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Abstract

P
rotein transport and trafficking are essential processes in living cells and there-

fore, important to understand. Spatio-temporal image correlation spectroscopy

(STICS) allows quantification of the magnitude and direction of flow of fluorescently

tagged proteins inside living cells. This is done through computation of the space-time

correlation function of the intensity recorded in image series acquired via standard

fluorescence microscopy. However, this powerful technique is often hindered by a high

concentration of immobile particles in cells. New methods overcoming this problem

will be developed in this thesis.

We start by creating a theoretical framework for spatio-temporal correlation func-

tions. This allows easy extension to more complex type of kinetics, but more impor-

tantly, it constitutes the basis for our new techniques. Most of these techniques share

a common characteristic: they rely on the time frequency space to separate popu-

lations of particles with different transport properties from each other. Effectively,

slow dynamics are concentrated in the low frequencies, allowing extraction of faster

dynamics for a minority population.

The first approach we propose is based on the theory of discrete-time signal pro-

cessing. We use a highpass first-order Butterworth infinite-impulse response (IIR)

filter on a pixel-per-pixel basis to select the dynamics we are interested in from a par-

ticular data set. Via a dimensionless analysis, we show a first approximation on how

this filter will affect measurements of flowing and diffusing populations of particles.

This filter can be tuned to select particular dynamics and, in contrast to a previously

developed filter, does not depend on the length of the time series to be analyzed. An

alternative analysis is to look at only the asymmetric part of the correlation function,

since flows are the only asymmetric component.

The second approach is to look directly in temporal frequency space, or nu-space.

Two new spaces of analysis are introduced, ν-space image correlation spectroscopy

(nICS) and k-ν-space image correlation spectroscopy (knICS) for its spatial recipro-

cate. We derive the form of the correlation function for simple dynamics in knICS.

In nICS, due to analytic difficulties we simply derive the form for a simple flow.

Finally, we use numerical simulations to show the validity of our approaches and
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viii Abstract

explore the strengths and limits of the newly developed techniques. We show that they

are only moderately affected by immobile concentration, noise and other background

populations. However, the ratio of flow to the diffusion coefficient in biased diffusion is

the major constraint. Two new parameters which were previously not accessible with

image correlation analysis are extracted from simulations, the diffusion coefficient of

a biased diffusion and flow density.

This thesis provides new image correlation tools, which complement existing ones,

that promise to shed light on the complicated inner workings of the cell.



Résumé

L
e transport et l’adressage de protéines sont des procédés essentiels pour la cellule;

leur compréhension est donc primordiale. La spectroscopie de corrélation spatio-

temporelle d’images (spatio-temporal image correlation spectroscopy, STICS) permet

la quantification de l’amplitude et de la direction du débit de protéines fluorescentes

à l’intérieur de cellules vivantes. Ceci est possible à l’aide du calcul de la fonction de

corrélation spatio-temporelle d’une série d’images acquises à l’aide d’un microscope à

fluorescence standard. Par contre, cette technique est souvent limitée par de hautes

concentrations de particules immobiles. De nouvelles méthodes pour surmonter ce

problème seront développées dans ce mémoire.

Nous commencerons par développer un cadre théorique pour les fonctions de

corrélation spatio-temporelle. Ceci nous permet de généraliser facilement les méthodes

pour prendre en compte des dynamiques plus complexes, mais, surtout, ceci constitue

la base pour nos nouvelles techniques. La plupart de ces méthodes partagent une

caractéristiques communes: elles utilisent les fréquences temporelles afin de séparer

les populations possédant des propriétés de transport différentes. En effet, les dy-

namiques lentes sont situées dans la région des basses fréquences, permettant ainsi

l’extraction de dynamiques rapides de populations minoritaires.

La première approche que nous proposons se base sur la théorie du traitement de

signal à temps discret. Nous utilisons un filtre passe-haut de type Butterworth de pre-

mier ordre (réponse à une impulsion infinie, infinite-impulse response, IIR) appliqué

sur chaque pixel afin de sélectionner les dynamiques recherchées dans nos données. À

l’aide d’une analyse adimensionnelle, nous montrons une première approximation de

l’effet de ce filtre sur des populations de flux et de diffusion. Une analyse alternative

est d’isoler la partie asymétrique de la fonction de corrélation, puisque seulement les

populations de flux s’y retrouvent.

La deuxième approche est d’inspecter directement l’espace des fréquences tem-

porelles, ou l’espace ν. Deux nouveaux espaces d’analyse sont présentés, la spectro-

scopie de corrélation d’images dans l’espace ν (ν-space image correlation spectroscopy,

nICS) et la spectroscopie de corrélation d’images dans l’espace k-ν (k-ν-space image

correlation spectroscopy, knICS). Nous dérivons la forme de la fonction de corrélation

ix



x Résumé

pour des dynamiques simples pour knICS mais, dues à des difficultés analytiques,

nous présentons seulement la forme de la fonction d’un flux pour nICS.

Enfin, nous utilisons des simulations numériques afin de montrer la validité de nos

approches en plus d’explorer les forces et les limites de chacune d’entre elles. Nous

montrons qu’elles sont peu affectées par la concentration de particules immobiles, le

bruit et les autres populations d’arrière-plan. Néanmoins, le ratio entre la vitesse et

la diffusion pour une diffusion biaisée émerge comme une contrainte majeure. Deux

nouveaux paramètres précédemment non accessibles aux techniques d’imagerie de

corrélation sont extraits soit le coefficient de diffusion d’une diffusion biaisée ainsi

que la densité de flux.

Ce mémoire fournit de nouveaux outils d’imagerie de corrélation, complétant ainsi

les techniques pré-existantes, qui promettent de faire la lumière sur le fonctionnement

complexe des cellules.



Statement Of Originality

T
he author claims the following aspects of the thesis constitute original scholarship

and an advancement of knowledge.

• Development of a general formalism for spatio-temporal correlation function of

fluorescent labels. This allows easier consideration of more complicated dynam-

ics and special shapes of the point spread function.

• Development and characterization of a tunable infinite impulse response (IIR)

filter to isolate specific dynamics. This type of filter has not been previously

used in this context. A dimensionless analysis was undertaken to understand

the effects of filtering on measurement of flowing and diffusing populations.

• Development and characterization of an asymmetric analysis to isolate molec-

ular transport from other symmetric dynamics, such as immobile and diffusing

particles.

• Development and characterization of ν-space image correlation spectroscopy

(nICS). This new technique allows extraction of flow density, velocity and mag-

nitude even in the presence of a high concentration of immobile particles.

• Development of k-ν-space image correlation spectroscopy (knICS), which sepa-

rates different populations in separate planes according to their dynamics. The

author also derived the form of the correlation function for simple dynamics.

• Comparison of the IIR filter, the asymmetric analysis and nICS in numerical

simulations. The author showed that the techniques were only moderately af-

fected by immobile density, noise and other background populations. The major

constraint was the ratio of the velocity to the diffusion coefficient in the case

of biased diffusion. Fitting of two parameters, flow density and bias coefficient,

that were previously not accessible to image correlation techniques is shown.
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1

Introduction

S
cience is based on making verifiable predictions about the universe. Building

this knowledge is often limited by the measurements tools. Just as high-energy

physicists are building bigger particle accelerators to verify their theories, biologists

are in constant need of new methods to understand the organization of life. Biology

has proven to be very difficult to understand, especially at the molecular level. “Noth-

ing in Biology Makes Sense Except in the Light of Evolution” is the title of an essay by

Theodosius Dobzhansky [1]. The title is self-explanatory. Life is the result of a billion

years process. The only way to “explain” biology is through evolution. Furthermore,

evolution is in general a stochastic process. Genetic mutations occur randomly and

the best candidates are selected. Therefore, biology is inherently stochastic from the

molecular level. Complex networks of proteins, cells and organisms were built on this

randomness.

This thesis will explore and develop new techniques that exploit this inherent

randomness in the sense that they measure noise or fluctuations. Optical microscopy

enables us to study life at the cellular level, but it is limited in spatial resolution

by the diffraction of light. Fluorescent labels and fluorescence microscopy enable us

to observe where specific proteins are located. This is of limited use to understand

dynamic networks of proteins. Correlation techniques have been developed to give

us greater insight into biological processes. The techniques developed here will focus

on quantitative measurements of protein transport. Protein transport and trafficking

plays an important role in the organization of the cell, as proteins are transported

1



2 1 Introduction

across cellular membranes like the plasma membrane, the endoplastic reticulum and

the nuclear envelope. Trafficking, on the other hand, occurs between membrane-

bound organelles via vesicles. We will show a minimally invasive approach which

allows measurement of protein transport, or more generally, protein flow, in living

cells. Spatio-temporal image correlation spectroscopy (STICS) is, to the best of our

knowledge, the only technique capable of creating vector maps of fluorescently-tagged

protein transport inside a living cell that is not limited to cytoskeletal protein, as is

fluorescence speckle microscopy [2]. In this thesis, we will develop a new filter that

allows selection of particular dynamics, and develop variations of the technique that

give us greater insight about protein dynamics. Those developments will then be

characterized and tested in numerical simulations.

For the sake of brevity, this chapter was organized more as a primer than an ex-

haustive reference. The reader lacking knowledge in specific areas will be directed to

more comprehensive references. We will start with a brief overview of a particular

biological challenge, the molecular regulation of cell migration. We will then explore

the basics of fluorescence to see how it can help us understand biology. Different

optical techniques that allow the imaging of those probes will then be briefly descri-

bed. Finally, we will provide a short overview of different measurement and analysis

techniques.

1.1 Cell migration

Cell migration is a vital biological process in which cells undergo directed movements

to specific locations (see [3–8] for reviews). It plays multiple important roles in biology.

Cell migration orchestrates embryonic morphogenesis, where, for example, groups of

cells migrate collectively to form the resulting three-layer embryo during gastrula-

tion [9]. It is also a prominent component of immune surveillance, where leukocytes

migrate to the site of infection. Migration also contributes to many pathological

processes, including tumor formation and metastasis, mental retardation, osteoporo-
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sis, vascular disease and chronic inflammatory diseases [9]. Consequently, there is a

strong motivation to understand cell migration, but this biological process remains

challenging. Cell migration is a complex phenomenon requiring the spatio-temporal

regulation and integration of multiple processes inside the cell in a multistage manner.

It begins with the polarization of the cell, which normally occurs in response to an

external signal or stimulus. This signal is propagated through multiple proteins inside

the cell to create an asymmetric concentration of proteins. An important event is the

local activation of Rac or Cdc42 (signaling proteins of the Rho family of GTPases

[10]), which stimulates the polymerization of actin filaments. This polymerization

will push the membrane forward in the direction of migration, to create a broad

lamellipodium or spike-like filopodia, for Rac and Cdc42 respectively. This step is

called the protrusion. This membrane extension then attaches to the extracellular

matrix (ECM) through adhesions, which are large complexes composed of hundreds

of different proteins. Integrins are transmembrane heterodimeric proteins that makes

the link between the inside and the outside of the cell. Myosin contraction through

actin filaments pulls on those adhesions to move the cell body forward. During this

step, adhesions at the back of the cells disassemble and detach to allow translocation

of the cell. Those steps are then repeated cyclically enabling the cell to migrate [11].

A schematic representation of cell migration is shown in figure 1.1.

Due to the intrinsic asymmetry of functions in this process, trafficking plays an

important role in cell migration. Moreover, retrograde flows (or fluxes) of adhesion

proteins have been observed [13–15]. Recently, we showed [16] that the interaction

between integrins and its extracellular ligand played an important role in cell mi-

gration, possibly adding a player in the molecular clutch model [12] that describes

protrusion. Quantification of retrograde flows played a great role in the description of

the phenomenon. Cell migration is just one example across many particular domains

in biology where measurements of molecular transport are important. New techniques

allowing a better characterization of these flows will be introduced in chapter 3.
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Figure 1.1: Schematic representation of cell migration. (a) A cell is attached to the
extracellular matrix via integrins and adhesion complex. (b) Close-up of the edge of a
migrating cell. Actin polymerization and anchoring to the extracellular matrix push
the cell membrane forward to make a protrusion. Figure (b) was adapted from [12]
with permission from Journal of Cell Science.
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1.1.1 Protein dynamics

How can we characterize the motion of proteins? On their spatial scale (∼ nm), they

can undergo many types of dynamics in liquids. The most basic one is diffusion,

where the particle motion is purely random. Diffusion can be modeled either as

phenomenological through Fick’s laws or by considering the random walk of a single

particle. The random walk model, where a particle has equal probability to move in

either direction, was used to explain the Brownian motion of particles due to thermal

fluctuations by Einstein [17]. Since the motion is random, the average displacement

will vanish, but the mean-squared displacement (MSD) will be proportional to the

time elapsed and a diffusion coefficient, D:

⟨
∆r2

⟩
= 2dDt (1.1)

where ∆r is the displacement and d the number of dimensions of the environment.

The diffusion coefficient represents how fast the molecule moves and depends on its

size and the viscosity of the liquid. For a spherical particle which is large relative to

the solvent molecules, the Stoke-Einstein relationship yields:

D =
RT

6πηrN
(1.2)

where R is the gas constant, T the temperature, η the solvent viscosity, r the particle

radius and N Avogadro’s number. Since proteins are generally small, they will diffuse

very fast in 3D when they are present in the aqueous cytoplasm of the cell. Trans-

membrane proteins or proteins attached to the membrane will diffuse more slowly in

2D due to the viscosity of the lipid bilayer. A simple random walk is shown in figure

1.2a.

Proteins can also be transported with active transport or trafficking. A simple

model for that would be a pure flow, where the movement is deterministic as shown in

figure 1.2b. A more realistic model of molecular transport would be biased diffusion,
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where proteins exhibit an average velocity but where individual displacements are

random. This is a diffusion where the average displacement is non-zero, as shown in

figure 1.2c.

Another trivial case for protein dynamics is immobilization. Proteins can be an-

chored, for example on the membrane or on the ECM, and diffuse too slowly on the

timescale of analysis to be detected as moving. They will therefore appear immobile.

Note that the definition of immobile depends on the timescale we are looking at and

the spatial and temporal resolution of our instrument.

Finally, proteins can switch between dynamical states through biochemical reac-

tions. For example, a protein can diffuse until it encounters a binding site on the

membrane, where it attaches and stays immobile. It could afterwards be picked up

by a motor to be transported to a particular location.

1.2 Fluorescence

The use of fluorescence techniques is now ubiquitous (see Lakowicz [18]), particularly

in biology. Fluorescence is the process by which a molecule absorbs a photon and

emits another, usually at a lower energy (higher wavelength). Upon absorption,

the molecule is excited into a higher energy singlet electronic state. Non-radiative

relaxation follows, usually among vibrational levels where energy is dissipated as heat.

A photon is then emitted as the molecule relaxes to the ground singlet state. The

difference between the absorption and emission wavelength is called the Stokes shift

[19]. This apparently benign effect is precisely what makes fluorescence a very potent

tool. Effectively, using filters to separate the excitation and emission wavelengths, it

is possible to localize and obtain information about the fluorescent molecules.

Fluorescence is in general a much more complicated process. The different out-

comes that can happen during fluorescence excited state lifetime are regrouped under

the term photophysics. As the molecule is in the excited state, it can undergo a quan-

tum mechanically “forbidden” transition to a triplet excited state, where relaxation
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Figure 1.2: Simulated particle positions for 1000 steps in one second intervals for diffe-
rent dynamics. (a) Diffusion with D = 0.5 µm2/s (b) Pure flow with v = 3 µm/min
(c) Biased diffusion with D = 0.5 µm2/s and v = 1.5 µm/min. The colors represent
the time evolution, going from dark red (0 s) to dark blue (1000 s).
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occurs on a much slower time scale (phosphorescence). Since this process is much

slower, the fluorophore will appear to “blink”. Another important effect is photo-

bleaching, as excited molecules are more prone to to redox chemical reactions such as

oxidation. This renders the molecule non-fluorescent, and therefore the photostability

of different fluorophores is an important characteristic for measurements. Finally,

non-radiative decays to the ground state are possible through mechanisms such as

energy transfer and quenching. The quantum yield, defined as the ratio of the num-

ber of photons emitted to the photons absorbed, is a property that represents the

fluorophore brightness.

Multiple types of fluorescent probes that allow localization of proteins exist. The

most common is immunofluorescent staining, where antibodies with attached fluo-

rophores are used to bind specifically to the interested targets. This technique pro-

duces bright images due to the high number of fluorophores, but is often limited

to fixed (non-live) samples and by imperfect binding specificity. Quantum dots are

nanocrystals typically a few nanometers in diameter that are being increasingly used

for single particle tracking. They are nearly an order of magnitude brighter [20] than

conventional dyes and much more photostable [21]. However, they exhibit complex

photophysics [22], they have to be conjugated to target specific proteins and this

can induce clustering [23], affect the protein dynamics and complicate incorporation

inside cells [24]. For all these reasons, the correlation techniques presented in this

thesis have concentrated on the study of fluorescent proteins.

1.2.1 Fluorescent proteins

A key advance for experimental biology was the discovery of the green fluorescent pro-

tein (GFP), isolated from the jellyfish Aequoria victoria [25]. Dr. Roger Tsien shared

the 2008 Nobel prize for his work on the enhanced version with better brightness and

more rapid folding, enhanced-GFP (EGFP) [26]. At first, a fluorescent protein might

not seem such a powerful tool. However, cloning of its DNA sequence allows creation
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of chimeric (fusion) proteins which combine both a protein of interest and GFP. This

gene can be inserted (transfected see [27] for methods overview) inside cells. This

expression of fluorescent fusion proteins allows their localization inside living cells by

microscopy. Multiple variants of GFP have been created with emission wavelengths

from blue to red [28, 29]. However, fluorescent proteins are of rather large size (∼ 3

x 4 nm2), and can therefore alter the functionality of the protein of interest. More-

over, overexpression of particular proteins (i.e. expression of fusion proteins along

with the natural endogenous ones) can affect the cell behavior and has to be carefully

considered. Promising novel technologies such as zinc finger nuclease [30, 31] allows

insertion of DNA at specific locations in the genome, allowing the creation of chimeric

proteins to replace the endogenous ones, and could overcome this limitation.

1.3 Fluorescence microscopy

In the previous section, we saw multiple methods of tagging proteins so that they

would emit light at particular wavelengths. But how can we localize them? Multiple

imaging modalities exist (see [32–34] for reviews), but most share the characteristics

of light diffraction as established by Ernst Abbe. The resolution of light microscopy

is limited by the diffraction of light through the microscope objective. The Rayleigh

criterion gives a approximation to the distance at which two objects can be spatially

resolved:

r =
0.61λem

NA
(1.3)

where λem is wavelength of emission and NA the numerical aperture of the objective.

This distance is generally around 200 nm for the blue end of the visible spectrum,

much larger than the size of proteins. The concept of light diffraction means that

imaging a single point (or something much smaller than 200 nm like a fluorescent

protein) will result in a diffuse spot. This spot is characteristic of the imaging modality

and is named the point spread function (PSF). Due to linearity, imaging an ensemble
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specimen
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light source
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Figure 1.3: Schematic of a wide-field fluorescence microscope describing the general
princles of fluorescence microscopy. Reproduced from the Wikipedia article on fluo-
rescence microscope under the Creative Commons Attribution-Share Alike license
3.0.

of points or particles will result in a convolution of the particles position with the

PSF, a blurring or spreading of the image.

The general principles of fluorescence microscopy are simply illustrated in the

schematic of a wide-field microscope in figure 1.3. The sample is illuminated with

an excitation light, which excites the fluorophores present. Emission light is then

collected through the objective and separated from the excitation with a dichroic

mirror and an emission filter. Wide-field fluorescence microscopy is one of the most

simple and frequently used imaging modalities in biology.

One disadvantage of wide-field microscopy is the poor axial (z) resolution. A so-

lution was patented by M. Minsky in 1961 [35]. The idea is to insert a small hole

(pinhole) in a plane conjugate with the focal plane, thus rejecting out-of-focus light.

In confocal laser scanning microscopy (CLSM), a laser beam is rastered across the

sample using oscillating mirrors. The image is constructed point by point (pixel)

by using photomultiplier tubes (PMT) or avalanche photodiode (APD) to amplify
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the collected light. This technique allows thin sectioning (resolution ∼ 1 µm) and

therefore reconstruction of 3D images is possible. Two-photon microscopy is an al-

ternative technique which uses a nonlinear effect to confine the excitation to a very

small volume [36–38]. Two photons of half the excitation energy are used to excite

the fluorophores. Since this nonlinear process is highly dependent on the light inten-

sity, excitation is confined to a small focal volume (∼ 1µm3). Finally, total internal

reflection microscopy (TIRFm, [39, 40]) uses an evanescent wave to excite the speci-

men, which gives an optical sectioning of ∼ 200 nm directly above the glass surface.

Thus, it is a useful technique to study processes at the membrane. The excited light

is typically collected using a charge-coupled device (CCD) camera.

1.3.1 Noise

All of these imaging methods create images, or time-series of images, which can be

represented as a discrete intensity function, I[x, y, t]. The techniques developed in this

thesis analyze this function to extract the dynamics of fluorescently labeled particles.

However, this intensity is contaminated with noise intrinsic to the detectors. An

unavoidable source is photon shot noise, which described the uncertainty related with

discrete photon counting. The probability distribution recording those independent

events is the Poisson distribution, where the mean number of events is equal to the

variance. Therefore, the signal-to-noise ratio (SNR), defined as the mean of the signal

over the standard deviation of the noise, is:

SNR = n/
√
n =

√
n (1.4)

where n is the number of photons. This sets the fundamental limit on the SNR, when

other electronic noises are low (e.g. with photon counting devices). However, analog

amplitude devices such as PMT and CCD generally introduce a similar type of noise

which can be approximated as Gaussian distribution, where the standard deviation

of the signal is equal to a multiple, the width factor (WF) of the mean. Thus,
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SNR =
√
I/WF (1.5)

Finally, there is a background noise, which encompasses noises fluctuating uni-

formly over the image. This can include detector dark currents, autofluorescence and

non-specific signals. A description of how different sources of noise were included in

simulations is found in section 4.1.1. For a more complete review of noise sources in

imaging, the interested reader is referred to the following: [41, 42].

1.4 Measurement techniques

1.4.1 Fluorescence correlation spectroscopy

Fluorescence correlation spectroscopy (FCS, [43, 44]) was the first technique to exploit

random fluctuations in the recorded intensity of a fluorescent label. In a nutshell, a

laser beam is focused in the sample so that only a small volume of fluorophores is

excited. As the fluorophores move in and out of the volume, fluctuations in the

recorded intensity will occur. Giving sufficient sampling, the autocorrelation function

of the signal intensity will give information about the number of fluorophores in

the excited volume, their dynamics, chemical reactions occurring and conformational

changes. If the concentration of molecules is low, the amplitude of fluctuations will

be higher (relative to the mean). As the fluorophores move faster, the intensity will

fluctuate more rapidly and the correlation function will decay more quickly. FCS is

a powerful tool that enables measurements of a variety of biophysical parameters.

However, the analysis requires calibration due to dependence on the size and shape

of the excitation volume. It is also limited to single point measurements in the cell.

Newer developments such as two-focus FCS [45], z-scan FCS [46] and scanning FCS

[47] try to address these shortcomings.
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1.4.2 Image analysis techniques

We present a variety of techniques in this section that can be used on widely available

commercial imaging instruments. This idea is emphasized here, as the potential use-

fulness of measurement tools is greatly dependent on their accessibility to researchers.

The most intuitive method to measure molecular motility is single particle tracking

[48]. Building the MSD curve (mean-squared displacement as a function of time lag,

see equation 1.1) allow quantification of diffusion, flow and diffusion with drift. How-

ever, it is limited to very low labeling densities due to resolution requirements of the

tracking procedure.

Image correlation spectroscopy (ICS, [49, 50]) can be thought as the spatial variant

of FCS. The spatial correlation function of an imaged region in a fluorescently labeled

cell is computed, and information about the density and degree of aggregation can be

extracted. Just as FCS exploits the temporal fluctuations at a fixed point in space,

ICS uses the spatial fluctuations in an image acquired at a single time. Since its

introduction, multiple variations and generalizations have been developed to analyze

time series of images (see [51] for a review). Temporal image correlation spectroscopy

(TICS) uses the temporal correlation of the intensity in pixels, averaged over a region.

It is similar to FCS, but on a much slower timescale due to imaging frame sampling

constraints. It has been used to measure the diffusion of cystic fibrosis transmem-

brane conductance regulators [52] and the velocity of cell adhesion proteins [53]. It

can, however, be strongly affected by photophysics [54]. Spatio-temporal image cor-

relation spectroscopy (STICS, [55]) is the generalization to the space-time domain.

The complete correlation function is computed for multiple subregions in a series of

images. It can create vector maps of protein transport inside living cells and exten-

sion of this technique will be the subject of this thesis. The general theory about this

technique will be developed in chapter 2. This technique was used in multiple systems

to measure flow of adhesion proteins [16, 55], movement of actin during cytokinesis

[56], transport of vesicles in growing pollen tubes [57] and cell migration after injury
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[58].

Another technique worth mentioning is fluorescence speckle microscopy (FSM,[2,

59]). To the best of our knowledge, this is the only other technique capable of mapping

molecular transport of proteins inside living cells. However, it is limited to the study

of speckle producing cytoskeleton and cytoskeleton-bound proteins since it requires

high-resolution imaging of diffraction-limited regions containing 1-10 fluorophores [2].

Moreover, it necessitates suppression of photobleaching with illumination shutters

and/or oxygen scavengers [60–62].

1.5 Thesis outline

STICS is a powerful tool to study protein transport and trafficking, but it is often

hindered by high concentrations of immobile particles [55]. Dealing with this problem

will be the central point of this thesis and will lead us to development of new analysis

techniques. Chapter 2 will provide an overview of the theory of random signals and

discrete-time signal processing. A generalized theory of STICS will then be developed.

Based on these foundations, chapter 3 will provide the theoretical basis of four new

analysis techniques. These developments will then be fully characterized in silico in

chapter 4.



2

Theory

D
ue to the stochastic nature of biology at the molecular level, it can be use-

ful to refer to fluorescence measurement as a random signal. By measuring

particular properties of such fluctuations, different techniques can reveal a plethora

of information about biological systems. This chapter will start with an example of

real biophysical microscopy data. After, a brief review of the important properties

of random variables will be provided. A basic knowledge of probability theory is as-

sumed. This will be followed by an overview of discrete-time signal processing, since

the measurements are commonly done digitally. Based on these foundations, we will

provide a new approach to spatio-temporal correlation techniques. This chapter will

provide the foundations for the new analysis techniques developed in chapter 3.

2.1 Fluorescence microscopy image example

It is important to understand why measurements will be treated as random variables.

Figure 2.1 shows an example of a confocal fluorescence microscopy time series. The

cells imaged are CHO-K1 cells transfected with a protein that marks focal adhesions,

speckle-paxillin-GFP. This particular plasmid has a truncated promoter to keep a

low expression level that aids in the visual tracking of adhesions. Paxillin is a protein

commonly found in the cellular adhesion complex. An inverted color scale (darker

pixels have higher intensities) was used to facilitate locating adhesions (dark ellipses).

Small regions of interest (ROI) are chosen so that we can assume that protein dy-

15
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Figure 2.1: CHO-K1 cells expressing speckle-paxillin-GFP imaged with a CLSM.
Multiple cells with different background intensities are visible on the first frame of
the time series (left). A specific region of interest has been chosen (top right). The
time intensity of a particular pixel shows no obvious trend (bottom right). An in-
verted intensity as been chosen to enhance contrast (darker pixels represent higher
intensities).

namics are locally uniform. The dynamics of interest are not obvious by inspection

of the time evolution of the image series, as noise, random particle distributions, dif-

fusion and a dominant background intensity can overshadow other dynamics which

may be present. This digitized image series, which can be modeled as measurements

of random processes in the cell, represent the analysis starting point. The rest of the

chapter will show what measurements can be performed and what information can

be extracted by modeling the data using random variables.

2.2 Random signals

What is a random signal? One could think of a random signal as a value, or sequence

of values, sampled from an underlying random process. Let It be our random process

and I(t) be a particular value of that process at time t. In this section, we won’t need



2.2 Random signals 17

to distinguish between the two, so we will use the simpler representation to lighten

the notation. The classic example of a random variable is the coin toss. If we flip a

coin a few times and measure the outcome, we will obtain a sequence of values, or

vector, out of the random process. For example, using 1 for tail and 0 for head, we

could obtain: I(1) = 0, I(2) = 1, I(3) = 1, I(4) = 0 and I(5) = 1. Written more

concisely, our sampled sequence would be:

I(t) =
[
0 1 1 0 1

]
(2.1)

A random process may depend on other variables than time, like space for example.

Those variables may be continuous or discrete. Some processes depend on more

than one variable, such as spatial coordinates and time. For simplicity, the following

discussion will assume processes producing continuous real values that depend on one

variable, continuous time, but it can easily be extended to more variables.

Random processes are entirely characterized by their probability distribution func-

tion, PI(i, t), which describes the probability of obtaining a value around i at time

t:

P(a ≤ I(t) ≤ b) =

∫ b

a

PI(i, t)di (2.2)

In practice, it can be difficult or not even desirable to obtain this function. Some

other properties are useful to characterize a random process, such as the average, or

mean:

mI = E{It} =

∫
iPI(i, t)di (2.3)

where E{} is the expectation operator. In general, the mean can depend on time.

However, we will restrict our discussion to stationary processes, where measures pre-

sented in this section are constant in time. A random signal fluctuates around the

mean (otherwise it would not be a random signal!). The amplitude of these fluctua-
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tions can be quantified with the variance, σ2
I :

σ2
I = E{(It −mI)

2} = E{(It −mI)
2} = E{I2t } −m2

I (2.4)

where we used the linear properties of the expectation operator.

2.2.1 Correlation function and power spectrum

Suppose you measure your process at time t, then what will it be at later time?

Because of the randomness, you cannot know the exact evolution, but you can still

characterize it. A particularly useful description of the time evolution of a random

process is its correlation function, ϕI :

ϕI(τ) = E{ItIt+τ} =

∫ ∫
itit+τPItIt+τditdit+τ (2.5)

where PItIt+τ is the joint probability distribution for random variables It and It+τ . For

stationary processes, ϕI is only a function of τ . By straightforward manipulations:

ϕI(0) = σ2
I +m2

I (2.6)

ϕI(τ) = ϕI(−τ) (2.7)

ϕI(0) ≥ |ϕI(τ)| (2.8)

Furthermore, for processes that decorrelate over time, we have:

lim
τ→∞

ϕI(τ) = m2
I (2.9)

The Fourier transform of the correlation function is:

PI(ν) =

∫
ϕI(τ)e

2πiντdτ (2.10)
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where PI(ν) is the power spectrum. This frequency domain function conveys informa-

tion about the frequency content of a random signal. For example, a random signal

with a constant power spectrum is commonly referred to as a white-noise process.

Its correlation function would be a Dirac delta, as there is no correlation in time. It

is interesting to see the correlation function and the power spectrum as two different

spaces characterizing our random signals. They provide the same information, albeit

presented in different domains.

2.2.2 Cross-correlation and cross-power spectrum

It is sometimes useful to see how two random signals, say Ia and Ib, are related.

The previous measures are readily generalizable to two signals. The cross-correlation

function and cross-power spectrum are respectively defined as:

ϕab(τ) = E{Ia(t)Ib(t+ τ)} (2.11)

Pab(ν) =

∫
ϕab(τ)e

2πiντdτ (2.12)

where we dropped the I to simplify the notation. Properties of those functions are

generally similar to the autocorrelation case, but it is important to note that the

cross-correlation is not necessarily symmetric. The symmetry property of the cross-

correlation can be written as:

ϕab(τ) = ϕba(−τ) (2.13)

2.2.3 Time average

The previous definitions are useful mathematically. They provide different measures

by ensemble averaging, or integrating over all possible values weighted by their prob-

abilities. However, in practice, we will try to estimate these measures by time av-

eraging. Under the condition known as ergodicity, the time and ensemble averages
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are equal. An example might be useful to understand this concept. Suppose you

measure a random process It for a long time. You could build an histogram of all the

values obtained, and by normalizing it with the number of values you have measured,

you would expect this histogram to converge to the probability density function of

It. Such a process would then be ergodic. This property also explains why we do not

need to distinguish the random variable It from a particular value of that variable

I(t), as the latter is itself a random variable.

We can therefore write:

⟨It⟩ = lim
T→∞

1

T

∫ T/2

−T/2

I(t)dt = E{It} = mI (2.14)

where ⟨⟩ is the time average operator and T the length of the signal. We can rewrite

the correlation function:

ϕI(τ) = lim
T→∞

1

T
⟨I(t)I(t+ τ)⟩ = lim

T→∞

1

T

∫ T/2

−T/2

I(t)I(t+ τ)dt = lim
T→∞

1

T
I(t)⊗ I(−t)

(2.15)

where ⊗ is the convolution operator. Using the convolution theorem and Fourier

transforming each side of (2.15), we obtain:

PI(ν) = lim
T→∞

1

T
Ĩ(ν)Ĩ(ν)⋆ = lim

T→∞

1

T
|Ĩ(ν)|2 (2.16)

where Ĩ(ν) represents the Fourier transform1 of I(t) and ⋆ the complex conjugate.

Equation (2.16) provides us valuable insight about the measures that were described in

this section. First, it tells us why the power spectrum represents the frequency content

of our random signal. Second, it suggests to us at an efficient way of computing the

correlation function and the power spectrum.

Generally, intensity fluctuations from live cell measurement can be considered er-

1Although not all processes have a convergent Fourier transform in the strict sense (i.e. square
summable), it is often possible to interpret them in terms of generalized functions [63].
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godic and stationary. One notable exception is the fluorophore’s photophysics (e.g.

photobleaching), which can be neither ergodic nor stationary (i.e. the mean changes

over time). However, as it is independent from the particle’s dynamics, it can be

treated separately. Moreover, methods for correcting for photobleaching will be dis-

cussed later in the thesis (see sections 3.2 and 4.1.2). Therefore, the discussion will

be restricted to the study of stationary and ergodic random processes; ensemble av-

eraging and time averaging will be used interchangeably. Before we see what those

measures tell us about biological systems, we will briefly discuss the effects of discrete

sampling.

2.3 Discrete-time signal processing

Many measurements are now done digitally; that is we sample a discrete number

of points out of the continuous underlying process. Following convention, I[m] will

denote the discrete sampled I(t). The brackets emphasize that we restrict t = m∆t =

m/fs, where m is any integer, ∆t the time between two samples and fs the sampling

frequency.

The subject of discrete-time signal processing, or digital signal processing, is a

field on its own. This section is by no means a comprehensive review of the field;

important results will merely be cited and their impact on our analysis discussed.

The interested reader is referred to a dedicated reference such as [64].

2.3.1 Discrete-time Fourier transform

How can we extract frequency information out of an infinite, discrete sequence I[m]?

Many signals can be represented by an integral of the form:

I[m] =
1

2π

∫ π

−π

I(ω)eiωmdω (2.17)
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where

I(ω) =
∞∑

m=−∞

I[m]eiωm (2.18)

Functions represented by equations (2.17) and (2.18) are referred to as a discrete-time

Fourier transform (DTFT) pair. Note that we have taken care of using a different

notation to distinguish the Fourier transform of a continuous function and the DTFT

of a sampled function. It is also interesting to see that this representation is just a

clever use of the concept of Fourier series. Indeed, I[m] can be seen as the Fourier

series coefficients of the 2π periodic function I(ω). This periodicity is inherent to

DTFT and is of crucial importance. In this view, I[m] are the Fourier coefficients

separated by the natural frequency 1/Pf , where Pf is the period in I(ν). From our

definition of section 2.3:

Pf =
1

∆t
= fs (2.19)

In other words, our spectrum I(ν) is periodic with period fs. A thorough develop-

ment [e.g. 64, section 4.1-4.2] would show that I(ν) is equivalent to the infinite sum

of the continuous-time Fourier transform Ĩ(ν) shifted by nfs, where n is an integer.

This process is commonly known as frequency aliasing. Therefore, it is only possible

to correctly identify frequency between −fs/2 and fs/2.

One could note that if the spectrum of the continuous signal is zero outside −fs/2

and fs/2 (a bandlimited signal), it is possible to obtain an exact representation of

the Fourier transform (and therefore, of the signal) from the sampled sequence. This

important result is known as the Nyquist-Shannon [65, 66] theorem.

2.3.2 Discrete Fourier transform

In practice, we are interested in the Fourier spectrum of finite-length sequences. This

problem is addressed using the discrete Fourier transform (DFT). The development

of particularly efficient algorithms for this task, known collectively as the fast-Fourier

transform (FFT, [67, 68]), has made this approach ubiquitous. While there is no
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room for a thorough development of DFT in this thesis, it is important to know how

they are developed to understand their implications in signal analysis.

Having a T length signal, it is possible to extend that signal to infinity by periodic

extension. Let’s take a period of L ≥ T , where we padded our signal with L−T zeros.

The following equations represent the analysis/synthesis equation for the DFT:

I[k] =
L−1∑
m=0

I[m]W km
L (2.20)

I[m] =
1

L

L−1∑
k=0

I[k]W−km
L (2.21)

where W km
L = e−i(km)(2π/L). It can be shown that I[k] samples the Fourier transform

of the periodic extension of the signal, samples which are equally spaced by 2π/L.

That is:

I[k] = IL(ω)|ω=(2π/L)k = IL

(
2π

L
k

)
(2.22)

where IL(ω) is the DTFT of the periodically extended (with period L) signal. This

periodicity is therefore inherent in the DFT and should always be kept in mind. It

can sometimes be used as an advantage but sometimes it introduces complications.

The next section will show an example of such effects.

Periodic convolution

The DFT shares many properties of the Fourier transform, with some important

distinctions. One property for which it is important to understand the effect of

discretization is the circular/periodic convolution. If Ix[m] denotes a signal (zero-

padded or not) of total length L and Ix[k] its DFT so that:

I3[k] = I1[k]I2[k] (2.23)
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then:

I3[m] =
L∑

n=1

I1[n]I2 [((n−m))L] (2.24)

I3[m] = I1[m]⊗L I2[m] (2.25)

where we defined the (( ))L the modulo operator (i.e. add or substract L until

you are in the signal range) and ⊗L the circular/periodic convolution operator. This

important property means that multiplying two DFT does not convolve them linearly.

Instead, it convolves the L periodic extension of the signals. One way to visualize the

process is to imagine the sequences wrapped around the circumference of a cylinder

(figure 2.2b). When shifting the signal to produce the convolution, it is rotated around

the cylinder.

It can be shown [64, section 8.7.2] that the circular convolution is equal to an

aliased version of the linear one (figure 2.2c). Intuitively, it is easy to understand why

there is aliasing, which in this case is referred to as time-domain aliasing. Convolving

linearly two T length sequences results in a 2T − 1 signal. Multiplying two T points

DFT will result in a T point signal. Therefore, taking the inverse DFT will lead to

aliasing since there are not enough points to represent the data. Thus, one should

note that choosing a L ≥ 2T points Fourier transform (padding our signal with T

zeros) will produce a linear convolution.

2.3.3 Estimating the correlation function

Suppose you measure a finite length signal I[m]. Consider an estimate of the corre-

lation function:

ϕ̂I [m] =
1

T − |m|

T−|m|∑
n=1

I[n]I[n+ |m|] = 1

T − |m|
I[n]⊗ I[−n] (2.26)
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Figure 2.2: Periodic convolution as linear plus aliasing. a) Linear convolution of
sequence I1 and I2 gives I3. b) Circular convolution of I1 and I2 gives I3. Sequences are
wrapped around the circumference of a cylinder and shifted by turning them around
the shaft. c) The periodic convolution in (b) equals the sum of linear convolution (a),
shifted by the sequence length T .
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It can be shown that this estimator is unbiased (i.e. converge to the correlation func-

tion) and consistent (i.e. its variance goes to zero) as T increases. However, as m

increases (longer lags), less and less samples are used to estimate the correlation func-

tion. This leads to extremely volatile edges that can distort analysis. An interesting

way to circumvent the problem is to use a circular correlation estimate:

ϕ̌I [m] =
1

T

T∑
n=1

I[n]I[((n+ |m|))T ] =
1

T
I[n]⊗L I[−n] (2.27)

As the periodic correlation is nothing more than a periodic convolution, ϕ̌I [m] is

equivalent to the aliased ϕ̂I [m]. In other words, long positive lags will be added to the

short negative lags and vice versa. In consequence, noise is reduced at the expense

of not being able to differentiate long lags in one direction versus short lags in the

other. In some situations where there is no need for distinction (or it is obvious, e.g.

in STICS), this method can be useful.

A discrete convolution essentially scales as O(N2); there are N multiplications

for each of the N lags. Advances in efficient FFT algorithms can reduce this to

O (N log (N)) by doing the computation in Fourier space. The efficiency gain is

particularly important while analyzing large multidimensional data structures (i.e.

for d dimensions O(N2d) vs. O
(
Nd log (dN)

)
.

2.3.4 Spectral estimation and windowing

The information conveyed in the correlation function is sometimes more easily inter-

preted in the power spectrum. If we multiply our signal by a window function, w[m],

before taking the Fourier transform:

V (ω) =
T∑

n=1

w[n]I[n]e−iωn (2.28)



2.3 Discrete-time signal processing 27

We can write an estimator for the power spectrum, also known as the periodogram:

P̂I(ω) =
1

U
|V (ω)|2 (2.29)

where U =
∑T

n=1 (w[n])
2 is a normalization constant so that the estimator is unbiased.

At this point, the reader might wonder why we decided to multiply our signal by a

window function. One should note that we are considering here samples of finite-

length signals. We are therefore “peeking” through a finite window, a rectangular

or boxcar window of length T , on the infinite signal. Remembering from section

2.2.1 that the power spectrum is the Fourier transform of the correlation function

and noting that our sample is a product of the infinite signal and the window, it is

straightforward to show that:

E{P̂I(ω)} =
1

2πU

∫ π

−π

PI(θ)Cww(ω − θ)dθ (2.30)

where Cww = |W (ω)|2 is the Fourier transform of the autocorrelation function of

the window and where we used the convolution-modulation theorem. In other words,

the estimate of the power spectrum is equal to the real power spectrum convolved

with Cww. As the window becomes longer, Cww tends toward a Dirac delta, allowing

resolution of sharp peaks. However, as the windows gets shorter, the width of Cww is

increased, the spectrum is smoothed and the resolution is degraded.

The rectangular window has the well known sinc squared spectrum. It has the

sharpest resolution (central peak) but also the highest sidelobes. This can create

artefacts in the spectrum. There are many other window functions that achieve a

trade-off between lower sidelobes, at the expense of a loss in resolution. A summary

of the properties of different windows can be found in Oppenheim [64, p. 539-544]

while a comprehensive review was made by Harris [69].

Another important property of the estimator (2.29) is that it is not consistent.

That is, its variance does not asymptotically goes to zero as the window size increases
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[70]. This particular behavior can be best understood in real space. Effectively, this

estimator can be interpreted as the Fourier transform of the correlation function esti-

mator (2.26). However, we saw that this estimator was noisy in the long lags. These

long lags will be used to compute every frequency, thereby spreading the noise every-

where in the periodogram. Two main approaches are used to overcome this problem.

First, Bartlett [71] and Welch [72] studied extensively the method of averaging peri-

odogram. This method consists in splitting the signal in smaller segments, computing

their periodogram according to (2.29) and averaging them. This procedure reduces

the variance of the periodogram by the number of segments and is therefore a con-

sistent estimator1. Welch also showed that the segments can overlap by as much as

half their length while still being independent, thus reducing the variance by almost

another factor of two.

The second approach is to first compute the correlation function according to

(2.26), window it by selecting only region of acceptable noise and then take the

Fourier transform. We therefore have:

E{P̌I(ω)} =
1

2π

∫ π

−π

PI(θ)Wc(ω − θ)dθ (2.31)

where Wc(ω) is the Fourier transform of the window. This is an unbiased estimator if

the window is normalized so that wc[0] = 1. Note the difference with (2.29); since we

are windowing directly in correlation space, the Fourier transform of the window is not

squared. This estimator is also consistent [70] and therefore provides an alternative

way to estimate the power spectrum. It can provide a more straightforward method to

find the amount of averaging necessary for a particular signal in a particular analysis.

1As T goes to infinity, both the length of the window and the number of windows go to infinity.
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2.4 Spatio-temporal image correlation spectroscopy

Let’s return to the study of biological processes with biophysical fluctuation analysis.

This section was derived with fluorescence microscopy imaging in mind, but it can

be used in a different context. Acquiring a series of images via an imaging modality,

we want to characterize the dynamics of N point emitters, for example fluorescently

tagged proteins. For the following discussion, we suppose that the time to acquire an

image is negligible, so that all spatial coordinates are sampled simultaneously. We

also neglect molecules with fast dynamics which will not correlate on the time scale of

imaging, as they will only produce noise in our correlation function. We can represent

the acquired image pixel intensities as:

I(r⃗, t) =
N∑
i=1

Bi(t)B0δ
(
r⃗ − r⃗i(t)

)
⊗r⃗ Ip(r⃗) (2.32)

where B0 represents the brightness of the probe (including all constant terms

related to the acquisition system), Bi(t) the photophysics (0 or 1 depending on the

bleaching and/or blinking of the molecule i at time t), r⃗i(t) the position of particle i

at time t, Ip(r⃗) is the PSF of our imaging system and the subscript on the convolution

specify on which dimension we are convolving. Note the use of vectors so that the

formalism developed may be use in 2D or 3D imaging systems. Since r⃗i(t) is a

random variable, I(r⃗, t) will also be a random variable. Therefore, it is useful to use

the correlation function:

R(ξ⃗, τ) =
1

Lr⃗,t

I(r⃗, t)⊗r⃗,t I(−r⃗,−t) (2.33)

where Lr⃗,t total number of samples (e.g. Lx×Ly×Lt) and ξ⃗ the spatial lag variable.

Since the PSF is only a variable of space, it is useful to consider separately spatial

and time variables. By inserting (2.32) into (2.33) and taking the Fourier transform

in space, we obtain:



30 2 Theory

R(ξ⃗, τ) =
B2

0

Lr⃗,t

∑
i

F−1
r⃗

⟨
Ĩpe

2πik⃗�r⃗i(t)Ĩ⋆pe
−2πik⃗�r⃗i(t+τ)Bi(t)Bi(t+ τ)

⟩
t

+
B2

0

Lr⃗,t

∑
i̸=j

F−1
r⃗

⟨
Ĩpe

2πik⃗�r⃗i(t)Ĩ⋆pe
−2πik⃗�r⃗j(t+τ)Bi(t)Bj(t+ τ)

⟩
t

(2.34)

where Ĩp is the Fourier transform of the correlation function, F−1 the inverse

Fourier transform operator and where we separated the self and the cross terms.

We will now make two simplifying assumptions. First, we will suppose that the

particles are independent. Second, we will suppose that the photophysics is only time

dependent and hence is independent of the position. We can therefore rewrite the

correlation function as a product of averages:

R(ξ⃗, τ) =
B2

0N

Lr⃗,t

F−1
r⃗

⟨
|Ĩp|2e2πik⃗�(r⃗i(t)−r⃗i(t+τ))

⟩
t
Θ(t, τ) + ⟨I⟩2 (2.35)

where we defined the photophysics correlation function Θ(t, τ) = ⟨B(t)B(t+ τ)⟩,

used ergodicity to get rid of the sum (time average over a single particle equals

ensemble average) and where the second term simplified because N is large and

the particles are independent. If we now define the autocorrelation of the PSF,

CPP (r⃗) = F−1
r⃗ (|Ĩp|2), we can write the following:

R(ξ⃗, τ) =
B2

0N

Lr⃗,t

Θ(t, τ)CPP (r⃗)⊗r⃗ ⟨δ (r⃗ − (r⃗i (t)− r⃗i (t+ τ)))⟩+ ⟨I⟩2 (2.36)

Since the molecules are distributed randomly, we will set r⃗i(t) = 0 for simplicity.

Switching to ensemble averaging:
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⟨δ (r⃗ + r⃗i (t+ τ))⟩ =

∫
δ (r⃗ + r⃗i (t+ τ))Pr⃗τ |r⃗t (r⃗i (t+ τ) |r⃗i (t) = 0)

Pr⃗t (r⃗i (t) = 0) dr⃗i(t)dr⃗i(t+ τ) (2.37)

= Pr⃗τ |r⃗t (−r⃗ |r⃗i (t) = 0) (2.38)

where we used the fact that integrating over all possible states equals 1 and prop-

erties of the Dirac delta function. In words, this function represents the probability

of finding a particle at some point in space if you know its original position. We can

therefore write what we will name the STICS master equation:

R(ξ⃗, τ) =
B2

0N

Lr⃗,t

Θ(t, τ)CPP (r⃗)⊗r⃗ Pr⃗τ |r⃗t (−r⃗ |r⃗i (t) = 0) + ⟨I⟩2 (2.39)

This equation explains the behavior of the correlation function for any type of un-

derlying molecular dynamics. We will now derive the equations for simple dynamics,

from which it can easily be generalized.

2.4.1 Image correlation spectroscopy

Let’s start by determining the amplitude of the correlation peak. Since convolving

the Dirac delta in that case merely shifts the function at the origin:

R(0, 0) =
B2

0N

Lr⃗,t

Θ(t, 0)CPP (0) + ⟨I⟩2 (2.40)

Two variables are interesting to extract biologically; B0 and N . Noting that

⟨I⟩ = NB0Θ(t, 0)CPP (0)/Lr⃗,t, we define a normalized correlation function:

r(ξ⃗, τ) =
R(ξ⃗, τ)

Lr⃗,t ⟨I⟩2
− 1 (2.41)
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so that

r(0, 0) =
1

NΘ(t, 0)CPP (0)
(2.42)

Remembering our discussion from section 2.2.1, but now applying it in space,

CPP (0) is simply a measure of the area/volume of the PSF (its variance, or spread).

Moreover, Θ(t, 0) represents the average fraction of emitting particles during the time

window. This is why 1/r(0, 0) is often referred to as the number of particles per beam

area (BA) or volume. When applied to a single frame, this technique is named image

correlation spectroscopy (ICS). The PSF is often approximated by a Gaussian of the

form:

IP (r) = e−2r2/w2
r (2.43)

so that its autocorrelation is simply a Gaussian two times wider:

CPP (ξ⃗) = πw2
r exp

(
|ξ⃗|2/w2

r

)
(2.44)

and that CPP (0) = πw2
r and wr is the e−2 radius of the Gaussian PSF.

2.4.2 Flow

A uniform flow is essentially a deterministic process. If v⃗ is the flow velocity, then:

Pr⃗τ |r⃗t (−r⃗ |r⃗i (t) = 0) = δ (r⃗ + v⃗τ) (2.45)

Thus, equation (2.39) becomes:

Rflow(ξ⃗, τ) =
B2

0N

Lr⃗,t

Θ(t, τ)CPP (ξ⃗ + v⃗τ) + ⟨I⟩2 (2.46)

That is, the correlation function is equal to the autocorrelation of the PSF shifted

by −v⃗τ and multiplied by the photophysics function.
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2.4.3 Diffusion

We shall now consider uniform diffusion in d dimensions. The probability equation

(2.38) is equivalent to the Green’s function of the heat/diffusion equation:

Pr⃗τ |r⃗t (−r⃗ |r⃗i (t) = 0) =
1

(4πDτ)d/2
e−r2/4Dτ (2.47)

Therefore, convolving with (2.47) has the effect of spreading the correlation func-

tion as τ increases. For example considering the Gaussian PSF with 2D diffusion,

equation (2.39) becomes:

Rdiff (ξ⃗, τ) =
B2

0N

Lr⃗,t

Θ(t, τ)
w2

r

(w2
r + 4Dτ)

exp

(
−|ξ⃗|2

w2
r + 4Dτ

)
+ ⟨I⟩2 (2.48)

2.4.4 Diffusion + flow

One can think of a particle undergoing simultaneous diffusion and flow as a more real-

istic biological model of molecular transport. In that case, the probability distribution

for biased diffusion is:

Pr⃗τ |r⃗t (−r⃗ |r⃗i (t) = 0) =
1

(4πDτ)d/2
e−|r⃗+v⃗τ |2/4Dτ (2.49)

which is the same as (2.47) but with an average velocity −v⃗. Keeping the same

assumptions as in last section:

Rdiff+flow(ξ⃗, τ) =
B2

0N

Lr⃗,t

Θ(t, τ)
w2

r

(w2
r + 4Dτ)

exp

(
−|ξ⃗ + v⃗τ |2

w2
r + 4Dτ

)
+ ⟨I⟩2 (2.50)

2.4.5 Cross-correlation

For the sake of simplicity, this section was derived as the autocorrelation in a sin-

gle channel. Let’s briefly state the important differences while analyzing the cross-

correlation. Suppose we are imaging different kind of fluorophores in two distinct
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detection channels. We can rewrite 2.34, but summing only over interacting parti-

cles:

Rab(ξ⃗, τ) =
B0aB0b

Lr⃗,t

∑
i

F−1
r⃗

⟨
ĨPae

2πik⃗�r⃗ia(t)Ĩ⋆Pbe
−2πik⃗�r⃗ib(t+τ)Bia(t)Bib(t+ τ)

⟩
t
+⟨Ia⟩ ⟨Ib⟩

(2.51)

Since the photophysics is independent between channels:

Rab(ξ⃗, τ) =
B0a ⟨Ba(t)⟩B0b ⟨Bb(t)⟩Nab

Lr⃗,t

Cab(r⃗)⊗r⃗ Pr⃗τ,b|r⃗t,a (−r⃗ |r⃗a (t) = 0) + ⟨Ia⟩ ⟨Ib⟩

(2.52)

where we defined Cab(r⃗) = F−1
{
ĨPaĨ

⋆
Pb

}
the cross-correlation between the two PSFs.

This function will not be necessarily centered at zero depending on the alignment of

the two channels. Improper alignment will merely shift the correlation function,

thereby automatically correcting for the misalignment of the two channels. There is

also no lag dependence on the photophysics function. Furthermore, the conditional

probability in that case has to be interpreted as: where is particle b likely to be found

at a later time, knowing the position of a particle a at some time. Finally, there is

a need for a double normalization in order to extract Nab. Indeed, the normalized

correlation peak will give:

rab(0, 0) =
⟨Ba(t)⟩ ⟨Bb(t)⟩NabCab(0)

NaNb ⟨B2
a(t)⟩ ⟨B2

b (t)⟩Caa(0)Cbb(0)
(2.53)

Thus:
rab(0, 0)

raa(0, 0)rbb(0, 0)
= ⟨Ba(t)⟩ ⟨Bb(t)⟩NabCab(0) (2.54)

2.5 Multiple populations

Not all tagged proteins will behave the same way; they often can be grouped in

independent populations. For example, a significant fraction of the proteins may be
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immobilized on the cell surface while another population diffuses and another is being

actively transported (i.e. flowing). Assuming no interaction between populations, we

can do the same derivation as in section 2.4 but summing over individual subgroup

to obtain:

R(ξ⃗, τ) =
∑
k

NkRk(ξ⃗, τ) + ⟨I⟩2 (2.55)

where we assumed for simplicity that they have the same brightness (different bright-

ness would simply add a weighting factor). Defining the fraction of molecules in a

population fk = Nk/N :

r(ξ⃗, τ) =
∑
k

fkrk(ξ⃗, τ) (2.56)

where

rk(ξ⃗, τ) =
Θ(t, τ)

NCPP (0)2Θ(t, 0)2
CPP (r⃗)⊗r⃗ Pr⃗τ,k|r⃗t,k (−r⃗ |r⃗k (t) = 0) (2.57)

The total correlation function is therefore a sum of the individual functions weighted

by their respective fraction. This is why a population representing a vast majority of

the molecules can overshadow smaller dynamics. This effect has motivated the devel-

opments described in chapter 3. Note that it is possible to extract fk by normalizing

by the total peak amplitude:

rk(0, 0)

r(0, 0)
= fk (2.58)
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3

Frequency space techniques

I
n section 2.4, we developed a theoretical framework for characterizing molecular

dynamics using the correlation function of the measured intensity, I(x, y, t), of a

fluorescent protein. However, we saw in section 2.2.1 that the correlation function

and the power spectrum are two different spaces carrying the same information but

presented in different ways. Therefore, this chapter will explore how those different

spaces can help us in our analysis. We will start by showing that k-space image

correlation spectroscopy (kICS) is the time correlation of the spatial power spectrum

of I(x, y, t). After that, two new and previously unpublished spaces of analysis will

be introduced. Finally, using the knowledge from digital signal-processing, we will

introduce new ways of filtering the time series to aid measurements on complex cellular

systems.

3.1 k-space image correlation spectroscopy

The kICS technique was recently developed [73, 74] in the Wiseman lab to allow

measurement of diffusion and photophysics of fluorescently tagged macromolecules in

cells. The reciprocal space correlation function is defined as the correlation function

of the spatial Fourier transform of the signal:

R(k⃗, τ) =
⟨
Ĩ
(
k⃗, t
)
Ĩ
(
k⃗, t+ τ

)⟩
t

(3.1)

However, if we take the spatial Fourier transform of both sides of the definition of

37
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the correlation function (equation 2.33), we see that:

R(k⃗, τ) = Fr⃗ (R (r⃗, τ)) (3.2)

In other words, the kICS correlation function is the spatial Fourier transform of the

STICS correlation function, or the temporal correlation of the spatial power spectrum.

The kICS master equation can then be obtained by Fourier transforming its STICS

counterpart (2.39):

R(k⃗, τ) =
B2

0N

Lr⃗,t

Θ(t, τ)C̃PP (k⃗)Fr⃗

{
Pr⃗τ |r⃗t (−r⃗ |r⃗i (t) = 0)

}
(3.3)

where we used the convolution theorem and C̃PP (k⃗) = |Ĩp|2 is the power spec-

trum of the PSF. Note that we used a definition of the “mean-corrected” intensity

(δI = I − ⟨I⟩) to simplify notation. Furthermore, it is always good practice to re-

move the average before taking the Fourier transform to avoid leaking of this strong

component into other frequencies. The strengths of kICS lie in the transformation

of the convolution of the dynamics with the PSF in a simple product. To find the

form of the correlation function for different molecular dynamics, one only has to do

the Fourier transform of the conditional probability. Let’s review the simple dynamic

cases derived for STICS. For a simple flow, the Fourier transform of a Dirac delta is

simply a phase factor. Thus, equation (2.46) becomes:

Rflow(k⃗, τ) =
B2

0N

Lr⃗,t

Θ(t, τ)C̃PP (k⃗) exp
(
−2πiv⃗ · k⃗

)
(3.4)

For a biased diffusion in d dimensions, we have:

Rdiff+flow(k⃗, τ) =
B2

0N

Lr⃗,t

Θ(t, τ)C̃PP (k⃗) exp
(
−2πiv⃗ · k⃗ − 4Dτ |⃗k|2

)
(3.5)

since the Fourier transform of a Gaussian is another Gaussian. Note that there is

no dependence on d, as long as the imaging is performed over the same number of
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dimensions as the diffusion (see [73, 74] for other cases). Also, by appromixating the

PSF as a Gaussian, its power spectrum will be another Gaussian and will simply add

a constant in the exponential term.

3.1.1 kICS bias

Equations (3.4-3.5) have a simple yet deceptive form. While working with real (finite)

data sets, one must remember our discussion of section 2.3.4 about power spectrum

estimation. First, an estimation method must be chosen between periodogram aver-

aging and correlation windowing. Second, the correlation function obtained will be a

convolution of equation (3.5) with the Fourier transform of the spatial window func-

tion, Cww. Remember here that the spatial window is equal to the region of interest

(ROI) size or smaller if averaging was undertaken. We emphasize this effect here be-

cause previously data fitting in kICS was done directly with equation (3.5). For large

windows, Cww converges to a Dirac delta and therefore the convolution has no effect.

In that case, equation (3.5) is a valid approximation. However, as the window gets

smaller (i.e. smaller ROI), the approximation is no longer valid and (3.5) is deformed.

This was previously described as the kICS bias for small ROI [75]. In his extensive

characterization of the bias, Schwartzenruber described a bias in diffusion coefficients

obtained with kICS depending only on spatial sampling (number of beam area per

region of analysis). Using a window function (i.e. not a rectangular one) led to less

deformation of (3.5). We will show in section 4.3.2 that a similar effect can be seen

in other correlation spaces and that the accurate correction is to fit the convolution

of (3.5) with the window function used to calculate the correlation function with the

data. Good numbers to keep in mind are that the bias range from an acceptable 10%

to up to 50% for 100 to 10 beam area per ROI, respectively.
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3.2 k-ν-space image correlation spectroscopy

kICS provides an interesting space that separates the contribution from the dynam-

ics, the PSF and the fluorophore’s photophysics into a simple product. It does not,

however, solve the problem of fitting multiple populations. A dominant immobile

population will still overshadow small dynamics in k-space. A way to separate popu-

lations according to their dynamics is to go in time-frequency space, or ν-space. This

section will consider the space-time power spectrum of the fluorescent intensity, what

we will name k-ν-space image correlation spectroscopy (knICS). If we take the time

Fourier transform of equation (3.3), we obtain the knICS master equation:

R(k⃗, τ) =
B2

0N

Lr⃗,t

C̃PP (k⃗)Fr⃗,t

{
Pr⃗τ |r⃗t (−r⃗ |r⃗i (t) = 0)

}
⊗ Θ̃(ν) (3.6)

where Θ̃(ν) is the Fourier transform of the photophysics function, Θ(τ). On first

examination, equation (3.6) seems only to have complicated the problem. The corre-

lation function is now convolved by the reciprocal of the photophysics function. This

suggests that knICS will be more sensitive to the photophysics. However, in most

cases photobleaching can be “detrended” by adding a random number whose mean

is equal to the required number to flatten the image time series [76, 77]. Futhermore,

on the time scale of molecular transport, fluorescent protein blinking will appear only

as a lower effective quantum yield. This encourages us to pursue our analysis. For

a simple flow, taking the time Fourier transform of (3.4) shows how knICS can be

useful:

Rflow(k⃗, ν) =
B2

0N

Lr⃗,t

C̃PP (k⃗)δ
(
ν + v⃗ · k⃗

)
⊗ Θ̃(ν) (3.7)

For simplicity, we ignore for now the photophysics and see that a flowing population

will be folded on the
(
ν + v⃗ · k⃗

)
= 0 plane. Therefore, an immobile population will

be concentrated around the ν = 0 plane and we will be able to resolve faster but less

present dynamics. What about biased diffusion? By straightforward manipulations,
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equation (3.5) becomes:

Rdiff+flow(k⃗, ν) =
B2

0N

Lr⃗,t

C̃PP (k⃗)
8D|⃗k|2(

4D|⃗k|2
)2

+ 4π2
(
ν + v⃗ · k⃗

)2 ⊗ Θ̃(ν) (3.8)

because the Fourier transform of an exponential is a Lorentzian. Let’s first consider

the v⃗ = 0 case (diffusion only). For each value of |⃗k|2, there will be a Lorentzian in

ν, with scale parameter 4D|⃗k|2. For the case of a very slow diffusion, (3.8) will go

towards a plane, while at high D, it will go towards a tunnel along ν (no dependence

in ν and divergence near |⃗k|2 = 0). For a biased diffusion, the same function is simply

centered on the
(
ν + v⃗ · k⃗

)
= 0 plane. Therefore, as would be expected intuitively, a

biased diffusion will have an effect similar to spectral broadening in our power spec-

trum space. The plane corresponding to the flow will be spread and will decay faster

around the edges, leading to a loss of resolution.

As in kICS, C̃PP is related to the resolution limit. Effectively, the smaller the PSF,

the larger C̃PP will be and higher spatial frequencies will be resolvable. As the PSF

grows larger, C̃PP will become smaller and only a small portion of the correlation

function can be seen. Also, the same discussion related to the window function still

holds. That is, while working with finite data sets, the computed power spectrum

will be a convolution of equation (3.6) and Cww, the space-time Fourier transform of

the space-time window function.

3.3 ν-space image correlation spectroscopy

The previous section showed that the time Fourier transform helped to separate the

populations according to their dynamics, but the use of k-space was not necessary.

In the quest of separating flowing from immobile populations, we now consider ν-

space image correlation spectroscopy (nICS), which can be understood as the spatial

correlation of the temporal power spectrum. Taking the time Fourier transform of
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the mean corrected equation (2.39) gives the master nICS equation:

R(ξ⃗, ν) =
B2

0N

Lr⃗,t

(
CPP (r⃗)⊗r⃗ Ft

{
Pr⃗τ |r⃗t (−r⃗ |r⃗i (t) = 0)

})
⊗ Θ̃(ν) (3.9)

Equation (3.9) is not very telling on first examination. Indeed, the time Fourier

transform of the conditional probability is not trivial. Consequently, we computed

the equation for a flow with a Gaussian PSF (by convoluting separately different

dimensions), and obtained:

Rflow(ξ⃗, ν) =
B2

0N

Lr⃗,t

√
πwr

|v|
exp

(
−
(

πν

v/wr

)2
)
exp

(
−
(
vxη − vyξ

vwr

)2
)

·

exp

(
−2πiν

v⃗ · ξ⃗
v2

)
(3.10)

By taking the limit of v → 0, we obtain a Dirac delta for the plane ν = 0.

As in the case of knICS, the immobile population will be concentrated in a single

plane. Similarly to kICS, the velocity can be extracted with the phase. However,

it is difficult to find an analytical expression for diffusion due to the shape of the

probability distribution. While it can be interesting to see how this technique holds

up in the fitting procedures, we leave further investigation of nICS for future work.

3.4 Immobile filtering

Since different populations are concentrated in different parts of the frequency spec-

trum, another approach to separating them is to filter them out before computing the

correlation function. This approach has the advantage that a dominant population

like the immobile one will be removed before computation of the correlation function,

therefore minimizing leakage of this component. However, it will affect and, to some

extent, distort all the other populations. Previously, the immobile fraction was re-

moved by Fourier filtering [55]. The suggested procedure was to take the time Fourier
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transform of an image series and remove the zero frequency component. Therefore,

the filtered intensity is:

If (x, y, t) = F−1
t

{
Ft {I (x, y, t)}H1/T (ν)

}
(3.11)

where H1/T (ν) is the Heaviside function and T the length of the time series. However,

this method has multiple problems. First, we saw in section 2.3.2 that the DFT simply

samples the DTFT of the periodically extended signal at definite interval. Moreover,

this spectrum is convolved by the Fourier transform of the window function, a sinc

if there was no windowing. All this can lead to severe artifacts in the filtered data.

Finally, this filter depends on the total length of the time series we are interested

in (i.e. H1/T (ν)). We will show in section 4.2.1 that this can drastically affect the

results when we vary the sample length (number of images). Decomposing our sample

in smaller subsets can be very useful, for example to look at the time evolution of

particular dynamics in cells. Therefore, the behavior of this filter is sample dependent

and unacceptable. In the next section, we will develop a filter that does not depend

on the length of the time series analyzed, that introduces few artifacts in the analysis

and can be tuned to filter specific dynamics.

3.4.1 Linear filtering

The study of discrete-time linear time-invariant systems (LTI) is outside the scope of

this thesis. Detailed references such as [64] are recommended to the interested reader.

The general idea is to convolve the signal with an impulse response, h[m], to filter

our data. The impulse response is so-called because it is defined as the response of a

LTI system to a impulse function. Therefore, knowing H(ω), the DTFT of h[m], tells

us the frequency response of the system. H(ω) is appropriately named the frequency

response of the system. Because the convolution is a linear operator, this type of

filtering will also be linear. In other words, filtering a sum of signals will give the sum

of the filtered signals. There exist two main types of filters: those that have a finite
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impulse response (FIR) and those that have an infinite impulse response (IIR).

FIR filters can be computed directly by evaluating the convolution sum. They

are normally designed by windowing. One chooses a desired frequency response and

take its inverse DTFT. This will normally give an impulse response of infinite length;

limiting this impulse response to a reasonable number of points (much smaller then

the length of the signal to be filtered) creates the FIR filter. The number of points

will represent the filter order. The exact frequency response of the filter can be found

by taking the DTFT of the windowed impulse function. A window function is often

used as the sinc function has very high sidelobes and creates ripples in the frequency

response. This type of filter generally has a linear phase response (phase shift grows

linearly with frequency).

On the other hand, the IIR filter can be computed for example by recursion. The

filtered intensity at some point will be a convolution of the previous intensity with

the filter, summed with the convolution of the previously filtered signal. Such filters

are similar to analog ones (e.g. RC circuit) and multiple methods exist to convert

them in the digital form. They are generally more efficient than FIR filters but do

not have a linear phase response.

For our application, we chose to design a first-order highpass Butterworth (IIR)

filter to remove the immobile component. This type of filter was designed in 1930 by

Stephen Butterworth [78] to have a maximally flat response in the passband. Thus,

this filter will minimally affect the data we are interested in. Futhermore, we will show

that we can find a simple analytical expression for the resulting filtered intensity and

that, for correlation analysis, the phase response of the filter will cancel out.

For simplicity, we will derive the effects of the filter on the zero spatial lag cor-

relation function for a single flow with a Gaussian PSF. In that case, the immobile

component will be equivalent to a zero velocity. Also, in the case of a simple flow, the

spatial lags correspond to a particular time lag. Therefore, knowing the effect on the

zero spatial lag will give us the effect on the complete STICS correlation function.
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For a flowing population with a Gaussian PSF, the intensity in one pixel is:

I(t) =
N∑
i=1

B0 exp
(
−2(xi(t))

2/σ2
)

(3.12)

where wr is the e
−2 radius of the PSF and xi(t) = x0 + vt is the position of particle i

at time t. Therefore, the (mean-corrected) correlation function is:

ϕI(τ) = B2
0N

2 exp
(
−(vτ)2/w2

r

)
(3.13)

In general, if we filter the intensity beforehand, denoting F (t) the output of the

filter h(t):

E{ϕF (τ)} = E{F (t)F (t+ τ)}

= E
{∫

k

∫
l

h(k)h(l)I(t− k)I(t+ τ − l)dkdl

}
=

∫
m

ϕI(τ −m)dm

∫
n

h(n)h(n+m)dn (3.14)

In other words, the correlation function of the output of the filter, ϕF (τ), is con-

volved with the autocorrelation of the filter impulse response. The power spectrum

of F (t) is then:

PF (ω) = |H(ω)|2PI(ω) (3.15)

The correlation function is filtered by the absolute value squared of the frequency

response of the filter. This is why we do not need to care about the phase response

of the filter. We will consider here the lowpass first-order Butterworth filter to find

the shape of the filtered intensity. In that case, the frequency response has the shape

of a Lorentzian function:

|H(ν)|2 = 1

1 + (ν/νc)
2 (3.16)

where νc is the cutoff frequency of the filter. The filtered correlation function will be
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convolved by the Fourier transform of (3.16), which is the double-sided exponential

decay. Computing the convolution integral, we have:

ϕF (τ) = ϕI(τ)−

e
νcπ

(
−2t+

νcπw2
r

v2

)
νcwr

2v
π3/2wr ·((

1 + e4νcπt
)
− Erf

[
νcπwr

v
− tv

wr

]
− e4νcπtvErf

[
νcπwr

v
+

tv

wr

])
(3.17)

Introducing two dimensionless variables, a R = πwrνc/v ratio and a normalized

time T = tv/wr, this simplifies to:

ϕF (τ) = e−T 2 − 1

2
eR(R−2T )

√
πR
(
1− Erf[R− T ] + e4RT (1− Erf[R + T ])

)
(3.18)

Equation (3.18) still looks rather daunting. This function is plotted for different

values of R and T in figure 3.1a. We first see that the amplitude of the correlation

function decays rapidly as R increases. In practice we are interested in two things:

how does the amplitude of the correlation function is affected and how the shape is

affected. Let’s start by looking at the amplitude, or ϕF (0):

ϕF (0) = 1−
√
πeR

2

R (1− Erf (R)) (3.19)

Therefore, when considering a filter, one only has to consider the R = πwrνc/v

ratio. The velocity is normalized by the width of the PSF to give a fluctuation

frequency ; a fast particle with a large PSF will fluctuate similarly to a slow one with a

small PSF. The removed intensity will only depend on the ratio of the cutoff frequency

to this normalized velocity. Therefore, for specific conditions, it is straightforward to

find a suitable cutoff frequency. As a rule of thumb, when R = 1 and 2, the maximum

value of the correlation function is equal to ∼ 0.25 and 0.1, respectively. What about

the shape of the correlation function? By plotting the filtered correlation function
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Figure 3.1: The effects of frequency filtering a simple flow on the correlation function.
(a) The amplitude of the correlation function decays rapidly as R increases. (b) The
change in shape is seen more clearly by normalizing the correlation function to the
T = 0 amplitude.
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(3.18) normalized by the T = 0 amplitude, equation (3.19), we can see clearly the

effects on the shape of the correlation function, as shown in figure 3.1b. The effects

are quite minimal and the correlation function can still be roughly approximated by

a Gaussian. The error on the fitted width is not very important in STICS as we

are interested in finding the center of mass at each time lags. This filter will be

characterized in specific imaging situations in section 4.5.

Until now, we omitted diffusion from the discussion. The same development still

holds for a diffusing population, but the calculations are more complicated due to the

shape of equation (2.47). Also, we cannot simply suppose that the spatial lags will

be equal to the zero one at different time lags as we did for the simple flow. For the

sake of brevity, we will simply state the result for the amplitude of the filtered 2D

diffusion correlation function, ϕF,d(0).

ϕF,d(0) = 1− SeSE1(S) (3.20)

where we used a definition of the exponential integral, E1(x) =
∫∞
x

e−t/t dt and defined

another dimensionless ratio, S = 2πνcw
2
r/4D. This variable has a striking similarity

with R. The difference is that the fluctuation frequency is now 4D/w2
r (instead of

v/wr). To illustrate this, we plotted the amplitude of the correlation function of

filtered diffusion and flowing population sharing a similar time scale (4Dw2
r = v/wr)

with the same filter in figure 3.2. We observe that both populations are filtered

similarly as we increase the cutoff frequency (increasing R and S). This suggests that

frequency filtering would not be a good approach to separate flowing and diffusing

population on similar time scales. This result was found empirically by Hebert in the

development of the original Fourier filter [55, 79]. We conclude the section by noting

that our filter satisfies the initial goals: it does not depend on the length of the time

series to be analyzed, it can be tuned to select specific dynamics (by changing the

cutoff frequency) and minimally alters our data.
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Figure 3.2: The filtered amplitude of the correlation function for flowing (red) and
diffusing (black) population. The x axes were scaled so that the population fluctuated
on the same time scale (4D/w2

r = v/wr). The two populations are filtered similarly
as the cutoff frequency of the filter is increased (R and S increases).
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3.5 Symmetry filtering

A simple alternative to filtering is to use the fact that the only time asymmetric

component in the correlation function is the flow. Effectively, a diffusing and/or

immobile population behaves the same way backwards in time, as opposed to the flow

that will move in the opposite direction. Therefore, one could define an asymmetric

correlation function:

Rasym(ξ⃗, τ) = R(ξ⃗, τ)−R(ξ⃗,−τ) (3.21)

This can be seen as removing the correlation of the time reversed intensity. It is a

simple way to isolate the flow without disturbing it. However, the correlation function

is still computed with all the other populations, which can give a noisy asymmetric

correlation if the other populations are very dominant. Furthermore, photobleach-

ing and other non-stationary effects will be enhanced and should be corrected by

“detrending”.

3.6 Cross-correlation

For the sake of simplicity, all the techniques developed in this chapter were shown

for the autocorrelation of a single channel. We conclude this chapter by noting that

generalization to cross-correlation is straightforward. For frequency-space analysis,

we simply have to take the Fourier transform of the (mean-corrected) intensity of each

channel and multiply them together. The discussion about cross-correlation analysis

in STICS (section 2.4.5) still holds. The developments done for filtering still hold if

we apply the same filter to both channels, as we have:

Pab,f (ω) = |H(ω)|2Pab(ω) (3.22)

However, caution must be maintained when applying the symmetry filter. For more

complex dynamics, the cross-correlation may be inherently asymmetric in time (e.g.

a time-delayed interaction). In that case, other methods should be considered.
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Characterization in silico

4.1 Materials and methods

4.1.1 Computer simulations

I
n order to test the techniques developed in chapter 3, computer simulations were

undertaken using custom Matlab (The MathWorks, Natick, MA) routine pre-

viously described [80]. These simulations model as closely as possible fluorescence

microscopy image time series acquisition. Briefly, one or more populations of parti-

cles were assigned random positions in a 2D matrix. For each time step, they were

moved according to their pre-set population transport dynamics:

r⃗i[t] = r⃗i[t− 1] + v⃗∆t+ randn
√
2D∆t x̂+ randn

√
2D∆t ŷ (4.1)

where r⃗i[t] is the position of particle i at time step t, v⃗ is the population’s veloc-

ity, ∆t the time between two frames, randn is a random number from the normal

distribution and D is the population’s diffusion coefficient. To simulate microscopy

images, these positions were convolved with a 2D Gaussian of e−2 radius wr as an

approximation of a confocal optical PSF. Two types of white noise were added to the

pixels:

Inoisy[x, y] = I[x, y] + |randn| σ + randn
√
I[x, y] WF (4.2)

where σ is the standard deviation of the background noise and WF is the width

51
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factor of the counting noise, or shot noise of the detection device. For simplicity,

we decided to include only the shot noise in our analysis, as they are both white

noise sources. The background noise adds an average intensity, which in practice,

for real images, is removed by subtracting the mean of an imaged region outside of

the cell. To simulate photobleaching, we randomly turned off particles to follow a

mono-exponential decay. A list of typical simulation parameters is found in table 4.1.

Symbol Description Typical value

∆x pixel size 0.2 µm
wr e−2 beam radius 0.4 µm
∆t time between images 2 s
T number of images in the time series 120 frames
ρ particle density 20 part/µm2

v particle velocity 2 µm/min
D particle diffusion coefficient 0.01 µm2/s
L image size 32x32 px2

WF width factor of the shot noise 10

Table 4.1: List of variable parameters in the simulator along with their typical values.
Parameters that were kept constant for data in this chapter are indicated in bold.

Unless otherwise noted, those parameters were used for the simulations. Those

that were kept constant for all simulations presented in this thesis are indicated in

bold. Note that we chose the parameters to closely match what we usually have in real

cellular image data. For example, we previously imaged and analyzed retrograde flows

of adhesion proteins during cell migration with TIRFm using the previous parameters

[16]. The velocities recovered were between 1 and 6 µm/min with median values

around 2 µm/min. For each data point shown in this chapter, 32 simulations were

run and the results are indicated either as mean ± standard deviation or as boxplots.

4.1.2 Data analysis

For the IIR filtering, a highpass Butterworth filter was converted numerically through

bilinear transformation. The data were then filtered pixel by pixel. The correlation

function was computed and we rejected long time lags where the maximum of the
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function was of similar amplitude to random fluctuations. A Gaussian was fit for

each time lag, and the slope of a linear fit of their positions was use to determine the

velocity. To extract the flow density, we used a linear regression on the fitted volume

(height times beam area) to obtain the zero lag peak height (as the correlation at

τ = 0 can contain other components). This amplitude was normalized by the total

amplitude obtained with ICS, to obtain a flow fraction. For biased diffusion, we did

a nonlinear fit of the peak amplitudes with equation (2.50).

For the asymmetric analysis, we subtracted the space-time correlation function

of the time-reversed data to the normal one. This created a negative peak in the

direction of the flow. We then fitted two Gaussians of equal but opposite positions

and amplitudes for each time lag. We rejected the first lags where the two peaks were

too close to be distinguished and used the same criterion as in IIR filtering to reject

the long lags. We then proceeded similarly to the IIR filter to obtain the flow velocity

and density. For the diffusion coefficient, we used the slope on the linear fit of the

peak width according to equation (2.50).

For the nICS analysis, we use an Hamming window half the time length of the

signal. We then averaged the nICS correlation function obtained for three half-

overlapping time windows. Two methods were used to obtain the velocity. The

default method was to do a nonlinear regression of the whole correlation function

with equation (3.10). This equation was convolved in frequencies, according to (2.30),

with the Fourier transform of the autocorrelation of the window. The peak ampli-

tude was normalized to the total ICS peak amplitude to extract the flow fraction.

An alternative method was used for demonstration purposes. By doing a linear fit on

the gradient of the phase angle for each frequency, we could obtain the flow velocity.

Since the definition of the complex argument is multivalued (i.e. add or subtract

multiples of 2π), the phase had to be “unwrapped” prior to analysis, similar to the

procedure done in kICS [74].

Simulations including photobleaching were “detrended” according to the following
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references [76, 77]. Briefly, the mean intensity of the images in the time series was fit

to a mono-exponential decay. Random numbers were added in each pixel so that the

average intensity would stay constant over time.

4.1.3 Tolerances

We decided to set an acceptable relative error of 20 %; what was under 10 % was

qualified good. The focus was on accuracy rather than precision since we analyzed

small regions and typically many of these can be drawn inside a single cell. Dashed

lines were included in the graphs to indicate the acceptable region where the relative

error is less than 20 %. Note that this threshold depends mainly on the application

and could have been chosen differently.

4.1.4 Boxplots

To compare the different techniques, we expressed the results as side-by-side boxplots

[81]. The median is indicated as a target and the edges of the boxes represent the

25th and 75th percentiles. The whiskers extend to the minimum and maximum values

obtained excluding outliers, which are indicated as circles if they are more far than

1.5 times the width of the box starting from its end. Side-by-side boxes of different

colors represent different analysis of the same condition indicated on the x-axis.

4.2 Butterworth filter

4.2.1 Motivation

In section 3.4, we discussed why the previously developed Fourier filter was flawed;

mainly because the cutoff frequency changed with the total sample length. To verify

that our Butterworth filter solved this problem, we simulated a configuration of den-

sity dominant immobile population along with two flows at low densities ({80,10,10}

/µm2 at {0,2,4} µm/min) while varying the total time series length. The results are

shown without filtering, with the standard Fourier filter and for the Butterworth with
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fc=25 mHz (1 mHz = 1x10−3 Hz) in figure 4.1. As expected, STICS was unable to

detect any flow without filtering. The Fourier filter cutoff frequency increases as the

total time is decreased, thereby filtering higher frequency component. With this filter,

STICS picks up a slow flow for long time series (indicating an incomplete filtering)

and something between the two sets values for short time series (indicating immobile

filtering and some of the slow mobile). Finally, the IIR filter was set at a value to

select only the fast population. It consistently reported the correct velocity for all

time series lengths. Two other things are interesting to note here. First, the standard

deviation on the velocities obtained with the IIR filter is much smaller as we are not

fitting a mixture of populations. Secondly, the Fourier filter tends toward the fast

velocity at the shortest time series length. This value is close to the cutoff of the IIR

filter (1/50 s = 20 mHz).

4.2.2 Influence of the R ratio

In order to verify our dimensionless analysis of section 3.4 about our IIR filter, we

simulated a single population with no noise while changing the R and S ratio. With

a baseline of fc = 2.5 mHz, v = 2 µm/min and wr = 0.4 µm, we changed one of these

parameters and plotted the fraction of particles remaining after filtering as a function

of R in figure 4.2. Here, we used large 128x128 px2 regions to obtain accurate ICS

measurements. As predicted, the effects of filtering depend only on the R = πfcwr/v

ratio. The values agree well with the theoretical equation (3.19). The experimental

values are biased higher than the theoretical curve since we fit a simple Gaussian to

this correlation function. Therefore, the two negative sidelobes (as seen in figure 3.1)

create an apparent greater “Gaussian amplitude”. Note also that the values for large

R with different PSF size have high standard deviations because at this point the

PSF is on the order of the image size.

The same procedure was repeated for filtering a diffusing population (figure 4.3).

The S = 2πνcw
2
r/4D ratio was changed around the base values (D = 0.01 µm2/s,
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Figure 4.1: Comparison of velocities obtained with STICS without filtering, with
Fourier and IIR filter for a mixture of immobile, slow and fast flow particle populations
({80,10,10} /µm2 at {0,2,4} µm/min). No flow is detectable without filtering (blue
cross). The Fourier filter cutoff frequency changes with variation in the time series
length. The velocity recovered using the Fourier filter (black circles) is a mixture of
the immobile and slow component for long time series, while at short time series it is
a mixture of the fast and slow. The IIR filter was set to isolate the fast component
at any series length (red triangles).
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Figure 4.2: Fraction of particles left after applying a Butterworth filter on a flowing
population as a function of R. This ratio was changed by varying one of the three
parameters (fc = 2.5 mHz, v = 2 µm/min and wr = 0.4 µm). The effects of filtering a
flowing population depends only on R and agrees well with the theoretical equation.
The higher bias for the experimental values is caused by the Gaussian fitting, where
the negative sidelobes create an higher apparent “Gaussian amplitude”.
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fc = 2.5 mHz and wr = 0.4 µm). Again, the experimental values agree well with the

theoretical equation (3.20), but show a constant higher bias. This bias is probably

due to the negative sidelobes as described previously.
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Figure 4.3: Fraction of particles left after applying a Butterworth filter on a diffusing
population as a function of S. This ratio was changed by varying one of the three
parameters (D = 0.01µm2/s, fc = 2.5 mHz and wr = 0.4 µm). The effects of filtering
a diffusing population depend only on S and agrees well with the theoretical equation.
The higher bias for the experimental values is probably again caused by the Gaussian
fitting as in figure 4.3

4.2.3 Distortion of the velocity recovered

The previous simulations verified our dimensionless analysis for the correlation peak

amplitude, but did not say much about the shape of the peak. In section 3.4.1, we

hypothesized that those changes would not affect the velocity recovered using STICS,

as the changes were minimal and in STICS we are interested mainly in the centroid

position of the correlation function. To verify this, we simulated an IIR filtered flow

for different R ratios without noise to extract the component intrinsic to the filter.

As previously, the ratio was changed by varying one of the three parameters (fc = 2.5
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mHz, v = 2 µm/min and wr = 0.4 µm). The results in figure 4.4 show that the filter

did not distort the velocity recovered except for two extreme conditions. First, when

the PSF was of similar size as the window of analysis (high R), the velocities had a

lower bias. This is probably due to effects external to the filter, such as edge effects.

Second, as the velocity got very small (around one pixel displacement during the

whole time series), the velocities recovered had a higher bias. This is also probably

due to an external effect, such as rounding error on the particle’s position.
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Figure 4.4: Plot of the relative error on the velocity recovered using STICS after
IIR filtering as a function of R. This ratio was changed by varying one of the three
parameters (fc = 2.5 mHz, v = 2 µm/min and wr = 0.4 µm). There is no bias on the
velocity recovered, except when the PSF is of similar size as the region of analysis
or when the velocity is very small (around 1 px displacement during the whole time
series).
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4.3 nICS

4.3.1 Analysis example

Equation (3.10), which describes a flow in nICS, is not very telling. To show the

potential strengths of the technique, we simulated a 64x64 px2 region with high

noise (WF=10), 50 % immobile and slow flow (v = 2 µm/min) populations and

analyzed the resulting image series with nICS as described in 4.1.2. Two slices of

the imaginary part of the correlation function are shown in figure 4.5. Let’s take a

moment to understand how equation (3.10) modulates the correlation function. The

first exponential term is a Gaussian in ν depending on the particle’s velocity. The

faster the particles, the farther they will extend in the high frequencies. Moreover,

as the immobile fraction is concentrated in the ν = 0 plane, the decay of the flow

will be visible. The second exponential is a 2D coupled Gaussian which limits the

decay along the axis of the flow. Finally, the third term modulates the decay as a

sine wave, with a period depending on the ν/v ratio. The imaginary part (sin) is

asymmetric and, therefore, indicates the direction of the flow. This can all be nicely

seen in figure 4.5, even for these difficult analysis conditions. A nonlinear fit can

extract the particles velocity, direction and density. This fitting procedure will be

characterized in detail in section 4.5.

4.3.2 Windowing bias

In section 3.1.1, we explained that the bias in kICS was probably due to the fact

that the convolution with the Fourier transform of the window was neglected in the

analysis. We will show here that a similar effect is present in nICS for this exact

reason. In figure 4.6, we extracted the velocity of a flow both by nonlinear regression

and by using the phase angle (similarly to kICS) for different window lengths. The

nonlinear fit included the convolution but this effect was neglected in the phase angle

procedure. A positive bias is clearly visible for the latter, starting from around 10

% at 60 frames up to almost 250 % at a window size of 10 frames. However, the
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Figure 4.5: Two slices of the nICS correlation function are shown for different fre-
quencies (ν = 10 and 39 mHz for a) and b) respectively). The correlation function
decays as ν increases and as the spatial lags increase. The slow decay axis corresponds
to the flow and the first positive peak (red) indicates the direction. The simulation
parameters can be found in the text.
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Figure 4.6: Relative error in flow velocity recovered using nICS as a function of
the time window length with the angle of the phase (no convolution) and with a
full nonlinear fit (including the convolution with the window). As the window gets
shorter than 60 frames, the approximation of no convolution is no longer valid and
a significant bias appears. The nonlinear fit is less precise at a window length of 10,
but still accurate.

nonlinear fit remains accurate for all of the window sizes tested, but starts to be

a little less precise around 10 frames. The exact methodology is described in more

detail in the Materials and Methods section (4.1).

We see that for nICS, neglecting the convolution results in a biased higher velocity.

In kICS, the same approximation resulted in a lower diffusion. We can explain those

differences by looking at the effect of the convolution. As a first approximation,

the convolution results in a spreading of the correlation function over the dimension

of convolution. In nICS, the window is in the temporal frequency space, thereby

producing a correlation function that decays more slowly over ν. This results in an

apparent higher velocity (faster velocities decay more slowly in ν-space). On the other

hand, the windowing and convolution is over space in kICS. This creates an bigger

apparent PSF, resulting in a slower apparent diffusion. We conclude the section by

noting that the nonlinear regression has proven to be robust, accurate, precise and

relatively fast (a few seconds). Consequently, we decided to include only this method
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in the comparison of new techniques.

4.4 knICS

4.4.1 Analysis example

A particularly interesting feature of knICS is its ability to separate different dynamics

in different planes. To illustrate this, we simulated a {10,10,20,80} particles/µm2 with

{2,6,0,0} µm/min flow and {0,0,0.01,0} µm2/s diffusion. The diffusion coefficient

was chosen to be on the same scale as the slow flow. The region was 64x64 px2

and the window 32x32x60 (x,y,t) points. The result is shown in figure 4.7, where an

3D isosurface demonstrates all the different components. The immobile component is

concentrated on the ν = 0 axis along with the slow diffusion, which thickens a little bit

the plane. The two flows are represented by planes, where the normal vectors indicate

the direction of the flow. The fastest population is the one that extends farther in

the high temporal frequencies. While this technique can be very useful to identify

different components visually, in practice the equations developed in section 3.2 have

proven very difficult to fit. This is probably due, at least in part, to the convolution

with the window function both in space and time. Therefore, this technique will not

be included in the techniques comparison.

4.5 Comparison of new techniques

In this thesis, we have developed multiple correlation techniques with the goal of ob-

taining greater insight about the dynamics of fluorescently labeled proteins in cells.

To see how far these techniques can bring us, we characterized them in simulations.

We chose to compare the IIR filter, the asymmetric analysis and nICS which can ex-

tract the flow density, velocity and angle. To discover their strengths and limitations,

we simulated different fractions of immobile particles and signal-to-noise ratios. Also,

since correlation techniques in general are not affected by white noise (except in the
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Figure 4.7: 3D isosurface of a knICS correlation function for multiple populations.
The immobile component is concentrated on the ν = 0 axis along with the slow
diffusion, which thickens a little bit the plane. The two flows are represented by
planes, where vectors normal to their surfaces indicate the direction of the flow. The
fastest population is the one that extends farther in the high temporal frequencies.
Simulation parameters are described in the text.
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zero lags values), we simulated correlated noise as a very fast diffusing population (1

µm2/s). This diffusion is too fast to be resolved at our image frame time scale, but

add spurious noise in the correlation function. Finally, we chose simulation parame-

ters that represent the challenging conditions of real data. The region size was 32x32

px2 for 120 frames and a slow flow of 2 µm/min. The basic set parameters were a

high noise of WF=10 and an immobile population of 50 %. This gives a signal-to-

noise ratio (SNR), as traditionally defined as the average intensity over the standard

deviation of the noise, of around 2. A typical region of analysis is shown in figure 4.8.

For the analysis parameters, the cutoff frequency of the IIR filter was set to 2.5 mHz

(R=0.1).
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Figure 4.8: A typical simulated region of fluorescent particles. The region size is
32x32 px2 and the width factor of the noise is set at 10, making a signal-to-noise ratio
of around 2. The total density was set at 20 part/µm2

4.5.1 Immobile density

We first compared the techniques for simulations with an immobile fraction between

10 and 90 %, as shown in the boxplots of figure 4.9. Under these conditions, the

techniques behave quite similarly. First, the flowing population density (f) recovered
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for all techniques was rather imprecise. Effectively, the density recovered is essen-

tially two ICS measurements, one for the correlation peak height and one for the

normalization. Moreover, ICS is very imprecise under these conditions (small region

size and high noise). However, we can still recover more or less accurately the flowing

population density for all conditions with all techniques. At more than 50 % immo-

bile, the recovered density start to be less precise. nICS is accurate over the complete

range, as the two other techniques are biased higher, probably due to leaking of the

immobile component. In general, the IIR was the most precise and nICS the most

accurate.

As for the velocities recovered, they were very accurate for all the conditions. This

shows that the immobile population concentration did not significantly perturb these

analysis methods. For example, one could simply take a higher filter frequency for

the IIR analysis to remove more immobile. The question is: how much of your signal

are you ready to lose to filter the immobile fraction? This depends on the amount of

noise present in the data, and the next sections will investigate this question.

4.5.2 Signal-to-noise

We investigated the effects of white noise on our analysis in figure 4.10. We increased

the amount of the shot noise width factor (WF) from one (Poisson distribution) to

up to 20. At this level, the SNR was around 1. The results were similar to those

described in the previous section, where the densities recovered were rather accurate

and the velocities very accurate and precise. As expected, the effects of white noise

on correlation analysis are minimal.

4.5.3 Diffusing population

In real data, there may frequently exist particle dynamics faster than the image frame

acquisition timescale typically employed (such as cytoplasmic proteins diffusing in the

cell). This fast diffusion will not be seen in the correlation, but will produce spurious

peaks and add a “background” noise in the function. To simulate this effect, we
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Figure 4.9: Accuracy and precision comparison of new techniques for different densi-
ties of immobile particles.
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Figure 4.10: Accuracy and precision comparison of new techniques for different
amounts of noise.
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separated the background population in two groups: 50% were immobile and 50%

had a very fast diffusion relative to the timescale of analysis (1 µm2/s). The results

are shown in figure 4.11. Note that we used the fraction of mobile particles as the x

axis to distinguish the graphs from the previous ones. For the IIR filter and the nICS

analysis, the results are similar to the previous sections. However, for the asymmetric

analysis, as the mobile fraction is lower than 50 %, the nonlinear fit starts failing

sporadically. As the fraction reaches 10 %, it never fits successfully. The effects of

spurious peaks are probably amplified by the asymmetry analysis. However, it is

interesting to note that even as a large fraction of the fits fail, those that converge

are still accurate and precise. This suggests that there might be a way to tweak the

fit to achieve better performance.

4.6 Biased diffusion

Section 4.5 explored the limits of the newly developed techniques tested under diffe-

rent challenging conditions. However, the accuracy and precision of the extracted

velocities still seems artificially good. Meanwhile, one could think that a simple

flow is an unrealistic biological model. Effectively, due to the stochastic nature at

the molecular level in the low Reynolds number sub-cellular environment, biological

transports are probably never perfect or pure. They can be more reasonably modeled

as biased diffusion. This section will explore how this biased diffusion influences the

analysis.

4.6.1 Bias coefficient

It is important to recall the dimensionless analysis of section 3.4.1 for this problem.

We saw that a diffusion and a flow were of comparable time scale if 4D/w2
r = v/wr.

Therefore, we define here a bias coefficient, B = vwr/4D, so that it is close to one

when the two processes are similar. As this coefficient gets larger, the biased diffusion

will become a pure flow. Similarly, if B is close to zero, the particle will behave as if
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Figure 4.11: Accuracy and precision comparison of new techniques for different den-
sities of immobile and diffusing particles.
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it were pure diffusion.

We compared the new techniques against the bias coefficient and the results can

be seen in figure 4.12. A lot of information can be found in these graphs. First,

we see that the generally all techniques start failing when the coefficient is close to

0.2. For the fitted density, it is interesting to see that the IIR is accurate almost all

the way down to B = 0.01. As for the two other techniques, they both get slowly

biased towards zero. For nICS, this is probably because we are fitting a simple flow

and the shape of the correlation function is different for a biased diffusion. For the

velocities, all of the techniques start diverging around 0.6. Note that the x-axis scale

is logarithmic.

For the asymmetric and IIR analysis, we were also able to fit a diffusion coefficient,

potentially yielding more information about the biological process. These results are

shown in figure 4.13. Generally, the fit is very approximate and only the order of

magnitude of the diffusion coefficient could be obtained for a B between 0.2 and 5.

Lower than that, the techniques failed as discussed previously. Higher than that,

the diffusion coefficient was simply too low to be evaluated with the techniques. It

is interesting to see that the two techniques have an opposite bias. Effectively, we

used different techniques in IIR and asymmetric analysis to extract the diffusion

coefficient. With the IIR filter, the shape of the correlation function is distorted. We

therefore used the peak decay to obtain the diffusion coefficient. With the asymmetric

analysis, the amplitude of the correlation function is very unreliable as in the low

lags, the positive and negative flow cancel themselves. For that technique, we used

the widening of the correlation peak to extract the diffusion coefficient. Those two

methods seem to produce more or less equal but opposite bias. This is why we

created a third category which averages the two. The combined values were accurate

and generally more precise in the interesting range (0.2-5).
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Figure 4.12: Accuracy and precision comparison of new techniques for measuring
biased diffusion
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Figure 4.13: Accuracy and precision comparison of new techniques for measuring
biased diffusion

4.6.2 Limits

Biased diffusion seems to be a challenging limit for extracting molecular transport.

Effectively, the correlation function decays much more quickly and is prone to spuri-

ous movements. However, it is a more realistic biological model and the correlation

functions obtained more closely resemble real data. Therefore, we repeated all the

simulation of section 4.5 for a biased diffusion. We set the diffusion coefficient to

0.005 µm2/s, to obtain a B close to one. The results are shown in figures 4.14-4.17.

Let’s briefly summarize the important results. For an increasing fraction of immobile

particles, most techniques work up to a fraction of 0.7, but the results start to be less

precise around 0.5. Measurement of the flow density is more precise with nICS, but

it also very biased as we discussed earlier. The asymmetric fit is the least precise, but

generally accurate. The IIR filter is somewhere between the two, but starts diverging

earlier than was the case for a simple flow (comparing to figure 4.9). This is probably

due to the fact that a particle undergoing biased diffusion will be filtered as a flow and

as a diffusion (i.e. doubly filtered). Therefore, this population will be more filtered

compared to the immobile fraction. The immobile population will thus have a greater
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influence on the analysis than in the case of simple flow. For this reason, it would

be necessary to use a higher cutoff frequency for large fraction of immobile particles.

The filtering limits will depend on the SNR and on another effect discussed in the

following paragraph.

Measurement of the velocity is generally limited in the same conditions than the

density. All techniques start diverging at a immobile fraction of around 0.7. However,

there is an interesting effect worth discussing. The IIR filter shows a higher bias until

the immobile fraction gets mixed with the flow. This is due to the fact that for a biased

diffusion, the correlation function will spread as well as move for increasing time lags.

This creates an apparent spread in velocities in the direction of the flow. Effectively,

a Gaussian distribution of flow speeds would spread the correlation function in the

direction of the flow similarly (without the widening in the perpendicular direction).

Therefore, the filter will remove more the low “apparent velocity” then the fast ones.

This distorts the correlation function, pushing the centroid of the peak in the direction

of the flow and creating a higher velocity. Biased diffusion therefore puts another,

and potentially more important limit on how much filtering can be undertaken. Not

only are we losing signal as we filer more, but we are distorting the shape of the

correlation function. This was often seen in real cellular data, where filtering more

results in higher measured velocities (Potvin-Trottier, L. and Guillet, D., unpublished

observation). This effect is not present in the asymmetric analysis, since without

frequency filtering the centroid of the correlation peak still reports the right velocity.

Note also that the angle fitting is also much less precise than for the pure flow.

The effects of noise were again shown to be very limited. It is interesting to not

that increasing the noise until the SNR was around one did not significantly change

the precision of the techniques. This reinforces our conclusion from the previous

analysis that noise is not a very important factor in correlation analysis. Simulating

a background diffusing population produced similar results for the IIR and nICS

analysis than only an immobile one. However, the asymmetric analysis started failing
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earlier, with a fraction of mobile particles around 20 %.

Finally, the diffusion coefficients measured which are shown in figure 4.17, were

rather precise and quite accurate when combining asymmetric and IIR analysis, due

to the interesting equal but opposite bias. Thus, this methodology is limited by the

convergence of the asymmetric analysis, which is less robust for the simulation con-

ditions described previously. These results suggests that a biased diffusion coefficient

could be measured as long as the asymmetric analysis converges.

4.6.3 Photobleaching

As in live-cell imaging some degree of photobleaching is often inevitable, we sought

to verify how it affected our analysis. We simulated and corrected photobleaching

as described in section 4.1. The results, shown in figures 4.18-4.19, demonstrate

that the correction was successful at all of the levels tested. The precision of the

techniques gets lower as the fraction of bleached molecules increases, however, the

accuracy is still acceptable even at 90% of molecules bleached during the time series,

which would be unacceptable for most live-cell imaging. It is not very surprising that

the techniques are not sensible to photobleaching, as the correction involves adding

uncorrelated random number (i.e. noise), and we already saw that white noise does

not affect significantly correlation techniques.

4.7 Summary

The newly developed techniques were characterized for accuracy and precision using

simulations with challenging conditions. We can draw multiple conclusions from this

characterization and testing. First of all, white noise does not affect significantly those

correlation techniques. Second, the precision on the measured density depends largely

on the precision of ICS. Since we analyzed small regions, the precision was not very

good due to limited spatial sampling. Since ICS was already characterized in detail

elsewhere [80], we did not investigate this further. Thirdly, the immobile fraction
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Figure 4.14: Accuracy and precision comparison of new techniques for different den-
sities of immobile particles for a biased diffusion.
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Figure 4.15: Accuracy and precision comparison of new techniques for different
amounts of noise for a biased diffusion.
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Figure 4.16: Accuracy and precision comparison of new techniques for different den-
sities of immobile and diffusing particles for a biased diffusion.
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Figure 4.17: Accuracy and precision comparison of new techniques for measuring the
diffusion coefficient of a biased diffusion.
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Figure 4.18: Accuracy and precision comparison of new techniques for measuring
biased diffusion
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Figure 4.19: Accuracy and precision comparison of new techniques for measuring
biased diffusion

and background population diffusion do limit more significantly the analysis for a

biased diffusion than in the case of a pure flow. Therefore, biased diffusion emerges

as the main limiting factor in extracting molecular transport with these methods. For

this reason, we summarized the strengths and limitations of different techniques for

measuring biased diffusion in table 4.2. Briefly, IIR filtering provides a generally good

analysis, but the recovered velocity is biased due to deformation of the correlation

function. The asymmetric analysis is often the most accurate, but generally exhibits

low precision and is more sensitive to an immobile component and particularly a

background diffusion. Finally, nICS is somewhere in between, with good precision

but small bias for the velocity and strong bias for the recovered density. It is affected

to a smaller degree by the density of the background components.

As for the diffusion coefficient, IIR and asymmetric analysis show equal but op-

posite bias with low precision. Hence, an unbiased diffusion coefficient fit depends on

the convergence of the asymmetric analysis. We conclude this section by noting that

we could extend the theory developed with nICS to account for biased diffusion. The

results would probably be non-analytic, but we could still numerically fit the function

and extract the diffusion coefficient. This would also probably remove the biases on
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the extracted density and velocity.

Density Velocity Diffusion

IIR
Accuracy Good Higher bias

due to flow
deformation

Higher bias

Precision Good Good Poor
Limitations Flow deformation, B >0.1 Limited by

asym. fit, B
≈ 0.1-10

Asymmetry
Accuracy Best Best Lower bias
Precision Fair Fair Poor
Limitations Mobile fraction density

(10% for immo only, 30 %
for immo. and diff.), B >
0.2

Same as for
density and
velocity, B ≈
0.1-10

nICS
Accuracy Lower bias Small higher

bias Not developed
Precision Best Good
Limitations Mobile fraction density (10

%), B > 0.15

Table 4.2: Summary of strengths and limitations of IIR filtering, asymmetric analysis
and nICS while analyzing biased diffusion.

4.8 Towards velocity distribution fitting

This chapter described the characterization in silico of the techniques we developed.

We saw that, in certain limits, we could recover the velocity vector, along with two

new parameters, the bias coefficient and the flow density. These parameters could not

be extracted with previous correlation techniques. However, the ultimate goal would

be to extract flow from multiple populations or from a distribution of velocities. We

believe that the new techniques presented constitute a first step towards that goal.

To demonstrate this, we simulated an exponential distribution of flow as shown in

figure 4.20a. The total particle density was set to 20 particles/µm2. We then analyzed

this simulation with multiple cutoff frequencies between 1 and 10 mHz. Therefore,
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Figure 4.20: a) An exponential velocity-density distribution of 20 part/µm2 total
density was simulated. b) By varying the IIR filter from 1 and 10 mHz, different
velocity-density couples were extracted. This curve could be use to extract informa-
tion on the velocity distribution.

for each analysis, the distribution was filtered by a different part of the R velocity

response curve (figure 4.2). This produced a different “apparent” average flow for

each analysis. We plotted the results on a velocity-density graph, which shows the

velocity recovered along with the density obtained with the IIR analysis, in figure

4.20b. This curve is characteristic of the flow distribution and could be used to build

models of molecular transport (Gaussian distribution, exponential, etc.). Following

this, the most likely models could be incorporated in the filterless analysis. This

workflow could allow fitting of the distribution without a priori knowledge of the

distribution.
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5

Conclusion

I
n this thesis, we have developed and characterized new tools that rely on the tem-

poral frequency domain (ν-space) of the correlation function, or power spectrum,

of images of fluorecently tagged molecules. These methods can provide new insights

about the dynamics of proteins inside living cells and complement existing techniques.

In chapter 2, we developed a general formalism for spatio-temporal image cor-

relation functions based on the theories of random signals and discrete-time signal

processing. This allows easy extension of image correlation techniques to more com-

plicated dynamics. We saw that different populations are summed in the correlation

function, and that a dominant population can overshadow dynamics of a minority

population. Furthermore, this knowledge allowed us to understand a bias in kICS,

and provided the foundations for chapter 3.

Chapter 3 provided the theoretical basis for two new variations of image correlation

spectroscopy, ν-space image correlation spectroscopy (nICS) and k-ν-space image cor-

relation spectroscopy (knICS). The ν-space is an interesting domain to consider since

it separates populations according to their dynamics. Immobile or slow dynamics are

concentrated in the low frequencies, allowing extraction of smaller population with

faster dynamics in the high frequencies. In nICS, the correlation function is complex

and velocities can be extracted from the phase, similarly to kICS. However, there is

no analytic form for diffusion and biased diffusion. In knICS, different populations

are regrouped on different planes according to their dynamics. Finally, we developed

two new methods of filtering. First, based on the expertise of discrete-time signal

85
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processing, we devised a infinite-impulse response (IIR) frequency filter that is tun-

able to allow selection of specific dynamics. We also did a dimensionless analysis to

see how filtering would affect our data. The second method enabling the extraction

of flow is based on the fact that only the flow will provide an asymmetric contribution

to the correlation function.

In chapter 4, we characterized all of these developments in numerical simulations.

We benchmarked them under challenging conditions often found in real cellular data.

We started by showing that the results for the previously developed Fourier immobile

filter changed as the total window length varied, but our IIR did not. We also

demonstrated the validity of the dimensionless analysis. We then compared nICS,

the IIR filter and the asymmetric analysis for different densities of immobile particles,

signal-to-noise ratio and concentration of background population. We found that the

techniques were more limited by the bias coefficient than anything else, but allowed

extraction of densities of flow, velocity vectors and bias coefficient over a wide range

of conditions. The focus was on accuracy rather than precision since we simulated

small region of analysis and multiples of those can be drawn inside a single cell.

In conclusion, we developed and characterized new techniques that complement

the current toolbox of image correlation spectroscopy. Time frequency space methods

are particularly useful when a dominant immobile population is present, as unfortu-

nately is often the case in cells. They also allow extraction of a bias coefficient and

flow density, two parameters that were previously inaccessible with image correlation

techniques.

Finally, these techniques can be extended in many ways. Filtering could be ex-

tended in the k-ν space to select populations. Correlation function for different dy-

namics could be derived in nICS and more efficient fitting methods devised for knICS.

Combining multiple techniques could allow reconstruction of a distribution of veloc-

ities if present. More importantly, it will be interesting to see what sort of insight

about biological systems these tools will provide. We have shown that differences in



87

retrograde flow of adhesion proteins play a role in cell migration. Characterization

of the flow density and bias coefficient could allow deeper understanding of theses

processes and of molecular transport and trafficking. We hope that the developments

of this thesis will provide useful and accessible tools for biologists and biophysicists

in the quest of understanding life at the molecular and cellular level.
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