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Abstract

Synchronous Reluctance Motors (SynRMs) have become more and more popular as a sub-

stitute for PMSMs for traction applications due to the lack of rare earth permanent magnets

in their structure. Considering the noise and vibration, reluctance motors are known to

have relatively inferior performance, i.e. they can be quite loud. In this case, develop-

ing design guidelines for mitigating noise and vibration levels is very important for these

machines. Developing comprehensive guidelines, i.e. design knowledge, on the effects of

modifying any geometrical, electrical or winding related variable on SynRM loudness is a

significant challenge. Based on studies of other machines, a systematic study on the effects

of changing some important design variables on SynRMs can be applied.

This thesis proposes a neural network based prediction model for estimating the loud-

ness level in a SynRM using an electromagnetic simulation model. We calculated the

natural mode frequencies of several stator models corresponding to different geometric con-

figurations. Then, we used a Generalized Regression Neural Network (GRNN) to predict

the natural mode frequencies of the stators. The slot number, tooth width, slot depth,

tooth tip thickness and tang angle were the inputs to this neural network. We obtained

the airgap flux density values using the Infolytica software MagNet. Then, we successfully

calculated the predicted loudness level value of the SynRM models by using an analytical

method. Finally, we discussed some parameters which influence the loudness.
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Résumé

Les moteurs synchrones de réluctance (SynRM) sont devenus de plus en plus populaires

en tant que substitut aux PMSM pour les applications de traction en raison de l’absence

d’aimants permanents de terres rares dans leur structure. En considérant le bruit et la vi-

bration, on sait que les moteurs à réluctance ont une performance relativement inférieure,

c’est-à-dire qu’ils peuvent être très forts. Dans ce cas, l’élaboration de directives de con-

ception pour atténuer le bruit et les vibrations est très importante pour ces machines. L

’élaboration de directives complètes, c’est - à - dire les connaissances de conception, sur les

effets de la modification de toute variable géométrique, électrique ou liée à l’ enroulemen-

t sur la sonorité SynRM est un défi important. Sur la base d’études d’autres machines,

une étude systématique des effets de la modification de certaines variables de conception

importantes sur les SynRM peut être appliquée.

Cette thèse propose un modèle de prédiction basé sur le réseau neuronal pour estimer le

niveau de loudness dans une SynRM en utilisant un modèle de simulation électromagnétique.

Nous avons calculé les fréquences en mode naturel de plusieurs modèles de stators corre-

spondant à différentes configurations géométriques. Ensuite, nous avons utilisé un réseau

neuronal de régression généralisée (GRNN) pour prédire les fréquences en mode naturel

des stators. Le nombre de fentes, la largeur des dents, la profondeur de la fente, l’épaisseur

de la pointe de la dent et l’angle de tangage étaient les entrées de ce réseau de neurones.

Nous avons obtenu les valeurs de densité de flux d’airgap en utilisant le logiciel Infolytica

MagNet. Ensuite, nous avons calculé avec succès la valeur de niveau d’intensité prédite

des modèles SynRM en utilisant une méthode analytique. Enfin, nous avons discuté de

certains paramètres qui influent sur le volume sonore.
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Chapter 1

Introduction

1.1 Motivation

It is estimated that more than 65% of the electrical energy produced in developed countries

is consumed by electric motors which are often embedded in larger systems as an integral

part. Their noise immensely affects the overall noise of the system, [1] and its mitigation is

also a significant design challenge for the machines. The sources of the noise are the elec-

tromagnetic force, which is the dominating one, the mechanical force and aerodynamic. [2]

In order to calculate the loudness, a series of electromagnetic and structural simulations

are required which are computationally time-consuming. In this case, building a compu-

tationally efficient prediction model which can estimate the loudness level of the noise of

the motor is necessary, as it can not only help identify the optimal parameters for less

noisy motors but also be good for reducing the noise and vibration levels, which can bring

environmental benefits.

Synchronous Reluctance Motors (SynRMs) have become more and more popular as a

substitute for Permanent Magnet Synchronous Motors (PMSMs) for traction applications

due to the lack of rare earth permanent magnets in their structure. However, they can

2017/04/16



1 Introduction 2

be quite loud. A noiseless environment is an important factor in a healthy lifestyle. This

research may help in this area by predicting the noise level caused by electromagnetic

sources in SynRMs.

1.2 Introduction to Loudness

In physics, sound is a vibration that propagates an audible mechanical wave of pressure

and displacement, through a medium such as air or water. In physiology, sound is the

sensation of such waves by the brain.

Loudness is the characteristic of a sound. And it is also primarily a correlate of physical

strength (amplitude). “More formally, it is defined as that attribute of auditory sensation

in terms of which sounds can be ordered on a scale extending from quiet to loud” [3]. The

Decibel (dB) is the unit of the loudness and can be calculated by Sound Pressure Level

(SPL) or Sound Power Level (SWL).

The defination of the decibel is [4]:

dB = 10log10(
SPL

Reference Level
) (1.1)

or

dB = 10log10(
SWL

Reference Level
) (1.2)

Here, the unit of SPL is the Pascal, and the unit of SWL is the Watt. According

to [2], [5] and [4] : For SPL, the reference level is 2× 10−5Pascals, for SWL, the reference

level is 10−12Watts. The reference level is a constant which can help us to compute the

loudness level. As we know from the above that loudness is a correlate of physical strength

(amplitude), so it makes sense that the units of pressure (Pascal) or power (Watt) are

brought in to calculate the value of loudness.
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1.3 Research Background

In the study done by Rakib Islam and Iqbal Husain in 2010 [2], they discussed the noise

and vibration in PMSM motors caused by electromagnetic forces and how to calculate the

loudness. They used 9slot/6pole (9s6p), 12slot/10pole (12s10p), 12slot/8pole (12s8p) and

27slot/6pole (27s6p) motors as examples, proposing a procedure to calculate the magnetic

forces on the stator teeth. Then they developed an analytical model that predicted the

radial displacement of the stator teeth, and which can be used for calculating the sound

power level. From their study, the formula to calculate the tangential and radial components

of the forces was introduced. Using it, the instantaneous value of radial pressure can

be obtained. Then their paper discusses the mode shapes and radial forces. Once the

radial stress has been calculated, the radial displacement can be obtained. Meanwhile,

they talk about how to calculate the sound power level of the acoustic noise by using the

displacement. Finally, they use the sound pressure level to calculate the values of loudness.

As a conclusion, the paper proposes an analytical model that uses radial displacement as

the input to determine the sound power level then uses the sound power level to calculate

the loudness value.

Following on from Rakib Islam and Iqbal Hussain’s work, Mohammad S.Islam, Rakib

Islam and Tomy Sebastian introduced an improved version [5]. In their research, they focus

on PMSM motors in configurations such as 12slots/10poles, 9slots/6poles, 12slots/8poles,

15slots/10poles and 27slots/6poles. In the paper, the authors indicate the relationship

between the displacement amplitude and the vibration mode orders for various slot/pole

configurations. The main difference in these two papers is the method used to calculate

the loudness value. Where [2]uses the sound power level , [5] uses the sound pressure level

to calculate the loudness value.

In Jacek F. Gieras, Chong Wong, Joseph C S. Lai and Nesimi Ertugrul’s work [6], they
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propose a procedure for a Permanent Magnet Brushless Motor (similar to a PMSM motor).

As in the previous study, they also assume the magnetic force is the main source of the

noise. From their research, it can be seen that the formulas of magnetic pressure in the air

gap between the stator and the rotor are same as the ones given in [2] [5]. The procedure

is approximately the same as [2], [5] using the displacement in the stator as an input to the

model to calculate the loudness. To some extent, their research is better than the previous

work because the authors show the formulas which calculate the amplitude of the stator

more explicitly.

1.4 Synchronous Topologies

An electric motor consists of two main parts: a stationary stator comprised of excitation

windings and a rotor free to rotate about its shaft or axis of rotation. A rotating magnetic

field is generated by exciting the multiphase stator windings in a continuous or stepwise

approach. Through the principle of electromechanical energy conversion [7], the rotor is

forced to rotate and align itself with the stator magnetic axis thereby producing torque.

The total motor torque produced at a specific rotational speed can be subdivided into

two torque components: the permanent magnet (PM) torque and the reluctance torque.

The PM torque is produced by the interaction of the stator field with a fixed-magnitude

rotor PM field, while the reluctance torque is generated by naturally aligning the rotor’s

magnetic axis with the stator’s in order to minimize the overall reluctance of its magnetic

flux path. Electric motors can be divided into different classes by different combination-

s of these two torque components, which can be seen in Fig. 1.1: (a)Surface-Mounted

Permanent-Magnet (SMPM) motors which only produce PM torque, (b) and (c) Vari-

able Reluctance motors which only produce reluctance torque, and (d) Interior Permanent

Magnet (IPM) motors produce both torque components.
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(a) Surface-Mounted
PM AC Machine

(b) Switched Reluc-
tance AC Machine

(c) Synchronous Re-
luctance AC Machine

(d) Interior PM AC
Machine

Fig. 1.1 Cross-Sections of Selected Synchronous Electric Machines

[8]

1.4.1 Permanent Magnet Machines

Most of the current Hybrid Electrical Vehicle (HEV) manufacturers utilize permanent mag-

net motors, such as SMPM or IPM motors. The PMs buried inside the rotor segment

provide a constant rotor magnetic field which interacts with the stator field to produce PM

torque at a given angular speed. The benefits of these machines are high torque-to-rotor

volume density, efficiency levels and Constant Power Speed Range.

1.4.2 Variable Reluctance Machines

There are two main types of rotor structures shown under the Variable Reluctance Machine

topology which is shown in Fig.1.2 [9]: (a) the Switched Reluctance Motor (SRM), (b) and

(c) the Synchronous Reluctance Motor (SynRM). The only difference for (b) and (c) is

their axis for stacking laminations. SRMs utilize a salient rotor with a salient stator, while

the SynRMS use a salient rotor with a cylindrical stator. Salient stators consist of phase

windings wound across individual stator poles, while cylindrical stators utilize sinusoidally-

distributed windings similar to the Induction Machine (IM).
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1.4.3 Synchronous Reluctance Motors

The Synchronous Reluctance Motor (SynRM) has a salient rotor structure and a cylindri-

cal stator. It was first introduced by Kostko as the reaction synchronous motor, its stator

produces a rotating field which is opposed to its doubly-salient SRM counterpart [10]. Kos-

to’s rotor in Fig.1.3 [10] shows multiple iron laminations separated by insulated air layers

to create a high magnetic saliency. Through an ideal set of sinusoidally-distributed coils

excited by balanced sine wave currents, a smoothly-rotating stator field is produced in or-

der to force the salient rotor to rotate and align its primary magnetic axis with the stator

field. There have been various names of this singly-salient machine topology: Synchronous

Reluctance Machine (SynRM), Reluctance Synchronous Machine (RSM) and Reluctance

Machine (RM). In order to simplify, the name Synchronous Reluctance Machine is main-

tained throughout this thesis.

An asynchronous operation is required to raise the motor speed from zero before locking

it to synchronism because this synchronous machine does not start at synchronous speed.

One approach is to incorporate a squirrel-cage within the SynRM rotor to enable line-start

operation through the electromagnetic induction principle. Different SynRM rotors with

squirrel-cage structures are illustrated in Fig.1.4 [11] [12] (a),(b) and (c).

Due to the development of modern power electronics in the past decades, new motor

Fig. 1.2 Variable Reluctance Rotor Laminations :(a) Switched Reluctance
Motor, (b) ALA Synchronous Reluctance Motor, (c) TLA Synchronous Re-
luctance Motor

[9]
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Fig. 1.3 Kostko’s Rotor for the Reaction Synchronous Motor

[10]

Fig. 1.4 Evolution of SynRM Rotor

[11] [12]

control methods have been developed. For example, Field-Oriented Control (FOC), enabled

variable frequency and motor speed operation. This FOC strategy eliminates the need for a

line-start cage in exchange for a rotor position sensor or sensorless position techniques [13].
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In Fig.1.4 [11] [12] (d),(e) and (f) utilize a high number of iron lamination and air insulation

layers in an alternating manner to increase the rotor saliency and ability for sensorless

position control.

1.5 Thesis Objectives

According to [2] [5] [6] the acoustic noise is generated from the radial displacement of

the stator due to the electromagnetic force. The harmonics of the radial force can excite

different stator modes, and each mode has its own shape. The mode shape of the stator

is directly influenced by the natural mode frequency, [2] [5] [6]. Hence the amplitude of

the radial displacement is a function of the natural mode frequency of the stator and the

electromagnetic force in the air gap. Although the previous research focused on Permanent-

Magnet Synchronous Motors (PMSMs), from §1.4 we can see that the PMSM and the

SynRM share the same stator structure, so the acoustic noise calculation procedure in

previous research can be repeated in this thesis. To conclude, loudness is a function of the

natural mode frequency of the stator, the electromagnetic force wave and other parameters

such as pole number, stator mass, etc.

Meanwhile, the natural mode frequency of the stator is determined by the following

geometric parameters: tooth-width, slot-depth, tooth-tip thickness, tang-angle and number

of slots. Currently, there are two ways to obtain the natural mode frequency of the stator.

The first method uses an analytical computation method [1] [2], however, it doesn’t take

into account the effect of variations of stator tooth geometries such as tooth tang angle,

tooth tip thickness etc. An alternate approach applies using the Finite Element Analysis

(FEA)-based structural analysis software, such as Nastran [14], which is time- consuming.

In this research, a neural network (NN) prediction model is proposed. Generally, a NN

prediction model means that a model with multiple inputs can have multiple outputs as
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the estimation values. It is trained by a large true dataset. Using the software Nastran [14]

we have built a large dataset, then using a neural network, we have built a prediction model

which can estimate the natural mode frequency with an acceptable relative error rate. This

is one of two original contributions in this thesis.

This thesis follows the loudness calculation procedure used for PMSM, and applies it

to the SynRM. The second original contribution is to apply the NN model to the loudness

calculation procedure in single barrier SynRMs. Hence a prediction model for estimating

the loudness in SynRMS can be obtained.
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Chapter 2

Introduction to Generalized

Regression Neural Networks

2.1 Artificial Neural Networks Theory

2.1.1 Brief Introduction of Artificial Neural Networks

Artificial Neural Networks (ANNs) are models which are inspired by biological neural net-

works (the central nervous systems such as the brain). They are used to approximate

functions that can base on a large number of inputs. In general, ANNs are specified by:

the Architecture, the Activity Rule and the Learning Rule [15].

The Architecture specifies the relationship between the variables and the network in-

volved.

The Activity rule defines how the activities of the neurons change in response to each

other. It depends on the weights (the parameters) in the networks.

The Learning rule defines how the weights of neural networks change with time. It

usually depends on the activity of the neurons.
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2.1.2 Neural Network Models

Generally, neural network models are considered as artificial neural networks (ANNs). Usu-

ally, these are mathematical models which define a function f: X → Y, but models can

be also associated with a learning algorithm or learning rule. The phrase“Artificial Neural

Network Model” is a definition of a class of such functions (where members of the class are

obtained by varying parameters, connection weights, or specifics of the architecture such

as the number of neurons or their connectivity).

Network Function

“A Network” means the interconnections between the neurons in different layers of the

system. Using a three layer system as an example, the first layer has input neurons that

can send data via synapses to the second layer of neurons and then via more synapses to

the third layer, the output layer. There will be more layers of neurons when the systems are

more complex. The synapses that store parameters are called “weights” and can manipulate

the data in calculations.

2.1.3 Learning Algorithms of Neural Networks

The most interesting thing in neural networks is learning. When we are given a task to

solve, for a class of functions F learning means utilizing a set of observations to find f ∈ F

such that the task can be solved.

There are several algorithms which can be used for training ANN models; most of them

can be considered as the application of optimization theory and statistical estimation.

Backpropagation Methods, Evolutionary methods [16], gene expression programming

[17], simulated annealing [18], expectation-maximization, non-parametric methods and par-

ticle swarm optimization [19] are some methods used for training neural networks.
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2.2 Generalized Regression Neural Networks

2.2.1 Brief Introduction of GRNN

In 1991, Specht proposed the Generalized Regression Neural Network (GRNN) [20]. The

GRNN has been widely applied in signal image processing [21], structural analysis [22],

system design [23], the financial area (predict the risk of stocks and rate of exchange)

[24],and in bioengineering problems [25,26].

Generally, NNs are trained to map from a specific input to a particular target output

until the network output matches the target. Thus, the NN can learn the mapping. The

learning ability of a NN depends on its architecture and applied algorithm used during

the training. Commonly used neural networks are the Back Propagation Neural Network

(BPNN) and the Radial Basis Neural Network (RBNN).

The Back Propagation Neural Network (BPNN) is one of the most widely applied neural

network models. It is a multi-layer feedforward network which uses a sigmoid function as

the activation function and is trained with the error back propagation algorithm. [27]

The Radial Basis Neural Network (RBNN) is a kind of artificial neural network which

uses the radial basis function as an activation function. A radial basis function (RBF) is

a real-valued function whose value depends only on the distance from the origin, so that

φ(x, c) = φ(||x − c||), any function φ that satisfies the property φ(x) = φ(||x||) is a radial

function. For the RBNN, the predicted result of the network is the linear combination of

radial basis functions of the input and the neuron parameters.

In this thesis, the GRNN (General Regression Neural Network) is introduced to predict

the results. A GRNN could be viewed as a variation of the RBNN, it does not demand the

iterative training procedure used in BPNN. It estimates any arbitrary function between

input and output vectors, drawing the function estimates directly from the training data.

Additionally, it is consistent in that, as the size of the training set becomes large, the
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estimation error approaches zero.

2.2.2 Theory of the GRNN

The GRNN is a memory-based NN that supplies estimates of continuous variables and

convergence to the underlying (linear or nonlinear) regression surface. Its principle advan-

tages are fast learning and convergence to the optimal regression surface as the number

of samples becomes very large. Actually, the GRNN is a method of regression which uses

the probability density function (PDF). Thus the approach is not limited to any particular

function and requires no prior knowledge

The GRNN estimates the joint PDF using nonparametric estimators to get the condi-

tional PDF and then get the expected value as the predicted result of regression.

Assume that f(x, y) is the known joint continuous probability density function of a

vector random variable, x, and a scalar random variable, y. Let X be a particular measured

value of the random variable x.The regression of y on X (also the conditional mean of y

on X) is given by:

E[y|X] =

∫ +∞
−∞ yf(X, y)dy∫ +∞
−∞ f(X, y)dy

(2.1)

Since the density f(x, y) is not known, it should be estimated from a sample of obser-

vations of x and y,

f(X, Y ) =
1

(2π)(p+1)/2σp+1n
·

n∑
i=1

exp[−(X −Xi)
T (X −Xi)

2σ2
] exp[−(Y − Yi)

2σ2
] (2.2)

Here, Y is the target value of y when given observed value X. p is the dimension of the

vector variable x. σ is the smoothing factor, it controls the shape of f(X, Y ), usually it has

some experienced values. The method to obtain the optimal smoothing factor is shown in
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§2.2.4. Define the scalar function D2
i ,

D2
i = (X −Xi)

T (X −Xi) (2.3)

Integrating all the equations above, the conditional mean can be presented as the following:

Y (X) =

∑n
i=1 Yi exp(−D

2
i

2σ2
)∑n

i=1 exp(−D
2
i

2σ2
)

(2.4)

2.2.3 Structure of GRNN

A GRNN is made up of four layers: input layer, pattern layer, summation layer and output

layer. The number of input units in the input layer depends on the total number of the

observation parameters, the vector X. The first layer is connected to the pattern layer and

in this layer the f(x, y) is determined. The pattern layer is connected to the summation

layer. There are two different types of summations in the summation layer, which are

a single division unit and summation unit. The summation and output layer together

perform a normalization of the output set. In the training of the network, radial basis

and linear activation functions are used in the pattern, the summation and the output

layers. Each pattern layer unit is connected to the two neurons in the summation layer, the

summation unit and the division unit. The summation unit computes the sum of weighted

responses of the pattern layer. On the other hand, the division unit is used to calculate

un-weighted outputs of the pattern neurons. The output layer merely divides the output

of each summation unit by that of each division unit, yielding the predicted response to an



2 Introduction to Generalized Regression Neural Networks 15

unknown vector. Equation (2.4) can be rewritten as

Y (X) =

∑n
i=1Ai exp(−D

2
i

2σ2
)∑n

i=1Bi exp(−D
2
i

2σ2
)

(2.5)

Here the summation unit is actually the numerator of the equation (2.5), while the

division unit is the denominator of the equation (2.5). The architecture for the GRNN is

shown in Fig.2.1:

Fig. 2.1 GRNN Diagram

[20]

2.2.4 Optimize Smoothing Factor

The Y (X) can be viewed as a weighted average of all the Yi, which are the observed values.

Each observed value is weighted exponentially depend on its Euclidean distance from X.

When the smoothing factor σ becomes large, the estimated density is made to be smooth

and in the limit becomes a multivariate Gaussian with covariance σ2
i . On the contrary, a
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smaller value of σ allows the estimated density to assume non-Gaussian shapes, but with

the hazard that outliers may have a too great an effect on the estimate. As σ becomes very

large, Y (X) assumes the value of the sample mean of the observed Yi, and as the σ goes to

0, Y (X) assumes the value of the Yi associated with the observation X. For intermediate

values of σ, all Yi are taken into consideration, but those which correspond to the points

closer to X are given heavier weight.

When the underlying natural distribution is unknown, it is unable to determine an

optimum σ for a given number of observations n. Hence, it is necessary to find σ on an

empirical basis. This can be realized easily when the density estimate is being utilized in

a regression equation, as there is an intuitive standard that can be utilized for evaluating

each value of σ, namely, the mean square error between Yj and the estimate Y (Xj). [28]

proposes a method to confirm the optimal value of the smoothing factor:

(1) Let the smoothing factor increase with a stepsize4σ in a specific range (σmin, σmax);

(2) Save one or two training samples, using the rest to train the neural network, then

use the remaining samples to test the results;

(3) Use the network model to calculate the absolute value of the errors of the testing

samples, known as the prediction error;

(4) Repeat (2),(3), until all the training samples have been used as test samples once,

then calculate the average of the prediction error,

E =
1

n

n∑
i=1

|Yi − Y (Xi)| (2.6)

2.2.5 Advantages of GRNN

Compared with BP-neural network, its highly parallel structure and the learning procedure

makes it easily implemented on the hardware and removes the need for the time-consuming

back propagation.
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Compared to the radial basis neural network, it has a dynamic network structure. For

some specific problems, the number of observations can be sufficiently large so that it is not

practical to assign a separate unit to each sample. Various clustering techniques are used

to find representative samples to reduce the size of the training set. Forgetting functions

are taken into consideration to model a system with a changing characteristic and make it

more robust to the outliers. The idea of a forgetting function is to decrease the effects of

data which take only a small account. [20]

A GRNN is based on established statistical theories, and asymptotically converges with

an increasing number of samples to the optimal regression surface, yielding better results

than the BPNN or the RBNN.
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Chapter 3

GRNN Prediction Model of Stator

Natural Mode Frequency

3.1 Introduction of Stator Natural Mode Frequency

The magnetic radial force acting on the air gap between the rotor and stator can cause

the deformation of the stator rings [2] [29]. Deformations of the stator core for different

vibration modes are called ”mode shapes” [30]. The common vibration mode shapes can

be seen in Fig.3.1 [30]

From the Fig.3.1, we can conclude that the mode number m actually represents the

number of directions in which the magnetic forces act on the stator core. These modes can

be excited simultaneously. Mode 0 means the stator is not acted on by a force, it’s what

the undeformed stator looks like.

All the mode shapes have their own natural mode frequencies, each specific mode shape

can be excited when its natural mode frequency matches one of the excitation frequencies

of the magnetic radial force.

2017/04/16
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Fig. 3.1 Common Vibration Mode Shapes with mode number m

[30]

3.2 Parameter Introduction

In this thesis, we use a 33 slot 8 pole SynRM as the example. Its cross-section surface is

shown in the Fig.3.2. The main parts we need to consider in the stator are the tooth and

Fig. 3.2 Cross-section Surface of 33s8p SynRM
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slot which are shown in Fig.3.3. The natural mode frequencies are functions of the stator

Fig. 3.3 Tooth and Slot

geometry parameters [2]. Generally, each natural mode frequency corresponds to a unique

vibration mode shape and once the vibration mode shape is defined, the natural mode

frequency can be obtained. From Fig.3.2, Fig.3.3 and Fig.3.4 we can see that the tooth-

width (a), slot-depth (b), tang-angle (c), tooth-tip thickness (d) and the number of slots (n)

directly influence the stator shape. If these five parameters are fixed, the vibration mode

shape is defined, hence the natural mode frequency can be determined. To conclude, let

the natural mode frequency be y, the five parameters respectively are a, b, c, d, n, then there

is a function which makes y = f(a, b, c, d, n). As this function has never been given before,

an approach to finding it is to train a prediction model which uses these five parameters

as the inputs, and the natural mode frequency as the output.

3.3 Prediction Results and Validation

Using the FEA-based software, Nastran, a large dataset was created to train our GRNN

model. We assumed that the stator natural mode frequencies from FEA are relatively close
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Fig. 3.4 Stator Geometry Parameters

to the true values in the real situation. The dataset includes the 9 slots, 12 slots, 15 slots, 18

slots, 21 slots, 24 slots, 27 slots, 30 slots and 33 slots’ SynRM Stator models’ natural mode

frequencies which are from mode 1 to mode 10. Each kind of model has 882 specific models

for various tooth-widths, slot-depths, tang-angles and tooth-tip thicknesses. For example,

for Model No.1 in the 9 slots model, the geometry parameters are tooth width: 34.2mm, slot

depth: 36.65mm, tang-angle: 20◦, tooth tip thickness: 2.96mm , while the parameters for

Model No.2 in the 9 slots model are tooth width: 34.2mm, slot depth: 36.49mm, tang-angle:

20◦, tooth tip thickness: 2.96mm.

As explained in Chapter 2, the GRNN model has a smoothing factor. The value of the

smoothing factor will influence the GRNN model prediction performance. Our strategy

is to use the 9,12,15,18,21,24,27,30 slots’ data combined with a smoothing factor to train

the neural network prediction model, then use the cross validation method as explained in

Chapter 2 to confirm the optimal smoothing factor. After that, using the prediction model

to estimate the natural mode frequencies of the 33 slots stator and compare the values with

the ones from the FEA.
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As an example, some of the training samples of the 12 slots stator’s natural mode

frequencies are shown in Table.3.1.

Table 3.1 Part of the training samples of 12 slots stator natural mode fre-
quencies from mode 1 to mode 5 (Hz)

Model Number Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

1 296.467 788.145 1366.065 2269.985 2886.011

5 311.116 825.435 1437.602 2375.465 3025.157

10 326.109 867.85 1509.44 2503.343 3187.927

15 348.312 927.661 1616.718 2667.862 3399.279

20 370.955 987.997 1725.165 2828.927 3588.933

The parameters of the samples are shown in Table.3.2 and.3.3. The reason why we

show them in two tables is because, when constructing the training samples for the 1st half

of the samples, we keep the tang-angle and tooth tip thickness as constant with different

combinations of tooth width and slot depth, and for the 2nd half we keep the tooth width

and slot depth as constant and vary the tang-angle and tooth tip thickness.

Table 3.2 Geometry Parameters of 1st Half Training Samples

Number of Slots Tooth Width (mm) Slot Depth (mm) Tang Angle (◦) Tooth Tip Thickness (mm)

9 34.2∼41.8 33.35∼36.65 20 2.969

12 13.5∼16.5 29.5∼33.5 20 2.2

15 17.64∼21.56 24.44∼29.36 26 2.69

18 13.734∼16.786 25.914∼30.566 16 2.69

21 11.664∼14.256 27.014∼31.466 18 2.96

24 10.134∼12.386 30.314∼34.166 20 2.69

27 8.262∼10.098 31.7∼35.3 20 2.2

30 8.334∼10.186 32.91∼36.29 20 2.69
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Table 3.3 Geometry Parameters of 2nd Half Training Samples

Number of Slots Tooth Width (mm) Slot Depth (mm) Tang Angle (◦) Tooth Tip Thickness (mm)

9 38 35 18∼22 2.664∼3.256

12 25 35.7 18∼22 1.98∼2.42

15 19.6 26.9 23.4∼28.6 2.664∼3.256

18 15.26 28.24 14.4∼17.6 2.664∼3.256

21 12.96 29.24 16.2∼19.8 2.664∼3.256

24 11.26 32.24 18∼22 2.421∼2.959

27 9.18 33.5 18∼22 1.98∼2.42

30 9.26 34.6 18∼22 2.421∼2.959

3.3.1 Cross-Validation

For training the prediction model, not only do we need the training dataset, but also we

need to pick a smoothing factor. Generally, there are four experience values, 0.3,0.5,0.7 and

1.0, which can be chosen as the alternative smoothing factor [20]. Then cross validation is

used to confirm the optimal smoothing factor. For our training dataset, we randomize the

dataset first, then divide it into nine parts. (This is still a Leave-One-Out approach. We

break the set into 9 parts and then use one of the parts as a cross-validation set while the

rest of the parts as the training sets, until all the parts have been used as the cross-validation

set. Usually, for a large dataset, we divide it into 10 folds doing the cross-validation to

save the computation time. Here, the size of the dataset is 882 multiplied by 8 models, 9

is the number that the dataset can be divided evenly.) Each time we use eight parts to

train the model and use the model we obtain to predict the values of the remaining part’s

outputs. Finally we compute the Root Mean Square Relative Error(RMSRE). Hence, for

each prediction model, we get a 9 × 10 RMSRE matrix. 9 is the number of the times of

the validation, 10 is the number of RMSRE corresponding to each natural mode frequency.

For example, the element in the 3rd row 1st column is the RMSRE of mode 1 for the 3rd
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time cross-validation. The RMSRE function is shown in equation (3.1):

RMSRE = |
√∑n

i=1(fpi − fmi
)/fmi

n
| × 100% (3.1)

fpi is the prediction value of the natural mode frequency of the ith model, while fmi
is

the “accurate” value from FEA. Here n = 784 which is one ninth of the training samples.

Part of the cross-validation results, which are from mode 1 to mode 5, can be seen in

Table.3.4, Table.3.5, Table.3.6 and Table.3.7.

Table 3.4 Cross Validation Results Of the Prediction Model
with the Smoothing Factor 0.3

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

validation1 0.33% 0.33% 0.33% 0.33% 0.29%

validation2 0.42% 0.42% 0.43% 0.43% 0.38%

validation3 0.31% 0.31% 0.32% 0.32% 0.29%

validation4 0.37% 0.37% 0.37% 0.37% 0.37%

validation5 0.38% 0.38% 0.39% 0.37% 0.32%

validation6 0.38% 0.39% 0.39% 0.38% 0.33%

validation7 0.30% 0.31% 0.31% 0.31% 0.28%

validation8 0.34% 0.35% 0.35% 0.34% 0.31%

validation9 0.34% 0.34% 0.35% 0.35% 0.33%

It can be seen from the cross validation tables that the neural network model with

a smoothing factor 0.3 has the lowest RMSRE. So in this case, we have assumed that

smoothing factor 0.3 is optimal.
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Table 3.5 Cross Validation Results Of the Prediction Model
with the Smoothing Factor 0.5

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

validation1 0.69% 0.69% 0.70% 0.69% 0.62%

validation2 0.76% 0.76% 0.78% 0.74% 0.66%

validation3 0.68% 0.68% 0.69% 0.67% 0.58%

validation4 0.71% 0.71% 0.71% 0.71% 0.61%

validation5 0.69% 0.69% 0.70% 0.68% 0.58%

validation6 0.65% 0.66% 0.66% 0.65% 0.61%

validation7 0.73% 0.74% 0.75% 0.74% 0.67%

validation8 0.69% 0.70% 0.71% 0.71% 0.63%

validation9 0.65% 0.65% 0.66% 0.65% 0.60%

Table 3.6 Cross Validation Results Of the Prediction Model
with the Smoothing Factor 0.7

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

validation1 1.24% 1.25% 1.25% 1.22% 1.06%

validation2 1.24% 1.26% 1.26% 1.24% 1.07%

validation3 1.22% 1.23% 1.24% 1.21% 1.06%

validation4 1.19% 1.20% 1.21% 1.19% 1.07%

validation5 1.27% 1.29% 1.30% 1.28% 1.13%

validation6 1.19% 1.20% 1.21% 1.18% 1.02%

validation7 1.26% 1.27% 1.28% 1.27% 1.12%

validation8 1.18% 1.20% 1.20% 1.17% 1.01%

validation9 1.13% 1.15% 1.15% 1.14% 1.00%
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Table 3.7 Cross Validation Results Of the Prediction Model
with the Smoothing Factor 1.0

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

validation1 1.24% 1.25% 1.25% 1.22% 1.06%

validation2 1.24% 1.24% 1.26% 1.24% 1.07%

validation3 1.22% 1.23% 1.24% 1.21% 1.06%

validation4 1.09% 1.20% 1.21% 1.19% 1.07%

validation5 1.27% 1.29% 1.30% 1.28% 1.13%

validation6 1.19% 1.20% 1.21% 1.18% 1.02%

validation7 1.26% 1.27% 1.28% 1.27% 1.12%

validation8 1.18% 1.20% 1.20% 1.18% 1.01%

validation9 1.13% 1.15% 1.15% 1.14% 1.00%

3.3.2 Test With 33 Slots’ Data

As we explained before, for the first half of models from FEA, the tang angle and tooth tip

thickness were kept constant, for the second half, the tooth width and slot depth were kept

constant. The geometric parameters of the 33 slots stator are shown in Table.3.8. Using

Table 3.8 Geometry Parameters of 33 Slots’ Stator

1st Half 2nd Half

Tooth Width (mm) 6.966∼8.514 7.74

Slot Depth (mm) 34.23∼37.37 35.8

Tang Angle (◦) 25 22.5∼27.5

Tooth Tip Thickness (mm) 1.58 1.422∼1.738

the neural network model which was trained on 9,12,15,18,21,24,27 and 30 slots example,

the accuracy is tested by comparing the prediction value and the FEA value of the natural

mode frequency of the 33 slots stator. The relative error is designed to show how close the
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prediction value is to the FEA value. The function for the relative error of the jth mode

of the ith model is shown below:

ErrorRelative = |
fpij − fmij

fmij

| × 100% (3.2)

Here fpij is the prediction value of the jth mode of ith model’s frequency, while fmij
is the

FEA value.

As there are 882 samples and each sample has 10 mode frequencies, there are 8820

relative error results in total. Some of the model’s relative errors from mode 1 to mode 5

are listed in Table.3.9

Table 3.9 Part of the Relative Error of 33 slots stator

Model No. Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

10 6.86% 7.46% 8.72% 11.96% 18.54%

100 3.22% 3.48% 4.37% 6.85% 11.97%

200 7.71% 8.36% 9.07% 11.11% 15.09%

300 14.80% 15.56% 16.30% 17.75% 20.06%

400 24.22% 25.32% 25.89% 27.17% 28.83%

500 7.77% 8.41% 9.08% 11.02% 14.69%

600 7.80% 8.47% 9.16% 11.08% 14.73%

700 7.84% 8.49% 9.20% 11.10% 14.77%

800 7.85% 8.54% 9.20% 11.12% 14.83%

Table.3.10 shows the range of the relative error from the 882 samples under each mode

of the 33 slot stator.

Morover, we use the neural network model which was trained with 7 slot numbers (9,

12, 15, 18, 21, 24, 27) to determine the prediction accuracy for the 33 slot stator if there

are fewer training samples. Some of the model’s relative errors from mode 1 to mode 5 are
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Table 3.10 Range of the Relative Error of 33 slots stator

Maximum Minimum Average

Mode1 24.41% 0.03% 8.62%

Mode2 25.48% 0.0004% 9.21%

Mode3 26.00% 0.02% 9.88%

Mode4 27.21% 0.30% 11.76%

Mode5 33.31% 2.39% 15.54%

listed in Table.3.11

Table 3.11 Part of the Relative Error of 33 slots stator
(trained by 7 slot numbers)

Model No. Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

10 15.79% 16.22% 16.87% 18.91% 22.96%

100 11.85% 11.91% 12.19% 13.48% 16.14%

200 16.72% 17.19% 7.25% 18.01% 19.38%

300 24.39% 24.98% 25.02% 25.05% 24.54%

400 34.60% 35.53% 35.33% 35.07% 33.64%

500 16.77% 17.24% 17.25% 17.89% 18.95%

600 16.81% 17.32% 17.34% 17.98% 19.00%

700 16.86% 17.34% 17.40% 18.01% 19.06%

800 16.88% 17.40% 17.40% 18.04% 19.14%

Table.3.12 shows the range of the relative errors from the 882 samples under each mode

of the 33 slot stator which are predicted by the neural network trained by 7 different slot

numbers.

Fig.3.5 and Fig.3.6 illustrate the comparison of the relative error of mode 1 and mode 3

from two different neural network models trained by training set (P) and training set (P*).
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Table 3.12 Range of the Relative Error of 33 slots stator
(trained by 7 slot numbers)

Maximum Minimum Average

Mode1 34.81% 3.63% 17.17%

Mode2 35.71% 3.85% 17.62%

Mode3 35.44% 3.33% 17.69%

Mode4 35.10% 2.82% 18.35%

Mode5 38.28% 1.85% 19.45%

The triangle (P) training set given the natural frequencies for stator cores ranging from 9

to 30 slots (8 different slot number) while the squares (P*) correspond to those between 9

and 27 (7 different slot number) slots. Clearly, the results using training set P are better

than those using P*. From the tables above and Fig.3.5 Fig.3.6, we can see clearly that

Fig. 3.5 Mode 1 error Comparison between NN model from two training set

more training samples, the more accurate the prediction model will be. Also, the GRNN

prediction model can estimate the natural mode frequencies of the stator well if given a

large training set.
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Fig. 3.6 Mode 3 error Comparison between NN model from two training set

3.4 Summary

In this chapter, we proposed our GRNN prediction model for estimating the natural mode

frequencies of the stator. The model was trained by using 8 different slot numbers (9, 12,

15, 18, 21, 24, 27, 30), and 4 different smoothing factors (0.3, 0.5, 0.7 and 1.0) were used in

training. Using the cross-validation method, we affirmed that 0.3 is the optimal smoothing

factor, so the GRNN model finally chosen is the one trained with 8 different slot number

with the smoothing factor 0.3. Once the prediction model was obtained, it was tested with

the 33 slot data and then the values both from our GRNN model and the values from FEA

were compared to compute the relative error.

We also computed the relative error resulting from the GRNN models trained with

different training samples, the results show that if there are more training sets, the GRNN

model will be more accurate.

Moreover, it seems that the prediction results have an error around 15% which is bigger

than the cross-validation results. Predicting the test data of slot 33 is performing an

extrapolation of the dataset (only has the slot 9/12/15/18/21/24/27/30). This may be one

explanation of the error. An alternate test would be to include the 33 slots data in the

training set and then leave out an alternate set of data, e.g. slot 18, and test the network

prediction for this data. Another possibility is that the data has been over-fitted by the
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network. Further tests are needed to determine which of these is the reason of the error.
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Chapter 4

Loudness Calculation

In the last chapter, we built a GRNN prediction model for estimating the value of the

stator’s natural mode frequencies. In this chapter, we are going to use them to implement

the loudness calculation.

Looking back at the principle of how acoustic noise is generated in motors, there are

three sources which are aerodynamic,mechanical and electromagnetic. As the electromag-

netic source is the dominant one, we are only discussing the noise with an electromagnetic

origin in this thesis. This is a result of the radial magnetic force due to the magnetic flux

density waveforms in the air gap between the stator and the rotor [2] [6].

The strategy is that we calculate the pressure wave in the air gap so that the radial

forces can be determined, then combining it with the natural mode frequencies of the stator,

the radial displacements in the stator can be determined. Using the radial displacements

we can calculate the total sound pressure level which can help us estimate the loudness

value. In this case, the loudness value is a function of radial displacements, and these

are functions of natural mode frequencies. We can utilize our GRNN model to predict the

values of the radial displacements and thus predict the values of the loudness. The diagram

of this strategy is shown in Fig.4.1

2017/04/16
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Fig. 4.1 Strategy Diagram

4.1 Pressure Wave in The Air Gap

The force in the air gap can be divided into Frad which is in the radial direction and Ftan

which is in the tangential direction. They are shown in the Fig.4.2.

The forces can be calculated by the equations given in [1]

Ftan =
Lstk
µ0

∮
l

BtBrdl (4.1)

Frad =
Lstk
2µ0

∮
l

B2
r −B2

t dl (4.2)
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Fig. 4.2 Radial and tangential components of electromagnetic forces

Here, Bt and Br represent the tangential and radial components of the flux density in

the air gap, while Lstk is the stack length of the motor and l is the length of a line in

the airgap that encloses the contour that the force acts on. µ0 = 0.4π × 10−6H/m is the

magnetic permeability of free space. As we know that the magnetic permeability of the

ferromagnetic core is much higher than that of the air gap, the magnetic flux lines are

actually perpendicular to the stator and rotor surface. Thus we can conclude that the

radial component of flux is much larger than the tangential component, which means that

the tangential component can be neglected. Another thing we need to emphasize is that

the force per unit area is pressure. So for the value of radial pressure is as shown in the

equation (4.3), the unit is Pascal

Pr(α) ≈ Frad
Lstk.l

=
B2
r (α)

2µ0

(4.3)
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4.1.1 Flux Carrier and Flux Barrier of Rotor

The value of the flux density in the air gap is influenced by two main electromagnetic

components per rotor pole: the flux barrier and the flux carrier. Changing the width of

the flux barrier and the flux carrier can change the value of the flux density in the air

gap. Fig.4.3 shows these two parameters in the 8 pole case. A flux barrier consists of

a non-ferromagnetic material leading to a high magnetic reluctance path, while the flux

carrier is the opposite case.

Fig. 4.3 Width of the flux barrier and flux carrier in an 8pole SynRM rotor

[31]

Using the same stator configuration, we vary the width of the flux barrier and the flux

carrier to get different rotor structures so that we can get different distributions of flux

density in the air gap. We have designed 90 SynRM models which have the same stator

configuration with different rotor structures. Finally, we will compute the loudness level of

these 90 models.
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4.1.2 Value of Flux Density in The Air Gap

The value of the flux density in the air gap is a periodic function of the angle α in the air

gap.

Using the software MagNet [32] we obtained 2000 values for each model over a period

which correspond to the position from α = 0 to α = 360◦ in the air gap. Table. 4.1 shows

part of the example models’ (8poles 33slots) partial air gap flux density when the current

level is 100%. The unit of the flux density is Tesla(T ).

Table 4.1 Part of the models (8poles 33slots) partial air gap flux density
(T) with 100% current level

Model ID Wc (mm) Wb (mm) 0◦ 36◦ 72◦ 180 ◦ 270◦ 324◦ 360◦

15 18 2 0.86 0.88 0.84 0.24 0.78 0.64 0.86

30 12 14 0.72 0.74 0.72 0.04 0.49 1.19 0.72

45 10 2 0.78 0.75 1.18 0.15 0.59 1.02 0.78

60 6 14 0.54 0.58 1.09 0.00 0.17 0.36 0.54

75 4 8 0.53 0.34 1.36 0.02 0.17 0.52 0.53

90 2 4 0.61 0.65 1.01 0.06 0.48 0.50 0.61

Note that the value of flux density of model No.60 at 180◦ is actually 0.0004T .

4.1.3 Harmonics of the Pressure Wave

Using the equation (4.3), we can acquire the radial component of the pressure values P (α)

for each mechanical angle α. Table.4.2 shows part of the models’ partial air gap pressure

wave. The unit of the pressure wave is Pascal(Pa).

In order to determine the amplitude of the radial displacement of the stator, we need

to obtain the force which acts on the whole area of the inner surface of the stator. Only

the value of the pressure wave at each angle is not enough, it is necessary to acquire the
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Table 4.2 Part of the models partial air gap pressure wave (Pa)

Model ID 0◦ 36◦ 72◦ 180 ◦ 270◦ 324◦ 360◦

15 294869.10 307485.60 177108.30 23611.54 240979.30 165469.40 294869.10

30 208564.80 216818.90 130894.00 712.93 97215.78 592606.80 208564.80

45 240008.90 222269.40 318719.60 9418.55 138253.50 466664.60 240008.90

60 114580.70 134031.30 422740.80 0.07 11783.06 65823.08 114580.70

75 113589.60 44759.85 422412.40 113.15 11284.99 106968.90 113589.60

90 146679.60 1666609.00 235548.20 1211.11 90163.50 103383.20 146679.60

pressure wave which acts on the whole area. In this case, we determine the harmonics

of the pressure wave from its Fourier Series which is based on an assumption that every

periodic function can be represented by a sum of a (possibly infinite) set of simple oscillating

functions, namely sines and cosines (or, equivalently, complex exponentials). Here, for the

radial pressure wave Pr its real components of the Fourier Series can be represented as:

Pr(α) =
∑

Prncos(wnα + phn) (4.4)

Where Prn is the amplitude of the nth order harmonic pressure wave. wn is its frequency,

and phn is the phase, the unit is radian(rad).

Table.4.3 show part of our example model’s (Model No.1 in 8 pole 33 slots) parameter

values of the harmonic pressure wave.

The excitation frequency (fe) of each harmonic is an integer multiple of the machine

rotational frequency (fp) which is given by [33]:

fe(n) = n ∗ fp = n ∗ wrNp

120
n = 1, 2, 3 · · · (4.5)

Where n is the number of the harmonic order, wr is the rotor rotational speed with the
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Table 4.3 Part of the example models partial air gap pressure wave har-
monic parameters

Parameters

Harmonic Order
1 5 10 25 50 100

Pr(Pa) 35777.30 5827.75 11028.55 69059.00 6212.96 783.90

w(Hz) 0.16 0.80 1.60 3.98 7.96 15.92

ph(rad) -1.94 0.63 -2.46 -1.56 2.88 -0.99

unit of rpm, Np is the number of rotor poles. For instance, our example motor which is

8 poles 33 slots and has a rotational speed of 500 rpm, will have a rotational frequency

fp =
500 ∗ 8

120
= 33.33Hz. Table.4.4 and Table.4.5 show part of the example models’ (8poles

33slots) partial pressure wave harmonics amplitude, and their corresponding excitation

frequencies when the rotational speed is 500 rpm. The unit of the harmonic pressure wave

is Pascal(Pa). Fig.4.4 shows the harmonic amplitude spectrum of the Model No.1 of the

8 poles 33 slots motor.

Table 4.4 Part of the example models partial air gap pressure wave ampli-
tude (Pa)

Model ID

Harmonic Order
1 5 10 25 50 100

15 23522.33 4567.261 3664.807 79464.78 5777.191 4110.326

30 30998.35 5684.859 2521.488 59232.85 3005.929 4340.038

45 5882.313 3023.792 2991.961 57804.03 4618.66 2677.021

60 22007.58 6230.527 2981.778 69547.56 911.6741 2223.278

75 27956.87 4679.431 5198.736 63597.08 3073.733 2161.219

90 19278.27 3331.333 3122.424 55606.9 4737.735 4121.483

Table 4.5 Part of the harmonics excitation frequency (Hz)

Harmonic Order 1 5 10 25 50 100

Excitation Frequency (Hz) 33.33 166.67 333.33 833.33 1666.67 3333.33
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Fig. 4.4 Harmonic Amplitude Spectrum of the Example Model

4.2 Amplitude of The Radial Displacement of Stator

Since the harmonics of the pressure wave in the air gap have been obtained, we can de-

termine the radial displacement of the stator under each mode by the approach detailed

below.

4.2.1 Calculation Procedure

Again, the reason why we need to obtain the Fourier Series of the pressure wave in the air

gap is because we need to determine the pressure wave which acts on the whole area of

the inner surface of the cylindrical frame, so that the radial force can be determined. The

Fourier Series of the radial pressure wave (Pr) has been shown in the equation (4.4). The

Pr in the air gap can be viewed as the sum of the harmonic pressure waves, and each of

those can be seen as a single pressure wave which acts on the whole area. As we mentioned

before, the Pr is a periodic function of the angle α in the air gap from 0 to 2π. Prn is the

amplitude of the nth harmonic pressure wave. The radial force per unit area is the pressure

wave, so it can be obtained from the integration of the harmonic pressure wave over the

area of the inner surface of the cylindrical frame.

Note that the inner surface of the cylindrical frame Si can be determined by equation
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(4.6) where Ri is the inner radius of the stator; Lf is the stack length of the stator.

Si = 2π ∗Ri ∗ Lf (4.6)

We can determine the n th order harmonic radial force Frn in the air gap by the equation

(4.7), where l is the arc length, and l
Ri

is the angle corresponding to the arc length, dlf is

the differential of the stack length, Prn is the amplitude of the nth harmonic pressure wave.

Frn =

∫ Lf

0

∫ 2πRi

0

Prn ∗ cos(wn
l

Ri

+ phn)dldlf (4.7)

Equation (4.7) can be rewritten as

Frn =

∫ 2π

0

Prn ∗ cos(wnα + phn)dα ∗Ri ∗ Lf (4.8)

From Fig.4.4 we can see that the first 50 harmonics are the dominant ones. In order to

save the computation time we only use first 50 harmonics.

Each harmonic force will excite all the 10 mode shapes, while the displacement of the ith

mode shape excited by the nth order harmonic can be calculated by the equation (4.9) [1] [6]

Ain =
Frn/[(2πfmi

)2M ]√
[1− (fen/fmi

)2]2 + [2ζi(fen/fmi
)]2

(4.9)

Where fen is the excitation frequency of the nth order harmonic, fmi
is the stator

ith natural mode frequency, and i is in the range from 1 to 10. M is the mass of the

stator. ζi is the damping ratio of the ith mode which also affects the computation and

can be determined by equation (4.10) [34]. In engineering, the damping ratio is a measure

describing how oscillations in a system decay after a disturbance. The damping ratio is a

measure of describing how rapidly the oscillations decay from one bounce to the next.
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ζi =
1

2π
(2.76× 10−5fmi

+ 0.062) (4.10)

Equation (4.9) also explains the principle of resonance that the amplitude of the dis-

placement is actually influenced by the magnitude of the exterior force, which is Frn in the

equation and the closeness of fen and fmi
. Suppose that if fen is equal to fmi

, then the

denominator of this equation will be the minimum value, and the amplitude will be big.

As i is from 1 to 10, there will be 10 values of ζi which correspond to 10 stator natural

modes. So the results of Ain will be a 10× 50 matrix, each entry in the matrix represents

a displacement of a specific mode shape under each harmonic’s excitation. Then we can

obtain Ai which is the total displacement of a specific mode. For a given motor example,

there will be 10 Ai values which can be calculated by equation (4.11)

Ai =
∑
n

Ain (4.11)

4.2.2 Results

In this Chapter, we are using an 8 pole 33 slots SynRM as our example motor to show the

calculation procedure. For the loudness calculation, the configuration of the stator is the

same for all the example motors. The only difference is that we are changing the carrier

width and barrier width of the rotor part as we explained previously in this chapter.

The geometry parameters of the stator are listed in Table.4.6

We use two sets of the mode frequencies to compute the displacement, one is from the

FEA and we assume these mode frequencies are closer to the accurate values, the other

comes from the GRNN prediction model as we explained in Chapter 3. These two groups

of mode frequencies are listed in Table.4.7

Obviously, a different set of mode frequencies will determine a different value of the
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Table 4.6 Geometry parameters of the example motor stator

Number of slots 33

Tooth Width (mm) 7.74

Slot Depth (mm) 35.8

Tang Angle (◦) 25

Tooth Tip Thickness (mm) 1.58

mode displacement. Table 4.8 and Table 4.9 show part of the example motor’s mode

displacement in (µm) calculated with the mode frequencies from the FEA and GRNN

prediction models.

Both of the results show that, as the mode number increases, the displacement will

decrease. It can be seen that the first several modes have the most significant displacements

which show that they are the dominant modes.

4.3 Sound Pressure Level

We will determine the sound pressure level of each mode by the mode displacement.

4.3.1 Calculation Procedure

The unit of Sound Pressure Level (SPL) is Pascal(Pa), and SPLi, which is SPL of each

mode, can be calculated by equation (4.12)

SPLi = 2πρcfAi (4.12)

Where ρ is the air density with the unit kg/m3, c is the speed of sound, i.e. 344m/s, f is

the frequency of the displacement in Hz, from [5], we can find that the frequency of the

displacement depends on the pole number. For a 4 pole motor, the f = 4, for an 8 pole
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Table 4.7 Natural mode frequencies of the example motor (Hz)

FEA Value Prediction Value

Mode 1 317.389 342.375

Mode 2 850.174 922.971

Mode 3 1527.159 1668.301

Mode 4 2237.617 2487.711

Mode 5 2836.391 3258.907

Mode 6 3241.721 3807.919

Mode 7 3482.444 3868.841

Mode 8 3628.727 4282.128

Mode 9 3717.019 4529.449

Mode 10 3732.205 4692.866

motor, the f = 8 and for a 10 pole motor, f = 10. As we’ve determined the SPLi, the

total SPL can is given by equation (4.13)

SPL =
∑
i

SPLi (4.13)

4.3.2 Results

We also get two sets of SPL values which are from the two displacement sets. Table 4.10

shows part of the example model’s SPL value (Pa) from different displacements.

4.4 Loudness Results

The loudness level (Lw) in dB can be acquired from the sound pressure level.
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Table 4.8 Part of the example model’s radial displacement calculated with
mode frequencies from FEA (µm)

Model ID 1 2 3 4 5 6

Mode 1 135.92 60.05 141.16 23.99 36.10 101.27

Mode 2 141.06 10.90 145.35 26.56 39.83 104.93

Mode 3 34.31 26.67 35.39 17.44 30.56 34.78

Mode 4 34.02 26.69 34.99 17.74 30.17 34.28

Mode 5 13.37 11.29 12.05 8.63 9.61 10.48

Mode 6 13.29 11.23 11.96 8.58 9.52 10.40

Mode 7 5.28 4.47 5.07 3.73 4.32 4.69

Mode 8 5.27 4.46 5.07 3.72 4.31 4.68

Mode 9 3.24 2.75 3.14 2.31 2.69 2.92

Mode 10 3.23 2.74 3.13 2.30 2.68 2.90

4.4.1 Calculation Procedure

Lw can be calculated by equation (4.14), which is also the loudness definition equation.

Lw = 10 log10(
SPL

SPLref
) (4.14)

Where the reference sound pressure level (SPLref ) is 2× 10−5Pa.

4.4.2 Results

Table 4.11 shows part of the example models loudness level from the two different sources

of mode frequency
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Table 4.9 Part of the example model’s radial displacement calculated with
mode frequencies from the Prediction Model (µm)

Model ID 1 2 3 4 5 6

Mode 1 226.47 103.88 211.61 74.26 108.72 166.77

Mode 2 30.00 24.87 30.21 18.39 25.75 28.95

Mode 3 10.65 9.19 9.51 7.07 7.48 8.27

Mode 4 4.24 3.59 4.09 3.01 3.49 3.79

Mode 5 2.45 2.08 2.38 1.75 2.04 2.21

Mode 6 1.79 1.52 1.74 1.28 1.49 1.62

Mode 7 1.73 1.47 1.68 1.24 1.45 1.57

Mode 8 1.41 1.20 1.37 1.01 1.18 1.28

Mode 9 1.26 1.07 1.23 0.91 1.06 1.14

Mode 10 1.18 1.00 1.14 0.84 0.98 1.06

4.5 More Results and Discussion

In the last section, we used the 8 poles 33 slots model when the current level is 100% to

show the loudness calculation procedure. In this section, more results will be shown to

discuss how the current level and slot number influence the loudness.

4.5.1 Current level influence

Fig.4.5, Fig.4.6 and Fig.4.7 show the loudness prediction results of the 4 poles 15 slots,

8 poles 33 slots and 10 poles 27 slots models when working at three current levels. The

circles, triangles and squares represent the loudness results when the models work at 50%,

100% and 200% current level respectively.

We can see clearly in the figure that each model has the highest loudness level when

the current level is at the 200% current level, and when the current level is at the 50%, the
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Table 4.10 Part of the example model’s SPL (Pa)

Model No. FEA Prediction

1 7.99 5.78

2 2.20 3.08

3 8.16 5.44

4 2.36 2.25

5 3.48 3.16

6 6.40 4.45

Table 4.11 Part of the example model’s loudness level (dB)

Model No. FEA Prediction

1 56.02 54.61

2 50.42 51.87

3 56.11 54.35

4 50.72 50.52

5 52.42 51.98

6 55.05 53.47

loudness level is the lowest. The results show that the loudness generally increases with

increasing current level. Similar conclusions also apply for other models.

4.5.2 Slot number influence

A series of example models also have been designed to see the effects of changing the number

of slots at a fixed pole number and for variable rotor configurations. They are 4 poles 15

slots and 24 slots; 8 poles 9 slots and 27 slots; 10 poles 12 slots and 33 slots. The loudness

prediction results for them are shown below, here the triangles are the SynRMs with lower

slot number and the circles are the ones with higher slot number.
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Fig. 4.5 4 poles 15 slots three current level loudness results

Fig. 4.6 8 poles 33 slots three current level loudness results

The results show that the loudness generally increases with the lower slot numbers if

the rotor configurations are kept constant.

4.6 Summary

In this chapter, we have introduced an analytical method for calculating the noise level of

the SynRM. Not only did we use the mode frequencies which come from FEA, but also the

mode frequencies from the GRNN prediction model are also applied in our experiment. We

use the 8 poles 33 slots models as the examples to follow the calculation procedure. The

Fig. 4.7 10 poles 27 slots three current level loudness results
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Fig. 4.8 Loudness vs. Model ID for 4 pole SynRMs at 50% Current level

Fig. 4.9 Loudness vs. Model ID for 8 pole SynRMs at 100% Current level

frequencies from FEA are considered as the more accurate ones. The difference between

the loudness results calculated with the frequencies from FEA and the ones calculated with

the results from the prediction model is small. Hence we can assume that our prediction

model is reasonable.

When we compared the results of the loudness from the model frequencies obtained

through FEA with those obtained by the prediction model, it seems counterintuitive that

the differences in the frequencies only affect the loudness a small amount. This is because

the definition of the loudness value is a logarithmic function. The loudness value will not

Fig. 4.10 Loudness vs. Model ID for 10 pole SynRMs at 200% Current level
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be influenced enormously unless the order of magnitude of the sound pressure changes

significantly. So that, a 15% error in the magnitude at a particular frequency will not have

a significant effect on the result.

Moreover, we also discussed the influence on the loudness of the current level and slot

number. The results show that for a SynRM, a higher current level will lead to a high

loudness. And, when rotor configurations are fixed, the loudness generally increases with

the lower slot numbers.
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Chapter 5

Conclusion

5.1 Thesis Summary

In this thesis, we have proposed a neural network based prediction model for estimating

the noise loudness level (dB) in a SynRM due to electromagnetic forces.

The noise is generated due to the electromagnetic force in the air gap between the rotor

and the stator. The force impacts the stator and makes the surface of the stator have a

radial displacement which leads to the vibration of the air. The air vibration generates the

noise which can be heard by a human ear.

A GRNN prediction model has been developed in order to estimate the natural mode

frequencies of the stator. We obtained 9/12/15/18/21/24/27/30/33 slots’ stator mode

frequencies from the FEA-based software, Nastran. The values computed we assume, are

close to the true values. We trained the GRNN model using all the data except for the 33

slots’ with a smoothing factor. Using cross validation we confirm that 0.3 is an optimal

value for the smoothing factor. We also used this GRNN model to predict the 33 slots’

stator natural mode frequencies and calculated the relative error rate when compared with

the ones computed by FEA.

2017/04/16
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An analytical method to calculate the loudness level was introduced. First, we obtained

the flux density in the air gap, then we determined the pressure wave values and the related

harmonic amplitude values, then multiplied the surface area to acquire the force harmon-

ics. With the force harmonics, the harmonics frequencies and the stator natural mode

frequencies we could determine the stator’s radial displacements. With the displacements,

we could compute the SPL in space. Finally, from the SPL we acquired the loudness level

results.

90 example SynRM models which shared the same stator configuration (33 slots) were

applied in this thesis as the instances for the loudness calculation procedure. We varied the

geometry parameters (carrier width & barrier width) of the rotor part to acquire different

flux densities in the air gap. Using our prediction model, these example motors’ stator nat-

ural mode frequencies could be estimated, while we also acquired the values through FEA.

We followed the analytical method to calculate these 90 model’s loudness level respectively

with two sets of natural mode frequencies which are the prediction values and the FEA

values. In addition, we also calculated other SynRM models with various rotor and stator

configurations to discuss the relationship between loudness and other parameters, i.e the

current level, and the number of slots.

5.2 Thesis Conclusion

5.2.1 GRNN Prediction Model

In the cross-validation part, which we used to confirm the optimal smoothing factor, we can

see that if the target inputs (slot number, tooth width, slot depth, tooth tip thickness) are

in the range of the training sets, the prediction results of the natural mode frequencies are

very close to the ones from FEA. For the inputs which are beyond the training sets, such

as slot number 33 (the training set slot number 9/12/15/18/21/24/27/30), the experiment
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results still show that the prediction is reliable. Hence the GRNN model can be assumed

feasible in estimating the natural mode frequencies of the stator.

Finally an experiment was conducted to test the accuracy of the prediction model

trained by different datasets.The results show that the accuracy of the GRNN model will

be increased if more training sets are given.

5.2.2 Loudness Disscussion

We compared the loudness results which are calculated with the predicted mode frequencies

and the ones which are calculated with the FEA mode frequencies. The two sets of results

are rather close. For most of the example models, the errors are around 3 dB, which can

be hardly distinguished by a human ear in the real situation. This shows that the natural

mode frequencies from GRNN prediction model are reliable.

Moreover, in section 4.5 we discussed the current level and the slot number’s influence

on loudness. From the results and the figures we can see that as the current level increases,

the loudness will increase. Additionally, loudness generally increases with the lower slot

numbers.

5.3 Future Improvement

There are several works which can be done in the future.

First, due to a lack of capability we haven’t applied the results to actual measurements

to test the accuracy of the analytical calculation method of the loudness level. In the future,

it would be useful to perform the experiments to confirm the accuracy of the approach.

Second, we can expand the training set of the GRNN prediction model. For this thesis,

we used 9/12/15/18/21/24/27/30/33 slots data as the training set, while the geometric

parameters (tooth width& slot depth& tang angle & tooth tip thickness) for each number
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of stator slots were also limited in a specific range. As we explained in Chapter 3, the more

training sets that are used, more accurate the GRNN model will be. In this case, we could

also develop more data from FEA to train the GRNN model.

Third, in this thesis we only developed the prediction model for estimating the natural

mode frequencies of the stator. The way to obtain the air gap flux density is still through

FEA-based software MagNet. If we could confirm some parameters which would predict

the magnitude of the flux density, we will be able to train another prediction model in

order to estimate the flux density values. Hence the computation time can be saved.
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