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Abstract 
 
Outdoor air pollution, including fine particulate matter (PM2.5) air pollution, contributes to a 

range of adverse health outcomes and has a large population health impact. However, the 

standard method of measuring exposures to particulate air pollution as a mass concentration has 

limitations. Recently, emerging measures have been developed that account for the composition 

and toxicity of particles. The overall aim of this thesis was to describe within-city spatial 

variations in newly-developed measures of particle composition and toxicity (including multiple 

measures of particle oxidative potential as well as a measure of exposure to magnetite 

nanoparticles) across Canadian urban areas and to assess their effects on long-term health 

outcomes. To accomplish this aim, we completed three objectives that constitute the body of 

this manuscript-based thesis. 

In Objective 1, we conducted monitoring campaigns at 124 sites in Montreal and 110 

sites in Toronto, Canada to collect pollutant data, and developed land-use regression models to 

predict the spatial distributions of PM2.5 oxidative potential, production of reactive oxygen 

species, and magnetite nanoparticles. We used Bayesian lasso regression models with land-use 

characteristics from Geographic Information Systems databases to predict pollutant measures at 

unobserved points in order to create high-resolution exposure surfaces. We observed high 

spatial variability of oxidative potential measures (coefficients of variation 42.0-66.0%) and 

magnetite (coefficients of variation 69.7-75.4%) within each city relative to PM2.5 mass 

concentration (coefficients of variation 24.3-30.8%). Multivariable land-use regression models 

predicted elevated concentrations of oxidative potential, reactive oxygen species generation, 

and magnetite around highways, railways, and road intersections.  
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In Objective 2, we applied the estimates of exposure obtained in Objective 1 to 

determine how oxidative potential and the ability of particles to generate reactive oxygen 

species (ROS) may modify the relationship between long-term exposure to oxidant gases and 

cardiovascular mortality. We performed a retrospective cohort study of participants in the 

Canadian Census Health and Environment Cohort who lived in Toronto or Montreal. We used 

Cox proportional hazards models to estimate associations between outdoor concentrations of 

oxidant gases (Ox, a redox-weighted average of nitrogen dioxide and ozone concentrations) and 

cardiovascular deaths. Analyses were performed across strata of PM2.5 oxidative potential and 

ROS concentrations. We observed that spatial variations in outdoor Ox were associated with an 

increased risk of cardiovascular mortality (HR per 5 ppb = 1.028, 95% CI: 1.001, 1.055). The effect 

of Ox on cardiovascular mortality was stronger above the median of each measure of PM2.5 

oxidative potential and ROS concentration (e.g., above the median of glutathione-based 

oxidative potential: HR = 1.045, 95% CI: 1.009, 1.081; below median: HR=1.000, 95% CI: 0.960, 

1.043). 

In Objective 3, we performed a retrospective cohort study in the Canadian Census Health 

and Environment Cohort to estimate associations between long-term exposure to magnetite 

nanoparticles in PM2.5 and the incidence of brain cancer. Cox proportional hazards models were 

used to estimate the association between exposure to magnetite nanoparticles in outdoor PM2.5 

and incidence of brain cancer in Montreal and Toronto. We found no significant relationship 

between exposure to magnetite particles and incidence of malignant brain tumours (HR per IQR 

= 0.998, 95% CI: 0.988, 1.009). Moreover, we found no significant effect of PM2.5 or NO2 on brain 

cancer incidence. 
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Overall, these findings demonstrate the spatial variability of several emerging measures 

of particulate air pollution within the Canadian urban environment. As well, they highlight the 

potential for population health impacts of air pollution exposures within cities. 

Résumé 
 

La pollution de l'air extérieur, y compris la pollution atmosphérique par les particules fines 

(PM2,5), contribue à une gamme d'effets néfastes sur la santé et a un impact important sur la 

santé de la population. Cependant, la méthode standard de mesure des expositions à la pollution 

atmosphérique particulaire en tant que concentration massique a des limites. Récemment, des 

mesures émergentes ont été développées qui tiennent compte de la composition et de la 

toxicité des particules. L'objectif général de cette thèse était de décrire les variations spatiales 

intra-urbaines des mesures nouvellement développées de la composition et de la toxicité des 

particules (y compris de multiples mesures du potentiel oxydatif des particules ainsi qu'une 

mesure de l'exposition aux nanoparticules de magnétite liées à la combustion) dans les zones 

urbaines canadiennes. et d'évaluer leurs effets sur les résultats de santé à long terme. Pour 

atteindre cet objectif, nous avons rempli trois objectifs qui constituent le corps de cette thèse 

manuscrite. 

Dans l'objectif 1, nous avons mené des campagnes de surveillance sur 124 sites à 

Montréal et 110 sites à Toronto, au Canada, pour collecter des données sur les polluants et 

développer des modèles de régression de l'utilisation des terres pour prédire les distributions 

spatiales du potentiel oxydatif des PM2,5, la production d'espèces réactives de l'oxygène et 

nanoparticules de magnétite. Nous avons utilisé des modèles bayésiens de régression lasso avec 
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des caractéristiques d'utilisation des terres provenant de bases de données de systèmes 

d'information géographique pour prédire les mesures de polluants à des points non observés 

afin de créer des surfaces d'exposition lissées. Nous avons observé une grande variabilité 

spatiale des mesures du potentiel oxydatif (coefficients de variation 42,0-66,0 %) et de la 

magnétite (coefficients de variation 69,7-75,4 %) dans chaque ville par rapport à la 

concentration massique de PM2,5 (coefficients de variation 24,3-30,8 %). Des modèles de 

régression multivariés de l'utilisation des terres ont prédit des concentrations élevées de 

potentiel oxydatif, de génération d'espèces réactives de l'oxygène et de magnétite autour des 

autoroutes, des voies ferrées et des intersections routières. 

Dans l'objectif 2, nous avons appliqué les estimations d'exposition obtenues dans 

l'objectif 1 pour déterminer comment le potentiel oxydatif et la capacité des particules à générer 

des espèces réactives de l'oxygène (ROS) peuvent modifier la relation entre l'exposition à long 

terme aux gaz oxydants et la mortalité cardiovasculaire. Nous avons réalisé une étude de 

cohorte rétrospective des participants de la cohorte santé et environnement du recensement 

canadien qui vivaient à Toronto ou à Montréal. Nous avons utilisé des modèles de risques 

proportionnels de Cox pour estimer les associations entre les concentrations extérieures de gaz 

oxydants (Ox, une moyenne pondérée redox de dioxyde d'azote et d'ozone) et les décès 

cardiovasculaires. Des analyses ont été effectuées sur les strates du potentiel oxydatif des PM2,5 

et des concentrations de ROS. Nous avons observé que les variations spatiales du Ox extérieur 

étaient associées à un risque accru de mortalité cardiovasculaire (HR pour 5 ppb = 1,028, IC à 95 

% : 1,001, 1,055). L'effet d'Ox sur la mortalité cardiovasculaire était plus fort au-dessus de la 

médiane de chaque mesure du potentiel oxydatif des PM2,5 et de la concentration de ROS (par 
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exemple, au-dessus de la médiane du potentiel oxydatif à base de glutathion : HR = 1,045, IC à 

95 % : 1,009, 1,081 ; en dessous médiane : HR = 1,000, IC à 95 % : 0,960, 1,043). 

Dans l'objectif 3, nous avons réalisé une étude de cohorte rétrospective dans la cohorte 

santé et environnement du recensement canadien pour estimer les associations entre 

l'exposition à long terme aux nanoparticules de magnétite dans les PM2,5 et l'incidence du cancer 

du cerveau. Des modèles à risques proportionnels de Cox ont été utilisés pour estimer 

l'association entre l'exposition aux nanoparticules de magnétite dans les PM2,5 extérieures et 

l'incidence du cancer du cerveau à Montréal et à Toronto. Nous n'avons trouvé aucune relation 

significative entre l'exposition aux particules de magnétite et l'incidence des tumeurs cérébrales 

malignes (HR par IQR = 0,998, IC à 95 % : 0,988, 1,009). De plus, nous n'avons trouvé aucun effet 

significatif des PM2,5 ou du NO2 sur l'incidence du cancer du cerveau. 

Dans l'ensemble, ces résultats démontrent la variabilité spatiale de plusieurs mesures 

émergentes de la pollution atmosphérique particulaire dans l'environnement urbain canadien. 

De plus, ils mettent en évidence le potentiel d'impacts sur la santé de la population des 

expositions à la pollution de l'air dans les villes. 
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Chapter 1: Introduction 
 

1.1 Background 
 

Air pollution is a complex mixture of gases and suspended solids; the composition and 

concentration of these components vary over both time and space. Although technological 

advances have reduced the burden of outdoor air pollution in many parts of the world, air 

pollution remains an important public health hazard.1 Air pollution is among the leading causes 

of morbidity and mortality worldwide2 and is a ubiquitous exposure that affects entire 

populations. Notably, fine particulate air pollution (PM2.5), which comprises solid suspended 

particles with an aerodynamic diameter of less than 2.5 μm, is known to contribute to a wide 

range of health outcomes.  

 PM2.5 originates from a variety of combustion- and friction-related processes, both 

natural and anthropogenic, and is conventionally measured as a mass concentration (i.e., the 

total mass of particles having aerodynamic diameter less than 2.5 μm within a cubic meter of air, 

μg/m3). This has been the basis for scientific measurement and regulation of PM2.5 in Canada.3 

However, the mass-based measure of PM2.5 has limitations since it treats all particles of a certain 

size fraction as equal in terms of their public health importance. In reality, PM2.5 is not a single 

chemical entity, but rather a heterogeneous mixture of particles which derive  from different 

sources and have different composition and toxicity.4 Recently, research attention has turned to 

measures of particle composition and toxicity that move beyond PM2.5 mass concentration alone 

with the goal of approaching a more biologically relevant exposure measure.5-7  
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 Emerging measures of particulate air pollution exposure that account for the 

composition of particles have been an increasing focus of research.6 These include in vitro 

laboratory measures of particle toxicity, such as oxidative potential;8 measures of particle 

composition; estimates of the production of toxic species in the body using mathematical 

simulations;9 and assessment of the magnetic properties of particles,10, 11 among others. In 

recent years, several of these novel exposure measures have been described in terms of their 

spatial and temporal variability and have been linked to health outcomes in epidemiologic 

studies.12, 13  

While there is a growing body of evidence on spatial and temporal variations in particle 

toxicity and composition at a regional scale, as well as the effects of these exposures on health 

outcomes, less is known about how these relatively novel measures vary at a smaller spatial 

scale, such as within cities. While PM2.5 mass concentrations tend to vary on a regional scale, we 

expect that local-scale variations may be greater for these novel measures of particle toxicity and 

composition, given our understanding that local pollution sources affect the composition of 

particles (for example, metal-rich particles are produced by vehicular traffic and can be found in 

abundance near roadways and railways, with decreasing concentrations as distance from the 

source increases).14 Given that the majority of the population of Canada lives in urban areas,15 

urban outdoor air pollution exposure has a large population health impact in Canada. Therefore, 

there is a need for more knowledge about how pollutants vary at a fine spatial scale in urban 

environments, and the implications for population health. 
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1.2 Research objectives and thesis structure 
 
The overall goal of this thesis is to describe the spatial distributions of novel air pollution 

measures (fine particle oxidative potential, reactive oxygen species generation, and anhysteretic 

remanent magnetization susceptibility) across Canadian urban areas, and to apply these models 

in population-based cohort studies to identify particle characteristics that pose a risk to 

population health. The specific aims are the following: 

 
Objective 1: To develop land-use regression models for several emerging measures of 

particle toxicity and composition, namely PM2.5 oxidative potential, reactive oxygen 

species generation, and magnetite nanoparticle composition, and to classify clusters of 

monitoring sites to identify possible sources associated with these particle 

characteristics.  

To address objective 1, we conducted large-scale spatial monitoring campaigns in Montreal and 

Toronto, Canada’s two largest cities, using a dense network of air pollution monitoring sites. We 

used these data to build land-use regression models and predict spatial variations at unobserved 

points across the study area.  This objective is addressed in Chapter 3: Manuscript 1. 

Objective 2: To examine how within-city spatial variations in PM2.5 oxidative potential and 

reactive oxygen species generation influence associations between long-term exposures 

to oxidant gases and cardiovascular mortality in Toronto and Montreal, Canada.  

To address objective 2, we performed a retrospective cohort study of participants in four cycles 

of the Canadian Census Health and Environment Cohort. Our study population included 
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participants who lived in Toronto or Montreal for at least two years in the period 2002-2015. We 

estimated associations between outdoor concentrations of oxidant gases (specifically defined as 

a redox-weighted average of nitrogen dioxide and ozone) and mortality from cardiovascular 

causes. Analyses were performed across strata of three measures of PM2.5 oxidative potential 

adjusting for relevant confounding factors such as individual-level and contextual socioeconomic 

status and demographic variables. This objective is addressed in Chapter 4: Manuscript 2. 

 

Objective 3: To estimate associations between exposure to fine particle anhysteretic 

remanent magnetization susceptibility (a measure of magnetite nanoparticle content) 

and brain cancer incidence. 

To address objective 3, we performed a second retrospective cohort study of participants in four 

cycles of the Canadian Census Health and Environment Cohort. We followed participants from 

2001 to 2016 in Toronto, and from 2001 to 2010 in MontreaI. In this study, we estimated 

associations between exposure to anhysteretic remanent magnetization susceptibility of PM2.5 

samples (a surrogate measure of magnetite nanoparticle concentrations) and brain cancer 

incidence. As a secondary objective, we estimated the relationships of long-term PM2.5 and NO2 

exposures with brain cancer incidence and examined if these relationships were modified by 

anhysteretic magnetic remanence susceptibility. This objective is addressed in Chapter 5: 

Manuscript 3. 
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Chapter 2: Literature Review 
 

2.1 Components of air pollution exposure 
 

Air pollution is among the top causes of premature death globally16 and was associated 

with an estimated 6.67 million premature deaths in 2019.16 Air pollution is a complex mixture of 

solid and gaseous components derived from a variety of different sources. This section of the 

literature review will provide a brief overview of several major types of ambient air pollution, 

namely fine particulate matter (PM2.5) and oxidant gases (NO2 and O3). 

2.1.1 Fine particulate matter (PM2.5)  
 

Particulate matter is the solid component of air pollution consisting of particles 

suspended in the air. Measuring and reducing exposures to particulate matter, most commonly 

fine particles, defined as particles with aerodynamic diameter less than 2.5 μm (PM2.5), has been 

a focus of regulation in Canada as well as globally.3, 17, 18 These particles are of notable health 

impact since their small size allows them to penetrate deep into the human respiratory tract.19 

Many epidemiologic studies of air pollution have examined relationships between exposures to 

particle mass concentrations (i.e., mass per volume of air)  and various adverse health outcomes, 

in part because particle mass concentration (and especially PM2.5) has been the most routinely 

measured pollutant for which data are available to be linked to health outcomes at the 

population level.20 In Canada, concentrations of PM2.5 are low relative to the global average, and 

have decreased over past decades (from approximately 10 μg/m3 in 1990 to 7 μg/m3 in 2019).16 

Nonetheless, much of Canada still exceeds21 the PM2.5 guideline of 5 μg/m3 for health-based air 

quality set by the World Health Organization.22 



26 
 

2.1.2 Oxidant gases 
 

In addition to particulate matter, the air pollution mixture also consists of gaseous 

components. Among these, two important gases are nitrogen dioxide (NO2) and ground-level 

ozone (O3).  NO2 in particular is among Canada’s criteria air contaminants (i.e., air pollutants for 

which ambient air quality standards have been set).23 NO2 in urban areas is generated mainly 

from combustion processes, primarily vehicular exhaust, and is a marker of traffic-related air 

pollution.24 NO2 varies spatially and temporally in response to traffic patterns, local wind 

patterns, and land use.25 Annual average outdoor NO2 concentrations in Canada have decreased 

over time from approximately 20 ppb in 1988 to 11 ppb in 2013, largely due to regulations on 

vehicular emissions.26 Long-term exposure to NO2 has been linked to a number of adverse health 

outcomes including nonaccidental mortality and mortality from specific disease categories 

(including cardiovascular, lung cancer, cerebrovascular, diabetes, and respiratory causes).27, 28 

However, health effects are heterogeneous across different studies and geographic areas, and 

there remains debate regarding the role of NO2 and the degree to which it is directly responsible 

for observed health effects, rather than being a marker for the effects of other toxic pollutants 

(e.g., fine particles) which are also emitted from the same sources.29 

Ozone (O3) at ground level is a secondary pollutant that is a product of complex 

photochemical reactions which occur between nitrogen oxides and volatile organic compounds 

in the presence of sunlight, particularly during the warm season.30,31  These pollutants are 

emitted primarily by vehicular or industrial sources.30 Exposure to ground-level ozone is 

associated with negative health effects including death from cardiovascular/respiratory disease, 

cerebrovascular disease, and ischemic heart disease.32 Relative to NO2, O3 is a stronger oxidizing 
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agent.33, 34 Because it is a strong oxidizing agent, O3 in the human body plays a role in the 

oxidative stress pathway35 which is a hypothesized mechanism by which some air pollutants 

induce adverse health outcomes (described in Section 2.2 below).  

Since O3 and NO2 are correlated in space and time (as they have common sources and 

react together in complex chemical systems; the correlation tends to be inverse),34 populations 

are exposed to both pollutants simultaneously and disentangling their effects is difficult. Further, 

both gases can induce oxidative stress,36 which is a mechanism linking air pollution exposures to 

health effects. The combined effect of NO2 and O3 can be expressed as a redox-weighted 

average, OX, which reflects the concentrations of both gases weighted by their ability to induce 

oxidative stress (through involvement in reduction-oxidation reactions) and thereby to adversely 

affect human health. Specifically, OX is calculated as a weighted average of O3 and NO2 based on 

the following equation: OX = ((1.07 × NO2) + (2.075 × O3)) /3.14.33, 37 The weights in this equation 

represent reduction potential and reflect the greater ability of O3 to act as an oxidizing agent 

relative to NO2.  

2.2 Oxidative stress 
 

This section of the literature review will provide a brief description of oxidative stress, an 

important mechanism by which particulate air pollution and oxidant gases contribute to adverse 

health outcomes. 

2.2.1 Oxidative stress  
 

Oxidative stress is recognized as one of the mechanisms underlying the toxic effects of air 

pollution.20, 38 Oxidative stress is characterized by an imbalance between the body’s antioxidant 
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defenses and pro-oxidant free radicals (i.e., atoms with unpaired electrons) including reactive 

oxygen species (ROS). The body contains antioxidants which react with reactive oxygen species 

to form secondary products that are less toxic.39, 40 In particular, the respiratory tract lining fluid, 

the thin layer of fluid that covers the epithelial surface of respiratory tract, contains high 

concentrations of antioxidants (such as glutathione, uric acid and ascorbic acid) which act as a 

first line of defense against inhaled pollutants.41, 42 However, when the level of free radicals 

overwhelms the body’s antioxidant defenses, surplus free radicals can provoke redox reactions 

that damage cells and tissues through processes including oxidation of lipids, protein, and 

genetic material (DNA).43 Further, free radicals can provoke initiation of a proinflammatory 

cascade in which an influx of inflammatory cells to the injured site leads to a second wave of 

oxidative stress when inflammatory cells generate reactive species themselves as part of cellular 

signalling processes.44 In short, oxidative stress is both induced by and induces inflammatory 

processes.44 Oxidative stress is a plausible mechanism for the pulmonary inflammatory response 

observed following PM exposure, and may underlie other adverse health effects of air pollution 

exposure.38, 45 Many of the pollutants that make up the ambient air pollution mixture can 

promote free radical reactions (e.g., particulates, O3).46   

 

2.2.2 Oxidative stress and PM2.5 

 

PM2.5 exposure induces oxidative stress when inhaled particles react with antioxidants 

present in the respiratory tract lining fluid, depleting these defenses.45 The ability of PM2.5 to 

generate reactive oxygen species is driven not only by concentration of PM2.5, but also by 

particle composition.38 PM2.5 is composed of particles of widely varying composition and toxicity. 
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For example, particles can contain transition metals such as iron and copper which are capable 

of acting as catalysts in the formation of reactive oxygen species through redox reactions.38 The 

redox-active components in particles reach target sites in the lungs, vasculature, and heart to 

induce inflammation and oxidative stress.47 Failure to overcome oxidative stress leads to the 

activation of additional cellular signalling cascades regulating the expression of cytokine and 

chemokine genes; the pro-inflammatory effects that result occur locally in target tissues directly 

exposed to PM as well as systemically, and can contribute to widespread pro-inflammatory 

effects remote from the site of damage.48 Besides acting as a carrier for chemicals involved in 

redox reactions, each particle may also provide a reaction surface on which redox cycling 

chemistry can take place.40 While focussing on individual chemical components (such as 

transition metals) can be useful to link specific sources of PM to health effects, investigating the 

individual health effects of specific components remains a challenge since components derived 

from the same sources tend to be correlated.49, 50 In addition, particulate matter can contain 

organic components such as quinones and polycyclic aromatic hydrocarbons which also 

contribute to oxidative stress.42 Quinones are highly redox-active molecules that directly reduce 

oxygen, resulting in the generation of reactive oxygen species, while polycyclic aromatic 

hydrocarbons indirectly contribute to the formation of reactive oxygen species after being 

transformed into quinones.42 Finally, PM2.5 also includes relatively non-reactive components that 

are unlikely to play a large role in the generation of oxidative stress, including dust, sand and sea 

salt.51 These inert substances contribute to the mass of particles while having little biological 

effect. 
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2.2.3 Oxidative stress and oxidant gases 
 

Unlike PM2.5, which varies widely in composition and toxicity, O3 and NO2 are individual 

gaseous species and therefore their ability to generate oxidative stress is determined by their 

concentrations as their composition is homogenous. Ozone is a highly reactive gas that drives 

free radical reactions, contributing to the inflammatory cascade.38, 52When inhaled, ozone reacts 

with antioxidant substrates in the respiratory tract lining fluid and is consumed. However, when 

ozone exposures overwhelm antioxidant defenses, ozone can react with lipids and proteins, 

which leads to the generation of harmful secondary oxidation products that can initiate 

inflammatory processes in the lungs.38 NO2 is a free radical that reacts with substrates present in 

the lung lining fluid to produce oxidized species that initiate the secondary signalling cascade 

which brings an influx of inflammatory cells to the lung; NO2 also initiates free radical generation, 

which results in protein oxidation, lipid peroxidation, and cell membrane damage .38, 53, 54  

 

2.3 Alternative measures of particle toxicity and composition 
 

This section of the literature review will provide a brief discussion of several different 

approaches to measuring exposures to PM2.5, with a focus on moving beyond the traditional 

mass concentration measure (i.e., mass of PM2.5 per volume of air). The complementary 

measures of PM2.5 discussed in this section allow us to account for the composition and toxicity 

of particles rather than their mass concentration alone. 

2.3.1 Oxidative potential 
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The ability of PM to generate oxidative stress can be measured through several assays 

using metric called oxidative potential (OP). OP represents an integrated measure that estimates 

the capacity of particles to oxidize target molecules by generating redox oxidizing species; a 

strength of OP is that it can reflect the combined presence and effect of several different 

correlated species.5 OP is an important addition to the traditional particle mass measure of PM 

because PM2.5 mass concentration treats all particles of a specific size fraction equally in terms of 

toxicity, but particles differ in chemical composition and consequently toxicity.7 Therefore, 

measures of particle mass alone may not fully reflect the ability of particles to cause adverse 

health effects.5 OP is increasingly used as an exposure measure in studies of air pollution health 

effects.12 

Several assays exist to quantify OP including assays that measure the ability of PM to 

deplete antioxidants in a synthetic model of the respiratory tract lining fluid (RTLF).8 The 

respiratory tract lining fluid is the first physical interface through which inhaled PM contacts the 

body. It contains high concentrations of antioxidants including ascorbate (AA)55 and reduced 

glutathione (GSH)56, 57 which constitute key defenses against oxidative stress. The RTLF assay is 

an acellular chemical model containing physiologically relevant concentrations of these 

antioxidants. Samples of PM with known mass are incubated for a defined time interval at 

human body temperature in a synthetic RTLF solution, following which antioxidant 

concentrations are measured. The extent to which antioxidants are depleted by exposure to PM 

over time is a direct measure of PM oxidative activity expressed as OPAA (ascorbate-related 

oxidative potential) or OPGSH (glutathione-related oxidative potential), respectively.8, 57, 58 These 

complementary measures of OP respond to the presence of different chemical species in PM. 
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For example, OPAA is more strongly associated with iron content of particles, while OPGSH is 

related to aluminum;59  however, both OPAA and OPGSH are sensitive to copper.5 Studies 

frequently examine the effects of multiple measures of OP since there is no consensus on which 

measure is the most biologically or clinically relevant.12 In addition to the RTLF assay, other OP 

assays include those based on the consumption of dithiothreitol (OPDTT)60 or electron spin 

resonance related to the production of PM-induced hydroxyl radical species (OPESR).61 Results 

from the epidemiologic literature show inconsistent effects when OP is used as an exposure 

measure in studies of health effects (Figure 2.1). 

 

Figure 2.1. Associations of chronic health outcomes with a one-interquartile range increase of 

particle mass and oxidative potential exposures.62-65 Figure adapted from Gao et al.12 

As an alternative approach to the in vitro oxidative potential assays, the concentration of 

reactive oxygen species (ROS) in the epithelial lining fluid resulting from the ability of particles to 

generate ROS as well as the destruction of ROS by antioxidants can be estimated using a 

mathematical model based on the content of redox-active components including transition 

metals in particles.9 Lakey et al. (2016) developed a mathematical model of the chemistry of the 
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human respiratory tract, KM-SUB-ELF, which estimates ROS concentrations generated in redox 

reactions in the epithelial lining in response to the iron and copper content of inhaled particles.9 

The KM-SUB-ELF model simulates mass transport and over 50 chemical reactions and estimates 

the concentration of ROS produced. This method reflects the combined importance of these two 

metals in their contribution to the generation of ROS in the lungs and offers an innovative way to 

estimate the impact of inhaled particles on oxidative stress in the human lung. Determining the 

individual contributions of specific metal components to health effects is a challenge due to 

strong correlations between the elements, but this method takes an alternative approach by 

examining the combined impact of the metals based on a shared mechanism of action. ROS 

generation estimated by the KM-SUB-ELF model is treated as complementary to the in vitro OP 

assays; Fang et al. demonstrated that correlations between different ROS species (e.g., H2O2, OH) 

and measures of OP varied substantially.66 It is also important to note that neither OP assays nor 

ROS generation estimated from KM-SUB-ELF accounts for the endogenous biological generation 

of ROS by macrophages, which is a part of cellular signaling processes.66, 67 

 

2.3.2 Characterization of particle composition 
 

In addition to their ability to generate oxidative stress, PM samples can also be 

characterized by particle size and composition. One component of particular interest is the 

magnetite nanoparticle content of PM2.5. Magnetite nanoparticles are small iron oxide particles 

that are produced during high-temperature combustion and friction processes including tailpipe 

emissions (e.g.,  from iron impurities found in fuel), vehicle brake-wear, railways, and industrial 

combustion processes.10, 68-70 To assess magnetite content, the magnetic properties of PM 
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samples can be analyzed by a number of different methods.71-75 Among these is anhysteretic 

remanent magnetization (ARM). Substances with remanent magnetization have the ability to 

remain in a state of magnetization in the absence of an active magnetic field.14 ARM is obtained 

by applying an alternating magnetic field to a PM sample and measuring the response of the 

metals in the sample using a magnetometer.75 ARM reflects both the concentration and size of 

magnetic particles.14 

Magnetite nanoparticles are able to enter the brain directly through the olfactory nerve 

and have been observed in abundant quantities in human body tissues including the brain,76 

heart,77 and placenta.78 Toxicology studies suggest that magnetite nanoparticle exposures are 

relevant to disease development. In human lung cells in vitro, genotoxicity and increased 

production of ROS were observed in 24 hours after exposure to magnetite nanoparticles.79 

Conversely, some argue that magnetite in the brain does not play a role in the oxidative damage 

of brain neurons.80 The population health impacts of exposure have not been assessed in 

epidemiologic studies. Much uncertainty remains regarding the spatial distribution and health 

effects of these little-studied particles.81 

2.4 Within-city variations in PM2.5 mass concentration, PM2.5 characteristics, and oxidant 

gases 
 

A growing area of research interest is the degree to which measures of air pollution 

exposures including particle toxicity and composition vary at small spatial scales, such as within 

cities. This section will describe the degree of spatial variation observed at the within-cities 

spatial scale for PM2.5 mass, complementary PM2.5 exposure measures, and oxidant gases.  
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2.4.1 Within-city variations in PM2.5 mass concentration 
 

PM2.5 concentrations show relatively little spatial variation within cities relative to other 

pollutants.82-85  PM2.5 particles can remain suspended in the atmosphere for days to weeks and 

can be transported long distances from their original sources.86 PM2.5 is a mix of primary particles 

formed through combustion and friction processes, and secondary particles formed through 

atmospheric reactions between precursors.87 About 80% of PM2.5 in the Great Lakes region 

(including much of southern Ontario, Canada) is secondary, formed through condensation and 

chemical reactions among precursor species.88 Consequently, PM2.5 mass concentrations depend 

on regional background levels as well as on local sources.      

 

2.4.2 Within-city variations in particle composition and oxidative potential  
 

Small-scale spatial variations in particle composition are much greater than variations in 

overall PM2.5 mass concentrations owing to greater contributions from local sources.82, 83  

Weichenthal et al. found considerable spatial variations in the concentration of iron and copper 

in PM2.5 samples at the within-city scale in Toronto, Canada.83 Consequently, the estimated 

production of reactive oxygen species in the epithelial lung lining fluid, which can be expressed 

as a function of copper and iron concentrations in particles, was also spatially variable.83 Particle 

oxidative potential is also highly variable within cities.82, 89-91 For example, in a study of PM 

collected at urban roadway and background locations, Boogard et al. found that the oxidative 

potential of PM10 (i.e., particles with aerodynamic diameter < 10 µm) sampled from major 

streets was 3.6 times higher than at urban background locations, which exceeded the spatial 
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contrasts observed for PM mass and all measured PM chemistry characteristics; even greater 

contrasts were observed between major streets and suburban background locations.91 Similarly, 

in a study in Toronto, Ontario, Weichenthal et al. found substantial spatial variations in multiple 

measures of oxidative potential at the within-city scale.89 Finally, although spatial distributions of 

exposures to magnetite nanoparticles are little studied, there is also evidence that they vary 

sharply in relation to local sources. For example, in a study in Poland, elevated magnetic 

susceptibility parameters were measured in soil within 3 m from the edge of minor roads and up 

to 15 m from major roads.14 

 

2.4.3 Within-city variations in oxidant gases 
 

Concentrations of NO2 can be highly variable at small spatial scales. Differences in 

annual average ambient NO2 concentrations of more than 50 mg/m3 (27 ppb) have been 

observed between sampling locations less than 50 m apart in the United Kingdom.92 Within 

Canadian cities, residential exposures to NO2 vary substantially.93 Indeed, NO2 within cities is 

locally variable enough that NO2 concentrations are correlated with neighborhood-level 

measures of socioeconomic status such as low income, low educational attainment, and low 

dwelling value.93, 94 Land-use regression models also point to the importance of local sources: in 

land use regression models for NO2 in Toronto, variables such as traffic and roadway length 

within a 300 m buffer, traffic counts, distance to roadways and in particular expressways, and 

industrial and residential land use were the strongest predictors of NO2 levels.94 Within-city 

variations in NO2 exposures result from the interaction of a variety of factors, including local 

wind patterns, traffic patterns, and land use.25, 95 
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O3 is formed as a secondary pollutant in complex relationships with nitrogen oxides (NOX, 

including NO and NO2) and volatile organic compounds (VOCs) in the presence of sunlight.96 

Although ozone is formed as a product of NO2, it also combines with NO to form O2 and is thus 

removed from the air. Therefore, reductions in NO2 concentrations can result in increased O3 

concentrations.97 Ground-level ozone concentrations depend on both local sources and distant 

sources that influence background levels.97 When the combined effect of O3 and NO2 (i.e., OX) is 

considered, the ozone concentrations are effectively a regional phenomenon contributing to the 

regional background OX level, whereas the contribution of NOX is a local phenomenon which 

correlates with the level of primary pollutants.97 O3 and consequently OX are less spatially 

variable at fine spatial scales relative to NO2.98 

 

2.5 Long-term air pollution exposure and health outcomes 
 

In this section, a brief overview of the literature linking selected outdoor air pollution 

exposures to cardiovascular health effects and brain cancer will be provided. This thesis focuses 

on these two different health outcomes that are both potentially related to long-term outdoor 

air pollution exposure. First, we will examine cardiovascular mortality, since the effect of air 

pollution on cardiovascular mortality is largely influenced by the oxidative stress pathway. Our 

examination of emerging measures of particle toxicity that account for the ability of particles to 

induce oxidative stress is relevant to this outcome. Second, we will examine brain cancer 

incidence. In this objective, we are specifically interested in the effects of magnetite nanoparticle 

exposure on the brain. There is evidence of long-term exposure to nanoparticles in outdoor air 

pollution causing incident brain cancer;99 further, given that magnetite nanoparticles can 
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translocate to the brain and have been found in brain samples,76 magnetite nanoparticle 

exposures are plausibly related to neurological dysfunction. 

2.5.1 PM2.5 and cardiovascular mortality 
 

The association of outdoor particulate air pollution exposure with acute and chronic 

cardiovascular outcomes is well established.44 As early as the 1990s, epidemiologic studies 

showed clear associations between acute and chronic exposures to particulate air pollution and 

cardiovascular mortality.100, 101 Subsequent epidemiologic studies have demonstrated consistent 

associations of PM2.5 with cardiovascular morbidity on a global scale.43 Even at the relatively low 

exposure levels observed in Canada, PM2.5 is robustly associated with a variety of acute and 

chronic health outcomes including cardiovascular mortality, with exposure effects modelled at 

concentrations as low as 2 μg/m3.102, 103  For example, a study of 2.6 million Canadians by Pinault 

et al. estimated that each 10 μg/m3 increase in average PM2.5 exposure at residential location 

was associated with a hazard ratio of 1.25 (95% CI: 1.19, 1.31) for cardiovascular mortality over 

20 years of follow-up.104 Similar results were summarized in a systematic review and meta-

analysis of the existing evidence on the relationship between long-term PM2.5 exposure and 

cardiovascular mortality which found a pooled risk ratio of 1.11 (95% CI: 1.09, 1.14) per 10 μg/m3 

increase in PM2.5 mass concentrations across 21 studies.105 

 

2.5.2 Oxidant gases and cardiovascular mortality 
 

Oxidant gas exposures are also linked to cardiovascular outcomes. Long-term exposures 

to NO2
106 and O3

107 have been associated with deaths caused by cardiovascular disease at 



39 
 

exposure levels typical of those observed in Canada. The combined effect of NO2 and O3 (i.e., OX) 

has also been identified as potentially modifying the effects of PM2.5 exposures. For example, in a 

Canadian cohort study, OX modified the effects of PM2.5 exposures on cardiovascular mortality, 

as well as nonaccidental and respiratory mortality, with higher PM2.5 effects observed in the 

highest tertile of OX, a finding which was attributed to the combined oxidant effect of exposures 

to both PM2.5 and OX.37 Similarly, Christidis et al. examined the association of PM2.5 with mortality 

in both low- and high-Ox person-years and found a 24% higher risk in high-OX person-years.102 

These findings suggest that the oxidative stress induced by particulate and gaseous pollutants 

may each be magnified in the presence of the other. 

 

2.5.3 Oxidative potential and health outcomes: summary of epidemiologic evidence 
 

Although epidemiologic evidence on the use of PM2.5 OP as an exposure measure 

remains limited, patterns are beginning to emerge as the literature base grows; these were 

highlighted in our systematic review of the literature published in 2020.12 Specifically, the 

OPDTT and OPGSH assays were most consistently associated with adverse health outcomes, 

including acute and chronic outcomes related to the cardiovascular and respiratory systems.62-64, 

108-111 The OPESR assay may have some utility but has only been assessed in relation to health 

outcomes in a small number of studies.64, 65, 108 OPAA has been linked with biomarkers of 

cardiovascular and systemic inflammation.112, 113 However, to date associations remain 

inconsistent with respect to patterns across different measures of OP. Nonetheless, these 

studies provide some insight into the potential mechanisms behind the larger-scale clinical 

effects observed in studies of long-term exposure.  
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 Similarly, some studies have directly assessed the concentrations of reactive oxygen 

species produced in response to particle exposures using the mathematical KM-SUB-ELF model 

and have examined relationships between the ROS estimates and health outcomes. Zhang et al. 

examined associations between long-term exposures to ROS concentrations and the incidence of 

asthma, chronic obstructive pulmonary disease (COPD), COPD mortality, pneumonia mortality, 

and respiratory mortality; positive associations were identified between ROS and all 

outcomes.114 Likewise, Stieb et al. found a positive association between ROS generation at the 

neighbourhood level within Toronto and COVID-19 incidence (incidence rate ratio = 1.07; 95% 

confidence interval, 1.01–1.15 per interquartile range ROS).115  

 

2.5.4 Modification of air pollution exposure effects by oxidative potential  
 

Studies of health effects of PM2.5 oxidative potential (OP) in Canada have primarily 

examined how the effects of pollutants may differ across levels of OP (i.e., how OP acts as an 

effect modifier). Several epidemiologic studies in Canada have evaluated the extent to which 

spatial differences in OP modify the health impacts of PM2.5. I performed a systematic review and 

narrative synthesis of epidemiologic studies using OP as an exposure metric or effect modifier; 

results are summarized in brief here but can be accessed in full in the published manuscript.12 

Weichenthal et al. conducted a case-crossover study of the risk of emergency room visits for 

respiratory causes across 15 cities in Ontario, Canada.116 Daily average PM2.5 mass 

concentrations were collected from 19 fixed-site monitoring stations and OPAA and OPGSH were 

estimated from PM2.5 samples collected from the same sites. Effect modification by OPGSH was 

apparent at low PM2.5 concentrations (≤10 μg/m3), suggesting that short-term changes in 
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PM2.5 mass concentrations increase the risk of acute respiratory issues most when OPGSH is high, 

but this was not observed for OPAA. Similarly, a case-crossover study in 16 cities across Ontario 

examined emergency department visits for acute myocardial infarction.117 In this study, short 

term changes in PM2.5 were more strongly associated with acute myocardial infarction in cities 

with higher OPGSH. Specifically, each 5 μg/m3 increase in PM2.5 exposure was associated with a 

7.9% (95% CI: 4.1, 12) increase in the risk of myocardial infarction in cities above the 90th 

percentile of OPGSH, whereas a 4.1% (95% CI: 0.26, 8.0) increase was observed in cities above the 

75th percentile and no association was observed below the 50th percentile.117 Evidence of effect 

modification was not observed for OPAA.  

Similar results were also observed in cohort studies. A cohort study in Ontario, Canada 

examined the impact of oxidative burden (i.e., the product of oxidative potential and PM2.5 mass 

concentration) on the long-term health effects of exposure to ambient PM2.5.118 Oxidative 

burden was calculated by weighting PM2.5 mass concentrations by OP metrics (e.g., glutathione-

related oxidative burden = PM2.5 mass x OPGSH). Glutathione-related oxidative burden was 

associated with elevated risks of mortality from cardiometabolic causes (hazard ratio: 1.029, 95% 

CI: 1.002–1.057) as well as lung cancer and all non-accidental causes. These associations were 

consistently larger than those for PM2.5 not weighted by OPGSH. This effect was not observed for 

ascorbate-related oxidative burden. Taken together, these studies constitute a body of evidence 

supporting the idea that PM2.5 effects on cardiovascular health may be stronger in areas where 

particles have greater ability to induce oxidative stress. 

The effects of oxidant gases may also be modified by particle oxidative potential. In a 

case-crossover study across 34 Canadian cities, associations between short-term PM2.5 and 
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oxidant gas exposures and respiratory hospitalizations in children were modified by OPGSH.49 

Specifically, the effect of redox-weighted oxidant gas concentrations (OX) on children’s 

respiratory hospitalizations were higher when OPGSH was above the median relative to when 

OPGSH was below the median.49 Conversely, associations were stronger when OPAA was below the 

median, and no associations were observed above the median.49  Further evidence is needed to 

clarify the health effects of long-term exposures to OX and how they may be modified by particle 

characteristics. 

At the within-city spatial scale, it remains unclear whether OP modifies the long-term 

cardiovascular health effects of exposures to oxidant gases or PM2.5 mass concentrations. There 

have been few epidemiologic studies of health effects at this scale. Tonne et al. studied changes 

in carotid artery intima-media thickness, a measure of subclinical atherosclerosis, in a cohort of 

2348 people in London, England; the association for PM10 mass weighted by OPGSH (i.e., oxidative 

burden) was weaker than for PM10 mass alone.111 However, OP estimates were based on 34 sites 

across greater London, UK, an area of approximately 1500 km2, and it is possible the spatial 

variability of OP, which is strongly influenced by local sources, was not captured fully; this could 

obscure the effect of OP at fine spatial scales.111   

Overall, these results suggest that interventions to reduce OP may be a way to reduce 

morbidity related to PM exposure even in areas where PM mass concentrations are already 

relatively low. A review of the literature suggests that studies using sufficiently spatially dense OP 

measurements could be useful to inform traditional mass-based interventions by identifying 

areas where regulation may be most efficient in reducing the public health impacts and related 

costs of PM2.5 exposures.12 While this approach represents a departure from the standard 
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method of implementing reductions across all locations, some evidence suggests that risk 

estimates for PM2.5 may vary markedly across regional differences in oxidative potential; 

consequently, the expected benefits of reductions in PM2.5 (and potentially other pollutants such 

as oxidant gases) may differ greatly between locations and particle oxidative potential may allow 

regulators to target mass-based interventions most efficiently. This may be especially true in 

Canada, where PM2.5 mass concentrations are relatively low, and many areas share a similar 

mass concentration but may have meaningful differences in particle composition or biological 

activity. However, more evidence is needed to strengthen these findings, particularly at fine 

spatial scales. 

 

2.5.5 PM2.5 and brain cancer 
 

 While most epidemiologic studies of outdoor air pollution have focused on the respiratory 

and cardiovascular systems, recent interest has turned to other systems including the brain. For 

example, a cohort study in Toronto and Montreal found that concentrations of ultrafine particles 

(<100 nm in diameter) at residential locations were associated with an increased incidence of 

brain tumours, although the relationship was not observed for PM2.5 mass concentrations.99 A 

Danish study found positive associations between primary carbonaceous particles in PM2.5 

(components indicating a combustion source) and brain cancer incidence.119 However, other 

studies have reported null or inconclusive results. A European cohort study found a positive 

association between PM2.5 and malignant brain tumours (HR = 1.67, 95% CI: 0.89, 3.14) but the 

estimate was imprecise due to the small number of cases (n = 466).120 Similarly, Jorgenson et al. 

studied the association of ambient air pollution (specifically PM2.5, PM10, total nitrogen oxides 
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[NOX], and NO2) with brain cancer incidence in the Danish Nurse Cohort, a cohort of 25,143 

female nurses who were followed for a mean of 15.6 years.121 Over the follow-up period, 121 

incident brain cancer cases were recorded. A positive but imprecise and non-significant 

association with PM2.5 was identified (HR: 1.06, 95% CI: 0.80, 1.40 per 3.37 μg/m3 PM2.5). A 

cohort study in the United States and Puerto Rico explored potential associations between 

particulate and gaseous air pollutants and brain cancer mortality in adults.122 In an analysis of 

1,284 deaths from brain cancer, particulate matter was not found to increase the risk of brain 

cancer mortality. Similarly, results from a large American registry of 127 898 incident brain 

tumours found no significant association with PM2.5 exposures.123  

 

2.5.6 Oxidant gases and brain cancer 
 

Studies examining the association between NO2 or total nitrogen oxides (NOX, i.e., NO2 

and nitric oxide [NO] which quickly oxidizes to NO2) exposures and brain cancer incidence have 

had mixed or inconclusive results. A Danish study found an association of NOX exposures (IRR per 

100 μg/m3: 2.28, 95% CI: 1.25, 4.19) and roadway proximity of 50 m or less (IRR: 1.89, 95% CI: 

1.07, 3.36) and brain tumour incidence.124 Similarly, the Danish Nurse Cohort studied by 

Jorgenson et al. as described previously in Section 2.5.5 found a weak, non-statistically significant 

positive association between total brain tumours and NO2 (HR per IQR: 1.09, 95% CI: 0.91, 1.29) 

and NOx (HR per IQR: 1.02, 95% CI: 0.93, 1.12).
121

 In the American cohort study of 1,284 deaths 

from brain cancer described above,122 four gaseous pollutants (sulfur dioxide, nitrogen dioxide, 

carbon monoxide, and ozone) were not found to increase the risk of brain cancer mortality, and 

some exposures were unexpectedly protective. There is little evidence in the published literature 
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of an association between ground-level ozone exposure and brain cancer incidence; however, 

Valberg et al. investigated whether county-by-county brain cancer incidence rates and mortality 

rates were correlated with patterns of local ambient air pollution and identified a single positive 

but weak correlation with ozone (r = 0.15).125 This was an ecological study with exposure 

estimated only at the country level, even though individual exposures likely varied. 

Overall, substantial uncertainty remains regarding the association of particulate and 

gaseous air pollution exposures with brain cancer incidence. Brain cancer studies have often 

been limited by small sample size, since brain tumours are relatively rare, and by a lack of 

understanding about which species or components of the air pollution mixture are relevant, as 

well as over which time interval individuals are at risk of exposure effects.126, 127 The availability 

of exposure data at the correct spatial resolution scale is an additional methodological issue. 

Nonetheless, identifying risk factors for brain tumour incidence is important; currently, 

prevention of brain cancer is challenging because there is little knowledge on modifiable risk 

factors and identifying such risk factors could reduce the burden of disease. Consequently, 

additional work is needed to further evaluate the relationship between outdoor air pollution and 

brain cancer.  

 

2.6 Knowledge gaps 
 

An increasing body of epidemiologic research describes exposures to PM2.5 using methods 

that incorporate information on particle characteristics such as toxicity and composition, rather 

than assessing exposures to PM2.5 mass concentration alone. However, there is little information 

available on how PM2.5 characteristics vary on fine spatial scales, such as within cities, and 
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whether those small-scale variations are relevant to health outcomes. This thesis will explore the 

health effects of long-term air pollution exposures at a within-city level with a focus on specific 

components and characteristics of PM2.5.  

In Objective 1, I develop models to predict variations in outdoor PM2.5 oxidative potential 

(OP) and reactive oxygen species concentrations (ROS) on a fine spatial scale within Toronto and 

Montreal, which is important since previous spatial monitoring campaigns for OP89 and ROS83 

indicate that these measures are much more spatially variable than PM2.5 mass concentrations. 

Oxidative potential of particulate air pollution is increasingly measured in exposure studies, but 

most existing studies measure OP at a small number of sites and thus do not capture complex 

within-city spatial variations in particle OP.12 Additionally, I develop models to predict within-city 

spatial variations in outdoor magnetite nanoparticles which has not been done to date, but is 

important because these pollutants are potentially relevant to the development of chronic 

diseases. 

In Objective 2, I apply estimated OP exposures to existing population-based cohort data 

to estimate the associations between oxidant gases and cardiovascular mortality in Toronto and 

Montreal across strata of OP. While the phenomenon of OP modifying exposures to PM2.5 and 

oxidant gases has been observed previously within Canada, it has not been examined at the 

within-cities scale. Since nearly 3 out of every 4 Canadians live in large urban centres,128 it is 

important to understand urban air pollution exposures and their health effects to maximize the 

health of the majority of the Canadian population. 

Finally, Objective 3 is the first epidemiologic study to date to evaluate the health effects 

of exposure to magnetite nanoparticles which make up part of the air pollution mixture in urban 
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areas but remain largely uncharacterized in terms of their spatial distributions and health effects. 

Although these pollutants have been identified in human brain tissues and have been associated 

with negative health effects in toxicological studies, they have been virtually ignored in human 

epidemiologic studies owing to the absence of environmental exposure data.  
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Chapter 3: Manuscript 1 
 

3.1 Preface 
 

This chapter contains the first of three manuscripts in this dissertation. The goal of this chapter 

was to describe the spatial distributions of several measures of the potential toxicity and 

composition of PM2.5 within Montreal and Toronto, Canada at a high spatial resolution. I 

conducted PM2.5 monitoring campaigns across Montreal and Toronto and developed land-use 

regression models to predict spatial variations in multiple characteristics of PM2.5. Specifically, 

we estimated the ability of PM2.5 to generate reactive oxygen species in lung lining fluid (using a 

previously published mathematical model), measured PM2.5 oxidative potential based on the 

depletion of the antioxidants ascorbate and glutathione in a synthetic respiratory tract lining 

fluid assay, and measured anhysteretic remanent magnetization susceptibility as an indicator of 

magnetite nanoparticles in PM2.5 samples. This manuscript was peer-reviewed and published in 

Environmental Science and Technology. 

 

Citation: Ripley S, Minet L, Zalzal J, Pollitt KJG, Gao D, Lakey PSJ, Shiraiwa M, Maher BA, 

Hatzopoulou M, Weichenthal S. 2022. Predicting spatial variations in multiple measures of PM2.5 

oxidative potential and magnetite nanoparticles in Toronto and Montreal, Canada. 

Environmental Science and Technology 56, 11, 7256–7265. 
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Abstract 

There is growing interest to move beyond fine particle mass concentrations (PM2.5) when 

evaluating the population health impacts of outdoor air pollution. However, few exposure 

models are currently available to support such analyses. In this study, we conducted large-scale 

monitoring campaigns across Montreal and Toronto, Canada during summer 2018 and winter 

2019 and developed models to predict spatial variations in: 1) the ability of PM2.5 to generate 

reactive oxygen species in the lung fluid (ROS), 2) PM2.5 oxidative potential based on the 

depletion of ascorbate (OPAA) and glutathione (OPGSH) in a cell-free assay, and 3) anhysteretic 

magnetic remanence (XARM) as an indicator of magnetite nanoparticles. We also examined how 

exposure to PM oxidative capacity metrics (ROS/OP) varied by socioeconomic status within each 

city. In Montreal, areas with higher material deprivation, indicating lower area-level average 

household income and employment, were exposed to PM2.5 characterized by higher ROS and OP. 

This relationship was not observed in Toronto. The developed models will be used in 

epidemiologic studies to assess the health effects of exposure to PM2.5 and iron-rich magnetic 

nanoparticles in Toronto and Montreal. 

Introduction 

Exposure to outdoor air pollution is a major global health concern.1 Particulate air pollution is of 

noted importance.2 Fine particles, defined as particles with an aerodynamic diameter less than 

2.5 μm (PM2.5), are small enough to penetrate deep into the human respiratory tract and are 

typically measured as mass concentrations that only consider the bulk mass of airborne particles. 
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However, PM2.5 is a mixture of compounds derived from different sources including combustion 

emissions from vehicles, industry, biomass burning, brake- tire-, and rail-wear from vehicles and 

trains, and resuspension of dust. These sources release particles of different chemical 

composition and consequently varying toxicity.3 Therefore, measures of particle mass alone do 

not fully capture the ability of ambient PM to cause adverse health effects.4 

Complementary measures of particulate air pollution have been developed that 

incorporate information on the effects that particles may have inside the body. Among these is 

particle oxidative potential (OP), which is a measure of the ability of PM to cause redox reactions 

in the human respiratory tract.4, 5 Several assays exist to quantify OP, including assays that 

measure the ability of PM to deplete antioxidants in a synthetic model of the respiratory tract 

lining fluid.6 An alternative approach to estimating air pollution impacts on oxidative stress 

considers the ability of particles to generate reactive oxygen species. Specifically, inhaled 

particles containing transition metals undergo redox reaction cycles in the respiratory tract lining 

fluid, generating reactive oxygen species (ROS).7 Lakey et al. (2016) developed a mathematical 

model of the chemistry of the human respiratory tract that estimates ROS concentrations 

generated in response to the iron (Fe) and copper (Cu) content of inhaled particles.7  

In addition to their ability to induce oxidative stress, PM can be characterized by particle 

size and composition. Specifically, magnetite, iron oxide, has been a component of recent 

interest due to its prevalence in urban air samples.8 Magnetite nanoparticles are produced 

during high-temperature combustion processes such as those involved in tailpipe emissions (e.g.,  

from iron impurities found in fuel) and friction processes such as vehicle brake-wear,8, 9 as well as 
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industrial processes.10,11 Magnetite nanoparticles have been observed in abundant quantities in 

human brains,12 hearts,13 and placental tissues.14 The presence of magnetite nanoparticles in 

human brains, including in amyloid plaques characteristic of Alzheimer’s disease,15 suggests that 

exposures to these particles may be a potential risk factor for neurological diseases;12 however, 

the spatial distributions of these particles within cities have yet to be systematically described, 

and hence the health consequences of exposure remain largely unknown. 

In this study, we conducted spatial monitoring campaigns in Canada’s two largest cities 

using a dense network of air pollution monitoring sites. The primary aim of the study was to 

develop land-use regression models for PM2.5 ROS and OP as well as magnetite nanoparticles 

(using anhysteretic remanence magnetization) using these data as well as measurements of 

estimated ROS and OP from a previous study in Toronto conducted in 2016. The models 

developed can be used in epidemiologic studies to assess the health effects of exposure to PM2.5 

in Toronto and Montreal. Additionally, we identified clusters of monitoring sites to identify 

possible sources associated with these particle characteristics. We also examined how levels of 

OP and ROS generation levels vary by neighborhood socioeconomic status across each city.  

Methods 

Spatial monitoring studies 

Outdoor PM2.5 monitoring campaigns were conducted in Toronto and Montreal, Canada 

during summer 2018 and winter 2019. Monitoring sites were identified to capture the variability 

of ambient PM2.5 mass concentrations in each city while maximizing spatial coverage of the study 

area (Figure S3.1). In total, 110 sites were monitored in Toronto (a geographic area of 630.2 km2) 
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and 124 sites in Montreal (472.6 km2) in the summer, with a subset of 67 sites monitored in 

Montreal in the winter. Daily mean temperatures for the summer sampling ranged from 14.4°C 

to 23.7°C in Montreal and 19.8°C to 26.6°C in Toronto. Winter daily average temperatures in 

Montreal ranged from -14.9°C to 4.5°C. Integrated 2-week PM2.5 samples were collected at each 

site using Teflon filters with a mix of Ultrasonic Personal Air Sample (UPAS) monitors (Access 

Sensor Technologies, Fort Collins, CO) at a flow rate of 1 L/min and cascade impactors at a flow 

rate of 5 L/min. All samples were collected simultaneously in each city using preset timers. 

In Toronto, ROS generation and OP were previously estimated from samples taken in a 

2016 campaign at an additional 67 sites using similar methods and an integrated 2-week 

monitoring period.16, 17 We used these data to supplement the 2018 data in order to maximize 

spatial coverage and ensure that our final model captured all available OP and ROS generation 

data in the study region.  

Analysis of PM2.5 samples: mass, metal composition, reactive oxygen species generation and 

oxidative potential  

PM2.5 mass concentration was determined gravimetrically and the concentrations of Fe 

and Cu in PM2.5 samples were determined by X-ray fluorescence according to EPA Method IO-3.3 

in Compendium of Methods for the Determination of Metals in Ambient Particulate Matter (EPA 

625/R-96/010a).  Reactive oxygen species generation was estimated using the KM-SUB-ELF 

model described in full detail by Lakey et al.7 Briefly, this model simulates over 50 chemical 

reactions that occur in the epithelial lining fluid of the respiratory tract in response to Fe and Cu 

content of inhaled particles. This model provides estimates of exogenous ROS concentrations 
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generated in response to Fe and Cu in PM2.5, but does not account for ROS generated through 

biological interactions or immune responses.16 While OP is generally expressed as the capability 

of PM in catalyzing the oxidation of antioxidants or cellular reductants, and the subsequential 

generation of reactive oxygen species, in this study we distinguish between the two measures of 

OP in OPAA and OPGSH and the estimation of ROS generation in ELF using the mathematical model 

developed by Lakey et al.7 for clarity as the process of estimating these quantities differs.  

Oxidative potential of PM2.5 samples was analyzed using two acellular in vitro assays: the 

ascorbate (AA) assay and the glutathione (GSH) assay, according to the procedures described in 

detail previously.18, 19 Briefly, PM2.5 samples were extracted, re-suspended and then incubated 

with a synthetic human respiratory tract lining fluid for 4 h at 37 °C. This fluid was a 200 µM 

composite solution of physiologically-relevant antioxidants including ascorbate (AA) 

and glutathione (GSH). PM2.5 oxidative potential was measured by depletion of AA (% change in 

absorbance at 260 nm wavelength) and GSH (oxidized glutathione-reductase-5,5′-dithio-bis(2-

nitrobenzoic acid) recycling assay. Urate was not included as previous evidence suggests that PM 

does not have an important impact on urate depletion. 6, 20, 21 Each measure of PM2.5 oxidative 

potential was expressed per unit volume (% depletion/m3).  

Measurement of Magnetite Nanoparticles using Anhysteretic Remanent Magnetization  

Magnetic remanence measurements were used to quantify the airborne concentrations 

of iron-rich magnetite particles in PM2.5 samples. Specifically, anhysteretic remanent 

magnetization (ARM) was measured as this parameter is sensitive to the presence of magnetic 

nanoparticles with diameters between 30–50 nm.22, 23 Samples were exposed to 4 different 



55 
 

direct current (DC) biasing fields of 0.06 mT, 0.08 mT, 1.0 mT and 1.2 mT, and subsequently a 2G 

RAPID cryogenic magnetometer was used to measure the magnetic response of the samples. 

XARM was then calculated as the slope of the ARM(DC field) linear function. ARM was normalized 

by sampled air volume. Henceforth the parameter XARM will be referred to as “concentration of 

magnetite nanoparticles” for clarity.  

Derivation of land use and built environment predictors for model development  

Land use and built environment attributes were derived for each monitoring site using 

ArcMap 10.8.1 (ESRI, Redlands, CA) (Table S3.1). Land use variables were calculated within 

circular buffers of 50, 100, 200, 300, 500, 750 and 1000 meters. Categories of land use variables 

included residential, commercial, governmental/institutional, resource/industrial, parks, open 

area, water, and building footprints (DMTI Spatial Inc. Database 2014). Additionally, roadway 

characteristics were captured by length of roads, bus routes, railways, and number of bus stops 

within each buffer. Data were derived from DMTI Spatial 2014, Montreal Open Data Portal, and 

Toronto Open Data Portal. Emme (INRO, Montreal, Quebec, Canada), and USEPA Motor Vehicle 

Emission Simulator (MOVES) were used to calculate average and total NOX emissions for each 

buffer. Additionally, distance to industrial facilities registered to the National Pollutant Release 

Inventory of the Government of Canada (NPRI 2014) for NOX or PM production (NPRI 2014) was 

estimated.  

Statistical Analyses 

Bayesian linear regression models were developed to predict spatial variations in ROS, 

OP, and magnetite nanoparticle concentrations. Specifically, we developed Bayesian lasso 
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models which perform variable selection simultaneously with coefficient estimation by shrinking 

the coefficients on less influential variables.24 The Bayesian lasso provides estimates of credible 

intervals that can guide variable selection, enabling selection of a small number of relevant 

predictors. The lasso tends to perform well for prediction tasks because the regularization 

penalty reduces learning from the data and thereby reduces overfitting.25, 26 Therefore, lasso is 

well suited to contexts in which the values of the coefficients themselves are less important than 

the accuracy of prediction. However, unlike the ordinary least squares regression estimator, the 

lasso approach does not generate unbiased coefficients,24 and values of individual coefficients 

should be interpreted with caution. Variable selection was performed by fitting the model on all 

available variables, as well as quadratic transformations and logarithmic transformations where 

appropriate; variables for which the 80% credible interval excluded the null value of 0 were 

retained and the final model was fit using the selected variables. Weakly informative priors 

allowed the posterior predictive distribution to be informed primarily by the data. Regression 

coefficients were fit with a Laplace (double-exponential) prior, and the penalty component of the 

Lasso regression was assigned a Cauchy prior distribution. In order to investigate the spatial 

dependence of the model errors, models were fit with and without a spatially correlated error 

structure and the models with better predictive performance (as assessed by the expected log 

predictive density) were retained.27 

  For Montreal, annual mean concentrations at each monitored site were generated by 

averaging values across the summer and winter seasons. Since winter sites were a subset of 

summer sites, annual values were available for all winter sites and a subset of summer sites. For 

Toronto, data were available only for the summer season. For the Toronto models, in which we 
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included data from a 2016 campaign in which ROS generation and OP were monitored at a 

different set of sites,16, 17 an indicator variable for campaign year was included in the model in 

order to generate predictions representing an average of posterior means across both years. 

Therefore, the data used to build land-use regression models included averages between two 

summer sampling campaigns (2016 and 2018) in Toronto, and between two seasons in a single 

year period (summer 2018 and winter 2019) in Montreal. Analyses were performed in R version 

4.0.128 and RStan version 2.19.3.29 Convergence of the Markov chains was checked by 

examination of trace plots, and models were evaluated using a leave-one-out cross-validation 

procedure, a process in which a single observation is left out and then predicted based on the 

model fit to the remaining data. This process is repeated iteratively for all observations and the 

predictive accuracy of the model is assessed using the sum of values over all observations.30  

Mapping the predicted exposure surfaces 

To generate maps of the exposure surfaces, each city was divided into grid cells of 100 × 

100 meters and the previously developed land-use regression models were used to predict 

exposures at each mid-point to develop an exposure surface across the entire study area. 

Additionally, uncertainty surfaces were generated using the posterior standard deviation 

generated for each grid point (Supplementary Figure 3.2). 

Cluster identification  

We used k-means clustering on the 2018 sample data to identify clusters of sites that 

were most similar with respect to observed ROS generation, OPGSH, OPAA, and magnetite 

nanoparticles to better understand potential source characteristics. Briefly, this method 
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partitions sites into clusters using an iterative algorithm that minimizes the Euclidean distance 

between observations and cluster centers.31 K-means cluster analysis was performed in R using 

the cluster package.32  Each site was uniquely identified to a single cluster. The optimal number 

of clusters, k, was the value that produced the greatest decrease in within-cluster sum of 

squares for a range of values of k. In the K-means clustering analysis, only filters with complete 

measures for all four exposures were used (N=100 in Montreal and N=59 in Toronto).    

Relationship with neighborhood-level socioeconomic status 

To describe the relationship between neighborhood-level material deprivation and 

neighborhood-level exposure to ROS generation, OPAA and OPGSH, we aggregated data by 

Forward Sortation Area (FSA) (i.e., a geographical unit denoted by the first three digits in a 

Canadian postal code). We used the Material Deprivation Index (MDI), which includes 

socioeconomic characteristics of the population living in a small area (e.g., income, educational 

attainment, and employment), as a proxy for neighborhood-level socioeconomic status.33, 34 We 

took the median value of MDI percentile within each FSA as well as the median predicted 

concentration of ROS, OPAA and OPGSH within each FSA. We then used Generalized Additive 

Mixed Models (GAMM)35 to visualize the relationship between each PM2.5 characteristic and MDI 

across FSAs.  

Results 

The distributions of ROS generation, OP and magnetite values estimated from PM2.5 samples 

taken in each city and season are described in Figure 3.1. PM2.5 ROS generation, OPAA, and OPGSH 

were slightly lower in Montreal than in Toronto, while median magnetite nanoparticle 
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concentrations were slightly lower in Toronto than in Montreal. In Montreal, winter values were 

slightly lower than summer. Within each city, estimates of ROS generation and measures of OP 

had greater spatial variation (coefficients of variation 42.0-66.0%) relative to PM2.5 mass 

concentration (coefficients of variation 24.3-30.8%). The efficiency of the methanol extraction 

process for OP was 97.6% (SD=10.6%). For magnetite nanoparticles, differences between cities 

and seasons were less apparent, but within-city spatial variation was also high (coefficients of 

variation 69.7-75.4%). Since sampling and analysis techniques were the same for all filters, 

recovery is assumed to be constant for all sites, so it is likely there is no differential bias in 

recovery across the cities.  
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Figure 3.1. Distributions of PM2.5 reactive oxygen species generation, magnetite nanoparticle concentrations, OPAA and OPGSH from 2018 

monitoring campaigns in Toronto and Montreal, Canada. 
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Multivariable land-use regression models 

Predicted spatial distributions of OP, ROS generation, and magnetite nanoparticles are 

shown in Figures 3.2 and 3.3. These surfaces highlight elevated concentrations of OP, ROS 

generation and magnetite around highways, rail lines, and road intersections. Several predictors 

of ROS entered into both Toronto and Montreal models, specifically length of rail-line within a 

buffer, as well as proximity to rail-lines, NPRI PM emitting sites, and highways (Figure 4). Distinct 

relationships with geographic coordinates (latitude and longitude) were observed in each city, 

potentially containing information on sources of PM that may not have been captured by the 

other variables in the models. Models for OPGSH in both Toronto and Montreal contained 

variables related to commercial activity and NPRI PM emitting facilities. In OPAA models, 

commercial activity and bus stops entered models in both cities; an inverse relationship with 

distance to rail also appeared in both cities, indicating higher predicted OPAA with closer 

proximity to rail-lines.  Final models did not use spatially correlated errors, as the inclusion of a 

spatially correlated error structure decreased predictive accuracy. Mean absolute errors of the 

land-use regression models are presented in Supplementary Table 3.2. 
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Figure 3.2. Predicted spatial distributions of PM2.5 reactive oxygen species generation (A), OPGSH (B), OPAA (C), and magnetite 

nanoparticles (D) in Montreal, Canada.   
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Figure 3.3. Predicted spatial distributions of PM2.5 reactive oxygen species generation (A), OPGSH (B), OPAA (C), and magnetite 

nanoparticles (D) in Toronto, Canada.  

 



64 
 

In models for magnetite, traffic counts and proximity to major roads were associated 

with increased magnetite concentrations in both Montreal and Toronto. Other predictors that 

were associated with higher magnetite concentrations in Montreal included traffic counts, 

length of major roads, intersections, open space, and distance to the shore (Figure 3.4).  In 

Toronto, length of railways, governmental land use, commercial land use, area of buildings, and 

north and east directions were associated with higher magnetite nanoparticle concentrations 

(Figure 3.4). 
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Figure 3.4. Coefficients from land use 

regression models for PM2.5 

characteristics in Montreal, Canada (A) 

and Toronto, Canada (B). Coefficients 

reflect change in the pollutant 

concentration for a one standard 

deviation increase in the predictor.    

 

 

 

 

 

 

 

 

 

K-means clustering 
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Three groups were identified using the k means method (Figure 3.5). In both cities, the 

identified clusters had similar patterns with measured PM metrics. Specifically, Group 1 had the 

lowest values of ROS generation, OPAA, OPGSH, and magnetite. Group 2 had moderate values of 

ROS generation, OPAA and OPGSH, and had the highest magnetite nanoparticle concentrations. 

Group 3 was characterized by the highest values of ROS generation, OPAA and OPGSH, and 

moderate values of magnetite nanoparticle concentrations.  

In Montreal, Group 1 (N= 66 sites, low OP/ROS generation/magnetite) consisted of sites 

that were mainly located in residential areas, although some of these sites were also located in 

proximity to vehicle emission sources (Figure 3.5). Sites in the Group 2 cluster (N = 27 sites, 

moderate OP and ROS generation, high magnetite) were located in Montreal’s east end, where 

land use is dominated by industrial activity. Group 3 (N = 7 sites, high OP and ROS generation, 

moderate magnetite) sites in Montreal were mainly located in the downtown core and the 

southeast, where particle sources include vehicular traffic, construction and rail. 

In Toronto, sites in Group 1 (N = 30) were generally located in residential neighborhoods 

farther from major traffic- or rail-related emission sources (Figure 3.5). However, some sites 

located close to high-traffic areas were also assigned to Group 1. Group 2 sites (N = 21) were in 

the east end of the city, with the exception being sites near the railyards in the west end.  Group 

3 (N = 8) corresponded to sites concentrated in the northwest corner of the city, where three 

highways intersect, and which borders on the city’s major airport. Sites in Group 3 were also 

prevalent in the downtown core of the city as well as along the major highway that crosses the 

city in the east-west direction; the high exposures observed in Group 3 are consistent with these 

locations.
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Figure 3.5. Clusters identified through K-means clustering of sites in Montreal and Toronto by 

ROS generation, OPAA, OPGSH, and magnetite nanoparticles. Upper panels show spatial locations 

of sites in each cluster. Lower panels show median values of ROS generation, OPAA, OPGSH, and 

magnetite nanoparticles in each cluster, standardized for uniform scale.  

 

Relationship with Material Deprivation Index 

In Montreal, predicted curves from Generalized Additive Mixed Models generally 

displayed increasing trends, indicating that areas that had higher values of the Material 

Deprivation Index (i.e., lower average household income, higher unemployment rate, and lower 

attainment of high school education) also had generally higher exposures to ROS generation and 
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OPGSH (Figure 3.6). Specifically, areas with higher values of the Material Deprivation Index were 

prevalent in the eastern side of the city, where estimated exposures to ROS and OPGSH were also 

higher. We observed a U-shaped relationship between MDI and OPAA, as estimated OPAA 

exposures were higher in areas with the highest and lowest median MDI, and lower in areas with 

moderate MDI. In Toronto, this pattern was not evident and minimal trend was observed 

(Supplementary Figure 3.3). This finding may reflect Toronto’s geography, as traffic- and airport-

related exposures are higher in the west side of the city and decline to the east, while some of 

the most deprived neighborhoods are in the east. In general, MDI was not a good predictor of 

any of the measures of oxidative stress (R2 were all less than 5%, indicating less than 5% of 

variation in the oxidative stress measures was explained by MDI), with the exception of ROS 

generation in Montreal (R2 = 0.24). 
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Figure 3.6. Montreal median predicted OPAA, OPGSH and ROS aggregated by Forward Sortation 

Area (left panels) and the relationship between each measure and median Material Deprivation 

Index, with local regression model fit (right panels). Higher MDI indicates a greater degree of 

deprivation. 
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Discussion 

We developed models to predict the within-city spatial distribution of several 

biologically-relevant measures of PM2.5 in Canada’s two largest cities. We observed that 

estimated levels of PM-related ROS generation as well as measured concentrations of PM OP 

and magnetite vary on a fine spatial scale within Canadian cities. Further, our results suggest 

possible sources, primarily related to vehicular emissions. In predictive models, ROS generation, 

OPAA and OPGSH were primarily associated with vehicle-related land-use predictors (e.g., length of 

roads, number of road intersections, average daily traffic volume), as well as average NOX traffic 

emissions, and rail-related land-use predictors (e.g., distance to railway, length of railways). 

Industrial land use was also a predictor of OPAA in Montreal, but not in Toronto.  

Our results suggest that OPAA and OPGSH are mainly driven by vehicle-related emissions, a 

finding that is consistent with the few land use regression models previously developed. For 

example, Yanosky et al.36 modelled PM10 OPGSH using 34 monitoring sites in London, U.K., and 

found brake- and tire-wear emissions to be positive predictors of OPGSH. Similarly, Gulliver et al.37 

developed land use regression models for PM2.5 OPAA and OPGSH in five cities in Europe. Both 

OPAA and OPGSH were predicted by traffic variables (e.g., traffic volume, road length) in addition 

to other variables such as natural land use and population distribution. However, it is important 

to note that findings from the present study are shaped by the use of measures of oxidative 

stress that are sensitive primarily to inorganic components of PM. All three measures of redox 

activity (OPAA, OPGSH and ROS generation) tend to reflect the impact of transition metals Cu and 
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Fe.4, 7  Therefore, the measures of oxidative stress measured in this study reflect similar chemical 

components that may derive from primarily vehicular sources, which may account for the 

primarily vehicular sources identified as predictors of higher OP levels in the land-use regression 

models.  Other measures could better reflect the impact of bulk sources of organic-abundant 

species, including those related to non-vehicular sources. 

In our models for ROS generation, a measure that is a function of Fe and Cu 

concentrations, we found vehicular traffic-related variables such as traffic volume (in Montreal) 

and length of roadways (in Toronto) to be important predictors in models for ROS generation. A 

previous LUR model was developed for ROS generation in the Toronto area in 2016/2017; these 

data are incorporated into the models developed in the present study, and results of the LUR 

similarly show relationships between ROS generation and vehicular traffic-related variables.16 

Additionally, de Hoogh et al. developed LUR models for elemental Fe and Cu in 10 cities in 

Europe and found that the most important predictors were vehicle-related variables, such as 

traffic volume and road length. 38 Other studies assessed the direct generation of reactive 

oxygen species using the electron spin resonance assay, rather than the KM-SUB-ELF method of 

Lakey et al.7 For example, in a study of 10 regional background, 12 urban background, and 18 

street sites conducted in the Netherlands and Belgium, Yang at al. found high spatial correlations 

between OPESR and traffic-related PM components (such as Fe and Cu).39 Conversely, Hellack et 

al. found combustion-related PM10 and semi-natural and forested areas to be the most 

important predictors of OPESR ;40 however, this study included a larger number of sites in rural 

areas relative to the strictly urban sites in the present study.  
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To our knowledge this is the first characterization of within-city spatial variations in 

magnetite nanoparticle concentrations estimated from PM2.5 samples in Canadian cities. A study 

in urban roadside and background sites in Lancaster and Birmingham, UK found brake-wear to 

be the strongest source of magnetite particles, and the concentration of magnetite in vehicle 

tailpipe emissions was much lower than in roadside PM collected from heavy-traffic areas,8 

which indicates that non-tailpipe vehicular emissions may be the most important contributor to 

magnetite emissions. In the present study, the final models for magnetite nanoparticles included 

vehicle- and rail-related land-use variables, which may reflect a combination of tailpipe- and non-

tailpipe emissions, but cannot be differentiated in our models. Nonetheless, our models provide 

a description of the distribution of magnetite nanoparticles across the study area which can be 

applied in future studies of health outcomes, while future work can elucidate the sources of 

magnetite nanoparticles in PM2.5 samples. 

Using k-means clustering we were able to identify clusters of sites with similar 

combinations of ROS generation, OPAA, OPGSH and magnetite nanoparticle levels in each city, 

potentially reflecting different particle sources. This method has been used to identify sites with 

similar pollutant profiles at a regional or national scale: for example, to group sites by PM2.5 

composition across the United States,41 and similarly to identify groups of cities in Portugal with 

similar profiles with respect to SO2 and PM10 mass concentration.42 Although unsupervised 

learning algorithms such as k-means clustering have been less used at the within-city spatial 

scale, the high spatial variability of OP and magnetite measures in our data allowed several 
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distinct clusters to be identified within Toronto and Montreal. Cluster results could be used in 

future health studies to examine the effect of combinations of exposures.  

We identified distinct relationships of ROS generation and OP with socioeconomic status 

in Montreal and Toronto. Specifically, in Montreal there was a positive association between 

material deprivation and exposure to ROS/OPGSH. In Canadian cities, there is some evidence that 

exposure to ambient air pollution is related to socioeconomic status: Pinault et al. found that in 

Montreal, Toronto, and Vancouver, certain measures of material and social deprivation were 

associated with higher outdoor NO2 concentration, a traffic-related gaseous pollutant.43 Our 

assessment of the relationship between material deprivation and ROS generation and OP was 

preliminary, but suggests a potential environmental justice concern. Areas with similar PM2.5 

exposures face greater health burdens from air pollution exposure when OP is high; if OP is 

higher in poorer areas, residents experience higher health risks, including respiratory illness44 as 

well as myocardial infarction45 and low birth weight46 from PM exposure due to effect 

modification by OP. However, it is important to note that these patterns depend on locations 

and types of sources as well as the geography of each city. In Toronto, we did not observe the 

consistent pattern of increasing ROS generation and OP levels with increasing MDI observed in 

Montreal. 

This study had several important strengths including the use of pre-set timers to allow 

simultaneous monitoring of all monitoring sites, eliminating the need for temporal adjustment, 

as well as a dense network of monitoring sites allowing us to describe variations in PM2.5 ROS 

generation, OP and magnetite at a fine spatial scale. Since ROS generation, OP and magnetite are 
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more spatially variable than PM2.5 mass concentrations, capturing this spatial variability is 

important in developing an accurate land use regression model.47  Additionally, we incorporated 

earlier data from a 2016 monitoring campaign into the Toronto ROS generation and OP models, 

which may allow our predictions to better approximate long-term average exposures in 

comparison to a single monitoring period. 

We acknowledge some limitations of the study. First, we were unable to obtain data for 

the winter season in Toronto, which also prevented us from calculating annual-average 

estimates of exposure in Toronto. Additionally, although the number of monitoring sites was 

relatively large, our sample sizes were not sufficiently large to investigate more complex non-

linear associations between predictors and pollutant concentrations which might have allowed 

improved model performance.    

In conclusion, we conducted large-scale spatial monitoring studies of multiple measures 

of PM2.5 toxicity and composition in Toronto and Montreal, Canada. Our findings suggest that 

PM2.5 ROS generating capacity, OPAA, OPGSH and magnetite nanoparticles vary on a fine spatial 

scale within cities. Moreover, we developed land-use regression models and found that land use 

variables related to vehicular traffic were most strongly predictive of these particle 

characteristics. Further work is needed to understand spatial and temporal variations in sources 

of ROS/OP and magnetite to identify possible regulatory interventions should these be 

warranted in the future.  
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3.3 Supplementary Material Manuscript 1 
 

 

Supplementary Figure 3.1. Locations of sampling sites in Montreal and Toronto, Canada in the 
2018 campaign. Red points indicate sites that were monitored in the summer and winter season; 
black sites are those that were monitored in summer only.  

Supplementary Table 3.1. Predictors used in the development of land-use regression models in 
Toronto and Montreal 

Description Source Buffer sizes 

Building Area DMTI 2013 50, 100, 200, 300, 500, 750, 

1000m 

Commercial Area DMTI 2013 50, 100, 200, 300, 500, 750, 

1000m 

Government and Institutional 

Land Use Area 

DMTI 2013 50, 100, 200, 300, 500, 750, 

1000m 

Open Area DMTI 2013 50, 100, 200, 300, 500, 750, 

1000m 

Parks and recreational Area DMTI 2013 50, 100, 200, 300, 500, 750, 

1000m 

Residential Area DMTI 2013 50, 100, 200, 300, 500, 750, 

1000m 

Resource and Industrial  Area DMTI 2013 50, 100, 200, 300, 500, 750, 

1000m 

Waterbody Area DMTI 2013 50*, 100, 200, 300, 500, 750, 
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1000m 

Length of Highways  DMTI 2013 50*, 100, 200, 300, 500, 750, 

1000m 

Length of Major Roads DMTI 2013 50, 100, 200, 300, 500, 750, 

1000m 

Length of Major Roads, 

Highways and Local Roads 

DMTI 2013 50, 100, 200, 300, 500, 750, 

1000m 

Distance to the closest 

highway 

DMTI 2013 - 

Distance to the closest major 

road 

DMTI 2013 - 

Length of Bus Routes Toronto Transit Commission, 

Open Data, 2012 

Montreal STM 

50, 100, 200, 300, 500, 750, 

1000m 

Number of Bus Stops  City of Toronto, Open Data, 

2018 

City of Montreal Open Data 

Portal, 2018 

50, 100*, 200*, 300, 500, 750, 

1000m 

Number of Intersections City of Toronto, Open Data, 

2018 

City of Montreal Open Data 

Portal, 2018 

50, 100, 200, 300, 500, 750, 

1000m 

Average Daily Traffic Volume EMME 50, 100, 200, 300, 500, 750, 

1000m 

Total Daily Traffic Volume EMME 50, 100, 200, 300, 500, 750, 

1000m 

Average NOx Traffic Emissions   EMME + MOVES 50, 100, 200, 300, 500, 750, 

1000m 

Total NOx Traffic Emissions   EMME + MOVES 50, 100, 200, 300, 500, 750, 

1000m 

Number of PM2.5 NPRI 

Chimneys 

NPRI 2014 50, 100*, 200, 300, 500, 750, 

1000m 

Number of NOx NPRI 

Chimneys 

NPRI 2014 50, 100*, 200, 300, 500, 750, 

1000m 

Distance to the closest NOx 

NPRI Chimney 

NPRI 2014 - 

Distance to the closest PM 

NPRI Chimney 

NPRI 2014 - 

Distance to the closest airport DMTI 2013 - 

Distance to the closest railline DMTI 2013 - 
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Distance to the closest port World Port Index, 2019  

City of Montreal Open Data 

Portal, 2018 

- 

Distance to the shore Statistics Canada 2011  - 

Total population Statistics Canada 2011 50, 100, 200, 300, 500, 750, 

1000m 

Length of rail road DMTI 2013 50, 100, 200, 300, 500, 750, 

1000m 

Distance to commercial 
woodburning* 

Montreal Direction de Santé 
Publique 2018 

- 

Number of commercial 
woodburning sites* 

Montreal Direction de Santé 
Publique 2018 

50, 100, 200, 300, 500, 750, 
1000m 

* Montreal only; † Toronto only 
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Supplementary Table 3.2. Performance of land use regression models for prediction of ROS /OP and 

magnetite nanoparticles. 

 Mean absolute 
error 

ROS  

Montreal Annual  16.20 

Toronto Summer 8.91 

OPAA  

Montreal Annual  0.24 

Toronto Summer 0.30 

OPGSH  

Montreal Annual  0.13 

Toronto Summer 0.16 

  

Magnetite nanoparticles  

Montreal Annual  0.0167 

Toronto Summer 0.0208 
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Supplementary Figure 3.2. Uncertainty surfaces for land use regression models. 
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Supplementary Figure 3.3.  Toronto median predicted OPAA, OPGSH and ROS aggregated by Forward 

Sortation Area (left panels) and the relationship between each measure and median Material 

Deprivation Index, with local regression model fit (right panels). Higher MDI indicates a greater 

degree of deprivation. 

Median ROS 

(nmol/L) 

Median OPAA 
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Chapter 4: Manuscript 2 
 

4.1 Preface  
 
This chapter contains the second of three manuscripts in this thesis. Our goal was to examine 

how PM2.5 oxidative potential modifies the effects of gaseous air pollutants on cardiovascular 

mortality at the within-city scale. Previous evidence demonstrated that increases in particle 

oxidative potential may lead to stronger effects of exposures to PM2.5 mass concentrations or 

oxidant gases, but this has not been examined on the within-city scale. In this chapter, we 

conducted a retrospective cohort study of participants in the Canadian Census Health and 

Environment Cohort in Montreal and Toronto. We estimated associations between outdoor 

concentrations of oxidant gases (specifically defined as OX, a redox-weighted average of nitrogen 

dioxide and ozone) and mortality from cardiovascular causes. Analyses were performed across 

strata of several measures of PM2.5 oxidative potential adjusting for relevant confounding factors 

such as individual-level and contextual socioeconomic status and demographic variables.  

 
At the time of thesis submission this manuscript is under review at Environmental Epidemiology. 

Citation: Ripley S, Gao D,  Pollitt KJG., Lakey PSJ, Shiraiwa M, Hatzopoulou M, Weichenthal S.  

Within-city spatial variations in long-term average outdoor oxidant gas concentrations and 

cardiovascular mortality: Effect modification by oxidative potential in the Canadian Census 

Health and Environment Cohort (CanCHEC). 
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Abstract 

Background: Health effects of oxidant gases may be enhanced by components of particulate air 

pollution that contribute to oxidative stress. Our aim was to examine if within-city spatial 

variations in the oxidative potential of outdoor fine particulate air pollution (PM2.5) modify 

relationships between oxidant gases and cardiovascular mortality.  

 

Methods: We conducted a retrospective cohort study of participants in the Canadian Census 

Health and Environment Cohort who lived in Toronto or Montreal, Canada, from 2002-2015. Cox 

proportional hazards models were used to estimate associations between outdoor 

concentrations of oxidant gases (Ox, a redox-weighted average of nitrogen dioxide and ozone) 

and cardiovascular deaths. Analyses were performed across strata of two measures of PM2.5 

oxidative potential and reactive oxygen species concentrations (ROS) adjusting for relevant 

confounding factors.  

 

Results:  PM2.5 mass concentration showed little within-city variability, but PM2.5 oxidative 

potential and ROS were more variable. Spatial variations in outdoor Ox were associated with an 

increased risk of cardiovascular mortality (HR per 5 ppb = 1.028, 95% CI: 1.001, 1.055). The effect 

of Ox on cardiovascular mortality was stronger above the median of each measure of PM2.5 

oxidative potential and ROS (e.g., above the median of glutathione-based oxidative potential: HR 

= 1.045, 95% CI: 1.009, 1.081; below median: HR=1.000, 95% CI: 0.960, 1.043). 
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Conclusion: Within-city spatial variations in PM2.5 oxidative potential may modify long-term 

cardiovascular health impacts of Ox. Regions with elevated Ox and PM2.5 oxidative potential may 

be priority areas for interventions to decrease the population health impacts of outdoor air 

pollution.  

 

What this study adds: The effects of gaseous air pollutants may be stronger in areas where 

particulate matter has greater toxicity, for example, as measured by particle oxidative potential 

or concentrations of ROS generated in the epithelial lining fluid (ROS). This effect has not been 

assessed at small spatial scales. We used a population-based cohort in Montreal and Toronto, 

Canada to assess the association of long-term exposure to oxidant gases with cardiovascular 

mortality, and whether that relationship varied by particle oxidative potential and ROS. We 

observed stronger effects of oxidant gas exposures in areas above the median of oxidative 

potential and ROS.  
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Introduction 

Exposure to fine particulate air pollution (PM2.5) is a known risk factor for cardiovascular 

morbidity and mortality.1, 2 An important mechanism by which PM2.5 induces cardiovascular 

dysfunction is oxidative stress, which occurs when levels of reactive oxygen species exceed 

normal levels and overcome the body’s antioxidant defenses.1 PM2.5 is only one component in 

the complex mixture of chemicals that comprise air pollution. Oxidant gases (expressed as Ox, 

which represents a weighted average of the gases nitrogen dioxide, NO2, and ozone, O3) also 

contribute to outdoor air pollution. These gases can induce oxidative stress and are associated 

with cardiovascular mortality.3, 4 

PM2.5 concentrations depend on regional background levels (i.e., particles transported 

from distant sources) as well as local sources (e.g., local vehicular traffic or industrial activity)5 

but show relatively little spatial variability within cities.6-9 However, OX concentrations vary 

considerably within cities (this is driven primarily by local production of NO2).10,11 As well, small-

scale spatial variations in PM2.5 components are much greater than variations in total PM2.5 mass 

concentrations owing to greater differences in composition from local sources.6, 7 Moreover, PM 

components are not equally toxic, and many PM2.5 components (e.g., transition metals) are 

associated with increased production of free radicals.12 Particle oxidative potential (OP) presents 

an integrated approach to estimating the ability of particles to induce oxidative stress, and 

existing evidence suggests that OP is highly variable within cities.6, 13 OP can be determined by a 

number of different acellular assays,14 frequently by measuring depletion of antioxidants (most 

commonly ascorbate [AA] and glutathione [GSH]) using a cell-free assay based on a synthetic 
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respiratory tract lining fluid exposed to PM2.5 sample extracts.15 Alternatively, the concentration 

of reactive oxygen species (ROS) resulting from the ability of particles to generate ROS and the 

destruction of ROS by antioxidants can be estimated using a mathematical model based on the 

content of redox-active components including transition metals in particles.16  

Recent evidence suggests that regional variation (i.e., between cities) in PM2.5 OP can 

modify the acute and chronic health effects of OX.
17, 18

 Specifically, in a time-stratified case-

crossover study across 34 Canadian cities, associations between short-term OX exposures and 

respiratory hospitalizations in children were stronger when monthly average glutathione-based 

OP (OPGSH) was higher.18 Similarly, long-term effects were assessed in a cohort study of Canadian 

adults living within 10 km of one of 40 monitoring sites across the country, and associations 

between OX and mortality (nonaccidental, cardiovascular, and respiratory mortality) were 

consistently stronger in regions with elevated PM2.5 transition metal/sulfur content and oxidative 

potential (OPAA, OPGSH and OP estimated from a dithiothreitol-based assay).17 However, neither 

of these previous studies examined how PM2.5 OP and ROS concentrations may modify the 

health impacts of OX within cities. 

In this study, we examined how within-city spatial variations in PM2.5 OP and ROS 

concentrations influenced associations between long-term exposures to OX and cardiovascular 

mortality in Toronto and Montreal, Canada. Our cohort analysis included more than 1 million 

members of the Canadian Census Health and Environment Cohort (CanCHEC) and our estimates 

of PM2.5 OP and ROS were based on dense spatial monitoring campaigns conducted across each 

city.  
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Methods 

Cohort description and mortality outcomes 

The Canadian Census Health and Environment Cohort (CanCHEC) has been described 

previously.19, 20 Briefly, this is a population-based cohort established in 2008, when the 1991 

Canadian Census was linked to 10 years of death records, and includes non-institutionalized 

Canadians (aged 25 and older) who were among the approximately 20% of households selected 

for enumeration by the long-form Census questionnaire.  The cohort now includes multiple 

cycles of follow-up.21 These datasets were linked to postal code histories for annual place of 

residence using Historical Tax Summary Files. CanCHEC includes information from Census 

questionnaires on socioeconomic indicators, ethnicity, and place of residence, as well as 

neighborhood-level characteristics including environmental conditions.19 Cause-specific 

mortality data were linked from the Canadian Vital Statistics Death Database using deterministic 

and probabilistic methods. The CanCHEC dataset was created under the authority of the 

Statistics Act and approved by the Executive Management Board at Statistics Canada (reference: 

045-2015). This is equivalent to standard research ethics board approval. Informed consent was 

waived because the database used in this study contains only deidentified individual records. 

The present study population was limited to individuals in the 1991, 1996, 2001 or 2006 

CanCHEC cycles who were between the ages of 25 and 90 years and who lived in Toronto or 

Montreal for at least 2 years during follow-up. Individuals who were enumerated in more than 

one long-form census cycle were assigned to the earliest cohort in which they appeared. All 
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participants were followed for cardiovascular mortality (ICD-10 codes I10-I69) from the date they 

entered the study area (on or after census day in 2001 for the 1991, 1996, and 2001 cohorts, or 

on or after census day in 2006 for the 2006 cohort) to December 31, 2015. This restricted follow-

up period was implemented to reduce potential error caused by extrapolation of OP and ROS 

exposures far into the past (i.e., for the 1991 cohort). 

Exposure assignment  

Outdoor concentrations of OX, PM2.5 mass concentrations, and PM2.5 OP and ROS were 

assigned to the residential postal codes across each city (6-digit postal codes, about the size of 

one city block face). Residential postal code histories from annual income tax filings were used to 

estimate time-varying exposures for Ox (and PM2.5) over the duration of the follow-up period to 

account for residential mobility within and between cities (i.e., between Montreal and Toronto). 

Specifically, exposures were assigned as 3-year moving averages with a 1-year lag (e.g., an 

individual’s exposure for 2008 was equal to the mean of their exposures for 2005, 2006, and 

2007), as in Pinault et al. 2017.22 This exposure assignment procedure ensured that the exposure 

always preceded the event. Although PM2.5 OP and ROS exposures were measured or estimated 

based on 2018 data, they were updated annually to account for residential mobility. Person-time 

was considered at risk of exposure effects if the individual resided in the study area during at 

least two of the preceding three years. 

Outdoor oxidant gas and PM2.5 concentrations 
 

Outdoor OX concentrations were calculated as a redox-weighted average of ozone (O3) and 

nitrogen dioxide (NO2) based on the following equation: OX = ((1.07 × NO2) + (2.075 × O3)) 
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/3.14.3, 23 O3 data were estimated using chemical transport models of surface observations 

incorporating ground monitor data.24, 25 O3 concentrations reflected the daily maximum of eight-

hour average concentrations26 and were assigned as annual averages to postal codes. The O3 

models had a spatial resolution of 21 km2 before 2009 and 10 km2 from 2009-2015. Annual 

average outdoor NO2 concentrations were estimated from a land-use regression model27 

developed from 2006 data, combining NO2 estimates derived from remote sensing and National 

Air Pollution Surveillance monitoring data. The NO2 model had a spatial resolution of 100 m2. 

NO2 and O3 data indexed to DMTI Spatial Inc. postal codes were provided by CANUE (Canadian 

Urban Environmental Health Research Consortium). The resulting calculated OX exposures 

combined NO2 exposures estimated at a 100 m2 spatial scale with lower-resolution O3 exposures 

estimated at a larger spatial scale of 10 km2 (21 km2).  Finally, annual average outdoor PM2.5 

mass concentrations were estimated using previously developed models.28 Briefly, PM2.5 

concentrations were estimated at a resolution of 1 × 1 km using a combination of aerosol optical 

depth, a chemical transport model, and land-use data.28, 29  

 

Spatial monitoring studies and laboratory analyses for PM2.5 oxidative potential and modeling 

reactive oxygen species concentrations 

Outdoor PM2.5 monitoring campaigns were conducted in 2018 in Toronto and Montreal, 

Canada. Monitoring sites were identified to capture the variability of ambient PM2.5 in each city 

with maximal spatial coverage.22 In total, 110 sites were monitored in Toronto (a geographic 

area of 630.2 km2) and 124 sites in Montreal (472.6 km2) in the summer season; daily mean 
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temperatures ranged from 14.4°C to 23.7°C in Montreal and 19.8°C to 26.6°C in Toronto. 

Integrated 2-week PM2.5 samples were collected at each site using Teflon filters with a mix of 

Ultrasonic Personal Air Sample (UPAS) monitors (Access Sensor Technologies, Fort Collins, CO) at 

a flow rate of 1 L/min and cascade impactors at a flow rate of 5 L/min. Samples were collected 

simultaneously in each city using preset timers, eliminating the need for temporal adjustment of 

estimates. 

The oxidative potential of PM2.5 samples was analyzed using two acellular in vitro assays, 

namely the ascorbate (AA) assay and the glutathione (GSH) assay, according to procedures 

described previously.15, 30 Briefly, PM2.5 samples were extracted, re-suspended and then 

incubated with a synthetic human respiratory tract lining fluid for 4 h at 37 °C. This fluid was a 

composite solution of physiologically-relevant antioxidants including equimolar concentrations 

(200 µM) of ascorbate (AA), glutathione (GSH), and urate. PM2.5 oxidative potential was 

measured by depletion of AA (% change in absorbance at 260 nm wavelength) and GSH (% 

change in absorbance at 405 nm wavelength). Measures of AA-related and GSH-related PM2.5 

oxidative potential were expressed per unit mass (% depletion/µg).  

In addition to the OP assays, the concentration of reactive oxygen species (ROS) in the 

epithelial lining fluid due to generation from redox reactions of transition metals and destruction 

by reactions with antioxidants was estimated using the KM-SUB-ELF model described by Lakey et 

al.16 This mathematical model simulates chemical reactions that occur in the respiratory tract’s 

epithelial lining fluid following inhalation of particles as determined by the particles’ Fe and Cu 

content. Concentrations of Cu and Fe in PM2.5 samples were determined by X-ray fluorescence 
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according to EPA Method IO-3.3 in Compendium of Methods for the Determination of Metals in 

Ambient Particulate Matter (EPA 625/R-96/010a).   

Spatial variations in outdoor PM2.5 OP and ROS were assigned based on the 

measurements collected across each city (i.e., the closest monitoring site to a given residential 

postal code centroid).22 In sensitivity analyses, OP values were also estimated from a previously 

developed land-use regression model;6 however, the primary analysis used measured values 

rather than modelled estimates since the measured sites were densely concentrated across the 

study areas. We were not able to extrapolate OP and ROS estimates into the past due to the 

absence of historical data. However, we assume relative stability of the spatial distributions of 

OP and ROS over time since these measures are driven largely by vehicular traffic and the 

locations of major roadways/highways have not changed significantly over the time period of 

follow-up. 

 

Statistical analyses 

We used stratified Cox proportional hazards models to estimate hazard ratios describing 

relationships between within-city spatial variations in Ox concentrations and cardiovascular 

mortality, overall and within strata of OP/ROS of PM2.5. Models were stratified by age (10-year 

age groups), sex (male/female), Census cohort year (1991, 1996, 2001, and 2006), city of 

residence (Toronto/Montreal), and immigrant status (Canadian-born/immigrant). Covariates 

were chosen with the aid of a Directed Acyclic Graph (DAG) (see Supplemental Figure 4.1). 

Additionally, models were adjusted for several indicators of socioeconomic status including 
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visible minority status, occupational level, educational attainment, labour force status, marital 

status, and income quintile, as well as an additional variable indicating relative age within the 10-

year age group (to address possible residual confounding by age), and PM2.5 mass concentration. 

In addition, we included neighbourhood-level variables for four dimensions of the Canadian 

Marginalization Index (CAN-Marg) which describes inequalities in terms of material deprivation, 

residential instability, dependency, and ethnic concentration.31  

 Follow-up time started with census day 2001 for the 1991, 1996 and 2001 cohorts, and 

census day 2006 for the 2006 cohort. Subjects were censored if they moved outside the cities of 

Montreal or Toronto, if they were lost to follow-up, at the end of the study period, or at time of 

death from a non-cardiovascular cause. Data were accessed and analyzed in the secure facilities 

of the McGill-Concordia Research Data Centre located at McGill University. Statistical analyses 

were performed using SAS 9.4 (SAS Institute, Cary NC). Hazard ratios were expressed per 5 ppb 

increase in OX.  

The CanCHEC datasets lack information on potential individual-level confounders such as 

smoking and body mass index (BMI). Although these are not likely to be strong confounders of 

the relationship between outdoor concentrations of Ox and cardiovascular mortality (i.e., 

because individual level smoking is not a cause of long-term average outdoor OX concentrations), 

we evaluated correlations between OX and smoking and BMI in order to assess the potential for 

confounding by chance correlations with OX. To do this, we used the Canadian Community 

Health Survey (CCHS) cohort population, an ancillary population-based cohort which has 

individual-level data on these lifestyle variables. Within each city, we observed weak inverse 
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correlations between outdoor OX concentrations and smoking (r = -0.032 (Toronto); r = -0.056 

(Montreal)) and BMI (r = -0.013 (Toronto); r = -0.0055 (Montreal)). Thus, residual confounding by 

these factors would tend to lead to negative confounding32 and an underestimate of the 

magnitude of association between OX exposures and cardiovascular mortality.   

Results 

Cohort characteristics 

In total, approximately 36 800 deaths from cardiovascular causes were included in the 

analyses, occurring over 10 987 500 person-years (rounded to the nearest 100 to comply with 

Statistics Canada confidentiality requirements) in approximately 1.1 million individuals (Table 

4.1).  

 
Table 4.1. Descriptive statistics at baseline for the study cohort of people living in Toronto or 
Montreal (1991, 1996, 2001, and 2006 CanCHEC cohorts) 
 

Characteristic Person-Years Participants Cardiovascular 
deaths 

Total 10 987 500 1 121 000 36 800 

Sex    

Male 4 994 700 520 400 19 400 

Female 5 992 800 600 700 17 400 

Immigrant status    

Non-immigrant 5 811 100 606 400 20 500 
Immigrant 5 176 400 514 600 16 300 

City of residence    

Toronto 6 012 200 616 400 19 500 

Montreal 4 975 300 504 600 17 400 

Age group    

25-34 917 100 108 300 NA 

35-44 2 662 100 259 800 700 

45-54 2 855 300 271 800 2 000 
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55-64 2 050 600 197 400 4 100 

65-74 1 495 400 151 100 9 600 

75-84 781 800 99 500 13 800 

85-89 225 300 33 200 6 500 

Occupational class    

Management 927 100 92 400 1 200 

Professional 1 748 300 169 800 1 500 

Skilled, technical & supervisory 2 035 100 202 300 2 700 

Semiskilled 2 441 900 242 900 3 300 

Unskilled 800 800 79 200 1 500 

No occupation 3 034 500 334 300 26 700 

Labour force status    

Employed 7 078 100 697 500 8 100 

Unemployed 618 500 62 700 1000 

Not in labour force 3 290 900 360 800 27 700 

Income quintile    

Lowest 2 194 000 224 500 6 100 

Second lowest 2 193 700 236 200 13 900 

Middle 2 202 800 226 400 7 400 

Second highest 2 195 700 220 700 5 000 

Highest 2 201 300 213 200 4 400 

Educational attainment    

Less than high school 
graduation 

2 936 300 305 010 18 880 

High school graduation 
with/without trades certificate 

3 242 700 330 300 10 300 

Some postsecondary or college 
diploma 

1 986 800 206 100 3 800 

University degree 
 

2 821 700 279 600 3 900 

Marital status    

Divorced/separated/widowed 1 561 200 173 500 10 700 

Married (including common 
law) 

7 265 400 720 900 21 100 

Single 2 160 810 226 600 5 000 

Visible minority status    

Not defined as visible minority 8 672 300 881 100 33 100 
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Visible minority 2 315 100 239 900 3 800 

Marginalization index    

CAN-Marg: Residential instability    

Lowest 2 212 300 206 700 5 700 

Second lowest 2 185 600 214 300 6 700 

Middle 2 189 000  226 100 6 900 

Second highest 2 202 300 234 600 7 600 

Highest 2 198 400 239 500 10 000 

CAN-Marg: Material deprivation    

Lowest 2 214 100 214 000 7 400 

Second lowest 2 178 200 213 200 7 100 

Middle 2 192 600 223 800 7 200 

Second highest 2 207 700 231 700 7 300 

Highest 2 194 700 238 200 7 800 

CAN-Marg: Dependency    

Lowest 2 186 700 241 200 5 400 

Second lowest 2 233 900 232 900 6 000 

Middle 2 171 600 219 100 6 300 

Second highest 2 204 100 218 100 7 500 

Highest 2 191 200 209 800 11 800 

CAN-Marg: Ethnic concentration    

Lowest 2 181 000 209 200 8 000 

Second lowest 2 214 700 220 500 7 900 

Middle 2 202 700 221 100 7 100 

Second highest 2 185 400 224 700 7 300 

Highest 2 203 700 245 500 6 600 
All numbers are rounded to the nearest 100 for confidentiality and may not add up to the total; NA denotes counts 

below 100 and are suppressed for confidentiality. 
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Table 4.2. Descriptive statistics for ambient pollutant concentrations across all person-years. 
 

Pollutant Mean (SD) Median IQR Percentile 

    1st 99th 

PM2.5 (µg/m3) 9.5 (1.3) 9.5  1.6 7.0 13.0 
OPAA (% depletion/µg) 0.092 (0.036) 0.085 0.034 0.016 1.036 
OPGSH (% depletion/µg) 0.337 (0.070) 0.332 0.068 0.182 1.442 
ROS (nmol/L) 71.474 (10.807) 73.399 14.311 44.525 95.110 
NO2 (ppb) 20.027 (5.475) 19.80 7.60 8.64 35.00 
O3 (ppb) 38.697 (5.081) 37.75 6.73 29.41 51.88 
Ox (ppb) 32.345 (3.804) 31.88 5.01 25.56 42.66 

IQR: interquartile range; SD: standard deviation. 
 

Characteristics of pollutant exposures 

OX and PM2.5 exposures across all person-years, as well as PM2.5 OP and ROS, are 

summarized in Table 4.2. Ox and PM2.5 distributions were similar within strata of PM2.5 OP and 

ROS (see Supplementary Tables 4.1-4.2). In Montreal, the median distance from postal code 

centroids to the nearest monitored site was 916.5 m, with a maximum of 5550.2 m. In Toronto, 

the median distance was 1338.3 m and maximum 4863.1 m. OX exposures were 

weakly/moderately correlated with measures of PM2.5 oxidative potential (Pearson correlation 

coefficients as follows: OPAA,  0.33; OPGSH: 0.51; ROS, 0.29).  The three OP and ROS measures 

were positively correlated, with the highest correlation observed between OPAA and OPGSH 

(Pearson correlation = 0.54), and weaker correlations between ROS and OPGSH (Pearson 

correlation =  0.49) and ROS and OPAA (Pearson correlation =  0.17) . 
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Relationship between OX and cardiovascular mortality within strata of particle OP/ROS  
 

Figure 4.1 shows the hazard ratios for associations between Ox and cardiovascular 

mortality. Overall, each 5 ppb increase in Ox (IQR = 5.01) was associated with an increased risk of 

cardiovascular mortality (HR: 1.028, 95% CI: 1.001, 1.055). The relationship was stronger above 

the median of OPAA, OPGSH and ROS concentrations (for numeric values see Supplementary Table 

4.3). The overall effect of Ox was stronger in women than in men (HR for women: 1.039, 95% CI: 

1.000, 1.080; HR for men: 1.019, 95% CI: 0.983, 1.055), but differences in HRs for OX across 

strata of OP were larger in men (see Supplementary Table 4.4). Little variation in outdoor PM2.5 

mass concentration exposures was observed across the study area (IQR = 1.60 μg/m3) and was 

not associated with the risk of cardiovascular mortality (HR per 1 μg/m3: 0.988, 95% CI: 0.960, 

1.017). Although our primary focus was on the combined weighted redox capacity of NO2 and 

O3, we also observed higher effects above the median of OPAA, OPGSH, and ROS for NO2 (see 

Supplementary Table 4.5) and O3 (see Supplementary Table 4.6). For example, overall O3 

exposures were associated with an increased risk of cardiovascular mortality (HR per IQR (6.73 

ppb): 1.035, 95% CI: 1.010, 1.062), and a higher risk above the median OPGSH (HR: 1.021, 95% CI: 

1.008, 1.079) than below the median OPGSH (HR: 1.014, 95% CI: 0.973, 1.022). 
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Figure 4.1. Hazard ratios (95% CI) of OX exposures (per 5 ppb) on cardiovascular mortality overall 

and across strata (low = below median, high = above median) of PM2.5 oxidative potential 

(ascorbate (AA), glutathione (GSH)) and reactive oxygen species concentrations (ROS).  

 

Spatial distributions of co-occurring high levels of OX and PM2.5 OP 

In Montreal, areas with co-occurring high levels of OX and OP and ROS (i.e., above the median) 

tended to be near major highways, in the downtown core, and in the east end of the city where 

industrial activity is prevalent (Figure 4.2). Similarly, in Toronto, these areas occurred in the 

north-west quadrant of the city where two major highways intersect near an international 

airport, as well as in the eastern area of the city where there is a major north-south highway 

(Figure 4.3).  



 108 

In Montreal, areas with higher marginalization appeared to have a more harmful mixture 

of pollutants in terms of combined levels of OX and OP/ROS (Figure 4.3). Specifically, co-exposure 

to both OX above the median and OP above the median (for all three OP measures) was weakly 

to moderately correlated with material deprivation (a measure of access to and attainment of 

basic material needs, which includes factors such as percent unemployment and percent without 

a high school degree) in Montreal (Spearman’s rank correlations of 0.377-0.421) (see 

Supplementary Table 4.7). Similarly, the CAN-Marg dimension of residential instability (which 

includes indicators that measure types and density of residential accommodations as well as 

family structure characteristics) was correlated with co-exposure to both OX above the median 

and OP above the median (Spearman’s rank correlations of 0.233-0.436) in Montreal (see 

Supplementary Table 4.7). However, the CAN-Marg dimensions of ethnic concentration and 

dependency were not consistently correlated with combined OP/OX exposures. Significant 

correlations between marginalization variables and combined OP/OX were not observed in 

Toronto. 
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Figure 4.2.  Spatial distributions of co-occurring oxidative potential measures and OX 

concentrations at postal codes in comparison to land-use patterns, traffic infrastructure and 

quintiles of socioeconomic deprivation in Montreal, Canada. 
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Figure 4.3.  Spatial distributions of co-occurring oxidative potential measures and OX 

concentrations at postal codes in comparison to land-use patterns, traffic infrastructure and 

quintiles of socioeconomic deprivation in Toronto, Canada. 

 

Discussion 

In this study we investigated how within-city spatial variations in outdoor PM2.5 OP and ROS 

concentrations may modify associations between long-term exposure to Ox and cardiovascular 

mortality. Estimates of spatial variations in OP/ROS were based on monitoring campaigns of 110 

sites in Toronto and 124 sites in Montreal to estimate the intraurban spatial variability of OP/ROS 

exposures. 
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Our results suggest that exposures to OX are associated with higher risks of cardiovascular 

mortality in areas where the ability of PM2.5 to induce oxidative stress is elevated.  Recent work 

has demonstrated effect modification of the effects of OX by OP at the regional scale. For 

example, between cities, associations between OX and mortality (nonaccidental, cardiovascular, 

and respiratory mortality) were consistently stronger in regions where PM2.5 oxidative potential 

was higher.17 Similarly, another study found that the association of OX with respiratory 

hospitalizations in children was higher  when monthly average glutathione-based OP (OPGSH) was 

higher.18 However, each of these studies was conducted across a wide spatial area using a single 

site monitor or a small number of monitors in each city/region, so complex small-scale spatial 

variations in OP were not captured. Our study is the first to present evidence that PM2.5 OP can 

influence the effect of OX within cities.  

Although the number of studies showing the influence of OP on OX exposures is small, a 

substantial body of evidence demonstrates that OP modifies the effect of PM2.5 mass 

concentration exposures on health outcomes. For example, in a cohort study in Ontario, OPGSH-

related oxidative burden (i.e., PM2.5 mass weighted by OPGSH) was more strongly associated with 

elevated risks of mortality than PM2.5 mass concentration alone, but this was not observed for 

OPAA-related oxidative burden.33 Further, in a case-crossover study conducted in 16 studies 

across Ontario, the strongest associations between PM2.5 and emergency room visits for 

myocardial infarction occurred in areas where both OX and OPGSH were high.34 Given that both 

Ox and PM2.5 mass concentration exposures induce oxidative stress, which is thought to be an 

important mechanism contributing to the observed adverse health effects, it is plausible that 
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areas where PM2.5 exposures have a greater ability to induce oxidative stress will see greater 

health effects from both PM2.5 mass concentrations and OX. In our study, spatial variations in 

PM2.5 exposures were minimal at the within-city scale and were not associated with an increased 

risk of cardiovascular mortality; however, since OX varies substantially within cities, it was 

possible to identify an effect of spatial variations in OX exposures on cardiovascular mortality and 

to examine how OP enhances that effect.  

Areas in Montreal and Toronto with high co-occurring levels of OX and OP or ROS 

concentrations appeared to be spatially distributed near sources of traffic emissions. This is 

consistent with previous work that showed traffic-related variables to be the strongest 

predictors of OPAA, OPGSH, and ROS in this study area.6 Transition metals including Cu and Fe are 

drivers of OP derived from vehicular non-tailpipe emissions; however, OP also responds to other, 

non-metal components of PM2.5 (e.g., organic compounds).14 Importantly, our findings suggest 

that neighborhoods in Montreal with higher material deprivation and residential instability (i.e., 

lower socioeconomic status) may also face a more dangerous mix of air pollution in terms of 

combined exposure Ox and OP/ROS. We previously described a relationship between material 

deprivation and measured OP which was evident in Montreal but not Toronto;6 given our 

present findings that combined OP/OX exposures tend to be elevated in areas of Montreal with 

greater deprivation, it is likely that more-deprived neighborhoods are exposed to a more toxic air 

pollution mixture relative to less-deprived neighborhoods. Existing evidence suggests that a 

disproportionate burden of traffic-related air pollution falls upon marginalized populations in 

Canada’s largest cities.11, 35-38 Moreover, recent evidence suggests that targeted, location-
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specific reductions in emissions can efficiently reduce national inequalities in PM2.5 exposures39 

and exposures to metals in PM2.5.40  In the same manner, identifying areas in cities where both 

OX and PM2.5 OP are elevated may be an efficient approach to targeting local interventions 

aimed at reducing the population health impacts of air pollution.  

The study has several notable strengths including the availability of annual updated 

exposure information (for NO2, O3 and PM2.5), a large study population, and detailed individual-

level information on socioeconomic factors. Additionally, we have exposure data from a dense 

network of monitors allowing measurement of PM2.5 oxidative potential/ROS at a high spatial 

resolution. Nonetheless, we acknowledge some limitations of the study. First, we assume that 

the use of 2-week monitoring periods represents a sufficient approximation to long-term 

average spatial variations in PM2.5 OP. This assumption is supported by previous studies that 

have suggested that the spatial pattern of pollutant concentrations derived from short-term 

monitoring campaigns remains relatively stable over time.41, 42 Although the OP measurements 

were collected after the end of follow-up, spatial contrasts are assumed to be representative of 

earlier spatial contrasts within each city during the follow-up period. Since spatial contrasts were 

classified as above/below the median of OP or ROS, this error would only change the observed 

results if it resulted in a location moving across categories (i.e., above/below the median). While 

we cannot rule out this possibility entirely, the locations of major roadways/highways and 

industrial areas have not changed over the duration of follow-up and thus we do not expect 

considerable differences in the spatial distribution of OP/ROS over the follow-up period.  Finally, 

there is potential for exposure measurement error in the assignment of OP values from sites 
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directly to monitors, as some people live closer to a monitor than others.  However, in 

comparison to previous studies which assigned exposures to individuals residing within a 10 km 

radius of a measured site,17 our median distance-to-monitor of approximately 1 km yields a more 

accurate exposure assignment. 

In conclusion, our findings suggest that within-city variations in PM2.5 oxidative potential 

may modify associations between long-term exposure to Ox on mortality from cardiovascular 

diseases. Additional studies are needed to confirm these results since these patterns may differ 

in other cities. Nonetheless, our findings suggest that the effect modification previously 

observed at a regional scale is relevant even at a much smaller spatial scale. Moreover, our 

results suggest that areas with greater material deprivation and residential instability in 

Montreal are more likely to be exposed to both OX and OP above the median, which is a 

potential environmental justice issue given the increased risk of cardiovascular mortality in these 

areas.  
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4.3 Supplementary Material Manuscript 2 
 

Supplementary Figure 4.1. Directed Acyclic Graph for estimating the direct effect of exposure to 

outdoor oxidant gases (OX) concentrations on cardiovascular (CVD) mortality. Parameters in grey 

are unobserved. The green line indicates the estimated association. 

 

 

 

  



 116 

Supplementary Table 4.1. Distribution of 3-year average outdoor OX (ppb) across strata of PM2.5 

oxidative potential (depletion of glutathione (OPGSH) and ascorbate (OPAA)) and reactive oxygen 

species concentration (ROS). 

 
Ox 

Characteristic  Median (25th – 75th) 5th – 95th  

Overall 31.88 (29.72 – 34.73) 26.78 – 39.28 

OPGSH 
  

< 50th 30.14 (28.09 – 32.53) 26.24 – 36.27 

> 50th  33.60 (31.51 – 36.37) 29.64 – 41.06 

OPAA   

< 50th 30.32 (28.22 - 32.68) 26.24 – 36.24 

> 50th  33.45 (31.41 – 36.40) 28.69 – 41.04 

ROS   

< 50th 30.95 (28.73 – 33.40) 26.64 – 37.02 

> 50th  32.85 (30.78 – 36.02) 27.13 – 41.01 
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Supplementary Table 4.2. Distribution of 3-year average outdoor PM2.5 mass concentrations 

(μg/m3) across strata of PM2.5 oxidative potential (depletion of glutathione (OPGSH) and ascorbate 

(OPAA)) and reactive oxygen species concentration (ROS).  

 

 
PM2.5 

Characteristic  Median (25th – 75th) 5th – 95th  

Overall 9.5 (8.7 – 10.3) 26.78 – 39.28 

OPGSH 
  

< 50th 10.0 (9.3 – 10.8) 8.4 – 12.5 

> 50th  9.0 (8.2 – 9.6) 7.3 – 11.0 

OPAA   

< 50th 9.9 (9.1 – 10.6) 7.9 – 12.2 

> 50th  9.2 (8.4 – 9.8) 7.4 – 11.1 

ROS   

< 50th 9.6 (8.9 – 10.5) 7.4 – 12.1 

> 50th  9.4 (8.6 – 10.1) 7.5 – 11.3 
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Supplementary Table 4.3. Hazard ratios (95% CI) for the effect of Ox (per 5 ppb) on incidence of 

cardiovascular mortality across strata of PM2.5 oxidative potential (glutathione-based, OPGSH, and 

ascorbate-based, OPAA) and reactive oxygen species concentration (ROS) 

 

All Cox proportional hazards models were stratified by age (10-year groups), sex, immigrant 

status, census cycle, and city, and included covariates for relative age within age group, PM2.5 

mass concentrations, individual-level income, educational attainment, marital status, 

employment status, occupational class, and visible minority status. In addition, we included 

neighbourhood-level variables for four dimensions of the Canadian Marginalization Index (CAN-

Marg) which describes inequalities in terms of material deprivation, residential instability, 

dependency, and ethnic concentration. 

PM2.5 Components 
Cardiovascular mortality 

Deaths HR (95% CI)* 

Overall 36 800 1.028 (1.001, 1.055) 

OPGSH   

< 50th  18 800 1.000 (0.960 - 1.043) 

> 50th 18 100 1.045 (1.009 - 1.081) 

Interaction p-value 0.0149  

OPAA   

< 50th  18 000 0.950 (0.907 - 0.995) 

> 50th 18 800 1.077 (1.040 - 1.114) 

Interaction p-value 0.3712  

ROS   

< 50th  18 300 0.981 (0.936 -  1.028) 

> 50th 18 500 1.062 (1.026 - 1.098) 

Interaction p-value 0.001  
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Supplementary Table 4.4. Hazard ratios (95% CI) for Ox (per 5.00 ppb) and cardiovascular 

mortality across strata of PM2.5 oxidative potential and ROS concentration stratified by sex. 

 

PM2.5 

Componen

ts 

Cardiovascular Mortality 

Males Females 

Deaths HR (95% CI) Deaths HR (95% CI) 

Overall 19 400 
1.019 (0.983 – 

1.055) 
17 400 1.039 (1.00 – 1.080) 

OPGSH     

< 50th  9 600 
0.967 (0.912 – 

1.025) 
9 200 1.032 (0.974 – 1.094) 

> 50th 9 900 
1.047 (1.001 – 

1.096) 
8 200 1.042 (0.988 – 1.098) 

OPAA     

< 50th  9 400 
0.927 (0.869 – 

0.989) 
8 700 0.974 (0.911, 1.040) 

> 50th 10 100 
1.075 (1.027 – 

1.126) 
8 700 1.075 (1.027, 1.137) 

ROS     

< 50th  9 300 
0.950 (0.889 – 

1.015) 
9 000 1.007 (0.942 – 1.076) 

> 50th 10 100 
1.043 (0.996 – 

1.091) 
8 400 1.089 (1.034 – 1.146) 
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Supplementary Table 4.5. Hazard ratios (95% CI) for NO2 (per interquartile range = 7.60 ppb) and 

cardiovascular mortality across strata of PM2.5 oxidative potential and ROS concentration 

 

 

 

 

 

  

PM2.5 Components 
Cardiovascular mortality 

Deaths HR (95% CI)* 

Overall 36 800 0.992 (0.971 – 1.013) 

OPGSH   

< 50th  18 800 0.986 (0.957 – 1.015) 

> 50th 18 100 1.017 (0.979 – 1.057) 

OPAA   

< 50th  18 000 0.927 (0.895 – 0.961) 

> 50th 18 800 1.049 (1.014 – 1.086) 

ROS   

< 50th  18 300 0.933 (0.905 – 0.962) 

> 50th 18 500 1.061 (1.028 – 1.095) 
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Supplementary Table 4.6. Hazard ratios (95% CI) for O3 (per interquartile range = 6.73 ppb) and 

cardiovascular mortality across strata of PM2.5 oxidative potential and ROS concentration 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

PM2.5 Components 
Cardiovascular mortality 

Deaths HR (95% CI) 

Overall 36 800 1.035 (1.010 – 1.062) 

OPGSH   

< 50th  18 800 1.014 (0.973 – 1.022) 

> 50th 18 100 1.042 (1.007 – 1.079) 

OPAA   

< 50th  18 000 0.979 (0.938 – 1.022) 

> 50th 18 800 1.062 (1.026 – 1.10) 

ROS   

< 50th  18 300 1.057 (1.015 – 1.101) 

> 50th 18 500 1.028 (0.993 – 1.064) 
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Supplementary Table 4.7. Spearman rank correlations for the relationship between four 

dimensions of the Canadian Marginalization Index and co-occurring high/low (above/below the 

median) levels of OX and OP (OPAA, OPGSH and ROS concentration) 

 

 OX/OPGSH OX/OPAA  OX/ROS  
 Spearman 

rank 
correlation1 

P-
value2 

Spearman 
rank 
correlation 

P-value Spearman 
rank 
correlation 

P-value 

Montreal       
Residential 

instability 
 

0.41 <0.01 0.38 <0.01 0.42 <0.01 
Material 
deprivation 0.29 <0.01 0.32 <0.01 0.23 0.02 
Ethnic 
concentration 0.13 0.19 -0.06 0.58 0.04 0.68 
Dependency 0.17 0.09 0.17 0.86 0.02 0.06 

       
Toronto       
Residential 

instability 
 

0.21 0.10 0.21 0.09 0.23 0.07 
Material 
deprivation -0.06 0.64 -0.02 0.88 0.18 0.16 
Ethnic 
concentration -0.10 0.42 0.03 0.78 -0.08 0.49 
Dependency 0.23 0.06 0.21 0.10 0.27 0.03 

1. Correlation between 3-level variable for co-occurring OX and OP (i.e., both below the 
median; mixed; or both above the median) and 5-level variable for quintiles of the 
Canadian Marginalization Index. 

2. P-value from Spearman’s rank sum test. 
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Supplementary Table 4.8. Regression results for hazard ratios of OX exposures (per 5 ppb) on 

cardiovascular mortality overall and across strata of PM2.5 oxidative potential (OP) and reactive 

oxygen species concentrations (ROS) using OP and ROS estimated from land use regression 

models 

Measure/strata Hazard ratio (95% confidence interval) 

OPGSH below median 0.9586 (0.9202, 0.9983) 
OPGSH above median 1.1502 (1.1154, 1.186) 
OPAA below median 0.9812 (0.9398, 1.024) 
OPAA above median 1.1709 (1.135, 1.208) 
ROS below median 0.9587 (0.9162, 1.0079) 
ROS above median 1.1506 (1.1154, 1.1868)   
OPAA: ascorbate-related oxidative potential; OPGSH: Glutathione-related oxidative potential; ROS: estimated ability of 

PM2.5 to directly generate reactive oxygen species. 
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Chapter 5: Manuscript 3 
 

5.1 Preface 
 

In addition to their ability to induce oxidative stress (examined in Objective 2), fine particles can 

be characterized by other measures of composition and toxicity. Recently, attention has turned 

toward exposures to magnetite nanoparticles, which are extremely small iron oxide particles that 

make up part of the pollution mixture in the urban environment. These particles are noteworthy 

due to their transition metal composition, magnetic properties, and small size which allows them 

to translocate to the brain.76 Since existing evidence suggests that ultrafine particles are 

associated with brain cancer incidence,99 the magnetite nanoparticle content of PM2.5 represents 

a plausible health risk. However, epidemiologic studies have yet to evaluate the potential effects 

of this exposure. In this study, we estimated associations between outdoor magnetite 

nanoparticle concentrations and brain cancer incidence at the within-city scale.  

This manuscript is currently under review at the  American Journal of Epidemiology. 

  



 131 

5.2 Within-city spatial variations in PM2.5 magnetic properties and brain cancer incidence 

in Toronto and Montreal, Canada 
 

Susannah Ripley1, Barbara H. Maher2, Marianne Hatzopoulou3, Scott Weichenthal1 

1Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 

Montreal, Canada, H3A 1G1 

2Centre for Environmental Magnetism & Palaeomagnetism, Lancaster University, Lancaster, UK, 

LA1 4YW 

3Department of Civil & Mineral Engineering, University of Toronto, Toronto, Canada, M5S 1A4 

  



 132 

Abstract 

Introduction: Magnetite nanoparticles are small, strongly magnetic iron oxide particles which are 

produced during high-temperature combustion and friction processes and form part of the 

outdoor air pollution mixture. These particles can translocate to the brain and have been found 

in human brain tissue. However, the health impacts of exposure to magnetite nanoparticles in air 

pollution have yet to be assessed in epidemiologic studies. In this study, we estimated 

associations between within-city spatial variations in the concentration of magnetite 

nanoparticles in outdoor fine particulate matter (PM2.5) and brain cancer incidence. We also 

estimated associations between long-term exposures to outdoor PM2.5 and nitrogen dioxide 

(NO2) (as a marker of traffic-related air pollution) and brain cancer incidence and examined if 

these relationships were modified by the magnetite nanoparticle content of PM2.5. 

Methods: We performed a cohort study using four cycles of the Canadian Census Health and 

Environment Cohort in Montreal and Toronto, Canada. We followed 1.29 million participants for incident 

malignant brain tumours from 2001 to 2010 in MontreaI and from 2001 to 2016 in Toronto. As a proxy 

for magnetite nanoparticle content, the susceptibility of anhysteretic remanent magnetization (χARM) was 

measured in PM2.5 sampled across both cities (N = 124 in Montreal, N = 110 in Toronto), and values were 

assigned to residential locations, updated annually to account for residential mobility within and between 

cities. Stratified Cox proportional hazards models were used to estimate hazard ratios (per IQR change in 

volume-normalized χARM PM2.5, a unitless quantity) adjusting for socioeconomic and demographic factors 

as well as exposures to PM2.5 mass concentrations and NO2. 
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Results: We identified 1,300 incident brain tumours during the follow-up period. Within-city spatial 

variations in volume-normalized χARM were not associated with brain tumour incidence (HR = 0.998, 95% 

CI: 0.988, 1.009) after adjusting for PM2.5, NO2, and sociodemographic factors, and applying an indirect 

adjustment for unmeasured potential confounders (cigarette smoking and body mass index). Outdoor 

PM2.5 mass concentrations and NO2 were also not associated with increased brain tumour incidences, and 

further stratification by mass-normalized χARM (above/below the median) did not alter these findings. 

Conclusion: We found no evidence of an important relationship between within-city spatial variations in 

the content of airborne magnetite nanoparticles and brain tumour incidence. Further research is needed 

to evaluate this understudied exposure as magnetite nanoparticles present in the external environment 

are known to reach the human brain.  
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Introduction 

Outdoor air pollution is among the leading causes of death and disease worldwide and has many 

harmful effects on human health, including associations with numerous cancers.1 Evidence suggests 

positive associations between brain cancer and some components of the air pollution mixture, including 

carbonaceous particles (components indicating a combustion source) in fine particle air pollution (PM2.5)2 

as well as nitrogen oxides (NOX, a marker of traffic-related air pollution)3 and ultrafine particles;4 

conversely, a number of studies have also reported null associations for PM2.5
4-6  and nitrogen dioxide 

(NO2)7 concentrations with brain cancer incidence. Since there are few known modifiable risk factors for 

brain cancer, identifying the effects of modifiable environmental exposures may be an important way to 

reduce brain cancer incidence.  

While existing studies of air pollution and brain cancer generally focus on the most commonly 

measured air pollutants such as fine particle mass concentrations (PM2.5), there is increased interest in 

novel air pollution exposure measures that account for composition, toxicity, and/or size of particles. 

Specifically, measures that account for particle composition, toxicity, and size may vary spatially at finer 

scales compared to PM2.5 mass concentrations, which could make them more useful in epidemiologic 

studies of exposure variations within cities. One measure of interest is the magnetite nanoparticle 

content of outdoor PM2.5. Magnetite nanoparticles are small (<<100 nm in diameter), strongly magnetic 

iron oxide particles that are produced during high-temperature combustion and friction processes 

including both vehicle tailpipe emissions and brake-wear as well as industrial activity.8-10 Moreover, 

existing evidence suggests that outdoor concentrations of magnetite nanoparticles measured in PM2.5 

samples vary substantially within cities, much more so than traditional PM2.5 mass concentrations.11  

The relationship between magnetite nanoparticles and brain cancer is of particular interest as 

these pollutants can enter the brain directly through the olfactory nerve, the neuroenteric system and via 
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the circulation, and have been identified in human brains.12-14 Once in the brain, magnetite may pose a 

risk to brain health by provoking redox activity that leads to oxidative stress.12 In a study in Mexico City, 

neuroinflammatory markers were correlated with presence of metals in the frontal lobe in children and 

young adults.12, 15  The magnetite nanoparticles observed in human brains are co-associated with a range 

of other, potentially toxic, exogenous metal-bearing particles, including aluminium, titanium, nickel, 

platinum.12, 13 Although populations are known to be exposed to magnetite nanoparticles, and it is 

biologically plausible that such exposures could contribute to adverse health outcomes, to date there 

have been no epidemiologic studies of the health effects of exposure to magnetite nanoparticles in 

ambient air pollution. The aim of this study was to estimate the association between within-city spatial 

variations in the concentration of magnetite nanoparticles, as represented by laboratory measurement of 

the anhysteretic remanent magnetization susceptibility (χARM) of outdoor PM2.5 (as described below) and 

incidence of brain cancer in Montreal and Toronto, Canada. As a secondary aim, we investigated whether 

associations between brain tumours and outdoor concentrations of nitrogen dioxide (a marker of the 

broader traffic-related air pollution mixture) and PM2.5 mass concentrations were modified by mass-

normalized ARM susceptibility of PM2.5.   

 

Methods 

Cohort description  

The Canadian Census Health and Environment Cohort (CanCHEC) is a population-based cohort 

that has been described previously.16, 17 The cohort includes multiple cycles of follow-up of Canadian 

Census records and includes non-institutionalized Canadians (aged 25 and older) who were among the 

approximately 20% of households selected for enumeration by the long-form Census questionnaire in 

one of the eligible census years.18 These datasets were linked to postal code histories to obtain annual 
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place of residence from Historical Tax Summary Files. CanCHEC includes information from Census 

questionnaires on individual-level and contextual variables including socioeconomic indicators, ethnicity, 

and place of residence, as well as environmental conditions.16 Mortality data were linked from the 

Canadian Vital Statistics Death Database and cancer incidence data were linked from the Canadian Cancer 

Registry. The CanCHEC dataset was created under the authority of the Statistics Act and approved by the 

Executive Management Board at Statistics Canada (reference: 045-2015). This is equivalent to standard 

research ethics board approval. Informed consent was waived because the database used in this study 

contains only deidentified individual records. 

Our study population includes individuals in the 1991, 1996, 2001 or 2006 CanCHEC cohorts aged 

25 to 90 years at baseline who lived in Toronto or Montreal for at least 2 years during follow-up. Since 

approximately 20% of households were randomly assigned to complete the long-form census in each 

cohort cycle, some individuals were enumerated on more than one long-form census. These individuals 

were assigned to the earliest cohort in which they appeared.  

Ascertainment of cancer diagnosis 

Cancer diagnoses in CanCHEC were identified using data linked to the CanCHEC cohorts 

from the Canadian Cancer Registry, a database that records incident primary cancers diagnosed 

for each person since 1992.19, 20 Participants were followed for first incidence of primary 

malignant brain tumour (defined by International Classification of Diseases, 10th Revision (ICD-

10) codes C71.0 - C71.9). Follow-up time started with Census day 2001 for the 1991, 1996 and 

2001 cohorts, and Census day 2006 for the 2006 cohort. This restricted follow-up period was 

implemented to reduce potential error caused by extrapolation of estimated ARM susceptibility 

of PM2.5 into the past. For members of the study population living in Montreal, cases were only 
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identified in the period 2001-2010 as cancer diagnosis data were not available in the province of 

Quebec for diagnosis years from 2011 onward. Participants were excluded if they had any cancer 

diagnosis in the three years prior to the start of follow-up to reduce the possibility of 

confounding by potential exposure to ionizing radiation in cancer treatment. For a small number 

of individuals, exact date of diagnosis was unavailable. In cases where month and year of 

diagnosis was available but day of diagnosis was missing, diagnosis was assigned to the 15th day 

of the month. If only year of diagnosis was available, the individual was excluded from the 

dataset (N = 36).  

Spatial monitoring studies and estimation of magnetite nanoparticle exposures using anhysteretic 

remanent magnetization  

PM2.5 samples were collected in outdoor monitoring campaigns conducted in 2018 in Montreal 

and Toronto, Canada. Sites where monitors were placed were selected to capture important sources of 

ambient PM2.5 in each city while maximizing spatial coverage of the study area.22 A total of 124 sites in 

Montreal and 110 sites in Toronto were monitored. Mean daily temperatures over the sampled period 

ranged from 14.4°C to 23.7°C in Montreal and 19.8°C to 26.6°C in Toronto. Integrated 2-week PM2.5 

samples were collected using Teflon filters and preset timers with a mix of Ultrasonic Personal Air Sample 

(UPAS) monitors (Access Sensor Technologies, Fort Collins, CO) at a flow rate of 1 L/min and cascade 

impactors at a flow rate of 5 L/min.  

In order to quantify the content of magnetite particles in PM2.5 samples, anhysteretic remanent 

magnetization (ARM) was measured. ARM is roughly proportional to the concentration of ferrimagnetic 

minerals within a sample21 and specifically responds to the presence of magnetic nanoparticles with 
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diameters between 30–50 nm.22, 23 First, PM2.5 samples (on PTFE filters) were exposed to four different 

direct current (DC) biasing fields of 0.06 mT, 0.08 mT, 1.0 mT and 1.2 mT.  Subsequently, a 2G RAPID 

cryogenic magnetometer (2G Enterprises, Mountain View, CA) was used to measure the magnetic 

response of the samples. ARM measurements were also made of 20 blank PTFE filters and the mean of 

the ARM measurements taken on these blanks was subtracted from sampled filter values. ARM was 

expressed as a susceptibility of ARM normalized by the direct current (DC) field, calculated as the slope of 

the ARM(DC field) linear function. ARM susceptibility values were then normalized by air sampled volume 

(expressed as KARM, a dimensionless quantity) for the primary analysis and by particulate mass (expressed 

as χARM, in units of m3/kg) in secondary analyses. 

Outdoor PM2.5 and nitrogen dioxide concentrations 

To evaluate the effects of spatial variations in other co-occurring pollutants, we assigned 

long-term estimates of outdoor PM2.5 and nitrogen dioxide (NO2) concentrations at residential 

address to cohort members in the same manner. Annual average outdoor PM2.5 mass 

concentrations were estimated using models described in detail previously.24 Briefly, PM2.5 

concentrations were estimated at a 1 × 1 km resolution using aerosol optical depth, a chemical 

transport model, and land-use data.24, 25 Annual average outdoor concentrations of NO2 were 

estimated using a land-use regression model26 in which estimates were derived from remote 

sensing and National Air Pollution Surveillance monitoring data; this model was developed from 

2006 data and had a spatial resolution of 100 m2. PM2.5 and NO2 data indexed to DMTI Spatial 

Inc. postal codes were provided by CANUE (Canadian Urban Environmental Health Research 

Consortium).  

Exposure assignment 
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PM2.5 ARM susceptibility values, as well as PM2.5 and NO2 concentrations, were assigned directly 

to residential 6-digit postal codes (an area equivalent to approximately one city block face in urban areas) 

from the value at the closest measured site. Postal codes were linked to monitored points using latitude 

and longitude from the master postal code list (CanMap Postal Suite, version  v2015.3, DMTI Spatial Inc., 

Markham). In cases where a single postal code was represented by multiple points of latitude and 

longitude, an average estimate for the postal code was created by equally weighting the multiple 

pollutant values across points. Time-varying exposures were estimated using residential postal code 

histories from annual income tax filings, allowing for movement within and between cities. Exposures 

were assigned to cohort members at their residential address as 3-year moving averages with a 1-year lag 

(e.g., an individual’s exposure for 2008 was the mean of their exposures for 2005, 2006, and 2007). This is 

consistent with the standard exposure assignment used in many studies using the CanCHEC cohort since 

ambient PM2.5 is regulated in Canada based on a three-year time window.27 

Statistical analyses 

Stratified Cox proportional hazards models were used to estimate hazard ratios 

describing the relationship between PM2.5 ARM susceptibility (volume-normalized, i.e., KARM) and 

incidence of brain tumours. Follow-up time started with time of entry into the CanCHEC cohort 

(e.g., Census day 2001 for the 2001 cohort). Subjects were censored if they moved outside the 

cities of Montreal or Toronto, if they were lost to follow-up, at the end of study period, or at 

time of death, whichever came first. Data were accessed and analyzed in the secure facilities of 

the McGill-Concordia Research Data Centre located at McGill University. Statistical analyses were 

performed using SAS version 9.4 (SAS Institute, Cary, NC, USA) and R 4.2.2 (R Foundation for 

Statistical Computing, Vienna, Austria). 
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Variables used for regression adjustment were chosen based on a Directed Acyclic Graph 

(DAG) (Supplementary Figure 5.1). There are few well-established risk factors for primary brain 

tumours except for exposure to ionizing radiation and family history.28 Nonetheless, we adjusted 

for a number of demographic and socioeconomic status variables which could confound the 

relationship through chance associations with the outcome. Specifically, we adjusted for age (5-

year age groups as a strata variable), sex (male/female strata), immigration status 

(immigrant/nonimmigrant strata), Census cohort year (four categories as strata: 1991, 1996, 

2001, and 2006), visible minority status, occupational level, educational attainment, marital 

status, and income quintile. Additionally, models were adjusted for PM2.5 mass concentrations 

and NO2 to evaluate the sensitivity of effect estimates to spatial variations in long-term 

exposures to these pollutants. 

As an additional analysis, we examined the effects of PM2.5 and NO2 stratified by mass-

normalized ARM susceptibility (χARM). When stratifying by ARM susceptibility, our goal in the 

estimation of NO2 effects on brain cancer incidence was to investigate whether the mixture of 

traffic-related air pollutants (of which NO2 is a marker) is more harmful in areas with greater 

ARM susceptibility; in the PM2.5 analysis, our goal was to evaluate whether the effect of exposure 

to fine particles was greater in areas where PM2.5 ARM susceptibility is higher. We performed 

Cox proportional hazards regression as described above and below the median of χARM values.  

 

Sensitivity analyses 
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Some individual-level risk factor variables, notably cigarette smoking and body mass index 

(BMI), are not available in the CanCHEC database. Although the evidence linking smoking to 

brain cancer incidence is inconsistent, and some studies suggest no relationship,29 cigarette 

smoking is an important cause of human cancer and meta-analysis suggests a possible 

association with brain cancer incidence.30 Similarly, evidence suggests a possible assocation of 

obesity with some types of brain cancer.31 Smoking and BMI are not causes of outdoor air 

pollutant concentrations, so they are not confounders in the standard definition.32 Nonetheless, 

chance associations could confound the relationship between outdoor PM2.5, NO2 or ARM 

susceptibility and brain tumour incidence, and the indirect adjustment method was applied to 

address this possibility. The indirect adjustment method has been described in detail 

previously;33 briefly, this method uses data on the correlation between measured covariates and 

unmeasured risk factors from a secondary data source, as well as estimates of the relationship 

between the missing risk factors and incidence of the outcome. We used data from multiple 

cycles of the Canadian Community Health Survey, a biannual national health survey that has the 

same target population as the Canadian census (i.e., the Canadian population) and collects data 

on health and lifestyle characteristics including smoking and BMI. The relationships between 

smoking and brain cancer, as well as BMI and brain cancer, were estimated from the literature 

based on systematic reviews and meta-analyses of the existing evidence.30, 31 

Results 

Cohort characteristics are presented in Table 5.1. In total, we identified approximately 

1,300 eligible cases of malignant primary brain tumours over 13.6 million person-years of follow-
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up in 1.29 million individuals (all numbers rounded to the nearest 100 to satisfy institutional 

confidentiality requirements). Incident brain tumours were identified at a higher rate in people 

of increased age, in men relative to women, and in people who identified as white relative to 

those who identified as visible minorities (Table 5.1).  

Table 5.1. Descriptive statistics at baseline for the study cohort of people living in Toronto or 

Montreal (1991, 1996, 2001, and 2006 CanCHEC cohorts) 

Characteristic Person-Years Participants Incident 
brain 

tumours 

Total 13,636,200 1,291,900 1300 

Sex    

Male 6,258,300 608,300 700 

Female 7,377,900 683,600 600 

Immigrant status    

Non-immigrant 7,032,800 710,400 700 
Immigrant 6,603,400 581,500 600 

City of residence    

Montreal 5,079,400 564,600 500 

Toronto 8,556,800 727,300 800 

Age group    

25-34 2,014,600 193,700 200 

35-44 3,071,500 288,300 300 

45-54 3,057,900 287,900 300 

55-64 2,175,500 205,700 200 

65-74 1,457,900 137,400 200 

75-84 1,284,700 123,300 200 

85-89 574,100 55,500 100 

Occupational class    

Management 1,151,500 107,300 100 

Professional 2,132,000 193,500 200 

Skilled, technical & 
supervisory 

2,513,700 233,600 200 

Semiskilled 3,032,200 279,200 300 
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Unskilled 993,800 89,800 100 

No occupation/not in 
labour force 

3,812,900 388,500 500 

Income quintile    

Lowest 2,727,300 260,900 200 

Second lowest 2,727,200 274,300 300 

Middle 2,722,800 261,000 300 

Second highest 2,731,500 254,200 300 

Highest 2,727,400 241,400 300 

Educational attainment    

Less than high school 
graduation 

3,725,400 351,700 400 

High school graduation 
with/without trades 
certificate 

4,053,500 382,700 400 

Some postsecondary or 
college diploma 

2,405,900 238,000 200 

University degree 3,451,400 319,500 300 

Cohort    

1991 3,778,500 337,000 400 

1996 5,225,900 465,700 600 

2001 3,269,000 283,300 200 

2006 1,362,800 205,900 100 

Marital status    

Single 2,695,600 263,600 200 

Common-law 929,600 101,000 100 

Married 8,038,100 723,400 900 

Separated 401,000 38,900 NA 

Divorced 849,000 84,300 100 

Widowed 722,900 80,600 100 

Visible minority status    

Not defined as visible 
minority 

3,704,000 962,300 1,100 

Visible minority 9,932,200 329,600 200 

All numbers are rounded to the nearest 100 for confidentiality and may not add up to the total; NA denotes counts 

below 100 which are suppressed for confidentiality. 
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The mean volume-normalized ARM susceptibility (KARM) across all eligible person-years was 5.8 × 

10-14 (SD = 3.4 × 10-14) and mean mass-normalized ARM susceptibility (χARM) was 9.3 × 10-6 m3/kg (SD = 6.7 

× 10-6 m3/kg). Spatial variations in ARM susceptibility were much greater than spatial variations in PM2.5 

mass concentrations.  The mean PM2.5 concentration was 9.4 μg/m3 (SD = 1.3 μg/m3) and the mean NO2 

concentration was 21.2 ppb (SD = 5.5 ppb) (Table 5.2). Spatial patterns of KARM and χARM by postal code 

are mapped in Figure 5.1. ARM susceptibility parameters showed little correlation with other ambient 

pollutants. Spatial variations in KARM  (volume-normalized) were very weakly correlated with PM2.5 mass 

concentration (r = -0.0007) and NO2 (r = 0.0496), and similarly spatial variations in χARM (mass-normalized) 

were very weakly correlated with PM2.5 (r = 0.023) and NO2 (r = -0.028).  

Table 5.2. Descriptive statistics for ambient pollutant concentrations and PM2.5 ARM 

characteristics across all person-years. 

 

Characteristic Mean (SD) Median IQR Percentile 

    1st 25th 75th 99th 

Pollutant concentrations        
PM2.5 (µg/m3) 9.4 (1.3) 9.5 1.6 6.9 8.5 10.1 13 
NO2 (ppb) 21.2 (5.5) 21.0 7.5 10.4 17.1 24.6 36.4 

ARM susceptibility 
parameters 

       

KARM, volume 
specific (× 10-14, 
unitless) 

5.8 (3.4) 4.9 3.1 0.1 4.0 7.1 18.0 

χARM, mass specific 
(× 10-6 m3/kg) 

9.3 (6.7) 7.0 4.0 2.0 6.0 10.0 39.0 

ARM: anhysteretic remanent magnetization; IQR: interquartile range; NO2: nitrogen dioxide; PM2.5: fine particulate 
matter; SD: standard deviation.  
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Figure 5.1. Spatial variations in volume-normalized ARM (KARM) and areas above/below the 
median mass-normalized ARM (χARM) assigned to postal codes from measured sites in Toronto 
and Montreal, Canada. 
 

Cox regression model results are presented in Table 5.3. Models showed no association 

between volume-normalized ARM susceptibility (KARM) and brain cancer incidence (HR per 3.0 × 

10-14: 0.998, 95% CI: 0.988, 1.009). Long-term exposures to PM2.5 were inversely associated with 

brain cancer incidence (HR per 3 µg/m3: 0.833, 95% CI: 0.681, 1.021).  When stratified by mass-

normalized ARM susceptibility (χARM), the effect of PM2.5 was closer to the null (i.e., indicating a 

less strong protective effect) above the median XARM (HR: 0.899, 95% CI: 0.774, 1.043) relative to 

below the median (HR: 0.711, 95% CI: 0.374, 1.350), but estimates were imprecise. Similarly, 

long-term average exposures to NO2 were not associated with brain cancer incidence (HR per 10 



 146 

ppb: 0.963, 95% CI: 0.876, 1.058). In stratified analyses, the point estimate of the effect of NO2 

above the median of χARM (HR: 0.945, 95% CI: 0.848, 1.053) was protective whereas below the 

median of χARM the effect was deleterious (HR: 1.020, 95% CI: 0.877, 1.195); however, 

confidence intervals were wide and overlapping. For all pollutants, indirect adjustment for 

smoking and body mass index had little effect on hazard ratios (Table 5.3). 

Table 5.3. Crude and indirectly adjusted hazard ratios for incident primary malignant brain 

tumours. 

Pollutant Crude HR (95% CI) Indirectly adjusted HR (95% CI) 

PM2.5 (per 3 µg/m3)   
Overall 0.845 (0.692, 1.031) 0.833 (0.681, 1.021) 
Below median ARM 
susceptibility (χARM) 

0.736 (0.387, 0.898) 0.711 (0.374, 1.350) 

Above median ARM 
susceptibility (χARM) 

0.895 (0.771, 1.092) 0.899 (0.774, 1.043) 

NO2 (per 10 ppb)   
Overall 0.965 (0.881, 1.057) 0.963 (0.877, 1.058) 
Below median ARM 
susceptibility (χARM) 

1.037 (0.891, 1.206) 1.020 (0.877, 1.195) 

Above median ARM 
susceptibility (χARM) 

0.933 (0.841, 1.036) 0.945 (0.848, 1.053) 

ARM susceptibility normalized by 
volume (KARM) (per 3.0 × 10-14) 

1.000 (0.894, 1.118) 0.998 (0.988, 1.009) 

KARM: volume-normalized anhysteretic remanent magnetization susceptibility of PM2.5; XARM: mass-normalized 

anhysteretic remanent magnetization susceptibility of PM2.5. 

 

Discussion 

We conducted a population-based cohort study examining the relationship between 

within-city spatial variations in fine particle (PM2.5) ARM susceptibility on malignant brain tumour 

incidence in two Canadian cities. We found no relationship between exposures to volume-

normalized ARM susceptibility of PM2.5 and brain tumour incidence; moreover, we found no 
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evidence that the effects of other long-term outdoor pollutant exposures (i.e., PM2.5 mass 

concentration and NO2 as a marker for traffic-related air pollution) were modified by the mass-

normalized ARM susceptibility of fine particles. In general, our findings do not support a 

relationship between spatial variations in ARM susceptibility of PM2.5, a measure which 

corresponds to the presence of magnetite nanoparticles, and incidence of brain cancer. We 

identified a non-significant inverse effect of PM2.5 on brain cancer incidence which we cannot 

explain. However, this result is similar to protective effects previously observed for the effect of 

PM2.5 on brain cancer incidence, such as the effect by Jorgenson et al. (HR per 3 µg/m3: 0.985, 

95% CI: 0.635, 1.54),34 by Harbo Poulsen et al. (OR per 3 µg/m3: 0.992, 95% CI: 0.946, 1.039),2 or 

by Weichenthal et al. (HR per 3 µg/m3: 0.907, 95% CI = 0.762, 1.079).4 

Although we found no effect of PM2.5 ARM susceptibility on brain cancer incidence, 

nonetheless the health effects of exposures to magnetite nanoparticles merit further study, as 

laboratory analyses suggest that exposure to magnetite nanoparticles may be deleterious to 

human cells in vitro. Exposure to magnetite particles in human cells in vitro can induce reactive 

oxygen species generation,35 which contributes to the oxidative stress pathway that may be 

responsible for many of the observed adverse health effects of PM exposure. Other in vitro 

studies suggest that exposure to magnetite may play a role in the development of 

neurodegenerative diseases such as Alzheimer’s disease.36 Magnetite nanoparticles observed in 

the human brain are co-associated with other exogenous metal-bearing nanoparticles, including 

titanium, aluminium, platinum, nickel, and cobalt.12, 13 Finally, toxicological studies have 

suggested that metal-rich ultrafine particles (UFPs) are able to access all major organs,37-40 
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suggesting their relevance to health outcomes including those affecting the brain.41 Given the 

toxicological evidence, there remains a need for future epidemiologic studies assessing the 

effects on health of magnetite nanoparticle exposures. 

We observed spatial patterns of variation in ARM that suggest relationships between 

ARM and land use characteristics. In both cities, the spatial patterns of ARM exposures suggest 

primarily local sources that are likely related to vehicular traffic.11 Previous work showed that 

traffic counts, proximity to major roads and proximity to road intersections were predictors of 

ARM, as well as proximity to railways (in Montreal but not in Toronto).11 Additionally, our results 

show similar spatial patterns to previous studies of UFP, suggesting that ARM and UFP measures 

reflect similar sources and are likely correlated in space. Specifically, previous studies that 

assessed the spatial distributions of UFP in Toronto identified elevated concentrations of UFP in 

the northwest of the city, where two major highways intersect near an airport. 42, 43 We also 

identified elevated ARM in this northwest quadrant, as well as in the downtown core. Similarly, 

the areas with lowest ARM in Toronto were the residential neighbourhoods in the city centre. 

The major highway that runs across the city in the east-west direction appeared to be 

surrounded by higher ARM areas, which is also consistent with previous UFP studies. In 

Montreal, UFP concentrations were elevated in the industrial east end of the city, around 

highways, and in the downtown core.43 We also observed slightly elevated ARM in the industrial 

east end, which suggests potential for some non-vehicular sources of magnetite nanoparticles. 

However, a previous study of UFP and cancer incidence did find a relationship, whereas we 
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found no relationship between ARM and brain tumour incidence; this suggests that ARM may be 

of limited use in characterizing the UFP fraction. 

Future studies may benefit from exploring different measures of magnetite 

nanoparticles. We used the room temperature ARM susceptibility of PM2.5 as a surrogate 

measure of magnetic nanoparticle content as it reflects the concentration of particles of 

approximately 30-50 nm in diameter.22, 23 However, it is possible that the ARM susceptibility in 

PM2.5 samples may not be a good proxy for sampling the actual nanoparticle size range. We are 

most interested in the smallest particles (e.g., UFPs, which have diameter less than 0.1 µm) as 

there is evidence that they may be relevant to the development of brain cancer: specifically, a 

previous study of brain cancer incidence in Montreal and Toronto, Canada found that residential 

UFP concentrations were positively associated with brain cancer incidence, but PM2.5 mass 

concentrations were not.4  Given the potential relevance of UFPs to brain health, a possible 

direction for future research could be the measurement of magnetic parameters on the ultrafine 

fraction of particulate matter: for example, Gonet et al. analyzed isothermal remanent 

magnetization (IRM, a measure of magnetic remanence which results from short-term exposure 

to strong magnetizing fields) on size-fractionated particles sampled from brake-wear emissions 

(using 14 size fractions ranging from 0.016 µm – 10 µm). Although an increasing body of 

literature exists describing magnetic parameters of particles collected from air samples44, 45 or 

from tree leaf surfaces near roadways,8, 46-48 it remains to be determined which measures of 

magnetic activity and which particle size fractions are most relevant in health studies; future 

studies may consider size-resolved evaluation of magnetic characteristics of particles as a step 
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towards assessment of their potential health impact. Additionally, a focus on low-temperature 

(LT) magnetic measurements may better characterize  the UFP fraction. Muxworthy44 LT 

magnetite measurements and found significantly higher concentrations of magnetite 

nanoparticles than previously estimated using room-temperature (RT) measures. In addition, 

Sheikh et al.49 collected air samples from the London Underground and analyzed them using 

ARM as well as both RT-SIRM and LT-SIRM. Given evidence that the predominant size range of 

magnetite nanoparticles identified in the brain is 5-20 nm,50 and emerging research suggests 

that magnetite nanoparticles in this size range are more accurately quantified using LT 

methods,44 future studies of PM may be better served by LT magnetic measurements rather 

than the RT measures that we performed. 

 This study had several notable strengths, including high-resolution estimates of spatial 

variations in the ARM susceptibility of PM, the availability of updated exposure information for 

subjects moving within and between cities, and time-varying estimates of NO2 and PM2.5 

exposures, as well as detailed individual-level data on potential confounders. A further 

advantage is the availability of data on incident, rather than prevalent brain tumour diagnoses. 

However, our study also had a number of limitations. First, the of PM2.5 ARM susceptibility were 

based on measurements of air filters collected during 2-week monitoring periods in 2018 (i.e., 

after the end of the follow-up period), and due to the absence of historical measurements it was 

not possible for us to extrapolate ARM susceptibility estimates backward in time. This is a source 

of possible exposure measurement error; however, a systematic difference in the degree of 

exposure error between brain cancer cases and non-cases is not expected and therefore bias 
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would tend toward the null. Additionally, since major changes in spatial patterns of roadway 

infrastructure have not occurred during the study period, we did not expect major changes in 

the spatial patterns of tailpipe and brakewear emissions. Next, measurements of PM2.5 ARM 

susceptibility were made at room temperature, rather than at low temperature (e.g., liquid 

nitrogen, 77 K, or helium, 4.2 K,  temperatures).  Recent, low temperature-based studies show 

that both the total magnetite content and the numbers of ultrafine particles <10 nm in size 

(magnetically ‘invisible’ at room temperature) are being routinely under-estimated in magnetic 

characterisation of particulate air pollution.49  Further, we assume that the use of 2-week 

monitoring periods represents a sufficient approximation to long-term average spatial variations 

in PM2.5 ARM susceptibility. We based this assumption on existing evidence that suggests that 

the spatial pattern of pollutant concentrations derived from short-term monitoring campaigns 

remains relatively stable over time.51, 52 Although the ARM susceptibility measurements were 

collected after the end of follow-up, spatial contrasts are assumed to be representative of earlier 

spatial contrasts within each city during the follow-up period. 

A second limitation was the absence of individual-level data on potential confounders 

such as smoking and body mass index. However, as described in the conceptual directed acyclic 

graph (Supplementary Figure 5.1), these individual-level variables are not likely causes of long-

term air pollution exposures including PM2.5 ARM susceptibility, so they are not strictly 

confounders. Nonetheless, we performed an indirect adjustment method to account for 

confounding that could occur by chance associations between PM2.5 ARM susceptibility and 

individual-level variables. Similarly, we lacked individual-level data on other potential causes of 
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brain cancer (e.g., family history of brain cancer or exposures to ionizing radiation). Since these 

factors were not present in the ancillary database we used to perform the indirect adjustment, 

we were unable to adjust for them. It is possible that potential confounding by these or other 

unmeasured confounders remains, if there exists a systematic relationship between the 

potential confounders and spatial variations in outdoor PM2.5, NO2 or ARM susceptibility. 

 In conclusion, we performed the first cohort study of spatial variations in ARM 

susceptibility of outdoor PM2.5 and incident brain tumours. We did not find an association 

between ARM susceptibility, a measure which is proportional to the concentration of magnetite 

nanoparticles, and brain cancer incidence. Further, we found non-significant protective effects of 

NO2 and PM25 exposires and brain cancer incidence, and did not identify modification of these 

effects by mass-normalized ARM susceptibility.  Nonetheless, future studies should further 

explore the association of exposures to magnetite nanoparticles, especially the finest (< 10 nm) 

nanoparticles, with health outcomes due to their high exposure prevalence in urban areas. 
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5.3 Supplementary Material Manuscript 3 
 

Supplementary Figure 5.1. Directed acyclic graph for anhysteretic remanent magnetization 

(ARM) susceptibility of outdoor PM2.5 concentrations (a surrogate measure of magnetite 

nanoparticle concentrations) and brain tumour incidence. Parameters in grey are unmeasured 

variables, parameters in red are potential confounding factors, and parameters in blue are 

included as strata variables in the Cox proportional hazards regression models.  
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Additional information on construction and choice of covariates used in regression models 

Covariates reported at baseline:  

Categorical variables reported at baseline included marital status (single, common-law, married, 

separated, divorced, or widowed); income adequacy quintile; highest level of education attained 

(less than high school graduation, high school graduate with or without trade certificate, 

postsecondary non-university degree, university degree); occupational class (management, 

professional, skilled technical and supervisory, semi-skilled, unskilled, not applicable); visible 

minority status (visible minority, white/indigenous). Indigenous Canadians were included in the 

white/non-visible minority group for several reasons: because they represent a small fraction of 

the urban population, for consistency with previous studies,1 and because white/indigenous 

Canadians both have elevated rates of brain cancer and other cancers relative to the visible 

minority group.2 In addition, models were adjusted for a continuous variable representing the 

deviation, in years, from the median of each 5-year age category in order to reduce possible 

residual confounding by age. 

 

Time-varying covariates updated annually:  

Co-pollutant variables (i.e., annual average PM2.5 and NO2 concentrations) were assigned as 

neighbourhood-level variables using residential 6-digit postal codes. Annual average estimates of 

outdoor PM2.5 concentrations were estimated as described previously using a using a 

combination of aerosol optical depth, a chemical transport model, and land-use modelling3  and 

were assigned to residential postal codes with a spatial resolution of approximately 1 km2. NO2 
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exposures were estimated with a spatial resolution of 100 m x 100 m from a model developed 

from 2006 data, combining NO2 estimates derived from remote sensing and National Air 

Pollution Surveillance monitoring data. PM2.5 and NO2 data indexed to DMTI Spatial Inc. postal 

codes were provided by CANUE (Canadian Urban Environmental Health Research Consortium. 

PM2.5 and NO2 exposures were assigned using a 3-year moving average with a 1-year lag 

(updated annually for residential mobility) for consistency with previous CanCHEC studies.1  

 

Indirect adjustment methods 

The indirect adjustment method described here was developed in further detail previously.4 

From the stacked CCHS cohorts (cycles 1.1-3.1), we selected a population having the same 

inclusion criteria as our selected CanCHEC population (i.e., aged between 25 and 89 years, living 

in Toronto and Montreal). We assigned PM2.5, NO2, and PM2.5 ARM susceptibility values to these 

people in the CCHS cohort based on the postal code and year of survey.  

We defined smoking as a three-level variable (never [reference category], former, current) 

and BMI as five categories (<25 kg/m2 [reference category], 25-30 kg/m2, 30-35 kg/m2, 35-40 

kg/m2, >40 kg/m2). 

Next, in the selected CCHS cohort, we estimated the multivariate linear relationship between 

NO2, PM2.5, magnetite and both cigarette smoking habits (i.e., never, former, current) and BMI 

and smoking after controlling for all the variables included in the survival model (i.e., sex (strata), 

immigrant status (strata), cohort (strata), city, 5-year age group (strata), occupational class, 

income quintile, educational attainment, visible minority status). 
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The relationship between the adjustment variables and brain cancer incidence was obtained 

from the literature. The associations and their 95% confidence intervals for the six adjustment 

variables (two for smoking and four for BMI) are given in Supplementary Table 5.1.  BMI was 

further adjusted by accounting for the median BMI in the selected CCHS cohort within each BMI 

category. 

Supplementary Table 5.1. Associations between indirectly adjusted variables and brain cancer 

incidence taken from the literature. 

Indirect adjustment variable Risk ratio (95% CI) Source 

Smoking status (Reference = never 
smoker) 

 Li et al. 20165 

 
Former smoker 0.97 (0.88, 1.07)  
Current smoker 1.07 (0.98, 1.16)  

Body mass index (Reference = BMI < 25 
kg/m2) 

 Niedermaier et al. 
20156 

25-30 kg/m2 1.21 (1.01, 1.43)  
30-35 kg/m2 1.54 (1.32, 1.79)  
35-40 kg/m2 1.54 (1.32, 1.79)  
>40 kg/m2 1.54 (1.32, 1.79)  
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Chapter 6: Overall Discussion 
 

6.1 Summary of Findings 
 

The overall goal of this thesis was to describe within-city spatial distributions of novel 

measures of fine particle (PM2.5) air pollution (specifically multiple measures of PM2.5 oxidative 

potential, reactive oxygen species generation, and magnetic susceptibility) and to evaluate the 

health impacts of these exposures. 

 In Chapter 3 (Manuscript 1), I conducted spatial monitoring campaigns in Canada’s two 

largest cities, Montreal (sampled in summer and winter seasons) and Toronto (sampled in the 

summer season only), using a dense network of PM2.5 sampling sites. I developed land-use 

regression models for the following PM2.5 characteristics: PM2.5 oxidative potential based on the 

depletion of ascorbate (OPAA) and glutathione (OPGSH) in a simulated respiratory tract lining fluid 

assay; the ability of PM2.5 to generate reactive oxygen species in the lung fluid (ROS), as 

estimated by the mathematical KM-SUB-ELF model; and PM2.5 anhysteretic magnetic remanence 

(ARM) susceptibility as a surrogate measure of magnetite nanoparticles. Additionally, I identified 

clusters of monitoring sites with similar profiles of these PM2.5 characteristics. I also examined 

how levels of OP and ROS generation vary by neighborhood socioeconomic status in each city. 

We observed substantial spatial variations in each PM2.5 characteristic within cities; importantly, 

these variations were considerably greater than variations in outdoor PM2.5 mass concentration. 

Predictors of OP and ROS included primarily roadway variables indicating traffic-related tailpipe 

and brake-wear emissions as well as proximity to railways. ARM susceptibility also appeared to 

be related primarily to roadways. In Montreal, areas with higher material deprivation (a 
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neighbourhood-level measure of socioeconomic status) tended to be exposed to PM2.5 

characterized by higher ROS and OP (i.e., particles with greater ability to induce oxidative stress), 

but this relationship was not observed in Toronto. 

 In Chapter 4 (Manuscript 2), I examined how within-city spatial variations in the oxidative 

potential and reactive oxygen species generating capacity of PM2.5 may modify the relationship 

between long-term exposures to oxidant gases and cardiovascular mortality. I accomplished 

these aims by performing a cohort study of participants in the Canadian Census Health and 

Environment Cohort who lived in Toronto or Montreal from 2002-2015. I used Cox proportional 

hazards models to estimate associations between exposures to oxidant gases (expressed as Ox, 

which is a redox-weighted average of nitrogen dioxide and ozone concentrations) and 

cardiovascular deaths. Analyses were performed across strata of two measures of PM2.5 OP as 

well as PM2.5 ROS and models were adjusted for relevant socioeconomic and demographic 

confounders.  PM2.5 mass concentrations had low spatial variability within cities, but PM2.5 

oxidative potential and ROS were more highly spatially variable, as was OX (primarily due to the 

higher spatial variability of NO2 within the OX average). Spatial variations in outdoor Ox at 

residential addresses were associated with an increase in the risk of cardiovascular mortality (HR 

per 5 ppb = 1.028, 95% CI: 1.001, 1.055). We observed a consistent pattern in which the effect of 

Ox on cardiovascular mortality was stronger where PM2.5 oxidative potential or ROS was higher.  

 In Chapter 5 (Manuscript 3), I examined associations between within-city spatial 

variations in the susceptibility of outdoor PM2.5 to anhysteretic remanent magnetization (ARM) 

(a surrogate measure of magnetite nanoparticle content) and incidence of brain cancer. In 

addition, I examined how the effects of PM2.5 and NO2 exposures on brain cancer incidence were 
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modified by PM2.5 ARM susceptibility. To accomplish this aim, I conducted a second cohort study 

using the Canadian Census Health and Environment Cohort in Montreal and Toronto. ARM 

susceptibility values were measured in PM2.5 sampled across both cities and exposures were 

assigned to residential locations and updated annually to account for residential mobility. 

Stratified Cox proportional hazards models were used to estimate hazard ratios for the 

association of PM2.5 ARM susceptibility with brain cancer. We identified 1,300 incident brain 

tumour cases during the follow-up period and found that within-city spatial variations in volume-

normalized ARM susceptibility were not associated with brain tumour incidence (HR = 0.998, 

95% CI: 0.988, 1.009) after adjusting for PM2.5, NO2, and sociodemographic factors.  

6.2 Strengths and Limitations 
 

Overall, this thesis makes several novel contributions to the field of air pollution 

epidemiology. Objective 1 provides a detailed description of the spatial variability of 

characteristics of PM2.5 related to toxicity and composition (specifically two measures of PM2.5 

oxidative potential, reactive oxygen species generation, and ARM susceptibility) at the within-

cities scale using an unprecedented density of sampling sites. Additionally, we assessed seasonal 

differences in these measures (in Montreal only) which has not previously been accomplished. 

Objective 2 demonstrates modification of the effects of oxidant gases on cardiovascular 

mortality by PM2.5 oxidative potential and reactive oxygen species generation; this phenomenon 

had not previously been studied at the within-cities scale. Lastly, Objective 3 is the first 

epidemiologic study to evaluate the population health effects of exposures to magnetite 

nanoparticle air pollution (assessed by ARM susceptibility of PM2.5). Together, the work 
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presented in this thesis represents a step forward in our knowledge of the role that particle 

toxicity and composition may play in  the population health effects of PM2.5 exposures. 

 In addition to these substantive contributions, this thesis has notable methodological 

strengths. Chiefly, relative to previous studies, exposure measurement error (specifically Berkson 

error) in the assignment of novel PM2.5 exposure measures is likely reduced due to the 

abundance of monitors used in our sampling campaigns, which allowed us to describe fine-scale 

spatial variations in exposure measures. The high spatial resolution of monitors allowed us to 

assign measurements of PM2.5 OP, ROS, and ARM susceptibility directly to participants, which 

eliminated modelling error that can occur when values predicted from land-use regression 

models are assigned (this is a complex form of measurement error that has a Berkson-like 

component and a classical-type component).129, 130 Additionally, we consider the degree of 

confounding control in Objectives 2 and 3 to be fairly good due to the availability of both 

individual-level and area-level data on many potential demographic and socioeconomic status 

confounders in the CanCHEC database. Further, the use of CanCHEC to study health effects of 

environmental exposures has been extensively demonstrated in previous studies.27, 99, 104, 131-133 

Confounding by personal lifestyle behaviours was also reduced because we estimated 

associations for outdoor concentrations and not personal measures of outdoor air pollution, 

with the trade-off of reduced precision.134 The availability of annually updated time-varying 

exposures for PM2.5 mass concentrations and NO2 is an additional strength, allowing us to 

account for observed time trends in exposures to these pollutants which have decreased over 

the time periods studied in Objectives 2 and 3.26, 135  
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Nonetheless, the work has methodological limitations. Firstly, we were unable to 

accomplish all the goals of our field campaigns (which produced the exposure estimates used in 

all three objectives). We had originally planned to perform a winter sampling campaign in 

Toronto, as well as Montreal, to better characterize seasonal variability in both cities. However, 

when conducting the winter sampling in Montreal, an extreme cold weather event caused 

premature shutdown of monitors. As a result, we had to implement a second winter monitoring 

campaign in Montreal to prolong the exposure monitoring period; due to funding limitations, we 

were then unable to perform the winter sampling to assess the seasonal variability of PM2.5 

OP/ROS/ARM susceptibility in Toronto. This remains to be characterized in future studies. As a 

result, the exposures we assigned in Objectives 2 and 3 were from summer campaigns only and 

do not reflect the full seasonal variability of OP/ROS/ARM susceptibility. 

We would like to make note of instances where the work carried out deviated from the 

planned thesis work. Notably, although we initially had planned to use OP, ROS and magnetite 

exposure estimates generated from the land-use regression models in Objective 1 as the 

exposures assigned to individuals in Objectives 2 and 3, this was not done. Rather, we directly 

assigned observed values to the closest postal code. We were able to accomplish this due to our 

dense network of observed sites. This decision was made during discussions among the 

manuscript coauthors, with the rationale that the density of sampled sites was sufficient and 

that we could avoid introducing the error inherent in the land-use regression modelling process. 

There is evidence that using exposures estimated from land-use regression models can induce x 

and y error which is rarely accounted for in analyses of health outcomes;129, 130, 136 therefore, 

having the data, we opted to use the directly measured estimates instead.   



 170 

As in many epidemiologic studies of air pollution exposures, exposure measurement 

error also remains a concern in our studies. We were unable to back-cast estimates of PM2.5 OP, 

ROS, and ARM susceptibility due to a lack of historical data. Therefore, the estimates of 

OP/ROS/ARM susceptibility that were assigned to individuals were in many cases measured after 

follow-up had ended due to participants being censored or experiencing the health events of 

interest (i.e., cardiovascular mortality in Objective 2; brain tumour incidence in Objective 3). We 

assumed that spatial variations in the exposures we measured reflected past spatial variations 

(i.e., because the locations of important sources like major roads did not vary over the study 

period) during the etiologic time window in which participants were at risk of exposure effects; 

however, we were unable to test this assumption.  In addition, we assumed, as in previous 

studies,83, 89, 137 that the two-week integrated PM2.5 samples capture a sufficient time period to 

extrapolate observed spatial variations to long-term exposure contrasts, but it is possible that 

this assumption also contributed to exposure measurement error.  Finally, as exposures were 

assigned at the postal code level rather than the individual level, this likely contributed to 

Berkson-type exposure error which would tend to decrease the precision of estimated 

associations though it would not induce bias in the magnitude or direction of effects.138 Lastly, 

the residential postal codes assigned to individuals in the CanCHEC cohort rely on data from 

income tax records; for a small proportion of individuals, their residential tax filing address may 

not be associated with the primary place of residence (e.g., business address, tax preparer’s 

address, failure to update address with the Canada Revenue Agency, etc.).139 

 Additionally, the possibility of residual confounding remains. Although we adjusted for 

numerous potential confounding variables in Objectives 2 and 3, some of these were available 
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only at baseline and were not updated in a time-varying fashion (e.g., income quintile, 

occupational class, marital status, etc.). It is possible that these variables would change over 10 

years or more of follow-up, which means that our confounding control was imperfect and that 

some residual confounding remains after adjustment. Additionally, in Objective 3, it is possible 

that unmeasured confounders exist; the risk factors for brain cancer incidence are poorly 

understood, and there may exist in nature unknown confounders that were not included in our 

conceptual DAG. However, these unknown risk factors for brain cancer would also have to be 

associated with magnetite concentrations to confound our results.  

Potential for selection bias exists in Objectives 2 and 3. There are two major possible 

sources of selection bias: specifically, the study inclusion/exclusion criteria, and loss to follow-up. 

First, the cohort inclusion and exclusion criteria may be sources of selection bias. Although the 

CanCHEC cohort is based on the Canadian census, which has as its target population the 

Canadian population, nonetheless not all Canadians are represented; specifically, the 

institutionalized population is not sampled. Since CanCHEC represents a sample of the census 

respondents, it also excludes institutional residents. This is a potential source of selection bias if 

institutional residents differ from the non-institutionalized population in both their exposures 

and their outcomes.  Loss to follow-up could also be a source of selection bias if the loss to 

follow-up is a consequence of both exposure and outcome.140  In the CanCHEC data, individuals 

are lost to follow-up if they stop filing tax returns, at which point their residential location is no 

longer known. Individuals are also lost to follow-up if they move outside the Montreal/Toronto 

area, since we are unable to assign their exposures to PM2.5 OP/ROS/ARM susceptibility if they 

exit this study area as our exposure surfaces only exist for Montreal and Toronto. Some people 
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may be more likely to be lost to follow-up if they fail to file tax returns, which would make them 

more likely to be lost to follow-up relative to the rest of the population (e.g., people who are 

unhoused or unemployed may be in this category). If any of these factors that increases the 

likelihood of loss to follow-up is a consequence of both exposure (i.e., exposures to oxidant gases 

or magnetite nanoparticles) and study outcomes (i.e., cardiovascular mortality in objective 2, or 

brain cancer in objective 3), selection bias could result. 

6.3 Public Health Significance 
 

Outdoor air pollution is a major contributor to loss of life and loss of quality of life 

globally;141 in Canada, although concentrations of traditional pollutants like PM2.5 mass 

concentrations are relatively low, we still observe adverse health effects of outdoor air pollution. 

102-104, 142 This study of air pollution epidemiology moved beyond assessing exposures to 

traditional measures of PM2.5 mass concentrations. Specifically, my work contributes to our 

understanding of the spatial distribution of novel PM2.5 exposure measures that incorporate 

information on particle characteristics such as particle toxicity and composition. In addition, my 

work contributes to the assessment of the implications of these spatial variations in novel PM2.5 

exposure measures to the health of Canadians.  

Objective 1 is the most spatially dense description of spatial variability of PM2.5 oxidative 

potential and reactive oxygen species generation in Canadian cities, as well as the first ever 

description of PM2.5 ARM susceptibility. The surfaces we generated can be used in future 

epidemiologic studies or combined with new data to generate improved exposure estimates. 

Additionally, our data establishes a baseline which could be used to compare long-term temporal 
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trends in these measures as the existing fleet dominated by vehicles with internal combustion 

engines begins to transition into electric vehicles which may have a different emissions 

profile.143, 144 The fine-scale spatial variation we observed in these characteristics of PM2.5 toxicity 

and composition suggests that regulations that target specifically local sources may be an 

efficient means of reducing the health and economic impacts of pollutants. 

In Objective 2, we observed stronger associations between outdoor oxidant gas 

concentrations and cardiovascular mortality in areas within cities where particle oxidative 

potential was higher. Cardiovascular mortality is the leading cause of death worldwide as well as 

in Canada, and air pollution is an important modifiable risk factor.141, 145 OP measurements 

collected across a sufficient number of locations could be used to inform concentration-based 

interventions by highlighting regions where regulatory actions may be most efficient in reducing 

the public health impacts of PM2.5, OX and associated health care costs.12 Additionally, previous 

analysis demonstrated that focusing on PM2.5 mass concentration reductions in areas with higher 

particle oxidative potential may allow regulators to target mass-based interventions to achieve 

equivalent population health benefits at a lower cost (Figure 6.1).12 Our results suggest, similarly, 

that regulation that targets PM2.5 oxidative potential may reduce the health effects of oxidant 

gases; we observed stronger associations between oxidant gas concentrations and 

cardiovascular mortality in areas with higher oxidative potential. This finding is valuable since 

ozone in particular is difficult to regulate since it is not directly emitted but rather is formed as a 

secondary pollutant.31 As an example, reductions in NOX emissions during local lockdowns in 

response to the COVID-19 pandemic in Toronto in 2020 did not result in corresponding ozone 

reductions.146 Our results suggest that interventions that maximize reductions in particle 
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oxidative potential could reduce the public health impacts of exposures to oxidant gases even if 

concentrations of oxidant gases remain unchanged. The findings of Objective 2 contribute to 

emerging evidence that the strength of associations between oxidant gas concentrations and 

health outcomes depend on the toxicity of co-exposures to PM2.5,49 which may contribute to the 

observed spatial heterogeneity in health effects of NO2.147   
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Figure 6.1.  Population-standardized (per 1000 population) estimates of annual reductions in 

acute care inpatient costs for acute myocardial infarction across levels of PM2.5 oxidative 

potential (OPGSH) in 16 cities in Ontario, Canada. Figure adapted from Gao et al.12 
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Finally, Objective 3 investigated effects of PM2.5 ARM susceptibility, a surrogate measure 

of magnetite nanoparticle concentrations, on malignant primary brain tumour incidence. 

Malignant brain tumours are an important cause of morbidity and mortality due to their ability 

to cause severe disability148 or rapid mortality149 and the burden they place on healthcare 

systems.150 Incidence of primary malignant brain tumours appears to be increasing in Canada.151 

Since few modifiable risk factors for brain cancer have been identified, prevention remains 

difficult. Given the existing evidence that suggests an association between residential exposures 

to ultrafine particle concentrations and malignant brain tumour incidence,99 we had a plausible 

rationale for studying the effects of spatial variations in ARM susceptibility on brain tumour 

incidence. Although we did not identify a relationship, further investigation into the health 

effects of exposures to magnetite nanoparticles (e.g., a possible link with neurodegenerative 

disease76, 152) is merited based on existing toxicological evidence.79, 153 

 

6.4 Opportunities for Future Research 
 

There are several opportunities for future research related to the subjects explored in 

this thesis.  

Regarding Objective 1, the results of my PM2.5 measurement campaigns pertain to a short 

time window; future studies could build upon our results by confirming whether the spatial 

distributions in PM2.5 ROS, OP and ARM susceptibility we observed, as well as the relationships 

with land-use predictors, are consistent over time. Additionally, different modelling approaches 

could be used that do not require the availability of land-use predictors; for example, an 

increasing body of studies have used machine learning with images as inputs to predict pollutant 
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distributions with good results.154, 155 These approaches require a larger body of training data, 

but the data I collected could be integrated with future data to develop more advanced 

exposure models. Additionally, although we conducted a preliminary assessment of the seasonal 

variation of ROS/OP in Montreal, seasonal differences in spatial distributions and sources remain 

to be characterized in Toronto as well as in other cities.   

 Regarding Objective 2, additional studies should confirm the results we observed in 

different locations, since patterns may be city-specific rather than representing a broadly 

generalizable phenomenon. Identifying specific components  or sources that contribute to 

higher OP of outdoor PM2.5 is also important when setting future policy goals and defining 

regulatory interventions. Additionally, results could be confirmed using different data sources; 

for example, the Canadian Community Health Survey (CCHS) cohort has now been linked to 

detailed information on mortality from the Canadian Vital Statistics Deaths Database. The 

Canadian Community Health Survey is a cross-sectional, survey that collects data on health 

status and determinants of health for the Canadian population and is designed to provide data at 

the health region level every 2 years. Like CanCHEC, the CCHS has a large sample of respondents; 

unlike CanCHEC, it has the advantage of including individual-level data on a wider range of 

potential confounders related to personal lifestyle behaviours (i.e., body mass index, smoking, 

nutrition, and more.156 Although these lifestyle factors are unlikely to be strong confounders, as 

described above, results of my analyses in Objective 2 could be confirmed using this cohort to 

reduce the potential for residual confounding.  

 Regarding future research directions pertaining to Objective 3, we treated all malignant 

brain tumours as a single outcome, but it is plausible that specific tumour subtypes may be more 
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or less strongly associated with exposures to magnetite nanoparticles. The hazard ratios we 

estimated may underestimate the effect of magnetite nanoparticle exposures on some tumour 

subtypes, while overestimating the risk in others. However, we did not have sufficient power to 

discriminate by tumour type. Additionally, other measures of the magnetic properties of 

particles may be more relevant to health, and could be explored in future studies. As we 

discussed briefly in Objective 3, it may be more pertinent to focus future studies on magnetic 

parameters assessed in ultrafine particles, since these smaller particles have been shown to be 

associated with brain cancer incidence.99  

Future research focused on the environmental justice implications of the work presented 

in this thesis may be interesting. The work presented in this thesis involved a brief examination 

of the relevance of our findings to environmental justice. In Objective 1, we found that areas in 

Montreal with higher material deprivation (measured by the Material Deprivation Index) tended 

to have slightly higher concentrations of ROS and OPGSH, but not OPAA, but this relationship was 

weak and was not observed in Toronto. In Objective 2, we examined spatial distributions of co-

occurring high levels of redox-weighted oxidant gases and OP and noted that areas with higher 

levels of the CAN-Marg material deprivation and residential instability dimensions (but not the 

ethnic concentration and dependency dimensions) appeared to have a more harmful mixture of 

pollutants in terms of combined levels of OX and OP/ROS in Montreal, but not in Toronto; 

correlations were weakly or moderately positive. However, these findings are preliminary and a 

full analysis of the implications to environmental justice from our work was beyond the scope of 

this doctoral thesis.  



 179 

Lastly, our findings, particularly the stronger relationship we observed between oxidant 

gases and cardiovascular mortality in areas with higher oxidative potential, are interesting from 

the perspective of public health interventions. Although there is increasing evidence of the 

relative toxicity of different PM components/characteristics,157 as well as their associations with 

different health outcomes, there is not yet a consistent body of literature that can tell us which 

components/characteristics should be targeted with interventions.158 Although the work 

presented in this thesis contributes to the literature, more work is needed to identify clearly the 

sources and characteristics of PM2.5 that are of greatest public health importance. Nonetheless, 

we can discuss several potential interventions that could reduce the toxicity of particles or their 

associated public health impacts.   

First, e recommend development of a monitoring program that accounts for particle 

characteristics and toxicity such as oxidative potential would allow for better research studies of 

the effects of OP and other particle characteristics on health, as well as better understanding of 

how these particle characteristics and their sources vary over time. This richer data set could 

also allow source analysis using methods such as positive matrix factorization or principal 

components analysis to identify which sources may contribute most to particle toxicity. In 

addition, more extensive data on OP may strengthen the argument of where to target general 

reductions in PM2.5 mass concentration. 

In some cases, the expected health effects of PM2.5 exposures (and therefore the 

expected benefits of reductions in PM2.5 mass concentration) could vary between locations and 

particle oxidative potential may allow regulators to target mass-based interventions to achieve 

the greatest benefits to the health of the population for the lowest cost.12 Several potential 

interventions exist to reduce general PM2.5 mass concentrations. For example, the  infiltration  of 

outdoor particulate matter into indoor environments can be modified by changes to air 

exchange and building  design; this pathway to reducing exposures to PM could be especially 

helpful in areas near major sources of particles of elevated toxicity (i.e., possible major roadways 

and intersections as well as industrial areas).159 Land-use decisions can also be informed by 

known particulate sources: for example, avoiding the siting of residences, schools, and hospitals 

near major traffic arteries.159 Another possible intervention on a local scale is the introduction of 
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low-emissions or ultra low-emissions zones, which have been piloted in several cities to reduce 

the emissions from vehicular traffic.160 Analysis  of  the  effectiveness  of  regulations  and  air  

quality  management  actions  to reduce  air  pollution  and  its  associated  health impacts  is  an  

active  area  of  research161 and a full discussion of these interventions may be important in 

future research. 

 

Nonetheless, the brief examination of environmental justice performed in this thesis may 

inform promising directions for future research. Our findings in Objective 1 suggest that the 

measures of PM2.5 toxicity we studied vary highly spatially within cities, likely in response to local 

sources. A useful direction for future research would be to conduct studies that identify emission 

sources associated with elevated levels of these characteristics. This would allow identification of 

potential interventions. Additionally, studies that link emission sources, rather than simply 

ambient concentrations, to outcomes, as in Thakrar et al., are an important step toward 

identifying promising strategies for improving public health by reducing air pollution.162 Our 

findings in Objective 2 suggest that the effects of oxidant gases on health may be stronger in 

areas where PM2.5 toxicity is higher. Existing evidence suggests that local-scale variation in the 

quality of the air to which populations are exposed could contribute to disparities in health. For 

example, non-white people in North America are more exposed to disproportionately high PM2.5 

mass concentrations relative to whites overall163 and in urban areas.164 Further, research 

indicates that such racial-ethnic disparities in PM2.5 exposure are more effectively addressed by 

targeting local sources in contrast to standard regulatory emission-reduction approaches.165, 166 

The focus on local exposure variations in this thesis is potentially relevant to environmental 



 181 

justice concerns. This is important because inequalities in air pollution exposures with respect to 

ethnicity167 and socioeconomic status94, 167, 168  have been identified in Montreal and Toronto.   

6.5 Conclusion 
 

In conclusion, this dissertation described within-city spatial variations in several emerging 

measures of PM2.5 toxicity and composition (Objective 1), demonstrated an apparent 

modification of the effect of oxidant gases on cardiovascular mortality by particle oxidative 

potential (Objective 2), and found no effect of PM2.5 ARM susceptibility (a measure of magnetite 

nanoparticles) on brain cancer incidence (Objective 3). Through focusing on within-city spatial 

variations in PM2.5 toxicity and composition, this dissertation aimed to provide an improved 

understanding of particulate air pollution in the Canadian urban environment and provides 

useful directions for future work that may clarify future environmental policy.   
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