waals force, Fy,
can be represented by:

_—Hur

- 7.
Fy 62 (7.9)

where d, is the distance of closest approach. Typically, the Hamaker constant, H 4 is
of the order of 10719 - 10-# J.93-94 The particles are slightly separated from the pore
wall due to the adsorbed electrolyte and therefore the distance of closest approach -

is generally about 4-10 A.92.95 For smooth surfaces Visser?® found that the shear
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force F* needed to dislodge a particle was equal to the London-van der Waals force.

Therefore u, is given by:

ue = Hy/(192ud?) (7.10)

In the computer model values of 1.5 x 10%, 15 x 10® and 150 x 10° um/sec were used.

As a first approximation it is reasonable to assume that u, is independent of
particle size. However, the situation in a filter cake is more complex than considered
here in this analysis. The fluid velocity is zero at the pore surface and increases as
one moves away from the surface towards the middle of the pore. Larger particles
protrude further into the flow and are therefore acted on by faster moving fluid. This
implies that the deposition of large particles will decrease before that of small ones.

The model only considers the London-van der Waals forces of attraction and
hydrodynamic forces. The model does not take into account the effect of double-layer
forces. Rajagopalan and Tien% have shown that as long as the double-laver forces
are not too large, it is safe to ignore them.

Another weakness of the model is that it takes no account of deposited particles
being dislodged, despite the fact that experimental studies of deep bed filtration
indicate that this can occur in porous media.97 9 99 Despite the weaknesses of the
model, the results are still very useful in illustrating how porous media clogging can

affect the slip casting and filter pressing processes.

7.2.1 COMPUTER MODEL

Initially as each cake layer is added to the model the flow through all the pipes
in the network is determined. Then suspended particles are introduced to the model.
With each additional layer added to the network, fine particles are entrained with the

fluid in this top layer.
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The number of suspended particles per pore is proportional to the flow volume
and no particles percolate through pipes with backflow. Applying Darcy’s law for
one dimensional laminar flow through the porous medium, the filtration velocity, q is

given by:

S Lw

"
=q=d!’;/d:z:;\ (7.11)

where @ is the volumetric flow rate and A is the cross-sectional area of the medium.
If cake and filter medium clogging is ignored and a uniform porosity of the cake is

assumed, K will be constant and therefore:
g 1/L (7.12)
However, if clogging occurrs the permeability will change with increase in length:
g= %‘(K(b-x)/ffo) (7.13)

where G, is a constant, b is the number of cake layers and K{;_;) 1s the permeability
of the network with (b — 1) layers. The values for G, used in the network model
were chosen so that the filtration velocities are in the range of the filtration velocities
experimentally measured while filter pressing alumina slips.

Alumina suspensions, with a volume solids loading, ¢,; = 0.39, filter pressed at
275 kPa (40 psi) and using filter paper with an average pore size of 0.1 um as the
filter medium had permeabilities in the range of 3.5 x 10?7 m% The experimentally
measured filtration velocity,

KP

= —— 14
=" (7.14)

was found to be in the range of 9.7 x 103/L um/sec where L is given in um. Due to
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the resistance of the filter paper there is a limiting maximum filtration velocity. The
filter paper has a permeability, K, = 4.5 x 1071® m? and a thickness, L,, = 120 um.
Therefore with P = 275 kPa the filtration velocity of water through the filter paper
is equal to 1.03 x 103 um/sec. Setting this velocity equal to ¢ in equation (7.14) we
find an equivalent minimum cake thickness equal to 9.4 zm. In the computer model,
the thickness of each cake layer, AL, was fixed at 10 pm. Values for G, between 50
pum?/sec and 1 x 10° um?/sec were chosen to explore a range of filtration velocities.

The velocity through each tube, u(7) is calculated by applying the following

equation:

_QU)AN
u(i) = TOR (7.15)

where v is the porosity, Qins is the total network inflow rate, N is the number of
tubes per network row, A, is the average tube area, and A(:) and Q(:) is the area
and flow rate of tube z, respectively. A porosity of 0.42 was used in the model.

If u(i) is greater than u, then all the suspended particles in tube 2 are trans-
ported through the tube. If u(z) is less than u. then the number of particles deposited

in tube 1 is:

Ndcp = AI¢(b)Q(z)/Qtwe (716)

where A’ <1, ¢(b) is the average number of suspended particles per pore in layer b
and @, .. is the average tube volumetric flow rate. The volume of particles deposited
on the pore wall is equal to the reduction in the volume of the tube radius. The tube
radii are allowed to be reduced to a negligibly small but finite value of 0.05 pm to
simplify the network computations. Therefore, a limit is imposed on the volume of
fines depositing in a pore.

Once the tube radii have been reduced due to particle deposition, the perme-

ability of the clogged network is then solved. Then an additional layer is added to the

140



network and the process is repeated until the network has a total of 30 layers. The
volume of fines that percolate through a layer is the volume of fines that is entrained
with the fluid in the layer below it ~hen the process is repeated with an additional
layer added to the network.

One can realize that particles are continuously flowing through and/or being
deposited within each layer. Furthermore, it is possible for some of the percolating
particles to make their way to the bottom layer. Two situations were studied: (1) the
migrating particles that make their way to the bottom layer are free to filter out along
with the fluid (i.e. no clogging due to the filter medium) and (2) the particles which
make their way to the bottom layer are arrested in this layer. Often if a fine pore
sized filter medium 1s used, fine particles passing through the cake will be stopped at

the cake /medium interface.

7.3 MODEL FOR CLOGGING DUE TO PORES
TRAPPING PARTICLES

With this model the suspended particles can pass through pipes that are larger
than the size of the suspended particles, r, and a fraction of the particles will be
trapped by a portion of pores smaller than r,. It is assumed that a particle, once
trapped, blocks a pore. The clogged pore is reduced to a negligibly small but finite
value of 0.05 ym to simplify the network computation.

Initially, as an additional cake layer is added to the model the flow through all
the tubes in the network is determined. Then suspended particles are introduced to
the model. Fine particles are entrained with the fluid in the top layer. The volume of

migrating particles that pass through a layer without being trapped is stored and this
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volume of particles is entrained with the fluid in the layer below it when the process
is repeated with an additional layer added to the network.

The number of suspended particles per tube is proportional to the flow volume.
The volume of small tubes (i.e. tubes smaller than r,) in layer b that is clogged is

given by the following equation:

V(B)se = V(5) g 2)se (1.17)

where Q(b),, is the sumrnation of the positive volumetric flow rates of unclogged
small pores in layer b, Q(b),, is the summation of the total positive volumetric flow
rates of all the pores in layer b and V/(b),u, is the volume of suspended particles in
layer b. Small tubes in a layer are clogged at random until the sum of the volume
reduction of the small clogged tubes in layer b equals V(b),.. After the permeability
of the clogged network is solved an additional layer is added to the network and the
process is repeated until the network has a total of 30 layers.

This model as does the model for progressive clogging due to particle deposition
on pore walls examines the following two situations: (1) the migrating particles that
make their way to the bottom layer are free to filter out along with the fluid and (2)

the particles which make their way to the bottom layer are arrested in this layer.

7.4 RESULTS FOR CLOGGING DUE TO PARTICLE
DEPOSITION

Network permeabilities were calculated for networks clogging due to fine parti-
cles depositing on the pore walls. The tube radii of the networks were filled with a

log-normal distribution with a standard deviation (of the In (tube radius)) equal to
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Figure 7.4:  Permeability versus number of layers in network, r, = 0.01 gm and

¢, = 500/L pm/sec.
0.6 and a median of 1.0 pm. The unit cake layer length, AL, was set at 10 um (see
section (7.2.1)).

Three suspended particle concentrations, C, (i.e., average number of suspended
particles per pore) were studied. The concentrations were determined so that the
average number of suspended particles would fill 1 %, 10 %, and 20 % of the volume
of a pore with a radius of 1 um.

Figures 7.4 to 7.7 are graphs of K/K, versus the number of cake layers. The
critical velocity, u., was set at 15 x 10% um/sec.

In Figure 7.4, the suspended particles had radii of 0.01 um and an initial su-
perficial velocity, ¢,, equal to 500/L um/sec. Two conditions were examined: (1)
the migrating particles that make their way to the cake bottom were free to filter
out with the fluid (i.e., no clogging due to the filter medium) and (2) the particles

that migrate to the cake bottom were arrested in the bottom layer. With increase in
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Figure 7.7: Permeability versus number of layers in network, r, = 0.05 um and
g = 10 x 10*/L pm/sec.

suspended particle concentration, C, (i.e., average number of suspended particles per
pore) K decreases. The additional effect in reducing K due to particles being arrested
at the bottom layer is nil at a low C, and only mmor at the highest concentration of
suspended particles.

The conditions for the permeability results presented in Figure 7.5 are the same
as for Figure 7.4 except that the initial superficial velocity is 20 times greater (1.c.,
g, = 10 x 10®/L um/sec). Again, as in Figure 7.4, the additional effect of reducing
K due to particles being arrested at the bottom layer is nil at a low ;. However,
at the higher suspended particle concentrations, the additional effect 1n reducing i
due to particles being arrested at the bottom layer is very significant. These results
demonstrate that clogging at the cake bottom due to the filter medium can be very
detrimental to the filtration rate. With the higher superficial velocity being used in

the model, one observes that the cake bottorn and filter medium can become clogged
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very rapidly if there is a high concentration of suspended particles. In the very early
stages of filtration, the filtration velocity is high and therefore many of the suspended
fine particles will be transported to the cake bottom-filter medium interface. In the
initial stages, many pores at the cake bottom are free and therefore the rate of clogging
is high. The permeability decreases rapidly. There appears to be a critical number of
clogged pores that causes the permeability to decrease sharply and then once severe
clogging has occurred the permeability levels off.

In Figure 7.6, ¢, = 500/ L um/sec and r, = 0.05 um. Again, as in the previous
graphs, the permeability of the network decreases with C,. There is no additional
reduction in K due to clogging of the bottom cake layer when C, = 80. The additional
effect in reducing K due to particles being arrested in the bottom layer increases with
C,. The drop off in K due to clogging of the cake bottom is not as dramatic as in
Figure 7.5 and the permeabilities for the cases where particles are free to pass through
the cake bottom are higher than in Figure 7.4. The radii of the fines are larger than
for the results presented in the previous two graphs, therefore more of the fines will be
migrating through the pores rather than depositing on the pore surfaces for a given
flow velocity. However, the drop off in K due to the fines being arrested at the cake
bottom is not as dramatic as in Figure 7.5. With the lower velocity more particles are
deposited in the upper layers of the network and less are transported to the bottom
layer.

In Figure 7.7, ¢, = 10 x 103/ L um/sec and the radii of the suspended particles
are 0.05 pum. These results also show that a higher velocity causes a rapid and
dramatic drop off in K due to particles being arrested at the cake bottom. For the
cases where the fines were not arrested at the cake bottom, the drop off in K was less

than in the previous graphs due to the larger radii of the fines (0.05 gm) and higher
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Figure 7.8: Permeability versus number of layers in network, C, = 80 and 10000.

velocity.

Figures 7.8-7.13 illustrate the effects that g, and the radii of the fines have on the
rermeability. In Figures 7.8-7.10 fines are prevented from passing through the bottom
layer whereas in Figures 7.11-7.13 fines are free to pass through the bottom layer. In
summary, Figures 7.9 and 7.10 show that the greater velocity (¢, = 10x103/L um/sec)
and larger fines (0.05 um) cause the permeability to drop rapidly and dramatically
due to clogging of the bottom layer. Figures 7.12 and 7.13 show that the smaller
velocity (¢, = 500/L pm/sec) and the smaller suspended particle radius (0.01 um)
causes clogging to occur more within the cake as it increases in thickness. Figures 7.8
and 7.11 show that at a low suspended particle concentration the deposition of fines
on the pore walls has very little effect in reducing K.

The effects that the different initial filtration velocities, ¢, and critical velocities,

u. have on the clogging of the network was analyzed. Figures 7.14 and 7.15 are
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Figure 7.9: Permeability versus number of layers in network, C, = 800 and 100000.
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graphs of K/K, versus number of layers. The fines had a radius of 0.05 um and
C, = 800. The fines were prevented from passing through the bottom layer. The
critical velocity, u., was set at 1.5 x 10° um/sec, 15 x 10® um/sec and 150 x 103
pm/sec for both Figure 7.14 and 7.15. In Figure 7.14 filtration velocities of 50/L
pm/sec, 500/L pm/sec and 5000/L pm/sec were used. In Figure 7.15 velocities 20
times greater than in Figure 7.14 were used. For both graphs, u. had very little effect
on the permeability results. However, in Figure 7.14 there is a sharp drop off in K
for g = 5 x 10®/L um/sec and in Figure 7.15 the sharp drop off in K occurs for
¢ = 10 x 10°/L pm/sec and 100 x 10°/L pum/sec. These results show that at high
values of ¢, many of the suspended particles can percolate right through the cake and
therefore clog the bottom layer.

In Figures 7.16 and 7.17, the fines had a radius of 0.01 um and C, = 100000.

The velocities in Figure 7.17 were 20 times greater than in Figure 7.16. In Figure 7.16
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Figure 7.16:  Permeability versus number of layers in network, r, = 0.01 pm and
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Cs = 1600.

there was no dramatic decrease in K. However, in Figure 7.17, at the highest filtration
velocity (¢, = 100 x 10%/L pm/sec) there was a sharp decrease in K. Comparing
Figures 7.16 and 7.17 with Figures 7.14 and 7.15 one can observe that the reduction
in K was more severe due to the coarser suspended fines (0.05 pm). These coarser
fines adhere less to the tube walls and therefore more percolate to the cake bottom
and clog the bottom layer. The filtration conditions in Figures 7.18-7.21 are similar
to the conditions used in Figures 7.14-7.17 aside from using higher suspended particle
concentrations, C,. The concentrations were fixed at 1600 and 200000 for fines with
radii of 0.05 um and 0.01 pm, respectively. With these higher C, values there is a
more rapid and greater drop off in K.

The situation where the suspended particles are free to filter out of the cake
bottom was also analyzed for different values of u, and ¢,. Figure 7.22 confirms that

K decreases with decrease in ¢,. As ¢, decreases more particles deposit on the tube
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Figure 7.19:  Permeability versus number of layers in network, r, = 0.05 um, C, =
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Figure 7.20:  Permeability versus number of layers in network, r, = 0.01 ym and
C, = 200000.
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Figure 7.21:  Permeability versus number of layers in network, r, = 0.01 pm, C, =
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Figure 7.22:  Permeability versus number of layers in network, r, = 0.01 gm and
C, = 200000.
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walls and clog the network. It isinteresting to note that at a high ¢, (5000/L pm/sec),
the permeability results are affected by u.. After 21 layers, there was a sharp decrease
in K for the two curves with u, = 15000 pm/sec and 150000 um/sec but not for the
curve with u, = 1500 pm/sec. With alow u. and high ¢, some of the particles are
preventcd from depositing on the pore walls.

The permeability results illustrate that the networks can be severely clogged due
to particles depositing on the tube walls and reducing the tube radii. The reduction
in tube volume during clogging was analyzed. As each layer of tubes is added to
the network and before particle deposition occurs, the tube volume of this additional
layer, V,, is calculated. Then, after particle deposition occurs, the tube volume for
each layer, V,; 1n the network is recalculated. The ratio of the unclogged tube volume,
Va to V,, was calculated as the network increased in length.

Figures 7.23-7.27 are graphs of V/V,p versus number of layers. Six curves are
shown on each graph. The results are plotted for a network consisting of 5, 10, 15, 20,
25 and 30 layers. The suspended particles had a radius of 0.01 gm and C, = 200000.

In Figures 7.23 and 7.24, ¢, = 500/L and 10 x 10°/L um/sec, respectively. For
both Figures the particles were prevented from passing through the bottom layer. In
Figure 7.23, V,;/V,; is fairly constant with the top most layer having a slightly higher
Vet/ Vip value (ie., less clogging). With ¢ = 500/L pm/sec most of the particles
deposit in the upper layers of the network. In Figure 7.24 however, the tube volume
reduction is significantly higher in the first (i.e., bottom) layer. With this higher
velocity (¢, = 10 x 10°/L um/sec), during the build-up of the first 5 and even 10
layers a significant volume of the fine particles percolates through the network and
deposits in the bottom layer causing a dramatic drop in K. After the first 10 layers

have been formed an insignificant amount of particles percolate to the bottom layer.
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Figure 7.23:  Graph shows fraction of original tube volume of layer available for
flow after particle deposition has occurred (g, = 500/L um/sec,
u, = 15 x 10* um/sec, r, = 0.01 pm and C, = 200000).
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Figure 7.24: Graph shows fraction of original tube volume of layer available for
flow after particle deposition has occurred (g, = 10 x 10°/L pm/sec,
u. = 15 x 10% um/sec, r, = 0.01 ym and C, = 200000).
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Figure 7.25:  Graph shows fraction of original tube volume of layer available for
flow after particle deposition has occurred (g, = 500/L pm/sec,
u, = 15 x 10® pm/sec, r, = 0.01 pm and C, = 200000).
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Figure 7.26:  Graph shows fraction of original tube volume of layer available for
flow after particle deposition has occurred (g, = 10 x 103/ L pm/sec,
u, = 15 x 10® pm/sec, r, = 0.01 pm and C, = 200000).
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Figure 7.27:  Graph shows fraction of original tube volume of layer available for
flow after particle deposition has occurred (¢, = 5 x 10°/L um/sec,
u. = 150 x 10® um/sec, r, = 0.01 um and C, = 200000).

In Figures 7.25-7.27 the particles that percolate to the bottom layer are free
to filter out with the filtrate. In Figure 7.25 where ¢, = 500/L pum/sec, again the
curves are fairly constant due to most of the particles depositing in the upper network
layers. In Figure 7.26 where ¢, = 10 x 10° um/sec, V,;/V,, decreases in the bottom
layers (i.e., first couple of layers) as the network increases in its number of layers.
Particles are depositing in the entire network length and some are being transported
right through the network and filtering out with the filtrate.

In Figure 7.22 where r, = 0.01 um, C, = 200000 and the particles can pass
through the bottom layer the decrease in K is more gradual at the higher filtration
velocity (¢, = 5 x 10%/L um/sec). The graph of V,;/V,, versus number of layers for
this case is shown in Figure 7.27. The results show that the V.i/V,, values decrease
for the curves with network lengths of 5§, 10 and 15 layers. The high velocities were

initially filtering some of the particles out of the network and depositing the rest
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throughout the network.

Figures 7.23-7.27 show that the V,;/V,, values are near 0.9, however in the ear-
lier graphs it was shown that sometimes the permeability can drop by more than a
factor of 100 due to clogging. Therefore, these V/V,, results illustrate that only a

small reduction in pore volume is required to cause severe clogging.

7.5 RESULTS FOR CLOGGING DUE TO PORES
TRAPPING PARTICLES

Network permeabilities were calculated for networks that clogged as a result of
tubes trapping particles larger than the tube openings. Three volume concentrations
of suspended particles, C, = 0.005, 0.01 and 0.05 were studied. The volume con-
centration, C, is defined as the volume of flowing particles in a layer per total pore
volume of the layer.

Figures 7.28-7.30 are graphs of K/K, versus the number of layers in the net-
works. The tube radii of the networks were filled with log-normal distributions with
€ = 0.6 and a median of 1 um. In Figures 7.28, 7.29 and 7.30 tubes with radii smaller
than r, = 0.4 ym, 0.6 um and 0.8 um could be clogged, respectively. The suspended
particles that make their way to the cake bottom were free to filter out with the fluid.
The results show that for a small r, (= 0.4 ym) the clogging of these small pipes have
very little effect in reducing K. As expected, for a larger r, (= 0.8 um) clogging can
significantly reduce K. The larger r, the greater the effect C, has on decreasing K.

In Figures 7.31-7.33 the bottom layer arrests the particles that migrate to the
bottom of the network. All other conditions are similar to the ones in Figures 7.28-

7.30, respectively. The drop in K is most severe for the case where r, = 0.4 um.
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With decrease in r,, more particles will percolate to the bottom layer and severely
clog it. In the initial stages there are still many open pores in the bottom layer and
the rate of clogging is high. The reduction in permeability is rapid and drastic. Once
the bottom layer is severely clogged, the permeability levels off with increase in the
number of layers. The extremely low permeability of the bottom layer controls the
permeability of the network.

With a higher r, (= 0.8 pm) more of the particles are retained throughout the
network rather than percolating to the bottom layer. At a high C, (= 0.05) severe
clogging of the bottom layer still occurs, but at lower concentrations the reduction
in permeability is more gradual due to progressive clogging throughout the network
length. At a higher C, (= 0.05) the severe clogging of the bottom layer occurs but at
lower concentrations the reduction in permeability is more gradual due to progressive
clogging throughout the network length.

In Figures 7.34 and 7.35, the standard deviation of the In (tube radius), £ =
0.4 and 0.8, respectively. Tube radii smaller than 0.6 um could be clogged. The
suspended particles were free to pass through the bottom layer. In Figure 7.34 very
little clogging occurred due to the narrow tube size distribution. Therefore, most of
the suspended particles percolated right through the network. In Figure 7.35, more
clogging occurred due to the wide tube size distribution. With increase in £ the modal
tube size decreases and therefore the suspended particles block more tubes.

In Figures 7.36 and 7.37 the suspended particles were prevented from passing
through the bottom layer. All other conditions were similar to the ones in Figures 7.34
and 7.35, respectively. In Figure 7.36, the decrease in K is only severe at the concen-
tration, C, = 0.05. However, in Figure 7.37 where the network has a wide tube size

distribution the clogging is rapid and severe for all suspended particle concentrations.

164




P N Y

TN WL A TME e

T

e miy emeT

o mgaen T

g

1.4 F FINES CAN PASS THROUGH
[ BOTTOM LAYER
1.2
1.0 £
v 08 F
Losk
0.6 E re« = 0.6 um
0.4 F f=04
E Mgvzggoos
00066 Cy= 1
0.2 seEes Cy=0.05
OO—l}lllljlllJlllljllllll_llllllll
0 4 8 12 16 20 24 28

NUMBER OF LAYERS

Figure 7.34: Permeability versus number of layers in network, ¢ = 0.4.

o
o

O TTrTTITTTTI ]

FINES CAN PASS THROUGH
BOTTOM LAYER

TTTTT

y“1r‘

111[11114111111111:llllJlililJ

4 8 12 16 20 24 28
NUMBER OF LAYERS

Figure 7.35: Permeability versus number cf layers in network, { = 0.8.

165



Fops

FINES CAN NOT PASS

1.4 |
" THROUGH BOTTOM LAYER
1.2 F
1.0 poe s
v 0.8 F
\ -
Y [
06 r« = 0.6 um
o
0.4 F ¢ = 04
B~ wes C,=0.0005
- 00066 C,=0.01
0.2 - sessa C,=0.05

0.0 T SR = VP W W N W W W
0 4 8 12 16 2 24 28
NUMBER OF LAYERS

" Figure 7.36: Permeability versus number of layers in network, £ = 0.4.

1.4

FINES CAN NOT PASS
THROUGH BOTTOM LAYER

1.2
1.0
v 0.8
X 0.6
0.4
0.2
0.0

TTTJTITTTTTT]TTTI]T

TTTTTTT T

0 4 8 12 16 20 24 28
NUMBER OF LAYERS

Figure 7.37: Permeability versus number of layers in network, ¢ = 0.8.

166




1.0
T s 06 MM DL,
5 :H—#—*—*é: e caeaa
> __Geeees::
ﬁo‘a___asaaag::
g [
£ 06
o -
m -
z 04
é’ -
Z,QO.ZE
OOL gt el rr e by b
Yo 4 8 12 16 20 24 28

NUMBER OF LAYERS

Figure 7.38: Fraction of clogged tubes in the bottom layer versus number of layers
in network.

In general, the higher flow .ates are in the larger tubes and the lower flow rates
are in the smaller tubes. Therefore, with a wide tube size distribution the larger
tubes transport larger volumes of suspended particles ‘han the smaller tubes. Even
though suspended particles block the smaller tubes the high flow rates in the larger
tubes transport many of the suspended particles to the bottom layer resulting in
severe clogging of the bottom layer. With a narrow tube size distribution the flow
distribution is also narrow. As a result, the clogging of the boltom layer is slower
with a narrow distribution than compared to a wide distribution Figure 7.38 15 a
graph of the fraction of clogged tubes in the bottom layer versus the total number
of layers in the network. The curves show that for { = 0.4, the tube clogging in the
bottom layer is much slower and far less severe compared to the results for £ = 0.8.

In both cases where (1) the suspended particles can pass through the bottom

layer and (2) the suspended particles are prevented from passing through the bottom
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Figure 7.39: Fraction of origina! tube volume of a layer available for flow after
particle deposition (r, = 0.6 pm, C, = 0.01 and £ = 0.4).

layer the permeability reduction due to tube clogging increases with the standard de-
viation of the tube size. The reduction in tube volume during clogging was analyzed.
Figures 7.39-7.44 are graphs of V,;/V,, versus number of layers where V,; is the tube
volume of a layer during clogging and V,, is the tube volume of a layer before clog-
ging occurs. The results are plotted for a network consisting of 5, 10, 15, 20, 25 and
30 layers. In Figures 7.39-7.41 the suspended particles are free to pass through the
bottom layer. The volume concentration, C, = 0.01 and r, = 0.6 um. The tube size
standard deviation, £ = 0.4, 0.6 and 0.8 for Figures 7.39, 7.40 and 7.41, respectively.
For all three figures, V;;/V,, is nearly constant with increase in network size and is
close to 1.0. In Figures 7.42-7.44 the conditions are the same as for Figures 7.39-7.41
except that the suspended particles are prevented from passing through the bottom
layer. The results for the three figures are very similar. The tube volume of the

bottom layer decreases with increase in the network length. The tube volume of the
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layers above the bottom layer are quite constant and are close to 1.0. Though the
tube volume results are very similar for different tube size standard deviations the
permeability results are very different. These finaings can be explained by analyzing
the number of tubes that are clogged with change in §.

After each layer of tubes is added to the network, the number of tubes that are
blocked due to trapping of suspended particles is recorded. The ratio of the number of
blocked tubes in the layer, Nj to the number of tubes in the layer, Ny, was calculated
as the network increased in length.

Figures 7.45-7.50 are graphs of N,/N,, versus number of layers where C, = 0.01
and r, = 0.6 um. Again, the results are plotted for a network consisting of 5, 10,
15, 20, 25 and 30 layers. In Figures 7.45-7.47 the tube size standard deviation, £
is equal to 0.4, 0.6 and 0.8, respectively. The suspended particles were free to pass

through the bottom layer. These three figures show that the rate of pore blocking
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Figure 7.45: Graph of fraction of clogged tubes per layer for networks consisting
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Figure 7.47:  Graph of fraction of clogged tubes per layer for networks consisting
of different numbers of total layers (r, = 0.6 um, C, = 0.01, { =0.8).

increases with £. In Figure 7.45 where € = 0.4, N, increases from the top layer to the
bottom layer (i.e., layer 1) and more tubes are progressively blocked with increase in
the network length. In Figure 7.47 on the other hand, where the network has a wide
tube size distribution (£ = 0.8) the results are more dispersed. The six curves in this
figure are very similar except for the first few top layers of each curve. These results
show that clogging of the tubes smaller than r, = 0.6 um occurs rapidly and is far
less gradual as compared to Figure 7.45. With increase in £, clogging had little effect
in reducing the tube volume. However, N, increased substantially accounting for the
decrease in permeability with increase in . The conditions in Figures 7.48-7.50 are
the same as in Figures 7.45-7.47, respectively, except that the suspended particles are
prevented from passing through the bottom layer. The curves in Figures 7.48-7.50 are
similar to the ones in Figures 7.45-7.47, respectively. However, the bottom layer (i.e.,

layer 1) in each curve has a greater number of clogged tubes. Referring back to the
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Figure 7.48:  Graph of fraction of clogged tubes per layer for networks consisting
of different numbers of total layers (r, = 0.6 um, C, = 0.01, { =0.4)
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174



1.0
- FINES CAN NOT PASS
P~ THROUGH BOTTOM LAYER
08 - sesss 5 |AYERS
0eeeo 10 LAYERS
B Ba888 15 LAYERS
< B Asett 20 LAYERS
2 0.6 00000 25 LAYERS
= B ik 30 LAYERS
\B -
< D4
0.2
Oo—lllllLJllLllllllllLLlll_llllll
0 4 8 12 16 20 24 28

NUMBER OF LAYERS
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of different numbers of total layers (r, = 0.6 um, C, = 0.01, £ =0.8).
permeability results it was shown that for the conditions where C, = 0.01, », = 0.6um
and where the fine particles were prevented from passing through the bottom layer
for £ = 0.4 (see Figure 7.36) the decrease in K was very gradual and only dropped
to K/K, = 0.74 for a network consisting of 30 layers. For £ = 0.6 (see Figure 7.32)
there was a sharp decrease in K between networks with 14 and 18 layers followed
by a levelling off at approximately K/K, = 0.01. For £ = 0.8 (see Figure 7.37), K
decreased rapidly down to K/ K, = 0.002 for the first 4 layers. It appears that there
is some critical N, /Ny, value that causes a drastic drop in permeability. This critical

phenomena can be explained by percolation theory.

7.5.1 PERCOLATION THEORY

Percolation theory deals with the effects of varying, in a random system, the

richness of interconnections present. An important aspect of the percolation model

175



Table 7.1: Applications of percolation theory (after Ref. 100).

PHENOMENON TRANSITION
Flow of liquid in a porous medium Local/extended wetting
Spread of disease in a population Containment /epidemic
Communication or resistor networks Disconnected/connected
Conductor-insulator composite materials Insulator/metal
Composite superconductor-metal materials | Normal.superconducting
Discontinuous metal films Insulator/metal
Stochastic star formation in spiral galaxies | Nonpropagation/propagation
Quarks in nuclear matter Confinement /nonconfinement
Thin helium films on surfaces Normal/superfluid
Metal-atom dispersions in insulators Insulator/metal
Dilute magnets Para/ferromagnetic
Polymer gelation, vulcanization Liquid/gel
The glass transition Liquid/glass

is the presence of a sharp phase transition at which long-range connectivity suddenly
disappears. This percolation transition, which occurs with decreasing connectedness
makes percolation a natural model for describing a diversity of phenomena.!%0 Ta-
ble 7.1 lists some physical situations to which percolation ideas have been applied.
As an example of a percolation process consider the electrical network experi-
ment illustrated in Figure 7.51. The electrical nctwork is represented by a very large
square-lattice network of unit conductors (bonds). The bonds are then randomly cut
until there is no electrical conduction between the two bounding electrodes. There ex-
ists a sharp transition at which the long-range connectivity of the system disappears.
This basic transition, which occurs abruptly as the composition of the system is var-
ied constitutes the percolation threshold. In this example the percolation threshold
corresponds to the disappearance of the electrical conduction between the two bound-
ing electrodes. Starting with all conducting bonds present in the network and then
randomly cutting bonds, the current, I. drops as more and more bonds are cut as

indicated by the curve in the lower part of Figure 7.51. Denoting the fraction of un-
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Figure 7.51: Network is randomly cut until there is no electrical conduction
between the two bounding electrodes (after Ref. 100).
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cut bonds remaining as b, I.(b,) continues to decrease as b, decreases until a critical
bond concentration, denoted as b., is reached at which point the current I. vanishes.
For b, < b., there exists no connected path of conducting bonds that traverse the
network from one electrode to the other. A well-defined b, at which, with decreasing
b., the electrical network becomes an open circuit requires a very large network. The
distance L between the electrodes must greatly exceed the bond length y: (L/1;) > 1.
For a finite system, repeated experiments will yield a spread of observed thresholds
which bracket b.. It is known that . = 0.5 is the value of the percolation threshold
for bond percolation on a square lattice. The percolation threshold is known exactly
for a few other two-dimensional lattice arrangements, but not for any lattices in three
(or higher) dimensions.

There is a variation in b, from one lattice arrangement to another due to the
sensitivity of b to the local structure. The more highly connected a lattice or in other
words, the higher the coordination number the lower is the concentration of unblocked
bonds needed to sustain long-range connectivity. Lattices in higher dimensions are
more highly connected than those in lower dimensions and therefore the trend is to
decreasing b. with increasing dimensionality.

The above example is termed bond percolation. A network is composed of sites
(intersections between bonds) and bonds (connections between sites). There are two
basic types of percolation processes on networks: bond percolation and site percola-
tion. In bond percolation, each bond is either connected (which occurs with proba-
bility p) or disconnected (which occurs with probability (1-p)). In site percolation,
each bond is considered to be connected and it is the sites that carry the random-
connectivity character of the structure. Each site is either connected (unblocked) or

disconnected (blocked), with probabilities p and 1-p, respectively.
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Table 7.2: Bottom layer values of N,/N,, for networks of critical lengths, L..
4 rs | Le Cy Nb/Ntot
04,0610 0.05 0 558
06104 4 | 005 0.393
0.6 {19 0.01 0.464
4 | 0.05 0.487

0814 | 605 0.517
08 (06| 6 |0005 | 0442
4 | 0.01 0.510

2 | 005 0.586

In 1957 the mathematician J. M. Hammersley provided the original motivation
for the use of the term percolation for the connectivity threshold by considering the
passage of a fluid through a network of channels, with some channels being randomly
blocked (disconnected).

In essence, our random tube network model describing clogging due to sus-
pended particles blocking tube openings is a bond-percolation process. The perme-
ability results showed that there is some critical ratio of the number of tubes blocked
in the layer to the total number of tubes in the layer, Ny /N, that causes a drastic
drop in permeability. Table 7.2 lists bottom layer values of N,/Ny, for different val-
ues of £, C, and r,. The N;/N,, values were calculated for a critical network length,
L. The critical network length, L. is defined as the number of layers at which point
there is a sharp drop in K. The Ny/N, values are near 0.5 as is predicted by per-
colation theory for a square lattice network. As stated earlier, b. = 0.5 in the limit
(L/ly) — oo. Since a unit layer in the network only has six rows of tubes there was a
spread of Ny/N;y values that bracket 0.5. The bottom layer was the only layer that
was critically blocked whereas the upper layers w -re much less clogged. However, the
critical clogging of the bottom layer controlled the permeability of the network due

to its severe drop in K.
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Figure 7.52: Permeability versus percent of randomly blocked tubes (network size
= 49 rows and 49 tubes per row).

To further illustrate this percolation phenomena, networks consisting of 49 rows
and 49 tubes per row were filled with log-normal tube size distributions with £ = 0.4,
0.6 and 0.8 Tube radii were blocked randomly. The radii of the blocked tubes were
reduced to 0.05 um, a negligibly small but finite size to simplify network computa-
tions. Figure 7.52 is a graph of K/ K, versus percent of blocked tubes in the network.
These results show that the percolation threshold is at approximately 0.5 as predicted

by theory.

7.6 PORE SIZE REDUCTION AND PORE BLOCKING

Network permeabilities were calculated for networks clogging due to the com-

bined effect of: (1) tubes trapping particles larger than the tube openings and (2)
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Figure 7.53:  Permeability versus number of layers in network. Curve - (1) C, =
0.005, r, = 0.6 um. Curve - (2) C, = 100000, r, = 0.01 zm and
q, = 500/ L p/sec.

fines depositing on the tube walls. The tube radii of the networks were filled with
log-normal distributions with £ = 0.6 and a median of 1 um. The suspended particles
were prevented from passing through the bottom layer. The computer program is
listed in Appendix D.

Figures 7.53-7.56 are graphs of K/K, versus number of layers in the network.
Tubes smaller than 0.6 gm could be blocked and 0.01 um fines could deposit on
the tube walls. The fine suspended particle concentration, C, = 100000. The critical
velocity, u,, for the fine suspended particles was set at 15x10% um/sec. In Figures 7.53
and 7.54, C, = 0.005 and ¢, = 500/L pm/sec and 10 x 10° ym/sec, respectively. The
length of the network, L, is given in um. In Figures 7.55 and 7.56, C, = 0.01 and
¢, = 500/Lpum/sec and 10 x 10° um/sec, respectively. In Figures 7.54 and 7.56,

tube size reduction due to particle deposition was greater than in Figures 7.53 and
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Figure 7.56: Permeability versus number of layers in network. Curve - (1) C, =
0.01, 7, = 0.6 um. Curve - (2) C, = 100000, r, = 0.01 gm and
g, =10 x 10%/L pm/sec.

7.55, respectively. In Figure 7.54 the added effect of tube size reduction due to tube
blocking caused a sharp drop off in K to occur at the critical network layer number,
L. = 28, whereas for the pore blocking and pore reduction curves there was no sharp
drop off in K. In Figure 7.56, L. = 18 for the tube blocking curve. The added effect of
tube size reduction due to tube blocking however caused L, to decrease to 15. These
results again illustrate that there is a critical number of blocked pores that cause a

sharp drop in K.
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Chapter 8

SUMMARY AND CONCLUSIONS

It is essential to acquire a better understanding of the filtration mechanics
involved in filtration processes so that tie advanced ceramic industry can rehiably
reproduce high strength products with complex shapes. In particular, the industry 1s
concerned with forming a green body with maximum particle packing and uniformity
so that minimum shrinkage and minimum porosity will result during sintermg and
densification.

Slip casting and filter pressing experiments were cairied out to study how the
growth rate of thickness and the microstructure of the cake are affected by various
processing parameters. The properties of the ceramic suspensions greatly aflect the
filtration process, therefore it was important to control the rheology of the suspen-
sions. A coarse (C-71FG), a fine (A-165G) and a mixture of these coarse and fine
alumina powders were used for the rheological study and filtration experiments.

The viscosity measurements showed that for a given solids loading, the viscosity
of the slip decreases with increasing concentration of deflocculant. After a mimmum
in viscosity is reached (i.e., maximum deflocculation), a levelling off, followed by a
gradual increase in viscosity occurs. At maximum deflocculation, the A-165G slips
were shear thinning and the C-71FG slips were shear thickening The slips that
contained a 50/50 mixture of the A-16SG and C-7IFG powder were mitially shear

thinning with an increase in the shear rate, reached a minimum viscosity, and theun
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began to shear thicken slightly. Shear thinning is a characteristic of a flocculated
slip whereas shear thickening can be attributed to the solids having a tight packing
arrangement.

Filtration experiments showed that slips containing a mixture of C-71FG and A-
16SG powder produced higher cake green densities at all solids loadings compared to
the C-71FG or A-16SG slips. For the A-165G slips the cake green densities decreased
and the cake thickness growth rate increased with the solids loading of the slip due
to increased flocculation.

The microstructure of the plaster of Paris mold plays a vital role in the slip
casting process because it is the pore structure of the mold that provides the capillary
suction pressure and therefore affects the growth rate of the cake. It was shown
that with increase in the plaster/water ratio the mold density and suction pressure
increased but the mold permeability decreased. A-16SG slips were cast using molds
prepared with different plaster/water ratios. The cake thickness growth rate only
increased very slightly with increase in plaster/water ratio. As the suction pressure
increases with plaster/water ratio, the fraction of pressure utilized to overcome flow
resistance in the mold becomes more important at the higher plaster/water ratios
thereby negating the increase in pressure available for cake formation.

As the cake thickness increases with casting time fine particles can be carried
along with the filtrate and deposited within the cake and/or filter medium thereby
clogging and reducing the permeabilities of the porous media. SEM micrographs con-
firm that fine particles can migrate to the cake bottom and accumulate there. SEM
micrographs also show that some of the fines can pass through the filter medium,
depending upon the ratio of particle size to medium pore size. Surface area measure-

ments, likewise, showed that a higher concentration of fine particles can accumulate
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at the cake bottom. When cake and/or filter medium clogging occurs the permeabil-
ity of the system will vary with cake thickness and therefore the traditional filtration
equations that assume a constant cake and filter medium permeability are not valid.

A computer model consisting of a network of tubes with a random tube size
distribution was developed to simulate the filtration process and account for porous
medium clogging. Flow through the network was sclved using the Hardy-Cross
Method. The results of the model also emphasize that porous media with the same
average pore size and porosity but with different pore size distributions can have very
different permeabilities and therefore permeability can not be defined in terms of an
average pore size.

The model considerad clogging to occur by two means: (1) as a result of fine
particles depositing on the pore walls and gradually reducing the pore radii and (2)
by pores trapping particles larger than the pore openings. The mode! showed that
the permeability of porous media can decrease gradually with increase in clogging
but then at a critical ratio of the number of clogged pores in a layer, N, to the
total number of pores in the layer, Ny, a drastic drop in permeability occurs. This
critical phenomena was explained by percolation theory. An important aspect of
percolation theory is the presence of a sharp phase transition at which long-range
connectivity suddenly disappears. In essence, the model that incorporates clogging
due to suspended particles blocking tube openings is a bond-percolation process
The critical Ny/N,, values calculated for the networks were near 0.5 as predicted by
percolation theory for a square lattice network.

The reduction in network tube volume during clogging was also analyzed. The
ratio of the clogged tube volume, V,; to the unclogged tube volume, V,, for each

network layer was calculated as the network increased in length. It was shown that
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depending upon the tube size distribution, with V,;/V,, values as high as 0.95 the
permeability still decreased by more than a factor of 100 compared to an unclogged
network. Filtration experiments and the network model results showed that cake
permeability can vary as a function of cake thickness and from run to run due to

minor changes in the local and overall cake microstructures.
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STATEMENT OF ORIGINALITY

Filtration casting behaviour of ceramic suspensions is an area still not fully
und-rstood. The filtration experiments that were carried out to explore how particle
siz.s, particle size distributions and solids volume fractions of slips affect the growth
rates and the green densities of the filter cakes have given further insight into the
filtration forming processes. This is the first time that the plaster of Paris mold
microstructure, density, permeability, suction pressure and the effects that all these
mold properties have on the slip casting process were analyzed as a function of the
plaster/water ratio used to form the mold.

Surface area measurements as well as SEM analysis of longitudinal cross-sections
of filter paper and cakes were novel approaches used to find evidence of cake and
filter medium clogging. A computer model consisting of a two-dimensional network
of tubes with a random size distribution was developed to simulate the increase in
cake thickness during the filtration process. The model analyzed the effects that the
tube size distribution, porosity and clogging had on the permeability of porous media.
Clogging was modelled based upon two assumptions: (1) particles larger in size than
a given pore size were trapped by the pore thus reducing its area and /or (2) as a result
of fine particles depositing on the pore walls and gradually reducing the pore radii.
The Hardy-Cross Method was incorporated into the program to solve for the flows
in the network tubes. The advantage of this approach compared to solving series of
simultaneous equations is that large networks could easily be modelled. For example

10000 tubes could be modelled using less than 640 kilobytes of RAM memory and
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thus the larger the network size the more representative the model is of flow through
a filter cake. The results of the model show that an analogy can be made between

porous media clogging and percolation theory.
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Appendix A

COMPUTER PROGRAM FOR RANDOM
TUBE NETWORK MODEL
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* RANDOM TUBE NETWORK MODEL

*
* PROGRAM CALCULATES THE PERMEABILITY OF THE NETWORK.

*

* % X X »

PROGRAM NAME = HARDYDEC.FOR
R e e T T L P e e T T

*

EL = # OF ELEMENTS/ROW
N = TOTAL # OF LOOPS
TEL = TOTAL # OF ELEMENTS
ROWS = # OF ROWS
LOOPS = # OF LOOPS/ROW
TOLQ = ERROR TOLERANCE FOR Q
TOLH = ERROR TOLERANCE FOR HEAD LOSS
Q.INT = Q INFLOW
IDUM = SEED FOR RANDOM NUMBER GENERATOR
PERMEAB = PERMEABILITY

REAL R(20000), Q(20000),SUMH,SUMZ,QDELTA,QINT
REAL LOSSAVE

INTEGER RRUN,LOK,ROWS,LOOPS,EL,N,TEL,LD
COMMON ICOUNT

do 2000 icount = 1,2

1f (icount .eq. 1) then

rows=200
loops=24

RESULTS ARE WRITTEN TO FILE = “RESULT_1"
open (1,file= ’RESULT_1’)
write (1,%) ’file = RESULT_1’
write(1,*)’program name = HARDYDEC.FOR’
write (1,*)’LOGNORMAL DISTRIBUTION’
write (1,*)’std=0.6 median=1"’
write(1,*)’Xo=1.0 Ao=0.5 Co=3.0'
write(1,*) ’x=0.5+tan(pi*randx)+1.0’

endif
if (icount .eq. 2) then

close (1, status= ’keep’)

rows=200

loops=24
open (2,file= ’'RESULT_2’)
write (2,*) ’file=RESULT_2 same as RESULT_1 except'’
write (2,*) LOGNORMAL STD = 1.0 MEDIAN = 1.0’
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100

200

300

write (2,*) ’X0=0.4 A0=0.8 Co=2.0’
endif

RRUN=0

LK = 0

QINT = 1

EL = 2+L00OPS +1

N= LOOPS*(ROWS-2)

TEL = (ROWS-1)=*EL

TOLQ= 0.00001

TOLH=10000
write (icount,*)’rows= ’,rows,’ loops= ’,loops
write (icount,*)’tolq = ’,tolq, ' tolh = ’,tolh

THE NETWORK IS SOLVED 10 TIMES EACH TIME USING
A DIFFERENT SEED
do 1900 11=1,10
write (*,%) ’run cycle ’,11,1count
rrun=0.
idum=-100#*11
iidum=idum
FUNCTION "RLOGNOR" IS USED TO ASSIGN TULE RADII WITH
A LOGNORMAL SIZE DISTRIBUTION
DO 100 I=1,TEL
R(i)= RLOGNOR(IDUM)
CONTINUE
DO 200 I=t,EL
Q(I)=QINT/EL
CONTINUE
DO 500 I=2,(ROWS-1)
IF ((MOD(I,2)) .EQ. O) THEN
DO 300 J=((I-1)*EL+1),(I*EL-2),2

JJ=J+1
K=J~EL
KK=K+1
Q(J)=.5%(Q(K)+Q(KK))
QQ33=q(d)
CONTINUE
J=1i%EL
K=J-EL
Q(N)=Q(K)
ELSE
J=(I-1)*EL+1
K=J-EL
G(3)=q(K)

DO 400 J=((I-1)*EL+2),((I)*EL),2
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600

JJ=J+1
K=J-EL
KK=K+1
Q(3)=.5+(Q(K)+Q(KK))
Q(33)=q(I)
CONTINUE
ENDIF
CONTINUE

continue
START BALANCING
LOK = NUMBER OF LOOPS BALANCED
LOK=0
do 600 I=1,(EL-2),2
J=I+1
SUMH=(-1/ (R(1)**3))*Q(I)
SUMZ=1/(R(1)**3)
SUMH=SUMH+(1/(R(J)**3))*Q(J)
SUMZ=SUMZ+1/(R(J) **3)
QDELTA=SUMH/SUMZ
Q(I)=Q(I)+QDELTA
Q(J)=Q(J)-QDELTA
IF ((ABS(QDELTA).1t.TOLQ) . AND.(ABS(SUMH) .1t.TOLH)) THEN
LOK=L0K+1
ENDIF
CONTINUE
if (rows .gt. 3) then
1=2
do 700 lo = 1,n
J=1+el
sumh=(-1/(r(i)**3))*q(i)+(~1/(r(j)**3))*q(3)
sumz=1/(r (i)**3)+1/(r(j)**3)
k=i+1
ji=ji+1
sumh=sunh+(1/(r(k)**3) ) *q(k)+(1/(r(jj) **3))*q(jJ)
sumz=sunz+1/(r (k) **3)+1/(r(jj) **3)
qdelta=sumh/sumz
q(i)=q(i)+qdelta
q(j)=q(j)+qdelta
q(jj)=q(jj) -qdelta
q(k)=q(k)-qdelta
if ((abs(qdelta).lt.tolq) .and.(abs(sumh).lt.tolh))then
lok=lok+1
endif
if ((mod(lo,loops).eq.0).and. (mod((1o/loops),2).eq.0))then
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800

900

1000

1=1i+4
else
i=1+42
endif
continue
endif

1f (mod(rows,2) .eq. 0) then
do 800 i=(tel-el+2),(tel-1),2
j=i+l
sumh=(-1/(r (1)**3) ) »q(1)
sumz=1/(r(i) **3)
sumh=sumh+(1/(r(3)**3))*q(3)
sumz=sumz+1/ (r(j)**3)
qdelta=sumh/sumz
q(1)=q{i)+qdelta
q(3)=q(j)-qdelta
1f ((abs(gdelta).lt.tolq) .and.(abs(sumh).lt.tolh)) then
lok=lok+1
endaf
continue
endaf
1f (mod(rows,2).gt.0 ) then
do 900 i=(tel-el+1),(tel-2),2
jeit1
sumh=(-1/(r(i)**3))*q(i)
sunz=1/(r(1)**3)
sush=sumh+(1/ (x(j)**3))*q(j)
sunz=1/(r(j)**3)
qdelta=sumh/sumz
q(i)=q(1)+qdelta
q(3)=q(j)-qdelta
1f ((abs(qdelta).lt.tolq).and.(abs(sumh).1lt.tolh)) then
lok=lok+1
endif
continue
endif
rrun =rrun+i
if ((lok .1t. (n+2%loops)) .and.(rrun .1t. 3000)) then
go to 550
else
write (1count,*) ’it took ’,rrun,’ iterations’
headloss=0.
do 1100 j=1,el
do 1000 i=j,tel,el
headloss=headloss+(1/(xr (i)**3))*q(i)
continue
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1100 continue
lossave=headloss*el/(rows-1)/el
permeab=i./(lossave)

write (icount,*) ’seed ’,iidum,’ k ’,permeab

endif
1900 continue
2000 continue
end
c
< LOGNORMAL RANDOM NUMBER GENERATOR

function rlognor (1dum)
real median
common icount
if (icount .eq. 1) then
std=0.6
xo=1.0
ao=0.5
co=3.0
median=1.0
endif
if (icount .eq. 2) then
std=1.0
x0=0.4
ao=(.8
co=2.0
median=1.o0
endif
10 randx=rani(idum)
if((randx .ge. .494) .and.(randx.le..54))then
go to 10
endif
xx=ao*tan(3.14159265%*randx) +xo0
yy=ran1 (idum) *co
yy=yy/ (1 +((xx~x0)*%2)/(ao*ao))
if (xx .le. 0.0) then
go to 10
endif
px =(1.0/(sqrt(2#+3.14159265)*std*xx))
px =px*exp((-.5%(log(xx)-log(median))**2)/(std**2))

if (px .ge. yy) then
rlognor = xx
else
go to 10
endif
return
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end
c ¢
) function rani(adum)
dimension s(97)
integer ma,ial,ici,m2,ia2,ic2,m3,1a3,1c3
m1=259200
1a1=7141
1c1=54773
m2=134456
ia2=8121
1¢c2=28411
m3=243000
1a3=4561
1c3=51349
data 1ff /0/
1f (idum .1t. 0 .or. iff .eq. 0) then
iff=1
ixi=mod(ic1-idum,m1)
ixi=mod(ial*1x1 +icl,ml)
ix2=mod (ix1,m2)
1x1=mod (Ial*ixil+icl,ml)
1x3=mod (ix1,m3)
do 11 3=1,97
ixi=mod (ial*ixi+icl,ml)
ix2=mod (1a2*ix2+ic2,m2)
s(j)=(float(1x1)+float(1x2)/m2)/m1
11 continue
idum = 1
endif

ix1=mod(ial*ixi+ici,mi)

ix2=mod(ia2*ix2+ic2,m2)

ix3=mod (ia3*1x3+ic3,m3)

1=1+(97%1x3) /m3

if (j .gt. 97 .or. 3 .1t. 1) then
write(*,*) ’error’

endif

rani=s(j)

s(j)=(float(ix1)+float(ix2)/m2)/m1

return

end
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COMPUTER PROGRAM FOR RANDOM
TUBE NETWORK MODEL WITH A FIXED
NETWORK TUBE VOLUME
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RANDOM TUBE NETWORK MODEL WITH A FIXED NETWORK
TUBE VOLUME (1.e. CONSTANT POROSITY)

PROGRAM BLOCKS OFF TUBES SO FLOW CAN NOT PASS
THROUGH THEM. EITHER 4, 8 OR 16 TUBES THAT
MEET AT A NODE ARE BLOCKED OFF UNTIL THE VOLUME
OF UNBLOCKED TUBES EQUALS THE DESIRED FIXED
VOLUME. THE TUBE BLOCKING SCHEME CHOSEN DEPENDS
UPON THE REDUCTION IN TUBE VOLUME REQUIRED. THE
PERMEABILITY OF THE NETWORK IS THEN CALCULATED.

LR T R R S N EE K R R
LR BEE IR R IR B R R IR S R

PROGRAM NAME = VOLUME.FOR

ko e obe ook o o0 o o ko ok ok ke o koo ok e o o o o ok ok o kol ke o ok o o o ok ok ok o oK

EL = # OF ELEMENTS/ROW
N = TOTAL # OF LOOPS
TEL = TOTAL # OF ELEMENTS
ROWS = # OF ROWS
LOOPS = # OF LOOPS/ROW
TOLQ = ERROR TOLERANCE FOR Q
TOLH = ERROR TOLERANCE FOR HEAD LOSS
QINT = Q INFLOW
IDUM = SEED FOR RANDOM NUMBER GENEHATOR
PERMEAB = PERMEABILITY

REAL R(26200), Q(26200),SUMH,SUMZ,QDELTA,QINT
REAL LOSSAVE

INTEGER RRUN,LOK,ROWS,LOOPS,EL,N,TEL,l0
COMMON ICOUNT

do 2000 acount = 1,3

write(*,*)’icount = ’,icount
if (icount .eq. 1) then
rows=200
loops=24

RESULTS ARE WRITTEN TO FILE = "VOLUME_1"

open (1,file= 'VOLUME_1’)

write (1,*) ’file = VOLUME_1 °

write (1,*) ’program name = VOLUME.FOR’

write (1,*) °*PIPES REDUCED 4,8 AND 16 AT ONCE’
write (1,*) ’LOGNORMAL distraibution’

WRITE (1,*) ’VOL RED. = 1%(ROWS-1)*EL’

write (1,%)’std=0.6 median=0.8353 no minimum R '’
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wraite (1,%) ’Xo=0.46 Ao=0.5 Co0=3.0’
write (1,*) ’x=0.5¢tan(pi*randx) + 0.460’
endif
if (icount .eq. 2) then
close (1, status= ’keep’)
rows=200
loops=24
open (2,file= ’VOLUME_2’)
write (2,*) 'file = VOLUME_2 same as VOLUME_1 except'’
write (2,*)’lognormal std=0.8 Xo=1. Ao=1.3 Co=1.’
write (2,*)’median=1.896480879 peak=1.0’
write (2,%)’1f r>2«median another 1s chosen
endif
if (icount .eq. 3) then
close (2,status='keep’)
rows=200
loops=24
open (3,file= ’'VOLUME_3'’)
write (3,*) ’file=VOLUME_3 same as VOLUME_1 except’
write(3,#)’'lognormal std=1.0 Xo=1.0 Ao=1.3 Co=1.’
write(3,*) 'median=2.718281828 peak=1.0’
write(3,*)’if r>2*median another is chosen’
endif

}

RRUN=0

LOK = O

qint = 1

EL = 2*L00PS +1

N= LOOPS*(ROWS-2)

TEL = (ROWS-1)*EL

TOLQ= 0.00001

TOLH=10000

IXX=16
write (icount,*)’rows= ’,rovs,’ loops= ’,loops
wrate (icount,*)’tolq = ’,tolq, ' tolh = ’,tolh

THE NETWORK IS SOLVED 10 TMES EACH TIME USING
A DIFFERENT SEED
do 1900 11=1,10
write (*,*) ’run cycle ’,11,icount
rrun=0.
1dum=-100%11
iidum=idum
volume=0.0
FUNCTION "RLOGNOR" IS USED TO ASSIGN TUBE RADII
WITH A LOGNORMAL DISTRIBUTION
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DO 100 I=1,TEL
R(i)= RLOGNOR(IDUM)
100 CONTINUE

CALCULATING AVERAGE RADIUS AND TOTAL VOLUME
RAD=0.
DO 110 I=1,TEL
RAD=R(I)+RAD
110 CONTINUE
AVERAGE=RAD/TEL
WRITE(ICOUNT,*) 'AVERAGE ', AVERAGE
WRITE(*,*)’ AVERAGE ’ ,AVERAGE
DO 120 I=1,TEL
VOLUME=VOLUME+R (I)*»3.
120 CONTINUE
write(icount ,*)’volume ’,volume

C
ired = 0
c IRED = NUMBER OF PIPE REDUCTIONS
volred=volume
c
c NOTE: PIPE RADIUS IS BEING CHANGE TO PIPE RESISTANCE
C
do 150 i=1,tel
r(a) = 1./(xr(2)=*3.)
150 continue
c
DO 200 I=1,EL
Q(I)=qint/EL
200 CONTINUE
<
c NEED TO FIND OUT HOW MANY PIPES NEED TO TAKEN 0UT
C
IX=16
220 CONTINUE
volred = VOLUME
IRED=0.
IX=IX-2

DO 280 I=2,(ROWS-2),2
D0 250 J=((I-1)*EL+1),(I*EL-2),2
IF ((MOD(J,IX).EQ.0).AND. (I.LE. (ROWS-2))
+ .AND.(J.NE.(1+(I~1)*EL)) .AND. (MOD(J,EL) .NE.0) ) THEN
volred=volred-1/R(J)
IRED=IRED+1
ENDIF
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250 CONTINUE
280 CONTINUE
IF ((volred.GT.1*(ROWS-1)*EL).and. (ix.ne.2)) THEN
GO TO 220
ENDIF
if ((volred.le. 1*(rows-1)*el).and.(ix.ge.2))then
vrite(icount,*)’ix ired ’,1x,ired
wvrite(icount,*)’USE PROGRAM "UNI2HAR.FOR'" INSTEAD’

goto 2000
endif
C
c TRYING DIFFERENT PORE REDUCTION SCHEMES
C
C
C INTIALIZING THE Q°’S
C
DO 282 I=(el+1),TEL
Q(I)=1.
282 CONTINUE
C
IF ((IX .EQ. 2) .AND.(volred.GT.1*(ROWs-1)*EL))THEN
IXX=6
285 CONTINUE
volred=VOLUME
IRED=0
IXX=IXX-2
DO 295 I=2,(ROWS-2),4
DO 290 J=((I-1)=*EL+1), (I*EL-2),2
IF ((MOD(J,IXX).EQ.0).AND.(I.LE.(ROWS-2))
+ .AND. (J.NE. (14(I-1)*EL))
+ .AND . (MOD(J,EL) .NE.O)) THEN
JA=]-1
JB=J-1+EL
JC=J+EL
volred=volred-1./R(J)-1./R(JA)
+ -1/R(JB)-1/R(JC)
IRED=IRED+4
ENDIF
290 CONTINUE
295 CONTINUE
IF ((volred .GT.1*(ROWS-1)#EL).AND.(IXX.NE.4)) THEN
GO TO 285
ENDIF
IF (volred .LT.1%(ROWS-1)+*EL)THEN
ICHOICE=2

write(icount ,*)’ichoice = 2’
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320
330

ENDIF
ENDIF
IF((IXX.EQ.4) .AND.(volred.GT. 1*(ROWS-1)*EL)) THEN
volred=VOLUME
IRED=0
DO 310 I=2,(ROWS-3),4
D0 300 J=((I~-1)*EL+3),(I*EL-2),4
JA=J-1 -
JB=J]-1+EL
JC=J+EL
volred=volred-1/R(J)~1/R(JA)-1/R(JB)-1/R(JC)
Q(j)=0.
q(ja)=0.
q(jb)=0.
q(jc)=0.
IRED=IRED+4
CONTINUE
CONTINUE

IF(volred .LT.1*(ROWS-1)*EL) THEN
ICHOICE=3
write(icount,*) ’ichoice = 3’
ENDIF
k=3
imered=ired
volnew=volred
while ((volnew .gt.(1*(rows-1)*el)).and.(k.ge.2))
k=k-1
volnew=volred
ired=imered
DD 330 I=4, (ROWS-3),4*k
DO 320 J=((I-1)*EL+S5),(I*EL-2),4
JA=J-1
JB=J-1+EL
JC=J+EL
q(j)=0.
q(ja)=0.
q(jb)=0.
q(jc)=0.
volnew=volnew-1/R(J)-1/R(JA)-1/R(JB)~1/R(JIC)
TRED=IRED+4
CONTINUE
CONTINUE
endwhile
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c

i=4
while((volnew .gt.(1*(rows-1)*el)).and.(i.le.(el~5)))
q(1)=0.
q(i+1)=0.
ired=ired+2
volnew=volnew-1/r(i)-1/r(i+1)
i=i+4
endwhile

if (mod (rows,2) .eq.0) then
1=(rows-2)*el+3
elseif(mod((rows-1),4).eq.0)then
i=(rows-2)*el+4
elseif(mod((rows-3),4).eq.0)then
i=(rows-2)*el+2
else
write(*,*) ’something 1s wrong’
write(icount,*) ’'something is wrong ’
endif
while((volnew.gt.(1*(rows-1)*el)).and.(i.le.(tel-2)))
q(i)=0.
q(i+1)=0.
ired=ired+2
volnewsvolnew-1/r(i)-1/r(i+1)
i=i+4
endvhile

ihad=0
do 332 i=1,tel
if(q(i) .ne. 0.)then
ihad=ihad+1
endif
continue
write(*,*)’ired ihad ’,ired,ihad

CASE WHERE 8 PIPES ARE REMOVED AT A TIME

IEIGHT=0

volend=volnew

kab=4

imered=ired

while(volnew.gt. (1*(rows-1)*el+20) .and. (kab.ge.2))

IEIGHT=1
kab=kab-1
ired=imered
volend=volnew
do 340 i=2,(rows-7),8«kab
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do 335 j=i*el+5, ((i+1)*el-5),8
q(j)=0.
q(j+el+1)=0.
q(j+el+2)=0.
q(j+3)=0.
q(j+2xel+1)=0.
q(j+2*el+2)=0.
q(j+3*el)=0.
q(3+3*el+3)=0.
volend=volend-1./r(3)-1./r(j+el+1)
+ -1./r(j+el+2)-1./r(3+3)-1./r(j+2%el+1)
+ =1./r(j+2%el+2)-1./r(j+3%el)~1./r(j+3%el+3)
ired=ired+8
3356 continue
340 continue
endvhile
volnew=volend
ihad=0
do 342 1=1,tel
1f(q(1) .ne.0.)then
ihad=ahad+1
endaf
342 continue
write(*,*)’volnew ired ihad ’,volnew,ired,ihad

kka=3
imered=ired
volend=volnew
wvhile ((volend.gt.(1*(rows-1)*el+20)).and.
+ (kka.ge.2))
kka=kka-1
ired=1imered
volend=volnew
do 355 i=6, (rows-7) ,8%kka
do 350 j=(ixel+9),((1+1)*el-5),8
q(3)=0.
q(3+el+1)=0.
q()+el+2)=0.
q(3+3)=0.
q(j+2*el+1)=0.
q(j+2%el+2)=0.

q(j+3*el)=0.
q(j+3%el+3)=0.
volend=volend-1./r(j)-1./r(j+el+1)

+ -1./r(j+el+2)-1./r(3+3)~1./r(j+2%el+1)

+ -1./r(j+2%el+2)-1./r(3+3%el)~-1./r(j+3*el+3)
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350
355

360

365

367
390
400

ired=ired+8
continue
continue
endvhile
volnew=volend
vrite(*,*)’volnew ired ’,volnew,ired
ihad=0
do 360 i=1,tel
if(q(i) .gt. 0.)then
ihad=ihad+1
endif
i2had=ihad
continue
WRITE(ICOUNT,*) 8 VOLNEW IRED IHAD KAB KKA ’,VOLNEW,
IRED, IHAD,KAB ,KKA

CASE WHERE 16 PIPES ARE REMOVED AT A TIME

ISIXTEEN=0
KHH=3
IMERED=IRED
VOLEND=VOLNEW
WHILE( (VOLEND.GT. (1*(ROWS-1)*EL+100)) . AND.(KHH.GE.2))
ISIXTEEN=1
KHH=KHH- 1
IRED=IMERED
VOLEND=VOLNEW
DO 400 I=4,(ROWS-13),16*KHH
DO 390 J=((I)*EL+11),((I+1)*EL-11),16
JA=]
DO 365 JINT=1,8
Q(JA)=0.
VOLEND=VOLEND-1/R(JA)
IRED=IRED+1
JA=JA+EL+1
CONTINUE
JA=J+T
DO 367 JINT=1,8
Q(JA)=0.
VOLEND=VOLEND-1/R(JA)
IRED=IRED+1
JA=JA+EL-1
CONTINUE
CONTINUE
CONTINUE
WRITE(»,*) ’16 PIPES VOLEND IRED KHH ’,VOLEND,IRED,KHH

ENDWHILE
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410

415
425
430

an

VOLNEW=VOLEND

WRITE(ICOUNT,*)'16 PIPES AT ONCE VOLNEW IRED KHH ', VOLNEW,
IRED,KHH
KHI=3
IMERED=IRED
VOLEND=VOLNEW
WHILE((VOLEND .GT.(1*(ROWS-1)*EL+120)).AND.(KHI.GE.2))
KHI=KHI-1
VOLEND=VOLNEW
IRED=IMERED
DO 430 I=12,(ROWS-13),16*KHI
DO 425 J=I*EL+19,(I+1)*EL-11,16
JA=J
DD 410 JINT=1,8
Q(JA)=0.
VOLEND=VOLEND-1/R(JA)
IRED=IRED+1
JA=JA+EL+1
CONTINUE
JA=J+7
DO 415 JINT=1,8
Q(JA)=0.
VOLEND=VOLEND-1/R(JA)
IRED=IRED+1
JA=JA+EL-1
CONTINUE
CONTINUE
CONTINUE
ENDWHILE
VOLNEW=VOLEND
WRITE(ICOUNT,*)*16 VOLNEW IRED KHI I8 I16 ’,VOLNEW,IRED,KHI
, JEIGHT, ISIXTEEN

PUTTING PIPES BACK IN
ik=0
NOTE : BE CAREFUL NOT TO DUPLICATE PUTTING BACK PIPES
THAT HAVE ALREADY BEEN PUT BACK I.E. IF IK=24
AND I=IK,(ROWS-3),4 THINGS WOULD BE DUPLICATED
IF (ISIXTEEN .EQ. O .AND. IEIGHT .EQ. 0.) THEN
vhile(volnew.lt. (1*(rows-1)*el~20.).and. (1k.1t. (rows-3-8))
.and. (1k .le. (el-9-8)))
ik=ik+8
do 435 i=ik, (rows-3),20
do 433 j=((i~1)%el45+ik), (ixel-2),16
q())=1.
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433
435

440

[¢]

443

447

q(j-1)=1.
q(j-1+el)=1.
q(j+el)=1.
volnew=volnew+1./r(j)+1./r(j-1)+1./r(3-1+el)
+1./r(j+el)
ired=ired-4
continue
continue
ENDWHILE
endIF
WRITE(ICOUNT,*)’VOLRED IRED K IXX ik ’,VOLNEW,IRED,K,IXX, ik
ihad=0
do 440 i=l,tel
if(q(i).gt.0.)then

ihad=ihad+1

endif

continue
ENDIF

IF(volred.LT.1*(ROWS-1) *EL)THEN
ICHOICE=4
write(icount,*)’1choice = 4’

ENDIF

REINITIALIZE FIRST ROW OF Qs
IONE=0
DO 443 I=1,EL
IF(Q(I) .NE.O)THEN
IONE=IONE+1
ENDIF
CONTINUE
DO 447 I=1,EL
IF(Q(I) .NE.O) THEN
Q(I)=QINT/IONE
ENDIF
CONTINUE

do 500 i=2, (rows-1),2
do 450 3)=((1-1)%el+1),(i*el-2),2

1£((q()).eq.0).and. (q(j+1) .ne.0))then
q(3+1)=q(j-el+1)+q(j-el)

endif

if((q(j).ne.0).and.(q(j+1).eq.0.))then
q(j)=q(j-el)+q(j-el+1)

endif
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v if((q(j) .ne.0) .and.(q(j+1) .ne.0))then
s q(j)=0.5%(q(j-el)+q(j-el+1))
q(j+1)=q(j)
endif
450 continue

q(i*el)=q((i-1)*el)
IF(MOD (ROWS, 2) .EQ.0) THEN
q(ixel+1)=q((i-1)*el+1)
r do 470 j=(1%el+2),((2+1)*el-1),2
if((q(3) .eq.0) .and.(q(j+1).ne.0))then
q(j+1)=q(j-el+1)+q(j-el)
endif
if((q(j) .ne.0).and.(q(j+1).eq.0))then
q(j)=q(3-el)+q(j-el+1)
endif
i£((q(j) .ne.0).and.(q(j+1) .ne.0))then
q(j)=0.5%(q(j-el)+q(j-el+1))
q(3+1)=q(y)
endif
470 continue
ELSE
WRITE(*,*)’CHOOSE "ROWS" MULTIPLE OF 2’
ENDIF
500 continue

™ —
3
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c
570 continue

c

< NOTE: WHEREVER YOU SEE R( ) IT IS = 1./(PIPE RADIUS)**3.
Cc

c

START BALANCING
LOK=0
BALANCING FOR 1ST LAYER OF LOOPS
do 600 I=1,(EL-2),2
‘ J=I+1
if(q(2) .ne.0 .and. q(j).eq.0)then
sumh=-r(1)*q(1)-r(1+el+1)*q(1+el+1)
sumz=r(1)+r(i+el+l)
sumh=sumh+r(j+2)*q(j+2)+r(j+el+1)*q(j+el+1)
sumz=sumz+r (J+2)+r(j+el+l)
qdelta=sumh/sumz
q(1)=q(i)+qdelta
q(1+el+1)=q(i+el+1l)+qdelta
q(j+2)=q(3+2) -qdelta
q(j+el+1)=q(j+el+1) -qdelta
if((abs(qdelta).1lt.tolq).and.
+ (abs(sumh) .1t.tolh))then

0

By 3

216




o

600

lok=lok+1
endif
endif
i£((q(i) .eq.0) .and.(q(j) .ne.0))then
lok=lok+1
endif
if((q(i) .ne.0) .and.(q(j) .-ne.0))then
SUMH=-R(I)*Q(I)
SUMZ= R(I)
SUMH=SUMH+ R(J)*Q(J)
SUMZ=SUMZ+ R(J)
QDELTA=SUMH/SUMZ
Q(1)=Q(I)+QDELTA
Q(J)=Q(J)-QDELTA
IF ((ABS(QDELTA).1t.TOLQ) .AND.
(ABS(SUMH) .1t .TOLH) ) THEN
LOK=LOK+1
ENDIF
endif
CONTINUE

if (rows .gt. 3) then
i=2
BALANCING FOR ALL THE LOOPS
do 700 lo=1,n
j=itel
if(q(i).eq.0 .or. q(i+1).eq.0) then
lok=lok+1
elseif((q(1).ne.0.).and.(q(i+1).ne.0).and.
(q(i+el).eq.0.).and.(lo.1le.loops*(rovs-3)))
then
IF(Q(I+2#EL-1) .NE.O.)THEN
J=i-1+el
js=jtel
jss=])s+el+l
sumh=-r(i)*q(1)-r(j)*q(3)-r(js)*q(js)
-r()ss)*q(jss)
sumz=r (i)+r(j)+r(js)+r(jss)
k=i+1
jj=k+1i+el
jk=3)tel
jkk=jk+el-1
sumh=sumh+r (k) *q(k)+r(jj) *q(jj)+r (3k)*q(jk)
+r (jkk)*q (jkk)
sumz=sumz+r (k)+r(jj)+r(jk)+r(jkk)
qdelta=sumh/sunz
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q(i)=q(i)+qdelta
q(j)=q(j)+qdelta
q(3s)=q(js) +qdelta
q(jss)=q(jss)+qdelta
q(k)=q(k)-qdelta
q(33)=q(jj) -qdelta
q(jk)=q(jk)-qdelta
q(jkk)=q(jkk)-qdelta

if((abs(qdelta).lt.tolq).and. (abs(sumh).lt.tolh))then

lok=lok+1
endif
ENDIF

IF THIS ELSEIF STATEMENT IS TRUE THEN LOOP IN
BOTTOM LAYER IS BALANCED
else1f((q(i) .ne.0.).and. (q(2+1) .ne.0.) .and.
+ (q(i+el).eq.0.).and.(lo.gt.loops*(rows-3)))then
lok=1lok+1

elseif((q(i).ne.0.).and. (q(i+1).ne.0.).and.

+ (q(1+el) .ne.0.).and. (q(1+1+el) .ne.0.))then
sumh=-r(1)*q(1)-r(1+el) *q(1+el)
sumh=sumh+r (1+1)*q(1+1)+r(1+1+el) *q(1+1+el)
sumz=r(1)+r(i+el)+r(1+1)+r(1+1+el)
qdelta=sumh/sumz
q(i)=q(2)+qdelta
q(i+el)=q(i+el)+qdelta
q(i+1)=q(i+1)-qdelta
q(i+i+el)=q(i+1+el)~qdelta
if ((abs(qdelta).lt.tolq) .and. (abs(sumh)

+ .1t .tolh))then

lok=1ok+1
endif
ENDIF

THIS IS FOR THE CASE WHERE 8 PIPES ARE REMOVED AT A TIME
IF((Q(I).NE.0.).AND.(Q(I+1).NE.O.) .AND.
+ (MOD(LO,LOOPS).GE.2) .AND. (LO.LT.LOOPS* (ROWS-9)) .AND.
+ (MOD(LO,LOOPS) .LE. (LOOPS-2)) ) THEN
IF(Q(I+2*EL~1) .EQ.0. .AND.Q(I+4+EL-3) .NE.O.)THEN
J=I-1+EL
JA=J-1+EL
JB=JA-1+4EL
JC=JB+EL
JD=JC+EL+1
JE=JD+EL+1
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JF=JE+EL+1

JG=I+2+EL

JH=JG+1+EL

JI=JH+1+EL

JJ=JI+EL

JK=JJ+EL-1

JL=JK+EL-1

JM=JL+EL-1

SUMH=-R(I)*Q(I)-R(J)*Q(J)-R(JA)*Q(JA)-R(JB)*Q(JB)
-R(JC)*Q(JC)-R(ID)*Q(ID)-R(JE)*Q(JE)-R(JF)*Q(JF)

SUMZ=R(I)+R(J)+R(JA)+R(JB)+R(JC)+R(JD)

+R(JE)+R(JF)

SUMH=SUMH+R(I+1)*Q(I+1)+R(JG)*Q(JG)+R(JH)*Q(JH)
+R(JI)*Q(JII)+R(JIJI)*Q(IJT) +R(IK) *Q(JK)
+R(JIL)*Q(JL)+R(IM)*Q(IM)

SUMZ=SUMZ+R(I+1)+R(JG)+R(JH)+R(JI)+R(JJ)
+R(JK)+R(JL)+R(JIM)

QDELTA=SUMH/SUMZ

Q(I)=Q(I)+QDELTA

Q(J)=Q(J)+QDELTA

Q(JA)=Q(JA)+QDELTA

Q(JB)=Q(JB)+QDELTA

Q(JC)=Q(JC)+QDELTA

Q(JD)=Q(JD)+QDELTA

Q(JE)=Q(JE)+QDELTA

Q(JF)=Q(JF)+QDELTA

Q(I+1)=Q(I+1)-QDELTA

Q(JG)=Q(JG)-QDELTA

Q(JH)=Q(JH)-QDELTA

Q(JI)=Q(JI)-QDELTA

Q(J3J)=Q(3J)-QDELTA

Q(JK)=Q{JK)-QDELTA

Q(JL)=Q(JL)-QDELTA

Q(IM)=Q(JM)-QDELTA

IF((ABS(QDELTA) .LT.TOLQ) . AND. (ABS(SUMH)

.LT.TOLH) )THEN

LOK=LOK+1
WRITE(*,*)’8 PIPES LO LOK ’,LO,LOK
ELSE
WRITE(*,*)’ QDELTA LO 8 PIPES ’,QDELTA,LO
ENDIF
ENDIF
ENDIF

CASE WHERE 16 PIPES ARE REMOVED AT A TIME
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IF((Q(I).NE.O.).AND.(Q(I+1) .NE.O) . AND.
+ (MOD(LO,LOOPS) .GE.4) . AND. (MOD(LO,LOOPS) .LE. (LOOPS-4))
+ .AND. (LD.LT. (LOOPS*(ROWS-16)))) THEN
IF((Q(I+2*EL-1) .EQ.0).AND.Q(I+4*EL-3) .EQ.0.)THEN
SUMH=0.
SUMZ=0.
IA=I
DO 610 JINT=1,8
SUMH=SUMH-R(IA)*Q(IA)
SUMZ=SUMZ+R(IA)
IA=IA+EL-1
610 CONTINUE
IA=I+8*EL-7
DO 615 JINT=1,8
SUMH=SUMH-R(IA)*Q(IA)
SUMZ=SUMZ+R(IA)
IA=IA+EL+1
615 CONTINUE
IA=I+1
DO 620 JINT=1,8
SUMH=SUMH+R (IA) *Q (IA)
SUMZ=SUMZ+R (IA)
IA=IA+EL+1
620 CONTINUE
IA=I+8%EL+8
DO 625 JINT=1,8
SUMH=SUMH+R (1A) *Q (iA)
SUMZ=SUMZ+R (IA)
IA=IA+EL-1
625 CONTINUE
QDELTA=SUMH/SUMZ
IA=I
DO 630 JINT=1,8
Q(IA)=Q(IA)+QDELTA
IA=IA+EL-1
630 CONTINUE
IA=I48%EL-7
DO 635 JINT=1,8
Q(IA)=Q(IA)+QDELTA
IA=IA+EL+1
635 CONTINUE
IA=I+1
DO 640 JINT=1,8
Q(IA)=Q(IA)-QDELTA
IA=IA+EL+1
640 CONTINUE
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645

700

TA=T+8%EL+8
DO 645 JINT=1,8
Q(IA)=Q(IA)-QDELTA
IA=IA+EL-1
CONTINUE
TF((ABS (QDELTA) .LT.TOLQ) .AND . (ABS(SUMH)
.LT. TOLH))THEN
LOK=LOK+1
WRITE(*,*)’16 PIPES LOK LO ’,LOK,LO
ENDIF
ENDIF
ENDIF

1 ((mod (10,lo0ps) .eq.0) .and.
(mod((lo/1loops),2) .eq.0) ) then

1=i+4
else
isi+2
endif
continue
endif

if (mod(xrows,2) .eq. 0) then
do 800 i=(tel-el+2), (tel-1),2
j=it
i£((q(i) .ne.0) .and.(q(3) .eq.0.))then
sumh=-r(i)*q(i)-r(1-el+1)*q(1-el+1)
sumz=r (1)+r(1-el+1)
sumh=sumh+r(j+2)*q(j+2)+r(1-el+2)*q(i-el+2)
sumz=sumz+r (j+2)+r(1-el+2)
qdelta=sumh/sumz
q(i)=q(i)+qdelta
q(i-el+1)=q(i-el+1)+qdelta
q(j+2)=q(3+2) -qdelta
q(i-el+2)=q(i-el+2)-qdelta
1f ((abs(qdelta).lt.tolq) .and.
(abs(sumh).1lt.tolh))then
lok=lok+1
endif
endaf
if((q(i) .eq.0.) .and. (q(3).ne.0.))then
lok=lok+1
endif
if((q(i) .ne.0.) .and.(q(j).ne.0.))then
sumh=-r(i)*q(i)
sumz= r(1)
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sumh=sumh+ r(j)*q(j)
sumz=sumz+ r(j)
gdelta=sumh/sumz
q(i)=q(i1)+qdelta
q(3)=q(3)-qdelta
if((abs(qdelta).lt.tolq).and. (abs(sumh).1t.tolh))then

lok=1lok+1
c WRITE(*,*) ’LOK LAST ROW ’,LOK
else
c write(*,%)’qdelta sumh’,qdelta,sumh
endif
endif
800 continue

endif

1f (mod(rows,2).gt.0 ) then
do 900 i=(tel-el+1),(tel-2),2
j=1+1
if((q(1).ne.0.).and.(q(j) .eq.0))then
sumh=-r(1)*q(1)-r(1-el+1)*q(i-el+1)
sumz=r(i)+r(i-el+1)
sumh=sumh+r (j+2)*q(jJ+2) +r(1-el+2)*q(1-el+2)
sumz=sumz+r (J+2) +r(1-el+2)
qdelta=sumh/sumz
q(1)=q(1)+qdelta
q(1-el+1)=q(1-el+1)+qdelta
q(3+2)=q(3+2)-qdelta
q(1-el+2)=q(1-el+2)-qdelta
1f ((abs(qdelta).lt.tolq) .and.
+ (abs(sumh).1t.tolh))then
lok=1ok+1
endif
endif
if((q(1).eq.0.).and.(q(3) .ne.0.))then
lok=lok+1
endaf
1£((q(i).ne.0.).and.(q(3) .ne.0.))then
sumh=-r(1)*q(1)
sumz= r(i)
sumh=sumh+ r(3)*q(j)
sumz=sumz + r(j)
qdelta=sumh/sumz
q(i)=q(i)+qdelta
q(j)=q(j)-qdelta
if (abs(qdelta).lt.tolq) then
lok=lok+1
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1000

1050

endif
endif
continue
endif

TTun =rrun+i
IF ((lok.1lt.(n+2*loops)).and. (rrun.1t.3000) )then
ALL LOOPS ARE STILL NOT BALANCED
go to 570

ELSE
write (icount,*) ’it took ’,rrun,’ iterations’

NOW CALCULATE PERMEABILITY
headloss=0.
iave=0
DO 1050 J=1,EL
IF (Q(J) .NE. 0.)THEN
IAVE=]JAVE+1
IHEAD=)
DO 1000 I=1, (ROWS-1)
IF(Q(IHEAD) .NE. 0.)THEN
HEADLOSS=HEADLOSS +R(IHEAD)=*Q(IHEAD)
ENDIF
IF(Q(IHEAD).EQ.O..AND.MOD(IHEAD,2) .EQ.0)THEN
IHEAD=IHEAD+1
IF (Q(IHEAD) .EQ.0.)THEN
WRITE(ICOUNT,*)’Q SHOULD NOT EQ 0’
ENDIF
HEADLOSS=HEADLOSS+R (IHEAD) *Q(IHEAD)
ENDIF
IF(Q(IHEAD).EQ.O..AND.MOD(IHEAD,2) .NE.O.)THEN
IHEAD=IHEAD-1
HEADLOSS=HEADLOSS+R (IHEAD) *Q(IHEAD)
IF(Q(IHEAD) .EQ.0.) THEN
WRITE(ICOUNT,*)’Q SHOULD NOT EQ O’
ENDIF
ENDIF
IHEAD=THEAD+EL
CONTINUE
ENDIF
CONTINUE
lossave=headloss*el/(rows-1)/iave
permeab=1/(lossave)
write(icount,*) ’seed ’,iidum,’ lossave ’,lossave,’ k ’,permeab

VOLUME IS THE TOTAL PORE VOLUME BEFORE ANY PIPES ARE REMOVED
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1800
2000

0o o0

o000 o0 b

10

write (icount,*)’volume = ’,volume,’ reduced volume
write (icount,*)’ixx= ired iave ’,ixx,ired,iave
ENDIF

CONTINUE
CONTINUVE

write (*,*)’PROGRAM TERMINATED’
END

LOGNORMAL RANDOM NUMBER GENERATOR
function rlognor(idum)

rayleigh number generator
function rayleigh(idum)

NORMAL DISTRIBUTION MEDIAN = 1.0
function rnormal (1dum)

real median
integer tel
common iCOUNT,tel
if (icount .eq. 1) then
std=0.6
x0=0.46
ao=0.5
co0=3.0
MEDIAN=0.8353
RMIN=10000.
endif
if(icount .eq. 2) then
std=0.8
x0=1.0
ao=1.3
co=1.0
median=1.896480879
rmin=1.896480879+2.
end1f

randx=rani (idum)

if ((randx .ge. .494) .and. (randx .le.

go to 10
endif
xx=A0*tan((3.141592654)*randx)+X0
yy=rani(idum)*C0
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yy=yy/ (1 +((xx-x0)**2)/(A0*A0))
if((xx.le.0.0).or. (xx .gt. rmin))then
go to 10
endif
px=(1.0/(sqrt(2*3.141592654)*STD*xx))
hyy=-.5%(log(xx) -log(median)) **2
hyy=hyy/ (std**2)
px=px*exp(hyy)
if (px .ge. yy) then
rlognor = xx
else
go to 10
endif
return
end

function rani(idum)
dimension s(97)
integer ma,ial,icl,m2,ia2,ic2,m3,1a3,1c3
mi=259200
ial=7141
ic1=54773
m2=134456
ia2=8121
1c2=28411
m3=243000
ia3=4561
ic3=51349
data iff /0/
2 1f (idum .1t. O .or. iff .eq. 0) then
1ff=1
ix1=mod (icil-idum,ml)
ix1=mod (ial*ix1 +icl,mi1)
ix2=mod (ix1,m2)
ixi=mod (Jai*ix1+icl,m1)
ix3=mod (1x1,m3)
do 11 j=1,97
ix1=mod(iai*ixi+ici,m1)
ix2=mod(ia2*ix2+ic2,m2)
s(j)=(float(1x1)+float(ix2)/m2) /m1
continue
idum = 1
endif
ixi=mod(ial*ixi+icl,mil)
ix2=mod(ia2%*ix2+1c2,m2)
ix3=mod(ia3#*ix3+ic3,m3)
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Y j=1+(97*ix3)/m3
i if (j .gt. 97 .or. j .1t. 1) then
write(*,*) ’error’
endif
rani=s(j)
s(j)=(float(ix1) +float(ix2)/m2) /m1
return
end

P 7 I
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Appendix C

DERIVATION OF PERFECT SINK SOLUTION
OF PARTICLE FLUX TO THE TUBE
SURFACE

The general equation of convective diffusion is given by:
o - 2
‘—?t—-i-(u V)p= DV?p (C.1)

where the gradient, V = (%, gay-, 'z%) and the Laplacian, V? = g—z + % + %z—. The
concentration, p is defined as the number of particles per tube volume, D is the

Diffusion constant and u is the velocity.

The Poiseuille velocity profile is given by:

.’.2

=) (C.2)

u= u,(l -

where u, = (R?AP)/(4ul,) is the maximum velocity at the axis of the tube (r = 0),
AP is the pressure drop o. - the distance I, and R is the tube radius. Since the
velocity distribution is a paraboloid of revolution, its volume is one-half that of its

circumscribing cylinder; therefore the average velocity,

U = u,/2. (C.3)
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Diffusion occurs over small distances from the wall, where r &~ R. Therefore, by

introducing a new variable,
y= R— r, (04)

Equation (C.2) can be approximated by:

oy 2Y
U~U0R- (C'5)

For our problem the equation of convective diffusion takes the form:

u, Op _ *p
R Y0z~ Dc’)y2 (C.6)

where z is the distance along the tube. The boundary conditions for the maximum
diffusional flux are :

p— Po @S Y = 00

(C.7)
p=0 at y=0
Equation (C.6) is solved by introducing the dimensionless quantity:
uo 1,3 y 1
%= (DR) et (C.8)
Therefore,
o _ o o
dz ~ Oy Oz
_ oY (4 )\ Op
T 3z (DR) oY (C39)
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and,

o _ 90 9%
d o oy
Y dp
= -z C.10
Y O (C.10)
and,
&p _ 0 [v0p] O
dy? — Oy |yoy] dy
_ d,Q azp
(22 -
Substitute equations (C.9) and (C.11) into equation (C.6):
3 2 ,0p o
G + 311) i 0. (C.12)
To solve for p integrate the following:
83o/3) _ [ 2.,
/ oploy / 3¢ o4
9 _ _2,
In( 51/‘) = 91/: + constant
/ap = [BeXP(—2/9¢3)3¢
v
p = [ Bexp(~2/99%)8p+D (C.13)

where B and D are constants of integration. By applying the boundary conditions

(equation (C.7)) we find:

B = po] [;” exp(—2/9%°)dp
D = 0.

(C.14)
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Therefore,

=(u, 1/3,,771/3
p = PNV exp (~2/947)3y

;" exp (=2/9%°)dy

The diffusional flux to the wall of the tube is given by:

o)
3/ ,-o

‘J
il

Dpo (2u,\*/3 1

/3 ('5"1%) > exp (—2/99°)0¢
Dp, (2u.\'? (0.23)1/3
W(Eﬁ) 7 0.89

(¥ 1/3
- o)
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Appendix D

COMPUTER PROGRAM FOR SIMULATION
OF FILTRATION PROCESS
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SIMULATION OF FILTRATION PROCESS

PROGRAM SIMULATES THE CAKE BUILD-UP PROCESS AND TAKES
INTO ACCOUNT THE CLOGGING EFFECTS. CLOGGING IS
INCORPORATED BY TWO MEANS: (1) FINE PARTICLES DEPOSITING
ON THE TUBE WALLS AND GRADUALLY REDUCING THE TUBE RADII
AND (2) TUBES TRAPPING PARTICLES LARGER THAN THE PORE
OPENINGS. SUSPENDED PARTICLES ARE PREVENTED FROM
PASSING THROUGH THE BOTTOM LAYER. THE PERMEABILITY IS
CALCULATED AS THE NETWORK INCREASES IN LENGTH.

* OB O ¥ ¥ O ¥ O F X X X *
* K R X X F X B X B 8 B

PROGRAM NAME = BIGSMNEW.FOR
S o SR K K o R A Ao KK Ko K

EL = # OF ELEMENTS/ROW
N = TOTAL # OF LOOPS
TEL = TOTAL # OF ELEMENTS
¥ ROWS = # OF ROWS
i LOOPS = # OF LOOPS/ROW
1 TOLQ = ERROR TOLERANCE FOR Q
f TOLH = ERROR TOLERANCE FOR HEAD LOSS
: QINT = Q INFLOW
: A = RADIUS OF FINES (um)
: IDUM = SEED FOR RANDOM NUMBER GENERATOR
% PERMEAB = PERMEABILITY
ILAYER = # OF CAKE LAYERS
: NUMPART = INITIAL AVERAGE NUMBER OF SUSPENDED

FINE PARTICLES IN TUBE
CONSVEL = SUPERFICIAL VELOCITY OF FILTRATE (um/sec)
VELCRIT = CRITICAL VELOCITY (um/sec)
LENGTH = CAKE LAYER THICKNESS (um)
FINE = TUBES SMALLER THAN "FINE" CAN BE CLOGGED
PARTICLE(ICAKE) = (VOLUME OF FLOWING PARTICLES IN LAYER
ICAKE)/ (TOTAL PORE VOLUME IN LAYER ICAKE)
CLOG = FRACTION OF SMALL PARTICLES THAT WILL CLOG
THE SMALL PIPES

PN

2NN NsNeNoNsNoNoNolNeNoNeNosNs NN NoNeNoNeoNs R R R R e e o R e e Re e o R Ho K2 e

REAL R(20000), Q(20000),SUMH,SUMZ,QDELTA,qint,lossnor
real lossave,VOL(20000),qcrit, volexc,rr(20000)

REAL SMALL(1000) ,partnew(500) ,particle(500),brvol(200)
real perconevw(1000),percolate(200),srvol(200)

real permeab,a,perco,POREVOL,length,velocity

real big(1000),perm(100),kold

e
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real absmend(100),alittle(100),aclog(100),aneg(100)

INTEGER RRUN,LOK,ROWS,LOOPS,EL,N,TEL,lo0
integer ipipe(20000),bsm
common icount

do 2400 icount = 1,2
if (icount .eq. 1) then
a =0.01
rows=7
loops=24
RESULTS ARE WRITTEN TO FILE = "CLOG_1"
open (1,file= ’CLOG_1’)

wvrite (1,*) ’file = CLOG.1 program = BIGSMNEW.FOR’

write (1,*) ’simulates experiments, units in microms’
WRITE (1,*)’CLOGGING DUE TO DEPQCSITION OF FINES AND’

WRITE (1,*) 'PORE BLOCKING DUE TO TUBES TRAPPING PARTICLES’
write (1,*) ’particles can NOT pass through bottom layer’
write (1,%) ’cake steps = 200 um & 10 um FINES = 0.01 um’

write (1,*) ’superficial v=10E+3/L um/sec ’

write (1,#*) ’velcrit = 15E+3 um/sec numpart=100000’

wrate (1,*)’LOGNORMAL distribution’
write (1,%)’std=0.6 median=1.0 rlognorm=r
write (1,*)'r < 0.6 can be clogged’
write (1,%) ’Xo=1.00 A0=0.5 Co=3.0'
write (1,*) ’x=0.Setan(pi*randx) + 1.00’
endif
1f (icount .eq. 2) then
close (1, status= ’'keep’)
a=0.05
rows = 7
loops =24
open (2,file= 'CL0G_2’)
write (2,*) ’CLOG_2 same as CLOG_1 except’
write(2,*) 'fine particles = 0.05 um’
endif

do 2350 ichange =1,2
if (ichange .eq. 1)then

length = 200.
elseif (ichange .eq. 2)then
length = 10
endif
1layer=30
THERE ARE 6 ROWS/LAYER
rows=7
loops=24
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qint = 1

numpart=100000

consvel=10e+3/length

velcrit=15e+3

TOLH=10000

fine=0.6

A=0.01

rave=1.0
write (icount,*)’'rows= ’',rows,’ loops= ’,loops
write (icount,*)’delta length = ’,length

THE NETWORK IS SOLVED 3 TIMES EACH TIME USING
A DIFFERENT INITIAL "PARTICLE(ICAKE)" VALUE
do 2300 11=1,3
kold=1.0
ib=0
rous=7
loops=24
write (*,s) ‘run
rrun=0.
lok=0
qbig=0.0
bsm=0
ibigend=1
ismaend=1
ib1=0
el=2xloops+l
n=loops*(rows-2)
tel=(rous-1)#*el
idum = -100
1idum=1dum
area=0.0

cycle ’,11,1count

FUNCTION "RLOGNOR" IS USED TO ASSIGN TUBE RADII
WITH A LOGNORMAL SIZE DISTRIBUTION
DO 100 I=1,TEL*i1layer
R(i)= RLOGNOR(IDUM)
area=area+r(1)**2
ipipe(i)=0
CONTINUE

AVAREA = AVERAGE AREA PER ROW
avarea=area/((rows-1)*ilayer)

NOTE: PIPE RADIUS IS BEING CHANGED TO PIPE RESISTANCE
do 150 i=1,tel
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r(i) = 1./(r(i)**3.)
150 continue

DO 2200 ICAKE =i,ilayer
qint=1.0
tolg=qint*.001/el

DO 200 I=1,EL
Q(I)=qant/EL
200 CONTINUE

DO 500 I=2,(ROWS-1)
IF ((MoD(I,2)) .EQ. 0) THEN
DO 300 J=((I-1)=*EL+1), (I*EL-2),2
JJ=J41
K=J-EL
KK=K+1
Q(J)=.5*(Q(K)+Q(KK))
Q(IN=QCI)
300 CONTINUE
J=21%EL
K=J-EL
Q(I)=Q(K)
ELSE
J=(I-1)*EL+1
K=J-EL
Q(I=Q(K)
DO 400 J=((I-1)=*EL+2), ((I)*EL),2
JJ=J+1
K=J-EL
KK=K+1
Q(J)=.5%(Q(K)+Q (KK))
Q(IN=Q(1)
400 CONTINUE
ENDIF
CONTINUE

Q
o

NOTE: WHEREVER YOU SEE R( ) IT IS = 1./(PIPE RADIUS)**3.

START BALANCING

s NeoRoNoNeNeNe R,

IBALANCE = 1
irepeat = 1
540 continue
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i irepeat = i+irepeat
c
c NOTE: I REPEAT THE BALANCING SCHEME AFTER I DEPOSIT SOME OF
C THE PARTICLES IN THE CAKE LAYERS
C
rrun=0.0
550 CONTINUE
c
LOK=0
do 600 I=1,(EL-2),2
J=1+1
SUMH=-R(I)=*Q(I)
SUMZ= R(I)
SUMH=SUMH+ R(J)*Q(J)
SUMZ=SUMZ+ R(J)
QDELTA=SUMH/SUMZ
Q(I)=Q(I)+QDELTA
Q(J)=Q0(J)-QDELTA
IF ((ABS(QDELTA).1t.TOLQ) .AND.(ABS(SUMH) .1t.TOLH)) THEN
LOK=LOK+1
ENDIF
600 CONTINUE
C
c
1f (rows .gt. 3) then
i=2
do 700 lo = 1,n
J=1%el
sumh=-r(1)*q(i) - r(j)*q(3)
sumz= r(1)+ r(3)
k=1+1
ji=)
sumh=sumh+ r(k)*q(k) + r(33)*q(33)
sumzesumz+ r(k) + r(j3)
gdelta=sumh/sumz
q(1)=q(1)+qdelta
q(3)=q()) +qdelta
q(33)=q(jj)-qdelta
q(k)=q(k)-qdelta
if ((abs(gdelta).lt.tolq) .and.(abs(sumh).lt.tolh)) then
lok=lok+1
endaf
1f ((mod(lo,loops).eq.0).and. (mod((lo/loops),2).eq.0)) then
1=1+4
else
- 1=1+42

Ak
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endif
continue
endaf

if (mod(rows,2) .eq. 0) then

D0 800 i=(tel-el+2),(tel-1),2
j=i+1
sumh=-r(i)*q(i)
sumz= r(i)
sunh=sumh+ r(j)*q(j)
sumz=sumz+ r(j)
qdelta=sumh/sumz
q(i)=q(1)+qdelta
q(J)=q(j)-qdelta

if ((abs(qdelta).lt.tolq).and.(abs(sumh).lt.tolh)) then

lok=lok+1

endif

continue

endif

if (mod(rows,2).gt.0 ) then
do 900 i=(tel-el+1),(tel-2),2
J=1+1
sumh=-r (i)*q(i)
sumz= r(1)
sunh=sumh+ r(j)*q(j)
sumz=sumz + r(j)
qdelta=sumh/sumz
q(1)=q(1)+qdelta
q(j)=q(j)-qdelta
if ((abs(qdelta) .1t.tolq).and. (abs(sumh).1t.
tolh)) then
lok=1lok+1

endaf

continue

endif

Irrun =rrun+i

HA AR R AR AR kAo Ao K o o sk oo ook ok ok ok
AR AR RO KA Ao o o oo ok R o oo ok o o
if ((lok .1t. (n+2=loops)).and.(rrun .1t. 3000)) then

go to 550
else
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write (icount,*) ’it took ’,rrun,’ iterations’

Q

C T T T T P e LT R T e T T
if (ibalance .eq. 1) then.
TOTALVOL=0.0
NOTE: 1’M ASSUMING # OF SUSPENDED PARTICLES/PORE IS
PROPORTIONAL TO flow volume

sNoNeoNe!

NOTE: FIND AVERAGE FLOW VOLUME
QSUM=0.0
DO 940 I=(TEL-(EL*6)+1),TEL
QSUM=QSUM+Q (I)
940 CONTINUE
1 QAVE=QSUM/(EL*6)

VOLSMALL=0.9
QSMALL=0.0
QTOTAL=0.0
ineg=0
JSM=0
DO 950 I=(TEL-(EL#%6)+1),TEL
IF((R(I)**(-1./3.).LT.f1ine).and.(q(1).ge.0.))THEN
JSM=JSM + 1
QSMALL=QSMALL + Q(1)
VOLSMALL=VOLSMALL+(1./R(I))~0.05%%3.
SMALL(JSM)=I
E1SE
if((icake.eq.1) .and. (q(1).ge.0.))then
if(r(i)»*(-1./3.) .ge.fine)then
bsm=bsm+1
qbig=qbig+q(I)
bag(bsm)=1
endif
end1f
ENDIF
if(q(1) .ge.0.)then
qtotal=qtotal+q(i)
elseif((q(i).1t.0.) .and. (r(i)**(-1./3.).ge..051))then
ineg=ineg+1
endif
950 CONTINUE

e TR e b, AT W e g T YT

- FRACSMALL=QSMALL/QTOTAL
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980

C

981
C
c
c

PARTICLE = (VOLUME OF FLOWING PARTICLES IN LAYER ICAKE)/(TOTAL
PORE VOLUME IN LAYER ICAKE)
I'M ARBITRARILY CHOOSING IT

1f(11.eq.1)then
PARTICLE(1cake) = 0.005
if(1cake .ge. 2)then
particle(icake-1)=0.005
endif
elseif (11 .eq. 2)then
particle(icake)=0.01
if(icake .ge. 2)then
particle(icake-1)=0.01
endif
elseif(ll .eq. 3)then
particle(icake)=0.05
if(icake .ge. 2)then
particle(icake-1)=0.05
endif
endif
WRITE(ICOUNT,*) 'PARTICLE(ICAKE) ’,PARTICLE (ICAKE)
CLOG = FRACSMALL*PARTICLE (icake)
CLOG = FRACTION OF SMALL PARTICLES THAT WILL
CLOG THE SMALL PIPES

VOLUME = 0.0
DO 980 I=(TEL-(EL*6)+1),TEL
VOLUME=VOLUME + 1/R(I)
CONTINUE
VOLCLOG = CLOG*VOLUME
1f (icake.eq.1)then
volbot=(particle(icake)-clog) *volume
endif

WRITE(ICOUNT,981) VOLUME
format('TOP LAYER CAKE VOLUME’,b£18.7)

RANDOMLY CHOOSE SMALL PIPE TO CLOG

VOLRED=0.0
clogbot=volbot
ib=0
IF (VOLCLOG .GT. (VOLSMALL))THEN
DO 1020 IK = 1,JSM
IA=SMALL(IK)
VOLCLOG=VOLCLOG-(1./R(IA))**(1./3.)+ 0.05%%3
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R(IA)=1./(0.05%%3)
ipipe(ia)=1

1020 CONTINUE
ib=jsm
c WRITE(*,%)’ JSM = # OF SMALL PIPES ’,JSM

1f(icake .gt.1)then
partnew(icake-1)=PARTICLE (1cake)+VOLCLOG/VOLUME-clog
endif
ELSE
1022 if(volclog .gt. 0.)then
I1JS=JSM*RAN1(IDUM) + 1
IA=SMALL(1JS)
IF(ipipe(1a) . eq.0) THEN
VOLCLOG=VOLCLOG-(1./R(IA))+0.05%*3
R(IA)=1./(0.05%*3)
ipipe(1a)=t
1b=ib+1
ENDIF
go to 1022
endif
if (icake.eq.1)then
excess=0.0
1bi=ib+ib!
VOLBOT=VOLBOT+VOLCLOG
clogbot=volbot
qadd=0.0
DD 1030 IX=1,bsm
IL=BIG(IX)
1£(q(il) .ge.0.)then
VOLDEP=VOLBOT*Q(IL) /QBIG
qadd=qadd+q(11)
else
voldep=0.0
endif
IF (VOLDEP .LT. 0.008)THEN
EXCESS=VOLDEP+excess
ENDIF
IF(( (VOLDEP+EXCESS) .LE.(1./R(IL)~1.25E-4))
+ .AND. (VOLDEP.GE.0.008))THEN
CLOGBOT=CLOGBOT-VOLDEP-EXCESS
R(IL)=1./(1./R(IL)-VOLDEP-EXCESS)
EXCESS=0.0
ELSEIF ((VOLDEP+EXCESS) .GT.(1./R(IL)~-1.25E-4))THEN
WRITE(ICOUNT,*) 'PIPE IS TOO SMALL 1030’
EXCESS=VOLDEP-1./R(IL)+1.25E-4 +excess
clogbot=clogbot-1./r(il)+1.25e-4
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r(il)=8000.

ibl=ib1+1
ENDIF
1030 CONTINUE
endif
c
C
if (icake .gt. 1)then
partnev(1cake-1)=PARTICLE (1cake)-CLOG
endif
ENDIF
c WRITE(ICOUNT,*)’ JSM = # SMALL & # CLOGGED & # neg °’,
C + JSM,IB, 1neg
if(icake .eq. 1)then
C vrite(icount,*)’# of big pipes in bottom layer ’,bsm
endaf
c
brvol (1cake)=0.0
do 1040 1a=(tel-(el*6)+1),tel
brvol (icake)=brvol(icake)+1/r(1a)
1040 continue
c write(acount ,*)’brvol(icake) = ’,brvol(icake)
c
C
C CLOGGING DUE TO FINE PARTICLES
C NOTE: I°'M ASSUMING # OF SUSPENDED PARTICLES/PORE IS PROPORTIONAL
C TO FLOW VOLUME. THE FINE PARTICLES DO NOT ENTER PORES THAT
C HAVE BEEN CLOGGED DUE THE BIG PARTICLES
c
C NOTE: FIND AVERAGE FLOW VOLUME. I’M ONLY USING PORES THAT HAVE
C NOT BEEN CLOGGED BY THE BIG PARTICLES.
c
c
QSUM=0.0
Ipos=0
percolate(icake)=numpart
C
1f (icake .ge. 2)then
c NOTE: USE NEXT STATEMENT BECAUSE LATER ON (N
C PROGRAM "PERCOLATE(icake-j+1)" IS "PERCOSUM"
percolate(icake-1)=numpart*el*6
endif
C

srvol(icake)=0.0
DO 1045 I=(TEL-(EL*6)+1),TEL
IF((ipipe(i) .eq.0) .and.(q(i) .ge.0.) ) THEN
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PERCO
PERCOSUM
SUMDEP
DIFFUSION

QSUM=QSUM+Q(I)
Ipos=ipos+1
ENDIF

CONTINUE

KOLD =

# OF FINES THAT ARE DEPOSITED IN LAYER
SUM OF FINES THAT PERCOLATE THROUGH LAYER
SUM OF FINES THAT ARE DEPOSITED IN LAYER
DIFFUSION CONSTANT (um~2/sec)
PERMEABILITY CALCULATED FOR NETWORK

WITH (ICAKE-1) LAYERS

QAVE=QSUM/Ipos
percolate(icake)=percolate(icake)*el*6/1pos
PERCOSUM=0.0

SUMDEP=0.0

DIFFUSION=0.2161/A

do 1047 1=(tel-(el*6)+1),tel

IF(1pape(i) .eq.0) THEN
velocity=(consvel*avarea*q(1))/
(icake*0.42*(r(I)**(-2./3.)))
velocity=velocity*kold

if (velocity.lt.0. .or. velocity.ge.
velcrait)then
perco=0.0
volperco=0.0
if(q(1).gt.0.) then
percosum=percosum+(percolate(icake)*q(1)/qave)
endif
endif

if(velocity.gt.0.0 .and. velocity.lt.

velcrit)then

perco=(2%*(4./3.) y*percolate(icake)

*(daffusion**(2./3.))
perco=perco*{velocity**(-2./3.))»(r(1)**(2./9.))

if(perco .gt. percolate(icake))then
perco=percolate(icake)*(Q(I)/QAVE)

else
perco=perco*(Q(I)/QAVE)
percosum=percosum+(percolate(1cake)

*q(i)/qave-perco)
endif
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sumdep=sumdep+perco
endif

volperco=perco* (a**3.)

NEW PIPE RESISTANCE
SMALLEST RADIUS THAT TUBE CAN BE REDUCED

TO = 0.05 um

1f (1./r(1) .le. volperco) then
percosum=percosum+(volperco-1/r(i)
+1.25E-4)/ (a**3)
r(i)=8000.
PIPE VOLUME SMALLER THAN VOLPERCO
srvol(icake)=srvol (icake)+1/r(1)
else
R(I)=1./(1./R(I) - volPERCO)
srvol(icake)=srvo) (icake)+1/r(i)
end1f

WRITE (ICOUNT,*) 'TOTAL # OF PERCOLATING and ’
write(icount,*) ’deposited particles from cake layer’
WRITE (ICOUNT,*) ICAKE,percosum,sumdep

deposited=sumdep
ELSE

srvol (icake)=srvol(icake)+1/r(i)
ENDIF

continue
1f (icake .gt. 1)then

perconew(icake-1)=percosum/(6*el)
write(*,*) 'perconew(icake-1) ’,perconew(icake-1)

vrate(icount,*) ’perconew(icake-1) ’,perconew(icake-1)

endaf

1f(icake .eq. 1)then
qtot=0.0
srvol(icake)=0.0
do 1048 i=1,elx*6
if((q(I).ge.0.).and.(r(i).1e.7999.9)) then
qtot=qtot+q(i)
endif

243



x A

o
o>
[o ]

eNoEesNs NN Ne el

1049

aaQaaaa

aaa

continue

SUSPENDED PARTICLES CAN NOT PASS THROUGH BOTTOM LAYER

SMEXC = EXCESS VOLUME OF "FINES" THAT NEED TO BE
DEPOSITED IN BOTTOM LAYER

DEPBOT = VOLUME FINES DEPOSITED IN BOTTOM LAYER

DEPSMA = VOLUME FINES DEPOSITED IN TUBE "I" IN BOTTOM LAYER

smexc=0.0
depbot=percosum*(a**3)
do 1049 1=1,el*6
1f((q(i) .ge.0.).and.(r(1).1e.7999.9)) then
depsma=percosum*(a**3.)*q(1)/qtot
else
depsma=0.0
endif
if ((depsma+smexc) .le. ((1./r(1))-1.25e-4))then
depbot=depbot-depsma-smexc
r(1)=1./((1./x(1))-depsma-smexc)
smexc=0.0
elseif((depsmat+smexc).gt.((1./r(1))-1.25e-4))then
write(icount,*)’pipe 1s too small’
smexc=depsma-(1./r(i))+1.25e-4+smexc
depbot=depbot-1./r(1)+1.25e-4
r(i)=8000.
endaf
srvol (icake)=srvol (icake)+1./r(1)
continue
endif

ISMAEND = # OF UNCLOGGED TUBES IN BOTTOM LAYER
IF (ICAKE .GE. 2) THEN

WHEN ALL TUBES ARE CLOGGED IN BOTTOM LAYER THEN
LAYER ABOVE BOTTOM LAYER BECOMES NEW CAKE BOTTOM
1f(1smaend .eq. 0)then
1end=1cake-1
else
iend=icake
endif

DO 1095 J=2,Iend
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volume=0.0
volsmall=0.0
QSMALL=0.0
QTOTAL=0.0
JSM=0
qbig=0.0
bsn=0
ineg=0
iclog=0
DO 1050 I=(TEL-(EL*6%*J)+1),(TEL-(EL*6%(J-1)))
IF((R(I)**(-I./3.).LT.fine).AND.R(I)**(-i./3.)
. .GT. 0.051)THEN
if(q(i).ge.0.)then
JSM=JSM + 1
QSMALL= QSMALL + Q(I)
SMALL(JSM)=1
volsmall=volsmall+(1./r(i))-0.05%%3.
endif
ELSE
if((3.eq.1end).and. (r(1)**(-1./3.) .gt. fine))then
if(q(i) .ge.0.)then
bsm=bsm+1
qbig=gbig+q(i)
big (bsm)=i
endif
endif
ENDIF

if((q(i).1t.0.) .and. (r(i)**(-1./3.)).gt..051)then
ineg=ineg+1
endif
1£((j.eq.iend) .and. (r(1)**(-1./3.)).1t.0.051) then
iclog=iclog+1
endif
if(q(i).ge.0.)then
QTOTAL=QTOTAL + Q(I)
endif
volume=volume+1/r (i)
1050 CONTINUE

if(j.eq.iend)then
1totbsm=bsm

endif

FRACSMALL=QSMALL/QTOTAL
CLOG=FRACSMALL*PARTICLE(icake-j+1)

245




TR T

T e Ty T B TR AR T I e R

VOLCLOG=CLOG*VOLUME

IF(jsm .eq.0) then
1f((icake-j).gt.0)then
partnew(icake-))=particle(icake-j+1)
endif
ELSEIF(VOLCLOG .GT.(VOLSMALL))THEN
DO 1060 IK =1,JSM

IA=SMALL (IK)

VOLCLOG=VOLCLOG-(1./R(IA))+0.05%*3.

R(IA)=1./(0.05%%3)

ipipe(ia)=1

1060 CONTINUE
if(j.eq.iend)then
1bi=1b1+jsm
endaf
if((acake-j) .gt.0)then
PARTnew(1cake-3)=PARTICLE(1cake-j+1)
+ +volclog/volume - clog
endif
ELSEIF(VOLCLOG .LT. (VOLSMALL))THEN
1062 if(volclog .gt. 0.)then

I1JS=JSM*RAN1(IDUM)+1

IA=SMALL(I1JS)

IF (1pipe(1a).eq.0)THEN
VOLCLOG=VOLCLOG-(1./R{IA))+0.05%#3,
R(IA)=1./(0.05%*3)
1pape(1a)=1
if(j.eq.icake)then

ibi=1b1+1
endaf

ENDIF

go to 1062

endaf
1f((icake-3j) .gt.0)then

PARTnew(icake-3)=PARTICLE(icake-])+1)-CL0OG

endaf
ENDIF

Qa

1f (ibigend .eq.0)then
is=(el*6+1)
ie=is+itotbsm-1
iy=2
ifinish=icake-1
else
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ie=itotbsm

iy=1

ifinish=icake
endaf

if(j.eq.ifinish)then
volbot=(particle(iy)-volclog/volume)*volume
volbot=(particle(iy)-clog)*volume+volclog+excess
clogbot=volbot
excess=0.0

DD 1070 1x=1s,1e

IL=BIG(IX)

i£(q(il) .ge.0.)then
VOLDEP=VOLBOT*Q(IL) /QBIG

else
voldep=0.

endif

IF (VOLDEP .LT. 0.008)THEN
EXCESS=VOLDEP +excess

ENDIF

IF (((VOLDEP+EXCESS) .LE. (1./R(IL)~1.25E-4))

.AND. (VOLDEP.GE.0.008))THEN

CLOGBOT=CLOGBOT-VOLDEP-EXCESS
R(IL)=1./(1./R(IL)-VOLDEP-EXCESS)
EXCESS=0.0

ELSEIF((VOLDEP+EXCESS) .GT. (1./R(IL)

-1.25E-4)) THEN

ibi=1bi+1
EXCESS=VOLDEP-1./R(IL)+1.25E-4 +excess
clogbot=clogbot-1./r(11)+1.25e-4
r(il)=8000.

ENDIF

CONTINUE

ENDIF
brvol (icake-3+1)=0.0
do 1075 ia=(tel-(el*6#j)+1), (tel-(el*6x(j-1)))
brvol (1cake-j+1)=brvol (icake-j+1)+1/r(ia)

continue

srvol(i1cake-j+1)=0.0
Qsum=0.0
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1me=0
do 960 i=(tel-(el*6%j)+1),(tel-(el*6%()-1)))
if((ipipe(i).eq.0) .and. (q(i).ge.0.))then
Qsum=Qsum+Q(I)
endif
continue

sumvolperco=0.0
sumdep=0.0
percosum=0.0

FROM EXPERIMENTS FOUND SUPERFICIAL VELOCITY (1.e. consvel)
APPROX. = 10.E+3/LENGTH (um/sec)
USE POROSITY = 0.42

do 970 1=((tel-el*6xj)+1),(tel-(el*6*(3-1)))

1f(ipipe(i) .eq.0)then
velocity= (consvel*avarea*q(i))/(1cake
*0.42%(r(1)**(-2./3.)))
velocity=velocity*kold
1f(velocity.1t.0. .or. velocity.ge.velcrit)then
perco =0
volperco=0.
IF(Q(I) .GT. O.)THEN
percosum=percosum+(percolate(icake-j+1)
*q(1)/qsum)
ENDIF
endif
if(velocity.ge.0. .and. velocity.lt. velcrit)then
perco=(2%%(4./3.))*(d1ffusion**(2./3.))
perco=perco*(velocity**(-2./3.))*(r(1)**(2./9.))
perco=perco*percolate(1cake-3+1)*Q(I)/Qsum
write (icount,*)’velocity PERCO ’,velocity,perco
sumdep=sumdep+perco
1f (perco .gt. percolate(icake-j+1)*Q(1)/qsum)then
perco=percolate(icake-j+1)*(q(1)/qsum)
else
percosum=percosum+{(percolate(icake-3+1)*
q(1)/qsum) -perco)
endaf
endif
volperco=perco*(a**3.)
sumvolperco=sumvolperco+volperco

REMEMBER R(I) IS THE PIPE RESISTANCE NOT PIPE RADIUS
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if (1/r(1) .le. volperco) then
percosum=percosum+(volperco-(1./r(i))+1.25e-4)
/ (a*x3)
r(i)=8000.
else
R(1)=(1/r(i)-volperco)**(-1)
endif

srvol (icake-j+1)=srvol (icake-j+1)+1/r(i)

ELSE
srvol(icake-j+1)=srvol(1cake-j+1)+1./r(i)
ime=ime+1

ENDIF

CONTINUE

VOLUME=0.0

1f (icake-j .gt. O)then
perconew (icake-j)=percosum

endif

ISMAEND = # OF UNCLOGGED PIPES IN BOTTOM LAYER
1f (1smaend .eq. O)then
1s=elx6+1
1e=185+2%el*6-1
else
1s=1
ie=el*6
endif

IF(icake .ge. 2)THEN
IF(j.eq.iend)THEN
qtot=0.0
do 996 1=is,ie
1£((q(1).ge.0.).and.(r(2).1e.7999.9))then
qtot=qtot+q(i)
endif
continue

depbot=percosum=(a**3.)

do 997 i=is,1e
1f(q(1) .ge. 0.)then
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depsma=percosum*(a**3.)*q(i)/qtot
else
depsma=0.0
endif
1f ((depsma+smexc) .le. ((1/r(1))~1.25e¢~4))then
depbot=depbot-depsma-smexc
r(21)=1./((1./r(1))~depsma-smexc)
smexc=0.0
elseif ((depsma+smexc).gt. ((1/r(2))-1.25e-4))then
smexc=depsma-1./r(1) +41.25e-4+smexc
depbot=depbot~1./r(1)+1.25e-4
r(1)=8000.
endif
continue

srvol (1end)=0.0
do 1005 1i=1s,1e
srvol(iend)=srvol (iend)+1./r(1)
continue
ENDIF
ENDIF

CONTINUE

do 1097 jd=1,1cake-1
percolate(jd)=perconew(jd)
particle(jd)=partnev(jd)
continue

ENDIF

oK 2k 2K X 3 3 2 o 2k 3 oK K o e ek o e K 3 oK K ok ke sk ok i ok oK o ok K ok ok o ok X ok ok

ibalance = 2
ENDIF

A b e 3 ok koK ok ok ok ok s ke ke o ok ok ok ok o ek Rl o o ok e ke ko ok o o i ok i ok 2k ok 3k A ok K ke ok 3 kK ok Ok ok
2 3 3 o 3 o o ok ko ok e ok 3 ok ok o ok ok ok 3k 3 ok ok 2 o ok 3ok K ok e ok e ok ke ok ook ko ok ok ok ok

if (irepeat .eq. 2) then

goto 540
endif
headloss=0.

do 1100 M=1,el
do 1000 i=M,tel,el

250




P

headloss=headloss+ r(i)*q(i)
1000 continue
1100 continue
lossave=headloss*el/(rows-1)/cl
permeab=1./(lossave)
perm(icake) =permeadb
kold=permeab
write (1count,*)’seed ’,11dum,’ layer ’,icake,’ k ’,permeab
write (*,*) 'seed ’',11dum,’ lossave ’,lossave,’ k ’',permeab
endif
write(acount,*) ’percolate()) 3 srvol(j) particle(j)
+ brvol(j) iclog ism ibag ineg’
do 1300 j=1,1cake
1neg=0
1clog=0
1bsmend=0
1l1ttle=0
do 1200 1=(eL*6%(3-1)+1), (el*6)*]
1f(r(1) .gt. 7999.9)then
iclog=iclog+1
endif
if({r(i).1t.7999.9).and.(r(i).ge.1./(fine**3.)))then
1£(q(1).ge.0.)then
1la1ttle=ilittle+l
endif
endif
1f(r(i) .1t.1./(fine**3.))then
1f(q(1) .ge.0.)then
ibsmend=1bsmend+1
end1f
endif
1£(q(i).1t.0.)then
ineg=ineg+1
endif
1200 continue
aclog(j)=1clog
alittle(j)=1lattle
absmend(j)=1bsmend
aneg(j)=1ineg
write(icount,1310)percolate(j),3,srvol(j),particle(j),brvol(j),
+ aclog(j),alittle()),absmend(j),aneg(j)

1300 continue

1310 format (e16.10,i4,F12.3,e12.4,F12.3,4f4.0)

o

C ICLOG = # OF TUBES CLOGGED IN BOTTOM LAYEPR
iclog=0
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: ibigend=0

ismaend=0

ineg=0

do 1400 1=1,el*6

if(r(i) .gt. 7999.9)then
iclog=iclog+1
endif
i 1£(r(i) .1t.7999.9)then
f if(q(i).ge.0.)then
] 1bigend=1bigend+1
endif

endif

QQ

NOTE: ibigend and ismaend are equal but before I had a condition
that allowed the fines to clog the pipes to r=0.005 and
the big particles to clog the pipes to r=0.05. I'm
leaving the setup this way so I can charge the conditions
1f I want to later on.

aaoaQaa

t 1f(r(1) .1t.7999.9)then
: 1f(q(1).ge.0.)then
ismaend=ismaend+1
end1f
endif
1£(q(2) .1t.0.) then
ineg=1ineg+l
endif
1400 continue
C wrlte(lcount,*)‘1clog,1big,1small,1neg ' ,1clog,
C + ibigend, 1smaend, ineg
1f(1cake .1t. 1layer)then
rows=rows+6
tel=(rows-1)*el
n=loops* (rows-2)
do 2100 1=(tel-6*el +1),tel
ipipe(i)=0
r(i)=1.0/(xr(1)**3)
2100 continue
endif
2200 continue

write(icount,*)’icake k !
do 2250 i=1,ilayer
write(icount,2360)i,perm(i)
2250 continue
2300 continue
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2360
2400

QOO

continue
format(i3,e15.5)
continue
end

log normal random number generator
function rlognor(idum)

real median
common icount
if (icount .eq. 1) then
std=0.6
xo0=1.0
ao=0.5
co=3.0
median=1.0 ,
endaf
1f (1count .eq. 2) then
8td=0.6
x0=1.0
ao=0.5
co=3.0
median=1.0
endif

randx=rani(idum)
1f((randx .ge. .494) .and.(randx .le. .54))then
go to 10
endif
xx=ao*tan((3.141592654) *randx)+xo
yy=rani (1dun)* (co)
yy=yy/ (1 +((xx~x0)**2)/{ao*ao))
if (xx .1lt. 0.0) then
go to 10
endif

px=(1.0/(sqrt (2%3.141592654) *std*xx) )
px=px*exp ((-.5%(log(xx)-log(median) ) **2)/(std**2))

if (px .ge. yy) then
rlognor = xx
else
go to 10
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endif
return
end

function rani(idum)
dimension s(97)
1nteger ma,1al,i1ci,m2,1a2,1c2,m3,1a3,1c3
m1=259200
1a1=7141
1c1=54773
m2=134456
1a2=8121
1c2=28411
m3=243000
1a3=4561
ic3=51349
data 1ff /0/
1f (1dum .1t. 0 .or. 1ff .eq. Q) then
1ff=1
ixi=mod{(1c1-1dum,mi)
1x1=mod(1al*1x! +1cl,ml)
1x2=mod(1x1,m2)
1x1=pod(Jal*ixi+ici,ml)
1x3=mod(1x1,m3)
do 11 )=1,97
ixl=mod(i1ai*1xi+ici,ml)
1x2=mod (1a2*1x2+1c2,m2)
s(3)=(float(ax1)+float(1x2)/m2)/m1
11 continue
1dum = 1
endif
ixi=mod (1ai*1x1+1cl,ml)
ix2=mod (1a2*1x2+1c2,m2)
ix3=mod (1a3*1x3+1c3,m3)
j=1+(97#1x3) /m3
if (j .gt. 97 .or. J .1t. 1) then
wraite(*,*) ’error’
endaf
rani=s(3)
s(j)=(float(1x1)+float(1x2)/m2)/m1
return
end

o
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