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ABSTRACT

A mining complex is an integrated business that extracts materials from open

pit or underground mines, treats extracted materials via a series of processing facil-

ities that are interconnected by various material handling methods, and generates

a set of products that are sold and delivered to customers and/or the spot market.

The primary objective when optimizing a mining complex is to maximize its value for

the business and its stakeholders while obeying the technical constraints that limit

production. This optimization is traditionally performed by treating the various

components independently, leading to the suboptimal use of the natural resources

and financial capital, and the underperformance of the mining complex. The global

optimization of mining complexes aims to simultaneously optimize the multi-mine

production schedules, which define the distribution of materials over time, the des-

tination policies, which define where extracted materials are sent, and the use of the

various processing streams for processing, distribution and product marketing. As

the size of the mining complex grows, there is a compounded effect that uncertainty

has on the various components, and new stochastic optimization methods are needed

to manage this risk. This thesis aims to generate a unified modelling and global op-

timization methodology that integrates geological (supply) uncertainty and manages

risk in the design and operation of mining complexes, and can be adapted to suit

the needs and objectives of individual operations.

First, Chapter 1 provides an overview of the problem and outlines the goals,

objectives and major contributions of this work. Following this, Chapter 2 provides
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a literature review of the related work, which highlights the need for new, risk-based

optimization approaches. Chapter 3 proposes a method that integrates geological,

or supply, uncertainty into pushback designs for mining complexes with multiple

processing paths. Pushbacks are used to guide the sequence of extraction and help

to ensure that the sequence generates a high net present value and provides consis-

tent quantities of valuable material to the processing streams. An application at the

Escondida Norte mine, Chile, indicates that the stochastic pushback design method

generates a 61% reduction in risk for tonnages sent to the various processing streams

over a deterministic pushback design that is generated with BHP Billiton’s Blasor

software. This outcome is a result of being able to re-distribute the risk in the push-

back design. This method is easily integrated into an industry-standard sequential

optimization mine design framework.

The remainder of this thesis is in the context of a more recent paradigm shift

in the design of mining complexes, where many intricate and interrelated compo-

nents, such as mining, processing, distribution and marketing, are simultaneously

optimized. Chapter 4 frames a mining complex as a mineral resource supply chain

that is owned by a mining company, whose objective is to optimize its destination

policies for the mined material and the use of various processing streams in order

to satisfy customer demands or maximize the value of the operation. Depending

on the type of products, such as iron ore, coal, nickel or copper, in addition to the

geology and geographical location, the complexity of mineral resource supply chains

(i.e. blending, processing and distribution), can vary substantially. Existing research

has focused on models designed for a single application that isn’t necessarily useful
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for other mining complexes. As a result, a unified methodology is proposed that

enables the detailed modelling and optimization of these intricate systems. A case

study for the Onça Puma nickel laterite blending chain is used to highlight the need

to integrate uncertainty into the definition of destination policies, particularly for

multi-element deposits. The results show that the stochastic optimizer is able to

generate a complex destination policy that satisfies and reduces risk related to the

stringent blending constraints and production targets at the processing plant with-

out compromising on economic value.

Chapter 5 expands on this unified modelling and optimization methodology by

including the ability to simultaneously optimize multi-mine production schedules, in

addition to the destination policies and processing streams. Through a case study

for a copper-gold mine, it is demonstrated that the deterministic-equivalent of the

proposed optimizer is able to generate a solution that has 4% higher net present

value than an industry-standard deterministic production scheduler. Moreover, the

stochastic optimizer is able to generate a design that not only has a 6% higher net

present value than the deterministic-equivalent of the stochastic optimizer, based on

the P-50 risk profiles, but also is able to meet production targets and reduce the risk

of the materials processed, thus helping to ensure that financial forecasts are met in

practice.

Existing stochastic optimization models for production scheduling have focused

on reducing the risk related to not meeting pre-defined production targets. Chapter

6 addresses the challenge of simultaneously optimizing the production and processing

of materials with the ability to increase or decrease capacity constraints via capital
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expenditures. In a case study for a copper mining complex, the optimizer is per-

mitted to design the mine’s production rates by purchasing or replacing shovels and

trucks simultaneously with the mine production schedule, destination policies and

the processing streams. Existing commercial schedulers are unable to perform this

simultaneous optimization, nor accommodate a highly-detailed model, thus a fair

comparison to commercial solutions cannot be made. In this example, the stochastic

optimizer defines a practical production rate that consistently feeds the mill pro-

cessing stream with a minimal amount of risk, which is of critical importance for

low-grade mining operations. Additionally, by being able to understand the grade

variability of the mined materials and the associated uncertainty, the stochastic de-

sign also generates a 5.4% increase in net present value over the same (deterministic-

equivalent) method, based on the P-50 risk profiles, that is optimized only using a

single, estimated orebody model.

This work advances the related field of knowledge through the development of

new models and methods for optimizing mining complexes with uncertainty. This is

primarily achieved through five major contributions. First, a stochastic global op-

timization method is developed to simultaneously optimize multi-mine life-of-mine

production schedules, destination policies, processing streams and capital expendi-

tures for capacity design; while existing state-of-the-art methods may address some of

these aspects, they have not been previously integrated in a simultaneous optimiza-

tion model that does not rely on divvying up the global model into sub-problems.

Second, a new, unified modelling approach is developed that permits the proposed

optimizer to be tested on many different types of mining complexes with a high degree
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of modelling detail; as a result of this generalized and unified approach, non-linear

relationships can easily be integrated in the optimization models — a limitation of

existing deterministic and stochastic methods. Third, and a result of the previous

development, a new approach is developed to model the economic value of the prod-

ucts sold, rather than the materials mined. Existing models and methods are limited

by the assumption that each block has an economic value, hence the optimal pro-

cessing stream is known a priori, and the block is treated and sold in isolation from

other blocks; in some cases, this may lead to substantially undervaluing the resource.

Using the new modelling approach, it is possible to evaluate the economic potential

of products at the point of sale, rather than making these unrealistic assumptions

at the block-level. Fourth, computationally efficient solvers are adapted and applied

using metaheuristics. A combination of particle swarm optimization and a modi-

fied simulated annealing algorithm are developed to optimize various aspects of the

global optimization problem; these methods have not been previously combined for

mine optimization, and requires devising new methods to change designs and ensure

that the optimizers do not get trapped in local optima. Finally, the performance,

advantages and limitations of the models and methods are analyzed through full-field

testing on real-world and large-scale examples. The results consistently reinforce the

concept that it is possible to not only reduce the risk of not meeting production tar-

gets, thus guaranteeing financial forecasts are met, but also increase the net present

value of the operation.
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RÉSUMÉ

Un complexe minier est une entreprise intégrée qui extrait du minerai de mines à

ciel ouvert ou sous-terraines, traite le minerai extrait via une série d’usines de traite-

ment de métaux, qui sont interconnectées par une variété de méthodes de traitement,

et génère un ensemble de produits qui sont vendus et livrés à des clients ou sur le

libre marché. L’objectif premier lors de l’optimisation d’un complexe minier est

de maximiser sa valeur pour l’entreprise et les parties prenantes tout en respectant

les contraintes techniques qui limitent la production. Cette optimisation est faite de

façon traditionnelle en considérant chaque composante indépendamment, conduisant

à une utilisation sous-optimale des ressources naturelles et capitaux financiers et la

sous performance du complexe minier. L’optimisation globale des complexes miniers

cherche à optimiser simultanément les calendriers de production de multiples mines,

définissant la distribution du minerai dans le temps et les politiques de destina-

tion. Celles-ci définissent où le minerai extrait est envoyé, l’utilisation des différents

courants de traitement et produits pour le marché. Avec le grossissement de la taille

des complexes miniers, l’incertitude produit un effet d’agrégation sur les différentes

composantes et donc de nouvelles méthodes d’optimisation stochastiques doivent être

développées pour gérer ce risque. Cette thèse a pour objectif de générer un model

unifié et une méthodologie d’optimisation globale qui intègre l’incertitude géologique

et gère le risque du design et des opérations de complexes miniers et peuvent être

adapté pour répondre aux besoins et objectifs pour différentes opérations.

Premièrement, le Chapitre 1 fourni un résumé du problème et introduit les buts,
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objectifs et majeures contributions de ce travail. Ensuite, le Chapitre 2 fourni une

revue littérature de travails connexes, qui surligne le besoin de nouvelles approches

fondées sur le risque. Le Chapitre 3 propose une méthode qui intègre l’incertitude

géologique au design de phases minières pour les complexes miniers avec multiples

courants de traitement. Les phases minières sont utilisées pour guider le calendrier

de production, assurer une grande la valeur nette actualisée pour celui-ci et fournir

des quantités consistantes de matériaux précieux au courant de traitement. Une

application à la mine Escondida Norte, Chile, indique que la méthode stochastique

de design de phases minières génère une réduction de 61% du risque sur le tonnage

envoyé aux courants de traitement comparé aux phases minières générées de façon

déterministe avec le logiciel Blasor de BHP Billiton. Ce résultat est produit grâce

à la redistribution du risque dans le design des phases minières. Cette méthode est

facilement intégrable dans un système commercial d’optimisation séquentiel du de-

sign de la mine.

Le reste de cette thèse considère un contexte plus général pour le design de com-

plexe minier où plusieurs composantes compliquées et inter reliées, comme l’abattage,

le traitement, la distribution et la commercialisation, sont optimisées simultanément.

Le Chapitre 4 décrit le complexe minier comme une chaine de valeur de ressources

minérales qui est détenue par une compagnie minière qui a pour objectifs d’optimiser

les politiques de destinations pour le minerai extrait ainsi que l’utilisation des différents

courant de traitement pour satisfaire les demandes des clients ou maximiser la chaine

de valeur. Selon le type de produits comme le minerai de fer, le charbon, le nickel ou

le cuivre et selon la géographie ou la géologie, la complexité de la chaine de valeur
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de ressources minérales (i.e. homogénéisation, traitement, distribution) peut varier

substantiellement. Des recherches existantes ont mis l’accent sur le développement

de modèles spécifiques à chaque application ce qui n’est pas nécessairement utile pour

le cas d’autres complexes miniers. Par conséquent, une méthodologie unifiée est pro-

posée qui permet de modéliser et d’optimiser ces systèmes complexes. Une étude de

cas pour la chaine de valeur de nickel latérite Onça Puma est utilisée pour surligner le

besoin d’intégrer l’incertitude quant aux politiques de destinations, particulièrement

dans des gisements de minerai complexe. Les résultats démontrent que l’optimisation

stochastique permet de générer une politique de destinations complexe qui satisfait

et réduit le risque relié aux contraintes serrées d’homogénéisation et aux cibles de

production des usines de traitement sans compromettre la valeur économique.

Le Chapitre 5 généralise ce modèle unifié et cette méthodologie d’optimisation

en incluant la capacité d’optimiser simultanément les politiques de destinations

et de courants de traitement ainsi que le calendrier de production de plusieurs

mines. Une étude de cas faite appliquée à une mine de cuivre et d’or démontre

que l’équivalent déterministe de l’optimiseur est capable de générer une solution

possède une valeur nette actualisée améliorée de 4% par rapport à un planificateur

de production déterministe utilisé en l’industrie. De plus, l’optimiseur stochastique

est capable de générer un design, qui en plus d’augmenter de 6% la valeur nette

actualisée par rapport son équivalent déterministe, est aussi capable d’atteindre les

cibles de production et de réduire le risque sur les minerai traité, basé sur un profil

de risque P-50. Tout ceci aide à assurer que les prévisions financières sont atteintes

en pratique.
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Les modèles d’optimisation stochastiques existants pour la planification de pro-

duction minière ont mis l’accent sur la réduction du risque relié à l’atteinte des cibles

de production. Le chapitre 6 adresse le défi d’optimiser simultanément la produc-

tion et le traitement de minerai avec la possibilité d’augmenter ou de décrôıtre les

contraintes de capacités via les dépenses en capital. Dans une étude de cas pour un

complexe minier de cuivre, l’optimiseur est permis d’ajuster les taux de production

par l’achat et le remplacement de pelles et de camions en optimisant simultanément

le calendrier de production, les politiques de destinations ainsi que les courants de

traitement. Les planificateurs de production commerciaux existants ne peuvent per-

former cette optimisation simultanée ainsi que de permettre le design de ces modèles

détaillés, donc aucune comparaison ne peut être fait avec des solutions commerciales.

Dans cet exemple, l’optimiseur stochastique défini un taux de production réalisable

en pratique qui alimente constamment le courant de traitement associé au broyeur

avec un minimum de risque, ce qui est d’une importance critique pour les mines

à minerai de faible qualité. En plus de comprendre la variabilité de la qualité du

minerai extrait et son incertitude, le design stochastique génère une augmentation de

5.4% de la valeur nette actualisée par rapport à la même méthode utilisant seulement

un modèle de gisement estimé.

Ce travail fait avancer le domaine connexe par le développement de nouveaux

modèles et méthodes pour l’optimisation globale de complexes miniers avec incerti-

tude. Ceci est principalement réalisé par cinq contributions majeures. Premièrement,
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une méthode d’optimisation stochastique globale est développée pour optimiser si-

multanément le calendrier de production de multiples mines, les politiques de des-

tinations, les courants de traitements et les dépenses en capital pour le design des

capacités, par opposé à l’état de l’art existant qui peut adresser quelqu’un de ces

aspects sans considérer l’optimisation simultanée et sans diviser le modèle globale

en sous-problèmes. Deuxièmement, une nouvelle approche unifiée est développée

qui permet de modéliser et d’être appliqué à différents types de complexes miniers.

Un résultat de cette approche généralisée est la capacité d’intégrer facilement des

relations non-linéaires dans les modèles d’optimisation, une limite des méthodes

déterministes et stochastiques existantes. Troisièmement, une nouvelle approche

est développée pour modéliser la valeur économique des produits vendus plutôt

que celui du minerai extrait. Les méthodes et modèles existants sont limités par

l’hypothèse que chaque bloc d’exploitation possède une valeur économique et donc

le courant de traitement optimal est connu a priori. Le bloc d’exploitation est donc

traité et vendu séparément des autres blocs et, dans certains cas, ceci peut pro-

duire une sous-évaluation substantielle des ressources. En utilisant le modèle unifié,

il est possible d’évaluer le potentiel économique des produits aux points de vente

plutôt que de faire une hypothèse irréaliste au niveau des blocs. Quatrièmement,

les solveurs développés sont efficients et basés sur des méthodes métaheuristiques.

Une combinaison d’algorithmes d’optimisation par essaims particulaires et de re-

cuit simulé modifié est développée pour optimiser les divers aspects de ce problème

doptimisation globale. Ces méthodes n’ont jamais été combinées pour l’application

au domaine minier et donc ceci requiert le design de nouvelles méthodes afin de
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modifier le design et s’assurer que l’optimiseur n’est pas coincé dans un optimum lo-

cal. Finalement, les performances, avantages et limites des modèles et des méthodes

présentés sont analysés grâce à des applications sur des exemples de grandes tailles

de la vie courante. Les résultats renforcent le concept qu’il est possible de non pas

juste réduire le risque d’écart entre les cibles de production attendues et réelles,

garantissant l’atteinte des prévisions financières, mais aussi augmente la valeur nette

actualisée des opérations.
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CHAPTER 1
Introduction

1.1 Overview

A mining complex is a term used to describe a business operation that generates

materials from open pit or underground mines, which are subsequently transformed

from a bulk material into a group of saleable products via a set of processing streams

(Fig. 1–1), in addition to the logistics of transportation and marketing of the prod-

ucts produced. The primary goal for optimizing a mining complex is to maximize the

net present value (NPV) of the cash flows generated from mining, processing and

selling the metals, while obeying operational and environmental constraints that

are unique to each operation. Traditionally, the optimization of a mining complex is

treated as independent operations. Mining engineers design and optimize the extrac-

tion sequence of the material from the available mines; this optimization is generally

a step-wise procedure that is performed for each mine independently. Metallurgical

engineers optimize the treatment or processing of the incoming materials from the

mines in order to maximize its value. The marketing and sales team sell the prod-

ucts generated to a set of customers, generally in the form of contracts, or the open

market, such as a metal exchange. The interaction between these optimization steps

often comes from an agreement between the mining and metallurgical engineers and

the financial team on what available materials can and should be sent for processing

and sold, which is often defined by capacity and blending constraints at the various
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locations in the mining complex and customer demand. These optimization steps

are strongly interrelated, and optimizing the mines separately from the processing

and marketing leads to undervaluing the resources and under-utilizing the mining

complex’s capabilities.

Mine A

Mine B

Mine C

Stockpile A1Stockpile A1Stockpile A1Stockpile A4

Stockpile A1Stockpile A1Stockpile B3

Waste Dump 1

Waste Dump 4

Waste Dump 2

Mill/Concentrator 1

Mill/Concentrator 2

ROM Leach 1

ROM Leach 2

Tailings 1

Tailings 2

Smelter + Refinery 1

Smelter + Refinery 2

Port

Solvent Exchange/
Electrowinning

Customer 1

Customer 2

Customer 3

Customer 4

Metal Exchange

Customer 5

Metal Exchange

Slag 1

Slag 2

Waste Dump 3

Figure 1–1: A hypothetical mining complex with multiple mines, processing
streams and sales options.

Global optimization for mining complexes aims to holistically optimize the ex-

traction sequence of materials from the mines and defines the optimal use of the

processing streams to maximize the utility of the extracted materials while meeting

contractual obligations. One of the primary challenges related to globally optimizing

mining complexes is related to the stockpiling, blending and non-linear transforma-

tions (often a result of chemical interactions) of the materials at the various locations

in the processing streams. Given that these challenges require complex, non-linear

optimization formulations that are computationally difficult to solve, engineers often
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resort to severe, simplifying assumptions that result in a linear optimization model

that can be solved more efficiently. Often, these simplifying assumptions are implicit

in the optimization models by defining the economic value of a unit of mined mate-

rial (e.g. block), which ignores the impact of blending multiple units together, the

optimal processing streams used, and the impact that the unit of material has on

capacity and quality constraints at the various locations in the mining complex. In

order to overcome these simplifying assumptions, it is necessary to accept that these

non-linearities are often required to accurately model the mining complex and em-

ploy or devise new optimization methods that can efficiently generate useful solutions

in the presence of these non-linearities.

Recently, several stochastic optimization models have been proposed to integrate

and manage various forms of risk, such as the geological uncertainty of materials and

grades, into the optimization of mining operations. In these models, material type

uncertainty has a direct impact on the quantities of materials available for the various

processing streams, and multi-element grade uncertainty is used to quantify the risk

related to valuable metals, deleterious elements or minerals that are treated in the

various processing streams. These methods aim to optimize the mine design and

production schedules in order to not only maximize the operation’s NPV, but also

reduce the risk associated with not being able to meet pre-defined production targets

or blending targets over time. These models, however, often neglect the optimization

of other critical aspects, such as where to send the mined materials, the optimization

of the down-stream processes that are used to treat the materials, and the use of

capital expenditures to design the critical bottlenecks in the system. By ignoring
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these key aspects, the result is a locally optimum design for the mining complex.

In order to adequately quantify and manage risk in mining complexes, it is not

only necessary to expand the existing stochastic optimization formulations to model

mining complexes, but also explore efficient optimization methods that consider all

components of the mining complex simultaneously.

1.2 Goals and Objectives

The goal of this thesis is to develop a unified model and computationally efficient

stochastic global optimization methodology that addresses the holistic optimization

of open pit mining complexes, including the multi-mine production schedules that

define the extraction sequence and available materials over time, the destination

policies that define where mined material is sent, the use of the various processing

streams through to the final products that are sold and the use of capital expen-

ditures to design the critical bottlenecks in the system. This requires developing a

unified methodology that permits modelling and dynamically evaluating the non-

linear transformations of blended products in the mining complex at various scales,

without relying on severe, simplifying assumptions to maintain a linear model. By

integrating both geological and material type uncertainties directly in the model, it

is therefore possible to manage the risk related to the various products and elements

across the entire mining complex. In order to achieve this goal, the related objectives

are outlined as follows:

i Review the traditional deterministic and stochastic mine optimization frame-

works, and outline their limitations when adapting these concepts to optimizing

mining complexes.
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ii Explore new methods to directly integrate both material type and multi-element

uncertainty into aspects of mine design optimization, such as pushback design.

iii Develop a new, flexible modelling and stochastic optimization framework for

the downstream aspects of mining complexes, including the definition of desti-

nation policies for extracted materials that are more appropriate for optimizing

mining complexes or mineral resource supply chains in the presence of stock-

piling, blending and non-linear transformations of materials.

iv Develop a computationally efficient method for stochastic global optimization,

that addresses multi-mine production scheduling, destination policy decisions

and the optimal use of processing streams in order to reduce technical risk in

the mining complex and unlock higher value.

v Incorporate capital expenditure decisions directly in the global optimization

model, which may, for example, be used to optimize the number of trucks

and shovels at the various mines, or decide when it is best to invest in new

processing streams to improve the financial and operational performance of

the mining complex.

vi Conduct full-field tests with real-world and large-scale mining complexes in

order to analyze the results and to document the benefits and limitations of

the proposed methods.

vii Outline the limitations of the developed methods and suggest opportunities for

future research.

1.3 Thesis Outline

This thesis is organized into the following chapters:
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• Chapter 1 provides an introduction to the work presented herein and briefly

discusses the topics addressed in this thesis.

• Chapter 2 provides a literature review of traditional optimization frameworks

for mine design and life-of-mine production scheduling with uncertainty, down-

stream optimization and work related to the global optimization of mining

complexes.

• Chapter 3 describes a method to integrate material and multi-element un-

certainty into pushback design using a stochastic optimization model that is

optimized using simulated annealing. The benefits of this method are docu-

mented through a case study at the Escondida Norte copper mining complex,

Chile.

• Chapter 4 describes a flexible modelling procedure for mining complexes or sup-

ply chains with multiple mines, materials and processing streams. A stochastic

optimization model aims to generate robust destination policies for materials

that are extracted from a fixed multi-mine production schedule. The benefits

of this method are demonstrated through an application at the Onça Puma

nickel laterite blending complex, Brazil.

• Chapter 5 expands on the methods developed in the previous chapter by de-

veloping a stochastic optimization framework that simultaneously optimizes

multi-mine production schedules, destination policies and processing streams.

The benefits of this global optimization method are demonstrated through a

full-field test for a real-world copper-gold mining complex, whose identity is

withheld for confidentiality.
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• Chapter 6 improves on the previous method by permitting the optimizer to

make capital expenditure decisions that increase or decrease capacities in the

mining complex. A full-field test for a major copper mining complex, whose

identity is withheld for confidentiality, demonstrates the ability of the optimizer

to not only generate a production schedule, destination policy and the use

of stockpiles, but also design the appropriate levels of mine production by

simultaneously optimizing truck and shovel purchases.

• Chapter 7 concludes this thesis by revisiting its major contributions to the

stochastic global optimization of mining complexes, and recommends related

future work.

1.4 Original Contributions

Stochastic mine design and production scheduling is a recent paradigm shift that

has consistently shown the ability to manage the distribution of risk over time, thus

ensuring that early and critical cash flows are attained, and increase the net present

value of the operation by considering the true variability (low- and high-grades) of

the materials. The work contained in this manuscript-based thesis provides five key

contributions to this new paradigm:

I. A new, risk-based approach to long-term planning for mining com-

plexes that simultaneously optimizes life-of-mine production schedules,

destination policies, processing streams and capital expenditures for ca-

pacity design.

All existing industry-standard and state-of-the-art methods are unable to holistically
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optimize these critical aspects without first dividing the problem into smaller sub-

problems (i.e. ultimate pit limits, pushbacks, or aggregates of blocks), and assume

pre-defined mining and processing capacities. This leads to a sub-optimal use of

the non-renewable resources, the individual components of the mining complex, and

substantial financial resources. The work contained in this thesis not only overcomes

these limitations by simultaneously optimizing all aspects of the mining complex

without divvying-up the global optimization problem, but also addresses the core

issue of how to manage uncertainty, such as geological (supply) uncertainty, directly

in the optimization models.

II. Creating a unified approach for generating intricate models of material

flow and transformation in mining complexes, regardless of the commod-

ity produced or processing and distribution methods employed.

Industry-standard methods and practices do not provide enough flexibility to ac-

curately model the intricacies, needs and objectives that are specific to a mining

operation; they tend to focus on the economic value of blocks, capacity constraints

in tonnages and have limited integration of blending constraints. Existing state-of-

the-art methods are tailored to a specific commodity, or geological and geographical

conditions. This leads to specific models of the processing streams and methods

of distribution that are unique to the given operation, and limits the applicability

of the models to other mining complexes. The work in this thesis develops a new,

two-tiered approach to modelling mining complexes. First, primary attributes are

defined, such as metal quantities and tonnages. The flow of these attributes through
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a mining complex, from the mines to the customers, can be modelled using three

fundamental sets of decision variables, regardless of the complexity of the process-

ing streams or distribution methods: production schedules, destination policies, and

processing stream decisions. It is then possible to create detailed representations

that define the transformations and non-linear interactions that occur as material is

transformed from an input to an output product in the processing streams, based

on these primary attributes. This permits highly complex models that can integrate

practical, but extremely important, aspects that are unique to each operation, such

as truck cycle times and variable shovel rates for selectivity at the mine level, and

variable throughput rates, mill energy consumption, grade-recovery curves in the

processing streams.

III. A new approach that assesses the economic value of the products

sold, rather than the economic value of the materials mined.

The existing approaches to mine optimization assumes that each block of material

in the orebody model has its own economic value. This results in evaluating the

value of a discrete volume of material in isolation from others, and also assumes that

explicit knowledge of its optimal processing stream is known a priori. This block-

based valuation can lead to a severe misrepresentation of the economic viability of

a mineral deposit, particularly for mining complexes that use blending to ensure a

consistent quality of products sold, such as iron ore. In reality, multiple mining faces

and short-term stockpiling are strategies that are frequently employed to blend and

homogenize blocks to provide a feed of consistent quality to the various processing
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streams, and is therefore erroneous to assume that a block is treated and sold in

isolation. Through the development of the unified modelling approach, it is possi-

ble to properly model the flow and (potentially non-linear) transformation of metals

through the mining complex, and assess the economic values of the products that are

sold where the transaction occurs. For example, in an iron ore mining complex, the

value may be calculated according to the quantity and quality of products sent from

the port (a function of contractual agreements); in this case, it is advantageous to

evaluate the blended material sent from the port, rather than the blocks in isolation.

IV. Unique adaptations and applications of metaheuristic-based solvers

for the stochastic global optimization of open pit mining complexes.

In order to provide solutions for large-scale, industrial applications, the optimization

models developed in this thesis are solved using a unique adaptation of metaheuris-

tic solvers. Previous efforts have focused on a single metaheuristic to solve the open

pit mine production scheduling problem. This thesis proposes a novel combination

of the simulated annealing and particle swarm optimization algorithms to optimize

the critical decision variables that govern the design and flow of materials through

a mining complex. This requires developing several new methods to perturb the

key decision variables with minimal computational overhead — most of which have

not been previously optimized using metaheuristics (destination policies, processing

streams and capital expenditures). The simultaneous optimization of these decision

variables using metaheuristics poses new challenges that have not been previously

documented, such as the relative impact that each set of decision variables has on
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the objective function value, which leads to converging on a local optima. Given the

strong interrelationship between the key decision variables, a modified simulated an-

nealing algorithm is developed in this thesis to ensure that the optimizer maintains

these relationships when exploring the solution space, and helps to ensure that the

solution is not trapped in a local optimum.

V. Full-field testing on real-world mining operations to evaluate the ac-

tual performance of the proposed methods.

When possible, a comparison is made to an existing design or a design that is

generated using industry-standard methods. Comparisons between a deterministic-

equivalent and stochastic optimizers are made using the methods developed in this

thesis, and highlight the necessity to properly assess the geological variability and

spatial uncertainty in the orebodies when optimizing mining complexes. The results

consistently reinforce the practical benefits of the stochastic optimization paradigm,

including explicit risk management, which helps to guarantee production and finan-

cial forecasts, and the economic value added by adopting a stochastic optimization

framework.
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CHAPTER 2
Literature Review

2.1 Outline

This chapter provides a review of the literature pertinent to the global optimiza-

tion of open pit mining complexes, and comprises four sections. Section 2.2 provides

a review of existing work in the stochastic optimization of mine design and long-term

production scheduling; as will be seen, the existing work has primarily focused on

the mining decisions, and do not integrate the downstream processes of a mining

complex. Section 2.3 reviews some of the work related to downstream optimization

with stockpiles and blending; this work is generally decoupled from the mine de-

sign and production scheduling problem, and the integration of uncertainty in these

models for mining applications has only recently garnered attention. Section 2.4 dis-

cusses some of the more advanced deterministic and stochastic models that attempt

to simultaneously optimize aspects of mine design and production scheduling with

downstream optimization, which leads to the discussion of a need for a framework

that tightly couples these two aspects in a stochastic global optimization framework.

It is noted that in order to accurately quantify the impact that geological risk has

on a mining complex, it is necessary to have accurate models of the underlying ge-

ological conditions and uncertainty. Section 2.5 provides a brief review of some of

the recent work pertaining to the geostatistical simulation of mineral deposits, with
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a focus on computational improvements and newer multiple-point and high-order

simulation frameworks.

2.2 A Traditional Open Pit Mine Design Optimization Framework

2.2.1 Sequential optimization of open pit mines

The primary objective when optimizing the use of a mineral resource is to create

a mine design and production schedule that maximizes the value of the metal or

products produced, while obeying technical constraints, such as mine production

and processing capacities, blending constraints and geotechnical stability or access

constraints. A step-wise optimization framework is typically used in practice [38, 167]

to partition the global optimization problem into computationally manageable steps

by successively reducing the number of decision variables involved as the complexity

of the optimization model increases (Fig. 2–1). In the traditional framework, the

ultimate pit limit is first defined, which aims to define a pit contour that maximizes

the economic value of the material contained within, and is often generated using

the Lerchs-Grossmann algorithm [113, 162] or a network flow algorithm [75, 134]. By

parameterizing the economic value of the ore blocks within the deposit, it is possible

to obtain smaller volumes within the ultimate pit limit, called nested pits, which

can be grouped to obtain a pushback design that guides the sequence of extraction

from the ultimate pit [82]. Pushbacks are large volumes of material that can be

mined independently and may be mined over several years (i.e. non-contiguous time

periods). They are used to guide the life-of-mine or long-term production schedule,

which defines the material that is extracted on an annual basis, hence the discounted

cash flows over time [37, 39, 61, 88, 160]. The annual production schedule, and the
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resulting cash flows, may then be used to optimize the cut-off grade policy and the

use of available stockpiles [109, 145]. An optimal cut-off grade policy, in its most

simplistic form, is a policy that decides whether or not to send a block of material

for further processing, and accounts for the opportunity cost that is incurred by

deferring the treatment of other valuable material. Given the strong relationships

between these components, this process is repeated iteratively until a final design

is obtained. It is noted that this sequential optimization methodology is frequently

used in the mining industry because it is commonly implemented in commercial

software; as will be seen in this section, much of the work in stochastic optimization

has focused on optimizing a few of these components simultaneously. A modern,

integrated optimization approach [154] for open pit mine design and production

scheduling that is more adept to global optimization is discussed in Sect. 2.4

Ultimate pit limits
Pushback 

design
Production 
scheduling

Cut-o  grades 
and stockpiling

Figure 2–1: A traditional open pit framework for mine design and production
scheduling.

2.2.2 From deterministic to stochastic optimization

Historically, mine design and production scheduling optimization frameworks

use only a single geological model as input [12, 58, 61, 88, 96, 113, 160]. This

model is often generated using geostatistical estimation methods [41, 84], which
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defines the expected value of the grade for a block of material in the mine. The

economic valuation of a block of mined material is a non-linear transfer function

that is traditionally calculated prior to optimization in order to define ore and waste

blocks. While the vast majority of the existing optimization models for open pit mine

production scheduling are linear formulations, an optimized schedule generated using

an average input model will not necessarily perform well on average because of this

non-linear valuation function.

Stochastic geostatistical simulation methods [34, 42, 69, 89, 90, 92] have been

developed over the past several decades to overcome the shortcomings of traditional

estimation methods. These methods aim to generate a set of equally probable sim-

ulations that better represent the univariate distribution and spatial correlations

for the attributes of interest (e.g., metal grade), and may be used as a group to

quantify the geological uncertainty in a mineral deposit. With the emergence of

the simulation methods, several studies began to investigate the impact of uncer-

tainty on ore reserve calculations, ultimate pit definition and production scheduling.

Ravenscroft [143] concludes that the existing deterministic optimizers are unable to

accommodate quantified risk, and that new optimization methods need to be devel-

oped. Dimitrakopoulos et al. [45] discuss an application at a gold mine, where an

optimized mine design is generated using an estimated orebody model, and is subse-

quently tested with a set of geological simulations. The authors note that the NPV

of the estimated orebody is misleading; the simulations indicate that there is only a

5% chance of actualizing the indicated value, and the median NPV of the simulations

for the deterministic design is 25% lower. Additionally, the authors observe a 12.5%
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shortfall of ore production from what the estimated orebody model indicates, and

that production should cease one year earlier. As a result of the non-linear transfer

functions present when optimizing mine designs, the solutions generated from deter-

ministic models and methods can be severely misleading and result in unrealistic and

undesirable production rates and cash flows. These studies demonstrate a paradigm

shift from a deterministic optimization framework, whereby the input is assumed to

be 100% correct, to a framework that attempts to consider uncertainty in order to

improve decision making.

Dimitrakopoulos et al. [48] perform a study that attempts to integrate uncer-

tainty into decision making for choosing a mine design based on a maximum upside,

minimum downside approach. The authors use traditional, deterministic optimiza-

tion methods to create a mine design for each geological simulation independently,

and compare their performance when tested with the other geological simulations.

The quality of a design can be assessed based on the probability of being above or

below a set of key performance indicators, such as minimum annual return, ore ton-

nage or metal production. The authors then rank the designs based on maximizing

the upside potential (the potential of performing better than expected) and mini-

mizing the downside loss (the risk of performing worse than expected); the highest

ranking design is then selected as the preferred design. The authors demonstrate

their proposed method through an application for an epithermal gold deposit, where

four different mine designs are analyzed and ranked according to the mine owner’s

desired minimum annual return while simultaneously meeting a minimum of 70%

chance of having more than one million ore tonnes. The authors observe that there
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is ambiguity in the selection process; for a given mine design that has a high upside

potential on return with minimal downside risk at the beginning of the mine life,

the same design may have substantially lower upside potential and downside risk at

the end of the mine’s life. While this method is conceptually easy to apply, it is

essentially generating a set of risk analyses for a group of mine designs that are only

optimal for a single geological simulation, and choosing which design better satisfies

the decision-maker’s goals. Unfortunately, this form of posterior analysis does not

attempt to directly manage uncertainty in the optimization step, and therefore guar-

antees a sub-optimal solution. This highlights the need to shift from deterministic

optimizers, which blatantly ignore risk, to stochastic optimization methods, which

explicitly manage risk in the mathematical formulations [44].

2.2.3 Probability-driven mine design and production scheduling

More recent optimization formulations attempt to directly integrate geological

uncertainty directly into mine design and production scheduling through the use of

probabilistic optimization models. Ramazan and Dimitrakopoulos [140] propose a

methodology and model that first requires optimizing the schedules individually to

obtain a probability distribution for a block being mined in a given period. The

authors attempt to maximize the expected net present value, which is defined by the

probability of a block being mined in a given period and its expected net present

value, and additionally create a spatially smooth schedule for equipment access. This

method, however, requires solving a mixed integer program (MIP) for each geological

simulation, which can be computationally infeasible for large deposits.
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Dimitrakopoulos and Ramazan [49] propose a similar formulation that attempts

to minimize the deviations from not having a probability of 100% for a desirable

quality (e.g., metal or deleterious element content), while maintaining a spatially

smooth schedule; this method is particularly useful for multi-element mines that

require blending constraints, and does not require a MIP optimization for each ge-

ological simulation. The authors introduce the concept of risk discounting, whereby

the penalty cost associated with not having the desirable qualities is reduced for

each period of time using a discount factor that is similar one used in the calculation

of the net present value. The risk discount rate is an input parameter to the opti-

mization model and relates to the heterogeneity of the orebody and the willingness

of the mining company to accept risk in the short-, medium- and long-term. Using

an extremely high geological risk discount rate effectively forces the optimizer to be

short-sighted about the level of risk in the design; the optimizer will seek to only

extract blocks with a high level of certainty in the first few periods, but ignores the

desire to also meet production targets in the medium- and long-term. A low risk

discount rate (i.e. 0) treats the risk in early periods the same as the periods at the

end of the mine life, which may introduce a higher level of risk in the short-term

than the company is willing to accept, particularly when there is a need to pay

back creditors. As a result, this parameter should be calibrated for each operation

and should account for the company’s willingness to accept and distribute risk over

time. It is noted that this formulation does not directly attempt to maximize the

net present value of the schedule, but attempts to have a high probability of meeting

ore production targets at the beginning of the mine life, and defer riskier material
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(i.e., lower probability of having a desirable quality) to later periods of the mine life.

The authors test their formulation on a nickel laterite deposit, where the goal is to

achieve a target nickel grade of the ore sent to the processing plant. The results

indicate that the net present value, when compared to the deterministic model, re-

mains relatively unchanged (2% difference), however the probabilities of meeting the

ore production targets are much more appealing. Whereas the deterministic sched-

ule randomly distributes these probabilities through time, the probabilistic schedule

shows descending probabilities from the beginning to the end of the mine’s life, mean-

ing that the schedule is not controlling the risk at the expense of NPV. This method,

however, focuses on the probabilistic representation of each block independently of

other blocks (i.e. the probability of each block having a desirable quality). This is a

strict, binary (good-or-bad) representation of uncertainty for each block, and ignores

the localized values and uncertainty of nearby blocks (referred to herein as joint local

uncertainty) that could be better represented or controlled using a set of geological

simulations. The inclusion of joint local uncertainty in stochastic optimization mod-

els, represented via a series of simulations, is preferential because it empowers the

optimizer with the ability to blend the risk associated with nearby blocks.

Grieco and Dimitrakopoulos [70] propose a probabilistic MIP model that aims

to generate stope designs for underground mines, including the size, location and

number of stopes. Grade uncertainty is integrated into the optimization model by

requiring that the probability of the stopes being above a specified cut-off grade is

also above a specified minimum threshold. By increasing the minimum probability

threshold and re-optimizing the model, the optimizer seeks a stope design with an
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increased probability of being above a given cut-off grade, often at the expense of a

decrease in tonnage for the stopes. Similar to the previously mentioned work, this

method does not directly integrate joint local uncertainty, represented by a set of

geological simulations, into the optimization model. Additionally, this method does

not attempt to generate a production schedule for the stopes that are generated.

2.2.4 Managing ore production risk with simulated annealing

Godoy [65] and Godoy and Dimitrakopoulos [66] propose a method to manage

risk in meeting production targets for open pit production schedules that incorpo-

rates joint local uncertainty, thus better accounts for any spatial correlation in the

geological variables that are represented in the simulations. The objective is to create

a production schedule that minimizes the expected deviations from ore and waste

production targets, where the deviations are measured using each equally probable

geological simulation, rather than a probability for each block. The authors first

generate a mine production schedule for each of the geological simulations indepen-

dently using traditional deterministic methods; this is used to generate a probability

distribution for each block belonging to a period. A stochastic production schedule is

then generated using the simulated annealing metaheuristic [60, 98], which is based

on the Metropolis algorithm [127]. It commences with a starting (input) schedule,

and randomly selects blocks that may change production periods without violating

slope stability constraints; the transition probability for a block’s new extraction

period is based on the distribution defined by the schedules for the simulations. The

algorithm is permitted to explore the solution space by accepting sub-optimal swaps

at the beginning of the algorithm, and the chances of accepting sub-optimal changes
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are gradually reduced as the algorithm iterates. The efficacy of the method is demon-

strated through a case study at a gold deposit, where the authors demonstrate that

the risk of not being able to meet ore production targets is reduced from 13% for

the traditional deterministic design to 3% for the stochastic design. Moreover, the

authors note a 28% increase in the stochastic design’s NPV over the deterministic

design, which reinforces the concept that one does not need to compromise value in

order to manage risk.

Leite and Dimitrakopoulos [111] apply this simulated annealing-based method

to a copper mine, which results in a 15% increase in NPV over the determinis-

tic design (when testing the simulations). Additionally, the authors note that the

stochastic schedule has a mine life that is one year shorter than the deterministic

schedule, which is a result from the estimated model having more ore material than

the simulations in this case study. It is interesting to note that the optimization

formulations for both experiments do not explicitly attempt to maximize the NPV

of the schedule, yet both experiments have a higher NPV. This is a result of the

fact that the transition probability for moving a block between periods is based on

the probability distribution, which is in turn defined by each simulation’s optimal

production schedule that tries to maximize the NPV. Rather than explicitly incor-

porating NPV in the model’s objective function, the potential increase in NPV is

accounted for implicitly when changing a block’s extraction period.

One of the challenges of the simulated annealing-based models is the lack of clear

method to calibrate the algorithm’s parameters or to define which starting schedule

to use as input for the algorithm. Albor and Dimitrakopoulos [1] investigate these
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challenges by performing a sensitivity analysis using the same copper deposit as Leite

and Dimitrakopoulos [111]. Given the long pre-processing time required to generate a

mine design for each geological simulation, the authors suggest that simulations and

their respective production schedule should be added sequentially to the simulated

annealing-based optimizer. Through a case study, the authors demonstrate that the

quality of the solution, in terms of meeting ore and waste production targets, stabi-

lizes after using 10 geological simulations; this is confirmed by a stabilized coefficient

of variation for the block’s grades and the number of blocks with 100% chance of

being extracted in a single period. The authors also state that the quality of the

final stochastic production schedule becomes increasingly dependent on the starting

schedule selected when using fewer geological simulations and respective schedules.

This study helps to highlight an important concept related to the stochastic opti-

mization of mine production schedules: for increasingly large volumes of materials

extracted and treated, particularly up to the scale of interest in long-term produc-

tion scheduling, the variability of the material decreases or plateaus – the impact

of the potentially high variability that arises from each block is mitigated by blend-

ing risk from other that are blocks mined in the same period. As a result of this

volume-variance relationship [93], it is generally not necessary to consider hundreds

of simulations in the optimization model, because a small group of simulations is

often sufficient to accurately describe the variability for an appropriate scale of a

mining complex.

The development of the simulated annealing-based optimization framework is

a substantial improvement over the probabilistic methods because it considers the
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joint local uncertainty that is represented through geological simulations, and also

does not require a commercial mathematical optimizer (however, it does require

commercial mine optimization software); once the schedules are generated for each

simulation, the method is computationally efficient and has been used to optimize

large deposits in a reasonable amount of time. The method, however, suffers from

four major limitations: i) it does not integrate geological risk discounting to defer

riskier material to later periods, which would contradict the use of the block tran-

sition probabilities; ii) it does not explicitly maximize the net present value of the

production schedule (this is implicit when generating the schedules for each simu-

lation); iii) the method focuses on ore and waste production targets, and does not

accommodate grade blending constraints, which is a critical aspect of many mining

operations; and iv) the algorithm does not guarantee mathematical optimality.

2.2.5 Stochastic mine production scheduling with stochastic integer pro-
gramming

Ramazan and Dimitrakopoulos [139, 141, 142] propose a two-stage stochastic

integer program (SIP) with fixed recourse [16] to address many of the limitations of

the simulated annealing-based framework proposed by Godoy [65]. A two-stage SIP

is comprised of two sets of variables: the first-stage variables, which are designed

to be robust to random events, and the recourse variables, which are used to mini-

mize adverse affects that are result of the first-stage decision variables coupled with

the outcomes of the random events. The authors propose a SIP formulation that

attempts to maximize the expected net present value of the production schedule,

which is defined by the first-stage decision variables, and simultaneously minimize
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the deviations from ore processing and mine production targets, grade blending con-

straints and metal production capacities, which are the recourse variables that are

calculated for each geological simulation. The mixed integer linear model is solved

using a commercial optimizer, thus provides a better idea of how far the design is from

optimality using a duality gap. The authors incorporate geological risk discounting

as a means to control the deviation (recourse) variables to force the optimizer to

defer risk to later periods in the life of the mine, when more geological information

is available.

Leite and Dimitrakopoulos [112] test the SIP formulation on the copper deposit

used in [111], where the authors note a 29% increase of expected NPV of the stochas-

tic schedule over the performance of the deterministic schedule when testing with

simulations. The authors demonstrate the capability of the SIP formulation to ac-

curately control the risk profiles for the ore and total mine production over the life

of the mine, particularly when compared to the deterministic schedule, where there

is less than 5% chance of actually producing the desired ore tonnages. Moreover, the

authors present a sensitivity analysis to document the impact that the geological dis-

count rate has on the resulting production schedule; they note that after increasing

the geological risk discount rate above 10%, there is no longer a substantial impact

on the ability of the optimizer to meet production targets. This study highlights the

ability for the optimizer to strike a balance between extracting blocks of high grade

(and potentially more risk) with blocks of lower economic value but more certainty

in grade.
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Given the success of the SIP formulation at integrating risk into production

scheduling, later research aims to expand on the basic formulation and integrate

more realistic complexities. Benndorf and Dimitrakopoulos [14] adapt the model for

an application at an iron ore mine. In this application, the authors are interested in

investigating uncertainty in multiple elements in order to satisfy target metal grades

and blending constraints and guarantee that the ore produced is of satisfactory qual-

ity. Additionally, the authors introduce smoothness constraints, similar to Ramazan

and Dimitrakopoulos [140], to produce a feasible schedule for equipment mobility.

The authors state that the SIP model only has 5% and 20% deviations from the SiO2

targets in the first two years of production, respectively, whereas the deterministic

schedule shows an average deviation of 30%; this is a substantial improvement that

aids in quality assurance for the customers that receive the materials from the mine.

The authors also provide a discussion regarding the penalty costs that are used to

control the deviations from production targets, and demonstrate the effects of an in-

creasing penalty cost, both on the risk profiles and on the schedule itself. Naturally,

an increase in penalty cost forces the optimizer to better satisfy the constraints. It is

noted, however, that there is a limit to the effect that these penalty costs may have

on the optimization model: the optimizer is not capable of completely eliminating

risk and, after a certain point, increasing the penalty cost will not drastically change

the design.

Jewbali [85] integrates short- and long-term uncertainty through the use of

simulated short-scale future grade control drilling in the SIP model. The reason

for integrating these two scales of information is because the short-term production
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schedules often deviate from long-term production schedules, which is a result of

changes in ore and waste classification when performing grade control drilling; this

method aims to help reconcile the short- and long-term scales of information in a

single SIP model. The authors demonstrate the method through an application at a

gold deposit, where the stochastic schedule indicates an increase of 3.6 million tonnes

of ore, 2.6 million tonnes of metal and 7.7 million dollars in NPV, when compared

to the mine’s actual long-term production schedule. These increases are a result of

the fact that the dense grade control information indicates a higher average grade

above the cut-off and a higher ore tonnage, than the exploration drilling that has

been traditionally used.

Results from these studies consistently demonstrate that a stochastic optimizer

is able to generate a production schedule with a higher net present value and less

risk than a deterministic design. This is an extremely counter-intuitive concept

for many, as a popular belief is that one must sacrifice economic value in order to

manage or reduce risk. It is necessary to clearly understand what is being compared

when claiming there is a risk-reward relationship. Birge and Louveaux [?] define

the value of the stochastic solution as the difference between the objective function

value for a stochastic solution optimized with a set of scenarios (called the “Recourse

Problem”, RP) and the expected value from a deterministic solution when tested

with the same set of scenarios (called the “Expected result of using the Expected

Value solution”, EEV ). The authors note that the objective function value for the

RP is always better than the EEV ; if it were not, then the solution for the RP

would, by definition, not be optimal. In the context of mine production scheduling,
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where the objective function evaluates both the net present value and the design’s

ability to meet production targets, this concept directly translates to having a higher

net present value and (or) less risk. It is noted that a deterministic optimizer does

not understand the concept of risk, and, as a result, when a deterministic design is

introduced to risk, it generally doesn’t perform as indicated. It is natural that a

stochastic optimizer, which inherently understands risk, is able to generate a more

realistic and higher-valued solution.

One of the major challenges associated with SIP formulations is the time re-

quired to solve it using commercial mathematical optimizers; for large-scale opti-

mization problems with thousands to millions of blocks, it is often infeasible to even

solve the linear relaxation of the integer formulation. More recent work has explored

new methods to solve large-scale mining SIP formulations in a reasonable amount of

time. Marinho [119] proposes a SIP model that focuses on modelling the first-stage

decision variables as surface extraction decisions (i.e. the progression of the exposed

surface), rather than block-based extraction decisions. This is an an extension of

previous work done by Goodwin et al. [68] for deterministic production scheduling.

The model is solved sequentially for each time period to find an approximation to

the full-scale SIP model previously discussed. The sequential nature of the method,

however, does not guarantee an optimal solution, particularly for cases where a large

amount of pre-stripping is required at the beginning of the mine’s life to access ore.

Chatterjee and Dimitrakopoulos [32] propose a model that is solved using Lagrangian

relaxation and the subgradient method sequentially for each production period. In

the event that the solution is infeasible, a smaller MIP formulation is employed to

27



correct the violated constraints. The authors show for one example that the method

is able to generate an approximation within 2% of the full SIP’s linear relaxation

value 37 times faster than a commercial optimizer. The sequential nature of the

method, however, is similar to the previously discussed method and therefore does

not necessarily perform well in general.

Lamghari and Dimitrakopoulos [106] propose a computationally efficient solu-

tion to the SIP model using the Tabu Search metaheuristic [64], and compare two

diversification strategies to help the optimizer not get stuck in a local optimum. The

authors note that one of the diversification strategies is able to, in one example,

obtain a gap of 2.4% in 104 minutes, versus the 15 230.5 minutes it takes to solve

the linear relaxation using a commercial optimizer. Lamghari and Dimitrakopou-

los [107] propose a variable neighbourhood descent metaheuristic for solving a pro-

duction scheduling SIP, and investigate the impact that the quality of a starting

solution has on the quality of an SIP production schedule model that is optimized

using metaheuristics. The authors test two sequential methods to create an initial

production schedule prior to optimizing with the algorithm: the first is a method

using a mathematical optimizer for the time-separated sub-problem and the sec-

ond method is a greedy algorithm. The authors demonstrate that the initialization

method impacts the quality of the final production schedule; for three different de-

posits, the final schedule that is initialized with a commercial optimizer has a slightly

smaller gap (measured from the linear relaxation of the SIP model) than that of the

schedule that is initialized with a greedy heuristic, however, the greedy heuristic

outperforms the commercial optimizer-based method in terms of computing time.
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Both methods, however, are orders of magnitude faster than only solving the linear

relaxation of the SIP model. Lamghari and Dimitrakopoulos [108] benchmark a sim-

ilar method that uses linear programming and variable neighbourhood descent for

deterministic models, and note that the method finds new, tighter bounds for sev-

eral benchmark problems [53] within a shorter timeframe than other recent methods,

thus demonstrating that the use of metaheuristics as an optimization method can

perform equally well as mathematical programming-based methods, and generally in

substantially less time.

2.2.6 Integrating uncertainty in pushback design and ultimate pits

In addition to the sensitivity of the input parameters related to the simulated

annealing algorithm, Albor and Dimitrakopoulos [1] discuss the impact of geologi-

cal uncertainty on the ultimate pit limits. The majority of the previously mentioned

work defines the ultimate pit to be scheduled using a single, estimated orebody model;

this ultimate pit is often selected based on the nested pit shell that provides the high-

est (approximated) NPV using conventional, deterministic optimization methods. In

practice, there is often a wide range of pit shells that may be selected as the ultimate

pit with similar NPVs but different stripping ratios. Using the simulated anneal-

ing formulation, the authors extend the ultimate pit limit for the copper deposit

case study by introducing an additional pushback, which is defined by additional pit

shells. The stochastically optimized pit limits are shown to be 17% larger in total

tonnage, increase the NPV of the schedule by 9% and increase the life of the mine

by an additional year.
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Early work with SIP models for mine production scheduling were limited by

the ability of commercial solvers to optimize mines of realistic size. In order to

reduce the size of the problem, a traditional optimization framework was often used,

which requires generating the ultimate pit and pushback design to reduce the number

of variables in the optimization model. The SIP scheduling model is then solved

similar to a sliding time window heuristic, whereby only first few pushbacks and

production periods (e.g. 2 and 5, respectively) are considered. After obtaining an

optimal solution, the scheduled blocks in the first periods (e.g. 1 to 3) are removed

from the model, and the process is repeated. Albor and Dimitrakopoulos [2] use

a case study for a copper deposit to analyze the impact that pushback design has

on the risk and value of a SIP production schedule. The authors generate mine

designs that have 3, 5, 6, 7, 9 and 10 pushbacks, solve the SIP models [142] for each

design and compare the results. The differences in the production schedules could

be quite drastic; for example, a design with 5 pushbacks has a higher NPV and a

lower maximum deviation from the ore production target than the design with 6

pushbacks. More importantly, the authors document a 30% increase in NPV over

deterministic methods, which is attributable to better risk management, increased

metal extraction and a larger pit limit. This study highlights the impact of the

traditional step-wise optimization framework has on the value and risk of the final

production schedule. The method, however, is computationally demanding because

a SIP model needs to be solved for each pushback design, and fails to address the

question of how to directly optimize pushback designs in the presence uncertainty.
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Gholamnejad and Osanloo [62] investigate the question of how to directly gener-

ate pushback designs that integrate geological uncertainty (as opposed to the previ-

ously mentioned methods that select a design), with the goal of generating pushback

designs that have material with high grade, low uncertainty and a low stripping ratio.

The authors use a parameterized Lerchs-Grossmann [113] algorithm to generate a

series of nested pits. Unlike the implementation used by Whittle [167], the authors

attempt to integrate uncertainty by parameterizing the block’s estimation variance

(which is only affected by drilling density and the model of spatial continuity) rather

than the block’s economic value. This method, therefore, does not necessarily pro-

duce nested pits that only target high-valued ore blocks; it is conceivable that an early

pushback may contain only low-grade blocks with small estimation variances. The

authors compare their pushback designs to Whittle’s deterministic design, and state

that their method produces pushbacks with substantially lower risk. The method,

however, makes the incorrect assumption during the development of their formula-

tion that the block grades are normally distributed, and also incorrectly assumes

that a block’s kriging variance [84] from estimation is the same as the variance of the

grade of the block. Not only does normally distributed random variables for geolog-

ical phenomena not occur naturally, by definition, the kriging variance defines the

error of estimation according to the model of spatial continuity and the locations of

surrounding drillhole data. As a result, the penalty applied to a high-grade block or

a low-grade (marginally profitable) block with the same local drillhole configurations

is exactly the same; the optimizer, therefore, does not understand that the upside
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potential of the high-grade block is much more valuable than that of the low-grade

block.

Meagher et al. [122] propose a parametric minimum cut approach that aims

to integrate geological and metal price uncertainty into ultimate pit and pushback

design. This method is an extension of the parametric maximum flow, minimum

cut algorithm proposed by Picard [134]. Geological and metal price simulations

are integrated into the design of the directed graph through bi-directional, infinite

capacity arcs, which ensure that if the optimizer chooses to mine a block, it must

do so for all scenarios. Rather than having potentially thousands of geological and

metal price scenarios, the graph model can be simplified by adding up the economic

value of an ore block across all scenarios, which is treated separately from the sum

of the economic values of the waste blocks. The model can be solved in polynomial

time using a maximum flow/minimum cut algorithm. The authors note that the

method may be used to generate pushbacks by parameterizing the economic value of

the ore blocks and re-running the optimization model. This results in a formulation

that not only targets high value blocks, but also blocks with a lower risk.

Chatterjee and Dimitrakopoulos [31] test the parametric maximum flow ap-

proach on a copper deposit to quantify the differences between a deterministic de-

sign and one that includes uncertainty in the ultimate pit and pushback design.

Rather than solving an SIP model for the pushback designs, which is computation-

ally demanding, the performance of the designs are compared based on a bench-wise

production schedule. The authors note that the stochastic design has a 10% higher
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NPV than the deterministic design, which is largely attributable to the method be-

ing able to understand not only high-valued material, but also material with low

risk. Asad and Dimitrakopoulos [8] extend the previous developments to incorpo-

rate time-dependent block economic values and ore reserve constraints [158] using

Lagrangian relaxation and the sub-gradient method. The authors propose modify-

ing the Lagrangian parameters in a manner that ensures that the pushbacks do not

suffer from the gap problem, which is defined by large discrepancies in size between

adjacent pushbacks. More recently, Asad et al. [9] adapt the previous model to in-

corporate the option for multiple block destinations. In this case, for a large copper

mine, the authors note a 8.7% larger pit limit, 10% increase in metal content and

14% increase in discounted cash flows. The stochastic network flow methods have

consistently demonstrated that a stochastic ultimate pit limit is larger than a deter-

ministic pit; however, the designs have not been tested with stochastic production

scheduling to quantify the impact that the pit designs have on the ability to control

risk and increase value on an annual basis. Additionally, with the exception of the

work by Asad et al. [9], by simplifying the graph model, all information with respect

to the joint local uncertainty that is represented through geological simulations is

condensed into a single ore and waste value for each block, which is more similar to

the probabilistic approaches previously discussed.

2.2.7 Uncertainty and cut-off grade optimization

Other work has investigated the impact of uncertainty on cut-off grade optimiza-

tion for a static mine design. Dowd [51] proposes a dynamic programming approach

for optimizing the cut-off grade and production levels with metal price uncertainty.
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An increase in the cut-off grade results in a faster depletion of the resource, hence

the method attempts to find a single cut-off grade policy that balances this depletion

rate with uncertain metal prices. Johnson et al. [87] develops a partial differential

equation model that aims to generate a cut-off grade policy with metal price uncer-

tainty. The authors test their method using a real-world case study, and conclude

that their method is able to increase the NPV by 10%. The method, however, is lim-

ited by several severe assumptions, such as ignoring geological uncertainty, assuming

that the processor is always the bottleneck in the operation, and that the mine’s

production can vary with changing commodity prices. The method also assumes a

specific, ordered block extraction sequence; if the sequence is changed, the cut-off

grade policy would need to be re-optimized. Barr [13] proposes an alternative partial

differential equation formulation for optimizing the dynamic cut-off grade with com-

modity price uncertainty, which includes the option to temporarily shut down the

mining operation. Similar to the previous method, however, it is limited in its abil-

ity to accommodate geological uncertainty. Asad and Dimitrakopoulos [7] propose

a heuristic to optimize a cut-off grade policy that considers geological uncertainty

for mining operations with multiple processing streams. This work has the added

advantage that it can consider operations that have mining, processing and refining

or marketing constraints, rather than only a single processing capacity. The method,

however, ignores economic uncertainty and is not capable of optimizing cut-off grade

policies for multi-mine and multi-commodity deposits.
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2.2.8 Extended formulations for production scheduling with uncertainty

Despite the advances in stochastic mine planning, it is evident that the aforemen-

tioned work tends to gravitate towards a traditional, step-wise optimization frame-

work (Fig. 2–1). By optimizing these aspects independently, the mine design is

certain to provide a sub-optimal use of the resource. For example, the previously

mentioned SIP models for production scheduling assume that the ore and waste clas-

sification (i.e. the cut-off grade policy) is defined a priori; conversely, the mentioned

work in cut-off grade optimization assumes a fixed production schedule. In both areas

of research, authors consistently document an increased value when using stochastic

optimization; naturally, these problems are interrelated, and combining these two

challenges into a single optimization model would certainly add value to the mining

operation. Recent work has investigated simultaneously optimizing aspects of the

mine design and production scheduling problem.

Boland et al. [22] propose a multistage stochastic optimization formulation that

optimizes the long-term production schedule, cut-off grades and ultimate pit limit.

Rather than generating a single schedule that is unaffected by geological fluctuations,

whereby the ability to meet production targets, blending constraints and the NPV

are unaffected by testing a design with another set of geological simulations, the

authors propose an interesting mathematical model that adapts to the uncertainty

as it is revealed during extraction. Rather than scheduling blocks, the method re-

quires scheduling aggregates of blocks, which may, for example, be generated using

the fundamental tree algorithm [138]. In order to obtain the scenario-dependent

cut-off grade decision, the model is decomposed into a time-separable processing
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sub-problem; the authors demonstrate that when a single processing capacity is con-

sidered, choosing the optimal destinations is a matter of solving a common knapsack

problem [169]. While being an interesting concept, the model has several limitations.

First, the use of aggregates of blocks, which are generated as a pre-processing step,

does not guarantee optimality. Second, the method cannot accommodate complex

mining operations, such as multiple processors, stockpiles, and constraints that de-

fine minimum processing capacities and blending requirements. Third, multistage

methods have limited practicality for mine design, because engineers need to modify

the design for medium- and short-term scheduling, which cannot be done easily with

an adaptive schedule. Finally, if a geological simulation is generated that is quite

different from the ones used during optimization, the optimal schedule won’t provide

a policy for how to react in that case. Boland et al. [24] proposes a novel method

for generating the minimal set non-anticipativity constraints required in multistage

optimization formulations, which may be used to substantially improve the compu-

tational efficiency of their previously proposed method.

Kumral [100] proposes a formulation that integrates geometallurgical informa-

tion, in the form of simulated mining and processing costs, and recoveries, into a

stochastic optimization model. This formulation aims to generate a single mine

production schedule and scenario-dependent block ore/waste classifications. Simi-

lar to the previously mentioned model, the scenario-dependent ore/waste classifica-

tions assume perfect geological knowledge at the beginning of each period, and are

not particularly useful if another geological simulation is tested with the “optimal”
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schedule. This may require re-optimizing a sub-problem to decide the block classi-

fications, which may itself require a large computational effort, particularly in the

presence of blending constraints. Given that the capacity and blending requirements

are specified as hard constraints, rather than soft recourse constraints that are pe-

nalized in the objective function, this sub-problem is also not guaranteed to have

a feasible solution. Moreover, this formulation is currently limited to solving only

small-scale problems, given the use of commercial mathematical programming solvers

and the number of decision variables required in the model. Kumral [102] proposes

an optimization model that attempts to minimize deviations from mining and pro-

cessing targets and is solved using simulated annealing. This formulation attempts

to not only generate a single production schedule, but, unlike the previous formu-

lation, generates a single ore/waste classification for each block. The rationale for

optimizing ore or waste classification is that market prices, recoveries and processing

costs are uncertain, thus a cut-off grade is not suitable. The author proposes fixing

blocks that have more than 80% chance of being ore to being ore, and the blocks

with 80% chance of being waste as fixed waste; anything in between is considered

to be intermediate, and the classification may be changed by the optimizer. While

this may initially sound appealing, this interpretation is somewhat limited because

a block that is certain (≥80%) and is slightly above the marginal cut-off grade may

be classified as ore; if this block is mined at the beginning of the mine life, the ore

classification does not take into the account the opportunity cost of not processing

higher-valued material.
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Menabde at al. [124] proposes a mixed integer programming (MIP) model that

considers geological uncertainty and simultaneously optimizes the ultimate pit, pro-

duction schedule and cut-off grade policy. Unlike the previous formulations that

define the destination of the block for each scenario or across all scenarios, this for-

mulation proposes a compromise between the two methods. The cut-off grade policy

is transformed into a binary decision, whereby any blocks for any simulation that

are above the optimized cut-off grade will be considered as ore. The issue of mis-

classification is non-existent; if a block is above the cut-off in one simulation, it will

be sent for processing, however, if it is below the cut-off in another simulation, it is

sent to the waste dump. By generating a robust cut-off grade policy, the decision

is interpreted as a strategic policy that is applied without knowing exactly what is

in the ground at the beginning of the production period, rather than the scenario-

dependent block destination methods, which assume that the material in the ground

is known with absolute certainty on the first day of each production period. The use

of a policy also substantially reduces the number of decision variables in the model

when compared to block-based decisions. The authors compare the same method

for both the deterministic and stochastic models. A variable cut-off grade for deter-

ministic optimization results in a 20% increase in NPV over the deterministic design

that only considers the marginal cut-off grade; the stochastic model with dynamic

cut-off grades increases the NPV by an additional 4.1%. While this may seem low,

the authors do concede that their deposit has very low geological variability, and

state that substantial benefits may be realized for highly variable deposits.
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2.3 Ore Processing and Downstream Optimization

The previous section discussed some of the major developments in stochastic

optimization for open pit mines. While many of these developments are substantial

and have shown the ability to generate mine designs and production schedules with

less risk and higher value, they are currently limited in their ability to incorporate

the downstream processes of a mining complex. This section focuses on some related

research in mining and related industries (e.g. oil and gas) that address the issues

of stockpiling, blending and complex processing streams or supply chains, often in

isolation from the mine design and production scheduling problem.

2.3.1 Optimizing with stockpiles

Stockpiles are locations in the mining complex, downstream from the mines, that

may retain material over time for future processing. They often serve two primary

functions: first, they may be used to blend materials from various sources (mines)

together to attain a more homogenous product; and second, they may be used for

strategic purposes to store material above a marginal cut-off grade but below the

optimum cut-off for processing in a later period when the optimum cut-off grade is

lower. One of the challenges with modelling stockpiles is the fact that the decision

to send or retain material in each period produces bilinear terms (a product of two

variables) in the constraints that leads to a non-linear formulation; for any given

period, the stockpile grade is not only a function of the grade of the material that is

coming from the mine, but also needs to consider the grade of the material retained

from the previous period.
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Ramazan and Dimitrakopoulos [142] modify their original SIP model to incor-

porate a stockpile. The authors model the quantities of material pulled from the

stockpile and sent to the processing plant as a recourse (scenario-dependent) vari-

able; this is useful in order to model the recourse decision at the processing plant

whereby a shortfall in ore production directly from the mine may be mitigated by

using stockpiled material. In order to circumvent the bilinear stockpile grade term,

the stockpile grade (potentially multivariate) is fixed for each period prior to opti-

mization. Unfortunately, this simplification is somewhat unrealistic, and may permit

low-grade mined material to be upgraded to a higher-grade material by being pro-

cessed via the stockpile.

Given the importance in the role of the stockpile for many mining operations,

some work has been done in deterministic cases to investigate other methods of

approximating the stockpile grade. Caccetta and Hill [29] propose a simplistic long-

term optimization model and mention the incorporation of stockpiles, however the

specifics of the implementation and solution methods are not given. Sarker and

Gunn [151] propose a successive linear programming (SLP) iterative approach to

obtaining the correct stockpile grade without considering production scheduling; the

problem is first optimized using an estimate of the stockpile grade, then the grade is

calculated using the optimal decisions, and the optimization model is updated and

re-optimized. This method, however, isn’t ideal for large-scale problems such as mine

production scheduling and does not guarantee a global optimum. Bley et al. [18, 19]

propose a method to integrate a stockpile into a deterministic MIP formulation. The

authors propose first solving a branch-and-bound node while ignoring the non-linear
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constraint that enforces that the grade of material sent to the processing plant from

the stockpile must be equal to the grade of the stockpile. In the event that one

of the nodes in the branch-and-bound tree for this relaxed MIP shows a violation

in the non-linear constraint, the optimizer is pulling metal from the stockpile and

leaving the remaining waste material behind (i.e. the grade of material taken from the

stockpile is not the grade of the stockpile itself). In this case, the authors use a spatial

branch-and-bound procedure to cut-off this infeasible solution, which can be applied

until the stockpile is guaranteed to satisfy the non-linear constraint. This method,

therefore, is an effective method for optimizing the mine’s production schedule while

incorporating non-linear stockpiles with near-optimality. The performance of the

method for large-scale tests or stochastic optimization models remains to be seen.

2.3.2 Downstream optimization in the petroleum industry

There may be many downstream storage and processing options for large mining

complexes for material after it is extracted; these may include, for example, stock-

piles, waste dumps, mills, concentrators, tailings ponds, leach pads, smelters and

refineries, among others. In an abstract sense, these are locations in the mining com-

plex that receive materials from sources, store them over time or transform them, and

produce a set of products that are retained, sold, or given to another location. Each

location may only accept and produce certain products, and may be constrained by

chemistry to only receive or produce products within a certain specification. This

definition of the downstream options and product requirements resembles the pooling

problem commonly seen in the oil and gas industries [11]. The goal of the pooling

problem is to decide, given the availability from a selection of feeds (e.g. mines),
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what quantities from each feed should be used at intermediate pools (e.g. homog-

enization piles) to achieve a desirable blended chemistry for the final product at a

minimum cost [10]. The generalized pooling problem closely resembles mining com-

plexes, whereby intermediate pools (stockpiles, concentrators, smelters, etc.) may

be connected together in series or parallel. Similar to the stockpiling problem, one

of the challenges for solving the pooling problem is related to the bilinear terms in

the formulation used to model the mixing of materials together.

Audet et al. [10] propose three formulations for the pooling problem; the first

formulation relies on flow variables, which may be amenable to network flow models,

the second formulation uses proportions of products entering a pool and the third

is a combination of the two methods. The authors assume that all attributes are

linearly additive when blended together in order to simplify the non-linear chemical

reactions that may happen when products are blended. The authors compare the

computational results from a globally optimal branch-and-cut algorithm, similar in

concept to that of Bley et al. [18], to heuristics and a variable neighbourhood search

metaheuristic using a set of benchmark examples. The authors note that they are

able to successfully apply the heuristics to obtain a near-optimum solution substan-

tially faster than exact optimization methods. Méndez et al. [126] investigates the

optimization of blending and short-term scheduling problems. An iterative algorithm

is used to approximate the non-linear blending of attributes, which, when related to

the mining context, may be used to iteratively optimize the downstream processes

when non-linear throughputs and recoveries are required. Kolodziej et al. [99] note
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that the vast amount of research related to the pooling problem assumes a steady-

state inventory, which is not realistic for mining operations that use stockpiles and

where the quality and grades of the mined materials are time-dependent. A multi-

period blend scheduling problem is developed to optimize the profits generated from

the flow and blending of materials, which is more aligned with the objectives for

optimizing the downstream processes of a mining operation.

2.3.3 Downstream optimization for mining complexes and mineral sup-
ply chains

While research related to the generalized pooling problem is quite extensive over

the past several decades, only recently have similar concepts and methodologies been

applied for optimizing the processing streams in mining complexes. The vast major-

ity of the downstream optimization research in the mining industry has focused on

iron ore operations, which may involve several mines and stockpiles, transportation

using railways and blending at the port to yield a homogenous product that meets

contractual obligations to a set of customers. Everett [54] defines ’stress’ as a useful

metric of product quality, which is defined by the root-sum of the squared deviations

from the target quality for iron, silica, alumina and phosphorus, divided by a tol-

erance level. This is a somewhat different approach from blending constraints used

in production scheduling models, where deviations from target quality are penalized

linearly, because the optimizer that seeks to find an optimal blended feed severely

penalizes large deviations from target quality, and slightly penalizes smaller devi-

ations. The author proposes a simulation-based approach to decision support for

coordinating quality of the products produced from the mine through to the product

loaded on ships to be given to customers. Everett [55] and Howard and Everett [79]
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improve on the previous decision-support system by more accurately modelling the

splitting of fine and lump products and better accounting for stockpile dilution; this

is a result of changing the stockpile models to assume continuous changes over time

rather than batches.

The previous methods attempt to simulate and provide decision-support in order

to coordinate stockpile management and blending from the mines through to the

port, however, they do not provide an integrated optimization of the various steps

to unlock additional value. Singh et al. [153] propose an integrated, deterministic

downstream model that simultaneously optimizes the allocation of trains to mines

and material sent from each port, with the goal of maximizing the medium-term

revenues for Rio Tinto’s iron ore operations in Western Australia. The authors

propose an iterative MIP formulation, where the non-linear stockpiling terms are

approximated successively, similar to Méndez et al. [126]. The optimizer reduces

the solution time to 15 minutes, substantially lower than the five hours of manual

computing time previously needed, and results in increasing the amount of material

sent to the ports by one million tonnes in a typical planning horizon, which leads to

an additional $100 million in sales.

The previously mentioned downstream optimization methods are all determinis-

tic; ignoring uncertainty in downstream optimization can have serious ramifications

on the performance of the processing streams because of the variability of each of

the attributes considered (e.g. metals), particularly on blending constraints. It is

apparent that non-linear models play a significant role in modelling the downstream

44



processes, thus considering a single, often estimated, input does not necessarily op-

timize the true performance of the mining complex. Pimentel et al. [136] propose a

multistage stochastic capacity planning model that is tested using an iron ore sup-

ply chain in Brazil. The formulation models and the flow of material from mines

through to final customers, including capacities on transportation methods between

the various destinations in the supply chain. Moreover, the multistage model inte-

grates demand (price) uncertainty, which permits important strategic supply chain

decisions, such as opening up new facilities (stockpiles, concentrators, etc.) or trans-

portation modes (e.g. trucks, rail, port), investing capital to expand the capacities for

existing facilities and transportation modes, and permanently or temporarily shut-

ting down the facilities or transportation modes. The objective of the formulation is

to minimize structural, capital and operational costs for the supply chain. Despite

the model’s complexity, however, it does not integrate the impact of geological un-

certainty into the multistage formulation. Moreover, the model does not explicitly

incorporate blending constraints, which is often of critical importance for iron ore

operations and will have a substantial impact on the strategic decisions made for the

supply chain.

Chanda [30] proposes a simplistic capacitated network flow model that aims to

optimize a mining complex that includes production from five underground mines,

an open pit mine, five concentrators, three smelters and two refineries. The model

optimizes the flow from the mines through to the final products at a minimum

cost; it is noted, however, that the materials produced from the mines is given as

a parameter, and the model does not consider uncertainty. Pimentel [135] creates
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a large deterministic model that attempts to better integrate mine-level production

with the supply chain, while including mine production capacities from the various

mines and blending requirements and the ability to procure mined material from

outside sources, in addition to many of the aspects of the previously mentioned

work [136]. Using a simplistic example that does not consider metal production or

quality from the mines, and the supply chain as a whole, the authors benchmark

their relax-and-fit heuristic when compared to a commercial optimizer. However, by

not integrating the mined product quality into the example, the authors do not need

to consider non-linear constraints that are a result of stockpiling and blending, which

would drastically complicate the model. Topal and Ramazan [161] propose a network

linear programming model for strategic mine planning that determines the amount of

materials to extract from a set of pits, which are subsequently stockpiled or treated

through a set of processing streams; in order to avoid a non-linear optimization

model, the authors employ grade bins at each location in the mining complex, which

may be used to approximate the grade of the material leaving from a destination.

2.4 Global Optimization of Mining Complexes

2.4.1 Overview of global optimization

A substantial amount of research has been done to optimize mine designs, pro-

duction schedules and the use of mined materials in the downstream processes. There

is, however, a clear disconnect in the optimization objectives between the mining and

downstream formulations; mining engineers often seek to maximize the NPV of the

mine design, however the downstream optimization models tend to minimize costs.
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More importantly, the previously discussed methods do not coordinate mine pro-

duction, processing streams, logistics and marketing in a single optimizer. Global

optimization for mining complexes addresses these shortcomings by simultaneously

optimizing multiple pits and mining faces, underground mines, multiple elements

and materials, cut-off grade decisions, stockpiling opportunities, blending, alterna-

tive processing methods and product options [166].

2.4.2 Integrated mine planning and downstream optimization

With the increase in computing capabilities, optimization models in the mining

industry have become increasingly detailed and aim to integrate both mine planning

and downstream optimization. Urbaez and Dagdelen [163] outline a mathematical

model that aims to optimize multi-mine production schedules with multiple stock-

pile and processing stream options. In their formulation, a decision variable is used

to define whether or not a parcel of material from a mine and sequence is sent to

a specific destination; the grade of material sent from a stockpile to a process is

assumed to be defined a priori. While this formulation does not model the detailed

processing paths downstream of the mills, it is an improvement over the research in

the previous section (downstream optimization) because it attempts to model mine

sequence, stockpiling and processing options. As a result, cut-off grade optimization

is implicit in the formulation. Hoerger et al. [76, 77] give an overview of Newmont’s

in-house MIP optimizer for their Nevada operations, which simultaneously sequences

the pushbacks and underground stopes from 50 mines, 20 material types, 60 destina-

tions (including waste dumps) and 8 stockpile areas. Exact details of the model and

implementation are omitted from their discussion, however, they do note that their
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model is based off that of Urbaez and Dagdelen [163] with further modifications in

order to facilitate scaling-up to their large mining complex.

Bodon et al. [21] and Sandeman et al. [150] discuss their discrete event simulation

(DES) methodology that is a coupled with an MIP optimizer, which is used to

simulate the decision making for mining supply chains from pit to port. DES is

a powerful tool that permits modelling a system and the logic that occurs within

to identify bottlenecks and potential problems; it is also able to integrate various

forms of uncertainty, such as machine breakdowns. The purpose of the optimizer is

to plan the movements of ore from the pits through to the ports, and can include

intermediate destinations such as processors, transportation systems and stockpiles.

The DES is used to take the decisions made from the optimizer and identify issues

and bottlenecks that may occur given the set of decisions. The results from this

step may be given as feedback to the optimizer to improve decision making, or to

plan the next time horizon. One of the primary benefits of this method is that very

complex systems may be modelled with a high degree of detail. There are several

challenges that are identified by the authors, including non-linear stockpiles and

blending (simplified by defining a priori), and the time required to solve each MIP

model. This model also does not attempt to optimize the mine design or production

schedule directly, but does have some leeway in sequencing the pre-defined material

to be mined.

Pimentel [135] proposes an integrated formulation to optimize short-term min-

ing, stockpiling, processing and shipping operations that is designed for iron ore
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mining operations. The optimizer has control over which work benches to mine ma-

terial from (although precedence constraints are not considered), which stockpile the

bench goes to, when to form and consume stockpiles, which products to produce at

the processing plant (fines or super-fine products). The objective function tries to

minimize production and processing costs, deviations between the short- and long-

term production schedules, in addition to deviations from stockpile and processing

plant material qualities and quantities. The short-term stockpiles are assumed to

be consumed a single period, hence there is no linkage between time periods, thus

non-linearities. The author analyzes the value of the integrated solution for a simple

example with a pit with three working benches, four homogenization stockyards, a

processing plant and a product stockyard. The integrated optimal solution is com-

pared to a solution with shipping priority, where shipping operations always get the

exact product needed, and mining and processing priority, where the mine, homog-

enization piles and processing plant all operate at optimum levels. As expected,

the integrated solution performs far better than the other approaches, generating a

solution that never fails to meet shipping quality and a balance between long-term

plan deviations and mined product quality.

Blom et al. [20] propose a multi-mine short-term production scheduling model

that integrates mining, transportation via railways and multiple blended products at

the port. Their model attempts to maximize revenues and minimize deviations from

qualities for a set of products blended at the port. The authors propose an iterative

decomposition heuristic to solve this “global problem” to avoid the complexities of

the bilinear terms required in the model. First, the a set of candidate short-term
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production schedules is generated for each mine. In this step, the objective is to

maximize the productivity from each mine for a set of lump or fine products, which

is defined by the ability to meet production targets and produce materials of desired

qualities. A set of schedules is generated by varying the upper- and lower-bounds of

the quality constraints. The sets of schedules from the mines are then given to the

port-side optimization problem, which chooses the best multi-mine schedule from

the available options, and determines the number of trainloads of ore for fine and

lump materials that are railed to a port to form a specific product. The solution

from this port-side optimization problem is then used as feedback to the mine-side

optimization problem by changing the bounds of the product quality targets. While

this is an interesting approach to integrate mine-to-port optimization, it is presently

limited by several factors: first, the model assumes that high-grade, low-grade and

waste classifications are defined a priori; second, the model assumes unlimited railing

capacity; third, the iterative decomposition method is likely to generate sub-optimal

solutions for the global problem; and, finally, the method will not likely scale to long-

term production scheduling easily, given the substantial increase in block extraction

decisions and number of schedules that would need to be generated.

Epstein et al. [52] propose an advanced MIP formulation to optimize Codelco’s

North Division copper complex. This is an interesting development because the

authors permit to optimizer to control the extraction sequence of the panels from

the open pit mines in addition to the extraction from the underground stopes for

a block caving operation. The model of the mining complex is essentially a capac-

itated, multi-commodity network flow model. In order to formulate a linear model
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that avoids issues with blending and stockpiling, the authors assume averaged grades

defined a priori at the various destinations. A heuristic algorithm is used, whereby

the linear relaxation is iteratively solved and the solution is then rounded to an inte-

ger solution. The authors show results for the optimization model when optimizing

the Chuquicamata and Radomiro Tomic mines, and benchmark the integrated opti-

mization model against the existing design and the MIP model solved, both solved

independently for each mine. The integrated optimized solution shows an increase

of 5% for using an optimizer and an additional 3% for using an integrated approach.

Groeneveld and Topal [71] develop an MIP formulation that attempts to inte-

grate operational flexibility into mining, stockpiling, processing and port capacities.

Similar to the previous method, the model is able to choose the extraction sequence

of materials from available panels. This model uses a series of stockpiles where the

grades are defined by bins (groups); in order to maintain linearity, the optimizer

only sends qualified material to the appropriate binned stockpile. This approach

analyzes the effects of price, recovery, cost and utilization uncertainty have on the

solution; the MIP model is solved for 200 scenarios independently, the the impacts

of expending capacities is analyzed. Groeneveld et al. [72] expand on the previously

mentioned model by introducing the concept of an operational schedule, which ef-

fectively attempts to find a robust schedule for the first few periods of operation,

then permits the optimizer to have “flexible” solutions that adapt to each scenario

independently for the remaining periods. One of the limitations with the author’s

definition of “flexibility” is that it is essentially a wait-and-see solution [16] that as-

sumes all stochastic parameters are known with certainty for the remainder of the
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life of the operation; by knowing these parameters far in advance, the optimizer is

certain to generate an overly optimistic design and will depict inflated NPV. Addi-

tionally, given that the authors do not consider geological uncertainty, this model

focuses solely on scheduling parcels of materials (e.g. benches) within a prescribed

pushback design generated from deterministic optimization.

Whittle [168] provides a general overview of the mechanics of their proprietary

global optimization algorithm, ProberC. First, nested pit shells are generated for

each mine independently, based on the nested pit implementation of the Lerchs-

Grossmann algorithm [113]. The algorithm then randomly schedules a feasible panel

production schedule, where a panel is defined as the intersection of phases or pit

shells with a mining bench. With the extraction sequence defined, it is known what

materials are extracted; the algorithm proceeds to optimize the processing streams

using linear programming. It then locally improves the best solutions (for the global

problem) iteratively by changing bench start and end dates and re-optimizing. While

the mechanics related to the optimization of the downstream processes have not been

discussed, the authors outline their approach to modelling the mining complex in a

general manner. Similar to the modelling method outlined by Audet et al. [10],

the authors model the flow of materials and related attributes through the mining

complex. Constraints may be applied to any of these attributes, and any of the

attributes may be used to calculate costs, throughput and revenues, for example.

The various destinations (e.g. concentrators, smelters and refineries) in the mining

complex’s processing streams are viewed in an abstract way, and are referred to as

“procedures” that act on the materials and their attributes. This results in being
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able to model the mining complex with flexibility. The specifics of the algorithms

employed, however, are proprietary and are not disclosed.

2.4.3 An integrated approach for the stochastic global optimization of
open pit mining complexes

The work discussed in the previous sub-section shows an increased effort for

simultaneously optimizing the mine sequencing and mining complex. There are two

major limitations to these methods that need to be addressed. First, there needs

to be a better coupling between mine production scheduling and downstream de-

cisions. Existing work makes assumptions on pre-defining the pit limit, nested pit

shells, phases or material to be mined in the production period. The challenge is

that, in the traditional, sequential optimization framework for open pit mine design,

each of these are based on the economic value of a block, which is not known with

certainty, and is not known prior to optimizing the extraction sequence, because of

the potential to blend with other materials. A global optimization framework will

require simultaneously optimizing the mine design and production schedule with the

destination decisions and down-stream operations.

In order to achieve this goal, it is necessary to re-visit the method in which open

pit mines are sequentially optimized. Stone et al. [154] outlines the methodology

used by BHP Billiton’s in-house optimization suite, Blasor, and is summarized in

Fig. 2–2. Rather than using a sequential framework (Fig. 2–1), which assumes a

substantial amount of information is known a priori and generates sub-optimal solu-

tions [97], this framework solves the mine production schedule first. The advantage of

this methodology is that production scheduling permits integrating multiple mines,

each with multiple materials and elements, time value of money, blending, cut-off
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grade [123, 124] or destination policy optimization, stockpiling [125] and complex

processing streams. The globally optimal production schedule defines the ultimate

pit limit and overcomes the limitations of the Lerchs-Grossmann algorithm [113]. A

set of pushback designs, which use the optimal production schedule as a guide, may

be generated, assessed and compared so the engineer can create practical mining

shapes while simultaneously maximizing the value of the design [57]. The panels,

which are the intersection of the bench and pushback, may then be scheduled similar

to the initial globally optimal production schedule.

Global optimization of production 
schedules

Ultimate pit limit and 
pushback design

Panel extraction 
optimization

Figure 2–2: A new open pit mine design and production scheduling framework for
global optimization.

The work in mine production scheduling optimization with uncertainty demon-

strates progress towards a new open pit mine design framework for global optimiza-

tion (Fig. 2–2). These methods are currently limited to simplistic mining complexes

that consist of a single mine and ore process. In order to transition from the previous

developments to a global optimization framework, it is necessary to have new for-

mulations that consider all aspects of the mining complex, including multiple mines,

blending, destination policies and detailed processing streams. In order to achieve

this, it is necessary to shed preconceived notions that have been used for decades,

such as “block value”, and evaluate these aspects dynamically where the transfor-

mations or transactions happen in the mining complex. While these concepts have
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helped to simplify the models in the past, they undervalue the value of the mining

complex as a whole. The vast majority of efforts in global optimization have focused

on deterministic optimization; developments in stochastic optimization with geolog-

ical uncertainty have demonstrated not only the ability to increase the NPV of the

mine, but also to control fundamental aspects of risk, such as the ability to meet

production targets and maintain product quality. Increasingly complex operations

require increasing complex constraints; relying on deterministic models not only mis-

leads the value of the mining operation, but can also result in serious consequences

because the variability is not properly quantified and managed.

2.5 Models of Geological Uncertainty

2.5.1 An introduction to stochastic simulation

All methods of stochastic optimization for mining operations require a set of in-

put models that are used to represent the uncertainty and variability in the mineral

deposit. From a global optimization perspective, proper assessment of both mate-

rial type and grade uncertainty is critical. Material categories may be used to not

only define candidate destinations in a mining complex, but may also be used to

differentiate qualities of the material that have an impact on the system, such as

non-additive geometallurgical attributes like hardness. Grade uncertainty may be

used to define the uncertainty related to a metal, deleterious element of mineral of

interest, which may be critical to the performance of downstream processes (e.g. iron

and silica content in a smelter). Geostatistical simulation methods are tools used

to generate equally probable scenarios of a mineral deposit, where each simulation

accurately reproduces the spatial statistics of the original drillhole data [42, 89, 92].
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This section provides a brief overview of some of the new developments in geosta-

tistical simulation methods. First, computational improvements to the sequential

Gaussian simulation framework will be discussed. Following this, a discussion on

modern multiple-point and high-order simulation methods is provided.

2.5.2 Computational improvements in traditional geostatistical simula-
tion

Sequential geostatistical simulation algorithms, a variant of Monte Carlo sim-

ulation [74], rely on the decomposition of the multivariate cumulative distribu-

tion function (cdf ), which is used to describe the mineral deposit as a whole and

can be expressed recursively as product of one-point conditional distribution func-

tions [86, 147, 149]. A simulated value for an unknown point may be generated by

randomly sampling the conditional cumulative distribution function (ccdf ), which is

then retained as future conditioning data when simulating other points. One of the

primary challenges of sequential simulation methods has been to find ways to ob-

tain a ccdf. Isaaks [83] proposes the Sequential Gaussian Simulation (SGS) method

for continuous variables, which relies on a Gaussian transformation of the cdf that

provides the computation of the ccdf using the simple kriging method commonly

used in geostatistics [40, 41, 84, 89, 120]. SGS has been the predominant method to

generate conditional simulations in the mining industry, however suffers from severe

computational limitations. For each unknown point to be simulated, the method

requires inverting a covariance matrix, a computationally demanding task (O (N3)),

and is therefore limited in practicality when simulating for very large deposits.

To overcome these computational challenges, Dimitrakopoulos and Luo [47] pro-

pose generalized sequential Gaussian simulation (GSGS) on group size ν, whereby
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groups of nodes that share a similar neighbourhood of conditioning points, such as

points that discretize a mining block, are simultaneously simulated using the LU

method [42], which only requires a single covariance matrix inversion. The authors

demonstrate the mathematical equivalence of the two methods, and the substan-

tial computational improvements that are attained when using GSGS over SGS or

LU. Godoy [65] improves on this method by developing the direct block simulation

method (DBSIM). This method first uses the GSGS method to simulate a group

of nodes that discretize a block, then proceeds to back-transform them from the

Gaussian space to the data space. Following this, in the Gaussian space, the method

then averages out the simulated nodes in the block, which is then directly used

during the simulation of other nodes. Because of the reduction in the size of the

covariance matrix when using previously simulated blocks (rather than points), the

authors note drastic improvements in computational efficiency when simulating large

mineral deposits.

Often, a mineral deposit contains multiple elements of interest, which may be

required in the optimization models. The previous methods have focused on simu-

lating a single variable, however, multivariate simulation methods [3, 164] may be

used to simulate the variables and maintain any spatial cross-correlations that are

present. Desbarats and Dimitrakopoulos [43] adapt the min/max autocorrelation

factors (MAF) [157] for applications in geosciences, which is used to spatially decor-

relate the variables of interest. Spatially un-correlated variables, which are linear

combinations of the variables of interest, are then independently simulated using

any available simulation method, and the results are subsequently back-transformed
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to the correlated space [148]. Boucher and Dimitrakopoulos [27] propose the direct

block MAF simulation method (DBMAFSIM), which is a practical tool for generating

multi-variate simulations of large deposits. In this method, DBSIM is used to gener-

ate simulations for the uncorrelated MAF factors, thus taking advantage of previous

computational improvements. One alternative method used to spatially decorrelate

variables is the uniformly weighted exhaustive diagonalization with Gauss iterations

(U-WEDGE) [130] method.

2.5.3 Modern simulation algorithms for geostatistics

The traditional geostatistical framework relies on two-point statistics in the form

of a covariance or a variogram model. These methods are limited in their ability to

describe connectivity and incorporate complex shapes or geometries that are often

seen in geology. Journel [91] gives an example (Fig. 2–3) of three distinct images that

have similar two-point statistics, despite having different levels of connectivity [92].

This concept gives rise to modern geostatistics algorithms that rely on multiple-

point [144] and high-order statistics and shed the prior belief that two-point statistics

are sufficient to characterize complex deposits.

Journel and Alabert [92] propose an extended indicator kriging system for use

with sequential indicator simulation (SIS) that incorporates high-order spatial mo-

ments. This method has rarely been applied in practice because of its practical lim-

itations, including the inability to accurately infer high-order statistics using sparse

datasets, along with the computational limitation of kriging with very large matri-

ces. Guardiano and Srivastava [73] propose a multiple point sequential simulation

algorithm called ENESIM. In order to alleviate the challenge of inferring multiple
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Figure 2–3: Limitations of the ability for two-point statistics to describe complex
geometries [91].

point statistics on sparse data sets, the authors introduce the concept of a training

image, or a geological analogue, that acts as a supplemental pattern or statistics

database for the drillhole data. Given a set of conditioning data, generally from

drillhole information or previously simulated nodes, the algorithm relies on scanning

a training image for similar “data events” to obtain a conditional probability dis-

tribution function, which may be used to simulate a value. This proposed method,

however, suffers from computational issues because the training image is searched

for each point to be simulated.

Strebelle [156] improves on the method by introducing the single normal equa-

tion simulation (SNESIM) algorithm for simulating categorical data (i.e. material
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types). Rather than scanning the training image for replicates of a data events to

build the conditional distribution function for each point to be simulated, the algo-

rithm stores the frequencies of the data events in a search tree; this helps to drastically

reduce the computational effort, however does have limitations in terms of memory

required. The method, however, can cause problems when replicates for a data event

are not found in the search tree; the algorithm will iteratively remove conditioning

points from the data event until a replicate can be found, thus deliberately ignor-

ing existing information. Some enhancements of the SNESIM algorithm to improve

the quality of the simulations generated include the use of multiple grids and target

histogram matching [116], and the ability to incorporate various local rotations and

scales [173]. Initially, one of the practical limitations of the algorithm is the amount

of memory that is required to store information in the search tree; as the size of a

template (a local window used to scan the training image for data events) increases,

the amount of memory required grows exponentially. Straubhaar et al. [155] propose

the IMPALA algorithm, which is differentiated by the fact that it uses lists to store

the multiple point statistics rather than a search tree; the primary advantage to this

implementation is the need for less memory (i.e. a linear increase in memory with

increasing template size), and the calculation of the conditional probability density

function can be parallelized. Huang et al. [81] propose a GPU-based implementation

of the “SNESIM” algorithm. GPU computing is a particularly interesting tool for

modern geostatistics algorithms that require training images because of their ability

to process the training image or dense data sets very quickly, which is a step that of-

ten takes a substantial amount of time. The authors’ implementation is more similar
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to the ENESIM algorithm, given that the training image is re-scanned for each node

to be simulated; the primary difference, however, is that by taking advantage of the

GPU’s massive parallelism, there is not a massive computational hit when searching

for replicates. The authors note a 15x speedup over the conventional SNESIM algo-

rithm. The implementation, however, is currently limited to only two-dimensional

simulations and training images.

Pattern-based simulations have recently emerged as a tool to simulate both

continuous and categorical variables. These methods are based loosely off image

reconstruction algorithms, and attempt to find and paste patterns (rather than a

single node value in the SNESIM algorithm) onto the simulation grid that closely

match the data event. The manner in which these algorithms differ is generally

related to how the pattern database is generated and retrieved. Arpat [4], and Arpat

and Caers [5] propose the SIMPAT algorithm. Rather than attempting to reproduce

univariate, bi-variate or multiple point statistics, this algorithm attempts to find

patterns that are similar to the data events by calculating the pixel-wise distance

between the data event and the patterns found in a training image. The algorithm

pastes an entire pattern over a group of points, which may be updated at a later

iteration. One of the limitations of this method is that it requires a lot of computing

time to calculate the pixel-wise distance between the conditioning data and all of the

patterns in the training image.

Zhang [174] and Zhang et al. [175] propose the FILTERSIM algorithm, which

attempts to condense the patterns found in the training image into a single number

using a set of filters that reduce the dimension of the pattern. The filters may be used
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to give a score to each pattern’s curvature, gradients and mean levels of the variable

of interest. The patterns are separated into bins of similarity using a k-means clus-

tering algorithm [117] and a prototype is formed by averaging the patterns within.

The conditioning data for a point to be simulated is then compared to the prototype;

a pattern within the nearest (pixel-wise) prototype’s class is then randomly selected

and pasted on the simulation grid. The authors attempt to make the algorithm more

data-driven by assigning varying weights when calculating the distance between a

data event and a prototype, giving more weight to hard data (drillholes), followed

by previously simulated central node of a pasted pattern, and finally, the previously

simulated exterior points from a pasted pattern. Wu et al. [170] extend the FILTER-

SIM method to alleviate some of the computational challenges. The authors note

that during the simulation process, evaluating the pixel-wise comparison between the

data event and the prototypes is computationally demanding; the authors propose

replacing the pixel-wise comparison with a filter-score comparison.

Alternative methods have been proposed to classify patterns into groups repre-

sented by a prototype. Honarkhah and Caers [78] propose multidimensional scaling

(MDS) to reduce the dimension of a set of patterns. In this method, each pattern

is mapped to a point in a new lower-dimensional space where the distances between

points represent the dissimilarity between the patterns. The authors then use a ker-

nel clustering algorithm to classify the points in the lower-dimensional space; the

authors note that kernel clustering is more appropriate than traditional k-means be-

cause of its ability to capture non-linear trends in the data points (patterns). The

method, however, may be limited in some cases because of the amount of memory
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required to define the dissimilarity matrix, which grows with the size of the training

image. Chatterjee et al. [33] propose the wavesim, an alternative pattern-based sim-

ulation method. The method uses wavelet decomposition to reduce the dimension

of the pattern database, thus making it easier and more computationally efficient

to classify the patterns and create prototypes. For categorical data sets (such as

those used to define material types), the authors also include the ability to draw the

value of a central node according to a ccdf, rather than simply selecting a pattern to

paste from the group of patterns within a prototype. Mustapha et al. [131] introduce

cdfsim, a pattern-based simulation method, which differs from others in the method

that the pattern prototypes are generated. The authors propose mapping each pat-

tern in the database to a one-dimensional real number, which can then be ordered

into a cumulative distribution function (cdf ). The prototypes that define similar

patterns may then be generated by splitting the cdf into percentiles (or clusters),

and selecting the appropriate pattern that maps to each percentile (or cluster). The

patterns are then classified to the prototypes using a pixel-wise distance function,

and the process of finding the appropriate prototype for a given set of hard data

during simulation is similar to the FILTERSIM algoirthm. Rather than visiting all

nodes on the simulation grid, the method pastes an inner patch (nodes within a

template) that are not modified in later steps. The authors note that the method

generates simulations that more accurately depict spatial connectivity than the FIL-

TERSIM method, and requires less emphasis on accurately defining the number of

clusters and template size.
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Other methods exist that are similar to the SNESIM and pattern-based simula-

tion approaches. Boucher [25] proposes a hybrid between the SNESIM and FILTER-

SIM algorithms to simulate categorical data. In the proposed method, the training

image is first scanned and partitioned using the FILTERSIM algorithm. A search

tree is then formed for each of the partitions; this ultimately leads to search trees

that capture more relevant information for complex training images. During the

simulation process, the algorithm first decides which partition is most accurate for

the node to be simulated, then uses the relevant search tree. While this method

doesn’t attempt to address the computational limitations of either of the methods,

it does attempt to provide more accurate, and therefore more useful, simulations.

Boucher et al. [26] propose the contactsim algorithm, which is more suitable for min-

ing applications where the contacts between two geological domains is of interest.

Rather than using all patterns from a training image, which can disproportionately

represent many patterns that mostly consist of a single geological unit, the method

focuses on the boundaries between different geological units to search for patterns.

The search tree method [25] is used to partition these patterns into various search

trees, which is used to provide more accurate contact patterns. Mariethoz et al. [118]

propose a direct sampling method for multiple point simulation for both continuous,

categorical and multivariate datasets. The authors propose randomly scanning the

training image and directly sampling if the pattern is close to the data event (within

a threshold). The central node is then pasted directly on the simulation grid, and

the method continues on to the remaining nodes. This method has the added benefit
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that it is one of the only multiple point simulation methods that are able to simu-

late multivariate data, which is of critical importance for the global optimization of

mining complexes. Rezaee et al. [146] extend the method for bunch-pasting, simi-

lar to the inner patch used by Mustapha et al [131], and note orders of magnitude

speedup. Huang et al [80] propose a GPU implementation of the direct sampling

method, which results in 10-100x speedups.

One of the challenges related to the practical use of the previous methods is their

lack of mathematical formality and their inability to guarantee that drillhole lower-

order statistics are reproduced; these multiple point methods often tend to treat any

point within a data event with equal importance. Given that these methods rely on

searching the training images for related patterns, if there is a conflict between the

drillhole information and the patterns in the training image, these algorithms tend to

reproduce the patterns and statistics of the training image [67]. This is particularly

problematic for mining applications, which tends to have substantially more drillhole

information than the oil and gas industry. To address these challenges, Mustapha

and Dimitrakopoulos [132, 133] propose the High-Order Spatial Simulation (HOSIM)

algorithm to simulate continuous variables. This method relies on high-order spatial

statistics [132] and Legendre polynomials [110] to construct a conditional probability

density function for each point to be simulated. By using high-order spatial statistics,

rather than multiple point statistics, this framework is mathematically consistent

framework and is also leads to a data-driven algorithm because it maximizes the

use of the drilling information, and is not heavily influenced by the quality of the

training image. Currently, however, the method is under continued development and
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has not yet been adapted for use with categorical simulation, block-simulation and

multi-variate simulation. Moreover, the method is computationally demanding. Li

et al. [115] propose a GPU implementation for the calculation of spatial cumulants,

where the authors note 17-50x speedups for two datasets; these methods, however,

have not been directly implemented in the HOSIM algorithm.

Multiple-point and high-order stochastic simulation methods have shown to be

useful tools to simulate continuous and categorical variables, which are crucial for the

proper quantification and management of risk in stochastic optimization. One of the

current challenges with existing multiple-point simulation algorithms is their reliance

on training images. Often, the performance of the algorithm and quality of the

simulation may be over-ridden by the quality of the training image and the sparsity of

the conditioning data. It is therefore crucial that great care be taken when generating

the simulations to ensure that the simulations accurately represent the deposit of

interest. Additionally, there is a need for new, computationally efficient methods to

simulate multivariate deposits, with more emphasis on statistical reproduction (e.g.

spatial cumulants), rather than pattern reproduction. Research in this field is an

ongoing effort, and will ultimately lead to simulation models that better represent the

underlying geological conditions, and, therefore, produce better and more accurate

results when coupled with a stochastic global optimization method.
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CHAPTER 3
Algorithmic Integration of Geological Uncertainty in Pushback Designs

for Complex Multi-Process Open Pit Mines

Albor and Dimitrakopoulos [2] investigate the impact of pushback design on

life-of-mine production scheduling, and note that the pushback can have a drastic

impact on the net present value and the ability to meet ore processing and mine pro-

duction targets over time. While this method permits selecting a pushback design, it

does not attempt to directly integrate uncertainty into the optimization and design

process. This Chapter presents a new method for integrating geological uncertainty

into pushback design. The objective is to use an existing starting design, and gen-

erate a similar design that mimics the average tonnages for each processing stream

contained in each pushback as the original design, while simultaneously reducing

the risk to ensure that those quantities are actually in the pushbacks. This method

integrates well into a sequential optimization methodology, and may be adapted for

use with ultimate pit limits, nested pit shells and production schedules. A full-field

study for the Escondida Norte mine, a large deposit that contains over 176 000

blocks, demonstrates the ability to modify an existing pushback design, generated

with BHP Billiton’s Blasor software, and substantially reduce the risk of materials

that can be sent to the various processing streams.
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3.1 Overview

The objective of pushback (or cutback or phase) design is to provide a long-term

guide for the sequence of extraction of material from an open pit mine over time such

that the net present value (NPV) of the mine production schedule is maximized [38,

82]. Conventional mine design and production scheduling [75, 134, 158, 167] is a

step-wise procedure that only considers a single input model consisting of the ex-

pected metal content for a block of material. In the case of complex deposits, the

input models may consist of various material types, which define the set processing

destinations that the rock can be sent to, along with zones that require different

slope angles to ensure wall stability.

As the complexity of the deposit increases in terms of number of elements (met-

als, deleterious elements), materials and candidate destinations, the conventional

framework for mine design fails in the sense that it only sees an expected value for

each element and material type and does not consider the interactions of the uncer-

tainties between the grades and material types and the compounded effect that it

may have on the various processing paths and the final economic value of the mine

design. The assumption of constant inputs for each block in the orebody model may

therefore result in an unrealistic mine design in terms of practicality and ability to

meet annual production targets [45]. Frameworks for optimization under geological

and economic uncertainty (referred herein as stochastic optimization methods) have

been developed over the past decade to address many of the shortcomings that are

inherent in conventional optimization methods.
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Albor and Dimitrakopoulos [2] integrate pushback design into the stochastic

optimization framework by considering the influence of the number of pushbacks

and pushback sizes has on the risk profiles for production schedules. The authors

propose grouping a series of nested pits into a specified number of pushbacks by

evaluating the combinations in terms of approximated discounted economic value.

The authors generate life-of-mine production schedules for a mine design based on

a varying number of pushbacks using a SIP formulation [50, 142], and document

the effects that the step-wise procedure has on the risk profiles of the production

schedule. Selecting the best pushback design requires comparing the schedules for

the different designs in terms of value, maximum deviations and stripping ratios over

the life of the mine. By choosing an optimal pushback design, the authors are able to

increase the net present value of the production schedule for a sample copper deposit

by approximately 30% over conventional methods; this increase is directly related to

the pushback design that enables better risk management and extending the ultimate

pit limits. While adding substantial value to the mine design, this framework for

pushback design under uncertainty is computationally intensive, given that a SIP

needs to be solved for each pushback design. The methodology is also limited by the

fact that uncertainty is not directly incorporated in the pushback design but rather

incorporated in the life-of-mine production scheduling process.

Meagher et al. [122] extend the parametric maximum flow/minimum cut ap-

proach [75, 134] to account for multiple orebody representations and multiple metal

price simulations. The push-relabel algorithm generates a minimum cut that min-

imizes the sum of the ore left outside of the pit plus the waste mined inside. To
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account for multiple geological simulations, the authors introduce infinite capacity

bi-directional arcs between the blocks in each of the simulations to guarantee that

if a block is extracted in one simulation, it must be extracted in all simulations. By

incorporating multiple simulations and applying a parameterization, the algorithm

is able to see blocks that not only have high value, but also blocks that have a high

probability of being ore.

Asad and Dimitrakopoulos [8] extend the parametric maximum flow algorithm

for pushback design under uncertainty and attempt to control the relative differences

in sizes between pushbacks. The authors use the subgradient method to accommo-

date knapsack constraints for ore quantities in the pushback [158] and simultaneously

minimize the differences in sizes between pushbacks. The authors apply the method

on a copper deposit and compare the same method when solved without attempting

to control the “gap” between pushbacks; when the gap control is used, the algo-

rithm generates pushbacks that are much more practical (i.e. relatively equally sized

pushbacks) than when the gap control is not used.

While the results thus far from the minimum cut/maximum flow framework are

promising, the method is limited by its inability to simultaneously accommodate

joint local uncertainty for both grades and material types that is available through

the geological simulations; in the network flow framework, for any given block in a

geological model, all simulations that have a positive economic value are grouped

together, and all simulations with a negative economic value are grouped together,

disregarding the local combinations of positive and negative blocks that any given

geological simulation contains.
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One alternative to using the network flow methods for pushback design is to

use metaheuristics, which do not guarantee a truly optimal solution, however can

be used to find a high-quality solution in a reasonable amount of time. One suc-

cessful application of metaheuristics in mining is the use of the simulated annealing

algorithm [60, 98] for life-of-mine (LOM) production scheduling under uncertainty.

Godoy [65] proposes using an initial production schedule design and iteratively shift-

ing blocks between production periods, with the ultimate goal of minimizing devia-

tions from ore and waste production targets. While the concept of an ore or waste

production target is not directly transferable from production scheduling to pushback

design (given that pushbacks can be defined over a longer and variable timescale), the

methodology with simulated annealing used is general and suitable for many types of

mining problems. For designing pushbacks in particular, the underlying formulation

for minimizing deviations and optimization methodology using simulated annealing

is directly transferrable and easily generalized for multiple processes, where the tar-

get for each destination (waste or processors) can be described by the average over

all simulations.

This chapter contributes a generalized stochastic pushback design algorithm that

modifies an initial design to minimize the variability of the material that is sent to

each destination over the geological simulations using the simulated annealing algo-

rithm. This method is capable of optimizing real-world deposits, while simultane-

ously considering multiple (jointly simulated) elements [27, 148], simulated material

types [156] that define multiple processing destinations and multiple zones with vari-

able slope angles. The goal of the algorithm is to modify an existing pushback design
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to better account for the joint local uncertainty in metal grades and material types

simultaneously, while remaining similar to the original design in terms of pushback

tonnages and the tonnages sent to the various destinations, which indirectly leads to

a reduced level of risk in the economic value of the design. The method is readily

and easily incorporated into any conventional or stochastic optimization framework,

such as those previously mentioned. In the following sections, two formulations for

modifying existing pushbacks that incorporate joint local grade and material type

uncertainty are described, along with the implementation using the simulated an-

nealing algorithm. The methods are then applied in a case study for BHP Billiton’s

Escondida Norte mine, Chile. Finally, conclusions and recommendations for future

work are discussed.

3.2 Modifying Pushback Designs to Manage Geological Uncertainty

The contribution of this work is a computationally efficient and general method

for modifying an existing pushback design to accommodate joint local uncertainty in

terms of grade and material types simultaneously for complex mineral deposits and

mining chains, where the material type defines the set of destinations that the block

can be sent. Two formulations are proposed to achieve this, and both are similar in

nature to the formulations used for mine production scheduling using the simulated

annealing algorithm [1, 65, 111]. Unlike the methods used for life-of-mine (LOM)

production scheduling, which have specified production targets for mining equipment

and destinations, pushback design is much more general and does not necessarily have

consistent or constant targets for each phase. For this reason, an initial pushback

design is required to specify initial targets for each phase, which can be in the form of
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a conventional pushback design, pit shells generated by a parametric algorithm or a

randomly generated design with specified pushback size targets. The ultimate result

after applying the proposed methodology is a mine design that mimics the same

average tonnages in each pushback for each destination as the starting design (hence

total size of pushback) and simultaneously minimize the variability of the tonnages

sent to the various destinations over the set of geological simulations. Given that

the variability in tonnages is strongly linked to the variability in the economic value

of the material within the pushbacks, the proposed algorithm also indirectly reduces

risk associated with the economic value of the design. The proposed methods can be

easily integrated into existing frameworks for mine design and production scheduling

(deterministic or stochastic), and does not drastically change the original design in

terms of tonnages sent to the various destinations.

3.2.1 Formulations for modifying a starting design

Formulation #1

The first formulation aims to minimize the average absolute deviation (differ-

ence) from a target tonnage over all geological simulations [27, 156], where the target

tonnage for each destination and pushback is defined as the average tonnage over the

available simulations and the starting pushback design. This formulation is similar

to the objective function proposed by Godoy [65] for production scheduling, where

Godoy’s ore and waste production targets are replaced by the average tonnages for
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each destination from the starting pushback design. The formulation for the objec-

tive function is as follows:

min f (x) =
D∑
d=1

P∑
p=1

E
{
|T ∗d,p (s)− Td,p|

}
(3.1)

where:

• d ∈ {1, ..., D} represents the indices for the destinations or processes that mined

material can be sent to.

• p ∈ {1, ..., P} represents the indices for the pushbacks.

• s ∈ {1, ..., S} represents the indices for the input orebody simulations.

• T ∗d,p (s) represents the quantity of material (i.e. tonnes) sent to process d in

pushback p in scenario s for the current (modified) pushback design.

• Td,p represents the average quantity (tonnage) of material sent to process d in

pushback p over all geological simulations for the initial pushback design, i.e.

Td,p = 1
S

∑S
s=1 T

0
d,p (s), and remains static throughout the optimization process.

• E
{
|T ∗d,p (s)− Td,p|

}
= 1

S

∑S
s=1 |T ∗d,p (s)− Td,p| represents the expected value of

the deviations from the targets over all geological simulations.

Formulation #2

One of the potential issues that may arise with using Formulation #1 is that

it only evaluates changes based on a linear change in tonnage’s absolute deviation.

If there is a drastic difference in target quantities between the destinations, the

optimizer may reduce the variability of material sent to one pushback but drastically

increase the variability of material sent to another process because it is smaller in size;

this is directly related to the well-known volume-variance subject that is studied in
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geostatistics [93]. Another proposed formulation is to evaluate the square deviations

from the targets and standardize them by their target size. This helps to avoid

the issues with large discrepancies in quantities of materials sent to the processes,

and provides a better measure of the variability of material going to each process.

The formulation of the objective function is as follows, and uses the same variable

nomenclature as Formulation #1:

min f (x) =
D∑
d=1

P∑
p=1

E
{(
T ∗d,p (s)− Td,p

)2
}

Td,p
(3.2)

3.2.2 Implementation using simulated annealing

Given that the proposed objective functions are mathematically non-linear,

metaheuristics are well-suited for performing the optimization; rather than having

to define an extremely large number of precedence constraints for each block in the

model that is required for traditional optimization models, metaheuristics are able to

simplify the formulation by implicitly obeying slopes and various other constraints

when performing modifications to the pushback design, thus slope constraints are al-

ways respected at every iteration of the algorithm. The algorithms use the simulated

annealing framework to perform the optimization based on the proposed objective

functions [60, 98].

Simulated annealing algorithm

Algorithm 1 outlines the method for pushback design with simulated annealing.

The underlying principle of simulated annealing is to start with an initial solution,
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and gradually make perturbations, or shifts in the solution vector, where the proba-

bility of accepting sub-optimal perturbations (in terms of the variability of the design)

decreases as the algorithm proceeds. Initially, the algorithm may accept sub-optimal

solution shifts in order to attain a better solution in a future iteration (referred to

as solution-space exploration). The starting pushback design is represented as a N -

dimensional vector, x0, where each component j ∈ {1, ..., N} of the vector x0, x0
j = p,

represents the pushback (p) that block j is initially assigned to. The optimal desti-

nation for each block j in each simulation is determined by the undiscounted cash

value, and stored in a vector, dest (see Sect. 3.2.2). The algorithm commences with

a high annealing temperature, T , and is gradually reduced using a cooling factor, k,

where k < 1. This temperature reduction is performed every nitercool iterations. At

each iteration of the simulated annealing algorithm, a block j is randomly selected to

be shifted from pushback p to p′ (see later for details). The updated solution vector

is represented by xnew := x ⊕ x (ρ (j) , p′), where x (ρ (j) , p′) is the original solution

with the modifications required to shift the set of blocks ρ (j) to pushback p′. The

annealing algorithm then randomly accepts or rejects the shift in solution based on

a probability distribution, P (f (xnew) , f (x) , T ) < rand():

P (f (xnew) , f (x) , T ) :=


1 if f (xnew) ≤ f (x)

exp (− |f (xnew)− f (x)| /T ) otherwise

(3.3)

where f (xnew) is the value of the objective function (Eq. (3.1) or (3.2)) for the

candidate (shifted) pushback design, f (x) is the value of the objective function for the

pushback design from the previous solution, and rand() ∈ [0, 1] is a uniform random
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number. As the annealing temperature T decreases, the probability of accepting a

sub-optimal shift in solution, in terms of the objective function value, decreases. If

the shift is accepted, the current solution xnew overwrites the previous solution x. If

the current pushback design has the best objective function value discovered up to

that point in the algorithm, xnew overwrites the global best solution, x∗. Similarly,

if the optimizer is exploring a solution that is too far away from the global best

solution by a factor of divergencecriteria > 1, the global best solution, x∗, replaces

the current and previous solutions, xnew and x, respectively.

Block destinations

The proposed implementation requires assumptions based on the destinations for

a given block for each geological simulation. Conventional mine design frameworks

assume that the pushback design is performed prior to production scheduling, thus

the truly optimal destination for each block and each geological simulation is not

known a priori. For this reason, a greedy approach is used based on the destination

that gives the highest recovered economic value. This assumption is common in

pushback design for the vast majority of the currently used mine design optimizers

as a means of simplification. The algorithm accepts multiple metals or deleterious

elements and performs the calculations for the undiscounted economic block values

accordingly. Material codes can be used to define where given block can be sent; for

a set of destinations d ∈ {1, ..., D}, let Ex (j, s) ⊂ {1, ..., D} denote the destinations

that block j cannot be sent to in simulation s, given its material code. The value of

a block valuej,d,s for block j when sent to destination on d in simulation s can be
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Algorithm 1 Modifying pushbacks with simulated annealing

x0 . The starting pushback is read
dest . Vector of destinations for each block & simulation based on $ value
f (x0) . Objective function value (Eq. (3.1) or Eq. (3.2))
T 0 . Initial temperature
k . Cooling factor
nitercool . The number of iterations to perform before applying k to T
divergencecriteria . Decides whether or not to revert to the global best solution
procedure SimulatedAnnealing(x0, dest, f (x0), T 0, k, nitercool,
divergencecriteria, end)

x← x0 . Setting the current solution to the starting pushback
xnew ← x0 . The candidate solution that x can be shifted to
x∗ ← x0 . The current best solution
f (x)← f (xnew)← f (x∗)← f (x0)
T ← T 0 . Current temperature
nitertotal ← 0 . Number of iterations performed in the algorithm
end← false . Algorithm will terminate when true
while end = false do

nitertotal ← nitertotal + 1
if nitertotal mod nitercool = 0 then . Reduce the temperature

T ← T · k
end if
candidatefound ← false . Finding a new pushback design
while candidatefound = false do

j ← RandomlySelectBlock(x) . Select a block to change
p = x0

j

p′ ← RandomlySelectAnotherPushback(x, xj, p)
if IsAcceptableChange(x, j, p, p′) then . See Sect. 2.2.3

ρ (j)← ReturnCandidateBlocks(x, j, p, p′) . See Algorithm 4
candidatefound = true
xnew ← x⊕ x (ρ (j) , p′)

end if
end while
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Algorithm 2 Modifying pushbacks with simulated annealing - Continued

if P (f (xnew) , f (x) , T ) ≥ random() then . Accept or reject new design
x← xnew
f (x)← f (xnew)

end if
if f (x) > divergencecriteria · f (x∗)

x← x∗ then . Reset solution to global best
xnew ← x∗

f (x)← f (xnew)← f (x∗)
end if
if x < x∗ then . Update the global best solution

x∗ = x
f (x∗)← f (x)

end if
if nitertotal ≥ nitermax then . Termination condition

end← true
end if

end while
end procedure
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calculated as follows:

valuej,d,s =
M∑
m=1

gj,m,srj,d,m,s (Vm − SCm)− (Mj,s + Pd,j,s) (3.4)

where j denotes the block index, d ∈ D\Ex (j, s) denotes the potential destinations

for block j based on its (possibly simulated) material code, s ∈ {1, ..., S} denotes

the index of the geological simulation, m ∈ {1, ...,M} denotes the metal type (or

deleterious element), gj,m,s represents the metal content of block j for metal m in

simulation s, rj,d,m,s represents the recovery of metal m in block j when sent to

destination d in simulation s (note that sending a block to waste will yield a recovery

of 0), SCm denotes the selling cost for metal m, Vm denotes the value of metal m

(which can take on positive or negative values, depending on whether or not it is a

deleterious metal), Mj,s is the mining cost for block j in simulation s (where a mining

cost adjustment factor, MCAF, can be applied) and finally Pd,j,s is the cost to treat

block j at destination d, which can be dependent on the tonnage of the block in

simulation s. It is noted that in practice, Eq. (3.4) may need to be more complex for

a given mine, however if it is possible to model the value mathematically, replacing

Eq. (3.4) is trivial. The optimal destination d for block j in simulation s can then be

determined as the destination that generates the maximum profit or minimum loss:

valuej,s = argmax
d
valuej,d,s (3.5)

While the previously outlined method for generating block values, hence desti-

nations, is common in most mine design software for generating pushback designs,

80



there are more advanced methods that should be considered in the future. Generally,

the conventional framework for pushback design that the majority of mine planning

software currently used in the industry needs to be reversed: the pushback designs

should be generated using a production schedule, given that the production schedule

better represents the time dimension, which impacts the net present value of the

mine design and considers the annual production capacity constraints. One example

of software that operates in this manner is BHP Billiton’s Blasor [154], which is not

commercially available. However, in the proposed framework, this modern method-

ology is computationally intensive given that the pushback design and production

schedule would need to be solved simultaneously. As a result, the proposed method-

ology is best suited for a conventional framework that generates pushbacks prior to

production scheduling.

Solution shifting

A shift of the solution vector is a perturbation of the pushback design; a central

block j is randomly selected, and, if it is a candidate for shifting the block from

pushback p to p′, the block is then permitted to be tested according to the accept or

reject criterion of the simulated annealing algorithm (Algorithm 1).

The ability for a candidate block to be shifted to a different pushback is based on

the directly adjacent blocks and the number of predecessors or successors (overlying

or underlying blocks, respectively) that need to be corrected to ensure that the slope

constraints are respected. Consider a randomly selected block j from Algorithm 1

that needs to be checked if it is a suitable candidate for shifting. Let (i, j, k) denote

the coordinates (IJK coordinate system) of block j, and let ρ (j) denote the list of
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blocks that need to be corrected to guarantee slope stability. Additionally, consider

the minimal sets P (j) and S (j) of predecessors or successors, respectively, for any

block j, which can be calculated with variable slope angles; see Khalokakaie et al. [95]

for a description of the algorithm to generate variable predecessor sets. Algorithm 4

is used to verify whether or not the block is a suitable candidate for shifting. The al-

gorithm uses a breadth-first-search (BFS) algorithm [35] to explore the predecessors

or successors that may need fixing up; if there are too many corrections that need to

be made (greater than or equal to totF ixups), the algorithm stops exploring j and

attempts to find another candidate block. The reason for quitting after totF ixups

corrections is that Algorithm 2 is the bottleneck for the simulated annealing algo-

rithm’s performance, and allowing the algorithm to continue the BFS substantially

increases the algorithm’s running time. It has been noted experimentally that it is

sometimes useful to allow the user to set totF ixups = ∞, which is referred to as

an aggressive shifting strategy, as it can often help the algorithm get out of local

optima faster. It is noted that the BFS algorithm uses a queue data structure, where

the predecessors or successors are explored in a first-in-first-out (FIFO) manner us-

ing generic Enqueue and Dequeue functions [35]. The algorithm either terminates

prematurely and states that the randomly selected block j is not a candidate for

shifting, or approves the candidate block and returns a set of blocks that need to be

shifted to pushback p′ to guarantee slope stability.
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Algorithm 3 Check if block is a candidate for a solution shift

function IsAcceptableChange(x, j, p, p′)
. Let x(i,j,k) = p∗ denote that the block located at coordinates (i, j, k) is in

pushback p′

isCandidate = true
. Check to see if overlying and underlying block are in the same pushback

if xj (i, j, k − 1) = xj (i, j, k + 1) then
isCandidate = false

end if
. Check to see if the adjacent blocks are in the same pushback

if xj (i+ 1, j, k) = xj and xj (i− 1, j, k) = xj and xj (i+ 1, j, k) = xj and
xj (i, j + 1, k) = xj and xj (i, j − 1, k) = xj then

isCandidate = false
end if
return isCandidate

end function

3.3 Application at Escondida Norte Mine, Chile

The two proposed formulations for modifying pushback designs to simultane-

ously account for grade and material type uncertainty are tested at BHP Billiton’s

Escondida Norte mine, Chile.

3.3.1 Overview of the Escondida Norte Mine

The Escondida mining operation is currently the world’s largest open pit copper

producer, located 170 km southeast of Antofagasta in northern Chile. For this case

study, only a portion of the Escondida mining complex is being considered, called

Escondida Norte, which contains approximately 176,000 blocks that are 25·25·15

cubic meters in size. The mine has provided fifty conditional simulations that contain

simulated copper grades, recoveries, tonnage and five simulated material types; the

material types are classified as waste, sulphides (low or high recovery), mixed and
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Algorithm 4 Check if block is a candidate for a solution shift

function ReturnCandidateBlocks(x, j, p, p′)
ρ (j)← {j} . Initialize the candidate set
searchUp← true . Defines if blocks above/below may violate slope angles
if p′ > p then

searchUp← false
end if
for all u ∈ {1, ..., N} do . Initialized vector of explored blocks in BFS

explored [u]← false
end for
Enqueue(Q, j)
while Q 6= ∅ do

u = Dequeue(Q)
fixupCount← fixupCount+ 1
if fixupCount ≥ totF ixups then

return ∅ . Too many corrections required.
end if
Adj (u)← ∅
if searchUp = true then

Adj (u)← P (u) . Search predecessors (above) of u
else

Adj (u)← S (u) . Search successors (below) of u
end if
for all v ∈ Adj (u) do

if explored[v] = false then
explored[v]← true
if searchUp = true and xv > p′ then

ρ (j)← ρ (j) ∪ {v} . Needs to be corrected to p′

Enqueue(Q, v)
end if
if searchUp = false and xv < p′ then

ρ (j)← ρ (j) ∪ {v} . Needs to be corrected to p′

Enqueue(Q, v)
end if

end if
end for

end while
return ρ (j)

end function
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oxides. Escondida Norte has already mined or is in the process of mining the first

two pushbacks (out of a total of 10); this study tests the proposed formulations on

the remaining pushbacks (#3 to #10), and will herein refer to these pushbacks as

#1 to #8. The geological simulations, which contain simulated copper grades and

material types, also specify four zones that represent areas that have separate slope

angles. In particular, the slopes are set as 33◦, 35◦, 41◦ and 35◦ for the first, second,

third and fourth zones, respectively.

Escondida Norte is capable of extracting a total of 500,000 tonnes per day (500

ktpd); of which the waste goes directly to the waste dump (unlimited capacity), the

sulphides have the option to go to one of two mills (both having a capacity of 60

ktpd) or the bio-leach pad (unlimited capacity), the mixed ore can go to the bio-

leach pad, and finally the oxide material can go to the acid leach plant (60 ktpd).

Figure 3–1 shows a flow chart for the potential destinations that each material can

be sent to. The copper recoveries for each of the processes are specified for each

block in each simulation, and were provided by the mine. The material types (which

affect candidate destinations) are also simulated variables, which are specified in the

geological simulations. Given that both the Escondida and Escondida Norte mines

feed the two mills, the geological simulations show similar recoveries for both mills

and the material codes do not distinguish between the two mills, the case study is

simplified such that the Escondida Norte material only goes to one of the mills; it is

not expected that this decision will have a significant impact on the case study given

that the recoveries are similar, and provides a simpler analysis of the algorithm’s

optimization performance.
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Figure 3–1: Flow chart of materials to various destinations at the Escondida Norte
mining operation.

It is assumed that the copper selling price is $1.90/lb, with a selling cost of

$0.2/lb. The base mining cost is $1.40/t, with a depth-based mining cost adjustment

factor applied and is specified in the geological models. The milling, bioleach and

oxide leach costs are assumed to be $5.50/t, $1.75/t and $4.25/t, respectively. Table

3–1 shows the target tonnages for each pushback and process from the original design

that the annealing algorithm tries to maintain (while simultaneously reducing the

variability). It is noted that the target tonnages have all been scaled proportionately.

3.3.2 Numerical results and analysis

Both proposed formulations are tested on a set of 20 geological simulations.

In terms of change in objective function values (evaluating the objective functions

proposed in Eqs. (3.1) and (3.2) before and after modifying the pushback designs),

Formulation #1 indicates a decrease of 35% and Formulation #2 indicates a decrease
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Table 3–1: Target tonnages for each process defined by the average tonnages for
each destination over all orebody simulations in the starting design.
Pushback Mill Target

(Mt)
Waste Tar-
get (Mt)

Oxide
Leach
Target
(Mt)

Bioleach
Target
(Mt)

1 100 4.68 0.64 1.41
2 1.13 24.75 20.58 2.71
3 79.54 94.10 9.17 7.91
4 139.89 80.20 23.08 19.67
5 176.22 170.52 0.03 4.61
6 323.77 435.85 0.42 11.47
7 128.40 287.08 10.16 29.52
8 161.84 363.79 2.83 5.83

of 61%. In both cases, it takes approximately 1.5 hours to obtain a solution on

a Intel i7 2.66 GHz MacBook Pro with 8GB RAM; it is noted, however, that it

takes less than 30 minutes to converge on a pushback design within 10% of the final

solution. Table 3–2 shows how the three designs (original and two designs from

the proposed formulations) perform when evaluating using the proposed objective

functions (Eqs. (3.1) and (3.2)). When considering Formulation #1, described by

Eq. (3.2), the annealed design that was optimised using Formulation #1 (Design

1) reduces the original objective function value by 35%. Interestingly enough, when

Design 2 (generated by annealing with Formulation #2) is tested using Eq. (3.2), the

resulting decrease in objective function value is higher than Design 1, indicating that

Formulation #2 is outperforming Formulation #1; this is likely caused by its ability

to better handle variability with its square term. When the designs are evaluated

using Eq. (3.2), as previously mentioned, Design 2 (generated by annealing with
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Table 3–2: Objective function values when the three designs are tested with the
proposed objective function formulations (and respective percent reduction).

Phase Design Formulation #1 (Eq. (3.1)) Formulation #2 (Eq. (3.2))
Original 19,425,023 1,594,155
Design 1 12,624,898 (-35%) 1,099,249 (-31%)
Design 2 11,962,492 (-38%) 629,568 (-61%)

Formulation #2) reduces the initial objective function value by approximately 61%.

Design 1 does not perform nearly as well under Eq. (3.2), and only reduces the

objective function value in Eq. (3.2) by 31%. This is largely caused by the fact that

Formulation #1 does not consider the differences in sizes between the pushbacks.

This indicates that the design generated by Formulation #2 outperforms Formulation

#1 for either objective function equation, and thus provides better designs, in terms

of risk reduction.

Given that the tonnages going to each of the destinations can vary significantly

between pushbacks (e.g. mill tonnage in pushback #2), the following analysis has

been standardized in terms of the target quantities of materials for each destination

and each pushback to provide a clear view of the changes in the risk profile, i.e. for

any destination p, pushback t and simulation s, the standardized risk for simulation

s is defined as:

StdRiskd,p,s =
T ∗d,p (s)

Td,p
(3.6)

For this analysis, the risk profiles are defined by the minimum and maximum

standardized risk (Eq. (3.6)) over the simulations for each destination and each
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pushback; while separating the risk profiles into three graphs for each design and

showing the risk profiles for all simulations may lead to a better understanding of

the differences in performance between the two algorithms, comparing the minimum

and maximum standardized risk values on a single graph is much more clear. It is

noted that in the standardized graph, the target value is 1.0 (on the vertical axis);

a standardized risk value of 1.6, for example, indicates that one simulation has the

potential to have 60% more tonnage than the target indicated in Table 3–1. Similarly,

a value of 0.4 indicates the potential to have 40% of the target indicated in Table

3–1.

Figure 3–2 shows the standardized mill tonnage risk profiles for the original

pushback design, and the designs after using Formulations #1 and #2. Both pro-

posed formulations are able to substantially decrease the minimum and maximum

risk in the second pushback when compared to the original pushback design, however

it is noted that the mill tonnage in pushback #2 is substantially smaller than the

other pushbacks, hence would not likely have a significant impact on the mine’s op-

erations. Both proposed formulations are able to reduce the downside risk (tonnage

below the target) in pushbacks #3 through #7 from the original design, which all

have large mill tonnages and thus the reduction in risk is likely to have operational

significance. In general, both formulations perform very similar in terms of reducing

the minimum and maximum risk of the pushback designs, with some improvements

from Formulation #2 over Formulation #1 in pushback #2.

Figure 3–3 shows the risk profiles for the waste tonnage for each pushback. It

can be seen that the original design has a substantial amount of risk in waste tonnage
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Figure 3–2: Standardized risk analysis for mill tonnage in the original, Formulation
#1 and Formulation #2 designs.

for the first pushback; both Formulations #1 and #2 substantially reduce this stan-

dardized risk from approximately 50% to (+29%/-15%) and ±8%, respectively. This

risk, however, is associated with a small target waste tonnage, hence the reduction in

variability is not expected to have any operational significance. Figure 3–3 also indi-

cates a reduction in the downside risk (standardized risk for waste tonnages greater

than 1) from both formulations by approximately 10% for pushbacks #4 through

7, which confirms the result of reducing the downside risk in mill tonnage in Fig.

3–2. It is clear that once again, the difference in the performance between the two
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proposed objective function formulations is almost negligible for the minimum and

maximum standardized risk values. There is a slight improvement for the minimum

and maximum standardized risk profiles by Formulation #2 in the final 3 pushbacks,

however it is not significant.
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Figure 3–3: Risk analysis for waste tonnage in the original, Formulation #1 and
Formulation #2 designs. Note that the waste tonnages have been standardized to

the original design’s target size.

Figure 3–4 shows the standardized risk profiles for the tonnage sent to the oxide

(acid) leach process. All three designs show similar standardized risk profiles, with

the exception of pushback #5, where the original design shows a drastic amount of

risk in tonnage. Formulation #1’s standardized risk profile for pushback #5 shows

91



an increase in risk, whereas Formulation #2 shows a drastic reduction in risk. It is

noted, however, that the total tonnage sent to the acid leach process in pushback

#5 amounts to approximately 2 days of the mine’s production, and this variability

is therefore not expected to have a drastic effect on the mine’s overall value.

Figure 3–5 shows the standardized risk profiles for bioleach tonnage. In this case,

there is a clear difference between the two methods; Formulation #1 does not appear

to obey the target tonnages, which is likely a result of the fact that the target sizes for

the bioleach process is smaller than the mill and the optimizer is reducing the overall

risk of the design by shifting it to the bioleach process; this is a perfect example for

why Formulation #2 was proposed. Formulation #2 generates entirely different risk

profiles that lead to higher quantities of mixed (bioleach) material mined in the first

and third pushbacks, and reduced quantities mined in the fifth and eighth pushbacks.

Overall, it appears that Formulation #2 was able to reduce the risk in the bioleach

tonnage over the original design; while the profiles may appear to fluctuate around

different means, the difference between the minimum and maximum curves is smaller

for this design. This is not a significant change given that the quantities of mixed

material in these pushbacks is low compared to the other pushbacks.

Table 3–3 shows the total undiscounted cash value for each of the pushbacks for

the three designs; it is noted that the cash values have been scaled arbitrarily and

do not reflect reality. Both designs that result from the two proposed formulations

have 7-10% higher undiscounted value in the first pushback than the original design.

This difference is recovered by the original design in pushback #3, however both
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Figure 3–4: Standardized risk analysis for oxide tonnage in the original,
Formulation #1 and Formulation #2 designs.

formulations show a 10-12% increase in value for the fourth pushback over the orig-

inal design. By moving the undiscounted cash values forward through the life of the

mine, the designs generated by the proposed formulations may lead to an increased

net present value after production scheduling is performed because discounting will

favour the higher-valued pushbacks mined early in the mine’s life; however, these

assumptions will need to be confirmed with stochastic LOM production schedul-

ing. Given that a fair comparison between the deterministic and stochastic mine
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Figure 3–5: Standardized risk analysis for bioleach tonnage in the original,
Formulation #1 and Formulation #2 designs.

design frameworks would require a substantial amount of detail regarding long-term

production scheduling [2], this comparison is will be a topic of future research.

Figure 3–6 shows the risk analysis of undiscounted values, where the values

are standardized in terms of the design’s own average undiscounted value (rather

than in terms of the original design used for standardized risk analysis of tonnages).

For pushbacks #1 to #3, the differences between risk profiles for all three designs

are negligible, however the differences are more pronounced for the later pushbacks,

where the proposed formulations show substantially less risk than the original design,
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Table 3–3: Average undiscounted cash values for each pushback for the starting
designs and the designs after applying the proposed formulations (values have been

scaled).

Pushback
Average Undiscounted Value

Starting design
($M)

Formulation #1
design ($M)

Formulation #2
design ($M)

1 100 106.6 109.82
2 16.37 17.26 17.91
3 66.72 65.19 58.74
4 98.42 107.78 110.28
5 78.65 77.74 80.27
6 131.32 119.00 116.44
7 45.64 46.63 49.12
8 39.12 36.04 33.66

in the order of 10 to 20%. This is a result of reducing the risk for the mill and waste

tonnages for pushbacks #4 through #7 discussed previously.

The undiscounted value risk profile for the original design performs extremely

well, in specific, there is very little risk in the first pushbacks, and grows gradually

for the remaining pushbacks; this result is generally not expected, given that con-

ventional mine design frameworks do not understand uncertainty that is represented

through a set of geological simulations, and thus do not understand the effects of

deferring it to later pushbacks (or production periods). Using a conventional frame-

work, it is expected that the risk profiles are substantially more erratic than what

is shown in Fig. 3–6 because there is no control over the uncertainty. In order to

incorporate this risk-deferral of undiscounted cash flows in any of the proposed for-

mulations, one can simply add a penalty cost to the variance of undiscounted cash
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flows, where the penalty cost is reduced for each subsequent pushback. Similar con-

cepts are used for production scheduling under uncertainty with stochastic integer

programming [50, 142]).
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Figure 3–6: Standardized risk analysis for the undiscounted cash values for the
original pushback design and Formulation #1 and Formulation #2.

Figure 3–7 shows a sample cross-section from the original pushback design, and

the sections from the resulting pushback designs from Formulations #1 and #2.

While there are some consistencies in terms of the locations of the pushbacks, the

algorithm seems to have chosen pushback designs that are similar to the type of

pit shells commonly seen with conventional mathematical optimization tools. It can
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be seen that the first four remain relatively unchanged, which is indicative of lower

uncertainty near the surface. It is apparent that the algorithm is still respecting the

various slope angles, and has changed the initial design considerably to be able to

attain the reductions in risk that were previously discussed.
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Figure 3–7: Cross sections of the pushback designs. (i) Original design. (ii)
Formulation #1 design. (iii) Formulation #2 design.
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3.4 Conclusions

This chapter proposes two general formulations to modify an existing pushback

design to incorporate joint local geological uncertainty and is implemented using

a simulated annealing algorithm. The proposed formulations and algorithm con-

tributes and improves on existing stochastic mine design frameworks because it: (i)

can accommodate joint uncertainty between multiple metals and material types and

multiple material destinations; and (ii) directly reduces the geological risk associated

with pushback designs for each material destination. The proposed formulations and

implementation can be easily integrated into any existing framework used by a mine

to aid in minimizing the variability of materials, be it a deterministic or stochastic

framework. The proposed algorithm using simulated annealing is computationally

efficient, and suitable for real-world applications because it is capable of considering

multiple metals, materials, destinations and slope zones.

The proposed formulations are tested on BHP Billiton’s Escondida Norte mine,

Chile. The two proposed formulations often show significant reduction in variability

for pushbacks that are particularly problematic, without displacing the risk to other

material destinations or pushbacks. The second proposed objective function formu-

lation outperformed the first formulation in this case study, with an overall reduction

in objective function by 61% over the original design; additionally, the second design

also outperforms the first design when evaluated with the first objective function by

an additional 3%. This is a result of its ability to better penalize variability using a

squared deviation from target, along with the fact that it treats all processes equally,
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regardless of the tonnages going to the various processes. While the proposed de-

signs appear to have higher values and reduced risk in the earlier pushbacks, the true

effects on the net present value of the proposed pushback design methodology would

need to be tested with long-term production scheduling.

Future work will seek to integrate the proposed pushback design algorithms with

stochastic life-of-mine production scheduling, and quantify the impact that stochastic

pushback design has on the annual production schedules. Additionally, new meth-

ods for pushback design need to be developed for industrial use. These production

schedules should, unlike the conventional approaches, integrate uncertainty and con-

sider the pushback design’s direct influence on the net present value and annual

capacity constraints. However, this type of a development will require substantial

enhancement of computational efficiency of the related scheduling methods.
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CHAPTER 4
Mining Supply Chain Optimization under Geological Uncertainty

The previous Chapter focuses on integrating geological uncertainty into push-

back design for a sequential optimization framework. This method, however, is

limited by the fact that critical aspects such as blending, capacity constraints and

the time value of money are not considered while optimizing the pushback design;

this is reflected by the definition of the “optimal” block destination, which is de-

fined solely by the destination that provides the maximum value or minimum loss.

The remainder of this thesis focuses on a new, global optimization framework that

first starts with a simultaneous optimization of the production schedule (considering

blending, capacities and time value of money), which may then be used to drive the

definition of ultimate pit limits and pushback design [57, 123, 125, 154]. This Chap-

ter begins to address this simultaneous optimization by investigating new models

and methods for optimizing the downstream (post-mining) aspects of a mining com-

plex, referred to herein as a supply chain. There are several original contributions of

this work that form the foundation for the remainder of this thesis. First, a unified

modelling approach is created that isolates the flow of primary attributes (metal

content, tonnages, etc.) through a mining complex from the secondary information

that is of interest to a modeller (e.g. revenues, costs, product specifications, non-

linear transformations). A modeller can then choose various attributes of interest

to construct an two-stage stochastic optimization model that suits their own needs

100



and objectives. As a result, the method is general and may be applied to many

different mining complexes with minimal effort. Second, this chapter develops the

concept of destination policies, which define where extracted material is sent under

geological (supply) uncertainty. This is an important contribution because it is more

adept for optimizing mining complexes, and overcomes many of the widely-known

limitations of cut-off grade policies. The third contribution is a result of the first:

by adopting the proposed modelling methodology, it is possible to shift the focus of

the optimizer to evaluating the economic value of the products sold, rather than the

economic value of the materials mined. This overcomes the limitations of the widely-

used “block value” because the destination of mined material is no longer assumed

to be known a priori, and the economic value is based on the blend of materials that

are sold, rather than a block’s economic value, which is calculated in isolation from

other blocks. The final contribution of this Chapter is the development of an effi-

cient metaheuristic solver that uses a unique combination of two existing algorithms

(particle swarm optimization and simulated annealing) to optimize the destination

policy and processing stream “flow” variables. A full-field test is performed for the

Onça Puma nickel laterite mining complex, Brazil. Results highlight the need to

consider geological uncertainty when optimizing the processing streams, particularly

for highly variable operations that have stringent feed quality specifications. The

stochastic optimizer is successful at generating a robust destination policy that is

able to satisfy these stringent quality specifications while simultaneously reducing

the risk of not meeting production targets.
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4.1 Introduction

As the world’s mineral resources are continuously being depleted, mining compa-

nies are seeking to extract and process (treat or transform) increasingly complex ma-

terial profitably. Through tremendous technological and operational improvements,

mining companies can often profitably process material that was once considered

waste, which is often the result of two interrelated aspects. The first aspect relates

to blending material from various sources of different mineralogical quality in order

to obtain a homogenous and predictable material that meets a set of specifications

prior to processing or delivery to customers. The other aspect is related to mines

that contain several commodities (e.g. metals) or materials of distinct mineralogy

that can be transformed into multiple products; these cases often require multiple

processing streams to separate and treat the various commodities. As the number of

options for blending or processing increases, along with the methods for distribution,

a supply chain is formed (e.g., Fig. 4–1), which defines the flow of material from the

set of mines through the processing streams to final products that are sold to markets

or customers. A thorough review of global mining supply chains in the context of iron

ore operations is given by Pimentel et al. [137]. The complexity of mineral resource

supply chains can vary drastically, depending on the products produced (e.g. iron,

coal, nickel, copper) and the geological and geographical conditions. For example,

iron ore supply chains in Western Australia often stockpile materials near the mines.

Material is transported from the mine stockpiles via a railway to a set of stockpiles at

the port. The stockpiled material at the port is then shipped to customers with very

stringent product quality constraints. Alternatively, an integrated nickel value chain

102



may mine, grind, concentrate, smelt and refine the metal that is either delivered to a

contracted customer or is sold on the volatile spot market. As the complexity of the

supply chains grows, there is a need for tools that optimize the flow and management

of materials through the supply chain while simultaneously respecting the practical

constraints that may be imposed at each location.

Mine 1

Mine 2

Stockpile 1

Stockpile 2

Waste

Mill and 

Concentrator 1 

Tailings

Smelter 1

Smelter 2

Refinery 1

Refinery 2

Customer 1

Customer 2

Customer 3

Customer 4

Customer 5

Mill and 

Concentrator 2 

Figure 4–1: Hypothetical example of a mining supply chain.

Without loss of generality, the fundamental concepts of this work are demon-

strated through an application for a real-world nickel laterite blending chain (Fig.

4–2) called Onça Puma, which is a useful example to highlight aspects of blending

and non-linear constraints in a supply chain. While the example may be simplis-

tic, the general modelling and optimization methodology can be extended to larger

instances, such as Fig. 4–1, which may require multiple processing streams, trans-

portation options and customers. Laterites are challenging deposits to mine because

of their variability related to the depth, the thickness and the amount of nickel metal

contained in a layer of material called saprolite. In addition to this challenge, the

pyrometallurgical plant that refines the saprolite into nickel metal imposes quality

specifications for the by-products contained in the saprolite, specifically the silica-to-

magnesia ratio and iron content; a deviation from the specifications can have severe
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economic and operational consequences. To overcome these challenges, blending

stockpiles are used as a buffer to not only reduce the impact of the geologic variabil-

ity, but also to mix the material together to achieve a desirable specification prior

to processing. Material is pulled from the buffer stockpiles over time and homoge-

nized prior to being sent and treated at the processing plant (Fig. 4–2). The act of

accumulating and partially removing material from the stockpiles over time leads to

a non-linear model that is challenging to optimize using existing methods [18]. The

nickel metal obtained after processing is then sold on the market. The key decisions

and issues that need to be addressed in practice are:

i Destination policies : discrete decisions that determine where the mined mate-

rial initially goes (e.g., waste dump, or stockpiles).

ii Processing stream decisions : the quantity of an output product that is sent to

the subsequent destinations (e.g., amount of material reclaimed from a stockpile

and sent to a homogenization pile).

iii Uncertainty should be integrated into the decision-making process.

iv The mining supply chain needs to be optimized holistically, from the mine

through to the final products sold, while obeying practical constraints over the

life of the value chain.

Existing work related to iron ore supply chains [20, 136, 153] assumes that all

mined material has already been defined as ore or waste a priori; in general, this

is a decision that should be directly controlled by an optimizer. This work aims to

develop a framework that addresses some limitations of past research through the

development of a stochastic supply chain optimization model, and is organized into
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Onça Mine
Low-Grade Stockpile 1

Low-Grade Stockpile 2

Low-Grade Stockpile 3

High-Grade Stockpile 1

High-Grade Stockpile 2

High-Grade Stockpile 3
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Homogenizat ion 1

Homogenizat ion 2

Plant

Low-Grade Saprol ite
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Puma Mine

Low-Grade Saprol ite

High-Grade Saprol ite

Figure 4–2: Flow of materials at the Onça Puma nickel laterite blending chain.

six sections. Figure 4–3 provides a graphical overview of the proposed methodology.

Section 4.2 provides a review of related literature to this work. In Section 4.3, a

flexible modelling methodology is developed that can be tailored to suit many supply

chain configurations, including Onça Puma. A core aspect of this methodology is

related to destination policies, which permits the optimizer to define materials as ore

or waste, and provides a basis for optimizing the mineral resource supply chain with

uncertainty. Section 4.4 provides an overview of the generalized formulations and

metaheuristics used to optimize the supply chain model with uncertainty. In Section

4.5, aspects of the deterministic and stochastic methods are demonstrated through

an application at the Onça Puma nickel laterite blending chain. Finally, Section 4.6

provides conclusions and outlines future research.
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Figure 4–3: Overview of the proposed supply chain optimization methodology.
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4.2 Literature Review

The present work relates to the literature in mine planning, material process-

ing optimization and stochastic optimization. The primary objective of long-term

optimization of mineral resource supply chains is to maximize the net present value

(NPV) of the cash flows; this requires optimizing the long-term mine production

schedules and the use of the supply chain’s processing streams and distribution

methods simultaneously [165, 166]. Long-term production scheduling defines the

extraction sequence of materials from the ground (i.e., what to mine and when),

thus defines the supply of materials available in a given period of time. Material pro-

cessing optimization, which will herein be referred to as supply chain optimization,

outlines how to maximize the utility of the available materials (supply) by defining

destination policies, and the use of processing and transportation methods to pro-

duce and deliver the products to customers or the open market. The vast majority of

related research has focused on long-term production scheduling optimization, where

models often require thousands to millions of decision variables. In order to reduce

the size of these models, the destination of the extracted material is often defined a

priori; these decisions are almost exclusively based on the economic value of a discrete

volume of material, referred to herein as a block [29, 61, 113, 142]. When the destina-

tions are specified a priori, the models ignore the impact that the aggregate of blocks

will have on capacity and material quality constraints that are imposed in the supply

chain. More recent production scheduling formulations attempt to integrate material

destination decisions directly into the optimization models [15, 23, 63, 100, 105, 124],

but are incapable of optimizing non-linear supply chain configurations that are linked
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through time, such as the stockpiles that are used at the Onça Puma blending chain

(Fig. 4–2). In order to improve these production scheduling models, it is necessary

to revisit and develop new models that better-manage the down-stream aspects of

the supply chain.

Certain aspects of the material processing optimization of mining supply chains

have been introduced in order to address many limitations of related production

scheduling research. The majority of these research efforts has focused on supply

chain configurations that blend or strategically stockpile material in order to pro-

duce a homogenous material tailored to required specifications [55, 76, 77, 151, 154].

Chanda [30] and Epstein et al. [52] propose multi-echelon blending and supply chain

models that are solved using linear optimization. Everett [54] discusses simulation al-

gorithms used for decision support to obtain a homogenous product for multi-echelon

iron ore supply chains. Singh et al. [153] develop a sophisticated model for an iron

ore supply chains and demonstrate substantial improvements in the quantity of iron

ore shipped while meeting customer’s product specifications. Sandeman et al. [150]

present two mining supply chain case studies that are solved using discrete event

simulation (DES) and a linear optimization model. While the mentioned methods

contribute to an improved understanding of mining supply chain optimization and

more accurate models, they are limited by either being tailored for a specific supply

chain configuration or require linear optimization assumptions.

The majority of the previously mentioned work assumes that the supply of ma-

terials generated from a production schedule is known with certainty. Conventional

optimization methods use a single, deterministic representation of the geology, where
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the block attributes (i.e., metal content) are expected values that are estimated us-

ing geostatistics [84]. The assumption of a single input is fundamentally flawed for

mining optimization models for two reasons. First, the geology is estimated using

sparse drilling information, hence is not known with certainty prior to extraction.

Second, having the option of multiple processing streams leads to non-linear transfer

functions (e.g., economic value of material processed or wasted); using an expected

value of a random variable as input to the optimization model does not necessarily

provide decisions that perform well on average.

A recent trend of research has addressed the integration of uncertainty into

mining optimization models; of critical importance to the mining industry is what is

termed geological uncertainty, or the uncertainty that arises from not knowing exactly

what is in the ground prior to extraction and processing. This supply uncertainty can

have serious ramifications in the supply chain as the bulk material from the mines is

transformed to salable products [137], and has been shown to be a key contributor

to deviations from production targets [45]. Rather than using an optimizer that

accepts only a single representation of the geology as input, it is desirable to have an

optimizer that relies on a set of equally probable geological simulations of materials

and attributes that are generated using Monte Carlo simulation methods [69]. Unlike

estimation methods, which tend to smooth out low and high values, geostatistical

simulation methods better reproduce the spatial variability, univariate distributions

and cross-correlations of the attributes of interest. Integrating geological uncertainty

into supply chain optimization models is challenging for two reasons: first, the joint

combination of uncertainties that arises when considering multiple mines leads to

109



an exponential increase in computing time and, more importantly, there does not

presently exist a method to transition from deterministic to stochastic models. All

related work neglects the opportunity to manage uncertainty and risk to improve the

performance and reliability of the supply chain; while some methods permit what-if

scenarios, uncertainty has not been integrated into decision-making and could be

missing out on value.

4.3 Modelling Mining Supply Chains with Uncertainty

Given the wide diversity, complexity and individual needs or objectives for

mineral resource supply chains, this section aims to develop a flexible modelling

procedure that integrates uncertainty. First, definitions for materials and related

attributes in the context of mining supply chains with uncertainty is provided. Fol-

lowing this, the decision variables that govern the flow of the materials and attributes

from the mines and the processing streams will be discussed. These variables are

presented as a directed graph in order to depict the flow and transformations of

materials from the mines through to the final products. It is important to note that

this does not imply that the optimization models (see Sect. 4.4.1) are optimized

using network flow methods. A summary of nomenclature used for sets, variables

and parameters can be found in Tables 4–1, 4–2 and 4–3, respectively.

4.3.1 Material flow and attributes

Let the directed graph G (N ,A) represent the flow of materials through the

supply chain, where the nodes, N , is comprised of three subsets:

i C: clusters of similar types of materials that are extracted from the mines (see

Sect. 4.3.2).
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Table 4–1: Notations for sets and indices for supply chain optimization.
Sets and Indices

Set Description
P Primary attributes that are being tracked in the supply chain

(e.g., metal content, tonnages).
H Hereditary attributes (derived from primary attributes) that

are being tracked in the supply chain (e.g., grades, recoveries,
economic values).

T Time periods that the supply chain operates in (e.g. months,
years).

S Global set of scenarios that are used to represent uncertainty.
C Clusters of materials at the mines with similar attributes (see

Sect. 4.3.2).
S Destinations in the supply chain that are able to stockpile

material.
P Destinations in the supply chain that process material and

must send out all of the recovered output product to subse-
quent destinations, if available.

N Nodes in the supply chain graph, i.e., N = C ∪ S ∪ P .
A Set of arcs. An arc exists if i ∈ N can send material to j ∈ N .
I (i) Set of nodes that are connected via incoming arcs to node

i ∈ N , defined by the arcs in A.
O (i) Set of nodes that are connected via outgoing arcs from node

i ∈ N , defined by the arcs in A.
G (N ,A) Graph that models the flow of materials in the supply chain.
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Table 4–2: Notations for variables for supply chain optimization.
Variables

zc,j,t ∈ {0, 1} Decision of whether or not to send cluster c to
destination j in period t.

yi,j,t,s ∈ [0, 1] Proportion of material produced at i sent to j in
period t and scenario s.

vp,i,t,s ∈ R Value of primary attribute p at node i in period t
and scenario s.

vh,i,t,s ∈ R Value of hereditary attribute h at node i in period
t and scenario s.

rp,i,t,s ∈ [0, 1] Recovery of primary attribute p after processing
at node i in period t and scenario s.

d+
h,i,t,s, d

−
h,i,t,s ∈ R Surplus and shortage, respectively, of hereditary

attribute h at node i in period t and scenario s.

Table 4–3: Notations for parameters used for supply chain optimization.
Parameters

γp,c,t,s Value of attribute p for cluster c in period t and scenario s.
fh,i (p) Function that transforms primary attributes p to hereditary

attribute h at location i.
Uh,i,t Upper bound for hereditary attribute h at i in period t.
Lh,i,t Lower bound for hereditary attribute h at i in period t.
ph,i,t Unit price of hereditary attribute h at i in period t.
c+
h,i,t Unit surplus penalty cost for hereditary attribute h at i in

period t.
c−h,i,t Unit shortage penalty cost for hereditary attribute h at i in

period t.
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ii S: destinations in the supply chain that are able to stockpile material over

time. No transformation from input materials to outputs occur at these nodes.

iii P : destinations in the supply chain that are forced to process and send all

output material to the subsequent nodes.

The graph’s arcs, A, are used to describe the possibility to send material from i ∈ N

to a subsequent destination j ∈ N . For the purpose of simplification, let I (i) rep-

resent the set of nodes that send materials to i ∈ S ∪ P , which is defined by the

incoming arcs to node i in A. Additionally, let O (i) represent the set of subse-

quent destinations that are defined by the outgoing arcs in A from node i. Let

t : t ∈ T = {1, ..., T} be used to describe the periods of time in which the supply

chain operates (e.g., months, years), where T is the maximum number of periods

considered. The general case where destinations i ∈ S ∪ P are able to receive or

produce multiple distinct materials, or nodes i ∈ N operating in non-contiguous pe-

riods is not discussed in order to simplify the fundamental concepts and notations;

however, the method may be generalized to include these complexities.

Attributes are used to quantify characteristics of materials that are of interest,

such as metal content, tonnages and economic values, and are categorized into two

classes: primary and hereditary. Primary attributes (p : p ∈ P) are characteristics

that are sent from node i ∈ N to a node j ∈ O (i) and are assumed to be lin-

early additive; this requirement is necessary for accurately blending the incoming

materials from I (j) at node j. Generally, primary attributes are assumed to be

the fundamental variables of interest, such as metal and total tonnages. Hereditary
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attributes (h : h ∈ H) are used to quantify information that is relevant to the opti-

mization model, but are not necessarily passed from node i to j; these attributes are

expressed as (non-) linear functions, fh,i (p), of the primary attributes p ∈ P. For

Onça Puma, the primary attributes in the model that are passed from the mined

blocks through to the processing plant are are the total, nickel, iron, silica and mag-

nesia tonnages. The primary attributes are transformed into a set of hereditary

attributes at the processing plant in order to define the cash flows (processing cost

and the market value of the recovered nickel metal) and treated material’s chemistry

(silica-to-magnesia ratio and iron content). As an example, consider two hereditary

functions, Eq. (4.1) and Eq. (4.2), that may be used to model the nickel recovery

and profit, respectively, after processing at Onça Puma’s pyrometallurgical plant.

Recoveries are commonly used in the mining industry to describe the proportion of

an attribute p that is liberated from the incoming bulk material at a processor. Let

NiT and T represent the primary attributes for nickel and total tonnages received at

the pyrometallurgical plant, respectively, and let NiPrice and ProcCost represent

the price of nickel metal and processing costs per tonne, which are specified as input

parameters. The implementation of the proposed method takes these functions (de-

fined by the modeller) and parses them into expression tree data structures that are

dynamically evaluated during optimization (see Sect. 4.4).

Rec = frec,plant =


0.3 +

(
NiT

T

)
− 0.48 ∗

(
NiT

T

)2

if
(
NiT
T

)
≤ 1

0.82 otherwise

(4.1)
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Profit = f$,plant = NiT ∗Rec ∗NiPrice− T ∗ ProcCost (4.2)

Uncertainty in the supply chain may be described using a set of joint scenarios

S = {1, ..., S}, where a scenario is defined herein to be an equally probable real-

ization (sampling) of all sources of uncertainty. The primary source of uncertainty

considered in this work is related to geological uncertainty, however, integrating other

sources of uncertainty (e.g., metal prices) in the form of simulated functions fh,i (p)

is a natural extension, but, for simplicity, is not considered in this work. As more

independent sources of uncertainty are given to the models as input (e.g., simula-

tions for multiple mines), the number of scenarios, S, increases exponentially. For

example, if the Onça and Puma deposits are independently simulated and are each

represented by 20 geological simulations, there would be 400 joint scenarios to con-

sider for optimization. One of the challenges related to the use of discrete scenarios

to represent uncertainty is the determination of the number of scenarios that are

required to accurately quantify the uncertainty. Albor and Dimitrakopoulos [1] dis-

cuss this subject in-depth by demonstrating the impact that the number of geological

simulations has on the quality of the optimized design. It is noted that the scale of

interest to the modeller (e.g. mine production tonnages, ore processing tonnages) is

much larger than a single block that is extracted; while the simulations may show

a large amount of variability for individual blocks, the amount of variability for the

scale of interest is substantially less because the risk is blended with other blocks.

115



This phenomenon is commonly referred to as the volume-variance effect in geostatis-

tics [93]. As a result, there is a point where optimizing with more scenarios does

not drastically alter the quality of the resulting solution. Given the substantial com-

putational overhead associated with optimizing with many simulations at once, it

is often useful to incrementally add scenarios to the optimization model to analyze

how many scenarios are needed. An example of this is discussed in Sect. 4.5.4.

4.3.2 Mine supply and destination policies

The flow of material in a mining supply chain commences at the mines. A

mineral deposit is represented by a set of blocks, which often varies from thousands

to billions in size. A production schedule specifies the period of extraction for each

block. Without classifying the blocks as ore or waste prior to optimization, there are

two conceivable options related to where to send the blocks after extraction. The first

option is to use a decision variable to decide where each block is sent in the supply

chain (S ∪ P). This option is often considered undesirable because the number of

decision variables grows linearly with the number of blocks and mines considered

in the supply chain. The alternative is to decide on where similar types (clusters)

of materials go (rather than each block individually), which can be used to reduce

the number of decision variables in the model substantially. This work focuses on

the latter, however a comparison of the two methods for the deterministic case is

provided in Sect. 4.5.3. One of the key advantages for using clusters, other than for

computational reasons, is that the method can be extended to consider uncertainty

in the quantities of primary attributes, i.e. geological uncertainty.
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A pre-processing step is required in order to group materials with similar at-

tributes into clusters, C ⊂ N , which form the initial nodes on the graph G (N ,A).

The k-means clustering algorithm [117] is a useful method for classifying data with

similar attributes. The algorithm starts by randomly selecting cluster centroids for

the attributes of interest and iteratively updates the centroid positions according to

the nearest data points; the data points are then assigned a single membership to

a single cluster according to the nearest cluster centroid. Consider a set of geolog-

ical simulations (Fig. 4–4), where each block has a simulated material type (e.g.,

low- or high-grade saprolite) and primary attributes (e.g., nickel content, tonnage).

For each mine and material type, the simulated blocks may be classified or clus-

tered into a pre-defined number of distinct groups based on similar (multi-variate)

attributes using the k-means clustering algorithm. For any given scenario, a block’s

cluster membership may change, given that the material type and attributes may

differ between simulations. Let the pre-processed input parameter γp,c,t,s represent

the quantity of attribute p ∈ P available for cluster c ∈ C in time t ∈ T and sce-

nario s ∈ S; this quantity is derived from the quantities of the attributes from the

simulated blocks that are members of the cluster for a given scenario and the avail-

ability of each block, which is defined by the mine’s production schedule. The set

of candidate destinations, O (c), for cluster c ∈ C is defined by the material type

of the cluster. For example, at Onça Puma (Fig. 4–2), any cluster that belongs to

the low-grade saprolite materials has the option of going to one of three low-grade

stockpiles or the waste dump.
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Figure 4–4: Plan view comparison of Puma’s nickel content in the high- and
low-grade saprolite layers between the (a) estimated model and (b)-(c) simulated

models.

Let the decision variable zc,j,t ∈ {0, 1} represent the decision of whether (1) or

not (0) cluster c ∈ C is sent to destination j ∈ O (c) in period t ∈ T. This variable is

used to define a destination policy that is applied across all scenarios s ∈ S, regardless

of the quantities of the attributes, γp,i,t,s, available. For stochastic optimization

models, these decisions form the first-stage decision variables [16] that are optimized

to be robust to uncertainty. One of the most common types of destination policies

used in the mining industry is a cut-off grade policy, whereby the destination of blocks
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is decided on based on the metal content (grade) being above or below a threshold.

In simplistic cases where only a single attribute (i.e. metal content) and ore or waste

definitions are used, the proposed definition of destination policies reduces to that

of Menabde et al. [124], whereby the optimizer will seek to determine a robust time-

dependent cut-off grade destination policy. The proposed methodology is, however,

more general because it can consider the full supply chain and the impacts of multiple

metals, blending and deleterious elements — a common issue that a simple cut-off

grade policy is unable to address.

Reserve constraints are used to state that a block (or cluster of blocks) must

only be sent to a single destination; violating this constraint implies that the mining

equipment has a higher degree of selectivity than can be defined using the geological

models. The following equation is used to enforce the reserve constraints during the

optimization process:

∑
i∈O(c)

zc,i,t = 1 ∀c ∈ C, t ∈ T (4.3)

4.3.3 Destinations and processing stream decisions

Destinations in the supply chain are categorized based on their primary func-

tions: stockpiles (S) and processors (P). Let the decision variable yi,j,t,s ∈ [0, 1]

define the proportion of material sent from destination i ∈ S ∪ P to destination

j ∈ O (i) in period t ∈ T and scenario s ∈ S. In stochastic optimization, these
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are commonly referred to as recourse (adaptive) decisions [16], which are scenario-

dependent variables used to maximize the utility of the materials available at the

various destinations, which is a result of the first-stage destination policies.

Stockpiles i ∈ S require mass flow conservation constraints to ensure that only

materials that are available can be sent out to the subsequent destinations j ∈ O (i):

∑
j∈O(i)

yi,j,t,s ≤ 1 ∀i ∈ S, t ∈ T, s ∈ S (4.4)

In the case of processors i ∈ P , mass flow constraints are used to ensure that all

material that is available is forwarded to the subsequent destinations:

∑
j∈O(i)

yi,j,t,s = 1 ∀i ∈ P , t ∈ T, s ∈ S (4.5)

Let vp,i,t,s ∈ R represent the value of the primary attribute p ∈ P at destination

i ∈ S ∪ P in period t ∈ T and scenario s ∈ S. The primary attributes may be

transformed into hereditary attributes h ∈ H using (non-) linear transformation

functions, fh,i (p), in order to track meaningful quantities in the optimization model.

Let vh,i,t,s represent the value of the attribute h at node i at time t and scenario s,

which may be evaluated using fh,i (p) and the values of the related primary attributes,

vp,i,t,s. Using the previous example, the values of the recovery and profits, vRec,plant,t,s

and v$,plant,t,s, respectively, can evaluated by plugging in the values of vNiT,plant,t,s

and vT,plant,t,s into Eqs. (4.1) and (4.2) in lieu of the NiT and T , respectively. As a

result, the nickel recovery and profits may vary, depending on the scenario and time

period. Let the state variable rp,i,t,s ∈ [0, 1] represent the recovery of the primary
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attribute p ∈ P at node i ∈ S ∪ P at time t ∈ T and scenario s ∈ S. Often,

the recoveries are given as a static input parameter, such as 0.8 to represent 80%

of the incoming metal is recovered after processing. In general, however, recovery

is often defined as a non-linear function based on the metal content; in order to

accommodate these concepts in the supply chain optimization models, it is possible

to model a hereditary function fh,i (p) based on the metal content of the primary

attribute(s) p and set rp,i,t,s = vh,i,t,s. An example of this hereditary function is

given in Eq. (4.1). In the case of stockpiling destinations, which do not process the

incoming materials, it is necessary to set rp,i,t,s = 1 ∀p ∈ P, i ∈ S, t ∈ T, s ∈ S. Using

the previously defined state variables, the quantities of the primary attributes that

are available at a location of the supply chain are calculated as follows:

vp,j,(t+1),s = vp,j,t,s ·

1−
∑
k∈O(j)

yi,k,t,s


︸ ︷︷ ︸

Retained attributes from previous period

+
∑

i∈(I(j)\C)

rp,i,t,s · vp,i,t,s · yi,j,t,s +
∑

c∈(I(j)∩C)

γp,c,(t+1),s · zc,i,(t+1)︸ ︷︷ ︸
Incoming attributes in current period

∀p ∈ P, j ∈ S ∪ P , t ∈ T, s ∈ S (4.6)

It is often useful to track and constrain the quantities of materials that are car-

ried over from period-to-period, such as the tonnages in a stockpile. A hereditary

attribute h ∈ H may be used to calculate the end-of-period quantities based on a

primary attribute p ∈ P, i.e.:

vh,i,t,s = vp,i,t,s ·

1−
∑
j∈O(i)

yi,j,t,s

 ∀i ∈ S, t ∈ T, s ∈ S (4.7)
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4.4 Optimization of Mining Supply Chains

4.4.1 A generalized two-stage stochastic optimization model

Using the set of decision variables introduced in Sect. 4.3, a two-stage mixed in-

teger stochastic optimization model can be created where the first-stage decision vari-

ables (zc,j,t,s) decide the optimal destination policy for each cluster and the second-

stage recourse variables (yi,j,t,s) decide the optimal use of the processing streams once

the random variables (the attributes of the blocks) are revealed at the first set of

destinations. These models will produce a destination policy for mined materials

that is robust to uncertainty in the sense that it attempts to improve the supply

chain’s resilience to disruptions caused by geology, which is often measured through

the performance of a set of key project indicators. For a review of two-stage stochas-

tic programming, see Birge and Louveaux [16]. The general mining supply chain

optimization model is defined as follows:

Objective:

min
1

|S|
∑
i∈S∪P

∑
t∈T

∑
h∈H

∑
s∈S

ph,i,t · vh,i,t,s

+
1

|S|
∑
i∈S∪P

∑
t∈T

∑
h∈H

∑
s∈S

(
c+
h,i,t · d

+
h,i,t,s + c−h,i,t · d

−
h,i,t,s

)
(4.8)

Subject to:

vh,i,t,s − d+
h,i,t,s ≤ Uh,i,t ∀h ∈ H, i ∈ S ∪ P , t ∈ T, s ∈ S (4.9)

vh,i,t,s + d−h,i,t,s ≥ Lh,i,t ∀h ∈ H, i ∈ S ∪ P , t ∈ T, s ∈ S (4.10)
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d+
h,i,t,s, d

−
h,i,t,s ≥ 0 ∀h ∈ H, i ∈ S ∪ P , t ∈ T, s ∈ S (4.11)

vh,i,t,s = fh,i (p) ∀h ∈ H, i ∈ S ∪ P , t ∈ T, s ∈ S (4.12)

Eqs. (4.3)-(4.7)

zc,j,t ∈ {0, 1} c ∈ C, j ∈ O (c) , t ∈ T (4.13)

yi,j,t,s ∈ [0, 1] i ∈ C, j ∈ O (i) , t ∈ T, s ∈ S (4.14)

The objective function (Eq. (4.8)) is comprised of two components. The first

component is used to directly incorporate hereditary attributes, vh,i,t,s, into the ob-

jectives and is multiplied by the unit price ph,i,t; this component may represent, for

example, time-discounted revenues and costs. The second component is used to pe-

nalize deviations from targets or bounds, Uh,i,t and Lh,i,t, whereby the amount of

deviation is represented using the variables d+
h,i,t,s and d−h,i,t,s, which are calculated

using Eqs. (4.9) and (4.10), respectively. The deviation variables are penalized using

time-discounted penalty cost parameters, c+
j,i,t and c−j,i,t. These are useful for stochas-

tic optimization because they permit geological risk discounting, which attempts to

minimize the risky decisions at the beginning of the mine life and defers riskier de-

cisions to later in the mine life when more geological information is available [142].
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This geological risk-discounted penalty may be calculated as follows:

c+
h,i,t =

c+
h,i,0(

1 + grd+
h,i

)t (4.15)

where grd+
h,i is the geological risk discount rate (as a decimal) for attribute h at

location i associated with an upper-bound constraint (Eq. (4.9)). In practice, this is

a desirable feature in order to meet short-term production targets or demand with a

high level of certainty, rather than having the optimizer distribute the risk randomly

over time. This risk discount rate is similar to the economic discount rate that is

used to calculate the discounted cash flows, and is an input parameter that depends

on the modeller’s desire to balance short-, medium- and long-term risk. If grd = 0,

the optimizer is willing to treat the risk in the early periods the same as the periods

at the end of the mine’s life, which may result in raising the level of risk in the

first period and can impact the mine’s ability to prepay creditors. A high grd (e.g.

0.5) may result in an overly short-sighted solution that only considers the immediate

desire to satisfy production targets. It is noted that the penalty cost is analogous

to the economic value that the modeller is willing to pay per unit of deviation for

a given constraint. In the absence of a known penalty cost, they may be derived

experimentally by trying different orders of magnitude and analyzing the quality of

the solution, in terms of ability to satisfy these constraints. For an example, the

reader is referred to Benndorf and Dimitrakopoulos [14]. A useful extension of the

objective function is to use an exponent term with the deviation variables, d+
h,i,t,s

and d−h,i,t,s, which may be used to penalize large deviations more heavily than smaller
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deviations [55] and to have greater control of the risk distributed over time (see

Chapter 3).

4.4.2 Optimization using metaheuristics

One of the challenges associated with optimizing the optimization model out-

lined in Sect. 4.4.2 is the high likelihood of having a non-linear optimization model.

The goal of this unified modelling approach is for flexibility when testing on different

supply chain configurations. As a result of this flexibility, if an exact optimization

method were used as a point of comparison to assess the performance of the proposed

method, it could vary depending on the supply chain model itself, and the results

would not be generalizable. Non-linear, global mathematical optimizers are not cur-

rently as computationally efficient as their linear counterpart. Network flow-based

optimizers require a specific knowledge of the structure of the model, particularly

the constraints, which is generally not compatible with the generalized optimiza-

tion model proposed. Metaheuristics are powerful optimization algorithms that can

be used to obtain high-quality solutions for challenging problems in a reasonable

amount of time. It is noted, however, that they do not guarantee mathematical

optimality. These methods are useful for simulation-optimization frameworks for

supply chains [104, 172] because of their iterative nature: first, simulate the supply

chain using a set of randomly generated decision variables, then modify the variables

based on the results of the simulation. There are several metaheuristics available

that may be used (e.g., simulated annealing, tabu search, genetic algorithms, ant

colony optimization, etc.), however, the vast majority are designed for combinatorial
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optimization problems and do not easily translate to continuous optimization prob-

lems. Particle swarm optimization (PSO) is a population-based metaheuristic that

uses cognitive and social behaviour to achieve a high quality, but not necessarily op-

timal, solutions [94]. It is a particularly appealing algorithm because of its inherent

ability to optimize discrete and continuous variables simultaneously. Additionally,

unlike continuous variants of combinatorial optimization algorithms, such as simu-

lated annealing, particle swarm optimization inherently simultaneously optimizes all

decision variables rather than a single variable at a time; this is a particularly useful

feature because the computational cost of evaluating the objective function for the

supply chain models discussed herein, relative to the impact that a single decision

variable will have. For this reason, the proposed framework uses a combination of

PSO with local heuristics, including simulated annealing [60, 98], to optimize the

model defined in Sect. 4.4.1. Future work may seek to compare the performance of

various metaheuristics.

Consider a group of Q particles (solution vectors), xq ∀q = {1, ..., Q}, where

each vector is a distinct representation of all destination policy and processing stream

variables and may be randomly generated at the beginning of the algorithm. The

first |C| · T elements of xq represent encoded destination policy decisions, whereby,

for a single cluster c ∈ C and period t ∈ T, the decision variables zc,j,t ∀j ∈ O (c)

map to a single element, xk ∈ xq, k ∈ {1, ..., |C| · T}. An encoding scheme is used to

map the candidate destinations j ∈ O (c) to the element xk in the range [1, |O (c) |],

which automatically guarantees that the reserve constraints defined in Eq. (4.3) are

satisfied. Note that the range is defined to be continuous for compatibility with
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PSO; the continuous value is rounded to yield a discrete destination decision when

required. All remaining elements in xq have a one-to-one mapping to the processing

stream variables yi,j,t,s; in the event that Eqs. (4.4) or (4.5) are violated during

optimization, the elements are re-normalized.

Additionally, consider three vectors that are of the same size as xq: vq, a velocity

vector associated with the qth solution vector; xbq, which stores particle q’s best

solution found to date; and xg, a global best solution vector that stores the positions

of the best solution found throughout the algorithm. At iteration α+ 1, particle q’s

velocity vector is updated using:

vq (α + 1) = c1 · vq (α) + c2 · r1 ·
(
xbq − xq (α)

)
+ c3 · r2 · (xg − xq (α)) (4.16)

where vq (α + 1) is the new velocity for the qth particle at iteration α + 1, c1, c2

and c3 are weights for the particle’s current inertia, its personal best solution and the

global best solution, respectively, and r1 and r2 ∈ [0, 1] are random uniform numbers.

The particle’s velocity is, therefore, a combination of it’s own inertia at the previous

iteration and an attraction towards its best solution and the global best solution.

The particle’s position is then updated at iteration α + 1 using:

xq (α + 1) = xq (α) + vq (α + 1) (4.17)

If any element of the particle’s solution vector xq exceeds its bounds, it is set to the

closest (minimum or maximum) bound and the processing streams are re-normalized.

After the velocity and position updates are performed, the supply chain is simu-

lated using the new decision variables at iteration α+1. Let g (xq), g
(
xbq
)

and g (xg)
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denote the current, best and global best objective function values, respectively, from

Eq. (4.8) at iteration α + 1. If g (xq) ≤ g
(
xbq
)
, update the particle’s best solu-

tion vector to xbq = xq. If g (xq) ≤ g (xg), update the global best solution vector

to xg = xq. The iterative update of position and velocity vectors continues until

the swarm of particles converges on an optimum solution. PSO has a tendency to

get trapped in local optima as the number of discrete decisions increases [171, 114].

Several types of heuristics can be employed on the global best solution vector, xg,

to improve the quality of the solution quickly and ensure that the solution is not a

local minimum. Experimentally, we have seen that it is often useful to employ one

of the four heuristics:

1 Freeze the cluster destinations, zc,j,t, and perform the next set of iterations

solely changing the processing stream decisions, yi,j,t,s.

2 Restart each of the particles from the global best solution, xg, with new random

velocity vectors.

3 Randomly select a destination policy variable, zc,j,t, and change it to a differ-

ent candidate destination. Accept or reject based on the simulated annealing

probability distribution in Eq. (4.18).

4 Randomly select a processing stream decision yi,j,t,s from the global best particle

solution vector and multiply it by a random number between 0 and 2 and re-

normalize (if needed) to satisfy Eqs. (4.4) or (4.5). Accept or reject based on

the simulated annealing probability distribution in Eq.(4.18).

Experimentally, we have found that that coupling the PSO algorithm with simulated

annealing [98, 60] every few iterations (e.g., 25) proves to be the most effective local
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improvement and can often substantially improve the objective function value, thus

avoiding being caught in a local optimum. The simulated annealing algorithm uses

a probability distribution, P
(
g (xg) , g

(
xg

′)
, δ
)
, to define whether or not to accept a

random change (perturbation) to the solution vector, xg
′
. The probability distribu-

tion is governed primarily by an annealing temperature, δ, which is initially provided

as an input parameter and is gradually cooled (reduced) as the annealing algorithm

progresses. The initial temperature is often large in order to permit accepting sub-

optimal changes, which helps to avoid getting trapped in a locally optimal solution.

As the annealing temperature decreases, the probability of accepting a suboptimal

perturbation decreases and the algorithm converges on the optimal solution. The

acceptance distribution is defined as follows:

P
(
g (xg) , g

(
xg

′
)
, δ
)

=


1 if g

(
xg

′) ≤ g (xg)

exp
(
−
∣∣∣g (xg

′
)
− g (xg)

∣∣∣ /δ) otherwise

(4.18)

It is important to note that, because the optimizer relies on metaheuristics, there

is a substantial amount of flexibility for the user to decide when to terminate the

optimization process. All parameters related to the metaheuristic can be modified

dynamically, scenarios can be introduced slowly as the optimizer progresses, and the

optimization may continue without the need to start an entirely new optimization

instance.
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4.5 Application at a Nickel Mining Complex

4.5.1 Overview of blending supply chain

The Onça Puma nickel laterite mining complex is located 20 km north of

Ourilândia do Norte, in Parà State, Brazil, which consists of two deposits (Onça

and Puma) that are situated approximately 16 km apart. The primary chemical

constituents of interest within the laterite profile are nickel, silica, magnesia and

iron. Within the two deposits, five material types are considered in the model and

are classified as bedrock, limonite, saprolite waste, low-grade saprolite and high-

grade saprolite. Figure 4–2 shows a diagram for material flow at the mine site used

for this study; it is noted that the bedrock, limonite and waste saprolite materials

only have the option of being sent to the waste dump and are, therefore, excluded

from the figure. The low- and high-grade stockpiles (σ (i) ∀i = {1, ..., 6}) are short-

term stockpiles with a maximum capacity of US dry tonnes, where the capacities

are equal in size for all stockpiles, but the tonnage is withheld for confidentiality

purposes. Each of the six intermediate stockpiles then feeds two homogenization

piles, each having a capacity of UHP dry tonnes per period. The homogenization

piles are modelled as processors with a recovery of 1 and alternate between feeding

the pyrometallurgy processing plant (P ) and being filled by the intermediate stock-

piles every 36 days (considered as one production period in this study). During the

filling period, material cannot flow from the homogenization pile to the processing

plant. The processing plant has a UHP dry tonne capacity that is matched with

the homogenization piles and has strict requirements on the incoming feed material.

The silica-to-magnesia ratio, SiO2 : MgO, is of primary importance and should lie

130



between 1.5 and 1.8; however, it is possible to operate between 1.4 and 1.9 for short

periods of time. Additionally, the plant has a requirement that the iron grade, %Fe,

lies between 12% and 16%. For this case study, it is assumed that there are not

any constraints on distribution (e.g., ports), and that any nickel metal produced is

sold directly to the spot market (i.e. no contractual obligations); as a result, is not

necessary to include these aspects in the model of the nickel value chain.

Estimated resource models of the deposits were given by the mine staff and

are used for deterministic optimization. For the stochastic optimization, a set of 20

orebody simulations of the laterite profile for each of the mines was simulated using

the direct block Min/Max Autocorrelation Factor simulation method [28, 67]. This

results in a total of 400 scenarios that may be considered during optimization. In

specific, the limonite and saprolite layer thicknesses were jointly simulated to quantify

the high variability and volumetric uncertainty for the deposit. For each lithological

simulation, the valuable saprolite layer is retained for further joint simulation of the

primary attributes in the model: nickel (Ni), magnesia (MgO), silica (SiO2), iron

(Fe) and the dry tonnages (T ) using the same method. A comparison of the nickel

grade in the saprolite between the estimated and two of the simulated models is

shown in Fig. 4–4.

The production schedule is generated from the mine’s long-term (annual) pro-

duction schedule by sequentially mining each bench until the short-term (36-day)

total mining capacity is met. The Onça deposit is first mined for 10 periods, then

the Puma deposit is mined from periods 10 through 35. The production schedule,
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therefore, spans over 35 consecutive periods and contains a total of 55,622 mining

blocks.

4.5.2 Optimization model

Table 4–4 gives an overview of the key hereditary attributes that are included

in the objective function and constraints, along with the bounds and associated unit

price or deviation costs. For confidentiality purposes, tonnage capacities US and

UHP , along with the nickel metal recovery (r), metal selling price (p) and processing

costs (cproc) are withheld. The penalty costs have been determined experimentally by

re-running the optimization with different values, to balance the objective function’s

priorities. It is noted that the silica-to-magnesia ratio has a large penalty term,

because the unit deviations are small, hence a large penalty is required to maintain

priority over other aspects, such as stockpile tonnages. Given the fact that this

optimization only spans over four years, a geological risk discount rate has not been

applied to the penalty costs. It is noted that, for this example, mining costs account

for sending material to both the waste dump and stockpiles and are not included in

the optimization model because they are not dependent on any decision variables.

4.5.3 Deterministic optimization and risk analysis

As previously stated, using cluster decision variables rather than blocks may

substantially reduce the number of variables in the model; this may, however, com-

promise the quality of the solution by not being able to make fine-grained adjust-

ments on the block-scale. It is useful to provide a comparison of the computational

efficiency and quality between the solutions when using cluster or block decision vari-

ables for the deterministic case, as there is not a direct way to compare the methods
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Table 4–4: Hereditary attributes of interest in the optimization model for a nickel
laterite mining complex.

Description of attribute Transformation
equation from
primary attributes

Lower,
Upper
Bounds

Discounted
unit price/cost
for deviation*

Revenues vNi,P,t,s · r · p -, - −1
1.008t

Processing costs vT ,P,t,s · cproc -, - 1
1.008t

End-of-period stockpile
tonnages

vE(T ),σ(i),t,s -, US 400, 400, 450,
600, 600, 800**

Processing tonnage vT ,P,t,s UHP , UHP 2 500
Silica-to-magnesia ratio vSiO2,P,t,s/vMgO,P,t,s 1.5, 1.8 800 000 000
Iron grade vFe,P,t,s/vT ,P,t,s · 100 12, 16 1 200 000
* Note that the objective function defined as a minimization problem, hence revenues have negative values,
whereas costs have positive values.
** Stockpile deviation costs are listed in order for the low- and high-grade stockpiles.

for the stochastic case. In order to optimize the block destinations, the same methods

and formulations are used as presented in Sect. 4.4; however, the solution encod-

ing scheme is modified to accommodate blocks rather than clusters. The clustering

problem uses 15 and 25 clusters for the Onça and Puma mines, respectively, for both

the high-grade and low-grade saprolite materials. This results in reducing the block

destination problem from 55,622 mining block destination decisions to 3,268 vari-

ables (waste, limonite and saprolite waste are each assigned to a different cluster).

Through trial and error, the number of particle solution vectors, Q, is set to 15. The

inertia (c1) is set to 0.6, the particle’s best inertia (c2) is set to 0.25, and the global

best inertia (c3) is set to 0.8 (Eq. (4.16)). Initial solutions are randomly generated

for each particle. The simulated annealing algorithm commences with a temperature

of 800 000 and uses a cooling factor of 0.999 that is applied every 200 iterations. It

is noted, however, that these parameters have been calibrated specifically for this
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model and would need to be calibrated for other supply chain models. The block

destination problem ran for 108 hours and performed 29,400 iterations, whereas the

cluster problem ran for 24 minutes and performed 630 iterations. All tests are run

on a Windows-based machine with two Intel Xeon 5650 6-core 2.67 GHz processors

with 24 GB of RAM.

Figure 4–5 compares the block and cluster decision solutions for a set of key

performance indicators. Both the block and cluster solution’s SiO2 : MgO ratio

often lie in the target range of 1.5 and 1.8, with a slight dip below the minimum of

1.4; this is likely a result of the lack of availability of material with a high SiO2 : MgO

ratio in Onça’s estimated model. The plant feed capacities for the cluster destination

solution display a consistent feed to the processing plant, without any disruptions.

This solution is substantially better than the block solution, which often drastically

exceeds the plant feed’s capacity. In both cases, the minimum and maximum bounds

on the plant feed’s %Fe are generally satisfied. Figure 4–5 also shows the cumulative

NPV of the processed material of the solutions, expressed as a percentage of the

NPV of for the deterministic cluster solution for confidentiality purposes. While

the NPV for the block destination solution may indicate an 18% increase over the

cluster solution, this is a result of the excess plant feed tonnage and should not

be used as a bound on the value for the cluster destination solution. It is noted

that the problems would ideally generate similar solutions, however, the amount of

time required to solve the block destination problem is impractical. The solutions

are similar up to the point where the block destination solution sends an excessive

amount of material to the processing plant in period 14. In particular, the differences
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between the SiO2 : MgO and the cumulative NPV are minor, indicating that the

use of clustering does not substantially impact the quality of the solution.
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Figure 4–5: Graphs comparing the performance of the algorithm when using block
destinations or cluster destinations.

Table 4–5 shows an analysis of the number of clusters used, where the prob-

lem is optimized 5 times each time. For confidentiality purposes, the values of the

objective functions are expressed relative to the minimum objective function value

obtained when using 15 and 25 clusters for Onça and Puma, respectively, for both

the high- and low-grade saprolite. One would expect that as the ability to make

fine-grain decisions decreases by optimizing with fewer clusters, the quality of the

resultant solution would rapidly deteriorate. While this is true, creating too many

clusters is computationally excessive and, after a certain threshold, does not generate

substantially better solutions. The use of high-dimension solution vectors also comes
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at a cost of slightly longer solution times. Table 4–5 also demonstrates some of the

instabilities that arise from the randomly selected starting points for the k-means

clustering heuristic [59]; in particular, it is noted that the objective function values

are often more variable when using fewer clusters. Disaggregating and re-aggregating

the clusters coupled with some heuristics during the algorithm may improve the sta-

bility of the clusters and reduce the impact that the initial point selection for the

k-means algorithm has on the final objective function value.

Table 4–5: Influence of the number of clusters on the objective function. All values
are expressed relative to the base case with 15 and 25 clusters for the Onça and

Puma deposits, respectively.
Relative Objective
Function Values

Number of Clusters for Low- and High-Grade
Saprolite (Onça Puma)

(5, 10) (10, 15) (15, 25) (20, 30)
Maximum 1.46 1.20 1.08 1.13
Average 1.30 1.15 1.05 1.06
Minimum 1.17 1.09 1.00 0.98
Average run time
(min)

17 19 24 28

It is possible to use the destination policies generated from the deterministic

optimization to test its performance with a set of geological simulations. In order to

perform this risk analysis, the simulated blocks are first classified into the determin-

istic clusters according to the similarity of the primary attributes. The destination

policies (zc,j,t) are then applied to the set of simulations, and the recourse variables

(yi,j,t,s) are re-optimized for each scenario. Figure 4–6 shows a risk analysis for the

key parameters from the deterministic destination policy, which is defined using the

values for the exceedance probabilities for 10%, 50% and 90% of the simulations’
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responses to the deterministic policies, which are commonly referred to as the P-90,

P-50 and P-10 values, respectively. It can be seen that when using the destination

policies from the estimated models, there is an extremely high chance that the max-

imum SiO2 : MgO ratio (1.9) will be exceeded, which would likely cause severe

disruptions at the processing plant. The tonnage sent to the plant is often undesir-

able, given that it is not fed with enough material when mining the Onça deposit

and the plant is fed with too much material when mining the Puma deposit. These

problems are a result in the difference between the distributions between estimated

and simulated geological models. It is known that the distributions for simulations

can be quite different from the estimated model [69] hence the cluster locations and

destination policies from the estimated model do not appear to be adequate for the

simulations. It must be noted that these issues do not indicate that the proposed

optimization methodology is ineffective — they give a cautionary tale of what can

happen when generating destination policies from estimated models that have very

little and unrepresentative variability.
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Figure 4–6: Risk analysis of the destination policies made using an estimated
orebody model.
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4.5.4 Stochastic optimization

Using the proposed stochastic optimization method, it is possible to link the

geological simulations together in the optimization process through the cluster des-

tination decision variables to generate a robust destination policy. For this case, the

number of clusters is reduced to 5 and 15 clusters for Onça and Puma, respectively; it

was found through experimentation that using more clusters results in several empty

clusters for certain simulations, which leads to a solution that is not as stable or

robust to geological uncertainty. The solution time for optimizing with this method

is substantially longer for the stochastic case than the deterministic case; to solve

the formulation, it takes an average of 12.6 hours to perform 1400 iterations, where

there is no substantial change in objective function value. The reason for this drastic

increase is that the optimizer needs to evaluate a supply chain for each scenario of

the algorithm. In order to alleviate the computational burden associated with mul-

tiple mines, whereby 400 scenarios are evaluated, the optimizer commences with a

small number of scenarios (e.g., 4) and gradually increases the number of scenarios

considered after the solution has stabilized, and no substantial change in objective

function value is attained. It was found experimentally for this case study that the

solution becomes stable when using 50 of the 400 scenarios and adding more does

not change the quality of the solution.

Figure 4–7 shows the risk profiles when using stochastic optimization. It can be

seen that it is possible to make robust destination policies that meet both the plant

feed’s silica-to-magnesia ratio requirements and the plant’s iron grade requirements
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with minor probabilities of deviation. The plant feed’s median tonnage is often cen-

tered on the plant capacity (UHP ) and the P-10 and P-90 risk profiles around this

target are evenly distributed. Finally, the final cumulative NPV of the material

processed is 3% higher than that of the deterministic solution. The stochastic op-

timizer, therefore, generates robust destination policies that are feasible in practice

(unlike the policies from the deterministic model), but it also generates a similar

economic value as indicated by the deterministic policy that doesn’t consider the

risk or variability.
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Figure 4–7: Risk analysis for the stochastic destination optimization solution where
a common destination policy is applied to all simulations.
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4.6 Conclusions

This work proposes a general mining supply chain modelling and stochastic

optimization framework that can be adapted to many instances; the method is par-

ticularly useful for optimizing complex blending supply chains that have multiple

processing streams and purity or material chemistry constraints. Unlike existing

methods, the proposed work does not assume an a priori classification of ore and

waste materials. Uncertainty is integrated into the decision-making through the use

of policy variables that define the destination for mined materials that have simi-

lar attributes (e.g., metal content and tonnages). The optimized solution outlines

destination policies that are designed to be robust to fluctuations that arise from

uncertainty, along with adaptive processing stream decisions that state how to uti-

lize the supply chain’s resources to maximize the utility of the materials given the

destination policies that have been implemented.

The proposed method is tested at a nickel laterite blending chain. Experimental

results indicate that the proposed method works well for optimizing with complex

blending operations with non-linear constraints. It was found, however, that cau-

tion should be taken when generating destination policies from estimated orebody

models because the associated risk is substantial. The stochastic optimization for

the supply chain generates a robust destination policy that adheres to the strict

blending requirements and tonnages at the processing plant, while maintaining a

similar economic value when compared to the deterministic case. Future work will

seek to improve cluster stability by disaggregating and re-aggregating the clusters

as the algorithm progresses, test the proposed methodology on other mining supply
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chains and integrate production scheduling with the supply chain optimization under

uncertainty.
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CHAPTER 5
Global Optimization of Open Pit Mining Complexes with Uncertainty

The previous Chapter provides a foundation for the simultaneous optimization

of mining complexes, and focuses on the creation of a unified modelling method-

ology and the development of efficient solvers based on metaheuristics in order to

optimize the downstream aspects of a mining complex (contextualized as a mineral

supply chain). Specifically, the previous Chapter focuses using these metaheuris-

tic solvers to optimize critical variables that affect the flow of materials through a

mining complex, such as destination policies and the use of the various processing

streams, in order to optimize the objectives defined by the modeller in the form of

a two-stage stochastic optimization model with fixed recourse. It is noted, however,

that the production schedule that defines the initial quantities available for the var-

ious processing streams is assumed to be defined a priori. This Chapter contributes

to the previous developments by allowing the optimizer to simultaneously control

(multi) mine production schedules, destination policies and processing stream vari-

ables, which results in greater control over the geological risk over the life of the

mining complex. While the modelling methodology, optimization formulation and

metaheuristic solvers are similar to those of Chapter 4, some key additions and

modifications are noted. First, the optimization models now consider production

scheduling aspects, such as slope and reserve constraints, in addition to mine-level

constraints (e.g. mine production capacities), which are not necessary with a fixed
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production schedule. More importantly, the metaheuristic solvers are adapted to ac-

count for production scheduling changes; this requires combining aspects developed

in Chapter 3 to change the production schedule while obeying slope constraints with

aspects developed in Chapter 4 to optimize the destination policies and processing

stream variables. In order to simultaneously optimize the destination policies and

scheduling decisions, a modified simulated annealing algorithm is proposed, which

better manages the strong relationship between the two variables that helps to avoid

getting trapped in local optima. A full-field test is performed for a copper-gold

mining complex (identity withheld for confidentiality) that has 30 098 blocks and

six processing streams, including a stockpile. Results indicate that the deterministic

equivalent of the proposed method is capable of generating a design with a 4% higher

than an industry-standard optimizer. The stochastic optimizer further increases the

net present value by an additional 6% over the deterministic-equivalent design, and

simultaneously improves the mine’s ability to meet production targets with less risk.

5.1 Introduction

Global optimization for mining complexes addresses the issue of integrated min-

ing and processing operations with multiple pits or underground mines, multiple

metals or minerals, stockpiles, blending options and alternative processing streams

to yield distinct products [166, 168]. The primary objective of a mining enterprise is

to maximize the net present value (NPV) of the cash flows; this requires optimizing

the long-term mine production schedules and the use of the materials that have been

extracted (i.e. the supply). Production schedules define the sequence of extraction

for the materials to be mined, thus defines the supply of materials available over

143



time. Material processing optimization, referred to as supply chain optimization in

Chapter 4, defines how to optimally use the mining complex’s processing streams to

maximize the utility of the available materials, and addresses both the destination

policies (where to send material from the mines) and processing stream decisions

(where to send stockpiled or processed material). Historically, these two components

have been optimized independently, leading to sub-optimal solutions for the mining

complex as a whole [61]. Many of the existing attempts at global optimization ig-

nore the compounded effect that uncertainty (i.e. geological or economic) has on the

value and operational feasibility of the supply chain [128, 137]. As the complexity

of the supply chain increases in terms of number of mines, processing stream op-

tions and methods of distribution, there is an increasing importance in integrating

all elements simultaneously while considering the uncertainty that arises within the

mining complex’s various components.

Recent work has focused on integrating geological, or supply, uncertainty into

open pit mine production scheduling optimization models. Ramazan and Dimi-

trakopoulos [142] propose a two-stage stochastic integer programming (SIP) formu-

lation [16] that seeks to maximize the NPV of a production schedule while minimiz-

ing the risk of not meeting production targets. Through the use of a geological risk

discounting parameter, the optimizer aims to strike a balance between extracting

high-value and low-risk material at the beginning of a mine’s life, and defer riskier

material to later periods when more information is available. The basic SIP model

has been tested and improved over time [2, 14, 46, 106, 111], and results consistently
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demonstrate that the NPV of the production schedule that considers geological un-

certainty can be substantially higher than that of a conventional schedule and less

risk in deviating from production targets.

Despite these advances in integrating geological uncertainty into mine produc-

tion scheduling models, all of the previous formulations assume an a priori decision

of what is ore (valuable) and waste material, commonly referred to as a cut-off grade

policy [109, 145]. By specifying the destination of material a priori, the models

ignore the impact that the aggregate of blocks will have on capacity and mate-

rial quality constraints that are imposed in the various processing streams of the

mining complex. Other work has aimed to integrate dynamic destination decisions

with long-term deterministic production scheduling by exploiting the structure of

the linear optimization model [15, 23, 63, 105]. Boland et al. [22] propose a multi-

stage stochastic optimization model that decides the destinations for each scenario;

scenario-dependent destination decisions are overly optimistic because they assume

perfect knowledge of the material that will be extracted at the beginning of each time

period and do not provide a long-term guide for operations. Extending the afore-

mentioned methods to globally optimizing mining complexes is challenging because

of the linear assumptions used to generate optimize the destinations. Alternatively,

other work has investigated integrating robust cut-off grade destination policies [124]

and robust block destinations [100, 102], which both integrate uncertainty into the

policies, however have also not been extended to globally optimizing mining com-

plexes.
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The underlying challenge for globally optimizing mining complexes is the exten-

sive amount of non-linearity that is required to accurately model the blending and

stockpiling of materials [19] and the complex transformations that occur when refin-

ing the bulk input material into a set of output products. There have been several

attempts to holistically optimize mining complexes [30, 52, 76, 77, 150, 153, 154, 165,

166, 168], however all models ignore geological uncertainty, and are often limited in

the degree of flexibility in modelling the non-linear transformations in the supply

chain. Chapter 4 proposes a supply chain ore processing optimization method that

not only permits a high degree of flexibility for modelling the non-linear aspects of the

supply chain, but does not require simplifying assumptions to generate high-quality

optimization solutions. Moreover, the proposed model can create destination policies

that are robust to geological uncertainty, while addressing many of the shortcomings

of cut-off grade optimization, such as blending, stockpiling and multiple processing

streams.

This work expands on the mineral resource supply chain optimization framework

for open pit mining complexes, developed in Chapter 4, by enabling the optimizer

to make production scheduling decisions in addition to destination policies and pro-

cessing stream decisions. First, an overview of the modelling approach is given. Fol-

lowing this, a two-stage SIP formulation is proposed, where the first stage decisions

are used to optimize multi-mine long-term production schedule and generate robust

destination policies, and the second-stage recourse decisions are used to optimize the

various processing streams of the supply chain. Following this, the solution method

is discussed, which is a hybrid of particle swarm optimization and an adapted version
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of simulated annealing. The method is then tested at on a copper-gold deposit data

set. Finally, conclusions and future work are presented.

5.2 Modelling Mining Complexes with Uncertainty

This section discusses a flexible modelling procedure for mining complexes with

uncertainty. First, definitions for materials and related attributes in the context of

mining complexes with uncertainty is provided. Following this, the decision variables

that govern the production schedule, the flow of the materials and attributes from

the mines, and the processing streams will be discussed. Tables 5–1, 5–2, and 5–3,

summarize the required sets, variables and parameters used for modelling.

5.2.1 Material flows and attribute transformations in mining complexes

In a mining complex, materials are products that are mined or are generated

through blending or processing. Materials are considered to have unique mineralogy

or metallurgical attributes and, as a result, may only be sent to a set of certain

locations in a mining complex for further treatment. In order to define the flow of

materials from the sources (mines) to the final products (refined metals), it is useful

to describe a mining complex as a directed graph. Let the graph G (N ,A) represent

the flow of materials through the mining complex. The set of nodes, N , is comprised

of three subsets:

i C: clusters of mined materials that have similar attributes (e.g., metal content).

See Sect. 5.2.3 for a detailed description.

ii S: destinations that are able to stockpile material over time. The input material

is not treated or transformed at these nodes.

147



Table 5–1: Notations for sets and indices used for the stochastic global
optimization of open pit mining complexes.

Sets and Indices
Set Description
P Primary attributes (e.g. metal tonnages) of interest.
H Hereditary attributes of interest (e.g. recoveries, profits).
T Time periods.
S Global set of scenarios that represent uncertainty.
M Set of mines in the complex.
Bm Set of blocks from the mine m ∈M.
Ob Set of overlying blocks that need to be mined prior to extract-

ing block b.
C Clusters of materials at the mines with similar primary at-

tributes.
S Destinations in the complex that stockpile material.
P Destinations in the complex that process material and must

send out all of the recovered output product to subsequent
destinations, if available.

N Nodes in the mining complex, i.e. N = C ∪ S ∪ P .
A Set of arcs. An arc exists if i ∈ N can send material to j ∈ N .
I (i) Set of nodes that are connected via incoming arcs to node

i ∈ N , defined by the arcs in A.
O (i) Set of nodes that are connected via outgoing arcs from node

i ∈ N , defined by the arcs in A.
G (N ,A) Graph that models the flow of materials in the mining com-

plex.

148



Table 5–2: Notations for variables used for the stochastic global optimization of
open pit mining complexes.

Variables
xb,t ∈ {0, 1} Extraction decision for block b in period t.
zc,j,t ∈ {0, 1} Decision of whether or not to send cluster c to

destination j in period t.
yi,j,t,s ∈ [0, 1] Proportion of material produced at i sent to j in

period t and scenario s.
vp,i,t,s ∈ R Value of primary attribute p at node i in period t

and scenario s.
vh,i,t,s ∈ R Value of hereditary attribute h at node i in period

t and scenario s.
γp,c,t,s Value of attribute p for cluster c in period t and

scenario s.
rp,i,t,s ∈ [0, 1] Recovery of primary attribute p after processing

at node i in period t and scenario s.
d+
h,i,t,s, d

−
h,i,t,s ∈ R Surplus and shortage, respectively, of hereditary

attribute h at node i in period t and scenario s.

Table 5–3: Notations for parameters used for the stochastic global optimization of
open pit mining complexes.

Parameters
θb,c,s ∈ {0, 1} 1 if block b belongs to cluster c in scenario s, or 0 otherwise.
βp,b,s Simulated value of attribute p for block b in scenario s.
fh,i (p) Function that transforms primary attributes p to hereditary

attribute h at location i.
Uh,i,t Upper bound for hereditary attribute h at i in period t.
Lh,i,t Lower bound for hereditary attribute h at i in period t.
ph,i,t Unit price of hereditary attribute h at i in period t.
c+
h,i,t Unit surplus cost for hereditary attribute h at i in period t.*

c−h,i,t Unit shortage cost for hereditary attribute h at i in period t.*

* A geological risk discount rate helps to defer riskier material to later periods, i.e., c+h,i,t > c+
h,i,(t+1)

.
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iii P : destinations that must process and send all output material to the subse-

quent nodes, if available.

The set of directed arcs, A, defines the possibility to send material from i ∈ N to a

subsequent destination j ∈ N . Let I (i) represent the set of nodes that send materials

to i ∈ S ∪P , which is defined by the incoming arcs to node i in A. Additionally, let

O (i) represent the set of nodes that receive material from node i, which is defined by

the outgoing arcs in A from node i. Let T = {1, ..., T} describe the set of periods of

time in which the mining complex operates (e.g. months, years), where T represents

the end of the life for the mining complex. In order to simplify future notations, the

general case where destinations i ∈ S ∪ P are able to receive or produce multiple

distinct materials (e.g. multiple concentrates to be sent to various smelters), or nodes

i ∈ N operating in non-contiguous periods is not discussed, however the method may

be generalized to include these complexities.

Attributes are used to quantify information that is of interest in the optimization

model, such as metal quantities and costs. Uncertainty in the attributes may be

quantified using a set of joint scenarios S = {1, ..., S}, where a scenario defines a

realization, or sampling, from all sources of uncertainty. Attributes are categorized

into two classes:

i Primary attributes (p : p ∈ P): fundamental variables of interest to the entire

model (e.g. metal and total tonnages) that are sent from node i ∈ N to a

node j ∈ O (i). The quantity of the attribute available is denoted by vp,i,t,s

∀i ∈ S ∪ P , t ∈ T, s ∈ S. These often originate at the mines, and may flow
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through the mining complex to the final products. The amount of attribute

recovered after treatment is denoted by rp,i,t,s.

ii Hereditary attributes (h : h ∈ H): information that is relevant to the op-

timization model, but is not necessarily passed from node i to j (e.g., feed

material chemistry, treatment costs, revenues from sales); these attributes

may be expressed as (non-) linear functions, fh,i (p), of the primary attributes

p ∈ P. The quantity of the hereditary attribute available is denoted by vh,i,t,s

∀i ∈ S ∪ P , t ∈ T, s ∈ S.

5.2.2 Long-term mine production schedules

Mines are the suppliers of bulk materials to the mining complex, and are repre-

sented by the set M. Each mine m ∈M is discretized into volumes of material called

blocks, Bm. In order to quantify the geological uncertainty for both the quantities

of materials and attributes, it is assumed that each block b ∈ Bm has a simulated

material classification and simulated attributes, βp,b,s ∀p ∈ P, s ∈ S. Figure 5–1

shows an example of the differences that may appear for both simulated material

classifications and attributes in a copper-gold mine.

The long-term production schedule is determined by the decision variables xb,t ∈

{0, 1}, which define whether (1) or not (0) block b ∈ Bm is extracted in period t ∈ T.

In order to safely extract a block b ∈ Bm, it is necessary to uncover b by extracting

a set of overlying blocks, Ob, in their entirety. The overlying blocks Ob may be

identified for each block b in a pre-processing step by creating an inverted cone from

the centre of b and verifying which blocks are within the cone. In more complex

cases, it may be necessary to define variable slope angles for the North, East, South
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Simulation #1

Simulation #2

Simulated Material Types Simulated Copper Grades

0 7Material Code 0% 1.5%Copper Grade

Figure 5–1: Example of a cross-section showing a comparison of simulated material
types and copper grades for a copper-gold mine.

and West walls for each block. Figure 5–2 gives a 2D example of how the overlying

blocks Ob are defined with variable slope angles. For a more detailed description of

the 3D pre-processing algorithm, the reader is referred to Khalokakaie et al. [95].

+ Elevation

+ East

Block b Overlying blocks �b

α1 α2

Figure 5–2: 2D example of blocks that must be uncovered (Ob) prior to extracting
block b. Note that variable slope angles are defined for the West (α1) and East (α2)

walls.

5.2.3 Destination policies

Destination policies define where the mined blocks blocks are initially sent in

the mining complex. In this work, each material from the mines is decomposed into

sub-groups based on attributes with similar quantities (e.g. valuable or deleterious
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metal content), and the destination policy outlines for all scenarios where each sub-

group of material is sent. A similar concept is introduced by Menabde et al. [124],

who separate the univariate distribution of the metal content (grades) into “bins”

(i.e., categories based on ranges of metal content), and create a time-varied cut-off

grade policy based on the bins (Fig. 5–3A); rather than looking at the individual

blocks in the mine [22, 100, 102], the optimizer requires substantially fewer decision

variables because it focuses on the distribution of grades. In the more general case,

proposed in Chapter 4, the sub-groupings of materials, called clusters, may be created

on multivariate distributions, which permits for a higher degree of flexibility when

defining the policies (Fig. 5–3B). In both cases, the destination of a single block may

change between simulations, depending on the simulated attributes. The general

method, however, addresses many of the limitations of cut-off grade destination

policies because it is able to consider the impacts of deleterious elements, blending

or homogenization, stockpiling and complex processing streams.
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Figure 5–3: (A) Simulated univariate copper distributions with a cut-off grade
policy defined using bins. (B) Destination policies using clusters, where the points

represent a block’s simulated copper and gold attributes.
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In order to define destination policies, it is first necessary to classify the sim-

ulated blocks into clusters, C ⊂ N . The k-means++ clustering algorithm [6, 117]

is a useful method for grouping information with similar attributes. The algorithm

first creates a pre-determined number of cluster centroids for each mine and material

based on the simulated attributes. For a given scenario, a block’s cluster member-

ship is determined by the closest centroid, measured using a Euclidean distance from

the block’s simulated attributes to the centroid’s multivariate attributes; this cluster

membership is subject to change for a block, given that the material classification

and attributes may vary between simulations. Let θb,c,s represent the pre-processed

parameter that defines whether (1) or not (0) block b ∈ Bm is a member of cluster

c ∈ C in scenario s ∈ S. The destination policies are determined using the variable

variable zc,j,t ∈ {0, 1}, which represents the decision of whether (1) or not (0) cluster

c ∈ C is sent to destination j ∈ O (c) in period t. It is noted that the set of candidate

destinations, O (c), is determined by the type of material that the cluster belongs to.

5.2.4 Processing and stockpiling decisions

The destination policy variables described in Sect. 5.2.3 define where to send

material after it is mined. Depending on the configuration of the processing streams

for a given mining complex, it may be necessary to model the transfer of materi-

als between two locations. Processing decision variables, yi,j,t,s ∈ [0, 1], define the

proportion of an output material sent from i ∈ S ∪ P to destination j ∈ O (i) in

period t ∈ T and scenario s ∈ S. It is noted that, unlike the production schedule and

destination policies, these decisions are designed to be adaptive to uncertainty; after

the material is received at the initial destination and the uncertainty is revealed, it

154



is assumed that the mining complex can adapt appropriately. Given that the pri-

mary attributes of interest are assumed to be linear and additive, the quantity of

the primary attribute sent from destination i ∈ S ∪P to j ∈ O (i) is calculated with

yi,j,t,s · vp,i,t,s.

5.3 Optimizing Mining Complexes

5.3.1 Flexible design of optimization objectives with a two-stage stochas-
tic optimization model

Using the set of decision variables introduced in Sect. 5.2, a two-stage stochastic

optimization model [16] can be expressed to meet the objectives and constraints of

the mining complex. In this formulation, the first-stage decisions are the long-term

production schedule and destination policies, which are designed to be robust to the

fluctuations that arise from the uncertainty in the geological attributes. Recourse

variables are used to adapt to the first-stage decisions via the processing stream

variables and penalties for excessive risk or inability to meet specified targets. The

deviation variables may be penalized using their related penalty costs, c+
h,i,t and

c−h,i,t. Similar to a discount rate used to calculate the net present value (NPV), these

penalty costs my be defined to be monotonically decreasing with respect to time.

This phenomenon referred to as geological risk discounting, which attempts to defer

riskier material to later periods in the mine life [142]. The geological risk discount

rate is a parameter that may be used to describe the modeller’s desire to balance the

ability to meet production targets in the short- and long-terms. These penalty costs

relate to the willingness to pay for a unit of deviation from a capacity constraint,

or may be determined experimentally by running the optimization model multiple

times to obtain a desirable risk profile for all of the constraints of interest [14]. The
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general global optimization formulation for open pit mining complexes is defined as

follows:

Objective:

max
1

|S|
∑

i∈S∪P∪M

∑
t∈T

∑
h∈H

∑
s∈S

ph,i,t · vh,i,t,s︸ ︷︷ ︸
Discounted revenues and costs

− 1

|S|
∑

i∈S∪P∪M

∑
t∈T

∑
h∈H

∑
s∈S

(
c+
h,i,t · d

+
h,i,t,s + c−h,i,t · d

−
h,i,t,s

)
︸ ︷︷ ︸

Risk-discounted penalties for deviations

(5.1)

Subject to:

I. Capacity constraints are used to calculate the value of the hereditary attributes

and evaluate the surplus or shortage from a specified target at the various locations in

the mining complex. Examples of typical constraints may include, but are not limited

to, mine production capacity, stockpile capacity, processing plant feed capacity and

grade blending constraints.

vh,i,t,s = fh,i (p) ∀h ∈ H, i ∈ S ∪ P ∪M, t ∈ T, s ∈ S (5.2)

vh,i,t,s − d+
h,i,t,s ≤ Uh,i,t ∀h ∈ H, i ∈ S ∪ P ∪M, t ∈ T, s ∈ S (5.3)

vh,i,t,s + d−h,i,t,s ≥ Lh,i,t ∀h ∈ H, i ∈ S ∪ P ∪M, t ∈ T, s ∈ S (5.4)
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II. Reserve and block access constraints ensure a block is extracted at most once,

and that the overlying blocks have also been extracted.

∑
t∈T

xb,t ≤ 1 ∀b ∈ Bm (5.5)

xb,t ≤
t∑

t′=1

xu,t′ ∀b ∈ Bm, u ∈ Ob, t ∈ T (5.6)

III. Destination policy constraints, which calculate the quantities of the primary

attributes for each cluster from the blocks, and ensure that a cluster is sent to a

single destination in the mining complex.

γp,c,t,s =
∑
b∈Bm

θb,c,s · βp,b,s · xb,t ∀m ∈M, p ∈ P, c ∈ C, s ∈ S (5.7)

∑
i∈O(c)

zc,i,t = 1 ∀c ∈ C, t ∈ T (5.8)

IV. Mine extraction constraints are used to determine the quantities of the

primary attributes that are extracted from each mine.

vp,m,t,s =
∑
b∈Bm

βp,b,s · xb,t ∀m ∈M, p ∈ P, t ∈ T, s ∈ S (5.9)
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V. Processing stream flow constraints, which calculate the quantity of the pri-

mary attributes that are retained or received at each location, and ensure mass

balancing for materials sent from the stockpiles and processors to subsequent desti-

nations in the mining complex.

vp,j,(t+1),s =
∑

i∈(I(j)\C)

rp,i,t,s · vp,i,t,s · yi,j,t,s +
∑

c∈(I(j)∩C)

γp,c,(t+1),s · zc,i,(t+1)

+vp,j,t,s ·

1−
∑
k∈O(j)

yi,k,t,s

∀p ∈ P, j ∈ S ∪ P , t ∈ T, s ∈ S (5.10)

rp,i,t,s = 1 ∀p ∈ P, i ∈ S, t ∈ T, s ∈ S (5.11)

∑
j∈O(i)

yi,j,t,s ≤ 1 ∀i ∈ S, t ∈ T, s ∈ S (5.12)

∑
j∈O(i)

yi,j,t,s = 1 ∀i ∈ P , t ∈ T, s ∈ S (5.13)

VI. End-of-year stockpile quantities (optional) are used to calculate the quanti-

ties of materials that remain in the stockpile at the end of the production period.

vh,i,t,s = vp,i,t,s ·

1−
∑
j∈O(i)

yi,j,t,s

 ∀i ∈ S, t ∈ T, s ∈ S (5.14)
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VII. Binary constraints

xb,t ∈ {0, 1} ∀b ∈ Bm, t ∈ T (5.15)

zc,j,t ∈ {0, 1} ∀c ∈ C, j ∈ O (c) , t ∈ T (5.16)

VIII. Continuous variable definitions

γp,c,t,s ≥ 0 ∀p ∈ P, c ∈ C, t ∈ T, s ∈ S (5.17)

yi,j,t,s ∈ [0, 1] ∀i ∈ S ∪ P , j ∈ O (i) , t ∈ T, s ∈ S (5.18)

rp,i,t,s ∈ [0, 1] ∀p ∈ Bm, i ∈ S ∪ P , t ∈ T, s ∈ S (5.19)

vp,i,t,s ≥ 0 ∀p ∈ P, i ∈ S ∪ P ∪M, t ∈ T, s ∈ S (5.20)

vh,i,t,s ∈ R ∀h ∈ H, i ∈ S ∪ P ∪M, t ∈ T, s ∈ S (5.21)

d+
h,i,t,s, d

−
h,i,t,s ≥ 0 ∀h ∈ H, i ∈ S ∪ P , t ∈ T, s ∈ S (5.22)
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5.3.2 Optimization with metaheuristics

The generalized global optimization formulation can be challenging to solve us-

ing conventional mathematical programming and network flow methods, particularly

when the models require non-linear functions. Metaheuristics are generalized opti-

mization algorithms that are useful for such cases because they do not require linear

formulations or a special structure in the optimization problem. Metaheuristics do

not guarantee a mathematically optimal solution, however have been shown in the

past to give useful solutions for mining-related problems [66, 102, 152]. The proposed

optimization framework uses a hybrid of particle swarm optimization (PSO) and a

modified simulated annealing (SA) algorithm. The reason for combining two meta-

heuristics is to overcome some of the limitations inherent in the individual method.

PSO cannot be easily adapted to make production scheduling decisions without spe-

cific assumptions on block destinations and economic values [56]. From experimental

testing in Chapter 4, simulated annealing did not prove to be nearly as effective or

efficient at optimizing the continuous processing stream variables as PSO, which is

a result of the computational overhead required to evaluate the small changes that

are incurred by changing a single continuous variable at each iteration. Notably,

using two complementary metaheuristics helps to ensure that solutions do not get

trapped in a local optimum. For the proposed framework, PSO is used to optimize

the destination policies and processing stream decisions, and SA is used to optimize

the destination policies and production schedule simultaneously. The two methods

are used interchangeably during the algorithm to improve the solution and to move a
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solution out of a local optimum. It is noted that there is a wide variety of metaheuris-

tic solvers available; future work may investigate and benchmark the performance of

these other methods.

It is first necessary to describe the solution vector, Φ = {x, z,y}, which is

used to store all decision variables and comprises three components. The production

schedule vector (x) stores all xb,t variables. Each discrete-valued element xb ∈ x

represents the extraction period of block b ∈ Bm, and may take on any value in T.

An initial (starting) production schedule may be obtained using industry-standard

methods, or by constructing a feasible schedule randomly (this design, however, must

obey slope constraints). The destination policy vector (z) stores all zc,j,t variables.

Each element zc,t ∈ z represents the encoded destination for cluster c ∈ C in period

t ∈ T, and may in the range [1, ..., |O (c) |]. A decoding scheme is used to convert the

value to the appropriate destination for the cluster. Finally, the processing stream

vector (y) stores all yi,j,t,s variables. Each element y ∈ y maps directly to a yi,j,t,s

variable, and may lie in the range [0, 1].

PSO [94] is a population-based metaheuristic that is capable of optimizing both

discrete and continuous variables, making it particularly suitable for optimizing the

destination policy and processing decisions. A particle is comprised of 3 equally sized

vectors: its solution vector, Φq, its best solution vector, Φb
q, and its velocity vector,

vq. Initially, the vectors Φq and vq may be randomly generated to obtain an initial

solution for the destination policies and processing stream decisions. A swarm is a

group of Q particles, and the best solution vector in the swarm is denoted by Φg. At

each iteration of the algorithm, α+ 1, the velocity and solution vectors are updated
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using the following equations:

vq (α + 1) = c1 · vq (α) + c2 · r1 ·
(
Φb
q −Φq (α)

)
+ c3 · r2 · (Φg −Φq (α)) (5.23)

Φq (α + 1) = Φq (α) + vq (α + 1) (5.24)

where c1, c2 and c3 are the weights for the particle’s inertia, its best solution and the

global best solution, respectively, and r1 and r2 are uniformly distributed random

numbers in the range [0, 1]. It is noted that the part of the velocity vector vq

that relates to the velocity of the production schedule, x, is always set to 0 to

ensure the production schedule remains unchanged. If any element of the solution

vector Φq exceeds its bounds, the value is set to the nearest bound. After each

solution vector Φq (α + 1) is updated, the objective function value, g (Φq (α + 1)), is

evaluated. If g (Φq (α + 1)) ≥ g
(
Φb
q

)
, the best vector is updated by Φb

q = Φq (α + 1).

Additionally, if Φb
q ≥ Φg, the global best solution is updated by Φg = Φb

q.

A modified SA algorithm is employed to improve the global best solution vector,

Φg, after optimizing with PSO. Two classes of perturbations (solution changes) are

considered when attempting to improve an existing solution.

i Production scheduling perturbations (x ∈ Φg): a block is randomly selected,

and its mining period is changed (possibly to not being mined at all). Any

blocks that would violate the slope constraints (Eq. 5.6) are also considered as

candidates to change extraction periods (see Chapter 3).

ii Destination policy perturbations (z ∈ Φg): a cluster destination decision vari-

able is randomly selected and sent to a different destination, if possible.
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In the classic simulated annealing algorithm, the acceptance probability for a

perturbation of the solution vector for a maximization problem is based on the fol-

lowing acceptance probability distribution:

P
(
g (Φg) , g

(
Φg′
)
, δ
)

=


1 if g

(
Φg′
)
≥ g (Φg)

exp
(
−
∣∣∣g (Φg′

)
− g (Φg)

∣∣∣ /δ) otherwise

(5.25)

where g (Φg) and g
(
Φg′
)

are the objective function values before and after the per-

turbation, respectively, and δ is called the annealing temperature. As the algorithm

progresses, the temperature is gradually reduced until only minor changes in the

objective function are accepted; this is often controlled by the initial temperature

at the start of the algorithm, δ (0), and the cooling schedule, which is defined by a

reduction factor, k ∈ [0, 1), and a number of iterations before the reduction factor is

applied, niter. One of the primary difficulties of the simulated annealing algorithm

is the calibration of the initial temperature; naturally, this parameter is dependent

on the magnitude of change in objective function that any given perturbation will

have. This parameter is particularly problematic for simulated annealing with multi-

ple neighbourhoods or variables (e.g. x and z) because the different neighbourhoods

for a set of variables may have different effects on the change in objective function

value.

Figure 5–4 shows a comparison of the cumulative distributions between the

changes in objective function values (g (Φg) − g
(
Φg′
)
) for sub-optimal candidate

perturbations for the production scheduling and destination policy neighbourhoods.
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When using the two neighbourhoods with the classic SA, for a very large tempera-

ture, the optimizer will may limit the number of sub-optimal changes in production

schedule, but will likely accept all destination policy changes. As the temperature

decreases, it becomes more likely that only sub-optimal destination policy changes

are accepted, and all sub-optimal production schedule changes are rejected. The clas-

sical simulated annealing method with a single temperature ignores the relationship

between the two types of decision variables.
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Figure 5–4: Example of cumulative probability distributions of objective function
changes for sub-optimal perturbations of two neighbourhoods.

In the proposed modified SA algorithm, the cumulative probability distributions,

shown in Fig. 5–4, are constructed for each neighbourhood by proposing random

perturbations to Φg. Rather than using a single temperature, δ, for both neighbour-

hoods in Eq. 5.25, the optimizer uses two independent temperature variables, δx and

δz, for the production schedule and destination policy neighbourhoods, respectively,

which are in turn controlled by a single parameter, ρ ∈ [0, 1], which represents a

cumulative probability. For a fixed ρ, the respective temperature variables (δx and
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δz) are computed from the cumulative probability plots (Fig. 5–4). The cooling

schedule (k, niter) is then applied to ρ, rather than δ. As the algorithm progresses,

the information garnered from any new proposed sub-optimal perturbations is used

as feedback to update the cumulative distributions; this better reflects the current

search space, rather than the search space when the SA algorithm commenced.

5.4 Case Study – Application at a Copper-Gold Mine

The proposed integrated mine planning optimization framework is demonstrated

on a copper-gold mining complex, which is similar to a real-world deposit, but has

been modified for the sake of both confidentiality and discussion.

5.4.1 Overview of the mining complex

In the given case study, a single mine supplies materials to a mining complex

that produces gold and copper. Figure 5–5 summarizes the definition of the mine’s

materials and the processing options. The mine contains three main material groups:

sulphides, transition and oxides. In order to model the material flows in the pro-

cessing paths, the sulphide and transition material groups are both separated into

two different material types based on being above or below 0.2% copper in order to

be compatible with the heap leach chemistry requirements. The oxide materials are

automatically classified based on potential ore and waste; the waste group is material

below the marginal cut-off grade of the process or is material that is not simulated,

thus automatically considered as waste. The deposit’s uncertainty is represented by

a set of 50 equally probable geological simulations with variable copper, gold, ton-

nages and material types; 35 of the simulations are used for optimization and the

remaining 15 are used to verify the robustness of the stochastic solution (see Sect.
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5.4.3). The number of simulations (scenarios) has been determined experimentally

by running separate stochastic optimization experiments with a varying number of

simulations and comparing the quality of the risk profiles.

Copper-Gold Mine
(25 Mtpa)

Sulphide Mill
(3 Mtpa)

Sulphide Heap Leach
(8 Mtpa)

Sulphide Waste Dump
(Unlimited)

Transition Heap Leach
(Unlimited)

Oxide Heap Leach
(Unlimited)

Oxide Waste
(Unlimited)

Oxides

   Potential

   Waste

Transition

   <0.2% Cu

0.2% Cu

Sulphides

   <0.2% Cu

0.2% Cu

Stockpile
(1 Mtpa)

Cu

Cu

Cu

Au

Au

Au

≥

≥

Figure 5–5: Definition of material types at the copper-gold mine, along with the
various destinations.

With the exception of the oxide waste dump, all destinations have variable grade-

recovery curves that are based on the average grade of the incoming material at a

process in a given period (Fig 5–6). The non-linear grade-recoveries have interesting

implications when considering the transition materials: for a given block or cluster

that has (hypothetically) similar economic values for two processing options, the

selected destination would be the one that profits the most from an increase in

recovery. As a result, one cannot assume that the destinations can be specified a

priori in a greedy manner because it is the recovery of the aggregated material sent

to a given process that determines the potential value.
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Figure 5–6: Grade-recovery curves for copper (left) and gold (right) at each of the
processes.

Table 5–4 provides an overview of the orebody model size and the number

of decision variables in the optimization model. The goal for the optimizer is to

maximize the net present value of the mining complex, which considers the sale

of copper and gold from each of the destinations, along with the processing and

mining costs. All cost-related parameters in Table 5–5 are expressed relative to a

base cost for confidentiality purposes. Table 5–6 summarizes the constraints in the

stochastic optimization model; the capacities used in the deterministic model are

shown in Fig. 5–5. A geological risk discount rate [142] of 5% is used to penalize

the deviations from the production capacities and are used to ensure that riskier

material is deferred to later periods when more geological information is available.

This discount rate is determined through testing and analyzing the risk profiles, and is

used to provide a suitable balance between meeting short- and long-term production

targets. The penalty costs have been determined experimentally by incrementally

167



Table 5–4: Description of orebody and optimization model sizes.
Optimization model Value
Number of blocks 30 098
Number of periods 22
Mine slope angle 45◦

Destination policy variables 2 332
Stockpile variables (deterministic)* 20
Stockpile variables (stochastic, 35 scenarios)* 700
* The stockpile is empty in period 1 and ceases to send material to the mill in period 21.

Table 5–5: Economic parameters used in the copper-gold mining complex model.
Parameter Value
Mining cost $1.00/t
Sulphide mill $11.30/t
Sulphide heap leach $2.98/t
Sulphide dump leach $1.87/t
Transition heap leach $2.15/t
Oxide heap leach $2.06/t
Copper price $2.88/lb
Gold price $1480/oz
Economic discount rate 7%
Geological risk discount rate 5%

adding constraints to the model and checking the impact that the cost has on the

risk profiles and net present value. For an in-depth discussion on the impacts of

penalty costs with the final solutions obtained, the reader is referred to Benndorf

and Dimitrakopoulos [14].

All tests are performed on a 64-bit Windows 7-based machine with two 6-core

Intel Xeon 5650 processors and 24 GB of RAM. For the PSO algorithm, 15 parti-

cles are used, and the inertia coefficients c1, c2 and c3 are set to 0.6, 0.25 and 0.8,

respectively. The SA algorithm is applied after 15 iterations of PSO, where ρ = 0.8,
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Table 5–6: Constraints used in the copper-gold mining complex optimization model.
Description of constraint Lower, Upper Bounds (*106) Penalty ($/tonne)
Mine capacity -, 25.0 -, 10
Stockpile capacity -, 1.0 -, 20
Sulphide mill capacity 2.8, 3.2 50, 50
Sulphide heap leach capacity 7.8*, 8.0 10, 25
* Minimum sulphide heap leach bound is removed from periods 11-22 to increase NPV.

k = 0.999 and niter = 500. The initial production schedule is discussed in the subse-

quent section, however the destination policies and processing stream (i.e. stockpile)

variables are randomly generated for each particle at the beginning of the algorithm.

Given that the SA and PSO algorithms are algorithmic optimizers, the termination

condition is defined by the user; this permits the ability to change the PSO and

SA parameters and continue optimizing without restarting the entire optimization

problem. It is noted that while this approach is not ideal for benchmarking the

computational performance of the method, its purpose is to provide a high-quality

solution for the end-user that is used for subsequent mine design.

5.4.2 Deterministic optimization and risk analysis

An E-type [69] deterministic orebody model is created by averaging the grades

in the given simulations and re-classifying the material types in the same manner

that the simulations are classified. An initial production schedule is first obtained

using the E-type model and Gemcom’s Whittle 4.3.1 commercial mine planning soft-

ware [166, 168]. Unlike Table 5–6, the deterministic models use a sulphide mill

capacity of 3 Mtpa and a sulphide heap leach capacity of 8 Mtpa. The Whittle

schedule serves as an initial solution for the proposed optimizer when only a single

scenario is considered (i.e. the E-type orebody model). This re-optimized design,
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referred to herein as the deterministic-equivalent design, is used to provide a fair

comparison between the deterministic and stochastic designs (i.e. obtained using

the same optimization methods). For future reference, the schedule that is opti-

mized using the proposed method and a single orebody model will be referred to

as the deterministic-equivalent design; this provides a consistent comparison be-

tween traditional methods that use a single input and a risk-based design. For the

deterministic-equivalent optimization, each material is clustered into 15 groups, with

the exception of the oxide waste material, which only considers 1; this results in 76

cluster destination policies per period (1,672 total). Figure 5–7 shows a comparison

for the sulphide mill, the sulphide heap leach and the cumulative NPV for both the

Whittle and deterministic-equivalent designs. Notably, the deterministic-equivalent

schedule generated using the proposed method continues to feed the sulphide mill at

capacity for an additional three years, and is able to immediately fill the sulphide

heap leach up to capacity in the first two periods. This results in a 4.7% higher NPV

than the schedule generated by Whittle, and the life of the mine is extended by a

year.

A risk analysis is performed by taking the schedule and destination policies gen-

erated from the deterministic-equivalent design and testing how the 50 geological sim-

ulations perform. This will provide a consistent basis of comparison for the stochastic

designs discussed in the following section. Figure 5–7 shows the risk profiles, which

is defined by the values of the exceedance probabilities for 10%, 50% and 90% (P-90,

P-50, P-10, respectively) of the simulations’ responses to the deterministic-equivalent

design. The risk profiles for sulphide mill and sulphide heap leach tonnages indicate

170



that the deterministic-equivalent design performs noticeably worse than the E-type

orebody model, which is attributed to the differences in the univariate distributions

between the estimated model and the simulations. The E-type model smooths out

variability (high- and low-values), whereas the simulations attempt to replicate the

variability from the original drilling information. The spike in sulphide mill ton-

nage in period 10 is similar in concept to when a cut-off grade is applied to the

simulations, where the simulations contain excessive quantities of material above the

cut-off. This tonnage is unrealistic and inflates the NPV of the risk analysis, which

can be seen by a 3.1% increase in NPV for the P-50 value over the E-type model

in the deterministic-equivalent design. Moreover, the risk analysis indicates that the

deterministic-equivalent design would consistently be unable to meet the production

targets at the sulphide heap leach. Interestingly, the NPV of the risk analysis is un-

affected by its inability to fill the sulphide heap leach to capacity, which is a result of

sending higher valued materials to the sulphide mill. This helps to increase recovery

and profits from the sulphide mill, however comes at the expense of underutilizing

the sulphide heap leach.

5.4.3 Stochastic optimization

The stochastic optimizer aims to optimize the long-term production schedule,

destination policies and the use of the stockpile while considering the geological

uncertainty during optimization. The deterministic-equivalent design is used as a

starting design for the stochastic optimizer. The final stochastic design is obtained

after running for 25 hours using the same machine as the deterministic-equivalent

design. Table 5–6 gives the relevant parameters that are used to guide the risk
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profiles; similar to the deterministic-equivalent optimization model, 15 clusters are

used for all material types, with the exception of the oxide waste material. Figure

5–8 compares the deterministic-equivalent design with risk profiles of the stochastic

solution for the sulphide mill tonnages, sulphide heap leach tonnages and the cumu-

lative NPV. It is apparent that the stochastic design is capable of meeting the target

capacity of 3 Mtpa at the sulphide mill on average, with substantially less risk than

the deterministic-equivalent design (Fig. 5–7). Unlike the deterministic-equivalent

solution, the stochastic solution begins ramping down the tonnages of material sent

to the sulphide mill in period 10. The stochastic design also meets the target sul-

phide heap leach tonnage over the first 12 periods, after which the quantities being

to decline. It is also possible to see the impact of geological risk discounting for the

sulphide heap leach tonnages, where the risk profiles are tight until period 11 (i.e.

small difference between P-10 and P-90 profiles) and expand thereafter. This implies

that the riskier sulphide heap leach material is being deferred until the end of the

mine life. Finally, it is noted that the P-50 NPV of the stochastic design is 6% higher

than the P-50 value of the risk analysis for the deterministic-equivalent design.

Figure 5–9 shows the risk profiles of the stochastic design when tested for ro-

bustness using the remaining 15 geological simulations. The P-50 tonnages sent to

the sulphide mill and sulphide heap leach are similar to those shown in Fig. 5–8,

however the variability (i.e. the difference between the P-10 and P-90 profiles) is

substantially larger. This implies that the stochastic design successfully extracts

sufficient quantities to feed the mill and sulphide heap leach up to capacity, however,
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the scheduler is unable to tightly control the geological variability related to the spa-

tial location of the sulphide materials. This variability is noticeable when comparing

the material types for two simulations in Fig. 5–1. The variability may be improved

by using more simulations during the stochastic optimization process, however there

is a limit on the effect that using more simulations has [1]. If the spatial variability of

the materials is high for a deposit, the optimizer tends to focus on local details that

affect the available sample population of simulations, rather than the global trends

that would be depicted using a larger sample of simulations. Admittedly, it is possi-

ble that more simulations are required than were provided by the mine. In this case

study, it is more important that the sulphide mill and sulphide heap leach targets

are met on average over the long-term and that high-valued zones are targeted to

maximize the NPV; the local details that are impacted by the spatial variability of

the materials can be managed operationally.

5.5 Conclusions

This chapter presents a modelling methodology and global optimization formu-

lation for mining complexes under uncertainty, whereby the solutions give robust

long-term open-pit mine production schedules and destination policies. The pro-

posed framework permits a high-degree of flexibility and detail in modelling the

mining complex, including the opportunity to integrate non-linear relationships that

are generally ignored in existing models because of the challenges associated with

non-linear optimization. The mathematical formulations can be generalized as a

mixed integer non-linear stochastic programming problem, where the first-stage de-

cisions are the production schedules for the mines along with the destination policies,
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and the recourse decisions decide how to best use the processing streams and desti-

nations in order to maximize the value of the material that has been extracted. The

optimizer uses a hybrid metaheuristic comprised of particle swarm optimization and

a modified simulated annealing optimizer, whereby the particle swam optimizes the

destination policies and processing streams and the simulated annealing optimizes

the long-term production schedules and destination policies.

The method is tested on a copper-gold mining complex. Experimental results

indicate that the stochastic design is able to satisfy the target tonnage capacities,

thus ensuring that the mine is able treat profitable material over the life of mine.

Additionally, the stochastic solution indicates a 6% higher net present value than the

design generated from deterministic-equivalent of the proposed stochastic optimizer

(both measured using the P-50 values from the risk profiles), thus making better use

of the non-renewable natural resource. Given that the proposed method seeks to

generate a single, robust set of destination policies, future research will investigate

the use of multistage stochastic optimization in order to permit adaptive policies

under both supply (geological) and demand (metal price) uncertainty, which will

likely lead to higher economic value.
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Figure 5–7: Comparison of the deterministic-equivalent design, a design created
using Whittle software, and the risk analysis of the deterministic-equivalent design.
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Figure 5–8: Risk profiles of the stochastic solution using 35 geological simulations.
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Figure 5–9: Risk profiles to verify the robustness of the stochastic solution using
the remaining 15 geological simulations.
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CHAPTER 6
Stochastic Global Optimization of Open Pit Mining Complexes with

Capital Expenditures

The previous Chapter focuses on the global optimization of open pit mining

complexes with geological uncertainty by simultaneously optimizing mine produc-

tion schedules, destination policies and processing stream variables. Similar to all

previous work in stochastic production scheduling, these models assume that the

target capacities (e.g. mine production, ore processing, stockpile size) are defined a

priori. The solution is likely to be a local optimum because the optimizer does not

consider options to increase or decrease these capacities or targets. This Chapter ex-

pands on the developments outlined in Chapters 4 and 5 by permitting the optimizer

to invest money, in the form of a capital expenditure, in order to increase or decrease

capacity constraints. As a result of this contribution, it is possible to simultaneously

consider design options, such as expanding mill capacities, opening and closing pro-

cessing streams, or optimizing the mine production rates by purchasing trucks and

shovels. In order to achieve this, minor modifications to the modelling methodology

proposed in Chapters 4 and 5 are made in order to give more flexibility when defining

variables of interest, and the optimization model is modified to account for capital

costs in order to increase or decrease capacity constraints. Capital expenditures

pose a challenge to metaheuristic (algorithmic) optimizers: by constantly increasing

or decreasing the constraints, it is easy for an algorithmic optimizer to get trapped
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in a local optimum because it cannot quickly change the other design variables to

truly explore the potential of the new capacity. In order to alleviate this challenge,

several new methods are developed to change production schedules during simulated

annealing to make large changes to the design to quickly evaluate the advantages of

an increased or decreased capacity. The method is evaluated using a full-field test for

a copper mining complex (identity withheld for confidentiality), which is comprised

of a mine with 128 946 blocks, contains 3 major processing streams, and has 8 stock-

piles. In this example, the optimizer has the ability to design the mine production

capacity by purchasing and replacing shovels and trucks. Due to the complexity and

non-linearity of this model, industry-standard and state-of-the-art mine production

schedulers are unable to provide sufficient flexibility to create an accurate optimiza-

tion model. As a result, the proposed stochastic optimizer is compared with its

deterministic-equivalent, and results indicate that the stochastic optimizer is better-

able to utilize the mill’s available capacity and reduce the risk of not being able to

keep the mill fed with materials. Additionally, the stochastic optimizer provides a

5.7% increase in net present value over the deterministic-equivalent.

6.1 Introduction

The primary objective of a mining enterprise is to maximize the value of its assets

for its stakeholders. This requires optimizing many strongly interrelated components,

such as the amount and timing of capital expenditures (CAPEXs) that are required

to develop, maintain or expand an operation, the sequencing of extraction from

the mines, and the use of the various processing streams to maximize the utility of

the products mined and treated. Naturally, the amount of capital expenditure is
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strongly related to the rate of which a mining complex can produce, treat and sell

materials. The global optimization of mining complexes addresses the challenge of

integrating all relevant aspects of optimizing a mining enterprise. Existing methods

have predominantly focused on aspects of mine production scheduling, the use of the

processing streams that stockpile, blend, treat and transform the bulk mined material

into refined products, and distribution networks that are used to deliver the products

to customers [19, 20, 21, 29, 30, 52, 76, 77, 153, 154, 161, 163, 166, 168], while leaving

strategic capital expenditure decisions outside of the optimization model in the form

of what-if scenarios. Given the strong relationship between capital expenditures,

capacities, operating costs, production scheduling and the use of processing streams,

this scenario-wise design methodology leads to a sub-optimal use of capital and

the non-renewable resource. Moreover, many of the existing attempts at global

optimization for mining complexes ignore the compounded effects that uncertainty

has on the performance of the mining complex, particularly the ability to fully utilize

the capacities that are purchased with a significant capital cost. In order to truly

maximize the value of the mining operation, it is necessary to optimize all aspects

of the mining complex, including capital expenditures, and simultaneously manage

the opportunities and risk that arise in the mining complex’s various components.

Recent research as focused on integrating geological uncertainty into mine design

and production scheduling optimization. Godoy and Dimitrakopoulos [66] propose a

sequential optimization methodology that first uses a modified linear programming

model, based off work by Tan and Ramani [159], to determine the optimal production

rates (i.e. shovel and truck purchases) from an orebody while considering uncertainty
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in metal quantities. A risk-based production scheduling algorithm is then used to

find a single production schedule that minimizes the risk of not meeting ore and waste

production targets over the life of the mine, which are governed by the previously

determined mine production capacities. The authors demonstrate that the method

is capable of not only substantially reducing the risk of the stochastic production

schedule, but also generates a higher net present value (NPV).

Ramazan and Dimitrakopoulos [142] propose a two-stage stochastic integer pro-

gramming model (SIP) [16] that aims to generate a production schedule that maxi-

mizes the NPV of the design and reduces the risk of not meeting production targets

(e.g. ore production capacity, total material movement capacity), metal quantities

produced and blending targets. The authors introduce the concept of geological risk

discounting, which is a time-dependent discount factor used to ensure that produc-

tion targets are met at the beginning of the mine life, thus guaranteeing early cash

flows, and defer riskier material to later periods when more information is available.

This model has been expanded upon and tested [2, 14, 46, 112], and results con-

sistently demonstrate the ability to not only generate a substantially higher NPV,

but also minimize the risk of not meeting production targets, metal quantities and

blending targets.

The previously mentioned methods for production scheduling with uncertainty,

however, are limited by several assumptions. The formulations assume that ore

and waste materials are classified a priori, hence are unable to simultaneously opti-

mize cut-off grade decisions [109, 145] or mining complexes with multiple processing
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options. Despite the fact that the optimizer will seek to extract blocks with high eco-

nomic value in early periods, a fixed ore-waste classification can result in low-grade

ore that is sent for processing and deferring the processing of higher-grade material

that may be readily available. Menabde et al. [124] propose a production scheduling

model that simultaneously generates a robust cut-off grade policy, however, it does

not explicitly manage the upside or downside risk of not meeting production tar-

gets. Boland et al. [22] propose a multistage model that simultaneously generates an

adaptive production schedule and scenario-dependent cut-off grade decisions. This,

however, leads to overly optimistic destination decisions, as it assumes that the

grades of the mined materials are known at the beginning of each period. Kum-

ral [102] proposes a model that attempts to simultaneously optimize the production

schedule and define an ore-waste classification for each block. Scenario-independent

block classifications have limited applicability for mining complexes that consider

multiple material types because certain materials often cannot treated with certain

processing streams due to incompatible chemical reactions.

The aforementioned work in stochastic optimization for mine production schedul-

ing attempt to meet production targets over the life of the mine, and reduce the risk

associated with not being able to satisfy the targets. These models, however, fail to

consider the timing and quantity of capital expenditures that that permit the option

to increase or decrease the target capacities. Recent work has sought to incorpo-

rate this additional level of decision-making directly in the optimizer. Groeneveld

et al. [71] propose a mixed integer program (MIP) model that schedules the mining

of benches (a production schedule within pre-defined phases), optimizes destination
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decisions, and the timing and quantities of capital expenditures used to increase or

decrease target capacities. By solving the optimization model for a set of metal price,

cost and utilization simulations independently, which the authors refer to as a “flexi-

ble” design, it is possible to obtain a probability distribution for a capital expenditure

that can be used to to approximate the timing of the decision. This method, however,

does not integrate uncertainty into the optimizer’s decision-making, and generates

an overly optimistic solution that assumes perfect knowledge of uncertain events (i.e.

a wait-and-see solution [16]). Groeneveld et al. [72] improve this model by forcing

the optimizer to choose the same decisions at the beginning of the mine life across

all scenarios. The authors note that geological uncertainty is not integrated in the

models, and that a phase design is required prior to running their proposed model.

Geological uncertainty can play a critical role when designing capacities because the

uncertainty relates directly to the quantities that are available and sent. Giving

the optimizer the ability to do detailed production scheduling can help manage the

distribution of risk over time, thus providing a consistent quantity and quality of

material at the appropriate capacity with controlled variability.

Chapter 4 proposes a generalized methodology for modelling and optimizing

mining supply chains with geological uncertainty, including the ability to model

non-linear transformations that occur in the processing streams. This method aims

to generate robust destination policies, similar to cut-off grades, which define where

materials are sent from the mine, and how to utilize the processing streams to max-

imize the utility of the materials extracted. The destination policies improve on
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cut-off grade policies because they can consider the blending of materials and com-

plex, non-linear processing streams. Chapter 5 improves on the method to consider

the simultaneous optimization of multi-mine production schedules, destination poli-

cies and processing streams with uncertainty. This chapter expands the previously

mentioned developments to include capital expenditure options, which permit the

optimizer to change the target capacities in the mining complex (e.g. mine produc-

tion and ore processing capacities). In the following section, a brief overview of the

generalized modelling procedure is outlined. Following this, a mathematical model

is given that may be tailored to suit the individual needs of each mining complex. A

description of the proposed metaheuristics that are used to perform the optimization

is provided. An application at an industry partner’s copper mining complex is then

discussed. Finally, conclusions and future work are presented.

6.2 Flexible Modelling of Mining Complexes with Uncertainty

6.2.1 Models of material and attribute uncertainty

In a mining complex, a material is a term used to define a physical product

that is extracted from a mine (e.g., sulphide or oxide) or generated from blending

and processing (e.g., tailings, concentrate, slag or refined metal). Materials often

have unique mineralogical or geometallurgical properties that have varying impacts

at the locations in a mining complex, which limit the choice of where they can

be sent for further blending or processing. An attribute is a generic term used to

describe the property of a material that is of interest to the optimization model,

such as metal mass or percent by weight (commonly referred to as grade), total

mass, economic values from sale, costs, recoveries or mill residence time (among
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many other possibilities). It is useful to categorize the various attributes into one

of two groups. Primary attributes are the fundamental variables of interest (e.g.

metal content and mass) that are sent from one location in the mining complex to

another, and are used to define the total quantity and quality of a single material (in

its entirety) in a given period. Hereditary attributes are variables that are of interest

for optimization models, and are derived using linear or non-linear expressions from

primary attributes. In practice, these may be used to track information such as

processing costs, revenues, throughput or energy consumption, among others.

Traditional mine production scheduling optimization frameworks consider only

a single representation of the spatial distribution of materials and their attributes,

such as metal content. Often these models are generated by kriging [40, 93, 120],

a geostatistical method used to estimate the values of the attributes at points or

volumes of interest. These estimation methods are known to over-smooth the dis-

tributions of the attributes, resulting to less high- and low-grade materials, which

ultimately leads to inaccurate financial and production forecasts [45, 143]. Geo-

statistical simulation methods [34, 69, 89] are ale to overcome the limitations of

conventional estimation techniques. They offer the possibility to generate an infinite

number of equally probable realizations of the geological conditions, which may be

used as a group the quantify the geological uncertainty in each mineral deposit of

the mining complex, and also better represent the geological variability (high- and

low-values) of the attributes of interest. Several geostatistical simulation techniques

exist, which are capable of generating simulations for both material types and mul-

tiple attributes [5, 25, 26, 33, 43, 66, 78, 92, 118, 130, 132, 133, 156, 175]. Figure 6–1
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shows an example of a cross section for both material type and attribute (copper)

simulations at the copper mine used in the case study; it is noted that the simula-

tions for material types provides discrete geological units, whereas the copper grade

attribute is a continuous variable.

Simulated Material Types Simulated Copper Grades

Simulation #1

Simulation #2

Material Type0 8 % Cu0.0 1.0

Figure 6–1: Example of simulated material types and copper grades at the copper
mine used in the case study.

Let S represent a set of equally probable scenarios, whereby a scenario is a joint

sampling from all sources of uncertainty considered in the optimization model. In the

case of multi-mine operations, each scenario is indexed, and the number of scenarios

is the product of the number of simulations for each orebody model. For example,

if two mines are considered, each having 20 geological simulations, S = {1, ..., 400}.

Naturally, as the number of independent sources of uncertainty (geology, prices,

recoveries, costs, etc.), the size of the optimization model grows exponentially.

6.2.2 Material and attribute flow through a mining complex

In order to develop a model for the global optimization of open pit mining

complexes, it is first necessary to establish some fundamental terminology. Tables
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6–1, 6–2 and 6–3 provide the relevant sets, variables and parameters used in the

optimization models. A mining complex is comprised of a set of mines (M), stockpiles

(S) and processors (P). For simplicity, this work will consider mining complexes

where all mines and locations within operate during a fixed set of periods t ∈ T;

the more general case where the operating periods of mines and processing streams

varies with time [136, 161] is omitted. Mines are assumed to be the only sources of

materials for the mining complex. Each mine m ∈M is comprised of a set of discrete

volumes (Bm), referred to as blocks. Each block b ∈ Bm has simulated attributes βp,b,s

for the primary attributes of interest (p ∈ P), which are assumed to be inputs to the

optimization model. Stockpiles are locations in the mining complex that are capable

of storing incoming materials (and their attributes) over time and distributing them

to subsequent locations when desired. Stockpiles are useful in practice because they

can be used to blend materials together, thus creating a more homogenous product,

and may also be used to store marginally valuable material that is treated at a later

time when the opportunity cost of deferring more valuable is lower (i.e. the cut-off

grade is lower). A processor is a generic term used to describe all other locations in

the mining complex, which may, but not necessarily be used to transform an incoming

bulk product into a purer form, for example, concentrators, smelters, refineries, leach

pads. Additionally, in this definition, the set of processors may also contain other

elements, such as modes of transport (rail, trucks, ports), which are useful for the

optimization model. One of the primary distinctions between a stockpile and a

processor, in the generic modelling sense, is that a processor does not store material
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Table 6–1: Sets used for optimization with capital expenditures.
Sets and Indices

Set Description
P Primary attributes.
H Hereditary attributes.
T Time periods.
S Joint scenarios for all sources of uncertainty.
M Mines.
Bm Blocks at mine m ∈M.
Ob Blocks that overly b ∈ Bm that must be extracted prior to b.
K All capital expenditure options.
K1 One-time capital expenditures (K1 ⊆ K).
C Sub-groupings (clusters) of blocks with similar attributes.
S Stockpile destinations.
P Processors in the mining complex that must forward all prod-

ucts generated to the subsequent destinations, if available.
N Nodes that describe the clusters and destinations in the min-

ing complex, i.e. N = C ∪ S ∪ P .
I (i) ⊆ N A set of nodes that destination i ∈ S ∪ P receives materials

from (incoming).
O (i) ⊆ S ∪ P A set of nodes that destination i ∈ S ∪ P can send material

to (outgoing).

over time; all material that is produced is sent out to subsequent destinations, if

possible.

The primary and hereditary attributes at the stockpiles and processors are

tracked in the optimization models using state variables. Let vp,i,t,s represent the

value of attribute p ∈ P at location i ∈ S ∪ P . Additionally, let the state variable

vh,t,s represent the value of hereditary attribute h ∈ H, which is calculated using a

(non-) linear function, fh (p, i, k), of the primary attributes p ∈ P at location i and

capital expenditure option k ∈ K. These functions may be used, for example, to

calculate non-linear recoveries (see Chapter 5), mill throughputs, profits and costs,
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Table 6–2: Variables used for optimizing with capital expenditures.
Decision variables

xb,t ∈ {0, 1} Defines whether or not block b ∈ Bm is extracted
in period t ∈ T.

zc,j,t ∈ {0, 1} Defines whether or not cluster c ∈ C is sent to
destination j ∈ O (c) in period t ∈ T.

yi,j,t,s ∈ [0, 1] Defines the proportion of output material sent
from i ∈ S ∪ P to j ∈ S ∪ P in period t ∈ T
and scenario s ∈ S.

wk,t ∈ {Lk,t, Uk,t} Defines how many capital expenditure options k ∈
K are exercised in period t ∈ T.

State variables
vp,i,t,s ∈ R State variable for attribute p ∈ P at location or

cluster i ∈ N ∪M in period t ∈ T and scenario
s ∈ S.

vh,t,s ∈ R State variable for attribute h ∈ H in period t ∈ T
and scenario s ∈ S.

rp,i,t,s ∈ [0, 1] Proportion of attribute p ∈ P recovered after pro-
cessing at node i ∈ P in period t ∈ T and scenario
s ∈ S.

d+
h,t,s, d

−
h,t,s ∈ R Surplus and shortage variables, respectively, from

a deviation target for attribute h ∈ H in period
t ∈ T and scenario s ∈ S.
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Table 6–3: Parameters used for optimization models with capital expenditures.
Material flow parameters and attribute transformation functions

βp,b,s Simulated value of attribute p ∈ P (e.g., metal content) for
block b ∈ Bm and scenario s ∈ S.

θb,c,s ∈ {0, 1} Defines whether or not block b ∈ Bm belongs to cluster c ∈ C
in scenario s ∈ S.

fh (p, i, k) A (non)-linear function that is used to calculate the value
of attribute h ∈ H using attributes p ∈ B from locations
i ∈ S ∪ P ∪M and capital expenditure options k ∈ K.

Optimization model parameters
Uh,t,Lh,t Upper- and lower- bounds, respectively for hereditary at-

tribute h ∈ H in period t.
ph,t Price (or cost) of attribute h ∈ H in period t ∈ T.
c+
h,t, c

−
h,t Unit surplus and shortage costs associated with deviations

from bounds for attribute h ∈ H in period t ∈ T.

Capital expenditure parameters
pk,t Discounted purchase price for capital expenditure k ∈ K in

period t ∈ T.
κk,h The per-unit increment for a constraint that capital expendi-

ture k ∈ K has on attribute h ∈ H.
λk The life of capital expenditure k ∈ K (e.g. truck life before

replacement).
τk Lead time before capital expenditure k ∈ K is built or deliv-

ered.
Lk,t, Uk,t Minimum and maximum purchase requirements, respectively

for option k ∈ K in period t ∈ T.
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among others. It is noted that this definition, unlike that of Chapters 4 and 5, defines

hereditary attributes as global functions that may be calculated using the primary

attributes p from multiple locations i ∈ S ∪ P ∪ M in a single equation. These

equations are defined by the modeller, and may be a function of the level of capital

expenditures, which is useful when modelling variable operating costs as a function

of equipment purchases (i.e. economies of scale from expanding the mill capacity or

mine production). Additionally, a recovery variable, rp,i,t,s ∈ [0, 1], may be used to

define the quantity of attribute p recovered at a location i ∈ S ∪ P for each time

period and scenario.

The flow of materials and their respective attributes through a mining complex

is defined by three sets of decision variables (Fig. 6–2), namely the mine production

schedule decisions, destination policies and processing stream decisions. Production

scheduling decision variables, xb,t ∈ {0, 1}, determine whether (1) or not (0) a block

b is extracted in period t; these decision variables define the initial quantities of

attributes for each material that is available in each time period. For open pit mines,

a set of overlying blocks, Ob is defined for each block b ∈ Bm, which are the blocks

that must be extracted prior to b in order to ensure slope stability and safety. These

sets are generated via a pre-processing step that looks at the overlying blocks within

an inverted cone [95], and are of minimum cardinality to avoid excessive memory

usage.

After extraction, it is necessary to decide where to send the extracted materials.

One method commonly used in the mining industry is a cut-off grade policy, which is
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Figure 6–2: Decision variables related to material flowing through a mining
complex.

a threshold value that defines where material above or below the prescribed thresh-

old is sent. Simulated block attributes, βp,b,s, are often sampled from continuous

distributions, which complicates the decision of where to send extracted materials

because it leads to non-linear formulations. In order to avoid these complex models,

some research has instead focused on methods that use binary decision variables

to define where material is sent. There are several ways to model the destination

decisions, such as scenario-dependent block destinations [22, 100] and robust block

destinations [102, 129]. The former, however, leads to overly optimistic solutions that
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don’t integrate uncertainty into the decisions, whereas, the latter may lead to sending

blocks to destinations that are incompatible with a block’s simulated material type.

Rather than attempting to make destination decisions on the block-scale, Menabde et

al. [124] propose a discretization of the continuous attribute into bins to define cut-off

grade policies. Cut-off grade policies, however, are often not useful for global opti-

mization models that require complex blending constraints and multiple attributes

(e.g. multiple metals or deleterious elements). Chapter 4 proposes a generalization

of this concept that is useful for mining complexes that consider the impacts of mul-

tiple attributes on the entire system. In this method, a set of multivariate bins (C),

referred herein as clusters, are created in a pre-processing step by clustering [6, 117]

the primary block attributes βp′,b,s ∀p′ ⊆ P, b ∈ Bm,m ∈ M, s ∈ S for each material

type and for each the mine. Let θb,c,s ∈ {0, 1} represent a pre-processed parameter

that defines whether (1) or not (0) block b belongs to a cluster c ∈ C in scenario

s ∈ S. Additionally, let the decision variable zc,j,t ∈ {0, 1} decide whether (1) or not

(0) cluster c ∈ C is sent to destination j ∈ O (c) in period t ∈ T. These variables

effectively form a robust destination policy that decides where to send all blocks with

similar attributes (e.g. high iron content, medium silica, medium phosphorus) and

material types, rather than deciding on the destination of individual blocks. Given

that a block’s simulated material type and grades may vary between simulations,

the membership to a given cluster c for a scenario s may also vary accordingly. As

a result, the destination of a block may vary between scenarios, according to its

membership c distribution.
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Finally, after material is received at the first set of destinations directly from

the mines, the material flow through the remainder of the mining complex is gov-

erned by a set of processing stream decision variables. Let yi,j,t,s ∈ [0, 1] define the

proportion of a material (product) sent from destination i ∈ S ∪ P to destination

j ∈ O (i) ⊆ (S ∪ P) \ i in period t ∈ T and scenario s ∈ S. It is noted that these

scenario-dependent decision variables are designed to let the optimizer take recourse

decisions [16] after the uncertainty has been revealed at the first set of destinations.

For future reference, the set of locations in the mining complex that send material

to i ∈ S ∪ P is denoted by I (i).

6.3 Optimization of Mining Complexes with Capital Expenditures

Given the flexibility required to accurately model an individual mining complex,

a generalized optimization model is proposed, which can be configured to satisfy

the needs of the decision-maker. Using the sets, variables and parameters outlined

in Tables 6–1 to 6–3, respectively, it is possible to define a generalized two-stage

stochastic integer program [16] that is used to optimize mining complexes with capital

expenditures. In this model, the first-stage decisions, which must be made before

the uncertainty is revealed, are the mine production schedule(s), destination policies

and capital expenditures. The recourse variables, which adapt the optimization

model to information garnered after uncertainty is revealed, include the processing

stream decisions (yi,j,t,s) and penalties related to deviations from production targets.

Notably, these penalties are used to manage the upside and downside risk, and may

be penalized using time-discounted, monotonically decreasing factors (c+
h,t and c−h,t,

respectively) that forces riskier materials to be mined in later periods (geological risk
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discounting) [142]. These penalty costs, and the associated geological risk discount

rate, may be determined experimentally by testing different values, re-optimizing and

analyzing the resulting risk profiles. It is noted that it is often necessary to balance

the orders of magnitudes for these penalty costs to force the optimizer to consider the

differences in order of magnitudes between the constraints (e.g. millions of tonnages

compared to a grade measured as a percentage). The optimization formulation is as

follows:

Objective function:

max
1

|S|
∑
s∈S

∑
t∈T

∑
h∈H

ph,t · vh,t,s︸ ︷︷ ︸
Discounted revenues and costs

−
∑
t∈T

∑
k∈K

pk,t · wk,t︸ ︷︷ ︸
Capital expenditure costs

− 1

|S|
∑
s∈S

∑
t∈T

∑
h⊆H

c+
h,t · d

+
h,t,s + c−h,t · d

−
h,t,s︸ ︷︷ ︸

Risk-discounted penalties for deviations

(6.1)

Subject to:

I. Mine reserve and slope constraints, which guarantee that a block is only mined

once, if at all, and obeys slope stability requirements.

∑
t∈T

xb,t ≤ 1 ∀b ∈ Bm (6.2)

xb,t ≤
t∑

t′=1

xu,t′ ∀b ∈ Bm, u ∈ Ob, t ∈ T (6.3)
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II. Destination policy constraints, which ensure that the clusters of materials

c ∈ C are each only sent to a single destination.

∑
j∈O(c)

zc,j,t = 1 ∀c ∈ C, t ∈ T (6.4)

III. Processing stream constraints, which calculate the quantities of the primary

attributes for each period and ensure mass balance in the mining complex.

vp,j,(t+1),s = vp,j,t,s ·

1−
∑
k∈O(j)

yi,k,t,s


︸ ︷︷ ︸

Leftovers from previous period

+
∑

i∈I(j)\C

rp,i,t,s · vp,i,t,s · yi,j,t,s︸ ︷︷ ︸
Incoming from other locations

+
∑

c∈I(j)∩C

(∑
b∈Bm

θb,c,s · βp,b,s · xb,(t+1)

)
· zc,i,(t+1)︸ ︷︷ ︸

Incoming from mines

∀p ∈ P, j ∈ S ∪ P , t ∈ T, s ∈ S (6.5)

∑
j∈O(i)

yi,j,t,s = 1 ∀i ∈ P , t ∈ T, s ∈ S (6.6)

∑
j∈O(i)

yi,j,t,s ≤ 1 ∀i ∈ S, t ∈ T, s ∈ S (6.7)

IV. Attribute calculation constraints, which are used to calculate the value of

the state hereditary attributes and quantities of interest at the mine level (e.g. per-

period tonnages). Recall that the function fh (p, i, k) is defined by the modeller, and
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is not necessarily linear.

vh,t,s = fh (p, i, k) ∀h ∈ H, t ∈ T, s ∈ S (6.8)

vp,m,t,s =
∑
b∈Bm

βp,b,s · xb,t ∀m ∈M, p ∈ P, t ∈ T, s ∈ S (6.9)

V. Hereditary attribute constraints, which may be used to track the deviations for

variables h ∈ H from a upper- and lower- bound capacities (e.g. mining, stockpiling,

processing, grade blending capacities). It is noted that these capacities may be

increased or decreased by κk,h by investing in the capital expenditure option k ∈ K,

and consider the lifespan of the capacity increment (λk) and the lead time to delivery

or construction (τk).

vh,t,s − d+
h,t,s ≤ Uh,t +

t∑
t′=t−λk+τk

κk,h · wk,t′ ∀h ∈ H, t ∈ T, s ∈ S (6.10)

vh,t,s + d−h,t,s ≥ Lh,t +
t∑

t′=t−λk+τk

κk,h · wk,t′ ∀h ∈ H, t ∈ T, s ∈ S (6.11)

VI. Recoveries, which are constant for stockpiles and may be equal to the value

of hereditary attributes for processors; which may, in turn, be a static recovery or a

value from a grade-recovery curve.

rp,i,t,s = 1 ∀p ∈ P, i ∈ S, t ∈ T, s ∈ S (6.12)
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rp,i,t,s = vh,t,s ∀p ∈ P, i ∈ P , t ∈ T, s ∈ S (6.13)

VII. End-of-year stockpile attribute constraints, which may be used to calculate

and track the quantity of an attribute that remains in a stockpile at the end of the

production period.

vh,t,s = vp,i,t,s ·

1−
∑
j∈O(i)

yi,j,t,s

 ∀i ∈ S, t ∈ T, s ∈ S (6.14)

VIII. Capital expenditure constraints for one-time investments (e.g. expanding

mill capacity), which ensure that the option is exercised once, if at all.

∑
t∈T

wk,t ≤ 1 ∀k ∈ K1 ⊆ K (6.15)

IX. Variable definitions

Lk,t ≤ wk,t ≤ Uk,t ∀k ∈ K, t ∈ T (6.16)

xb,t ∈ {0, 1} ∀b ∈ Bm, t ∈ T (6.17)

zc,j,t ∈ {0, 1} ∀c ∈ C, j ∈ O (c) , t ∈ T (6.18)
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γp,c,t,s ≥ 0 ∀p ∈ P, c ∈ C, t ∈ T, s ∈ S (6.19)

yi,j,t,s ∈ [0, 1] ∀i ∈ S ∪ P , j ∈ O (i) , t ∈ T, s ∈ S (6.20)

rp,i,t,s ∈ [0, 1] ∀p ∈ P, i ∈ S ∪ P , t ∈ T, s ∈ S (6.21)

vp,i,t,s ≥ 0 ∀p ∈ P, i ∈ S ∪ P ∪M, t ∈ T, s ∈ S (6.22)

vh,t,s ∈ R ∀h ∈ H, t ∈ T, s ∈ S (6.23)

d+
h,t,s, d

−
h,t,s ≥ 0 ∀h ∈ H, t ∈ T, s ∈ S (6.24)

Chapter 3 discusses the impact of the scale of the target capacity, and the

effects of an optimizer forcing uncertainty onto smaller-scale processes in order to

reduce the uncertainty for large-capacity processing streams. This scale effect is

generally a result of solely considering the linear deviation from the target capacity,

which is defined in Eqs, (6.10) and (6.11). In the case where the optimizer has the

ability to change target capacities dynamically, it is possible that these scale issues

may be present. In order to avoid these issues, it may be necessary to standardize

the deviation variables with respect to the (dynamic) target capacity, as is done
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in Chapter 3. These details, however, are omitted in order to provide a simpler

optimization model.

6.4 Algorithmic Optimization with Metaheuristics

6.4.1 Hybrid optimization with simulated annealing and particle swarm
optimization

The stochastic optimization model presented in Sect. 6.3 is computationally

challenging to solve using conventional optimization methods; single orebody mod-

els often consist of hundreds of thousands of blocks, which can result in millions of

binary decision variables. Moreover, given the flexibility that a modeller has to de-

sign these optimization formulations, these models may be non-linear, making exact

optimization methods infeasible for realistic-sized mining complexes. While many

authors have proposed mine production scheduling models and heuristics that are

tailored to be solved using mathematical optimizers [15, 17, 19, 23, 29, 36, 105], the

scale of the formulations poses a formidable challenge. Moreover, these methods

often are limited by various simplifying assumptions, such as the use of aggregates

(reduces scale of decision-making), not being able to accommodate lower bounds or

blending constraints (generally required for mining complexes), linearity (to garner

information using duality theory) and time-separability properties (precludes the use

of stockpiles and complex processing streams). Metaheuristics are a class of optimiza-

tion algorithms that do not necessarily give mathematical optimality, however, have

been used as a tool to generate high-quality optimization solutions (when compared

to commercial mine design software and optimization solvers) within a reasonable

amount of time [1, 56, 65, 102, 103, 106, 107, 108, 129].
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The generalized formulation for optimizing mining complexes with uncertainty

(Sect. 6.3) is optimized using a combination of the simulated annealing [60, 98, 127]

and particle swarm optimization [94] algorithms. The simulated annealing algorithm

has been demonstrated in the past to be capable of optimizing large-scale mine pro-

duction scheduling models with good resultsc̃itealbor2009, godoy2003, kumral2013.

This method, however, is somewhat limited in its ability to handle a large num-

ber of continuous variables (i.e. processing stream decision variables); evaluating

the objective function for the optimization of mining complexes is generally com-

putationally demanding, and existing simulated annealing algorithms for continuous

variables generally work with only a single variable at a time. Through experimental

testing in Chapter 4, it was noted that using the simulated annealing algorithm is not

particularly effective for optimizing processing stream decisions. As a result of this

limitation, the particle swarm optimization algorithm is used because of its inherent

ability to modify all continuous variables at each iteration, leading to more changes

in the variables per objective function evaluation. Let Φ = [x, z,w,y] represent a

solution vector that is used to store the production schedules (x = [xb,t]), destina-

tion policies (z = [zc,j,t]), capital expenditure options (w = [wk,t]) and processing

stream variables (y = [yi,j,t,s]). The simulated annealing (SA) algorithm is used to

optimize the discrete variables (x, w, z), and, after a specified number of iterations

(e.g. 10), the particle swam optimization (PSO) algorithm optimizes the continuous

variables (y). The methods are used interchangeably to avoid getting trapped in

local optima. An initial schedule can be generated using either industry-standard
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planning software as input, or start from nothing by setting all blocks to being un-

mined. The remaining variables for destination policies, processing stream values

and capital expenditures can be initialized by randomly generating values that obey

their constraints.

In the classic SA algorithm, a perturbation to the current solution vector is

proposed (see Sect. 6.4.2). Let g (Φ) represent the objective function value (Eq.

(6.1)) for the current solution vector, Φ, and let g (Φ′) represent the objective func-

tion value for a perturbed solution vector, Φ′. For an objective function that is

being maximized, a proposed perturbation is accepted or rejected according to the

following probability distribution:

P (g (Φ) , g (Φ′) , δ) =


1 if g (Φ′) ≥ g (Φ)

exp (− |g (Φ′)− g (Φ)| /δ) otherwise

(6.25)

where δ is commonly referred to as an annealing temperature, which is initially de-

fined as an input parameter for the first iteration, δ(0), and is gradually cooled as

the algorithm progresses using a cooling factor, cf ∈ [0, 1], by applying δ = δ ∗ cf

every n iterations. If a perturbation is accepted, Φ = Φ′. If the perturbation is

the best found by that iteration, the global best solution vector, Φg is updated, i.e.

Φg = Φ. One of the difficulties of the classic SA algorithm is related to the use of

multiple neighbourhoods of perturbations, where a neighbourhood refers to a class of

perturbation in solution vector (x, w or z). A perturbation for each neighbourhood

may have a drastically different impact on the objective function value. Figure 6–3

shows an example of a cumulative probability distribution with respect to rejected

neighbourhood perturbations (g (Φ′)− g (Φ) < 0). In the classic SA algorithm, for a
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given δ, Eq. (6.25) will likely reject all capital expenditure perturbations (CAPEX),

however accept most production schedule and destination policy perturbations. Nat-

urally, there is a strong relationship amongst these variables, and this phenomenon

may result in SA tunneling into a local optimum.
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Figure 6–3: Cumulative distribution of change in objective function values for
rejected perturbations for production scheduling, destination policy and capital

expenditures.

Alternatively, it is possible to modify the simulated annealing algorithm to deal

with these multiple neighbourhoods independently. Rather than a fixed δ that applies

to all neighbourhoods, the proposed method uses variable annealing temperatures,

δx, δw, δz, which are calculated using an annealing probability temperature and a

distribution function similar to Fig. 6–3. This distribution is first constructed by

sampling 1000 perturbations for each neighbourhood prior to the full-scale annealing

using Eq. (6.25). An initial annealing probability temperature, ρ(0) is specified as

an input parameter (e.g. ρ (0) = 0.8), and the appropriate annealing temperatures

(δx, δw, δz) are derived. Equation (6.25) then uses the appropriate annealing tem-

perature according to the neighbourhood that the proposed perturbation belongs.
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This method has the added advantage that the modeller does not need to spend

excessive time calibrating the initial temperature δ (0) for the classic SA algorithm.

Similar to the annealing temperatures, the annealing probability temperature is up-

dated by ρ = ρ ∗ cf every ni iterations As the algorithm progresses and sub-optimal

perturbations are discovered (g (Φ′)− g (Φ) < 0), the cumulative distributions that

define δx, δw and δz are updated accordingly. This helps to ensure that the appropri-

ate neighbourhood annealing temperatures are always updated to the local solution

space, defined by Φ.

It is noted that the proposed SA algorithm does not perturb the processing

stream variables y ∈ Φ. PSO [94] is a population-based metaheuristic that can

optimize both discrete and continuous variables. In the proposed method, PSO is

used to optimize the processing streams after a number of defined iterations of the

SA algorithm. Unlike Chapters 4 and 5, which uses PSO in conjunction with the

global best solution vector, Φg, this method uses the working solution vector, Φ, and

focuses solely on the processing stream decisions y ∈ Φ. A particle is a data structure

that stores a temporary processing stream solution vector, yi ∈ Φ, a particle best

solution vector, ybi and a velocity vector, vi for all particles i ∈
{

1, ..., NP
}

, where

Np is a parameter that defines the total number of particles. Additionally, a vector

yg is used to store the processing stream solution vector. At each iteration (α + 1)

of PSO, the particles (solution vectors) are updated as follows:

vi (α + 1) = c1 · vi (α) + c2 · r1 ·
(
ybi − yi

)
+ c3 · r2 · (yg − yi) (6.26)

204



yi (α + 1) = yi (α) + vi (α + 1) (6.27)

ybi = yi (α + 1) if g ([x,w, z,yi (α + 1)]) ≥ g
([

x,w, z,ybi
])

(6.28)

yg = ybi if g
([

x,w, z,ybi
])
≥ max

{
g ([x,w, z,yg]) , g

([
x,w, z,ybj

])}
∀j ∈ {1, ..., Np}

(6.29)

where c1, c2 and c3 are inertia coefficients (parameters), and r1 and r2 are random

uniform numbers between 0 and 1. In the previous equations, g ([x,w, z,yi (α + 1)])

is used to denote the objective function value (Eq. (6.1)) for a solution vector

[x,w, z,yi (α + 1)], where x,w, z ∈ Φ from simulated annealing. It is noted that

in the event that Eqs. (6.6) and (6.7) are violated when updating Eq. (6.27), the

processing stream variables are need to be re-normalized prior to evaluating Eq.

(6.28). The PSO algorithm is iterated until all particles converge on an optimum

(approximately 0.1%) or after a specified number of iterations (e.g. 100). The

processing stream portion of the solution vector is updated upon termination of

PSO, i.e. {y ∈ Φ} = yg.

6.4.2 Neighbourhood perturbations for simulated annealing

As the SA algorithm progresses, it is necessary to find valid perturbations to

the solution vector, Φ. Given the inclusion of capital expenditure options, where a

perturbation can drastically increase or decrease a capacity constraint, the optimizer

is likely to cycle or converge on a local optimum as it attempts to find a large number

of production schedule perturbations that satisfy large changes in the constraints. To
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avoid the chances of this occurring, a combination of both small and large production

scheduling changes is used. The following neighbourhood perturbation mechanisms

are used to modify an existing solution, Φ during the simulated annealing algorithm:

i Destination policy perturbations (z ∈ z ∈ Φ) are generated by randomly se-

lecting a cluster c ∈ C for a period t ∈ T, which is currently sent to destination

j ∈ O (c) and sending it to j′ ∈ O (c).

ii Random capital expenditure perturabations (w ∈ Φ) are generated by randomly

selecting a capital expenditure option wk,t = n and choosing a new value, i.e.

wk,t = n′ ∈ [Lk,t, Uk,t]. If the option is a one-time decision (k ∈ K1), all other

variables wk,t′ ∀t′ ∈ T \ t are set to 0.

iii Delayed capital expenditure perturabations (w ∈ Φ) are generated by randomly

selecting a capital expenditure option wk,t = n for any k ∈ K\K1 and deferring

the purchase of one unit by setting wk,t = wk,t − 1 and setting wk,(t+1) =

wk,(t+1) + 1.

iv Small production schedule perturbations (x ∈ Φ) are generated by randomly

selecting a block b ∈ Bm on the boundary between two periods and advancing or

delaying its extraction to a period t′ of a randomly selected, directly adjacent

block (i.e. above, below or the four adjacent blocks on the same elevation).

When advancing the extraction period of block b, slope constraint violations

are corrected by searching for blocks b′ ∈ Ob where xb′,t′′ = 1 and t′ < t′′, which

are also moved to period t′. A similar procedure is used when delaying a block

b’s extraction period by searching for slope constraint violations below b.
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v Conical production schedule perturbations (x ∈ Φ) are similar to small pro-

duction schedule perturbations, however do not require the condition that the

block b ∈ Bm lie on the boundary between two periods. The extraction period

of the block is advanced or delayed by randomly selecting a new t ∈ T (i.e.

not considering the directly adjacent blocks). Any slope constraint violations

are corrected in a similar manner, however, rather than moving all violating

blocks into a single period, which may incur drastic penalty costs for devia-

tions from targets, the blocks are moved into several periods. For example, if

the mine can sink two benches (levels in elevation) per period, and a block b’s

extraction period is advanced, any blocks that lie two or three levels above will

be extracted in period t′ − 1. Similarly, any blocks that lie four or five levels

above are extracted in period t′−2. This helps to split a large schedule change

into several periods, which is likely to have less of an impact on the penalties

in the objective function.

vi Bench-wise production schedule perturbations (x ∈ Φ) are generated by first

labelling the blocks in each bench (vertical level) of the schedule x ∈ Φ using a

connected component labelling algorithm [35]. This algorithm assigns a unique

label to all blocks that are mined within the same period and are spatially

connected (Fig. 6–4). Rather than randomly selecting a single block that

forms an apex of a cone, a component of a bench is then randomly selected

(e.g. Fig. 6–4B, component “K”) to delay or advance the extraction period.
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Bench 1

Bench 2

z 11111 2

11111 2

11111 2

11111 2

11111 2
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22211 3
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23233 2

y

z AAAAA C
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AAAAA C

CCAAB C

DDDDD K

DDDEE K

DGGFF K

KGGFH K

KKKIH K

LKJHH L

y

(A) Working production schedule (B) Connected component labelling

Figure 6–4: Example of labelling a production schedule x ∈ Φ as connected
components for bench-wise production schedule perturbations. Spatially connected

blocks in (B) are selected for advancing or delaying their period of extraction.

6.5 Application at a Copper Mining Complex

The proposed method for the global optimization of an open pit mining complex

with capital expenditures is applied to a copper mining complex that is supplied by

an industrial partner. The name of this mining operation and some of the relevant

modelling parameters are withheld for confidentiality purposes.

6.5.1 Overview

The mining complex under study consists of a single mine that primarily pro-

duces copper, a group of stockpiles, a mill and concentrator processing stream, a

leach pad and a waste dump. The mine produces five main material classes, specif-

ically waste, supergene sulphide, transitional, oxide and hypogene materials. With

the exception of the waste material, all material classes are divided into two mate-

rials types that are used for modelling the mining complex based on being above
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ore below a pre-defined threshold. It is noted that this threshold is defined only to

better differentiate the materials that are stockpiled to improve selectivity. The low-

and high-grade sulphide, transitional and oxide materials have the option of being

sent to a unique stockpile (according to material type), a mill, a leach pad or a waste

dump. The stockpiles for these materials, in turn, each sends material to either the

mill or the leach pad. The low- and high-grade oxide materials may not be treated

at the mill, thus have the option of being stockpiled, sent to the leach pad or the

waste dump. The low- and high-grade oxide stockpiles feed only the leach pad. The

waste materials are automatically sent to the waste dump.

Stockpile Group B

Stockpile Group A

Copper Mine

LG Sulphide HG Sulphide

LG Transitional HG Transitional

LG Hypogene HG Hypogene

LG Oxide HG Oxide

Waste Dump

Mill

Leach

LG Sulphide

HG Sulphide

LG Transitional

HG Transitional

LG Hypogene

HG Hypogene

LG Oxide

HG Oxide

Waste

Figure 6–5: Material flow diagram for the copper mining complex.
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Table 6–4: Capital expenditure options for the copper mining complex.
Parameters Shovels Trucks
Undiscounted cost ($USD) 30,000,000 5,000,000
Life (years) 10 5
Purchase or replacement decision frequency 5 years 4 years
Minimum, maximum purchased per period 0, 4 0, 40
Lead time to delivery (years) 1 1
Capacity increment (κk,t) 8670 h 8670 h
Combined productivity and utilization factor 0.58 0.65

Production capacity*
4200 tph (waste)
3100 tph (ore)

230 t

* Shovel production rate (tons per hour) depends on destination policies that classify material as ore or waste.

This case study considers two types of capital expenditures: (i) shovels, which

are used to extract material from the ground; and (ii) trucks, which are loaded by

shovels and haul material from the mine to the various processing streams. The

optimizer, therefore, has full control over the production rates from the mine. Table

6–4 provides an overview of the relevant parameters for the shovel and truck capital

expenditures. To provide more consistent production rates, the decision to purchase

or replace shovels or trucks only occurs every 5 and 4 years, respectively. While

it may be interesting to allow the optimizer to make these decisions annually, the

result is a series of fluctuations in fleet size, which, in turn, would result in cycles

with excessive amounts of hiring or laying off employees. It is interesting to note

that the shovel production rates depends on the block’s classification of ore and

waste (destination policy variables zc,j,t). For selectivity reasons, the shovel is able

to load at only 3100 tons per hour for material that is sent to the stockpiles, leach

pad or mill, rather than the 4200 tons per hour for material that is sent to the waste

dump.
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Table 6–5 provides an overview of the key parameters required to model of the

mining complex. The mine has provided an estimated orebody model and a set

of 50 geological simulations. During as the metaheuristic optimization progresses,

simulations are added gradually until a stable solution is obtained (i.e. the objective

function value does not change by adding more scenarios). In this case study, this

is achieved by starting with 5 simulations, optimizing, then incrementally increasing

the number of simulations by 5 and continuing the optimization process. In this

case, it was found that the objective function and risk profiles remain stable when

using 30 simulations, and adding more does not drastically alter the net present

value or risk profiles. Gradually adding simulations (scenarios) to the model has

two advantages, when compared to starting with all scenarios: i) it is possible to

see how many scenarios are required to obtain a stable design — by starting with

all at once, it is not possible to see whether or not more should be added; and ii)

the computational time is reduced because fewer simulations are used to converge on

a relatively good solution before increasing the computational load by adding more

simulations and continuing the optimization process. For an in-depth discussion

related to the number of simulations required, the reader is referred to Albor and

Dimitrakopoulos [1]. Both the estimated and simulated orebody models contain

information for each block related to the copper grade and tonnage (Fig. 6–1),

recovery if treated in the mill processing stream, in-pit travel time (i.e. the round-trip

time required by a truck to access the block from surface), a mining cost adjustment

factor (used to increase the operating costs with depth), block tonnages and material

types (Fig. 6–4). With the exception of the in-pit travel time and the mining cost
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adjustment factor, which only relate to the spatial location of blocks, all variables

have been simulated. Table 6–6 summarizes the relevant information related to

clustering the simulations to generated the destination policy variables. It is noted

that the quantities of the oxide and transitional materials is small, relative to the

quantity of hypogene material, hence fewer clusters are used for these materials to

form destination policies. This assumption is made for the sole purposes of reducing

the size of the optimization model.

The objective of the optimization model is to maximize the net present value

of the cash flows from mining, processing and selling copper, while considering the

capital expenditures required to produce at an optimal production rate. Table 6–5

shows the relevant economic parameters used to calculate the revenues associated

with the sale of copper concentrate for the mill and the copper from the leaching

processing streams. Table 6–7 shows the constraints used to penalize deviations from

truck, shovel, mill and leach capacities. It is noted that the capacity constraints are

expressed in hours of operation, rather than tonnages, which is typically used in

production scheduling models. Given that certain materials are harder than others,

the residence time in the mill can vary according to how long it takes to grind material

down to a finer size for the concentrator. The shovel and truck constraints are also

expressed in hours to more accurately model the shovel’s adaptive production rates

and the dynamic truck cycle times. The stockpiles are assumed to have unlimited

capacity. It is noted that, during the first two years of production, the cash flows

are substantially higher than the rest. As a result, the optimizer naturally seeks

to extract an infeasible amount of material, and an additional set of constraints
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Table 6–5: Modelling parameters for the copper mining complex.
Orebody model

Number of blocks 128 946
Life (years) 33
Simulations used during optimization 30
Discount rate 6%
Geological risk discount rate 5%
Pit slope angle 39◦

Economic parameters
Copper price $3.00/lb
Selling cost (mill) $0.40/lb recovered Cu
SX/EW cost (leaching) $0.30/lb recovered Cu
Mining cost* $1.60/ton
Stockpile rehandling cost $0.50/ton
Leach cost (sulphides) $8.80/ton
Leach cost (oxides, transitional, hypogene) $10.00/ton
Processing cost (mill processing stream) $10.50/ton

Copper recovery parameters
Mill processing stream recovery (variable) 82% - 90%
Leach recovery (sulphides) 78%
Leach recovery (oxides) 70%
Leach recovery (transitional and hypogene) 58%

Truck cycle times (return trip)**
In-pit travel time (variable with block depth) 3 - 42 mins.
Mine to waste dump 42 mins.
Mine to stockpile 29 mins.
Mine to leach pad 25 mins.
Mine to mill 46 mins.
Stockpile to mill 17 mins.
Stockpile to leach pad 9 mins.
* Before applying a mining cost adjustment factor (costs increase with pit depth).
** Truck cycle times have been adjusted to account for the combined productivity and
utilization of the equipment.
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Table 6–6: Clustering parameters used to form destination policies

Material type Destination policy parameter
Number of clusters
per period

Waste Copper tonnage All: 1
Sulphide Recoverable copper per mill hour LG: 20, HG: 20
Transitional Recoverable copper per mill hour LG: 5, HG: 5
Hypogene Recoverable copper per mill hour LG: 10, HG: 10
Oxide Copper tonnage LG: 20, HG: 20
Total number of destination policy variables (all periods): 3 663

for shovel production is used with a high penalty cost to force the optimizer to

generate a feasible solution. Additionally, the upper bounds differ for the mill in the

deterministic model from the stochastic model (to be discussed in Sect. 6.5.2). The

upper bound for the deterministic model is the bound used in practice, however, in

the stochastic case, the optimizer avoids having an average production at this limit

because of the excessive penalties that are incurred for the simulations that produce

above this capacity. This would result in an overly conservative design that will

rarely fill the mill up to its capacity. As a result, the stochastic optimization model

uses a relaxed upper bound to permit the optimizer to create a design that is able to

fully utilize the mill (on average). Finally, given that the optimizer is able to decide

how many trucks and shovels to purchase, the lower- and upper-bounds for trucks

and shovels, outlined in Table 6–7, are starting points. As the optimizer purchases

more equipment, the bounds are changed dynamically using the increments shown

in Table 6–4.

6.5.2 Comparison of deterministic-equivalent and stochastic designs

Using the parameters defined in Sect. 6.5.1, a comparison can be made between

the deterministic and stochastic designs. First, a deterministic-equivalent design is
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Table 6–7: Optimization model constraints.

Constraint Description Lower, Upper Bounds
Lower, Upper Penalties
(Undiscounted)a

Truck hoursb -, 0c -, 600
Shovel hours (all periods)b -2 190c, 0c 3 000, 7 000
Shovel hours (periods 1 and 2) -, 2000c -, 2 000 000
Mill hours (deterministic)d 8 000, 8 345 10 000, 40 000
Mill hours (stochastic)d 8 000, 8 450 10 000, 40 000
Leach capacity (tons) -, 21 900 000 10
a A geological discount rate of 5% is applied to the penalties to manage the distribution of risk over time.
b Truck and shovel hour calculations are adjusted for producivity and utilization (Table 6–4).
c Constraint bounds are adjusted by the number of trucks or shovels purchased (Table 6–4).
d Mill requires a ramp-up to full production in the first four years of production (Fig. 6–6). The same penalty costs
are used for these periods. The lower-bound constraints are removed after period 28.

generated using a single, estimated orebody model that is generated using kriging.

Recall that estimated models do not depict the spatial and volumetric uncertainty

of material types, and estimated methods tend to smooth out the distributions for

the attributes of interest (e.g. copper grades). It is worthwhile to note that existing

commercial mine design and production scheduling software is not able to incorporate

many of the key details that are required in this model, such as variable throughputs,

shovel production rates and truck cycle times that depend on ore/waste classification,

and targeting production in hours rather than tonnages. It is therefore not possible

to provide a benchmark against other methods, as was done in Chapter 5. The

deterministic design discussed herein is referred to as the deterministic-equivalent

design, because it uses the proposed modelling and optimization methodology with

a single scenario (i.e. S = {1}). In this sense, it is possible to highlight the differences

between deterministic and stochastic models, with all other details being the same.

For this study, the primary focus of the optimization model is to maximize the net

present value (NPV), provide a consistent feed of materials to the mill processing
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stream and obey mine production targets, which the optimizer decides by purchasing

or replacing shovels and trucks.

All testing is performed using Amazon’s EC2 cloud computing platform with

Windows 2012-based virtual machines that use Intel Xeon E5-2670 v2 processors (32

virtual CPUs) and have 244 GB RAM. Unlike Chapter 5, both the deterministic

and stochastic solutions are generated without the use of an initial schedule. The

deterministic design is generated in 20 hours, whereas the stochastic solution requires

49 hours. It is noted that for the stochastic design, four orebody simulations are used

at the beginning of the algorithm, and are gradually added; this aids to reduce the

computational load at the beginning of the algorithm when trying to find an adequate

solution. In this example, the SA algorithm parameters are ρ = 0.8, cf = 0.999 and

ni = 500; the algorithm is run for 600,000 iterations and the parameters are reset

and the optimization is re-run. This aids in diversifying the solution to ensure that

the solution is not trapped in a local optimum. The PSO algorithm is run every 100

iterations of the SA algorithm, with 15 particles. The PSO inertia parameters, c1,

c2 and c3 are set to 0.8, 0.4 and 1.2, respectively. The PSO algorithm terminates

after the objective function values for all particles lie within 0.1% of the best-found

value. The SA+PSO algorithm is terminated by the user; while this is not ideal for

comparing the computational performance, the objective is to obtain a high-quality

solution that satisfies the modeller. Admittedly, the computational performance of

the method is hindered by the generalized modelling methodology, which requires the

use of maps and expression tree data structures to dynamically evaluate the current

solution. If one is concerned with the computational performance, it is possible
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to adapt the optimization methods proposed with specially tailored models of the

mining complex that avoid these data structures.

Figure 6–6 (left) shows the results from the deterministic-equivalent design.

With the exception of the first year, the deterministic-equivalent design (red) indi-

cates that the optimizer is able to consistently feed materials to the mill up to its

capacity for the first 15 years (Fig. 6–6A). Afterwards, the design is capable of meet-

ing the minimum bounds that are imposed on the mill’s operating hours. In a pure

NPV maximization approach, where the lower bound on mill hours does not exist,

the optimizer would choose to send fewer quantities to the mill. This result can be

seen after year 28, where the number of operating hours is drastically reduced. This

result, however, is not ideal for long periods of time because of indirect costs that are

incurred when not fully utilizing the mill [101]. A minimum bound penalty is used to

approximate these indirect costs when production dips below a specified threshold.

As a result, the optimizer obeys the lower bound constraint by blending low- and

high-grade materials. It is possible to test the sensitivity and risk associated with

the deterministic-equivalent design using a set of geological simulations by taking the

deterministic-equivalent decision variables (production schedule, destination policies

and capital expenditures) and testing how the simulations react to the design. Figure

6–6A also shows the exceedance probabilities (P-10, P-50, P-90), which are used to

quantify the risk for the design. Unlike what the estimated model indicates with the

deterministic design, there is a large amount of risk associated with the use of the

mill. The risk analysis indicates that there are large fluctuations in the utilization of

the mill during the first 15 years of production (where the estimated model indicates
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it is filled to capacity). After year 15, there aren’t sufficient quantities of material to

feed the mill using the deterministic-equivalent destination policy (defined in terms

of recoverable copper per mill hour). This indicates that the deterministic-equivalent

design is a knife’s edge solution, where it perform very well for the estimated model,

but does not perform well when the uncertainty related to spatial locations, volumes

and metal quantities are considered. Figure 6–6B shows the number of hours used

by the shovels. In this example, the optimizer has chosen to use three shovels, and

replaces the shovels every 10 years. It is clear that the optimizer is capable of staying

within the bounds of their production capabilities for the life of the mine. Similarly,

Fig. 6–6C shows the number of truck hours for the deterministic design. It is noted

that as the mine extracts increasingly deep material, the number of trucks increases

accordingly to compensate for the increase in cycle times to bring material to surface.

A stochastic optimizer considers all geological simulations simultaneously to

generate a single production schedule, destination policy and capital expenditure

strategy that manages the risk associated with uncertainty. Figure 6–6D shows the

risk profiles for the stochastic design for mill utilization. The optimizer is capable of

fully utilizing the mill during the first 13 years, and the utilization begins to decline

thereafter. Unlike the deterministic-equivalent solution (Fig. 6–6A), the stochastic

design is able to provide enough material to the mill to satisfy the minimum bound,

which is a much more practical solution. Additionally, it is noted that the stochastic

optimizer successfully manages the distribution of risk over time; at the beginning

of the mine life, the distance between the P-10 and P-90 profiles is relatively small,

with an average of 186 hours over the first 10 years, which implies that the stochastic
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design has a high probability of consistently feeding the mill and helps to guarantee

early cash flows. Later in the mine life, the distance between the P-10 and P-90

profiles widens up to an average of 372 hours for the last 10 years, which is a result

of the optimizer deferring the extraction of riskier material through time using the

geological risk discount rate. This is an improvement over the risk analysis from the

deterministic-equivalent design that randomly distributes risk over time, which is

indicated by an average of 283 and 391 hours between the P-10 and P-90 values for

the first and last 10 years, respectively. Not only is the stochastic design providing

a more consistent feed to the mill, but the risk associated with the materials sent is

also reduced. The shovel and truck production rates (Fig. 6–6E and F, respectively)

for the stochastic design are similar to those of the deterministic-equivalent solution

(Fig. 6–6B and C), however there are some minor differences. Notably, the stochastic

optimizer chooses to extract more material between periods 12 and 16, which is

indicated by the slight increase in shovel and truck hours. This is a result of the

optimizer needing to uncover more material during these periods in order to provide

enough material to remain above the mill’s minimum bound in the later years of the

mine’s life. In order to achieve this, the optimizer decides to purchase an additional

truck in year 12.

Given the inability to consistently feed the mill up to the desired capacity using

the deterministic-equivalent design, and the high risk associated with the quantities

sent, a risk analysis of the deterministic solution indicates a 1.7% lower NPV than

the deterministic-equivalent design originally indicated (based on the P-50 value).
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This minor impact on the NPV, given the inconsistent feed, is a result of the simula-

tions having a higher metal content above the cut-off grade than what the estimated

(smoothed) model indicates. The stochastic design is not only able to provide a con-

sistent feed of material to the mill and reduce the risk associated with the quantities

sent, but is also able to attain a 5.7% increase in NPV over the deterministic design.

While this is not a drastic increase, it is also necessary to also consider the fact that

the mill is consistently fed with materials, thus does not incur the large overhead

and opportunity costs that are incurred by under-utilizing the mill.

6.6 Conclusions

This chapter proposes a global optimization modelling and optimization method-

ology for open pit mining complexes that aims to mange risk in the production and

processing of mined materials, and, additionally, the capital expenditures required to

maximize the value of the operation. The generalized and flexible modelling proce-

dure that is outlined permits the ability to model very large mining complexes with

a high-degree of detail, including non-linearities that are typically ignored in practice

due to computational and theoretical limitations of conventional mathematical opti-

mizers. Previous formulations for mine production scheduling with uncertainty have

attempted to manage risk around a fixed target, such as mine production and mill

capacities; this a priori definition of capacities or bottlenecks leads to sub-optimal

use of both the depletable natural resource and the large investments required to

produce and process material. By incorporating capital expenditure decisions in the

model, the optimizer is able to control aspects such as optimal mine production rates

and the timing of opening new processing streams that has previously been ignored

220



in mine production scheduling models. The proposed method uses a combination

of simulated annealing and particle swarm optimization to generate multi-mine pro-

duction schedules, destination policies, capital expenditure strategies, and the use of

the available processing streams in order to maximize the performance of the mining

complex.

The method is tested on a large-scale, real-world copper mining complex, pro-

vided by an industrial partner. Experimental results indicate that the optimizer is

able to successfully create a production schedule, destination policy and capital ex-

penditure strategy that manages risk associated with fully utilizing a mill, and also

simultaneously decides the timing of purchases or replacement of shovels and trucks.

The result is a risk-based design with a 5.7% higher NPV than a deterministic-

equivalent design that does not consider risk. Moreover, the stochastic design ensures

the smooth operation of the mill. It is noted that, in this example, the complexity

of the optimization formulation surpasses the capabilities of commercially available

production scheduling methods, thus a comparison cannot be provided at the time of

this study. Future work will seek to test the method in cases where both multi-mine

production rates and sizing of the mill are considered, and to develop new methods

and models that can be used as a basis of comparison for this method.
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Figure 6–6: Comparison of risk profiles for the deterministic-equivalent and
stochastic copper mining complex designs.
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CHAPTER 7
Conclusions and Future Work

Integrating uncertainty into mine design and production scheduling is a recent

paradigm shift that has consistently demonstrated the ability to not only drasti-

cally reduce the levels of risk of not meeting production targets, thus providing

reliable financial forecasts, but also increases the economic value of the mining oper-

ation. This counter-intuitive result is related to the ability of a stochastic optimizer

to understand the variability in the high- and low-grades of mined materials, and

exploit it to treat the upside potential of the resource separately from its downside

risk. Traditional, deterministic optimization is unable to understand and exploit this

variability. This thesis provides five major contributions to this new stochastic opti-

mization paradigm for mine planning. First, a new, simultaneous stochastic global

optimization method is developed that holistically optimizes production schedules,

destination policies, processing streams and capital expenditures. Existing methods

require decomposing this global optimization model into sub-problems, such ulti-

mately lead to sub-optimal designs. Second, a unified modelling approach is created

that permits the design of intricate models to represent the flow of materials from the

mines through to the final customers, in addition to the non-linear stockpiling and

transformations that occur in the various processing streams. This can be used to

apply the concepts developed in this thesis to a wide variety of mining complexes, re-

gardless of the commodities produced or the geographical and geological conditions.
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Third, and as a result of the second contribution, a new approach is used that enables

the economic valuation of the products sold, rather than the materials mined. Ex-

isting models focus on the economic values of blocks, which is calculated in isolation

from other blocks that may be mined in the same period, and assume prior knowl-

edge of the optimal processing stream. Fourth, computationally efficient solvers are

developed using metaheuristics. Previous work in stochastic optimization for mine

production scheduling has focused on a single metaheuristic. The solvers developed

in this thesis uses a unique combination of two metaheuristics, which require devel-

oping new and computationally efficient strategies to change a design in a holistic

optimizer. Finally, full-field tests are used to assess the performance of the proposed

methods. The results and methods from this work are compared to an industry-

standard method, when possible, and compared to the deterministic-equivalent of

the proposed method. The results consistently indicate that the risk-based designs

can substantially reduce the risk in terms of product specifications or capacity tar-

gets, and, when simultaneously optimizing the production schedule, also achieve a

higher net present value.

The impact of pushback design on stochastic production scheduling is discussed

in detail by Albor and Dimitrakopoulos [2], where the authors note that the perfor-

mance of the production schedule is heavily reliant on the pushback design. Chapter

3 proposes two formulations that integrate geological uncertainty in pushback de-

sign for mining complexes with multiple processing streams. In this work, material

types are used to define candidate processing streams; by using a set of geological
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simulations that have simulated material types, the uncertainty related to the spa-

tial locations and volumetric quantities can play a critical role in pushback design,

hence the performance of a production schedule. This method focuses on modifying

existing pushback designs to have similar tonnages of materials going to the various

destinations, but with less risk than the original designs. Through an application

at the Escondida Norte mine, the stochastic pushback design is found to have an

objective function value (measured in risk of having target tonnages for each pro-

cessing stream) that is 61% lower than the original pushback design that is generated

with BHP Billiton’s Blasor software. This drastic reduction is a direct result of the

optimizer being able to understand and redistribute risk in the design. There are,

however, several limitations of this method. First, the method is assumed to be used

in a traditional, sequential mine design framework that optimizes pushbacks prior

to the production schedule, resulting in a locally optimal pushback design. More-

over, the destinations of blocks is defined a priori, based on a marginal cut-off grade.

While this is typical assumption for a traditional framework, it does not accurately

accommodate the production capacity and blending constraints that are considered

in production scheduling models.

The ability to satisfy capacity and blending constraints is of critical critical im-

portance for many mining operations. A sequential optimization framework ignores

these constraints during the definition of the ultimate pit limit and phase design. In

extreme cases, such as operations that are controlled by the blending quality, this

sequential methodology is leads to infeasible and impractical mine designs that un-

dervalue the resource. Stone et al. [154] propose an integrated approach that starts

225



with production scheduling, and is thus able to consider capacity and blending con-

straints. The schedule is then used to dictate the design of the ultimate pit and

pushbacks. This approach is much more suitable for the global optimization of min-

ing complexes, where many interrelated aspects are optimized simultaneously, and

forms the basis of the remaining chapters of this thesis.

Chapter 4 addresses the optimization of mineral resource supply chains with

uncertainty. In this context, a mining complex is a form of a supply chain that gen-

erates, treats and distributes products to a set of customers via a set of distribution

methods. At each location, there may be technical or contractual obligations on the

quality of the products received or produced. This chapter investigates questions re-

lated to how to optimize the destination policies that define where mined materials

are sent in the presence of supply uncertainty, and how maximize the performance of

the supply chain using the various processing streams. A destination policy is a gen-

eralization of a cut-off grade policy that is more suitable for mining complexes, and

may be used to define, on an operational level, where to send materials to achieve

a target blend, without assuming perfect knowledge of the material that will be

mined in the future. It is noted that there is a wide diversity in types of mineral

resource supply chains. For example, the iron ore value chains in Western Australia

consider mining, stockpiling, transporting by rail, blending at a port and shipping

to customers. Alternatively, a nickel value chain may only need to consider mining,

milling, concentrating, smelting and refining their products to sell to a contracted

customer. As a result of this wide diversity, a unified modelling methodology is

developed to model the many different mining complexes or supply chains, which
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can incorporate a high degree of detail in the optimization models. The method is

tested at the Onça Puma nickel laterite blending operation, Brazil. Nickel laterites

are known to have a high degree of variability, not only in the quantities of nickel and

by-products, but also in the volumes and spatial locations of the valuable saprolite

material. A deterministic solution is first generated using the proposed method and

an estimated (kriged) orebody model. A risk analysis of the deterministic destination

policies indicates that the solution results in infeasible blending ratios at the pro-

cessing plant. This highlights the need for a new, risk-based framework that is able

to consider the impacts that variability and uncertainty have on the performance of

the value chain. The stochastic optimizer is able to generate a robust destination

policy that consistently meets the stringent blending requirements and production

targets at the processing plant with a minimal amount of risk.

Chapter 5 expands on the unified modelling and optimization methodology de-

veloped in Chapter 4 to incorporate multi-mine production scheduling. As a result,

the optimizer has control over the production, or supply, of materials, the destination

policies that define where material is sent, and the use of the processing streams.

It is noted that in this integrated approach, there is no need to first generate a ul-

timate pit limit or a phase design, although they may be used as a starting design

for the optimizer to modify. The method is demonstrated through an application

for a copper-gold mine. In this case study, the mill and various leach pads use non-

linear recovery curves that are functions of the head grades of the incoming materials

(i.e. recoveries are not assumed to be known for individual blocks). These recov-

ery curves are interesting in the sense that they provides an opportunity to blend
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low-recovery material, which would have a unprofitable if treated in isolation, with

higher grade material, which would have a high recovery in isolation. By blending

these blocks together, it is possible to simultaneously increase the size of the resource

and its value — an aspect that block-based, linear optimizers that are commercially

available neglect to consider. A design is first generated using Whittle, an industry-

standard production scheduling tool, using an E-type orebody model. An alternative

design is generated using the same orebody model and the deterministic equivalent

of the proposed stochastic optimizer to provide a consistent basis of comparison. The

deterministic-equivalent design that has a 4.1% higher NPV than the Whittle-based

design, despite using the same orebody model as input. The deterministic design,

however, ignores material type and grade uncertainty, thus is unable to satisfy pro-

duction targets when tested with a set of geological simulations. A stochastic design

is not only able to generate a schedule that has a 6% higher NPV than its deter-

ministic equivalent (compared using the P-50 risk profiles for both), but also is able

to meet production targets and drastically reduce the risk associated with meeting

those targets over the life of the mine. These improvements are a direct result of the

fact that a stochastic optimizer understands the spatial and volumetric variability of

materials, and is also able to separately control the upside potential of metal content

variability from the downside risk.

Previous work in stochastic optimization for mine production schedules has fo-

cused on meeting pre-defined production targets and reducing the risk associated

with the material processed. By defining these capacities a priori, the stochastic

solution may not be optimal because it fails to consider alternative targets. Chapter
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6 continues to develop on the previous global optimization methodology for open

pit mining complexes by including the ability to increase or decrease capacities (i.e.

production targets) through capital expenditures. By simultaneously optimizing the

capital expenditures in addition to production schedules, destination policies and

processing streams, it is possible to consider the impact that timing and quantity

of investment may have on the system. This capability is challenging for algorith-

mic optimizers (i.e. metaheuristics) because of the drastic changes to bottlenecks

that can be made with a single capital injection, which ultimately leads to a solu-

tion that cycles around a local optimum and doesn’t necessarily converge. In order

to address this challenge, new classes of perturbations are proposed to create large

changes to the production schedule that can quickly meet the fluctuating capacities.

The method is tested using a case study for a copper mining complex from an in-

dustrial partner. In this example, the optimizer has full control of when to purchase

or replace shovels and trucks, thus the optimizer is essentially optimizing mine pro-

duction rates simultaneously with the production schedule, destination policies and

the stockpiles. This model is interesting because of the fact that shovel production

rates and truck cycle times vary with ore and waste classification and spatial location

in the deposit. Existing deterministic, commercially available production schedul-

ing software are unable to model these complexities. The results indicate the the

stochastic optimizer outperforms the deterministic optimizer in its ability to utilize

the mill and reduces the risk of not meeting mill production targets — a critical

factor for a low-grade deposit. Additionally, the optimizer generates a 5.7% higher
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NPV than the deterministic design, when comparing the P-50 values from both risk

profiles.

Like any method, there are strengths and weaknesses that need to be weighed

when choosing this approach. While the proposed method is extremely flexible and

permits a high degree of detail in modelling, this comes with a computational over-

head that is a result of the data structures required to store information (e.g. maps

and expression trees). Additionally, by using a generic modelling approach, there

is little opportunity to target aspects of the algorithm to help it converge on an

optimum faster, because it is assumed that the models contain very little structure

(aside from the scheduling and material flow constraints). Most importantly, despite

the ability to optimize highly complex models that even commercial, deterministic

optimizers cannot accommodate, it is often not possible to obtain a reliable reference

to measure the quality of the solutions generated from the proposed method. Unfor-

tunately, without other competing optimizers that can accommodate the same level

of complexity, it is difficult to assess how far a solution is from a global optimum.

Developing these new methods, which may be in the form of new solution perturba-

tion methods or entirely new algorithms, may lead to obtain a better understanding

of the convergence properties of the methods proposed in this thesis.

Another limitation of the proposed methods in this thesis is related to the des-

tination policies that are generated using clusters. The purpose of using clusters is

to convert a continuous, potentially multi-variate, distribution into discrete decision

units that define where materials with similar attributes (e.g. grades) are sent. One

must be aware of the impacts that the number of clusters can have on the quality of
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the solutions that are generated. If too few clusters are used, the distribution may

not be adequately discretized to provide enough granularity to define a destination

policy. Conversely, in the case of stochastic optimizers, too many clusters may result

in the optimizer being able to over-fit the destination policies for each input sce-

nario, leading to a policy that is not robust to uncertainty. It may be possible to use

alternative probabilistic classification methods, such as fuzzy c-means clustering, to

overcome these challenges.

There are many opportunities for future research that are a result of this work.

The concept of destination policies can be easily used in a traditional, mathemat-

ical programming-based framework; these policies not only address a core issue of

deciding where to send material under uncertainty, but also provide an added bene-

fit that they drastically reduce the number of decision variables, when compared to

block-based destination decisions. It is noted that the proposed methods generate

a single destination policy that is static through time; while they can accommodate

other forms of uncertainty, such as metal price, throughput and costs, it would be

useful to consider a multistage stochastic optimization formulation that allows the

policies to vary over time as more information is revealed. This, however, might be

computationally demanding for algorithmic optimizers, particularly when simulta-

neously optimizing mine production schedules. It may be possible to overcome these

computational challenges through the use of distributed and GPU computing.

It is also noted that there are many scales from which to consider when optimiz-

ing mining complexes. This thesis primarily focuses on the long-term optimization,

and thus does not consider operational factors such as drilling, blasting, grinding,
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crushing and classification. Some of these operations can influence other downstream

aspects of a mining complex, particularly related to processing costs. As computing

capabilities increase, it may be possible to simultaneously optimize these short-term

aspects in a long-term global optimizer, which will help to better account for the

discrepancies between these two levels of planning that is seen in practice.

Incorporating capital expenditures to aid in the design of capacity constraints

is also an interesting topic of future research. The case study presented in this thesis

considers pre-defined options for shovels and trucks; naturally, it may be useful to

consider many different types of equipment for purchase. For linear optimization

models, it may be possible that duality theory and shadow prices may provide in-

sight to how much the mining operation is willing to pay to provide a certain level

of production, which would in turn, help to reduce the number of fleet purchasing

options. Given the relationship between volume and variance for processed materials

(e.g. Chapter 3), it is of interest to see the impact that increasing processing capaci-

ties has on both the NPV and the risk profiles for a given location. It is conceivable

that in some cases, an optimizer might time a mill expansion in order to alter the risk

profiles distributed through time. It may also be possible to combine these results

with new, computationally efficient cutting plane methods [121] to obtain an optimal

solution quickly.

Finally, as the environmental impact of mining operations becomes an increas-

ingly important factor that decides whether or not a mine will open, it will be nec-

essary to explicitly integrate aspects related to waste management (e.g. waste rock,

tailings, slag) and rehabilitation into global optimization models. It is known that
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environmental aspects, such as acid mine drainage, increase at exponential rates.

Stochastic optimizers provide unique insight into these problems because they con-

sider the true variability and uncertainty of the materials that are extracted, and

provide an opportunity to reduce many negative environmental impacts that are a

result of mining. Additionally, given social and political pressure to adopt carbon

taxes and cap-and-trade systems, there will be a need to also integrate emissions and

the complex taxation policies directly into the mine design optimization models.
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[68] Graham C. Goodwin, Maŕıa M. Seron, Richard H. Middleton, Meimei Zhang,
Bryan F. Hennessy, Peter M. Stone, and Merab Menabde. Receding horizon
control applied to optimal mine planning. Automatica, 42(8):1337–1342, 8
2006.

[69] P. Goovaerts. Geostatistics for natural resources evaluation. Applied geostatis-
tics series. Oxford University Press, 1997.

[70] N. Grieco and R. Dimitrakopoulos. Managing grade risk in stope design op-
timisation: probabilistic mathematical programming model and application in
sublevel stoping. Mining Technology: IMM Transactions Section A, 116(2):49–
57, 2007.

[71] B. Groeneveld and E. Topal. Flexible open-pit mine design under uncertainty.
Journal of Mining Science, 47(2):212–226, 2011.

[72] B. Groeneveld, E. Topal, and B. Leenders. Robust, flexible and operational
mine design strategies. Mining Technology: IMM Transactions Section A,
121(1):20–28, 2014/05/23 2012.



241

[73] F. Guardiano and R. M. Srivastava. Multivariate geostatistics: Beyond bivari-
ate moments. In A. Soares, editor, Geostatistics-Troia, pages 133–144, Troia,
September 1993.

[74] J. H. Halton. A retrospective and prospective survey of the Monte Carlo
method. SIAM Review, 12(1):1–63, 1970.

[75] D. S. Hochbaum and A. Chen. Performance analysis and best implementa-
tions of old and new algorithms for the open-pit mining problem. Operations
Research, 48(6):894–914, November 2000.

[76] S. Hoerger, J. Bachmann, K. Criss, and E. Shortridge. Long term mine and
process scheduling at Newmont’s Nevada operations. In Proceedings of 28th
APCOM Symposium, pages 739–748, 1999.

[77] S. Hoerger, L. Hoffmann, and F. Seymour. Mine planning at Newmont’s
Nevada operations. Mining Engineering, 51(10):26–30, October 1999.

[78] M. Honarkhah and J. Caers. Stochastic simulation of patterns using distance-
based pattern modeling. Mathematical Geosciences, 42(5):487–517, 2010.

[79] T. J. Howard and J. E. Everett. Maintaining product grade from diverse mine
sites at BHP Billiton Iron Ore Newman Joint Venture. Mining Technology:
IMM Transactions Section A, 117(1):12–18, 2014/04/01 2008.

[80] T. Huang, X. Li, T. Zhang, and D.-T. Lu. GPU-accelerated Direct Sampling
method for multiple-point statistical simulation. Computers & Geosciences,
57:13–23, 8 2013.

[81] T. Huang, D.-T. Lu, X. Li, and L. Wang. GPU-based SNESIM implementation
for multiple-point statistical simulation. Computers & Geosciences, 54:75 – 87,
2013.

[82] W.A. Hustrulid and M. Kuchta. Open Pit Mine Planning and Design, Two
Volume Set & CD-ROM Pack, Third Edition. Open Pit Mine Planning &
Design. Taylor & Francis, 2013.

[83] E.H. Isaaks. The application of Monte Carlo methods to the analysis of spatially
correlated data. PhD thesis, Stanford University, 1990.

[84] E.H. Isaaks and R.M. Srivastava. Applied geostatistics. Oxford University
Press, 1989.



242

[85] A. Jewbali. Modelling geological uncertainty for stochastic short-term produc-
tion scheduling in open pit metal mines. PhD thesis, University of Queensland,
Brisbane, Australia, 2006.

[86] M. E. Johnson. Multivariate statistical simulation. Wiley Series in Probability
and Statistics. Wiley, 1987.

[87] P.V. Johnson, G.W. Evatt, P.W. Duck, and S.D. Howell. The determination
of a dynamic cut-off grade for the mining industry. In Sio-Iong Ao and Len
Gelman, editors, Electrical Engineering and Applied Computing, volume 90 of
Lecture Notes in Electrical Engineering, pages 391–403. Springer Netherlands,
2011.

[88] T. Johnson. Optimum open pit mine production scheduling. In Mining Engi-
neering. University of California: Berkley, 1968.

[89] A. G. Journel. Geostatistics for conditional simulation of ore bodies. Economic
Geology, 69:673–687, 1974.

[90] A. G. Journel. Fundamentals of Geostatistics in Five Lessons, volume 8 of Short
Course in Geology. American Geophysical Union, Washington, DC, 1989.

[91] A. G. Journel. Roadblocks to the evaluation of ore reserves – the simula-
tion overpass and putting more geology into numerical models of deposits. In
R. Dimitrakopoulos, editor, Orebody modelling and strategic mine planning,
volume 14, pages 103–110, 2007.

[92] A. G. Journel and F. G. Alabert. Non-Gaussian data expansion in the earth
sciences. Terra Nova, 1(2):123–134, 1989.

[93] A. G. Journel and C. J. Huijbregts. Mining Geostatistics. Academic Press,
London, 1978.

[94] J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Networks,
1995. Proceedings., IEEE International Conference on, volume 4, pages 1942–
1948, 1995.

[95] R. Khalokakaie, P. A. Dowd, and R. J. Fowell. Lerchs - Grossmann algorithm
with variable slope angles. Mining Technology: IMM Transactions Section A,
109(2):77–85, 2000.



243

[96] Y. C. Kim. Mathematical programming analysis of mine planning problems.
PhD thesis, Pennsylvania State University, 1968.

[97] Y. C. Kim and Y. Zhao. Optimum open pit production sequencing - the
current state of the art. In Transactions of the Society for Mining, Metallurgy
and Exploration, Inc., pages 1–9, 1994.

[98] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 05 1983.

[99] S. P. Kolodziej, I. E. Grossmann, K. C. Furman, and N. W. Sawaya. A
discretization-based approach for the optimization of the multiperiod blend
scheduling problem. Computers & Chemical Engineering, 53(0):122–142, 6
2013.

[100] M. Kumral. Incorporating geo-metallurgical information into mine production
scheduling. Journal of the Operational Research Society, 62(1):60–68, 01 2011.

[101] M. Kumral. Multi-period mine planning with multi-process routes. Interna-
tional Journal of Mining Science and Technology, 23(3):317 – 321, 2013.

[102] M. Kumral. Optimizing ore–waste discrimination and block sequencing
through simulated annealing. Applied Soft Computing, 13(8):3737 – 3744, 2013.

[103] M. Kumral and P. A. Dowd. A simulated annealing approach to mine pro-
duction scheduling. Journal of the Operational Research Society, 56(8):pp.
922–930, 2005.

[104] R.J. Kuo and C.Y. Yang. Simulation optimization using particle swarm op-
timization algorithm with application to assembly line design. Applied Soft
Computing, 11(1):605 – 613, 2011.

[105] W. B. Lambert and A. M. Newman. Tailored Lagrangian relaxation for the
open pit block sequencing problem. Annals of Operations Research, 202:1–20,
January 2013.

[106] A. Lamghari and R. Dimitrakopoulos. A diversified tabu search approach
for the open-pit mine production scheduling problem with metal uncertainty.
European Journal of Operational Research, 222(3):642–652, 2012.

[107] A. Lamghari, R. Dimitrakopoulos, and J. A. Ferland. A variable neighbourhood
descent algorithm for the open-pit mine production scheduling problem with



244

metal uncertainty. Journal of the Operational Research Society, pages 1–10,
2013.

[108] A. Lamghari, R. Dimitrakopoulos, and J. A.. Ferland. A hybrid method based
on linear programming and variable neighborhood descent for scheduling pro-
duction in open-pit mines. Journal of Global Optimization, pages 1–28, 2014.

[109] K. F. Lane. The Economic Definition of Ore: Cut-off Grades in Theory and
Practice. Mining Journal Books Limited, 1988.

[110] N.N.A. Lebedev and R.A. Silverman. Special Functions & Their Applications.
Dover Books on Mathematics Series. Dover, 1972.

[111] A. Leite and R. Dimitrakopoulos. Stochastic optimisation model for open
pit mine planning: application and risk analysis at copper deposit. Mining
Technology: IMM Transactions Section A, 116(3):109–118, 2007.

[112] A. Leite and R. Dimitrakopoulos. Mine scheduling with stochastic program-
ming in a copper deposit: Application and value of the stochastic solution.
Journal of Mining Science, In press, 2014.

[113] H. Lerchs and I. F. Grossmann. Optimum design of open-pit mines. CIM
Bulletin, 58:47–54, 1965.

[114] J. Li, J. Mao, and G. Zhang. Multi-performance optimization of cement blend-
ing process. In Control Conference (CCC), 2011 30th Chinese, pages 1877–
1881, 2011.

[115] X. Li, T. Huang, D.-T. Lu, and C. Niu. Accelerating experimental high-order
spatial statistics calculations using GPU. Computers & Geosciences, 70:128–
137, 2014.

[116] Y. Liu. Using the Snesim program for multiple-point statistical simulation.
Computers & Geosciences, 32(10):1544 – 1563, 2006.

[117] S. Lloyd. Least squares quantization in PCM. Information Theory, IEEE
Transactions on, 28(2):129–137, March 1982.

[118] G. Mariethoz, P. Renard, and J. Straubhaar. The Direct Sampling method to
perform multiple-point geostatistical simulations. Water Resources Research,
46(11):1–14, 2010.



245

[119] A. Marinho de Almeida. Surface constrained stochastic life-of-mine produc-
tion scheduling. Master’s thesis, McGill University, Montreal, QC, Canada,
February 2013.

[120] G. Matheron. Les variables régionalisées et leur estimation: une application
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