
Numerical Simulations of Subcritical and
Supercritical Flows in Shallow Waters

Shooka Karimpour Ghannadi

Doctor of Philosophy

Department of Civil Engineering and Applied Mechanics

McGill University

Montreal,Quebec

2015-03-20

A thesis submitted to McGill University in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

c©Copyright Shooka Karimpour Ghannadi 2015



DEDICATION

To my family.

ii



ACKNOWLEDGEMENTS

First, I wish to express my deep gratitude to my supervisor, Professor Vincent

H. Chu, for guidance, dedication during the course of this research, and for believing

in my analytical and numerical skills.

I would like to acknowledge the funding provided by the Brace Water Resources.

I also like to thank members of staff in Department of Civil Engineering and Ap-

plied Mechanics who provided constant technical and administrative support during

my graduate study. I specially want to thank Professor Babarutsi for support and

encouragement in the past years.

My deep gratitude goes to my parents and my brothers who always have had

faith in me throughout my life and continually supported me during my studies.

Finally, to my husband, Navid, it is difficult to express my appreciation because

it is so boundless. The completion of this thesis was possible with your unfailing

love, support and understanding.

iii



ABSTRACT

The formation of shock waves as the currents make transition from supercritical

to subcritical flow are common in many environmental science and hydro-technical

engineering applications. The numerical challenge for simulation of the supercritical-

to-subcritical flow transitions is capturing the depth and velocity discontinuity across

the shock waves. Total Variation Diminishing (TVD) methods are one of the most

conventional methods to manage the spatial integrations in the vicinity of large gra-

dients. TVD methods however are limited to no more than second or third order of

accuracy. There are on the other hand Essentially Non-Oscillatory (ENO) schemes

that can be extended to have infinite order of accuracy. ENO compared to the con-

ventional TVD schemes reduces the computational effort with minimum undesirable

numerical dissipation. In this thesis a Finite Volume Method (FVM) is developed

to simulate subcritical and supercritical flows in shallow waters. The performance of

a large numbers of shock capturing strategies is evaluated through grid-refinement

studies and comparison with available analytical solutions. The investigation for

shock-capturing capability of the numerical scheme in supercritical to subcritical

transition has been carried out for (i) The transverse dam-break wave, (ii) the linear

development of shear instability and (iii) the non-linear transition to turbulence in

shallow water.

The first application of the numerical method is the diversion of water from a

main channel to the side through a weir. Calculations have been conducted for sub-

critical to supercritical approaching main flows with Froude numbers ranging from
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Fro = 0.03 to 2.0. Results are presented in the framework of the classical solution

of Ritter’s. In the limiting case of supercritical main flow, the results are consistent

with Prandtl-Meyer expansion, developed originally for gas dynamics. The results

obtained over the entire range of Froude numbers are presented in a unified manner

for comparison with available experimental data.

Using this numerical method, hydrodynamic instability investigation is con-

ducted without making the assumption of the normal mode. The direct numerical

simulation for this problem has been carried out for a base flow with hyperbolic

tangent velocity profile, covering a range of convective Froude numbers from 0.1 to

2.0. The results obtained from simulation of the subcritical shallow waters are con-

sistent with the analogous instability studies previously considered in gas dynamics.

The supercritical instability on the other hand is associated with entrapment and

radiation of waves that are beyond the classical description of the normal mode.

The direct numerical simulations allow the continuation of the stability calcu-

lation to the non-linear stage of development. The analyses have shown how the

presence of shock waves can influence the formation of eddies and shocklets. Re-

duced mixing layer growth is in agreement with the experimental investigation in

gas dynamics. Furthermore in the simulation of the non-linear instability and the

study of energy dissipation, shock waves are observed at intermediate convective

Froude number of 0.75. Investigation also suggests a drastic drop of lateral to longi-

tudinal velocity fluctuation with rise in Froude number.

Grid refinement studies for convergence to analytical solution and the valida-

tion of the numerical method using available experimental data are carried out in
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the implementation of the numerical method to the three fundamental problems

considered in this thesis. These convergence studies have shown the numerical calcu-

lations across the sharp gradients can be managed to gain the needed computational

stability and produce results approaching the accuracy of analytical methods.
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ABRÉGÉ

La formation d’ondes de choc issue des courants en transition d’un écoulement

fluvial supercritique à un coulement souscritique est commune à plusieurs sciences de

l’environnement et applications de génie hydro-technique. Le défi numérique pour

la simulation des transitions de flux supercritiques à sous-critiques est la capture

des discontinuités en profondeur et en vitesse des ondes de choc. Les méthodes

de diminution de variation totale (TVD ou Total Variation Diminishing) est l’une

des méthodes classiques pour gérer les intégrations spatiales dans le voisinage des

gradients importants. Cependant, les méthodes TVD sont limitées à un niveau de

precision de second ou troisième ordre sans plus. Des systèmes essentiellement non-

oscillants (ENO ou Essentially Non-Oscillatory), par contre, peuvent tre prolongès

afin d’obtenir un calibre de precision infini. Par rapport aux régimes de TVD clas-

siques, ENO réduit l’effort de calcul avec une dissipation numérique indésirable min-

imale. Dans cette thèse une méthode en volume finis (FVM) a été développée pour

simuler les écoulements fluviaux et torrentiels dans les eaux peu profondes. Un grand

nombre de stratégies de capture de choc a été effectué et évalué à travers une grille

de raffinement constituée à partir d’études et de comparaisons avec les solutions an-

alytiques disponibles. L’enquête sur la capacitè de la méthode numèrique à capturer

le choc dans la transition supercritique à sous-critique a été réalisée pour (i) L’onde

transversale de rupture de barrage, (ii) le développement linéaire de l’instabilité de

cisaillement et (iii) la transition non-linéaire à la turbulence en eau peu profonde.

La première application de la méthode numérique est le détournement de l’eau
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d’un canal principal par le moyen d’un déversoir. Les calculs ont été effectués pour

l’approche de flux principaux sous-critiques à supercritiques avec des nombres de

Froude allant de Fro = 0.03 à 2.0. Les résultats sont présentés dans le cadre de la so-

lution classique de Ritter. Dans le cas limite de l’écoulement principal supercritique,

les résultats sont cohérents avec l’expansion de Prandtl-Meyer, développ à l’origine

pour la dynamique des gazs. Les résultats obtenus sur toute la plage de nombres de

Froude sont présentés d’une maniére unifiée afin d’être comparés avec les données

expérimentales disponibles.

En utilisant cette méthode numérique, l’enquête de l’instabilité hydrodynamique

est réalisée sans faire l’hypothèse du mode normal. La simulation numérique directe

de ce problème a été effectuée pour un dèbit de base avec une fonction tangente

hyperbolique de vitesse, couvrant une gamme de nombres de Froude convectifs de

0.1 à 2.0. Les résultats obtenus par la simulation de l’instabilité sous-critique dans

les eaux peu profondes sont cohérents avec les études d’instabilité analogues déjà

pris en considération dans la dynamique des gazs. L’instabilité supercritique sur la

main est associée avec le piégeage et le rayonnement des ondes qui sont au-delà de

la description classique du mode normal.

Les simulations numériques directes permettent la poursuite du calcul de la

stabilité l’étape non-linéaire du développement. Les analyses ont montré que la

présence d’ondes de choc peut influencer la formation de tourbillons et de petis chocs.

La croissance réduite de la couche de mélange correspond l’étude expérimentale de

la dynamique des gazs. En outre, dans la simulation de l’instabilité non-linéaire

et l’étude de la dissipation d’énergie, les ondes de choc sont observées au nombre
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convectif intermédiaire de Froude de 0.75. L’enquête suggère également une baisse

drastique de la fluctuation de vitesse latérale à longitudinale avec une hausse du

nombre de Froude.

Les études de grille de raffinement pour la convergence à la solution analy-

tique et la validation de la méthode numérique utilisant les données expérimentales

disponibles sont réalisées dans la mise en œuvre de la méthode numérique aux trois

problèmes fondamentaux considérés dans cette thése. Ces études de convergence

ont démontré que les calculs numériques à travers les gradients saillants peuvent

être gérés pour gagner la stabilité de calcul nécessaire et produire des résultats qui

approchent la précision des méthodes analytiques.
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CHAPTER 1
INTRODUCTION

1.1 Motivations and Objectives

In many environmental science and hydro-technical engineering applications,

transition from supercritical to subcritical flow in shallow waters are common oc-

currence. Water depth jumps from the supercritical flow to the subcritical flow.

The breaking waves produced by the jumps are responsible for significant sediment

suspension and air entrainment into the flow. These breaking waves are ubiquitous

in steep flows through man-made channels, irrigation systems, and mountainous

streams and in the density-stratified flows. The depth and velocity discontinuities

across a hydraulic jump are the center of focus in numerical simulations. Simulation

of the supercritical to subcritical transition is required in the design of energy dissi-

paters and water diversion structure. Uplifting, cavitation and vibration due to the

supercritical to subcritical transitions create unique engineering challenges for the

design of such hydraulic structures. Flows overtopping dikes and embankments of-

ten are supercritical. Structural design has to be made for the structure to withstand

erosion and wave forces. The supercritical to subcritical flow transition is also en-

countered in density-stratified currents, through the formation of internal hydraulic

jumps when the densimetric Froude number exceeds unity in part of the currents.
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This phenomenon has been observed in coastal disposal of wastewater (Chu & Van-

vari 1976; Chu & Baddour 1984; Chu & Jirka 1986). Hydraulic jumps and surges

also have been observed in shallow seas due to the tidal flow interaction with the

sea bottom topography. Internal hydraulic jumps can also occur in lakes (Linkens

2010) and examples of such flows are reported by Cortés et al. (2014). Despite

the frequent observation of supercritical to subcritical transition, the impacts of this

sharp transition on many flow processes are not well understood.

Formation of supercritical regime in shallow flows is determined by the prop-

agation of disturbance waves which depends on the magnitude of the flow velocity

u relative to the speed of the gravity wave c =
√

gh. The dimensionless parameter

is the Froude number, Fr = u/c. The flow is supercritical if the flow velocity is

greater than the wave speed, i.e. Fr = u/c > 1. The flow is subcritical if the Froude

number, i.e. Fr = u/c < 1. Hydraulic jumps occur in supercritical flow in its tran-

sition to subcritical flow. The free-surface flow in open channel and density current

in gravity-stratified flow are analogous as they are governed by the same equations.

The wave speed in open-channel flow is defined by the constant gravity g and the

depth of the flow h. In the density current on the other hand, wave speed is defined

by density difference, Δρ, relative to density, ρ. The reduced gravity g′ = gΔρ/ρ in

density currents defines the internal wave speed
√

g′h. Small density difference leads

to small internal-wave speed and supercritical density currents of large densimetric

Froude numbers.

The occurrence of the hydraulic jump and internal hydraulic jump in shallow

flows is a phenomenon analogous to the formation of shock waves in gas dynamics.
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In compressible flow such as gas, the waves of small amplitude are the sound waves.

The ratio of the flow speed u to the speed of sound c is the Mach number, Ma =

u/c. Supersonic flows are often accompanied by abrupt pressure changes across the

shock wave. The equivalent problem in shallow waters is sudden change in depth

across the hydraulic jump. The similarities of the free-surface flow in shallow water

and the counterpart of the flow in gas are known. Liggett (1994) has shown that the

shallow-water equations for flow in open channel are identical to the two dimensional

equations for the compressible flow in gas when the specific heat ratio is equal to 2.

This realization is valid if the hydrostatic pressure variation over the water depth

is assumed. Furthermore, the flow must be inviscid for the shallow-flow and gas-

dynamic analogy to be fully valid.

The main challenge of numerical simulations using the shallow-water equation

is the depth and velocity discontinuities across the hydraulic jumps. The numerical

scheme must have high accuracy and in the same time maintain computational sta-

bility. The balance of accuracy and stability is crucial in the selection of a numerical

scheme. The numerical simulations for the shallow flows share many of the computa-

tional requirements with the simulations of compressible flows in gas. The methods

developed to capture flow discontinuities across the shock waves in the compressible

flow are equally capable of capturing depth and velocity discontinuities across the

hydraulic jumps. This thesis will review a number of classic Total Variation Dimin-

ishing (TVD) shock capturing schemes and compare those with a high-order scheme

known as Weighted Essentially Non-Oscillatory (WENO). The WENO scheme de-

veloped by Shu (2009) can in principle achieve infinite order of accuracy. These TVD
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schemes and WENO scheme are employed for spatial interpolation on a staggered

grid. Time integration is conducted using a fourth-order Runge-Kutta method. The

performance of the numerical method was verified by three simulation projects re-

ported in this thesis. The three projects are (i) transverse dam-break waves, (ii)

linear stability in shallow shear flow and (iii) wave and energy dissipation in sub-

critical and supercritical mixing layers. The accuracy of the simulations for each

problem is evaluated by comparing the simulation results with the analytical solu-

tions and available experimental data. The results are presented in chapters 2, 3 and

4, respectively.

1.2 Computational schemes for high-speed shallow waters

We begin by reviewing the Method Of Characteristics (MOC), which has been

popular since the early development of computational hydraulics (Abbott 1966, Hen-

derson 1966, Stoker 1957). In the method of characteristics, the shallow-water equa-

tions are transformed onto systems of characteristics along which the governing equa-

tions are ordinary differential equations. Many shallow-water wave exact solutions

are obtained using the MOC including 1D dam break wave solution by Ritter (1892)

and Stoker (1957). However generalizing the MOC to include source terms such as

complex topography and friction effect requires corrections that are problem specific.

Numerical methods based on the MOC have been developed. One of the popular

methods is the Riemann solvers. Local MOC solution obtained in a computational

cell has been used to estimate the flux across the face of finite volumes (Roe 1981,

Harten et al. 1983, LeVeque 2002, Toro 2009).
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To overcome the limitation of the Riemann solver, the classical finite volume

method is adapted for the solution of the shallow-water equation. High-order accu-

rate interpolation scheme are developed on a staggered grid to capture the depth and

velocity discontinuities. Recent developments in this direction for the finite-volume

method to find solution of the shallow-water equations can be found in the works by

Vázquez-Cendón (1999), Castro et al. (2012) and Yuan (2013). Unlike the Riemann

solver, the finite-volume method is developed to compute the fluxes on the faces of

the finite volume following the direction of the flow velocity rather than the direction

of the characteristics. Therefore, the transformation of the governing equations to a

hyperbolic system is not required. However, simulation of flow discontinuities relies

on shock-capturing schemes to suppress the unphysical spurious numerical oscilla-

tion. The Minimal Intervention Strategy (MIS) as described by Pinilla et al. (2010),

employs Total Variation Diminishing strategy (TVD) to define the fluxes on the faces

of the control volume and to confine the numerical oscillation. This method has been

successful in capturing the moving hydraulic jumps while maintaining the absolute

computational stability. Variety of flux limiting strategies have been developed for

shock capturing in compressible flows (e.g. Roe 1985; Gaskell & Lau 1988; Leonard

& Mokhtari 1990; Leonard & Drummond 1995). Pinilla et al. (2010) tested the

popular TVD schemes including MINMOD, MUSCL, SMART, Superbee, ULTRA-

QUICK. Adjusting the fluxes in regions near the discontinuities does not affect the

overall mass and momentum conservations but slightly impacts the accuracy of the

base schemes.
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TVD schemes are successful in regulating the numerical oscillations. They can

however lead to excessive numerical errors. Therefore in the numerical simulation

of a complex flow containing both smooth and sharp regions, employment of such

schemes, may require excessive computational grid points to resolve the flow features

properly. A high-order interpolation scheme could minimize the computational ef-

fort. The Weighted Essentially Non-Oscillatory (WENO) scheme is one high-order

interpolation method that has gained popularity in the past decade as the scheme

can capture the smooth part of the flow with high-order accuracy, and capture the

discontinuity with acceptable accuracy and computational stability. The scheme was

first introduced by Liu et al. (1994) and Jiand & Shu (1996). The WENO scheme

was developed based on Essentially Non-Oscillatory (ENO) scheme introduced by

Harten et al. (1987) and Shu & Osher (1988). Both the ENO and WENO schemes

are constructed by dividing the overall stencil into sub-stencils according to the de-

sirable order of accuracy (see Figure 1–1). In the encounter of discontinuity in one

sub-stencil, the ENO scheme would skip entirely the sub-stencil with the discon-

tinuity while manages the interpolation using the remainder of sub-stencils. The

strategy of the WENO scheme on the other hand is to weigh the lower order stencil

by a smoothness indicator. This strategy of the weighted function is superior in

alleviating the problems associated with the abrupt removal of stencil in the ENO

schemes (Shu 1990).

The WENO scheme can be extended to have infinite order of accuracy. In the

present simulation, the 5th-order WENO reconstruction scheme is employed. The 5th

order WENO, was chosen, as it provides a relatively high order of accuracy in the
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Figure 1–1: The main stencil and three substencils arrangement in 5th order WENO
scheme by Shu (2009).

simulation of vortex-shock interaction, without compromising computational effort.

The orientation of sub-stencils in a 5th order WENO scheme is demonstrated in

Figure 1–1. This figure shows the stencil for a 5th-order scheme and its relation to

the sub-stencils of three lower 3rd-order schemes.

1.3 Literature Review for Compressible Mixing Layers

Much of the previous studies on instabilities and transition of the instabilities

to turbulence were conducted to study the development of the mixing layer between

free streams. Mixing layer is turbulent flow formed between two parallel streams of

different velocities without the presence of the solid boundary. Despite the common

occurrence of such flow features in steep channels and density stratified flow, the

literature available is mainly on the analogous dilation effect in gas dynamics. An

understanding of the phenomenon in dilation effect on the flow in gas is necessary to
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comprehend the shear flow in shallow waters. In gas dynamics the dilation effect due

to the expansion and contraction, is widely measured by convective Mach number

Ma =
U1 − U2

c1 + c2
(1.1)

In the definition of convective Mach number, U1 and U2 are the flow velocity and c1

and c2 are the speeds of the sounds in the free streams. Convective Mach number

is defined based on relative to the free-stream speed rather than absolute speed of

the flow. The first attempt to articulate the use of the convective Mach number

was by Lin (1953). Later, this parameter was used to investigate high speed mixing

layers with various velocities and density ratios by Bogdanoff (1983). The equivalent

dimensionless parameter in shallow water is the convective Froude number used by

Pinilla & Chu (2008).

Fr =
U1 − U2

c1 + c2
(1.2)

where c1 and c2 are the speeds of the gravity waves. Shock waves are the discontinu-

ities in pressure in gas. In shallow water, the hydraulic jumps are produced as flow

changes from supercritical to subcritical state.

Without the dilation effect when the convective Mach number or the convec-

tive Froude number approaches zero, the instability of shear flow is describable by

the classical Rayleigh inflection point theorem (Rayleigh 1880). Linear instability

analysis by Sandham & Reynolds (1991) has found reduction of shear instability

with the increase of convective Mach number. Despite the considerable reduction in

growth rate, supersonic mixing layers are observed to be marginally unstable. This

was explained through a discovery by Satomura (1981) suggesting that even a linear
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shear flow can be unstable in shallow water to another mode of instability. The sec-

ond mode of instability has been studied in Couette flow by Balmforth (1999) and

Takehiro & Hayashi (1992). However, the study of second unstable mode and the

inflection instability is only briefly considered by Balmforth (1999).

As mixing layer is sensitive to existence of white noise and perturbation in

the environment, subsequent to linear stage, subcritical eddies are generally formed.

The interaction of this shear flow generates substantial level of mixing across, in

between the two flows which is due to a high level of turbulence velocity fluctuation

at a zero pressure gradient flow where the Mach and Froude numbers are relatively

small. Flow discontinuities in the form of shock wave in compressible fluid, and

in the forms of hydraulic jump in free surface flow, have rather strong impact on

the growth and development of the mixing layer. Early evidence of compressibility

impact on turbulence was discussed by Bradshaw (1977).

Early experiments by Birch & Eggers (1973) first suggested the reduction in

spreading rate with compressibility as Mach number increases. Experimental obser-

vation by Brown & Roshko (1974) and Papamoschou & Roshko (1988) confirmed

that compressibility affects the development of the supersonic shear layer. The re-

view of these works can be found in Lele (1994). Identification of the mechanisms

responsible for the inhibited shear layer growth at high Mach number is of interest

both to gain a fundamental understanding of the problem and to derive insights into

possible mixing enhancement strategies.

The evidence from available studies indicates that the reduction of turbulent

kinetic energy in the uniform shear layer as well as the reduced thickness of the
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shear layer are related to decreased turbulent production. Vreman et al. (1996)

among others have numerically studied a temporally evolving mixing layer to show

that the reduction in turbulent production is due to dilation dissipation as the Mach

number increases. Other experimental observations by Samimy & Elliot (1990),

Rossman et al. (2002) among others, reported the reduction of growth rate with

convective Mach number. Another parameter that was considered as energy sink,

was the generation of noise by mixing layer. The production of noise from mixing

layer also requires energy which consumes some of the turbulence kinetic energy.

The energy flux radiated from mixing layer in the form of sound wave is also studied

(see, e.g., Debiève et al. 2000).

The impact of compressibility however becomes evident not necessarily at su-

personic flow. Even in moderate subsonic mixing layers, the structure of the eddy

is modified by the existence of flow discontinuity, shocklet (Sandham & Reynolds

1990). The experiment by Papamoschou & Roshko (1988) also explained the in-

triguing structure of vortex in the presence of shock wave and hydraulic jumps as

eddy-shocklets. There have been numerous efforts for the direct numerical simula-

tion (DNS) of the compressible mixing layer. Vreman et al. (1996), Pantanto &

Sarkar (2002), Fu & Li (2006) and Barone et al. (2006) are amongst the DNS of the

mixing layer, correlating the reduction in growth rate in higher Mach numbers to

compressibility. In supersonic convective Mach numbers, it has been reported that

long shocklets are radiated from elongated vortices.

On the anisotropy of compressible flow, there have been discrepancies in liter-

ature. While several studies (e.g., Samimy & Elliot 1990; Pantanto & Sarkar 2002)

10



have suggested that the turbulent anisotropy expressed in terms of longitudinal ver-

sus transverse velocity fluctuations, is relatively constant over different Mach num-

bers, others studies (e.g. Goebel & Dutton 1991; Gruber et al. 1993) have actually

shown a growth with Mach number. Despite numerous experimental and numerical

investigations on shock-vortex interaction, due to inconsistency in results reported,

further studies are required on this subject. The understanding of such flows is an

important element in attempting to develop models for much more complex shock-

turbulence interactions for highly inhomogeneous flows.

1.4 Thesis Organization

This thesis is written in the manuscript-based format. It is a collection of pa-

pers accepted and submitted for publications supervised by Professor V. H. Chu. A

summary of the collection is given in the Introduction chapter. This chapter also

provides the motivation and objectives, a brief overview of the numerical methods

and a literature review for supersonic and supercritical flows. Chapters 2 to 5 are

drawn from the following journal papers, respectively:

1. S. Karimpour Ghannadi, and V. H. Chu. High-order Interpolation Schemes

for Shear Instability Simulations. International Journal of Numerical Methods

for Heat and Fluid Flow, In press, 2015.

2. S. Karimpour Ghannadi, and V. H. Chu. Transverse Dam-Break Waves.

Journal of Fluid Mechanics, Volume 758, November 2014, R2 (12 pages).

3. S. Karimpour Ghannadi, and V. H. Chu. Linear Instabilities in Shallow

Flows. Journal of Fluid Mechanics, draft for submission, 2014.
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4. S. Karimpour Ghannadi, and V. H. Chu. Wave and Energy Dissipation in

Subcritical and Supercritical Mixing Layers. Journal of Fluid Mechanics,

draft for submission, 2014.

Chapter 2 explains the numerical method applied in this thesis to attain high-

order of accuracy in a complex flow problem. The application of TVD schemes,

as well as a high order WENO scheme is introduced in this paper. These are im-

plemented on a staggered grid using the finite volume method. Different shock-

capturing schemes are put to the test in the calculations for eddies and shocklets in

the simulation of shear instabilities over a range of convective Froude numbers. The

performance of the TVD and WENO schemes are evaluated using progressively re-

fined grid. The computation error of each scheme is determined by extrapolation to

the estimated exact solution. Some of TVD schemes showed promising results. The

fifth-order WENO scheme generally performed better. Despite the higher accuracy

of WENO scheme, it can be computationally expensive and should only be chosen

for demanding applications. Otherwise TVD schemes are better fit to simulate the

problems that are expected to contain only flow discontinuities.

Chapter 3 was inspired to prove that a TVD scheme is capable of simulating

a fully 2D problem, without the requirement of high order interpolation scheme,

with acceptable accuracy. Flow diversion from a main channel to the side through

a weir is investigated numerically for subcritical and supercritical main flows (see

Figure 1–2). In this chapter, results demonstrate that even in subcritical main flow,

flow across the weir is significantly regulated by supercritical expansion fan. Results
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Figure 1–2: Supercritical expansion fan formation in Fro = 0.48 and 1.92, reported
in chapter 3.

are presented in the framework of the classical dam break wave solution by Ritter

(1892). In one limiting case of supercritical main flow, the results are consistent with

Prandtl-Meyer expansion, developed originally for gas dynamics. On the other hand,

results are in agreement with available experimental data in low speed subcritical

main flows.

In the next two chapters, the preferred shock capturing method is WENO. In

chapter 4 the instability beyond the classical Rayleigh instability is explored for the

supercritical mixing layer. In this paper, the instability of mixing layer with various

Froude numbers is studied. In the subcritical mixing layer, the classical results by

Sandham & Reynold (1990) are reproduced. However the extension to supercritical

mixing layer has shown existence of a second mode of instability, not seen in classical

investigation of linear instability. This mode of instability is raised by supercritical

waves that produce modulation in the growth of turbulence kinetic energy, turbulence
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potential energy and other flow features. Amplitude of the small perturbations is

observed to amplify thousands of time while maintaining a consistent structure. This

consistent structure withstands until non-linear stage is reached. The modulation

of the instability is explained in terms of energy entrapment between the returning

surfaces, where the relative speed matches the speed of the wave.

In chapter 5 the development of the mixing layer to form eddies and shocklets

are obtained from the direct numerical simulations. Radiation of wave energy and

the local energy dissipation across the jumps were determined and correlated with

the fractional spreading rate of the mixing layer. The fractional rates for a range

of convective Froude numbers are compared with available data obtained for the

analogous problem in gas dynamics. In addition, the total energy dissipation and

radiation damping are studied. The anisotropy of the flow in the presence of shocklets

is also analyzed.

The final conclusion chapter provides (i) a summary of computational results,

(ii) the contribution of the thesis to knowledge and (iii) suggestions for further in-

vestigations.
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CHAPTER 2
HIGH-ORDER INTERPOLATION SCHEMES FOR SHEAR

INSTABILITY SIMULATIONS

S. Karimpour Ghannadi and V. H. Chu. High-order Interpolation Schemes for Shear

Instability Simulations. International Journal of Numerical Methods for Heat and

Fluid Flow, In press, 2015.

2.1 Abstract

Purpose: The performance of a numerical method for the solution to shallow-water

equations on a staggered grid is evaluated in simulations for shear instabilities at two

convective Froude numbers.

Design/methodology/approach: The simulations start from a small perturba-

tion to a base flow with a hyperbolic-tangent velocity profile. The subsequent de-

velopment of the shear instabilities is studied from the simulations using a num-

ber of flux-limiting schemes, including the second-order MINMOD, the third-order

ULTRA-QUICK and the fifth-order WENO schemes for the spatial interpolation of

the nonlinear fluxes. The fourth-order Runge-Kutta method advances the simulation

in time.

Findings: The simulations determine two parameters: (i) the fractional growth rate

of the linear instabilities; and (ii) the vorticity thickness of the first nonlinear peak.

Grid refinement using 32, 64, 128, 256 and 512 nodes over one wave length determines
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the exact values by extrapolation and the computational error for the parameters. It

also determines the overall order of convergence for each of the flux-limiting schemes

used in the numerical simulations.

Originality/value: The four-digit accuracy of the numerical-simulations presented

in this paper are comparable to analytical solutions. The development of this reliable

numerical simulation method has paved the way for further study of the instabilities

in shear flows that radiate waves.

Keywords: Shear Instabilities, Staggered Computational Grid, Flux-Limiting Strat-

egy, MINMOD, ULTRA-QUICK, WENO.

2.2 Introduction

Shear instabilities are initiations of turbulence. The study of shear instabilities

is therefore directly related to the modelling and simulation of turbulence. Insta-

bility analysis has been carried out traditionally using linear stability analysis and

normal mode approach; see, e.g., Michalke (1964) and Sandham & Reynolds (1990).

The initial growth of a small disturbance is determined as an eigenvalue problem

of the governing ordinary differential equations. In this paper, the instabilities are

determined from numerical simulations using the fully nonlinear equations. Wave

radiation and the formation of shock waves are admissible to the solution of the

shallow-water equations. The numerical simulation must have the capability to cap-

ture the shock waves and reproduce the classical results obtained from the linear

stability analysis. The accuracy of the simulations for the instabilities depends on

the numerical schemes and the grid sizes used for the simulations. The flow of two
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different Froude numbers of the shallow shear flow are considered in order to examine

the role of wave radiation and formation of shock waves in the linear and nonlinear

stages of the instabilities’ development. Radiation of wave is known to play a crit-

ical role on instability in compressible gas at high Mach numbers; see, e.g., Mack

(1990) and Lee et al. (1991). The numerical simulation of the radiation requires a

high order of numerical accuracy. The adapted boundary conditions allow the wave

radiation from the instabilities to escape without reflection. The numerical method

for the present simulation is developed for computation using a staggered grid. The

nonlinear fluxes are calculated by a number of flux-limiting schemes, including the

second-order MINMOD, the third-order ULTRA-QUICK and the fifth-order WENO

schemes. The staggered grid is employed for its simplicity so that the simulations

can be carried out to a high order of accuracy. A fourth order Runge-Kutta method

is employed for the time integration. The order of accuracy of each of the limiting

schemes is evaluated from a grid-refinement study that allows it to be compared with

the intrinsic order of the scheme.

The paper has six sections including this introductory section. Section 2 presents

the equations in a suitable form for the numerical simulations on a staggered grid.

Sections 3 provides the details of the numerical simulation method including the

steps for interpolation of the nonlinear fluxes and the implementation details of the

flux-limiting schemes of various orders of accuracy. The shear instability problem

is considered in Section 4 and Section 5. Section 4 reports the calculations for the

exponential growth in the initial linear stage of the instability development. Section
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5 presents the calculations for the nonlinear development. Summary and conclusion

are given in the final section, 6.

2.3 Shallow-water Equations

The governing shallow-water equations for the present investigation are:

∂h

∂t
+

∂qx

∂x
+

∂qy

∂y
= 0 (2.1)

∂qx

∂t
+

∂Fuqx

∂x
+

∂F vqx

∂y
= −gh

∂h

∂x
(2.2)

∂qy

∂t
+

∂Fuqy

∂x
+

∂F vqy

∂y
= −gh

∂h

∂y
(2.3)

where g = gravity, h = water depth, and (qx, qy) = flow rate in x- and y-directions

respectively. The continuity equation (2.1) is linear. The nonlinear fluxes in the

momentum equations (2.2) and (2.3) are

Fuqx = uqx, F vqx = vqx (2.4)

Fuqy = uqy, F vqy = vqy (2.5)

These fluxes are sources of unphysical spurious oscillations. An effective flux-limiting

strategy is employed to manage the spurious oscillations for computational stabil-

ity. Derivation of shallow-water equations can be found for example in Vreugdenhil

(1994).
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2.4 Formulation on Staggered Grid

The finite-volume approximation of the shallow-water equations is implemented

on a staggered grid. The arrays h(i,j), qx(i,j) and qy(i,j) are defined at the h-node,

qx-node, and qy-node respectively. The arrays h(i,j), qx(i,j) and qy(i,j) are the cell

averages. Figure 2–1 shows the nodes and the finite volumes on the staggered grid.

The continuity equation (2.1) determines the temporal rate of change of the water

depth dh(i,j)/dt = Rh
(i,j), which is the balance of the volume fluxes qx(i,j) and qy(i,j)

in and out of the finite volume shown in Figure 2–1(a). The x-momentum equation

(2.2) determines the rate dqx(i,j)/dt = Rqx

(i,j) by balancing the momentum fluxes Fuqx

(i,j)

and F vqx

(i,j) in the finite volume shown in Figure 2–1(b). The y-momentum equation

(2.3) determines the rate dqy(i,j)/dt = Rqy

(i,j) by balancing the momentum fluxes Fuqy

(i,j)

and F vqy

(i,j) in the finite volume shown in Figure 2–1(c). The cell averages h(i,j), qx(i,j)

and qy(i,j) are updated at each time step. The cell averages at time t + Δt are

determined by their values at previous time t by a 4th-order Runge Kutta method.

2.4.1 Interpolation on the Staggered Grid

For accuracy and stability of the computation, the spatial interpolation for

the fluxes are managed by flux limiting to prevent amplification of the unphysi-

cal numerical oscillations. The nonlinear fluxes Fuqx

(i,j) and F vqy

(i,j) are defined at the

h-node, while the fluxes Fuqy

(i,j) and F vqx

(i,j) are defined at the ζ-node. The values of

u(i,j), v(i,j), qx(i,j), qy(i,j) needed for evaluation of these fluxes at the h-node and ζ-

node are determined by spatial interpolation in two dimensions on the staggered

grid.
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Figure 2–1: (a) finite volume for the calculation of h(i,j) using the continuity equa-
tion, (b) finite volume for the calculation of qx(i,j) using the x-momentum equation,
(c) finite volume for the calculation of qy(i,j) using the y-momentum equation, (d)

locations where nonlinear fluxes (Fuqx

(i,j),F vqx

(i,j),Fuqy

(i,j),F vqy

(i,j)) and depths (hqx

(i,j), h
qy

(i,j)) are
determined by interpolation.

The interpolation begins by finding the values of the array hqx

(i,j) at the qx-node

and the array h
qy

(i,j) at the qy-node, so that the velocity components u(i,j) = qx(i,j)/h
qy

(i,j)

and v(i,j) = qy(i,j)/h
qx

(i,j) are evaluated at these nodes. Figure 2–1(d) shows the relative

positions between the h-node, qx-node, qy-node and ζ-node for the interpolation. The

interpolations to find the nonlinear fluxes F uqx(i, j) and F vqy(i, j) at the h-node,

and the fluxes F vqx(i, j) and F uqy(i, j) at ζ-node, has the following steps:

1. Interpolation to find hqx

(i,j) at the qx-node and then find u(i,j) = qx(i,j)/h
qx

(i,j).

2. Interpolation to find h
qy

(i,j) at the qy-node and then find v(i,j) = qy(i,j)/h
qy

(i,j).

3. Interpolation to find u(i,j) and qx(i,j) at the h-nodes using the upwinding direction
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decided by 1
2
(qx(i,j) + qx(i+1,j)). Compute the nonlinear flux Fuqx

(i,j) at the h-nodes.

4. Interpolation to find v(i,j) at the ζ-node using the upwinding direction decided by

1
2
(qx(i,j) + qx(i,j−1)). Interpolation to find qx(i,j) at the ζ-node using the upwinding

direction decided by the v(i,j) at the ζ-node. Compute the nonlinear flux F vqx

(i,j) at the

ζ-node.

5. Interpolation to find v(i,j) at h-nodes using the upwinding direction decided by

1
2
(qy(i,j) + qy(i,j+1)). Compute the nonlinear flux F vqy

(i,j) at the h-node.

6. Interpolate to find u(i,j) at the ζ-node using the upwinding direction decided by

1
2
(qy(i,j) + qy(i−,j)). Interpolation to find qy(i,j) at the ζ-node using the upwinding

direction decided by the u(i,j) at the ζ-node. Compute the nonlinear flux Fuqy

(i,j) at

the ζ-node.

Each step of these interpolations on the staggered grid is a one-dimensional (1D)

problem of finding the face value φf at a position between the center c-node and the

downwind d-node, as delineated in figure 2–2. The distance between the nodes is Δ,

which is equal to either Δx or Δy. The location of the face is 1
2
Δ downwind from

the c-node. The number of nodes needed depends on the order of the accuracy of

the interpolation scheme. The First-Order Upwind (FOU) scheme involves only the

c-node:

φf = φc + O(Δ) (2.6)

The Central Difference (CD) and Quadratic Upwind Interpolation Convective Kinet-

ics (QUICK) schemes are second-order and third-order accurate. The interpolation
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Figure 2–2: The uu-node, u-node, c-node, d -node and dd -node used in the upwinding
interpolation for value φf between the c-node and d -node.

formulae for these schemes respectively are

φf =
1

2
(φc + φd) + O(Δ2) (2.7)

φf =
1

8
(−φu + 6φc + 3φd) + O(Δ3) (2.8)

The CD and QUICK schemes are known to produce spurious numerical oscillations

(Versteeg & Malalasekera 2007; Vreugdenhil 1994). If these oscillations are allowed

to amplify over time, they can lead to erroneous physics, numerical instability and

the ultimate breakdown of the computation.
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2.4.2 Flux-Limiting Schemes

Flux-limiting schemes have been developed for high-order schemes to suppress

overshot and undershot across any sharp discontinuity. The fluxes are modified by

lowering the order of the schemes, using for example the FOU to gain computational

stability. The strategy is to first detect the unphysical oscillations and then to decide

whether or not to lower the order of the interpolation.

DWF-NV Diagram

Dimensionless parameters known as the Normalized Variable (NV) and the

Downwind Weighting Factor (DWF) were introduced by Leonard (1988), Leonard

(1991) and Leonard & Mokhtari (1990) to define the flux-limiting strategies in a

DWF-NV diagram as shown in figure 2–3. Leonard & Mokhtari (1990) introduced

the Universal Limiter for Tight Resolution and Accuracy (ULTRA). The strategy

developed for the third-order QUICK was ULTRA-QUICK. Pinilla et al. (2010) for-

malized the flux-limiting strategy using the DWF and NV for two-dimensional (2D)

simulations on a staggered grid. The detector of the unphysical oscillations is the

normalized variable

NV =
φc − φu

φd − φu
(2.9)

The variation will be monotonic if the nodal value φc at the center lies between the

upwind nodal value φu and the downwind nodal value φd, that is if the NV lies in

the range 0 < NV < 1. On the other hand, the variation will be non-monotonic if

the value φc lies outside the range 0 < NV < 1, that is either in the range NV < 0

or in the range NV > 1. The face value φf is selected according to the downwind
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Figure 2–3: The DWF-NV diagram of Leonard & Mokhtari (1990) delineating the
monotonic region and its relation in the diagram to various interpolation schemes
including FOU, CD, SOU, FOD and QUICK. The thick solid line defines the flux
limiter ULTRA-QUICK.
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weighting factor

DWF =
φf − φc

φd − φc

(2.10)

Once the value of the DWF is selected, the face value is determined as a function of

the DWF as follows:

φf = φc + DWF(φd − φc) (2.11)

The variation from φc at the center node to the face value φf and then to φd at the

downwind node will be monotonic if the DWF value is in the range 0 < DWF < 1.

On the other hand the variation will be non-monotonic if the DWF value is either in

the range DWF < 0 or in the range DWF > 1. The DWF-NV diagram in figure 2–3

delineates the monotonic region a-b-c-d and a number of well-known interpolation

schemes. The DWF values for these schemes in the diagram are

DWF = 1 for FOD (first-order downwind) scheme

DWF = 0 for FOU (first-order upwind) scheme

DWF = 0.5 for CD (central differencing) scheme

DWF = 0.5 Θ for SOU (second-order upwind) scheme

DWF = 0.375 + 0.125 Θ for QUICK scheme

In these formulae,

Θ =
NV

1 − NV
(2.12)

Alternate to the normalized variable as detector of unphysical oscillations is the

ratio of the consecutive gradients Θ. The consecutive gradients are (φc − φu)/Δ and
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Flux Limiting Non-Monotonic Monotonic Non-Monotonic

Schemes NV < 1 0 < NV < 1 NV > 1
MINMOD 0 min[0.5Θ, 0.5] 0
MUSCL 0 min[Θ, 0.25+0.5Θ, 1] 0
SMART 0 min[2Θ, 0.375+0.125Θ, 1] 0
SUPERBEE 0 maxmin[Θ, 0.5],min[0.5Θ, 1] 0
ULTRA-QUICK 0.5Θ min[abs(1/Co-1)Θ, 0.375+0.125Θ, 1] 0.5
ULTRA-CD 0.5Θ min[abs(1/Co-1)Θ, 0.5] 0.5

Table 2–1: DWF formulae in the non-monotonic (NV < 1), monotonic (0 < NV <
1) and non-monotonic (NV > 1) regions for the six flux-limiting strategies; Co =
Courant number

(φd − φc)/Δ, and the ratio is

Θ =
(φc − φu)

(φd − φc)
(2.13)

The ratio of the consecutive gradients Θ is a unique function of the normalized

variable NV as given by Equation (2.12). It is the detector that has been used by

VanLeer (1977), Harten (1983), Roe (1985), Sweby (1984) and Gaskell & Lau (1988)

in their searches for Total Variation Diminishing (TVD) flux-limiting schemes. The

monotonic range of the normalized variable is 0 < NV < 1. The corresponding range

for the ratio of consecutive gradients is 0 < Θ < ∞. The DWFs as a function of Θ are

given in table 1 for six well known flux-limiting schemes: MINMOD, SUPERBEE,

SMART, MUSCL, ULTRA-QUICK and ULTRA-CD. Most of these flux-limiting

schemes are Total Variation Diminishing (TVD). In the monotonic part a-b-c-d of

the DWF-NV diagram, within the range of normalized variable 0 < NV < 1, the

DWF values of most flux limiters are selected to be within the TVD region of the

DWF-Θ diagram of Sweby, as shown in figure 2–4. The lower boundary of the
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Figure 2–4: The TVD region (gray) in the DWF-Θ diagram of Sweby (1984). The
upper boundary of TVD region is SUPERBEE and the lower boundary is MINMOD.

TVD region is the MINMOD and the upper boundary of the TVD region is the SU-

PERBEE. The ULTRA-QUICK and ULTRA-CD universal flux limiters of Leonard &

Mokhtari (1990) are beyond TVD because parts of the ULTRA-QUICK and ULTRA-

CD constraints are outside the TVD region. Although MINMOD and SUPERBEE

are TVD, they are not as accurate as ULTRA-QUICK. The base scheme of ULTRA-

QUICK is third-order accurate QUICK, as shown in Figure 2–3. The lowering to

FOD, SOU and CD in ULTRA-QUICK occurs only rarely and only minimally alters

the order of the order of QUICK. In their computation of heated wake, Bouhairie

& Chu (2007) have shown how flux limiters are minimal interventions that do not

change the order of accuracy of the base scheme significantly.
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WENO Reconstruction

Almost all flux-limiting schemes manage the unphysical numerical oscillations by

lowering the order of interpolation. For those schemes listed in Table 2–1, the switch-

ing to the lower-order scheme is abrupt, occurring immediately after the variation is

detected by the NV to be non-monotonic. The Weighted Essentially Non-Oscillatory

(WENO) scheme by Jiang & Shu (1996) on the other hand is a less abrupt procedure.

The strategy of the WENO is to weight the lower-order schemes by a smoothness

indicator. In the present simulation, the 5th-order WENO reconstruction scheme is

employed. Figure 2–2 shows the stencil for a 5th-order scheme and its relation to the

sub-stencils of three lower 3rd-order schemes. The reconstruction scheme is employed

because the updated values of h, qx, and qy are cell averages, not nodal values. The

interpolation for the face values therefore is based on the cell averages. The following

are the reconstruction formulae derived by Jiang & Shu (1996), Shu (2009) and Shu

(1998) for the face value φf from the cell averages (φuu, φu, φc, φd, φdd):

φf =
1

30
φuu − 13

60
φu +

47

60
φc +

9

20
φd −

1

20
φdd (2.14)

which is a linear convex combination of three 3rd-order interpolations

φf = γ1φ1f + γ2φ2f + γ3φ3f (2.15)

Figure 2–2 shows the stencils S1 = {φuu, φu, φc}, S2 = {φu, φc, φd}, and S3 =

{φc, φd, φdd} for the three 3rd-order approximations. The interpolation formulae for

these, respectively, are

φ1f =
1

3
φuu − 7

6
φu +

11

6
φc (2.16)
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φ2f = −1

6
φu +

5

6
φc +

1

3
φd (2.17)

φ3f =
1

3
φc +

5

6
φd −

1

6
φdd (2.18)

The combination would be fifth-order accurate if the weighting factors were

γ1 =
1

10
, γ2 =

3

5
, and γ3 =

3

10
(2.19)

The method of WENO by Jiang & Shu (1996) for an essentially non-oscillatory

solution is to let

φf = ω1φ1f + ω2φ2f + ω3φ3f (2.20)

and then to choose the nonlinear weight functions ωj using the strategy that (i)

ωj � γj if the function φ is smooth in the entire region over the big stencil S and (ii)

ωj � 0 if φ has a discontinuity somewhere within the stencil Sj. The choice relies on

the smooth indicators βj and then the calculations of the nonlinear weight functions

ωk by the following formulae:

β1 =
13

12
(φuu − 2φu + φc)

2 +
1

4
(φuu − 4φu + 3φc)

2 (2.21)

β2 =
13

12
(φu − 2φc + φd)

2 +
1

4
(φu − φd)

2 (2.22)

β3 =
13

12
(φc − 2φd + φdd)

2 +
1

4
(3φc − 4φd + φdd)

2 (2.23)

ωk =
ω̃k

ω̃1 + ω̃2 + ω̃3
with ω̃k =

γk

(ε + βk)2
(2.24)

The positive small number is typically ε = 10−6, which is selected to avoid a zero

denominator in the calculation for ω̃k.
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2.4.3 Advance in Time by the Runge-Kutta Method

The time integration of the continuity and x- and y-momentum equations for

cell-averaged values of
{
h(i,j), qx(i,j), qy(i,j)

}
is explicit using the fourth-order Runge-

Kutta method (RK4). Using φ to represent
{
h(i,j), qx(i,j), qy(i,j)

}
, the time advance-

ment from the value of φ
n

at time t = n Δt to the value of φ
n+1

at time t = (n+1)Δt

is determined by the RK4 formula as follows (see, e.g., Vahl Davis 1986):

φ
n+1

= φ
n

+
Δt

6
(R1 + 2R2 + 2R3 + R4) (2.25)

in which R1, R2, R3 and R4 are the estimated rate functions at time t1 = nΔt,

t2 = (n + 1
2
)Δt, t3 = (n + 1

2
)Δt and t4 = (n + 1)Δt, respectively:

R1 = R
(
tn, φ

n
)

(2.26)

R2 = R(tn +
Δt

2
, φ

n
+

Δt

2
R1) (2.27)

R3 = R(tn +
Δt

2
, φ

n
+

Δt

2
R2) (2.28)

R4 = R(tn + Δt, φ
n

+ ΔtR3) (2.29)

The rate of h(i,j) for advancing hn
(i,j) to h

(n+1)
(i,j) according to the continuity equation is

Rh = −qx(i+1,j) − qx(i,j)

Δx
− qy(i,j+1) − qy(i,j)

Δy
(2.30)

The rate of qx(i,j) according to the x-momentum equation is

Rqx = − F uqx

(i,j) − F uqx

(i−1,j)

Δx
− F vqx

(i,j+1) − F vqx

(i,j)

Δy
− g

h2
(i,j) − h2

(i−1,j)

Δx
(2.31)

30



The rate of qy(i,j) according to the y-momentum equation is

Rqy = − F vqy

(i,j) − F vqy

(i,j−1)

Δy
− F uqy

(i+1,j) − F uqy

(i,j)

Δx
− g

h2
(i,j) − h2

(i,j−1)

Δy
(2.32)

This numerical model is an improved version of the numerical scheme by Pinilla et

al. (2010).

2.5 Simulation for the Shear Instabilties

The simulation for the shear instabilities starts from a small perturbation of

wave length λx to the base flow with a hyperbolic tangent (TANH) velocity profile:

U =
1

2
(U1 + U2) +

1

2
(U1 − U2) tanh

2y

δωo
(2.33)

The velocity is U1 on one side of the base flow as y/δωo → +∞, and is U2 as

y/δωo → −∞. Figure 2–5 shows the computational domain. The length scale of

the velocity profile is the vorticity thickness δωo defined by the maximum velocity

gradient at the inflection, Ûy, as follows:

δωo =
U1 − U2

Ûy

(2.34)

The water depth of the base flow is constant, that is h = H. The wave speeds on

both sides of the free stream are c1 = c2 =
√

gH . The dimensionless parameters

are the velocity ratio Γ and convective Froude number Frc respectively, defined as

follows:

Γ =
U1 − U2

U1 + U2
and Frc =

U1 − U2

c1 + c2
(2.35)
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Figure 2–5: (a) Computational domain for simulation of the shear instabilities with
periodic boundary condition in x direction and radiating boundary conditions at
y = −5λx and y = +5λx. (b) TANH velocity profile.

The shear instabilities do not depend on the velocity ratio Γ. The convective Froude

numbers considered in the present simulations are Frc = 0.1 and 0.8. The dimensions

of the computational domain are λx in the x-direction and 10λx in the y-direction.

Periodic boundary conditions are applied over one wave length λx. The radiation

boundary conditions are:

v(y+) = c1
h(y+) − H

H
as y → y+ and v(y−) = −c2

h(y−) −H

H
as y → y−

(2.36)

These boundary conditions allow the waves to escape without reflection at y = y+ =

5λx and y = y− = −5λx. The linearized shallow-water equations admit the normal-
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mode solution for the disturbance

(h′, u′, v′) = [h(y), u(y), v(y)] exp[ikx(x − ct) + αt] (2.37)

where kx is the longitudinal wave number, c is the wave speed and α is the expo-

nential rate of the growth of the perturbation. In the linear stage of the instability’s

development, the amplitude of the disturbance is small. The rate of its growth is

exponential. Most previous studies of linear stability were carried out using the

Normal Mode Approach (NMA). In the NMA, the stability analysis is an eigenvalue

problem of linearized shallow-water equations, see, e.g., Drazin & Howard (1966). In

this paper, numerical simulations are conducted using fully nonlinear shallow-water

equations. The fully nonlinear method is validated by comparing the simulations

with the previous results obtained using the NMA.

The numerical simulations calculate the velocity u′ and v′ of the disturbance

and its kinetic energy K ′ = 1
2
(u′2 + v′2). Waves are allowed to escape from the

computational domain without reflection through the radiating boundary condition,

equation (2.36). The convenience of the radiation boundary condition in the nu-

merical simulation is a significant advantage over the conventional NMA for linear

instability analysis.

The average of the kinetic energy over the entire computation domain is

K ′ =
1

λx

∫ λx

o

1

δωo

∫ y+

y−
K ′dydx (2.38)

The velocity u′ and v′ grow exponentially with time in the linear stage of its de-

velopment. The kinetic energy K ′ also grows exponentially. Since u′ and v′ are
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Figure 2–6: (a) Contours of the disturbances’ kinetic energy K ′/K ′ on the x-y plane
obtained for kx = 0.893 and Frc = 0.1 at tÛy = 75 in the initial stage, when the

development is governed by linear equations. (b) The growth of

√
K ′/(U1 − U2)

with time tÛy on a semi-logarithmic scale. The red portion of the line delineates
the fractional growth rate α. Results are obtained for λx/Δx = 128, using 5th-order
WENO reconstruction scheme.

proportional to exp{αt}, the kinetic energy K ′ is proportional to exp{2αt}. The

fractional increase of

√
K ′ therefore determines α as follows:

α =
1√
K ′

d

√
K ′

dt
(2.39)

Figure 2–6(a) shows the disturbance’s kinetic energy obtained for one simulation

of the disturbance, with wave number kx = 0.893 and convective Froude number

Frc = 0.1 at the dimensionless time of tÛy = 75. The curve in Figure 2–6(b) shows

the increase of

√
K ′ with time tÛy. The red-colored portion of the curve delineates

the initial stage when the disturbance’s amplitude is small. The initial development

is governed by the linearized equation. The fractional growth rate α is determined
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Figure 2–7: The growth rate α/Ûy versus wave number k in the linear stage of the
shear-layer development for Frc = 0.1 (◦) and Frc = 0.8 (�). Results for Frc = 0.1
and 0.8 are obtained for λx/Δx = 128 and 256 respectively, using 5th-order WENO
reconstruction scheme. The open symbols represent current numerical simulation
and dashed lines are the linear stability analysis obtained for compressible gas for
convective Mach numbers Mac = 0.01 and Mac = 0.8 by Sandham & Reynolds (1990).

by Equation (2.39) using the data in this initial stage of development. The rate is a

function of wave number kx and the convective Froude number Frc.

Figure 2–7 shows the dependence of α on k for the two Froude numbers Frc = 0.1

and 0.8. The simulation data for shear flow in shallow waters are compared with the

growth rates obtained using the classical NMA by Sandham and Reynolds (1990) for

the analogous shear flow of compressible gas. The dashed lines in the figure are the

results obtained by Sandham & Reynolds (1990) for the convective Mach numbers
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of Mac = 0.1 and 0.8. The convective Mach number is Mac = (U1 − U2)/(c1 + c2)

defined by the speeds of sound at the free streams, c1 and c2. The shallow-water

equations are identical to 2D gas dynamic equations when the specific heat ratio

of the gas γ = 2, see, e.g, Liggett (1994). The results provided in Figure 2–7 are

obtained from simulations using a refined grid of 128 and 256 nodes over one wave

length. The accuracy of these results is determined from a grid refinement study.

2.5.1 Grid Refinement and Convergence

For the grid refinement study, the parameter evaluated from the simulations

of the linear instabilities is the maximum growth rate α̂. As shown in figure 2–7,

this maximum rate α̂ occurs at a wave number kx = 0.89 for the convective Froude

number Frc = 0.1, and at a wave number kx = 0.51 for the convective Froude

number Frc = 0.8. Simulations for this parameter α̂ have been conducted using

progressively smaller grid sizes. For Frc = 0.1, the number of grids per wave length are

N = λx/Δ = 32, 64, 128, 256. The corresponding number of grids over one vorticity

thickness are δωo/Δ = 4.545, 9.091, 18.182, and 36.364. For Frc = 0.8, the number

of grids per wave length are N = λx/Δ = 64, 128, 256, 512. The corresponding

number of grids over one vorticity thickness are δωo/Δ = 5.154, 10.309, 20.619, and

41.237. The approximate numbers of grids per vorticity thickness are the same for

the two series of simulations with different convective Froude numbers. Table 2–2

summarizes the simulation results obtained from the progressively smaller grid sizes.

The order of convergence as the grid is refined is determined from extrapolation

formulae given in Stern et al. (2001). For each group of (α̂k−1, α̂k, α̂k+1) obtained
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Frc = 0.1 Frc = 0.8

N δω/Δx α̂/Ûy FE(%) Order N δω/Δx α̂/Ûy FE(%) Order

W
E

N
O

32 4.545 0.17603 6.1636 —– 64 5.154 0.07225 6.4172 —–

64 9.091 0.18545 1.1420 2.53 128 10.309 0.07639 1.0548 2.74

128 18.182 0.18707 0.2785 2.04 256 20.619 0.07701 0.2531 2.06

256 36.364 0.18747 0.0680 —– 512 41.237 0.07716 0.0607 —–

0.18759 0 —– 0.07720

U
L
T

R
A

-Q
U

IC
K 32 4.545 0.17044 9.3103 —– 64 5.154 0.06940 10.1065 —–

64 9.091 0.18545 1.3247 3.50 128 10.309 0.07576 1.8749 2.53

128 18.182 0.18677 0.6213 1.09 256 20.619 0.07686 0.4475 2.07

256 36.364 0.18739 0.2913 —– 512 41.237 0.07712 0.1068 —–

0.18794 0 0.07720

M
IN

M
O

D

32 4.545 0.18312 2.3737 —– 64 5.154 0.07757 0.4857 —–

64 9.091 0.18837 0.4230 N/A 128 10.309 0.07824 1.3536 N/A

128 18.182 0.18775 0.0919 2.20 256 20.619 0.07743 0.3017 2.16

256 36.364 0.18761 0.0199 —– 512 41.237 0.07725 0.0673 —–

0.18757 0.07720

Table 2–2: Grid size, fractional error and order of convergence obtained from the
simulations of the linear shear instabilities using the 5th-order WENO, 3rd-order
ULTRA-QUICK and 2nd-order MINMOD. The boldface numbers in the table are
the values obtained from the extrapolation to Δx → 0.
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from three grid sizes, the formula for the order of convergence is

Pk =
1

ln r
ln [

α̂k − α̂k−1

α̂k+1 − α̂k
] (2.40)

where r = Δk/Δk+1. In the present refinement of the grid r = 2, the extrapolated

value is

α̂
Δx→0

=
rPk α̂k+1 − α̂k

rPk − 1
. (2.41)

The results for infinitely small grid sizes, α̂
Δx→0

, are extrapolated from the group of

the finest three grids. The boldface numbers in the table are the values obtained from

the extrapolation to Δx → 0. The Fractional computational Error in percentage is

FE(%) =
|α̂ − α̂

Δx→0
|

α̂
Δx→0

× 100 (2.42)

The results in Table 2–2 are somewhat unexpected. The fractional computation error

of 2nd-order MINMOD is consistently lower than the two higher-order computational

schemes WENO and ULTRA-QUICK. The accuracy of MINMOD is particularly

impressive in the simulations obtained using the coarse grid when the number of

nodes is only 4.5 to 5.1 (N = 64 for Frc = 0.8) across the vorticity thickness. The

fractional computational error of MINMOD is only FE(%) = 2.4 percent using the

coarse grid N = 32 when Frc = 0.1, and only FE(%) = 0.48 percent for the coarse

grid N = 64 when Frc = 0.8.

The numerical computational error therefore is not dependent on the order of

the interpolation for the nonlinear fluxes. In the present formulation using the stag-

gered grid, the approximation to the pressure gradient force is only second order in

accuracy. The false diffusion known to be associated with MINMOD seems to have
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helped with the numerical simulations. In the linear stages of the shear instabilities’

development, the nonlinear fluxes in the momentum equations are small compared

with the dominant pressure gradient force. On the staggered grid, the approximation

for the pressure gradient is accurate to the second order.

Figure 2–8 plots the fractional computation errors in percentage on a logarithmic

scale. The order of convergence as delineated by the slope of the dash line on the

logarithmic plots are approximately second order for all simulations using different

flux-limiting schemes. These results are consistent with the explanation that in the

initial linear stage of development, when the velocity fluctuations associated with the

perturbation are small compared with the velocity in the base flow, the dominant

force is the pressure gradient force, not the nonlinear fluxes.

2.6 Nonlinear Development

The nonlinear development of shear instabilities begins when the mean flow

is modified by the growth of the perturbation, as the velocity of the disturbance

becomes comparable to the velocity of the base flow. Figure 2–9 shows the formation

of an eddy associated with the maximum growth of the instabilities at the wave

number kx = 0.89 for convective Froude number Frc = 0.1. Figure 2–10 shows the

formation of a “shocklet” associated with the maximum growth at the wave number

kx = 0.51 for convective Froude number Frc = 0.8. Shock waves are characteristics of

the processes in a shocklet that are to be distinguished from the roll-up of the vorticity

in an eddy. The presence of shock waves has been observed in numerical simulation

of shear instabilities and compressible turbulence in the analogous problems in gas
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Figure 2–8: The convergence of the maximum growth rate α̂ at the wave number
kx = 2πδωo/λx = 0.51 for Frc = 0.8 (top row), and the maximum rate α̂ at kx = 0.89
for Frc = 0.1 (bottom row). The fractional errors are plotted versus the grid size for
the fifth-order WENO (left), third-order ULTRA-QUICK (centre) and second-order
MINMOD (right) schemes.
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Figure 2–9: The maximum growth of the instability to form an eddy at kx = 0.89

for Frc = 0.1. (a) Disturbance kinetic energy (
√

K ′/(U1 − U2)) versus time tÛ in
semi-logarithmic scale. (b) Momentum Thickness, δθ/δθo. (c) Vorticity contour on
the x-y plane at the times t1, t2 and t3 as marked in (b) of the figure. The first
pinnacle of the momentum thickness δ̂θ in the nonlinear stage occurs at time t3.

dynamics by Sandham & Reynolds (1989) and Lee et al. (1991). The vorticity

thickness and the momentum thickness are the parameters that characterize the

modification, and are the parameters to be examined for dependency on the grid size.

The vorticity thickness is defined by the mean velocity gradient at the inflection

δω =
U1 − U2

(dU/dy)max

(2.43)

The mean velocity U is obtained by averaging the x-component of the velocity over

its wave length:

U(y) =
1

λx

∫ λx

o
u(x, y)dx (2.44)

The vorticity thickness is sensitive to minor irregularity at the inflection. We shall

use the momentum thickness δθ to evaluate the performance of the numerical scheme.
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Figure 2–10: The maximum growth of the instability to produce a shocklet at kx =

0.51 for Frc = 0.8. (a) Disturbance kinetic energy (
√

K ′/(U1 − U2)) versus time tÛ
in semi-logarithmic scale. (b) Momentum Thickness δθ/δθo. (c) Vorticity contour
on the x-y plane at the times t1, t2 and t3 as marked in (b) of the figure. Shock
waves with a sudden jump in depth and velocity are observed in the shocklet as the
momentum thickness reaches its first pinnacle at time t3.

By definition the momentum thickness is:

δθ =
∫ ∞

−∞
U − U2

U1 − U2

(
1 − U − U2

U1 − U2

)
dy (2.45)

The ratio of the vorticity thickness and momentum thickness is δω/δθ � 4 and exactly

equal to 4 for the unperturbed TANH velocity profile.

The nonlinear development of the momentum thickness δθ, normalized by its

initial value δθo, for three different times, t1, t2 and t3, are marked in part (b) of

Figures 2–9 and 2–10. The corresponding vorticity contours are shown on the right-

hand side of the these figures. The momentum thickness increases with time. It

reaches the first pinnacle with a peak value δ̂θ at time t3. For the convective Froude
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number Frc = 0.1, peak values δ̂θ at the pinnacle are calculated using progressively

refined grid sizes of N = λx/Δ = 32, 64, 128 and 256. For convective Froude number

Frc = 0.8, the calculations are conducted using N = λx/Δ = 64, 128, 256 and 512.

The results of the calculations for δ̂θ are given to six decimal places in Table 2–3. The

values of δ̂
Δx→0

, obtained from extrapolation for infinitely small grid sizes are also

included as the boldface numbers in the table. For each group of (δ̂θ k−1, δ̂θ k, δ̂θ k+1)

obtained from three grid sizes, the order of convergence Pk and the extrapolated

solution of δ̂θΔx→0
are determined by the formulae of Stern et al. (2001) as follows:

Pk =
1

ln r
ln [

δ̂θ k − δ̂θ k−1

δ̂θ k+1 − δ̂θ k

] (2.46)

δ̂θΔx→0
=

rPk δ̂θ k+1 − δ̂θ k

rPk − 1
(2.47)

where r = Δk/Δk+1. The Fractional computational Error in percentage is

FE(%)k =
|δ̂θ k − δ̂θΔx→0

|
δ̂θΔx→0

× 100 (2.48)

Inspecting the results for the nonlinear instabilities in this table has produced a differ-

ent impression from the previous table for linear instabilities. The 5th-order WENO

is now the most accurate of all schemes. The 2nd-order MINMOD, on the other hand,

is the least accurate scheme, producing the highest fractional error. Furthermore,

the computational error is now dependent on the convective Froude number. The

fractional error in the simulation for the nonlinear processes at the higher convec-

tive Froude number of Frc = 0.8 is an order of magnitude greater. The radiation

of waves from the instabilities and the dissipation of energy across the shock waves
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Frc = 0.1 Frc = 0.8

N δωo/Δx δθ/δθo FE(%) Order N δωo/Δx δθ/δθo FE(%) Order

W
E

N
O

32 4.545 1.7098 3.5707 —– 64 5.154 2.1437 15.1016 —–

64 9.091 1.7684 0.2665 3.68 128 10.309 2.4628 2.4638 2.44

128 18.182 1.7730 0.0084 4.97 256 20.619 2.5214 0.1434 4.10

256 36.364 1.7731 0.0003 —– 512 41.237 2.5248 0.0083 —–

1.7731 2.5250

U
L
T

R
A

-Q
U

IC
K 32 4.545 1.6889 4.7647 —– 64 5.154 2.1893 13.3139 —–

64 9.091 1.7606 0.7177 2.70 128 10.309 2.4701 2.1919 2.54

128 18.182 1.7717 0.0952 2.91 256 20.619 2.5184 0.2829 2.95

256 36.364 1.7731 0.0126 —– 512 41.237 2.5246 0.0365 —–

1.7734 2.5255

M
IN

M
O

D

32 4.545 1.6449 7.2332 —– 64 5.154 2.1893 13.2834 —–

64 9.091 1.7513 1.2184 2.66 128 10.309 2.3107 8.4734 -0.40

128 18.182 1.7681 0.2704 2.17 256 20.619 2.4720 2.0850 2.02

256 36.364 1.7719 0.0600 —– 512 41.237 2.5117 0.5131 —–

1.7729 2.5246

Table 2–3: Grid size, fractional error and order of convergence obtained for the
momentum thickness from simulations of nonlinear shear instabilities using 5th-order
WENO, 3rd-order ULTRA-QUICK and 2nd-order MINMOD. The boldface numbers
in the table are the values obtained from the extrapolation to Δx → 0.
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are processes of smaller-length scale that are associated with the nonlinear develop-

ment of the instabilities at the higher convective Froude number. It is clear from

the grid refinement study that relatively finer grid sizes are required for correct sim-

ulation of these smaller-scale processes. The nonlinear fluxes Fuqx,F vqx,Fuqy ,F vqy

are the dominant terms in the shallow-water equations in numerical simulations for

nonlinear instabilities. It is not surprising therefore that the numerical computa-

tional error is decided by the order of accuracy of the interpolation schemes for these

nonlinear fluxes. Figure 2–11 shows the fractional computation errors for five in-

terpolation schemes of different orders of accuracy. From left to right in the figure

are the results obtained by progressively less accurate schemes. The approximate

order of accuracy of these schemes is as follows: 5th-order WENO, 3rd-order QUICK,

3rd-order ULTRA-QUICK, 2nd-order SUPERBEE, 2nd-order MINMOD.

2.7 Summary and Conclusion

The simulations for the shear instabilities in this paper have demonstrated how

flux-limiting strategies are implemented on a staggered grid. Through the use of the

grid-refinement study, the accuracy for each of the flux-limiting strategies is evaluated

for (i) the linear stage of the shear instabilities, and then (ii) the nonlinear aspect of

the instabilities’ development. The overall accuracy of the simulations is dependent

on the one hand on interpolation of the pressure gradient on the staggered grid, and

on the other hand on the approximation of the nonlinear fluxes. In the linear stage

of the shear instabilities’ development, the overall order of accuracy is decided by the

interpolation of the pressure gradient on the staggered grid. In the nonlinear stage
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Figure 2–11: The convergence of the nonlinear simulation for the momentum thick-
ness by five progressively less accurate interpolation schemes. From the left to right
in the figure are the results obtained by WENO, QUICK, ULTRA-QUICK, SUPER-
BEE, MINMOD. The top row shows results for Frc = 0.8 and the bottom row for
Frc = 0.1.
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of development, the overall order of accuracy is determined by the approximation

of the nonlinear fluxes. Accuracy of the nonlinear simulation is higher in the case

of small convective Froude number Frc = 0.1. The fractional error for simulations

of nonlinear instabilities at the higher convective Froude number of Frc = 0.8 is an

order of magnitude greater than is the case for the smaller convective Froude number

of Frc = 0.1. The radiation of waves and the dissipation of energy are small-scale

processes. Finer grid is required for capturing these small scales in the shear flow of

higher convective Froude numbers.

The four-digit accuracy of the numerical simulations presented in this paper

is comparable to analytical solutions. The development of this reliable numerical-

simulation method paves the way for further study of the instabilities in shear flows

that radiate waves. Calculations for the nonlinear interaction between multiple eddies

and shocklets are to be reported in a future publication.
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CHAPTER 3
TRANSVERSE DAM-BREAK WAVES

S. Karimpour Ghannadi and V. H. Chu. Transverse Dam Break Wave. Journal of

Fluid Mechanics, Volume 758, November 2014, R2 (12 pages).

3.1 Abstract

Numerical simulations of the transverse dam-break waves produced by the sud-

den removal of a gate on the side of a waterway are conducted based on the shallow-

water equations to find solutions to a family of water-diversion problems. The Froude

numbers in the main flow identify the members of the family. The depth and dis-

charge profiles are analysed in terms of Ritter’s similarity variable. For subcritical

main flow, the waves are comprised of a supercritical flow expansion followed by a

subcritical outflow. For supercritical main flow on the other hand, the waves are

analogous to the Prandtl-Meyer expansion in gas dynamics. The diversion flow rate

of the two-dimensional transverse dam-break waves on a flat bed is 55% greater

than the one-dimensional flow rate of Ritter in the limiting case of zero main flow,

and approaches the rate of Ritter in the other limit when the value of the Froude

number in the main flow approaches infinity. The diversion flow rate over weir is

generally higher than the rate over the flat bed depending on the Froude number of

the main flow. These numerical simulation results are consistent with the laboratory

observations.
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Keywords: Flow Diversion, Open-Channel Flow, Dam-break Waves, Prandtl-Meyer

Expansion, Numerical Simulation

3.2 Introduction

The diversion of water from the main flow to the side is a ubiquitous occur-

rence in natural and man-made waterways. It has found applications in irrigation,

in flood control, and in the municipal and industrial conveyance of water. The en-

gineering design for diversion structures has been dependent on empirical formulae

and more recently on numerical simulations. For the diversion flow over a side weir,

Subramanya & Awasthy (1972) proposed semi-empirical discharge formulae based

on laboratory experimental data. Mizumura et al. (2003), on the other hand, ac-

quired experimental data and formulated the supercritical flow diversion on a flat

bed using the analogy between open-channel hydraulics and gas dynamics. Ritter

(1892) introduced a similarity variable in his solution to the one-dimensional (1D)

dam-break wave problem.

This paper describes numerical simulations conducted to study the diversion

of water from the main flow. The results are analysed as a family of Transverse

Dam-break Waves (TDWs) defined by the Froude number of the main flow. When

correctly implemented, numerical simulation can be accurate and can provide in-

depth understanding that is equal to analytical methods. The present simulation

complements a number of recent works on related dam-break waves, by Hogg &

Pritchard (2004), Vazquez et al. (2008), Ghostine et al. (2013) and Mahmodinia et

al. (2014).

49



Figure 3–1: Transverse dam-break waves over a length of L on the side of the open-
channel main flow. (a) The arrows show the velocity vector (u, v). The sharp change
in dilation (∂u/∂x+∂v/∂y) from blue to red marks the hydraulics jump as the outflow
changes from supercritical to subcritical. The flow pattern shown is obtained from
a simulation for the main-flow Froude number Fro = 0.63. The length along the
opening of the supercritical outflow upstream of the jump is Lsuper. The length of
the subcritical outflow is Lsub. (b) Cross-sectional profile of water depth and bottom
elevation over a weir of height Hw and width Ww.

Figure 3–1 delineates the two-dimensional (2D) problem of the TDWs produced

by the sudden removal of a gate on the side of a waterway. The height of the weir on

the side is Hw. The undisturbed water level above the crest of the weir is Ho. The

velocity and depth of the undisturbed main flow, U and H, define the Froude number

of the main flow, Fro = U/
√

gH. The lateral outflow through the gate opening can

be subcritical, supercritical or a combination of both.
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The paper has six sections including this introductory section. Section 2 explains

the numerical simulations and the implementation of the shock-capturing scheme for

the simulations. The results for the family of TDWs are related on the one hand with

the analogous problem of the Prandtl-Meyer expansion in gas dynamics and on the

other hand with the classical 1D dam-break waves of Ritter (1892). Prandtl-Meyer

expansion is a supersonic expansion wave of compressible gas along an outwardly bent

wall, see, e.g., Liepmann & Roshko (2013). Sections 3 and 4 present the simulation

results for the transient and steady-state development of the waves on a flat bed. In

Section 5, the simulations are repeated for the TDWs over a weir. The simulations

are compared with laboratory measurements. Summary and conclusion are given in

the final section, 6.

3.3 Numerical Simulation

The simulations for the TDWs are based on numerical solutions of shallow-water

equations:

∂h

∂t
+

∂qx

∂x
+

∂qy

∂y
= 0 (3.1)

∂qx

∂t
+

∂ (uqx)

∂x
+

∂ (vqx)

∂y
= −gh

∂(h + zo)

∂x
(3.2)

∂qy

∂t
+

∂ (uqy)

∂x
+

∂ (vqy)

∂y
= −gh

∂(h + zo)

∂y
(3.3)

where h = flow depth, zo = channel-bottom elevation, g = gravity, (u, v) = velocity

components, (qx, qy) = (uh, vh) = discharge components in the x and y directions,

respectively. For flow on a flat bed (zo = 0), these shallow-water equations are
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identical to 2D gas-dynamic equations when the specific heat ratio is 2; see e.g.,

Liggett (1994).

An improved version of the numerical scheme by Pinilla et al. (2010) is used

for the numerical simulations. A staggered grid defines the nodal values for h, qx

and qy in the computational domain. The MINMOD flux limiter determines the

momentum fluxes on the faces of the finite volume. This maintains the stability of

the computation by controlling the spurious numerical oscillations initiated across

the hydraulic jump. A fourth-order Runge-Kutta scheme is employed for integration

in time. The MINMOD flux limiter is known to be somewhat diffusive; see, e.g., Chu

& Gao (2013). It is however acceptable for simulations for depth and velocity profiles

that are not sensitive to false diffusion. Other flux limiters mentioned in Sweby (1984)

have been used in this study but have produced no significant difference in results.

The numerical simulation starts with a given velocity U and depth H in the

main channel. Removal of the gate on the side of length L produces the TDWs.

For the flow profiles presented in this paper, the length of the opening on the side

is L = 25 m and the water depth is Ho = 1 m. The width selected for the main

channel is B = 8L for subcritical main flow (Fro < 1). For supercritical main flow

(Fro > 1), the width is B = 8L/Fro. These widths are selected to avoid the effect of

the wave reflection. There are 100 nodes over the length of the opening. The grid

sizes therefore are Δx = Δy = L/100. Grid-refinement study has shown that this

grid-size selection has a better than one percent accuracy on the discharge coefficient.
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3.4 Transient Development toward the Steady State

Figures 3–2 and 3–3 show the transient development of the TDWs toward the

steady state for main-flow Froude numbers of Fro = 0.03 and 0.63, respectively.

There are three subsets of figures for each Fro. The top in each figure contains the

depth h-profiles obtained on the center plane, where x = 0.5L for time t/ts = 0.25,

0.75, 1.5 and 3.0. Figures 3–2(b) and 3–3(b) are the lateral outflow qy-profiles on the

center plane for the same period of time. The four images in 3–2(c) and 3–3(c) show

the contours of the local Froude number Fr =
√

u2 + v2/
√

gh on the x-y plane. The

local Froude number Fr delineates the evolution of the flow due to the waves over

a period of t/ts = 0.25, 0.5, 1.0 to 1.5. The area of supercritical flow with Fr > 1

is marked in red. The subcritical flow with Fr < 1 is marked in grey. The critical

flow section where Fr = 1 is defined by the contour line between the red and the

grey. The flow pattern changes rapidly with time. The time scale for the transient

development is the communication time ts = L/
√

gHo, which is approximately the

time needed for the wave of speed c =
√

gHo to travel from one end of the gate

opening to the other end. Immediately after the removal of the gate, the critical-

flow contour is located at the gate where y = 0. The contour moves forward with

time in the direction of the flow. In the case of a small main-flow Froude number of

Fro = 0.03 as shown in Figure 3–2, the outflow at the gate opening is subcritical as

the flow approaches the steady state. At a higher main-flow Froude number of Fro

= 0.63 as shown in Figure 3–3, the outflow at the leading edge is a supercritical flow

expansion followed by a subcritical outflow. The depth and velocity change rapidly

across the jump from supercritical to subcritical outflow.
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Figure 3–2: Transient development of TDWs on a flat bed for Fro = 0.03 over the
period from time t/ts = 0.25 to 3.00. (a) The depth and (b) lateral discharge (bottom
left) profiles are obtained at the center of the opening where x = L/2. The contour
lines in the images (c) define the local Froude number Fr =

√
u2 + v2/

√
gh. The

red color marks the region of the supercritical flow (Fr > 1).
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Figure 3–3: Transient development of TDWs on a flat bed for Fro = 0.63 over the
period from time t/ts = 0.25 to 3.00. (a) The depth and (b) lateral discharge (bottom
left) profiles are obtained at the center of the opening where x = L/2. The contour
lines in the images (c) define the local Froude number Fr =

√
u2 + v2/

√
gh. The

red color marks the region of the supercritical flow (Fr > 1).
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3.4.1 1D Dam-break Waves of Ritter

The initial TDW profiles follow closely the one-dimensional (1D) dam-break

wave profiles of Ritter (1892), which are the solid lines in Figures 3–2 and 3–3.

These profiles remain close to the 1D solution of Ritter as long as the waves from

the opposite edges of the opening have not reached the cross section. The later

development of the 2D TDWs can also be described by Ritter’s similarity variable.

A brief summary of the 1D solution of Ritter therefore is given in this sub-section

for comparison with the 2D simulation results in later sections. The 1D wave does

not have a steady state. The flow through the critical-flow section nevertheless stays

constant throughout the development of the waves. The removal of the dam in the

1D channel produces a positive wave and a negative wave. The front of the positive

wave advances with a velocity equal to v = 2
√

gHo. The recessing edge has a negative

velocity equal to v = −√
gHo. The similarity variable of Ritter is

R =
y

t
√

gHo
(3.4)

which unifies the space y and time t through the wave speed
√

gHo. The profiles

for the depth and discharge of the 1D wave expressed in terms of Ritter’s similarity

variable are

h

Ho
=

1

9
(2 − R)2,

qy√
gH3

o

=
2

27
(1 + R)(2 −R)2 for − 1 < R < 2 (3.5)

The depth and discharge profiles change rapidly with time. The profiles of Ritter

are the solid lines, while numerical simulation results for the TDWs are the points

in Figures 3–2 and 3–3. The local Froude number of the 1D solution according to
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equation (3.5) is

Fry =
qy√
gh3

=
2(1 + R)

2 − R
for − 1 < R < 2 (3.6)

At the gate where y = 0 and R = 0, the flow is critical with Fry = 1. The depth and

discharge of this critical flow are:

h = hcritical =
4

9
Ho, (qy)critical =

8

27

√
gH3

o . (3.7)

The discharge qy is zero at the advancing front and the recessing edge. The maximum

discharge occurs at the critical-flow section: (qy)max = (qy)critical. The dimensionless

discharge coefficient corresponding to this flow rate through the critical section is

q∗Ritter =
(qy)max√

gH3
o

=
8

27
� 0.296. (3.8)

Water moves through the critical section as it depletes on one side, filling the volume

on the other side of the wave.

3.4.2 Discharge Coefficient of the 2D TDWs

The discharge coefficients of the 2D TDWs as shown in Figure 3–4 are compara-

ble in magnitude to the 1D coefficient of Ritter. The flow through the gate opening

is the integral of qy over the the length of the opening, Q(t, Fro) =
∫ L
o qy(x, 0, t) dx.

The corresponding discharge coefficient is Q∗(t, Fro) = Q/(L
√

gH3
o ). Immediately

after the opening of the gate, all discharge coefficients are equal to the 1D value

q∗Ritter � 0.296. The discharge coefficient increases with time for Fro < 0.63 and de-

creases with time for Fro > 0.63. Steady state is reached within a very short period
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Figure 3–4: The discharge coefficient, Q∗(t, Fro), and its dependence on the time t/ts
and on the main-flow Froude number Fro: (a) subcritical main flow with Fro < 1, (b)
supercritical main flow with Fro > 1. The flow is considered to have reached steady
state at time t = 10 ts as the total flow rate Q∗ has closely approached its asymptote
at this time.
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of time, particularly for supercritical main flow. For subcritical main flow (Fro < 1),

the discharge coefficient decreases as the main-flow Froude number, Fro, increases

from 0 to about 0.9. For supercritical main flow (Fro ≥ 1) on the other hand, the

discharge coefficient increases with the Fro.

3.5 Transverse Dam-break Waves on a Flat Bed in Steady State

Figure 3–5 shows the flow patterns of the TDWs on a flat bed in the steady

state. The patterns delineated by the local Froude number Fr =
√

u2 + v2/
√

gh

on the x-y plane, are obtained at a time t = 10 ts. The flow is considered to have

reached the steady state as the total outflow rate Q has nearly reached its asymptote

at this time, as shown in figure 3–4. There are two distinctively different steady-state

flow patterns. Figures 3–5(a), (b) and (c) are the patterns for subcritical main flow

with Fro = 0.03, 0.48, and 0.80, and Figures 3–5(d), (e) and (f) for supercritical main

flow with Fro = 1.00, 1.28 and 1.92 respectively. For subcritical main flow with

Fro < 1, a supercritical expansion on the upstream side is followed by subcritical

outflow. Rapid change in depth and velocity occurs across the hydraulic jump as

the flow changes from supercritical to subcritical flow. The length Lsuper defines

the location of the hydraulic jump at the gate, as shown in figure 3–1. Figure 3–6

shows the fraction of supercritical outflow, Lsuper/L. The supercritical fraction of the

flow increases in length linearly with the main-flow Froude number Fro in the range

varying from Fro = 0 to 1. The entire outflow becomes supercritical when Fro ≥ 1.

59



Figure 3–5: The TDWs on a flat bed at the steady state when time t = 10ts. The
main-flow Froude numbers are (a) Fro = 0.03, (b) Fro = 0.48, (c) Fro = 0.80, (d) Fro

= 1.00,(e) Fro = 1.28 and (f) Fro = 1.92. The contour values are the local Froude
numbers. Dashed lines in (d), (e) and (f) indicate the “Froude line” between the
undisturbed main flow and the diversion expansion fan.
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Figure 3–6: The length fraction Lsuper/L of the supercritical flow expansion.

3.5.1 Prandtl-Meyer Expansion for TDWs with Fro > 1

In the steady state, the diversion of the supercritical outflow on a flat bed is the

Prandtl-Meyer expansion. Mizumura et al. (2003) provided the following explicit

expressions for the velocity components (vr, vθ) and the depth h of the Prandtl-Meyer

expansion in plane polar coordinates (r, θ):

vr =
√

2gE sin

(
θ + θ1√

3

)
, vθ =

√
2gE

3
cos

(
θ + θ1√

3

)
, h =

2E

3
cos2

(
θ + θ1√

3

)
(3.9)

The angle θ is clockwise from the opening where y = 0. These solutions give Frθ =

vθ/
√

gh = 1 throughout the expansion fan and a critical outflow of Fry = v/
√

gh = 1

at the opening where y = 0. The corresponding flow rate in the y-direction is

qy = [vr sin θ + vθ cos θ] h. (3.10)

The specific energy E and the angle θ1 in Equations (3.9) are

E = Ho[
1

2
Fr2

o + 1], θ1 =
√

3 cos−1

√
3

2 + Fr2
o

+ sin−1 1

Fro
(3.11)
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Figure 3–7: Depth h-profile (left) and lateral discharge qy-profile (right) of the TDWs
in the steady state for (a) Fro = 3.2, (b) Fro = 1.0 and (c) Fro = 0.48. The dashed
lines and the solid lines are the Prandtl-Meyer profiles for the limiting cases of Fro = 1
and Fro → ∞, respectively.
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which are evaluated at the “Froude line” between the expansion fan and the undis-

turbed main flow where θ = − sin−1[1/Fro]. At the Froude line, h = Ho and√
v2

r + v2
θ = Uo.

3.5.2 Prandtl-Meyer Expansion in Terms of Ritter’s Similarity Variable

For observation in a reference frame moving with the undisturbed main flow, the

space and time are related through the Galilian transformation x = Uot. With this

transformation, t
√

gHo = x/Fro, the Ritter’s similarity variable becomes R = yFro/x.

The h-profile and the qy-profile of the Prandtl-Meyer expansion given by Equations

(3.9) and (3.10) are unique functions of Ritter’s similarity variable. The dashed

lines and the solid lines in Figure 3–7 are respectively the limiting profiles when

Fro = 1 and Fro → ∞. The points in the figure denote the numerical simulation

results at three outflow sections x = 0.25L, 0.5L and 0.75L. For the main-flow

Froude number Fro = 3.2 and 1.0, the points in Figure 3–7(a) and (b) respectively

fall between the solid line and dashed line, supporting the use of Ritter’s similarity

variable to describe the Prandtl-Meyer expansion. Exactly like the 1D solution of

Ritter’s, the outflow rate peaks at a critical-flow section where the local Froude

number Fry = (qy)max/
√

gh3 = 1. The lateral flow through the gate opening is the

exact value of Ritter’s q∗yPM∞ = q∗Ritter = (qy)max/
√

gH3
o = 0.296 as the main-flow

Froude number Fro → ∞. The rate drops to a value of q∗yPM1 = 0.234 as the main-

flow Froude number approaches its lowest value of Fro = 1. The drop in the flow

rate from q∗yPM∞ to q∗yPM1 is most likely due to the retreating wave-front velocity at

the Froude line. Greater retreating velocity leads to lower critical flow rate. In the
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reference frame moving with the main flow, the retreating velocity is v → −∞ at

the Froude line if the main-flow Froude number is Fro = 1. The retreating velocity

is reduced to the value of Ritter’s v = −√
gHo as the main-flow Froude number

Fro → ∞.

3.5.3 Transverse Dam-break Waves for Subcritical Main Flow

Figure 3–7(c) shows the simulation profiles for the subcritical main flow of Fro =

0.48. The solid symbols in the figures delineate the depth and discharge profiles in

the expansion fan upstream of the jump. They are comparable to the profiles of

the Prandtl-Meyer for Fro = 1 defined by the dashed lines, with a peak discharge of

q∗y � q∗yPM1 = 0.234. However, the profiles defined by the open symbols for the pool

of water downstream of the hydraulic jump are very different. The peak discharge in

the pool is significantly higher. The flow downstream of the hydraulic jump (where

qx << qy) is nearly unaffected by the main flow. Therefore the outflow from the

pool can be roughly characterized by the head Ho, leading to a peak discharge of

qy =
√

g(2Ho/3)3 and a peak discharge coefficient of q∗yCH =
√

(2/3)3 = 0.544. The

peak occurs at the critical depth hc = 2Ho/3 where the Froude number v/
√

gHo = 1.

The depth at the opening downstream of the hydraulic jump is slightly greater than

the critical depth therefore the discharge coefficient q∗yFB � 0.457 at the opening is

lower than the peak values.

3.6 Discharge Coefficient over Weir and Flat Bed

The simulation results thus far have been presented for the TDWs on a flat

bed. A number of additional simulations have been carried out for the outflow
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Figure 3–8: Dependence of steady-state discharge coefficient on the main-flow Froude
number. The solid symbols denote the discharge coefficient obtained from the simu-
lations over a flat bed. The open symbols denote the simulated outflow over weirs of
Ww/Hw = 16, 8 and 4, respectively. The solid line is the Prandtl-Meyer solution for
the expansion. The + symbol represents the laboratory data obtained by Mizumura
et al. (2003). The red dashed lines are the empirical Equations (3.12) and (3.13)
derived from laboratory experiments over a sharp-crested weir by Subramanya &
Awasthy (1972).

over weirs. The results are compared with laboratory experimental observations.

Some of laboratory experiments were conducted for outflow on flat bed. Most of the

experiments were over sharp-crested weirs. Figure 3–8 shows all simulation results

on flat bed and over the weir, and available experimental data for the total discharge

coefficient Q∗ = [
∫ L
0 qydx]/L

√
gH3

o .
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3.6.1 Discharge Coefficient for Diversion over Weir

For the simulation over the weir, the bottom elevation is zo = 1
2
Hw[cos(πy/Ww)+

1] gradually varying over the width of the weir from y = −1
2
Ww to y = 1

2
Ww. With

the weir, the depth H in the main flow is not uniform. However, the main-flow

Froude number Fro = U/
√

gH is unchanged by varying the velocity U across the

main flow. The width-to-height ratio of the weir, Ww/Hw, is a parameter of the weir

that affects the diversion flow rate, which increases with the steepness of the weir.

For the main flow Froude Number of Fro = 0, the increases from the flat bed value

are 7%, 13%, and 19% for the ratio of Ww/Hw = 16, 8, and 4, respectively. For

Fro = 1.6 the increases are 3%, 8%, 14% and for Fro = 3.2 the increases are 0.3%,

4%, 8.9%, respectively. The gradual rise in bottom elevation has only a small effect

on the discharge coefficient. However, a more rapid rise in bottom elevation for the

sharper crested weir of Ww/Hw = 4 increases the discharge coefficient to Q∗
weir =

0.545, 0.307, 0.255, 0.304, 0.301 for Fro = 0, 0.8, 1.00, 1.6, 3.2, respectively. These

coefficients are marked by the 
 symbol in Figure 3–8.

For subcritical main flow (Fro < 1), the presence of the weir has the effect of

bringing the critical-flow section closer to the crest of the weir. The result is increase

in the discharge coefficient. For zero main flow the increase is from Q∗
FB = q∗yFB =

0.457 to a value of Q∗
CH = q∗yCH = 0.544 as shown in figure 3–8. The derivation for

the value of q∗yCH has been previously given in section 3.5.3. Increasing the main flow

Froude number Fro from 0 to 1 progressively increases the presence of the supercritical

flow expansion and reduces the contribution of the subcritical outflow downstream
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of the hydraulic jump. The consequence is the reduction of the discharge coefficient

in the subcritical range of main-flow Froude number as shown in Figure 3–8.

The effect of the weir on the outflow in the supercritical range of main-flow

Froude number (Fro > 1) is different. All outflows from the Prandtl-Meyer expansion

are critical with Fry = v/
√

gh = 1 at the gate opening (see section 3.5.1). The

presence of the weir does not change the location of the critical section. It does

however produce a narrower expansion fan, and hence the tendency for supercritical

main-flow to increase the discharge coefficient toward the rate of Ritter’s Q∗
PM∞ =

q∗yPM∞ = 0.296.

3.6.2 Laboratory Experimental Investigation

Mizumura et al. (2003) have measured the diversion flow rate in laboratory

experiments over a flat bed. Their data are affected by the bed friction but are only

slightly below the discharge coefficient obtained from the simulations. Subramanya

& Awasthy (1972) have conducted laboratory experiments to measure the diversion

flow rate over a sharp-crested weir and on a flat bed. They introduced the dis-

charge coefficient Cd via Q = 2
3
Cd

√
2gH3

o , and proposed the following semi-empirical

formulae to fit their data:

Cd = 0.611

√√√√1 −
(

3Fr2
o

Fr2
o + 2

)
for Fro < 0.8 (3.12)

Cd = 0.36 − 0.008Fro for Fro > 2 (3.13)

The dashed lines in Figure 3–8 are these formulae evaluated for Q∗ = 2
3

√
2Cd. The

ratios of the main-flow width to side-weir length varying from B/L = 5 to 1 in the
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laboratory experiments of Subramanya & Awasthy (1972) are not the same as the

width-to-length ratios in the simulations. The trend of the numerical simulation

results nevertheless is consistent with the experimental data.

3.7 Conclusion

The diversion of water to the side of main flow produces a family of TDWs

that is dependent on the Froude number of the main flow. For subcritical main

flow (Fro < 1), the TDWs are supercritical flow expansions followed by a hydraulic

jump to subcritical outflows. For supercritical main flow (Fro > 1), the TDWs are

expansions that approach rapidly to the steady-state solution of Prandtl-Meyer. The

simulations of flow over weirs have produced discharge coefficients that follow the

trend of dependence on the main-flow Froude number in a manner that is consistent

with the data obtained from laboratory observation. The agreement of the simula-

tions with analytical solutions is validation of the present numerical method, showing

that it can be relied on to find solutions to other related flow-diversion problems,

including the problems studied by Vazquez et al. (2008), Ghostine et al. (2013)

and others. The method can also be utilized to study the erosion of channels and

deposition of sediments in situations where the bottom of the channel varies in space,

and in time.

68



CHAPTER 4
LINEAR INSTABILITIES IN SHALLOW FLOW

S. Karimpour Ghannadi and V. H. Chu. Linear Instabilities in Shallow Flow. Journal

of Fluid Mechanics, Draft for submission, 2014.

4.1 Abstract

Numerical simulations of the shallow-flow instabilities are conducted using an

accurate numerical scheme to find solution directly from the shallow-water equations.

The radiation intensity from the subcritical instabilities increases with the convective

Froude number and reaches its maximum at a convective Froude number of about 0.7.

In the supercritical flow, the waves produced by the instabilities are trapped between

the returning surfaces where the relative current speed matches the gravity-wave

speed. The excitation, reflection and transmission of the supercritical instabilities

between the returning surfaces produce modulating waves that maintain a consistent

linear structure as the amplitude of the structure increases greatly over many orders

of its magnitude before reaching the finite amplitude in the nonlinear stage.

Keywords: Shear Instabilities, Shallow Flow, Waves in Currents, Numerical Simu-

lations
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4.2 Introduction

The instabilities of shear flow in shallow waters involve both the vorticity and

gravity waves. The classical instability analysis is based on the assumption of the nor-

mal mode. The solutions for the depth and velocity fluctuations of the disturbances

[h′, u′, v′] take the form of [ĥ(y), û(y), v̂(y)] exp ikx(x− ctt). In this normal-mode ap-

proach, ct is determined as an eigenvalue problem. The fractional growth rate (or

exponential growth rate) of the disturbance is the imaginary part of ct:

�(ct) =
1

h′
dh′

dt
=

1

u′
du′

dt
=

1

v′
dv′

dt
. (4.1)

The phase velocity is the real part �(ct). Implicit in the normal-mode approach is

the requirement of a time independent relation between the real and imaginary parts

of ct and the wave number kx. A less restrictive method of the stability analysis is

direct numerical simulation (DNS). The fractional growth rate of the instabilities as

defined by Equation (4.1) is determined directly from the numerical solutions of the

full equations. Using the fifth-order WENO for spatial interpolation, and the fourth-

order Runge-Kutta for time integration, Karimpour & Chu (2014) have been able

to find the fractional growth rate of the subcritical instabilities from DNS using the

shallow-water equations without assuming the existence of the normal mode. The

same numerical codes are employed in this paper to provide further details of the

instabilities. This includes the extension of the calculations to supercritical instabili-

ties when entrapment and radiation of the gravity waves are significant factors in the

process. We consider the base flow with the hyperbolic tangent velocity problem in a

domain of infinite lateral extend as shown in Figure 4–1. Gravity waves produced as
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Figure 4–1: (a) TANH base-flow velocity profile. (b) Computational domain defined
in the x-direction from x = 0 to λx and in the lateral y-direction from y = y−

to y = y+. The dashed lines mark the returning surfaces where the current speed
matches the gravity-wave speed.

part of shear instabilities are allowed to escape from the computational domain. The

general problem of the instabilities in shallow waters has been examined using the

normal mode approach by Balmforth (1999). The analogous problem in gas dynam-

ics was examined by Blumen et al. (1975), Sandham & Reynolds (1990) and Mack

(1990). Wave entrapment and radiation are significant in the instabilities in shallow

waters. The DNS is to provide the details of the entrapment and radiation processes

in the instabilities that are the extension beyond the existing results obtained from

the classical method of the normal mode.

71



4.3 Direct Numerical Simulation

The shallow-water equations for the direct numerical solutions for depth h and

velocities u and v are:

∂h

∂t
+

∂uh

∂x
+

∂hv

∂y
= 0 (4.2)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g

∂h

∂x
(4.3)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g

∂h

∂y
(4.4)

where g is the gravity. The base flow is the hyperbolic-tangent (TANH) velocity

profile

U =
1

2
(U1 + U2) +

1

2
(U1 − U2) tanh

2y

δωo
(4.5)

The velocities in the free streams are U1 on one side and U2 on the other side of the

shear flow. Simulation for the instabilities starts with the superposition of a small

disturbance (h′, u′, v′) to the base flow (H, U, 0). The subsequent development of

the disturbance is determined directly from the numerical solution of the shallow-

water equations to find h = H + h′, u = U + u′, v = v′. To study the linear

instabilities, the calculation is started with a disturbance of very small amplitude so

that the nonlinear terms remain negligible after the amplitude of the disturbance has

increased significantly by many orders of magnitude. In the present simulations, the

initial disturbance is the depth fluctuations h′/δωo = 10−10 sin(2π/λx) specified in the

central area from y = −λx/64 to y = +λx/64; the depth elsewhere is h′ = 0. Figure

4–1 (a) shows the TANH base velocity profile and Figure 4–1 (b) the computational

domain defined by the periodic boundary condition over one wave length in the

longitudinal direction from x = 0 to x = λx and the radiation boundary condition
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at y = y− and y = y+. The velocity difference (U1 − U2) is the velocity scale of

the instability problem. The length scale is the vorticity thickness δωo defined by

the shear rate at the inflection point Ûy = (U1 − U2)/δωo. The characteristics of

instabilities depend on the wave number of the disturbance kx = 2π/λx, and the

convective Froude number Frc which is the ratio of the velocity difference (U1 − U2)

and wave speed of the gravity wave
√

gH as follows:

Frc =
U1 − U2

2
√

gH
(4.6)

The lateral dimensions of the computational domain (y+ − y−) is selected to vary

from 4 λx and 10 λx depending on the convective Froude number. The calculations

for the subcritical instability were made in a computational domain with a lateral

dimension from y = y− = −5λx and y = y+ = 5λx. The calculations for the

supercritical instability one the other hand were made in a domain with lateral

dimensions from y = y− = −2λx and y = y+ = 2λx.

In an unstable shear flow, all components of the disturbance h′, u′ and v′ grow

exponentially. These include the disturbance vorticity ζ ′ = (∂v′/∂x − ∂u′/∂y),

the disturbance kinetic energy K ′ = 1
2
(u′2 + v′2) and disturbance potential energy

P ′ = 1
2
gh′2. The averages of K ′ and P ′ are obtained by the integration over the

computational domain as follows:

K ′ =
1

λx

∫ λx

o

[
1

δωo

∫ y+

y−
K ′dy

]
dx, P ′ =

1

λx

∫ λx

o

[
1

δωo

∫ y+

y−
P ′dy

]
dx (4.7)

Figure 4–2 shows the variation of the characteristic velocity

√
K ′/(U1 − U2) with

time tÛy in a semi-logarithmic scale. Figure 4–3 shows the ratio of the potential to
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Figure 4–2: The growth of the perturbations’ kinetic energy, K ′/(U1 − U2), with
time tÛy on the semi-logarithmic scale for (a) subcritical instabilities with Frc =
0.95, kx = 2π/λx = 0.40 (b) supercritical instabilities with Frc = 1.2, kx = 0.35 and
(c) supercritical instabilities with Frc = 1.4, kx = 0.35. The fractional growth rates
are respectively α/Ûy= 0.0407 and α/Ûy= 0.01365, 0.0094.

kinetic energy P ′/HK ′. The ratio defines the overall structure of instabilities and is

maintained as the amplitude of disturbance has increased by many orders of mag-

nitude. There are however significant differences in the structure of the instabilities

between the subcritical base flow with Frc ≤ 1 and supercritical flow with Frc > 1.

The subcritical instabilities have an absolutely constant structure. The supercriti-

cal instabilities on the other hand are modulating with a modulating period T that

has a corresponding frequency ωM = 2π/T . Despite the modulation, a consistent

structure is nevertheless observed to maintain during the entire development of the

supercritical instabilities.

Table 4–1 provides the overall characteristics for the three typical instabilities

shown in Figure 4–2 (a), (b) and (c) and Figure 4–3 (a), (b) and (c), with the
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Figure 4–3: Disturbance potential energy to kinetic energy ratio (P ′/HK ′) for (a)
Frc = 0.95, kx = 2π/λx = 0.40, (b) Frc = 1.2, k = 0.35 and (c) Frc = 1.4, kx = 0.35.
The dashed and solid lines in (b) and (c) represent the results obtained from two
computational domain sizes of y+ = −y− = λx and y+ = −y− = 2λx, respectively.

Table 4–1: The level of normal disturbance kinetic energy growth. The initial dis-
turbance perturbs depth at a magnitude of h′/δωo = 1E-10. For the supercritical Frc

= 1.4, it takes about tÛy= 250 to reach the linear consistent structure.

Frc kx

√
K ′

b/(U1 − U2) tbÛy

√
K ′

e/(U1 − U2) teÛy α/Ûy T Ûy

(a) Frc = 0.95 0.40 2E-9 20 0.36 500 0.0407 –

(b) Frc = 1.20 0.35 2E-9 90 0.23 1450 0.013 79

(c) Frc = 1.40 0.35 2E-9 250 0.313 2250 0.0094 55
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convective Froude numbers of Frc = 0.95, 1.2 and 1.4, respectively. The consistent

structure of the instabilities begins at time tb and ends at time te. For the cases (a),

(b) and (c) shown in the table, the formation of the consistent structure begins from

the time tbÛy � 20, 90 and 250 and is maintained until the end time of teÛy � 500,

1450 and 2250, respectively. Over this linear stage of the disturbance’s development

from tbÛy to teÛy, the amplitudes of the disturbance are magnified by many millions

of times. However, the magnitude of the disturbance remains small and the nonlinear

terms remain negligible over the same period of time.

4.4 Fractional Growth Rate

During the linear stage of the instabilities’ development, the fractional growth rates

for all components h′, u′ and v′ are the same, including the rate for the kinetic energy,

K ′ = 1
2
(u′2 + v′2). In the present simulations, the characteristic velocity equal to the

square root of the average kinetic energy determines the rate

α =
1√
K ′

d

√
K ′

dt
=

d
[
ln

√
K ′
]

dt
(4.8)

This fractional growth rate is the slope of the lines
[
ln

√
K ′
]

versus time t in Figure 4–

2 (a), (b) and (c), and is comparable to the eigenvalue �(ct) as defined in Equation

(4.1) for the normal mode. For the subcritical instabilities, the fractional growth

rate α is simply the slope of the straight line in the semi-logarithmic scale as show

in Figure 4–2 (a) for Frc = 0.95 and kx = 0.4. For supercritical instabilities as show

in Figure 4–3 (b) and (c), the fractional increase is not constant as the increase is

modulating about the averaged value α. Despite the modulation, consistent linear
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structure of the instabilities is maintained from tbÛy to teÛy over a long period of time

as the amplitude of the instabilities is magnified by million of times. The averaged

fractional growth rate is relevant parameter of the instabilities as the same averaged

rate α is maintained during the entire linear stage of the instabilities’ development.

4.5 Constant Structure of Subcritical Instabilities

The constant structures obtained by the DNS during the linear stage of its develop-

ment are shown in Figure 4–4 for the convective Froude number of Frc = 0.7 and the

wave number of kx = 0.6. The vorticity fluctuation profiles ζ ′δωo/

√
K ′ are plotted

in the left-hand side of the figure for four longitudinal positions x = 1
4
λx, x = 1

2
λx,

x = 3
4
λx and x = λx. On the right-hand side of these figures are the disturbance

kinetic energy profiles K ′/K ′ averaged over the wave length λx between the periodic

boundary conditions:

K ′ =
1

λx

∫ λx

0
K ′dx. (4.9)

The profiles in Figure 4–4 and the profiles of all other variables for the subcritical

instabilities with a convective Froude number Frc < 1 are absolutely independent of

time. The same profiles are maintained in the entire period as the disturbance is

amplified by millions of times from the beginning of time tbÛy to the end time teÛy.

These time independent constant structures obtained from the DNS are identical to

the normal-mode solution of the eigenvalue problem obtained by the classical method.

Figure 4–5 shows the fractional growth rate obtained from DNS over a range of wave

number for two convective Froude numbers Frc = 0.1 and 0.8. These are comparable

with the analogous results obtained for ideal gas by Sandham & Reynolds (1990).
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Figure 4–4: (a) vorticity fluctuation ζ ′δωo/
√

K ′ and (b) disturbance kinetic energy

K ′/K ′ for the subcritical instability with Frc = 0.7, kx = 0.60.

The shallow-water equations are identical to the gas-dynamic equations when value

of the specific heat ratio of the gas is 2 (Liggett 1994). The results obtained for

Frc = 0.1 also closely replicate the results obtained by Michalke (1964) for non-

divergent flow in the limiting case of Mac = 0. Michalke (1964) and Sandham

& Reynolds (1990) found the fractional growth using the classical method of the

normal mode. The comparison therefore validates the DNS method as equivalent to

the classical method. The DNS method however is more general as the method can

find the instabilities in greater range of parameter space beyond the subcritical. The

general application of the method will be further demonstrated in the subsequent

sections.

4.6 Consistent Structure for Supercritical Instabilities

The averaged fractional growth rate of the supercritical instabilities (Frc > 1)

is given in Figure 4–6. One example of the structure of the supercritical instabilities

(Frc = 1.4 and kx = 0.35) is shown in Figure 4–7. As shown in Figure 4–6, the
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Figure 4–5: Fractional growth rate of the subcritical instability obtained from DNS
for two convective Froude numbers Frc = 0.1 and 0.8. The dashed lines are the
results obtained from for convective Mach number Mac = 0.01 and 0.8 by Sandham
and Reynolds (1990) for ideal gas.

Figure 4–6: Averaged fractional growth rate α/Ûy of the supercritical instability for
convective Froude numbers Frc = 1.2, 1.4. The dashed line is the relation for the
ideal gas with the Mach number of Mac = 1.2 obtained by Sandham and Reynolds
(1990).
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Figure 4–7: (a) Lateral vorticity fluctuation profiles, ζ ′δωo/
√

K ′, at x = λx/4, λx/2,

3λx/ 4 and λx; and (b) lateral profile for the disturbance kinetic energy, K ′/K ′ (blue

solid line) and normal reynold’s stress u′u′/2K ′ (dashed line), of the supercritical
instability at Frc = 1.40 and kx = 0.35 at 1

4
T (top), 1

2
T (top-centre) and 3

4
T (top-

bottom) and T (bottom). The lateral extent of the shear instability over a distance
of one vorticity thickness is marked by the black vertical dashed lines. The locations
of the returning surfaces at y/δωo = ±0.147 is marked by the red vertical dashed
lines.
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averaged fractional growth rate α/Ûy for the supercritical instabilities is an order

of magnitude smaller than the rate α/Ûy for the subcritical instability in the same

range of wave number. The peak rate of α/Ûy = 0.01365 for Frc = 1.2 at kx = 0.35 is

comparable to the rate of 0.013 obtained by Sandham & Reynolds (1990). Sandham

& Reynolds (1990) have conducted stability calculations for the ideal gas up to a

Mach number of Mac = 1.2. Their results for Mac = 1.2 are the dashed line in

Figure 4–6. The DNS however has captured instabilities over a wider range of wave

number beyond the range of reach by the classical method of the normal mode. The

supercritical flow is susceptible to disturbance of smaller wave length beyond kx =

1.0. The growth rate of the supercritical instabilities may be small. The instabilities

however are real. For the case of Frc = 1.4 and kx = 0.35 given in Table 4–1, the

amplitude of the disturbance has increased from
√

K ′
b/(U1 − U2) = 2.0 × 10−9 to√

K ′
e/(U1 − U2) = 0.313 before the reaching the nonlinear stage of its development.

Such amplification in the linear stage is 1.5 × 108 folds.

Over this enormous amplification of the disturbance, despite the modulation in

growth rate, the instabilities maintain a consistent structure. An example of this

consistent structure for the case of Frc = 1.4 and kx = 0.35 is shown in Figure 4–

7 over a period of T Ûy = 55. The profiles of the vorticity fluctuations ζ ′/Ûy and

the averaged profiles of the kinetic energy K ′/K ′ for time 1
4
T , 1

2
T , 3

4
T and T are

similar but not identical as shown in Figures 4–7 (a) and (b), respectively. The most

remarkable feature of these profiles is observed at the returning surface where the

vorticity fluctuations peak. The kinetic energy of the waves that is trapped between

the returning surfaces, modulates with time with a period T that depends on Frc
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Figure 4–8: Lateral distribution of (a) disturbance potential energy gh′|h′|/(2HK ′);
(b) disturbance streamwise velocity u′|u′|/(2K ′) and (c) disturbance lateral velocity

v′|v′|/(2K ′) for Frc = 1.4 and kx = 0.35 over at 1
4
T (top), 1

2
T (top-centre) and 3

4
T (top-

bottom) and T (bottom). Vertical dashed lines define the returning surfaces. The

streamwise velocity fluctuation u′|u′|/(2K ′) inbetween the returning surfaces reaches
1.30, 1.66, 0.96 and 0.06 at 1

4
T , 1

2
T , 3

4
T and 3

4
T , respectively.
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Figure 4–9: Ratio of averaged disturbance potential energy to averaged total distur-

bance kinetic energy (P ′/HK ′) and its dependence on the convective Froude number.

and kx (see also Table 4–1). The disturbance kinetic energy inbetween the returning

surfaces however is mostly compromised of kinetic energy due to streamwise velocity

fluctuation u′. The dashed line in Figure 4–7, shows the level of u′u′/K ′, which has

nearly the same magnitude of disturbance kinetic energy K ′/K ′, therefore the lateral

velocity fluctuation component v′ is negligible inbetween the returning surfaces. The

location of the returning surfaces yt according to general formulation by Balmforth

(1999) and Takehiro & Hayashi (1992), is where the local velocity U matches the

phase (real) velocity of the consistent structure cp plus and minus the speed of the

gravity waves
√

gH . In a temporal mixing layer, at the returning surfaces the current

speed relative to the free streams, is equal to the gravity-wave speed.

U1 − U+(yt) =
√

gH and U2 − U−(yt) = −
√

gH (4.10)
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Much of the kinetic energy is trapped between the returning surfaces. There are

however a great deal of wave activities outside of the returning surfaces. Figure 4–

8(a) shows the surface wave profiles as defined by the disturbance potential energy

gh′|h′|/(2HK ′) for the case of Frc = 1.4 and kx = 0.35. The structure of these

modulating profiles at times T/4, T/2, 3T/4 and T are similar but not constant

over the modulating period. The magnitude of surface wave profiles are significant

both inbetween returning surfaces and in the outer region. The streamwise velocity

fluctuation u′ (Figure 4–8(c)), in the outer region is comparable to lateral velocity

fluctuation v′ (Figure 4–8(b)). Inbetween the returning surfaces on the other hand

v′ is negligible.

4.7 Entrapment and Radiation of Waves

Entrapment and radiation of waves are characteristics of the supercritical in-

stabilities. Figure 4–9 shows the ratio of averaged disturbances’ potential to kinetic

energy over the computational domain. As an indicator of the depth fluctuations,

this averaged potential energy increase with the convective Froude number reaching

a saturation value of gh′2/(2HK ′) � 0.75 for the supercritical flow when Frc > 1. It

is clear that the wave activities increase with the convective Froude number.

The waves may or may not transmit the waves’ energy to its surrounding. The

transmission capability of the waves is the wave power which is a vector with two

components Px = (1
2
(u2 + v2) + gh) uh and Py = (1

2
(u2 + v2) + gh) vh. The average

of the wave power in the y-direction over the wave length λx is

P y =
1

λx

∫ λx

0

(
1

2
(u2 + v2) + gh

)
vh dx, (4.11)
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This wave power increases exponentially with the growing waves. Figure 4–10 shows

the lateral distribution of the averaged wave power P y(y, t) at time t normalized by

the averaged kinetic energy K ′(t − y/
√

gH) at an earlier time (t − y/
√

gH) when

the wave power was initiated. The lateral distribution of Py as shown in Figure

4–10 (a) for the subcritical instabilities (Frc = 0.7, kx = 0.6) is quite different from

the distribution in Figure 4–10 (b) for the case of supercritical instabilities (Frc

= 1.4, kx =0.35). The distribution for the subcritical instabilities in (a) is time

independent. The distribution for the supercritical instabilities in (b) on the other

hand is modulating and has a consistent modulation period over the time during

the linear development. The amplitude of modulation is shown with gray error bars

in Figure 4–10 (b). For subcritical instabilities, the peak normalized wave power

occurs at the edges of the computational domain. For supercritical instabilities, the

magnitude of modulation is significant, however the average wave power is lower

compared to subcritical instability.

The wave power escapes the computational domain at the two edges. This

wave power evaluated at y = ± 6 δωo is the wave radiation. Figure 4–11 shows the

dependence of this radiation power on time. The subcritical instabilities have a

constant time independent radiation. The radiation of the supercritical instabilities,

on the other hand, is modulating around a rather small flux. Figure 4–12 shows

the dependence of the radiation power on convective Froude number. The returning

surfaces are effective wave guides that keep the waves confined. The radiation power

for the supercritical instabilities is quite small by comparison despite the production

of the huge wave power in-between the returning surfaces (see Figure 4–10 (b)). The
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Figure 4–10: The lateral distribution of the wave power Py(y, t)/[H
√

gH K ′(t −
y/

√
gH)] for (a) Frc = 0.7, kx = 0.6 and (b) Frc = 1.4, kx =0.35. The blue lines

mark the vorticity thickness and the red dashed lines the returning surfaces.

Figure 4–11: Radiation at y = ±6δωo, for P y(±6δωo, t)/[H
√

gH K ′(t − 6δωo/
√

gH)]
for (a) Frc = 0.95; (b) Frc = 1.20 and (c) Frc = 1.4.
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Figure 4–12: Wave radiation power and its dependence on the convective Froude
Number. The symbol • defines the averaged value of the normalized power.

subcritical instabilities are unbounded. Wave intensity increases with the convective

Froude. The maximum of the normalized radiation has a value

P y(±6δωo, t)

[H
√

gH K ′(t− 6δωo/
√

gH)]
� 0.18, (4.12)

which occurs at the subcritical convective Froude number of Frc � 0.7. The value

of this normalized radiation reduces to a value of 0.1 at Frc = 1.0. The radiation

is modulating about zero for the supercritical instability with the convective Froude

number Frc � 1.5. The error bars at Frc > 1.0 represent the modulation of radiation

power in Figure 4–12. At high convective Froude numbers waves are mostly trapped

between the returning surfaces. The period of the modulation of the waves inside

and outside of the trapped region has been determined. The normalized modulation
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Figure 4–13: Frequency of the modulation ωM/Ûy and its dependence on the wave
number kx in the waves trapped between the returning surfaces for Frc = 1.2, 1.4
and 2.0.

period is a function of convective Froude number and wave number as shown in

Figure 4–13.

4.8 Summary and Conclusion

The direct numerical simulations of the shallow-water equations have been car-

ried out for the base flow with a hyperbolic tangent velocity profile. The method

has been validated as the simulation results are comparable with the classical results

obtained by the method of the normal mode. The structural descriptions in the

linear development of the supercritical instabilities are provided beyond the range of

convective Froude numbers examined by the classical method. The highest level of

wave radiation from the instabilities occurs in the subcritical range. The simulations
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Figure 4–14: Estimated fractional error for the averaged growth rate, α/Ûy, obtained
from the calculations of the fractional growth rate for the supercritical instability
with convective Froude number equal to Frc = 1.2 (left) and Frc = 1.4 (right) at
kx = 0.35. The levels of error at N =256 are 0.03% and 0.33% for Frc = 1.2 and 1.4,
respectively.

have provided details of the wave entrapment inbetween the returning surfaces in the

supercritical instabilities.

Appendix: Numerical Computation

The numerical simulations for the instabilities were conducted using the Weighted

Essentially Non-oscillatory (WENO) scheme developed by Shu (1998) using a five-

point interpolation stencil. Time integration was carried out by a fourth order Runge-

Kutta procedure. The detailed implementation for subcritical instability is given in

Karimpour & Chu (2014). Table 4–2 shows how the simulation results obtained for

one supercritical instabilities converge to true solution as the grid is refined from

N = λx/Δx = 64, 128 to 256. The convergence towards the true solution is shown
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Table 4–2: The convergence of averaged growth rate α/Ûy.

Frc kx N δωo/Δx α/Ûy Error (%) Order

1.20 0.35 64 3.57 0.0202 48.04 –

1.20 0.35 128 7.14 0.01373 0.62 4.38

1.20 0.35 256 14.28 0.01365 0.03 –

1.20 0.01364

1.40 0.35 64 3.57 0.0153 63.31 –

1.40 0.35 128 7.14 0.0098 4.60 3.78

1.40 0.35 256 14.28 0.0094 0.33 –

1.40 0.00937

in Figure 4–14. Orders of convergence are 4.38 and 3.78 for Frc=1.2 and 1.4, respec-

tively.
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CHAPTER 5
WAVE AND ENERGY DISSIPATION IN SUBCRITICAL AND

SUPERCRITICAL MIXING LAYERS

S. Karimpour Ghannadi and V. H. Chu. Wave and Energy Dissipation in Subcritical

and Supercritical Mixing Layers. Journal of Fluid Mechanics, Draft for submission,

2014.

5.1 Abstract

Direct Numerical Simulations (DNS) have been carried out to study the transi-

tion from linear to non-linear instability using a one-layer shallow water equations.

The development of non-linear instability is highly influenced by the dilation and

total energy dissipation. The transition from linear to non-linear instability occurs

very rapidly. During this transition the energy level, flow pattern and the disturbance

kinetic energy change drastically. Mixing layer growth rate reduces with convective

Froude number which is in agreement with the available experimental and numerical

investigations in gas dynamics. Total energy dissipation emerges at intermediate

Froude number of 0.75 and impacts the configuration of non-linear eddy. The study

of anisotropy tensor has revealed substantial change in the distribution of turbulence

kinetic energy with convective Froude number.

Keywords: Mixing Layer; Convective Froude Number; Discontinuity; Radiation;

Anisotropy
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5.2 Introduction

The mixing of mass and momentum across shear flows at high Froude number

are governed by processes not solely describable by the conventional theory of turbu-

lence. Waves have dominant influence on the exchange process across the turbulent

shear layer. Despite the common occurrence of such flow features in steep channels

and density stratified flows, only literature available are in compressible flow. Un-

derstanding of the phenomenon in compressible flows is necessary to comprehend the

flow in gravity-driven mixing layers. Studies in compressible gas dynamics on the ef-

fect of compressibility have revealed that the growth rate of shear layer substantially

changes with Mach number. Early evidence of compressibility impact on turbulence

was discussed by Bradshaw (1977). Later direct numerical simulations also verified

the effect of compressibility. The review of these works can be found in Lele (1994).

Experimental observations by Samimy & Elliot (1990), Rossman et al. (2002)

reported the reduction of thickness growth rate with convective Mach number. Vre-

man et al. (1996) among others have numerically shown that the reduction in shear

production is due to radiation dissipation as the Mach number increases. There

is also evidence that the turbulence structure changes as Mach number increases.

The experiment by Papamoschou & Roshko (1988) further explained the intriguing

structure of vortex in the presence of shock waves and hydraulic jumps as “eddy

shocklets”.

Although there has been significant progress in the understanding of compress-

ible mixing layer, little to no data are available in the free-surface flow on the inter-

action of eddy and shocklet. In this paper, the transition from linear to non-linear
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instability of a temporal mixing layer is studied numerically using shallow water

equations. Data from simulation are analyzed to investigate the effect of dilation

and shocklets on (i) total energy dissipation; (ii) radiation and (iii) anisotropy.

5.3 Formulation and Numerical Methods

The temporal evolution of mixing layer is numerically solved using single-layer

shallow water equations. Free stream velocities are equal and opposite on two sides

of the mixing layer. Flow is inviscid and the mixing layer is simulated for 0 < x < λx

and y− < y < y+, where |y+| = |y−| = 5λx and 2λx in subcritical and supercritical

shear layers, respectively. Wave length of λx is chosen to provide the maximum linear

growth rate at given convective Froude number. x- and y-coordinates correspond to

streamwise, and lateral directions. The boundary condition in x-direction is periodic.

In y-direction, a Sommerfeld radiating boundary condition is applied. This boundary

was extensively verified by Nycander & Döös (2003). The mixing layer consists of

a tangent hyperbolic profile for the streamwise velocity and a uniform depth of H.

The streamwise velocity profile is:

U =
1

2
(U1 + U2) +

1

2
(U1 − U2) tanh

2y

δωo
(5.1)

where |U1| = |U2| = 0.5 and δωo = 1 is the initial vorticity thickness. The stream-

wise velocity profile given by Equation (5.1) is an approximation to fully developed

mixing-layer profile (Metcalfe et al. 1987). Based on the definition of convective

Mach number by Brown & Roshko (1974), convective Froude number is defined as:

Frc =
U1 − U2

c1 + c2
(5.2)

93



Table 5–1: Specification of direct numerical simulation databases: convective Froude
number, domain and grid size.

Frc Lx × Ly Δx Frc Lx × Ly Δx

0.1 7.0400 × 70.400 0.0275 0.75 11.4176 × 114.176 0.0446

0.2 7.2960 × 72.960 0.0285 0.80 12.416 × 124.16 0.0485

0.4 7.8336 × 78.336 0.0306 0.95 16.000 × 160.00 0.0625

0.5 8.4992 × 84.992 0.0332 1.10 17.920 × 71.68 0.070

0.6 9.2416 × 92.416 0.0361 1.20 17.920 × 71.68 0.070

0.65 9.9328 × 99.328 0.0388 1.40 17.920 × 71.68 0.070

0.70 10.5472 × 105.472 0.0412

where c1 and c2 are the speed of gravity waves in the free streams across the mixing

layer. Numerical experiments are conducted with fixed initial velocity distribution

of free-surface mixing layer but with various initial depths. Mixing layer for this

study is considered to be symmetric in y -direction and therefore local free stream

Froude numbers as well as convective Froude numbers are equal and all subcritical

or supercritical simultaneously. Numerical experiments are conducted for Frc from

0.1 to 1.4. Simulations for higher convective Froude numbers are being conducted

that will be reported separately. Summary of numerical conditions including domain

size and grid size are given in Table 5–1. The simulations in all cases are conducted

using Minimal Intervention Strategy proposed by Pinilla et al. (2010) and further

developed by Karimpour & Chu (2014). The time integration was carried out using

4th order Runge-Kutta scheme. An upwind biased 5th WENO scheme (see, e.g., Shu

2009) was employed for spatial discretization. The 5th order WENO was used, as

it efficiently captures the discontinuity with minimum accuracy of 3rd order, while
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maintaining 5th accuracy over vortices. The performance of this scheme in com-

pressible mixing layer was conducted by Karimpour & Chu (2014), and the grid size

selected for this study has shown 0.1% to less than 0.01% errors in Frc = 0.8 and

0.1, respectively.

5.4 General Results

Figure 5–1 shows the streamwise vorticity distribution for three cases of Frc =

0.1, 0.8 and 1.1. In all three the main stream flow velocities are unchanged and

pressure change imposes the local and convective Froude numbers. These cases

represent three distinct behaviors in the mixing layer. Frc = 0.1 illustrates the roll-

up of the vortex, with negligible dilation effect. The transition from fast-growing

linear to fully saturated non-linear stage occurs very fast in this case. Growth rate

of the mixing layer thickness is the highest as well as the linear growth rate (Michalke

1964). The vorticity is concentrated within the roll up and along the vortex blade.

High level of disturbance kinetic energy enhances the entrainment process of the two

flows across the mixing layer. At Froude number of Frc = 0.8, the hydraulic jumps

begin to appear across the vortex. The shock discontinuity accompanied by eddy

roll-up forms a shocklet structure.

Although the convective Froude number hasn’t reached the critical level of 1, the

supercritical behavior begins to appear and influence the vorticity distribution across

the shocklet. This is consistent with observation in analogous flow of compressible gas

by Sandham & Reynolds (1990). They have observed that the compressibility effects

emerge in mixing layers even at moderate convective Mach numbers greater than 0.7.
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Figure 5–1: Vorticity evolution in the transition from linear to non-linear stages t1
to t3 for (a) Frc = 0.1, (b) Frc = 0.8 and (c) Frc = 1.1.

This observation in mixing layers of lower convective Froude numbers demonstrates

that although the convective Froude number describes the relative structure of mixing

layer well, it does not necessarily explain the compressibility effect at subcritical

convective Froude numbers. Furthermore at Frc = 1.1, both main stream and the

convective Froude numbers become supercritical. This is where we start to observe

the continuous formation of hydraulic jumps accompanied by eddy roll-up. Also

structure of the eddy and shocklet evolves with convective Froude number. At low

convective Froude numbers (Frc = 0.1) the vorticity concentration profile at fully

developed stage of t3 resembles the cat’s eye vortex by Stuart (1967). However
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Figure 5–2: The relative depth (h/Ho) evolution in the transition from linear to
non-linear at stages t1 to t3 for (a) Frc = 0.1, (b) Frc = 0.8 and (c) Frc = 1.1.
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Figure 5–3: Evolution of local Froude number over transition from linear to non-
linear instability. The top row identifies stages t1 to t3 in Frc = 1.1 and the bottom
row, identifies these stages in Frc = 0.8.

as the convective Froude number progressively increases, the shocklet stretches in

the streamwise direction while compresses in the lateral direction. The shocklet

elongation continues as the convective Froude number extends beyond critical level

of Frc = 1.0. Figure 5–2 illustrates that the formation of shocklets also accompany

pressure fluctuation. In three stages of development of a subcritical flow in Figure 5–

2(a) the negligible depth variation from initial profile is just to maintain the rotation.

However as convective Froude number rises, the pressure fluctuation from initial

pressure increases. At Frc =0.8 and Frc = 1.1 the water depth decreases as much

as 50% and 75% of the initial water depth, respectively. The depth discontinuities

that are evident in Figures 5–2 (b) and (c) are due to sudden change of local Froude

number from supercritical (red in Figure 5–3) to subcritical (blue in Figure 5–3).

Therefore the behaviour of the mixing layer cannot be explained solely through the
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convective Froude number. The local Froude number impacts the evolution of the

vortex and formation of vortex blades as it can be detected at Frc = 0.8.

5.5 Mixing Layer and Growth

The mixing layer thickness can be defined based on the two properties: i) the

thickness according to the maximum slope, which initially defines the thickness of

vorticity profile. Therefore thickness estimated from maximum slope which evolves

in time, is called vorticity thickness:

δω =
U1 − U2

Ûy

(5.3)

where Ûy is ∂U/∂y on the inflection point. ii) The momentum thickness: this shows

the relative deficiency of momentum across the shear layer, due to velocity distri-

bution with respect to the momentum generated by a flow with U1 − U2 velocity.

With the main flow velocity on each side of |U1| = |U2| = 0.5, momentum thickness

is defined as:

δθ =
∫ y+

y−

U − U2

U1 − U2

(
1 − U − U2

U1 − U2

)
dy =

∫ y+

y−
(0.5 + U) (0.5 − U) dy (5.4)

However due to the initial distribution of our velocity profile, the momentum thick-

ness starts from the value of δθo/δωo=0.25 in the linear stage. Therefore in order to

maintain consistency between two initial values of vorticity and momentum thick-

nesses, momentum thickness is reported as 4δθ instead, throughout this paper. Figure

5–4 shows the evolution of momentum and vorticity thicknesses in time, in subcritical

and transcritical mixing layers. The normalized time is defined as tÛy. The initiation
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Figure 5–4: Vorticity thickness evolution for (a) Frc = 0.1 and (b) Frc = 0.8 and
momentum thickness evolution for (c) Frc = 0.1 and (d) Frc = 0.8. In (a) and (b)
three points are marked that represent the initiation, inflection and saturation stages
in non-linear development. In (c) and (d) the growth rate of momentum thickness
is marked with red line. Growth rate of the momentum thickness, 4δ̇θ drops from
0.076 to 0.061 from Frc = 0.1 to Frc = 0.8.
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of non-linear development depends directly on the linear growth rate (Sandham &

Reynolds 1990). At Frc = 0.1 the non-linear development starts earlier than Frc = 0.8

as the linear growth rate in Frc = 0.8 is about 2.4 times smaller than 0.1 (Pinilla &

Chu 2008). The maximum linear growth rates for these convective Froude numbers

don’t occur at the same wave number either. At Frc = 0.1 and 0.8 the maximum

growth rates occur at approximately kx = 2π/λx= 0.89 and 0.53, respectively. The

transition from linear to saturate non-linear is marked and later demonstrated with

three stages: (1) initiation; (2) inflection and (3) saturation. These stages are the

reference points to investigate the development of the mixing layer. Figure 5–4 (c)

and (d) demonstrate the growth rate of momentum thickness (4δθ). For Frc = 0.1

and 0.8, growth rates for 4δθ are 0.076 and 0.061. The growth rate of the momentum

thickness in the quasi-incompressible reported by Pantano & Sarkar (2002) from DNS

of incompressible gas at very low convective Mach number of 0.3 was δ̇θ = 0.0184.

In the present analysis, growth rate of momentum thickness, δ̇θ, was measured to be

= 0.0189 and 0.0180 for Frc =0.1 and 0.2, respectively. Also Vreman & Sandham

(1996) reported δ̇θ = 0.073 for Mac = 0.2 with U2 − U1 = 2.0. Therefore the initial

momentum thickness and momentum thickness growth rate by Vreman & Sandham

(1996) is 4 times greater than results reported by Pantano & Sarkar (2002) and the

present investigation. Also the fractional rate of vorticity thickness, δ̇ω/δω, at Frc =

0.1 in the limiting case where the dilation effect is negligible is comparable to the

rate obtained from the laboratory experiments which were carried out in steady flow.

The temporal variation of vorticity thickness, obtained from the present simulations

may be related to the spatial development of the mixing layer in steady flow.
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Figure 5–5: (a) Dependence of the fractional thickness growth rate with Frc for
momentum, δθ, and vorticity thickness, δω. (b) The ratio of the growth rate to
dilation free growth rate, is plotted versus Frc and compared with experimental and
numerical observations in flows with high Reynolds numbers in gas dynamics.
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1

δω

∂δω

∂(tÛy)
= 0.063

1

δω

∂δω

∂x

∂x

∂t
= 0.063

U1 − U2

δωo

1

δω

∂δω

∂x

U1 + U2

2
= 0.063

U1 − U2

δωo

∂δω

∂x
= 2 × 0.063

U1 − U2

U1 + U2

δω

δωo
,

(
δω

δωo

)
2

= 1.6

∂δω

∂x
= 0.202

U1 − U2

U1 + U2
(5.5)

which is very close the following spreading rate obtained from laboratory experiment

by Brown and Roshko (1974):

∂δω

∂x
= 0.188

U1 − U2

U1 + U2

(5.6)

The thickness of the mixing layer depends on the convective Froude number. As

reported in compressible flow the thickness of the mixing layer decreases with con-

vective Mach number according to both experimental and numerical investigations

(see, e.g., Gatski & Bonnet 2013; Samimy & Elliott 1990; Pantano & Sarkar 2002).

The similar behaviour is expected for open-channel free-surface mixing layer as seen

in Figures 5–5(a) and (b). Growth rates of vorticity and momentum thicknesses

decrease as the convective Froude number increases. This is likely due to the total

energy dissipation and radiation dissipation at higher convective Froude numbers.

The growth and development of momentum and vorticity thicknesses are influenced

by the overall energy available to the mixing layer as well as the disturbance ki-

netic energy. The reduced thickness growth rate with Froude number in the current
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simulation follows the trend observed in previous experimental and numerical inves-

tigations in gas dynamics. After validating our findings with available experimental

and numerical data on the mixing layer thickness in gas dynamics, we perform anal-

ysis on the influence of flow discontinuity and dilation on the total and disturbances

energy.

5.6 Kinetic and Potential Energy

The mechanical energy available in depth averaged shallow flow is considered in

this section. For the analysis of the shallow flow, besides the mass and momentum

conservation the use of energy equation is necessary. In inviscid continuous flow

the total amount of energy is exchanged between total potential and kinetic energy.

However in the event of the hydraulic jump, which is equivalent to shock wave in gas

dynamics, the balance of energy doesn’t hold and a part of the potential and kinetic

energy is converted into internal energy. The energy equation can be derived from

the momentum and mass conservation equations. Assuming 
U = (u, v) and writing

the x-momentum and y-momentum equations into one vector form and multiplying

it by 
Uh we have:


Uh · ∂
U

∂t
+ 
Uh · (
U · ∇)
U = −
Uh · ∇gh (5.7)

Also multiplying the continuity equation by gh we find that:

∂

∂t

(
gh2

2

)
+ ∇ ·

[
(
Uh)(gh)

]
= 
Uh · ∇ (gh) (5.8)
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considering the kinetic energy as K = u2+v2

2
, Equation (5.7) transforms to:

∂K

∂t
+ ∇ ·

[

U (K)

]
= −
U · ∇ (gh) (5.9)

Multiplying Equation (5.9) by h, −
Uh ·∇ (gh) appears in both potential and kinetic

energy equations. It represents the energy flux between kinetic and potential energies.

Combining Equations (5.8) and (5.9) for potential and kinetic energies, respectively,

gives:

∂

∂t

(
Kh +

gh2

2

)
+ ∇ ·

[

Uh (K + gh)

]
= 0 (5.10)

where total energy (E) and hydraulic head (Ht) are:

E =
(u2 + v2)h

2
+

gh2

2
(5.11)

Ht =
(u2 + v2)

2g
+ h (5.12)

Therefore the total energy (E) is balanced with energy flux vector:

∂E

∂t
+ ∇ ·

[

Uh(gHt)

]
= 0 (5.13)

Knowledge of energy balance over the domain containing mixing layer helps studying

the energy availability and energy flux, in the event of an eddy shocklet. Therefore

the above equation over an interrogation zone with the area of A becomes:

∫
A

∂E

∂t
dA +

∫
A
∇ ·

[

Uh(gHt)

]
dA = 0 (5.14)

The exchange of integral and derivative in the energy flux on the left hand side

of Equation (5.14) is only possible on continuous flow field. However through the

existence of discontinuity this exchange is only possible through the consideration of
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an energy dissipation term. Hence by exchanging integral and derivative in Equation

(5.14), using divergence theorem, we obtain:

∂

∂t

∫
A

EdA +
∮

s
h(gHt)
U · n̂ds =

∫
A

εdA (5.15)

Considering the priodicity of the domain in longitudinal direction, Equation (5.15)

can be written as:

∂

∂t

(∫ y+

y−

∫ λx

0
Edxdy

)
+

[∫ λx

0
gHtvh dx

]
y+

−
[∫ λx

0
gHtvh dx

]
y−

=
∫

A
εdA ≤ o (5.16)

where λx marks the size of computational domain in x-direction and y+ and y− mark

the lateral integration limits. Energy is distributed throughout the computational

domain including the mixing layer. However in the total energy balance equation,

Equation (5.15), only the overall change in energy is tracable. The variation of total

energy is mostly noticable across the mixing layer (see Figure 5–7). Hence the energy

drop should only be associated and averaged over the mixing layer thickness:

∂E

∂t
+

P y+

δ
− P y−

δ
= ε (5.17)

where Py = gHtvh and δ = 4δθ. For any variable a, a is the average over mixing

layer area or a over the wave length.

Many of the finite-volume approximations that perform well in practice do not

necessarily respect the energy dissipation statement in Equations (5.14) to (5.17),

in other words they can be overloaded with an excessive amount of numerical dissi-

pation near shocks, which leads to large numerical errors, particularly for long time

integration. Hence, it is highly desirable to design a high-order stable finite-volume
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Figure 5–6: The error in energy dissipation using in Frc = 0.8 using (a) 5th or-
der WENO scheme and (b) MINMOD. WENO exhibits significantly lower level of
numerical dissipation compared to MINMOD.

scheme which respects a faithful description of the energy balance of the shallow

water system. In particular, they add a minimal amount of numerical dissipation

which guarantees energy conservation in the smooth regime. In the current simu-

lation the energy conservation is maintained and the level of energy dissipation is

minimal, rapidly vanishing with grid refinement. A brief presentation of energy con-

servation in the present model is through the study of energy dissipation over flow

discontinuity. This is demonstrated for transcritical Frc = 0.8 where total energy

dissipation starts to emerge due to occasional formation of hydraulic jumps. Using

5th order spatial interpolation of WENO, total overall energy dissipation for Frc =

0.8 converges with more than 4th order of accuracy as shown in Figure 5–6.

All the components of Equation (5.15) are plotted in Figure 5–7 for Frc = 0.6,

0.8 and 1.1. In subcritical case of Frc = 0.6 in Figure 5–7 (a) the total energy is
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in balance with local energy fluxes in x and y directions. At Frc = 0.8, on the

other hand, the imbalance of total energy and energy flux is noticeable. Energy flux

becomes significant across the hydraulic jumps in stages t2 and t3. The location

of the hydraulic jump can be identified from Figures 5–2 (b) and (c). The energy

dissipation therefore appears across the depth discontinuity. The same process is

observed for higher convective Froude numbers as illustrated in Figure 5–7 (d). As

the distribution of fluxes in Figure 5–7 shows, energy fluxes are transmitted mainly

from the mixing layer. As the total energy flux appears only across the mixing layer,

it has to be correlated to the properties of the mixing layer. The transmitted fluxes

move with gravity wave speed of c. The intensity of the disturbance kinetic energy

across the mixing layer depends on the intensity of the initial velocity difference.

Using the velocity difference across the mixing layer (ΔU = U1 − U2), the normal

variable representing energy flux as P y/HoΔU2 c is meaningful across the mixing

zone. Following this normalization for P y, Equation (5.17) becomes:

1

HoΔU2c/δ

∂E

∂t
+

P y+ − P y−

HoΔU2c
=

ε

HoΔU2c/δ
(5.18)

As the convective Froude number rises, flow discontinuities appear as hydraulic jumps

emitted from shocklets. These shocklets are initiated at the mixing layer. Therefore

the energy dissipation is most significant adjacent to the mixing layer. Figure 5–8

studies the evolution of normalized energy equation in time for Frc = 0.8. Energy

rates and dissipations are evaluated in three regions where |y+|=|y−| = 5
16

λx,
15
16

λx

and 25
16

λx. The energy fluxes however are plotted at the border of the interrogation

zones at y+. Although the energy rates and energy fluxes across these regions are
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Figure 5–7: The distribution of three terms in Equation (5.15) for (a) Frc = 0.6 at
stage t3, (b) Frc = 0.8 at stage t2, (c) Frc = 0.8 at stage t3 and (d) Frc = 1.1 at stage
t3. The integration is made over the area of a control volume with the area of ΔxΔy.
The left column represents the rate of change on energy ( ∂

∂t

∫
A EdA), centre column

energy flux (
∮
s h(gHt)
U · n̂ds) and the right column energy dissipation (

∫
A εdA).
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different, the energy imbalance, as it appears in the dissipation, is almost identical

across different interrogation regions. The maximum energy dissipation occurs at

stage t3 of the development when the shocklet is very strong.

According to Sandham & Reynolds (1991) only at Mac = 0.7 mixing layer starts

to emit shock waves. As can be seen in Figure 5–7(a), even at Frc = 0.6, the energy

dissipation is zero, however as the convective Froude number exceeds 0.7 the energy

dissipation begins to influence the total energy balance. The energy dissipation

increases with convective Froude number in transcritical region with 0.7 < Frc < 1,

as shown in Figure 5–9. The energy dissipation reaches an almost constant level

at supercritical mixing layer of Frc > 1. The energy dissipation is an energy sink,

converting total energy to internal energy. The shortage of total energy influences

the amount of energy that is available for the development of mixing layer. It is

reported by Freund et al. (2000) and others that the linear growth rate of mixing

layer is directly influenced by radiation dissipation. In the non-linear stage however

the total energy dissipation also influences the overall energy balance and acts as

sink to disturbance and mean potential and kinetic energies available in the system.

5.7 Disturbance Kinetic Energy

In shallow-water equations, u, v, velocities in x- and y-directions, and h, the

total depth, for the parallel shear flow consist of mean flow as U , 0 and H and

perturbation from mean as u′, v′ and h′:

u = u′ + U, v = v′, , h = h′ + H (5.19)
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Figure 5–8: The temporal evolution of (a) normal energy rate; (b) normal energy
flux and (c) the total energy dissipation as they appear in Equation (5.18) for Frc =
0.8. The interrogation regions are limited to |y+|=|y−| = 5

16
λx,

15
16

λx and 25
16

λx.
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Figure 5–9: Dependence of peak energy dissipation on convective Froude number.
The maximum dissipations plotted in this graph occur at the fully saturated stage
of t3. The maximum dissipation and the maximum thickness are synchronized and
emerge simultaneously.

The total energy K consists of mean and disturbance kinetic energy,

K = K ′ + Km (5.20)

In this mixing layer, since v = v′, the mean energy only consists on x- component of

the velocity. Using the averaged x-momentum equation, Km takes the form

∂Km

∂t
+ U

∂Km

∂x
= −∂Uu′v′

∂y
+ u′v′∂U

∂y
(5.21)

Subtracting Equation (5.21) from (5.9) and averaging over the wave length, K ′ can

be expressed as:

∂K ′

∂t
+ u

∂K ′

∂x
+

∂Uu′v′

∂y
= S − R (5.22)
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where

K ′ =
u′u′ + v′v′

2
. (5.23)

R = gu′∂h′

∂x
+ gv′∂h′

∂y
, S = −u′v′∂U

∂y
(5.24)

The total energy as explained by Equation (5.17) comprises of kinetic and po-

tential energy. The overall energy consideration proved that the rate of energy dis-

sipation increases as the convective Froude number increases, making less energy

available for mixing layer growth in the non-linear stage. This was through energy

dissipation over discontinuity as flow locally changes state from subcritical to super-

critical. The total kinetic energy on the other hand includes “mean kinetic energy”

and “disturbance kinetic energy”. The production term, S, shows the flux of en-

ergy between mean energy in Equation (5.21) and disturbance kinetic energy as in

Equation (5.22). This production of energy however seems to be independent of con-

vective Froude number and the compressibility has little to no impact on the energy

flux from mean to disturbance kinetic energy. The production can be re-defined as

following for the numerical simulation of temporal mixing layer at any moment:

S =
1

λxδω

∫ ∞

−∞

∫ λx

0

(
−u′u′∂u

∂y
− v′v′∂v

∂y

)
dx dy (5.25)

R =
1

λxδω

∫ ∞

−∞

∫ λx

0

(
gu′∂h′

∂x
+ gv′∂h′

∂y

)
dx dy (5.26)

where S and R, are the disturbance energy production flux and radiation dissipa-

tion terms averaged over the thickness of the mixing layer at any instance directly

extracted from direct numerical simulation. In higher convective Mach and Froude
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numbers, we observe growth rate and the thickness growth decreasing with convec-

tive Froude number. This is directly related to the amount of energy available to

the disturbances. According to Equation (5.22), the growth of disturbance kinetic

energy in time is regulated by both shear production flux and radiation dissipation.

Equation (5.22) shows that the disturbance energy rate increases as the production

flux from mean flow increases and it drops as the radiation dissipation increases.

The development and the balance of these two terms are presented in Figures 5–10

and 5–11 . Figure 5–10 and 5–11 show the time dependant distribution of S and R

for the linear to non-linear transition. The peak of the averaged energy production

coincides with the maximum growth of the mixing layer at the inflection point of

momentum and vorticity thicknesses at all Froude numbers. Since the initiation of

mixing layer changes with linear growth rate, the delay in the initiation of non-linear

development is simply due to smaller linear growth rate in larger convective Froude

numbers (Lee et al. 1991). Figures 5–10 and 5–11 show that considerable amount of

turbulence energy flux is consumed through dissipation dilation at Frc = 0.8 and 1.1.

S and R are the averaged turbulence production and radiation dissipation through

the computational domain directly extracted from direct numerical simulation. The

total energy imbalance has shown that the total energy dissipation, in other word

the compressibility effect, becomes important in even moderate convective Froude

number of Frc = 0.7. Figure 5–7, shows that the total energy dissipation becomes

significant in transcritical and supercritical Froude numbers of Frc > 0.7.
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Figure 5–10: The production flux and radiation dissipation through transition from
linear to non-linear instability. The level of production is constant in two convective
Froude numbers, however the radiation dissipation increases from Frc = 0.1 (left)
to Frc = 0.8 (right). The maximum production in both cases occur right at the
inflection point (t2).

Figure 5–11: The production flux and radiation dissipation through transition from
linear to non-linear instability for Frc = 1.1. The radiation dissipation increases
further from Frc = 0.8 to Frc = 1.1.
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Figure 5–12: Dependence of the overall relative radiation dissipation at the inflection
point of t2 on convective Froude number.

The highest shear production occurs at inflection point of non-linear develop-

ment. Figure 5–12 illustrates the variation of radiation dissipation term to produc-

tion flux at t2. The radiation dissipation is continuously growing with convective

Froude number. At Frc = 0.10, this term is negligible. The total energy at Frc =

0.6 did not experience any energy dissipation, since the discontinuity only started to

emerge at Frc = 0.7. However even at Frc = 0.6 the magnitude of relative radiation

dissipation term is significant. This suggests that the radiation dissipation is linked

to the reduced growth rate observed in Figure 5–5. However the structure of the

eddy is mostly influenced by the total energy dissipation. At Frc ≥ 0.7, where the

total energy dissipation is non-zero, shocklets-eddy forms. At Frc < 0.7 on the other

hand, despite evident levels of radiation dissipation, the structure of subcritical eddy

remains unaffected.
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5.8 Anisotropy

To further quantify the shock and eddy interaction, and to study the impact

of energy sinks on the disturbances’ magnitude, the normal Reynolds stresses in 2-

dimensions are considered in this section. In the lateral exchange of momentum and

entrainment across the mixing layer, the only active component is the v′v′. The u′u′

normal stress does not contribute to the entrainment across the mixing layer. On the

anisotropy of compressible flow there have been discrepancies in literature. While

several studies (e.g., Samimy & Elliott 1990, Pantano & Sarkar 2002) have suggested

that the anisotropy, expressed in terms of longitudinal versus transverse velocity

fluctuations, is relatively constant over different Mach numbers, others studies (e.g.,

Goebel & Dutton 1991; Gruber et al. 1993) have actually shown a growth with Mach

number. In gravity driven, geometry-induced mixing layer across a cavity with high

Reynolds number, by Karimpour & Chu (2012) and Wang et al. (2013), the lateral

normal stress reportedly drops significantly as the Froude number of the main flow

increases. The inconsistency in results makes it necessary to study the anisotropy in

supercritical shallow mixing layers.

In this study the transition from linear to fully non-linear stage is studied.

Therefore eddies and shocklets have not reached quasi-steady state. Figure 5–13

(a) to (c) show the evolution of normal Reynolds stresses in a subcritical eddy of

Frc = 0.1. Since the mixing layer thickness also evolves in time, the distance from

mixing layer (y) is normalized by the thickness at any instance (4δθt). This keeps the

intensity of disturbances mostly confined between -0.5 and 0.5 on the vertical axis.

From t1 in Figure 5–13 (a) to t3 in Figure 5–13 (c) the intensity of v′v′ is mostly larger
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Figure 5–13: Distribution of normal Reynolds stresses, u′u′ (red lines) and v′v′ (black
lines) for 3 stages of development of t1, t2and t3 for Frc = 0.1 in (a), (b) and (c) and
Frc = 1.1 in (d), (e) and (f).

than the intensity of u′u′. Outside the mixing layer the disturbance approaches zero

in the fully isotropic, mixing free region. However the same distribution in Figure

5–13 (d) to (e) for Frc = 1.1, suggests that across the mixing layer lateral normal

stress is always smaller than longitudinal normal stress. Figure 5–14 shows the

dependence of the relative averaged normal stresses to convective Froude number.

As explained earlier the ratio of v′v′/u′u′ is time and space dependant. In order

to present the change of anisotropy with convective Froude number, the Reynolds

stresses are averaged over the computational domain. The distribution of the normal

stresses however is mainly across the mixing layer thickness as demonstrated in Figure
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5–13. Therefore v′v′ and u′u′ mainly characterize the activities over the mixing

layer. In Figure 5–14 the variation of the ratio of two averaged normal Reynolds

stresses are plotted against convective Froude number. According to Figure 5–13,

this distribution is also time dependant. In-order to express the time evolution of

normal Reynolds stresses, the error bars over each Froude number represent the

change of the anisotropy ratio in time from t1 to t3. The strong change of the

anisotropy tensor however cannot be compared to existing experimental or numerical

data, since most of the existing data are reported in quasi-steady state. However

the decreasing trend matches the trend observed in some existing experimental and

numerical investigations including the results of Goebel & Dutton (1991); Freund

et al. (2000) in gas dynamics and Karimpour & Chu (2012) in free surface shallow

waters.

5.9 Conclusion

The transition of mixing layer from linear to non-linear instability is studied

using DNS of shallow water equations. The numerical experiments cover convective

Froude number of 0.1 to 1.4. The simulation revealed reduced growth rate for the

transition which is in agreement with existing numerical and experimental data in

temporally and spatially evolving mixing layers in gas dynamics. The total energy

dissipation does not seem to impact the growth rate of the mixing layer thickness.

However the growth rate is directly affected by the radiation which in disturbance

kinetic equation operates as sink term. Furthermore total energy consideration sug-

gests that this transition occurs with significant drop of total energy and rise of energy
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Figure 5–14: Variation of the ratio of normal averaged Reynolds stresses, v′v′/u′u′

with convective Froude number.

flux. The hydraulic jumps extended from the eddy, appear in the mixing layer at in-

termediate Froude numbers starting from Frc ≥ 0.7. Thus the eddy-shocklet pattern

is observed even at transcritical convective Froude numbers, where the main stream

Froude number and convective Froude number are subcritical. The analysis of the

anisotropy on the other hand demonstrated a trend towards a highly anisotropic

shocklet-eddy, when the flow is supercritical.
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CHAPTER 6
CONCLUSION

A robust finite volume method has been developed. This was to investigate the

subcritical-to-supercritical transitions. The Weighted Essentially Non-Oscillatory

scheme was implemented in this thesis which allowed the capture of flow discontinu-

ity, without encountering either spurious oscillations or adding excessive numerical

damping, which is detrimental to simulation of flow of complex patterns. The nu-

merical accuracy was tested in mixing layer with eddy-shocklet interaction. The

numerical accuracy achieved has shown significant improvement of WENO scheme

over conventional TVD schemes. The numerical scheme can have infinite order but

here designed to be spatially 5th order accurate, and locally drop to a minimum of

3rd order in case of discontinuity. As demonstrated in chapter 2 using WENO spa-

tial reconstruction scheme, in the case of vortex-shocklet interaction, was reported to

have an overall convergence rate of over 4. In the case of subcritical eddy, an order of

nearly 5 has been reached. This has led to success in direct numerical simulations of a

number of subcritical-to-supercritical transitions selected for investigation. The sim-

ulations of three problems have been validated by analytical solutions and available

experimental data. These same computational problems have been mostly studied in

subcritical regimes prior to this thesis. In the study of transverse dam-break waves,

supercritical expansion fan was part of the solution in subcritical main flows. The
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simulation results were expressed in terms of Ritter’s similarity variable and vali-

dated with experimental data from Subramanya & Awashty (1974) and Mizumura

et al. (2003) in the subcritical and supercritical range.

In the study of linear instability, the direct numerical simulations have re-

produced the classical results obtained using the normal mode approach. The direct

numerical simulations have captured the modulation of the instability due to wave

entrapment between the returning surfaces that are not describable by the normal

mode approach. The extension of simulation from linear to non-linear instability also

demonstrated substantial effects of compressibility on eddy structure and growth.

Two kinds of energy dissipations in the non-linear development have been identified.

Level of the radiation dissipation reduces gradually as the convective Froude num-

ber rises from 0.1 to 1.4. This is consistent with gradual reduction in mixing layer

thickness growth rate. Moreover the eddy-shocklet structure appears once there is

total energy dissipation through shocklets.

6.1 Contributions to Knowledge

A reliable numerical method was developed for accurate and stable simulations

of complex flows involved in supercritical to subcritical transitions. This method

works equally well for subcritical and supercritical flows. Moreover this method has

advantage over conventional approach in shallow flow simulations using the Riemann

solver. It does not have the source term difficulty of the Riemann solver. Calculation

can be carried out directly for flow over channel bottom topographic variation, with-

out the modification of the numerical scheme. In addition to the development of the
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reliable numerical method, the thesis has also made contributions to the modelling

and analysis of high speed flows in interaction with low speed subcritical flow. To the

best of our knowledge, the present investigation is the first comprehensive descrip-

tion of flow diversion from a main channel to the side using the Ritter’s similarity

variable covering a wide range of Froude numbers from subcritical to supercritical

main flows. Furthermore, the direct numerical simulations have explained the hy-

drodynamic instability of shear flow beyond the range that can be analyzed by the

classical method. Quantitative evaluation of energy dissipations due to wave radia-

tion and formation of shock waves are given to explain the impact of compressibility

on the development of non-linear instability.

6.2 Recommendations to Future Work

In this thesis numerical method has been developed and applied to three super-

critical to subcritical transitions in shallow flows. The extension of this method to

non-uniform mesh with local refinement is the immediate future plan. Other future

area of investigation is exploration of two phase flows simulations. In particular,

our interest is to investigate the energy dissipation mechanism and air entrainment

process associated with hydraulic jumps.

123



REFERENCES

[1] M. B. Abbott. An introduction to the method of characteristics. 1966.

[2] N. J. Balmforth. Shear instability in shallow water. Journal of Fluid Mechanics,
387:97–127, 1999.

[3] M. E. Barone, W. L. Oberkampf, and F. G. Blottner. Validation case study:
Prediction of compressible turbulent mixing layer growth rate. AIAA journal,
44(7):1488–1497, 2006.

[4] S. F. Birch and J. M. Eggers. A critical review of the experimental data for
developed free turbulent shear layers. 1973.

[5] W. Blumen, P. G. Drazin, and D. F. Billings. Shear layer instability of an
inviscid compressible fluid. part 2. J. Fluid Mech, 71(2):305–316, 1975.

[6] S. Bouhairie and V. H. Chu. Two-dimensional simulation of unsteady heat trans-
fer from a circular cylinder in crossflow. Journal of Fluid Mechanics, 570:177–
215, 2007.

[7] P. Bradshaw. Compressible turbulent shear layers. Annual Review of Fluid
Mechanics, 9(1):33–52, 1977.

[8] G. L. Brown and A. Roshko. On density effects and large structure in turbulent
mixing layers. Journal of Fluid Mechanics, 64(04):775–816, 1974.
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