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Abstract

Spatio-temporal infectious disease counts are often subject to abrupt and dramatic changes

in behavior associated with different epidemiological events. For example, a disease might go

temporarily extinct in an area causing cases to drop to zero for several weeks, or an outbreak

might emerge causing cases to rise rapidly. In this thesis, we propose several novel Bayesian

coupled Markov switching models to account for these types of shifts in behavior. Our

approach in general is to assume the disease moves between different epidemiological periods

or states in each area, such as disease absence or outbreak. When the disease is in a certain

state in an area, the corresponding time series follows an appropriate statistical submodel,

e.g., a degenerate 0 distribution if the disease is absent or an autoregressive model with high

autocorrelation if there’s an outbreak. We switch between the states through a first-order

Markov chain in each area where the transition probabilities can depend on covariates and

the states in neighboring areas, to account for disease spread between the areas. Inference

is performed under the Bayesian paradigm, and we develop efficient Markov chain Monte

Carlo methods based on jointly sampling the hidden state indicators.

In the first manuscript, motivated by the abundance of spatio-temporal disease counts that

contain many zeroes, we focus on models where the disease switches between periods of

presence and absence in each area. Since we describe the absence state with a degenerate

0 distribution, our approach has similarities to more traditional zero-inflated models like

ZIP regression. However our framework has several advantages: it naturally accounts for

long periods of disease presence and absence (many consecutive zeroes); it can examine if the

effects of disease spread between neighboring areas depend on certain covariates, e.g., if there

is a barrier between the areas like a river; and we allow each covariate to have a separate

effect on the reemergence (absence to presence) and persistence (presence to presence) of

the disease, which is often epidemiologically motivated. We illustrate these advantages by

comparing our model with several zero-inflated and non-zero-inflated alternatives on spatio-
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temporal dengue counts in Rio de Janeiro.

In the second manuscript, we propose models where the disease switches between absence,

endemic and outbreak periods in each area. The endemic and outbreak periods are described

by autoregressive count models distinguished by a higher level of transmission during out-

breaks. Markov switching models that switch between endemic and outbreak states have a

long history. However, our approach has several advantages: it can account for long strings

of zeroes, it allows for outbreaks in neighboring areas to affect the probabilities of outbreak

emergence and persistence (along with covariates) and it prevents rapid switching between

the states by enforcing minimum endemic and outbreak state durations. We apply our model,

along with alternatives, to COVID-19 hospital admissions across Quebec and to simulated

data where the outbreaks are known.

In the third manuscript, we deal with the case of multiple diseases switching between periods

of presence and absence. We are only interested in comparing the transmission dynamics

of the diseases and so we assume the cases of the present diseases in an area jointly follow

a multinomial distribution. Our proposal represents an interesting leap as all existing zero-

inflated multinomial models have assumed independent multivariate observations. We apply

the model to spatio-temporal counts of dengue, Zika and chikungunya in Rio de Janeiro.

Many existing statistical models cannot account for, study, detect or forecast the abrupt

and dramatic shifts in behavior often observed in spatio-temporal infectious disease counts.

Therefore, this thesis represents an important contribution to the area of spatio-temporal

infectious disease modeling.
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Abrégé

Les cas de maladies infectieuses spatio-temporels ont souvent des changements de comporte-

ment brusques et spectaculaires associés à des événements épidémiologiques. Par exemple,

une maladie peut disparaître temporairement dans une région, avec une chute des cas à zéro

pendant plusieurs semaines, ou une épidémie peut apparaître, avec une hausse rapide des cas.

Dans cette thèse, nous proposons des nouveaux modèles de Markov couplés bayésiens pour

s’adapter à ces changements. Nous supposons que dans chaque région, la maladie évolue

en différentes périodes, ou états épidémiologiques, tels qu’absence ou épidémie. Lorsque la

maladie est dans un certain état, la série chronologique correspondante suit un sous-modèle

approprié, comme une distribution dégénérée à 0 si la maladie est absente, ou un modèle au-

torégressif à autocorrélation élevée en cas d’épidémie. Dans chaque région, on change d’état

via une chaîne de Markov de premier ordre, dont les probabilités de transition dépendent

de covariables et des états voisins, pour tenir compte de la propagation de la maladie entre

les régions. L’inférence suit le cadre bayésien et nous proposons des méthodes de Monte

Carlo par chaîne de Markov efficaces avec un échantillonnage conjoint des indicateurs d’état

cachés.

Dans le premier manuscrit, vu l’abondance de cas spatio-temporels avec de nombreux zéros,

nous étudions des modèles où la maladie alterne entre des périodes de présence et d’absence

dans chaque région. Puisque l’état d’absence est décrit par une distribution dégénérée à 0,

notre approche ressemble aux modèles gonflés à zéro plus communs, comme la régression

ZIP. Cependant, notre cadre a plusieurs avantages : il s’ajuste naturellement aux longues

périodes de présence et d’absence (nombreux zéros consécutifs) ; il examine si les effets de

propagation d’une maladie entre voisins dépendent de covariables, par exemple s’il y a une

barrière entre les régions comme une rivière ; et chaque covariable peut avoir un effet distinct

sur la réémergence (d’absence à présence) et la persistance (de présence à présence), ce qui

est souvent épidémiologiquement sensé. Nous illustrons ces avantages en comparant notre
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modèle à des alternatives, gonflées à zéro et non gonflées à zéro, sur les cas de dengue à Rio

de Janeiro.

Dans le deuxième manuscrit, nous proposons des modèles où la maladie alterne entre des

périodes d’absence, d’endémie et d’épidémie. Les périodes d’endémie et d’épidémie sont

décrites par des modèles autorégressifs, avec un niveau d’autorégression plus élevé en cas

d’épidémie. Les modèles de Markov alternant entre les états endémiques et épidémiques ont

une longue histoire. Cependant, notre approche a plusieurs avantages : elle s’adapte à de

longues périodes de zéros, elle permet aux épidémies dans les régions voisines d’impacter les

probabilités d’émergence et de persistance de l’épidémie (avec les covariables), et elle empêche

un changement rapide d’état en imposant une durée minimale d’endémie et d’épidémie. Nous

appliquons notre modèle, ainsi que des alternatives, aux hospitalisations liées à la COVID-19

au Québec, et à des données simulées où les éclosions sont connues.

Dans le troisième manuscrit, nous analysons plusieurs maladies alternant entre présence et

absence. Nous souhaitons comparer les dynamiques de transmission entre les maladies, et

supposons donc que les cas des maladies présentes dans une région suivent conjointement

une loi multinomiale. Notre proposition est intéressante car les modèles existants de loi

multinomiale gonflée à zéro supposent l’indépendance des observations multivariées. Nous

appliquons le modèle aux cas spatio-temporels de dengue, Zika et chikungunya à Rio de

Janeiro.

De nombreux modèles existants ne peuvent s’ajuster, étudier, détecter ou prédire les change-

ments brusques communs pour les cas spatio-temporels de maladies infectieuses. Cette thèse

est donc une contribution importante à la modélisation spatio-temporelle des maladies in-

fectieuses.
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Chapter 1

Introduction

In this thesis, we are interested in modeling infectious disease counts collected across related

areal units over time, for example, monthly cases of an infectious disease reported across the

neighborhoods of a city. A challenge in the statistical modeling of these counts is that they

often undergo abrupt and dramatic shifts in behavior due to different epidemiological events.

For example, an outbreak could emerge in one of the areas causing cases to rise extremely

rapidly, which may be difficult to capture for many standard statistical models (Cliff et al.,

1987). Another example we are interested in is that an infectious disease, especially a

vector-borne disease, can often go temporarily extinct in an area causing cases to drop to 0

for several weeks or months before potentially reemerging (Bartlett, 1957; Coutinho et al.,

2006). The resulting large number of zeroes in the counts can be difficult to account for with

many popular spatio-temporal Poisson or negative binomial regression models (Arab, 2015).

Figure 1.1 shows examples of the types of shifts in behavior we are interested in.

In addition to accounting for the shifts, we also want to study the shifts and how they

are related to certain factors, as this is often of considerable epidemiological interest. For

instance, Walter et al. (2016) was interested in whether certain ecological covariates, such

as distance to a major water body, were associated with the temporary extinction and
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Figure 1.1: (a) Shows bi-weekly Zika cases in the northern Rio de Janeiro neighborhood of
Higienópolis in Brazil, between 2015 and 2016. (b) Shows weekly COVID-19 hospitalizations
in Hôpital Anna-Laberge, Quebec, Canada, between May 2021 and May 2022. The red
arrows illustrate examples of the kinds of shifts in the behavior of the counts that we are
interested in modeling in this thesis.

reemergence of Lyme disease in Connecticut towns. Descloux et al. (2012) was interested in

how temperature and other climate factors were related to the emergence of dengue outbreaks

in New Caledonia. In general, understanding factors contributing to outbreak emergence can

help provide early warnings and design preventive measures (Lu et al., 2014). Additionally,

we want to detect and forecast the shifts, mainly outbreak emergence. At the very beginning

of an outbreak, it is not always clear an outbreak is occurring, and the timely detection of
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infectious disease outbreaks is important for mounting an effective response (Buckeridge,

2007). By forecasting the shifts, we mean forecasting the epidemiological event associated

with the shift, e.g., outbreak emergence, and not necessarily just the change in the counts.

While forecasting an increase in the cases can be useful, if the increase is due to random

endemic variation it will be much less concerning to health authorities than if it is due

to an outbreak emerging. Providing additional information on the source of the increase,

endemic versus epidemic, can help decide if serious measures need to be taken (Unkel et al.,

2012).

There are many popular approaches to spatio-temporal infectious disease modeling, such as

machine learning approaches (Rahimi et al., 2023) and spatio-temporal autoregressive models

(i.e., where the conditional means are modeled as functions of past observations in the area

and neighboring areas) (Bracher and Held, 2022). However, most of these approaches cannot

be used to study, detect or forecast the epidemiological transitions that we are interested

in, like outbreak emergence. For instance, while a machine learning model, like a long

short-term memory (LSTM) network (Achterberg et al., 2022), could potentially forecast

an abrupt increase in the counts, it cannot determine whether the increase is due to an

outbreak emerging, as opposed to endemic variation, and what factors, like mobility, are

contributing to it. A spatio-temporal autoregressive model could investigate associations

between covariates and overall disease transmission (Ssentongo et al., 2021), however, this

does not necessarily address questions about how the covariates are related to the shifts.

For instance, smaller areas may experience less intense outbreaks compared to larger areas

but in the same number. In this case, there is an association between population size and

overall disease transmission but not with outbreak emergence. Finally, the above approaches

cannot determine if an observed or forecasted increase in cases is due to endemic variation

or an actual outbreak developing, which is an important problem in outbreak detection

(Unkel et al., 2012). A more explicit approach is needed that directly models the switches

in behavior.
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In this thesis, we will take a Markov switching approach to account for, study, detect and

forecast abrupt shifts in the behavior of spatio-temporal infectious disease counts. These

shifts may be due to, for example, an outbreak emerging or a disease going temporarily

extinct. Originally proposed by Souza (1982) (in an epidemiological context, see also Cliff

et al. (1987)), this approach assumes the disease can be in one of several epidemiological

periods or states in an area. For instance, Souza (1982) assumed the disease could be either

in an endemic state, low stable incidence, or in an outbreak state (in this thesis we also

consider absence and general presence states, see below). It is assumed the time series in

an area follows a different epidemiologically appropriate submodel when the disease is in

each state. For example, Conesa et al. (2015) assumed influenza case counts followed an

autoregressive process with a high mean during outbreak periods and another autoregressive

process with a much lower mean during endemic periods. Switching between the states is

usually governed by a first-order Markov chain, whose transition probabilities can depend

on covariates (Diebold et al., 1994; Nunes et al., 2013). This means we can investigate asso-

ciations between covariates and abrupt shifts in the behavior of the counts due to important

epidemiological transitions. For instance, in the first manuscript, we investigate how temper-

ature and socioeconomic factors were associated with the reemergence (absence to presence)

and persistence (presence to presence) of dengue fever in Rio de Janeiro neighborhoods. Un-

derstanding factors contributing to disease reemergence and persistence can help eliminate

a disease from an area and prevent it from returning (Walter et al., 2016). Therefore, be-

ing able to study the association between important epidemiological transitions, like disease

reemergence, and covariates is a useful feature of these models.

Another useful feature of Markov switching models is that they can approximate the posterior

probability (i.e., the probability given all observed disease counts) that an observation came

from any of the disease states (Frühwirth-Schnatter, 2006). Therefore, we can segment the

time series into outbreak and non-outbreak periods (Martínez-Beneito et al., 2008). This

can be useful for determining the timing of past outbreaks (Le Strat and Carrat, 1999) and,
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more importantly, for real-time outbreak detection and forecasting (Nunes et al., 2013). For

instance, we can issue a warning if a new observation likely came from the outbreak state

(Martínez-Beneito et al., 2008). It is important to issue a warning for an outbreak early

as the rapid rise in cases can be difficult to adjust to, often leading to medical shortages

(Shingler and Hendry, 2022).

Finally, a further important use of Markov switching models is that state switching can ac-

count for changing behaviors in the time series that other statistical models might struggle

to capture. For instance, the rapid rise in cases during the emergence of an outbreak, as il-

lustrated in Figure 1.1. Autoregressive models whose parameters do not change across time,

like log-linear autoregressive models (Liboschik et al., 2017) or Endemic-epidemic models

(Bracher and Held, 2022), are very popular for modeling infectious disease counts (Dun-

bar and Held, 2020). These models can only capture such an abrupt increase in disease

transmission if it can be explained by observable factors. However, important contributors

to outbreak emergence are often difficult to observe directly, for instance, the migration of

high-risk individuals (Lu et al., 2014). In an endemic/outbreak Markov switching model, an

outbreak can occur at each time point with a certain probability, which allows outbreaks to

emerge that are not fully explained by observable factors (Le Strat and Carrat, 1999), see

also Figure 2.1. Past studies have found that endemic/outbreak Markov switching models

fit infectious disease time series with many outbreaks better than autoregressive models,

whose parameters do not change across time (Ansari et al., 2015; Rahmanian et al., 2021).

Autoregressive random effects can also be used to allow the parameters of a time series

model to change over time (Cargnoni et al., 1997). As shown by Otting et al. (2020), a time

series model with an autoregressive random effect can be approximated by a Markov switch-

ing model with a large number of states. We prefer the states to represent well-recognized

epidemiological periods, e.g., absence, endemic, or outbreak, as it leads to the transition

probabilities and state estimates having meaningful important interpretations, as explained

in the previous two paragraphs. Although, the two approaches could be combined, as we
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briefly discuss in Section 6.3.

Spatio-temporal epidemiological Markov switching models have only been considered by a

few authors (most approaches are purely temporal) (Heaton et al., 2012; Amorós et al.,

2020). This thesis aims to address the following important limitations of this literature.

Firstly, existing approaches have only considered switching between endemic and outbreak

states (Amorós et al., 2020), and some transitional states (Lytras et al., 2019). We addi-

tionally consider an absence state in our models to account for the long strings of zeroes

common in infectious disease counts, see Chen et al. (2019) and Figure 1.1 for an example.

In a non-epidemiological context, Malyshkina and Mannering (2010) considered a spatio-

temporal Markov switching model that switched with a state described by a degenerate

zero distribution, like with our absence state. However, they assumed the states were inde-

pendent between neighboring areas. Another important contribution of this thesis is that,

following the coupled Markov switching literature (Touloupou et al., 2020), we allow the

transition probabilities to depend on the states in neighboring areas. For instance, in the

second manuscript, we allow the probability of an outbreak emerging in an area to depend

on whether outbreaks are occurring in neighboring areas. This is important in our epidemi-

ological context as the disease will spread between areas (Grenfell et al., 2001). Heaton

et al. (2012) did let the probability of outbreak emergence depend on neighboring outbreak

indicators. However, they used an absorbing state model and did not consider covariates

in the transition probabilities. Therefore, their approach cannot analyze data with multiple

outbreaks in each area and cannot investigate associations between covariates and outbreak

emergence. The models explored in this thesis consider covariates in the transition proba-

bilities and can be applied to data with any number of shifts in each area. Finally, we are

not aware of any epidemiological Markov switching models that consider multiple interacting

diseases. Comparing the transmission dynamics of multiple diseases is an important prob-

lem currently in epidemiology (Freitas et al., 2019). Such models are explored in the third

manuscript (see below).
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There are other important contributions of this thesis which are detailed in the preambles.

Here we just focused on the most substantial ones. The rest of this thesis is organized

as follows. Chapter 2 provides an introduction to the general domain that this thesis is

interested in. Chapters 3, 4 and 5 each contain a stand-alone manuscript. Chapter 3 considers

models where the disease switches between an absence state and a general presence state

in each area (we introduce endemic and outbreak states in the second manuscript). Our

approach is similar to finite mixture zero-inflated models (Young et al., 2020), and much

of the manuscript is devoted to comparing the two. This manuscript was published in

the Journal of the Royal Statistical Society Series C (Douwes-Schultz and Schmidt, 2022).

Chapter 4 extends Chapter 3 to consider switching between absence, endemic and outbreak

states in each area. We show, using simulated data and COVID-19 hospitalizations across

Quebec, that including neighboring outbreak indicators in the transition probabilities greatly

improves the accuracy and timeliness of outbreak detection and forecasting. This manuscript

is undergoing a second round of reviews at the Annals of Applied Statistics. Chapter 5

also extends Chapter 3 to consider multiple diseases switching between periods of presence

and absence in each area. We use the model to investigate how certain covariates, such

as temperature, were related to differences in the transmission intensity of dengue, Zika

and chikungunya in Rio de Janeiro. We plan on submitting this manuscript shortly to an

appropriate applied statistics journal. We close the thesis with a summary and conclusion

discussing limitations and future work in Chapter 6.
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Chapter 2

Literature review

In the introductions of the individual manuscripts, Sections 3.1, 4.1 and 5.1, we give reviews

of the literature that are more focused on providing rationale and context for why and how

those papers were written. Here, we focus more on providing an introduction to the general

domain that this thesis is concerned with. Starting with Section 2.1, we provide a general

review of Markov switching models and Bayesian inference. In Section 2.2, we give a review of

coupled Markov switching models, which are a type of Markov switching model for multiple

interacting time series. Finally, we close with a review of zero-state Markov switching models

and zero-inflated models in Section 2.3.

2.1 Markov Switching Models

Markov switching models assume a time series can be described by several submodels, usually

called states, periods, or regimes, where switching between submodels is governed by a first-

order Markov chain (Hamilton, 1989). For categorical time series, these models are usually

called hidden Markov models (HMM) (Rabiner, 1989) and go back to the 1960s (Baum and

Petrie, 1966) (we use Markov switching model and HMM interchangeably). For continuous
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time series, Goldfeld and Quandt (1973) were the first to consider switching between linear

regression models. In a similar vein, Wang and Puterman (1999) proposed switching between

Poisson generalized linear models for count time series. Switching between different autore-

gressive models, i.e., where the conditional mean depends on past observations, was first

considered by Poritz (1982) and greatly popularized by Hamilton (1989). Hamilton (1989)

derived a filtering and smoothing algorithm for very general Markov switching models, see

Section 2.1.1 below, that can be used to calculate the likelihood function and estimate the

underlying state sequence. While Hamilton (1989) worked within a frequentist framework,

Chib (1996) built on their filter to develop an efficient Bayesian inferential procedure based

around jointly sampling the state sequence, see Section 2.1.2.

2.1.1 General formulation

Let y = (y1, . . . ,yT )
T be a multivariate time series, where yt is p-dimensional (which includes

the special case of a univariate time series). Suppose S = (S0, . . . , ST )
T is an underlying state

sequence with K possible states, i.e., St ∈ {1, . . . , K}. Let xt and zt be vectors of temporal

covariates. The main idea is that St follows a first-order Markov chain and determines the

submodel that generates yt. To be more concrete, following Frühwirth-Schnatter (2006), a

Markov switching model usually makes the following assumptions,

1.

p(yt|S0, . . . , St,y1, . . . ,yt−1,xt,β) = p(yt|St,y1, . . . ,yt−1,xt,β),

where β is a vector of unknown parameters. That is, yt only depends on the current

state St and, potentially, on past observations (autoregression) and covariates.

9



2.

p(St|S0, . . . , St−1,y1, . . . ,yt−1, zt,θ) = p(St|St−1,y1, . . . ,yt−1, zt,θ),

where θ is a vector of unknown parameters. That is, St only depends on St−1 and,

potentially, on covariates and past observations. The probabilities P (St = k|St−1 =

j, y1, . . . , yt−1, zt,θ) = pjk,t for j, k = 1, . . . , K are known as the transition probabilities

and are stored in the transition matrix Γ(St), where Γ(St)jk = pjk,t. The transition

probabilities must be specified so that the rows of the transition matrix sum to 1, see

Diebold et al. (1994) and Spezia (2006) for some possible specifications with covariates.

The transition probabilities can depend on past counts, as transitioning between some

states may be more likely at certain levels of the counts. For instance, we found in

the first manuscript that dengue is more likely to go extinct (presence to absence)

when there is a small number of infectious individuals, see Table 3.2. If the transition

probabilities do not vary with time, i.e., pjk,t = pjk for all j, k, then the model is known

as homogeneous otherwise nonhomogeneous.

3. The distribution of the initial state p(S0|θ) can depend on θ.

The above assumptions are important for frequentist inference, as they are needed to run the

forward filter of Hamilton (1989) to calculate the likelihood function. These assumptions are

also required to run the forward filtering (i.e., Hamilton’s filter) backward sampling (FFBS)

algorithm for efficient Bayesian inference, see Section 2.1.2 below. If the conditions are not

met the model can often be reparametrized (Hamilton, 1989).

Now we will give some examples. Firstly, for a count time series, we could consider the

10



two-state homogeneous Poisson HMM from Le Strat and Carrat (1999),

yt|St ∼ Poisson(λSt),

P (St = 2|St−1 = 1) = p12, P (St = 1|St−1 = 2) = p21,

(2.1)

where St ∈ {1, 2} and S0 ∼ Bern(.5)+1. Note, p11 = 1−p12 and p22 = 1−p21. Le Strat and

Carrat (1999) used the model for monthly polio cases in the United States between 1970 and

1983. They assumed St = 1 indicated an endemic period (low stable incidence) and St = 2

indicated an outbreak of the disease. The unknown parameters are λ2 (average number of

cases during an outbreak month), λ1 (average number of cases during an endemic month),

p12 (probability of an outbreak emerging) and p21 (probability of an outbreak ending).

Following Zeger and Qaqish (1988), we could extend (2.1) to incorporate an autoregressive

component,

yt|St, yt−1 ∼ Poisson (βSt (yt−1 + 1)αSt ) . (2.2)

In (2.2), β mainly controls the mean level of the process while α controls the autocorrelation.

Therefore, (2.2) could be appropriate for modeling an autoregressive process that sometimes

experiences an abrupt large increase in its mean level. This may happen, for example, due

to an outbreak emerging if modeling infectious disease counts. Conesa et al. (2015) applied a

model like (2.2) to influenza cases to study and detect (see Section 2.1.2) switching between

endemic and outbreak periods.

Finally, following Diebold et al. (1994), we could consider a nonhomogeneous extension of

(2.1) where the frequency of switching states can change over time,

logit(p12,t) = θ12,0 + θ12,1t, logit(p21,t) = θ21,0 + θ21,1t. (2.3)

Figure 2.1 shows simulated time series from models (2.1), (2.2) and (2.3), where λ2 = 3,
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 (b) Homogeneous Autoregressive Poisson HMM
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 (c) Nonhomogeneous Poisson HMM
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Figure 2.1: Shows simulated time series from models (2.1) (a), (2.2) (b) and (2.3) (c).

λ1 = .25, p12 = .05, p21 = .2, β1 = .5, β2 = 2, α1 = .5, α2 = .75, θ12,0 = −3.5, θ12,1 = .05,

θ21,0 = −1 and θ21,1 = −.02.

2.1.2 Bayesian inference

In this section, we review methods of efficient Bayesian inference for the class of Markov

switching models discussed above. Let v = (β,θ)T denote the vector of all model param-

eters. It is normally assumed that the time series y is observed and the state sequence S

is unobserved. Therefore, there is often interest in not only estimating v but also S. For

example, for (2.1), Le Strat and Carrat (1999) were interested in whether an outbreak was

currently happening, i.e., if ST = 2, and when outbreaks had occurred in the past, i.e., when

St = 2 for t = 1, . . . , T − 1.

Bayesian inference for a Markov switching model usually follows the Gibbs sampler proposed

by Chib (1996), which samples from the joint posterior of S and v, p(S,v|y). The parameter
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vector is first separated into blocks v = (v1, . . . ,vD)
T of arbitrary size. Secondly, we specify

initial values for the Gibbs sampler, v[0] = (v
[0]
1 , . . . ,v

[0]
D )T and S[0]. Then the following steps

are repeated for m = 1, . . . , Q, where Q is large enough to ensure convergence,

Step 1: Sample v[m]
d from p(vd|v[m]

1 , . . . ,v
[m]
d−1,v

[m−1]
d+1 , . . . ,v

[m−1]
D ,S[m−1],y) for d = 1, . . . , D.

Step 2: Sample S[m] from p(S|v[m],y) using the forward filtering backward sampling

(FFBS) algorithm, see below.

After an initial burn-in period of size M < Q, the Gibbs sampler draws correlated samples

from the joint posterior distribution, (S[m],v[m])T ∼ p(S,v|y). Typically, several iterations

of the Gibbs sampler, called chains, are run starting from different random values in the

parameter space, to avoid convergence to local modes. The chains are then combined and

convergence is checked using the effective sample size and the Gelman-Rubin Statistic, which

tries to determine if all chains converged to the same mode (Plummer et al., 2006).

For the first step, note that p(vd|v−d,S,y) ∝ p(y,S|v)p(v). The distribution p(y,S|v)

represents the likelihood of v given y and S and follows immediately from the assumptions

in Section 2.1.1,

p(y,S|v) = p(S0|θ)
T∏︂
t=1

p(yt|St,y1, . . . ,yt−1,xt,β)p(St|St−1,y1, . . . ,yt−1, zt,θ). (2.4)

The prior distribution p(v) is set by the modeler and represents a-priori beliefs about the

true parameter values. For general Bayesian inference, often independent flat priors are used

(Reich and Ghosh, 2019). However, the likelihood of a Markov switching model can be highly

irregular (containing multiple local modes) in regions of the parameter space that only use

a subset of all states (Frühwirth-Schnatter, 2006). For example, for (2.1), where λ2 ≈ λ1,

p12 ≈ 0 or p21 ≈ 0. Therefore, Frühwirth-Schnatter (2006) chapter 4.2.2 recommends using

priors that bound the parameters away from these regions, e.g., p12, p21
ind∼ Beta(4, 4). The

full conditional distribution p(vd|v−d,S,y) is proportional to whatever part of p(y,S|v)p(v)

13



depends on vd. Once this kernel has been found numerous sampling algorithms can be used

to draw from the full conditional, including conjugate, Metropolis-Hastings and Hamiltonian

Monte Carlo samplers, see Chapter A.4 of Reich and Ghosh (2019) for a recent review.

For Step 2 we can sample from p(S|v,y) using the FFBS algorithm proposed by Chib

(1996). See Section C.3 for a step-by-step application of the algorithm applied to the third

manuscript. The FFBS algorithm runs Hamilton’s forward filter which requires matrix

multiplication with the transition matrix Γ(St). Therefore, it can not be run when the

Markov chain has a very large number of states (this is relevant in Section 2.2 below). The

FFBS algorithm requires the assumptions in Section 2.1.1 to hold (Frühwirth-Schnatter,

2006). If the assumptions do not hold then we can sometimes replace Step 2 with sampling

from p(St|S0, . . . , St−1, St+1, . . . , ST ,v,y) for t = 0, . . . , T (Frühwirth-Schnatter, 2006). This

is usually less efficient but can be applied to a more general class of Markov switching models,

for example, when yt depends on S0, . . . , St (Chen et al., 2019).

Once a sample from the joint posterior p(S,v|y) has been obtained, we can approximate

posterior means, medians and 95% credible intervals to summarize our estimation of v. We

can also estimate the values of the state sequence, P (St = k|y) ≈ 1
Q−M

∑︁Q
m=M+1 I[S

[m]
t = k]

for t = 0, . . . , T and k = 1, . . . , K, where I[•] is an indicator function. For example, for (2.1),

P (St = 2|y) represents the posterior probability an outbreak of polio occurred in the United

States during month t.

In practice, there are several challenges to applying the above Gibbs sampler. Firstly, if

at least two of the states have the same parametric form then label switching can occur

(Stephens, 2000). As an example, consider fitting (2.1) to a time series. Assume there is a

mode in the likelihood function around λ1 = 1, λ2 = 2, p12 = .05 and p21 = .2. Note the

permuted parameter values λ1 = 2, λ2 = 1, p12 = .2 and p21 = .05 define the same model.

In both cases, we switch between a Poisson distribution with mean 1 and mean 2 with the

same probabilities of transitioning between them. Therefore, there will be a second mode
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around the permuted parameter values. The Gibbs sampler can sometimes switch between

the modes, known as label switching, which makes the posterior draws difficult to interpret

(Frühwirth-Schnatter, 2006).

A popular method for dealing with the label-switching problem is to apply constraints to the

parameter space that isolate one of the modes (Jasra et al., 2005). Continuing our earlier

example of fitting (2.1), we could apply the constraint λ2 > λ1 to hopefully isolate the mode

around λ2 = 2 and λ1 = 1. Arbitrary constraints can fail to remove multimodality from

the posterior distribution, especially when the true values of the constrained parameters are

very close together (Stephens, 2000; Jasra et al., 2005). Therefore, the constraints need to

be chosen carefully based on knowledge of the application (Martínez-Beneito et al., 2008) or

by visually examining draws from the unconstrained Gibbs sampler (Frühwirth-Schnatter,

2006).

Relabeling algorithms can also be used to address the label-switching problem (Stephens,

2000). However, they can be challenging to implement and do not remove genuine multi-

modality (extra modes unexplained by permuting the parameters) from the posterior distri-

bution (Jasra et al., 2005). Genuine multimodality occurs quite often in complex mixture

models (Stephens, 2000; Jasra et al., 2005). This is an important issue as Gibbs sampling

usually cannot successfully sample from a multimodal distribution (Yao et al., 2022). If

the extra modes occur in regions of the parameter space that are a-priori infeasible, then

they can be removed with appropriate constraints, see Section B.2 from the supplementary

materials of the second manuscript.

2.2 Coupled Markov Switching Models

A coupled Markov switching model is a type of Markov switching model for multiple time

series, where the underlying state sequences for each time series can interact with one another

(Pohle et al., 2021). We will use the early example of Phillips (1991) to illustrate some of
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the ideas. Phillips (1991) was interested in modeling the time series of the gross national

product (GNP) in two countries, y1(1:T ) = (y11, . . . , y1T )
T and y2(1:T ) = (y21, . . . , y2T )

T .

Following Hamilton (1989), they assumed that country i was either in a recession state

during time t, indicated by Sit = 1, or an expansion state, indicated by Sit = 2, for i = 1, 2

and t = 0, . . . , T . They assumed a higher mean level of GNP during the expansion state

(modified slightly),

yit = µSit,i + ρyi(t−1) + ϵit, ϵit ∼ N(0, σ2),

where µ2,i > µ1,i for i = 1, 2. It is reasonable to assume the state sequences, S1(0:T ) =

(S10, . . . , S1T )
T and S2(0:T ) = (S20, . . . , S2T )

T , interact in some way. For instance, one country

going into a recession might push the other into a recession, or they might go into a recession

simultaneously. To capture such possible interactions, Phillips (1991) modeled the transition

matrix of the vector St = (S1t, S2t)
T ,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(1,1) (2,1) (1,2) (2,2)

(1,1) p11|11 p21|11 p12|11 p22|11

(2,1) p11|21 p21|21 p12|21 p22|21

(1,2) p11|12 p21|12 p12|12 p22|12

(2,2) p11|22 p21|22 p12|22 p22|22

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

(2.5)

Note that Equation (2.5) contains 12 free parameters as the rows of the transition matrix

must sum to one. Phillips (1991) showed that (2.5) could capture many possible interac-

tions between the state sequences including complete independence, perfect correlation, one

country leading the other or both tending to move simultaneously.

Let S∗
t ∈ {1, . . . , 4} be an indicator for the possible values of (S1t, S2t)

T . Assume S∗
t follows

a Markov chain with a transition matrix given by (2.5). Then y = (y1, . . . ,yT )
T , where

yt = (y1t, y2t)
T , and S∗ = (S∗

0 , S
∗
1 , . . . , S

∗
T )

T follow the assumptions given in Section 2.1.1.
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Therefore, the model of Phillips (1991) can be fit using the methods described in Section

2.1.2. Note if we were modeling N countries, the assumptions in 2.1.1 would still be satisfied,

but the transition matrix would have dimensions 2NX2N . As such, if N were large, we

would not be able to use the FFBS algorithm and other inference methods would have to be

considered. We discuss this more below.

2.2.1 General formulation

Assume we have N time series, yi(1:T ) = (yi1, . . . , yiT )
T for i = 1, . . . , N . Assume an under-

lying state sequence for each time series, Si(0:T ) = (Si0, . . . , SiT )
T for i = 1, . . . , N , where

Sit ∈ {1, . . . , K}, that we would expect to interact. Let xit and zit be vectors of covariates.

Finally, let yt = (y1t, . . . , yNt)
T and St = (S1t, . . . , SNt)

T . To formulate a general class of

coupled Markov switching models, we will mostly follow Touloupou et al. (2020) (though we

incorporate autoregression) as their proposal allows for Bayesian inference when N is very

large. When N is small, more general specifications can be used, see Pohle et al. (2021) for a

recent review. Similar to Touloupou et al. (2020), we make the following assumptions,

1.

p(yt|S0, . . . ,St,y1, . . . ,yt−1,xt,β) = p(yt|St,y1, . . . ,yt−1,xt,β)

=
N∏︂
i=1

p(yit|Sit,y1, . . . ,yt−1,xit,β),

where β is a vector of unknown parameters. That is, yit only depends on Sit and,

potentially, on covariates and past observations, and yit is conditionally independent

of yjt j ̸= i. Note marginal dependence between yit and yjt would be induced by the

next assumption.

17



2.

p(St|S0, . . . ,St−1,y1, . . . ,yt−1, zt,θ) = p(St|St−1,y1, . . . ,yt−1, zt,θ)

=
N∏︂
i=1

p(Sit|St−1,y1, . . . ,yt−1, zit,θ),

where θ is a vector of unknown parameters. That is, Sit can depend on the state of

any time series from the previous time St−1, covariates and past observations, and

Sit is conditionally independent of Sjt j ̸= i. The conditional independence assump-

tion implies the relationship between the state sequences is lagged and that they do

not move simultaneously (Pohle et al., 2021). This is often appropriate for mod-

eling infectious disease spread (Touloupou et al., 2020), but could be relaxed if N

is small (Pohle et al., 2021). The conditional transition probabilities are defined as

P (Sit = k|Si(t−1) = j,S(−i)(t−1),y1, . . . ,yt−1, zit,θ) = pjk,it for j, k = 1, . . . , K, where

S(−i)(t−1) = (S1(t−1), . . . , S(i−1)(t−1), S(i+1)(t−1), . . . , SN(t−1))
T . These are stored in the

conditional transition matrix Γ(Sit|S(−i)(t−1)), which is K by K and the rows must

sum to 1. Otranto (2005) proposed a convenient form for the conditional transition

probabilities when K = 2,

logit(p12,it) = θ12,0 +
∑︂
j ̸=i

θ12,jiI[Sj(t−1) = 2],

logit(p21,it) = θ21,0 +
∑︂
j ̸=i

θ21,jiI[Sj(t−1) = 1],

(2.6)

where I[•] is an indicator function. In (2.6), interactions between the Markov chains

can be quantified through odds ratios. For example, eθ12,ji represents the multiplicative

change in the odds of the Markov chain in area i transitioning from state 1 to state 2

associated with the Markov chain in area j transitioning from state 1 to state 2 during

the previous time (holding the states of all other chains constant) (note the lagged

dependence). Due to this convenience, we use the idea of (2.6) throughout the thesis.
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3. The initial state distributions are conditionally independent, p(S0|θ) =
∏︁N

i=1 p(Si0|θ).

2.2.2 Bayesian inference

Let S∗
t ∈

{︁
1, . . . , KN

}︁
be an indicator for the possible values of St. Then the assumptions

in Section 2.2.1 imply the assumptions in Section 2.1.1 hold for y and S∗. Therefore,

the inference could follow Section 2.1.2. However, note the transition matrix Γ(S∗
t ) has

dimensions KNXKN . As such, if N is very large, we would not be able to run the FFBS

algorithm as it requires multiplication with the transition matrix.

Touloupou et al. (2020) proposed a modified version of the Gibbs sampler in Section 2.1.1

for coupled Markov switching models with large N ,

Step 1: Sample v[m]
d from p(vd|v[m]

1 , . . . ,v
[m]
d−1,v

[m−1]
d+1 , . . . ,v

[m−1]
D ,S[m−1],y) for d = 1, . . . , D.

Step 2: Sample S[m]
i(0:T ) from p(Si(0:T )|S[m]

1(0:T ), . . . ,S
[m]
(i−1)(0:T ),S

[m−1]
(i+1)(0:T ), . . . ,S

[m−1]
N(0:T ),v

[m],y)

for i = 1, . . . , N , using the individual forward filtering backward sampling (iFFBS)

algorithm (Touloupou et al., 2020).

That is, instead of sampling from p(S|v,y) we sample from p(Si(0:T )|S(−i)(0:T ),v,y) for

i = 1, . . . , N . The iFFBS algorithm can be run under the assumptions in Section 2.1.1

(Touloupou et al., 2020). Due to the recency of this literature, it remains somewhat unclear

the degree to which these assumptions could be relaxed. The iFFBS algorithm uses the

conditional transition matrix Γ(Sit|S(−i)(t−1)) instead of Γ(S∗
t ). See Section B.1 for a step-

by-step application of the algorithm applied to the second manuscript. Another possibility

is to sample from p(Sit|S−(it),v,y) for all i and t (Touloupou et al., 2020). However, this

can be much less efficient, see Section 4.3 from the second manuscript for example.

For Step 1 we now have that, following the assumptions in Section 2.2.1,

p(y,S|v) =
N∏︂
i=1

p(Si0|θ)
T∏︂
t=1

p(yit|Sit,y1, . . . ,yt−1,xit,β)p(Sit|St−1,y1, . . . ,yt−1, zit,θ).
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For small N , Brand et al. (1997) introduced coupled HMMs for categorical time series, see

Pohle et al. (2021) for a review of this literature. Phillips (1991), Otranto (2005) and Pohle

et al. (2021) proposed models for continuous time series. For small N , inference usually

follows the frequentist paradigm as the transition matrix is small enough to run Hamilton’s

filter to calculate the likelihood function.

For large N , Sherlock et al. (2013) and Touloupou et al. (2020) considered coupled HMMs

for categorical time series. Billio et al. (2016) and Agudze et al. (2022) considered models

for continuous time series in econometrics. Billio et al. (2016) derived a special case of

the iFFBS algorithm to fit their model. Heaton et al. (2012) considered a coupled Markov

switching model for count time series to model outbreak spread. We discuss this proposal

extensively in the second manuscript in Chapter 4. Heaton et al. (2012) considered the

above Gibbs sampler but used the FFBS algorithm in Step 2 with Γ(Sit|S(−i)(t−1)) instead of

the iFFBS. As shown by Touloupou et al. (2020), this will not sample from the correct full

conditional distribution p(Si(0:T )|S(−i)(0:T ),v,y). For large N , only Bayesian methods have

been considered as the transition matrix is too large to run Hamilton’s filter.

2.3 Zero-state Markov Switching Models and Zero-inflated

Models

Zero-state Markov switching count models switch between a degenerate 0 state and a count

state, such as a Poisson (Wang, 2001) or negative binomial (Malyshkina and Mannering,

2010) state. Wang (2001), motivated by count time series with many zeroes, introduced the
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following Markov switching model (see Section 2.1),

yt | St ∼

⎧⎪⎪⎨⎪⎪⎩
0, if St = 0

Poisson(λt), if St = 1,

P (St = 1|St−1 = 0) = p01,t. P (St = 1|St−1 = 1) = p11,t,

(2.7)

where St ∈ {0, 1}. They linked λt, p01,t and p11,t to covariates through log and logistic link

functions. Note p00,t = 1− p01,t and p10,t = 1− p11,t. If we let p01,t = p11,t = p1,t (i.e., assume

the previous state does not influence the current state) then the state sequence follows a

series of independent Bernoulli distributions, and we arrive at the following model,

yt | St ∼

⎧⎪⎪⎨⎪⎪⎩
0, if St = 0

Poisson(λt), if St = 1,

P (St = 1) = p1,t,

(2.8)

which is the well-known zero-inflated Poisson (ZIP) model of Lambert (1992).

Figure 2.2 shows simulated time series from (2.7) and (2.8) without covariates and with

parameter values λ = 3, p01 = .10, p11 = .90 and p1 = .5. For both time series, the zero-state

(St=0) occurs approximately 50% of the time. However, the Markov switching model can

produce far more consecutive zeroes, which are a common feature of count time series (Chen

et al., 2019). The main advantage of (2.7) over (2.8) is that the Markov chain accounts for

autocorrelation in the state sequence.

However, there are modifications of (2.8) that could also account for this. For example,

following Otting et al. (2020) we could consider an autoregressive random effect to capture
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Figure 2.2: Shows simulated time series from models (2.7) (a) and (2.8) (b) without covari-
ates.

serial correlation in the state sequence,

logit(p1,t) = η0 + z
T
t η + ϕt

ϕt = ρϕt−1 + ϵt,

(2.9)

where zt is a vector of covariates, ϵt ∼ N(0, σ2) and |ρ| < 1 (to ensure ϕt is stationary). If

ρ = 0 there is no autocorrelation in the state sequence while if ρ > 0 there is positive auto-

correlation. In a space-time setting, Hoef and Jansen (2007) (see Section 3.4.1) considered a

spatio-temporal ZIP model similar to (2.9), where they used random effects correlated across

space and time to capture dependencies in the presence of the count state. See Young et al.

(2020) for a recent review of zero-inflated models for temporal and spatio-temporal counts

(we also review this literature extensively in the first manuscript in Chapter 3).

To better understand the differences between the approaches in (2.7) and (2.9), note we can
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parametrize the transition probabilities in (2.7) as,

logit (P (St = 1|St−1)) = η0 + η1St−1 + (1− St−1)z
T
t η01 + St−1z

T
t η11. (2.10)

Therefore, an advantage of (2.7) is that the covariates can have separate effects on the 0 to

1 transition, represented by η01 in (2.10), and the 1 to 1 transition, represented by η11. We

found this was important in the first manuscript (Chapter 3) as different dynamics can govern

the reemergence (absence to presence) and persistence (presence to presence) of an infectious

disease. Much of the first manuscript is devoted to comparing spatio-temporal extensions

of (2.8), like Hoef and Jansen (2007), with coupled Markov switching, (see Section 2.2),

extensions of (2.7). Finally, we note that label switching (see Section 2.1.2) is not an issue

for (2.7) and there is no need to constrain the parameters.

2.4 Epidemiology of Dengue, Zika and Chikungunya

Dengue, Zika and chikungunya are vector-borne diseases transmitted between humans and,

mainly in Brazil, the Aedes aegypti mosquito (Schmidt et al., 2022). The epidemiology of

these diseases is complex, and here we will just focus on information relevant to building

models and interpreting results in the first and third manuscripts. Firstly, it is important to

understand how these diseases are transmitted. Both humans and mosquitoes can be infected

(Coutinho et al., 2006). Humans can be infected by being bitten by infectious mosquitoes

and mosquitoes can be infected by biting infectious humans. Human-to-human transmission

does not occur for either dengue or chikungunya. Zika can be transmitted from human to

human through sexual contact, however, human-to-mosquito-to-human transmission is much

more prevalent (Counotte et al., 2018).

Since dengue, Zika and chikungunya are primarily transmitted between humans and mosquitoes

it is important to understand the biology of their shared vector, the Aedes aegypti. Aedes
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aegypti require standing water to lay their eggs (Marquardt, 2004). Therefore, rainfall and,

potentially, human-made water containers are important for the growth of the mosquito

population. Schmidt et al. (2011) found an association between the use of water storage con-

tainers, which are often used in poorer areas, and dengue incidence in villages in Vietnam.

Additionally, the mosquito population is highly dependent on temperature. Aedes aegypti

generally live longer, lay more eggs, and mature faster at higher temperatures, though these

relationships are non-linear and can reverse at very high temperatures (Chen and Hsieh,

2012). Also, the rate at which exposed mosquitoes become infectious with dengue increases

with temperature. This is important since the mosquitoes only live around three weeks,

depending on temperature, and, therefore, can easily die before being able to pass on the

disease. Descloux et al. (2012) found a strong association between temperature and the oc-

currence of dengue outbreaks in New Caledonia. Since the life cycle of Aedes aegypti is highly

dependent on temperature and rainfall, the mosquito population can drop to near 0 during

the winter or dry seasons (Adams and Boots, 2010). As such, long strings of zeroes are a

common feature in the time series of these diseases’ case counts, see Figure 1.1 and Chen

et al. (2019) for some examples. Finally, we note that there is often a delay between changes

in the mosquito population, driven by temperature and rainfall, and changes in dengue in-

cidence (Coutinho et al., 2006). This could be due to the mosquito population needing to

reach a critical threshold before transmission is high enough for incidence to increase.

As much of the first manuscript is concerned with modeling the spread of dengue between

neighborhoods in Rio de Janeiro, it is important to understand how the disease spreads geo-

graphically. Firstly, note that Aedes aegypti only travel short distances (<100m) (Harrington

et al., 2005). Therefore, the long-distance spread of the diseases, e.g., between neighborhoods,

is primarily driven by human movement. Either an infectious human can bring the disease

to susceptible mosquitoes in a non-infected area, or a susceptible human can travel to an

infected area, get bitten by infectious mosquitoes and bring the disease back to susceptible

mosquitoes in a non-infected area (Stoddard et al., 2009). Since Aedes aegypti primarily
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bite during the day, when most humans travel, human movement can spread dengue very

quickly across geographical areas like cities (Stoddard et al., 2013). Stoddard et al. (2013)

found that travel outside the home to high-risk areas was an important predictor of dengue

infection.

Finally, we will provide a brief history of dengue, Zika and chikungunya in Rio de Janeiro.

Dengue has been endemic in Rio de Janeiro since 1987. There are outbreaks of dengue every

few years in the city on average during the summer months, see Figure 3.1 for example. The

first cases of Zika were detected in the city in 2015 and in 2016 for chikungunya (Freitas

et al., 2019). Between 2015-2016, there was a triple epidemic of the three diseases in Rio de

Janeiro, which is the subject of the third manuscript in Chapter 5. Although dengue, Zika,

and chikungunya are transmitted by the same vector, there can be important differences

in their transmission. For instance, laboratory studies have shown that Aedes aegypti can

transmit Zika more effectively at higher temperatures compared to dengue (Tesla et al.,

2018). We will explore these differences in more detail in the third manuscript.

2.5 Summary

In this chapter, we introduced the general domain that this thesis is interested in. Firstly,

we reviewed Markov switching models in Section 2.1. We showed how these models can

account for sudden shifts in the behavior of a single epidemiological time series, due to, for

example, an outbreak emerging. In this thesis, we are interested in accounting for these kinds

of shifts in behavior across multiple interacting epidemiological time series, such as monthly

reported cases of an infectious disease across the neighborhoods of a city. Related to this,

in Section 2.2 we reviewed coupled Markov switching models for multiple time series which

allow the underlying state sequences to interact. These models assume that the probabilities

of transitioning between states for one time series can depend on the states of the other

time series. For our models, the states represent different epidemiological periods, such as

25



disease absence or outbreak. Therefore, following the coupled Markov switching literature

reviewed here, we allow the transition probabilities of our models to depend on the states

in neighboring areas, to account for geographical disease spread (Smith et al., 2002). For

instance, in the second manuscript in Chapter 4, we allow the probability of an outbreak

emerging in an area to depend on whether outbreaks are occurring in neighboring areas.

We also reviewed zero-state Markov switching and zero-inflated models in Section 2.3. We

will use a zero-state in our models to represent the absence of a disease and account for

the long strings of zeroes common in infectious disease counts (Chen et al., 2019). Finally,

we gave a brief overview of the epidemiology of dengue, Zika, and chikungunya in Section

2.4. In the first manuscript in Chapter 3, we apply our zero-state coupled Markov switching

model to counts of dengue cases in Rio de Janeiro neighborhoods. In the third manuscript in

Chapter 5, we apply our Markov switching zero-inflated autoregressive multinomial model

to cases of dengue, Zika, and chikungunya in Rio neighborhoods. Therefore, it is important

to understand the epidemiology of these diseases. Again, we emphasize that this literature

review was meant to be a general introduction to these topics. The introductions of the

individual manuscripts go into much more specific details about how the existing literature

relates to our proposed approaches (also see the preambles).
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Chapter 3

Zero-state coupled Markov switching

count models for spatio-temporal

infectious disease spread

Preamble to Manuscript 1. In this first manuscript, we consider coupled Markov switch-

ing models where the disease switches between periods of presence and absence in each area.

The absence state, also called the zero state, is described by a degenerate 0 distribution,

while the presence state is described by an autoregressive negative binomial model. Non-

coupled, meaning the transition probabilities do not depend on the states in neighboring

areas, Markov switching models that switch between a zero state and a count state, e.g.,

Poisson state, (zero-state Markov switching count models) were considered by Wang (2001)

and Malyshkina and Mannering (2010). However, these approaches are not appropriate for

infectious disease counts as we would expect the presence of the disease in an area to affect

its presence in neighboring areas, due to between-area mixing (Smith et al., 2002). For our

application to dengue counts in Section 3.4, we found that the fit of our model generally

improved as the coupling became more dynamic, see Table 3.1, indicating the importance of
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accounting for complex dependencies between the Markov chains.

Zero-state Markov switching count models can be seen as Markov mixture versions of finite

mixture zero-inflated count models, such as the popular ZIP regression model of Lambert

(1992). Therefore, zero-inflated count models for space-time data, such as those explored

in Hoef and Jansen (2007), are important competitors to our approach. As we stress in

the manuscript, the main advantages of our approach are (1) we allow for each covariate to

have a separate effect on the reemergence (absence to presence) and persistence (presence

to presence) of the disease, which is often epidemiologically justified, and (2) we allow the

effects of disease spread between neighboring areas to depend on space-time factors, such

as the population of the areas (gravity effect (Tuite et al., 2011)). These advantages allow

us to gain several interesting insights into the epidemiology of the disease beyond what can

be gained from existing zero-inflated approaches, see the second paragraph of Section 3.5.

Additionally, on the dengue counts we found our model fit better compared to a reasonably

specified alternative finite mixture spatio-temporal zero-inflated model, see Section 3.4.1 and

Table 3.1.

In conclusion, by extending the non-coupled zero-state Markov switching count models of

Wang (2001) and Malyshkina and Mannering (2010), and by offering several important

advantages over finite mixture zero-inflated approaches (Young et al., 2020), this manuscript

provides an important contribution to the literature on modeling spatio-temporal counts

that contain many zeroes (Arab, 2015).
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Abstract

Spatio-temporal counts of infectious disease cases often contain an excess of zeros. With

existing zero inflated count models applied to such data it is difficult to quantify space-time

heterogeneity in the effects of disease spread between areas. Also, existing methods do not

allow for separate dynamics to affect the reemergence and persistence of the disease. As

an alternative, we develop a new zero-state coupled Markov switching negative binomial

model, under which the disease switches between periods of presence and absence in each

area through a series of partially hidden nonhomogeneous Markov chains coupled between

neighboring locations. When the disease is present, an autoregressive negative binomial

model generates the cases with a possible 0 representing the disease being undetected.

Bayesian inference and prediction is illustrated using spatio-temporal counts of dengue fever

cases in Rio de Janeiro, Brazil.
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3.1 Introduction

In epidemiology, counts of infectious disease cases are being increasingly reported in several

related areal units across time. A common issue encountered when modeling these counts

is the presence of excess zeros (Arab, 2015). That is, there are often many more zeros

in the counts than can be predicted by the usual Poisson and negative binomial count

models. Lambert (1992) proposed the zero-inflated Poisson (ZIP) model to deal with excess

zeros in count data, and this approach, with various extensions (see Young et al. (2020)),

has been applied in many fields including epidemiology. We will refer to any model that

incorporates zero-inflation into a count distribution as a zero-inflated count (ZIC) model

(e.g. ZIP, ZINB, ZIGP, ZICMP models, etc. (Young et al., 2020)). In a disease mapping

application of the ZIC model, the presence/absence of the disease is generated through a

Bernoulli process and then, when the disease is present, the number of reported cases is

generated through a count process, typically negative binomial or Poisson (Fernandes et al.,

2009). A zero coming from the count process represents the disease being undetected, while

a zero from the Bernoulli process represents the true absence of the disease. A ZIC model

can help account for the excess zeros, through the additional Bernoulli zero generation, and

also allows us to investigate factors related to the presence/absence of the disease while

considering imperfect detection of disease presence (Vergne et al., 2016). ZIC models have

become increasingly popular in epidemiology for modeling excess zeros in spatio-temporal

infectious disease counts (Fernandes et al., 2009; Aktekin and Musal, 2015; Wangdi et al.,

2018).

However, in a spatio-temporal setting, an important issue with existing ZIC approaches is

that they only model the probability of overall disease presence. In a spatio-temporal set-

ting we can separate the presence of a disease into two events of epidemiological interest,

persistence (presence to presence) and reemergence (absence to presence). Some important

epidemiological covariates can affect the reemergence and persistence of an infectious disease
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quite differently. An example from our application of dengue fever is temperature, as tem-

perature affects both the hatching rate of vertically infected mosquito eggs, which is more

important for the reemergence of the disease, and the life cycle of the infected mosquitoes,

which is more important for the persistence of the disease (Coutinho et al., 2006).

A second issue concerns the use of random effects in the Bernoulli process of a ZIC model,

which can be used to account for spatio-temporal correlations in the presence of the disease

(Hoef and Jansen, 2007; Torabi, 2017; Giorgi et al., 2018). Splines can also be used for

this purpose (Ghosal et al., 2020), but are functionally similar so we will refer in general to

random effect models. Random effect models are built by specifying relationships between

probabilities of disease presence between areas and across time (Torabi, 2017). In contrast, it

is more traditional in epidemiology to build models of infectious disease spread by specifying

the probability that the disease will be present in an area given its actual presence in the area

and neighboring areas previously (Keeling et al., 2001; Smith et al., 2002; Hooten and Wikle,

2010). That is, random effects models condition on the probability of disease presence in

neighboring areas while epidemiological models usually condition on the actual presence of

the disease in neighboring areas. If a goal of the analysis is to quantify associations between

various space-time factors and the effects of disease spread between areas, like in Smith

et al. (2002) who examined whether rivers block the spread of rabies, then the traditional

epidemiological approach is more appropriate. This is because the disease can only spread

from an area if it is present there, while the probability of disease presence does not tell you

if the disease is spreading or not. For example, the disease could be present in a neighboring

area and spread from there even if its probability of presence is low. Therefore, it is difficult

to quantify space-time heterogeneity in the effects of disease spread between areas with

existing ZIC models.

To help address these issues we propose a zero-state Markov switching approach to modeling

the zero inflation. Markov switching models, first introduced by Goldfeld and Quandt (1973)
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and extensively developed by Hamilton (1989), allow a time series to be described by several

submodels (states) where switching between submodels is governed by a first-order Markov

chain. The motivation behind the Markov switching model, over a finite mixture model,

is that the states are often dependent across time and occur consecutively (Goldfeld and

Quandt, 1973). Markov switching models that switch between a zero state and a count state

were considered in a temporal setting by Wang (2001) and in a spatio-temporal setting by

Malyshkina and Mannering (2010). However, Malyshkina and Mannering (2010) assumed

the states were independent between spatial units and neither of these applications dealt

with infectious disease data.

In our framework, following traditional disease mapping ZIC models (Fernandes et al., 2009),

we assume the existence of a zero state, representing the absence of the disease, and a negative

binomial state, representing the presence of the disease. Then we allow the disease to switch

between the presence and absence state in each area through a nonhomogeneous (Diebold

et al., 1994) Markov chain. The Markov chains allow for switching between long periods of

disease presence and absence, and allow for each covariate to have a separate effect on the

reemergence of the disease compared to the persistence. As the disease can spread between

areas, we extend the zero-state Markov switching count model to a coupled Markov switching

model (Pohle et al., 2021), by coupling the Markov chains between neighboring areas. In a

coupled Markov switching model, the transition probabilities of a Markov chain can depend

on the states of other Markov chains. We use a collection of coupling parameters to account

for heterogeneity in the effects of neighboring disease spread across space and time. The

coupling parameters allow us to quantify associations between the effects of neighboring

disease spread and various space-time factors related to either area.

This paper is structured as follows. In Section 3.1.1 we introduce our motivating example of

dengue fever cases in Rio de Janeiro and lay out the goals for our analysis. In Section 3.2 we

introduce our proposed model, the zero-state coupled Markov switching negative binomial
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model. In Section 3.3 we describe Bayesian inference using data augmentation through

Markov chain Monte Carlo (MCMC) methods. Here we discuss efficient sampling strategies

for the parameters and unknown state indicators. In Section 3.4 we apply the model to Rio’s

dengue fever data. Finally, we close with a general discussion in Section 3.5.

3.1.1 Motivating example: dengue fever in Rio de Janeiro

Dengue fever is endemic in Rio de Janeiro, Brazil, and there have been several major

epidemics there since 1987. We focus on modeling monthly cases of dengue fever in the

160 districts of Rio de Janeiro between 2011-2017, as reported by the Health Secretary of

the city (http://www.rio.rj.gov.br/web/sms/exibeconteudo?id=2815389). Figure 3.1

shows monthly dengue fever cases for two districts, a relatively small district (a) and a

relatively large district (b). In the smaller district, there are both long periods of dengue

presence (9 months longest period) and long periods of dengue absence (14 months longest

period). Additionally, in the smaller district there is clearly a recurring seasonal pattern

to the persistence and reemergence of the disease. The disease has a lower chance of per-

sisting during the winter, where it often goes extinct, and then dengue often reemerges in

the summer. This could be due to changes in rainfall and temperature, which often lead to

large fluctuations in the mosquito population (Marquardt, 2004). Additionally, temperature

and rainfall play an important role in the life cycle of vertically infected eggs, which are

important for the reemergence of the disease (Coutinho et al., 2006). The same patterns

in disease presence are not seen in the larger district in Figure 3.1 (b), where dengue per-

sists for much longer on average compared to the smaller district, rarely goes extinct and

reemerges quickly. Figure 3.2 similarly shows that there is significant spatial variation in

the district level average, across time, probabilities of dengue reemergence and persistence

(although these are based on reported cases and do not account for imperfect detection of

disease presence). This could be explained by differences in population between districts

(Bartlett, 1957), but also possibly differences in socioeconomic factors as mosquitoes often
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Figure 3.1: Monthly cases of dengue fever for 2 districts. Summer/winter seasons highlighted
in red/light blue. In (b), the 3 red arrows point to the only 3 months with 0 cases in this
district during the study period.

use human made water containers to lay eggs (Schmidt et al., 2011).

A statistical model can help quantify some of the above patterns. Specifically, the goal of our

analysis is to investigate how certain risk factors (such as rainfall, temperature, socioeconomic

factors and population size) are related to the reemergence and persistence of the disease,

and if any effects are different for the reemergence compared to the persistence. Additionally,

as Stoddard et al. (2013) showed that many individuals are infected by dengue outside their

homes, we want to quantify the risk of dengue spreading between neighboring districts.

We want to investigate whether certain space-time factors are associated with an increased

risk of dengue spreading from a neighboring district. The number of reported cases in

the neighboring district should be important in determining the risk of spread, but also,

individuals are known to move more through high population areas (Grenfell et al., 2001).

Finally, we wish to design some useful warning/forecasting systems for policy makers.
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Figure 3.2: (top) Average monthly probability of dengue reemergence based on reported
cases, i.e., #(cases=0→cases>0)

#(cases=0→cases>0)+#(cases=0→cases=0)
. (bottom) Average monthly probability of

dengue persistence based on reported cases, i.e., #(cases>0→cases>0)
#(cases>0→cases>0)+#(cases>0→cases=0)

.

3.2 A Zero-state Coupled Markov Switching Negative Bi-

nomial Model

Assume we have areal data with i = 1, ..., N areas across t = 1, ..., T time periods. Let yit be

the reported case count from area i at time t. Let Sit be a binary indicator for the true pres-

ence of the disease, meaning Sit = 1 if the disease is present in area i during time t and Sit = 0

if the disease is absent. Finally, let S(−i)(t−1) =
(︁
S1(t−1), ..., S(i−1)(t−1), S(i+1)(t−1), ..., SN(t−1)

)︁T
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be the vector containing the state indicators of all areas excluding area i at time t − 1;

and let y(t−1) = (y1, ...,yt−1)
T be the vector of all case counts up to time t − 1, where

yt = (y1t, ..., yNt)
T .

We assume that when the disease is present the reported cases are generated by a negative

binomial distribution and that when the disease is absent no cases will be reported, that

is,

yit | Sit,y
(t−1) ∼

⎧⎪⎪⎨⎪⎪⎩
0, if Sit = 0

NB(λit, rit), if Sit = 1,

(3.1)

where λit is the expected number of reported cases given the disease is present and rit is

an overdispersion parameter such that V ar
(︁
yit | Sit = 1,y(t−1)

)︁
= λit (1 + λit/rit). Zero

reported cases may arise when the disease is present due to the disease being undetected by

the surveillance system. Therefore, when yit = 0 we do not observe Sit as the disease could

be absent or present but undetected. In general we assume the following forms for λit and

rit,

λit = g
(︁
δ,xit,y

(t−1)
)︁

and rit = h
(︁
γ,wit,y

(t−1)
)︁
, (3.2)

where g(·) and h(·) are positive valued functions, δ and γ are vectors of unknown parameters

(including possibly random effects), and xit and wit are vectors of covariates. Therefore, λit

and rit can depend on past values of the case counts, to possibly account for temporal auto-

correlation due to transmission of the disease, but not on past values of the state indicators,

which is a common assumption in Markov switching models that greatly simplifies model

fitting (Frühwirth-Schnatter, 2006).

To model the switching between periods of disease presence and absence in area i, we assume

that Sit follows a two state nonhomogeneous Markov chain conditional on S(−i)(t−1) and
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y(t−1). We propose the following conditional transition matrix for the Markov chain, for

t = 1, ..., T ,

Γ
(︁
Sit|S(−i)(t−1),y

(t−1)
)︁
=

⎡⎢⎣
State Sit=0 (absence) Sit=1 (presence)

Si(t−1)=0 (absence) 1− p01it p01it

Si(t−1)=1 (presence) 1− p11it p11it

⎤⎥⎦, (3.3)

where,

p01it = P
(︁
Sit = 1|Si(t−1) = 0,S(−i)(t−1),y

(t−1)
)︁

(probability of disease reemergence),

p11it = P
(︁
Sit = 1|Si(t−1) = 1,S(−i)(t−1),y

(t−1)
)︁

(probability of disease persistence).

The probability of disease reemergence in area i during time t, p01it, is allowed to depend on

a K-dimensional vector of space-time covariates zit = (zit1, ..., zitK)
T as well as the presence

of the disease in neighboring areas during the previous time period,

logit(p01it) = ζ0 + z
T
itζ +

∑︂
j∈NE(i)

ϕ
(t−1)→t
01,j→i Sj(t−1), (3.4)

where NE(i) is the set of all neighboring locations of location i and ϕ
(t−1)→t
01,j→i is a coupling

parameter that represents the effect that the disease spreading from neighboring area j has

on the reemergence of the disease in area i at time t, the specification of which we will give

shortly. The probability of disease persistence, p11it, is defined similarly but all parameters

can differ,

logit(p11it) = η0 + z
T
itη +

∑︂
j∈NE(i)

ϕ
(t−1)→t
11,j→i Sj(t−1). (3.5)

The transition probabilities can depend on y(t−1) through zit, which may contain transformed

lagged values of the reported cases (e.g. log(yi(t−1) + 1)). This can be justified by the fact
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that the disease will only go extinct when there is a small number of infectious individuals.

We also need to specify an initial state distribution for the Markov chain in each area, i.e.

p(Si0) for i = 1, ..., N .

In order to account for space-time heterogeneity in the effects of neighboring disease spread

and to quantify associations between the effects of neighboring disease spread and various

space-time factors we use linear models for the coupling parameters (Smith et al., 2002),

ϕ
(t−1)→t
01,j→i = ζ

(c)
0 + z

(c)T
01,ijtζ

(c)

ϕ
(t−1)→t
11,j→i = η

(c)
0 + z

(c)T
11,ijtη

(c),

(3.6)

where z(c)01,ijt and z(c)11,ijt are vectors of space-time covariates, possibly different, related to

either area, for example, z(c)01,ijtk = log(yj(t−1)/popj+1) (reported prevalence in the neighboring

area j) or z(c)01,ijtk = log(popi × popj) (a gravity term (Tuite et al., 2011)). This is justified

as effects of disease spread between areas often vary across space and time with observed

factors, some examples being: rabies is less likely to spread between areas separated by rivers

(Smith et al., 2002); hand, foot, and mouth disease is more likely to spread between farms

with many cattle (Keeling et al., 2001); and measles is more likely to spread from large cities

(Grenfell et al., 2001). We allow the effect of neighboring disease spread on the reemergence

of the disease to be different from its effect on the persistence of the disease as these represent

two distinct epidemiological processes. The disease may spread to non-infected areas from

neighboring areas (modeled through ϕ(t−1)→t
01,j→i in (3.4)); but also, neighboring areas can supply

infectious individuals needed to maintain the persistence of the disease in infected areas

(modeled through ϕ(t−1)→t
11,j→i in (3.5)) (Okano et al., 2020).

As the coupling terms in (3.4)-(3.5) account for disease spread from neighboring areas, the

ζ0+z
T
itζ and η0+zTitη terms account for long distance dispersal of the disease as well as within

area disease dynamics, i.e. spread from human and/or vector populations within the area.

We assume the effect of covariate zitk on the reemergence of the disease, represented by ζk in
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(3.4), can be different from its effect on the persistence of the disease, represented by ηk in

(3.5). The advantage of considering differing effects for each covariate on the reemergence and

persistence of the disease is that many important epidemiological covariates can interact with

the reemergence and persistence of an infectious disease quite differently, like temperature

in our motivating example.

A final important motivation of the Markov chain model (3.3) for Sit is that it can account

for both many consecutive periods of disease presence and absence. The probability the

disease will be absent in location i during time t given it was absent at time t− 1 is given by

1−p01it, that is, 1−p01it is the probability of having a consecutive period of disease absence.

Therefore, as the probability of disease reemergence, p01it, approaches 0, consecutive periods

of disease absence become more likely. Similarly, as the probability of disease persistence,

p11it, approaches 1, consecutive periods of disease presence become more likely. Therefore,

when p01it << p11it the Markov chain can model switching between long periods of disease

absence and long periods of disease presence which is often observed for infectious diseases

in smaller areas, see Figure 3.1(a) and Adams and Boots (2010).

We will refer to the model defined by (3.1)-(3.6) as the zero-state coupled Markov switching

negative binomial (ZS-CMSNB) model. Finally, we note that a Poisson version of the ZS-

CMSNB model is a special case as rit goes to infinity, which we will refer to as a zero-state

coupled Markov switching Poisson (ZS-CMSP) model.

3.3 Inferential Procedure

Let St = (S1t, ..., SNt)
T be the vector of all state indicators at time t and let S = (S0, ...,ST )

T

be the vector of all state indicators. The vector St forms a first order Markov chain, con-

ditional on y(t−1), with state space {0, 1}N and 2NX2N transition matrix Γ
(︁
St|y(t−1)

)︁
. An
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element of Γ
(︁
St|y(t−1)

)︁
is given by,

P
(︁
S1t = s1t, ..., SNt = sNt|S1(t−1) = s1(t−1), ..., SN(t−1) = sN(t−1),y

(t−1)
)︁

=
N∏︂
i=1

P
(︁
Sit = sit|St−1 = st−1,y

(t−1)
)︁
.

(3.7)

Therefore, rewriting the ZS-CMSNB model in terms of Γ(St|y(t−1)) and p(yt|St,y
(t−1)) =∏︁N

i=1 p(yit|Sit,y
(t−1)) shows that it is a Markov switching model as defined by Frühwirth-

Schnatter (2006). However, the transition matrix has an exceptionally large dimension

(2NX2N) which necessitates some changes to the inferential procedure compared to more tra-

ditional Markov switching models (Frühwirth-Schnatter, 2006), as we will discuss next.

The likelihood of v = (θ,β)T , where θ = (ζ0, η0, ζ,η, ζ
(c)
0 , η

(c)
0 , ζ(c),η(c))T and β = (δ,γ)T ,

given y = (y1, ...,yT )
T and S is given by,

L(y,S|v) =
N∏︂
i=1

T∏︂
t=1

p(yit|Sit,y
(t−1),β)

N∏︂
i=1

p(Si0)
T∏︂
t=1

p(Sit|St−1,y
(t−1),θ). (3.8)

When N is large it is not possible to marginalize out S from (3.8), as doing so requires matrix

multiplication with Γ(St|y(t−1)) (Frühwirth-Schnatter, 2006). Therefore, we estimate the

unknown elements of S along with v by sampling both from their joint posterior distribution

which, from Bayes’ theorem, is proportional to,

p(S,v|y) ∝ L(y,S|v)p(v), (3.9)

where p(v) is the prior distribution of v. We specify independent uninformative normal and

gamma priors for all low-level parameters. As the joint posterior is not available in closed

form, we resort to Markov chain Monte Carlo methods, in particular, we used a hybrid Gibbs

sampling algorithm with some steps of the Metropolis-Hastings algorithm to sample from it.

We sampled most elements of v individually, using an adaptive random walk Metropolis step
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(Shaby and Wells, 2010). The parameter vectors (η0, η
(c)
0 ,η(c))T and (ζ0, ζ

(c)
0 , ζ(c))T showed

high posterior correlations and, therefore, we jointly sampled them using automated factor

slice sampling (Tibbits et al., 2014). This doubled the efficiency (minimum effective sample

size per hour) of the Gibbs sampler in our application.

It is straightforward to sample each unknown element of S one at a time. When yit = 0, the

full conditional of Sit is given by,

P
(︁
Sit = 1|y,v, {Sjt}j ̸=i,t∈{0,...,T}

)︁
=

P (yit = 0|Sit = 1)P (Sit = 1|St−1)
∏︁N

j=1 p(Sj(t+1)|Sit = 1,S(−i)(t))∑︁1
sit=0 P (yit = 0|Sit = sit)P (Sit = sit|St−1)

∏︁N
j=1 p(Sj(t+1)|Sit = sit,S(−i)(t))

,
(3.10)

where P (yit = 0|Sit = sit) =
(︂

rit
rit+λit

)︂ritsit
and the dependence of the densities on y(t−1), β

and θ are suppressed to reduce the size of the equation. However, one at a time sampling

is known to lead to poor mixing in the Markov switching literature due to the strong pos-

terior correlations between the unknown state indicators (Scott, 2002). Better mixing can

be achieved by sampling all of S jointly from p(S|y,v) (Chib, 1996). However, this is not

computationally feasible with our model when N is large, as it again involves matrix mul-

tiplication with Γ(St|y(t−1)) (Frühwirth-Schnatter, 2006). As an alternative, we propose to

block sample S with each block containing all the state indicators in a different collection of

locations. More specifically, assume we have put the locations into k = 1, ..., B disjoint blocks

and let bk = (bk1, ..., bknk
)T denote the vector of locations in block k ordered numerically. We

assume
∑︁B

k=1 nk = N so that every location is contained in some block. We will adopt the

following notation, let S(bk)t = (S(bk1)t, ..., S(bknk
)t)

T be the vector of all state indicators at

time t whose location is in block k, let S(bk)(t1:t2) = (S(bk)t1 , ...,S(bk)t2)
T , let S(bk) = S(bk)(0:T )

be the vector of all state indicators whose location is in block k, let S(−bk)t be St with S(bk)t

removed, let S(−bk)(t1:t2) be (St1 , ...,St2)
T with S(bk)(t1:t2) removed and let S(−bk) = S(−bk)(0:T )

so that S(−bk) is the vector of all state indicators whose location is outside of block k. The
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idea is to jointly sample S(bk) from its full conditional distribution, given by,

p(S(bk)|S(−bk),y,v) = p(S(bk)T |S(−bk)(0:T ),y,v)

×
T−1∏︂
t=0

p(S(bk)t|S(bk)t+1,S(−bk)(0:t+1),y
(t),v).

(3.11)

A blocked forward filtering backward sampling (bFFBS) algorithm is needed to sample from

(3.11), which we provide in the Supplementary Material (SM) Section A.1. The bFFBS

algorithm only requires matrix multiplication with a 2nkX2nk matrix. Our algorithm can be

seen as an extension of the individual forward filtering backward sampling (iFFBS) algorithm

recently proposed by Touloupou et al. (2020), who considered nk = 1 for all k.

Our hybrid Gibbs sampler was implemented using the R package Nimble (de Valpine et al.,

2017). Nimble comes with built in Metropolis-Hastings, automated factor slice and binary

(equivalent to one at a time sampling for the unknown presence/absence indicators) samplers.

The bFFBS samplers were implemented using Nimble’s custom sampler feature. All Nimble

R code, including for the custom bFFBS samplers, are provided on github (https://github

.com/Dirk-Douwes-Schultz/ZS_CMSP_code). Nimble was chosen as it is extremely fast

(C++ compiled) and only requires the coding of new samplers. In the SM Section A.2, we

provide a simulation study which shows that our proposed Gibbs sampler can recover the

true parameters of the ZS-CMSNB model.

3.3.1 Temporal prediction

For arbitrary K step ahead temporal predictions, we use a simulation procedure (Frühwirth-

Schnatter, 2006) to draw samples from the posterior predictive distributions. Algorithm

1 in the SM will obtain realizations from the posterior predictive distribution of the cases,

y
[m]
i(T+k) ∼ p(yi(T+k)|y), and the presence of the disease, S[m]

i(T+k) ∼ p(Si(T+k)|y), for i = 1, ..., N ,

k = 1, ..., K and m =M +1, ..., Q, where the superscript [m] denotes a draw from the poste-

rior distribution of the variable, M is the size of the burn-in sample and Q is the total MCMC
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sample size. However, as S[m]
i(T+k) can only take two values, 0 or 1, it is difficult to interpret the

uncertainty around this prediction for the presence of the disease. Therefore, instead of using

summaries of S[m]
i(T+k) we use summaries of P (Si(T+k) = 1|S[m]

i(T+k−1),S
[m]
(−i)(T+k−1),y

[m]
T+k−1,θ

[m]).

See the SM Section A.3 for the Monte Carlo approximations of the posterior predictive dis-

tributions.

3.3.2 Fitted values

Comparing the predictions, for a fixed K, to the observed values is not practical, as it

requires fitting the model to multiple time points. This would result in long computational

times, with MCMC methods, and unstable estimates for earlier times. Assume in this section

t ∈ {1, ..., T} and i ∈ {1, ..., N}. There are three types of fitted values for a Markov switching

model: one step ahead, filtered and smoothed (Hamilton, 1993). In our Bayesian setting,

the smoothed fitted values are given by,

S
∗[m]
it = S

[m]
it drawn from p(Sit|y), (3.12)

y
∗[m]
it drawn from p(yit|S[m]

it ,y(t−1),β[m]), (3.13)

for m = M + 1, ..., Q. Note, y∗[m]
it ∼ p(y∗it|y), where y∗it|Sit,y

(t−1),β ∼ NB(Sitλit, rit). That

is, y∗it represents a new case count generated by the same parameters, state and past counts

that generated yit. The smoothed fitted value of the state is drawn automatically by the

Gibbs sampler used to fit the model, which is an advantage in using data augmentation to fit

a Markov switching model. Note that P (Sit = 1|y) ≈ 1
Q−M

∑︁Q
m=M+1 S

[m]
it . When yit = 0, the

P (Sit = 1|y) represents the posterior probability the disease is present and thus undetected.

Therefore, a map of the posterior mean of Sit for i where yit = 0 can be used by policy

makers as a warning system to identify areas reporting 0 cases that have a high chance of

the disease being undetected.

Clearly, smoothed fitted values represent fits given all information in the data about the
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states, including from present and future counts. If the model is not good at predicting

the state one step ahead, which is largely based on the estimated transition probabilities

of the Markov chain, then the smoothed fitted values may not reveal that as much of the

information about Sit can come from yit. The one step ahead distribution of the states is

given by, p(St|y(t−1),v), and of the cases is given by, p(yt|y(t−1),v) =
∑︁

st∈{0,1}N p(yt|St =

st,y
(t−1),β)P (St = st|y(t−1),v) (Frühwirth-Schnatter, 2006). As v is unknown, we can draw

from the posterior of the one step ahead distributions. That is, the one step ahead fitted value

of the state is given by, S1∗[m]
it drawn from p(St|y(t−1),v[m]), and of the counts is given by,

y
1∗[m]
it drawn from p(yit|S1∗[m]

it ,y(t−1),β[m]), form =M+1, ..., Q, where we use the superscript

1∗[m] to denote a draw from the posterior of the one step ahead distributions. The advantage

of the one step ahead fitted values is that information from (yt, ...,yT )
T is only used to learn

about v and not the states. Therefore, they should more accurately reflect the predictions

compared to the smoothed values and should be able to diagnose a lack of fit in the Markov

chain component of the model. The distribution p(St|y(t−1),v[m]) can be calculated using

a Hamiltonian forward filter algorithm (Frühwirth-Schnatter, 2006). However, the filter

requires matrix multiplication with Γ(St|y(t−1)) and so is not computationally feasible to

run when N is large.

As an alternative for large N , we propose coupled one step ahead fitted values. Assume we

wish to calculate the one step ahead fitted values for location i when N is large. We will put

location i in a block with locations bNE(i) = (i, i1, ..., idi)
T where i1, ..., idi ∈ NE(i). Then,

borrowing notation from (3.11), the coupled one step ahead fitted values are given by,

S
c1∗[m]
it drawn from p(Sit|S[m]

(−bNE(i))(0:t)
,y(t−1),v[m]), (3.14)

y
c1∗[m]
it drawn from p(yit|Sc1∗[m]

it ,y(t−1),β[m]), (3.15)

form =M+1, ..., Q, where we use the superscript c1∗[m] to denote a draw from the posterior

of the coupled one step ahead distributions. The distribution P (Sit = 1|S[m]
(−bNE(i))(0:t)

,y(t−1),v[m])
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can be calculated using the forward filtering part of the bFFBS algorithm given in the sup-

plementary material. We do not use quantiles of Sc1∗[m]
it as it can only take the two values

0 or 1. Instead we use quantiles of P (Sit = 1|S[m]
(−bNE(i))(0:t)

,y(t−1),v[m]), which represents

a draw from the posterior distribution of the coupled one step ahead fitted probability of

disease presence. We only use information from (yt, ...,yT )
T to learn about S(−bNE(i))(0:t).

Therefore, if we block neighboring locations together there should be minimal information

from (yt, ...,yT )
T used in the state estimation.

3.4 Analysis of the Dengue Fever Data in Rio de Janeiro

3.4.1 Model specification and fitting

The ZS-CMSNB model has two components, a nonhomogeneous Markov chain which switches

dengue between periods of presence and absence through modeling the reemergence and per-

sistence of the disease, and a negative binomial component that generates the reported cases

when dengue is present. For the negative binomial component, we use an endemic/epidemic

specification for λit (Bauer and Wakefield, 2018), as it can account for temporal autocorre-

lation due to the onward transmission of the disease,

λit = λAR
it yi(t−1) + λEN

it . (3.16)

The auto-regressive rate λAR
it is meant to represent the transmission intensity of dengue in

district i during month t. We model λAR
it as, log

(︁
λAR
it

)︁
= βAR

0i +β1Raint−1+β2Tempt−1, where

Tempt−1 is the maximum temperature in Rio during the previous month, Raint−1 is the mil-

limeters of rainfall and βAR
0i ∼ N(βAR

0 , σAR) are random intercepts accounting for between

district differences in transmission intensity, where σAR is the standard deviation of the ran-

dom effects. Rainfall and temperature are entered in a lagged manner since there is usually a

delay separating changes in the mosquito population and dengue incidence (Coutinho et al.,
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2006). The endemic risk λEN
it accounts for incidence not due to within area transmission.

We compared both space-time and space varying endemic risk using the widely applicable

information criterion (WAIC) (Gelman et al., 2014) (results not shown) and settled on a

purely spatial varying risk, log
(︁
λEN
it

)︁
= βEN

0i , where βEN
0i ∼ N(βEN

0 , σEN). Examining the

reported dengue counts it appears the overdispersion varies by district, therefore, we spec-

ified rit = ri. We used the weakly informative log-normal prior from Bauer and Wakefield

(2018) for ri which assumes the overdispersion is likely between 1.5 and 5 times the mean

count in the district.

We considered zit = (popi,HDIi,Raint−1,Tempt−1, log(yi(t−1)+1))T , where popi is the popu-

lation of district i and HDIi is the human development index of district i, as covariates possi-

bly affecting the reemergence and persistence (see equations (3.4) and (3.5)) of dengue. The

monthly rainfall and temperature data were obtained from the National Institute for Space

Research (http://bancodedados.cptec.inpe.br/) and the district level human develop-

ment indexes were obtained from ipeadata (http://www.ipeadata.gov.br/Default.aspx).

Since we condition on the first observation, we specified p(Si1) ∼ Bern(.5) if yi1 = 0 and

p(Si1) is degenerate 1 if yi1 > 0, as the initial state distributions.

As for covariates potentially associated with the effects of dengue spreading from a neighbor-

ing district, i.e. z(c)01,ijt and z(c)11,ijt in (3.6), we considered; log(yj(t−1)/popj +1), the prevalence

of the disease in the neighboring district; log(popi × popj), a gravity term reflecting the

fact that individuals are more likely to move between high population areas; |NE(j)|, the

number of neighbors of area j which can account for the effects of disease spread potentially

being proportioned among neighbors; and, finally, log(yi(t−1) + 1) for the persistence only,

to potentially account for crowding out effects. Due to the high computational cost per

covariate added to the coupling parameters we started with a simple homogeneous model

of disease spread and added coupling covariates sequentially, removing them if they did not

improve the WAIC substantially (by 10 units); this process is illustrated in Table 3.1. Based
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Table 3.1: Model comparison using WAIC for models fitted to the dengue data. Note, ∅
refers to no covariates, or a homogeneous model of disease spread, that its, ϕ(t−1)→t

01,j→i = ζ
(c)
0

or ϕ(t−1)→t
11,j→i = η

(c)
0 . The bolded model is our final ZS-CMSNB model as we do not accept

models that are more complex and do not improve the WAIC substantially (by 10 units).
NP = Neighboring prevalence = log(yj(t−1)/popj +1), G = Gravity term = log(popi × popj),
LC = Local cases = log(yi(t−1) + 1), NN = Number of neighbors = |NE(j)|.

Model z
(c)
01,ijt z

(c)
11,ijt WAIC

endemic/epidemic – – 69,939

ZINB – – 67,798

ZINBRE – – 67,782

ZS-CMSNB ∅ ∅ 67,729

(NP)T ∅ 67,652

(NP,G)T ∅ 67,632

(NP,G)T (NP)T 67,631

(NP,G)T (NP,LC)T 67,628

(NP,G,NN)T ∅ 67,648

ZS-CMSP ∅ ∅ 90,458

on Table 3.1 we decided on z(c)01,ijt =
(︁
log(yj(t−1)/popj + 1), log(popi × popj)

)︁T and a homo-

geneous effect of neighboring disease spread for the persistence of the disease. That is, we

let ϕ(t−1)→t
01,j→i = ζ

(c)
0 + ζ

(c)
1 log

(︁
yj(t−1)/popj + 1

)︁
+ ζ

(c)
2 log (popi × popj) and ϕ

(t−1)→t
11,j→i = η

(c)
0 for

the final model.

Each ZS-CMSNB model in Table 3.1, and the ZS-CMSP model as it is a special case, was

fitted using our proposed Gibbs sampler from Section 3.3, to the monthly Rio dengue cases

for 2011-2017 (t = 1, ..., 84) and all districts in the city (i = 1, ..., 160). We ran the Gibbs

sampler for 80,000 iterations on 3 chains with an initial burn in of 30,000 iterations. All

sampling was started from random values in the parameter space to avoid convergence to

local modes. Convergence was checked using the Gelman-Rubin statistic (all estimated

parameters <1.05) and the minimum effective sample size (>1000) (Plummer et al., 2006).

For the final bolded model in Table 3.1, we compared the efficiency (minimum effective
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sample size per hour) of 3 candidate samplers for the state indicators: a one at time sampler

(binary) and two bFFBS samplers with block sizes 1 (iFFBS) and 2 (bFFBS2). For the

bFFBS2 sampler, we blocked 71 neighboring locations together leaving 15 locations that

could not be matched to a neighbor that were put in single location blocks (remaining 3

locations had all positive observations and did not need to be sampled). The iFFBS sampler

was 10% more efficient than the binary sampler and the bFFBS2 sampler was 5% more

efficient. Therefore, there does not appear to be much if any gain to joint sampling the

hidden states in our application.

We compared the fit of our model to a nested model without the Markov chain, i.e. a model

for which ζ0 = η0, ζ = η, ζ(c)0 = η
(c)
0 = 0 and ζ(c) = η(c) = 0 in equations (3.4)-(3.6).

Note that this is a standard zero-inflated negative binomial (ZINB) model (Greene, 1994).

However, the ZINB model does not account for spatio-temporal correlations in the presence

of the disease. Therefore, we also compared to a model like the one used by Hoef and

Jansen (2007). Let pit = P (Sit = 1|θRE), where θRE is a vector of random effects, then

Hoef and Jansen (2007) fit a model where logit(pit) = α0 + q
T
itα + ηt + δit, where qit is a

vector of space-time covariates, ηt is an overall time trend which followed an autoregressive

(AR) process and {δit}Ni=1 followed a proper conditional autoregressive (pCAR) distribution

for each time period that was independent across time. As most excess variation in spatio-

temporal infectious disease counts occurs temporally and not spatially (Bauer et al., 2016),

we flip their proposal so that logit(pit) = α0 + q
T
itα+ ηi + δi(t), where ηi is an overall spatial

effect and δi(t) represents a time trend for each area. We assume a pCAR distribution for

{ηi}Ni=1. Torabi (2017) suggests using an AR process or splines to model δi(t). However,

we prefer using autoregression for the spatial-temporal interaction, combining the proposals

of Fernandes et al. (2009) and Yang et al. (2013), as it is computationally much simpler

and also epidemiologically motivated. That is, we let δi(t) = ρ1 log(yi(t−1) + 1) + ρ2Si(t−1).

The motivation being that for the disease to go extinct all previous cases must fail to pass

on the disease but since yi(t−1) represents reported cases there might still be an effect at
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yi(t−1) = 0 due to the disease being undetected. We take qit = {zit} \ {log(yi(t−1) + 1)} as

log(yi(t−1) + 1) is already included in the model. We call this model a zero-inflated negative

binomial random effect (ZINBRE) model.

Finally, we also compared the fit of our model to a model without zero inflation (endemic/epi-

demic) and to a Poisson version of our model (ZS-CMSP). Table 3.1 gives the results of the

model comparison using WAIC for the five classes of models. The endemic/epidemic, ZINB

and ZINBRE models in Table 3.1 were fit using standard MCMC methods in Nimble, the

code is available on github (https://github.com/Dirk-Douwes-Schultz/ZS_CMSP_code).

From Table 3.1, incorporation of zero inflation and overdispersion significantly improves

model fit, and the ZS-CMSNB model is the superior model for the zero inflation.

3.4.2 Results

From Table 3.1, the most relevant factors for determining the strength of dengue spread

from a neighboring area are, the reported prevalence of dengue in the neighboring area,

and the population of the neighboring area and the home area. To quantify the association

between the effects of neighboring dengue spread and these two factors we can use the

odds ratio (OR) of dengue reemergence given disease spread from a neighboring area, or

mathematically,

Ω(Sit = 1|Si(t−1) = 0, Sj(t−1) = 1)

Ω(Sit = 1|Si(t−1) = 0, Sj(t−1) = 0)
=

exp
(︂
ζ
(c)
0 + ζ

(c)
1 log(yj(t−1)/popj + 1) + ζ

(c)
2 log(popi × popj)

)︂
,

(3.17)

for j ∈ NE(i), where Ω(A) = P (A)/(1−P (A)). From Table 3.2, which shows estimates from

the Markov chain component of the model, the posterior mean and 95% posterior credible

interval of ζ(c)1 is 5.63 [3.33-8.67] and of ζ(c)2 is .22 [.09-.36]. Therefore, the effect of dengue

spreading from a neighboring area is positively associated with the reported prevalence of

dengue in the neighboring area and the population of both areas, especially with the preva-
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Figure 3.3: Posterior means (solid lines) and 95% posterior credible intervals (dashed
lines) of (top) exp

(︂
ζ
(c)
0 + ζ

(c)
1 log(.08 + 1) + ζ

(c)
2 log(10× popj)

)︂
versus popj and (bottom)

exp
(︂
ζ
(c)
0 + ζ

(c)
1 log(casesj/26 + 1) + ζ

(c)
2 log(10× 26)

)︂
versus casesj (see (3.17)), where, 10

is the population of a small area, 26 is the median population and .08 (per 1000) is the
median prevalence of dengue.

lence. To help visualize these associations we have plotted, in Figure 3.3, (3.17) versus the

population of the neighboring area (top) and the reported cases of dengue in the neighboring

area (bottom). In the plots, we fixed the population of the home area at 10,000, to represent

a small area, and for the top graph we fixed prevalence in the neighboring area at its median

value (.08 per 1000), and for the bottom graph we fixed the population in the neighboring

area at its median value (26,000) (exact formulas are given in the caption). From Figure

3.3 (top), the effect of dengue spreading from a neighboring area increases gradually with
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the population of the neighboring area and there is likely not a large effect of disease spread

from low population areas, at least at median prevalence. These estimates are reasonable

as there will be much more travel to high population neighbors compared to low population

neighbors. From Figure 3.3 (bottom), the effect of dengue spreading from a neighboring area

increases rapidly with the reported prevalence of the disease in the neighboring area. At a

prevalence of 10/26 = .38, where we have cut off the graph to improve visualization, the

odds ratio is 5.95 [2.97-12.62], meaning the odds of dengue reemergence is increased 6 (likely

lowest 3) times due to the disease spread, a large effect. A prevalence of .38 is about at

epidemic levels, 75th percentile, and, therefore, the figure implies that if an epidemic occurs

in an area there is a good chance that dengue will spread to neighboring areas where it is

absent.

We also wanted to investigate whether dengue spreads between areas undetected. Note that

the OR of dengue reemergence given disease spread from a neighboring area where dengue

is undetected is given by exp
(︂
ζ
(c)
0 + ζ

(c)
2 log(popi × popj)

)︂
. Through repeated calculations

we found that, a posteriori, this quantity has a 75% chance of being greater than one if

popj > 685.4/popi. Setting popi = 10 (1000) gives popj > 68.53, which represents the top

15 percent of districts in terms of population size. Therefore, the disease likely spreads

undetected only from the larger districts.

The estimated coefficients for the Markov chain part of the fitted ZS-CMSNB model are given

in Table 3.2. From the estimated intercepts, in small areas consecutive periods of disease

presence are heavily favored on average, while consecutive periods of disease absence are only

moderately favored. This highlights the importance of preventing dengue reemergence in

small areas (one effective way would be to prevent disease spread from neighboring epidemic

areas as shown in Figure 3.3), as when the disease does reemerge it will likely persist for

some time. We shift the intercepts to small districts (pop=10,000) as that is where most of

the 0s occur (there are not many 0s in large districts). Population size has a significantly
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Table 3.2: Posterior means and 95% posterior credible intervals (in squared brackets) for the
estimated parameters from the Markov chain part of the fitted ZS-CMSNB model. Intercepts
shifted so they represent the probabilities of dengue reemergence and persistence with 0
neighbors infected, pop=10,000 and all other covariates fixed at mean or median (if very
skewed) values. Other rows represent odds ratios, i.e. exp (ζk) and exp (ηk) for k = pop=1,...,
= log(yi(t−1) + 1) = K. The reemergence column of the Neighborhood Presence row shows
exp(ϕ

(t−1)→t
01,j→i ) calculated at median values of neighboring pop/prevalence and pop=10,000 for

the home area, the persistence column shows exp(η(c)0 ). The rows beneath the Neighborhood
Presence row show, respectively, unmodified estimates of ζ(c)0 /η

(c)
0 , ζ(c)1 and ζ(c)2 .

Probability or Odds Ratio

Reemergence Persistence
Covariate (absence to presence) (presence to presence)

Intercept (shifted) .33 [.22-.46] .84 [.78-.90]

pop (1000s) 1.06 [1.02-1.11] 1.02 [1.01-1.03]

HDI (.1) 1.07 [.71-1.52] .82 [.62-1.09]

Tempt−1 (Celc.) 1.24 [1.11-1.39] 1.21 [1.13-1.31]

Raint−1 (10 mm) 1.04 [1-1.09] 1.13 [1.09-1.17]

log(yi(t−1) + 1) – 5.07 [4.17-6.19]

Neighborhood Presence 1.35 [1.14-1.64] 1.12 [1.01-1.23]
(average effect in small area)

Intercept -1.38 [-2.28- -.51] .12 [.01-.23]

log
(︁
yj(t−1)/popj + 1

)︁
5.63 [3.33-8.67] –

log (popi × popj) .22 [.09-.36] –

larger effect on dengue reemergence compared to persistence (diff=.04 [0-.08]), especially

considering population increases the effects of dengue spreading from neighboring areas on

the reemergence of the disease, see Figure 3.3. This can explain why, in Figure 3.2, there is

more spatial variation observed in the average probabilities of dengue reemergence compared

to persistence. Additionally, the strong positive association between population size and

dengue reemergence means we would expect much longer periods of disease absence in the

smaller districts compared to larger districts, which follows the well-known theories from

Bartlett (1957). Interestingly, we found no association between human development index
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Figure 3.4: Posterior means (solid lines) and 95% posterior credible intervals (dashed lines)
of the estimated monthly probabilities of dengue reemergence and persistence in a small
district (pop=10,000). We assumed average monthly temperature and rainfall values, and 2
cases (median) reported in the previous month for the persistence probabilities.

and the risk of dengue reemergence or persistence. Both rainfall and temperature have

a strong positive association with dengue reemergence and persistence. For example, we

estimated that a one degree rise in maximum temperature during the previous month is

associated with a 24 [11-39] percent increase in the odds of dengue reemerging and a 21 [13-

31] percent increase in the odds of dengue persisting. Therefore, we will have longer periods

of disease absence during the winter (at least in the smaller districts) and longer periods

of disease presence during the summer, which follows patterns in the mosquito population.
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Rainfall has a significantly larger effect on the persistence of the disease (diff=.08 [.02-.15]),

which clearly manifests in Figure 3.4, and could be due to the role played by rainfall in the

lifecycle of the mosquito egg (Coutinho et al., 2006). When the disease is present water

is needed for egg laying and so rainfall helps the mosquito population persist, however, if

the disease is absent there are not many mosquitoes and rainfall could wash away vertically

infected mosquito eggs. The effect of the previous months cases, log(yi(t−1) + 1), on the

persistence of the disease is quite large and reflects the fact that dengue will only go extinct

when there is a small number of infected individuals.

From the Neighborhood Presence row of Table 3.2, we estimated that dengue being present

in a neighboring district during the previous month is associated with a 35 [14-64] percent

increase in the odds of dengue reemerging in a small area on average and a 12 [1-23] per-

cent increase in the odds of dengue persisting. The average effect of neighboring dengue

spread on the reemergence of the disease is much higher than the homogeneous effect on

the persistence. Therefore, efforts to restrict cross infection between districts will typically

be more effective if one district is not already infected. A possible explanation is a "spark

effect", like forest fires, in that only a small amount of disease spread could be needed to

start the disease being present in an area but will not contribute much to, say, a large epi-

demic. Note, however, that the Neighborhood Presence row of Table 3.2 only shows the

average effect of neighboring dengue spread on the reemergence of the disease in a small

area, i.e. exp
(︂
ζ
(c)
0 + ζ

(c)
1 log(.08 + 1) + ζ

(c)
2 log(10× 26)

)︂
, and the actually effect varies quite

a lot with space and time as shown in Figure 3.3, making broad comparisons somewhat

challenging.

Figure 3.4 shows posterior summaries of the estimated monthly probabilities of dengue

reemergence and persistence for a small district (pop=10,000) without neighboring disease

spread. The temporal evolution of the two probabilities are clearly different which mainly

reflects the increased effect of rainfall on the persistence of the disease. Additionally, the
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Table 3.3: Posterior means and 95% posterior credible intervals (in squared brackets) from
the negative binomial part of the fitted ZS-CMSNB model. r = 1/N

∑︁N
i=1 ri and σr =√︂

1/(N − 1)
∑︁N

i=1(ri − r)2

Covariate Parameter Estimate

Intercept AR βAR
0 -.37 [-.4- -.33]

Raint−1 (10 mm) AR β1 .036 [.03-.04]

Tempt−1 (C) AR β2 .23 [.22-.24]

Std. dev AR σAR .12 [.09-.14]

Intercept EN βAR
0 .37 [.29-.45]

Std. dev EN σEN .42 [.35-.5]

Avg. overdispersion r 2.27 [2.16-2.39]

Std. dev overdispersion σr 1.08 [.92-1.37]

figure illustrates how the model can recreate the seasonal switching of dengue between long

periods of disease absence in the winter and long periods of disease presence in the summer

(Adams and Boots, 2010).

Table 3.3 gives the estimated parameters from the negative binomial part of the model.

When dengue is present in a district, increases in temperature and rainfall lead to increased

transmission of the disease. There is significant between district differences in the transmis-

sion rate and endemic risk. The differences in the endemic risk could be driven by either

differences in the environment or reporting rates. There is significant overdispersion on av-

erage (variance is 11 times the mean on average) and there is significant between district

differences in the overdispersion.

3.4.3 Fitted values and predictions

Figure 3.5 shows a map of the posterior probability that dengue is present in the dis-

tricts of Rio de Janeiro during December 2017 (time T ). If yiT > 0 then the posterior

probability that dengue is present in district i during time T is 1 (grey districts on the
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Figure 3.5: Posterior probability that dengue is present for December 2017 (time T ). Dis-
tricts that have reported cases are in grey to distinguish them from districts where dengue
may be undetected. A blue arrow is drawn from j ∈ NE(i) to i if Ω(Si(T+1)=1|SjT=1)

Ω(Si(T+1)=1|SjT=0)
is greater

than 1.2 with probability .75, a posteriori, where Ω(A) = P (A)/(1− P (A)).

map). Otherwise, if yiT = 0 the disease may be undetected and we can approximate

P (SiT = 1|y) ≈ 1
Q−M

∑︁Q
m=M+1 S

[m]
iT . A blue arrow is drawn from j ∈ NE(i) to i if

Ω(Si(T+1)=1|SjT=1)

Ω(Si(T+1)=1|SjT=0)
= SiT exp

(︂
ϕ
T→(T+1)
11,j→i

)︂
+ (1 − SiT ) exp

(︂
ϕ
T→(T+1)
01,j→i

)︂
is greater than 1.2 with

probability .75, a posteriori, where Ω(A) = P (A)/(1−P (A)). That is, if the current effect of

disease spread from the neighboring area is likely greater than the effect of a one degree rise

in temperature (see Table 3.2). The map shows where dengue currently is in the city and

where it is spreading to and, therefore, would be of interest to policy makers. For example,

the Santa Teresa district has 3 arrows coming out of it indicating it is an important source

of dengue spread in the city currently.

Panels of Figure 3.6 show posterior summaries of the coupled one month ahead fitted val-

ues, see equations (3.14)-(3.15), of dengue cases (top graphs) and dengue presence (bottom
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Figure 3.6: Posterior summaries of the coupled one month ahead fitted values for 4 districts.
(top graphs) Coupled one month ahead fitted values of cases versus observed cases. (bottom
graphs) Coupled one month ahead fitted values of dengue presence risk versus observed
presence (0=0 reported cases which may not correspond to the actual absence of the disease).
Posterior means (solid lines), 95% posterior credible intervals (dashed lines) and observed
(points). Summer/winter seasons highlighted in red/light blue in the bottom graphs.

graphs), for 4 districts. These were constructed by running the blocked forward filter in

blocks with 2 neighboring locations, with each MCMC draw, as explained in Section 3.3.2.

For Figure 3.6, we chose mostly small districts that had a good mix of zeros and positive

counts to illustrate both the zero-inflated and count components of the model. Generally,

the model is able to predict, in sample, the presence of the disease one month ahead well

when the disease is observed to be present. It is difficult to assess the presence fits when

the disease is reportedly absent, as dengue could be undetected and actually present. The

fit to the cases is also reasonable, however, there does appear to be some overestimation of
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Figure 3.7: Summaries of the 1-12 month ahead posterior predictive distributions of the cases
(top graphs) and dengue presence risk (bottom graphs) for 2 districts. Posterior predictive
means (solid lines) and 95% posterior predictive credible intervals (dashed lines). Solid
circles are from the last 7 years (2011-2017) used to fit the model and open circles are future
observed values.

uncertainty at high counts. This is due to the quadratic mean variance relationship of the

negative binomial distribution. There is an advantage to this mean variance relationship,

however, for estimating the Markov chain part of the model as most of the weight is placed

at low counts which is where the reemergence and persistence of the disease occurs. As an

additional goodness of fit measure we plot the autocorrelation function of the Pearson resid-

uals in the SM Section A.4 for the 4 districts of Figure 3.6. There are not many significant

autocorrelations, suggesting that there is no structure left in the residuals.
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Panels of Figure 3.7 show summaries of the 1-12 month ahead posterior predictive dis-

tributions of dengue cases (top graphs) and dengue presence risk (bottom graphs) in two

districts. These were calculated using Algorithm 1 in the SM with K = 12. There was very

little dengue activity in 2018 and we chose to show Bonsucesso as it was one of the few dis-

tricts that experienced a small epidemic while Saúde represents a more typical district. We

assumed average monthly temperature and rainfall values in the calculations, although other

forecasting scenarios could be considered, such as high temperature scenarios, or forecasts

of the meteorological variables could be used. Both predictions of dengue presence and the

case counts show a clear seasonal pattern, peaking in the summer and declining during the

winter. The uncertainty in the predictions of dengue presence is large in the Saúde district.

A reasonable explanation for this large uncertainty is that Saúde reported 0 cases for the last

time point, meaning there is uncertainty around whether dengue is present in Saúde at time

T = 84. As Saúde is a small district (pop=2,000) there is a large difference in the probabili-

ties of disease reemergence and persistence (due to the larger effect of population size on the

reemergence of the disease), and so uncertainty around the presence of the disease previously

leads to wide confidence intervals for the future predictions of disease presence.

3.5 Concluding Remarks

We have proposed a zero-state coupled Markov switching negative binomial (ZS-CMSNB)

model for general spatio-temporal infectious disease counts that contain an excess of zeros.

Our approach can model nonhomogeneous switching between long periods of disease presence

and absence while accounting for space-time heterogeneity in the effects of disease spread

between areas. The main difference with existing ZIC models used in spatio-temporal disease

mapping is that the disease switches between periods of presence and absence in each area

through a series of nonhomogeneous Markov chains coupled between neighboring locations,

as opposed to the presence of the disease forming a series of conditionally independent
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Bernoulli random variables, which is presently the most popular approach (Young et al.,

2020). The difference is essentially between a finite mixture and finite Markov mixture

model (Frühwirth-Schnatter, 2006), although we also introduce some spatial dependence in

the states by coupling the partially hidden Markov chains between neighboring areas.

There are several alternatives to our coupled Markov chains, within the framework of finite

mixture ZIC models (Young et al., 2020), for accounting for spatio-temporal correlations

in the presence of the disease, mainly: random effects (Hoef and Jansen, 2007), splines

(Ghosal et al., 2020) and autoregression (Fernandes et al., 2009; Yang et al., 2013). The

main advantages of our approach are (1) we allow for each covariate, and between area

disease spread, to have a separate effect on the reemergence of the disease compared to the

persistence, which is epidemiologically justified in many instances and (2) it is much easier

to quantify space-time heterogeneity in the effects of disease spread between areas with our

approach as we allow the effects of neighboring disease spread to depend on a vector of

space-time covariates related to either area. In our application of dengue fever our model

allowed for several interesting insights into the epidemiology of the disease beyond what

existing ZIC methods can provide, some examples being: dengue is more likely to spread

from high population areas controlling for prevalence, if an epidemic of dengue occurs in an

area the disease is very likely to spread to neighboring areas, there is typically a larger effect

of neighboring dengue spread on the reemergence of the disease compared to the persistence,

and rainfall has a larger effect on the persistence of dengue which leads to clear differences in

the temporal evolutions of the two probabilities (see Section 3.4 for these and more examples).

Additionally, our model fit the dengue data better than a reasonably specified alternative

existing ZIC model that combined random effects and autoregression, although there are

many possible specifications for such a model.

Although we have applied the ZS-CMSNB model to spatio-temporal infectious disease counts,

it could be applied to data in other fields as well. For example, Malyshkina and Mannering
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(2010) considered a zero-state Markov switching count model, without coupling, for mod-

eling traffic accidents across 335 highway segments in Indiana between 1995-1999. In their

application, the zero state represented a low risk of accidents and the count state represented

a high risk of accidents. It could be that a highway segment in the high risk state signals that

nearby highway segments are also unsafe, and by coupling the chains between neighboring

highways we could borrow strength between them to help determine the states.

There are also some limitations with our approach. We use a negative binomial distribution

to account for overdispersion, but other count distributions could be used, such as the

generalized Poisson distribution (Joe and Zhu, 2005). The negative binomial distribution

places a lot of weight on low counts which is helpful when modeling the reemergence and

persistence of a disease, as these events mainly occur at low counts, but has the disadvantage

of leading to an overestimation of uncertainty during epidemic periods. Additionally, our

approach relies heavily on having good covariates that reflect knowledge of the disease.

We could incorporate random effects or splines into logit(p01it) or logit(p11it) to account

for additional heterogeneity when known covariates are not sufficient. Finally, we are only

explicitly considering disease spread between neighboring areas and, especially in a city,

people often move around far outside their neighboring areas. We could allow for disease

spread from all areas and incorporate distance into the coupling parameters, although this

would likely come at a great computational cost that would need to be overcome to make it

a viable approach.
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Chapter 4

A three-state coupled Markov switching

model for COVID-19 outbreaks across

Quebec based on hospital admissions

Preamble to Manuscript 2. In this second manuscript, we consider coupled Markov

switching models where the disease switches between absence, endemic and outbreak periods

in each area. The outbreak and endemic periods are described by autoregressive count models

distinguished by a higher level of disease transmission during outbreaks. Like in the first

manuscript in Chapter 3, the absence state is described by a degenerate zero distribution.

Therefore, the models explored in this paper can be seen as three-state extensions of those

considered in the first manuscript.

Non-coupled Markov switching models that switch between endemic and outbreak states have

been considered since the early 1980s (Souza, 1982; Amorós et al., 2020). By non-coupled we

mean the transition probabilities, such as the probability of an outbreak emerging, do not de-

pend on whether outbreaks are occurring in neighboring areas. Due to human movement, the

occurrence of outbreaks in neighboring areas should make outbreak emergence more likely
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(Grenfell et al., 2001). Also, Markov switching models that only switch between endemic and

outbreak states can struggle with capturing many zeroes in the counts (Zou et al., 2014).

For our motivating example to Quebec hospitalizations in Section 4.5, we found that the

inclusion of neighboring outbreak indicators in the transition probabilities and the addition

of an absence state greatly improves the fit, see Table 4.1, and state estimation, see Figures

4.5 and 4.6, of an outbreak/endemic Markov switching model. Additionally, in a simulation

study with spatially synchronized outbreaks (see Section 4.4), we found that the inclusion

of neighboring outbreak indicators in the transition probabilities substantially improves sen-

sitivity, specificity and timeliness during real-time outbreak detection and forecasting, see

Table B.4 and Figure 4.3.

Heaton et al. (2012) (the only coupled endemic/outbreak Markov switching model to the best

of our knowledge) allowed the probability of an outbreak emerging to depend on whether

outbreaks were occurring in neighboring areas. However, to prevent rapid switching between

the states, they assumed an absorbing outbreak state. This means their model can only

be applied to data with at most one outbreak in each area. Also, they did not allow the

probability of outbreak emergence to depend on covariates. Therefore, their approach has

limited applicability. For instance, in our motivating example, there are 3-4 outbreaks in

most areas, and we want to investigate how certain factors, such as mobility, were related to

the emergence of the outbreaks. In contrast, the coupled models explored in this manuscript

can be applied to space-time data with any number of outbreaks in each area. We also

allow the transition probabilities to depend on covariates. To prevent rapid switching, we

instead consider clone states, popular in econometrics (Kaufmann, 2018), which enforce

minimum endemic and outbreak state durations. For our motivating example, we show that

the clone states effectively prevent rapid switching between the outbreak and endemic states,

see Figure 4.5.

Finally, outside a Markov switching framework, many methods have been proposed for mod-
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eling spatio-temporal infectious disease counts, including epidemiological compartmental

models (Crawford et al., 2022) and multivariate autoregressive models (Bracher and Held,

2022). We believe two aspects of our Markov switching approach are unique. Firstly, we can

quantify associations, through odds ratio, between covariates and important epidemiological

transitions, such as outbreak emergence. Secondly, we can provide the posterior probability

that an outbreak is occurring or will occur soon for outbreak detection and forecasting re-

spectively. For our motivating example, we compare to a popular alternative model (outside

the Markov switching framework) for spatio-temporal infectious disease counts (Bracher and

Held, 2022). We show our approach obtains a better fit and provides more useful interpre-

tations, see Table 4.1 and the associated discussion.

In conclusion, in this manuscript, we make three important contributions to the existing

(Amorós, 2017) outbreak/endemic Markov switching literature. We include an absent state,

to account for many consecutive zeroes; neighboring outbreak indicators along with covari-

ates in the transition probabilities, to account for geographical outbreak spread; and clone

states, to prevent rapid switching between the outbreak and endemic states. Also, our model

has useful advantages compared to popular approaches that lay outside a Markov switching

framework. Therefore, this manuscript represents an important contribution to the literature

on spatio-temporal infectious disease modeling.

This manuscript is currently under a second round of reviews at the Annals of Applied

Statistics.
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Abstract

Recurrent COVID-19 outbreaks have placed immense strain on the hospital system in Que-

bec. We develop a Bayesian three-state coupled Markov switching model to analyze COVID-

19 outbreaks across Quebec based on admissions in the 30 largest hospitals. Within each

catchment area, we assume the existence of three states for the disease: absence, a new state

meant to account for many zeroes in some of the smaller areas, endemic and outbreak. Then

we assume the disease switches between the three states in each area through a series of

coupled nonhomogeneous hidden Markov chains. Unlike previous approaches, the transition

probabilities may depend on covariates and the occurrence of outbreaks in neighboring areas,

to account for geographical outbreak spread. Additionally, to prevent rapid switching be-

tween endemic and outbreak periods we introduce clone states into the model which enforce

minimum endemic and outbreak durations. We make some interesting findings, such as that

mobility in retail and recreation venues had a positive association with the development

and persistence of new COVID-19 outbreaks in Quebec. Based on model comparison our

contributions show promise in improving state estimation retrospectively and in real-time,

especially when there are smaller areas and highly spatially synchronized outbreaks. Fur-

thermore, our approach offers new and interesting epidemiological interpretations, such as

being able to estimate the effect of covariates on disease extinction.
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4.1 Introduction

Quebec has been the epicenter of the COVID-19 epidemic in Canada with 15,389 deaths

and 52,788 hospitalizations through May 2022 (INSPQ, 2022). As a result, immense strain

has been placed on Quebec’s hospital system. Due to the high demand for hospital beds,

many elective surgeries have been delayed or canceled which can adversely affect outcomes in

patients with conditions other than COVID-19 (Shingler and Hendry, 2022). Additionally,

there have been concerning shortages of essential medical supplies, drugs and staff (Lafram-

boise, 2020; Legault and Blais, 2020).

In this paper we analyze weekly COVID-19 hospital admissions in the 30 largest hospitals

in Quebec, a map is given in Figure 4.1 along with the time series for each hospital. Fig-

ure 4.2(a) shows the weekly COVID-19 hospitalizations for Pavillon Sainte-Marie in Trois–

Rivières, an average-sized hospital among the 30. As illustrated in Figure 4.2(a), and this

can also be observed less clearly in Figure 4.1 across all hospitals, the hospital admissions

can be characterized by a series of outbreak periods separated by quiescent endemic periods

with low levels of hospitalizations. The outbreak periods represent COVID-19 outbreaks in

the surrounding communities serviced by the hospital (catchment areas) as we do not in-

clude hospital-acquired infections. Clearly, most hospitalizations occur during the outbreak

periods. However, this does not reflect the true burden of the outbreaks as the rapid rise

in hospitalizations at the beginning of an outbreak can be difficult to adjust to, leading to

shortages and a lack of beds (Shingler and Hendry, 2022). To gain a better understanding

of how the outbreaks develop, a substantive aim of our analysis is to quantify how certain

factors, such as mobility and the introduction of new variants (marked in Figure 4.2(a), see

Section 4.5.1 for more details), are associated with the emergence and persistence of the

outbreaks. Additionally, we want to detect and forecast the outbreaks so that the hospitals

can better plan the allocation of their medical resources.

Many methods have been proposed for modeling infectious disease counts in space and time,
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Figure 4.1: The left graph shows a map of the part of Quebec where the 30 hospitals (solid
circles) included in the study are located. Borders separate counties. Each line in the right
graph gives the number of hospitalizations in one of the 30 hospitals included in the study.

a subject that has gained increased attention in recent years partly due to the COVID-19

pandemic. Among the most popular are epidemiological compartmental models, such as

susceptible-infectious-recovered (SIR) models (Keeling and Rohani, 2007; Bjørnstad, 2023).

These approaches attempt to model individuals within the population moving through differ-

ent disease compartments such as susceptible, infectious, recovered and quarantined (Craw-

ford et al., 2022). Multivariate autoregressive count time series models, where the current

expected counts are modeled as some function of past counts, are also popular (Ssentongo

et al., 2021; Bracher and Held, 2022) and can be motivated from discrete-time SIR models

(Bauer and Wakefield, 2018; Mizumoto and Chowell, 2020). When fit with covariates, both

of these approaches are often used to investigate associations between certain factors and

some measure of disease transmission, e.g., the average number of new cases per each recent

previous case (Bauer and Wakefield, 2018; Flaxman et al., 2020; Ssentongo et al., 2021).

However, they usually do not clearly distinguish between outbreak and non-outbreak peri-

ods. As mentioned above, we are interested in studying the transition between calm endemic
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Figure 4.2: (a) An illustration of endemic and outbreak periods in the weekly COVID-19
hospitalizations for Pavillon Sainte-Marie in Trois–Rivières. (b) An illustration of absence,
endemic and outbreak periods in the weekly COVID-19 hospitalizations for Hôpital Anna–
Laberge in Châteauguay. The vertical red lines are drawn at the introduction of the Alpha
and Omicron variants for all of Quebec. The "?" reflects the fact that the periods are not
fully observable in our framework.

periods and outbreak periods, and, therefore, we require a precise model definition of those

transitions. Also, these methods are not well suited for outbreak detection and forecast-

ing. While a compartmental model could forecast a likely increase in some epidemiological

indicator, it cannot distinguish between an increase due to random endemic variation and

an actual outbreak developing, which is an important problem in outbreak detection (Unkel

et al., 2012). Several other methods that are more focused on producing predictions, such

as spline-based (Bauer et al., 2016) or machine learning (Rahimi et al., 2023) methods, are

also popular, however, they are often not appropriate for learning about the dynamics of the

disease.
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In this paper we take a Markov switching approach to modeling the occurrence of the out-

break periods. As we explain below, this approach allows us to study, detect and forecast

transitions between endemic and outbreak periods. Markov switching models assume a

time series can be described by several submodels, usually called states or regimes, where

switching between submodels is governed by a hidden first-order Markov chain (Hamilton,

1989). Markov switching models that switch between endemic and outbreak states have a

long history (Souza, 1982; Amorós et al., 2020). In this framework, the transitions between

the endemic and outbreak states are usually modeled as a change in the parameters of an

autoregressive process, i.e., a change in transmission intensity (Lu et al., 2010). These tran-

sitions are assumed unobservable and must be inferred probabilistically from the time series,

which is convenient as we usually do not observe exactly when the outbreaks start and end.

The probabilities that govern the transitions between the endemic and outbreak states can

depend on covariates (Diebold et al., 1994). This allows for investigating the association

of various factors with the probabilities of outbreak emergence and persistence and can aid

in forecasting the outbreaks (Nunes et al., 2013). Additionally, Bayesian methods can be

used to compute the posterior probability an outbreak is currently happening or will happen

soon for the purpose of outbreak detection (Martínez-Beneito et al., 2008) and forecasting

(Nunes et al., 2013), respectively. Outbreak/endemic Markov switching models have be-

come increasingly popular in epidemiology, especially for outbreak detection (Unkel et al.,

2012), with recent applications to influenza (Lytras et al., 2019), cutaneous leishmaniasis

(Rahmanian et al., 2021) and salmonella (Zacher and Czogiel, 2022).

Despite their growing popularity, outbreak/endemic Markov switching models have not fo-

cused on the analysis of outbreaks in small areas, especially with many zeroes. Figure 4.2(b)

shows weekly COVID-19 hospitalizations for the Hôpital Anna–Laberge in Châteauguay, a

relatively small hospital. As illustrated in Figure 4.2(b), it may be more appropriate in

smaller areas to describe switching between three periods: absence, endemic and outbreak.

This has a strong epidemiological justification as it is well known that many infectious dis-
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eases frequently go extinct in small communities (Bartlett, 1957; Keeling and Rohani, 2007).

Ignoring long periods of disease absence would end up likely assigning too many zeroes to

the endemic state, biasing its mean towards zero. This is undesirable as it could lead to

the outbreak state being too dominant at medium counts, leading to false alarms (Rath

et al., 2003). Another advantage of considering an absence state is that we can model the

probabilities of disease extinction and reemergence, which are epidemiologically interesting

(Douwes-Schultz and Schmidt, 2022).

There has also not been much work done on spatio-temporal outbreak/endemic Markov

switching models, where the focus is on the analysis of outbreaks in several different but

connected areas across time. This is a focus of our analysis as many important decisions

are made at the individual hospital level and clearly, there is some, though not perfect,

synchronization of outbreaks between hospital catchment areas, compare Figures 4.2(a) and

4.2(b) for example. Amorós et al. (2020) fit a spatio-temporal outbreak/endemic Markov

switching model, but they only borrowed spatial strength in the observation component of

the model. Individuals will mix between areas, causing outbreaks to spread geographically

(Grenfell et al., 2001). Therefore, an outbreak should be more likely to emerge or persist in

an area if there are outbreaks likely occurring in neighboring areas. One way to achieve this is

to use a coupled Markov switching model (Pohle et al., 2021) where the states of neighbors

are directly entered into the transition probabilities (Douwes-Schultz and Schmidt, 2022;

Touloupou et al., 2020). For outbreak detection and forecasting, considering evidence of

outbreaks in neighboring areas could provide an early warning at the very beginning of an

outbreak when there is still uncertain evidence within the area. Heaton et al. (2012) did let

the probabilities of outbreak emergence depend on outbreaks in neighboring areas, however,

they did not allow the transition probabilities to depend on covariates, and they used an

absorbing state model, meaning it is difficult to apply their model to time series that contain

multiple outbreaks.
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In our framework, we assume the disease switches between three states in each area: absence,

endemic and outbreak. The epidemiological count in the absence state is assumed to always

be 0, while it follows two autoregressive negative binomial processes in the outbreak and

endemic states, distinguished by a lower level of transmission during the endemic period.

Switching between the three states is governed by a first-order Markov chain where we focus

on modeling the following four transition probabilities: absence to endemic (disease emer-

gence), endemic to absence (disease extinction), endemic to outbreak (outbreak emergence)

and outbreak to outbreak (outbreak persistence). Each transition probability can depend

on covariates as well as a weighted sum of outbreak occurrence in neighboring areas. This

allows us to investigate associations with important epidemiological transitions while also

incorporating outbreak spread between areas. Nonhomogeneous Markov switching models

can be sensitive to overfitting as the transition matrix may be non-persistent at some levels

of the covariates, potentially leading to rapid switching between the states. Clearly, it is not

realistic to rapidly switch between outbreak and endemic states, so we additionally introduce

clone states (Kaufmann, 2018) into the model to enforce a minimum endemic and outbreak

duration.

This paper is structured as follows. In Section 4.2 we introduce our proposed model, a

three-state coupled Markov switching model. In Section 4.3 we describe Bayesian inference

using data augmentation and make use of the individual forward filtering backward sampling

algorithm of Touloupou et al. (2020). In Section 4.4 we evaluate outbreak detection and

forecasting results from the model on simulated data where the exact start and end times of

the outbreaks are known. In Section 4.5 we apply the model to COVID-19 outbreaks across

Quebec based on admissions in the 30 largest hospitals. We close with a general discussion

in Section 4.6.
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4.2 A Three-state Coupled Markov Switching Model

Let yit be an epidemiological count indicator, e.g., counts of hospitalizations, associated with

area i = 1, . . . , N across t = 1, . . . , T time periods. Let Sit ∈ {1, 2, 3} be an indicator for the

epidemiological state of the disease, where Sit = 1 if the disease is absent in area i during

time t, Sit = 2 if the disease is in an endemic state and Sit = 3 if the disease is in an outbreak

state.

We assume that the epidemiological count indicator is always 0 when the disease is absent and

follows two distinct autoregressive negative binomial processes in the endemic and outbreak

states, that is,

yit | Sit, yi(t−1) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, if Sit = 1 (absence)

NB(λEN
it , rEN), if Sit = 2 (endemic)

NB(λOB
it , rOB), if Sit = 3 (outbreak),

(4.1)

where λEN
it and λOB

it are the means in the endemic and outbreak states respectively and rEN

and rOB are the overdispersion parameters, so that, for example, Var(yit|Sit = 3, yi(t−1)) =

λOB
it (1+λOB

it /rOB). A zero count could be produced by all three states while a positive count

can be produced by either the endemic or outbreak states, therefore, none of the states are

observable and Sit is a latent variable. Intuitively, we often do not know if an outbreak is

occurring and there could be zeroes during an endemic period, or early outbreak period, due

to a failure to detect the disease or a lack of severe cases for hospitalizations and deaths. As

justification for the negative binomial distribution in (4.1), over a Poisson distribution, we

found there was a high amount of overdispersion in the Quebec hospitalizations, see Table

4.3.

As we are modeling an infectious disease we would expect the previous count yi(t−1) to

affect the current expected count when the disease is present (Bauer and Wakefield, 2018).
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Therefore, we use log-linear autoregressive models (Liboschik et al., 2017) for λEN
it and

λOB
it ,

log(λEN
it ) = βEN

0i + xT
itβ

EN + ρEN log(yi(t−1) + 1)

log(λOB
it ) = βOB

0i + xT
itβ

OB + ρOB log(yi(t−1) + 1),

(4.2)

where βEN
0i ∼ N

(︂
βEN
0 ,

(︁
σEN

)︁2)︂ and βOB
0i ∼ N

(︂
βOB
0 ,

(︁
σOB

)︁2)︂ are random intercepts meant

to account for between area differences and xit is a vector of space-time covariates that may

affect transmission of the disease within the endemic and outbreak periods. We allow the

covariate effects, βEN and βOB, to be different as outbreaks can lead to behavioral changes in

hosts (Verelst et al., 2016). We also considered spatially correlated random effects (Amorós

et al., 2020) for the area specific intercepts in (4.2). However, we found for our motivating

example that, possibly due to the amount of uncertainty about the underlying disease states,

the spatial association of the intercepts could not be estimated precisely enough.

To model the switching between absence, endemic and outbreak periods we assume that

Sit follows a three-state nonhomogeneous Markov chain within each area. In order to in-

corporate outbreak spread between areas we condition the transition matrix on S(−i)(t−1) =

(S1(t−1), . . . , S(i−1)(t−1), S(i+1)(t−1), . . . , SN(t−1))
T , the vector of all state indicators excluding

area i at time t− 1. We propose the following conditional transition matrix for the Markov

chain, for t = 2, . . . , T ,

Γ
(︁
Sit|S(−i)(t−1)

)︁
=

⎡⎢⎢⎢⎢⎣

State Sit=1 (absence) Sit=2 (endemic) Sit=3 (outbreak)

Si(t−1)=1 (absence) 1− p12it p12it 0

Si(t−1)=2 (endemic) p21it 1− p21it − p23it p23it

Si(t−1)=3 (outbreak) 0 1− p33it p33it

⎤⎥⎥⎥⎥⎦,
(4.3)

where Γ
(︁
Sit|S(−i)(t−1)

)︁
lk
= P (Sit = k|Si(t−1) = l,S(−i)(t−1)) for l, k = 1, 2, 3 and we have the
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following epidemiological interpretations of the transition probabilities,

p12it = probability of disease emergence,

p23it = probability of outbreak emergence,

p21it = probability of disease extinction,

p33it = probability of outbreak persistence.

From (4.3), we assume it is not possible to move from absence to outbreak and vice versa

in a single time step. For a time step of one week, like in our application, this is reasonable.

However, for longer time steps this assumption should be examined.

We assume each transition probability in (4.3) can depend on a p-dimensional vector of space-

time covariates zit as well as a weighted sum of outbreak occurrence in neighboring areas

during the previous time period, to model outbreak spread between areas. Starting with the

probabilities of disease emergence, p12it, and outbreak persistence, p33it, we let

logit(plkit) = αlk,0 + z
T
itαlk + αlk,p+1

∑︂
j∈NE(i)

ωjiI[Sj(t−1) = 3], (4.4)

for lk = 12, 33, where I[•] is an indicator function, NE(i) is the set of all neighboring areas

of area i and ωji is a fixed weight meant to reflect a priori knowledge of the level of influence

area j has on area i. For example, one could use distance-based weights or weights based on

trade between regions, see Schrödle et al. (2012). It is also possible to estimate connectivity

in a coupled Markov switching model (Douwes-Schultz and Schmidt, 2022). However, we do

not consider this here due to the complexity and number of transitions in our model, the

model used in Douwes-Schultz and Schmidt (2022) only had one general presence state and

one absence state. For the probabilities of disease extinction, p21it, and outbreak emergence,

p23it, a multinomial logistic regression is needed so that the second row of (4.3) sums to 1,

that is,

log

(︃
plkit

1− p21it − p23it

)︃
= αlk,0 + z

T
itαlk + αlk,p+1

∑︂
j∈NE(i)

ωjiI[Sj(t−1) = 3], (4.5)
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for lk = 21, 23. Therefore, α21 and α23 in (4.5) represent the effects of the covariates on the

relative odds of transitioning to the absence and outbreak states respectively compared to

remaining in the endemic state.

Covariates will likely affect the transition probabilities in most cases. For example, dengue

outbreaks are unlikely to occur during the winter when mosquito activity is low (Descloux

et al., 2012), the introduction of new variants, such as Omicron, has likely played an im-

portant role in the development of new COVID-19 waves (Maslo et al., 2022) and disease

extinction is less likely in smaller communities (Bartlett, 1957). As for the inclusion of

neighboring outbreak indicators in (4.4)-(4.5), individuals will mix with those in other ar-

eas which can cause outbreaks to spread geographically, a phenomenon known as traveling

waves (Grenfell et al., 2001). Therefore, an outbreak in a neighboring area should affect

the transition probabilities due to either direct spread or because it indicates spread from a

common source, such as a large city.

4.2.1 Identifiability constraints

Constraints are often placed on the parameters of a Bayesian mixture model to remove

multimodality in the posterior distribution (Frühwirth-Schnatter, 2006), which often oc-

curs genuinely and due to the invariance of the likelihood function to permutations in the

state labeling of the parameters (Jasra et al., 2005). The constraints are commonly chosen

based on knowledge of the process being modeled (Martínez-Beneito et al., 2008; Stoner and

Economou, 2020). To help motivate constraints in our case, note that another way to ex-

press a log-linear model in (4.2) is as, for example, λOB
it = exp(βOB

0i +xT
itβ

OB)
(︁
yi(t−1) + 1

)︁ρOB

,

which takes the form of a transmission rate multiplied by the previous counts. Disease trans-

mission should always increase when moving from the endemic state to the outbreak state,

especially if the model is to be used for issuing alarms for surveillance. Additionally, the

autoregressive coefficients, ρEN and ρOB, control the speed the disease moves through the lo-

cal population (Wakefield et al., 2019), which should be higher during the outbreak periods.
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Therefore, we assume the following constraints,

βEN
0i + xT

itβ
EN + .01 < βOB

0i + xT
itβ

OB for i = 1, . . . , N and t = 2, . . . , T , and,

ρEN + .05 < ρOB,

(4.6)

meaning we are assuming at least a one percent increase in transmission when moving from

the endemic state to the outbreak state (in Section 4.5.2 we show the results are not very

sensitive to reasonably changing this one percent value). Initially, we had considered a

simpler constraint on just the intercepts and the autoregressive coefficients, however, we

found in a simulation study, in Section B.2 of the supplementary materials (SM), that the

simpler constraint does not ensure consistent convergence of our Markov chain Monte Carlo

(MCMC) algorithm. Constraining the entirety of the transmission rates, as in (4.6), greatly

improved the convergence rate, did not introduce any significant bias into the inferential

procedure and did not add a substantial amount of time to the model fitting.

4.2.2 Prior specification

For the count part of the model, we specified wide independent normal and gamma priors

for most lower-level elements of β. We used Unif(0, 1) priors for ρEN and ρOB to meet the

stability conditions of Liboschik et al. (2017) which ensures the counts are not expected to

grow without bound. For rEN and rOB we used Unif(0, 10) and Unif(0, 50) priors respectively.

An upper limit of 10 was chosen for rEN as it is important for the endemic state distribution

to have a long right tail to prevent frequent false alarms during outbreak detection (Rath

et al., 2003). To impose the constraints in (4.6) we truncated the prior distribution of β

(Kaufmann, 2018). Some shrinkage to the null is generally recommended for logistic and

multinomial logistic regression parameters to avoid separation issues and reduce bias away

from 0 (Bull et al., 2002). Therefore, following Gelman et al. (2008), we used Cauchy priors

with scale 2.5/2 · sd(zitq) for the effects of covariate zitq on the transition probabilities in
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(4.4)-(4.5). For the effects of neighboring outbreaks on the transition probabilities, i.e.,

αlk,p+1 for lk = 12, 21, 23, 33 in (4.4)-(4.5), we used more aggressive shrinkage and assigned

N(0, (.36/max{ωji}Nj,i=1
j ̸=i

)2) priors. This states that with probability .95 a priori we believe

that an outbreak occurring in a single neighboring area should not more than double or less

than halve the odds, or relative odds, of any epidemiological transition, e.g., should not more

than double the odds of an outbreak emerging relative to remaining in the endemic state

(Wakefield, 2013). Our reasoning is that we do not want a single area to be given too much

influence as we want the model to consider evidence of outbreaks across multiple neighboring

areas. Additionally, while borrowing spatial strength can be important, we do not want it

to overpower within-area information too strongly.

4.2.3 Clone states

As the transition probabilities in (4.3) depend both on covariates and latent neighboring

states, the transition matrix may fluctuate between persistence and non-persistence. This

could lead to time periods where there is rapid switching between the outbreak and endemic

states, which is not realistic. Heaton et al. (2012) dealt with this by using an absorbing

state model where the probability of outbreak persistence was fixed at 1, but that does not

allow the analysis of multiple outbreaks or the study of outbreak persistence. Our solution is

to introduce clone states into the model with determined transitions to enforce a minimum

endemic and outbreak state duration, which is common in econometrics (Kaufmann, 2018).

We can introduce a new latent state indicator S∗
it ∈ {1, 2, 3, 4, 5, 6, 7} such that Sit = 1 if

S∗
it = 1, Sit = 2 if S∗

it ∈ {2, 3} and Sit = 3 if S∗
it ∈ {4, 5, 6, 7}, and with the following
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conditional transition matrix, for t = 2, . . . , T ,

Γ
(︁
S∗
it|S(−i)(t−1)

)︁
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

State S∗
it=1 S∗

it=2 S∗
it=3 S∗

it=4 S∗
it=5 S∗

it=6 S∗
it=7

S∗
i(t−1)

=1, Si(t−1)=1 (absence) 1− p12it p12it 0 0 0 0 0

S∗
i(t−1)

=2, Si(t−1)=2 (endemic) 0 0 1 0 0 0 0

S∗
i(t−1)

=3, Si(t−1)=2 (endemic) p21it 0 1− p21it − p23it p23it 0 0 0

S∗
i(t−1)

=4, Si(t−1)=3 (outbreak) 0 0 0 0 1 0 0

S∗
i(t−1)

=5, Si(t−1)=3 (outbreak) 0 0 0 0 0 1 0

S∗
i(t−1)

=6, Si(t−1)=3 (outbreak) 0 0 0 0 0 0 1

S∗
i(t−1)

=7, Si(t−1)=3 (outbreak) 0 1− p33it 0 0 0 0 p33it

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(4.7)

where Γ
(︁
S∗
it|S(−i)(t−1)

)︁
lk

= P (S∗
it = k|S∗

i(t−1) = l,S(−i)(t−1)) for l, k = 1, . . . , 7. The new

transition matrix (4.7) will prevent rapid switching between endemic and outbreak periods

by imposing a minimum endemic duration of 2 weeks and a minimum outbreak duration of

4 weeks for our motivating example. A COVID-19 outbreak that lasts less than 4 weeks in

Quebec is likely either a false alarm or too small to be concerning. Also, there should be at

least some time between outbreaks for the susceptible population to replenish (Keeling and

Rohani, 2007). Clearly, the idea of (4.7) could be used to impose any arbitrary minimum

state durations, and so we assume (4.7) throughout the rest of the paper w.l.o.g..

We will refer to the model defined by (4.1)-(4.5), with (4.3) replaced by (4.7), as the coupled

Markov switching negative binomial model with 1 absence state, 2 endemic states and 4

outbreak states, i.e., the CMSNB(1,2,4) model. To finish model specification we also need

to specify an initial state distribution for the Markov chain in each area, i.e., p(S∗
i1) for

i = 1, ..., N , which we assume does not depend on any unknown parameters. Note that

moving from (4.3) to (4.7) does not add any new parameters to the model, however, the
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restrictive transition matrix does slightly complicate the inferential procedure, which will

now be discussed.

4.3 Inferential Procedure

Let S∗ = (S∗
11, . . . , S

∗
1T , . . . , S

∗
N1, . . . , S

∗
NT )

T be the vector of all state indicators, let y =

(y11, . . . , y1T , . . . , yN1, . . . , yNT )
T be the vector of all counts, let β be the vector of all model

parameters in the count part of the model, i.e., parameters in (4.1)-(4.2), let θ be the vector

of all model parameters in the Markov chain part of the model, i.e., parameters in (4.4)-(4.5),

and, finally, let v = (β,θ)T be the vector of all model parameters. Then the likelihood of v

given y and S∗ is given by,

L(y,S∗|v) =
N∏︂
i=1

T∏︂
t=2

p(yit|Sit, yi(t−1),β)
N∏︂
i=1

p(S∗
i1)

T∏︂
t=2

p(S∗
it|S∗

i(t−1),S(−i)(t−1),θ). (4.8)

Recall from the previous section that S∗ is not observed. It is not possible to marginalize out

S∗ from (4.8) as doing so would require matrix multiplication with a 7N×7N matrix (Douwes-

Schultz and Schmidt, 2022). Additionally, we want to make inferences about S∗ for the

purpose of outbreak detection and forecasting as well as historical retrospection. Therefore,

we estimate S∗ along with v by sampling both from their joint posterior distribution which,

from Bayes’ theorem, is proportional to,

p(S∗,v|y) ∝ L(y,S∗|v)p(v), (4.9)

where p(v) is the prior distribution of v.

As the joint posterior (4.9) is not available in closed form, we resort to MCMC methods,

in particular, we used a hybrid Gibbs sampling algorithm with some steps of the Metropo-

lis–Hastings algorithm to sample from it. We sampled all elements of v without conju-

gate priors individually, using an adaptive random walk Metropolis step (Shaby and Wells,
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2010). It is easy to implement the sampling of each element of S∗ one-at-a-time from

p(S∗
it|y,v, {S∗

jl}jl ̸=it) (Douwes-Schultz and Schmidt, 2022). However, we found that one-at-

a-time sampling mixed so slowly that it is not usable with our model. To see this, consider

the following hypothetical state sequence for S∗
it, 456723. Note it is not possible to sample

any new single element of this sequence and in general we found that one-at-time sampling

gets stuck in small regions of the parameter space. To avoid issues like this with one-at-a-

time sampling when fitting Markov switching models, Chib (1996) proposed to sample all of

S∗ jointly from p(S∗|v,y). However, this is not possible with our model as it would involve

matrix multiplication with 7N × 7N matrix (Douwes-Schultz and Schmidt, 2022). As an

alternative, we can block sample S∗ with each block containing all the state indicators in a

single location (Touloupou et al., 2020). Let S∗
i = (S∗

i1, . . . , S
∗
iT )

T denote the vector of all

state indicators in area i and let S∗
(−i) be S∗ with S∗

i removed. Then we can sample all of

S∗
i jointly from its full conditional distribution, which is given by,

p(S∗
i |v,S∗

(−i),y) = p(S∗
iT |S∗

(−i),y,v)
T−1∏︂
t=1

p(S∗
it|S∗

i(t+1),S
∗
(−i)(1:t+1),yi(1:t),v), (4.10)

using an individual forward filter backward sampling (iFFBS) algorithm (Touloupou et al.,

2020). More details are given in SM Section B.1. It is also possible to block sample S∗ in

multi-location blocks (Douwes-Schultz and Schmidt, 2022) but we do not consider this here

as it does not scale well with large transition matrices.

Our hybrid Gibbs sampler was implemented using the R package Nimble (de Valpine et al.,

2017). Nimble comes with built-in Metropolis–Hastings and categorical (equivalent to one-at-

a-time sampling) samplers. The iFFBS samplers were implemented using Nimble’s custom

sampler feature. All Nimble R code, including for the custom iFFBS samplers, are pro-

vided on GitHub (https://github.com/Dirk-Douwes-Schultz/CMSNB124_code). Nimble

was chosen as it is extremely fast (C++ compiled) and only requires the coding of new sam-

plers. In the SM Section B.2, we provide a simulation study, which shows that our proposed
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Gibbs sampler can recover the true parameters of a CMSNB(1,2,4) model that is specified

like in our motivating example in Section 4.5.

4.3.1 Outbreak detection, forecasting and historical retrospection

Once a sample from the joint posterior (4.9) has been obtained, the posterior probability that

the disease is currently in epidemiological state s, for s = 1 (absence), s = 2 (endemic) and

s = 3 (outbreak), in area i can be approximated as P (SiT = s|y) ≈ 1
Q−M

∑︁Q
m=M+1 I[S

[m]
iT =

s], where the superscript [m] denotes a draw from the posterior distribution of the variable,

M is the size of the burn-in sample and Q is the total MCMC sample size. The posterior

probability P (SiT = 3|y) represents the probability that an outbreak is currently happening

in area i given all observed data and can be used for the purpose of outbreak detection

(Martínez-Beneito et al., 2008). We recommend using P (SiT = 3|y) along with other,

external, pieces of information to help determine if an outbreak is likely occurring. While

P (SiT = 3|y) has no closed form, we can condition on the parameters and previous states

to gain some intuition into how the model performs outbreak detection,

p(SiT |S∗
i(T−1),S(−i)(T−1),v,y) ∝

p(yiT |SiT , yi(T−1),β)p(SiT |S∗
i(T−1),S(−i)(T−1),θ).

(4.11)

From (4.11), the model generally weighs two factors for outbreak detection, the relative like-

lihood that the outbreak state generated the observed count and the probability of entering

the outbreak state at the current time P (SiT = 3|S∗
i(T−1),S(−i)(T−1),θ), which recall may

depend on outbreaks in neighboring areas and covariates, see (4.4)-(4.5) and (4.7).

As for forecasting, we used a simulation procedure to draw realizations from the posterior

predictive distributions (Frühwirth-Schnatter, 2006). Algorithm 2 in the SM will obtain

realizations from the posterior predictive distribution of the counts, y[m]
i(T+k) ∼ p(yi(T+k)|y),

and the epidemiological state of the disease, S[m]
i(T+k) ∼ p(Si(T+k)|y), for i = 1, . . . , N , k =
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1, . . . , K and m = M + 1, . . . , Q. Then, the posterior probability that the disease will be

in state s, k time steps from now, in area i, can be approximated as P (Si(T+k) = s|y) ≈
1

Q−M

∑︁Q
m=M+1 I[S

[m]
i(T+k) = s].

Finally, it is also important to examine the posterior probability that the disease was in state

s during past time periods P (Sit = s|y) ≈ 1
Q−M

∑︁Q
m=M+1 I[S

[m]
it = s] for t = 1, . . . , T − 1,

i = 1, . . . , N and s = 1 (absence), s = 2 (endemic) and s = 3 (outbreak) for several reasons.

Firstly, it may be of historical interest to investigate the epidemiological history of the disease

in various areas. Also, the estimation of v depends heavily on the estimates of the past states

as indicated by the joint likelihood function (4.8). If the classification of past epidemiological

periods is not sensible, this would cast doubt on the estimates of v and may point to model

misspecification.

4.3.2 Model comparison

To compare competing models, we use the widely applicable information criterion (WAIC)

(Gelman et al., 2014). For state-space models, the WAIC is more accurate when the latent

states are marginalized (Auger-Méthé et al., 2021). For models without neighboring out-

break indicators in the transition probabilities, such as the Non-coupled Model in Section

4.5, we can use the forward filter (Frühwirth-Schnatter, 2006) to calculate the marginal

density p(yit|y1:(t−1),v), where y1:(t−1) = (y11, . . . , y1(t−1), . . . , yN1, . . . , yN(t−1))
T , and use

it to calculate the WAIC. However, for models with neighboring outbreak indicators in

the transition probabilities it is not computationally possible to completely marginalize S∗

(Douwes-Schultz and Schmidt, 2022) and, therefore, we use the partially marginalized den-

sity p(yit|S∗
(−i)(1:t),y1:(t−1),v) instead. See SM Section B.3.1 for more details. The model

with the lowest WAIC is considered to have the best fit and as a rule of thumb, a difference

of 5 or more in the WAIC is considered significant. A simulation study we conducted, in SM

Section B.3.2, suggests that when there is no significant difference in the WAIC to prefer

the less complex model and when there is a significant difference the WAIC almost always
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chooses the correct model, between a spatial and non-spatial Markov switching model.

4.4 Simulation Study

In Sections 4.5.3 and 4.5.4 below we attempt to evaluate the retrospective and real-time state

estimates of a CMSNB(1,2,4) model (see Section 4.3.1) fitted to the Quebec hospitalizations.

In this case, it is difficult to exactly quantify the accuracy of the state estimates as the true

underlying states are not known, and we can only evaluate the estimates visually. One

solution is to design a simulation study where the exact start and end times of the outbreaks

are pre-determined, although this does have the disadvantage of using simulated and not

real data (Buckeridge, 2007).

We designed a simulation study with 30 areas divided into 5 clusters of 6 areas each. Each

area alternated between a 15-week endemic period and a 15-week outbreak period for a total

of 4 of each period, 120 weeks total. For every area in a cluster, the start of each outbreak was

randomized to occur within the first 4 weeks of the corresponding outbreak period. Therefore,

we did not explicitly model outbreak spread within a cluster, we just assumed the outbreaks

occurred around the same time. We also assumed a 40% chance, taken roughly from our

results in Section 4.5.2, that each endemic period contains a 7-week absence period inserted

into the middle. The counts were simulated from a negative binomial distribution with

overdispersion 10 and conditional means e.1bedsi(yi(t−1))
.5 (endemic), e.75+.05bedsi(yi(t−1))

.75

(outbreak) and yit = 0 (absence). The covariate bedsi was taken from our real data example

to produce some between-area heterogeneity in the transmission. These values are somewhat

similar to those from Section 4.5.2 and produced realistic looking simulations, SM Figure B.4

shows some of the simulated time series. We only generated one simulation as each model

must be fit 20 times to produce the needed state estimates, see below.

To fit to the simulated data, we considered a CMSNB(1,2,4) model with the count part

correctly specified, including no random intercepts, and
∑︁

j∈NE(i) I[Sj(t−1) = 3] included
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Figure 4.3: Top graph shows simulated counts from the last 20 weeks in one of the areas
from the simulation study. Bottom graph solid lines show the real-time outbreak detection
probabilities, P (SiT = 3|y), versus T . Bottom graph dashed lines show the one-week ahead
outbreak forecasts from the previous week, P (SiT = 3|y1:(T−1)), versus T . The red dotted
line indicates the exact pre-determined start time of outbreak 4 in the area. The Spatial
Model is in orange and the Non-spatial Model is in purple.

only in the relative odds of outbreak emergence, where NE(i) contained all areas in the

same cluster as area i. We will call this the Spatial Model, and for comparison purposes,

we also considered a homogeneous non-spatial model without
∑︁

j∈NE(i) I[Sj(t−1) = 3] in the

transition probability. We focused on outbreak emergence in the simulation study, as it is the

most important transition to capture in a surveillance setting. We evaluated three outbreak

state estimates from the models: (1) retrospective probabilities, P (Sit = 3|y) from fitting

the models to the full simulated data set (2) real-time detection probabilities, P (SiT = 3|y)

from fitting the models up to time T for T = 100, . . . , 120 (20 separate fits) and (3) real-time

one week ahead forecasts, P (SiT = 3|y1:(T−1)) from fitting the models up to time T − 1 for

T = 101, . . . , 120. We only evaluated the real-time state estimates on the last outbreak in

each area to ensure stable model fitting. We evaluated the outbreak state estimates using
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the area under the ROC curve (AUC), sensitivity, specificity and timeliness (Buckeridge,

2007), the last three calculated with a 50% threshold. Timeliness for a single outbreak is

simply the number of weeks into the outbreak, starting at one, when the outbreak state

estimate first rises above 50%, and the overall timeliness is the average timeliness across all

outbreaks.

The results are summarized in Table B.4 of the SM. The Spatial Model was able to recover

the true underlying outbreak states well retrospectively, AUC of .995, and during outbreak

detection, AUC of .983, and one week ahead forecasting, AUC of .965. The Spatial Model

improved, over the Non-spatial Model, every criterion for each type of outbreak state esti-

mate, especially for real-time outbreak detection and forecasting. For instance, the Spatial

Model improved the sensitivity of the real-time outbreak detection probabilities by 6% and

reduced the timeliness of the one-week ahead outbreak forecasts by one week. Additionally,

the Spatial Model showed a fair tradeoff between outbreak detection and forecasting, with

the outbreak forecasts having two percent lower sensitivity but an improvement in timeliness

of .43 weeks. In contrast, the forecasts from the Non-spatial Model reduced the sensitivity

by 6.7% and only improved the timeliness by .06 weeks. This suggests outbreak forecasting

should only be attempted by nonhomogeneous models. These points are further illustrated

in Figure 4.3 which compares the real-time outbreak detection probabilities and the one-week

ahead outbreak forecasts in one of the areas from the simulation study.

4.5 Application to COVID-19 Outbreaks Across Quebec

4.5.1 Model specification and fitting

We fitted a CMSNB(1,2,4) model to weekly COVID-19 hospitalizations across the 30 largest

hospitals in Quebec (i = 1, . . . , N = 30), in terms of overall COVID-19 admissions, between

March 16th 2020 and May 9th 2022 (t = 1, . . . , T = 113). Hospitalizations typically lag

infections by 1–2 weeks (Ward and Johnsen, 2021), and there are a few days of reporting
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delay. We did not include hospital-acquired infections so that the outbreak periods represent

outbreaks in the catchment areas of the hospitals. A hospital’s catchment area is typically

difficult to exactly determine and can stretch disjointly across a broad geographical region

(Gilmour, 2010). By examining the locations of a sample of patients from each hospital, we

found that the catchment areas are mostly contained within, and sometimes adjacent to,

the same county where the hospital is located. We assumed that the number of beds in a

hospital is a reasonable proxy for the population size of the catchment area.

Increased mobility has been a major concern of the Quebec government during the epidemic

due to a fear that it will lead to increased COVID-19 transmission, potentially overwhelming

hospitals (Wilton, 2020). In general, epidemiologists have long theorized that mobility plays

an important role in the development of recurring outbreaks (Soper, 1929). While quantifying

mobility is challenging, Google mobility metrics (Google LLC, 2022) tend to give a reasonable

approximation to more accurate, but only privately available, mobility measures based on

close contact rates (Crawford et al., 2022). Google LLC (2022) provides daily metrics that

measure mobility as a percent change in the number of visits to certain venues, based on

personal electronic devices, from days of the same weekday in January 2020. We used the

retail+recreation mobility metric which measures changes in visits to places like restaurants,

cafes, shopping centers, museums, libraries, and movie theaters as such venues have been

heavily targeted by the Quebec government (Gouvernement du Québec, 2022). In Quebec,

Google mobility metrics are available at the county level, although the metrics are missing

for around 10 percent of counties. Another major concern has been the introduction of new

COVID-19 variants, especially the Alpha and Omicron variants (Olivier, 2021; Stevenson,

2021). New variants of COVID-19 can be more contagious and more resistant to existing

vaccines compared to previous variants, although they can also be less deadly (Chenchula

et al., 2022).
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Based on the above discussion, we considered xit = zit = (bedsi,mobilitycounty(i)(t−4),

new_variantt)T as covariates possibly associated with transmission during the endemic and

outbreak periods in Equation (4.2) and disease emergence, disease extinction, outbreak emer-

gence and outbreak persistence in Equations (4.4)-(4.5). Here, bedsi is the number of beds

in hospital i and mobilitycounty(i)(t−4) is the retail+recreation Google mobility metric for the

county where hospital i is located averaged across week t − 4 (recall it is a daily metric).

We lagged the mobility metrics by one month to account for delays between infection, hos-

pitalization and reporting, as well as the time needed for the effects of a spike in mobility

to trickle down into the general population. For counties with missing mobility metrics,

we substituted the metrics from the nearest county with a similar urban makeup. The bi-

nary covariate new_variantt was 1 if 3 months after the introduction of the Alpha variant

in Quebec, introduced December 29, 2020, and the Omicron variant, introduced November

29, 2021, and 0 otherwise (NCCID, 2022). The introduction of the variants are marked

in Figure 4.2(a) and we will in general refer to the outbreak that occurs in most hospitals

around the introduction of Omicron as the Omicron outbreak. We included new_variantt

only in the relative odds of outbreak emergence and in the outbreak transmission rate to

capture the short-term effects of the introduction of a new variant on outbreak emergence

and transmission. We combined the Omicron and Alpha variants since there is likely not

enough information in the data to estimate the effects of each separately. Additionally, hav-

ing separate effects for the two variants can make it challenging to use the model in real-time,

since we may not know if a future variant is more like Alpha or Omicron. Note, we did not

have county-level information on the introduction of the new variants so new_variantt is the

same for all hospitals.

From a sample of patients from hospitals i and j grouped into l = 1, . . . , 91 neighborhoods,

which divide Quebec, we calculated the spatial weight ωji, in Equations (4.4)-(4.5), as

ωji =
91∑︂
l=1

√
pjl ∗ pil,
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where, for example, pjl is the proportion of sampled patients from hospital j who lived in

neighborhood l, which is known as the Bhattacharyya coefficient (Bi et al., 2019). The

Bhattacharyya coefficient must be between 0 and 1 and is a way to measure the amount

of overlap between two categorical samples. Therefore, hospitals with more overlap in their

catchment areas were given a larger weight. We took the 5 nearest neighbors of hospital i, in

terms of the largest weights, to form the neighborhood set NE(i). Note ωji can be seen as a

distance-based decay weight as ωji = exp(−dBD
ji ) where dBD

ji is the Bhattacharyya distance

(Bi et al., 2019). To finish model specification, we used a uniform initial state distribution

in each area.

We fit the CMSNB(1,2,4) model specified above to the Quebec hospitalization data using our

proposed hybrid Gibbs sampler from Section 4.3. We ran the Gibbs sampler for 200,000 iter-

ations on three chains with an initial burn-in of 50,000 iterations. All sampling was started

from random values in the parameter space to avoid convergence to local modes. Conver-

gence was checked using the Gelman–Rubin statistic (all estimated parameters<1.05), the

minimum effective sample size (>1000) and by visually examining the traceplots (Plummer

et al., 2006).

For comparison purposes we also fit a model without neighboring outbreak indicators in the

transition probabilities, that is, with αlk,p+1 = 0 for lk = 12, 21, 23, 33 in (4.4)-(4.5), which

we will refer to as the Non-coupled Model. Additionally, we fit a two-state model without

any absence or clone states, which we will refer to as the No Absence/Clone State Model.

We chose these two models for comparison to examine the effects of our main contributions.

We will sometimes refer to our CMSNB(1,2,4) model as the Full Coupled Model during

comparison. Finally, we also compared to an endemic-epidemic (EE) model (Bracher and

Held, 2022), which lies outside our Markov switching framework. The EE model is a state-

of-the-art multivariate autoregressive count time series model which is popular for modeling

spatio-temporal infectious disease counts (Bauer and Wakefield, 2018; Ssentongo et al., 2021)

91



Table 4.1: Shows the WAIC of the 4 considered models from Section 5.1 fitted to the Quebec
hospitalizations. The best fitting model, the one with the lowest WAIC, is bolded.

Model WAIC

Full Coupled 17,516

Non-coupled 17,639

No Absence/Clone 17,545

Endemic-epidemic 17,845

and is commonly used as a benchmark (Bauer et al., 2016; Stojanović et al., 2019). The EE

model is usually used for forecasting and for investigating associations between covariates

and disease transmission (Ssentongo et al., 2021). We compared to the latest iteration of the

EE model (Bracher and Held, 2022) which allows for multiple temporal lags, whose order

we chose using the WAIC. More details, including the parameter estimates, are given in SM

Section B.4.

Table 4.1 shows the WAIC for the 4 considered models. The Full Coupled Model has the

lowest WAIC which lends support to the inclusion of neighboring outbreak indicators in the

transition probabilities and the addition of the absence/clone states. The Markov switching

models all have a lower WAIC compared to the Endemic-epidemic model, however, we would

argue the main advantage of the Markov switching models is that they offer more interesting

and richer interpretations. For instance, the Endemic-epidemic model concludes that mo-

bility had a strong positive association with overall disease transmission, see SM Table B.3.

From Section 4.5.2 below, the CMSNB(1,2,4) model broadly agrees with this conclusion but

provides a deeper understanding of the effect; mobility mainly affects disease transmission

during the outbreak and not endemic periods and mobility increases the risk of outbreaks

emerging and persisting and reduces the chances of the disease going extinct in smaller ar-

eas. These richer covariate interpretations could help policymakers better identify useful

interventions. Additionally, the Markov switching models can be utilized for retrospective

and real-time state estimation/forecasting, as we illustrate in Sections 4.5.3 and 4.5.4.
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4.5.2 Results

Table 4.2 gives the estimated parameters from the Markov chain part of the fitted CM-

SNB(1,2,4) model. As relative odds ratios from multinomial logistic regression can be diffi-

cult to interpret, we also plot some of the transition probabilities versus some of the covariates

in Figure 4.4. Smaller areas were associated with a higher probability of COVID-19 extinc-

tion, which follows well known theories from Bartlett (1957) that state population size is

inversely related to the rate of extinction of an infectious disease. We did not find evidence

that larger areas experience more frequent or longer outbreaks compared to smaller areas

(although outbreaks in larger areas do tend to be more severe in terms of transmission, see

Table 4.3). We found that mobility in retail and recreation venues had a positive association

with both outbreak emergence and outbreak persistence and a negative association with

disease extinction. For example, we estimated that a 20 percent (one standard deviation)

increase in the number of visits to retail and recreation venues, from the baseline week, was

associated with a 73 (8, 169) percent increase in the odds of an outbreak emerging relative

to remaining in the endemic state. However, this result may not imply a causal relationship

between mobility and outbreak emergence. Mobility could be high at the start of an out-

break because outbreaks typically begin after a long period of relative calm, so it is natural

for people to start going out more to movie theaters, restaurants, etc. It is difficult to control

for this in our framework, as we would have to account for the time since the last outbreak

ended, making the model non-Markovian. Also, note the high amount of uncertainty around

the odds ratios for mobility.

The introduction of the Alpha and Omicron variants had a very strong association with the

emergence of new COVID-19 outbreaks. We estimated that the probability of an outbreak

emerging, at average levels of the other covariates and assuming no neighboring outbreaks,

was .02 (.01, .03) if no new variant had been introduced recently and .19 (.09, .32) if a

new variant had been introduced in the last 3 months. Emerging variants can trigger new
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Table 4.2: Posterior means and 95% posterior credible intervals (in parentheses) for the
estimated parameters from the Markov chain part of the fitted CMSNB(1,2,4) model. The
intercept row shows the transition probabilities at an average level of mobility and beds, no
new variant and assuming no neighboring outbreaks. Other rows show the (relative) odds
ratios of the corresponding covariate. Units are given in parentheses after the covariates, for
reference, .56 is the average weight ωji between two neighboring areas. The units for beds
and mobility are equal to one standard deviation. Odds ratios whose 95% posterior credible
intervals do not contain 0 are bolded.

Probability or (relative) Odds Ratio

Disease Disease Outbreak Outbreak
Covariate Emergence Extinction Emergence Persistence

Intercept .33 .03 .02 .88
(.15, .61) (.01, .06) (.01, .03) (.83, .93)

beds (100s) 1.71 .44 1.15 1.13
(.82, 3.44) (.21, .74) (.86, 1.49) (.85, 1.48)

mobility (20%) .77 .53 1.73 1.65
(.38, 1.36) (.24, .98) (1.08, 2.69) (1.18, 2.26)

new variant – – 16.22 –
(6.91, 33.14)

weighted neighborhood 1.15 1.01 1.98 1.31
outbreak sum (.56) (.84, 1.53) (.73, 1.35) (1.58, 2.46) (1.14, 1.51)

COVID-19 waves due to them potentially being more contagious and more resistant to

existing vaccines compared to previous variants (Maslo et al., 2022). Finally, we found

that the presence of outbreaks in neighboring areas was strongly associated with outbreak

emergence and persistence. We estimated that an outbreak occurring in a single neighboring

area of average connectivity was associated with a 98 (58, 146) percent increase in the

odds of an outbreak emerging relative to remaining in the endemic state and a 31 (14, 51)

percent increase in the odds of an outbreak persisting. This could be due to either direct

disease spread from the neighboring area, the signaling of spread from a common source

and, potentially, partly due to correlated missing covariates. Interestingly, we found no

strong evidence of an association between neighboring outbreaks and disease emergence or

disease extinction, despite there being strong epidemiological justification for a relationship
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Figure 4.4: Posterior means (solid lines) and 95% posterior credible intervals (dashed lines) of
some of the estimated transition probabilities versus some of the covariates. Other covariates
were fixed at either their average values, for beds and mobility, or at 0, for new variant and
the weighted neighborhood outbreak sum.

due to outbreak spread (Grenfell et al., 2001). Recall that the weighted sum of neighboring

outbreak occurrence,
∑︁

j∈NE(i) ωjiI[Sj(t−1) = 3] in (4.4)-(4.5), is a latent covariate and so

there is likely not a lot of information about its effect on these rarer transitions (the disease

only goes extinct in the smaller catchment areas).

Table 4.3 gives the estimated parameters from the count part of the model. Transmission

during the outbreak periods was on average 121 (91, 157) percent higher than during the

endemic periods. Mobility in retail and recreation venues and population size were both

positively associated with transmission during the outbreak and endemic periods, and out-

breaks amplified the effects of population size and mobility on transmission. Note, as we

are modeling hospitalizations, an effect in terms of transmission in the hospitalizations could
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Table 4.3: Posterior means and 95% posterior credible intervals (in parentheses) from the
count part of the fitted CMSNB(1,2,4) model. The intercepts and covariate effects are
exponentiated so that they represent rates and rate ratios. Rate ratios whose 95% posterior
credible intervals do not contain 0 are bolded. The units for beds and mobility are equal to
one standard deviation.

Rate Ratios

Covariate Parameter Endemic Outbreak

Intercept of random intercepts eβ0 .99 2.18
(.85, 1.13) (1.97, 2.41)

Std. dev of random intercepts σ .31 .13
(.21, .44) (.1, .17)

beds (100s) eβbeds 1.07 1.20
(1.02, 1.11) (1.09, 1.32)

mobility (20%) eβmobility 1.06 1.17
(1, 1.13) (1.14, 1.20)

new variant eβnew_variant – 1.01
(.97, 1.06)

autoregressive ρ .69 .75
(.65, .72) (.72, .78)

overdispersion r 5.50 8.95
(4.13, 7.37) (7.89, 10.14)

reflect an effect on transmission in the actual cases and/or an effect on the severity of the

disease. Mobility and beds should not affect disease severity; however, new variants often do

(Chenchula et al., 2022). This could partly explain why we found the introduction of a new

variant likely did not have a large effect on transmission in the hospitalizations, Omicron

was much more transmissible person to person but less severe (NCCID, 2022). Also, we

combined the Alpha and Omicron variants, and, as can be seen in Figure 4.2, Alpha does

not appear to have had a large impact on transmission in the hospitalizations. Finally, for

sensitivity analysis, we also fit the CMSNB(1,2,4) model using .05 and .1 in place of .01 in

the constraint (4.6). The only posterior that changed noticeably was for the effect of mobility

on transmission in the endemic period (eβ
EN
mobility) which increased from 1.06 (1, 1.13) to 1.08
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(1.02, 1.15) going from .01 to .1 in the constraint.

4.5.3 Retrospective evaluation and comparison

As mentioned in Section 4.3.1 it is important to examine the retrospective state estimates of

an epidemiological Markov switching model, that is, the posterior probability that the disease

was in each state during each week of the study period, to ensure the models’ estimates of

the epidemiological history of the disease are sensible. Starting with the bottom graphs of

Figures 4.5 (a) and (c), we compare the retrospective state estimates for Fleury Hospital in

Montreal, one of the smaller hospitals, between models with, (a), and without, (c), an absence

state, as it is a good example of how accounting for long periods of disease absence in smaller

areas can be important. The top graphs show the posteriors of the endemic and outbreak

state distributions, which can be helpful for better understanding the state estimates. To

draw from the posterior of the state distributions we drew from p(yit|Sit = s, yi(t−1),β
[m]), see

(4.1)-(4.2), for m =M + 1, . . . , Q, t = 1, . . . , T , s = 2 (endemic) and s = 3 (outbreak). The

Full Coupled Model identifies 3, unlikely 4, outbreak periods for Fleury Hospital which are

separated by a few endemic and absence periods. Long sequences of zeroes in Fleury Hospital

are generally assigned to absence periods by the Full Coupled Model. In contrast, the No

Absence/Clone State Model assigns the long strings of zeroes to endemic periods, bringing

the endemic state distribution much closer to 0 compared to the Full Coupled Model. This

causes some issues in the state estimation for the No Absence/Clone State Model, as the

outbreak state becomes too dominant. Firstly, the No Absence/Clone State Model classifies

a very small increase in hospitalizations, around week 56, as likely a short outbreak period,

which is not realistic. Secondly, the No Absence/Clone State Model identifies a smaller

outbreak, around week 81, before the final Omicron outbreak. In contrast, the Full Coupled

Model only identifies the Omicron outbreak here, which appears more realistic as the number

of hospitalizations in the few weeks before Omicron never becomes high enough to be very

concerning and, by checking the other plots, there is no strong evidence of outbreaks in any
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 (a) Fleury Hospital, Montreal, Full Coupled Model
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 (b) Hôpital de Verdun, Montreal, Full Coupled Model
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 (c) Fleury Hospital, Montreal, No Absence/Clone State Model
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 (d) Hôpital de Verdun, Montreal, No Absence/Clone State Model
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Figure 4.5: Top graphs show the posterior means (solid lines) and 95% posterior credible
intervals (shaded areas) of the endemic state distribution (blue) and the outbreak state
distribution (red) versus the observed hospitalizations (points). The bottom graphs show
the posterior probability that the disease was in the absence state (green line), the endemic
state (blue line) and the outbreak state (red line) during each week of the study period, that
is, P (Sit = s|y) for t = 1, . . . , T and s = 1 (absence) in green, s = 2 (endemic) in blue and
s = 3 (outbreak) in red, see Section 4.3.1.

neighboring areas.

In Figures 4.5 (b) and (d) we compare the retrospective states estimates for Hôpital de

Verdun between models with, (b), and without, (d), clone states. The No Absence/Clone

State Model shows rapid switching between the outbreak and endemic states around weeks

50 and 102. During week 50, it is more realistic that the one-week dip in the hospitalizations

is due to random variation, which is what the Full Coupled Model identifies, and that there
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are not multiple outbreaks occurring. The Full Coupled Model does place some weight on an

endemic period between weeks 102 and 103. A two-week dip into the endemic period seems

more realistic than a one-week dip, however, we could prevent two-week dips by increasing the

number of endemic clone states. For the Full Coupled Model, we looked through the plots in

Figure 4.5 for each hospital and found the retrospective state estimates to be sensible.

4.5.4 Real-time evaluation and comparison

To evaluate the real-time performance of the models we fit the Full Coupled and Non-coupled

models up to 6 weeks before the introduction of Omicron and then up to every week after,

that is, we fit the models up to time T for T = 84 = 2021-10-18, ..., 113 = 2022-05-09,

producing 30 sets of posterior samples for each model. We did not include new_variantt as

a covariate since many of the fitted models are fit before, or just after, Omicron and so there

is likely not enough information to estimate the effect for many of the fits. Additionally,

we found after discarding 27% of the data for the real-time evaluation that MCMC chains

would sometimes get stuck in local modes in regions of the parameter space that only used

the absence state and one of the count states. This is not an uncommon problem in complex

Bayesian mixture modeling and, following the discussion and recommendations in Section

4.2.3 of Frühwirth-Schnatter (2006), we applied mild shrinkage to the transition probabilities

by assigning N(0, 2.52) priors to the intercepts in Equations (4.4)-(4.5), which stabilized

model fitting. Figure 4.6 compares the posterior probabilities that an outbreak is currently

happening (bottom graphs solid lines) between the Full Coupled Model, in orange, and the

Non-coupled Model, in purple, for four hospitals. Recall from Section 4.3.1 that the posterior

probability that an outbreak is currently happening is given by P (SiT = 3|y) and would be

used for the purpose of outbreak detection in a real-time scenario. The Full Coupled Model

gives an earlier warning of the Omicron outbreak in the first three hospitals, (a)-(c), but

not in the final hospital, (d). In (d) the hospitalizations rise very rapidly and so there is a

lot of within area information about the Omicron outbreak, making the coupling less useful
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 (c) Montreal General Hospital, Montreal
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 (d) University Institute of Cardiology and Pulmonology, Quebec City
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Figure 4.6: Top graphs show the observed hospitalizations for the last 30 weeks of the
study period where we conducted the real-time evaluation. Bottom graphs solid lines show
the posterior probabilities that an outbreak is currently happening, that is, P (SiT = 3|y),
versus T . Bottom graphs dashed line shows the one-week ahead outbreak forecasts from the
previous week, that is, P (SiT = 3|y1:(T−1)), versus T . The Full Coupled Model is in orange
and the Non-coupled Model is in purple. The dotted red lines are drawn at the introduction
of the Omicron variant for all of Quebec.

for providing an early warning. SM Figure B.5 (a) shows that, when averaged across all

hospitals, early on during the Omicron wave the Full Coupled Model gives a .15-.2 higher

posterior probability that an outbreak is currently happening, an earlier warning compared

to the Non-coupled Model, while it does not show an increased risk of an outbreak prior to

Omicron. The Omicron wave was highly synchronized between the hospitals and, therefore,

as can be seen from SM Figure B.5 (b), the probability of outbreak emergence would have
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been higher for the Full Coupled Model during the start of the wave as evidence of outbreaks

accumulated in neighboring hospitals. In general, SM Figure B.5 shows that the Full Coupled

Model tends to enforce the status quo, making outbreak occurrence more (less) likely if there

are (are not) outbreaks occurring in neighboring areas.

The dashed line in the bottom graphs of Figure 4.6 show the one-week ahead outbreak

forecasts P (SiT = 3|y1:(T−1)), from the previous week, for the Full Coupled Model. Note

that, we typically observe P (SiT = 3|y) > P (SiT = 3|y1:(T−1)) > P (Si(T−1) = 3|y1:(T−1))

around the start of the Omicron wave. We looked through the plots in Figure 4.6 for each

hospital and found the real-time state estimates/forecasts to be sensible in most hospitals.

We did find evidence of false alarms being thrown in 2/30 hospitals during the real-time

evaluation, shown in the SM Section B.7.3. The false alarms appear to have been mostly

caused by hospitalizations spiking during periods of high outbreak risk, meaning the model

has no information that an outbreak starting should be unlikely to counter the false alarm.

Still, the model corrected itself quickly, by the next week in most cases.

Finally, the map in SM Figure B.6 shows the likely state in the catchment area of each

hospital during the last week of the study period, March 5th, 2022, from the Full Coupled

Model with new variant as a covariate. According to the map, most catchment areas were

in the outbreak state at this time, especially in/around Montreal.

4.6 Discussion

We have proposed a three-state coupled nonhomogeneous Markov switching model for the

general analysis of spatio-temporal outbreak occurrence. The model can be used for inves-

tigating associations between various factors, including geographical outbreak spread, and

outbreak emergence, outbreak persistence, disease extinction and disease emergence, as well

as for detecting and forecasting the outbreaks. We made three main contributions to the

existing (Amorós, 2017) endemic/outbreak Markov switching literature. Firstly, to account

101



for long periods of disease absence in smaller areas (Bartlett, 1957), we added an absence

state to our model in addition to the more traditional endemic and outbreak states. Sec-

ondly, to incorporate geographical outbreak spread (Grenfell et al., 2001), we allowed the

transition probabilities to depend on whether outbreaks were occurring in neighboring ar-

eas. Previous two-state approaches (Heaton et al., 2012) have allowed the probabilities of

outbreak emergence to depend on neighboring outbreaks, but they did not allow outbreak

emergence to depend on covariates, and they fixed the probability of outbreak persistence

at one to prevent rapid switching between endemic and outbreak periods, meaning their

method could not be applied to multiple outbreaks. Finally, to allow for the analysis of mul-

tiple outbreaks, we instead introduced clone states (Kaufmann, 2018) into the model, which

prevents rapid switching between endemic and outbreak periods by enforcing a minimum

endemic and outbreak duration.

We applied our model to the analysis of COVID-19 outbreaks across Quebec based on ad-

missions in the 30 largest hospitals. We found that mobility in retail and recreation venues,

the introduction of new variants and the occurrence of outbreaks in neighboring areas all

had positive associations with the emergence or persistence of new COVID-19 outbreaks in

Quebec. Additionally, mobility and population size had positive associations with transmis-

sion during the outbreak and endemic periods, and the effects were amplified during the

outbreak periods. As for disease extinction and emergence, we only found evidence that the

disease is more likely to go extinct in smaller areas and at lower levels of mobility. Disease

extinction and emergence are rarer transitions, so more data needs to be collected to study

them with high precision.

Regarding model performance, we found our model gave realistic estimates of past epidemi-

ological states for the Quebec hospitalizations and appeared to perform outbreak detec-

tion/ forecasting well in a real-time evaluation of the Omicron wave, absent a small number

of false alarms during the real-time evaluation. However, on the Quebec hospitalizations it
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was difficult to exactly quantify the accuracy of the state estimates, e.g., calculate AUC,

sensitivity, etc., as the true underlying states were not known. Therefore, we also conducted

a simulation study with known outbreaks and found our model achieved good sensitivity,

specificity and timeliness both retrospectively and during real-time outbreak detection and

forecasting.

Regarding model comparison among different Markov switching models. In our simulation

study, where we assumed outbreaks in neighboring areas occurred around the same time,

including neighboring outbreak indicators in the transition probabilities greatly improved

sensitivity, specificity and timeliness during real-time outbreak detection and forecasting. As

for our analysis of the Quebec hospitalizations, model comparison using WAIC supported

the inclusion of absence/clone states and the addition of neighboring outbreak indicators

in the transition probabilities. We also found for the Quebec analysis that the addition of

an absence state can be important in smaller areas for reducing bias in the endemic state

distribution towards 0, a bias that we observed often leads to unrealistic state estimates.

We further observed that clone states are important for preventing rapid switching between

endemic and outbreak periods, making the state estimates more realistic. Finally, in a

real-time evaluation we found that the incorporation of outbreak spread led to an earlier

warning of the Omicron wave in Quebec as the wave was highly synchronized across the

hospitals. Ultimately, our contributions show a lot of promise for improving state estima-

tion both retrospectively and in real-time, especially when there are small areas and highly

spatially synchronized outbreaks. Although we applied our model to spatio-temporal counts

of hospitalizations, it could also be applied to spatio-temporal counts of disease cases, which

are popular to model for outbreak occurrence analysis (Knorr-Held and Richardson, 2003;

Watkins et al., 2009), or deaths.

Now we will address the question of how our approach fits into the broader popular literature

on spatio-temporal infectious disease modeling, including compartmental models (Bauer and
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Wakefield, 2018) and multivariate time series models (Ssentongo et al., 2021). One aspect of

our approach that we believe is unique is the ability to quantify associations, through odds

ratios, between covariates and certain epidemiological transitions, such as outbreak emer-

gence or disease extinction. Also, our model can provide the probability that a spike in an

epidemiological indicator is due to an actual outbreak developing as opposed to just random

endemic variation, which is valuable for outbreak detection (Unkel et al., 2012). On the Que-

bec hospitalizations, we found our model fit better and had better interpretations compared

to the Endemic-epidemic model (Bracher and Held, 2022), a popular alternative.

There are also some limitations with our approach. Conditional on the states, we only

consider first-order autoregression, see the discussion at the end of SM Section B.4. Given

weekly data and a disease with a short serial interval, such as COVID-19, this is likely not

a major limitation (Bracher and Held, 2022). However, in some cases, especially with daily

data, it can be important to account for higher-order temporal dependencies. As another

limitation, we assume that the probability of an outbreak emerging does not depend on the

amount of time since the last outbreak has ended. After an outbreak ends, the susceptible

population should increase over time due to demographic changes, waning immunity and

other factors, leading to an increased outbreak risk (Keeling and Rohani, 2007). In a hidden

semi-Markov model (Langrock and Zucchini, 2011), the transition probabilities can depend

on the amount of time that has been spent in the state, which can be pursued in further

work. Finally, given the large number of transitions in our model, the number of covariate

effects grows quickly with the number of covariates (4 times). Shrinkage could be applied

to the covariate effects in the transition probabilities to eliminate many unimportant effects

(Wang et al., 2023).
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Chapter 5

Markov switching zero-inflated

space-time multinomial models for

comparing multiple infectious diseases

Preamble to Manuscript 3. In this third manuscript, we consider coupled Markov switch-

ing models where multiple diseases switch between periods of presence and absence in each

area. Therefore, this paper can be seen as a multivariate extension of the first manuscript

from Chapter 3. Since we are mainly interested in comparing the transmission dynamics of

the diseases, we assume that the reported cases of the present diseases in an area jointly fol-

low an autoregressive multinomial model. The multinomial model can be used to investigate

associations between certain factors, such as temperature, and differences in the transmis-

sion intensity of the diseases. Like in the first manuscript, we assume the absent diseases

always report 0 cases. Additionally, we assume that the probability a disease is present in

an area can depend on the presence of the other diseases previously, to account for disease

interactions (Sherlock et al., 2013).

Our approach incorporates coupled Markov switching into the zero-inflated multinomial
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framework of Zeng et al. (2022). Zero-inflated multinomial models assume that certain

categories (in our case diseases) can be absent from each observation, in which case their

corresponding multinomial probabilities are fixed at zero (Tang and Chen, 2019; Zeng et al.,

2022; Koslovsky, 2023). Existing zero-inflated multinomial models are not appropriate for

spatio-temporal infectious disease counts, as they assume that the multinomial counts con-

ditional on the present categories are independent between observations. They also assume

that the presence of a category in one observation does not affect whether that category or

other categories are present in other observations (independence of categorical presence). If a

disease is present, it is more likely to be present again in the area (Coutinho et al., 2006) and

it may also affect the presence of other diseases due to disease interactions (Sherlock et al.,

2013). For our motivating example to dengue, Zika and chikungunya counts, we found that

the model of Zeng et al. (2022) did not fit as well as our coupled Markov switching extension,

see Table 5.1, and produced estimates that were not consistent with the epidemiology of the

diseases, see the discussion at the beginning of Section 5.4.2. We also found that the model

of Zeng et al. (2022) was not able to produce a complex spatio-temporal pattern of disease

presence like with our coupled Markov switching model, see Figure 5.4.

Finally, as an alternative to our multinomial approach, we could assume the cases of the

present diseases jointly follow some form of a multivariate Poisson distribution (Jack et al.,

2019). This would be more appropriate if we were interested in the overall effects of a

covariate on transmission and not just the relative effects, see the discussion in Section

C.1.2 of the supplementary materials. Zero-inflated spatio-temporal multivariate Poisson

models have only been considered by Rotejanaprasert et al. (2021) and Pavani and Moraga

(2022). These models, which relied primarily on random effects to capture correlations, have

several important limitations such as not allowing the probabilities of disease presence to

change across time. A random effect approach will likely become intractable due to the

need to account for correlations across three dimensions in both the count and zero-inflated

components of the model. Our approach is much more computationally feasible and could
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be easily extended to the multivariate Poisson case, see Section C.1.2.

In conclusion, by extending the models from the first manuscript to the multivariate setting

and by extending zero-inflated multinomial models to the space-time setting, this manuscript

represents an important contribution to the area of multivariate spatio-temporal infectious

disease modeling. Additionally, the multinomial approaches explored here could be extended

to the multivariate Poisson case to address important gaps in that literature. Indeed, very

little attention has been given to zero-inflated multivariate spatio-temporal disease modeling,

despite the importance of comparing disease dynamics in a space-time setting (Freitas et al.,

2019).
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Abstract

The modeling of zero-inflated multinomial data across space and time is challenging due

to the need to account for correlations across space, time and category in both the count

and zero-inflated components of the model. Despite spatio-temporal counts often containing

many zeroes, zero-inflated multinomial models for space-time data have not been considered.

Here, we present a computationally feasible approach to the problem based on an autoregres-

sive Markov switching framework. We are interested in comparing the transmission dynamics

of several co-circulating infectious diseases where some can be absent for long periods. We

first assume there is a baseline disease that is well-established and always present in the

region. The other diseases switch between periods of presence and absence in each area

through a series of coupled Markov chains that account for long periods of disease absence,

disease interactions and disease spread from neighboring areas. Since we are only interested

in comparing the diseases, we assume the cases of the present diseases in an area jointly

follow an autoregressive multinomial model. We use the multinomial model to investigate

whether there are associations between certain factors, such as temperature, and differences

in the transmission intensity of the diseases. Inference is performed using efficient Bayesian

Markov chain Monte Carlo methods based on jointly sampling all presence indicators. We

apply the model to spatio-temporal counts of dengue, Zika and chikungunya cases in Rio de

Janeiro during the first triple epidemic there.
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5.1 Introduction

Comparing the transmission dynamics of several co-circulating infectious diseases is an im-

portant problem in epidemiology. In this paper, we are specifically concerned with compar-

ing the transmission dynamics of the vector-borne diseases Zika, chikungunya and dengue.

Since 2015 several countries in Latin America have experienced triple epidemics of these

diseases, placing an immense burden on the local populations (Rodriguez-Morales et al.,

2016; Bisanzio et al., 2018; Queiroz and Medronho, 2022). Despite being transmitted by

the same vector, the Aedes aegypti, several studies have found spatio-temporal differences in

clusters of the three diseases (Freitas et al., 2019; Kazazian et al., 2020). Investigating how

these differences may be related to covariates could help more efficiently distribute medi-

cal resources, as health interventions can vary between the diseases (Freitas et al., 2019).

Schmidt et al. (2022) attempted this using a multinomial model but they only investigated

how the relative distribution of the diseases varied spatially. There is also an interest in

seeing how the transmission of the three diseases may differ by spatio-temporal factors. For

instance, laboratory studies have shown that the transmission of Zika may be more sensitive

to temperature compared to dengue, which is important as it implies Zika will not be able

to spread as effectively into North America and the highlands (Tesla et al., 2018).

As a motivating example, we analyze bi-weekly reported case counts of Zika, chikungunya,

and dengue in the 160 neighborhoods of Rio de Janeiro, Brazil, between 2015-2016, during

the first triple epidemic there. Since we are only interested in comparing the diseases, we

condition on the total number of cases in each area and bi-week and use a multinomial

distribution to model their relative allocations (Dabney and Wakefield, 2005; Dreassi, 2007;

Schmidt et al., 2022). Several authors have proposed modeling multinomial data across time,

space, or both by adding correlated random effects to multinomial link functions, such as

the log relative odds (Pereira et al., 2018; Sosa et al., 2023). Proposed distributions for

the random effects include conditional autoregressive distributions (Schmidt et al., 2022),

111



multivariate logit-beta distributions (Bradley et al., 2019) and multivariate normal random

walks (Cargnoni et al., 1997). Autoregressive approaches (Loredo-Osti and Sutradhar, 2012)

have also been popular, where the current multinomial probabilities in an area are assumed to

depend on past observations in the area (Fokianos and Kedem, 2003) and neighboring areas

(Tepe and Guldmann, 2020). Since new infectious disease cases are transmitted from previous

cases, conditioning on past observations is often a natural way to model infectious disease

counts across time and space (Bauer and Wakefield, 2018). Therefore, we primarily take an

autoregressive-driven approach in this paper. In particular, we assume that if conditions are

more favorable for one disease over the others, then the share of that disease will grow over

time. We represent the relative favorability of the diseases through a series of autoregressive

parameters that are linked to covariates. This allows us to investigate whether a covariate

is associated with conditions that are more favorable toward the transmission of one of the

diseases. As we will show, our approach is epidemiologically motivated and can be derived

from a series of Reed-Frost chain binomial susceptible-infectious-recovered (SIR) models

(Abbey, 1952; Vynnycky, 2010; Bauer and Wakefield, 2018).

A potential issue with applying a multinomial model to multivariate spatio-temporal infec-

tious disease counts is that many infectious diseases, especially vector-borne diseases, can be

absent for long periods of time in an area (Bartlett, 1957; Coutinho et al., 2006; Adams and

Boots, 2010). This behavior is illustrated in Figure 5.1 which shows bi-weekly reported case

counts of dengue, Zika and chikungunya in the western Rio neighborhood of Praça Seca,

between 2015-2016. While dengue cases are reported consistently throughout the two years,

very few Zika cases and no chikungunya cases are reported in the first year. These patterns

are typical of most neighborhoods. If a disease is absent in an area then there should be no

chance of cases being reported. However, a multinomial model will always assign a positive

probability to cases being reported for any of the diseases. This may lead to many more

zeroes in the observed counts than can be realistically produced by a fitted multinomial

model (Koslovsky, 2023). Also, we do not want to compare the transmission dynamics of
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Figure 5.1: Bi-weekly reported case counts of dengue (a), Zika (b), and chikungunya (c)
in Praça Seca, a west neighborhood of Rio de Janeiro, Brazil, between 2015-2016. Sum-
mer/winter seasons highlighted in red/light blue.

a present disease and an absent one as it would likely overestimate the favorability of the

present disease.

To account for long periods of disease absence, we will place our proposed autoregressive

multinomial model within a zero-inflated multinomial modeling framework (Zeng et al.,

2022). Zero-inflated multinomial models allow certain categories, in our case diseases, to be

absent from each observation (Diallo et al., 2018). If a category is absent from an obser-

vation its corresponding multinomial probability is fixed at 0 (Tang and Chen, 2019). The
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presence of a potentially absent category is treated as random and generated through an

independent Bernoulli process (Koslovsky, 2023). Tang and Chen (2019), Zeng et al. (2022)

and Koslovsky (2023) have proposed zero-inflated multinomial models that allow all cate-

gories to be either present or absent from each observation. These proposals mainly differ

in how the multinomial distributions are parametrized and whether covariates can affect the

probability of a category being present (Tang and Chen, 2019; Koslovsky, 2023). We will

largely follow Zeng et al. (2022) as they use a log link for the relative odds which matches

our proposed autoregressive multinomial model.

However, the framework of Zeng et al. (2022) is not entirely appropriate for our application to

multivariate spatio-temporal infectious disease counts. Firstly, past approaches have ignored

that all categories cannot be absent from an observation if the total count is not equal to

0. This may have been overlooked as existing zero-inflated multinomial models have been

applied to data with many categories, usually greater than 50 (Zeng et al., 2022). However, in

our motivating example, we have only 3 diseases. Another issue is that past approaches have

made two independence assumptions that are inappropriate for spatio-temporal infectious

disease counts. Firstly, they have assumed that the multinomial counts are independent

conditional on the present categories of each observation. Infectious disease counts usually

exhibit a high amount of correlation across space and time due to disease transmission (Bauer

and Wakefield, 2018). Secondly, past approaches assumed that if a category is present in

one observation it does not affect whether that category or other categories are present in

other observations (independence of categorical presence). If an infectious disease is present

in an area then it is more likely to be present in the next time period, as disease presence

and absence are usually persistent (Coutinho et al., 2006). Also, the presence of one disease

may affect whether other diseases are present due to potential disease interactions (Paul

et al., 2008). Finally, the diseases will spread between neighboring areas (Grenfell et al.,

2001), meaning the status of the disease in an area will affect its presence in neighboring

areas.
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To address the above issues, we first choose a baseline disease that is well-established in the

region and assume it is always present. This avoids all diseases being absent in an area at

once which would be impossible if the total number of cases were not 0. We assume all other

diseases switch back and forth between periods of presence and absence in each area through

a series of Markov chains. The Markov chains account for long periods of disease absence,

disease interactions and covariates, including the prevalence of the diseases in neighboring

areas. For the diseases present in an area together, we assume that the distribution of their

cases conditional on the total follows our proposed autoregressive multinomial model. The

absent diseases always report 0 cases. The rest of this paper is organized as follows. Section

5.2 introduces our proposed autoregressive multinomial model for comparing the transmission

dynamics of multiple infectious diseases in a space-time setting. Section 5.2.1 extends the

model to incorporate zero inflation and deal with long periods of disease absence. Section

5.3 details our Bayesian inferential procedure which utilizes the forward filtering backward

sampling (FFBS) algorithm of Chib (1996) for efficient inference. In Section 5.4, we apply

our model to cases of dengue, Zika and chikungunya in Rio de Janeiro during the first triple

epidemic there. We investigate how factors like temperature were related to differences in

the transmission intensity of the diseases. We close with a general discussion in Section

5.5.

5.2 An Autoregressive Multinomial Model for Compar-

ing Transmission Dynamics

Assume we have reported case counts for K different infectious diseases across i = 1, . . . , N

areas and t = 1, . . . , T time periods. Let yit = (y1it, . . . , yKit)
T represent the vector of case

counts for all diseases in area i during the time interval (t − 1, t], where ykit represents the

reported case counts for disease k. We will begin by presenting our model without zero

inflation and then extend to the zero-inflated case in Section 5.2.1. Since we are mainly

115



interested in comparing the diseases, we condition on the total number of cases and model

yit using a multinomial distribution,

yit|totalit,yt−1 ∼ Multinom(πit, totalit), (5.1)

where totalit =
∑︁K

k=1 ykit and yt−1 = (y1(t−1), . . . ,yN(t−1))
T is the vector of all case counts

reported in the previous time, giving the model an autoregressive structure. In (5.1), πit =

(π1it, . . . , πKit)
T represents the expected relative distribution of the disease counts at time

t in area i given the previous observed counts yt−1. If conditions in (t − 1, t] do not favor

one disease over the others, then the relative distribution of the diseases should remain the

same. Otherwise, if conditions in (t − 1, t] favor some diseases over others then the share

of the favored diseases should grow relative to those less favored. Therefore, we model the

relative odds as,

πkit
π1it

= λ∗kit = λkit

(︁
yki(t−1) + 1

)︁ζk(︁
y1i(t−1) + 1

)︁ζ1 , (5.2)

for k = 2, . . . , K, where we assume disease 1 is the baseline disease and we add 1 to the top

and bottom to avoid dividing by zero, adding such constants is common in autoregressive

count models (Liboschik et al., 2017; Fritz and Kauermann, 2022). The parameters ζk and ζ1,

assumed to be between 0 and 1, are meant to account for nonhomogeneous mixing (Wakefield

et al., 2019). That is, as cases increase there tends to be a dampening effect on transmission

as individuals avoid infection and governments implement interventions. In (5.2), λkit > 0,

which we link to covariates below, is a parameter that represents the favorability of conditions

for the transmission of disease k relative to the baseline disease during (t−1, t]. For instance,

if λkit > 1 (λkit < 1) then we would expect the share of disease k to grow (shrink) relative

to the baseline disease in (t− 1, t], after adjusting for nonhomogeneous mixing with ζk and

ζ1. If ζk ≈ ζ1 << 1, like for our motivating example in Section 5.4, then this means that if

λkit > 1 the share of disease k will grow initially from an equal share. However, as disease k
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becomes more dominant the share will be pulled back towards equality as individuals avoid

infection from the dominant disease.

We link λkit to covariates and random effects using a log-linear model,

log(λkit) = α0ki + x
T
kitαk + ϕkit, (5.3)

where α0ki ∼ N(α0k, σ
2
k) is a normal random intercept meant to account for between area

differences and xkit is a vector of covariates that might affect the favorability of disease k

relative to the baseline disease. We model the random effects ϕkit using a multivariate normal

distribution (Xia et al., 2013; Zeng et al., 2022),

ϕit =

⎛⎜⎜⎜⎜⎝
ϕ2it

...

ϕKit

⎞⎟⎟⎟⎟⎠ ∼ MVNK−1(0,Σ), (5.4)

where Σ is a K−1 by K−1 variance-covariance matrix. The main purpose of these random

effects is to account for overdispersion which, like with Poisson counts, is a very common

issue when modeling multinomial counts (Xia et al., 2013). As we show using a simulation

study in the Supplementary Materials (SM) Section C.2, the variance-covariance matrix Σ

needs to be interpreted with caution. In the simulation study we focused on the case ofK = 3

where we have ϕit = (ϕ2it, ϕ3it)
T . We found that the correlation between ϕ2it and ϕ3it needs

to be around .5 or greater for the correlation between the individual counts, marginalizing

the random effects and conditional on their total, to be larger than what is produced by the

standard multinomial distribution.

Now we will discuss the interpretation of the covariate effects in (5.3). Broadly, if αkj > 0

(αkj < 0) then as xkitj increases, conditions will become more (less) favorable for the trans-

mission of disease k relative to the baseline disease. If αkj = 0 then xkitj does not af-

fect the favorability of disease k. Note, we can express the log relative odds in (5.2)
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as log(πkit/π1it) = α0ki + x
T
itαk + ϕkit + ζk log(yki(t−1) + 1)− ζ1 log(y1i(t−1) + 1). Therefore,

eαkj is the ratio of πkit/π1it (relative odds ratio), conditional on the other covariates, random

effects and previous distribution of the diseases, and the ratio of λkit (rate ratio), from Equa-

tions (5.2)-(5.3), conditional on the other covariates and random effects, corresponding to a

unit increase in xkitj. There is also an epidemiological interpretation of the model parame-

ters. As we show in SM Section C.1, if all diseases follow a Reed-Frost chain binomial SIR

model (Abbey, 1952; Vynnycky, 2010; Bauer and Wakefield, 2018) with roughly the same se-

rial interval, the time between successive generations of cases, then we can derive Equations

(5.1)-(5.4). Under this derivation, λkit in (5.2) represents the ratio of the effective reproduc-

tion number of disease k and the baseline disease. The effective reproduction number is an

important measure of transmission in epidemiology that gives the average number of new

infections produced by a single infectious individual in the current population before they

recover (Vynnycky, 2010). The covariate effect αkj then represents the difference between

the effect of covariate xkitj on the effective reproduction number of disease k and the baseline

disease, see SM Section C.1 for more details.

We recommend treating the Reed-Frost derivation with some caution as the Reed-Frost

model, although commonly used (Wakefield et al., 2019), makes assumptions that are not

appropriate for many diseases (Abbey, 1952), and the model can be sensitive to underre-

porting and reporting delay when it comes to estimating the effective reproduction number

(Bracher and Held, 2021; Quick et al., 2021). Regardless, the Reed-Frost derivation does

reveal an important source of potential confounding due to differences in the susceptible

populations, i.e., the population of individuals who are not immune to the disease. From the

Reed-Frost derivation, see SM Equation (C.8), ideally, we would add log(δki(t−1)/δ1i(t−1)) to

log(λkit) in Equation (5.3), where δki(t−1) is the size of the susceptible population for disease

k in area i at time t − 1. This makes sense intuitively, if a disease has a larger susceptible

population compared to another then transmission for that disease will naturally be favored.

The effect of any covariates correlated with the ratio of the susceptible populations could
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then be confounded. We conduct sensitivity analysis to attempt to control for this in Section

5.4.4.

Finally, we note that the number of cases in neighboring areas may affect the favorability of

the diseases as individuals will mix with those in neighboring areas (Grenfell et al., 2001).

Therefore, we allow functions of disease cases in neighboring areas, such as the prevalence

across neighboring areas, to be added to the covariate vector xkit. Also, we allow previous

counts of other diseases, e.g., log(yji(t−1) + 1) for j ̸= k, to be added to xkit to account for

potential disease interactions (Freitas et al., 2019), see Section 5.4 for an example. We will

call the model defined by (5.1)-(5.4) the autoregressive multinomial (ARMN) model. Note

the multinomial probabilities are completely defined by (5.2)-(5.4) as π1it = 1

1+
∑︁K

j=2 λ
∗
jit

and

πkit =
λ∗
kit

1+
∑︁K

j=2 λ
∗
jit

for k = 2, . . . , K.

5.2.1 Incorporating zero-inflation

As detailed in the introduction, if some of the diseases are absent in an area then the ARMN

model is not appropriate as it will always assign a positive probability to cases being reported.

In this subsection, we will keep the definitions from above and extend the ARMN model to

deal with long periods of disease absence by adapting the proposal of Zeng et al. (2022)

to our space-time setting. Let Skit, for k = 1, . . . , K, be an indicator for the presence of

disease k, so that Skit = 1 if disease k was present in area i during time t and Skit = 0 if

disease k was absent. Under the zero-inflated multinomial framework of Zeng et al. (2022),

the multinomial probabilities are given by,

π1it =
S1it

S1it +
∑︁K

j=2 Sjitλ∗jit
,

πkit =
Skitλ

∗
kit

S1it +
∑︁K

j=2 Sjitλ∗jit
,

(5.5)
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for k = 2, . . . , K. An immediate issue with (5.5) is that we cannot have S1it = · · · = SKit = 0

as we would divide by 0. Even if we were to define πit = 0 if S1it = · · · = SKit = 0, we

would have the issue that this implies totalit = 0. A multinomial model conditions on the

total count and does not generate it. There is nothing in the model of Zeng et al. (2022) to

prevent S1it = · · · = SKit = 0. This may have been overlooked by them as they dealt with

the case of K ≥ 50 and, therefore, it is very unlikely S1it = · · · = SKit = 0. However, in our

motivating example, we have K = 3.

There are a few possible solutions to prevent S1it = · · · = SKit = 0 including truncating

the joint distribution of Sit = (S1it, . . . , SKit)
T . As it makes sense in many epidemiological

applications, we will assume that the baseline disease is well-established in the region and is

always present. That is, we assume S1it = 1 for all i and t. For instance, in our motivating

example, dengue has been circulating in Rio since 1986 and is well-established there (Teixeira

et al., 2009). Also, most neighborhoods in Rio reported dengue cases fairly consistently

between 2015-2016, see Figure 5.1 for an example. Therefore, we will take dengue as the

baseline disease. We replace Equation (5.5) then by,

π1it =
1

1 +
∑︁K

j=2 Sjitλ∗jit
,

πkit =
Skitλ

∗
kit

1 +
∑︁K

j=2 Sjitλ∗jit
,

(5.6)

for k = 2, . . . , K.

The presence of a disease in an area should depend on whether it was present previously, as

disease presence and absence are often highly persistent (Coutinho et al., 2006), and may

also depend on whether other diseases were present previously, as the diseases can interact

with one another (Paul et al., 2008; Sherlock et al., 2013). Also, the presence of a disease

might depend on environmental or socioeconomic factors, like temperature and water supply

in the case of vector-borne diseases (Schmidt et al., 2011; Xu et al., 2017). Therefore, we
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model Skit as,

Skit|Si(t−1),yt−1 ∼ Bern(pkit)

logit(pkit) = η0k + z
T
kitηk + ρAR

k Ski(t−1)⏞ ⏟⏟ ⏞
autoregressive

effect

+
∑︂

j>1, j ̸=k

ρDI
jk Sji(t−1)⏞ ⏟⏟ ⏞

disease interaction
effect

, (5.7)

where zkit is a vector of space-time covariates that might affect the presence of disease k. As

the disease may spread from neighboring areas (Grenfell et al., 2001), we allow functions of

disease cases in neighboring areas to be added to zkit, hence the dependence on yt−1 in (5.7).

For instance, the prevalence of the disease in neighboring areas could be added to zkit, see

Section 5.4. Note, as ρAR
k in Equation (5.7) increases, the probability of getting a consecutive

period of disease presence or absence approaches 1. Therefore, (5.7) can account for long

consecutive periods of disease presence and absence which are often observed for infectious

diseases, see Figure 5.1, Coutinho et al. (2006) and Adams and Boots (2010).

We will call the ARMN model modified by Equations (5.6)-(5.7) the Markov switching zero-

inflated autoregressive multinomial (MS-ZIARMN) model. There are some properties of the

MS-ZIARMN model that are worth mentioning. Firstly, from Equation (5.6), π1it + · · · +

πKit = 1 for any possible values of the parameters and presence indicators. Also note that

if diseases k and j are present in area i during time t we have πkit/πjit = λ∗kit/λ
∗
jit, which

is the same as in the ARMN model described in Equations (5.2)-(5.4). That is, the MS-

ZIARMN model preserves the relative distribution of the present diseases from the ARMN

model. Although not explicitly mentioned by them, this is a convenient property of Zeng

et al. (2022), in general, their framework preserves the relative distribution of the present

categories from the non-zero-inflated model. Finally, if K = 2 and we assume Equation (5.6),

where log(λ∗2it) = logit(π2it) = α02i + x
T
2itα2 and logit(p2it) = η02 + z

T
2itη2, we get the well

known and popular zero-inflated binomial (ZIB) model of Hall (2000). Therefore, our model

without space-time effects could be seen as a multinomial extension of Hall (2000).
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As we will show in the next section, the MS-ZIARMN model is a mixture of different multi-

nomial distributions. More specifically, it is a Markov mixture or Markov switching model,

meaning we can perform efficient Bayesian inference (Frühwirth-Schnatter, 2006).

5.3 Inferential Procedure

In this section, we will implicitly assume the number of diseases K is small enough for matrix

multiplication with a 2K by 2K matrix to be computationally feasible. This should be the case

in most epidemiological applications, for instance, in our motivating example we compare

K = 3 diseases. Our inferential strategy revolves around reparametrizing the MS-ZIARMN

model as a Markov switching model (Frühwirth-Schnatter, 2006), which allows for very

efficient Bayesian inference using the forward filtering backward sampling (FFBS) algorithm

(Chib, 1996). To simplify the explanations we will assume, without loss of generality, that

K = 3.

In the case of K = 3, we have Sit = (S2it, S3it)
T as S1it is always equal to 1. Let S∗

it

be an indicator for the possible values of Sit, so that S∗
it = 1 if Sit = (1, 1)T , S∗

it = 2 if

Sit = (0, 1)T , S∗
it = 3 if Sit = (1, 0)T and S∗

it = 4 if Sit = (0, 0)T . Then we have that, from

Equation (5.6),

yit|yt−1, S
∗
it, totalit ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Multinom
(︃(︂

1
1+λ∗

2it+λ∗
3it
,

λ∗
2it

1+λ∗
2it+λ∗

3it
,

λ∗
3it

1+λ∗
2it+λ∗

3it

)︂T
, totalit

)︃
, if S∗

it = 1

Multinom
(︃(︂

1
1+λ∗

3it
, 0,

λ∗
3it

1+λ∗
3it

)︂T
, totalit

)︃
, if S∗

it = 2

Multinom
(︃(︂

1
1+λ∗

2it
,

λ∗
2it

1+λ∗
2it
, 0
)︂T

, totalit
)︃
, if S∗

it = 3

Multinom
(︂
(1, 0, 0)T , totalit

)︂
, if S∗

it = 4,

(5.8)

meaning, for K = 3, the MS-ZIARMN model is a mixture of 4 different multinomial dis-
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tributions where the multinomial probabilities are fixed at 0 for the diseases absent in a

component.

Now note that, from Equation (5.7), as Sit only depends on Si(t−1), yt−1 and covariates, S∗
it

follows a first order nonhomogeneous Markov chain. We will denote the transition matrix

of S∗
it as Γ(S∗

it|yt−1), where Γ(S∗
it|yt−1)jk = P (S∗

it = k|S∗
i(t−1) = j,yt−1) for j, k = 1, 2, 3, 4,

i = 1, . . . , N and t = 2, . . . , T . As S∗
it is an indicator for Sit, we can derive the transition

matrix by calculating,

P (Sit = sit|Si(t−1) = si(t−1),yt−1) =
3∏︂

k=2

P (Skit = skit|S2i(t−1) = s2i(t−1), S3i(t−1) = s3i(t−1),yt−1),

for si(t−1), sit = (1, 1), (0, 1), (1, 0), (0, 0), using Equation (5.7). Finally, as S∗
i2 depends on S∗

i1

we require an initial distribution for the Markov chain, that is, P (S∗
i1 = j) for j = 1, 2, 3, 4

and i = 1, . . . , N . The initial distribution can be set by the modeler based on how likely

they believe the diseases to be present at the beginning of the study period.

Given p(yit|yt−1, S
∗
it, totalit) and Γ(S∗

it|yt−1) for i = 1, . . . N and t = 2, . . . T , and p(S∗
i1) for

i = 1, . . . , N , we completely define a Markov switching model (Frühwirth-Schnatter, 2006). A

Markov switching model assumes a time series can be described by several submodels, often

called states or regimes, where switching between submodels is governed by a first-order

Markov chain (Hamilton, 1989). In our case, the submodels are given by the 4 multinomial

distributions in (5.8) and we switch between these submodels through the transition matrix

Γ(S∗
it|yt−1). Typically, S∗

it is called the state indicator.

Let S∗
t = (S∗

1t, . . . , S
∗
Nt)

T be the vector of state indicators for time t, let S∗ = (S∗
1 , . . . ,S

∗
T )

T

be the vector of all state indicators, let y = (y1, . . . ,yT )
T be the vector of all observations,

let β be the vector of all parameters in the multinomial part of the model, i.e., parameters

in (5.2)-(5.4), let θ be the vector of all parameters in the Markov chain part of the model,

i.e., parameters in (5.7), and, finally, let v = (β,θ)T be the vector of all model parameters.
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Then the likelihood of v given S∗ and y is given by,

p(S∗,y|v) =
N∏︂
i=1

T∏︂
t=2

p(yit|yt−1, S
∗
it, totalit,β)

N∏︂
i=1

p(S∗
i1)

T∏︂
t=2

p(S∗
it|S∗

i(t−1),yt−1,θ). (5.9)

Note, from Equation (5.8), S∗
it is only fully known when y1it, y2it, y3it > 0, in which case we

must have S∗
it = 1. Therefore, the inferential procedure must deal with S∗ in some way.

It is possible, assuming K is not too large, to use the forward filter (Hamilton, 1989) to

completely marginalize S∗ from (5.9) and calculate p(y|v), see SM Section C.3. However,

we want to make inferences about S∗ to investigate when the model believes the diseases

were present or absent for model checking, see Section 5.4.3. Therefore, we estimate S∗ along

with v by sampling both from their joint posterior distribution which, from Bayes’ theorem,

is proportional to,

p(v,S∗|y) ∝ p(S∗,y|v)p(v), (5.10)

where p(v) is the prior distribution of v. We specified wide independent gamma and normal

priors for most lower-level elements of v. We specified a conjugate inverse-Wishart prior for

Σ with K degrees of freedom and identity matrix, as it implies the correlations in Σ have

marginal uniform prior distributions (Gelman et al., 2013).

As the joint posterior (5.10) is not available in closed form, we resorted to Markov chain

Monte Carlo (MCMC) methods, in particular, we used a hybrid Gibbs sampling algorithm

with some steps of the Metropolis–Hastings algorithm to sample from it. We sampled each

ϕit in Equations (5.3)-(5.4) jointly using an adaptive blocked random walk metropolis step

(Roberts and Sahu, 1997; Shaby and Wells, 2010). For our motivating example, we sampled

some of the regression coefficients in v jointly using an automated factor slice sampler (Tib-

bits et al., 2014), as they mixed slowly and exhibited high posterior correlations. All other

elements of v without conjugate priors were sampled individually using an adaptive random
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walk metropolis step (Shaby and Wells, 2010). We sampled all of S∗ jointly from p(S∗|v,y)

using the FFBS algorithm for Markov switching models (Chib, 1996). See SM Section C.3

for more details. We found our MCMC algorithm mixed much faster when jointly sampling

S∗ as opposed to sampling each presence indicator individually. This is typically the case for

Markov switching models (Frühwirth-Schnatter, 2006) and was one of our main motivations

for reparametrizing the MS-ZIARMN model as a Markov switching model.

Our MCMC algorithm was implemented using the R package Nimble (de Valpine et al.,

2017). We implemented the FFBS algorithm using Nimble’s custom sampler feature. All

other MCMC samplers we used, which are mentioned above, are built into Nimble.

5.3.1 Fitted values

Comparing the fit of a time series model to the observed data is an important part of model

checking in time series analysis (Knorr-Held and Richardson, 2003; Liboschik et al., 2017;

Chen et al., 2019). We will let y′
it denote a fitted value. We assume that y′

it is a new count

from the same MS-ZIARMN model (5.8) that is assumed to have conditionally generated

yit, with the same past counts, parameter values, covariates and present diseases, except we

assume a new value for the random effect ϕ′
it corresponding to y′

it. That is, we assume y′
it

comes from the same space and time as yit and from the same assumed model (5.8), except

we posit a scenario where the unknown residual space-time factors influencing y′
it could be

different. We assume a new value for the random effect ϕkit as they represent a residual

for each observation and, therefore, it would be misleading to add them to the fit of the

model.

To be more concrete, let v′ represent v with Σ and ϕit, for all i and t, removed. We assume

that y′
it|yt−1, S

∗
it, totalit,v′,ϕ′

it follows the mixture distribution in (5.8) with λ∗kit replaced by
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λ∗
′

kit where,

log(λ∗
′

kit) = α0ki + x
T
itαk + ϕ

′

kit + ζk log(yki(t−1) + 1)− ζ1 log(y1i(t−1) + 1).

We assume ϕ′
it is a new value for the random effect corresponding to y′

it representing poten-

tially different residual space-time factors. Therefore, ϕ′
it does not feature in the likelihood

and only depends on y through Σ, that is,

ϕ′
it|Σ,y = ϕ′

it|Σ ∼ MVNK−1(0,Σ).

The posterior distribution of y′
it is then given by,

p(y′
it|y) =

∫︂
v′,Σ,ϕ′

it

∑︂
S∗
it

p(y′
it|yt−1, S

∗
it, totalit,v′,ϕ′

it)p(ϕ
′
it|Σ)p(v′,Σ, S∗

it|y) dv′dΣdϕ′
it. (5.11)

Let the superscript [m], for m = M + 1, . . . Q, where M is the size of the burn-in sample

and Q is the total MCMC sample size, denote a draw from the posterior distribution of a

variable. From (5.11), to draw y
′[m]
it ∼ p(y′

it|y) we can first draw ϕ
′[m]
it from p(ϕ′

it|Σ = Σ[m]).

Then we can draw y
′[m]
it from p(y′

it|yt−1, S
∗
it = S

∗[m]
it , totalit,v′ = v

′[m],ϕ′
it = ϕ

′[m]
it ). To help

assess the fit of the model, we then compare the posterior mean and credible interval of y′

kit

with the observed value ykit.

The posterior probability that disease k was present in area i during time t is given by

P (Skit = 1|y) ≈ 1
Q−M

∑︁Q
m=M+1 S

[m]
kit . It is important to view plots of P (Skit = 1|y) versus t

for various diseases k and areas i for model checking, see Section 5.4.3. We cannot compare

P (Skit = 1|y) to the true value of Skit when ykit = 0, since it is unknown. We usually do

not know if the diseases were circulating whenever 0 cases were reported as they could have

been circulating undetected. However, we can still check to make sure the model’s estimates

of when the diseases were present are reasonable and correspond to our general knowledge
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of the epidemiological situation. Note, when ykit > 0, P (Skit = 1|y) is not informative of

the model fit as we will always have P (Skit = 1|y) = 1 if ykit > 0, see Equation (5.8).

5.4 Application to Counts of Dengue, Zika and Chikun-

gunya in Rio

Between 2015-2016 Rio de Janeiro experienced its first triple epidemic of dengue, Zika and

chikungunya. Using space-time cluster analysis, Freitas et al. (2019) found that Zika and

dengue clusters were much more likely in the western region of Rio (there were no chikun-

gunya clusters found in the west), while other regions contained many clusters of each disease

though they often differed in time. However, they did not investigate how these differences in

clustering might depend on covariates or other factors. Schmidt et al. (2022), using a spatial

multinomial regression model, found that cases of chikungunya were more likely in urban

areas and Zika cases were less likely in population-dense areas, compared to dengue cases.

A spatial analysis cannot investigate how space-time factors might have affected differences

in the transmission intensity of the diseases, which may be important in this example, see

below. Therefore, we apply our MS-ZIARMN model to cases of the three diseases, K = 3,

across the 160 neighborhoods of Rio de Janeiro, N = 160, for each bi-week between 2015-

2016, T = 52. Our model seems appropriate for this example as there appear to be long

periods of disease absence in both the time series of chikungunya and Zika cases, see Figure

5.1 for example (overall 65% of Zika cases are equal to 0 and 75% of chikungunya cases are

equal to 0).

5.4.1 Model specification and fitting

We modeled the Rio data with a bi-weekly time step as this roughly corresponds to the serial

interval of the three diseases (Majumder et al., 2016; Riou et al., 2017). As mentioned in

Section 5.2.1, we took dengue as the baseline disease (k=1) since it is well-established in the
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city and cases are reported consistently throughout the study period. We then considered

k = 2 to represent Zika and k = 3 to represent chikungunya.

For xkit in (5.3), covariates that may affect the favorability of Zika or chikungunya trans-

mission, relative to dengue transmission, we first took all spatial covariates considered in

Schmidt et al. (2022): the percentage of neighborhood i covered in green area, verdei; the

social development index of neighborhood i, SDIi; and the population density of neighbor-

hood i, popdensi. We additionally considered the percentage of neighborhood i that was

occupied by favelas (slums), favelai. These spatial covariates were chosen as the transmis-

sion of arboviral diseases can be significantly influenced by socioeconomic factors such as

water supply and urbanicity (Schmidt et al., 2011), see Schmidt et al. (2022) for more de-

tails. As for space-time covariates, we first took the average weekly maximum temperature

in neighborhood i during bi-week t, tempit. Temperature is an important factor to con-

sider since if the transmission of Zika or chikungunya is more sensitive (less sensitive) to

temperature compared to dengue then their range of spread will be smaller (bigger) (Tesla

et al., 2018; Mercier et al., 2022). If there are many more cases of Zika or chikungunya in

neighboring areas, compared to dengue, then we would expect the share of those diseases

to grow all else equal, due to between-area mixing (Stoddard et al., 2013). Therefore, we

considered the previous prevalence of disease k and disease 1 (dengue) across neighboring

areas, log
(︂∑︁

j∈NE(i) ykj(t−1)∑︁
j∈NE(i) popj

+ 1
)︂

and log
(︂∑︁

j∈NE(i) y1j(t−1)∑︁
j∈NE(i) popj

+ 1
)︂
, in xkit, where NE(i) is the

set of neighboring areas of neighborhood i and popj is the population of neighborhood j.

We considered two areas neighbors if they shared a border. To simplify the model, we as-

sumed the effect of neighboring dengue prevalence was the same on both log(π2it/π1it) and

log(π3it/π1it), like with the within-area autoregression. Finally, it was speculated in Freitas

et al. (2019) that Zika circulation could have been inhibiting chikungunya transmission. To

account for these kinds of disease interactions, we considered log(y3i(t−1) + 1) in x2it and

log(y2i(t−1) + 1) in x3it. That is, chikungunya cases were allowed to affect the favorability of

Zika transmission relative to dengue transmission and Zika cases were allowed to affect the
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favorability of chikungunya transmission relative to dengue transmission. To summarize, for

covariates potentially related to the favorability of Zika transmission compared to dengue

transmission, we considered,

x2it =

(︄
verdei, SDIi, popdensi, favelai, tempit, log

(︄∑︁
j∈NE(i) y2j(t−1)∑︁
j∈NE(i) popj

+ 1

)︄
,

log

(︄∑︁
j∈NE(i) y1j(t−1)∑︁
j∈NE(i) popj

+ 1

)︄
, log(y3i(t−1) + 1)

)︄T

,

and similar for chikungunya.

As for covariates potentially associated with the presence of Zika or chikungunya, zkit in

(5.7), we considered mostly the same factors included in xkit. An exception is that we do not

include the cases of the other disease as the Markov chain defined in (5.7) already accounts

for disease interactions through ρDI
jk . Also, since the presence is not defined relatively, we do

not include neighboring dengue prevalence. Therefore, for covariates potentially associated

with the presence of Zika, we considered,

z2it =

(︄
verdei, SDIi, popdensi, favelai, tempit, log

(︄∑︁
j∈NE(i) y2j(t−1)∑︁
j∈NE(i) popj

+ 1

)︄)︄T

,

and similar for chikungunya.

We also need to specify the initial state distributions, see Section 5.3. As there were no

chikungunya cases reported at all in the first year, we assumed chikungunya had only a 5

percent chance of being present at the start of 2015. For Zika, there are a few, but not many,

cases reported through most of 2015 and, therefore, we assumed a 10 percent chance of

initial presence. We fitted the MS-ZIARMN model specified above to the Rio data using our

proposed Gibbs sampler from Section 5.3. We ran the Gibbs sampler for 250,000 iterations

on three chains with an initial burn-in of 50,0000 iterations. All sampling was started from

random values in the parameter space to avoid convergence to local modes. Convergence was
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checked using the Gelman-Rubin statistic (all estimated parameters <1.05), the minimum

effective sample size (>1000) and by visually examining the traceplots (Plummer et al.,

2006).

For comparison purposes, we also considered a model without zero inflation to ensure there

is justification for treating the many zeroes in the data, as hypothesized. That is, the ARMN

model described in Equations (5.1)-(5.4) with the same covariates x2it and x3it as the MS-

ZIARMN model. We also considered a zero-inflated model without the coupled Markov

chains, that is, with ρAR
k = 0 and ρDI

jk = 0 for all k and j > 1, j ̸= k in Equation (5.7), which

we will call the ZIARMN model. Without the coupled Markov chains, our model is a finite

mixture and not a Markov mixture model, and the inference is greatly simplified, e.g., there

is no need to use the FFBS algorithm. Therefore, we want to make sure this component

is important. Finally, we compared with the zero-inflated multinomial model of Zeng et al.

(2022) as our approach is built on their framework. Zeng et al. (2022) assumed that the

probability a category is absent from an observation only depended on the category and,

following this, we let logit(pkit) = η0k for k = 2, 3 in Equation (5.7). We kept the rest of the

model the same as the MS-ZIARMN model. Note, Zeng et al. (2022) did not consider any

covariates or space-time structure in the multinomial probabilities of the present categories.

However, this is inappropriate for our example and did not fit the data well (results not

shown). Also, Zeng et al. (2022) did not assume the baseline category was always present,

however, this appears to be necessary when modeling a small number of categories, see

Section 5.2.1.

Table 5.1 shows the widely applicable information criterion (WAIC) (Gelman et al., 2014) of

the 4 considered models. We calculated the WAIC by marginalizing out the state indicators

S∗ as recommended by Auger-Méthé et al. (2021), see SM Section C.4 for more details. Note,

the model with the smallest WAIC is considered to have the best fit and as a rule of thumb

a difference of 5 or more in the WAIC is considered significant. Table 5.1 shows it is not only
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Table 5.1: Shows the WAIC of the 4 considered models from Section 5.4.1 fitted to the Rio
data. The best fitting model, the one with the lowest WAIC, is bolded.

Model WAIC

MS-ZIARMN 22,091

ARMN 23,974

ZIARMN 22,756

Zeng (2022) 23,986

important to account for zero inflation, but also covariates and correlations across space,

time and disease in the zero-inflated process (i.e., the process of disease presence). Indeed,

the model of Zeng et al. (2022) had a worse fit compared to the ARMN model (without zero

inflation), despite the other zero-inflated models having a much better fit.

5.4.2 Results

Table 5.2 shows the estimated coefficients from the multinomial part of the fitted MS-

ZIARMN model, that is the intercepts and covariate effects from Equation (5.3). From the

intercept row, at average values of the covariates, Zika transmission was favored over dengue

and chikungunya transmission. That is, under average conditions the share of Zika cases

tended to grow over time in an area (at least from an equal share, see the nuances in Section

5.2). It is interesting to compare these estimated intercepts with those from the ARMN

and Zeng (2022) models in SM Table C.1. Unlike the MS-ZIARMN model, the Zeng (2022)

and ARMN models both estimated that on average Zika and chikungunya transmission was

much less intense in Rio compared to dengue transmission. This does not correspond to our

knowledge of the epidemiology of these diseases and is likely due to a failure to properly

account for the many zeroes. Zika is generally considered more transmisable due to Ae.

aegypti transmitting Zika at a higher rate (Freitas et al., 2019). This further illustrates it is

important to account for zero inflation and to model zero inflation properly (e.g., account

for correlations).
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Table 5.2: Posterior means and 95% posterior credible intervals (in parentheses) for the
estimated coefficients from the multinomial part of the fitted MS-ZIARMN model. The
intercept row shows λkit for k = 2 (Zika) and k = 3 (chik.) in a typical area at average
values of the covariates. Recall, if λkit > 1 (λkit < 1) then the share of disease k relative to
dengue will tend to grow (shrink) over time. Other rows show the ratio of πkit/π1it (relative
odds ratio) or the ratio of λkit (rate ratio) (both are the same, see Section 5.2) corresponding
to a unit increase in the covariate. All covariates are standardized. Significant effects are
bolded. See Section 5.4.1 for an explanation of the covariates.

Relative Odds Ratio or Rate Ratio

Covariates Zika-dengue chik.-dengue

Intercept 1.14 (1.03, 1.26) 1.02 (.91, 1.13)

verdei 1.02 (.95, 1.09) .92 (.85, 1)

SDIi 1.07 (.99, 1.15) 1.01 (.92, 1.11)

popdensi 1.02 (.94, 1.11) 1.06 (.96, 1.16)

favelai .98 (.91, 1.05) .94 (.87, 1.03)

tempit 1.14 (1.09, 1.20) .85 (.80, .90)

log
(︂∑︁

j∈NE(i) y1j(t−1)∑︁
j∈NE(i) popj

+ 1
)︂

.70 (.67, .74) .70 (.67, .74)

log
(︂∑︁

j∈NE(i) y2j(t−1)∑︁
j∈NE(i) popj

+ 1
)︂

1.59 (1.48, 1.70) –

log
(︂∑︁

j∈NE(i) y3j(t−1)∑︁
j∈NE(i) popj

+ 1
)︂

– 1.43 (1.36, 1.50)

log(y2i(t−1) + 1) – .90 (.85, .96)

log(y3i(t−1) + 1) .98 (.95, 1.02) –

Interestingly, unlike in Schmidt et al. (2022), we did not find strong evidence that any of the

spatial covariates were important for explaining differences in the transmission of the diseases.

We found that Zika transmission was favored at warmer temperatures and chikungunya

transmission was favored at colder temperatures, compared to dengue transmission. Both

of these findings have been observed in laboratory studies (Tesla et al., 2018; Mercier et al.,

2022). Indeed, a concern of chikungunya is that it could spread into colder areas of Europe

unreachable by dengue (Mercier et al., 2022). To better quantify the temperature effects, we

plot λkit, from Equation (5.2), versus temperature for k = 2 (Zika) and k = 3 (chikungunya)

132



Zika 

 favored

dengue 

 favored

1.0

1.5

2.0

25 27.6 30 33.2 35 40 45
Temperature (celsius)

λ̂ 2
it

chik. 

 favored

dengue 

 favored

0.5

1.0

1.5

2.0

25 30 32 35 36.4 40 45
Temperature (celsius)

λ̂ 3
it

Figure 5.2: Shows the posterior means (black solid line) and 95% posterior credible intervals
(black dashed lines) of λkit versus temperature for k = 2 (Zika) (left) and k = 3 (chikungunya)
(right). We assumed an average area, other covariates fixed at their average values and a null
space-time random effect. Recall, if λkit > 1 (λkit < 1) then the share of disease k relative
to dengue will tend to grow (shrink) over time. The red horizontal dashed lines are drawn
at temperatures below and above which λkit is significantly different from 1.

in Figure 5.2. Recall, if λkit > 1 (λkit < 1) then the transmission of disease k is favored

(disfavored) over dengue transmission, and the share of disease k relative to dengue will

tend to grow (shrink) over time. From the figure, we have strong evidence, under otherwise

average conditions, that Zika transmission was favored above 33.2 degrees and chikungunya

transmission was favored below 32 degrees, compared to dengue transmission.

The neighboring prevalence effects are by far the strongest in Table 5.2 for explaining differ-

ences in the relative distribution of the diseases. For instance, we estimated that a standard

deviation increase in the log of the prevalence of Zika across neighboring areas during the

previous week was associated with a 59 (48, 70) percent increase in the odds of a new case

being Zika relative to dengue. As Aedes aegypti primarily bite during the day, its arboviruses

can spread rapidly between areas (Stoddard et al., 2013). We found that areas with more

Zika cases were less favorable towards the transmission of chikungunya compared to dengue.
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That is, we estimated that a standard deviation increase in the log of the previous number

of Zika cases in an area was associated with a 10 (4, 15) percent decrease in the odds of a

new case being chikungunya relative to dengue. This does not necessarily mean that Zika

transmission inhibited chikungunya transmission in a non-relative sense. It could be that

Zika transmission encouraged both dengue and chikungunya transmission but the effect on

dengue transmission was larger. Therefore, this result needs to be interpreted with some

caution.

We estimated ζ1, ζ2 and ζ3, from Equation (5.2), as .44 (.38, .49), .36 (.31, .32) and .43

(.36, .51) respectively, indicating a high degree of nonhomogeneous mixing. That is, the

model predicts that if one of the diseases becomes very dominant in a neighborhood the

relative distribution of the diseases will move towards a uniform distribution, perhaps because

individuals avoid infection from the dominant disease. However, as avoiding one of the

diseases should help avoid the others, as they are transmitted by the same vector, ζk could

also be mainly reflecting differences in disease immunity, which are hard to account for

explicitly, see Section 5.4.4. From Equations (5.3)-(5.4), we estimated the standard deviation

of ϕ2it as .75 (.71, .79), of ϕ3it as .80 (.75, .86) and the correlation between ϕ2it and ϕ3it as

.59 (.52, .65). This implies that the correlation between the disease cases, marginalizing the

random effects and conditional on their total, is about what we would expect without the

random effects, see the simulation study in SM Section C.2. That is, the random effects do

not induce any excess correlation between the disease counts. However, they do induce a

large amount of overdispersion, see Figure 5.4.

Table 5.3 shows the estimated parameters from the Markov chain component of the model,

that is, from Equation (5.7). The Zika column shows the ratio of the odds of Zika presence

corresponding to a unit increase in the covariate. However, the intercept for chikungunya

is highly negative making the odds ratios difficult to interpret and, therefore, we did not

transform the chikungunya estimates. From the intercept row, chikungunya was very unlikely
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Table 5.3: Posterior means and 95% posterior credible intervals (in parentheses) for the
estimated parameters from the Markov chain part of the fitted MS-ZIARMN model. The
intercept row shows the probability of Zika presence and the logit of the probability of
chikungunya presence, assuming no previous disease presence in the area, no cases in neigh-
boring areas and at average values of the other covariates. The Zika column shows the ratio
of p2it/(1 − p2it) (odds of Zika presence) corresponding to a unit increase in the covariate.
The chik. column shows the untransformed estimates (not exponentiated, see text). All
covariates are standardized except the neighboring prevalences which are given in units of 1
case per 25,000 (average combined size of neighboring areas) at small prevalences.

Odds Ratio Untransformed

Covariate Zika presence chik. presence

Intercept .1 (.08, .12) -9.06 (-11.97, -7)

verdei 1.14 (.98, 1.31) 08 (-.20 .37)

SDIi 1.11 (.96, 1.29) .12 (-.18, .42)

popdensi 1 (.85, 1.19) .02 (-.33, .37)

favelai 1.03 (.89, 1.19) 0 (-.3, .29)

tempit 1.44 (1.24, 1.66) 1.11 (.6, 1.7)

log
(︂∑︁

j∈NE(i) y2j(t−1)∑︁
j∈NE(i) popj

+ 1
)︂

1.70 (1.55, 1.87) –

log
(︂∑︁

j∈NE(i) y3j(t−1)∑︁
j∈NE(i) popj

+ 1
)︂

– 1.09 (.85, 1.35)

S2i(t−1) 6.41 (3.95, 9.94) 5.12 (3.2, 8)

S3i(t−1) 3.46 (2.42, 4.98) 11.55 (8.13, 16.12)

to emerge in an area under average conditions. Indeed, there are only two effects large enough

from Table 5.3 to cause chikungunya emergence: (1) Zika emerged and then chikungunya

emerged in the following summer when temperatures were high, and (2) chikungunya spread

from a neighboring area where it was detected. In contrast, the emergence of Zika was much

more random, occurring with a 10 (8, 12) percent chance bi-weekly under average conditions.

Once chikungunya did emerge it was likely to stay in the area (probability of .88 (.63, .99)

assuming no neighboring cases, no Zika presence in the previous bi-week and otherwise

average conditions). Both Zika and chikungunya were more likely to be present at high
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temperatures and when there were cases in neighboring areas. The effects of neighboring

prevalence are especially large, again illustrating the disease’s high rate of geographical

spread. Zika presence was an indicator for chikungunya presence and chikungunya presence

was an indicator for Zika presence. This could be unrelated to disease interactions and due

to unmeasured confounding as the diseases share the same vector.

5.4.3 Model fit

Firstly, we want to investigate how the favorability of the diseases differed across Rio. The

maps in Figure 5.3 show the posterior mean of λ̄ki =
(︂
1/
∑︁T

t=2 Skit

)︂∑︁T
t=2 λkitSkit (average

value of λkit when disease k was present in neighborhood i) for k = 2 (Zika) (top map) and

k = 3 (chik.) (bottom map). Note, if λ̄ki > 1 then the transmission of disease k was favored

on average over dengue when it was present in the neighborhood. From the bottom map,

chikungunya transmission was disfavored in the west of the city when it was present and the

share of chikungunya cases tended to decline there. This was partly due to temperatures

being 2-3 degrees higher on average in the west, see SM Figure C.2, and chikungunya trans-

mission being favored at colder temperatures relative to the other two diseases, see Table

5.2. Also, there were many Zika cases in the west of the city, and chikungunya transmission

was disfavored in areas with many Zika cases. Zika transmission was favored throughout

most of the city when it was present. This can be partly explained by the inherent favora-

bility of Zika, i.e., the intercept in Table 5.2, and temperatures typically being higher in Rio

when Zika was present (the temperature covariate was centered using the overall average

temperature) and Zika transmission being favored at higher temperatures.

Figure 5.4 shows fitted values and posterior probabilities of disease presence from three

models. By comparing panels (a) and (b), the random effects ϕkit, from Equations (5.3)-

(5.4), are an important component of the model and induce a large amount of necessary

overdispersion. From panel (c), the model of Zeng et al. (2022), which does not account

for correlations in disease presence across space, time and disease, estimates chikungunya
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Figure 5.3: Shows the posterior mean of λ̄ki =
(︂
1/
∑︁T

t=2 Skit

)︂∑︁T
t=2 λkitSkit for k = 2 (Zika)

(top map) and k = 3 (chik.) (bottom map). If λ̄ki > 1 (λ̄ki < 1) then the transmission
of disease k was favored (disfavored) on average over dengue when it was present in the
neighborhood, and the share of disease k tended to grow (shrink) relative to dengue in the
neighborhood.

as always present in Catumbi, except for the initial state (this is also true for Zika and in

all other areas). Therefore, the model of Zeng et al. (2022) is too restrictive to produce

the likely complex space-time distribution of disease presence in the city. Comparing panels

(a) and (d) shows the MS-ZIARMN model believes the presence of chikungunya was much

more persistent compared to Zika, which follows Table 5.3 (from the last two rows). One
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Figure 5.4: Top graphs show the posterior means (solid lines) and 95% posterior credible
intervals (shaded areas) of the fitted values y′kit, see Section 5.3.1. The bottom graphs show
the posterior probability the disease was present in each bi-week, P (Skit = 1|y) versus t.
"MS-ZIARMN no random effect" refers to the MS-ZIARMN model fit without including ϕkit

from Equations (5.3)-(5.4).

way to think of P (Skit = 1|y) (from the bottom graphs) is as a weight for the observation’s

contribution to the likelihood of the multinomial parameters of the model. For example,

from panel (a), the MS-ZIARMN model does not use any chikungunya observations before

around week 28 in Catumbi to inform the multinomial estimates in Table 5.2. In contrast,

the model of Zeng et al. (2022), from panel (c), will use all observations to inform the

multinomial model which likely causes bias due to the large number of 0s, see the discussion

at the beginning of Section 5.4.2.
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Finally, we will discuss some nuances in interpreting P (Skit = 1|y) as a probability of disease

presence. The model takes disease absence to mean there was no chance of cases being

reported. However, if the diseases are present in very small amounts, the chance of cases

being reported could be close enough to 0 that it is indistinguishable. Indeed, if we replaced

the 0s in Equation (5.8) by say .005, and normalized the probabilities, we would likely get

similar parameter estimates. Therefore, disease presence should be interpreted closer to "a

feasible chance of cases being reported" than "the presence of at least one infection".

5.4.4 Sensitivity analysis to control for differences in the susceptible

populations

As mentioned in Section 5.2, differences in the susceptible populations of the diseases can

be an important source of unmeasured confounding. If one of the diseases has a much larger

susceptible population then its transmission will be favored. It is difficult to directly measure

susceptible populations of vector-borne diseases (also most diseases) due to underreporting,

different strains, cross-immunity, waning immunity and demographic changes (Reich et al.,

2013; Freitas et al., 2019; Aogo et al., 2023). As a proxy for differences in the susceptible

populations, we considered the differences in cumulative incidence per person. That is,

we refit the MS-ZIARMN model including
(︂∑︁t−1

j=1 ykij −
∑︁t−1

j=1 y1ij

)︂
/popi in xkit for k = 2

(Zika) and k=3 (chik.). The multinomial estimates are given in SM Table C.3 and none are

substantially different from those in Table 5.2. The effects of the differences in cumulative

incidence were not significant and the WAIC of the model increased by more than 5 indicating

a worse fit. That is, if one of the diseases accumulated many more cases compared to

the others, there was likely not a large effect on the favorability of its transmission. One

explanation is that the parameters ζk in Equation (5.2) are already mostly accounting for

this, as the effect of nonhomogeneous mixing on transmission is similar to the effect of the

depletion of the susceptible population.
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5.5 Discussion

We have proposed a zero-inflated spatio-temporal multinomial model for comparing the

transmission dynamics of multiple co-circulating infectious diseases. Our approach can ac-

count for long periods of disease absence while investigating how certain factors are related

to differences in the transmission intensity of the diseases. Past zero-inflated multinomial

models (Tang and Chen, 2019; Zeng et al., 2022; Koslovsky, 2023) have made independence

assumptions that are inappropriate for spatio-temporal infectious disease counts, such as

assuming categorical presence was independent between observations. We accounted for

correlations across space, time and disease, in both the multinomial and zero-inflated com-

ponents, through a combination of autoregression, regressing on past observations, and by

assuming the presence of the diseases followed a series of coupled Markov chains. This ap-

proach allowed for efficient and computationally feasible Bayesian inference using the FFBS

algorithm.

We assumed that the cases of the diseases present in an area jointly followed a multinomial

model, conditioning on the total cases. It is more standard in the disease mapping literature

to jointly model multiple disease counts with some form of a multivariate Poisson distri-

bution (Jack et al., 2019). There are advantages to both approaches and we give a more

detailed comparison of the two (without model fitting) in SM Section C.1.2. If one is only

interested in comparing the transmission of the diseases, like here, then a multinomial model

eliminates many nuisance parameters and any shared space-time factors. A multivariate

Poisson approach could estimate the overall effects of a covariate on transmission, not just

the relative effects, and does not need to assume one of the diseases is always present. To

the best of our knowledge, only Pavani and Moraga (2022) and Rotejanaprasert et al. (2021)

have considered zero-inflated spatio-temporal multivariate Poisson models. Both relied on

random effects to capture correlations in the data. However, these proposals have some

important limitations including not considering any space-time or space-time-disease inter-
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actions and not allowing the probabilities of disease presence to change across time. These

modeling assumptions are inappropriate for our motivating example, and likely others, see

Figure 5.4 for instance. An approach based on random effects could become intractable as

one would need to consider random effects correlated across three dimensions, space, time

and disease, in both the count and zero-inflated components of the model. Our approach

seems much more computationally feasible and could be easily extended to the multivariate

Poisson case, see SM Section C.1.2. We will focus on these extensions and comparisons with

the multinomial model in future work.

In our application, we found that Zika generally had more intense transmission compared to

dengue and chikungunya, but was also not able to transmit as well at a lower temperature.

This was not a major factor in tropical Rio, see Figure 5.3, but could be important in North

America and Europe. In contrast, chikungunya transmission was relatively higher at lower

temperatures meaning it might fare better in colder regions compared to Zika and dengue.

Laboratory studies have come to similar conclusions (Tesla et al., 2018; Mercier et al., 2022).

Alternative models that did not account for zero inflation or did not model correlations in

disease presence (Zeng et al., 2022) did not fit as well and produced estimates inconsistent

with our knowledge about the epidemiology of the diseases.

There are also some important limitations to our work. Being an observational study, un-

measured confounding could be an important issue, especially concerning differences in the

susceptible populations, which are unobservable. We tried using differences in cumulative

incidence as a proxy for differences in the susceptible populations in a sensitivity analysis,

and our results did not change. However, differences in cumulative incidence could be an im-

perfect proxy due to, for example, changes in reporting rates across space and time. Another

limitation is that climate covariates, such as temperature, can have lagged and non-linear

effects on the transmission of arboviral diseases (Lowe et al., 2018). As our multinomial

model estimates differences in effects on transmission, our approach might be somewhat
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robust to non-linearity if the non-linear patterns are similar between diseases. It would be

challenging to incorporate non-linear and lagged effects into our already complex modeling

scheme. Shrinkage methods could help deal with the many parameters that would need to

be added to the model by eliminating unimportant effects (Wang et al., 2023).
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we proposed several novel coupled Markov switching models to account for,

study, detect, and forecast abrupt shifts in the behavior of spatio-temporal infectious disease

counts, such as due to an outbreak emerging or a disease going extinct. We assumed the

shifts were caused by the disease switching between different epidemiological periods or

states. We considered shifts due to disease (re)emergence (absence to presence), disease

extinction (presence to absence), outbreak emergence (endemic to outbreak) and outbreak

end (outbreak to endemic) (i.e., the inverse of outbreak persistence). Other epidemiological

transitions could also be analyzed, e.g., outbreak plateau to decline (Lytras et al., 2019), by

adding more states to the model (Cliff et al., 1987).

We made three important main contributions to the existing epidemiological Markov switch-

ing literature (see Amorós (2017) for a recent review and Cliff et al. (1987)) in a space-time

setting. Firstly, we considered a disease absence state in our models to account for the long

strings of zeroes common in spatio-temporal infectious disease counts (Arab, 2015). This also

allowed us to study the reemergence and persistence of the disease. For instance, in the first
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manuscript, we investigated how temperature, socioeconomic factors, and the presence of the

disease in neighboring areas were related to the reemergence and persistence of dengue fever

in Rio neighborhoods. Secondly, we allowed the probability of transitioning between states

(i.e., the probability of an abrupt shift in behavior) to depend on covariates and the states

in neighboring areas, to account for geographical disease spread. For instance, in the second

manuscript, we let the probability of an outbreak emerging in an area depend on mobility

in retail and recreation venues and whether outbreaks were occurring in neighboring areas.

Finally, in the third manuscript, we considered a model where multiple (existing approaches

have only focused on a single disease) interacting diseases switch between different epidemi-

ological periods across several areas. We used the model to investigate important questions

(Tesla et al., 2018; Freitas et al., 2019) about how certain factors, such as temperature,

were related to differences in the transmission intensity of Zika, dengue and chikungunya in

Rio de Janeiro. We also make many important contributions to the broader area (outside

just a Markov switching framework) of spatio-temporal infectious disease modeling, see the

preambles and below.

Spatio-temporal infectious disease modeling is mostly dominated by approaches outside a

Markov switching framework, such as spatio-temporal autoregressive models (Bracher and

Held, 2022) and epidemiological compartmental models (Crawford et al., 2022). Therefore, it

is worth discussing why, in general, our Markov switching models are useful in epidemiological

modeling. Firstly, we can study the transitions between the disease states and how they

depend on certain factors. For instance, in the second manuscript, we investigated the

relationship between the emergence of COVID-19 outbreaks across Quebec and factors such

as mobility and geographical disease spread. We found that the introduction of new variants

and outbreak spread from neighboring areas were important contributors to the emergence of

the outbreaks. This indicates that carefully monitoring the introduction of new variants and

preventing cross-infection between areas could be effective interventions for preventing future

COVID-19 outbreaks from emerging. In general, gaining a better understanding of how the
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outbreaks of an infectious disease develop can help give early warnings or suggest preventive

measures (Descloux et al., 2012; Lu et al., 2014). Therefore, we would argue that being able

to study important epidemiological transitions, like outbreak emergence, is a very useful

feature of our models. While spatio-temporal autoregressive models and compartmental

models can investigate the relationship between a covariate and disease transmission (Bauer

and Wakefield, 2018; Ssentongo et al., 2021), such a relationship does not necessarily imply

an association with outbreak emergence, as explained in the introduction in Chapter 1.

Additionally, past epidemiological Markov switching models have allowed the probability of

outbreak emergence to depend on covariates (Nunes et al., 2013) or whether outbreaks were

occurring in neighboring areas (Heaton et al., 2012), but not both like with our approach.

As mentioned, we found that both covariates, like mobility and the introduction of new

variants, and the occurrence of outbreaks in neighboring areas were important for explaining

the emergence of COVID-19 outbreaks across Quebec.

Another way that our models can be useful in epidemiology is that they can approximate

the posterior probability that an observation, including future observations, came, or will

come, from any of the disease states. As illustrated in the second manuscript, this allows us

to provide the posterior probability that an outbreak is currently happening or will happen

in the next week for each area. If one of these probabilities rises above .5 then an alarm

could be issued as in Martínez-Beneito et al. (2008). Issuing an alarm early during an

outbreak is very important, as the rapid rise in cases can overwhelm the health care system

(Shingler and Hendry, 2022). In the second manuscript, our model was able to provide early

real-time warnings of outbreaks for both simulated data and COVID-19 hospitalizations

across Quebec. This was especially true when including neighboring outbreak indicators in

the transition probabilities. See Sections 4.4 and 4.5.4. Heaton et al. (2012) also allowed

the probability of outbreak emergence to depend on whether outbreaks were occurring in

neighboring areas. However, their model can only be applied to data with at most one

outbreak in each area, and they did not allow the probability of outbreak emergence to
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depend on covariates. Therefore, their model is not widely applicable. For instance, for our

application to COVID-19 hospitalizations across Quebec, there were multiple outbreaks per

area, and several covariates, such as mobility and the introduction of new variants, were

important for explaining the emergence of the outbreaks.

Finally, the state switching in our models can account for behavior that other statistical

models might struggle to capture. For instance, negative binomial and multinomial models

can often not account for a large number of zeroes in univariate or multivariate counts (Arab,

2015; Koslovsky, 2023). Long strings of zeroes are a common feature of infectious disease

time series (Chen et al., 2019). As explained in Section 3.2, switching with the absence state

in our models can produce many consecutive zeroes interspersed between periods of high or

low disease activity. Finite mixture zero-inflated models (Hoef and Jansen, 2007), which are

popular for dealing with excess zeroes in spatio-temporal infectious disease counts (Arab,

2015), also switch with an absence state. However, the switching is not governed by a Markov

chain but by a series of conditionally independent Bernoulli random variables. As extensively

detailed in the first manuscript, our approach has several advantages including allowing for

each covariate to have a separate effect on the emergence and persistence of the disease,

which is often epidemiologically justified, and allowing the effects of disease spread between

areas to depend on space-time factors. Model comparison using WAIC supported Markov

switching models that switched with an absence state in all three manuscripts; compared

to finite mixture zero-inflated models, Markov switching models that switched between only

count states, and autoregressive negative binomial and multinomial models without state

switching. See Tables 3.1, 4.1 and 5.1. Note that past epidemiological Markov switching

models did not include an absence state and could struggle with capturing many zeroes in the

counts (Zou et al., 2014). Markov switching models outside of epidemiology have considered

switching with a degenerate zero distribution (Wang, 2001; Malyshkina and Mannering,

2010). However, these models did not allow the transition probabilities to depend on the

state in neighboring areas and, therefore, are not appropriate in an epidemiological setting
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where we expect the disease to spread between areas. We will expand on some of the points

from the last three paragraphs in the next section, where we provide specific references from

the spatio-temporal epidemiological modeling literature concerning potential applications of

our models.

6.2 Potential Applications

There are several useful potential applications of this thesis to analyzing spatio-temporal

infectious disease counts. Firstly, our models can be used when there is an interest in

investigating associations between certain factors, including disease spread, and important

epidemiological transitions, such as outbreak emergence or disease extinction. Studying

these transitions is often of considerable interest in epidemiology. For instance, Walter

et al. (2016) was concerned with how covariates, such as distance to a major water body,

and neighboring disease intensity were related to the reemergence (absence to presence)

and persistence (presence to presence) of Lyme disease in Connecticut towns. However,

they assumed the disease was present whenever cases were reported and absent when no

cases were reported. The disease could have been present when no cases were reported

if it went undetected. The models explored in the first manuscript account for imperfect

detection by allowing zero reported cases to arise when the disease is present. This feature

is shared with finite mixture zero-inflated models (Vergne et al., 2016), however, they do

not model the reemergence and persistence of the disease separately (which Walter et al.

(2016) was interested in). Descloux et al. (2012) was interested in how climate factors,

such as temperature, were related to the emergence of dengue outbreaks in New Caledonia.

However, they assumed an outbreak had occurred whenever cases rose above either the

50th or 67th percentile and then fit a support vector machine to the classified data. The

models explored in the second manuscript will account for the structure of the time series

(i.e., the probabilities of transitioning in and out of a certain state) when segmenting the
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counts into outbreak and endemic periods. Additionally, we avoid a two-step procedure of

first classifying the data as either endemic or outbreak and then fitting a separate model

to the classifications. Lim et al. (2020), investigating questions similar to Descloux et al.

(2012), also used a two-step procedure by fitting a logistic regression to the state estimates

of a homogeneous endemic/outbreak Markov switching model. In the second manuscript,

we showed it is possible to do this kind of analysis in a single step using a nonhomogeneous

Markov switching model. Nunes et al. (2013) also used a nonhomogeneous Markov switching

model to investigate associations between covariates and outbreak emergence, however, only

in a purely temporal setting. In a space-time setting, we can additionally investigate how

outbreaks in neighboring areas affect outbreak emergence and we can account for the long

strings of zeroes common in spatio-temporal counts.

The model explored in the second manuscript can also be used for outbreak detection and

forecasting. Detecting an outbreak early is paramount to having an effective response (Buck-

eridge, 2007). Markov switching models have been utilized for outbreak detection since the

late 1990s (Le Strat and Carrat, 1999). However, unlike most previous approaches, our model

considers whether outbreaks are occurring in neighboring areas. In the second manuscript,

we showed, using both simulated and real data, that including neighboring outbreak indica-

tors in the transition probabilities greatly improves the accuracy and timeliness of outbreak

detection and forecasting. Heaton et al. (2012) also allowed the probability of outbreak

emergence to depend on whether outbreaks were occurring in neighboring areas. However,

their model can only be applied to data with at most one outbreak in each area and they

did not allow covariates to affect the probability of outbreak emergence.

Finally, our models can be used to deal with the problem of excess zeroes in spatio-temporal

infectious disease counts. That is, there are often many more zeroes in these counts than can

be realistically produced by popular spatio-temporal Poisson and negative binomial regres-

sion models (Arab, 2015). For a single disease, usually finite mixture zero-inflated models
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are used to deal with excess zeroes in spatio-temporal infectious disease counts (Fernandes

et al., 2009; Young et al., 2020). However, as detailed in the first manuscript, our zero-state

coupled Markov mixture approach has several advantages over these models including being

able to easily account for many consecutive zeroes; allowing for each covariate, and disease

spread, to have a separate effect on the reemergence (absence to presence) and persistence

(presence to presence) of the disease, which is often epidemiologically justified (Walter et al.,

2016); and allowing the effects of disease spread between neighboring areas to depend on

space-time factors, such as the population of the areas (gravity effect (Tuite et al., 2011)).

Modeling cases of multiple interacting diseases across space and time when there are many

zeroes has received very little attention. For instance, zero-inflated multinomial models

(Zeng et al., 2022) have not been considered at all in a dependent data setting. The models

we explored in the third manuscript can be used to investigate differences in the transmis-

sion intensity of several diseases across space and time while accounting for long periods of

disease absence.

We would also argue for our models to be used for just the general analysis (Wakefield et al.,

2019) of spatio-temporal infectious disease counts. Indeed, our approaches have important

interpretational advantages over many popular alternative models (outside a Markov switch-

ing framework) for these counts. For example, multivariate autoregressive time series models,

like the Endemic-epidemic (EE) model (Bracher and Held, 2022) we compared to in Sec-

tion 4.5.1 of the second manuscript, and epidemiological compartmental models (Bauer and

Wakefield, 2018). Both of these approaches are often used to investigate associations between

covariates and overall disease transmission, usually represented as the expected number of

new cases per each recent previous case (Bauer and Wakefield, 2018; Ssentongo et al., 2021).

The difference with our models is that we can estimate the effect of a covariate on disease

transmission in the different periods and on the epidemiological transitions, such as out-

break emergence or disease extinction (see Section 4.5.1 for an example). We would argue

breaking down the covariate effects like this is useful for policymakers in many instances.
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For example, knowing a covariate only affects transmission during one of the periods could

help better plan suitable interventions. Also, understanding factors associated with outbreak

emergence may help with preparing a response (Descloux et al., 2012), and understanding

factors associated with disease extinction and reemergence could help eliminate and prevent

the spread of a disease (Walter et al., 2016).

In conclusion, there are many useful potential applications of this thesis to the field of spatio-

temporal infectious disease modeling. However, there are also important limitations to our

approaches which we will now discuss along with some future avenues of research.

6.3 Limitations and Avenues for Future Work

The discussions of the individual manuscripts list several important limitations of those

works. This section is not meant to be a repetition of those discussions. Instead, we will

focus on new limitations that were not mentioned there.

Firstly, all our models take a long time to fit, around 8 to 12 hours. This is because we use

computationally intensive Markov chain Monte Carlo (MCMC) methods to draw from the

posterior distributions. Such methods are standard for conducting Bayesian inferences with

coupled and non-coupled Markov switching models (Chib, 1996; Touloupou et al., 2020),

as the posterior is not available in closed form. Recently, Chen et al. (2023) proposed

using a variational Bayes (VB) method to fit nonhomogeneous Markov switching models.

This method is much faster than MCMC, however, it only samples from an approximation

of the posterior distribution. This approximation needs to make assumptions about the

structure of the posterior such as which parameters are a-posteriori dependent. Also, they

use the forward filter (Frühwirth-Schnatter, 2006) which cannot be run with coupled Markov

switching models that have many interacting chains, like our models from the first two

manuscripts (see Section 3.3 of the first manuscript). Still, it may be possible to modify the

methods of Chen et al. (2023) to be appropriate for these coupled Markov switching models.
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This, and pursuing other potential methods of fast inference, is an important avenue of

future research. Faster methods of inference would allow us to fit our models to much larger

data sets and enable more convenient online outbreak detection and forecasting.

A challenge in modeling infectious disease spread is that neighborhood structures can change

over time. For instance, during the COVID-19 epidemic, the Quebec government restricted

travel to different areas at different times (Sherwin, 2020). In the first manuscript, we allow

the effects of disease spread between areas to change across space and time with covariates,

see the coupling parameters in Equation (3.6). Therefore, if the changes in neighborhood

structure can be explained by observable factors they can be accounted for by that model.

For instance, if we know that the border between two areas is locked down at a certain point,

we could include a binary indicator that is 0 before the lockdown and 1 after in Equation

(3.6). In future work, we could extend the coupling parameters from the first manuscript to

the models in the second and third manuscripts. This was not considered in the thesis as

the models from the second and third manuscripts are more complex. The models from the

second manuscript switch between a zero-state and two count states, as opposed to switching

between a zero-state and a single count state in the first manuscript, and the models from

the third manuscript are multivariate. If the changes in neighborhood structure cannot all be

accounted for by covariates, then future work could incorporate splines or temporal random

effects, like random walks (Cargnoni et al., 1997), into Equation (3.6) to capture unobserved

heterogeneity.

Conditional on the non-absence states, we regressed on past observations in the area and

neighboring areas, known as autoregression, to capture correlations in the counts across

space and time within an epidemiological period. Autoregression is popular for capturing

spatio-temporal correlations in infectious disease data (Bauer and Wakefield, 2018; Bracher

and Held, 2022). Another popular approach for capturing these correlations is to add ran-

dom effects that are correlated across space, time, or both, such as conditional autoregressive
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effects (Amorós et al., 2020) or random walks (Knorr-Held and Richardson, 2003), to the

model’s link functions. We preferred using autoregression for a few reasons. Firstly, it is

epidemiologically motivated. As shown in Bauer and Wakefield (2018), the negative bi-

nomial autoregressive models we use in the first two manuscripts can be motivated from

discrete-time susceptible-infectious-recovered (SIR) models, see also Equations (C.1)-(C.2).

An advantage of these models is that they allow aggregate level disease transmission to be

estimated, that is, the expected number of new cases per each recent previous case (Bauer

et al., 2016; Ssentongo et al., 2021). Similarly, in Section C.1, we showed how our autore-

gressive multinomial model from the third manuscript can be derived from a multivariate

discrete-time SIR model. Additionally, correlated random effects can mix very slowly in

MCMC algorithms, often requiring specialized block samplers to be developed (Knorr-Held

and Richardson, 2003). Therefore, it would not be straightforward to implement these ef-

fects into our models, especially given the already large number of parameters and states

that we consider. However, if these computational challenges can be overcome, then an

interesting future extension of our work would be to consider both autoregression and cor-

related random effects. For instance, the endemic and outbreak intercepts in Equation (4.2)

could follow normal autoregressive random effects (Otting et al., 2020), which would allow

for correlated unobserved heterogeneity in outbreak and endemic disease transmission over

time. Indeed, a limitation of our models is that within the endemic and outbreak periods,

disease transmission can only change according to covariates. However, there may be factors

not accounted for by the covariates that affect disease transmission within these periods,

such as government interventions or migration from high-risk areas. Finally, we note that

we use a negative binomial distribution to account for overdispersion conditional on the

non-absence states in the first two manuscripts, as autoregression does not induce a large

amount of overdispersion. This is standard for autoregressive count models (Dunbar and

Held, 2020). In contrast, count models with many random effects often assume a Poisson

distribution as the random effects will induce a large amount of overdispersion (Lawson and
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Kim, 2022).

An important property of the multinomial distribution is that the categories must be mutu-

ally exclusive. In the context of the third manuscript, this means that we cannot incorporate

individuals who are diagnosed with more than one of the diseases, dengue, Zika or chikun-

gunya, at the same time. This should not be a major limitation in that manuscript, as

co-infection with these diseases rarely occurs (Schmidt et al., 2022). However, it may be an

important issue in other applications, like with tuberculosis (TB) and HIV (Pawlowski et al.,

2012). If one is interested in, for example, the odds of a new case being HIV-TB co-infection

relative to infection with just HIV or TB, then HIV-TB co-infection could be added as an

extra category. This and other possible solutions, depending on the study’s objectives, could

be explored in future work.

A departure of the third manuscript from the first is that we did not assume that the presence

of a disease in an area depends on the presence of the disease previously in neighboring areas,

only on the number of cases in neighboring areas (i.e., the Markov chains were coupled

between diseases in an area but not across areas). We felt this was a necessary simplification

of the models explored in the first manuscript given the complex nature of modeling zero-

inflated multivariate spatio-temporal disease counts. However, it does have the limitation

that a disease may have been present in a neighboring area and spread from there even if no

cases were reported (e.g., if the disease was undetected). In future work, we could consider

the influence of neighboring disease presence on the transition probabilities in Equation (5.7)

using ideas similar to the first and second manuscripts.

There are other interesting extensions of the third manuscript that we could explore. For

instance, we could consider multiple diseases switching between absence, endemic and out-

break states in each area instead of just presence and absence states. This would allow us to

investigate how outbreaks of one disease are related to outbreaks of the others. While inter-

esting, such models could be quite complex. Each disease would have two states that require
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parametrization (the absence state has no parameters) and the 3 by 3 transition matrix for

each disease could be coupled across diseases and perhaps areas. Shrinkage methods (Wang

et al., 2023) may help reduce the complexity.

Finally, our models could be extended to areas outside of epidemiology. For example,

Williams et al. (2024) recently proposed an autoregressive Markov switching model for weekly

counts of battle deaths across several countries. They assumed each country could be in one

of three conflict states: non-violent, stable violence and intensified violence. As speculated

by them, if a country is in a violent state it may indicate that nearby countries are more

likely to become violent. Our methods could be used to add indicators for violent states in

neighboring areas to the transition probabilities.

In conclusion, there are several interesting extensions of our work. As we have detailed in

the preambles and Section 6.1, this thesis represents a useful contribution to the area of

spatio-temporal infectious disease modeling. As such, we hope the ideas that we explored

here are built on in the future.
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APPENDIX A

Appendix to Manuscript 1

A.1 The Blocked Forward Filtering Backward Sampling

(bFFBS) Algorithm

Borrowing the notation from the main text, sampling S in the Gibbs sampler involves the

following steps. First we initialize S[1] by setting S
[1]
it = 0 whenever yit = 0, and we set

S
[m]
it = 1 whenever yit > 0 for all m, since only the count process can produce a positive

count. Then the following steps are repeated for m = 2, ..., Q, where Q is the total number

of iterations,

1. Sample v[m] from p(v|S[m−1],y)

2. Sample S[m]
(bk)

from p(S(bk)|S
[m]
(b1)

, ...,S
[m]
(bk−1)

,S
[m−1]
(bk+1)

, ...,S
[m−1]
(bB) ,v

[m],y) for k = 1, ..., B.

Step 1 is broken up into (mostly) Metropolis-Hastings steps as described in the main text.

In step 2, we only sample unknown (i.e. when yit = 0) state indicators in the block. Here we

provide the algorithms for sampling from p(S(bk)|S(−bk),v,y) needed for step 2. Touloupou

et al. (2020) derived the algorithm for nk = 1 for all k, and it is straightforward to generalize

it to arbitrary nk.
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Note that,

p(S(bk)|S(−bk),y,v) = p(S(bk)T |S(−bk)(0:T ),y,v)

×
T−1∏︂
t=0

p(S(bk)t|S(bk)t+1,S(−bk)(0:t+1),y
(t),v).

(A.1)

and that,

p(S(bk)t|S(bk)t+1,S(−bk)(0:t+1),y
(t),v) ∝ p(S(bk)t+1|S(bk)t,S(−bk)t,y

(t),v)

× p(S(bk)t|S(−bk)(0:t+1),y
(t),v).

Now, P (S(bk)t = s(bk)t|S(−bk)(0:t+1),y
(t),v) for t = 0, ..., T and s(bk)t ∈ {0, 1}nk (i.e. the

presence/absence status of all locations in the block) are known as the filtered probabilities.

These are calculated using the forward part of the bFFBS algorithm, starting with t = 0,

we have,

P (S(bk)0 = s(bk)0|S(−bk)(0:1),v) ∝
∏︂

j∈(−bk)

p(Sj1|S(bk)0 = s(bk)0,S(−bk)0,v)
∏︂
i∈bk

P (Si0 = si0(s(bk)0)),

where si0(s(bk)0) is the state indicator for location i in s(bk)0. Now for t = 1, ..., T the pre-

dictive probabilities are first calculated and then used to calculate the filtered probabilities.

The predictive probability is given by,

P (S(bk)t = s(bk)t|S(−bk)(0:t),y
(t−1),v) =∑︂

s′
(bk)t−1

∈{0,1}nk

P (S(bk)t = s(bk)t|S(bk)(t−1) = s
′
(bk)t−1,S(−bk)(t−1),y

(t−1),v)

× P (S(bk)(t−1) = s
′
(bk)t−1|S(−bk)(0:t),y

(t−1),v),

(A.2)

which is most efficiently calculated by multiplying the 2nk ×2nk conditional transition matrix

of S(bk)t, Γ(S(bk)t|S(−bk)(t−1),y
(t−1)), transposed, by the vector of previous filtered probabili-
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ties. Note that an element of Γ(S(bk)t|S(−bk)(t−1),y
(t−1)) is given by,

P (S(bk)t = s(bk)t|S(bk)(t−1) = s
′
(bk)t−1,S(−bk)(t−1),y

(t−1),v) =∏︂
i∈bk

P (Sit = sit(s(bk)t)|S(bk)(t−1) = s
′
(bk)t−1,S(−bk)(t−1),y

(t−1),v),

where sit(s(bk)t) is the state indicator for location i in s(bk)t, which can be calculated from

the individual area conditional transition matrices defined in equation (3.3) of the main text.

The predictive probabilities are then used to calculate the filtered probabilities,

P (S(bk)t = s(bk)t|S(−bk)(0:t+1),y
(t),v) ∝

P (S(bk)t = s(bk)t|S(−bk)(0:t),y
(t−1),v)

∏︂
i∈bk

p(yit|Sit = sit(s(bk)t),y
(t−1),v)

×
∏︂

j∈(−bk)

p(Sj(t+1)|S(bk)t = s(bk)t,S(−bk)t,y
(t),v),

(A.3)

which involves the predictive probability. In (A.3), if yit > 0 and sit(s(bk)t) = 0, then

p(yit|Sit = sit(s(bk)t),y
(t−1),v) = 0. This means the entire filtered probability can be set to

0 and, therefore, these conditions should be checked first to avoid unnecessary calculations.

In the extreme case where yit > 0 for all i ∈ bk, then t can be skipped altogether as the

entire vector of filtered probabilities is then known. Also, if yit > 0 but sit(s(bk)t) = 1 then

p(yit|Sit = sit(s(bk)t),y
(t−1),v) can be set to 1, since it will cancel in the calculation when

normalizing. For t = T , there is no
∏︁

j∈(−bk)
p(Sj(t+1)|S(bk)t = s(bk)t,S(−bk)t,y

(t),v) term

included.

After all filtered probabilities have been calculated then the backward sampling step is per-

formed. Starting at T = t, S[m]
(bk)T

is sampled categorically from the final filtered probabilities.
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Then, for t = T − 1, ..., 0 we sample S[m]
(bk)t

from,

P (S
[m]
(bk)t

= s(bk)t|S
[m]
(bk)(t+1),S(−bk)(0:t+1),y

(t),v) ∝

p(S
[m]
(bk)(t+1)|S

[m]
(bk)t

= s(bk)t,S(−bk)t,y
(t),v)

× P (S
[m]
(bk)t

= s(bk)t|S(−bk)(0:t+1),y
(t),v).

(A.4)

The first probability in (A.4) comes from Γ(S(bk)(t+1)|S(−bk)t,y
(t)), the second probability is

the filtered probability. Note that when yit > 0 the algorithm will always sample S[m]
it = 1

and, therefore, these can just be set ahead of running the MCMC as mentioned.

A.1.1 Validating the algorithm

To validate the bFFBS algorithm, we compared the posteriors produced by the bFFBS2

sampler, described in the main text, with those produced by the binary sampler. These were

compared on the dengue data, whose fitting is described in the main text. The binary sampler

is validated in the simulation study in Section A.2 of this appendix. Therefore, the bFFBS2

sampler should produce the same posterior distributions as the binary sampler.

In Figure A.1, we show a plot comparing the posterior means of S from the two samplers.

Both samplers produce the same posterior means for S within reasonable Monte Carlo

error. Additionally, we compared the posterior means and 95% posterior credible intervals

for all elements of v (not shown). There was no meaningful difference in the posteriors of v

produced by the two samplers.

A.2 Simulation Study

We designed a simulation study to ensure the proposed hybrid Gibbs sampler can recover

the true parameters of the ZS-CMSNB model. In particular, we are interested in whether

we can estimate heterogeneous effects of disease spread between areas and separate covariate
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Figure A.1: Comparison of the posterior means of S produced by the binary and bFFBS2
samplers.

effects for the reemergence and persistence of the disease. To simulate heterogeneous effects of

between area disease spread, we assume there is a 30 percent chance that any two neighboring

areas are separated by some barrier to disease spread that reduces the effect of disease spread

between the two areas by 60 percent. This corresponds very similarly to the situation in

Smith et al. (2002) who looked at whether rivers reduce the effect of rabies spread between

two neighboring areas. To simulate separate covariate effects we assume that temperature

has half the effect on the persistence. We generated data from a ZS-CMSNB model with

the following specifications for λit, rit, zit, z
(c)
01,ijt and z(c)11,ijt (see equations (3.1)-(3.6) of the
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main text),

log(λit) = β0 + β1Tempt−1 + β2HDIi,

rit = r

zit =
[︁
Tempt−1

]︁T
z
(c)
01,ijt = [barrij]

T

z
(c)
11,ijt = ∅,

(A.5)

where v =
[︂
β0, β1, β2, r, ζ0, ζ1, ζ

(c)
0 , ζ

(c)
1 , η0, η1, η

(c)
0

]︂T
= [1, .1, 10, 1.5,−1.5, .1, .25,−.15, 1.5, .05, .1]T , Tempt−1 and HDIi are taken from the mo-

tivating example in the main text, and barrij = 1 if locations i and j are separated by a

barrier, for i = 1, ..., 160 and t = 1, ..., 84 like the motivating example. The neighborhood

structure is that of Rio like the motivating example of the main text. Additionally we as-

sumed p(Si0) ∼ Bern(.5) for i = 1, ..., N . The simulations are set up so that the effects of

temperature and between area disease spread on the reemergence and persistence of the dis-

ease are somewhat similar to our motivating example. Additionally, 50 percent of the counts

are 0 and 50 percent of the zeroes come from the Markov chain, which represents a good

amount of missing information. We fit the ZS-CMSNB model (correctly specified) to 100

replications of (A.5). We ran 80,000 iterations, with a burn-in of 30,000, of the Gibbs sam-

pler on 3 chains started randomly from different points. For each replication, convergence of

each parameter was checked using the effective sample size (>1000) and the Gelman-Rubin

statistic (<1.05) (Plummer et al., 2006). Additionally, as many zeroes often lead to model

instability and identifiability issues in complex zero-inflated models (Agarwal et al., 2002),

we also ran a set of simulations at 80 percent zeroes by changing β0 from 1 to -1.

The sampling distributions of the posterior means from each set of simulations can be seen

in Figure A.2. Figure A.2 shows that while the precision of the posterior means at 80 percent

zeroes is much less then at 50 percent zeroes, the posterior means still have minimum bias in
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Figure A.2: Averages and 95% quantiles for the sampling distributions (100 replications) of
the posterior means from a simulation study with 50 percent and 80 percent 0s. Horizontal
lines drawn at true parameter values.

either scenario. Additionally, the average coverage of the 95% posterior credible intervals at

80 percent zeroes was 94.3% (min=92.7%, max=95.3%) and at 50 percent zeroes was 94.4%

(min=91.4%, max=95.9%). However, we did notice some convergence issues at 80 percent

0s that were not present at 50 percent 0s. We had to run the model for 5 times as long

at 80 percent zeroes and around 5 percent of the simulations did not converge, while all

simulations converged at 50 percent zeroes.

In conclusion, our Gibbs sampler applied to the ZS-CMSNB model is able to estimate hetero-
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geneous between area effects of disease spread and separate covariate effects with minimum

bias and good coverage. However, at a large number of 0s (80 percent) the precision of the

estimates are quite low and there can be rare convergence issues.

A.3 Monte Carlo Approximations for the Posterior Pre-

dictive Distributions

We are interested in the K step ahead posterior predictive distribution of both disease pres-

ence, p(Si(T+K)|y), and the cases counts, p(yi(T+K)|y), for K = 1, 2, ... and i = 1, ..., N . We

assume only dependence on the previous times counts for simplicity in notation, then we

have,

p(Si(T+K)|y) =
∫︂
p(Si(T+K)|ST+K−1,yT+K−1,θ)

× p(yT+K−1|ST+K−1,yT+K−2,β)p(ST+K−1|ST+K−2,yT+K−2,θ)

. . .× p(yT+1|ST+1,yT ,β)p(ST+1|ST ,yT ,θ)

× p(v,ST |y) dyT+K−1dST+K−1 . . . dyT+1dST+1dSTdβdθ,

(A.6)
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and,

p(yi(T+K)|y) =
∫︂
p(yi(T+K)|Si(T+K),yT+K−1,β)p(Si(T+K)|ST+K−1,yT+K−1,θ)

× p(yT+K−1|ST+K−1,yT+K−2,β)p(ST+K−1|ST+K−2,yT+K−2,θ)

. . .× p(yT+1|ST+1,yT ,β)p(ST+1|ST ,yT ,θ)

× p(v,ST |y) dSi(T+K)dyT+K−1dST+K−1 . . . dyT+1dST+1dSTdβdθ

=

∫︂ [︁
p(yi(T+K)|Si(T+K) = 1,yT+K−1,β)P (Si(T+K) = 1|ST+K−1,yT+K−1,θ)

+I
[︁
yi(T+K) = 0

]︁ (︁
1− P (Si(T+K) = 1|ST+K−1,yT+K−1,θ

)︁]︁
× p(yT+K−1|ST+K−1,yT+K−2,β)p(ST+K−1|ST+K−2,yT+K−2,θ)

. . .× p(yT+1|ST+1,yT ,β)p(ST+1|ST ,yT ,θ)

× p(v,ST |y) dyT+K−1dST+K−1 . . . dyT+1dST+1dSTdβdθ.

(A.7)

The above integrals can be approximated through Monte Carlo integration,

p(Si(T+K)|y) ≈
1

Q−M

Q∑︂
m=M+1

p(Si(T+K)|S[m]
T+K−1,y

[m]
T+K−1,θ

[m]), (A.8)

and,

p(yi(T+K)|y) ≈
1

Q−M

Q∑︂
m=M+1

[︂
p(yi(T+K)|Si(T+K) = 1,y

[m]
T+K−1,β

[m])

×P (Si(T+K) = 1|S[m]
T+K−1,y

[m]
T+K−1,θ

[m])

+I
[︁
yi(T+K) = 0

]︁ (︂
1− P (Si(T+K) = 1|S[m]

T+K−1,y
[m]
T+K−1,θ

[m]
)︂]︂
,

(A.9)

where the superscript [m] denotes a draw from the posterior distribution of the variable

(y[m]
t = yt if t ≤ T ), M is the size of the burn-in sample, Q is the total MCMC sample size

and I[·] is an indicator function.
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Substituting K = 1 into (A.8) approximates the one step ahead posterior predictive distri-

bution of disease presence in location i,

P (Si(T+1) = 1|y) ≈ 1

Q−M

Q∑︂
m=M+1

P (Si(T+1) = 1|S[m]
iT ,S

[m]
(−i)T ,yT ,θ

[m]), (A.10)

for i = 1, ..., N . We can similarly approximate the one step ahead posterior predictive

distribution of the reported cases in location i,

p(yi(T+1)|y) ≈
1

Q−M

Q∑︂
m=M+1

[︁
p(yi(T+1)|Si(T+1) = 1,yT ,β

[m])

×P (Si(T+1) = 1|S[m]
iT ,S

[m]
(−i)T ,yT ,θ

[m])

+I
[︁
yi(T+1) = 0

]︁ (︂
1− P (Si(T+1) = 1|S[m]

iT ,S
[m]
(−i)T ,yT ,θ

[m])
)︂]︂
,

(A.11)

for i = 1, ..., N , where I[·] is an indicator function. Therefore, the one step ahead posterior

predictive distribution of the counts is zero-inflated, where the mixing probability depends on

past histories of the states and counts. We can expand (A.10) to gain a better understanding

of this one step ahead prediction for the risk of disease presence in location i,

P (Si(T+1) = 1|S[m]
iT ,S

[m]
(−i)(T ),yT ,θ

[m]) = p01
[m]
i(T+1)(1− S

[m]
iT ) + p11

[m]
i(T+1)S

[m]
iT , where,

logit(p01[m]
i(T+1)) = ζ

[m]
0 + zTi(T+1)ζ

[m] +
∑︂

j∈NE(i)

ϕ
T→(T+1) [m]
01,j→i S

[m]
jT ,

logit(p11[m]
i(T+1)) = η

[m]
0 + zTi(T+1)η

[m] +
∑︂

j∈NE(i)

ϕ
T→(T+1) [m]
11,j→i S

[m]
jT .

(A.12)

Even if for j ∈ NE(i) yjT = 0, S[m]
jT could be 1 for many m if there is a high chance the

disease went undetected in neighbor j. Similarly, if yiT = 0, S[m]
iT could be 1 for many m

if there is a high chance the disease is undetected in location i. Therefore, this warning

system accounts for the fact that the disease may already have been circulating undetected

in location i for some time. It also considers the possible risk of spread from neighboring
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Algorithm 1: Posterior Predictive Simulation
for m in M + 1 : Q do

for k in 1 : K do
for i in 1 : N do

1. Draw S
[m]
i(T+k) from p(Si(T+k)|S[m]

T+k−1,y
[m]
T+k−1,θ

[m]), where y[m]
T = yT ,

p(Si(T+k)|S[m]
T+k−1,y

[m]
T+k−1,θ

[m])=Bern
(︂
π
[m]
i(T+k)

)︂
, where,

π
[m]
i(T+k) = p01

[m]
i(T+k)(1− S

[m]
i(T+k−1)) + p11

[m]
i(T+k)S

[m]
i(T+k−1).

2. Draw y
[m]
i(T+k) from p(yi(T+k)|S[m]

i(T+k),y
[m]
T+k−1,β

[m]), where y[m]
T = yT ,

p(yi(T+k)|S[m]
i(T+k),y

[m]
T+k−1,β

[m]) = NB(S
[m]
i(T+k)λ

[m]
i(T+k), r

[m]
i(T+k)).

end
end

end

locations with 0 reported cases that have a high chance of the disease being undetected. More

traditional warning systems, based on autoregressive models (Chan et al., 2015), cannot

account for these important risks. This makes our warning system particularly useful in

cities like Rio where underreporting is a major issue, and the disease may circulate and

spread unnoticed.

For arbitrary K step ahead temporal predictions, we use a simulation procedure (Frühwirth-

Schnatter, 2006) to draw samples from the posterior predictive distributions. Algorithm

1 will obtain realizations from the posterior predictive distribution of the cases, y[m]
i(T+k) ∼

p(yi(T+k)|y), and the presence of the disease, S[m]
i(T+k) ∼ p(Si(T+k)|y), for i = 1, ..., N , k =

1, ..., K and m = M + 1, ..., Q. However, as S[m]
i(T+k) can only take two values, 0 or 1,

it is difficult to interpret the uncertainty around this prediction for the presence of the

disease. Therefore, instead of using summaries of S[m]
i(T+k) we use summaries of P (Si(T+k) =

1|S[m]
i(T+k−1),S

[m]
(−i)(T+k−1),y

[m]
T+k−1,θ

[m]).
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A.4 Pearson Residuals

A common model diagnostic in time series analysis is the autocorrelation function (ACF)

of the Pearson residuals (Bracher and Held, 2022). Following Section 3.3.2, we define the

Pearson residual in area i for our model as,

Presit =
yit − E[yit|y(t−1),S(−bNE(i))(0:t),v]√︂
V ar[yit|y(t−1),S(−bNE(i))(0:t),v]

.

We estimate E[yit|y(t−1),S(−bNE(i))(0:t),v] and V ar[yit|y(t−1),S(−bNE(i))(0:t),v] using the sam-

ple mean and variance of yc1∗[m]
it . Figure A.3 (below) shows the ACF of the Pearson residuals

for the 4 districts from Figure 3.6 of the main text. There are not many significant auto-

correlations. Overall, the figure suggests we are capturing well the structure present in the

data.
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Figure A.3: ACF of the Pearson residuals for the 4 districts from Figure 3.6 of the main
text.
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APPENDIX B

Appendix to Manuscript 2

B.1 The Individual Forward Filtering Backward Sam-

pling (iFFBS) Algorithm

In this section, we describe how S∗ is sampled in our hybrid Gibbs sampling algorithm. We

will borrow all notation from the main text. First, to obtain valid initial values for the hidden

Markov chain we sample S∗[1]
i from a 6 state Markov chain with transition Matrix given by

Equation (4.7) in the main text without the absence state. The transition probabilities are

fixed at .8 for remaining in a state and .2 for transitioning out of a state since we expect

persistence. We do not include the absence state in the initial values since it might cause

the initial joint likelihood function, Equation (4.8) in the main text, to be evaluated at 0 as

the absence state cannot produce a positive count. After initialization, the following steps

are repeated for m = 2, . . . , Q, where Q is the total number of iterations for the Gibbs

sampler,

1. Sample v[m] from p(v|S∗[m−1],y)

2. Sample S∗[m]
i from p(S∗

i |S
∗[m]
1 , . . . ,S

∗[m]
i−1 ,S

∗[m−1]
i+1 , ...,S

∗[m−1]
N ,v[m],y) for i = 1, ..., N .
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As mentioned in the main text, in the first step elements of v without conjugate priors

are sampled individually using an adaptive random walk Metropolis step (Shaby and Wells,

2010). Here we will provide the individual forward filtering backward sampling (iFFBS)

algorithm for sampling from p(S∗
i |S∗

(−i),v,y) needed for step 2. The algorithm was originally

proposed by Touloupou et al. (2020). In this section we will sometimes use the subscript

t1:t2 to denote a temporally indexed vector subsetted to the interval t1 to t2, e.g., yi(1:t) =

(yi1, . . . , yit)
T .

First note that,

p(S∗
i |S∗

(−i),v,y) = p(S∗
iT |S∗

(−i),y,v)
T−1∏︂
t=1

p(S∗
it|S∗

i(t+1),S
∗
(−i)(1:t+1),yi(1:t),v), (B.1)

and that, from Bayes’ Theorem,

p(S∗
it|S∗

i(t+1),S
∗
(−i)(1:t+1),yi(1:t),v) ∝ p(S∗

i(t+1)|S∗
it,S(−i)t,θ)p(S

∗
it|S∗

(−i)(1:t+1),yi(1:t),v). (B.2)

The density p(S∗
i(t+1)|S∗

it,S(−i)t,θ) in (B.2) is simply the appropriate transition probability

of the Markov chain in area i, which can be obtained from Equation (4.7) of the main text.

Therefore, if we can calculate P (S∗
it = s∗|S∗

(−i)(1:t+1),yi(1:t),v) for s∗ = 1, . . . , 7 and t =

1, . . . , T , called the filtered probabilities, then S∗
i can be sampled backward using Equations

(B.1) and (B.2).

Starting with t = 1 we have that,

p(S∗
i1|S∗

(−i)(1:2), yi1,v) ∝ p(S∗
i1|yi1)p(S∗

(−i)2|S∗
i1,S

∗
(−i)1,θ)

∝ p(S∗
i1|yi1)

∏︂
j : i∈NE(j)

p(S∗
j2|S∗

j1,S(−j)1,θ).
(B.3)

Here p(S∗
i1|yi1) is the initial state distribution, which is fixed by the modeler, and

p(S∗
j2|S∗

j1,S(−j)1,θ) is a transition probability of the Markov chain in area j. Note that
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∏︁
j : i∈NE(j) p(S

∗
j2|S∗

j1,S(−j)1,θ) only depends on whether area i is in the outbreak state or

not so only 2 values need to be calculated. Also note that since S∗
i1 can only take seven

values it is straightforward to derive the filtered probabilities using Equation (B.3),

P (S∗
i1 = s∗|S∗

(−i)(1:2), yi1,v) =

P (S∗
i1 = s∗|yi1)

∏︁
j : i∈NE(j)

S∗
i1=s∗

p(S∗
j2|S∗

j1,S(−j)1,θ)

∑︁7
k=1 P (S

∗
i1 = k|yi1)

∏︁
j : i∈NE(j)

S∗
i1=k

p(S∗
j2|S∗

j1,S(−j)1,θ)
,

for s∗ = 1, . . . , 7.

For t = 2, . . . , T − 1 we have that,

p(S∗
it|S∗

(−i)(1:t+1),yi(1:t),v) ∝ p(yit|Sit, yi(t−1),β)p(S
∗
it|S∗

(−i)(1:t),yi(1:t−1),v)

×
∏︂

j : i∈NE(j)

p(S∗
j(t+1)|S∗

jt,S(−j)t,θ).

Here p(yit|Sit, yi(t−1),β) is given by Equation (4.1) of the main text. Note that,

P (S∗
it = s∗|S∗

(−i)(1:t),yi(1:t−1),v) =

7∑︂
k=1

P (S∗
it = s∗|S∗

i(t−1) = k,S(−i)(t−1),θ)P (S
∗
i(t−1) = k|S∗

(−i)(1:t),yi(1:t−1),v),

where P (S∗
i(t−1) = k|S∗

(−i)(1:t),yi(1:t−1),v) is the previous filtered probability. It then follows

that,

P (S∗
it = s∗|S∗

(−i)(1:t+1),yi(1:t),v) =

p(yit|S∗
it = s∗, yi(t−1),β)P (S

∗
it = s∗|S∗

(−i)(1:t),yi(1:t−1),v)
∏︁

j : i∈NE(j)
S∗
it=s∗

p(S∗
j(t+1)|S∗

jt,S(−j)t,θ)

∑︁7
k=1 p(yit|S∗

it = k, yi(t−1),β)P (S∗
it = k|S∗

(−i)(1:t),yi(1:t−1),v)
∏︁

j : i∈NE(j)
S∗
it=k

p(S∗
j(t+1)|S∗

jt,S(−j)t,θ)
,

(B.4)
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for s∗ = 1, . . . , 7.

The logic for t = T is similar but there is no forward product term,

P (S∗
iT = s∗|S∗

(−i),y,v) =
p(yiT |S∗

iT = s∗, yi(T−1),β)P (S
∗
iT = s∗|S∗

(−i),yi(1:T−1),v)∑︁7
k=1 p(yiT |S∗

iT = k, yi(T−1),β)P (S∗
iT = k|S∗

(−i),yi(1:T−1),v)
,

for s∗ = 1, . . . , 7.

Once the filtered probabilities have been calculated S∗
i can be sampled backward using

Equations (B.1) and (B.2). Firstly, S∗[m]
iT is drawn from p(S∗

iT |S∗
(−i),y,v). Then, for t =

T − 1, . . . , 1, S∗[m]
it is drawn from the density defined by,

P (S∗
it = s∗|S∗

i(t+1) = S
∗[m]
i(t+1),S(−i)(1:t+1),yi(1:t),v) =

P (S∗
i(t+1) = S

∗[m]
i(t+1)|S∗

it = s∗,S(−i)t,θ)P (S
∗
it = s∗|S∗

(−i)(1:t+1),yi(1:t),v)∑︁7
k=1 P (S

∗
i(t+1) = S

∗[m]
i(t+1)|S∗

it = k,S(−i)t,θ)P (S∗
it = k|S∗

(−i)(1:t+1),yi(1:t),v)
,

for s∗ = 1, . . . , 7.

As mentioned in the main text, all Nimble code for the iFFBS samplers is provided on GitHub

(https://github.com/Dirk-Douwes-Schultz/CMSNB124_code). Note that the only cal-

culations that separate the iFFBS sampler from a traditional FFBS sampler for Markov

switching models (Chib, 1996; Frühwirth-Schnatter, 2006) are the forward product terms∏︁
j : i∈NE(j) p(S

∗
j(t+1)|S∗

jt,S(−j)t,θ) which are needed to account for between chain dependen-

cies. Therefore, if an area is not a neighbor of any other area the iFFBS sampler reduces to

the FFBS sampler which, being computationally simpler, should be used instead. As such,

in our code, we assign all areas that are not neighbors of any other areas FFBS samplers,

which we also custom code and provide on GitHub.
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Figure B.1: Comparison of the posterior means of S produced by the one-at-a-time and
iFFBS samplers when applied to the No Absence/Clone State Model from Section 4.5 of the
main text. Sit = 0 indicates the endemic state and Sit = 1 indicates the outbreak state.

B.1.1 Validating the algorithm

One way to validate a Markov chain Monte Carlo (MCMC) sampler is to compare the

posterior distributions produced by the sampler to those produced by a more established

or simpler sampler. Different MCMC sampling algorithms should return the same posterior

distributions. Figure B.1 compares the posteriors means of S produced by the one-at-a-time,

described in Section 4.3 of the main text, and iFFBS samplers. These were compared on

the COVID-19 hospitalization data from the main text with the No Absence/Clone State

Model specified in Section 4.5.1 of the main text. We compared the samplers using the

No Absence/Clone State Model as the one-at-a-time samplers do not converge when clone

states are present. As can be seen from the figure, both samplers produce the same posterior

means for S within reasonable Monte Carlo error. Additionally, we compared the posterior

means and 95% posterior credible intervals for all elements of v (not shown) and there were

no meaningful differences between the two samplers.
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B.2 Simulation Study to Assess Parameter Recovery

We designed a simulation study to ensure our hybrid Gibbs sampling algorithm could recover

the true parameters of the CMSNB(1,2,4) model. We simulated data from a slightly sim-

plified version of the CMSNB(1,2,4) model specified in Section 4.5.1 of the main text. More

specifically, we removed the random intercepts, we removed some insignificant effects from

the Markov chain and the outbreak and endemic transmission rates, and we assumed that

the overdispersion in the hospitalizations was the same during the endemic and outbreak

periods. This was done to reduce the number of parameters in the model as we need to

run many simulations each of which is computationally costly. We generated data from the

following CMSNB(1,2,4) model,

log(λEN
it ) = βEN

0 + βEN
bedsbedsi + βEN

mobmobilitycounty(i)(t−4) + ρEN log(yi(t−1) + 1)

log(λOB
it ) = βOB

0 + βOB
bedsbedsi + βOB

mobmobilitycounty(i)(t−4) + ρOB log(yi(t−1) + 1)

rEN = rOB = r

logit(p12it) = α12,0 + α12,bedsbedsi

log

(︃
p21it

1− p21it − p23it

)︃
= α21,0 + α21,bedsbedsi + α21,mobmobilitycounty(i)(t−4)

log

(︃
p23it

1− p21it − p23it

)︃
= α23,0 + α23,mobimobilitycounty(i)(t−4) + α23,newvnew_variantt

+ α23,spat

∑︂
j∈NE(i)

ωjiI[Sj(t−1) = 3]

logit(p33it) = α33,0 + α33,mobimobilitycounty(i)(t−4)

+ α33,spat

∑︂
j∈NE(i)

ωjiI[Sj(t−1) = 3],

(B.5)

for i = 1, . . . , 30 and t = 2, . . . , 113, and with the following true parameter values v =

(βEN
0 , βEN

beds, β
EN
mob, ρ

EN , βOB
0 , βOB

beds, β
OB
mob, ρ

OB, r, α12,0, α12,beds, α21,0, α21,beds, α21,mob, α23,0, α23,mobi,

α23,newv, α23,spat, α33,0, α33,mobi, α33,spat)
T = (0, .17, .003, .65, .78, , 06, .007, .75, 10,−.76, .45,−3.6,
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Figure B.2: Shows simulated hospitalizations in 2 areas from a single replication of (B.5).

−.9,−.035,−4.15, .025, 2.5, 1.15, 2, .025, .45)T . The true parameter values were chosen to be

similar to those estimated in our motivating example. In (B.5) bedsi, mobilitycounty(i)(t−4),

new_variantt, NE(i) and ωji are all the same as in our motivating example. Finally, we

assumed a uniform initial state distribution for the Markov chain in each area. Figure B.2

shows the simulated hospitalizations in 2 areas from a single replication of (B.5) and they

appear somewhat realistic.

We considered two sets of constraints for fitting the CMSNB(1,2,4) model to simulations

of (B.5). Firstly, we considered a constraint on just the intercepts and the autoregressive

coefficients, βEN
0 + .1 < βOB

0 and ρEN + .05 < ρOB, which we will refer to as the weak

constraints. We also considered constraining the entirety of the transmission rates,

βEN
0 +βEN

bedsbedsi+βEN
mobmobilitycounty(i)(t−4)+.01 < βOB

0 +βOB
bedsbedsi+βOB

mobmobilitycounty(i)(t−4)

for i = 1, . . . , 30 and t = 2, . . . , 113, and ρEN+ .05 < ρOB, which we will refer to as the strong

constraints. We chose minimum differences of .1 for the weak constraints on the intercepts

and .01 for the strong constraints on the entirety of the transmission rates as the strong

constraints constrain the minimum difference in transmission while the weak constraints

constrain the average difference in transmission (we center all covariates) which should be
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a larger difference. With our hybrid Gibbs sampling algorithm we fit the CMSNB(1,2,4)

model (correctly specified) to 250 replications of (B.5) using the strong constraints and to

another 700 replications of (B.5) (due to the low convergence rate, see below) using the weak

constraints. We mostly assumed the same prior distribution for v as specified in Section 4.2.2

of the main text. The only exception is that we used wider priors for α23,spat and α33,spat

as our goal was not to shrink these effects but to recover the true parameter values. We

ran our Gibbs sampler for 200,000 iterations on 3 chains, started from random values in the

parameter space, with an initial burn-in of 50,000 iterations. For each replication convergence

of the Gibbs sampler was checked using the minimum effective sample size (>1000) and the

maximum Gelman-Rubin statistic (<1.05) (Plummer et al., 2006).

When using the weak constraints, our Gibbs sampler passed the convergence checks for only

284/700 = 40.6% of the replications. When using the strong constraints, the convergence rate

was much higher with our Gibbs sampler converging for 237/250 = 94.8% of the replications.

Figure B.3 gives the sample mean and 95% quantile of the posterior medians for the 237/250

replications that converged using the strong constraints and the 284/700 replications that

converged using the weak constraints. Figure B.3 shows that when our Gibbs sampler

converges, using either the weak or the strong constraints, the posterior distributions are

centered close to the true parameter values on average. Additionally, the average coverage

of the 95% credible intervals was .95 with a minimum coverage of .91 and a maximum

coverage of .98, when using either constraint, showing good coverage of the true parameter

values.

In conclusion, regardless of whether the strong or weak constraints were used our hybrid

Gibbs sampling algorithm was able to recover the true parameter values of the CMSNB(1,2,4)

model well when it converged. However, the convergence rate was low when using the weak

constraints. The strong constraints greatly improved the convergence rate and, from Figure

B.3, did not introduce any significant bias into the inferential procedure. Additionally, check-
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ing the strong constraints did not add a substantial amount of time to the model fitting (less

than 1 hour). Therefore, we would recommend constraining the entirety of the transmission

rates in practice and we do so throughout the main manuscript. We believe these constraints

are reasonable in most applications since transmission should always increase when moving

from the endemic state to the outbreak state.

We found in our simulation study that even when the strong constraints are used our Gibbs

sampler can still run into rare convergence issues, around 5% of the time. By examining a

few of the non-converged MCMC samples, when the strong constraint was used, we found

the convergence issues were caused by genuine multimodality (the presence of multiple non-

symmetric modes) in the posterior distribution, a common occurrence in Bayesian mixture

modeling (Stephens, 2000; Jasra et al., 2005). Multimodality in the posterior can be an

important issue in Bayesian inference as most standard MCMC sampling algorithms, such

as Metropolis-Hastings, do not mix well between the modes and, therefore, may not explore

all important regions of the parameter space (Yao et al., 2022). We cannot guarantee the

absence of genuine multimodality in the 237/250 or 284/700 replications where our Gibbs

sampler passed convergence checks, as all chains could have been stuck in the same mode

(although we do start the chains from random values in the parameter space making this

less likely). However, when the Gibbs sampler passed convergence checks in our simulation

study, we were able to recover the true parameters well. This implies that if there were extra

modes in those posteriors they were too minor to affect inference significantly. To double-

check for genuine multimodality in our motivating example in Section 4.5 of the main text,

we ran an additional 9 chains for the Full Coupled Model, started from random values in

the parameter space, and they all converged to the same mode.

In all non-converged MCMC samples that we checked, when using the strong constraints,

there was a mode centered close to the true parameter values and an extra mode centered on a

submodel of the CMSNB(1,2,4) model that only used the absence state and the endemic state
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(based on the locations of the different MCMC chains). That is, the posterior probability

of outbreak emergence and persistence, at average covariate values, was essentially 0 for the

extra mode. It is not uncommon for the likelihood of a complex mixture model to contain

multiple local modes in regions of the parameter space where some of the states have close

to 0 probability of being visited, see the discussion in Section 4.2.3 of Frühwirth-Schnatter

(2006). (Note our strong constraints would not prevent this kind of multimodality as if the

outbreak state is never visited then the transmission rate in the outbreak state does not

contribute to the likelihood.) If such multimodality is encountered, it is recommended by

Frühwirth-Schnatter (2006) to bound the posterior away from these regions. For instance, in

our model, one could assign priors to the intercepts αlk,0 for lk = 12, 21, 23, 33, in Equations

(4.4)-(4.5) of the main text, that shrink them towards 0 so that all states are likely to have

a non-negligible chance of being visited. Another possible solution is to treat it as a model

comparison problem, fitting the reduced model, that only uses an absence and one count

state, and discarding the chains from the full model associated with the reduced model if

it has a higher widely applicable information criterion (WAIC) (the WAIC is discussed in

Section B.3 below). Other possible solutions to consider if multimodality is encountered

include stacking (Yao et al., 2022) (weighting the chains associated with different modes

based on some comparison criteria) and tempered MCMC (Jasra et al., 2005) (a type of

MCMC algorithm that is often successful in sampling multimodal posteriors). It is difficult

to test any of these possible solutions formally as, when using the strong constraints, we only

ran into convergence issues 5% of the time, and so many simulations would have to be run

to see if they could recover the true parameters despite the non-convergence of our Gibbs

sampler.
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Figure B.3: Shows the sample mean (circles) and 95% quantile (caps) of the posterior medians
from fitting 237 replications of (B.5) using the strong constraints (SC) (see text around figure)
and an additional 284 replications of (B.5) using the weak constraints (WC), with our hybrid
Gibbs sampling algorithm. The horizontal lines are drawn at the true parameter values.
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B.3 Widely Applicable Information Criterion (WAIC)

B.3.1 Formulation

As mentioned in the main text, the WAIC for a state-space model is more accurate when

the latent states are marginalized (Auger-Méthé et al., 2021). Starting with models that

do not contain neighboring outbreak indicators in the transition probabilities, such as the

Non-coupled Model from Section 4.5 of the main text, we can use the forward filtering part

of the FFBS algorithm (Frühwirth-Schnatter, 2006) to calculate the marginalized density

p(yit|y1:(t−1),v), where y1:(t−1) is the vector of all counts in all areas through t − 1. Then,

following Gelman et al. (2014), the WAIC can be calculated as,

lpdd =
N∑︂
i=1

T∑︂
t=2

log

(︄
1

Q−M

Q∑︂
m=M+1

p(yit|y1:(t−1),v
[m])

)︄
,

pwaic =
N∑︂
i=1

T∑︂
t=2

V arQm=M+1 log
(︁
p(yit|y1:(t−1),v

[m])
)︁
,

WAIC = −2(lpdd − pwaic),

(B.6)

where the superscript [m] denotes a draw from the posterior of the variable and V ar denotes

the sample variance.

For models with neighboring outbreak indicators in the transition probabilities, such as the

Full Coupled Model from Section 4.5 of the main text, we cannot completely marginalize

S∗ and calculate p(yit|y1:(t−1),v) (Douwes-Schultz and Schmidt, 2022). As an alternative we

could condition on S∗ and use p(yit|S∗[m],y1:(t−1),v
[m]) = p(yit|S[m]

it , yi(t−1),β
[m]), which is

given by Equation (4.1) in the main text, in place of p(yit|y1:(t−1),v
[m]) in Equation (B.6).

For state-space models this is sometimes called the conditional WAIC, however, it has been

shown to be inaccurate (Auger-Méthé et al., 2021). As a compromise we marginalize as much

of S∗ as is computationally possible from p(yit|S∗,y1:(t−1),v). Note, from Equation (B.4) in

Section B.1 above, it is possible to use the forward filtering part of the iFFBS algorithm to
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calculate the partially marginalized density,

p(yit|S∗
(−i)(1:t),y1:(t−1),v) = p(yit|S∗

(−i)(1:t),yi(1:t−1),v)

=
7∑︂

k=1

p(yit|S∗
it = k, yi(t−1),v)p(S

∗
it = k|S∗

(−i)(1:t),yi(1:t−1),v),

meaning we can marginalize all of S∗ that is from the area and all future states in neigh-

boring areas. Therefore, we use p(yit|S∗[m]
(−i)(1:t),y1:(t−1),v

[m]) in place of p(yit|y1:(t−1),v
[m]) in

Equation (B.6). In the next subsection, we show that the WAIC calculated in this manner

can distinguish the correct model.

B.3.2 Simulation study

We designed a simulation study to ensure the WAIC, as formulated in the previous sub-

section, can choose the true data generating model. We focused on a comparison between

models with/without neighboring outbreak indicators in the transition probabilities as this

is one of the most important comparisons in the main text.

Firstly, we considered a CMSNB(1,2,4) model without neighboring outbreak indicators in

the Markov chain,

log(λEN
it ) = βEN

0 + βEN
bedsbedsi + βEN

mobmobilitycounty(i)(t−4) + ρEN log(yi(t−1) + 1)

log(λOB
it ) = βOB

0 + βOB
bedsbedsi + βOB

mobmobilitycounty(i)(t−4) + ρOB log(yi(t−1) + 1)

rEN = rOB = r

logit(p12it) = α12,0 + α12,bedsbedsi

log

(︃
p21it

1− p21it − p23it

)︃
= α21,0 + α21,bedsbedsi

log

(︃
p23it

1− p21it − p23it

)︃
= α23,0 + α23,mobimobilitycounty(i)(t−4) + α23,newvnew_variantt

logit(p33it) = α33,0 + α33,mobimobilitycounty(i)(t−4),

(B.7)
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for i = 1, . . . , 30 and t = 2, . . . , 113, and with the following true parameter values v =

(βEN
0 , βEN

beds, β
EN
mob, ρ

EN , βOB
0 , βOB

beds, β
OB
mob, ρ

OB, r, α12,0, α12,beds, α21,0, α21,beds, α23,0, α23,mobi,

α23,newv, α33,0, α33,mobi)
T = (0, .1, 0, .5, .75, .05, .007, .75, 10,−1, .5,−3,−1,−3.5, .04, 1,

2.5, .02)T . We will refer to the model defined by Equation (B.7) as the Non-spatial Model.

We also considered a spatial extension of the Non-spatial Model with neighboring outbreak

indicators in each transition probability,

log(λEN
it ) = βEN

0 + βEN
bedsbedsi + βEN

mobmobilitycounty(i)(t−4) + ρEN log(yi(t−1) + 1)

log(λOB
it ) = βOB

0 + βOB
bedsbedsi + βOB

mobmobilitycounty(i)(t−4) + ρOB log(yi(t−1) + 1)

rEN = rOB = r

logit(p12it) = α12,0 + α12,bedsbedsi + α12,spat

∑︂
j∈NE(i)

ωjiI[Sj(t−1) = 3]

log

(︃
p21it

1− p21it − p23it

)︃
= α21,0 + α21,bedsbedsi + α21,spat

∑︂
j∈NE(i)

ωjiI[Sj(t−1) = 3]

log

(︃
p23it

1− p21it − p23it

)︃
= α23,0 + α23,mobimobilitycounty(i)(t−4) + α23,newvnew_variantt

+ α23,spat

∑︂
j∈NE(i)

ωjiI[Sj(t−1) = 3]

logit(p33it) = α33,0 + α33,mobimobilitycounty(i)(t−4) + α33,spat

∑︂
j∈NE(i)

ωjiI[Sj(t−1) = 3],

(B.8)

for i = 1, . . . , 30 and t = 2, . . . , 113, and with the following true parameter values v =

(βEN
0 , βEN

beds, β
EN
mob, ρ

EN , βOB
0 , βOB

beds, β
OB
mob, ρ

OB, r, α12,0, α12,beds, α12,spat, α21,0, α21,beds, α21,spat

, α23,0, α23,mobi, α23,newv, α23,spat, α33,0, α33,mobi, α33,spat)
T = (0, .1, 0, .5, .75, .05, .007, .75, 10,

− 1, .5, .25,−3, . − 1,−.25,−4, .04, 1, 1.2, 2, .02, .5)T . We will refer to the model defined by

Equation (B.8) as the Spatial Model.

Like in Section B.2 above we simplified the models slightly compared to the main manuscript,

such as by removing the random intercepts, to reduce the computational burden of running
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Table B.1: Shows the results of model comparison using the WAIC for 24 replications of
the Non-spatial Model and 24 replications of the Spatial Model. Each row represents the
true model from which the 24 replications were produced.

True Model Non-spatial
Model Chosen

Spatial
Model Chosen

No Significant Difference
(|∆WAIC| < 5)

Non-spatial 13 1 10

Spatial 0 24 0

many simulations. The true parameter values were chosen to be like those estimated in our

motivating example. In (B.7) and (B.8) bedsi, mobilitycounty(i)(t−4), new_variantt, NE(i)

and ωji are all the same as in our motivating example. Finally, we assumed a uniform initial

state distribution for the Markov chain in each area.

We simulated 25 replications of the Non-spatial Model and fit the Spatial and Non-spatial

Model to each replication. Then we simulated 25 replications of the Spatial Model and again

fit the Spatial and Non-spatial Model to each replication. This resulted in 100 models being

fit in total. Table B.1 gives the results of the model comparison using WAIC across all

replications. There are 24 replications in each row as 2 of the models did not converge and

were removed from the table, this is in line with the convergence rate reported in Section

B.2 above. From Table B.1, when the Non-spatial Model generated the data the WAIC was

split between choosing the correct Non-spatial Model and showing no significant difference

between the models, and the WAIC only once chose the incorrect Spatial Model. For the

replication where the WAIC chose the wrong model one of the spatial effects was highly

significant, which can occur through random chance even when there is no real effect. When

the Spatial Model generated the data the WAIC always chose the correct Spatial Model.

These results suggest that when the WAIC shows no significant difference to prefer the

less complex model and that the WAIC rarely selects the incorrect model when there is a

significant difference.
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A limitation is that we only compared a spatial and non-spatial model. The simulations are

very computationally costly as one needs to run 2 models for every replication and there

are multiple replications per model. Comparison between spatial and non-spatial models

is arguably the most important comparison problem in the main text so we focused on it

here.

B.4 Endemic-epidemic Model

Following Bracher and Held (2022), the Endemic-epidemic (EE) framework assumes the

counts follow a multivariate autoregressive negative binomial model,

yit|y1:(t−1) ∼ NB(λit, ψ),

where y1:(t−1) is the vector of all counts in all areas through t− 1. The conditional mean λit

is decomposed as,

λit = λEP
it

p∑︂
d=1

∑︂
j∈NE(i)

⌊ud⌋⌊ωji⌋yj,t−d + λBL
it . (B.9)

Here we will assume NE(i) is the same as in Section 4.5.1 of the main text but also includes

area i. The first term on the right-hand side of (B.9) accounts for expected new incidence

due to local and neighboring disease transmission. The effects of covariates on transmission

can be captured by the epidemic component λEP
it which is modeled in a log-linear fashion,

in our case we assume,

log(λEP
it ) = γEP

0i + γEP
1 bedsi + γEP

2 mobilitycounty(i)(t−4) + γEP
3 newvt,

where γEP
0i ∼ N(γEP

0 ,
(︁
σEP

)︁2
) is a normal random intercept. In (B.9) the spatial rela-

tionship between areas is described by the weights ωji > 0 which are normalized ⌊ωji⌋ =
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ωji/
∑︁

h:j∈NE(h) ωjh. The spatial weights are often assumed to follow a function, with un-

known parameters, that decays with some measure of distance between areas (Bracher

and Held, 2022). Following the main text Section 4.5.1, we assume ωji = exp(−ϕdBD
ji ),

where ϕ > 0 is decay parameter to be estimated and given a U(0, 1000) prior (note that

dBD
ii = 0).

In (B.9) the relationship in the counts across time is described by the weights ud > 0 which

are normalized ⌊ud⌋ = ud/
∑︁p

g=1 ug for identifiability (Bracher and Held, 2022). We use a

geometric specification (Bracher and Held, 2022) for the weights, ud = (1 − κ)d−1κ, where

0 < κ < 1 is to be estimated and given a U(0, 1) prior. Geometric weights decay over

time. This is a reasonable assumption in our application as the serial interval, i.e., the time

between the appearance of symptoms in successive generations, of COVID-19 is likely less

than a week (Nishiura et al., 2020) implying most of the weight should be placed on the

initial lag (Bracher and Held, 2022).

In (B.9) λBL
it is the baseline component, sometimes known as the endemic component (Bracher

and Held, 2022) (we use baseline to avoid confusion with λEN
it in the main text), which

captures contributions to incidence not directly related to local and neighboring disease

transmission. For example, the baseline component might help capture imported cases from

outside the study area. Like the epidemic component, the baseline component follows a

log-linear model, in our case we assume,

log(λBL
it ) = γBL

0i + γBL
1 bedsi + γBL

2 mobilitycounty(i)(t−4) + γBL
3 newvt,

where γBL
0i ∼ N(γBL

0 ,
(︁
σBL

)︁2
) is a normal random intercept. We found models with covariates

in the baseline component fit better, according to the WAIC, compared to models without

covariates.

To fit the EE models, we used standard MCMC methods in Nimble with flat priors, the

code is available on GitHub https://github.com/Dirk-Douwes-Schultz/CMSNB124_code.

185

https://github.com/Dirk-Douwes-Schultz/CMSNB124_code


Table B.2: Shows the WAIC of Endemic-epidemic models with different maximum lags p.
The best fitting model, the one with the lowest WAIC, is bolded.

Maximum Lag (p) WAIC

1 17,884

2 17,845

3 17,848

We used the WAIC to choose the maximum temporal lag p and to compare the EE model

to the Markov switching models from the main text (see Section 4.5.1 in the main text). To

compare models using the WAIC they must be fit to the same data. The Markov switching

models conditioned on the first observation and were fit to yit for i = 1, . . . , 30 and t =

2, . . . , 113. Therefore, to remain consistent we introduced times t = 0 and t = −1 and

fit the EE models across t = 2, . . . , 113 conditioning on t = 1, 0,−1 (depending on p).

Then to calculate the WAIC for the EE models we used Equation B.6 in Section B.3.1

above with p(yit|y1:(t−1),v
[m]) substituted with p(yit|y(−1):(t−1),v

[m]) = NB(yit|λ[m]
it , ψ

[m]),

where NB(y|λ, ψ) denotes a negative binomial density evaluated at y with mean λ and

overdispersion ψ. Before time t = −1 there were no COVID-19 hospitalizations, so we only

considered EE models with p up to 3. This should not be a major limitation as, from Table

B.2, the WAIC increased going from p = 2 to p = 3. From Table B.2, we decided on an EE

model with p = 2 and we will only discuss the results from that model in this section.

We estimated the decay parameter for the spatial weights with distance, ϕ, as 79.47 (67.13,

93.81) (posterior mean and 95% posterior credible interval), which is difficult to interpret

given the normalization of the weights. From examining the posteriors of the normalized

weights ⌊ωji⌋, for most areas 85-90 percent of the weight was placed on the home area (⌊ωii⌋)

and the remaining 10-15 percent was largely distributed over the closest 1-2 neighbors. This

implies most transmission occurred locally and from close neighbors. We estimated κ as .85

(.80, .90) and 87 (83, 91) percent of the temporal weight was placed on the first lag (⌊u1⌋)

and 13 (9, 17) percent was placed on the second lag (⌊u2⌋). A large portion of the temporal
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Table B.3: Posterior means and 95% posterior credible intervals (in parenthesis) from the
baseline and epidemic components of the fitted Endemic-epidemic model. The intercepts
and covariate effects are exponentiated so that they represent rates and rate ratios. Rate
ratios whose 95% posterior credible intervals do not contain 0 are bolded. The units for beds
and mobility are equal to one standard deviation.

Rate Ratios

Covariate Parameter Baseline Epidemic

Intercept of random intercepts eγ0 .84 .93
(.71, .99) (.88, .99)

Std. dev of random intercepts σ .66 .13
(.42, .99) (.09, .17)

beds (100s) eγ1 1.18 1.02
(1.01, 1.36) (.98, 1.06)

mobility (20%) eγ2 1.25 1.14
(1.05, 1.49) (1.11, 1.18)

new variant eγ3 1.46 1.06
(1.20, 1.75) (1.01, 1.11)

weight was placed on the previous week which is sensible considering the short serial interval

of COVID-19.

Table B.3 shows the estimates from the baseline and epidemic components. The “Epidemic”

column of the table shows the effect of each covariate on local and neighboring disease trans-

mission. Mobility had a strong positive association with local and neighboring transmission

while new variant and beds mainly affected the disease process through the baseline com-

ponent. Note, as we are modeling hospitalizations, an effect in terms of transmission in the

hospitalizations could reflect an effect on transmission in the actual cases and/or an effect

on the severity of the disease. Mobility and beds should not affect disease severity; however,

new variants often do (Chenchula et al., 2022). Therefore, the effects of new variant need to

be interpreted with caution. It is interesting to compare the estimates in Table B.3 to those

in Tables 4.2 and 4.3 in the main text. Both models largely agree that all three covariates

are important for the disease process. However, we would argue the CMNSB(1,2,4) model
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offers a deeper understanding of the covariate effects as it breaks down the effect of each

covariate into its effect on transmission during the endemic and outbreak periods and on the

epidemiological transitions. By breaking down the effects it could make it easier for policy

makers to implement suitable interventions.

There are also some advantages of the EE models. The EE model only took one hour to

fit while the CMSNB(1,2,4) model took eight hours. Also, the EE model can be fit using

standard MCMC methods while the CMSNB(1,2,4) model requires the coding of custom

iFFBS samplers. The CMSNB(1,2,4) model additionally requires implementing constraints

to ensure consistent convergence. Finally, the EE models allow one to better understand

the temporal and spatial structure of the disease counts by estimating the weights ud and

ωji. It is difficult to implement spatial and temporal weighting of the disease counts in

the CMSNB(1,2,4) model due to the complexity of those models. Appropriate constraints

would have to be considered as well as how the weight structure might switch between the

states.

B.5 Temporal Predictions

In this section, we are interested in the posterior predictive distribution of the counts

p(yi(T+k)|y) and the epidemiological state of the disease p(S∗
i(T+k)|y) for i = 1, . . . , N and
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k = 1, . . . , K. The posterior predictive distribution of the counts is given by,

p(yi(T+k)|y) =
∫︂
p(yi(T+k)|Si(T+k), yi(T+k−1),β)p(S

∗
i(T+k)|S∗

i(T+k−1),S(−i)(T+k−1),θ)

×
N∏︂
j=1

p(yj(T+k−1)|Sj(T+k−1), yj(T+k−2),β)p(S
∗
j(T+k−1)|S∗

j(T+k−2),S(−j)(T+k−2),θ)

. . .×
N∏︂
j=1

p(yj(T+1)|Sj(T+1), yjT ,β)p(S
∗
j(T+1)|S∗

jT ,S(−j)T ,θ)

× p(S∗
(1:N)T ,v|y) dS∗

i(T+k)dy(1:N)(T+1:T+k−1)dS
∗
(1:N)(T :T+k−1)dβdθ,

(B.10)

and the posterior predictive distribution for the state of the disease in area i is given by,

p(S∗
i(T+k)|y) =

∫︂
p(S∗

i(T+k)|S∗
i(T+k−1),S(−i)(T+k−1),θ)

×
N∏︂
j=1

p(S∗
j(T+k−1)|S∗

j(T+k−2),S(−j)(T+k−2),θ)

. . .×
N∏︂
j=1

p(S∗
j(T+1)|S∗

jT ,S(−j)T ,θ)

× p(S∗
(1:N)T ,v|y) dS∗

(1:N)(T :T+k−1)dβdθ.

(B.11)

The integrals (B.10) and (B.11) are intractable, however, they can be approximated by

Monte Carlo integration,

p(yi(T+k)|y) ≈
1

Q−M

Q∑︂
m=M+1

p(yi(T+k)|S∗[m]
i(T+k), y

[m]
i(T+k−1),β

[m]), (B.12)

and

p(S∗
i(T+k)|y) ≈

1

Q−M

Q∑︂
m=M+1

p(S∗
i(T+k)|S

∗[m]
i(T+k−1),S

[m]
(−i)(T+k−1),θ

[m]), (B.13)

where, like in the main text, the superscript [m] denotes a draw from the posterior of the
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Algorithm 2: Posterior Predictive Simulation
for m in M + 1 : Q do

for k in 1 : K do
for i in 1 : N do

1. Draw S
∗[m]
i(T+k) from p(S∗

i(T+k)|S
∗[m]
i(T+k−1),S

[m]
(−i)(T+k−1),θ

[m]).

2. Draw y
[m]
i(T+k) from p(yi(T+k)|S∗[m]

i(T+k), y
[m]
i(T+k−1),β

[m]), where y[m]
iT = yiT .

end
end

end

variable.

We can use a simulation procedure to draw realizations from the posterior predictive distri-

butions (Frühwirth-Schnatter, 2006). Algorithm 2 will obtain realizations from the posterior

predictive distribution of the counts, y[m]
i(T+k) ∼ p(yi(T+k)|y), and the epidemiological state of

the disease, S∗[m]
i(T+k) ∼ p(S∗

i(T+k)|y), for i = 1, . . . , N , k = 1, . . . , K and m = M + 1, . . . , Q.

Then the realizations from the posterior predictive distributions can be substituted into

Equations (B.12) and (B.13) if the posterior predictive distributions themselves need to be

calculated. Although, as S∗
i(T+k) can only take 7 values it is easier to approximate p(S∗

i(T+k)|y)

with the frequency distribution of S∗[m]
i(T+k). Note that in Algorithm 2, the first step draws a

new state for the disease from the Markov chain in each area and then step 2 draws new

counts conditional on the new states.
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Figure B.4: Shows simulated counts in 2 areas from the simulation study described in Section
4.4 of the main text. The red dotted lines indicate the exact pre-determined start time of
each outbreak in the area.

B.6 Further Results from the Simulation Study to Quan-

tify and Compare State Estimation (Section 4.4 of

the Main Text)

B.6.1 Simulated counts from 2 areas (SM Figure B.4)

Figure B.4 shows simulated counts in 2 areas from the simulation study described in Section

4.4 of the main text.
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Table B.4: Shows the area under the ROC curve (AUC), sensitivity, specificity and time-
liness (last 3 calculated with a 50 percent threshold) of three outbreak state estimates:
(a) retrospective probabilities, P (Sit = 3|y) from fitting the models to the full simulated
data set (b) real-time detection probabilities, P (SiT = 3|y) from fitting the models up to
time T for T = 100, . . . , 120 (20 separate fits) and (c) real-time one week ahead forecasts,
P (SiT = 3|y1:(T−1)) from fitting the models up to time T − 1 for T = 101, . . . , 120. All
outbreak state estimates were evaluated on the simulated data set described in Section 4.4
of the main text. The best criteria for each outbreak state estimate are bolded.

(a) Retrospective (b) Real-time
Detection

(c) Real-time
Forecast

Criterion Spatial Non-spatial Spatial Non-spatial Spatial Non-spatial

AUC .995 .992 .983 .960 .965 .919

Sensitivity .944 .935 .894 .835 .874 .768

Specificity .981 .967 .982 .964 .985 .964

Timeliness 1.48 1.62 1.90 2.53 1.47 2.47

B.6.2 Primary results from the simulation study (SM Table B.4)

Table B.4 summarizes the primary results of the simulation study described in Section 4.4

of the main text.

B.7 Further Results for the Application to COVID-19

Outbreaks Across Quebec

B.7.1 Difference in the posterior probability that an outbreak is

currently happening between the Full Coupled and Non-coupled

models averaged across all hospitals (SM Figure B.5)

Figure B.5 shows the difference in the posterior probability that an outbreak is currently

happening between the Full Coupled and Non-coupled models averaged across all hospitals

and was discussed in Section 4.5.4 of the main text.
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Figure B.5: (a)(top) Each line gives the number of hospitalizations in one of the 30 hospitals
included in the study. (a)(bottom) shows the difference in the posterior probability that an
outbreak is currently happening between the Full Coupled and Non-coupled models aver-
aged across all hospitals, that is, 1/30

∑︁30
i=1 P (SiT = 3|y,Full Coupled Model) − P (SiT =

3|y,Non-coupled Model), versus T . (b) and (c) show posterior means (solid lines) and 95%
posterior credible intervals (shaded areas) of the probabilities of outbreak emergence, (b),
and outbreak persistence, (c), versus the number of outbreaks in neighboring areas assuming
average connectivity and other covariates fixed at their average values. For (b) and (c), the
Full Coupled Model is in orange, the Non-coupled Model is in purple, and the models were
fit up to T = 84.

B.7.2 Map of the likely state in each catchment area during the

last week of the study period (SM Figure B.6)

Figure B.6 shows a map of the likely state in each catchment area during the last week of

the study period and was discussed in Section 4.5.4 of the main text.

B.7.3 Analysis of real-time false alarms

Figure B.7, similar in structure to Figure 4.6 of the main text, shows the posterior probabil-

ities that an outbreak is currently happening (bottom graphs) for the Full Coupled Model

in the two hospitals where we found evidence of false alarms during our real-time evalu-

ation. Recall in the real-time evaluation the model was fit up to time T for T = 84 =

2021-10-18, ..., 113 = 2022-05-09 and then the summaries in Figure B.7 were calculated for
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Figure B.6: A map of the part of Quebec where the 30 hospitals (points) included in the
study are located. Borders separate counties. The color of the points represents the likely
state in the catchment area of the hospital during the last week of the study period, that is,
red if P (SiT = 3|y) > .5, blue if P (SiT = 2|y) > .5 and green if P (SiT = 1|y) > .5, where
T = 113 = 2022-05-09. From the Full Coupled Model with new variant as a covariate.

each T . We decided there was evidence of a false alarm being triggered at the time T if

P (SiT = 3|y) > .5 and it did not appear that an outbreak had occurred at the time T

in hindsight. As can be seen in Figure B.7, in both hospitals there is a sharp increase in

P (SiT = 3|y) that appears to not be associated with any outbreaks. The model corrects

itself quickly, however, with P (SiT = 3|y) typically declining sharply 1-2 weeks after the

false alarm. Figure B.8, following the same graphical structure as Figure 4.5 in the main

text, shows the retrospective state estimates in the same two hospitals as Figure B.7. Note,

we did not include new variant as a covariate in the model used to produce Figure B.8 so

that the model would be the same as the one used in the real-time evaluation. The false

alarms do not show up in the retrospective state estimates, again showing that the model
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Figure B.7: Top graphs show the hospitalizations for the last 30 weeks of the study period
where we conducted the real-time evaluation. Bottom graphs: solid lines show the posterior
probabilities that an outbreak is currently happening, that is, P (SiT = 3|y), versus T . The
dotted red lines are drawn at the introduction of the Omicron variant for all of Quebec.
Shows results from the Full Coupled Model for the two hospitals where we found evidence
of false alarms during the real-time evaluation.

corrects itself after gathering further data. We found no evidence in any areas of false alarms

in the retrospective state estimates.

As to the cause of the false alarms in Figure B.7, the risk of an outbreak was high in both

hospitals when the false alarms were triggered. In Hôpital Jean-Talon mobility was high and

in Hôpital Hôtel-Dieu de Lévis there was strong evidence of outbreaks in several neighboring

areas. Compared to the Non-coupled Model (not shown), the same false alarm was triggered

in Hôpital Hôtel-Dieu de Lévis but not in Hôpital Jean-Talon. This is likely because outbreak

risk was elevated in Hôpital Jean-Talon, when the false alarm was triggered, due to evidence

of outbreaks in neighboring areas. In this case, a single false alarm seems worth the tradeoff

for the earlier warning of the Omicron outbreak across the hospitals.
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Figure B.8: Shows the retrospective state estimates from the Full Coupled Model, without
new variant as a covariate, for the two hospitals where we found evidence of false alarms
during the real-time evaluation. Follows the same graphical structure as Figure 4.5 from the
main text.
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APPENDIX C

Appendix to Manuscript 3

C.1 Reed-Frost Derivation of the ARMN Model

In this section, we will derive the ARMN model, see Section 5.2 of the main manuscript,

from a multivariate Reed-Frost model. The ARMN model stands independently based on

the justifications given in Section 5.2. However, the Reed-Frost derivation gives a more

epidemiological interpretation for some of the parameters and reveals important sources of

potential confounding.

The Reed-Frost model is a discrete-time susceptible-infectious-recovered (SIR) model origi-

nally developed by Lowell J. Reed and Wade Hampton Frost in a series of lectures at John

Hopkins University in the late 1920s (Abbey, 1952). The model takes a time step of one

serial interval, the time between successive cases, and assumes that an infected individual

does not become infectious till the next time step and then afterward is immune. See Abbey

(1952) and Chapter 6 of Vynnycky (2010) for more details. Following the autoregressive

Poisson derivation of Bauer and Wakefield (2018), if disease k follows a Reed-Frost model in
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area i then the number of new infections in the interval (t− 1, t] is given by,

ykit|yki(t−1) ∼ Pois(Φkit)

Φkit =
δki(t−1)

popi

Rkityki(t−1),
(C.1)

where δki(t−1) is the size of the susceptible population, the population not immune to the

disease, for disease k at time t− 1 in area i, and popi is the total population of area i. The

parameter Rkit represents the time-varying basic reproduction number of disease k. That is,

the average number of new infections in (t−1, t] resulting from a single infectious individual if

the population were fully susceptible, i.e., if δki(t−1) = popi. The parameter R∗
kit =

δki(t−1)

popi
Rkit

represents the effective reproduction number, sometimes called the net reproduction number,

i.e., the average number of new infections resulting from a single infectious individual in the

current, not fully susceptible, population. Both the basic reproduction and effective repro-

duction numbers are considered important measures of disease transmission in epidemiology

(Vynnycky, 2010).

We make small adjustments to (C.1). Following Finkenstadt and Grenfell (2000), we raise

yki(t−1) to the power of 0 < ζk < 1 to account for nonhomogeneous mixing. We also add 1 to

yki(t−1) to avoid the absorbing 0 state of the Poisson autoregressive process in (C.1). It was

shown by Fokianos and Tjøstheim (2011) that model results are not sensitive to the constant

added to yki(t−1). Therefore, we considered,

Φkit =
δki(t−1)

popi

Rkit

(︁
yki(t−1) + 1

)︁ζk , (C.2)

in place of Φkit in Equation (C.1).

We use correlated log-linear models for the basic reproduction numbers,

log(Rkit) = β0ki + x
T
itβk + ψkit + bit, (C.3)
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where β0ki ∼ N(β0k, σ
2
β,k) is a normal random intercept meant to account for between area

differences and xit is a vector of space-time covariates that may affect the transmission of

the diseases. If we know a covariate xitl does not affect the transmission of disease k, then

we can fix βkl = 0. To account for overdispersion and correlation between the reproduction

numbers, we model the random effects ψkit using a multivariate normal distribution,

ψit =

⎛⎜⎜⎜⎜⎝
ψ1it

...

ψKit

⎞⎟⎟⎟⎟⎠ ∼ MVNK(0,ΣRF ), (C.4)

where ΣRF is a K by K variance-covariance matrix. In (C.3), bit represents shared space-

time factors. This may be particularly relevant for arboviruses that share the same vector

as in our motivating example. We do not specify any model for bit as the distribution of the

disease counts conditional on their total does not depend on it, see below.

Equations (C.1)-(C.4) define a multivariate Reed-Frost model for the diseases. Following

the well-known relationship between the multinomial and Poisson distributions we have

that,

yit|totalit,yt−1 ∼ Multinom(πit, totalit), (C.5)

where,

πkit =
Φkit∑︁K
j=1Φjit

. (C.6)

The relative odds, relative to disease 1, are then given by,

πkit
π1it

=
Φkit

Φ1it

=
R∗

kit

R∗
1it

(︁
yki(t−1) + 1

)︁ζk(︁
y1i(t−1) + 1

)︁ζ1 , (C.7)
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where,

log

(︃
R∗

kit

R∗
1it

)︃
= (β0ki − β01i) + x

T
it(βk − β1) + (ψkit − ψ1it) + (bit − bit) + log

(︃
δki(t−1)

δ1i(t−1)

)︃
.

(C.8)

Equations (C.5)-(C.8) define an ARMN model where,

• λkit =
R∗

kit

R∗
1it

; the ratio of the effective reproduction number of disease k and disease 1

• xkit = {xitl ∈ xit : βkl ̸= 0 or β1l ̸= 0}; the set of covariates that affect either the

transmission of disease k or the transmission of disease 1.

• If xitl ∈ xkit let lk represent the index of xitl in xkit, then αklk = βkl−β1l; the difference

between the effect of covariate xitl on the effective reproduction number of disease k

and disease 1

• α0ki = β0ki − β01i, α0k = β0k − β1k and σ2
k = σ2

β,k + σ2
β,1

• ϕkit = ψkit − ψ1it and Σkj = ΣRF,kj − ΣRF,k1 − ΣRF,j1 + ΣRF,11

• log

(︃
δki(t−1)

δ1i(t−1)

)︃
is added as an offset to log(λkit).

In the ARMN model the shared factors bit are eliminated. Since we do not typically observe

log
(︂

δki(t−1)

δ1i(t−1)

)︂
it is an important source of potential confounding. We discuss this issue exten-

sively in Sections 5.2 and 5.4.4 of the main manuscript. Also, as we are modeling reported

cases, there could be confounding due to changes in relative reporting rates. For example,

consider a spatial covariate associated with areas more likely to report disease k compared

to disease 1. In that case, it would seem like there was an increase in R∗
kit

R∗
1it

associated with

the covariate even if there was no change in the true ratio.
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C.1.1 Extensions to account for disease interactions and geograph-

ical spread

The multivariate Reed-Frost model defined by Equations (C.1)-(C.4) does not account for

disease interactions, beyond the random effects ψkit, and disease spread between areas. To

further account for disease interactions we can add log(yji(t−1) + 1) to xit and assume its

corresponding coefficient in βj is equal to 0. That is, we can assume previous cases of

disease j affect the basic reproduction number of the other diseases. This is justified in

many instances, for example, it has been shown that mosquitoes infected by both Zika and

chikungunya transmit Zika at a higher rate (Göertz et al., 2017). In the multinomial form

of the model, the above is equivalent to adding log(yji(t−1) + 1) to xkit for j ̸= k and j ̸= 1,

which we do for Zika and chikungunya in Section 5.4 of the main manuscript. Note any

interactions with the baseline disease would be absorbed by ζ1 or ζk in the multinomial

representation of the model. A similar strategy for accounting for disease interactions in a

multivariate Poisson model was used by Paul et al. (2008).

Several approaches have been proposed for extending the Reed-Frost model to deal with

disease spread between areas (Wakefield et al., 2019). Bauer and Wakefield (2018), fol-

lowing Held et al. (2005), added a sum of weighted previous cases in neighboring areas

to the conditional means of the Reed-Frost model. That is, in the context of our model,

Φ′
kit = Φkit + λNE

k

∑︁
j∈NE(i) ωjiykj(t−1), where Φ′

kit is the conditional mean adjusted for ge-

ographical disease spread, λNE
k > 0 is an unknown spatial effect and ωji are fixed weights

representing the influence area j has on area i. However, an additive adjustment would be

awkward in the multinomial form of the model (C.7). We can also consider a multiplicative

adjustment, similar to Lawson and Kim (2022),

Φ′
kit = Φkit

⎛⎝ ∑︂
j∈NE(i)

ωjiykj(t−1) + 1

⎞⎠βNE
k

,
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where βNE
k is an unknown spatial effect, which can be negative. This is equivalent to adding

log(
∑︁

j∈NE(i) ωjiykj(t−1) + 1) to xit and setting its coefficient in βm for m ̸= k to 0. Un-

like the additive adjustment, the multiplicative adjustment is convenient in the multino-

mial form of the model since it is the same as adding log(
∑︁

j∈NE(i) ωjiykj(t−1) + 1) and

log(
∑︁

j∈NE(i) ωjiy1j(t−1)+1) to xkit. We do this in Section 5.4 of the main manuscript where

we consider the weights ωji = 1/
∑︁

m∈NE(i) popm, which gives the prevalence of the diseases

across neighboring areas.

C.1.2 The difference between multinomial and multivariate Poisson

approaches

We can use the above derivation of the ARMN model from the multivariate Reed-Frost

model to better understand the advantages of both approaches. Firstly, the ARMN model

has (K − 1)/K times as many parameters, not counting the shared factors bit, compared to

the multivariate Reed-Frost model. For instance, in the case of K = 3 diseases, the ARMN

model has 66% as many parameters, which is a substantial reduction in model complexity.

The ARMN model also eliminates all shared factors bit. This may be especially relevant for

arboviruses that share the same vector, like in our motivating example.

An immediate advantage of the multivariate Reed-Frost approach is that it allows for es-

timating the effect of a covariate on the transmission of any of the diseases. The ARMN

model can only estimate the differences in the effects, which the multivariate Reed-Frost

model could also provide. The multivariate Reed-Frost model could be extended to deal

with zero inflation and long periods of disease absence in a similar way to the MS-ZIARMN

model. Following Section 5.2.1 of the main manuscript, we could replace Φkit by ΦkitSkit and

model Sit as following a coupled Markov chain. In this case, we would not have to assume

S1it is always equal to one. That is, we would not have to assume one of the diseases was

always present like with the MS-ZIARMN model.
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In conclusion, there seem to be advantages to both approaches. The multinomial approach is

likely more appropriate when one is mainly interested in differences between the transmission

of the diseases and we can assume one of the diseases is always present, like in our motivating

example. It goes beyond the scope of this paper to do a comparison based on model fitting

given the complexity of the multivariate Reed-Frost model and any zero-inflated extensions.

This will be the subject of further work.

C.2 Simulation Study to Investigate Correlations Induced

by the Random Effects

We designed a simulation study to better understand the correlations between the disease

counts, conditional on their total, induced by the random effects ϕkit in Equations (5.3)-

(5.4) of the main manuscript. We simulated from the following multinomial distribution

with multivariate normal random effects added to the log relative odds,

(y1, y2, y3)
T | total ∼ Multinom(π = (π1, π2, π3)

T , total = y1 + y2 + y3)

log

(︃
π3
π1

)︃
= α03 + ϕ3

log

(︃
π2
π1

)︃
= α02 + ϕ2

(ϕ2, ϕ3)
T ∼MVN2

⎛⎜⎝(0, 0)T ,

⎛⎜⎝ σ2
2 ρσ2σ3

ρσ2σ3 σ2
3

⎞⎟⎠
⎞⎟⎠ .

(C.9)

We fixed α02 = log(1.14), α03 = 0, σ2 = .75 and σ3 = .8 based on the estimates from our

motivating example in Section 5.4.2 of the main manuscript. We assumed total = 10 as this

was the average sum of dengue, Zika and chikungunya cases in a neighborhood.

Figure C.1 shows the correlation between y2 and y3, conditional on the total count and

marginalizing the random effects, versus ρ based on simulations of (C.9) (to the best of our
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Figure C.1: The black solid line shows corr(y2, y3|total) versus ρ, marginalizing the ran-
dom effects, based on simulations of (C.9). The red horizontal dashed line is drawn at
corr(y2, y3|total) assuming the random effects are fixed at 0, i.e., ϕ2 = ϕ3 = 0 in (C.9). The
red vertical dashed line is drawn at the value of ρ estimated in Section 5.4 of the main text.

knowledge there is no closed form solution). If there were no random effects then,

corr(y2, y3|total) =
−total

(︁
eα02

1+eα02+eα03

)︁ (︁
eα03

1+eα02+eα03

)︁√︂
total

(︁
eα02

1+eα02+eα03

)︁ (︁
1+eα03

1+eα02+eα03

)︁√︂
total

(︁
eα03

1+eα02+eα03

)︁ (︁
1+eα02

1+eα02+eα03

)︁ ,
which is given by the horizontal red dashed line in Figure C.1. The correlation between the

random effects ρ needs to be greater than around .5 for the marginalized correlation between

the counts to be greater than that produced by the standard multinomial distribution (i.e.,

without the random effects). This is an interesting and somewhat unintuitive result, as

204



we would expect ρ = 0 to be a more likely threshold for this. In Section 5.4 of the main

manuscript, we estimated ρ as .58 (.52, .65), and, therefore, the random effects did not likely

induce any significant correlations between the counts in our motivating example.

From Figure C.1, even if ρ is close to 1 the marginal correlation between the counts, con-

ditional on the total, is negative. We do not see negative correlations as a limitation of

the model. The correlation is conditional on the total count and, therefore, if one of the

counts increases another must necessarily decrease. Regardless, based on Figure C.1, adding

multivariate normal random effects to the log relative odds leads to a more flexible correla-

tion structure among the disease counts compared to the standard multinomial distribution.

We tried different values of α02 and α03 in (C.9) and got similar results. Also, plotting

corr(y1, y3|total) and corr(y1, y2|total) versus ρ (not shown) led to the same conclusions.

C.3 Forward Filtering Backward Sampling (FFBS) Algo-

rithm

In this Section, we provide the FFBS algorithm (Chib, 1996) for sampling from p(S∗|y,v)

needed for the hybrid Gibbs sampler described in Section 5.3 of the main text. Like in

Section 5.3 of the main manuscript, we will assume K = 3, which leads to 4 possible states

for S∗
it. We will use the subscript t1 : t2 to denote a temporally indexed vector subsetted to

the interval t1 to t2, e.g., S∗
i(t1:t2)

= (S∗
it1
, . . . , S∗

it2
)T . We will also use the subscript (−i) to

denote the vector with the ith element removed.

First note that p(S∗|y,v) ∝ p(S∗,y|v) which, from Equation (5.9) of the main text, factors

into functions involving only S∗
i(1:T ) for each i. Therefore, S∗

1(1:T ), . . . ,S
∗
N(1:T ) are mutually

independent give y and v. This means to sample from p(S∗|y,v) we can sample from

p(S∗
i(1:T )|y,v) for each i. A similar argument can be used to show that S∗

1(1:t), . . . ,S
∗
N(1:t) are

mutually independent conditional on either y1:t and v or y1:(t−1) and v.
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The initial forward filtering part of the FFBS algorithm starts at t = 2 and goes recursively

to t = T . For each t, we first calculate the predictive probabilities and then the filtered

probabilities. The predictive probabilities are given by,

P (S∗
it = l|y1:(t−1),v) =

4∑︂
k=1

P (S∗
it = l|S∗

i(t−1) = k,yt−1,v)P (S
∗
i(t−1) = k|y1:(t−1),v), (C.10)

for l = 1, . . . 4. For t = 2, P (S∗
i(t−1) = k|y1:(t−1),v) = P (S∗

i1 = k|v), which is the initial

state distribution. Recall that the modeler sets the initial state distribution based on how

likely they believe the diseases to be present at the beginning of the study. The probability

P (S∗
it = l|S∗

i(t−1) = k,yt−1,v) is the probability of the Markov chain in area i transitioning

from state k at time t− 1 to state l at time t, i.e., Γ(S∗
it|yt−1)kl, see Section 5.3 of the main

text. The filtered probabilities are given by,

p(S∗
it|y1:t,v) = p(S∗

it|S∗
(−i)t,y1:t,v) (by mutual independence)

∝ p(yt|S∗
t ,y1:(t−1),v)p(S

∗
t |y1:(t−1),v)

=
N∏︂
j=1

p(yjt|S∗
jt,y1:(t−1), totaljt,β)p(S∗

jt|y1:(t−1),v) (by mutual independence)

∝ p(yit|S∗
it,y1:(t−1), totalit,β)p(S∗

it|y1:(t−1),v),

implying,

P (S∗
it = l|y1:t,v) =

p(yit|yt−1, S
∗
it = l, totalit,β)P (S∗

it = l|y1:(t−1),v)

p(yit|y1:(t−1), totalit,v)
,

where,

p(yit|y1:(t−1), totalit,v) =
4∑︂

k=1

p(yit|yt−1, S
∗
it = k, totalit,β)P (S∗

it = k|y1:(t−1),v).

(C.11)

The distribution p(yit|yt−1, S
∗
it = l, totalit,β) is given by Equation (5.8) of the main text.

The probability P (S∗
it = l|y1:(t−1),v) is the predictive probability for time t calculated in the
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previous step.

Once the filtered probabilities have been calculated for t = 2, . . . , T , the backward sampling

part of the FFBS algorithm is performed. We have that,

p(S∗
i(1:T )|y,v) =

[︄
T−1∏︂
t=1

p(S∗
it|S∗

i(t+1),y1:t,v)

]︄
p(S∗

iT |y,v).

Also, note that,

p(S∗
it|S∗

i(t+1),y1:t,v) ∝ p(S∗
i(t+1)|S∗

it,y1:t,v)p(S
∗
it|,y1:t,v),

implying,

P (S∗
it = l|S∗

i(t+1) = j,y1:t,v) =
P (S∗

i(t+1) = j|S∗
it = l,y1:t,v)P (S

∗
it = l|,y1:t,v)∑︁4

k=1 P (S
∗
i(t+1) = j|S∗

it = k,y1:t,v)P (S∗
it = k|,y1:t,v)

,

(C.12)

for l = 1, . . . , 4. The probability P (S∗
i(t+1) = j|S∗

it = l,y1:t,v) is given by Γ(S∗
i(t+1)|yt)lj. The

probability P (S∗
it = l|,y1:t,v) is the filtered probability for time t.

Therefore, to sample S∗[m]
i(1:T ) ∼ p(S∗

i(1:T )|y,v) we first sample S∗[m]
iT ∼ p(S∗

iT |y,v) using the fi-

nal filtered probabilities. Then we work backwards sampling S∗[m]
it ∼ p(S∗

it|S∗
i(t+1) = S

∗[m]
i(t+1),y1:t,v)

using the probabilities P (S∗
it = l|S∗

i(t+1) = S
∗[m]
i(t+1),y1:t,v) for l = 1, . . . , 4, from (C.12), for

t = T − 1, . . . , 1.

Finally, we note that the likelihood of v given y, conditioning on the totals, is provided

by,

p(y|v) =
N∏︂
i=1

T∏︂
t=2

p(yit|y1:(t−1), totalit,v),

which can be calculated using the forward filter, see Equation (C.11). Therefore, we could

base inference about v on the marginal, concerning the states, likelihood. However, as
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explained in the main text, we are interested in making inferences about the unknown states

as they represent when the model believes the diseases were present. The marginal likelihood

contribution p(yit|y1:(t−1), totalit,v) is used, however, to calculate the WAIC as we explain

in the next section.

C.4 Widely Applicable Information Criterion (WAIC)

The WAIC for a state space model is more accurate when the latent state indicators are

marginalized (Auger-Méthé et al., 2021). We can use the forward filtering part of the FFBS

algorithm to marginalize S∗
it from p(yit|yt−1, S

∗
it, totalit,β),

p(yit|y1:(t−1), totalit,v) =
4∑︂

k=1

p(yit|yt−1, S
∗
it = k, totalit,β)P (S∗

it = k|y1:(t−1),v),

see Equation (C.11) above. Then, following Gelman et al. (2014), the WAIC can be calcu-

lated as,

lpdd =
N∑︂
i=1

T∑︂
t=2

log

(︄
1

Q−M

Q∑︂
m=M+1

p(yit|y1:(t−1), totalit,v[m])

)︄
,

pwaic =
N∑︂
i=1

T∑︂
t=2

V arQm=M+1 log
(︁
p(yit|y1:(t−1), totalit,v[m])

)︁
,

WAIC = −2(lpdd − pwaic),

(C.13)

where the superscript [m] denotes a draw from the posterior of the variable and V ar denotes

the sample variance.

C.5 Estimates From the Comparison Models

This section provides the estimated coefficients from the multinomial part of the comparison

models described in Section 5.4 of the main text. The tables here mirror Table 5.2 from
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the main text. The estimates for the ARMN and Zeng (2022) models are given in Table

C.1 and those for the ZIARMN model in Table C.2. We combined the ARMN and Zeng

(2022) models as the Zeng (2022) model estimated that the diseases were always present,

meaning the multinomial parameter estimates from the two models were nearly identical.

The estimates for the sensitivity analysis model from Section 5.4.4 of the main text are given

in Table C.3.

Table C.1: Posterior means and 95% posterior credible intervals (in parentheses) for the
estimated coefficients from the multinomial part of the fitted Zeng (2022) and ARMN models.
The intercept row shows λkit for k = 2 (Zika) and k = 3 (chik.) in a typical area at average
values of the covariates. Recall, if λkit > 1 (λkit < 1) then the share of disease k relative to
dengue will tend to grow (shrink) over time. Other rows show the ratio of πkit/π1it (relative
odds ratio) or the ratio of λkit (rate ratio) (both are the same, see Section 5.2) corresponding
to a unit increase in the covariate. All covariates are standardized. Significant effects are
bolded. See Section 5.4.1 of the main text for an explanation of the covariates.

Relative Odds Ratio or Rate Ratio

Covariates Zika-dengue chik.-dengue

Intercept .41 (.38, .45) .19 (.17, .22)

verdei .98 (.92, 1.05) .90 (.83, .98)

SDIi 1.03 (.96, 1.10) 1 (.92, 1.09)

popdensi 1 (.94, 1.09) .97 (.88, 1.06)

favelai .96 (.90, 1.03) .95 (.87, 1.03)

tempit 1.10 (1.04, 1.16) .81 (.76, .86)

log
(︂∑︁

j∈NE(i) y1j(t−1)∑︁
j∈NE(i) popj

+ 1
)︂

.56 (.53, .59) .56 (.53, .59)

log
(︂∑︁

j∈NE(i) y2j(t−1)∑︁
j∈NE(i) popj

+ 1
)︂

2.56 (2.37, 2.76) –

log
(︂∑︁

j∈NE(i) y3j(t−1)∑︁
j∈NE(i) popj

+ 1
)︂

– 2.13 (2.01, 2.25)

log(y2i(t−1) + 1) – 1.45 (1.36, 1.55)

log(y3i(t−1) + 1) 1.30 (1.25, 1.36) –
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Table C.2: Posterior means and 95% posterior credible intervals (in parentheses) for the
estimated coefficients from the multinomial part of the fitted ZIAMRN model. The intercept
row shows λkit for k = 2 (Zika) and k = 3 (chik.) in a typical area at average values of the
covariates. Recall, if λkit > 1 (λkit < 1) then the share of disease k relative to dengue will
tend to grow (shrink) over time. Other rows show the ratio of πkit/π1it (relative odds ratio)
or the ratio of λkit (rate ratio) (both are the same, see Section 5.2) corresponding to a unit
increase in the covariate. All covariates are standardized. Significant effects are bolded. See
Section 5.4.1 of the main text for an explanation of the covariates.

Relative Odds Ratio or Rate Ratio

Covariates Zika-dengue chik.-dengue

Intercept 1.19 (1.07, 1.31) .99 (.89, 1.10)

verdei 1 (.94, 1.07) .91 (.84, .99)

SDIi 1.07 (.99, 1.15) 1 (.91, 1.10)

popdensi 1.02 (.94, 1.10) 1.05 (.96, 1.16)

favelai .97 (.91, 1.04) .93 (.86, 1.01)

tempit 1.17 (1.11, 1.24) .86 (.81, .92)

log
(︂∑︁

j∈NE(i) y1j(t−1)∑︁
j∈NE(i) popj

+ 1
)︂

.68 (.64, .71) .68 (.64, .71)

log
(︂∑︁

j∈NE(i) y2j(t−1)∑︁
j∈NE(i) popj

+ 1
)︂

1.53 (1.44, 1.65) –

log
(︂∑︁

j∈NE(i) y3j(t−1)∑︁
j∈NE(i) popj

+ 1
)︂

– 1.43 (1.36, 1.51)

log(y2i(t−1) + 1) – 1.01 (.96, 1.08)

log(y3i(t−1) + 1) 1.03 (.99, 1.07) –
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Table C.3: Posterior means and 95% posterior credible intervals (in parentheses) for the
estimated coefficients from the multinomial part of the fitted sensitivity analysis model from
Section 5.4.4 of the main text. The intercept row shows λkit for k = 2 (Zika) and k = 3
(chik.) in a typical area at average values of the covariates. Recall, if λkit > 1 (λkit < 1) then
the share of disease k relative to dengue will tend to grow (shrink) over time. Other rows
show the ratio of πkit/π1it (relative odds ratio) or the ratio of λkit (rate ratio) (both are the
same, see Section 5.2) corresponding to a unit increase in the covariate. All covariates are
standardized. Significant effects are bolded. See Sections 5.4.1 and 5.4.4 of the main text
for an explanation of the covariates.

Relative Odds Ratio or Rate Ratio

Covariates Zika-dengue chik.-dengue

Intercept 1.13 (1.02, 1.26) 1 (.9, 1.11)

verdei 1.02 (.94, 1.1) .92 (.85, 1)

SDIi 1.06 (.97, 1.15) 1.02 (.92, 1.12)

popdensi 1.02 (.93, 1.12) 1.06 (.96, 1.17)

favelai .97 (.89, 1.04) .94 (.86, 1.03)

tempit 1.14 (1.08, 1.20) .85 (.80, .90)

log
(︂∑︁

j∈NE(i) y1j(t−1)∑︁
j∈NE(i) popj

+ 1
)︂

.7 (.67, .74) .7 (.67, .74)

log
(︂∑︁

j∈NE(i) y2j(t−1)∑︁
j∈NE(i) popj

+ 1
)︂

1.59 (1.48, 1.70) –

log
(︂∑︁

j∈NE(i) y3j(t−1)∑︁
j∈NE(i) popj

+ 1
)︂

– 1.43 (1.36, 1.51)

log(y2i(t−1) + 1) – .9 (.84, .96)

log(y3i(t−1) + 1) .98 (.94, 1.02) –(︂∑︁t−1
j=1 y2ij −

∑︁t−1
j=1 y1ij

)︂
/popi .94 (.87, 1) –(︂∑︁t−1

j=1 y3ij −
∑︁t−1

j=1 y1ij

)︂
/popi – .99 (.94, 1.05)
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C.6 Map of Temperature in Rio

Figure C.2 shows a map of the average weekly maximum temperature across Rio between

2015-2016. Temperatures tend to be higher in the west of the city and lower downtown.

Average Weekly Maximum Temperature 
 in Rio Neighborhoods 2015−2016

Temperature (celsius)
31 to 32
32 to 33
33 to 34
34 to 35
35 to 36

Figure C.2: Shows the average weekly maximum temperature across Rio neighborhoods
between 2015-2016.
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