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Abstract

To help us understand some of the fascinating properties emerging from real-world networks

such as social networks and the world wide web, we study graphs that are constructed with

simple rules involving some degree of randomness, i.e., random graphs. The field of random

graph theory, although much younger than some other fields such as number theory and

topology, contains a wealth of deep and interesting results, as well as an an ever growing

number of constructive methods for generating random graphs. Despite this huge number of

constructive methods, many of the results in random graph theory tell us information about

just a few graphs with very simple constructions.

In this thesis, we study constructive models for random graphs that are slight variations

of some of the most well known and well understood models. The benefit here is that we

may pull from the vast sea of existing results on the simpler models to help us prove results

on the more complicated models.

The first process for generating random graphs that we study is a variation of the Erdős-

Rényi process [37]. The modification comes in the form of forbidding connections between

special vertices that refuse to connect to one another. We show that if the number of special

vertices in this construction is above a certain threshold, then with high probability no linear-

sized connected components will emerge by the end of the graph’s construction. Together

with a result from Logan, Molloy and Pra lat [53], our result establishes the existence of a

phase transition in the behaviour of the component sizes.

The second random graph process that we study is a modification of the configuration

model. The configuration model attempts to construct a uniformly random element of Gd
where Gd is the set of simple graphs with degree sequence d. Although the configuration

model does not always succeed in building a simple graph, it is known that, under certain

conditions on d, results for the configuration model translate to results for uniform elements

of Gd. In a similar fashion, we present a model that attempts to construct uniform elements

from the set of simple tree-rooted graphs with degree sequence d. Similar to the configuration
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model, we show that results for our model translate to results for uniform elements of simple

tree-rooted graphs. We then use this translation property to prove that the sequence of

rooted trees emerging from a sequence of uniform simple tree-rooted graphs with a growing

number of vertices, after rescaling, converges in distribution to the Brownian continuum

random tree.

Lastly, we take an alternative approach to the concept of using simple graphs to help

construct more complicated graphs. Specifically, given a weighted graph (g, w) and an arbi-

trary connected spanning subgraph h of g, we present an algorithm that transforms h into

a minimum-weight spanning tree of g via a series of local optimizations. We show that,

starting from the complete graph with independent Uniform[0, 1] edge weights, we can with

high probability transform a connected spanning subgraph into a minimum-weight spanning

tree while only ever changing subgraphs with total weight bounded by 1 + ϵ, and that such

a transformation is with high probability impossible if we change the bound to 1− ϵ.
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Abrégé

Pour nous aider à comprendre certaines des propriétés fascinantes qui émergent dans les

réseaux du monde réel, tels que les réseaux sociaux et le web, nous étudions des graphes

construits à partir de règles simples impliquant un certain degré d’aléa, c’est-à-dire des

graphes aléatoires. Le domaine de la théorie des graphes aléatoires, bien que beaucoup plus

jeune que certains autres domaines tels que la théorie des nombres et la topologie, contient

une multitude de résultats fondamentaux et fascinants, ainsi qu’un nombre toujours croissant

de méthodes de construction pour générer de tels graphes aléatoires. Cependant, malgré ce

nombre croissant de méthodes constructives, de nombreux résultats de la théorie des graphes

aléatoires se limitent souvent aux quelques graphes ayant des constructions très simples.

Dans cette thèse, nous développons et étudions de nouveaux modèles constructifs pour

les graphes aléatoires obtenus après avoir légèrement modifié les modèles les plus connus

et les mieux compris. L’avantage ici est que nous pouvons puiser dans la vaste étendue de

résultats existants sur ces modèles plus simples afin de nous aider à prouver des résultats

sur les modèles plus complexes.

Le premier processus de génération de graphes aléatoires que nous étudions est une vari-

ante du processus Erdős-Rényi [37]. La modification se présente sous la forme de connexions

interdites entre un ensemble de sommets spécifiques, qui refusent donc de se connecter les

uns aux autres. Nous montrons que si le nombre de sommets spécifiques dans cette construc-

tion est supérieur à un certain seuil, alors, avec une forte probabilité, aucune composante

connexe de taille linéaire n’émergera lors de la construction du graphe. Combiné avec un

résultat de Logan, Molloy et Pra lat [53], nous établissons l’existence d’une transition de

phase concernant la taille des composantes.

Le deuxième graphe aléatoire que nous étudions est une modification du modèle de con-

figuration. Le modèle de configuration tente de construire aléatoirement un élément uni-

formément choisi dans Gd, où Gd est l’ensemble des graphes simples dont les degrés sont

donnés par d. Bien que le modèle de configuration ne réussisse pas toujours à construire un
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tel graphe simple, il est connu que, sous certaines conditions sur d, les résultats du modèle

de configuration sont intimement liés aux éléments uniformes de Gd. Partant de cette obser-

vation, nous présentons un modèle qui essaye de construire des éléments uniformes à partir

de l’ensemble de graphes arborescents simples avec une séquence de degrés d. Semblable

au modèle de configuration, nous montrons que les résultats de notre modèle sont liés aux

éléments uniformes de graphes arborescents simples. Nous utilisons ensuite cette propriété

pour prouver que la séquence d’arbres enracinés émergeant d’une séquence de graphes ar-

borescents simples uniformes avec un nombre croissant de sommets converge en distribution

vers l’arbre brownien (sous condition de renormalization adéquate).

Pour finir, nous adoptons une approche alternative au concept d’utilisation de graphes

simples pour aider à construire des graphes plus complexes. Plus précisément, étant donné

un graphe pondéré (g, w) et un sous-graphe couvrant arbitraire h de g, nous présentons un

algorithme qui transforme h en l’arbre couvrant minimal de g via une série d’optimisations

locales. Nous montrons qu’à partir du graphe complet pondéré par des variables Uniform[0, 1]

indépendantes, nous pouvons avec une forte probabilité transformer un sous-graphe couvrant

connexe en un arbre couvrant de poids minimal tout en ne changeant que des sous-graphes

avec un poids total borné par 1 + ϵ, et qu’une telle transformation est impossible avec une

forte probabilité si nous changeons la borne en 1− ϵ.
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Chapter 1

Introduction

Networks are one of the most fundamental structures in nature. Some examples of networks

are family trees, city bus routes, social networks, and ecosystems. As our population increases

and we progress through the age of technology, understanding the structure of real-world

networks becomes more and more important. The irony is that, with an increased population

and more advanced technology, some of the most important networks are becoming much

larger and more difficult to access. To see this phenomanon, consider the network consisting

of websites and hyperlinks between websites. This is a well known network called the web

graph. In [15], Albert, Jeong, and Barabasi explain that (a) understanding the structure of

this network helps us locate information on the world wide web, and (b) it is impossible to

reproduce this network in its entirety as its size is expanding at an uncontrollable rate.

To help us understand the structure of real-world networks, we study random graphs. A

random graph is a collection of vertices and edges that is constructed with some element

of randomness (typically involving the edges). The randomness in a graph’s construction

exists as a proxy for the unpredictable behaviour of whatever entities might make up a

network. However, this behaviour is sometimes incredibly nuanced. For example, how could

a randomly constructed graph account for a city bus avoiding a certain road because of

potholes? Although the structure of real-world networks is multi-variable by nature, we can

study networks through the lens of mean-field theory [23]. In brief, mean-field theory takes

the perspective that by averaging over all of the factors that contribute to a system (in our

case a network), we can use a much simpler structure to model the system. Although we

will lose some information about the underlying network, studying a simpler random model

can still give us meaningful insight into the network’s structure.

In the three papers that make up this thesis, we take existing random graph models with
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very simple constructions and we use them as the foundations for slightly more complex

models.

Before continuing, I will take a moment to go over some important definitions and nota-

tion used throughout this thesis.

� A graph g = (v(g), e(g)) is a set of vertices v(g) and a set of edges e(g) between

elements of v(g). We typically write v(g) and e(g) for the respective vertex set and

edge set of g. We denote an edge between vertices u and v by uv or by vu, and we

consider edges to be unordered unless otherwise specified.

� A multigraph is a graph g in which we allow self-loops and multiple instances of the

same edge. In contrast, g is a simple graph if there are no self-loops and there is at

most one edge between any pair of distinct vertices. Unless otherwise specified, we

always assume that graphs are simple.

� For n ∈ N we write [n] := {1, . . . , n}. The set [n] will frequently be the vertex set of a

graph.

� For a graph g, a subgraph of g is any graph h with v(h) ⊆ v(g) and e(h) ⊆ e(g). We

say that h is an induced subgraph of g if e(h) contains every edge in e(g) with both

endpoints in v(h). We say that h is a spanning subgraph of g if v(h) = v(g). We say

that h is a spanning tree of g if h is a spanning subgraph of g that is also a tree.

� For a graph g and a vertex v ∈ v(g), the degree of v in g is the number of endpoints

of edges incident to v in e(g); note that self-loops add 2 to the degree. We write dg(v)

for the degree of v in g and, given some ordering (v1, . . . , vn) of the vertices, we write

(dg(v1), . . . , dg(vn)) for the degree sequence of g with vertex ordering (v1, . . . , vn). A

sequence (d1, . . . , dn) is a degree sequence if it the degree sequence of some graph g.

� Given a sequence of events (An, n ≥ 1), we say that An occurs with high probability if

P {An} → 1 as n→∞.

Dating back to 1959, the most well studied and well understood process for generating

random graphs is the Erdős-Rényi process [37]. Let Kn be the complete graph with vertex

set v(Kn) = [n] and edge set e(Kn) =
{
ij, 1 ≤ i < j ≤ n

}
, and let X : e(Kn)→ [0, 1] be the

random weight function with X(e) ∼ Uniform[0, 1], independently for all e ∈ e(Kn). Next,

for all 0 ≤ p ≤ 1 let G(n, p) be the graph with vertex set [n] and edge set {e ∈ e(Kn) :

X(e) ≤ p}. Then G(n, p) is an Erdős-Rényi graph on vertex set [n] with parameter p, and
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(
G(n, p), 0 ≤ p ≤ 1

)
is a continuous time Erdős-Rényi process. The Erdős-Rényi graph is

arguably the simplest random graph model, and its structure is well-understood. The Erdős-

Rényi process is the building block for the model studied in Chapter 2, and the particular

Erdős-Rényi graph G(n, 1) (i.e., the complete graph with independent Uniform[0, 1] edge

weights) is the building block for the model studied in Chapter 4.

Another well known and well studied random graph process is the configuration model.

As motivation for the model, suppose we wish to understand the typical structure of graphs

with a fixed degree sequence. More specifically, let d = (d1, . . . , dn) be a degree sequence and

let Gd be the set of simple graphs with vertex set [n] and degree sequence d. What does a

“typical” graph in Gd look like? The configuration model construction is a sort of brute force

attempt at answering this question. We start the construction with a set of vertices [n] and

no edges. Then, for all i ∈ [n] endow vertex i with di half-edges. Next, recursively choose

two distinct half-edges uniformly at random from the set of pairs of remaining half-edges

and join them to form an edge. Once all half-edges have been paired, the resulting random

graph is an instance of the configuration model with vertex set [n] and degree sequence d;

we denote it by CMn(d). The configuration model does not always yield an element of Gd,

though. In fact, the construction can result in a graph with loops and multi-edges, i.e., a

multigraph. However, it is straightforward to show that, conditionally given that CMn(d)

is simple, then CMn(d) is a uniformly random element of Gd. Thus, if the probability that

CMn(d) is simple is not too small, then we can prove results about the distribution of Gd by

proving corresponding results about CMn(d). The configuration model is the building block

for the model studied in Chapter 3.

1.1 Competitive networks

Suppose a select few people in a community are running for mayor. Then a network can

be formed by considering people as vertices and by creating edges between two vertices

if the corresponding two people vote for the same mayoral candidate. Assuming mayoral

candidates always vote for themselves, this graph is simply a collection of disjoint cliques, one

for each candidate. However, the distribution of the clique sizes is precisely what determines

the outcome of the election. We would therefore like to understand how these cliques are

formed and how their sizes compare to one another.

In Chapter 2 we study a model for competitive networks that was first introduced by

Logan, Molloy, and Pra lat in [53]. Consider a modified version of the Erdős-Rényi process,
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written as (G(n, k, p), 0 ≤ p ≤ 1), where we do not allow any paths between vertices in

[k]. More specifically, let m =
(
n
2

)
, let e1, . . . , em be the order in which the edges are added

during the Erdős-Rényi process (G(n, p), 0 ≤ p ≤ 1), let p0 = 0, and write pi = X(ei) for

1 ≤ i ≤ m. Then the process (G(n, k, p), 0 ≤ p ≤ 1) can be defined as follows. Starting

from G(n, k, p0) = G(n, 0), which is the empty graph on vertex set [n], inductively for

0 ≤ i <
(
n
2

)
, construct G(n, k, pi+1) from G(n, k, pi) by setting G(n, k, pi+1) = G(n, k, pi)

if e(G(n, k, pi)) ∪ {ei+1} contains a path joining two vertices in [k], and otherwise setting

v(G(n, k, pi+1)) = v(G(n, k, pi)) = [n] and e(G(n, k, pi+1)) = e(G(n, k, pi)) ∪ {ei+1}. In

either case, set G(n, k, p) = G(n, k, pi) for pi ≤ p < pi+1 and set G(n, k, p) = G(n, k, pm)

for pm ≤ p ≤ 1. We justify calling this a modified Erdős-Rényi process by noting that

the processes (G(n, p), 0 ≤ p ≤ 1) and (G(n, 1, p), 0 ≤ p ≤ 1) are identical. In general,

(G(n, p), 0 ≤ p ≤ 1) and (G(n, k, p), 0 ≤ p ≤ 1) add the same edges in the same order,

except that the latter process refuses to add edges that would create paths between vertices

in [k]. Informally, we can think of contacts between the n voters happening in a uniformly

random order, with each voter making the same decision about who to vote for as the first

person they speak to.

The following is a slightly modified but equivalent version of the main result from Chap-

ter 2.

Theorem (Theorem 2.1.1). Fix positive integers (k(n), n ≥ 1), and for n ≥ 1 let Mn be the

size of the largest component of G(n, k(n), 1).

� If k(n)/n1/3 → 0 then Mn/n→ 1 in probability.

� If k(n)/n1/3 →∞ then Mn/n→ 0 in probability.

Logan, Molloy and Pra lat proved one half of this result: if k(n)/n1/3 → 0 then Mn/n→ 1

in probability. In our paper we prove the other half, and together the two halves establish

the existence of a phase transition in the behaviour of Mn around k(n) ≍ n1/3.

The first step in understanding the growth of the largest component in (G(n, k(n), p), 0 ≤
p ≤ 1) is understanding the growth of the largest component in (G(n, p), 0 ≤ p ≤ 1). Luckily

for us, Erdős and Rényi give a description of this growth in [38], and Béla Bollobás improves

on this description in [30]. Together they show that, almost surely,

1. If pn < 1 then the size of the largest component of G(n, p) is O(log n) ,

2. if pn = 1 then the size of the largest component of G(n, p) is Θ(n2/3) , and
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3. if pn > 1 then the size of the largest component of G(n, p) is Θ(n).

The second step in understanding the growth is comparing the processes (G(n, p), 0 ≤
p ≤ 1) and (G(n, k, p), 0 ≤ p ≤ 1). When the two processes are coupled as described before

the statement of Theorem 2.1.1, it is straightforward to show that G(n, k, p) is a subgraph

of G(n, p). Furthermore, if H is a connected component of G(n, p) and v(H) ∩ [k] = ℓ, then

the subgraph of G(n, k, p) induced by v(H) has precisely ℓ components, each containing

exactly one vertex in v(H) ∩ [k]. Informally, the components of G(n, p) get “chopped up”

in G(n, k, p), and the amount of chopping a component receives depends on the number of

vertices from [k] in said component.

We now state a simplified version of Proposition 2.2.1, a key input to the proof of Theorem

2.1.1.

Proposition (Proposition 2.2.1). Fix positive integers (k(n), n ≥ 1) with k(n) ∈ [n] and

k(n)/n1/3 → ∞. Next, let Mn,1/n(k(n)) be the size of the largest connected component of

G(n, k(n), 1/n). Then Mn,1/n(k(n))/n2/3 → 0 in probability.

Informally, this proposition says that the components of size Θ(n2/3) in G(n, 1/n) are

chopped into o(n2/3)-sized pieces in G(n, k(n), 1/n). At a high level, Proposition 2.2.1 is

a consequence of there being roughly k(n)n−1/3 ≫ 1 vertices from [k] in a component of

G(n, 1/n) of size Θ(n2/3). However, the proof of Proposition 2.2.1 is very involved and the

bulk of Chapter 2 is dedicated to proving it.

To prove Theorem 2.1.1, we combine Proposition 2.2.1 with some existing results by

Addario-Berry, Broutin, Goldschmidt and Miermont in [10], by Addario-Berry and Sen in

[14], and by Aldous in [18], which together tell us that, for k(n)/n1/3 → ∞, with high

probability none of the components in G(n, k(n), 1/n) are able to grow into a component of

size Θ(n) by the end of the process (G(n, k(n), p, 0 ≤ p ≤ 1)).

1.2 Tree-weighted graphs

Recall that, for a degree sequence d = (d1, . . . , dn), Gd is the set of simple graphs with degree

sequence d. Suppose that we want to sample from Gd but we want to ensure that our sampled

graph is connected. One strategy is to sample uniformly at random from the set of pairs

(g, t) where g ∈ Gd and t is a spanning tree of g. By sampling this way, the probability of

choosing g ∈ Gd is proportional to the number of spanning trees in g, and in particular the

probability of choosing a disconnected graph is 0. A natural question then arises: If (G, T )
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is sampled in this way, then what is the distribution of T? This is precisely the question we

tackle in Chapter 3.

In Chapter 3 we study tree-rooted graphs. A tree-rooted graph is a triple (g, t, γ) where g

is a connected graph, t is a spanning tree of g, and γ = uv is a distinguished oriented edge in

e(g)\e(t); we view t as a rooted tree with root u. We say (g, t, γ) is simple if g is simple. We

call a triple (G, T,Γ) sampled uniformly at random from the set of simple tree-rooted graphs

with degree sequence d a random simple tree-weighted graph with degree sequence d. Note

that if (G, T,Γ) is sampled in this way and (G′, T ′) is sampled as in the previous paragraph,

then G
d
= G′ and T

d
= T ′ (as non-rooted trees) since the number of options for Γ is constant

with respect to d. We include the oriented edge because the main result in Chapter 3 relies

on a combinatorial construction which is most naturally seen as building tree-rooted graphs.

Given a graph g and a constant c > 0, write cg for the measured metric space (v(g), dist, π)

whose points are elements of v(g), with dist(x, y) equalling c times the graph distance be-

tween vertices x and y, and with π the uniform measure on v(g). The following is a simplified

and slightly informal statement of the main result from Chapter 3.

Theorem (Theorem 3.1.1). For each n ≥ 1 let dn = (dn(i), 1 ≤ i ≤ n) be a degree sequence

and let (Gn, Tn,Γn) be a random simple tree-weighted graph with degree sequence dn. Then,

under certain convergence conditions on the sequence of degree sequences (dn, n ≥ 1), there

exists a constant σ such that
σ

n1/2
Tn

d→ T

as n → ∞ with respect to the Gromov-Hausdorff-Prokhorov topology, where T is the Brow-

nian continuum random tree.

Some insight for the necessary conditions on (dn, n ≥ 1) is given throughout the remainder

of this section.

The Brownian continuum random tree, sometimes referred to as the Aldous’ continuum

random tree or simply as the continuum random tree, was presented by David Aldous in

[16] and is described, in his words, “as the set-representation of some (Platonic) continuum

random tree” [16, page 10]. Notably, Aldous shows that if Tn is chosen uniformly at random

from the set of nn−2 trees on [n], then by letting 1 be the root of Tn, a Θ(n−1/2) rescaling

of Tn converges in distribution, with respect to the Gromov-Hausdorff-Prokhorov topology,

to the continuum random tree. (In fact, Aldous proved this result in a different topology; it

was proved for convergence relative to the Gromov-Hausdorff-Prokhorov topology by Jean-

François Le Gall in [50].)
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The Gromov-Hausdorff-Prokhorov topology is discussed thoroughly by Abraham, Delmas

and Hoscheit in [1]. In summary, a sequence ((Xn, dn, µn), n ≥ 1) of (deterministic) measured

metric spaces converges to a limit (X∞, d∞, µ∞) in the Gromov-Hausdorff-Prokhorov sense

if there exists a metric space (Z,D) and a sequence of maps (fn : Xn → Z, 1 ≤ n ≤ ∞) with

Yn :=
(
fn(Xn), D

∣∣
fn(Xn)

)
isometric to (Xn, dn) for all n, such that distHaus(Yn, Y∞) → 0 as

n→∞, and such that the push-forwards νn := f ∗
n(µn), defined by f ∗

n(µn)(A) = µn(f−1
n (A))

for all measurable A ⊆ Z, satisfy distProk(νn, ν∞)→ 0 as n→∞, where distHaus and distProk

are the Hausdorff distance and Prokhorov distance respectively. A sequence of random

measured metric spaces (Mn, n ≥ 1) converges in distribution to some limit M∞ in the

Gromov-Hausdorff-Prokhorov sense if there is a coupling (M ′
n, 1 ≤ n ≤ ∞) of (Mn, 1 ≤ n ≤

∞) such that distGHP(M ′
n(ω),M ′

∞(ω))→ 0 for almost every ω ∈ Ω, as n→∞.

To prove Theorem 3.1.1, we apply a result from Broutin and Marckert [33]. For a rooted

tree t on vertex set [n], let ct(u) be the number of children of vertex u in t. Then ct =

(ct(i), 1 ≤ i ≤ n) is called the child sequence of t. Broutin and Marckert’s result states

(roughly) that if (cn, n ≥ 1) is a sequence of child sequences and, for all n ≥ 1, Tn is chosen

uniformly at random from the set of rooted trees with n vertices and child sequence cn,

then under certain convergence conditions on (cn, n ≥ 1), there exists a constant σ such

that σn−1/2Tn
d→ T as n → ∞, in the Gromov-Hausdorff-Prokhorov sense, where T is

the Brownian continuum random tree. Thanks to Broutin and Marckert’s result, our main

result now boils down to (a) showing that the spanning trees in random simple tree-weighted

graphs are uniformly random trees conditioned on their child sequences, and (b) determining

the conditions under which the child sequences of these spanning trees satisfy the conditions

needed to apply the result of Broutin and Marckert; the convergence conditions on (dn, n ≥ 1)

stated in Theorem 3.1.1 exist, in part, to help prove (b).

To study the child sequences of tree-weighted graphs, we first need a way to construct

these graphs. Our construction procedure is inspired by two well known processes: Pitman’s

additive coalescent [64] and the configuration model. Starting with Pitman’s additive coa-

lescent, this is a Markov process starting from a set of masses (xi, i ≥ 1) with
∑

i≥1 xi = 1

where we repeatedly merge two masses xi and xj into a single mass xi + xj at rate xi + xj.

We use a new version of Pitman’s additive coalescent as the first part of our construction

process, as follows:

1. Given a degree sequence d = (d1, . . . , dn), start with a graph with vertex set [n] and

no edges. Then, for each i ∈ [n], endow vertex i with di half-edges, one of which is

distinguished as the root half-edge.
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2. Repeatedly until the graph is connected, choose an unpaired root half-edge and an

unpaired non-root half-edge, ensuring that the chosen half-edges do not belong to the

same tree but otherwise uniformly at random, and pair them to form an edge.

Figure 3.1 gives an example of this pairing process with the degree sequence (4, 4, 3, 1).

Assuming that di ≥ 1 for 1 ≤ i ≤ n and that
∑

i∈[n] di ≥ 2(n − 1), This process always

yields a tree, and each vertex of the tree is endowed with a random number of remaining

unpaired half-edges; there is exactly one vertex for which one of the unpaired half-edges is

a root half-edge. This brings us to the second part of the construction process, which is a

configuration model on the remaining half-edges. Repeatedly, until there are no unpaired

half-edges, choose a pair of unpaired half-edges uniformly at random and pair them to create

an edge. Together, these two parts yield a graph G with degree sequence d, a spanning tree

T given by the first part of the construction, and a distinguished oriented edge Γ = UV

given by the unpaired root half-edge that becomes paired during the second part of the

construction; we consider U to be the vertex containing the root half-edge. We call a triple

(G, T,Γ) constructed in this way a random tree-weighted graph with degree sequence d, and

we show that if G is a simple graph then (G, T,Γ) is a random simple tree-weighted graph

with degree sequence d, justifying the similar name.

The majority of Chapter 3 is dedicated to proving two results. Let (dn, n ≥ 1) be a

sequence of degree sequences that satisfies the convergence conditions in Theorem 3.1.1 and,

for each n ≥ 1, let (Gn, Tn,Γn) be a random tree-weighted graph with degree sequence dn.

Firstly, we prove that the child sequences (cn, n ≥ 1) corresponding to (Tn, n ≥ 1) satisfy

the conditions required for Broutin and Marckert’s result with high probability. Secondly,

we prove, under our conditions on the degree sequences, that the probability of Gn being a

simple graph asymptotically approaches a strictly positive constant. This second result tells

us that conditioning on Gn being simple has an asymptotically negligible effect on the law

of Tn. Thus, similar to how results on the configuration model can be used to prove results

for uniform samples from Gdn , we can use the results on random tree-weighted graphs to get

results for random simple tree-weighted graphs.

1.3 Minimum-weight spanning trees

Given a graph g, a weight function w : e(g) → [0,∞), and a subgraph h ⊆ g, write

w(h) =
∑

e∈e(h) w(e) for the weight of h. Then a minimum-weight spanning tree of (g, w) is

a spanning tree t ⊆ g such that w(t) ≤ w(t′) for all spanning trees t′ ⊆ g. Minimum-weight
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spanning trees have been the focus of many works in the fields of graph theory, combinatorics

and optimization. Dating back to 1926, Otakar Bor̊uvka presented the first algorithm for

finding minimum weight spanning trees [31]. Although this was a ground-breaking result

for the field of combinatorial optimization, Bor̊uvka’s algorithm is somewhat involved, and

simpler algorithms have since been discovered.

The two most famous algorithms for finding minimum weight spanning trees are Kruskal’s

algorithm [49] and Prim’s algorithm [65]. Let (g, w) be a weighted connected graph with n

vertices and m edges and let (e1, . . . , em) be an ordering of e(g) such that, for all 1 ≤ i < m,

w(ei) ≤ w(ei+1). Then Kruskal’s algorithm works as follows.

1. Let h0 ⊂ g be the spanning subgraph of g with no edges.

2. For 0 ≤ i < m, construct hi+1 from hi as follows. If e(hi) ∪ {ei+1} contains a cycle,

then set hi+1 = hi. Otherwise, set v(hi+1) = v(hi) and set e(hi+1) = e(hi) ∪ {ei+1}.

3. Return hm.

Likewise, Prim’s algorithm (started from a given vertex v ∈ v(g)) works as follows.

1. Let h0 ⊆ g be the subgraph of g consisting of a single vertex v and no edges.

2. Given hi for 0 ≤ i < n− 1, let e be the lowest-weight edge with one endpoint in v(hi)

and the other endpoint in v(g) \ v(hi). Let u be the endpoint of e in v(g) \ v(hi) and

construct hi+1 from hi by setting v(hi+1) = v(hi)∪{u} and setting e(hi+1) = e(hi)∪{e}.

3. Return hn−1.

In both cases, the returned graph is indeed the minimum weight spanning tree of (g, w).

Kruskal’s algorithm and Prim’s algorithm are excellent algorithms for finding minimum

weight spanning trees due to their simplicity. However, one major draw back to both algo-

rithms is that at every step we must compare the weights of a potentially large number of

edges. In particular, Kruskal’s algorithm requires us to compare the weights of every edge

in the graph during the first step. A motivating question for chapter 4 is then: can we find

minimum weight spanning trees without requiring global information at every step?

In Chapter 4, we take a different approach to the idea of using simple graphs as building

blocks for more complex graphs. Specifically, we take some initial spanning subgraph and

morph it into a minimum-weight spanning tree by performing a series of “local” changes to

the initial subgraph. Let g be a graph, let w : e(g) → [0,∞) be injective, and let h be a
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connected spanning subgraph of g (we want w to be injective as this ensures that there is

only one minimum weight spanning tree). For a set S ⊆ v(g), write h[S] for the graph with

vertex set S and edge set {uv ∈ e(h) : u, v ∈ S}. Next, define an optimization function

Φg(h, S) as follows. If h[S] is not connected, then set Φg(h, S) = h. Otherwise, construct

Φg(h, S) from h by removing the edge set e(h[S]) and replacing it with the edge set of the

minimum weight spanning tree of g[S]. Now given a connected spanning subgraph h and a

sequence of vertex sets S = (Si, 1 ≤ i ≤ m), define a corresponding sequence of spanning

subgraphs (h0, . . . , hm) by setting h0 = h and inductively setting hi+1 = Φg(hi, Si+1) for

0 ≤ i < m. If hm is the minimum weight spanning tree of g, then we call S an MST sequence

for the pair ((g, w), h). Finally, define the weight of the sequence S, written wt(S), as

wt(S) = max
0≤i<m

{
w(hi[Si+1])

}
.

We are interested in finding MST sequences with low weight. Without such a constraint,

finding MST sequences is trivial: given the pair ((g, w), h) we could simply find the minimum-

weight spanning tree of (g, w) by choosing the MST sequence S = (v(g)). However, in this

case wt(S) = w(h) is likely very large, and computing our optimization function in this

case requires the same amount of information as Kruskal’s algorithm performed on the same

initialization (g, w). On the other hand, if we can find an MST sequence S with wt(S) much

smaller than w(h) then our optimization function will only ever modify low-weight subgraphs

and, if wt(S) is very small, we will be able to obtain the minimum weight spanning tree

without requiring “global” information at any step.

Recall that Kn is the complete graph on vertex set [n] and X : e(Kn) → [0, 1] is the

random weight function with X(e) ∼ Uniform[0, 1], independently for all e ∈ e(Kn). The

main result of Chapter 4 is a slightly modified version of the following theorem.

Theorem (Theorem 4.1.1). Fix a sequence (Hn, n ≥ 1) of connected graphs with Hn being

a spanning subgraph of Kn. Then for any ϵ > 0, as n→∞,

1. with high probability there exists an MST sequence S for ((Kn,X), Hn) with wt(S) ≤
1 + ϵ, and

2. there exists δ > 0 such that with high probability, given any sequence S = (S1, . . . , Sm)

for ((Kn,X), Hn) with wt(S) < 1 − ϵ, the final spanning subgraph Hn,m has weight

w(Hn,m) ≥ δnw(T ) where T is the minimum weight spanning tree of (Kn,X).

The first statement in this result tells us that we can start from a connected spanning
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subgraph Hn of Kn and apply a series of optimizations to Hn and eventually obtain the

minimum weight spanning tree of (Kn,X). Moreover, assuming Hn was not chosen by a

malicious adversary, then with high probability we need only change pieces of Hn with

weight at most 1 + ϵ.

Proving the second statement in Theorem 4.1.1 is easy since Hn almost surely contains

linearly many edges with weight greater than 1 − ϵ. Proving the first statement is much

harder and is the bulk of Chapter 4. We show the existence of an MST sequence in two

steps. In step one, we describe a sequence that can transform a spanning subgraph H

containing a minimum-weight spanning tree on k vertices into a subgraph H ′ containing a

minimum-weight spanning tree on k + 1 vertices. We call this transformation the eating

algorithm, and it can be applied iteratively to yield the minimum-weight spanning tree of

(Kn,X). However, we require an initial value of k that is quite large in order to ensure

that the largest weight of a subgraph considered by the eating algorithm is small with high

probability. Thus, in step two we use an easy Ramsey-type argument to show that every

graph contains a large subgraph that is either a path, a star, or a complete graph. We then

give a detailed description of how to construct a low-weight MST sequence starting from

each of these three initial subgraphs. Thus, we have a way to transform a large subgraph

of Hn into a minimum weight spanning tree, after which we can apply the eating algorithm

iteratively until we output the minimum-weight spanning tree of (Kn,X).

I would like to note that our methods are not entirely constructive, and we do not claim

to out-perform Kruskal’s algorithm with respect to time complexity.
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Chapter 2

Multi-Source Invasion Percolation on

the Complete Graph

2.1 Introduction

Fix a locally finite weighted graph G = (v(G), e(G),w) such that w : e(G) → (0,∞) is

injective. The invasion percolation process on G works as follows.

� Fix a finite starting set S ⊆ v(G), and let S0 = S.

� For 1 ≤ i < |v(G)| + 1 − |S|, let ei ∈ E be the smallest-weight edge from Si−1 to the

rest of the graph. That is, ei = uv minimizes

{we : e = uv, u ∈ Si−1, v ̸∈ Si−1}.

� Let vi = v, and set Si = Si−1 ∪ {vi}.

Write F (G,S) = (v(F (G,S)), e(F (G,S))) for the subgraph of G with vertex set S ∪{vi, 0 ≤
i < |v(G)| + 1 − |S|} and edge set {ei, 1 ≤ i < |v(G) + 1 − |S|}. Since each edge added

by invasion percolation connects to a vertex not incident to any previous edge, the result

F (G,S) of the invasion percolation is a forest with |S| connected components, in which each

of the elements of S lies in a distinct connected component of FS .

Invasion percolation was introduced in [34], and independently (with a slightly different

formulation, using vertex rather than edge weights) in [70]. The latter paper, which coined

the term “invasion percolation”, considered the process on 2- and 3-dimensional lattice rect-
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angles, with the starting set given by the vertices of one boundary side (or boundary face),

and with independent random Uniform[0, 1] weights.

The behaviour of invasion percolation with random weights is known to be closely linked

to that of critical percolation on the corresponding graph, and indeed, invasion percolation

is one of the simplest examples of self-organized criticality in random systems [66].

Invasion percolation has been extensively studied in the probability and statistical physics

communities: on lattices [36, 42, 62, 67, 71], on trees [13, 21, 22, 57, 63], and in the mean-

field or general graph setting [2, 19, 42, 55, 61]. However, past work has almost exclusively

focussed on invasion percolation run from a single starting vertex.

The purpose of this paper is to study mean-field invasion percolation run from starting

sets of variable sizes. We establish a phase transition in the structure of the resulting forest,

depending on the size of the starting set. Write Kn = ([n],
(
[n]
2

)
,U) for the randomly-weighted

complete graph, with vertex set [n] := {1, . . . , n}, edge set
(
[n]
2

)
:= {e ⊂ [n] : |e| = 2}, and

independent Uniform[0, 1] edge weights U = {U(e), e ∈
(
[n]
2

)
}.

Theorem 2.1.1. Fix positive integers (k(n), n ≥ 1), and for n ≥ 1 let Mn be the size of the

largest connected component of F (Kn, [k(n)]).

� If k(n)/n1/3 → 0 then Mn/n→ 1 in probability.

� If k(n)/n1/3 →∞ then Mn/n→ 0 in probability.

Remarks.

⋆ By the symmetries of the model, the starting set [k(n)] could be replaced by any other set

S(n) of size k(n) and the same result would hold.

⋆ The first assertion of the theorem, that if k(n)/n1/3 → 0 then Mn/n → 1 in probability,

was proved in [53]. That work also proved that Mn/n → 0 in probability provided that

k(n)/(n1/3(log n)4/3(log log n)1/3) → ∞, and provided more quantitative upper bounds on

Mn for such values of k(n). Thus, the main contribution of this work is to pin down the

location of the phase transition in the behaviour of Mn to k(n) of order precisely n1/3.

⋆ We conjecture that if k(n)/n1/3 → c ∈ R then Mn/n converges in distribution to a non-

degenerate limit M∞(c). More strongly, we make the following conjecture. Write Ln,i for the

size of the i’th largest connected component of F (Kn, [k(n)]), with Ln,i = 0 if F (Kn, [k(n)])

has fewer than i connected components. For each c ∈ R there exists a random vector

(L∞,i(c), i ≥ 1) taking values in the set ∆↓
∞ = {(ℓi, i ≥ 1) ∈ (0, 1)N :

∑
i≥1 ℓi = 1}, such

that if k(n)/n1/3 → c then (Ln,i/n, i ≥ 1)
d→ (L∞,i(c)) in the sense of finite-dimensional

distributions.
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2.1.1 Overview of the rest of the paper

In Section 2.2, we explain several useful connections between invasion percolation, critical

percolation, and minimum spanning trees. We then use these connections to prove The-

orem 2.1.1, modulo a key input to the proof. This key input, Proposition 2.2.1, roughly

states the following. In the case that k(n)/n1/3 → ∞, if we run the multi-source invasion

percolation process for n/2 + O(n2/3) steps, then the size of the largest tree is with high

probability much smaller than the size of the largest component in an Erdős–Rényi random

graph process run for the same number of steps (which precisely builds a critical Erdős–Rényi

random graph).

The proof of Proposition 2.2.1, which occupies the bulk of the paper, appears in Sec-

tion 2.3. It makes use of the connections between invasion percolation and critical percola-

tion, and the fact that the components of the critical Erdős–Rényi random graph are with

high probability treelike, to reduce the analysis to that of a fragmentation process on large

random binary trees.

Finally, Section 2.4 proposes some future research directions suggested by the current

work.

2.2 A sketch proof of Theorem 2.1.1.

2.2.1 Invasion percolation, Prim’s algorithm, and Kruskal’s algo-

rithm

Suppose that G = (v(G), e(G),w) is a finite graph. If S = {v} consists of a single vertex

v ∈ v(G), then invasion percolation is equivalent to Prim’s algorithm [65] started from v,

and F (G,S) is thus the minimum-weight spanning tree (MST) of the weighted graph G. If

S consists of more than one vertex, the invasion percolation process can still be viewed as

a form of Prim’s algorithm, as follows. Augment G by adding a new vertex ρ and edges

from ρ to all elements of S. Fix 0 < ϵ < min(we, e ∈ e(G)) and augment w by giving the

edges {ρx, x ∈ S} each a distinct weight less than ϵ. Write G′
S = (v(G′

S), e(G′
S),w′) for the

augmented graph. Then invasion percolation on G′
S with starting set {ρ} will first add edges

{ρx, x ∈ S}, and will then add the same edges as invasion percolation on G with starting

set S, in the same order. It follows that the subgraph of F (G′
S , ρ) obtained by removing ρ

and its incident edges is precisely F (G,S).

In the setting of finite graphs, an alternative construction of F (G,S) is given by Kruskal’s
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algorithm [49], which works as follows. Write m = |e(G)| and list the edges of G in increasing

order of weight as e(1), . . . , e(m). Let F0 = FG,S
0 = (v(G), ∅). Then, for 1 ≤ i ≤ m:

� If e(i) = u(i)v(i) joins distinct connected components of Fi−1, and u(i) and v(i) do

not both lie in components containing elements of S, then set Fi = Fi−1 + e(i) :=

(v(Fi−1), e(Fi−1) ∪ {e(i)}).

� Otherwise, set Fi = Fi−1.

The output of Kruskal’s algorithm is the forest Fm = FG,S
m . To see that Fm = F (G,S), it

suffices to consider running Kruskal’s algorithm on the augmented graph G′
S defined above.

The result is the MST of G′
S , and is therefore equal to F (G′

S , {ρ}). However, Kruskal’s

algorithm run on G′
S and {ρ} will begin by adding the edges ρx for x ∈ S, since these edges

have lower weight than all other edges in G′
S . Once these edges are added, the vertices of

S all lie in a single connected component, so the remaining steps of Kruskal’s algorithm run

on G′
S and {ρ} add the same edges as Kruskal’s algorithm run on G and S, in the same

order. It follows that Fm can be obtained from F (G′
S , {ρ}) by removing ρ and its incident

edges. We saw using Prim’s algorithm that performing this operation to F (G′
S , {ρ}) yields

F (G,S), and so indeed FG,S
m = F (G,S).

It will be useful that the above construction couples the processes (FG,S
i , 0 ≤ i ≤ m) for

different starting sets S: if S ′ ⊂ S then FG,S
i is a subgraph of FG,S′

i for all 0 ≤ i ≤ m. More

specifically, suppose that S = S ′∪{z} for some fixed z ∈ v(G)\S ′. Let v ∈ S ′ be the unique

element of S ′ in the same component of FG,S′
m as z, and let e(j) be the largest-weight edge

on the path from v to z in FG,S′
m . Then

FG,S
i =

FG,S′

i if i < j

FG,S′

i − e(j) if i ≥ j .
(2.1)

2.2.2 Kruskal’s algorithm and the Erdős–Rényi process

There is a second useful coupling, between (FG,S
i , 0 ≤ i ≤ m) and a graph process which

does not forbid cycles but maintains the condition that vertices in the starting set S are not

allowed to join the same connected component. The restricted process, which we call the

Erdős–Rényi process and denote (Gi, 0 ≤ i ≤ m) = (GS
i , 0 ≤ i ≤ m), works as follows. List

the edges of G in increasing order of edge weight as (e(i), 0 ≤ i ≤ m). For 1 ≤ i ≤ m, if

the edge e(i) joins connected components of Gi−1 containing distinct elements of S then set
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Gi = Gi−1 = ([n], e(Gi−1)); otherwise, set Gi = Gi−1 + e(i). The final graph Gm consists of

|S| connected components, each containing exactly one of the vertices of S.

The orderings of edges in Kruskal’s algorithm and in the Erdős–Rényi process are iden-

tical. Moreover, if the same starting set S is used for both processes, then the only edges

which are added by the Erdős–Rényi process but not by Kruskal’s algorithm join vertices

which already lie in the same connected component. It follows that FG,S
i and GS

i have the

same connected components for all 1 ≤ i ≤ m. (More strongly, for each connected compo-

nent C of GS
i , the corresponding component of FG,S

i is the minimum weight spanning tree

of C.) In particular, this yields that the size of the largest connected component is the same

in F (G,S) and in GS
m.

To justify the name “Erdős–Rényi process”, note that if G = Kn is the randomly-weighted

complete graph and |S| = 1, then (GS
i , 0 ≤ i ≤ m) = (GS

i , 0 ≤ i ≤
(
n
2

)
) is precisely the

classical Erdős–Rényi random graph process, in which the edges of the complete graph are

added one-at-a-time in exchangeable random order.

2.2.3 The critical random graph and the proof of Theorem 2.1.1

We now specialize to the setting of this paper, the randomly-weighted complete graph Kn.

It is useful to continuize both the Erdős–Rényi process and Kruskal’s algorithm; write

(G(n,S, p), 0 ≤ p ≤ 1) for the random graph process in which G(n,S, p) has vertex set

[n] and edge set {
e ∈ e

(
KS

n,(n
2)

)
: Ue ≤ p

}
,

and (F (n,S, p), 0 ≤ p ≤ 1) for the process in which F (n,S, p) has vertex set [n] and edge

set {
e ∈ e

(
FKn,S

(n
2)

)
: Ue ≤ p

}
.

The continuous-time processes add the same edges as the discrete processes, and in the same

order. More strongly, G(n,S, Ue(i)) = KS
n,i for all 1 ≤ i ≤

(
n
2

)
, and (G(n,S, p), 0 ≤ p ≤ 1) is

constant except at times (Ui, 1 ≤ i ≤
(
n
2

)
); the corresponding relation holds for the discrete-

and continuous-time Kruskal processes.

When |S| = 1 we omit S from the notation, writing, e.g., G(n, p) rather than G(n,S, p),

as in this case the processes do not in fact depend on S. Note that F (n, 1) is then the MST

of Kn.

The relation (2.1) implies that for any p ∈ (0, 1) and S ⊂ [n], the connected components

of F (n,S, p) refine those of F (n, p), in that for any component C of F (n, p) the vertex set of
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Figure 2.1: Left: An instantiation of F (n, 1) with F 1(n, pn,λ) drawn in blue. Right: the
forest obtained from F (n, 1) by removing the edges of F 1(n, pn,λ). On the right the tree T n

v,λ

is highlighted.

C may be written as a union of the vertex sets of components of F (n,S, p). Since F (n,S, p)

and G(n,S, p) have the same components for all S ⊂ [n] and p ∈ [0, 1], the same fact holds

for G(n,S, p) and G(n, p).

The heart of the proof that Mn/n → 0 in probability when k(n)/n1/3 → ∞ consists in

establishing that in the critical window of the Erdős-Rényi process, when p = 1/n+O(1/n4/3),

the connected components of F (n, [k(n)], p) all have size o(n2/3) with high probability. For

λ ∈ R, write

pn,λ = 1/n + λ/n4/3 .

Proposition 2.2.1. Fix positive integers (k(n), n ≥ 1) with k(n) ∈ [n] and k(n)/n1/3 →
∞. Next, fix λ ∈ R, and let Mn,λ(k(n)) be the size of the largest connected component of

F (n, [k(n)], pn,λ). Then Mn,λ(k(n))/n2/3 → 0 in probability.

The proof of Proposition 2.2.1 appears in Section 2.3. To prove Theorem 2.1.1, we

combine this proposition with the following two pre-existing results about the structure of

the minimum spanning tree of Kn. For p ∈ [0, 1], write F 1(n, p) for the largest connected

component of F (n, p), with ties broken uniformly at random. Fix λ ∈ R, and consider

the forest obtained from the minimum spanning tree, F (n, 1), by removing the edges of

F 1(n, pn,λ). For each vertex v of F 1(n, pn,λ), write T n
v,λ for the tree of this forest containing

v; see Figure 2.1. Let qvn,λ = |T n
v,λ|/n be the proportion of vertices of F (n, 1) lying in T n

v,λ.

Proposition 2.2.2 ([10], Lemma 4.11). Write ∆n
λ = max(qvn,λ, v ∈ F 1(n, pn,λ)). Then for

all δ > 0,

lim
λ→∞

lim sup
n→∞

P {∆n
λ > δ} = 0 .
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Next, let

Fn,λ := σ
(
U(e)1[U(e)≤pn,λ], e ∈ e(Kn)

)
= σ

(
U(e)1[e∈e(G(n,pn,λ))], e ∈ e(Kn)

)
be the σ-algebra containing all information about the weights of edges in G(n, pn,λ).

Proposition 2.2.3 ([14], Lemma 6.19). For every λ ∈ R, conditionally given Fn,λ, the

collection of random variables (qvn,λ, v ∈ F 1(n, pn,λ)) is exchangeable.

The exchangeability in [14, Lemma 6.19] is stated conditionally given G(n, pn,λ), rather

than given Fn,λ. In other words, in [14] the conditioning is only on the graph structure of

G(n, pn,λ), but not on the weights of its edges. However, an essentially identical proof to

that given in [14] establishes the slightly stronger statement above.

We also require a fact about concentration of exchangeable random sums, which is a

consequence of a result of Aldous [18].

Proposition 2.2.4 ([18], Theorem 20.7). For all ϵ > 0 there exists δ > 0 such that the

following holds. Let (qi, 1 ≤ i ≤ m) be non-negative real numbers with
∑

1≤i≤m qi = 1, and

let (π(i), 1 ≤ i ≤ m) be a uniformly random permutation of [m]. If max1≤i≤m qi ≤ δ then

P

{
max
1≤i≤m

∣∣∣∣∣
i∑

j=1

(
qπ(j) −

1

m

)∣∣∣∣∣ > ϵ

}
< ϵ .

See [28, Lemma 7.5] and [27, Lemma 4.9] for quantitative versions of this result. Propo-

sition 2.2.4 is the last fact we need for the proof of our main result.

Proof of Theorem 2.1.1. As noted just after the statement of Theorem 2.1.1, the fact that

Mn/n → 1 in probability when k(n)/n1/3 → 0 was proved in [53], so we need only handle

the other assertion of the theorem. For the remainder of the proof we therefore assume that

k(n)/n1/3 →∞.

A result of  Luczak [52, Theorem 3 ii.] implies that if p = pn satisfies that pn = (1+o(1))/n

and n4/3(pn−1/n)→∞, then the largest component of G(n, pn) has size (2+o(1))(n2pn−n)

in probability. Since the components of G(n, pn) and of F (n, pn) are identical, recalling

that pn,λ = 1/n + λ/n4/3, it follows that if λ = λ(n) → ∞ with λ(n) = o(n1/3), then

|F 1(n, pn,λ(n))|/(n2/3λ(n)) → 2 in probability. By a subsubsequence argument, this implies

that for all δ > 0,

lim
λ→∞

lim sup
n→∞

P
{
|F 1(n, pn,λ)|/(n2/3λ(n)) < 2− δ

}
= 0. (2.2)
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Fix ϵ ∈ (0, 1). Then fix δ ∈ (0, ϵ/2) small enough that Proposition 2.2.4 holds for this ϵ

and δ, then let λ be large enough that for all n sufficiently large,

P
{
|F 1(n, pn,λ)|/n2/3 ≤ 1

}
< ϵ (2.3)

and

P {∆n
λ ≥ δ} < ϵ . (2.4)

This is possible by (2.2) and by Proposition 2.2.2. Since λ is fixed, by Proposition 2.2.1, we

also have that

P
{
Mn,λ(k(n))/n2/3 ≥ δ

}
< ϵ (2.5)

for n sufficiently large.

List the connected components of F (n, [k(n)], pn,λ) contained in F 1(n, pn,λ) as C1
n,λ, . . . ,

CK
n,λ; here K is a random variable. These components are subtrees of F 1(n, pn,λ), and their

vertex sets partition v(F 1(n, pn,λ)). Note that, writing Sn,λ = [k(n)] ∩ v(F 1(n, pn,λ)), then

each of C1
n,λ, . . . , C

K
n,λ contains exactly one vertex of Sn,λ.

We now consider the restricted process (F (n,Sn,λ, p), 0 ≤ p ≤ 1). Due to the relation

(2.1), the only edges added in the Kruskal process (F (n, p), 0 ≤ p ≤ 1) which are not added

in the restricted process (F (n,Sn,λ, p), 0 ≤ p ≤ 1) are the edges of F 1(n, pn,λ) which join

distinct components C1
n,λ, . . . , C

K
n,λ, and these edges are already present in F (n, pn,λ). It

follows that for each 1 ≤ i ≤ K, the connected component of F (n,Sn,λ, 1) containing Ci
n,λ is

precisely the union of the trees {T n
v,λ, v ∈ v(Ci

n,λ)}. On the other hand, since Sn,λ ⊂ [k(n)],

the components of F (n, [k(n)], 1) partition the components of F (n,Sn,λ, 1), and so

Mn = max(|C| : C is a component of F (n, [k(n)], 1))

≤ max(|C| : C is a component of F (n, Sn,λ, 1)) = max
1≤i≤K

∑
v∈Ci

n,λ

|T n
v,λ| .

Write mn = |F 1(n, pn,λ)|, then list the vertices of F 1(n, pn,λ) as v1, . . . , vmn so that for

each 1 ≤ i ≤ K, the vertices of Ci
n,λ appear consecutively — as

v|C1
n,λ|+...+|Ci−1

n,λ |+1, . . . , v|C1
n,λ|+...+|Ci

n,λ| ,

say. Necessarily max(|Ci
n,λ|, 1 ≤ i ≤ K) ≤ Mn,λ(k(n)), so on the event that Mn,λ(k(n)) ≤
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δn2/3 and |F 1(n, pn,λ)| = mn ≥ n2/3, we then have

Mn

n
≤ max

( ℓ∑
j=i

q
vj
n,λ, 1 ≤ i < ℓ ≤ mn, ℓ− i < δmn

)
.

Therefore, on this event, if Mn/n ≥ 3ϵ then we may find i and ℓ as above so that

ℓ∑
j=i

(
q
vj
n,λ −

1

mn

)
=
( ℓ∑

j=i

q
vj
n,λ

)
− ℓ− i

mn

≥ 3ϵ− δ > 2ϵ ,

so either
∑i

j=1(q
vj
n,λ − 1/mn) < −ϵ or

∑ℓ
j=1(q

vj
n,λ − 1/mn) > ϵ. It follows that

P {Mn ≥ 3ϵn} ≤ P
{
Mn,λ(k(n)) > δn2/3

}
+ P

{
|F 1(n, pn,λ)| < n2/3

}
+ P

{
max

1≤i≤mn

∣∣∣ i∑
j=1

(
q
vj
n,λ −

1

mn

)∣∣∣ > ϵ

}

< 2ϵ + P

{
max

1≤i≤mn

∣∣∣ i∑
j=1

(
q
vj
n,λ −

1

mn

)∣∣∣ > ϵ

}
, (2.6)

where in the final line we have used (2.3) and (2.5). To bound the third probability we write

P

{
max

1≤i≤mn

∣∣∣ i∑
j=1

(
q
vj
n,λ −

1

mn

)∣∣∣ > ϵ

}

= E

(
P

{
max

1≤i≤mn

∣∣∣ i∑
j=1

(
q
vj
n,λ −

1

mn

)∣∣∣ > ϵ
∣∣∣ Fn,λ

})

= E

(
P

{
max

1≤i≤mn

∣∣∣ i∑
j=1

(
q
vπ(j)

n,λ −
1

mn

)∣∣∣ > ϵ
∣∣∣ Fn,λ

})
,

where conditionally given Fn,λ, π is a uniformly random permutation of mn independent of

the values (qvin,λ, 1 ≤ i ≤ mn). The second equality holds as conditionally given Fn,λ the

random variables (qvin,λ, 1 ≤ i ≤ mn) are exchangeable, due to Proposition 2.2.3.
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Recall that ∆n
λ := max(qvn,λ, v ∈ F 1(n, pn,λ)); then by Proposition 2.2.4 we have

P

{
max

1≤i≤mn

∣∣∣ i∑
j=1

(
q
vπ(j)

n,λ −
1

mn

)∣∣∣ > ϵ | Fn,λ

}

≤ P {∆n
λ ≥ δ | Fn,λ}+ P

{
max

1≤i≤mn

∣∣∣ i∑
j=1

(
q
vπ(j)

n,λ −
1

mn

)∣∣∣ > ϵ | Fn,λ,∆
n
λ ≤ δ

}
≤ P {∆n

λ ≥ δ | Fn,λ}+ ϵ ,

so it follows that

P

{
max

1≤i≤mn

∣∣∣ i∑
j=1

(
q
vj
n,λ −

1

mn

)∣∣∣ > ϵ

}
≤ ϵ + E (P {∆n

λ ≥ δ | Fn,λ})

= ϵ + P {∆n
λ ≥ δ} < 2ϵ ,

the last inequality holding by (2.4). Combining this bound with (2.6), it follows that

P {Mn ≥ 3ϵn} < 4ϵ; since ϵ > 0 was arbitrary, this implies that Mn/n → 0 in probabil-

ity, as required.

2.3 Proof of Proposition 2.2.1.

Our proof of Proposition 2.2.1 has three steps. In the first step, we show that it suffices to

prove that all components of F (n, [k(n)], pn,λ) contained in the largest O(1) components of

F (n, pn,λ) have size o(n2/3) in probability. This essentially boils down to the application of

well-known facts about the structure of the critical random graph. In the second step we

analyze the couplings presented above, between Kruskal’s algorithm with different starting

sets S and between Kruskal’s algorithm and the Erdős-Rényi process. This analysis provides

us with a tool for understanding how, distributionally, a given component C of F (n, pn,λ) is

partitioned into pieces in F (n, [k(n)], pn,λ), depending on the number of elements of C∩[k(n)].

In the third step, which occupies most of the rest of the paper, we use the result of the

analysis of the couplings to show that the largest connected components of F (n, pn,λ) are

indeed partitioned into pieces of size o(n2/3) in F (n, [k(n)], pn,λ), with high probability.
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2.3.1 Step 1: reducing to the study of large components.

For p ∈ [0, 1], list the components of F (n, p) in decreasing order of size as (F i(n, p), i ≥ 1),

with ties broken uniformly at random. (The point of breaking ties this way is so that

v(F i(n, p)) is a uniformly random subset of [n] conditional on its size.) Then for λ ∈ R
and S ⊂ [n], write M i

n,λ(S) for the size of the largest connected component of F (n,S, pn,λ)

contained in F i(n, pn,λ). If S = [k(n)] we write M i
n,λ(k(n)) instead of M i

n,λ([k(n)])

In this section, we show how Proposition 2.2.1 is a consequence of the following result.

Proposition 2.3.1. Fix λ ∈ R and i ∈ N. If k(n)/n1/3 →∞ then M i
n,λ(k(n))/n2/3 → 0 in

probability.

Proof of Proposition 2.2.1. Fix ϵ > 0.

By [17, Corollary 2], there is j = j(ϵ) ∈ N such that for all n ∈ N,

P
{

max(|F ℓ(n, pn,λ)|, ℓ > j) > ϵn2/3
}
< ϵ .

Since M ℓ(n, pn,λ)(k(n)) ≤ |F ℓ(n, pn,λ)|, it follows that for this value of j,

P
{
Mn,λ(k(n)) ≥ ϵn2/3

}
≤ P

{
max
1≤ℓ≤j

M ℓ
n,λ(k(n)) > ϵn2/3

}
+ P

{
max(|F ℓ(n, pn,λ)|, ℓ > j) > ϵn2/3

}
≤ ϵ +

∑
1≤ℓ≤j

P
{
M ℓ

n,λ(k(n)) > ϵn2/3
}

≤ 2ϵ

for n sufficiently large, the last bound holding due to Proposition 2.3.1. Since ϵ > 0 was

arbitrary, this proves Proposition 2.2.1.

2.3.2 Step 2: composing the couplings

It is useful to briefly return to the setting of a deterministic connected graph G = (v(G), e(G),

w). Fix a starting set S ⊂ v(G), and list edges of G in increasing order of weight as

e(1), . . . , e(m). Using the couplings of FG,S
i and FG,∅

i , on the one hand, and of Fi and Gi, on

the other hand, allows us to construct FG,S
m via a path-and-cycle-breaking process starting

from G. Recall the definition of the augmented graph G′
S from Section 2.2.1, which is formed

from G by adding a vertex ρ which is joined to the vertices of S by edges of very low weight.
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Then an edge e(i) is added to Gi but not to FG,∅
i if and only if it lies on a cycle of Gi, which

occurs if and only if it is the largest-weight edge on a cycle in G. the edge e(i) is added to

FG,∅
i but not FG,S

i if and only if it is the largest-weight edge on a cycle in G′
S , which occurs

if and only if there are distinct vertices u, v ∈ S such that e(i) lies on a path from u to v

in Gi (in which case e(i) is the largest-weight edge on such a path). It follows that we may

recover FG,S
m from G as follows.

� Let H0 = G.

� For 0 ≤ i < m, if either

(a) e(m− i) lies on a cycle of Hi, or

(b) there exist distinct vertices u, v ∈ S such that e(m − i) lies on a path from u to

v in Hi,

then set Hi+1 = Hi − e(m− i); otherwise set Hi+1 = Hi.

The final graph Hm is precisely FG,S
m . This path-and-cycle-breaking construction of FG,S

m

has the following immediate consequence in the setting of exchangeable edge weights.

Fact 2.3.2 (Path-and-cycle-breaking). Let G = (v(G), e(G),w) be a connected graph with

exchangeable, almost surely distinct edge weights. Fix S ⊂ v(G) and an ordering e =

(e1, . . . , em) of e(G). Generate a subgraph F of G as follows.

1. Let H0 = G.

2. For 0 ≤ i < m, if ei lies on a cycle in Hi or ei lies on a path in Hi between distinct

vertices of S, then set Hi+1 = Hi − ei; otherwise set Hi+1 = Hi.

3. Set F = Hm.

If the ordering e is exchangeable then F is distributed as FG,S
m .

We call the above process path-and-cycle-breaking on G with starting set S and edge

ordering e, and refer to F as the outcome of the process. (The edge weights w are not

used in the process, but they are used in defining FG,S
m .) Most of our analysis will end up

focussing on the case that G is in fact a tree; in this case path-and-cycle-breaking process

clearly never breaks cycles, and we simply refer to it as a path-breaking process.

We shall use the path-and-cycle-breaking process to understand how the components of

F (n, [k(n)], pn,λ) partition those of G(n, pn,λ). Suppose that C is a connected component of
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G(n, pn,λ). Let N = |v(C)| and let S = |e(C)| − |v(C)| + 1 be the surplus of C. Let C ′ be

obtained from C by relabeling the vertices of C in increasing order as 1, . . . , N . Then C ′ is

uniformly distributed over connected graphs with vertex set [N ] and surplus S, and its edge

weights are exchangeable. In view of these facts, the value of the next proposition should be

rather clear.

Proposition 2.3.3. For all ϵ > 0 and any non-negative integer s, there exists integer r > 0

such that the following holds. For q ≥ 1, let Gq be uniformly distributed over the set of

connected graphs with vertex set [q] and surplus s. For q ≥ r let Fq = Fq(r, e) be the outcome

of the path-and-cycle-breaking process on Gq with starting set [r] and an exchangeable random

ordering e = (e1, . . . , em) of e(Gq). Then for all q sufficiently large,

E (max(|C| : C is a component of Fq)) ≤ ϵq .

This proposition has the following consequence. Fix non-negative integers s and (r(q), q ≥
1) with r(q) ≤ q and with r(q) → ∞ as q → ∞. Let Gq be as in Proposition 2.3.3, and

let Fq be the outcome of the path-and-cycle-breaking process on Gq with starting set [r(q)]

and an exchangeable random ordering e = (e1, . . . , em) of e(Gq). Then Proposition 2.3.3 and

Markov’s inequality together imply that for any ϵ > 0,

q−1E (max(|C| : C is a component of Fq))→ 0 (2.7)

as q →∞.

We prove Proposition 2.3.3 in Section 2.3.3, below; before doing so, we use it (or in fact

its consequence, (2.7)) to prove Proposition 2.3.1.

Proof of Proposition 2.3.1. Fix λ ∈ R and i ∈ N. Write Gi(n, pn,λ) for the component of

Gi(n, pn,λ) spanned by F i(n, pn,λ).

Let Q = Q(n) = |v(Gi(n, pn,λ))| = |v(F i(n, pn,λ))|, let R = R(n) = |v(Gi(n, pn,λ)∩[k(n)]|,
and let S = S(n) = |e(Gi(n, pn,λ))| − |v(Gi(n, pn,λ)|+ 1 be the surplus of Gi(n, pn,λ).

We will use in the course of the proof that S(n) converges in distribution to an almost

surely finite limit, and that n−2/3|F i(n, pn,λ)| = n−2/3|Gi(n, pn,λ)| converges in distribution

to an almost surely finite, strictly positive limit; these facts appear in [17, Folk Theorem 1

and Corollary 2].

Conditionally given Q(n), the vertex set v(Gi(n, pn,λ)) is a uniformly random size-Q(n)

subset of [n]. The last convergence in distribution referenced in the previous paragraph (and

35



in particular the fact that the limit is almost surely strictly positive) implies that for any ϵ > 0

there exists δ > 0 such that P
{
Q(n) ≥ δn2/3

}
> 1 − ϵ. Since k(n)/n1/3 → ∞, this implies

that k(n)Q(n)/n → ∞ in probability. Since v(F i(n, pn,λ)) is a uniformly random subset

of [n] conditional on its size, it then follows by standard concentration results for sampling

without replacement that R(n) → ∞ in probability. Moreover, for any fixed s ∈ N, by

[17, Corollary 2] we have lim infn→∞P {S(n) = s} > 0, Since Q(n) and R(n) both tend to

infinity in probability, it follows that Q(n) and R(n) still tend to infinity in probability on

the event that S(n) = s, in the sense that for any x > 0,

P {Q(n) > x,R(n) > x | S(n) = s} → 1

as n→∞.

Next, recall that

M i
n,λ(k(n))

:= max(|C| : C a conn. comp. of F (n, [k(n)], pn,λ) contained in F i(n, pn,λ))

and write M i
n,λ = M i

n,λ(k(n)) for succinctness. Conditionally given Q(n), R(n) and S(n), the

random variable M i
n,λ has the same distribution as max(|C| : C is a component of FQ(n)),

where FQ(n) is the outcome of the path-and-cycle breaking process on GQ(n) with starting set

R(n). By the exchangeability of the vertex labels, this distribution is unchanged if rather

than R(n) we use the starting set [|R(n)|] = {1, . . . , |R(n)|}. It then follows from (2.7) and

Markov’s inequality that for any ϵ > 0,

P
{
M i

n,λ > ϵ|F i(n, pn,λ)| | S(n) = s
}

= P
{
Q(n)−1M i

n,λ > ϵ | S(n) = s
}

→ 0 ,

as n → ∞. Moreover, since S(n) converges in distribution to an almost surely finite limit,

it follows that for all ϵ > 0 there is s0 such that for n sufficiently large, P {S(n) > s0} < ϵ.

Combined with the preceding bound, this yields that for any ϵ > 0,

lim sup
n→∞

P
{
M i

n,λ > ϵ|F i(n, pn,λ)|
}

≤ lim sup
n→∞

max
1≤s≤s0

P
{
Q(n)−1M i

n,λ > ϵ | S(n) = s
}

+ lim sup
n→∞

P {S(n) > s0}

≤ ϵ .
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It follows that M i
n,λ/|F i(n, pn,λ)| → 0 in probability. Since |F i(n, pn,λ)|/n−2/3 converges in

distribution to an almost surely finite limit, this implies that M i
n,λ/n

2/3 → 0 in probability,

as required.

2.3.3 Step 3: partitioning a component

The goal of this section is to prove Proposition 2.3.3. We first prove the proposition for the

special case s = 0, in which case Gq is a uniformly random tree with vertex set q, and the

path-and-cycle-breaking process is simply a path-breaking process. We may restate the case

s = 0 of Proposition 2.3.3 as follows.

Proposition 2.3.4. For all ϵ > 0, there exists r > 0 such that the following holds. For q ≥ 1,

let Tq be uniformly distributed over the set of trees with vertex set [q]. Let Fq = Fq(r, e) be the

outcome of the path-breaking process on Tq with starting set [r] and an exchangeable random

ordering e = (e1, . . . , eq−1) of e(Tq). Then for all q sufficiently large,

E (max(|C| : C is a component of Fq)) ≤ ϵq .

In Section 2.3.3.1 we prove Proposition 2.3.4, establishing the case s = 0 of Proposi-

tion 2.3.3. We then use Proposition 2.3.4 to handle the cases when s ≥ 1, completing the

proof of Proposition 2.3.3, in Section 2.3.3.2.

For what follows it is useful to introduce the notation u
G←→ v to mean that there exists

a path from u to v in graph G (i.e., u and v are vertices of G lying in the same connected

component of G).

2.3.3.1 Proof of Proposition 2.3.4.

For q ≥ 1, let Tq be uniformly distributed over the set of trees with vertex set [q]. Let Fq be

the outcome of the path-breaking process on Tq with starting set [r] and an exchangeable

random ordering e = (e1, . . . , eq−1) of e(Tq). Then, for independent, uniformly random
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vertices X, Y ∈u [q],

P
{
X

Fq←→ Y
}

= E
(
P
{
X

Fq←→ Y
∣∣∣ Fq

})
= E

 ∑
C is a component of Fq

|v(C)|2

q2


≥ E

(
max(|v(C)| : C is a component of Fq)

2

q2

)
≥ E (max(|v(C)| : C is a component of Fq))

2

q2
. (2.8)

We thus analyze the probability that independent samples X, Y ∈u [q] are connected in

Fq. For the bulk of the analysis, it is in fact useful to instead consider U,W sampled

uniformly without replacement, from the set {r+1, . . . , q}. Since P {X = Y }+P {X ∈ [r]}+
P {Y ∈ [r]} → 0 as q → ∞, the error term this adds to the above bound is asymptotically

negligible.

For a tree t and a set S ⊆ v(t), write t⟨S⟩ for the smallest subtree of t containing S.

Lemma 2.3.5. Fix q ≥ r + 2, let U,W be sampled uniformly without replacement from

{r + 1, . . . , q}, let Mq = |e(Tq⟨{U,W} ∪ [r]⟩)|, and let (ei1 , . . . , eiMq
) be the restriction of

the exchangeable random ordering e to e(Tq⟨{U,W} ∪ [r]⟩). Then U
Fq←→ W if and only if

U
F ′
q←→ W where F ′

q is the outcome of the path-breaking process on Tq⟨{U,W} ∪ [r]⟩ with
starting set [r] and edge ordering (ei1 , . . . , eiMq

).

Proof. For i ̸∈ {i1, . . . , iMq}, the edge ei does not lie on a path between any pair of ele-

ments of [r], so is not removed by the path-breaking process on Tq with starting set [r]

and edge ordering (e1, . . . , eq−1). It follows (by induction) that the path-breaking process

on Tq⟨{U,W} ∪ [r]⟩ with starting set [r] and edge ordering (ei1 , . . . , eiMq
) removes the same

edges, in the same order, as the previously mentioned path-breaking process on Tq. Hence,

F ′
q = Fq⟨{U,W} ∪ [r]⟩ so U and W are connected in Fq if and only if they are connected in

F ′
q.

For ease of notation, let T ′
q = T ′

q(r, e) be the tree obtained from Tq⟨{U,W} ∪ [r]⟩ by

relabeling U,W as r + 1, r + 2, relabeling the vertices of v
(
Tq⟨{U,W} ∪ [r]⟩

)
\ ({U,W} ∪

[r]) in increasing order as {r + 3, . . . ,Mq}, and relabeling the edges (ei1 , . . . , eiMq
) as e′ =

(e1, . . . , eMq). In a small abuse of notation we continue to denote the relabelings of U,W by
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U and W rather than by r+ 1 and r+ 2. Finally, write F ′
q = F ′

q(r, e
′) for the outcome of the

path breaking process on T ′
q with starting set [r] and edge ordering e′.

For all m ≥ r + 2, let Tm = Tm(r) be the set of trees with vertex set [m] and with leaf

set a subset of [r + 2]. Note that since Tq is a uniformly random tree with vertex set [q], by

symmetry, T ′
q ∈u TMq , in the sense that for all m ≥ r + 2, conditionally given that Mq = m,

then T ′
q ∈u Tm.

The definitions of this paragraph are illustrated in Figure 2.2. For T ∈ Tm, let P0 =

P0(T ) = T ⟨{U,W}⟩, and for all 1 ≤ i ≤ r let Pi = Pi(T ) be the path in T connecting i to

T ⟨{U,W} ∪ [i− 1]⟩. (If i ∈ v(T ⟨{U,W} ∪ [i− 1]⟩) then Pi consists of a single vertex and no

edges; otherwise Pi has edge set e(T ⟨{U,W} ∪ [i]⟩) \ e(T ⟨{U,W} ∪ [i− 1]⟩).) Then, for each

j ∈ {1, 2, 3} let P0,j = P0,j(T ) be the subpath of P0(T ) with vertex set{
v ∈ v(P0(T )) :

⌊
dist
T

(U,W )
j − 1

3

⌋
≤ dist

T
(U, v) ≤

⌊
dist
T

(U,W )
j

3

⌋}
,

and let Uj = Uj(T, r, q) be the subset of [r] satisfying the following additional properties: for

all i ∈ Uj,

1. v(Pi) ∩ v(Pℓ) = ∅ for all ℓ ∈ [r] \ {i},

2. Pi ∩ P0 is a vertex in P0,j, and

3. 1 ≤ |e(Pi)| ≤
√
q.

Additionally, write Pj = {Pi : i ∈ Uj}.
For all paths P ∈ T ′

q, say P is targeted at time t if et ∈ e(P ), say P is targeted for the

first time at time t if P is targeted at time t and not before time t, and say P is broken at

time t if P is targeted at time t and et is removed during the path-breaking process. In the

next lemma (and the subsequent Corollary 2.3.7), write Pi = Pi(T
′
q) for 0 ≤ i ≤ r, and write

P0,j = P0,j(T
′
q), Uj = Uj(T ′

q) and Pj = Pj(T
′
q) for j ∈ {1, 2, 3}.

Lemma 2.3.6. If U
F ′
q←→ W and both |U1| ≥ 1 and |U3| ≥ 1, then all but at most one path

in P1 and all but at most one path in P3 were targeted before P0,2 was targeted for the first

time.

Proof. Fix 1 ≤ t ≤ Mq. Suppose that Pi ∈ P1 and Pj ∈ P3 have not been targeted by time

t, and that P0,2 is targeted for the first time at time t. Let Pi,j be the path from i to j in

T ′
q. Then Pi,j = Pi ∪Q0,1 ∪ P0,2 ∪Q0,3 ∪ Pj where Q0,1 ⊆ P0,1 and Q0,3 ⊆ P0,3. Hence, either
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Figure 2.2: An example of T ∈ T40 with r = 8 and q = 48. In this example, P0 connects
vertices U = r + 1 and W = r + 2, the path P7 is shaded in grey, and all the other paths
Pi connect the vertex labeled i to the path P0. Also, U1(T ) = ∅, U2(T ) = {2, 5}, and
U3(T ) = {4}. Note that 6 /∈ U3 as |e(P6(T ))| = 7 >

√
48.

et ∈ P0,2 is cut, or an edge in Pi,j has already been cut. In the latter case, since none of

Pi, Pj, or P0,2 have been targeted by time t, the edge that was already cut must be an edge

of Q0,1 ∪ Q0,3 ⊆ P0. In both cases, an edge in P0 is cut during the path-breaking process,

meaning U and W are not connected in F ′
q.

For the next corollary, it is useful to introduce the shorthand

P̂ {·} = P
{
· | T ′

q

}
.

Corollary 2.3.7. Let Eq(p, u) be the event that |e(P0,2)| ≥ p, |U1| ≥ u and |U3| ≥ u. Then

for u ≥ 1,

P̂

{
U

F ′
q←→ W

∣∣∣∣ Eq(p, u)

}
≤

2u−3∏
j=0

(
1− p

p +
√
q(2u− j)

)
.

Proof. Let S = P1 ∪P3 ∪ {P0,2}. For all paths P ∈ S, let tP be the first time P is targeted.

Then let s =
∣∣{P ∈ S : tP < tP0,2}

∣∣. By Lemma 2.3.6, if U and W are connected in F ′
q and
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both U1 and U3 are nonempty, then s ≥ |S| − 3.

Let E=
q (p, u) be the event that |e(P0,2)| = p, |U1| = u and |U3| = u. List the paths in S

in the order they are first targeted as P (1), . . . , P (m). By the exchangeability of the ordering

e′ = (e1, . . . , eMq), this list is a size-biased random ordering of the paths in S: that is, for all

1 ≤ j ≤ m and all P ∈ S,

P̂
{
P (j) = P

∣∣ P (1), . . . , P (j−1)
}

=
|P |1[P /∈{P (1),...,P (j−1)}]∑

Q∈S |Q|1[Q/∈{P (1),...,P (j−1)}]
.

Since all paths in S aside from P0,2 have length at most
√
q, it follows that for all 0 ≤ j ≤ m,

P̂
{
P (j) = P0,2

∣∣ E=
q (p, u), P0,2 /∈ {P (1), . . . , P (j−1)}

}
≥ p

p +
√
q(2u− (j − 1))

.

Thus, by Bayes’ formula, and since m = 2u + 1 when E=
q (p, u) occurs, we have

P̂
{
s ≥ |S| − 3 | E=

q (p, u)
}

= P̂
{
P0,2 /∈ {P (1), . . . , P (m−3)}

∣∣ E=
q (p, u)

}
=

m−4∏
j=0

P̂
{
P0,2 ̸= P (j+1)

∣∣ E=
q (p, u), P0,2 /∈ {P (1), . . . , P (j)}

}
≤

2u−3∏
j=0

(
1− p

p +
√
q(2u− j)

)
. (2.9)

Since the above product is decreasing in p and in u, and Eq(p, u) is the disjoint union of the

events {E=
q (p′, u′), p′ ≥ p, u′ ≥ u}, the bound claimed in the corollary follows from (2.9) by

the law of total probability.

In order to make use of Corollary 2.3.7, we now must analyze the typical behaviour of

|e(P0,2(T ′
q))|, |U1(T

′
q)| and |U3(T ′

q)|. We first gather some auxiliary facts which are crucial for

this analysis.

The first facts relate to the asymptotic structure of T ′
q(r) for q large. This is described by

the so-called line-breaking construction of Aldous [16]. Let (πi, i ≥ 0) be the ordered sequence

of inter-arrival times of a Poisson point sequence on [0,∞) with intensity measure λ(t) = t.

Such a process may be concretely realized as follows. Let (Ei, i ≥ 1) be independent Exp(1)

random variables, let π0 =
√

2E
1/2
1 and, for each j ≥ 1, let πj =

√
2 (E1 + · · ·+ Ej+1)

1/2 −√
2 (E1 + · · ·+ Ej)

1/2. The atoms of the Poisson process are thus located at the points(√
2(E1 + . . . + Ei)

1/2, i ≥ 1
)
.
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Now for r ≥ 0, construct a binary tree T∞(r) with edge lengths and with leaf labels

U,W and 1, . . . , r, as follows. The tree T∞(0) is a line segment P∞,0 of length |P∞,0| = π0,

with endpoints labeled U and W . Inductively, for r ≥ 1 the tree T∞(r) is constructed from

T∞(r−1) by attaching a line segment P∞,r of length |P∞,r| = πr to a uniformly chosen point

of T∞(r − 1), and assigning label r to the new leaf at the far end of the line segment.

The next proposition is a consequence of [16, Theorem 8]. In what follows, if G is an

unweighted graph then we write distG(x, y) to mean the graph distance between vertices x

and y in G (the fewest number of edges in an x− y path). If G is a graph with edge lengths

then we write distG(x, y) to mean the length of the shortest x− y path, taking edge lengths

into account.

Proposition 2.3.8. As q →∞,

(q−1/2distT ′
q(r)(x, y) : x, y ∈ {U,W} ∪ {1, . . . , r})

d→ (distT∞(r)(x, y) : x, y ∈ {U,W} ∪ {1, . . . , r}) .

Moreover, for all r ≥ 1, ignoring its edge lengths, the tree T∞(r) is uniformly distributed

over the set of binary trees with leaf labels {U,W} ∪ [r]. Finally, for any permutation ϕ :

{U,W, 1, . . . , r} → {U,W, 1, . . . , r}, the tree T ϕ
∞(r) obtained from T∞(r) by relabeling its

leaves according to the permutation ϕ has the same law as T∞(r).

Write αr for the point of T∞(r − 1) to which P∞,r is attached. Note that the lengths of

the paths (P∞,i, 0 ≤ i ≤ r) may be recovered from T∞,r as πi = distT∞(r)(i, αi). Thus, the

convergence in Proposition 2.3.8 directly implies that

(q−1/2|e(P0)|, . . . , q−1/2|e(Pr)|)
d→ (|P∞,0|, . . . , |P∞,r|) = (π0, . . . , πr)

as q →∞.

For later use it’s handy to describe the reverse construction (recovering the branches from

the tree) in a little more generality. Given a binary tree t with edge lengths and with leaves

labeled by the elements of {U,W}∪[r], we define a growing sequence of subtrees t(0), . . . , t(r)

where t(i) is the smallest subtree of t containing the leaves in {U,W} ∪ {1, . . . , i}. We then

let P0(t) = t(0), for i ∈ [r] we let Pi(t) be the path connecting the leaf i to the subtree

t(i− 1), and let αi(t) be the point of t(i− 1) to which Pi(t) attaches. With these definitions,

we have P∞,i = Pi(T∞,r) for 0 ≤ i ≤ r.

The following tail bound for |e(P0,2(T
′
q))| is a straightforward consequence of Proposi-
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tion 2.3.8.

Corollary 2.3.9. For all ϵ > 0 and positive integers r, for large enough q,

P
{
|e(P0,2(T

′
q))| < ϵ

√
q
}
≤ 5ϵ2 .

Proof. By Proposition 2.3.8, we have that

P
{
|e(P0(T

′
q))| < 3ϵ

√
q
}

= (1 + oq(1))P
{√

2(E1)
1/2 < 3ϵ

}
= (1 + oq(1))P

{
E1 <

9ϵ2

2

}
= (1 + oq(1))

(
1− e−

9ϵ2

2

)
≤ (1 + oq(1))

9ϵ2

2
.

The result now follows from the fact that |e(P0,2(T
′
q))| ≥ 1

3
|e(P0(T

′
q))| − 1.

The next lemma states the tail bound we need for |U1(T ′
q)| and |U3(T ′

q)|.

Lemma 2.3.10. For all ϵ > 0 sufficiently small, there exists a positive integer r0 such that

for all r ≥ r0, for all q sufficiently large, with T ′
q = T ′

q(r, e),

P
{
|U1(T ′

q)| < ϵ
√
r
}
< 23ϵ ,

and the same bound holds with |U1(T ′
q)| replaced by |U3(T ′

q)|.

The proof of Lemma 2.3.10 is somewhat involved, so before proving it we first use it

together with the preceding results of the section to prove Proposition 2.3.4.

Proof of Proposition 2.3.4. In this proof, for readability we omit insignificant floors and

ceilings. Fix ϵ > 0 small enough that Lemma 2.3.10 applies, let r0 be as in Lemma 2.3.10,

and fix r ≥ r0 large enough that
∑ϵr1/2

j=4
1
j
≥ ϵ−1 log(ϵ−1). For the duration of the proof, write

Pj = Pj(T
′
q) for all 0 ≤ j ≤ r and P0,i = P0,i(T

′
q) and Ui = Ui(T ′

q) for i ∈ {1, 2, 3}.
Recall from Corollary 2.3.7 that Eq(p, u) is the event that |e(P0,q)| ≥ p, |U1| ≥ u and
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|U3| ≥ u. Taking p = ϵq1/2 and u = ϵr1/2/2, by that corollary and Bayes’ formula we have

P̂

{
U

F ′
q←→ W

}
≤ P̂

{
U

F ′
q←→ W

∣∣∣∣ Eq(p, u)

}
+ P̂ {Eq(p, u)c}

≤
2u−3∏
j=0

(
1− p

p + q1/2(2u− j)

)
+ P̂ {Eq(p, u)c}

=
ϵr1/2−3∏
j=0

(
1− ϵ

ϵ(1 + r1/2)− j

)
+ P̂ {Eq(p, u)c}

≤ exp

−ϵ ϵr1/2−3∑
j=0

1

ϵ(1 + r1/2)− j

+ P̂ {Eq(p, u)c}

≤ exp

−ϵ ϵr1/2∑
j=4

1

j

+ P̂ {Eq(p, u)c}

≤ ϵ + P̂ {Eq(p, u)c} ,

the last bound holding since we chose r large enough that
∑ϵr1/2

j=4
1
j
≥ ϵ−1 log(ϵ−1). Taking

expectations, the tower law yields that

P

{
U

F ′
q←→ W

}
≤ ϵ + P {Eq(p, u)c} .

By Corollary 2.3.9 we have P
{
|e(P0,2)| ≤ ϵq1/2

}
≤ 5ϵ2 and by Lemma 2.3.10 we have

P
{

min(|U1|, |U3|) ≤ ϵr1/2/2
}
≤ 46ϵ, so P {Eq(p, u)c} ≤ 5ϵ2 + 46ϵ. Also, by Lemma 2.3.5

we have P

{
U

F ′
q←→ W

}
= P

{
U

Fq←→ W
}

, so we obtain the bound

P
{
U

Fq←→ W
}
≤ 47ϵ + 5ϵ2 .

To conclude, let X, Y be independent uniform samples from [q]. The conditional distri-

bution of (X, Y ) given that X ̸= Y and that X ̸∈ [r], Y ̸∈ [r] is precisely that of (U, V ),

so

P
{
X

Fq←→ Y
}
≤ P

{
U

Fq←→ W
}

+ P {X = Y }+ P {X ∈ [r]}+ P {Y ∈ [r]}

≤ 47ϵ + 5ϵ2 +
2r + 1

q
.
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Finally, by (2.8), we have

P
{
X

Fq←→ Y
}
≥ E (max (|C| : C is a component of Fq))

2

q2
,

and so

E (max (|C| : C is a component of Fq)) ≤ qP

{
X

F ′
q←→ X

}1/2

≤ q

(
47ϵ + 5ϵ2 +

2r + 1

q

)1/2

.

The result follows since ϵ > 0 can be taken arbitrarily small, and since we can make (2r+1)/q

as small as we like by taking q large.

The remainder of the section is devoted to proving Lemma 2.3.10. We use Proposi-

tion 2.3.8 to allow us to control the large-q behaviour of the probabilities in question by

instead studying the limiting tree T∞(r). Given a binary tree t with edge lengths and with

leaves labeled by {U,W} ∪ [r], recall that αt(i) is the attachment point of the line segment

Pi(t) to t(i − 1), and that |Pi(t)| = distt(i, α(i)). Let U1(t) be the set of leaves i ∈ [r]

satisfying the following properties.

1. Pi(t) ∩ Pj(t) = ∅ for all j ∈ [r] \ {i},

2. αi(t) ∈ P0(t) and distt(αi(t), U) ≤ distt(U,W )/3, and

3. distt(i, αi(t)) ≤ 1 .

Define U3(t) in the same way, but with the second condition replaced by the condition that

distt(αi(t),W ) ≤ distt(U,W )/3.

The convergence in Proposition 2.3.8 implies that for any r ≥ 1, as q → ∞ we have

(|U1(T ′
q, r, q)|, |U3(T ′

q, r, q)| d→ (|U1(T∞(r))|, |U3(T∞(r))|). This allows us to prove the propo-

sition by proving lower tail bounds for |U1(T∞(r)| and |U3(T∞(r)|. To establish such bounds,

we will use the second moment method, applied conditionally given |π0|. The application of

the method is greatly simplified by the following exchangeability result, which allows us to

focus our attention on the final two paths P∞,r−1 and P∞,r

Lemma 2.3.11. Write U1 = U1(T∞(r)). Then for all i ∈ [r],

P {P∞,i ∈ U1 | π0} = P {P∞,r ∈ U1 | π0} ,
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and for all i, j ∈ [r] with i ̸= j,

P {P∞,i ∈ U1, P∞,j ∈ U1 | π0} = P {P∞,r−1 ∈ U1, P∞,r ∈ U1 | π0} .

Moreover, the same identities hold with U1 replaced by U3 = U3(T∞(r)).

Proof. We work on the probability-one event that |P∞,i| > 0 for all i ∈ [r]. (Note that

P∞,i = Pi(T∞(r)). Fix any permutation ϕ of the leaf labels {1, . . . , r}, and let T ϕ
∞(r) be

the tree obtained from T∞(r) by permuting the labels {1, . . . , r} according to ϕ; note that

labels U and W remain fixed. Any such permutation induces an automorphism of T∞(r)

and T ϕ
∞(r) as binary leaf-labeled trees with edge lengths.

We claim that U1(T ϕ
∞(r)) = {ϕ(i) : i ∈ U1(T∞(r))}. To see this, fix i ∈ [r]. If i ∈

U1(T∞(r)), then P∞,i ∩ P∞,j = ∅ for all j ∈ [r] \ i, so the only point of intersection of

P∞,i with the rest of T∞(r) lies on the path P∞,0 = P0(T∞(r)) from U to W . Writing

P ϕ
∞,i for the image of P∞,i in T ϕ

∞(r) under the automorphism induced by ϕ, the only point

of intersection of P ϕ
∞,i with the rest of T ϕ

∞(r) must then lie on the path from U to W in

T ϕ
∞(r), since the labels U and W are unchanged by ϕ. Thus, P ϕ

∞,i = Pϕ(i)(T
ϕ
∞(r)), and so

Pϕ(i)(T
ϕ
∞(r))∩ Pj(T

ϕ
∞(r)) = ∅ for all j ∈ [r] \ {ϕ(i)}. Since the lengths of P∞,i and P ϕ

∞,i, and

their attachment points to the U −W path, are the same in T∞(r) and T ϕ
∞(r), it follows

that ϕ(i) ∈ U1(T ϕ
∞(r)). A corresponding argument using ϕ−1 shows that if i ∈ U1(T ϕ

∞(r))

then ϕ−1(i) ∈ U1(T∞(r), which establishes the claim.

By Proposition 2.3.8, for any permutation ϕ : [r]→ [r], the trees T ϕ
∞(r) and T∞(r) have

the same law. Since U1(T ϕ
∞(r)) = {ϕ(i) : i ∈ U1(T∞(r))}, by taking ϕ to be a uniformly

random permutation of [r] it then follows that for all i ∈ [r], and 0 ≤ s ≤ r,

P {i ∈ U1(T∞(r)) | |U1(T∞(r))| = s} =
s

r

and hence

P {i ∈ U1(T∞(r)) | |U1(T∞(r))| = s} = P {r ∈ U1(T∞(r)) | |U1(T∞(r))| = s} .

Similarly, for all 1 ≤ i < j ≤ r,

P {i, j ∈ U1(T∞(r)) | |U1(T∞(r))| = s} =
s(s− 1)

r(r − 1)
,
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and hence

P {i, j ∈ U1(T∞(r)) | |U1(T∞(r))| = s}

= P {r − 1, r ∈ U1(T∞(r)) | |U1(T∞(r))| = s} .

The lemma now follows by averaging over s = |U1(T∞(r))|.

Proof of Lemma 2.3.10. As mentioned earlier, the convergence in distribution from Propo-

sition 2.3.8 implies that for any r ≥ 1, as q → ∞ we have (U1(T ′
q, r, q),U3(T ′

q, r, q)
d→

(U1(T∞(r)),U3(T∞(r))). To prove the lemma it thus suffices to show that for all ϵ > 0 there

exists r0 such that for all r ≥ r0,

P
{
|U1(T∞(r))| < ϵ

√
r
}
< 22ϵ. (2.10)

(The same bound then holds for U3(T∞(r)) by symmetry.) The remainder of the proof is

thus devoted to establishing (2.10). In what follows we write U1 = U1(T∞(r)).

By Lemma 2.3.11, we have

E {U1 | π0} = rP {r ∈ U1 | π0} .

On the probability-one event that α(1), . . . , α(r) are all distinct, r ∈ U1 if and only if

πr ≤ 1, α(r) ∈ P∞,0, and distT∞(r)(α(r), U) ≤ π0/3. Since α(r) is uniformly distributed over

T∞(r − 1), which is the union of the paths P∞,0, . . . , P∞,r−1, for r > 1 we thus have

P {r ∈ U1 | E1} = P {r ∈ U1 | π0}

= E {P {r ∈ U1 | π0, . . . , πr } | π0}

= E

{
π0/3

|π0|+ . . . + |πr−1|
1[|πr|≤1]

∣∣∣∣ π0

}
= E

{
1

3

E
1/2
1

(E1 + . . . + Er)1/2
1[πr≤1]

∣∣∣∣∣ E1

}
.

For the first and last identities above, we used that conditioning on π0 and on E1 is equivalent,

since π0 =
√

2E
1/2
1 .

Likewise, still on the event that α(1), . . . , α(r) are all distinct, provided that r ≥ 2, the

point r−1 belongs to U1 if and only if πr−1 ≤ 1, α(r−1) ∈ P∞,0, and distT∞(r)(α(r−1), U) ≤
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π0/3. A similar derivation then shows that for r ≥ 2,

P {r − 1 ∈ U1, r ∈ U1 | E1}

= E

{
1

9

E
1/2
1

(E1 + . . . + Er−1)1/2
E

1/2
1

(E1 + . . . + Er)1/2
1[πr−1,πr≤1]

∣∣∣∣∣ E1

}
.

We let

R =
1

3

E
1/2
1

(E1 + · · ·+ Er)1/2

and

R′ =
1

9

E1

(E1 + · · ·+ Er−1)1/2(E1 + · · ·+ Er)1/2
,

so that the above identities may be written more succinctly as

P {r ∈ U1 | E1} = E
{
R1[πr≤1]

∣∣ E1

}
(2.11)

and

P {r − 1 ∈ U1, r ∈ U1 | E1} = E
{
R′1[πr−1,πr≤1]

∣∣ E1

}
(2.12)

Now fix ϵ ∈ (0, 1/2) small and let A(ϵ, r) be the event that

(1− ϵ)r ≤ E2 + . . . + Er−1 ≤ E2 + . . . + Er ≤ (1 + ϵ)r

and that Er ≤ r1/2 and Er+1 ≤ r1/2. On A(ϵ, r), using the bound (a+x)1/2−a1/2 ≤ x/(2a1/2)

for all a, x > 0, we have that

πr =
√

2
(
(E1 + . . . + Er+1)

1/2 − (E1 + . . . + Er)
1/2
)

≤
√

2
(
(E2 + . . . + Er+1)

1/2 − (E2 + . . . + Er)
1/2
)

≤
√

2
Er+1

2((1− ϵ)r)1/2
< 1 ,

and likewise πr−1 < 1 on A(ϵ, r).

For r large enough, P
{
Er ≥ r1/2

}
= e−r1/2 ≤ 1/r2 and P

{
Er+1 ≥ r1/2

}
≤ 1/r2, and by

Chebyshev’s inequality,

P {E2 + . . . + Er−1 ≤ (1− ϵ)r} ≤ 2

(ϵr)2
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and

P {E2 + . . . + Er ≥ (1 + ϵ)r} ≤ 2

(ϵr)2
,

and hence

P {A(ϵ, r)c} ≤ 2

r2
+

4

(ϵr)2
≤ 6

(ϵr)2
.

Moreover, A(ϵ, r) is independent of E1, so P {A(ϵ, r) | E1} = P {A(ϵ, r)}.
With the preceding bounds at hand, we have enough information to control (2.11) and

(2.12). Writing A = A(ϵ, r), we have

P {r ∈ U1 | E1} = E
{
R1[πr≤1]

∣∣ E1

}
≥ E

{
R1[πr≤1]1[A]

∣∣ E1

}
= E

{
R1[A]

∣∣ E1

}
= E {R | A,E1}P {A | E1}

≥ 1

3

E
1/2
1

(E1 + (1 + ϵ)r)1/2

(
1− 6

(ϵr)2

)
, (2.13)

and

P {r ∈ U1 | E1} ≤ E
{
R1[πr≤1]

∣∣ A,E1

}
+ P {Ac | E1}

≤ E {R | A,E1}+
6

(ϵr)2

≤ 1

3

E
1/2
1

((1− ϵ)r)1/2
+

6

(ϵr)2
. (2.14)

We similarly have

P {r − 1 ∈ U1, r ∈ U1 | E1} = E
{
R′1[πr−1,πr≤1]

∣∣ E1

}
≤ E

{
R′1[πr−1,πr≤1]

∣∣ E1, A
}

+ P {Ac | E1}

≤ E {R′ | A,E1}+
6

(ϵr)2

≤ 1

9

E1

(1− ϵ)r
+

6

(ϵr)2
. (2.15)

We use the above bounds in the following formulas, which are immediate consequences of
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Lemma 2.3.11 (using the fact that conditioning on π0 and on E1 is equivalent):

E {|U1| | E1} = rP {r ∈ U1 | E1} (2.16)

and

Var {|U1|| E1}

= r(r − 1)
(
P {r − 1, r ∈ U1 | E1} −P {r ∈ U1 | E1}2

)
+ r

(
P {r ∈ U1 | E1} −P {r ∈ U1 | E1}2

)
. (2.17)

We now temporarily work on the event that E1 ∈ (ϵ, ϵ−1). On this event, there is r0 =

r0(ϵ) > 0 such that for all r ≥ r0,

1

3

E
1/2
1

(E1 + (1 + ϵ)r)1/2

(
1− 6

(ϵr)2

)
≥ 1

3

E
1/2
1

((1 + 2ϵ)r)1/2
,

1

3

E
1/2
1

((1− ϵ)r)1/2
+

6

(ϵr)2
≤ 1

3

E
1/2
1

((1− 2ϵ)r)1/2
, and

1

9

E1

(1− ϵ)r
+

6

(ϵr)2
≤ 1

9

E1

(1− 2ϵ)r
.

Using the first of these bounds together with (2.13) in (2.16) gives that on the event {E1 ∈
(ϵ, ϵ−1)},

E {|U1| | E1} ≥
r1/2

3

E
1/2
1

(1 + 2ϵ)1/2
, (2.18)

and using all three bounds together with (2.13),(2.14) and (2.15) in (2.17), we obtain that

on the event {E1 ∈ (ϵ, ϵ−1)},

Var {|U1|| E1}

≤ r(r − 1)

(
1

9

E1

(1− 2ϵ)r
− 1

9

E1

(1 + 2ϵ)r

)
+ r

(
1

3

E
1/2
1

((1− 2ϵ)r)1/2

)

= (r − 1)
E1

9

4ϵ

1− 4ϵ2
+ r1/2

E
1/2
1

3

1

(1− 2ϵ)1/2

< 5ϵE {|U1| | E1}2 ,

the final bound holding by (2.18) for ϵ sufficiently small (ϵ < 1/8 is enough), and still

provided that and r ≥ r0.
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The lower bound in (2.18) is at least (rE1)
1/2/4 provided ϵ is small enough, so it now

follows by the conditional Chebyshev inequality that

P

{
|U1| ≤

(rE1)
1/2

8
, E1 ∈ (ϵ, ϵ−1)

∣∣∣∣ E1

}
≤

Var {|U1|| E1}1[E1∈(ϵ,ϵ−1)]

(E {|U1| | E1} /2)2

≤ 20ϵ1[E1∈(ϵ,ϵ−1)] .

For ϵ small enough, if E1 ≥ ϵ then E
1/2
1 /8 > 2ϵ, so the preceding bound implies that,

unconditionally,

P
{
|U1| ≤ ϵr1/2

}
= E

(
P
{
|U1| ≤ ϵr1/2

∣∣ E1

})
≤ E

(
P

{
|U1| ≤

(rE1)
1/2

8

∣∣∣∣ E1

}
1[E1∈ϵ,ϵ−1]

)
+ P

{
E1 ̸∈ (ϵ, ϵ−1)

}
≤ 22ϵ ,

the last bound holding since P {E1 ̸∈ ϵ, ϵ−1} < 2ϵ for ϵ small. This establishes (2.10) and

completes the proof.

2.3.3.2 Proof of Proposition 2.3.3

Having already proved Proposition 2.3.4, to complete the proof of Proposition 2.3.3 it remains

to handle the cases when s > 0. So fix ϵ > 0 and integers s > 0 and r > 0, and let Gq and

Fq = Fq(r, e) be as in the statement of Proposition 2.3.3. Like in the case s = 0, it suffices

to prove that if r is sufficiently large as a function of ϵ and s then for all q sufficiently large,

if X and Y are independent, uniformly random elements of [q], independent of Gq and of

the ordering e, then

P
{
X

Fq←→ Y
}
< ϵ .

To accomplish this, we decompose Gq into a collection of trees to which we can apply the

result from the s = 0 case, Proposition 2.3.4. We next turn to defining the necessary

decomposition. The definitions of the next four paragraphs are illustrated in Figure 2.3.

Let core(Gq) be the maximum induced subgraph of Gq with minimum degree 2; equiv-

alently, this is the subgraph of Gq induced by the set of vertices which lie on cycles of Gq.
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For v ∈ [q] let c(v) be the (unique) closest vertex of core(Gq) to v in Gq. In particular, if

v ∈ v(core(Gq)) then c(v) = v.

If s ≥ 2 then the kernel of Gq, denoted K(Gq), is the multigraph obtained from core(Gq)

by contracting each path whose endpoints have degree at least three in core(Gq) and whose

internal vertices have degree two in core(Gq) into a single edge. For each vertex v of Gq,

we define its “attachment location on K(Gq)”, denoted κ(v), as follows. For each edge e of

K(Gq), if c(v) is an internal vertex of the path which was contracted to make e, then set

κ(v) = e. Otherwise, if c(v) is a vertex w of K(Gq) then set κ(v) = w.

If s = 1 then core(Gq) is a cycle. It is still useful for us to define the kernel in this

case, but the definition is slightly different (and slightly non-standard). To define it, we first

augment the core by adding all vertices of the path from q to c(q); we write core+(Gq) for

the subgraph of Gq induced by this path together with core(Gq). We then define the kernel

K(Gq) to be the multigraph obtained from Gq by contracting each maximal path or cycle

of core+(Gq) whose endpoints lie in {q ∪ c(q)} to form a single edge. If q ̸= c(q) then this

creates a “lollipop” consisting of a loop edge at c(q) and a single edge from c(q) to q; if

q = c(q) then the result is simply a loop edge at c(q).

Provided that s ≥ 1, so that the kernel is defined, for a ∈ v(K(Gq)) ∪ e(K(Gq)) we now

set Vq(a) = {v ∈ [q] : κ(v) = a}. Then the set

Vq = {Vq(a), a ∈ v(K(Gq)) ∪ e(K(Gq))} (2.19)

is a partition of v(Gq) = [q]. For each a ∈ v(K(Gq))∪e(K(Gq)), we let Tq(a) be the subgraph

of Gq spanned by Vq(a). Also, for e = xy ∈ e(K(Gq)), we write Z(e, x) (resp. Z(e, y)) for

the unique vertex of Tq(e) incident to x (resp. to y).

By the definition of the core, Tq(a) is necessarily a tree. By the symmetry of the model,

conditionally given the partition Vq in (2.19), the trees (Tq(a), a ∈ v(K(Gq)) ∪ e(K(Gq)))

are independent and each is a uniformly random tree on its vertex set. Moreover, also by

symmetry, for each e ∈ e(K(Gq)), conditionally given both Vq and the tree Tq(e), the vertices

Z(e, u) and Z(e, v) are independent uniformly random elements of Vq(e).

The next proposition describes the asymptotic structure of the partition of mass in (2.19).

For each positive integer k, let

∆k = {(x1, . . . , xk) ∈ (0, 1)k : x1 + . . . + xk = 1}

denote the (k−1)-dimensional simplex. Then for (α1, . . . , αk) ∈ ∆k, the Dirichlet(α1, . . . , αk)
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Figure 2.3: Left: An instantiation of graph Gq; here q = 43 and s = 3. Center: the graph
core(Gq). Right: the kernel K(Gq). In the graph Gq, the vertex v has κ(v) = e = xy since
c(v) lies on the path of core(Gq) which is contracted to form e. The vertex v′ has κ(v′) = w
since c(v) = w is a vertex of K(Gq). The trees Tq(e) and Tq(w) are highlighted in yellow
and in blue, respectively. In the center, the vertices Z(e, x) and Z(e, y) are green.

distribution on ∆k has density

Γ(α1 + . . . + αk)

Γ(α1) · . . . · Γ(αk)

k∏
j=1

x
αj−1
j

with respect to (k − 1)-dimensional Lebesgue measure on ∆k.

Proposition 2.3.12 ([8] Theorem 22, [9] Theorem 6 (c)). Fix s ≥ 1 and let Gq be uniformly

distributed over the set of connected graphs with vertex set [q] and surplus s. Then as q →∞,

the vector

(q−1Vq(e), e ∈ e(K(Gq)))

converges in distribution to a Dirichlet(1/2, . . . , 1/2) random vector of length k = 2s − 1 +

1[s=1].

In the vector in Proposition 2.3.12 we may take the edges of K(Gq) to be ordered lex-

icographically, say, but the precise ordering rule does not play an important role in this

paper.

Recall that X and Y are independent, uniformly random elements of [q], independent of
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Gq and of the ordering e. Then

P
{
X

Fq←→ Y
}

= E (P {Eq | Fq })

≥ E

(
max(|C| : C is a component of Fq)

2

q2

)
≥ (E (max(|C| : C is a component of Fq)))

2

q2
,

so to accomplish our goal it suffices to show that P
{
X

Fq←→ Y
}
≤ ϵ2 if r is large enough.

Since ϵ > 0 was arbitrary, we may as well just show that P
{
X

Fq←→ Y
}
< ϵ for r large.

Let A be the event that κ(X) ∈ e(K(Gq)) and κ(Y ) ∈ e(K(Gq)), let B = A ∩ {κ(X) =

κ(Y )} and let C = A∩{κ(X) ̸= κ(Y )}. By Proposition 2.3.12, q−1
∑

e∈e(K(Gq))
Vq(e)→ 1 in

probability, which implies that P {A} → 1 as q →∞. By the same proposition, the limits

lim
q→∞

P {B} = p = 1− lim
q→∞

P {C}

both exist, and the value p lies strictly between 0 and 1.

Now let δ > 0 be small enough that for q large,

P {min(|Vq(e)|, e ∈ e(K(Gq))) < δq} < min(p, 1− p)ϵ/7 ;

such a value δ exists by Proposition 2.3.12. Then by Bayes’ formula, for q sufficiently large,

P {min(|Vq(e)|, e ∈ e(K(Gq))) < δq | B} < ϵ/6 (2.20)

and

P {min(|Vq(e)|, e ∈ e(K(Gq))) < δq | C} < ϵ/6. (2.21)

If κ(X) = e = uv, then any path from X to Y in Fq must either lie within Tq(e) or else
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must pass through one of Z(e, u) or Z(e, v). It follows that

P
{
X

Fq←→ Y | Vq, B
}

≤ P

{
X

Tq(e)∩Fq←→ Y | Vq, B

}
+ P

{
X

Tq(e)∩Fq←→ Z(e, u) | Vq, B

}
+ P

{
X

Tq(e)∩Fq←→ Z(e, v) | Vq, B

}
= 3P

{
X

Tq(e)∩Fq←→ Y | Vq, B

}
,

where for the final equality we have used that where we have used that conditionally given

B and Vq, the vertices Z(e, u) and Z(e, v) and Y are all uniformly random elements of Vq(e)

independent of X, and where we write Tq(e) ∩ Fq to mean the subgraph of Tq(e) with edge

set e(Tq(e)) ∩ e(Fq).

Now note that the path-and-cycle-breaking process on Fq, when restricted to Tq(e), re-

moves a superset of the edges that would be removed by running the path-breaking process

on Tq(e) with the induced edge ordering. (This holds since removing an edge e′ of Tq(e) may

separate a pair of elements of [r] one or both of which lie outside of Vq(e); in this case, the

edge e′ is removed in the path-and-cycle-breaking process. However, e′ may not be removed

in the path-breaking process, if e′ does not separate a pair of elements of [r] ∩ Vq(e).) In

other words, writing Fq(e)
′ for the forest obtained by running the path-breaking process on

Tq(e) with starting set [r]∩ Vq(e) and edge ordering given by the restriction of e to e(Tq(e)),

then Tq(e)∩Fq is a sub-forest of Fq(e)
′. It follows that, writing e = κ(X), which is also equal

to κ(Y ) when B occurs, we have

P
{
X

Fq←→ Y | Vq, B
}
≤ 3P

{
X

Tq(e)∩Fq←→ Y | Vq, B

}
≤ 3P

{
X

Fq(e)′←→ Y | Vq, B

}
. (2.22)

Now note that if G is a fixed graph with vertex set [q] whose largest connected compo-

nent has c vertices, and X and Y are independent uniformly random elements of [q], then

P
{
X

G←→ Y
}
≤ c

q
. If G is instead random, then this bound and the tower law give that

P
{
X

G←→ Y
}
≤ q−1E (max(|C| : C is a component of Fq)) .
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It thus follows from Proposition 2.3.4 there is q0 such that if |Vq(e)| ≥ q0 then the conditional

probability on the right of (2.22) is less than ϵ/12, so we have

P
{
X

Fq←→ Y | Vq, B
}
< 3(ϵ/12)1[Vq(κ(X))≥q0] + 31[Vq(κ(X))<q0],

which together with (2.20) yields that for q large enough (and in particular large enough

that δq > q0),

P
{
X

Fq←→ Y | B
}

= E
(
P
{
X

Fq←→ Y | Vq, B
}
| B
)

(ϵ/4)P {Vq(κ(X)) ≥ q0 | B }+ 3P {Vq(κ(X)) < q0 | B }

< 3ϵ/4 .

A nearly identical proof, but using (2.21) in place of (2.20), shows that P
{
X

Fq←→ Y | C
}

< 3ϵ/4 for all q sufficiently large. (In fact, in this case we could obtain a slightly better bound,

since when C occurs, in order for X and Y to be connected in Fq there must be a path from

X to Z(e, u) or Z(e, v) in Tq(e) ∩ Fq; the term X
Tq(e)∩Fq←→ Y does not appear.) Since if A

occurs then either B or C must occur, it follows that

P
{
X

Fq←→ Y
}
≤ P

{
X

Fq←→ Y,B
}

+ P
{
X

Fq←→ Y,C
}

+ P {Ac}

≤ 3ϵ

4
+ P {A} < ϵ

the last two inequalities holding for all q sufficiently large. This completes the proof of

Proposition 2.3.3 in the case s > 0.

2.4 Conclusion

In addition to the conjectures raised directly after the statement of Theorem 2.1.1, there are

numerous avenues for future research suggested by the current work.

First, we expect that a version of the dichotomy established in Theorem 2.1.1 should

hold for other high-dimensional random graphs, at least those with sufficient symmetry. For

example, we expect that the same theorem should hold if Kn is replaced by a uniformly

random d-regular graph (for d ≥ 3), or by the nearest-neighbour hypercube {0, 1}N with

2N ≍ n. A version of the theorem may well also hold in high-dimensional lattice tori (i.e.

with Kn replaced by (Z/mZ)d, where md ≍ n, with d fixed and large). However, in Euclidean
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settings there is less symmetry; nearby sources are in more direct competition than far-off

sources, and it is not clear to us how substantially this will affect the behaviour of the

multi-source invasion process.

The behaviour in low-dimensional settings is of course also interesting. It’s possible that

enough is known about two-dimensional critical percolation (at least on the triangular lattice

[41]) to be able to make some progress on the structure of multi-source invasion percolation.

Our results suggest the following behaviour for multi-source invasion percolation on large

conditioned critical Bienaymé trees1 with finite variance offspring distribution. For such

trees, invasion percolation from boundedly many sources (i.e. with k(n) = k fixed) will result

in all components having macroscopic sizes which are random to first order; on the other

hand, invasion percolation from unboundedly many sources (i.e. with k(n) → ∞) will with

high probability result in all components of sublinear size. This can likely be proved in detail

using weak convergence arguments similar to those used to study the “Markov chainsaw”

in [11]. In both cases, it would be would be of interest to understand the distribution of

component sizes; in the case of unboundedly many sources, the precise behaviour of the size

of the largest connected component is unclear to us, and may depend more sensitively on

the offspring distribution, at least if k(n)→∞ sufficiently quickly.

It is less clear to us what should happen for conditioned critical Bienaymé trees with

infinite variance (e.g. stable trees). In this setting, the presence of hubs – nodes with very

large degree - could play an important role in the dynamics of the invasion process.

For other models of random trees and networks (e.g. preferential attachment networks, in-

homogeneous random graphs, or networks with community structure, or any sort of directed

models), the subject is wide open.

1We follow the terminological suggestion of [7], using the term “Bienaymé trees” rather than “Galton-
Watson trees” for the family trees of branching processes.
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Chapter 3

Random Tree-Weighted Graphs

3.1 Introduction

By a rooted tree we mean a labeled tree t = (v(t), e(t)), with a distinguished root node

denoted r(t). A tree-rooted graph is a pair (g, t, γ) where g = (v(g), e(g)) is a labeled graph,

t = (v(t), e(t)) is a spanning tree of g, and γ = uv is a distinguished oriented edge with

{u, v} ∈ e(g) \ e(t). We view t as a rooted tree by setting r(t) = u.

Throughout this work, we allow our graphs to have multiple edges and loops; in tree-

rooted graphs, the root edge is allowed to be a loop. We say (g, t, γ) is simple if g is simple,

i.e., if g contains no multiple edges or loops.

For a node u of a rooted tree t, we write ct(u) for the number of children of u in t.

Given a rooted tree t with v(t) = [n] := {1, 2, . . . , n}, the child sequence of t is the sequence

ct = (ct(i), 1 ≤ i ≤ n). Similarly, given a tree-rooted graph (g, t, γ) with vertex set v(g) = [n],

the degree sequence of (g, t, γ) is the sequence (dg(i), 1 ≤ i ≤ n), where dg(i) is the number

of endpoints of edges incident to i in g; here loops are counted twice.

For any sequence d = (d(1), . . . , d(n)) of non-negative integers, we define the degree

distribution pd = (pd(k), k ≥ 1) of d by letting pd(k) = #{i ∈ [n] : d(i) = k}/n.

The following theorem contains our main result, which is an invariance principle for the

spanning trees in random tree-rooted graphs with a fixed degree sequence. To state it, two

further pieces of notation are needed. Given a finite graph g = (v, e) and a constant c > 0,

we write cg for the measured metric space (v, dist, π) whose points are the elements of v,

with dist(x, y) := c ·distg(x, y), where distg(x, y) denotes graph distance in g, and with π the

uniform probability measure on v. Also, for a sequence p = (p(k), k ≥ 1) of real numbers,

we write µ1(p) :=
∑

k≥1 kp(k) and µ2(p) :=
∑

k≥1 k
2p(k).
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Theorem 3.1.1. For each n ≥ 1 let dn = (dn(i), 1 ≤ i ≤ n) be a degree sequence with

min1≤i≤n d
n(i) ≥ 1, with

∑
i∈[n] d

n(i) ≥ 2n and with
∑

i∈[n] d
n(i) even. Let pn be the degree

distribution of dn. Suppose that there exists a probability distribution p = (p(k), k ≥ 1) such

that (a) pn → p pointwise and p(2) < 1, and (b) µ2(p
n)→ µ2(p) ∈ (0,∞). Then there exists

σ = σ(p) ∈ (0,∞) such that the following holds.

For n ≥ 1 let (Gn, Tn,Γn) be chosen uniformly at random among all simple tree-rooted

graphs with vertex set [n] and degree sequence dn. Then

σ

n1/2
Tn

d→ T

as n → ∞ with respect to the Gromov-Hausdorff-Prokhorov topology, where T is the Brow-

nian continuum random tree.

We refer the reader to [1] for a good discussion of the Gromov-Hausdorff-Prokhorov

topology aimed at probabilists. The technical insight underlying the proof of Theorem 3.1.1 is

the fact that Pitman’s additive coalescent [64] can be modified to yield a simple construction

procedure for random tree-weighted graphs with a given degree sequence. We anticipate that

this procedure has further interesting features to be explored.

3.1.1 Related work

The enumerative combinatorics of tree-rooted maps was developed in the 1960’s and 1970’s

[60, 69]. The area has seen renewed attention over the last decade or so [25, 26, 32]. Random

tree-rooted maps can be interpreted as samples from a Fortuin-Kastelyn model at zero

temperature, and are an active object of study in the planar probability community (see,

e.g.,[24, 45–48, 51, 58]).

There has also been some work on the typical number of spanning trees in uniformly

random graphs [43, 44, 56] with given degree sequences. (In such models, the underlying

graph is sampled uniformly at random from some set of allowed graphs; in our model, it is

the tree-weighted graph which is uniformly random, which means the underlying measure

on graphs is biased in favour of graphs with a greater number of spanning trees.)

Except in the setting of graphs on surfaces, we have not found any previous work on

tree-weighted graphs, random or otherwise.
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3.1.2 Overview of the proof

We begin with a small number of facts and definitions that are required for the overview. We

say a sequence c = (c(i), 1 ≤ i ≤ n) of non-negative integers is a child sequence if it is the

child sequence of some tree. Note that c is a child sequence if and only if
∑

1≤i≤n c(i) = n−1,

in which case

#{rooted trees t : ct = c} =

(
n− 1

c(1), . . . , c(n)

)
=

1

n

n!∏n
i=1 c(i)!

; (3.1)

see [59], Section 3.3.

Given any sequence c = (c(i), 1 ≤ i ≤ n) of non-negative integers, for k ≥ 1 we write

Qc(k) = #{i ∈ [n] : c(i) = k}. We call Qc = (Qc(k), k ≥ 0) the child statistics vector of c.

For a tree t with child sequence ct, we will sometimes write Qt = Qct for succinctness.

Given a graph g, for an edge e ∈ e(g) we write mg(e) for the multiplicity of edge e in g.

Given a degree sequence d = (d(1), . . . , d(n)), the classical configuration model [68, Chapter

7] produces a random graph G such that for any fixed graph g with degree sequence d,

P {G = g} ∝ 1∏n
i=1 2mg(ii)

∏
e∈e(g) mg(e)!

. (3.2)

In Section 3.2, we define a sampling procedure, inspired by the configuration model and by

Pitman’s additive coalescent [64], which produces a random tree-weighted graph (G, T,Γ)

with the property that for any fixed tree-weighted graph (g, t, γ) with degree sequence d,

P {(G, T,Γ) = (g, t, γ)} ∝ 21[γ is a loop] ·mg−t(γ)∏n
i=1 2mg−t(ii) ·

∏
e∈e(g) mg−t(e)!

, (3.3)

where g − t is the graph with the same vertex set as g and with edge multiplicities given by

mg−t(e) =

mg(e) if e ̸∈ e(t)

mg(e)− 1 if e ∈ e(t) .

We call a random tree-weighted graph (G, T,Γ) with distribution given by (3.3) a random

tree-weighted graph with degree sequence d. Note that in this case, conditionally given that

G is simple, (G, T,Γ) is uniformly distributed over simple tree-rooted graphs with degree

sequence d.

The sampling procedure we use has enough exchangeability that, conditional on its child

60



sequence, the resulting spanning tree T is uniformly distributed; that is, for any fixed child

sequence c = (c(i), 1 ≤ i ≤ n), and any tree t with ct = c,

P {T = t | cT = c} =

(
n− 1

c(1), . . . , c(n)

)−1

.

Now let (dn, n ≥ 1) be a sequence of degree sequences satisfying the conditions of The-

orem 3.1.1; for each n let (G(dn), T (dn),Γ(dn)) be a random tree-weighted graph with de-

gree sequence dn. We prove (see Proposition 3.3.1) that there is a probability distribution

q = (q(i), i ≥ 0) with µ2(q) < ∞ such that the child statistics vector QT (dn) satisfies that

n−1QT (dn)(a)→ q(a) in probability for all a ≥ 0, and moreover that µ2(n
−1QT (dn))→ µ2(q)

in probability. It then follows from a result of Broutin and Marckert [33] that

σ

n1/2
T (dn)

d→ T (3.4)

in the Gromov-Hausdorff-Prokhorov sense, where σ2 = µ2(q) − 1 and T is the Brownian

continuum random tree.

This is not quite the convergence claimed in Theorem 3.1.1, because (G(dn), T (dn),Γ(dn))

is a random tree-weighted graph with degree sequence dn, whereas Theorem 3.1.1 concerns

random simple tree-weighted graphs. To obtain Theorem 3.1.1 from (3.4), we show that

there is α ∈ (0, 1] such that as n→∞,

P {G(dn) is simple | T (dn)} → α (3.5)

in probability. The value of (3.5), informally, is that it implies that conditioning G(dn)

to be simple has an asymptotically negligible effect on the law of T (dn). Since the law of

(G(dn), T (dn),Γ(dn)), conditional on the simplicity of G(dn), is uniform over simple tree-

weighted graphs with degree sequence dn, we can reach our conclusion in a straightforward

manner.

We finish the overview with a brief discussion of how we prove (3.5). Our procedure for

constructing random tree-weighted graphs with a given degree sequence first constructs the

tree T (dn), then randomly pairs the remaining half-edges as in the standard configuration

model. Viewing T (dn) as fixed, this leads us to the following more general question. Let

G = (V,E) be a random graph with a given degree sequence generated according to the

configuration model, and let T = (V,E ′) be a fixed, simple graph with the same vertex

set. What is the probability that the union of G and T forms a simple graph (i.e. that
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G is a simple graph and that E and E ′ are disjoint)? We provide a partial answer to this

question by proving a fairly general Poisson approximation theorem for the number of loops

and multiple edges in the superposition of a fixed graph and a random graph drawn from

the configuration model (see Theorem 3.4.1). In order to apply Theorem 3.4.1, we need that

the joint degree statistics in G(dn) and in T (dn)) are sufficiently well-behaved; proving this

is the task of Section 3.3. We then state and prove Theorem 3.4.1 in Section 3.4, and finally

put all the pieces together to prove Theorem 3.1.1 in Section 3.5.

3.2 Pitman’s additive coalescent with a fixed degree

sequence

3.2.1 The sampling process

Let d = (d(1), . . . , d(n)) be a degree sequence, which is to say that d(1), . . . , d(n) are non-

negative integers. To be well-defined, the next process requires that
∑

1≤i≤n d(i) ≥ 2n − 1

and that d(i) ≥ 1 for all 1 ≤ i ≤ n.

Pitman’s additive coalescent. The process has n− 1 steps, and at the start of step

k consists of a rooted forest Fk(d) = {T k
1 (d), . . . , T k

n+1−k(d)} with n + 1 − k trees. At

the start of step 1, these trees are isolated vertices with labels 1, . . . , n. Vertex i has d(i)

half-edges (i1, i2, . . . , id(i)) attached to it, and id(i) is distinguished as the root half-edge.

Step k:

Choose a uniformly random pair (rk, sk), where rk is a root half-edge which is not

paired in Fk(d) and sk is a non-root half-edge which is not paired in Fk(d) and addition-

ally belongs to a different tree of Fk(d) from rk.

Pair the half-edges rk and sk to create an edge ek connecting their endpoints; this

merges two trees of Fk(d). The root of the new tree is the same as the root of the tree of

Fk(d) containing sk. In the new tree, the vertex incident to rk is the child of the vertex

incident to sk.

Define Fk+1(d) to be the forest consisting of the new tree thus created, together with

the remaining n− k − 1 unaltered trees of Fk(d).

An example is shown in Figure 3.1. Write T (d) = T n
1 (d) for the single tree in the random

forest Fn(d). Attached to the tree T (d) there is a single pendant (unpaired) root half-edge
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Figure 3.1: An example of an execution path of Pitman’s additive coalescent. The forests
F1, F2, F3 and F4 are displayed in successive rows.
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which is incident to the root of T (d), and if
∑n

i=1 d(i) > 2n − 1 then there are also other

pendant half-edges. By ignoring pendant half-edges, we may view T (d) as a random rooted

tree with vertex set [n].

It will be useful to additionally define two edge labellings of T (d), denoted K and H. We

define K(e) to be the step at which edge e was added; so K(ek) := k. We define H(e) to be

the non-root half-edge used in creating e; so H(ek) = sk. Note that K is a bijection between

e(T (d)) and [n−1]. Also, if i ∈ [n] has cT (d)(i) = c, then H assigns c distinct half-edges from

the set {i1, . . . , i(d(i)− 1)} to the edges between i and its children in T (d).

We use the phrase “execution path” to mean a sequence of pairs (r1, s1), . . . , (rn−1, sn−1)

which may concievably appear as the ordered sequence of pairs of half-edges added during

the course of Pitman’s coalescent.

The next proposition fully describes the joint distribution of T (d), K, and H. In its proof,

and in what follows, for a rooted tree t and a node u ∈ v(t) \ {r(t)} we write par(u) for the

parent of u in t. Also, we use the falling factorial notation (k)ℓ := k(k−1) · . . . · (k− ℓ+ 1) =

k!/(k − ℓ)!.

Proposition 3.2.1. Let d = (d(1), . . . , d(n)) be a degree sequence with d(i) ≥ 1 for all i ∈ [n]

and with
∑n

i=1 d(i) ≥ 2(n − 1), and write m = 1
2

∑n
i=1 d(i). (Note: we allow that

∑n
i=1 d(i)

is odd.) Then the following properties all hold.

1. For any fixed rooted tree t with vertex set [n],

P {T (d) = t} =
1

(2m− n)n−1

n∏
i=1

(d(i)− 1)ct(i) .

2. Fix any set H ⊂
⋃n

i=1{i1, . . . , i(d(i) − 1)} with |H| = n − 1. Conditionally given that

{s1, . . . , sn−1} = H, the triple (T (d),K,H) is uniformly distributed over the ((n− 1)!)2

triples which are consistent with the event {s1, . . . , sn−1} = H.

3. The sequence (s1, . . . , sn−1) of non-root half-edges, added by Pitman’s coalescent, is

uniformly distributed over the set of sequences of (n− 1) distinct elements of⋃
1≤i≤n{i1, . . . , i(d(i) − 1)}. Consequently, {s1, . . . , sn−1} is a uniformly random size-

(n− 1) subset of
⋃

1≤i≤n{i1, . . . , i(d(i)− 1)}.

4. Finally, conditionally given that T (d) = t and given the set {s1, . . . , sn−1} of non-root
half-edges added by Pitman’s coalescent, the ordering (e1, . . . , en−1) of e(t) is uniformly

distributed over the (n− 1)! possible orderings of e(t).
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Proof. At step i of the process, there are n+ 1− i components and 2m− n+ 1− i unpaired

non-root half-edges. We may specify the pair (ri, si) by first revealing the non-root half-edge

si, then revealing ri. Whatever the choice of si, there are n − i possibilities for ri, so the

number of distinct choices for the pair (ri, si) is (2m − n + 1 − i)(n − i). Thus, the total

number of possible execution paths for the process is

n−1∏
i=1

(2m− n + 1− i)(n− i) = (n− 1)!(2m− n)n−1. (3.6)

The execution path followed by the process is uniquely determined by the tree T (d) and

the functions K : e(T (d)) → [n − 1] and H : e(T (d)) →
⋃n

i=1{i1, . . . , i(di − 1)}. To see

this, fix any k ∈ [n − 1]. Then the edge ek created at step k of Pitman’s coalescent may

be recovered as ek = K−1(k); and, if ek = uv with v = par(u) then the half-edges paired to

create ek are the root half-edge vd(v) incident to v and the half-edge H−1(ek).

Now, fix any tree t with degree sequence d, any bijection k : e(t) → [n − 1], and any

function h : e(t) → N which, for all i ∈ [n], assigns ct(i) distinct values from the set

{1, . . . , (d(i) − 1)} to the edges between i and its children in t. Together with (3.6), the

observation of the preceding paragraph implies that

P {T (d) = t,K = k,H = h} =
1

(n− 1)!(2m− n)n−1

.

Having fixed the tree t, the number of possible values for K is (n − 1)! and the number

of possible values for H is
∏

i∈[n](d(i)− 1)ct(i). It follows that

P {T (d) = t} =
(n− 1)! ·

∏
i∈[n](d(i)− 1)ct(i)

(n− 1)!(2m− n)n−1

=

∏
i∈[n](d(i)− 1)ct(i)

(2m− n)n−1

,

which proves the first claim of the proposition.

Next, fix H as in the second assertion of the proposition, and any ordering of H as

(h1, . . . , hn−1). Then the number of execution paths which yield that sk = hk for k ∈ [n− 1]

is precisely (n − 1)!. To see this, note that if sj = hj for 1 ≤ j ≤ k then, whatever the

choices of the root half-edges (rj, 1 ≤ j ≤ k), the forest F n
k has n+ 1− k component trees so

there are n − k unpaired root half-edges in components different from that of sk; any such

root half-edge may be chosen as rk. Since there are also (n− 1)! possible orderings of H, the

second assertion of the proposition follows.

To prove the third statement, fix a set H and an ordering (h1, . . . , hn−1) of its elements,
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as in the previous paragraph. For each 1 ≤ k < n − 1, given that sj = hj for 1 ≤ j < k,

whatever the choices of (rj, 1 ≤ j < k) may be, there are n−k ways to choose rk in a distinct

tree from hk. It follows that there are
∏n−2

k=1(n − k) = (n − 1)! execution paths with the

property that sk = hk for each 1 ≤ k ≤ n− 1. Since this number does not depend on H, it

follows that each size-(n− 1) subset of
⋃

1≤i≤n{i1, . . . , i(d(i)− 1)} is equally likely.

Finally, fix both the tree t and an unordered set H of non-root half-edges with |H ∩
{i1, . . . , i(d(i) − 1)}| = ct(i) for all i ∈ [n]. We consider the number of execution paths

which yield T (d) = t and {s1, . . . , sn−1} = H. The number of choices of an ordering function

k : e(t) → [n − 1] consistent with these constraints is still (n − 1)!. Moreover, whatever

the choice of k, under the further constraint K = k, the number of possibilities for H is∏
i∈[n] ct(i)!. To see this, note that for each i ∈ [n], the constraints precisely imply that

H ∩ {i1, . . . , i(d(i) − 1)} = {s1, . . . , sn−1} ∩ {i1, . . . , i(d(i) − 1)}, and H is fixed once we

additionally specify which of these ct(i) half-edges is matched to which child of i, for each

i ∈ [n]. It follows that the number of execution paths which yield that T (d) = t, that K = k

and that {s1, . . . , sn} = H is
n∏

i=1

ct(i)! .

As this quantity doesn’t depend on the choice of the ordering function k, the final assertion

of the proposition follows.

We state a corollary of the above proposition, for later use.

Corollary 3.2.2. The tree T (d) is a uniformly random rooted tree with child sequence cT .

The corollary follows since the formula for P {T (d) = t} from Proposition 3.2.1 only

depends on t through ct.

We now assume that
∑n

i=1 d(i) ≥ 2n and that
∑n

i=1 d(i) is even, and define a random

tree-rooted graph (G, T,Γ) = (G(d), T (d),Γ(d)) as follows: First, let T = T (d) be the

random tree built by Pitman’s coalescent, and let Γ+ = Γ+(d) be its root half-edge. We

refer to T as the spanning tree-elect of a to-be-constructed tree-rooted graph. Next, choose

a uniformly random matching of the 2m − 2(n − 1) pendant half-edges attached to T , and

pair the half-edges according to this matching to create G = G(d). Then let Γ be the edge

containing Γ+, oriented so that Γ+ is at the head; for later use, let Γ− = Γ−(d) be the other

half-edge of Γ. We call (G(d), T (d),Γ(d)), or any other graph with the same distribution, a

random tree-rooted graph with degree sequence d. The tree T has now taken office.
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The next proposition describes the distribution of (G(d), T (d),Γ(d)). For a tree-rooted

graph (g, t, γ),

Proposition 3.2.3. Let d = (d(1), . . . , d(n)) be a degree sequence with d(i) ≥ 1 for all

i ∈ [n], and write m = 1
2

∑n
i=1 d(i). Fix a tree-rooted graph (g, t, γ) where g is a graph with

degree sequence d. Then

P {(G(d), T (d),Γ(d)) = (g, t, γ)} ∝ 21[γ is a loop] ·mg−t(γ)∏n
i=1 2mg−t(ii) ·

∏
e∈e(g) mg−t(e)!

.

Proof. Proposition 3.2.1 gives us a formula for P {T (d) = t}. We next focus on computing

P {G(d) = g | T (d) = t} .

Write r for the root of t, and γ = qr for the oriented root edge of g. Given that T (d) = t,

each i ∈ [n] with i ̸= r(t) has d′(i) := d(i) − ct(i) − 1 pendant half-edges attached to it,

and r has d′(r) := d(r)− ct(r) half-edges attached to it. Conditionally given that T (d) = t,

the graph G(d) − T (d) is distributed as CM(d′), a random graph with degree sequence

d′ = (d′(1), . . . , d′(n)) sampled according to the configuration model, so with distribution as

in (3.2)), and more Writing m′ := m− (n− 1) = 1
2

∑n
i=1 d

′(i) and g′ = (v(g), e(g) \ e(t)), it

follows that

P {G(d) = g | T (d) = t} = P {CM(d′) = g′}

=
2m′

(m′)!

(2m′)!

∏n
i=1 d

′(i)!∏n
i=1 2mg′ (ii) ·

∏
e∈e(g′) mg′(e)!

=
2m′

(m′)!

(2m′)!

∏n
i=1 d

′(i)!∏n
i=1 2mg−t(ii) ·

∏
e∈e(g) mg−t(e)!

.

For the second equality we have used the exact expression for the distribution of CM(d′),

which can be found in, e.g., [68], equation (7.2.6). For the last equality, we use that mg′(ii) =

mg−t(ii) since t is a tree so contains no loops, and that mg′(e) = mg−t(e) by definition when

e ∈ e(g′).

Given that T (d) = t and that G(d) = g, in order to have (G(d), T (d),Γ(d)) = (g, t, γ) it is

necessary and sufficient that Γ(d) = γ. This occurs precisely if γ+, the half-edge of γ incident

to r, was matched with some half-edge incident to q. Since the matching of half-edges in

G(d) − T (d) is chosen uniformly at random, by symmetry the conditional probability that

this occurred is mg−t(γ)/d′(r) if γ is not a loop, and is 2mg−t(γ)/d′(r) if γ is a loop. We
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may unify these two formulas by writing

P {Γ(d) = γ | T (d) = t, G(d) = g} =
21[γ is a loop]mg−t(γ)

d′(r)
.

Combined with the formula for P {T (d) = t} from Proposition 3.2.1, this gives

P {(G(d), T (d),Γ(d)) = (g, t, γ)}

=
1

(2m− n)n−1

n∏
i=1

(d(i)− 1)ct(i)

· 2m′
(m′)!

(2m′)!

∏n
i=1 d

′(i)!∏n
i=1 2mg−t(ii) ·

∏
e∈e(g) mg−t(e)!

· 21[γ is a loop]mg−t(γ)

d′(r)

=
n∏

i=1

(d(i)− 1)! · 2m−(n−1)(m− (n− 1))!

2m′(2m− n)!
· 21[γ is a loop]mg−t(γ)∏n

i=1 2mg−t(ii) ·
∏

e∈e(g) mg−t(e)!
.

In the second equality we have used that (2m − n)n−1(2m
′)! = 2m′(2m − n)!, that (d(i) −

1)ct(i)d
′(i)! = (d(i)− 1)! for i ̸= r, and that (d(r)− 1)ct(r)d

′(r)! = d′(r)(d(r)− 1)!. The first

two terms on the final line do not depend on the triple (g, t, γ), so the result follows.

3.3 Concentration of degrees

Throughout this section, let (dn, n ≥ 1) be a sequence of degree sequences satisfying the

conditions of Theorem 3.1.1, and also let pn and p be as in Theorem 3.1.1. Next, for n ≥ 1

let T (dn) be the tree built by Pitman’s additive coalescent applied to the degree sequence

dn = (dn(i), 1 ≤ i ≤ n). Let cn = (cn(i), 1 ≤ i ≤ n) be the child sequence of T (dn), and

recall that Qcn = (Qcn(a), a ≥ 0) is the child statistics vector of cn. Also, for 0 ≤ a < b, let

P n
b,a = #{1 ≤ i ≤ n : dn(i) = b, cn(i) = a}. Finally, let ρ := 1/(µ1(p) − 1). Note that since∑
i∈[n] d

n(i) ≥ 2n, necessarily µ1(p
n) ≥ 2; since pn → p pointwise and µ2(p

n) → µ2(p), it

follows that µ1(p
n)→ µ1(p), so µ1(p) ≥ 2 and hence ρ ∈ (0, 1].

Proposition 3.3.1. For a ≥ 0 let

q(a) :=
∞∑

b=a+1

p(b) ·P {Bin(b− 1, ρ) = a} .
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Then µ2(q) < ∞ and µ2(n
−1Qcn) → µ2(q) in probability as n → ∞. Moreover, for all

0 ≤ a < b, n−1P n
b,a

prob−→ p(b) · P {Bin(b− 1, ρ) = a}, and n−1Qcn(a)
prob−→ q(a), in both cases

as n→∞.

Let (G(dn), T (dn),Γ(dn)) be a random tree-weighted graph with degree sequence dn. Us-

ing Proposition 3.3.1, together with existing results from the literature, it is fairly straight-

forward to establish that (σn−1/2)T (dn)
d→ T , with σ = µ2(q)− 1 ∈ (0,∞), where T is the

Brownian continuum random tree. However, in order to show that such convergence holds

for the corresponding random simple tree-weighted graphs, we additionally need the next

proposition, which establishes that the number of pairs of tree-adjacent vertices in T (dn)

with given fixed degrees is well-concentrated around its expected values. This will be used

in order to show that the probability of G(dn) being simple given T (dn) asymptotically

behaves like a constant.

Write G−(dn) = G(dn) − T (dn) and let dn
− = (dn−(i), 1 ≤ i ≤ n) be the degree sequence

of G−(dn). For integers k, ℓ ≥ 0, let

α(k, ℓ) =
∑

a1,a2≥0

a2p(ℓ+a2 +1)P {Bin(ℓ + a2, ρ) = a2} ·p(k+a1 +1)P {Bin(k + a1, ρ) = a1} .

(3.7)

Proposition 3.3.2. For integers k, ℓ ≥ 0 let

An(k, ℓ) =
∣∣{uv ∈ e(T (dn)) : dn

−(u) = k, dn
−(v) = ℓ

}∣∣ .
Then for all k, ℓ ≥ 0,

1

n
An(k, ℓ)

prob−→ α(k, ℓ)

as n→∞, and also
1

n

∑
k,ℓ≥0

kℓAn(k, ℓ)
prob−→

∑
k,ℓ≥0

kℓα(k, ℓ).

The proofs of Propositions 3.3.1 and 3.3.2 appear in Appendix 3.A.

To conclude the section, we observe that α(k, ℓ) defines a probability distribution on pairs

of non-negative integers. Indeed,

∑
k≥0

∑
a1≥0

p(k + a1 + 1)P {Bin(k + a1, ρ) = a1} =
∑
m≥0

m∑
a=0

p(m + 1)P {Bin(m, ρ) = a}

=
∑
m≥0

p(m + 1) = 1− p(0) = 1 ,
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and ∑
ℓ≥0

∑
a2≥0

a2p(ℓ + a2 + 1)P {Bin(ℓ + a2, ρ) = a2}

=
∑
m≥0

m∑
a=0

ap(m + 1)P {Bin(m, ρ) = a}

=
∑
m≥0

p(m + 1) ·mρ = (µ1(p)− (1− p(0)))ρ = (µ1(p)− 1)ρ = 1,

so by factorizing
∑

k,ℓ≥0 α(k, ℓ) we obtain

∑
k,ℓ≥0

α(k, ℓ) =

(∑
m≥0

p(m + 1)

)
·

(∑
m≥0

∑
m≥0

p(m + 1) ·mρ

)
= 1 ;

the fact that
∑

k,ℓ≥0 α(k, ℓ) = 1 will be used in the proof of Proposition 3.3.2. A similar

computation shows that

∑
k,ℓ≥0

kℓ ·α(k, ℓ) ≤

(∑
m≥0

mp(m + 1)

)
·

(∑
m≥0

m2p(m + 1)ρ

)
= µ2(p)−2µ1(p)+1 <∞ , (3.8)

a fact we will use in bounding the probability of simplicity of G(dn).

3.4 Poisson approximation for graph superpositions.

In this section we state a Poisson approximation theorem for the number of loops and multiple

edges in the superposition of a fixed simple graph and a random graph with a fixed degree

sequence; this in particular allows us to control the probability that such a superposition

yields a simple graph.

Let H be a simple graph with vertex set v(H) = [n]. Fix a degree sequence d =

(d(1), . . . , d(n)) whose sum of degrees is even, and let G be a random graph with degree

sequence d sampled according to the configuration model. For vertices u, v ∈ [n] and i ∈
[d(u)], j ∈ [d(v)], let 1[ui,vj] be the indicator of the event that half-edge ui is matched with

70



half-edge vj in G. Now write

L = L(G) = {(ui, uj) : u ∈ [n], i, j ∈ [d(u)], i < j}

M =M(G,H) = {((ui1, vj1), (ui2, vj2)) : u, v ∈ [n], uv /∈ e(H),

i1, i2 ∈ [d(u)], j1, j2 ∈ [d(v)], u < v, i1 < i2, j1 ̸= j2}, and

N = N (G,H) = {(ui, vj) : uv ∈ e(H), i ∈ [d(u)], j ∈ [d(v)]},

and let

L = L(G) =
∑

(ui,uj)∈L

1[ui,uj] ,

M = M(G,H) =
∑

((ui1,vj1),(ui2vj2))∈M

1[(ui1,vj1)]1[(ui2vj2)] , and

N = N(G,H)
∑

(ui,vj)∈N

1[ui,vj] .

Note that the graph with edge set e(G) ∪ e(H) is simple precisely if L + M + N = 0.

Theorem 3.4.1. Fix a sequence of simple graphs (hn, n ≥ 1) with v(hn) = [n] for all n ≥ 1

and maxv∈[n]{deghn
(v)} = o(n). For each n ≥ 1 let dn = (dn(v), 1 ≤ v ≤ n) be a degree

sequence and let pn be the degree distribution of dn. Suppose that there exists a probability

distribution p = (p(k), k ≥ 0) with µ2(p) ∈ [0,∞) and p(0) < 1 such that the following holds.

First, pn → p pointwise and µ2(p
n) → µ2(p). Second, there are non-negative numbers

(α(a, b), a, b ≥ 0) such that for any a, b ≥ 0

αn(a, b) :=
1

n
|{uv ∈ e(hn) : dn(u) = a, dn(v) = b}| → α(a, b),

and ∑
k,ℓ≥0

klαn(k, ℓ)→
∑
k,ℓ≥0

klα(k, ℓ) <∞ (3.9)

For n ≥ 1 let Gn be distributed according to the configuration model on graphs with

vertex set [n] and degree sequence dn. Then with Ln = L(Gn), Mn = M(Gn, hn) and Nn =

N(Gn, hn), we have

∥Dist(Ln,Mn, Nn)− Poi(ν/2)⊗ Poi(ν2/4)⊗ Poi(η)∥TV → 0

as n→∞, where ν = (µ2(p)/µ1(p))− 1 and η = 1
µ1(p)

∑
i,j≥1 ijα(i, j).
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In the statement of Theorem 3.4.1 we have introduced the notation deghn
(v) for the

degree of vertex v in hn, and the notation ∥µ−ν∥TV for the total variation distance between

probability measures. The proof of Theorem 3.4.1 appears in Appendix 3.B. This theorem

has the following consequence for random tree-weighted graphs, which we will use in the

next section.

Corollary 3.4.2. Let (dn, n ≥ 1) and (pn, n ≥ 1) be as in Theorem 3.1.1, and for n ≥ 1 let

(G(dn), T (dn),Γ(dn)) be a random tree-weighted graph with degree sequence d. Then

P {G(dn) simple | T (dn)} prob−→ exp(−ν/2− ν2/4− η) ,

as n→∞.

This corollary follows straightforwardly from Theorem 3.4.1 when µ2(p
n) > 2, in which

case G−(dn) = G(dn)−T (dn) has a linear number of edges. However, when µ2(p
n) = 2, and

the graph G−(dn) has a sub-linear number of edges, a separate argument is needed. The

proof of Corollary 3.4.2 also appears in Appendix 3.B.

3.5 Proof of Theorem 3.1.1

Let (dn, n ≥ 1) be a sequence of degree sequences satisfying the conditions of Theorem 3.1.1.

For n ≥ 1 let T (dn) be the tree built by Pitman’s additive coalescent applied to degree

sequence dn, and let cn be the child sequence of T (dn). By Proposition 3.2.1 (1), conditionally

given cn, the tree T (dn) is uniformly distributed over the set of trees with child sequence cn.

By Proposition 3.3.1, the child statistics vectors (Qcn , n ≥ 1) satisfy that, as n→∞, for

all a ≥ 0,

n−1Qcn(a)
prob−→ q(a), (3.10)

and moreover that µ2(n
−1Qcn(a))→ µ2(q). Here q = (q(a), a ≥ 0) is as in Proposition 3.3.1,

and in particular satisfies µ2(q) <∞. We will also need that µ2(q) > 1, and we now justify

this.

The convergence (3.10) and the fact that µ2(n
−1Qcn(a)) → µ2(q) together imply that

µ1(n
−1Qcn(a)) → µ1(q). But µ1(n

−1Qcn(a)) = (n − 1)/n since Qcn is a child sequence, so

necessarily µ1(q) = 1. By the definition of q, if ρ = 1 then q(1) = p(2), and p(2) < 1 by
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assumption. If ρ > 1 then

q(0) :=
∞∑
b=1

p(b) ·P {Bin(b− 1, ρ) = 0} > 0,

so again q(1) ≤ (1− q(0)) < 1. Thus, we always have q(1) < 1, which together with the fact

that µ1(q) = 1 implies that µ2(q) > 1.

Writing σ = µ2(q)− 1 ∈ (0,∞), it then follows by Theorem 1 of [33] that

T (dn) :=
σ

n1/2
T (dn)

d→ T ,

in the Gromov-Hausdorff-Prokhorov sense.1

We aim to prove the same statement with T (dn) replaced by T n := (σ/n1/2)Tn, where

(Gn, Tn,Γn) is is a uniformly random simple tree-rooted graph with degree sequence dn.

To accomplish this, we use that the law of (Gn, Tn,Γn) is precisely the conditional law of

(G(dn), T (dn),Γ(dn)) given that G(dn) is a simple graph.

Writing K for Gromov-Hausdorff-Prokhorov space as in [1], for any bounded continuous

function f : K→ R we have

E
(
f(T (dn)) · 1[G(dn) simple]

)
= E

(
E
(
f(T (dn)) · 1[G(dn) simple]

∣∣ T (dn)
) )

= E
(
f(T (dn)) ·P {G(dn) simple | T (dn)}

)
.

Since Ef(T (dn)) → Ef(T ), and P {G(dn) simple | T (dn)} prob−→ exp(−ν/2 − ν2/4 − η) by

Corollary 3.4.2, it follows that

E
(
f(T (dn)) · 1[G(dn) simple]

)
→ exp(−ν/2− ν2/4− η)E (f(T )) .

Furthermore,

P {G(dn) simple} = E (P {G(dn) simple | T (dn)})→ exp(−ν/2− ν2/4− η),

1Theorem 1 of [33] is stated for plane trees with a fixed degree sequence, rather than labelled trees with
a fixed degree sequence. However, as noted by Broutin and Marckert [33, page 295], a straightforward
combinatorial argument shows that the same result holds for labeled trees. Also, as stated, the theorem
only yields convergence in the Gromov-Hausdorff sense; but the proof proceeds by establishing convergence
distributional of coding functions. As explained in [1, Section 3], such proofs immediately yield the stronger
Gromov-Hausdorff-Prokhorov convergence.
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and therefore

E
(
f(T (dn))

∣∣ G(dn) simple
)

=
E
(
f(T (dn)) · 1[G(dn) simple]

)
P {G(dn) simple}

→ E (f(T )) .

Since

E
(
f(T n)

)
= E

(
f(T (dn)

∣∣ G(dn) simple
)
,

the fact that T n
d→ T now follows by the Portmanteau theorem.

3.A Proofs of Propositions 3.3.1 and 3.3.2

Before beginning the proofs in earnest, we state and prove a simple bound on the asymptotic

behaviour of maximum degrees and sums of small sets of degrees, for sequences of degree

sequences as in Theorems 3.1.1 and 3.4.1, which will be used multiple times below.

Fact 3.A.1. For each n ≥ 1 let dn = (dn(v), 1 ≤ v ≤ n) be a degree sequence and let pn be the

degree distribution of dn. Suppose that there exists a probability distribution p = (p(k), k ≥ 0)

such that pn → p pointwise and µ2(p
n) → µ2(p) ∈ [0,∞). Then max1≤i≤n d

n(i) = o(n1/2).

Also, for any sets (An, n ≥ 1) with An ⊂ [n] and |An| = o(n), it holds that
∑

i∈An
dn(i) =

o(n).

Proof. If pn → p pointwise and µ2(p
n)→ µ2(p) ∈ [0,∞), then for all ϵ > 0 there is M such

that

lim inf
n→∞

M∑
k=1

k2pn(k) ≥ µ2(p)− ϵ,

so supM≥1 lim infn→∞
∑M

k=1 k
2pn(k) ≥ µ2(p). If additionally there is δ > 0 such that

max1≤i≤n d
n(i) ≥ δn1/2 for infinitely many n, then

lim sup
n→∞

µ2(p
n) ≥ δ2 + sup

M≥1
lim inf
n→∞

M∑
k=1

k2pn(k) > µ2(p),

so µ2(p
n) ̸→ µ2(p).

Similarly, for sets (An, n ≥ 1) as in the statement, since |An| = o(n), for any M ∈ N we

have
∑

i∈An
(dn(i))21[dn(i)≤M ] = o(n), so for any ϵ > 0 there is M ∈ N such that

lim inf
n→∞

1

n

n∑
i=1

(dn(i))21[dn(i)≤M ]1[i ̸∈An] ≥ µ2(p)− ϵ.
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This implies that lim infn→∞ n−1
∑n

i=1(d
n(i))21[i ̸∈An] ≥ µ2(p). If also there is δ > 0 such that∑

i∈An
(dn(i))2 > δn for infinitely many n, then

lim sup
n→∞

µ2(p
n) = lim sup

n→∞

1

n

n∑
i=1

(dn(i))2 ≥ µ2(p) + δ ,

so µ2(p
n) ̸→ µ2(p).

Note that the conditions on the degree sequences in both Theorem 3.1.1 and Theo-

rem 3.4.1 allow Fact 3.A.1 to be applied.

To prove Proposition 3.3.1, we will make use of the following lemma, which uses the

second moment method to control how subsampling affects degree distributions. The proof

of the proposition immediately follows that of the lemma.

Lemma 3.A.2. For any integer b ≥ 1 there exists n0 such that for all n ≥ n0 the following

holds. Let d = (d(1), . . . , d(n)) be a degree sequence with d(i) ≥ 1 for all i ∈ [n] and with∑n
i=1 d(i) ≥ 2n−1, set S =

⋃n
i=1{i1, . . . , i(d(i)−1)} and write s = |S|. Let U be a uniformly

random subset of S with |U| = n− 1, and for 1 ≤ i ≤ n write Ui = #{1 ≤ j < d(i) : (i, j) ∈
U}. For 0 ≤ a < b, write Pb,a = #{1 ≤ i ≤ n : (d(i), Ui) = (b, a)}. Then for all ϵ > 0,

P {|Pb,a − EPb,a| > ϵEPb,a} <
1

ϵ2

(
1

EPb,a

+
2b2

s

)
.

Proof. We fix 0 ≤ a ≤ b and compute the first and second moments of Pb+1,a; this makes

the calculations slightly easier to read than they would be for Pb,a.

Fix indices k and ℓ with k ̸= ℓ and d(k) = d(ℓ) = b + 1. Since U is a uniformly random

subset of S, by symmetry we have

P {|Uk| = a} = P {|Uℓ| = a} =

(
b

a

)
·
(

s− b

n− 1− a

)(
s

n− 1

)−1

,

and

P {|Uk| = |Uℓ| = a} =

(
b

a

)2

·
(

s− 2b

n− 1− 2a

)(
s

n− 1

)−1

,

so writing nb+1 = #{1 ≤ i ≤ n : d(i) = b + 1}, we have

EPb+1,a = nb+1

(
b

a

)
·
(

s− b

n− 1− a

)(
s

n− 1

)−1

(3.11)
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and

Var {Pb+1,a}

= nb+1(nb+1 − 1)

(
b

a

)2
((

s− 2b

n− 1− 2a

)(
s

n− 1

)−1

−
(

s− b

n− 1− a

)2(
s

n− 1

)−2
)

+ nb+1

((
b

a

)(
s− b

n− 1− 1

)(
s

n− 1

)−1

−
(
b

a

)2(
s− b

n− 1− 1

)2(
s

n− 1

)−2
)
,

where the final line accounts for the diagonal terms. Bounding the final line from above by

EPb+1,a and cancelling terms in the parenthetical expression in the middle line gives

Var {Pb+1,a} − EPb+1,a

≤ nb+1(nb+1 − 1)

(
b

a

)2((n− 1)2a(s− (n− 1))2(b−a)

(s)2b
−

(n− 1)2a(s− (n− 1))2b−a

(s)2b

)
.

The ratio of the first and the second term in the final parentheses is

(n− 1)2a
(n− 1)2a

(s− (n− 1))2(b−a)

(s− (n− 1))2b−a

(s)2b
(s)2b

≤ (s)2b
(s)2b

≤
(

1 +
b

s− 2b

)b

≤ 1 +
2b2

s
,

the last bound holding for b fixed and s large. This gives

Var {Pb+1,a} ≤ EPb+1,a + nb+1(nb+1 − 1)

(
b

a

)2
2b2

s

(
s− b

n− 1− a

)2(
s

n− 1

)−2

< EPb+1,a +
2b2

s
(EPb+1,a)

2 ,

and the lemma follows by Chebyshev’s inequality.

Proof of Proposition 3.3.1. We first bound µ2(q) by writing

µ2(q) =
∑
a≥0

a2q(a)

=
∑
a≥0

a2
∑
b>a

p(b) ·P {Bin(b− 1, ρ) = a}

≤
∑
b>0

b2p(b) ·
∑

0≤a<b

P {Bin(b− 1, ρ) = a}

= µ2(p)2 <∞ .
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Next, since pn → p pointwise and µ2(p
n)→ µ2(p) <∞, for any ϵ > 0 there is k such that∑

d≥k d
2pn(d) < ϵ and

∑
d≥k d

2p(d) < ϵ. If node i has a children in T (dn) then dn(i) ≥ a+ 1,

so it follows that

∞∑
a=k

a2
Qcn(a)

n
=
∑
a≥k

∑
b>a

a2
#{i ≤ n : cn(i) = a, dn(i) = b}

n

≤
∑
b>k

b2
∑
a<b

#{i ≤ n : cn(i) = a, dn(i) = b}
n

=
∑
b>k

b2pn(b) < ϵ .

To complete the proof it thus suffices to show that n−1P n
b,a → p(b) ·P {Bin(b− 1, ρ) = a} in

probability for all 0 ≤ a < b and that n−1Qcn → q pointwise in probability; the fact that

µ2(n
−1Qcn)→ µ2(q) in probability then immediately follows.

By the third statement of Proposition 3.2.1, the set of non-root half-edges in T (dn) is

a uniformly random size-(n − 1) subset of the set Sn :=
⋃

1≤i≤n{i1, . . . , i(dn(i) − 1)}. We

will apply Lemma 3.A.2 to control the numbers of nodes with a given number of children in

T (dn). To make the coming applications of that lemma transparent, we write sn := |Sn| =∑
1≤i≤n(dn(i)− 1).

We handle the cases µ1(p) = 2 and µ1(p) > 2 separately. If µ1(p) = 2 then |Sn| =∑
1≤i≤n(dn(i)− 1) = (1 + o(1))n as n→∞. Note that in this case ρ(p) = 1/(µ1(p)− 1) = 1

so q(a) = p(a + 1) for all a ≥ 0. For any a ≥ 0, by (3.11) we then have

EP n
a+1,a = (1− o(1))npn(a + 1)

(
a

a

)(
|Sn| − 1− a

n− 1− a

)(
|Sn|
n− 1

)−1

= (1− o(1))npn(a + 1).

If p(a + 1) > 0 then npn(a + 1) = Θ(n), so

1

E
(
P n
a+1,a

) +
2(a + 1)2

|Sn|
= o(1),

and hence by Lemma 3.A.2,

P n
a+1,a

n

prob−→ p(a + 1) = q(a).

If p(a + 1) = 0 then pn(a + 1) = o(1), so E
(
P n
a+1,a

)
/n→ 0 and thus P n

a+1,a/n
prob−→ 0 = q(a)

by Markov’s inequality. Since this holds for all a ≥ 0, and
∑

a≥0 P
n
a+1,a/n ≤ 1 =

∑
a≥0 q(a),
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it follows that
∑

a≥0 P
n
a+1,a/n → 1 in probability. This implies that

∑
b>a+1 P

n
b,a/n → 0 in

probability, so
Qcn(a)

n
=

1

n

∑
b>a

P n
b,a =

P n
a+1,a

n
+
∑

b>a+1

P n
b,a

n

prob−→ q(a) ,

and that for all b > a+1, P n
b,a/n→ 0 = p(b)·P {Bin(b− 1, ρ) = a} in probability, as required.

We now assume µ1(p) > 2, so that ρ(p) = 1/(µ1(p) − 1) < 1. Since p = (pk, k ≥ 1) is

supported on the positive integers,

∑
a≥0

q(a) =
∑
a≥0

∞∑
b=a+1

p(b)P {Bin(b− 1, ρ) = a} =
∑
b≥1

p(b) = 1 .

Recalling that Qcn(a) =
∑

b>a P
n
b,a, to show that n−1Qcn(a)→ q(a) in probability, it therefore

suffices to prove that P n
b+1,a/n → p(b + 1) · P {Bin(b, ρ) = a} for all 0 ≤ a ≤ b, and we now

turn to this.

Since µ1(p
n) → µ1(p), it follows that |

∑n
i=1 d

n(i) − µ1(p)n| = n|µ1(p
n) − µ1(p)| = o(n)

as n→∞, so sn = (1 + o(1))n(µ1(p)− 1). Thus, for any b ≥ 1 and 0 ≤ a ≤ b we have(
b

a

)
·
(

sn − b

n− 1− a

)(
sn

n− 1

)−1

=

(
b

a

)
(n− 1)a(s

n − (n− 1))b−a

(sn)b

= (1− o(1))

(
b

a

)
na((µ1(p)− 2)n)b−a

((µ1(p)− 1)n)b

= (1− o(1))

(
b

a

)
(µ1(p)− 2)b−a

(µ1(p)− 1)b

= (1− o(1))P {Bin(b, ρ) = a} .

Using (3.11) we thus have

EP n
b+1,a = (1− o(1))npn(b + 1)P {Bin(b, ρ) = a} = (1− o(1))np(b + 1)P {Bin(b, ρ) = a} ,

so again, applying Lemma 3.A.2 in the case that p(b + 1) > 0, and applying Markov’s

inequality in the case that p(b + 1) = 0, we obtain that, as n→∞,

P n
b+1,a

n

prob−→ p(b + 1)P {Bin(b, ρ) = a} ,

as required.

We now turn to controlling the joint degrees of pairs of tree-adjacent vertices in tree-
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weighted graphs. Given a degree sequence d = (d(1), . . . , d(n)) and a tree t with v(t) = [n],

for integers b1, b2, a1, a2 let

Rb1,b2,a1,a2(t, d)

= #{u ∈ v(t) \ {r(t)} : d(u) = b1, d(par(u)) = b2, ct(u) = a1, ct(par(u)) = a2}

=
∑

u∈v(t)\{r(t)}

1[d(u)=b1,ct(u)=a1] · 1[d(par(u))=b2,ct(par(u))=a2] .

If (g, t, γ) is a tree-rooted graph and g has degree sequence d, then Rb1,b2,a1,a2(t, d) counts

the number of edges xy of t with y = par(x) such that ct(x) = a1, ct(y) = a2 and dg(x) = b1,

dg(y) = b2.

Proposition 3.A.3. Under the assumptions of Theorem 3.1.1, for any integers 0 ≤ a1 < b1

and 0 ≤ a2 < b2, as n→∞,

Rb1,b2,a1,a2(T (dn), dn)

n
→ a2p(b2)P {Bin(b2 − 1, ρ) = a2} · p(b1)P {Bin(b1 − 1, ρ) = a1}

in probability, where ρ = 1/(µ1(p)− 1).

We introduce two pieces of notation before beginning the proof. For a half-edge h we

write v(h) for the vertex incident to h. Also, for r ∈ R we write r+ := max(r, 0).

Proof. First, if a2 = 0 then the right-hand side is zero, and also Rb1,b2,a1,a2(T (dn), dn) = 0,

since if v = par(u) ∈ T (dn) then cT (dn)(v) ≥ 1. The result thus holds trivially when

a2 = 0, and we assume hereafter that a2 ≥ 1. For the remainder of the proof we write

Rb1,b2,a1,a2 = Rb1,b2,a1,a2(T (dn), dn) for succinctness.

Let H be a fixed, size-(n − 1) subset of Sn :=
⋃

1≤i≤n{i1, . . . , i(dn(i) − 1)}. Write Sn =

{s1, . . . , sn−1} for the (unordered) set of non-root half-edges of T (dn). We now show that

for any half edge h ∈ H and any root half-edge r with v(r) ̸= v(h), for all 1 ≤ i ≤ n− 1,

P {(ri, si) = (r, h) | Sn = H} = P {(r1, s1) = (r, h) | Sn = H} . (3.12)

To see this, note that by the second assertion of Proposition 3.2.1, the number of execution

paths with Sn = H is ((n− 1)!)2. We claim that for any i ∈ [n− 1], the number of execution

paths with Sn = H which additionally satisfy that (ri, si) = (r, h) is ((n − 2)!)2. As this

number does not depend on i ∈ [n− 1], the displayed identity follows from this claim.
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To prove the claim, simply note that there are (n− 2)! possible orderings of H consistent

with the constraint that si = h. Having fixed such an ordering (h1, . . . , hn−1), for each

j ∈ [n − 1] with j ̸= i, if sk = hk for 1 ≤ k < j then, excluding ri there are n − j − 1[j<i]

unpaired root half-edges in components different from that of sj, and any such root half-

edge may be chosen as rj. Thus the number of execution paths with Sn = H and such that

(ri, si) = (r, h) is (n− 2)! ·
∏

j∈[n−1]\{i}(n− j − 1[j<i]) = ((n− 2)!)2.

Now fix a second non-root half-edge h′ ̸= h and a second root half-edge r′ ̸= r not incident

to the same vertex as h′. Then a similar argument to the one leading to (3.12) shows that

that for any 1 ≤ i < j ≤ n,

P {(ri, si) = (r, h), (rj, sj) = (r′, s′) | Sn = H}

= P {(r1, s1) = (r, h), (r2, s2) = (r′, s′) | Sn = H} . (3.13)

In the current case, the number of execution paths leading to the events in both the left-

and right-hand probabilities is ((n− 3)!)2.

We will next use the above identities in order to perform first and second moment

computations. For any set H ⊂ Sn, for 0 ≤ a < b let V n
b,a(H) = {i ∈ [n] : dn(i) =

b, |H ∩ {i1, . . . , i(dn(i)− 1)| = a}. Note that V n
b,a(Sn) is simply the set of nodes with degree

b in G(dn) and with a children in T (dn); so P n
b,a = |V n

b,a(Sn)|.
Fix a non-root node u ∈ T (dn), and let m ∈ [n − 1] be such that em = {par(u), u}.

Then v(rm) = u and v(sm) = par(u), so u ∈ Rb1,b2,a1,a2 if and only if v(rm) ∈ V n
b1,a1

(Sn) and

v(sm) ∈ V n
b2,a2

(Sn). By (3.12), it follows that

E (Rb1,b2,a1,a2 | Sn = H)

= (n− 1)P
{
v(r1) ∈ V n

b1,a1
(Sn), v(s1) ∈ V n

b2,a2
(Sn) | Sn = H

}
. (3.14)

Likewise, by (3.13) it follows that

E

((
Rb1,b2,a1,a2

2

)
| Sn = H

)
=

(
n− 1

2

)
P
{
v(r1), v(r2) ∈ V n

b1,a1
(Sn), v(s1), v(s2) ∈ V n

b2,a2
(Sn) | Sn = H

}
. (3.15)

We develop the latter two identities in turn.

For integers 0 ≤ a < b, the number of non-root half-edges h ∈ Sn with v(h) ∈ V n
b,a(Sn)

is a · |V n
b,a(Sn)|, and the number of root half-edges h with v(h) ∈ V n

b,a(Sn) is just |V n
b,a(Sn)|.
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Conditionally given that Sn = H, the half-edge s1 is a uniformly random element of H, so

P
{
v(s1) ∈ V n

b2,a2
(Sn) | Sn = H

}
=

a2|V n
b2,a2

(H)|
|H|

=
a2|V n

b2,a2
(H)|

n− 1
.

Having chosen s1, if v(s1) = v then v(r1) is a uniformly random element of [n] \ {v}, so

P
{
v(r1) ∈ V n

b1,a1
(Sn) | Sn = H, v(s1) ∈ V n

b2,a2
(Sn)

}
=

(|V n
b1,a1

(H)| − 1[(b1,a1)=(b2,a2)])+

n− 1
.

Using these two identities in (3.14), it follows that

(n− 1)E (Rb1,b2,a1,a2 | Sn = H) = a2|V n
b2,a2

(H)|(|V n
b1,a1

(H)| − 1[(b1,a1)=(b2,a2)])+ ,

so since |V n
b,a(Sn)| = P n

b,a for all 0 ≤ a < b, by Proposition 3.3.1 we have

E

(
Rb1,b2,a1,a2

n
| Sn

)
=

1

n(n− 1)
a2P

n
b2,a2

(P n
b1,a1
− 1[(b1,a1)=(b2,a2)])

prob−→ a2p(b2)P {Bin(b2 − 1, ρ) = a2} · p(b1)P {Bin(b1 − 1, ρ) = a1} .
(3.16)

For the second moment calculation, we need to additionally compute

P
{
v(r2) ∈ V n

b1,a1
(Sn), v(s2) ∈ V n

b2,a2
(Sn) | Sn = H, v(r1) ∈ V n

b1,a1
(Sn), v(s1) ∈ V n

b2,a2
(Sn)

}
.

(3.17)

Under the conditioning in (3.17), the number of non-root half-edges h ∈ Sn \ {s1} with

v(h) ∈ V n
b2,a2

(H) is (a2 · |V n
b2,a2

(H)| − 1)+, so

P
{
v(s2) ∈ V n

b2,a2
(Sn) | Sn = H, v(r1) ∈ V n

b1,a1
(Sn), v(s1) ∈ V n

b2,a2
(Sn)

}
=

(a2 · |V n
b2,a2

(H)| − 1)+

n− 2
.

Now suppose that Sn = H, v(r1) ∈ V n
b1,a1

(Sn), v(s1) ∈ V n
b2,a2

(Sn), and that v(s2) ∈ V n
b2,a2

(H),

and consider the number of possible values for r2. We claim that the number of unpaired

root half-edges h with v(h) ∈ V n
b1,a1

(Sn) such that v(h) is in a component different from v(s2)

is

(|V n
b1,a1

(H)| − 1− 1[(b1,a1)=(b2,a2)])+.
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To see this, note that if (b1, a1) = (b2, a2) and either v(s2) = v(s1) or v(s2) = v(r1), then we

are precisely constrained constrained to choose h so that v(h) ∈ V n
b1,a1

(H) \ {v(r1), v(s1)}.
On the other hand, if (b1, a1) = (b2, a2) and v(s2) ̸∈ {v(r1), v(s1)} then we are constrained

to choose h so that v(h) ∈ V n
b1,a1

(H) \ {v(r1), v(s2)}. Both cases agree with the above

formula. When (b1, a1) = (b2, a2), the claim is straightforward, since in that case we are only

constrained to choose h so that v(h) ∈ V n
b1,a1

(H) \ {v(r1)}. It follows that

P
{
v(r2) ∈ V n

b1,a1
(Sn) | Sn = H, v(s2) ∈ V n

b2,a2
(Sn), v(r1) ∈ V n

b1,a1
(Sn), v(s1) ∈ V n

b2,a2
(Sn)

}
=

(|V n
b1,a1

(H)| − 1− 1[(b1,a1)=(b2,a2)])+

n− 2
.

Combining the above identities with (3.15) yields that

2(n− 1)(n− 2)E

((
Rb1,b2,a1,a2

2

)
| Sn = H

)
= a2|V n

b2,a2
(H)|

(
a2|V n

b2,a2
(H)| − 1

)
+

·
(
|V n

b1,a1
(H)| − 1[(b1,a1)=(b2,a2)]

)
+

(
|V n

b1,a1
(H)| − 1− 1[(b1,a1)=(b2,a2)]

)
+
,

so since a2 ≥ 1, Proposition 3.3.1 implies that

E

(
Rb1,b2,a1,a2(Rb1,b2,a1,a2 − 1)

n2
| Sn

)
=

a2P
n
b2,a2

(a2P
n
b2,a2
− 1
)
+

n(n− 1)
·

(P n
b1,a1
− 1[(b1,a1)=(b2,a2)]

)
+

(P n
b1,a1
− 1− 1[(b1,a1)=(b2,a2)]

)
+

n(n− 2)
prob−→

(
a2p(b2)P {Bin(b2 − 1, ρ) = a2} · p(b1)P {Bin(b1 − 1, ρ) = a1}

)2
.

Also, (3.16) implies that E (n−2Rb1,b2,a1,a2 | Sn)
prob−→ 0, which with the preceding asymptotic

implies that

E

(
R2

b1,b2,a1,a2

n2
| Sn

)
prob−→

(
a2p(b2)P {Bin(b2 − 1, ρ) = a2} · p(b1)P {Bin(b1 − 1, ρ) = a1}

)2
.

Combining this with (3.16) gives that

E

((
Rb1,b2,a1,a2

n

)2

| Sn

)
−
(
E

(
Rb1,b2,a1,a2

n
| Sn

))2
prob−→ 0 ;
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the conditional Chebyshev’s inequality then gives that for all ϵ > 0,

P

{∣∣∣∣Rb1,b2,a1,a2

n
− E

(
Rb1,b2,a1,a2

n
| Sn

)∣∣∣∣ > ϵ | Sn

}
prob−→ 0.

Taking expectations on the left of the previous inequality to remove the conditioning, and

again using (3.16), this time to replace the term E
(

Rb1,b2,a1,a2

n
| Sn

)
in the probability by the

constant C := a2p(b2)P {Bin(b2 − 1, ρ) = a2} · p(b1)P {Bin(b1 − 1, ρ) = a1}, we obtain that

P

{∣∣∣∣Rb1,b2,a1,a2

n
− C

∣∣∣∣ > ϵ

}
→ 0,

as required.

Proof of Proposition 3.3.2. We may reexpress An(k, ℓ) as

An(k, ℓ) =
∑

a1,a2≥0

∑
u∈v(T (dn))

1[r(T (dn))̸∈{u,par(u)}]

· 1[dn(u)=k+a1+1,cn(u)=a1]

· 1[dn(par(u))=ℓ+a2+1,cn(par(u))=a2]

+
∑

a1,a2≥0

∑
u∈v(T (dn))

1[par(u)=r(T (dn))]

· 1[dn(u)=k+a1+1,cn(u)=a1]

· 1[dn(par(u))=ℓ+a2,cn(par(u))=a2]

For fixed a1, a2 ≥ 0, if we replace 1[r(T (dn)) ̸∈{u,par(u)}] by 1[u̸=r(T (dn))] in the first double sum,
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then the inner sum is simply Rk+a1+1,ℓ+a2+1,a1,a2 . It follows that

An(k, ℓ) =
∑

a1,a2≥0

Rk+a1+1,ℓ+a2+1,a1,a2

+
∑

a1,a2≥0

∑
u∈v(T (dn))

1[par(u)=r(T (dn))]

· 1[dn(u)=k+a1+1,cn(u)=a1]

· 1[dn(par(u))=ℓ+a2,cn(par(u))=a2]

−
∑

a1,a2≥0

∑
u∈v(T (dn))

1[par(u)=r(T (dn))]

· 1[dn(u)=k+a1+1,cn(u)=a1]

· 1[dn(par(u))=ℓ+a2+1,cn(par(u))=a2] .

But each of the last two double sums is bounded by cn(r(T (dn))), since they both count

each child of the root at most once. Under the assumptions of Theorem 3.1.1, by Fact 3.A.1

we have cn(r(T (dn))) ≤ max1≤i≤n d
n(i) = o(n1/2), so the preceding identity gives∣∣∣∣∣An(k, ℓ)−
∑

a1,a2≥0

Rk+a1+1,ℓ+a2+1,a1,a2

∣∣∣∣∣ = o(n1/2).

Since

n−1Rk+a1+1,ℓ+a2+1,a1,a2

prob−→ a2p(ℓ + a2 + 1)P {Bin(ℓ + a2, ρ) = a2} · p(k + a1 + 1)P {Bin(k + a1, ρ) = a1}

by Proposition 3.A.3, and summing the right-hand side of the last expression over a1, a2 ≥ 0

gives α(k, l), it follows that for any ϵ > 0,

P {An(k, l)/n ≥ α(k, l)− ϵ} → 1.

But also n−1
∑

k,l≥0A
n(k, l) = |e(T (dn))| = (n − 1)/n → 1; so since

∑
k,l≥0 α(k, l) = 1, we

must in fact have that
An(k, l)

n

prob−→ α(k, l)

for all k, l ≥ 0, as required.

84



It remains to show that n−1
∑

k,l≥0 klA
n(k, l)

prob−→
∑

k,l≥0 klα(k, l). For this we will exploit

the exchangeability of Pitman’s additive coalescent. Recall the notation v(h) for the vertex

incident to half-edge h. Note that for any M ∈ N we have∑
k,l≥0

klAn(k, l)−
∑

0≤k,l≤M

klAn(k, l) =
∑

uv∈e(Tn)

dn−(u)dn−(v)1[max(dn−(u),dn−(v))>M ]

≤
∑

uv∈e(Tn)

dn(u)dn(v)1[max(dn(u),dn(v))>M ]

=
n−1∑
i=1

dn(v(ri))d
n(v(si))1[max(dn(v(ri)),dn(v(si)))>M ].

Now, by Proposition 3.2.1 (3) and the identity (3.12), for any 1 ≤ i ≤ n− 1 we have

E
(
dn(v(ri))d

n(v(si))1[max(dn(v(ri)),dn(v(si)))>M ]

)
= E

(
dn(v(r1))d

n(v(s1))1[max(dn(v(r1)),dn(v(s1)))>M ]

)
,

and by the definition of Pitman’s additive coalescent we have

E
(
dn(v(r1))d

n(v(s1))1[max(dn(v(r1)),dn(v(s1)))>M ]

)
=
∑
u∈[n]

∑
v∈[n]

dn(u)dn(v)1[max(dn(u),dn(v)))>M ]P {v(s1) = u, v(r1) = v}

=
∑
u∈[n]

∑
v∈[n]

dn(u)dn(v)1[max(dn(u),dn(v))>M ] ·
dn(u)

nµ1(pn)
· 1

n− 1
,

where we have used that
∑

i∈[n] d
n(i) = nµ1(p

n). Next,

∑
u∈[n]

∑
v∈[n]

(dn(u))2dn(v)1[max(dn(u),dn(v))>M ]

≤

( ∑
u∈[n]:dn(u)>M

(dn(u))2
)
·
∑
v∈[n]

dn(v) +
( ∑

v∈[n]:dn(v)>M

dn(v)
)
·
∑
u∈[n]

(dn(u))2

 ,

= nµ1(p
n) ·

∑
u∈[n]:dn(u)>M

(dn(u))2 + nµ2(p
n) ·

∑
v∈[n]:dn(v)>M

dn(v) .

Since pn → p, µ1(p
n)→ µ1(p) and µ2(pn)→ µ2(p), for any δ > 0 we may choose M = M(δ)

sufficiently large so that
∑

u∈[n]:dn(u)>M(dn(u))2 < δn and
∑

v∈[n]:dn(v)>M dn(v) < δn, for all
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n ≥ 1. For such M , the previous bound and the two identities which precede it yield that

E

(∑
k,l≥0

klAn(k, l)−
∑

0≤k,l≤M

klAn(k, l)

)
≤ 1

µ1(pn)
(δnµ1(p

n) + δnµ2(p
n)).

By Markov’s inequality, it follows that for all ϵ > 0 there is M ∈ N such that for all n ∈ N,

P

{∑
k,l≥0

klAn(k, l)−
∑

0≤k,l≤M

klAn(k, l) > ϵn

}
< ϵ.

Finally, since n−1An(k, l)
prob−→ α(k, l), it follows that for all M ∈ N we have

1

n

∑
0≤k,l≤M

klAn(k, l)
prob−→

∑
0≤k,l≤M

klα(k, l) ,

so the preceding probability bound implies that

1

n

∑
k,l≥0

klAn(k, l)
prob−→ lim

M→∞

∑
0≤k,l≤M

klα(k, l) =
∑
k,l≥0

klα(k, l) ,

as required.

3.B Proof of Theorem 3.4.1

Let H be a simple graph with vertex set v(H) = [n], and let G be a random graph with degree

sequence d = (d(1), . . . , d(n)) sampled according to the configuration model. Recall the

definitions of L(G),M(G,H),N (G,H) and L(G),M(G,H), N(G,H) from Section 3.4. The

first subsection will provide a quantitative approximation result for mixed moments of L,M

and N . In the second subsection, we will use this approximation to prove Theorem 3.4.1.

3.B.1 Deterministic bounds on loops and multi-edges

Our arguments in this section are based on and fairly closely parallel those from [68, Chapter

7]. We recall the falling factorial notation (x)ℓ = x(x− 1) . . . (x− ℓ + 1). In what follows, it

is convenient to define (x)ℓ = 1 if ℓ = 0, and (x)ℓ = 0 if ℓ < 0.

Proposition 3.B.1. Write m = 1
2

∑n
i=1 d(i), and write dmax = max{d(1), . . . , d(n)}. For
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any positive integers q, r, s ∈ N,∣∣∣∣∣E ((L)q(M)r(N)s)−
(|L|)q(|M|)r(|N |)s∏q+2r+s−1
i=0 2m− 1− 2i

∣∣∣∣∣ ≤ C(S1 + S2)

where C is a constant depending only on q, r and s, S1 is defined by the following identity,

S1

q+2r+s−1∏
i=0

(2m− 1− 2i) =(|L|)q−2(|M|)r(|N |)s
∑

1≤u≤n

d(u)3

+ (|L|)q−1(|M|)r−1(|N |)s
∑

1≤u̸=v≤n

d(u)3d(v)2

+ (|L|)q−1(|M|)r(|N |)s−1

∑
uv∈e(H)

d(u)2d(v)

+ (|L|)q(|M|)r−2(|N |)s
∑

1≤u≤n
u̸∈{v1,v2}

d(u)3d(v1)
2d(v2)

2

+ (|L|)q(|M|)r−1(|N |)s−1

∑
1≤u,v1,v2≤n
u,v1,v2distinct

uv2∈e(H)

d(u)2d(v1)
2d(v2)

+ (|L|)q(|M|)r(|N |)s−2

∑
uv1,uv2∈e(H)

v1 ̸=v2

d(u)d(v1)d(v2),

and S2 is defined by

S2 = (|L|)q(|N |)s
r−1∑
k=1

(|M|)r−k

k∑
ℓ=0

d2ℓmax

q+2r+s−1−(2k−ℓ)∏
i=0

1

2m− 1− 2i
.

Proof. Throughout the proof, write

(x, y, z) =
(
(x1, . . . , xq), (y1, . . . , yr), (z1, . . . , zs)

)
∈ Lq ×Mr ×N s

to denote a generic element of Lq ×Mr ×N s. For (x, y, z) ∈ Lq ×Mr ×N s, write

1[x] =

q∏
i=1

1[xi], 1[y] =
r∏

i=1

1[yi], 1[z] =
s∏

i=1

1[zi].

We say (x, y, z) is non-repeating if x1, x2, . . . , xq are pairwise distinct, y1, y2, . . . , yr are pair-
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wise distinct, and z1, z2, . . . , zs are pairwise distinct. In what follows, write∑⋆
:=

∑
(x,y,z)∈Lq×Mr×Ns

(x,y,z) is non-repeating

,

and, for S ⊂ Lq ×Mr ×N s, write∑⋆

S

:=
∑

(x,y,z)∈S

(x,y,z) is non-repeating

.

Note that (L)q(M)r(N)s =
∑⋆ 1[x]1[y]1[z], so

E ((L)q(M)r(N)s) =
∑⋆

P
{
1[x]1[y]1[z] = 1

}
. (3.18)

We say (x, y, z) is non-conflicting if the 2q + 4r + 2s half-edges appearing in x, y and z

are pairwise distinct, and otherwise we say (x, y, z) is conflicting. Since half-edges in G are

paired uniformly at random, for non-conflicting (x, y, z) we have

P
{
1[x]1[y]1[z] = 1

}
=

q+2r+s−1∏
i=0

1

2m− 1− 2i
. (3.19)

Now, for a given (x, y, z), let er(x, y, z) be defined as follows:

er(x, y, z) := P
{
1[x]1[y]1[z] = 1

}
−

q+2r+s−1∏
i=0

1

2m− 1− 2i
.

By (3.19), if (x, y, z) is non-conflicting then er(x, y, z) = 0, so

E ((L)q(M)r(N)s) =
∑⋆

q+2r+s−1∏
i=0

1

2m− 1− 2i
+
∑⋆

er(x, y, z)

=
(|L|)q(|M|)r(|N |)s∏q+2r+s−1
i=0 2m− 1− 2i

+
∑⋆

(x,y,z) is conflicting

er(x, y, z).

By the triangle inequality this implies∣∣∣∣∣E ((L)q(M)r(N)s)−
(|L|)q(|M|)r(|N |)s∏q+2r+s−1
i=0 2m− 1− 2i

∣∣∣∣∣ ≤ ∑⋆

(x,y,z) is conflicting

|er(x, y, z)| . (3.20)
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To bound the error terms, we must make a distinction between two types of conflicts. This

distinction is most easily understood by way of an example. On the one hand, suppose

x1 = (ui, uj1) and x2 = (ui, uj2) for u ∈ V (G) and distinct i, j1, j2 ∈ [d(u)]. Then

1[x1]1[x2] = 1 is the event that the half edge ui is joined to uj1 and uj2 simultaneously,

and P
{
1[x1]1[x2] = 1

}
= 0. On the other hand, suppose y1 = (ui1, vj1), (ui2, vj2) and

y2 = (ui1, vj1), (ui3, vj3) for distinct u, v ∈ V (G), distinct i1, i2, i3 ∈ [d(u)], and distinct

j1, j2, j3 ∈ [d(v)]. Then 1[y1]1[y2] = 1 is the event that u and v are connected by a triple edge,

and P
{
1[y1]1[y2] = 1

}
> 0.

We say a conflicting triple (x, y, z) is a bad conflict if P
{
1[x]1[y]1[z] = 1

}
= 0, and

otherwise we say (x, y, z) is a good conflict. In the above examples, the first is a bad

conflict and the second is a good conflict. Let B = B(q, r, s) ⊆ Lq × Mr × N s and

G = G(q, r, s) ⊆ Lq × Mr × N s be the collections of bad conflicts and good conflicts

respectively. The rest of this proof is dedicated to bounding |B|, |G|, and er(x, y, z) for

(x, y, z) ∈ B ∪ G.

(Bounding |B|): If (x, y, z) is a bad conflict then one of the following must hold (in reading

the below descriptions, it may be useful to consult Figure 3.2):

1. There exists 1 ≤ a < b ≤ q, u ∈ V (G) and distinct i1, i2, i3 ∈ [d(u)] such that

xa = (ui1, ui2) and xb = (ui1, ui3). Write Bxx for the set of (x, y, z) ∈ B that contain a

pair (xa, xb) of this form.

2. There exists 1 ≤ a ≤ q, 1 ≤ b ≤ r, distinct u, v ∈ V (G), distinct i1, i2, i3 ∈ [d(u)], and

distinct j1, j2 ∈ [d(v)] such that xa = (ui1, ui3) and yb = (ui1, vj1), (ui2, vj2). Write

Bxy for the set of (x, y, z) ∈ B that contain a pair (xa, yb) of this form.

3. There exists 1 ≤ a ≤ q, 1 ≤ b ≤ s, uv ∈ e(H), distinct i1, i2 ∈ [d(u)], and j ∈ [d(v)]

such that xa = (ui1, ui2) and zb = (ui1, vj). Write Bxz for the set of (x, y, z) ∈ B that

contain a pair (xa, zb) of this form.

4. There exists 1 ≤ a < b ≤ r, distinct u, v1, v2 ∈ V (G), distinct i1, i2, i3 ∈ [d(u)], distinct

j1, j2 ∈ [d(v1)], and distinct k1, k2 ∈ [d(v2)] such that ya = (ui1, v1j1), (ui2, v1j2) and

yb = (ui1, v2k1), (ui3, v2k2). Write Byy for the set of (x, y, z) ∈ B that contain a pair

(ya, yb) of this form.

5. There exists 1 ≤ a ≤ r, 1 ≤ b ≤ s and distinct u, v1, v2 ∈ V (G) such that uv2 ∈
e(H), distinct i1, i2 ∈ [d(u)], distinct j1, j2 ∈ [d(v1)], and k ∈ [d(v2)] such that ya =
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Figure 3.2: An example of each of the six types of “bad” conflicts, depicted in the same order
as they are described in the text. In the drawing, dashed lines represent the connections
between half-edges required by the event. The bold dashed lines show the locations at
which two half-edges must pair with a single half-edge, rendering the corresponding event
impossible.

(ui1, v1j1), (ui2, v1j2) and zb = (ui1, v2k). Write Byz for the set of (x, y, z) ∈ B that

contain a pair (ya, zb) of this form.

6. There exists 1 ≤ a < b ≤ s, distinct uv1, uv2 ∈ e(H), i ∈ [d(u)], j ∈ [d(v1)], and

k ∈ [d(v2)] such that za = (ui, v1j) and zb = (ui, v2k). Write Bzz for the set of

(x, y, z) ∈ B that contain a pair (za, zb) of this form.

We next turn to bounding the sizes of each set, starting with Bxx. The number of choices for

a and b is q(q − 1)/2. Having chosen these, for each possible choice of u ∈ V (G), there are

less than d(u)3 choices for i1, i2 and i3. Then, having chosen these, we must choose one of

i1, i2 and i3 to be repeated in xa and xb. Lastly, we must choose the remaining q − 2 entries
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for x, r entries for y, and s entries for z. Hence,

|Bxx| ≤ (|L|)q−2(|M|)r(|N |)sq(q − 1)/2
∑

1≤u≤n

3d(u)3

= C1(|L|)q−2(|M|)r(|N |)s
∑

1≤u≤n

d(u)3,

where C1 = C1(q) = 3q(q − 1)/2. Note that Bxx is empty if q ≤ 1, so |Bxx| = 0. In this case

the right hand side is also zero by our convention that (k)ℓ = 0 for ℓ < 0. Therefore, the

bound also holds for q ≤ 1. The subsequent bounds can likewise be seen to hold when the

right hand side is zero, though we do not explicitly verify this in every case.

When building an element of Bxy, the number of ways to choose a and b is qr. Having

chosen these, for each pair u, v ∈ V (G), there are less than d(u)3d(v)2 choices for i1, i2, i3 ∈
[d(u)] and j1, j2 ∈ [d(v)]. Then, there are a constant number of ways to arrange the half-edges

in xa and yb. Lastly, we must choose the remaining entries for x, y and z. Hence,

|Bxy| ≤ C2(|L|)q−1(|M|)r−1(|N |)s
∑

1≤u̸=v≤n

d(u)3d(v)2,

where C2 depends only on q and r.

For an element of Bxz, for each uv ∈ e(H), there are less than d(u)2d(v) ways to choose

i1, i2 ∈ [d(u)] and j ∈ [d(v)]. Hence,

|Bxz| ≤ C3(|L|)q−1(|M|)r(|N |)s−1

∑
uv∈e(H)

d(u)2d(v).

For Byy, for each u, v1, v2 ∈ V (G), there are less than d(u)3d(v1)
2d(v2)

2 ways to choose

i1, i2, i3 ∈ [d(u)], j1, j2 ∈ [d(v1)], and k1, k2 ∈ [d(v2)]. Hence,

|Byy| ≤ C4(|L|)q(|M|)r−2(|N |)s
∑

1≤u,v1,v2≤n
u,v1,v2 distinct

d(u)3d(v1)
2d(v2)

2.

For Byz, for each u, v1, v2 ∈ V (G) such that uv2 ∈ e(H), there are less than d(u)2d(v1)
2d(v2)

ways to choose i1, i2 ∈ [d(u)], j1, j2 ∈ [d(v1)], and k ∈ [d(v2)]. Hence,

|Byz| ≤ C5(|L|)q(|M|)r−1(|N |)s−1

∑
1≤u,v1,v2≤n

u,v1,v2 distinct
uv2∈e(H)

d(u)2d(v1)
2d(v2).
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Lastly, for Bzz, for each uv1, uv2 ∈ e(H), there are less than d(u)d(v1)d(v2) ways to choose

i ∈ [d(u)], j ∈ [d(v1)] and k ∈ [d(v2)]. Hence,

|Bzz| ≤ C6(|L|)q(|M|)r(|N |)s−2

∑
uv1,uv2∈e(H)

v1 ̸=v2

d(u)d(v1)d(v2).

Note that the values of C1, C2, C3, C4, C5 and C6 depend only on q, r and s.

(Bounding |er(x, y, z)| for (x, y, z) ∈ B): If (x, y, z) ∈ B then P
{
1[x]1[y]1[z] = 1

}
= 0,

meaning

|er(x, y, z)| =
q+2r+s−1∏

i=0

1

2m− 1− 2i
(3.21)

(Bounding |G|): Suppose (x, y, z) ∈ G. Then (x, y, z) is conflicting, meaning a half-edge

appears more than once in x∪y∪ z. However, since P
{
1[x]1[y]1[z] = 1

}
> 0 for (x, y, z) ∈ G,

it cannot be the case where 1[x]1[y]1[z] contains the event that a half-edge is paired to two

different half-edges simultaneously. Hence, there must be a half-edge pair that appears more

than once in x ∪ y ∪ z. Furthermore, this half-edge pair must appear more than once in y,

since the edges in y and z are disjoint. It follows that any (x, y, z) ∈ G can be constructed

in the following way:

1. Choose x and z arbitrarily. The number of choices here is (|L|)q(|N |)s.

2. Choose a set of indices 1 ≤ a1 < a2 < · · · < ak ≤ r and arbitrarily choose the elements

ya ∈ y such that a ̸= ai for all 1 ≤ i ≤ k. The number of choices here is (|M|)r−k

times a constant in terms of r.

3. Choose 1 ≤ b1 ≤ · · · ≤ bℓ ≤ r such that {b1, . . . , bℓ} ⊆ {a1, . . . , ak}. For each 1 ≤ i ≤ ℓ,

build ybi by choosing a half-edge pair already in y, then choosing the other half-edge

pair arbitrarily. The number of choices for each i is less than d2max times a constant in

terms of r.

4. For each a ∈ {a1, . . . , ak}\{b1 . . . , bℓ}, build ya by choosing two half-edge pairs already

in y. The number of choices here is a constant in terms of r.

Since every element of G can be constructed in this way, we get

|G| ≤ C(r)(|L|)q(|N |)s
r−1∑
k=1

(|M|)r−k

k∑
ℓ=0

d2ℓmax.
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(Bounding er(x, y, z) for (x, y, z) ∈ G): Let (x, y, z) ∈ G and suppose we can construct

(x, y, z) as above with a particular k and ℓ. Then there are 2k − ℓ half-edge pairs that are

redundant when calculating P
{
1[x]1[y]1[z] = 1

}
. Hence,

P
{
1[x]1[y]1[z] = 1

}
=

q+2r+s−1−(2k−ℓ)∏
i=0

1

2m− 1− 2i
.

Therefore, for such (x, y, z) ∈ G,

|er(x, y, z)| =

∣∣∣∣∣∣
q+2r+s−1∏

i=0

1

2m− 1− 2i
−

q+2r+s−1−(2k−ℓ)∏
i=0

1

2m− 1− 2i

∣∣∣∣∣∣
≤

q+2r+s−1−(2k−ℓ)∏
i=0

1

2m− 1− 2i
. (3.22)

Finally, by (3.20), we know that∣∣∣∣∣E ((L)q(M)r(N)s)−
(|L|)q(|M|)r(|N |)s∏q+2r+s−1
i=0 2m− 1− 2i

∣∣∣∣∣ ≤ ∑⋆

(x,y,z)∈B

|er(x, y, z)|+
∑⋆

(x,y,z)∈G

|er(x, y, z)| ,

from which the result now follows by using the bounds on |Bxx|, |Bxy|, |Bxz|, |Byy|, |Byz|, |Bzz|
and on |G|, together with (3.21) and (3.22)

3.B.2 The probability of simplicity for a random superposition of

graphs

Before proving Theorem 3.4.1, it will be useful to show some auxiliary bounds.

Lemma 3.B.2. Under the assumptions of Theorem 3.4.1, we have∑
v∈[n]

dn(v) = O(n), (3.23)

∑
v∈[n]

(dn(v))2 = O(n), (3.24)

∑
uv∈e(hn)

dn(u)dn(v) = O(n), (3.25)
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and

sup
u∈[n]

∑
v:uv∈e(hn)

dn(v) = o(n), (3.26)

Proof. Equations (3.23) and (3.24) follow from the fact that µ1(p
n) → µ1(p) < ∞ and

µ2(p
n)→ µ2(p) <∞. Indeed, we have∑

v∈[n]

dn(v) = n
∑
k≥1

kpn(k) = nµ1(p
n) = O(n),

and ∑
v∈[n]

(dn(v))2 = n
∑
k≥1

k2pn(k) = nµ2(p
n) = O(n).

Equation (3.25) follows from the convergence of
∑

i,j≥1 ijα
n(i, j). Notice that, by the

definition of αn,

∑
uv∈e(hn)

dn(u)dn(v) =
∑
i,j≥1

 ∑
uv∈e(hn):dn(u)=i,dn(v)=j

ij

 =
∑
i,j≥1

ij(nαn(i, j)).

Hence,
1

n

∑
uv∈e(hn)

dn(u)dn(v)→
∑
i,j≥1

ijα(i, j) <∞,

implying that ∑
uv∈e(hn)

dn(u)dn(v) = O(n).

We will prove the fourth bound by contradiction. To this end, suppose (3.26) fails. Then

we can find c > 0 and a sequence of vertices (un, n ≥ 1) with un ∈ v(hn) such that for all n

sufficiently large, ∑
v:unv∈e(hn)

dn(v) ≥ cn. (3.27)

Write deg(un) = deghn
(un). List the neighbours of un in hn as Nhn(un) = {vn1 , . . . , vndeg(un)

}
so that dn(vni ) ≥ dn(vni+1) for all 1 ≤ i < deg(un).

Next, fix D ∈ N and let k = k(n) = max{i : dn(vni ) ≥ D}. Then

deg(un)∑
i=k+1

dn(vni ) ≤ (deg(un)− k)(D − 1) = o(n),
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the last bound holding since deg(un) = o(n) by assumption. Thus,

∑
v:unv∈e(hn)

dn(v)2 =

deg(un)∑
i=1

dn(vni )2

≥
k∑

i=1

dn(vni )2

≥ D
k∑

i=1

dn(vni )

= D

 ∑
v:unv∈e(hn)

dn(v)− o(n)


≥ D(c− o(1))n,

the last bound holding by (3.27). Since D ∈ N was arbitrary, it follows that∑
v∈[n]

dn(v)2 ≥
∑

v:unv∈e(hn)

dn(v)2 = ω(n),

contradicting (3.24).

The next lemma is the last ingredient needed, and also assumes p(0) + p(1) < 1, i.e. an

asymptotically non-zero proportion of the degrees in Gn are 2 or greater. We will show later

that Theorem 3.4.1 is straightforward when p(0) + p(1) = 1.

Lemma 3.B.3. Under the assumptions of Theorem 3.4.1, suppose additionally that p(0) +

p(1) < 1. Then

|L(Gn)| = Θ(n), (3.28)

and

|M(Gn, hn)| = Θ(n2). (3.29)

Proof. Let Ln = L(Gn),Mn = M(Gn, hn), and Nn = N (Gn, hn). By their definitions, we

have

|Ln| =
∑
v∈[n]

dn(v) (dn(v)− 1)

2
, and

|Mn| =
∑

{u<v:uv/∈e(hn)}

dn(u) (dn(u)− 1)

2
dn(v) (dn(v)− 1) .
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For the upper bounds, by Lemma 3.B.2 we have

|Ln| =
∑
v∈[n]

dn(v) (dn(v)− 1)

2
≤
∑
v∈[n]

dn(v)2 = O(n), and

|Mn| =
∑

{u<v:uv/∈e(hn)}

dn(u) (dn(u)− 1)

2
dn(v) (dn(v)− 1) ≤

∑
v∈[n]

dn(v)2

2

= O(n2).

For the lower bounds, first notice that

|Ln| =
∑
v∈[n]

dn(v) (dn(v)− 1)

2

=
∑

v∈[n]:dn(v)>1

dn(v) (dn(v)− 1)

2

≥ |{v ∈ [n] : dn(v) > 1}|

= n(1− pn(0)− pn(1))

Since pn(0) + pn(1)→ p(0) + p(1) < 1 by assumption, this implies |{v ∈ [n] : dn(v) > 1}| =
Θ(n), and so

|Ln| ≥ |{v ∈ [n] : dn(v) > 1}| = Θ(n).

Similarly, we have

|Mn| ≥
∣∣{(u, v) : u < v, uv /∈ e(hn) and dn(u), dn(v) > 1}

∣∣.
From the conditions of Theorem 3.4.1 we know that maxv∈[n]{deghn

(v)} = o(n), which

implies that |e(hn)| = o(n2). Hence, we have

∣∣{(u, v) : u < v, uv /∈ e(hn) and dn(u), dn(v) > 1}
∣∣

=
∣∣{(u, v) : u < v, dn(u), dn(v) > 1}

∣∣− o(n2),

and writing k = k(n) = |{v ∈ [n] : dn(v) > 1}|, we have

∣∣{(u, v) : u < v, dn(u), dn(v) > 1}
∣∣ =

(
k

2

)
= Θ(k2) = Θ(n2),

and hence, |Mn| = Θ(n2).
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Proof of Theorem 3.4.1. Let m = m(n) = 1
2

∑
v∈[n] d

n(v), and let q, r and s be positive

integers. Also, in what follows write dnmax = max1≤i≤n d
n(i); by Fact 3.A.1 we know that

dnmax = o(n1/2).

Assume for the time being that p(0) + p(1) < 1 and that η > 0. Notice that when η > 0

and µ1(p) > 0 we have

|Nn|
n

=
1

n

∑
uv∈e(hn)

dn(u)dn(v) =
∑
i,j≥1

ijαn(i, j)→
∑
i,j≥1

ijα(i, j) = µ1(p)η ∈ (0,∞);

we have µ1(p) > 0 since p(0) < 1, and µ1(p) < ∞ since µ2(p) < ∞. It follows that

|Nn| = Θ(n).

We first claim that

E ((Ln)q(Mn)r(Nn)s) =
(|Ln|)q(|Mn|)r(|Nn|)s∏q+2r+s−1

i=0 2m− 1− 2i
(1 + o(1)).

From Proposition 3.B.1 we know that∣∣∣∣∣E ((Ln)q(Mn)r(Nn)s)−
(|Ln|)q(|Mn|)r(|Nn|)s∏q+2r+s−1

i=0 2m− 1− 2i

∣∣∣∣∣ ≤ C(S1 + S2),
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where S1 is defined by the relationship

S1 ·
q+2r+s−1∏

i=0

(2m− 1− 2i)

= (|Ln|)q−2(|Mn|)r(|Nn|)s
∑
v∈[n]

(dn(v))3

+ (|Ln|)q−1(|Mn|)r−1(|Nn|)s
∑

1≤u̸=v≤n

(dn(u))3(dn(v))2

+ (|Ln|)q−1(|Mn|)r(|Nn|)s−1

∑
uv∈e(hn)

(dn(u))2dn(v)

+ (|Ln|)q(|Mn|)r−2(|Nn|)s
∑

1≤u,v1,v2≤n
u,v1,v2 distinct

(dn(u))3(dn(v1))
2(dn(v2))

2

+ (|Ln|)q(|Mn|)r−1(|Nn|)s−1

∑
1≤u,v1,v2≤n

u,v1,v2 distinct
uv2∈e(hn)

(dn(u))2(dn(v1))
2dn(v2)

+ (|Ln|)q(|Mn|)r(|Nn|)s−2

∑
uv1,uv2∈e(hn)

v1 ̸=v2

dn(u)dn(v1)d
n(v2),

and S2 is defined by

S2 = (|Ln|)q(|Nn|)s
r−1∑
k=1

(|Mn|)r−k

k∑
ℓ=0

(dnmax)
2ℓ

q+2r+s−1−(2k−ℓ)∏
i=0

1

2m− 1− 2i
;

recall that we set (k)ℓ = 0 if ℓ < 0. We now show that

S1 = o

(
(|Ln|)q(|Mn|)r(|Nn|)s∏q+2r+s−1
i=0 (2m− 1− 2i)

)
and S2 = o

(
(|Ln|)q(|Mn|)r(|Nn|)s∏q+2r+s−1
i=0 (2m− 1− 2i)

)
. (3.30)

We will start by bounding S1. Since |Ln|, |Mn|, |Nn| → ∞ as n → ∞, to prove the first
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bound in (3.30) it suffices to establish the following bounds:∑
v∈[n]

(dn(v))3 = o(|Ln|2),∑
1≤u̸=v≤n

(dn(u))3(dn(v))2 = o(|Ln||Mn|),∑
uv∈e(hn)

(dn(u))2dn(v) = o(|Ln||Nn|), (3.31)

∑
1≤u,v1,v2≤n

u,v1,v2 distinct

(dn(u))3(dn(v1))
2(dn(v2))

2 = o(|Mn|2),

∑
1≤u,v1,v2≤n

u,v1,v2 distinct
uv2∈e(hn)

(dn(u))2(dn(v1))
2dn(v2) = o(|Mn||Nn|), and

∑
uv1,uv2∈e(hn)

v1 ̸=v2

dn(u)dn(v1)d
n(v2) = o(|Nn|2).

Using Lemmas 3.B.2 and 3.B.3, together with the fact that dnmax = o(n1/2), we get the

following results:∑
v∈[n]

(dn(v))3 ≤ dnmax

∑
v∈[n]

(dn(v))2 = o(n1/2) ·O(n) = o(n2) = o(|Ln|2),

∑
1≤u̸=v≤n

(dn(u))3(dn(v))2 ≤ dnmax

∑
1≤u̸=v≤n

(dn(u))2(dn(v))2

≤ dnmax

∑
v∈[n]

(dn(v))2

2

= o(n3) = o(|Ln||Mn|),

∑
uv∈e(hn)

(dn(u))2dn(v) ≤ dnmax

∑
uv∈e(hn)

dn(u)dn(v) = dnmax|Nn| = o(|Ln||Nn|),
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∑
1≤u,v1,v2≤n

u,v1,v2 distinct

(dn(u))3(dn(v1))
2(dn(v2))

2 ≤ dnmax

∑
1≤u,v1,v2≤n

u,v1,v2 distinct

(dn(u))2(dn(v1))
2(dn(v2))

2

≤ dnmax

 n∑
v∈[n]

(dn(v))2

3

= o(n4) = o(|Mn|2),

∑
1≤u,v1,v2≤n

u,v1,v2 distinct
uv2∈e(hn)

(dn(u))2(dn(v1))
2dn(v2) ≤ (dnmax)

3
∑

uv∈e(hn)

dn(u)dn(v)

= o(n3/2)|Nn| = o(|Mn||Nn|),

and ∑
uv1,uv2∈e(hn)

v1 ̸=v2

dn(u)dn(v1)d
n(v2) =

∑
uv∈e(hn)

dn(u)dn(v) ·
∑

w:uw∈e(hn)

dn(w)

≤
∑

uv∈e(hn)

dn(u)dn(v) ·

sup
u∈[n]

∑
w:uw∈e(hn)

dn(w)


= |Nn| · o(n)

= o(|Nn|2),

the last bound holding as Nn = Θ(n).

To prove the bound on S2 from (3.30), first notice that

S2 = (|Ln|)q(|Nn|)s
r−1∑
k=1

(|Mn|)r−k

k∑
ℓ=0

(dnmax)
2ℓ

q+2r+s−1−(2k−ℓ)∏
i=0

1

2m− 1− 2i

=
(|Ln|)q(|Nn|)s∏q+s−1
i=0 2m− 1− 2i

r−1∑
k=1

(|Mn|)r−k

k∑
ℓ=0

(dnmax)
2ℓ

q+2r+s−1−(2k−ℓ)∏
i=q+s

1

2m− 1− 2i
.
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Hence, it suffices to show the following:

r−1∑
k=1

(|Mn|)r−k

k∑
ℓ=0

(dnmax)
2ℓ

q+2r+s−1−(2k−ℓ)∏
i=q+s

1

2m− 1− 2i
= o

(
(|Mn|)r∏q+2r+s−1

i=q+s 2m− 1− 2i

)
.

Since r is fixed, we need only show that for arbitrary k ∈ [1, r − 1] and ℓ ∈ [0, k],

(|Mn|)r−k(dnmax)
2ℓ

q+2r+s−1−(2k−ℓ)∏
i=q+s

1

2m− 1− 2i
= o

(
(|M|)r∏q+2r+s−1

i=q+s 2m− 1− 2i

)
.

By cancelling out some terms, this follows if we can show that

(dnmax)
2ℓ = o

(
(|Mn| − (r − k))k∏q+2r+s−1

i=q+2r+s−(2k−ℓ) 2m− 1− 2i

)
.

Now since m = Θ(n), |Mn| = Θ(n2), and r is a constant, this in turn holds, provided that

(dnmax)
2ℓ = o

(
n2k

n2k−ℓ

)
= o

(
nℓ
)
,

which holds since dnmax = o(n1/2).

Therefore,

S1 + S2 = o

(
(|Ln|)q(|Mn|)r(|Nn|)s∏q+2r+s−1

i=0 2m− 1− 2i

)
,

which proves that

E ((Ln)q(Mn)r(Nn)s) =
(|Ln|)q(|Mn|)r(|Nn|)s∏q+2r+s−1

i=0 2m− 1− 2i
(1 + o(1)).
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Furthermore, since q, r and s are fixed, we obtain that

(|Ln|)q(|Mn|)r(|Nn|)s∏q+2r+s−1
i=0 2m− 1− 2i

=
|Ln|q|Mn|r|Nn|s

(2m)q+2r+s
(1 + o(1))

=

(
|Ln|∑

v∈[n] d
n(v)

)q
 |Mn|(∑

v∈[n] d
n(v)

)2


r(
|Nn|∑

v∈[n] d
n(v)

)s

(1 + o(1))

Next, we claim that

|Ln|∑
v∈[n] d

n(v)
→ ν/2,

|Mn|(∑
v∈[n] d

n(v)
)2 → ν2/4, and

|Nn|∑
v∈[n] d

n(v)
→ η.

For the first of these three claims, we have

|Ln|∑
v∈[n] d

n(v)
=

1
2

∑
v∈[n] d

n(v)(dn(v)− 1)∑
v∈[n] d

n(v)
=

1

2

∑
v∈[n](d

n(v))2 −
∑

v∈[n] d
n(v)∑

v∈[n] d
n(v)

=
1

2

(
µ2(p

n)− µ1(p
n)

µ1(pn)

)
→ ν/2.

For the second, we have

|Mn|(∑
v∈[n] d

n(v)
)2

=
1
2

∑
{u<v:uv/∈e(hn)} d

n(u) (dn(u)− 1) dn(v) (dn(v)− 1)(∑
v∈[n] d

n(v)
)2

=
1

4
(∑

v∈[n] d
n(v)

)2
(∑

v∈[n]

dn(v) (dn(v)− 1)

2

−
∑
v∈[n]

[dn(v) (dn(v)− 1)]2

−
∑

uv∈e(hn)

dn(u) (dn(u)− 1) dn(v) (dn(v)− 1)

)
.
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The second and third terms vanish in the limit since µ1(p) > 0 and so∑
v∈[n]

dn(v)

2

= Ω(n2),

and ∑
v∈[n]

[dn(v) (dn(v)− 1)]2 ≤ (dnmax)
2
∑
v∈[n]

(dn(v))2 = (dnmax)
2nµ2(p

n) = o(n2),

and ∑
uv∈e(hn)

dn(u) (dn(u)− 1) dn(v) (dn(v)− 1) ≤ (dnmax)
2
∑

uv∈e(hn)

dn(u)dn(v)

= (dnmax)
2|Nn|

= o(n2).

Therefore,

|Mn|(∑
v∈[n] d

n(v)
)2 =

1

4

[∑
v∈[n] d

n(v) (dn(v)− 1)
]2

(∑
v∈[n] d

n(v)
)2 (1 + o(1))

→ 1

4

(µ2(p)− µ1(p))2

(µ1(p))2

= ν2/4.

For the third claim, we have

|Nn|∑
v∈[n] d

n(v)
=

∑
uv∈e(hn)

dn(u)dn(v)∑
v∈[n] d

n(v)
=

∑
i,j≥1 ijα

n(i, j)

µ1(pn)

→
∑

i,j≥1 ijα(i, j)

µ1(p)
= η.
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Therefore,

lim
n→∞

E ((Ln)q(Mn)r(Nn)s)

= lim
n→∞

(|Ln|)q(|Mn|)r(|Nn|)s∏q+2r+s−1
i=0 2m− 1− 2i

(1 + o(1)) (3.32)

= lim
n→∞

(
|Ln|∑

v∈[n] d
n(v)

)q
 |Mn|(∑

v∈[n] d
n(v)

)2


r(
|Nn|∑

v∈[n] d
n(v)

)s

(1 + o(1))

= (ν/2)q
(
ν2/4

)r
(η)s .

It then follows, by Theorem 2.6 of [68], that the random variables Ln,Mn and Nn converge

to independent Poisson random variables with parameters ν/2, ν2/4 and η respectively. This

proves the theorem in the case that p(0) + p(1) < 1 and η > 0.

Lastly we will deal with the cases that arise if p(0) + p(1) = 1 or if η = 0. First, if η = 0

then limn→∞
∑

i,j≥1 ijα
n(i, j) =

∑
i,j≥1 ijα(i, j) = 0. For any two half-edges ui and vj with

u, v ∈ [n], i ∈ [dn(u)] and j ∈ [dn(v)], we have P
{
1[ui,vj] = 1

}
= 1

2m−1
from the definition of

the configuration model. So by (3.18), since m = m(n) = nµ1(p
n)/2 = Θ(n), we have that

E (Nn) =
∑

uv∈e(hn)

∑
i∈[dn(u)]

∑
j∈[dn(v)]

P
{
1[ui,vj] = 1

}
=

∑
uv∈e(hn)

dn(u)dn(v)

2m− 1

=
n

2m− 1

∑
i,j≥1

ijαn(i, j) = o(1).

Hence, limn→∞ E (Nn) = 0. In this case, if p(0) + p(1) < 1 then a reprise of the argument

leading to (3.32) gives that for all q, r ≥ 1,

lim
n→∞

E ((Ln)q(Mn)r) = (ν/2)q(ν2/4)r,

and therefore that Ln and Mn converge to independent Poisson random variables with pa-

rameters ν/2 and ν2/4 respectively.

Lastly, we deal with the case when p(0) + p(1) = 1. In this case, µ2(p) = µ1(p), so ν = 0.

Furthermore,

E (Ln) =
1
2

∑
v∈[n] d

n(v)(dn(v)− 1)

2m− 1
=

n

4m− 2
(µ2(p

n)− µ1(p
n)).
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Since µ2(p
n)−µ1(p

n)→ µ2(p)−µ1(p) = 0, we get that limn→∞E (Ln) = 0, and an analogous

argument shows that limn→∞ E (Mn) = 0. In this case, another reprise of the argument

leading to (3.32) gives that for all s ≥ 1,

lim
n→∞

E ((Nn)s) = ηs,

so Nn is asymptotically Poisson(η) distributed.

Proof of Corollary 3.4.2. First, the fact that
∑

k,ℓ≥0 kℓ ·α(k, ℓ) <∞ appears in (3.8), above,

from which it is immediate that η <∞. Next, let G−(dn) be the subgraph of G(dn) with edge

set e(G(dn))\e(T (dn)), and let dn
− be the degree sequence of G−(dn), as defined in Section 3.3

previous to Proposition 3.3.2. Finally, write Ln = L(G−(dn)), Mn = M(G−(dn), T (dn)),

and Nn = N(G−(dn), T (dn)). Our aim is to apply Theorem 3.4.1, with hn = T (dn) and

Gn = G−(dn) = G(dn)−T (dn). Note that with these choices, we have αn(k, l) = n−1An(k, l),

where An(k, l) is as in Proposition 3.3.2. Moreover, we have∑
l≥0

An(k, l) = #{u ∈ [n] : dn−(u) = k} .

Conditionally given T (dn), the graph G−(dn) is a random graph with degree sequence

dn
−. By Proposition 3.3.2 we know that αn(k, l)

prob−→ α(k, l) for all k, l ≥ 0, and that∑
k,l≥0

klαn(k, l)
prob−→

∑
k,l≥0

klα(k, l).

Moreover, since α defines a probability distribution, it must be that for all k we have

pn−(k) :=
1

n
#{u ∈ [n] : dn−(u) = k} =

1

n

∑
l≥0

An(k, l) =
∑
l≥0

αn(k, l)
prob−→

∑
l≥0

α(k, l) . (3.33)

Setting p−(k) =
∑

l≥0 α(k, l), then (3.33) states that pn−(k)
prob−→ p−(k) for all k ≥ 0. More-

over, since pn−(k) ≤ pn(k), pn−(k)
prob−→ p−(k), and pn(k)

prob−→ p(k) for all k ≥ 0, it follows

that µ2(p−) ≤ µ2(p) <∞ and µ2(p
n
−)

prob−→ µ2(p−). From these observations, Fact 3.A.1 then

implies that

max
v∈[n]

degT (dn)(v) ≤ max
v∈[n]

degGn
(v) = o(n1/2) .
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Since µ2(p
n
−)

prob−→ µ2(p−), we also have µ1(p
n
−)

prob−→ µ1(p−); but

nµ1(p
n
−) =

n∑
i=1

dn−(u) =

(
n∑

i=1

dn(u)

)
− 2(n− 1) ,

so µ1(p−) = µ1(p) − 2. Thus, if µ1(p) > 2 then µ1(p−) > 0, so p−(0) < 1. In this case,

applying Theorem 3.4.1, it follows that conditionally given T (dn),

∥Dist(Ln,Mn, Nn)− Poi(ν/2)⊗ Poi(ν2/4)⊗ Poi(η)∥TV
prob−→ 0

as n→∞. If (L,M,N) is Poi(ν/2)⊗ Poi(ν2/4)⊗ Poi(η)-distributed, then we have

P {L = M = N = 0} = exp(−ν/2− ν2/4− η);

since G(dn) is simple if and only if Ln = Mn = Nn = 0, it follows that

P {G(dn) simple | T (dn)} = P {Ln = Mn = Nn = 0 | T (dn)}
prob−→ P {L = M = N = 0} = exp(−ν/2− ν2/4− η) ,

as required.

It remains to treat the case that µ1(p) = 2, which implies that µ1(p−) = 0 and p−(0) = 1.

This case requires a separate argument, which is more involved than one might expect. We

note immediately that in this situation, m = (1 + o(1))n as n→∞.

Write G′
n for the graph obtained from G−(dn) by removing the edge Γ(dn). Then let

L′
n = L(G′

n), M ′
n = M(G′

n, T (dn)), and N ′
n = N(G′

n, T (dn)). Then G′
n is simple precisely if

L′
n + M ′

n + N ′
n = 0. We will first prove that E (L′

n + M ′
n + N ′

n)
prob−→ 0, then explain how to

deal with the root edge.

By Proposition 3.2.1, we know that the non-root half-edges chosen for T (dn) form a

uniformly random subset Sn of
⋃n

i=1{i1, . . . , i(dn(i)−1)} of size n−1. The half-edges which

are paired to form G−(dn) are precisely the edges of U :=
⋃n

i=1{i1, . . . , i(dn(i) − 1)} \ Sn,

together with the unique unpaired root half-edge of T (dn).

Write U for the set of half-edges paired to form G′
n. By the observations of the preceding

paragraph, U is a uniformly random subset of
⋃n

i=1{i1, . . . , i(dn(i) − 1)} of size 2(m − n).

Moreover, conditionally given U , the pairing of half-edges in S is uniformly random and

independent of T (dn). Therefore, we can construct (G(dn), T (dn),Λ(dn)) as follows. First
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sample a sequence of m− n disjoint pairs of half-edges from
⋃n

i=1{i1, . . . , i(dn(i)− 1)} uni-

formly at random and join them to form edges; this determines the set U , and all edges of G′
n.

Next, build T (dn) via Pitman’s additive coalescent applied to
⋃n

i=1{i1, . . . , i(dn(i)− 1)} \ U .

Finally, pair the root half-edge of T n with the sole remaining unpaired non-root half-edge.

We analyze this construction procedure in order to bound the expected number of loops and

multiple edges in G′
n.

Let (h1, h2) be a half-edge pair chosen for G′
n in the construction procedure just above.

Then h1 and h2 are uniform random half-edges chosen from
⋃n

i=1{i1, . . . , i(dn(i)− 1)}, and

(h1, h2) is a loop if v(h1) = v(h2). Hence,

E (L′
n) = |e(G′

n)|P {v(h1) = v(h2)}

= (m− n)
n∑

i=1

P {v(h1) = v(h2) = i}

= (m− n)
n∑

i=1

(dn(i)− 1)(dn(i)− 2)

(2m− (n− 1))(2m− n)
.

Similarly, edges (h1, h2) and (h3, h4) form a double edge if v(h1) = v(h3) and v(h2) = v(h4)

or if v(h1) = v(h4) and v(h2) = v(h3). Hence,

E (M ′
n)

= (|e(G′
n)|) (|e(G′

n))| − 1)
∑

1≤i<j≤n

4(dn(i)− 1)(dn(i)− 2)(dn(j)− 1)(dn(j)− 2)

(2m− n + 1))(2m− n)(2m− n− 1)(2m− n− 2)

= (m− n)(m− n− 1)
∑

1≤i<j≤n

4(dn(i)− 1)(dn(i)− 2)(dn(j)− 1)(dn(j)− 2)

(2m− n + 1)(2m− n)(2m− n− 1)(2m− n− 2)

≤ 2

(
(m− n)

n∑
i=1

(dn(i)− 1)(dn(i)− 2)

(2m− n− 1)(2m− n− 2)

)2

.

Since m = n + o(n), we have m−n−1
2m−n−2

= o(1). Since also
∑n

i=1(d
n(i) − 1)(dn(i) − 2) ≤∑n

i=1 d
n(i)2 = O(n) = O(2m−n−1), it follows from the two preceding displayed inequalities

that E (L′
n + M ′

n)
prob−→ 0.

To show that E (N ′
n)

prob−→ 0, we will again use Proposition 3.2.1. Given a set H ⊆⋃n
i=1{i1, . . . , i(dn(i) − 1)}, write Hi = H ∩ {i1, . . . , i(dn(i) − 1)}. By (3.12) we know that

for any set H as above with |H| = n− 1, for all 1 ≤ i ≤ n− 1, for any h ∈ H and any root
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half-edge r with v(r) ̸= v(h),

P {(ri, si) = (r, h) | Sn = H} = P {(r1, s1) = (r, h) | Sn = H} .

Moreover, by construction, T (dn) and G′
n are conditionally independent given Sn, so for any

1 ≤ i ≤ n− 1,

E
{
mG′

n
(v(ri)v(si))

∣∣ Sn = H
}

= E
{
mG′

n
(v(r1)v(s1))

∣∣ Sn = H
}

=
n∑

j=1

n∑
k=1
k ̸=j

P {v(r1) = j, v(s1) = k | Sn = H} · E
{
mG′

n
(jk)

∣∣ Sn = H
}

.

Now, by Proposition 3.2.1,

P {v(r1) = j, v(s1) = k | Sn = H} =
|Hk|

(n− 1)2
.

Also,

E
{
mG′

n
(jk)

∣∣ Sn = H
}

= (m− n) · (dn(j)− 1− |Hj|)(dn(k)− 1− |Hk|)
(2m− 2(n− 1))(2m− 2(n− 1)− 1)

.

The term m−n above accounts for the number of edges of G′
n; the fraction is the probability

that a uniformly random pair of half-edges from (
⋃n

l=1{l1, . . . , l(dn(i)− 1)})\H are incident

to vertices j and k. Combining these formulas, we then have that for all 1 ≤ i ≤ n− 1,

E
{
mG′

n
(v(ri)v(si))

∣∣ Sn = H
}

≤
n∑

j=1

n∑
k=1
k ̸=j

|Hk|
(n− 1)2

· (m− n) · (dn(j)− 1− |Hj|)(dn(k)− 1− |Hk|)
(2m− 2(n− 1))(2m− 2(n− 1)− 1)

= O(1) ·
n∑

k=1

|Hk|
(n− 1)2

· (dn(k)− 1− |Hk|)
(2(m− n) + 1)

n∑
j=1
j ̸=k

(dn(j)− 1− |Hj|).
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Now, since
∑n

j=1 |Hj| = |H| = n− 1, we have

n∑
j=1
j ̸=k

(dn(j)− 1− |Hj|) = 2m− n− |H| − (dn(k)− 1− |Hk|) ≤ 2(m− n)− 1 ,

and it follows that

E
{
mG′

n
(v(ri)v(si))

∣∣ Sn = H
}

= O(1) ·
n∑

k=1

|Hk| (dn(k)− 1− |Hk|)
2(n− 1)2

.

Taking expectation over Sn in this bound, it follows that

E
(
mG′

n
(v(ri)v(si))

)
≤ 1

(n− 1)2
E

(
n∑

k=1

|Hk| (dn(k)− 1− |Hk|)

)
.

We now show that E (
∑n

k=1 |Hk| (dn(k)− 1− |Hk|)) = o(n). Notice that |Hk| ≤ dn(k) and

that dn(k)− 1− |Hk| = dn−(k), unless k is incident to the unpaired root half-edge, in which

case dn(k) − 1 − |Hk| = dn−(k) − 1 ≥ 0. Letting r be the unpaired root half-edge, it then

follows that
n∑

k=1

|Hk| (dn(k)− 1− |Hk|) ≤
n∑

k=1

(dn(k))2 1[dn−(k)>0].

Since |{k : dn−(k) > 0}| ≤ m−n = o(n), by the second assertion of Fact 3.A.1 it follows that∑n
k=1 d

n(k)21[dn−(k)>0] = o(n), which combined with the two preceding inequalities yields that

E
(
mG′

n
(v(ri)v(si))

)
= o

(
1

n

)
.

Summing over i, it follows that

E (N ′
n) =

n∑
i=1

E
(
mG′

n
(v(ri)v(si))

)
= o(1).

At this point we know that E (L′
n + M ′

n + N ′
n) → 0. We now show how to deduce that

Ln +Mn +Nn → 0 in probability. We provide full details only in the case that m−n→∞,

i.e., that the number of edges of G−(dn) tends to infinity, and briefly explain the argument

in the simpler case that m− n = O(1).

By Proposition 3.2.3, for any pair (g, t) where g is a graph with degree sequence dn and

109



t is a spanning tree of g, we have

P {(G(dn), T (dn)) = (g, t)} ∝
∑

γ∈e(g−t) 21[γ is a loop] ·mg−t(γ)∏n
i=1 2mg−t(ii) ·

∏
e∈e(g) mg−t(e)!

, (3.34)

and for any edge γ of g − t,

P {Γ(dn) = γ | (G(dn), T (dn)) = (g, t)} ∝ 21[γ is a loop] ·mg−t(γ).

If the graph with edge set e(g) − (e(t) ∪ γ) is simple, then g − t has at most one loop, and

no edge with multiplicity more than two, so

sup
e∈e(g−t)

P {Γ(dn) = e | (G(dn), T (dn)) = (g, t)} ≤ 2

|e(g − t)|
.

In particular, writing

B(g, t) = L(g) ∪N (g, t) ∪
⋃

((uii,vj1),(ui2,vj2))∈M(g,t)

{(uii, vj1), (ui2, vj2)} ,

and recalling that the half-edges comprising Γ(dn) are Γ−(dn) and Γ+(dn), it follows that

P
{

(Γ−(dn),Γ+(dn)) ∈ B(G−(dn), T (dn))
∣∣ (G(dn), T (dn))

}
≤ 2|B(G−(dn), T (dn))|

|e(G−(dn))|
1[G′

n simple] + 1[G′
n not simple]

≤ 4(L(G−(dn)) + N(G−(dn), T (dn)) + M(G−(dn), T (dn)))

|e(G−(dn))|
1[G′

n simple] + 1[G′
n not simple]

=
4(Ln + Mn + Nn)

m− (n− 1)
+ 1[G′

n not simple] ;

the last inequality is not tight unless M(G−(dn), T (dn)) = 0. Now,

Ln + Mn + Nn ≤ 3(L′
n + M ′

n + N ′
n + 1[(Γ−(dn),Γ+(dn))∈B(G−(dn),T (dn))]) ; (3.35)

this inequality is never tight but it suffices for our purposes. Using this bound, and taking
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expectations in the previous conditional probability bound, we obtain that

P
{

(Γ−(dn),Γ+(dn)) ∈ B(G−(dn), T (dn))
}

≤ 12

m− (n− 1)
E (L′

n + M ′
n + N ′

n + 1) + P {G′
n not simple}

=
12

m− (n− 1)
E (L′

n + M ′
n + N ′

n + 1) + P {L′
n + M ′

n + N ′
n > 0} .

Since E (L′
n + M ′

n + N ′
n)→ 0, if m− (n− 1)→∞ it follows that

P
{

(Γ−(dn),Γ+(dn)) ∈ B(G−(dn), T (dn))
} prob−→ 0

in which case (3.35) and the fact that L′
n + M ′

n + N ′
n

prob−→ 0 together imply that Ln + Mn +

Nn
prob−→ 0 as required.

Finally, if m−n = O(1), the fact that Ln+Mn+Nn
prob−→ 0 can be seen as follows. Let h be

a uniformly random half-edge from
⋃

1≤i≤n{i1, . . . , i(dn(i)−1)}. Then with high probability,

dn(v(h)) = O(1). Since |U| = |
⋃

1≤i≤n{i1, . . . , i(dn(i)−1)}\Sn| = 2(m−n) = O(1), it follows

that with high probability dn(v(h)) = O(1) for all edges of
⋃

1≤i≤n{i1, . . . , i(dn(i)− 1)} \ H
and that v(h) ̸= v(h′) for all distinct h, h′ ∈ U . This already implies that Ln + Mn = 0 with

probability 1 − o(1). Finally, by considering Pitman’s additive coalescent it is not hard to

see that for any vertex v with dn(v) = O(1), the probability that v is the root of T n(v) or

is adjacent to the root is o(1), and that for any two vertices v, w with dn(v) = O(1) and

dn(w) = O(1), the probability that v and w are adjacent is o(1). (Verifying the assertions of

the last sentence in detail is left to the reader.) This immediately implies that Nn = 0 with

probability 1− o(1) and so completes the proof.
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Chapter 4

Finding Minimum Spanning Trees via

Local Improvements

4.1 Introduction

Local search is the name for an optimization paradigm in which optimal or near-optimal

solutions are sought algorithmically, via sequential improvements which are “local” in that

at each step, the search space consists only of neighbours (in some sense) of the current

solution. Well-known algorithmic examples of this paradigm include simulated annealing,

hill climbing, and the Metropolis-Hasting algorithm.

A recent line of research considers the behaviour of local search on smoothed optimization

problems, in which the input is either fully random or is a random perturbation of a fixed

input. The goal in this setting is to characterize the running time of local search and the

quality of its output. Problems approached in this vein include max-cut [20, 29, 39], for

which the allowed “local” improvements consist of moving a single vertex; max-2CSP and

the binary function optimization problem [35], for which the allowed local improvements are

bit flips; and Euclidean TSP [54], where the allowed local improvements consist of replacing

edge pairs uv, wx with pairs uw, vx (when the result is still a tour).

In the current work, we analyze local search for the random minimum spanning tree

problem, one of the first and foundational problems in combinatorial optimization. We

now briefly describe our results (for more precise statements see Section 4.1.1, below). As

input to the problem, we take the randomly-weighted complete graph Kn = (Kn,X), where

X = (Xe, e ∈ E(Kn)) are independent copies of a random variable X, and an arbitrary

starting graph H0, which we aim to transform into the minimum-weight spanning tree MST.
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We fix a threshold weight ρ > 0; at step k ≥ 0, a local improvement consists of choosing a

connected induced subgraph of the current MST candidate Hk whose current total weight is

at most ρ, and replacing it by the minimum weight spanning tree on the same vertex set.

Suppose that X is non-negative and has a density f : [0,∞)→ [0,∞) which is continuous

at 0 and satisfies f(0) > 0. Then writing ρ∗ = sup{x : P(X > x) > 0}, we prove that if

ρ > ρ∗ then there exist local search paths which output the MST, whereas if ρ < ρ∗ then

local search cannot reach the MST (and, indeed, with high probability will only achieve an

approximation ratio of order Θ(n)).

4.1.1 Detailed statement of the results

Let G = (G,w) = (V,E,w) be a finite weighted connected graph, where G = (V,E) is a

graph and w : E → (0,∞) are edge weights; set V(G) = V(G) = V and E(G) = E(G) = E.

For a subgraph H of G write w(H) =
∑

e∈E(H) w(e) for its weight. A minimum spanning

tree (MST) of G is a spanning tree T of G which minimizes w(T ) among all spanning trees

of G. There is a unique MST provided all edge weights are distinct; we hereafter restrict our

attention to weighted graphs G where all edge weights are distinct (and more strongly where

w(H1) ̸= w(H2) for all pairs of distinct subgraphs H1, H2 ⊆ G); we call such graphs generic.

For a generic weighted graph G, we write MST(G) for the unique minimum spanning tree

of G.

For a weighted graph G = (V,E,w) and a set S ⊂ V , write G[S] for the induced subgraph

G[S] = (S,E|S×S) and G[S] for the induced weighted subgraph G[S] = (G[S], w|E(G[S])).

Now, given a spanning subgraph H of G, define Φ(H,S) = ΦG(H,S) as follows. If H[S]

is connected then let Φ(H,S) be the spanning subgraph with edge set (E(H) \ E(H[S])) ∪
E(MST(G[S])); if H[S] is not connected then let Φ(H,S) = H. In words, to form Φ(H,S)

from H, we replace H[S] by the minimum-weight spanning tree of G[S], unless H[S] is not

connected.

Now suppose we are given a finite weighted connected graph G = (V,E,w), a spanning

subgraph H of G, and a sequence S = (Si, 1 ≤ i ≤ m) of subsets of V . Define a sequence

of spanning subgraphs (Hi, 0 ≤ i ≤ m) as follows. Set H0 = H, and for 1 ≤ i ≤ m let

Hi = ΦG(Hi−1, Si). Using the previous definition of Φ, this simply corresponds to sequentially

replacing the subgraph of Hi−1 induced by Si by its corresponding minimum spanning tree

(assuming Hi−1[Si] is connected). We refer to S as an optimizing sequence for the pair (G, H),

and call (Hi, 0 ≤ i ≤ m) the subgraph sequence corresponding to S. We say S is an MST

sequence for (G, H) if the final spanning subgraph Hm is the MST of G.
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The weight of step i of the sequence S is defined as

wt(S, i) = wt(G, H,S, i) := w
(
Hi−1[Si]

)
=

∑
e∈E(Hi−1[Si])

w(e) ,

and the weight of the whole sequence is the maximal weight of a single step:

wt(S) = wt(G, H,S) := max
{

wt(S, i) : 1 ≤ i ≤ m
}
.

The cost of the pair (G, H) is defined as

cost(G, H) := min
{

wt(S) : S is an MST sequence for (G, H)
}
.

The following theorem is the main result of the current work. Write Kn for the complete

graph with vertex set [n] = {1, . . . , n}, and Kn = (Kn,X) for the randomly weighted complete

graph, where X = (Xe, e ∈ E(Kn)) are independent Uniform[0, 1] random variables. If

S = (S1, . . . , Sm) is an optimizing sequence for (Kn, Hn) then we write Hn,0 = Hn and

Hn,i = ΦKn(Hn,i−1, Si) for 1 ≤ i ≤ m. Finally, we say a sequence (En, n ≥ 1) of events

occurs with high probability if P(En)→ 1 as n→∞.

Theorem 4.1.1. Fix any sequence (Hn, n ≥ 1) of connected graphs with Hn being a spanning

subgraph of Kn. Then for any ε > 0, as n→∞,

(a) with high probability there exists an MST sequence S for (Kn, Hn) with wt(S) ≤ 1 + ε,

and

(b) there exists δ > 0 such that with high probability, given any optimizing sequence S =

(S1, . . . , Sm) for (Kn, Hn) with wt(S) ≤ 1 − ε, the final spanning subgraph Hn,m has

weight w(Hn,m) ≥ δnw(MST(Kn)).

In particular, cost(Kn, Hn)
prob−→ 1 as n→∞.

We discuss possible refinements of and extensions to Theorem 4.1.1 in the conclusion,

Section 4.4. We also explain in that section how to extend Theorem 4.1.1 to more general

edge weight distributions than Uniform[0, 1], as described just before Section 4.1.1.

4.1.2 Overview of the proof

In this section, we give an overview of the proof of Theorem 4.1.1, while postponing the

proofs of the more technical aspects to Sections 4.2 and 4.3 and Appendix 4.A. The lower

114



bound of Theorem 4.1.1 is straightforward, so we provide it in full detail immediately.

Lower bound of Theorem 4.1.1. Fix ε > 0, and let En,ε = {e ∈ E(Hn) : Xe > 1 − ε}.
The set En,ε is a binomial random subset of E(Hn) in which each edge is present with

probability ε, so P(|En,ε| ≥ εn/2)→ 1.

Note that, for any edge e = uv ∈ E(Hn) \ E(MST(Kn)), and any optimizing sequence

S = (S1, . . . , Sm) for (Kn, Hn), if there is no set Si with u, v ∈ Si, then e ∈ Hn,m. It follows

that for any optimizing sequence S with wt(S) ≤ 1 − ε, the final spanning subgraph Hn,m

has En,ε ⊂ E(Hn,m) and so on the event that |En,ε| ≥ εn/2 we have

w(Hn,m) ≥ n(1− ε)ε/2.

To conclude, we use that w(MST(Kn)) → ζ(3) in probability [40]. It follows that with

probability tending to 1, both |En,ε| ≥ εn/2 and w(MST(Kn)) ≤ 2ζ(3), and when both

these events occur we have

w(Hn,m) ≥ n(1− ε)ε/2 ≥ w(MST(Kn)) · n(1− ε)ε/(4ζ(3)) .

Since this holds for any optimizing sequence with weight at most 1− ε, the result follows by

taking δ = (1− ε)ε/(4ζ(3)).

Upper bound of Theorem 4.1.1. We now turn to the key ideas underlying our proof of

the upper bound. We begin with a deterministic fact.

Fact 4.1.2. Any connected graph H with vertex set [n] contains an induced subgraph with

at least 1
2

√
log2 n vertices which is either a clique, a star, or a path.

We prove the fact immediately since the proof is very short; but its proof can be skipped

without consequence for the reader’s understanding of what follows.

Proof of Fact 4.1.2. The result is trivial if n ≤ 16 so assume n > 16. Let m = n1/
√

log2 n ≥ 4.

If H has maximum degree less than m then it has diameter at least
√

log2 n− 1 ≥ 1
2

√
log2 n

so it contains a path of length at least 1
2

√
log2 n. On the other hand, if H has maximum

degree at least m then let v be a vertex of H with degree at least m and let Nv be the set

of neighbours of v in H. By Ramsey’s theorem, and more concretely the diagonal Ramsey
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upper bound R(k, k) < 4k, the graph H[Nv] contains a set S of size at least

1

2
log2m =

1

2

log2 n√
log2 n

=
1

2

√
log2 n

such that H[S] is either a clique or an independent set. If H[S] is a clique then we are done,

and if H[S] is an independent set then H[S ∪ {v}] is a star of size |S| + 1 so we are again

done.

Fact 4.1.2 proves to be useful together with the following special case of the upper bound

of Theorem 4.1.1, whose proof appears in Section 4.3.

Proposition 4.1.3. Fix a sequence (Hn, n ≥ 1) of connected graphs such that, for all n,

Hn is either a clique, a star, or a path with V(Hn) = [n]. Then for all ε > 0, with high

probability cost(Kn, Hn) ≤ 1 + ε.

We combine Proposition 4.1.3 with Fact 4.1.2 as follows. First, choose Vn ⊂ [n] with

|Vn| ≥ 1
2

√
log n such that Hn[Vn] is a clique, a star or a path, and consider Kn[Vn], the

restriction of the weighted complete graph Kn to Vn. Let S′
n = (S ′

0, . . . , S
′
m) be an MST

sequence for (Kn[Vn], Hn[Vn]) of minimum cost. Now consider using the sequence S′
n as

an optimizing sequence for (Kn, Hn). In other words, we set Hn,i = ΦKn(Hn,i−1, S
′
i) for

1 ≤ i ≤ m. Then Hn,m = ΦKn(Hn, Vn), which is to say that Hn,m consists of Hn with Hn[Vn]

replaced by MST(Kn[Vn]). Moreover, by Proposition 4.1.3, wt(S′
n) = wt(Kn, Hn, S′

n) =

wt(Kn[Vn], Hn[Vn],S′
n)

prob−→ 1; so with high probability we have transformed a “large” (i.e.

whose size is ≥ 1
2

√
log n) subgraph of Hn into its minimum spanning tree, using an optimizing

sequence of cost at most 1 + oP(1).

The next step is to apply a procedure we call the eating algorithm, described in Section 4.2.

This algorithm allows us to bound the minimum cost of an MST sequence in terms of the

weighted diameters of minimum spanning trees of a growing sequence of induced subgraphs

of the input graph, with each graph in the sequence containing one more vertex than its

predecessor. In the setting of Theorem 4.1.1, it allows us to find an MST sequence with

weight at most 1 + oP(1) provided that the starting graph already contains a large subgraph

on which it is equal to the MST. The key result of our analysis of the eating algorithm is

summarized in the following proposition.

Proposition 4.1.4. Fix a sequence (Hn, n ≥ 1) of connected graphs with V(Hn) = [n]. Fix

any sequence of sets (Vn, n ≥ 1) such that Vn ⊂ [n], |Vn| → ∞ as n → ∞, and Hn[Vn] is
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connected for all n ≥ 1. Let H ′
n = ΦKn(Hn, Vn), so that H ′

n[Vn] = MST(Kn[Vn]). Then for

all ε > 0, with high probability cost(Kn, H
′
n) ≤ 1 + ε.

The proof of Proposition 4.1.4 appears in Section 4.2. We are now prepared to prove

Theorem 4.1.1, modulo the proofs of Proposition 4.1.3 and Proposition 4.1.4.

Proof of Theorem 4.1.1. We already established the lower bound of the theorem, so it re-

mains to show that for all ε > 0,

P
(

cost(Kn, Hn) ≤ 1 + ε
)
−→ 1

as n→∞. For the remainder of the proof we fix ε > 0.

Using Fact 4.1.2, let Vn be a subset of [n] with size at least 1
2

√
log2 n such that Hn[Vn]

is a clique, a star or a path. Write K−
n = Kn[Vn] and H−

n = Hn[Vn], and let S−
n be an MST

sequence for (K−
n , H

−
n ) of minimum cost. By Proposition 4.1.3,

P
(

wt(K−
n , H

−
n ,S−

n ) ≤ 1 + ε
)
−→ 1

as n→∞. Moreover, we have wt(K−
n , H

−
n ,S−

n ) = wt(Kn, Hn,S−
n ): the weight of the sequence

S−
n is the same with respect to (K−

n , H
−
n ) = (Kn[Vn], Hn[Vn]) as it is with respect to (Kn, Hn);

this is easily seen be induction. It follows that

P
(

wt(Kn, Hn,S−
n ) ≤ 1 + ε

)
−→ 1 .

Next let H ′
n = ΦKn(Hn, Vn), so H ′

n[Vn] = MST(Kn[Vn]). Since S−
n is an MST sequence

for (K−
n , H

−
n ), this is also the graph resulting from using S−

n as an optimizing sequence for

(Kn, Hn). Now let S′
n be an MST sequence for H ′

n of minimum cost. Since |Vn| → ∞ and

Hn[Vn] is connected, it follows from Proposition 4.1.4 that

P
(

wt(Kn, H
′
n,S′

n) ≤ 1 + ε
)
−→ 1 .

To conclude, note that the concatenation Sn of S−
n and S′

n is an MST sequence for

(Kn, Hn), and

wt(Kn, Hn,Sn) = max
{

wt(Kn, Hn,S−
n ),wt(Kn, H

′
n, S′

n)
}
,

so P(wt(Kn, Hn,Sn) ≤ 1 + ε)→ 1 and thus P(cost(Kn, Hn) ≤ 1 + ε)→ 1, as required.
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The remainder of the paper proceeds as follows. In Section 4.2 we describe the eating

algorithm and prove Proposition 4.1.4, modulo the proof of a key technical input (Theo-

rem 4.2.3), an upper tail bound on the weighted diameter of MST(Kn), which is postponed

to Appendix 4.A. In Section 4.3 we prove Proposition 4.1.3 by using the details of the eating

algorithm to generate a well bounded sequence of increasing MSTs that are each built from

a clique, a star, or a path. We conclude in Section 4.4 by presenting the generalization

of Theorem 4.1.1 to other edge weight distributions, and by discussing avenues for future

research.

4.2 The eating algorithm

In this section, we prove Proposition 4.1.4. Informally, we prove this proposition by showing

that we can efficiently add vertices to an MST of a large subgraph of Kn, one at a time, via

an optimizing sequence which has a low weight, with high probability. For a weighted graph

G = (V,E,w), write wdiam(G) for the weighted diameter of G,

wdiam(G) := max
{

dist
G

(u, v) : u, v ∈ V
}
,

where

dist
G

(u, v) := min
{
w(P ) : P is a path from u to v in G

}
.

It is sometimes convenient to write wdiam(G) for an unweighted graph G, where the ap-

propriate choice of weights is clear from context. Finally, we also introduce the unweighted

diameter

diam(G) := max
{

min
{∣∣E(P )

∣∣ : P is a path from u to v in G
}

: u, v ∈ V
}
,

which will be used later in this work (in Section 4.3.2 and in Appendix 4.A).

The key tool to prove Proposition 4.1.4 is the following proposition, which will be applied

recursively.

Proposition 4.2.1. Let G = (V,E,w) be a generic weighted graph with V = [n] and

max{w(e) : e ∈ E)} ≤ 1. Suppose that H is a spanning subgraph of G and H[n − 1] =

MST(G[n− 1]). Then

cost(G, H) ≤ 1 + max
{

wdiam
(

MST(G[n− 1])
)
,wdiam

(
MST(G)

)}
.
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The proof of Proposition 4.2.1 occupies the bulk of Section 4.2; it appears below in

Sections 4.2.1 and 4.2.2.

Corollary 4.2.2 (The eating algorithm). Let G = (V,E,w) be a weighted graph with V = [n]

and max{w(e) : e ∈ E} ≤ 1. Let H be a spanning subgraph of G and fix a non-empty set

U ⊂ [n] for which H[U ] = MST(G[U ]). Let U = U0 ⊂ U1 ⊂ . . . ⊂ Uk = V be any increasing

sequence of subsets of V such that, for all 0 ≤ i < k, Ui+1 \ Ui is a singleton and H[Ui] is

connected. Then

cost(G, H) ≤ 1 + max
{

wdiam
(

MST(G[Ui])
)

: 0 ≤ i ≤ k
}
.

Proof. Set F0 = H and let S1, . . . ,Sk and F1, . . . , Fk be constructed inductively as follows.

Given Fi−1, let Si be an MST sequence of minimal weight for the pair (G[Ui], Fi−1[Ui]) and let

Fi = ΦG(Fi−1, Ui). Note that Fi[Ui] is the last graph of the subgraph sequence corresponding

to Si.

By using that an optimizing sequence on (G[Ui], Fi−1[Ui]) can also be seen as an op-

timizing sequence on (G, Fi−1) of identical weight, we can bound the weight of the global

optimizing sequence S obtained by concatenating S1, . . . ,Sk in that order. Indeed, we have

that

wt(G, H,S) = max
{

wt(G[Ui], Fi−1[Ui],Si) : 1 ≤ i ≤ k
}
.

Moreover, by the definition of Fi−1, we know that Fi−1[Ui−1] = MST(G[Ui−1]) and by mini-

mality of Si along with Proposition 4.2.1, it follows that for all 1 ≤ i ≤ k,

wt(G[Ui], Fi−1[Ui],Si) ≤ 1 + max
{

wdiam
(

MST(G[Ui−1])
)
,wdiam

(
MST(G[Ui])

)}
.

Since cost(G, H) ≤ wt(G, H, S), combining the last two results provides us with the desired

upper bound for cost(G, H).

The importance of this corollary becomes clear in light of the next theorem, which pro-

vides strong tail bounds on the diameter of MSTs of randomly-weighted complete graphs.

Theorem 4.2.3. Let Kn = (Kn,X) be the complete graph with vertex set [n], endowed with

independent, Uniform[0, 1] edge weights X = (Xe, e ∈ E(Kn)). Then for all n sufficiently

large,

P
(

wdiam
(

MST(Kn)
)
≥ 7 log4 n

n1/10

)
≤ 4

nlogn
.
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In particular, wdiam(MST(Kn))
P−→ 0 as n→∞.

The proof of Theorem 4.2.3 is postponed to Appendix 4.A. We now use Corollary 4.2.2

and Theorem 4.2.3 to prove Proposition 4.1.4.

Proof of Proposition 4.1.4. Consider any sequence of sets (Vn, n ≥ 1) with Vn ⊂ [n] and

|Vn| → ∞ as n → ∞ and such that Hn[Vn] is connected for all n ≥ 1, and let H ′
n =

ΦKn(Hn, Vn). Since H ′
n is connected, we may list the vertices of [n] \ Vn as v1, . . . , vk so that

for all 1 ≤ i ≤ k, vertex vi is adjacent to an element of Vn ∪ {v1, . . . , vi−1}. Taking U0 = Vn

and Ui = Vn ∪ {v1, . . . , vi} for 1 ≤ i ≤ k, the sequence U0, . . . , Uk satisfies the conditions of

Corollary 4.2.2 with G = Kn. It follows that

cost(Kn, H
′
n) ≤ 1 + max

{
wdiam

(
MST(Kn[Ui])

)
: 0 ≤ i ≤ k

}
. (4.1)

Moreover, since |Vn| → ∞ as n → ∞, for n sufficiently large we may apply Theorem 4.2.3

to Kn[Ui] for each 0 ≤ i ≤ k and obtain that

P
(
∃i : wdiam

(
MST(Kn[Ui])

)
≥ |Ui|−

1
11

)
≤

k∑
i=0

P
(

wdiam
(

MST(Kn[Ui])
)
≥ |Ui|−

1
11

)
≤

k∑
i=0

1

|Ui|2
;

where we have used that 7 log4 n
n1/10 ≤ 1

n1/11 and that 4
nlogn < 1

n2 for n large. Since |Ui| = |U0|+i =

|Vn|+ i, it follows that for all n sufficiently large,

P
(
∃i : wdiam

(
MST(Kn[Ui])

)
≥ |Ui|−

1
11

)
≤

n∑
s=|Vn|

1

s2
≤ 1

|Vn| − 1
−→ 0 .

In view of (4.1), this yields that

P
(

cost(Kn, H
′
n) ≥ 1 + ε

)
≤ P

(
∃i : wdiam

(
MST(Kn[Ui])

)
≥ ε
)
−→ 0 ,

as desired.

The remainder of Section 4.2 is devoted to proving Proposition 4.2.1.
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4.2.1 A special case of Proposition 4.2.1

To prove Proposition 4.2.1, we need to bound cost(G, H) when H is a spanning subgraph of

G with H[n − 1] = MST(G[n − 1]). It is useful to first treat the special case that H only

contains one edge which does not lie in MST(G[n− 1]), and more specifically that n is a leaf

and H is a tree. We will later use this case as an input to the general argument.

Proposition 4.2.4. In the setting of Proposition 4.2.1, if H is a tree and n is a leaf of H

then

cost(G, H) ≤ 1 + wdiam
(

MST(G[n− 1])
)
.

The next lemma will be useful in the proof of both the special case and the general case;

informally, it states that optimizing sequences never remove MST edges that are already

present, and that optimizing sequences do not create cycles.

Lemma 4.2.5. Let (Si, 1 ≤ i ≤ m) be an MST sequence for (G, H) with corresponding

spanning subgraph sequence (Hi, 0 ≤ i ≤ m). Then

1. if e ∈ E(MST(G)) and e ∈ E(Hi), then e ∈ E(Hj) for all i ≤ j ≤ m, and

2. if Hi is a tree, then Hj is a tree for all i ≤ j ≤ m.

Proof. We use the standard fact that if G = (V,E,w) is a weighted graph with all edge

weights distinct, then e ∈ E(MST(G)) if and only if e is not the heaviest edge of any cycle

in G.

Fix e ∈ E(MST(G)) and suppose that e ∈ E(Hi). If the endpoints of e do not both lie

in Si+1 then clearly e ∈ E(Hi+1) since Hi and Hi+1 agree except on Si+1. If the endpoints

of e both lie in Si+1 then since e is not the heaviest edge of any cycle in G, it is not the

heaviest edge of any cycle in G[Si+1]. Thus e ∈ E(MST(G[Si+1])), and so again e ∈ E(Hi+1).

It follows by induction that e ∈ E(Hj) for all i ≤ j ≤ m.

The second claim of the lemma is immediate from the the fact that if T is any tree, S is

a subset of V(T ) such that T [S] is a tree, and T ′ is another tree with V(T ) = S, then the

graph with vertices V(T ′) and edges (E(T ) \ E(T [S])) ∪ E(T ′) is again a tree.

We now assume G and H are as in Proposition 4.2.4. Define an optimizing sequence

S = (Si, 1 ≤ i ≤ n− 1) for (G, H) as follows. Let S1 be the set of vertices on the path from

n to 1 in H0 = H, and let H1 = ΦG(H0, S1). Then, inductively, for 1 < i ≤ n − 1 let Si be
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the set of vertices on the path from n to i in Hi−1 and let Hi = ΦG(Hi−1, Si). Since H = H0

is a tree, by point 2 of Lemma 4.2.5 it follows that Hi is a tree for all i, so the paths Si are

uniquely determined and the sequence S is well-defined.

Proposition 4.2.4 is now an immediate consequence of the following two lemmas.

Lemma 4.2.6. S is an MST sequence for (G, H).

Proof. Since Hm is a tree, it suffices to show that MST(G) is a subtree of Hm. Let e ∈
E(MST(G)). Then either e ∈ E(H0[n−1]) or e = in for some i ∈ [n−1]. If e ∈ E(H0[n−1])

then e ∈ E(H0) meaning that, by point 1 of Lemma 4.2.5, we have e ∈ E(Hm). Otherwise,

if e = in for some i ∈ [n − 1], then e ∈ E(G[Si]) since Si is the set of vertices on a path

from n to i. Hence, e ∈ E(MST(G[Si])), meaning that e ∈ E(Hi). Once again, by point 1 of

Lemma 4.2.5, this implies that e ∈ E(Hm), proving that MST(G) is a subtree of Hm.

Lemma 4.2.7. wt(S) ≤ 1 + wdiam(MST(G[n− 1])

Proof. Let i ∈ [n−1]. Notice that the path from n to i in Hi−1 contains a single edge from n

to [n− 1]. Hence, the weight of this path is bounded from above by 1 + wdiam(Hi−1[n− 1]).

To prove the lemma it therefore suffices to show that E(Hi[n − 1]) ⊆ E(H0[n − 1]) =

E(MST(G[n− 1])).

We prove this by induction on i, the base case i = 0 being automatic. For i > 0, suppose

that E(Hi−1[n−1]) ⊆ E(H0[n−1]). Fix any vertices u, v ∈ Si∩[n−1] with uv ̸∈ E(Hi−1) and

let P be the path from u to v in Hi−1. Then P is a subpath of Hi−1[Si], and so by induction

it is also a subpath of H0. Since H0[n− 1] = MST(G[n− 1]) it follows that P is a subpath

of MST(G[n− 1]). This yields that uv is the edge with highest weight on the cycle created

by closing P , and all the vertices of this cycle lie in Si; so uv ̸∈ E(MST(G[Si])) and thus

uv ̸∈ E(Hi). This shows that E(Hi[Si \ {n}]) ⊆ E(Hi−1[Si \ {n}]) ⊆ E(H0[Si \ {n}]). Since

the rest of Hi−1[n−1] and Hi[n−1] are identical, it follows that E(Hi[n−1]) ⊆ E(H0[n−1]),

as required.

4.2.2 The general case of Proposition 4.2.1

We now lift the assumption that H is a tree; in this case, E(H) \ E(H[n− 1]) could contain

up to n−1 edges. As a result, the MST sequence previously defined in Section 4.2.1 does not

provide us with the desired cost, since a path from n to i ∈ [n− 1] might contain additional

edges with n as an endpoint, increasing the weight of the sequence. Thus, we require a more

careful method. Informally, our approach is to first apply the method from the previous
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section to a sequence of subgraphs of H[n − 1], each of which is only joined to the vertex

n by a single edge, but together which contain all the edges from n to [n − 1]. We show

that this yields a graph which contains the MST of G. We then prove that any cycles in the

resulting graph can be removed at a low cost.

Let G = (V,E,w) be a generic weighted graph with V = [n] and let H be a spanning

subgraph of G with H[n − 1] = MST(G[n − 1]). Let {v1n, . . . , vkn} ⊆ E(H) be the set of

edges in H with n as an endpoint, and for 1 ≤ i ≤ k let

Vi =

{
v ∈ [n− 1] : dist

(H[n−1],w)
(vi, v) = min

{
dist

(H[n−1],w)
(vj, v) : 1 ≤ j ≤ k

}}
.

That is to say, (Vi, 1 ≤ i ≤ k) is the Voronoi partition of [n− 1] in H[n− 1] with respect to

the vertices v1, . . . , vk; it is indeed a partition since G is generic.

Note that since H[n − 1] = MST(G[n − 1]) it follows that H[Vi] = MST(G[Vi]) for any

1 ≤ i ≤ k. Moreover, vertex n has degree one in H[Vi ∪ {n}]. Using Proposition 4.2.4, let

Si = (Si,j, 1 ≤ j ≤ mi) be an MST sequence for (G[Vi ∪ {n}], H[Vi ∪ {n}]) with weight at

most 1+wdiam(MST(G[Vi])) ≤ 1+wdiam(MST(G[n−1])), and write (Hi,j, 0 ≤ j ≤ mi) for

the corresponding subgraph sequence. Now set m = m1 + . . .+mk and let S∗ = (S∗
1 , . . . , S

∗
m)

be formed by concatenating S1, . . . ,Sk, so

S∗ = (S1,1, . . . , S1,m1 , . . . , Sk,1, . . . , Sk,mk
) ,

and let (H∗
0 , . . . , H

∗
m) be the subgraph sequence corresponding to S∗.

Lemma 4.2.8. We have MST(G) ⊆ H∗
m, and wt(S∗) ≤ 1 + diam(MST(G[n− 1])).

Proof. First, by assumption, H0[n−1] = MST(G[n−1]). Since MST(G)[n−1] is a subgraph

of MST(G[n− 1]), point 1 of Lemma 4.2.5 implies that MST(G)[n− 1] is a subgraph of H∗
i

for all i, so in particular of H∗
m.

Next, since V1, . . . , Vk are disjoint, we have Si,j ∩ Si′,j′ ⊆ {n} whenever i ̸= i′, and it

follows that H∗
m1+...+mi−1

[Vi ∪ {n}] = H[Vi ∪ {n}] for all 1 ≤ i ≤ k. This implies that

H∗
m1+...+mi−1+j[Vi ∪ {n}] = Hi,j for each 1 ≤ j ≤ mi, so in particular H∗

m1+...+mi
[Vi ∪ {n}] =

MST(G[Vi ∪ {n}]).
Now fix any edge vn of MST(G). Then v ∈ Vi for some 1 ≤ i ≤ k, so vn ∈ E(MST(G[Vi∪

{n}])). It follows that vn ∈ H∗
m1+...+mi

, and thus by point 1 of Lemma 4.2.5 that vn is an

edge of H∗
m. Therefore all edges of MST(G) are edges of H∗

m, as required.
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Finally, the bound on the weight of the sequence is immediate by the definition of S∗ and

by using that wt(G[Vi ∪ {n}], H[Vi ∪ {n}], Si) = wt(G, H, Si).

We are now left to deal with the edges E(H∗
m) \E(MST(G)). This is taken care of in the

following lemma.

Lemma 4.2.9. Let G = (V,E,w) be a generic weighted graph with V = [n] and with all

edge weights at most 1, and let H be a subgraph of G such that MST(G) is a subgraph of H.

Write k = |E(H)| − (n− 1). Then there exists an MST sequence S′ = (S ′
1, . . . , S

′
k) with

wt(S′) ≤ 1 + wdiam
(

MST(G)
)
.

Proof. If H is a tree then there is nothing to prove, so assume H contains at least one cycle

(so k ≥ 1). In this case there exist vertices u, v which are not adjacent in MST(G) but are

joined by an edge in H; choose such u and v so that the length (number of edges) on the

path P from u to v in MST(G) is as small as possible. Let S = V(P ) be the set of vertices

of the path P ; then H[S] is a cycle (by the minimality of the length of P ), and uv is the

edge with largest weight on H[S]. It follows that MST(G[S]) = P , so ΦG(H,S) has edge set

E = E(H) \ {uv}. Moreover, since P is a path of MST(G), it follows that

w(H[S]) = w(uv) + wt(P ) ≤ 1 + wdiam(MST(G)) .

Since ΦG(H,S) contains MST(G) but has one fewer edge than H, the result follows by

induction.

We now combine Lemmas 4.2.8 and 4.2.9 to conclude the proof of Proposition 4.2.1.

Proof of Proposition 4.2.1. Let S∗ = (S∗
1 , . . . , S

∗
m) be the optimization sequence defined

above Lemma 4.2.8, and let (H∗
0 , . . . , H

∗
m) be the corresponding subgraph sequence. By

that lemma, MST(G) is a subgraph of H∗
m and wt(S∗) ≤ 1 + wdiam(MST(G[n− 1])).

Next let S′ = (S ′
1, . . . , S

′
k) be an MST sequence for (G, H∗

m) of weight at most 1 +

wdiam(MST(G)); the existence of such a sequence is guaranteed by Lemma 4.2.9. Then the

concatenation

S = (S∗
1 , . . . , S

∗
m, S

′
1, . . . , S

′
k)

of S∗ and S′ is an MST sequence for (G, H), of weight at most

wt(G, H, S) ≤ 1 + max
{

wdiam
(

MST(G[n− 1])
)
,wdiam

(
MST(G)

)}
,
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and the desired bound on cost(G, H) follows.

4.3 MST sequences for the clique, the star, and the

path

This section is aimed at proving Proposition 4.1.3. We start by proving the result in the

case of the clique, since it is straightforward using the result of Lemma 4.2.9. After that,

the case of the star and the path are covered together; the proof in those cases uses the

eating algorithm, Corollary 4.2.2, to find adequate sequences of increasing subsets on which

to build increasing sequences of MSTs.

Proof of Proposition 4.1.3 (Case of the clique). Using Lemma 4.2.9, since MST(Kn) is a sub-

graph of Hn = Kn, it follows that

cost(Kn, Hn) ≤ 1 + wdiam
(

MST(Kn)
)
.

By Theorem 4.2.3 we have wdiam(MST(Kn))
prob−→ 0, and the result follows.

4.3.1 MST sequences for the star and the path

In this section, we assume that Hn is either a star or a path. If Hn is a star, then by

relabeling we may assume Hn has center n, so has edge set {e1, . . . , en−1} with ei = in; call

this star Sn. If Hn is a path, then by relabeling we may assume Hn is the path Pn = 12 . . . n,

so has edge set {ei, . . . , en−1} with ei = i(i + 1). In either case, with this edge labeling, for

any 1 ≤ i < j ≤ n− 1, the set V (i, j) defined as the endpoints in {ei, . . . , ej−1} is connected

in Hn. Note that V (i, j) = {i, . . . , j − 1} ∪ {n} when Hn is a star and V (i, j) = {1, . . . , j}
when Hn is a path, and in both cases |V (i, j)| = j − i+ 1. For the remainder of the section,

it might be helpful to imagine that Hn is the path, 12 . . . n.

Recall that X = (Xe, e ∈ E(Kn)) is a set of independent Uniform[0, 1] random variables.

For W ∈ (0, 1) and 2 ≤ L < n− 1, let

I = I(W,L) = (n− L) ∧min
{
i : ∀i ≤ j < i + L,Xej ≤ W

}
. (4.2)
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Note that I is a function of X and more precisely that

{I ≤ k} ∈ σ
({

Xei ≤ W
}
, 1 ≤ i < k + L

)
,

where σ(X) is the σ-algebra generated by X.

Next, let U = U(I) = (Ui, 0 ≤ i < n− L) be the sequence of sets defined as follows.

(U0, . . . , Un−L−1) =
(
V (I, I + L), . . . , V (I, n), V (I− 1, n), . . . , V (1, n)

)
. (4.3)

In words, U0 is the set of vertices that belong to the edges eI, . . . , eI+L−1 (that is V (I, I +

L)); then we sequentially build U1, . . . , Un−L−1 by first adding the vertices belonging to

eI+L, . . . , en−1, then adding the vertices belonging to eI−1, . . . , e1; see Figure 4.1 for a repre-

sentation of I and U.

We now use the sequence U to bound the cost of (Kn, Hn) when Hn is a star or a path.

The following lemma gives a first bound on the cost using U.

Lemma 4.3.1. Let Hn be the star Sn or path Pn. Then, conditionally given that I(W,L) <

n− L, we have

cost(Kn, Hn) ≤ max

{
WL, 1 + max

{
wdiam

(
MST(Kn[Ui])

)
: 0 ≤ i < n− L

}}
.

Proof. This result almost directly follows from Corollary 4.2.2. Indeed, let H ′
n = Φ(Hn, U0).

Then the sets U0, . . . , Un−L−1 satisfy the condition of Corollary 4.2.2 with H = H ′
n, implying

that

cost(Kn, H
′
n) ≤ 1 + max

{
wdiam

(
MST(Kn[Ui])

)
: 0 ≤ i < n− L

}
.

But now, by concatenating any minimal weight MST sequence for (Kn[U0], Hn[U0]) and any

minimal weight MST sequence for (Kn, H
′
n), it follows that

cost(Kn, Hn) ≤ max
{

cost
(
Kn[U0], Hn[U0]

)
, cost

(
Kn, H

′
n

)}
.

In order to complete the proof of the lemma, note that, conditionally given I < n− L,

w(Hn[U0]) =
∑

e∈E(Hn[U0])

Xe ≤ WL .
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W = 0.2 L = 3

1 2 3 4 5 6 7 8 9
0.6 0.9 0.5 0.1 0.2 0.1 0.1 0.7(Hn, w) =

the ordered
line with

random edge
weights.

1 2 3 4 5 6 7 8 9
0.6 0.9 0.5 0.1 0.2 0.1 0.1 0.7

4 5 6 7
0.1 0.2 0.1

I = 4

I is the first
index

followed by
L = 3 edges
of weight at

most
W = 0.2.

U =

1 2 3 4 5 6 7 8 9
0.6 0.9 0.5 0.1 0.2 0.1 0.1 0.7

4 5 6 7
U0

1 2 3 4 5 6 7 8 9
0.6 0.9 0.5 0.1 0.2 0.1 0.1 0.7

4 5 6 7 8
U1

1 2 3 4 5 6 7 8 9
0.6 0.9 0.5 0.1 0.2 0.1 0.1 0.7

4 5 6 7 8 9
U2

1 2 3 4 5 6 7 8 9
0.6 0.9 0.5 0.1 0.2 0.1 0.1 0.7

3 4 5 6 7 8 9
U3

1 2 3 4 5 6 7 8 9
0.6 0.9 0.5 0.1 0.2 0.1 0.1 0.7

2 3 4 5 6 7 8 9
U4

1 2 3 4 5 6 7 8 9
0.6 0.9 0.5 0.1 0.2 0.1 0.1 0.7

1 2 3 4 5 6 7 8 9
U5

The sets in U
are built using

L = 3 and
I = 4 to set

U0 =
{4, 5, 6, 7}

before
expanding on

both sides
(right then

left).

Figure 4.1: An example of I and U for an instance of the weighted ordered line (Hn, w), with
W = 0.2 and L = 3. First, I is set to be the first sequence of L = 3 consecutive edges with
weights less than W = 0.2. In this example, I = 4. Then, given I, set U0 = V (I, I + L) =
{4, 5, 6, 7} and expand first to the right and then to left to obtain U1, . . . , Un−L−1. In other
words, in order to obtain U1, U2, U3, U4, and U5, we sequentially add 8, 9, 3, 2, and 1 to U0.
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Taking S = (U0), this yields

cost
(
Kn[U0], Hn[U0]

)
≤ wt

(
Kn[U0], Hn[U0],S

)
= w

(
Hn[U0]

)
≤ WL .

This proves the desired upper bound and concludes the proof of the lemma.

The next two results, combined with Lemma 4.3.1, will allow us to give the full proof of

Proposition 4.1.3 when Hn is either a star or a path.

Proposition 4.3.2. For any ε > 0, for W = 1
logn

and L = ⌊log log n⌋, as n→∞ we have

P
(
∃U ∈ U(I(W,L)) : wdiam

(
MST(Kn[U ])

)
> ε
)
−→ 0 .

Lemma 4.3.3. Let W = 1
logn

and L = ⌊log log n⌋. Then, for any a > 0, as n→∞ we have

P
(
I(W,L) ≥ na

)
−→ 0 .

Lemma 4.3.3 is straightforward and we prove it immediately. On the other hand, Propo-

sition 4.3.2 is quite technical and we dedicate Section 4.3.2 below to proving it.

Proof of Lemma 4.3.3. For any integer k ≥ 1, by the definition of I,

P
(
I ≥ kL + 1

)
= P

(
∀i < kL + 1,∃j ∈ {i, . . . , i + L− 1} : Xej > W

)
≤ P

(
∀i ∈

{
1, 1 + L, . . . , 1 + (k − 1)L

}
,∃j ∈ {i, . . . , i + L− 1} : Xej > W )

)
.

But then, by independence of the weights of X, we have

P
(
I ≥ kL + 1

)
=

k−1∏
i=0

P
(
∃j ∈ {1 + iL, . . . , 1 + (i + 1)L− 1} : Xej > W

)
=

k−1∏
i=0

(
1−WL

)
≤ e−kWL

,

where the last inequality follows from the convexity of the exponential. Applying this result

with k = ⌊na−1
L
⌋, we obtain

P
(
I ≥ na

)
≤ P

(
I ≥ kL + 1

)
≤ exp

(
−
⌊
na − 1

L

⌋
·WL

)
,
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and the final expression tends to 0 as n→∞.

Proof of Proposition 4.1.3 (Case of the star and the path). Let W = 1
logn

and L =

⌊log log n⌋. Fixing ε > 0, we have

P
(

cost(Kn, Hn) > 1 + ε
)
≤ P

(
cost(Kn, Hn) > 1 + ε

∣∣∣ I < n− L
)

+ P
(

I = n− L
)
.

Applying Lemma 4.3.3 with any a < 1, for large enough n we have

P
(

I = n− L
)
≤ P

(
I ≥ na

)
−→ 0 .

Hence, we have

P
(

cost(Kn, Hn) > 1 + ε
)

= P
(

cost(Kn, Hn) > 1 + ε
∣∣∣ I < n− L

)
+ o(1) .

Since WL→ 0, combining the previous bound with Lemma 4.3.1 leads to

P
(

cost(Kn, Hn) > 1 + ε
)

≤ P
(

max

{
WL, 1 + max

{
wdiam

(
MST(Kn[Ui])

)}}
> 1 + ε

∣∣∣∣ I < n− L

)
+ o(1)

= P
(

max
{

wdiam
(

MST(Kn[U ])
)

: U ∈ U
}
> ε

∣∣∣∣ I < n− L

)
+ o(1) .

The upper bound now follows from Proposition 4.3.2, once again since P(I < n−L)→ 0.

4.3.2 Proof of Proposition 4.3.2

In this section, we prove Proposition 4.3.2, which concludes the proof of Proposition 4.1.3.

Before doing so, we state a proposition which is an important input to the proof.

Proposition 4.3.4. Let G = (G,w) be a weighted graph. Let T be a subtree (not necessarily

spanning) of G and let G∗ = (G,w∗) be a weighted graph such that w∗(e) ≤ w(e) for e ∈ E(T )

and w∗(e) = w(e) otherwise. Then

wdiam
(

MST(G∗)
)
≤ w∗(T ) + |V(T )| × wdiam

(
MST(G)

)
.
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Moreover, if T is a subtree of MST(G∗), then

wdiam
(

MST(G∗)
)
≤ w∗(T ) + 2× wdiam

(
MST(G)

)
.

Proof. Let us try to understand the relation between MST(G) and MST(G∗). First note

that

E(MST(G∗)) ⊂ E
(

MST(G)
)
∪ E(T ) . (4.4)

Indeed, any edge e /∈ E(T ) has the same weight with respect to w and w∗. Then, for any

e ∈ E(MST(G∗))\E(T ), no cycle has e as the heaviest edge with respect to w∗, which implies

that no cycle has e as the heaviest edge with respect to w, and thus e ∈ E(MST(G)).

Consider now a path P contained in MST(G∗). Using (4.4), we have

E(P ) ⊆ E
(

MST(G)
)
∪ E(T ) ,

so we may uniquely decompose P into pairwise edge-disjoint paths P0, . . . , P2k, where k ≥ 1,

and Pi is a subpath of T for i odd and of MST(G) for i even (it is possible that either or

both of P0, P2k consists of a single vertex). Since P1, P3, . . . , P2k−1 are disjoint subpaths of

T , it follows that k ≤ |E(T )| and that
∑

i odd w
∗(Pi) ≤ w∗(T ). Moreover, each of the paths

P0, P2, . . . , P2k have weight at most wdiam
(

MST(G)
)
, so∑

i even

w∗(Pi) =
∑
i even

w(Pi) ≤ (k + 1)× wdiam
(

MST(G)
)

(4.5)

≤
(
|E(T )|+ 1

)
× wdiam

(
MST(G)

)
= |V(T )| × wdiam

(
MST(G)

)
.

The first bound of the proposition follows since

w∗(P ) =
∑
i even

w∗(Pi) +
∑
i odd

w∗(Pi) .

To establish the second bound, note that if T is a subtree of MST(G∗) then in the above

decomposition of P we must have k = 1; a path in MST(G∗) may enter T and then leave it,
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after which it can never reenter T . In this case the first inequality of (4.5) becomes∑
i even

w(Pi) ≤ 2× wdiam
(

MST(G)
)
,

so we obtain

w∗(P ) =
∑
i even

w∗(Pi) +
∑
i odd

w∗(Pi) ≤ w∗(T ) + 2× wdiam(MST(G)) ,

as required.

For the remainder of this section we assume W = 1
logn

and L = ⌊log log n⌋ and write

I = I(W,L). Consider the partition U = U−
r ∪ U+

r ∪ Uℓ where U−
r = U−

r (I) = (Ui, 0 ≤
i ≤ min(L20, n − I − L)), U+

r = U+
r (I) = (Ui,min(L20, n − I − L) < i ≤ n − I − L), and

Uℓ = Uℓ(I) = (Ui, n− I− L < i ≤ n− L− 1). Then, in the case where I < n− L− L20, U−
r

corresponds to adding the first L20 vertices on the right of U0, U+
r corresponds to adding all

remaining vertices on the right, and Uℓ corresponds to adding the vertices on the left of U0.

We aim to prove tail bounds similar to that of Proposition 4.3.2 for each of the sets U−
r , U+

r ,

and Uℓ, and we start with an important lemma regarding the distribution of G conditioned

on the value of I.

Lemma 4.3.5. Fix k < n−L and let K∗
n = (Kn,X∗) have the law of Kn conditioned on the

event that I(W,L) = k. Then for any e ∈ {ei, k ≤ i < k+L}, X∗
e is a Uniform[0,W ]; for any

e /∈ {ei : 1 ≤ i < k+L}, X∗
ei
is a random Uniform[0, 1], and the edge weights

(
X∗

e , e ∈ E(Kn)\
{ei, 1 ≤ i < k}

)
are mutually independent and independent of (X∗

e , e ∈ {ei, 1 ≤ i < k}).
It follows that there exists a coupling between K∗

n = (Kn,X∗) and K′
n = (Kn,X′) where X′

is a set of independent Uniform[0, 1], such that X∗
e ≤ X ′

e if e ∈ {ei : k ≤ i < k + L}, and
X∗

e = X ′
e if e ∈ E(Kn) \ {ei : 1 ≤ i < k + L}.

Proof. Using the definition of I, we know that

{
I = k

}
∈ σ
({

Xei ≤ W : 1 ≤ i < k + L
})

,

from which it directly follows that the distribution of Xe is a Uniform[0, 1] for any e /∈ {en,i :

1 ≤ i < k + L}. Furthermore, for any e ∈ {ei : k ≤ i < k + L}, Xe conditioned on I = k is

the same as Xe conditioned on Xe ≤ W . Since Xe is uniformly distributed, it follows that
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Xe conditioned on I = k is a Uniform[0,W ]. Finally, note that

{
I = k

}
=
{
Xei ≤ W : k ≤ i < k + L

}
∩

k−1⋂
j=1

{
∃j ≤ i < min{j + L, k} : Xei > W

}
,

from which we see that the edges of E(Kn) \ {ei, 1 ≤ i < k} are conditionally independent of

{ei, 1 ≤ i < k} given that I = k. It follows that all the edges in E(Kn) \ {ei, 1 ≤ i < k} have

independent weights in K∗
n. The existence of the coupling asserted in the lemma is then an

immediate consequence.

We now split the proof of Proposition 4.3.2 into proving analogous statements for the

three different sets U−
r , U+

r , and Uℓ.

First right set U−
r .

Lemma 4.3.6. For any ε > 0, we have

P
(
∃U ∈ U−

r : wdiam
(

MST(Kn[U ])
)
> ε
)
−→ 0 .

Proof. Fix 0 < a < 1 and assume n is large enough so that na < n − L − L20. Then, by

Lemma 4.3.3, we have

P
(
∃U ∈ U−

r : wdiam
(

MST(Kn[U ])
)
> ε
)

≤ P
(
∃U ∈ U−

r : wdiam
(

MST(Kn[U ])
)
> ε

∣∣∣ I < n− L− L20
)

+ P
(
I ≥ n− L− L20

)
= P

(
∃U ∈ U−

r : wdiam
(

MST(Kn[U ])
)
> ε

∣∣∣ I < n− L− L20
)

+ o(1) .

Next fix k < n − L − L20 and condition on the event I = k. Under this conditioning,

U−
r = U−

r (I) = U−
r (k) is a deterministic sequence of sets. Further recall from (4.3) that

U0 = V (k, k+L) consists of the endpoints of the edges ek, . . . , ek+L−1, so equals {k, . . . , k+L}
if Hn is the path Pn and equals {k, . . . , k + L− 1, n} if Hn is the star Sn. Let T = Hn[U0].

Since I = k < n − L, all edges in T have weight less than W . Now, suppose that all other

edges of Kn[UL20 ] have weight larger than W . In this case, T is a subtree of MST(Kn[UL20 ]),

from which it follows that T is a subtree of MST(Kn[Ui]) for any 0 ≤ i ≤ L20 (since Ui ⊂ UL20

for such Ui). Now, using that {I = k} ∈ σ({Xei : 1 ≤ i < k + L}), we have

P
(
∀e ∈ E

(
Kn[UL20 ]

)
\ E(T ), Xe > W

∣∣∣ I = k
)

=
(
1−W

)(L20

2 )−L
.
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Since W = 1
logn

, we have 1−W ≥ exp(−2W ) for n large, so

P
(

E(T ) ⊂ E
(

MST
(
Kn[UL20 ]

)) ∣∣∣ I = k
)
≥
(
1−W

)(L20

2 )−L

≥ exp

(
−2W

((
L20

2

)
− L

))
≥ exp

(
−WL40

)
≥ 1− (log log n)40

log n
,

the last inequality holding since W = 1
logn

, L = ⌊log log n⌋, and e−x ≥ 1 − x for x ≥ 0.

Hence,

P
(
∃U ∈ U−

r : wdiam
(

MST(Kn[U ])
)
> ε

∣∣∣ I = k
)

(4.6)

≤ P
(
∃U ∈ U−

r : wdiam
(

MST(Kn[U ])
)
> ε,E(T ) ⊂ E

(
MST

(
Kn[UL20 ]

)) ∣∣∣ I = k
)

+
(log log n)40

log n
.

Let (K∗
n,K′

n) be as in Lemma 4.3.5. By the definition of K∗
n and (4.6), we have that

P
(
∃U ∈ U−

r : wdiam
(

MST(Kn[U ])
)
> ε

∣∣∣ I = k
)

≤ P
(
∃U ∈ U−

r (k) : wdiam
(

MST(K∗
n[U ])

)
> ε,E(T ) ⊂ E

(
MST

(
K∗

n[UL20 ]
)))

+
(log log n)40

log n
.

Note that if E(T ) ⊂ E(MST(K∗
n[UL20 ])), then for any U ∈ U−

r (k), E(T ) ⊂ E(MST(K∗
n[U ])),

since MST(K∗
n[UL20 ])[U ] is a subgraph of MST(K∗

n[U ]). Applying Proposition 4.3.4 to

MST(K∗
n[U ]) and MST(K′

n[U ]), it follows that

P
(
∃U ∈ U−

r (k) : wdiam
(

MST(K∗
n[U ])

)
> ε,E(T ) ⊂ E

(
MST

(
K∗

n[UL20 ]
)))

≤ P
(
∃U ∈ U−

r (k) : w∗(T ) + 2× wdiam
(

MST(K′
n[U ])

)
> ε,E(T ) ⊂ E

(
MST

(
K∗

n[UL20 ]
)))

≤ P
(
∃U ∈ U−

r (k) : w∗(T ) + 2× wdiam
(

MST(K′
n[U ])

)
> ε
)
.
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Using that w∗(T ) ≤ WL and combining the two previous inequalities yields the bound

P
(
∃U ∈ U−

r : wdiam
(

MST(Kn[U ])
)
> ε

∣∣∣ I = k
)

(4.7)

≤ P
(
∃U ∈ U−

r (k) : wdiam
(

MST(K′
n[U ])

)
> (ε−WL)/2

)
+

(log log n)40

log n
.

We can now replace K′
n by Kn since they are identically distributed. Furthermore, recall

that Theorem 4.2.3 states that, for n sufficiently large, we have

P
(

wdiam
(

MST(Kn)
)
≥ 7 log4 n

n1/10

)
≤ 4

nlogn
.

Since L→∞ and WL→ 0 as n→∞, and since any set U ∈ U−
r has size |U | ≥ |U0| = L+1,

we can choose n large enough so that, for any set U ∈ U−
r , we have 7 log4 |U |/|U |1/10 ≤

(ε−WL)/2. It follows that

P
(
∃U ∈ U−

r (k) : wdiam
(

MST(K′
n[U ])

)
> (ε−WL)/2

)
≤ P

(
∃U ∈ U−

r (k) : wdiam
(

MST(Kn[U ])
)
≥ 7 log4 |U |
|U |1/10

)
≤

∑
U∈U−

r (k)

4

|U |log |U |

The final step of the proof is to use that U−
r (k) = (Ui, 0 ≤ i ≤ L20) where |Ui| = |U0| + i =

L + i + 1, along with the fact that 4/nlogn ≤ 1/n2 for n large enough, to obtain that

P
(
∃U ∈ U−

r (k) : wdiam
(

MST(K′
n[U ])

)
> (ε−WL)/2

)
≤

L+L20+1∑
k=L+1

1

k2
≤ 1

L
≤ 2

log log n
.

Plugging this into (4.7), it follows that

P
(
∃U ∈ U−

r : wdiam
(

MST(Kn[U ])
)
> ε

∣∣∣ I = k
)
≤ (log log n)40

log n
+

2

log log n
.

134



Finally, since the previous inequality holds for any k < n− L− L20, we have

P
(
∃U ∈ U−

r : wdiam
(

MST(Kn[U ])
)
> ε
)

= P
(
∃U ∈ U−

r : wdiam
(

MST(Kn[U ])
)
> ε

∣∣∣ I < n− L− L20
)

+ o(1)

≤ (log log n)40

log n
+

1

(log log n)20
+ o(1) −→ 0 ,

which is the desired result.

Second right set U+
r .

Lemma 4.3.7. For any ε > 0, we have

P
(
∃U ∈ U+

r : wdiam
(

MST(Kn[U ])
)
> ε
)
−→ 0 .

Proof. Fix 0 < a < 1 and assume n is large enough so that na < n − L − L20. Then, by

Lemma 4.3.3, we have

P
(
∃U ∈ U+

r : wdiam
(

MST(Kn[U ])
)
> ε
)

≤ P
(
∃U ∈ U+

r : wdiam
(

MST(Kn[U ])
)
> ε

∣∣∣ I < n− L− L20
)

+ P
(
I ≥ n− L− L20

)
= P

(
∃U ∈ U+

r : wdiam
(

MST(Kn[U ])
)
> ε

∣∣∣ I < n− L− L20
)

+ o(1) .

Fix now k < n−L−L20 and condition on the event I = k. Let T = Hn[U0] and let (K′
n,K∗

n)

be given by the coupling in Lemma 4.3.5. Then, by Proposition 4.3.4,

P
(
∃U ∈ U+

r : wdiam
(

MST(Kn[U ])
)
> ε

∣∣∣ I = k
)

= P
(
∃U ∈ U+

r (k) : wdiam
(

MST(K∗
n[U ])

)
> ε
)

≤ P
(
∃U ∈ U+

r (k) : w∗(T ) + |V(T )| × wdiam
(

MST(K′
n[U ])

)
> ε
)

≤ P
(
∃U ∈ U+

r (k) : wdiam
(

MST(Kn[U ])
)
> (ε−WL)/(L + 1)

)
,

where the last step follows from the fact that w∗(T ) ≤ WL conditionally given that I < n−L,

that |V(T )| = L+1, and that K′
n is distributed as Kn. Since x 7→ log4 x

x1/10 is a decreasing function

for large enough x, since any set U ∈ U+
r has size |U | ≥ |UL20| = L + L20 + 1, and since

L = ⌊log log n⌋ → ∞ and WL = ⌊log log n⌋/ log n → 0, we can choose n large enough so
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that, for any U ∈ U+
r

7 log4 |U |
|U |1/10

≤ 7 log4(L20)

(L20)1/10
=

7 · 204 log4 ·(L)

L2
≤ ε−WL

L + 1
.

Then, recalling that U+
r (k) = (Ui, L

20 < i ≤ n − k − L) where |Ui| = |U0| + i = L + i + 1,

Theorem 4.2.3 gives us

P
(
∃U ∈ U+

r (k) : wdiam
(

MST(Kn[U ])
)
> (ε−WL)/(L + 1)

)
≤ P

(
∃U ∈ U+

r (k) : wdiam
(

MST(Kn[U ])
)
>

7 log4 |U |
|U |1/10

)
≤

∑
U∈U+

r (k)

4

|U |log |U |

≤ 1

L + L20
,

where the last inequality uses that xlog x ≥ 4x2 for x large enough, along with the fact that

|Ui| = L + i + 1. Therefore,

P
(
∃U ∈ U+

r : wdiam
(

MST(Kn[U ])
)
> ε
)

≤ P
(
∃U ∈ U+

r (k) : wdiam
(

MST(Kn[U ])
)
> (ε−WL)/(L + 1)

)
+ o(1)

≤ 1

L + L20
+ o(1) −→ 0 ,

concluding the proof of the lemma.

Left set Uℓ.

Lemma 4.3.8. For any ε > 0, we have

P
(
∃U ∈ Uℓ : wdiam

(
MST(Kn[U ])

)
> ε
)
−→ 0 .

Proof. Fix a < 1
4
. Thanks to Lemma 4.3.3, we know that P(I ≥ na) → 0. Moreover, note

that under this event, any set U ∈ Uℓ has size |U | ≥ n− k ≥ n− na. Our strategy now is to

prove that, due to the large size of these sets, conditioning on the event {I < na} does not

notably affect the structure of MST(Kn[U ]).

Let us try to understand how the edge weights {e1, . . . , en−1} behave given that I < na;
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call Ka
n the random weighted graph corresponding to the distribution of Kn conditionally

given that I < na. Recall that {I < na} ∈ σ({Xei : 1 ≤ i < ⌈na⌉ + L}) and write m =

⌈na⌉+L− 1 (note that e1, . . . , em are the only edges affected when we condition on I < na).

Let A = {i ≤ m : Xei ≤ W} and let A be the collection of sets A ⊂ [m] such that there

exists i < na with {i, . . . , i + L− 1} ⊂ A. Then, by definition, {A ∈ A} = {I < na}. Now,

for any A ∈ A, conditionally given that A = A, the weights of e1, . . . , em are independent of

each other and are distributed as Uniform[0,W ] or Uniform[W, 1], according to whether or

not the index i of the edge ei lies in A. This means that for any x1, . . . , xm ∈ [0, 1], and any

A ∈ A, we have

P
(
∀i ∈ [m] : Xei ≤ xi

∣∣∣ A = A, I < na
)

= P
(
∀i ∈ [m] : Xei ≤ xi

∣∣∣ A = A
)

=

(∏
i∈A

min{xi,W}
W

) ∏
i∈[m]\A

max{xi,W} −W

1−W

 .

Now, using that max{xi,W}−W
1−W

≤ min{xi,W}
W

, it follows that

P
(
∀i ∈ [m] : Xei ≤ xi

∣∣∣ A = A, I < na
)
≤ P

(
∀i ∈ [m] : X ′

ei
≤ xi

)
,

where (X ′
e1
, . . . , X ′

em) are independent Uniform[0,W ]. This implies that there exists a generic

weighted graph K′
n = (Kn,X′) with independent weights, where X ′

e is a Uniform[0, 1] if

e /∈ {e1, . . . , em} and a Uniform[0,W ] otherwise, and a coupling between K′
n and Ka

n such

that X ′
e ≤ Xa

e for any e ∈ E(Kn). We now use this coupling to prove the lemma.

Consider the event

E ′ =
{
∀k < na,∀i ∈ [m], ei /∈ E

(
MST(K′

n[V (k, n)])
)}

By using two union bounds, we have that

P(E ′) ≥ 1−
∑
k<na

∑
i∈[m]

P
(
ei ∈ E

(
MST(K′

n[V (k, n)])
))

.

For k and i as in the above sum, if there exists j ∈ V (k, n) \ ei such that the weight of ei is

larger than the weight of the two other edges in the triangle ∆i,j formed by ei and j, then
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ei is not in the MST of K′
n[V (k, n)]. This means that

P
(
ei ∈ E

(
MST(K′

n[V (k, n)])
) ∣∣∣ X ′

ei

)
≤ P

(
∀j ∈ V (k, n) \ ei,max(X ′

e : e ∈ ∆i,j) > X ′
ei

∣∣∣ X ′
ei

)
=
(
1− (X ′

ei
)2
)|V (k,n)|−2

Using that X ′
ei

is uniformly distributed over [0,W ] and that |V (k, n)| = n− k + 1, it follows

that

P
(
ei ∈ E

(
MST(K′

n[V (k, n)])
))
≤ 1

W

∫ W

0

(1− x2)n−k−1dx

≤ 1

W

∫ ∞

0

e−(n−k−1)x2

dx

=

√
π

2W
√
n− k − 1

,

from which we obtain

P(E ′) ≥ 1−
∑
k<na

∑
i∈[m]

√
π

2W
√
n− k − 1

≥ 1−
√
π

2

nam

W
√
n− na − 1

−→ 1 ,

where the last convergence follows from W = 1
logn

, m = ⌈na⌉+L−1 = ⌈na⌉+⌊log log n⌋−1,

and a < 1
4
.

Combining the fact that P(I < na)→ 1 with the definitions of Ka
n and Uℓ, we now have

that

P
(
∃U ∈ Uℓ : wdiam

(
MST(Kn[U ])

)
> ε
)

(4.8)

= P
(
∃U ∈ Uℓ : wdiam

(
MST(Kn[U ])

)
> ε

∣∣∣ I < na
)

+ o(1)

≤ P
(
∃k < na : wdiam

(
MST(Ka

n[V (k, n)])
)
> ε
)

+ o(1) ,

where the last inequality comes from the definition of Ka
n, and is due to Uℓ = (V (I −

1, n), . . . , V (1, n)) ⊂ (V (na − 1, n), . . . , V (1, n))) whenever I < na. Note that the cou-

pling between Ka
n and K′

n only reduces the weight of the edges e1, . . . , em in K′
n relative

to Ka
n, from which it follows that, if ei /∈ E(MST(K′

n[V (k, n)])) for some i ∈ [m], then ei /∈
E(MST(Ka

n[V (k, n)])). This implies that, conditionally given E ′, the trees MST(Ka
n[V (k, n)])
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and MST(K′
n[V (k, n)]) are equal. Using that P(E ′)→ 1, we thus obtain

P
(
∃k < na : wdiam

(
MST(Ka

n[V (k, n)])
)
> ε
)

(4.9)

= P
(
∃k < na : wdiam

(
MST(Ka

n[V (k, n)])
)
> ε

∣∣∣ E ′
)

+ o(1)

= P
(
∃k < na : wdiam

(
MST(K′

n[V (k, n)])
)
> ε

∣∣∣ E ′
)

+ o(1) .

Finally, consider a coupling between K′
n and Kn where X ′

e ≤ Xe for any e ∈ E(Kn) and such

that X ′
e = Xe whenever e /∈ {e1, . . . , em}. By using that MST(K′

n) = MST(Kn) whenever

E ′ holds, it follows that

P
(
∃k < na : wdiam

(
MST(K′

n[V (k, n)])
)
> ε

∣∣∣ E ′
)

(4.10)

= P
(
∃k < na : wdiam

(
MST(Kn[V (k, n)])

)
> ε

∣∣∣ E ′
)

= P
(
∃k < na : wdiam

(
MST(Kn[V (k, n)])

)
> ε
)

+ o(1) ,

where we used that P(E ′) → 1 for the last equality. Now, using Theorem 4.2.3 similarly as

before, we obtain that

P
(
∃k < na : wdiam

(
MST(Kn[V (k, n)])

)
> ε
)
−→ 0 .

The proof of this lemma now follows by combining (4.8), (4.9), and (4.10).

With the above lemmas in hand, the proof of Proposition 4.3.2 is routine.

Proof of Proposition 4.3.2. Fix ε > 0 and let W = 1
logn

and L = ⌊log log n⌋. Then

P
(
∃U ∈ U : wdiam

(
MST(Kn[U ])

)
> ε
)

= P
(
∃U ∈ U−

r ∪ U+
r ∪ Uℓ : wdiam

(
MST(Kn[U ])

)
> ε
)

≤ P
(
∃U ∈ U−

r : wdiam
(

MST(Kn[U ])
)
> ε
)

+ P
(
∃U ∈ U+

r : wdiam
(

MST(Kn[U ])
)
> ε
)

+ P
(
∃U ∈ Uℓ : wdiam

(
MST(Kn[U ])

)
> ε
)
,

and the right hand side converges to 0 by Lemma 4.3.6, 4.3.7, and 4.3.8, proving the propo-

sition.
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4.4 Conclusion

4.4.1 More general weight distributions

The extension of Theorem 4.1.1 from Uniform[0, 1] to more general weight distributions

is quite straightforward. Fix a probability density function f : [0,∞) → [0,∞), and let

ρ∗ = sup(x :
∫ x

0
f(y)dy < 1). Let X′ = (X ′

e, e ∈ E(Kn)) be independent random variables

with density f , and let K′
n = (Kn,X′).

Theorem 4.4.1. Suppose that f(0) > 0, that f is continuous at zero, and that ρ∗ < ∞.

Fix any sequence (Hn, n ≥ 1) of connected graphs with Hn being a spanning subgraph of Kn.

Then for any ε > 0, as n→∞,

(a) with high probability there exists an MST sequence S for (K′
n, Hn) with wt(S) ≤ ρ∗ + ε,

and

(b) there exists δ > 0 such that with high probability, given any optimizing sequence S =

(S1, . . . , Sm) for (K′
n, Hn) with wt(S) ≤ ρ∗ − ε, the final spanning subgraph Hn,m has

weight w(Hn,m) ≥ δnw(MST(Kn)).

In particular, cost(K′
n, Hn)

prob−→ ρ∗ as n→∞.

The proof is very similar to that of Theorem 4.1.1, so we only describe the changes that

are required to prove the more general version.

The proof of the lower bound, part (b), proceeds just as in the case of Uniform[0, 1]

edge weights: for any ε > 0, any optimizing sequence S = (S0, . . . , Sm) for (K′
n, Hn) with

wt(S) ≤ ρ∗−ε leaves edges of weight greater than ρ∗−ε untouched, so all such edges appear

in the final subgraph Hn,m. The number of such edges is Binomial
(
|E(Hn)|,

∫ ρ∗

ρ∗−ε
f(x)dx

)
-

distributed, so with high probability there are a linear number of such edges. On the other

hand, w(MSTKn)→ ζ(3)/f(0) in probability [40], and the lower bound follows.

For the upper bound, note that the bounds on the total cost of the optimizing sequences

we construct essentially all have the form A + B where A is the greatest weight of a single

edge, and B is the weighted diameter of the minimum spanning tree of some subgraph of

Kn. In order to prove Theorem 4.1.1, we used that A ≤ 1, and proved using Theorem 4.2.3

and Proposition 4.3.2 that we could take B as close to zero as we wished (by a careful choice

of optimizing sequence). For the edge weights X′, we can simply replace the bound A ≤ 1

by the bound A ≤ ρ∗. To show that we can make B as close to zero as we like, we can carry
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through the same proof as in the Uniform[0, 1] case, provided that versions of Theorem 4.2.3

and Proposition 4.3.2 are still available to us.

To see that Theorem 4.2.3 and Proposition 4.3.2 do essentially carry over to the setting

of K′
n = (Kn,X′), we make use of the following coupling. For t ∈ [0, ρ∗] let g(t) = P(X ′ ≤ t),

so that g(X ′) is Uniform[0, 1]-distributed. We can thus couple the random weights X′ to

independent Uniform[0, 1] weights X = (Xe, e ∈ E(Kn)) by taking Xe = g(X ′
e), and thereby

couple K′
n = (Kn,X′) to Kn = (Kn,X). The edge weights X′ = (X ′

e, e ∈ E(Kn)) are almost

surely pairwise distinct, and on this event, the ordering of E(Kn) in increasing order of

weight is the same for the weights X and X′ and thus MST(K′
n) = MST(Kn).

Since f(0) > 0 and f is continuous, for all u sufficiently small we have f(u) > f(0)/2 and

g(u) ≥ uf(0)/2. It follows in particular that if Xe ≤ uf(0)/2 then X ′
e ≤ 2Xe/f(0) ≤ u. This

observation implies that, under the above coupling between Kn and K′
n, if wdiam(MST(Kn))

≤ uf(0)/2 then wdiam(MST(K′
n)) ≤ u, and Theorem 4.2.3 thus yields that for all n suffi-

ciently large,

P
(

wdiam(MST(K′
n)) ≥ 2

f(0)

7 log4 n

n1/10

)
≤ P

(
wdiam(MST(K′

n)) ≥ 7 log4 n

n1/10

)
≤ 4

nlogn
.

(4.11)

Similarly, Proposition 4.3.2 implies that (in the notation of that proposition), for all ε > 0

P
(
∃U ∈ U : wdiam

(
MST(K′

n[U ])
)
> 2ε/f(0)

)
−→ 0

as n→∞. But since ε > 0 was arbitrary, this implies that also

P
(
∃U ∈ U : wdiam

(
MST(K′

n[U ])
)
> ε
)
−→ 0 (4.12)

for all ε > 0.

All the remaining ingredients of the proof of Theorem 4.1.1 use only information about the

graph-theoretic structure of MST(Kn), not its weights, and so carry over to the setting of non-

uniform weights (using the fact that MST(K′
n) and MST(Kn) have the same distributions as

unweighted graphs – indeed, they are equal under the above coupling). By running the proof

of Theorem 4.1.1 but replacing all expressions of the form 1 + wdiam(F ) by ρ∗ + wdiam(F ),

and when needed invoking (4.11) and (4.12) in place of Theorem 4.2.3 and Proposition 4.3.2,

respectively, we obtain Theorem 4.4.1.

Before concluding this subsection, we note that if ρ∗ = ∞ then for any r > 0, the

probability that at least one edge of Hn has weight at least r tends to 1, so P(cost(K′
n, Hn) >
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r)→ 1 as n→∞. Thus, in this case we also have cost(K′
n, Hn)

prob−→ ρ∗.

4.4.2 Open questions and future directions

This work introduces the notion of local minimum spanning tree searches and proves a weak

law of large numbers for the cost of such local searches. The framework naturally suggests

several directions for future research, some of which we now highlight.

� Our main results concern low-weight MST sequences S for randomly weighted complete

graphs, where wt(S) is measured in the L∞ sense: it is the maximum weight of any

single step of the optimizing sequence. However, one may wish to vary the norm

used to measure the weights of optimizing sequences. The other Lp norms are natural

alternatives, and correspond to studying the values

cost p(G, H) = min
{

wt p(S) : S is an MST sequence for (G, H)
}

where

wt p(S) =

(
m∑
i=1

(
wt(S, i)

)p) 1
p

is the Lp norm of (wt(S, i), 1 ≤ i ≤ m).

At first sight, using L1 weights may seem very natural, as it corresponds to the total

weight of all the subgraphs modified by the sequence. Mathematically, however, in the

setting considered in this paper the L1 cost is quite easy to understand. Indeed, for

Kn and Hn as in Theorem 4.1.1, by considering the sequence S = ([n]) which simply

replaces Hn by MST(Kn) in one step, we obtain that

cost 1(Kn, Hn) ≤ w(Hn) .

Conversely, since any edge of e ∈ E(Hn) \ E(MST(Kn)) must be removed in order to

form the MST, for any MST sequence S = (S1, . . . , Sm), there must exist i ∈ [m] such

that e ∈ E(Hn,i−1[Si]). This implies that

wt 1(S) ≥
∑
i∈[m]

w
(
Hn,i−1[Si]

)
≥

∑
e∈E(Hn)\E(MST(Kn))

Xe =
(
1 + oP(1)

)
w(Hn) ,
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where the final asymptotic follows from the fact that Hn is chosen independently of

X and that any fixed edge belongs to the MST with probability (n − 1)/
(
n
2

)
= oP(1).

Since the lower bound
∑

e∈E(Hn)\E(MST(Kn))
Xe does not depend on the choice of MST

sequence S, it is also a lower bound on cost1(Kn, Hn), and thus

cost 1(Kn, Hn)

w(Hn)
−→ 1

in probability. When p < 1, this argument can be adapted to prove the same conver-

gence result for cost p(Kn, Hn). However, when p > 1 it is less clear what behaviour to

expect, and in particular it is unclear whether the dependence on the initial spanning

subgraph Hn will play a more complicated role.

� Another natural modification of the setting is to measure the cost of a step by the size,

rather than the weight, of the subgraph which is replaced by its MST. That is, we

may define

wt′(G, H,S) := max
{∣∣E(Hi−1[Si])

∣∣ : 1 ≤ i ≤ m
}
,

and study

cost′(G, H) = min
{

wt′(G, H,S) : S is an MST sequence for (G, H)
}
.

For this notion of cost, even the behaviour of cost ′(Kn, Kn) is unclear to us; how

cost ′(Kn, Hn) will depend on the starting graph Hn is likewise unclear. However, at a

minimum we expect that cost ′(Kn, Hn) → ∞ in probability, provided that the initial

spanning subgraphs Hn are chosen independently of the weights.

� Our result proves the existence of MST sequences of weight at most (ρ∗ + ε) (where

ρ∗ is as in Theorem 4.4.1), with high probability. However, our construction does not

yield insight into the ubiquity of such sequences, and it would be interesting to know

whether low-weight MST sequences can be found easily and without using “non-local”

information. For example, suppose that at each step we choose a subgraph to optimize

uniformly at random over all subgraphs of weight at most w. For which values of w

will the resulting sequence be an MST sequence with high probability?

� What is the asymptotic behaviour of cost(Kn, Hn) − ρ∗? In particular, is there a

sequence an such that an(cost(Kn, Hn)− ρ∗) converges in distribution to a non-trivial
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random variable?

� What happens if (Kn,Xn) is replaced by a different fixed connected, weighted graph

Gn = (Gn,Xn)? How does the asymptotic behaviour of cost(Gn, Hn) depend on Gn?

� What happens if the iid structure of the edge weights of Kn is modified? For exam-

ple, one might generate Xn by first taking n independent, uniformly random points

P1, . . . , Pn ∈ [0, 1]d, then letting Xij = |Pi − Pj| be the Euclidean distance between i

and j.

4.A Bounds on the weighted diameter

In this section, we prove Theorem 4.2.3. The proof exploits Kruskal’s algorithm for construct-

ing minimum spanning trees. We first recall a very useful connection between Kruskal’s algo-

rithm run on the complete graph with independent Uniform[0, 1] edge weights X = (Xe, e ∈
E(Kn)) and the Erdős-Rényi random graph process. In this setting, Kruskal’s algorithm

may be phrased as follows. Write N =
(
n
2

)
.

� Order the edges of E(Kn) in increasing order of weight as e1, . . . , eN .

� Let F0 = ([n], ∅) be the forest with vertex set n and no edges.

� For 1 ≤ i ≤ N , if ei joins distinct connected components of Fi−1 then let E(Fi) =

E(Fi−1) ∪ {ei}; otherwise let Fi = Fi−1.

The final forest FN is MST(Kn).

The Erdős-Rényi random graph process can be described very similarly:

� Order the edges of E(Kn) in increasing order of weight as e1, . . . , eN .

� Let G0 = ([n], ∅) be the graph with vertex set n and no edges.

� For 1 ≤ i ≤ N , let E(Gi) = E(Gi−1) ∪ {ei}.

It is straightforward to see by induction that Fi and Gi always have the same connected

components and, more strongly, that Fi is the minimum spanning forest of Gi (in that each

tree of Fi is the minimum spanning tree of the corresponding connected component of Gi).

We also take G(n, p) to be the subgraph of Kn with edge set {e ∈ E(Kn) : Xe ≤ p}. Since

we ordered the edges in increasing order of weight as e1, . . . , eN , the edge set of G(n, p) is
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thus {e1, . . . , em}, where m = m(p) is maximal so that Xem ≤ p. We likewise let F (n, p)

be the subgraph of FN consisting of all edges of FN with weight at most p, and note that

F (n, p) = Fm(p).

With this coupling in hand, we next explain our approach to bounding the weighted

diameter of MST(Kn). Our bound has two parts. Fix p ∈ (0, 1), and let Tmax
n,p be the largest

connected component of F (n, p), with ties broken lexicographically. Note that Tmax
n,p is a

subgraph of MST(Kn). Further write Ln,p for the greatest number of edges in any path of

MST(Kn) which has exactly one vertex lying in Tmax
n,p . Finally, write Wn for the greatest

weight of any edge of MST(Kn).

Proposition 4.A.1. For any p ∈ (0, 1),

wdiam
(

MST(Kn)
)
≤ p
(
|Tmax

n,p | − 1
)

+ 2WnLn,p .

Proof. Fix any path P in MST(Kn). Then the set of vertices of P contained in Tmax
n,p form a

subpath of P , since otherwise MST(Kn) would contain a cycle; call this subpath P0. Then

P0 contains at most |Tmax
n,p | vertices, so at most |Tmax

n,p | − 1 edges, and each such edge has

weight at most p. Moreover, the edges of P not lying in P0 form at most two subpaths of P .

Each of these subpaths has at most Ln,p edges, so the number of edges of P which are not

edges of P0 is at most 2Ln,p; and the edges of P which are not edges of P0 all have weight

at most Wn.

To exploit this bound and prove Theorem 4.2.3, we must bound |Tmax
n,p | and Ln,p, for some

well chosen value of p, and bound Wn. The latter bound is the easiest, and we take care of it

first. We will need the following bound on the probability of connectedness of G(n, p). We

believe we have seen this bound in the literature, but were unable to find a reference, so we

have included its short proof.

Lemma 4.A.2. Let G ∼ G(n, p). Then

P (G is not connected) ≤ ene
−np

2 − 1

Proof. Let S be a subset of [n] such that S ̸= ∅ and S ̸= [n]. Then

P
(
S is not connected to Sc in G

)
= (1− p)|S|(n−|S|) .
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This implies that

P
(
G is not connected

)
= P

(
∃S ⊆ [n] : 1 ≤ |S| ≤ n/2 and S is not connected to Sc in G

)
≤

∑
S⊆[n]:1≤|S|≤n/2

P
(
S is not connected to Sc in G

)
.

Combined with the previous result, this leads to

P
(
G is not connected

)
=

∑
S⊆[n]:1≤|S|≤n/2

(1− p)|S|(n−|S|) ≤
∑

1≤k≤n/2

(
n

k

)
(1− p)k(n−k) .

Use now that (n− k) ≥ n/2 along with the fact that 1− p ≥ 0 to obtain that

P
(
G is not connected

)
≤
∑

1≤k≤n

(
n

k

)
(1− p)kn/2 =

(
1 + (1− p)n/2

)n − 1 .

Finally, by using twice the convexity of exponential, we have

P
(
G is not connected

)
≤
(

1 + e−
pn
2

)n
− 1 ≤ ene

− pn
2 − 1 ,

which is the desired result.

Fact 4.A.3. For all n sufficiently large, it holds that P(Wn > 3 log2 n/n) ≤ 1/nlogn.

Proof. Under the above coupling, F (n, p) and G(n, p) have the same connected components,

so

P
(
Wn > 3 log2 n/n

)
= P

(
F (n, 3 log2 n/n) is not connected

)
= P

(
G(n, 3 log2 n/n) is not connected

)
.

Use now the bound from Lemma 4.A.2 to obtain that

P
(
G(n, 3 log2 n/n) is not connected

)
≤ exp(ne−(3/2) log2 n)− 1 = en/(n

logn)3/2 − 1 ≤ 1/nlogn

the final bound holding for all n sufficiently large.

Proof of Theorem 4.2.3. We prove the theorem by bounding |Tmax
n,p | and Ln,p, for a carefully

chosen value of p (spoiler: we will take p = 1/n+1/n11/10), then applying Proposition 4.A.1.
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Our arguments lean heavily on results from [12], and we next introduce those results (and

the terminology necessary to do so).

For c > 0, let α(c) be the largest real solution of e−cx = 1 − x (the quantity α(c) is the

survival probability of a Poisson(c) branching process). The key to the proof is the fact that

the size of the largest component of G(n, p) is with high probability close to nα(np) when

p = (1 + o(1))/n. We now provide a precise and quantitative version of this statement, with

error bounds.

By [3, Exercise 21 (d)], for ε ≥ 0 we have

2ε(1− o(1)) ≤ α(1 + ε) ≤ 2ε ,

the first inequality holding as ε→ 0. In particular,

(3/2)ε ≤ α(1 + ε) ≤ 2ε (4.13)

for all ε ≥ 0 sufficiently small.

For the remainder of the proof, fix p = 1/n + 1/n11/10 and write s+ = nα(n log(1/(1 −
p)) + n3/4 and s− = nα(n log(1/(1 − p)) − 2n3/4. (Aside: for the careful reader who is

verifying the connections to the results from [3], note that s+ = t+ but s− ̸= t−, where t+, t−

are defined in [3, Proof of Theorem 4.4, Case 2]). By [3, Exercise 23 (a)], for all n sufficiently

large we have

nα(np) ≤ nα(n log(1/(1− p)) ≤ nα(np) +
2n1/2

1− p
,

and using the above bounds on α, this yields

n9/10 ≤ s− ≤ s+ ≤ 3n9/10 ,

for n sufficiently large.

Let Cmax be the largest connected component of G(n, p), and let Crunnerup be its second

largest component. Using the previous inequality on s− and s+, by [3, (4.7)] we have

P
(
|Cmax| ≥ 3n9/10

)
≤ P

(
|Cmax| ≥ s+

)
≤ ne−(25/2)n1/10

; (4.14)

moreover, by [3, (4.10)], we have

P
(
|Cmax| ≤ n9/10

)
≤ P

(
|Cmax| ≤ s−

)
≤ 2ne−(25/2)n1/10

; (4.15)
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finally, by [3, (4.10) and(4.11)], we have

P
(
|Crunnerup| ≥ n4/5

)
≤ 5ne−(25/2)n1/10

. (4.16)

Furthermore, under the coupling between G(n, p) and F (n, p), we have |Cmax| = |Tmax
n,p |, so

(4.14) immediately gives us that for all n sufficiently large,

P
(
|Tmax

n,p | ≥ 3n9/10
)
≤ ne−(25/2)n1/10

. (4.17)

It remains to bound Ln,p. For this, we use (4.15) and a Prim’s-algorithm-type con-

struction to control the greatest number of connected components of G(n, p) that any path

of MST(Kn) lying outside Tmax
n,p passes through, and use (4.16) to bound the size of those

components.

Condition on the graph G(n, p), and fix a connected component C1 of G(n, p) different

from Cmax. Let f1 = u1v1 be the smallest-weight edge with exactly one endpoint in C1, and

let p1 be its weight. Then p1 > p, and f1 is a cut-edge of G(n, p1). It follows that f1 is an

edge of MST(Kn). Moreover, by the exchangeability of the edge weights, the endpoint v1 of

f1 not lying in C1 is uniformly distributed over the remainder of the vertices, so

P
(
v1 ̸∈ Cmax

∣∣∣ G(n, p)
)
≤ 1− |C

max|
n− |C1|

< 1− |C
max|
n

.

If v1 is not in Cmax, then it lies in another connected component C2. Let f2 = u2v2 be the

smallest-weight edge leaving C1∪C2, and let p2 be its weight. Then f2 is an edge of MST(Kn);

to see this, note that any path γ connecting u2 and v2 which is not just the edge f2 contains

some edge e of weight strictly greater than p2, meaning that f2 is never the heaviest edge of

any cycle. Moreover, the endpoint v2 of f2 not lying in C1 ∪ C2 is uniformly distributed over

the remainder of the graph, so once again

P
(
v2 ̸∈ Cmax

∣∣∣ G(n, p), v1 ̸∈ Cmax
)
< 1− |C

max|
n

.

Continuing this process, we construct a sequence C1, . . . , CK of distinct connected components

of G(n, p) and a sequence f1, . . . , fK of edges of MST(Kn), where where fi = uivi is the

smallest-weight edge from C1 ∪ . . . ∪ Ci to the remainder of the graph, C1, . . . , CK are all

connected components of G(n, p) different from Cmax, and vK ∈ Cmax. To bound the length

K of the sequences, we use that at each step of the construction, the conditional probability
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that fj = uivj has an endpoint in Cmax given G(n, p) and given that e1, . . . , ei−1 do not have

an endpoint in Cmax, is greater than |Cmax|/n, and so

P
(
K > k

∣∣∣ G(n, p)
)

= P
(
vk ̸∈ Cmax

∣∣∣ G(n, p)
)

=
k∏

i=1

P
(
vi ̸∈ Cmax

∣∣∣ G(n, p), v1, . . . , vi−1 ̸∈ Cmax
)

≤
(

1− |C
max|
n

)k

Note now that any path in MST(Kn) with one endpoint in C1 and the other endpoint in

Cmax passes through C1, . . . , CK and edges f1, . . . , fK . Since each of the components C1, . . . , CK
has size at most that of Crunnerup, it follows that the greatest number of edges in any path with

one endpoint in C1 which only intersects Cmax in one vertex is at most K|Crunnerup|. Taking a

union bound over the possible choices for C1 among all components of G(n, p) different from

Cmax (there are less than n of them), it follows that

P
(
Ln,p > k

∣∣Crunnerup∣∣ ∣∣∣ G(n, p)
)
≤ nP

(
K > k

∣∣∣ G(n, p)
)

≤ n

(
1− |C

max|
n

)k

.

Recall now the tail bounds for |Cmax| and |Crunnerup| from (4.15) and (4.16) and use that

P
(
Ln,p > n9/10 log2 n

∣∣∣ G(n, p), |Cmax| > n9/10, |Crunnerup| < n4/5
)

= P
(
Ln,p > (n1/10 log2 n) · n4/5

∣∣∣ G(n, p), |Cmax| > n9/10, |Crunnerup| < n4/5
)

≤ n

(
1− n9/10

n

)n1/10 log2 n

≤ ne− log2 n

to obtain

P
(
Ln,p > n9/10 log2 n

)
≤ 7ne−(25/2)n1/10

+ ne− log2 n ≤ 2

nlogn
, (4.18)

the last bound holding for n large enough.

We can now conclude the proof of Theorem 4.2.3. By Fact 4.A.3, for n sufficiently large,
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P(Wn > 3 log2 n/n) ≤ 1/nlogn. Combined with (4.18), this implies that

P
(

2WnLn,p >
6 log4 n

n1/10

)
≤ 3

nlogn
.

Using the bound of Proposition 4.A.1 and combining it with the previous inequality and

(4.17), we obtain that

P
(

wdiam
(

MST(Kn)
)
> 3pn9/10 +

6 log4 n

n1/10

)
≤ P

(∣∣Tmax
n,p

∣∣ ≥ 3n9/10
)

+ P
(

2WnLn,p >
6 log4 n

n1/10

)
≤ ne−(25/2)n1/10

+
3

nlogn
≤ 4

nlogn
,

the last inequality holding when n is large. Finally, since p = 1/n + 1/n11/10, for n large we

have 3pn9/10 + 6 log4 n
n1/10 < 7 log4 n

n1/10 , so the bound of Theorem 4.2.3 follows.
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Chapter 5

Conclusion

This thesis explored combinatorial and algorithmic approaches to random trees and graphs.

We studied constructive methods for generating random graphs, and we drew from a massive

pool of existing results on simple constructions to aid in understanding more complex vari-

ations of said constructions. In Chapter 2 we studied a constructive model for competitive

networks closely related to the Erdős-Rényi process and showed how (with high probability)

no giant components can form in the model if there are sufficiently many vertices that refuse

to connect to one another during the construction. In Chapter 3 we studied random simple

tree-weighted graphs and showed that the trees that emerge asymptotically behave like uni-

form labelled trees. We gave a constructive method, built from Pitman’s additive coalescent

and the configuration model, and showed that results on this construction translate to results

on random simple tree-weighted graphs. Finally, in Chapter 4 we presented an algorithm

that can (with high probability) transform an arbitrary spanning subgraph of the weighted

complete graph into the minimum weight spanning tree while, at every step, only modifying

subgraphs with total weight bounded by 1 + ϵ.

Each of the papers presented in this thesis generate a wealth of open problems and invite

new avenues for future research. Although we have already discussed many open problems

during the conclusions of Chapters 2 and 4, there are two more specific problems that I

would like to mention here.

Recall the random process (G(n, k(n), p), 0 ≤ p ≤ 1) presented in Chapter 2 and recall

that Mn is size of the largest component of G(n, k(n), 1). The behaviour of Mn is still un-

known when k(n)/n1/3 → c for some constant c > 0. In this case, the number of special

vertices from [k(n)] that appear in the Θ(n2/3) sized components of G(n, 1/n) is, in expec-

tation, a positive constant dependent on c. In this case, the components would be chopped
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up into only a few pieces, and perhaps more than one of those pieces could grow into a

Θ(n) sized component in G(n, k(n), 1). In that case, Mn/n would asymptotically approach

a constant bounded away from both 0 and 1. Understanding this critical regime could lead

to a beautiful conclusion about the change in behaviour of Mn with respect to k(n).

In Chapter 3 we have shown that if dn = (dn(i), 1 ≤ i ≤ n) is a degree sequence

and (Gn, Tn,Γn) is a random simple tree-weighted graph with degree sequence dn then a

rescaling of Tn converges in distribution to the Brownian continuum random tree under

certain conditions on dn. The conditions required for our result ensure that Gn is a sparse

graph. However, it is straightforward to show that our result holds if dn(i) = n − 1 for all

1 ≤ i ≤ n; in this case, Gn is a complete graph, and so Tn is a uniformly random element

from the set of trees on vertex set [n]. A natural question then arises: does our convergence

result still hold under weaker conditions on dn? We of course require some conditions on

dn since, for example, if dn = (n − 1, 1, . . . , 1) then Tn = Gn is a star graph for all n ≥ 1.

However, it seems reasonable to guess that our result holds when Gn is a dense graph, and

it is interesting to consider what happens when Gn is neither sparse nor dense.

This thesis places itself as part of the literature on random graphs and complex net-

works, and on scaling limits and optimization algorithms for such networks. I hope that this

collection of papers spawns new avenues of research for future generations.
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