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ABSTRACT

This thesis addresses the challenges of parallax and object motion in image mo-

saicing. Traditional techniques construct their panoramas through an image registra-

tion process that minimizes the differences in intensity or structure in the overlapping

areas between inputs. In order to reduce the artifacts due to misregistrations caused

by parallax and object motion, traditional approaches require planar content or im-

pose the constraint that inputs be provided either by a purely rotational camera or

from dense sampling of the scene. However, these solutions are often impractical or

fail to address the needs of all applications.

In this thesis, we present three novel mosaicing approaches that use depth in-

formation to compensate for the above limitations. The first approach starts by

synthesizing a dense set of virtual images at positions between the source cameras.

Next, an appearance-based optimization procedure is applied to select a group of

strips from the collection of virtual images and the real inputs to construct the final

mosaic. The virtual dense sampling greatly reduces parallax effects between the real

input frames, and thus results in significantly improved mosaic outputs compared to

traditional image mosaicing algorithms.

The second approach formulates the image mosaicing as a view synthesis prob-

lem. It renders the panorama as a single frame using depth estimates from the

view point of a virtual mosaicing camera. It notably includes the contents in non-

overlapping regions between sources by using a depth propagation procedure. Pro-

vided that the depth values are reasonable, the output mosaic result is perceptually
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satisfactory and free of parallax-related artifacts.

The third approach extends this work to the synthesis of dynamic video mosaics,

i.e., that represent dynamic events in the environment. In order to cope with the

challenges of parallax and motion, our novel depth-based dynamic mosaicing tech-

nique projects the foreground and background layers separately onto the mosaicing

image plane. Importantly, the resulting video mosaic preserves spatiotemporal mo-

tion consistency.
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ABRÉGÉ

Cette thèse traite du problème de surmonter les difficultés causées par l’effet de

parallaxe et le mouvement d’objets lors du mosaicage d’images. Les méthodes tradi-

tionnelles de mosaicage d’images produisent des panoramas en recalant des images

de manière à minimiser les différences d’intensité ou de structure entre les régions

superposées de ces images. Afin de réduire les défauts occasionnés par un mauvais re-

calage résultant de l’effet de parallaxe ou des mouvements d’objets, les méthodes tra-

ditionnelles requièrent soit une scène planaire, soit des images résultant d’une simple

rotation d’une camera, soit encore un échantillonnage dense de la scène. Toutefois,

ces solutions sont souvent impraticables ou ne satisfont pas les besoins de certaines

applications.

Dans cette thèse, nous présentons trois nouvelles approches de mosaicage d’imagesF

utilisant l’information de profondeur afin de surmonter les limites énoncées ci-haut.

La première approche utilise l’échantillonnage dense virtuel afin de réduire l’effet de

parallaxe entre les images acquises, ce qui résulte en une nette amélioration de la

qualité des panoramas par rapport à ceux obtenus avec les techniques traditionnelles.

La deuxième approche construit le panorama correspondant à une position

virtuelle de la caméra en utilisant des estimations de profondeur. Lorsque ces valeurs

sont raisonnables, le résultat devrait être satisfaisant visuellement et libre de tout

défaut relié à l’effet de parallaxe.

La troisième approche fait passer le mosaicage d’images de la synthèse d’une

seule image à la génération d’une séquence vidéo de mosaiques capturant des évènements
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dynamiques se produisant dans l’environnement. Cette nouvelle technique, basée sur

la profondeur, projette séparément les segmentations d’avant-plan et d’arrière-plan

sur le plan de la mosaique afin de produire une séquence vidéo de mosaiques d’images,

une image à la fois. Cette approche préserve la cohérence spatiale et temporelle des

mouvements d’objets, ainsi que le contenu statique dans la scène.
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CHAPTER 1
Introduction

This thesis introduces our efforts to create high quality mosaics given a sparse

sampling of either a static or dynamic environment with potentially significant depth

variance and where the camera configuration may introduce parallax. We begin

with a discussion of the limitations of traditional image mosaicing methods, which

motivates the research explored in this thesis.

1.1 Limitations of Traditional Image Mosaicing Methods

Image mosaicing refers to a process of combining multiple images with overlap-

ping field-of-view (FOV) to produce a panorama. In theory, it compensates for the

limited FOV of a single camera without sacrificing resolution or introducing undesir-

able lens distortions, as does the use of a wide angle lens, or even an omnidirectional

lens, to achieve a comparable panoramic view.

Image mosaicing is widely used in applications ranging from scientific observa-

tion to consumer digital cameras. However, in order to ensure a perceptually correct

result, traditional image mosaicing systems typically make one of the following as-

sumptions:

• the scene is limited in depth variance, i.e., is frontal-parallel or nearly planar;
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• cameras have a parallax-free1 configuration, such as a virtual purely rotational

camera synthesized in QuicktimeVR [15];

• the acquisition system provides a dense sampling of the environment regard-

less of the camera motion model or the scene topology, e.g., manifold mosaic-

ing [39][40].

These assumptions may fail to address the needs of all applications. For exam-

ple, an image mosaicing system applied in an indoor environment generally has to

deal with structured contents with more complex depth distributions than planar

scenery. Inputs obtained by cameras with a parallax-free configuration may result

in a perceptually unacceptable view of scene contents if these are close to the edges

of the wide FOV of the output panorama, such as the views of 1 and 2 subjects

presented in Figure 1–1a. Thus, a non-parallax-free camera configuration, which

provides a frontal observation using cameras directly facing the objects of interest,

sometimes may be preferred. Moreover, when multiple synchronized video cameras

are used to continuously capture the events occurring in the scene, a dense sampling,

such as the light field [34], becomes prohibitively expensive.

If the above assumptions required by traditional image mosaicing algorithms are

violated, the parallax effects between inputs make it difficult to achieve an accurate

image registration that is applicable for the entire scene. Resulting misalignments

may cause local intensity or structural inconsistencies, which induce visual artifacts

1 Parallax is the perceived shift of an object against a background, caused either
by a change in camera position or movement of the object itself.
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(a) panorama using parallax-free inputs

(b) panorama using non-parallax-free inputs

Figure 1–1: Comparison of mosaic results if given inputs with or without parallax
effects. (a) The panorama built from inputs with a parallax-free camera configuration
presents an observation of subjects 1 and 2 from an extreme side view (b) The
panorama built from inputs of a translational camera contains artifacts within the
highlighted bounding boxes.

in output mosaics, as illustrated in the highlighted bounding boxes of Figure 1–

1b. In this example mosaic, built by Autostitch [13] with non-parallax-free inputs,

the multiple instances of the light switch on the background wall are considered

duplication errors, and the gradual merging of human legs into the chairs of the

foreground are ghost artifacts. Consequently, when applied to an environment where

parallax is unavoidable, traditional image mosaicing techniques may fail to produce

acceptable results.
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The presence of moving objects in the scene is another issue that frustrates tra-

ditional image mosaicing. Dynamic contents result in inter-frame changes of texture

or of features used to align images for generating the mosaic. These object mo-

tions induce jitter in the appearance of the background and discontinuities of object

movements on a frame-by-frame basis in the results of traditional image mosaicing

techniques.

This thesis addresses construction of mosaics given inputs containing both par-

allax effects and moving objects, which are serious challenges to current state of

the art image mosaicing techniques. We observe that a reasonable image mosaicing

result should satisfy the following properties:

• Feature or structure preservation. The final mosaic result should not

violate existing features or create new features2 in the scene; otherwise artifacts,

such as ghost or duplication errors, may result, as illustrated in Figure 1–1b.

• Shape preservation. Objects in the mosaic result should be free of distortion,

i.e., maintain the same shapes as in the inputs. Samples of distortion errors in

mosaicing results can be observed in Figure 3–4.

• Motion preservation. If the scene contains dynamic objects, the motion

of both foreground and background contents in the mosaic video should be

2 Feature, i.e., structure, is a general concept in computer vision. It can be a group
of points, edges or complex structures representing objects. The choice of features
in a particular computer vision system is highly problem dependent.
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consistent with that which occurs in the input video. Samples of motion in-

consistency errors of static background in mosaicing results can be observed in

Figure 5–7.

1.2 Thesis Overview

Following this introduction and the literature review in Chapter 2, we present

three methods that exploit geometric information in the form of depth cues in order

to overcome the issues of parallax and dynamic objects in the scene.

Given a pair of stereo images and their associated camera parameters, our first

approach, described in Chapter 3, starts by synthesizing a dense set of virtual images

at positions between the source cameras. Next, an appearance-based optimization

procedure is applied to select a group of strips from the collection of virtual samples

and the real inputs to construct the final mosaic. The virtual dense sampling greatly

reduces parallax effects between the real input frames, and thus results in significantly

improved mosaic outputs compared to traditional image mosaicing algorithms.

The second approach, discussed in Chapter 4, renders an improved panorama

as a single frame, using depth estimates from the position of a virtual mosaicing

camera. Traditional image mosaicing techniques perform 2D image registration that

minimizes the intensity or structure differences in the overlapping areas between

inputs. However, our new depth-based image mosaicing approach also preserves an

appearance of smooth connections in the non-overlapping regions. Provided that the

depth values are reasonable, the output mosaic result is perceptually satisfactory and

free of parallax-related artifacts.
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Our third approach, described in Chapter 5, falls into the category of dynamic

mosaics [25], extending the problem from that of generating a single panoramic image

to a mosaic video that captures dynamic events taking place in the environment.

In order to cope with the problems of both parallax and motion in inputs, our

novel depth-based image mosaicing technique projects the segmented foreground and

background layers separately onto the mosaicing image plane to construct the output

mosaic video on a frame-by-frame basis. The result preserves both the temporal and

spatial coherence of object motion, as well as static contents, in the scene.

Finally, Chapter 6 concludes with a discussion of future directions of research

and a summary of the work in this thesis.

1.3 Contributions

This thesis makes the following contributions:

1. A novel formulation of generating image mosaicing, instead of traditionally

using the image warping and stitching, as a view synthesis problem that takes

advantage of 3D information inferred from the input cameras.

2. A validated depth-based image mosaicing algorithm that renders the panorama

as the output of a virtual camera, by explicitly estimating depth values for the

entire scene, when given the calibration results of input cameras.

3. The creation of a smooth motion perception criterion, which helps to generate

dynamic mosaicing results that preserve not only the perception of correct

motion but also the perception of motion consistency in the spatiotemporal

domain.

6



4. The first validated dynamic mosaicing algorithm, which exhibits robustness to

both parallax and object motion by virtue of its layered depth-based rendering

approach and the usage of the smooth motion perception criterion.

5. A depth propagation procedure that spreads depth information from regions of

reliable estimates, into neighboring areas where such information is not avail-

able, according to different criterion for either static or dynamic contents in

the scene.

6. A successful implementation, which integrates image-based rendering and a

smooth appearance connection-based optimization algorithm, to produce high-

quality panoramas with multiple perspective projections, when given only sparse

input samples.
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CHAPTER 2
Background knowledge and Literature Review

In this chapter, we first briefly introduce the general background of image mo-

saicing, then summarize the literature related to algorithms in this field.

2.1 Background Knowledge

The image mosaicing procedure generally includes three steps. First, we register

input images by estimating the homography, which relates pixels in one frame to their

corresponding pixels in another frame. Second, we warp input frames according to

the estimated homographies so that their overlapping regions align. Finally, we

paste the warped images and blend them on a common mosaicing surface to build

the panorama result.

2.1.1 Motion Models

Before introducing the procedure of image alignment, we must discuss the no-

tation of motion models, which describe the mapping from pixels in one image to

their correspondences in other images. When cameras observe a planar scene or if

they undergo pure rotation, the relationship between corresponding 2D projections

of the same 3D point across different images can be described precisely by motion

models, also known as 3× 3 homography matrices.

As illustrated in Table 2–1, among the five basic 2D motion models, the six-

parameter affine matrix and the eight-parameter projective matrix are most com-

monly used for image mosaicing. Suppose we have corresponding homogeneous pixel
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vectors x = (x, y, 1) and x′ = (x′, y′, 1) in different input images. The mapping

between them is described as:

x′ ∼ Hx (2.1)

where H is the 3× 3 homography matrix.

Group Projection Matrix Degrees of Freedom Principal Invariant
Projective [ H ]3×3 8 straight lines

Affine [ A ]2×3 6 parallelism
Similarity [ sR | t ]2×3 4 angles

Rigid (Euclidean) [ R | t ]2×3 3 length
Translation [ I | t ]2×3 2 orientation

Table 2–1: Hierarchy of 2D coordinate transformations.

2.1.2 Direct and Feature-based Image Alignment

Image alignment, the first step of image mosaicing, estimates homography pa-

rameters by minimizing an error metric that measures the agreement between corre-

spondences across input images. The error metric can either be, the sum of squared

differences (SSD), denoted e, its robust function, ρ(e) [55], which deals with out-

liers of correspondences, or a more complex version, as in the work of Baker and

Matthews [5], which additionally models the bias and gain variances between images

being compared.

If using the robust function ρ(e) as the error metric, estimation of the homog-

raphy parameters is defined as follows:

E(p +4p) =
∑
i∈ϕ

ρ([I1(W (xi; p +4p))− I0(xi)]
2) (2.2)
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Let W (xi; p +4p) denote the transformation by Hx in Equation 2.1, where p =

(p1, ...pn) is a vector of homography parameters. The mapping W (xi; p +4p) projects

pixel xi in image I0 into its matching pixel in image I1. The algorithm iteratively

updates p by 4p in the direction minimizing the error metric until p converges.

Image alignment approaches include direct methods, which depend on the agree-

ment between pixels in overlapping regions, as opposed to feature-based methods,

which consider only the correspondences between salient feature points [36][37]. Ac-

cordingly, ϕ in Equation 2.2 represents either a set of matching pixels or a smaller

set of corresponding feature points. The direct methods take advantage of the com-

plete image information in overlapping regions and thus may generate a more reliable

homography estimation than feature-based methods. This is particularly the case

when dealing with textureless regions where the number of feature points is limited,

or over-textured regions where the distribution of features is much denser in contrast

with the remaining parts of the image.

2.1.3 Pixel Blending

Once the correspondences between input images have been correctly aligned,

inputs are warped onto the common mosaicing image surface according to the esti-

mated homographies and then merged to build the output panorama. However, due

to exposure differences, misregistrations or even movement of objects in the scene,

merging warped inputs is not simply an averaging process between overlapping pixels.

A better approach is to take a weighted averaging that assigns pixels closer to

the center of the image higher weights before blending them. Such a technique of

blending pixels by a weighted averaging is called feathering [56][60], and is helpful
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in overcoming the exposure differences between inputs. When integrated with the

high dynamic range(HDR) radiance map [17] and the exposure invariant feature-

based image alignment method, it can even construct panoramas over tremendous

exposure differences [20]. Feathering can be performed within pixel color spaces, or

in the gradient domain [2][33].

Recently, Jia and Tang [29] presented a seamless image stitching system us-

ing structure deformation. Based on the matching of features, the algorithm first

partitioned inputs subject to the constraints of intensity coherence and structure

continuity. It then deformed and propagated the features across the partitions to

achieve smooth stitching of inputs. Their work built improved mosaic results over

conventional feathering algorithms, especially when inputs contained intensity incon-

sistencies or structure misalignments.

Although the advanced blending techniques above successfully compensate for

exposure variance, intensity inconsistency or a limited amount of registration error

in sources, the ghost errors resulting from parallax or object motion remain beyond

the capabilities of these techniques.

2.2 Literature Review: Image Mosaicing Techniques

Considerable effort has been invested to increase the robustness of mosaic results

to variation of illumination, exposure variance, lens distortion, and other such chal-

lenges. For the purpose of this thesis, we only discuss image mosaicing techniques

that focus on the issues of parallax and object motion in the scene.

These algorithms are categorized into three groups. The first group, summarized

in Section 2.2.1, applies a parallax-free constraint that only accepts inputs of either
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planar scenes or arbitrary scenes observed by cameras with a parallax-free config-

uration. The second group, which makes use of dense sampling to compensate for

depth variance in the environment, and thus offers more robustness to input camera

motion, is reviewed in Section 2.2.2. The last group, involving dynamic mosaicing

techniques, is discussed in Section 2.2.3.

2.2.1 Mosaicing with Parallax-free Inputs

Chen introduced QuickTime VR [15], which generated a panoramic view of the

environment based on images taken by a purely rotating camera. The algorithm used

a correlation-based image registration method and a simple average blending to build

panoramas. Neighboring input images were required to have 50% overlap with each

other. The factors that contributed to stitching failures of the algorithm included

extreme changes of intensity, slight movement of camera center during acquisition,

and object motion in the scene.

Unlike QuickTime VR, Szeliski and Shum [56] presented an approach to create

full-view panoramic mosaics from image sequences taken by hand-held cameras, and

which support more flexible camera motions other than pure rotations. However,

scene contents were assumed to be far from the camera center, and appear as nearly

planar. Their algorithm not only developed the estimation and refinement of camera

focal lengths, but also presented a patch-based image registration to quickly align

inputs for calculation of the transformation matrices between input images and one

reference camera.

In order to cope with the problem of accumulated image registration errors

when constructing an image mosaic from a long sequence of inputs, Shum and
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Szeliski [52] introduced the algorithm of global and local image alignments. The

global alignment method simultaneously updated all frame poses (rotations and focal

lengths) minimizing the sum of registration errors between all matching features over

the entire sequence of input images. A local alignment technique warped small image

patches onto the mosaicing plane according to the result of pairwise local image

registration, so that ghost errors due to small amounts of parallax introduced by

object movement or lens distortion were largely removed. The bundled global and

local alignment techniques significantly improved the quality of image mosaicing

output.

Although successful image stitching algorithms, which made use of parallax-free

inputs, had become available, the challenges of mosaic artifacts due to object mo-

tion and exposure differences were not addressed until the work by Uyttebdaele et

al. [60]. Their approach first identified regions that contain moving objects in input

images as nodes in a graph, then applied a vertex covering algorithm to selectively

remove all but one instance of each object. Finally, it constructed a static mosaic

result of the entire scene with each moving object appearing at one specific spa-

tiotemporal position, without introducing ghost errors. However it does not respect

the chronological order of object motions. The second contribution of this paper was

its compensation for the exposure variance between inputs by a block-based inten-

sity adjustment. Together these contributed to automatic image mosaicing results

that exhibit far fewer artifacts than any image mosaicing algorithms contemporary

to their work.
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Brown and Lowe [13] described a fully automatic construction of panoramas,

which was insensitive to the ordering, orientation, scale and illumination of input

images. The algorithm first applied scale invariant feature transform (SIFT) fea-

tures [36] and a probabilistic model to verify image matches so that it recognized

multiple panoramas in unordered image sets. It then used a global alignment [52] to

register inputs, and finally, implemented a multi-band seamless blending [14] to pro-

duce a panorama with smooth appearance. This contributed to a widely applicable

automatic image mosaicing software, Autostitch [12].

2.2.2 Manifold Mosaicing with Dense Sampling of Inputs

Image mosaicing algorithms, which make use of dense samples of the scene, are

also known as manifold mosaicing algorithms. Following the definition by Peleg

et al. [39][40], a manifold mosaic, i.e., a multiperspective image [44], was built by

projecting warped thin strips from input images onto the mosaicing surface.

A manifold mosaic can be generated by a pushbroom camera projection [22],

which used a 1D sensor array to collect thin strips while sweeping the scene along a

continuous path, as illustrated in Figure 2–1. In order to generate reasonable mosaic

results, the warped strips from the inputs should present approximately uniform

optical flow in a parallel direction and of equal magnitude. Thus, the shape of the

strip depends on the type of camera motion and the width of the strip is proportional

to its speed.

The use of dense sampling by manifold mosaicing algorithms overcomes the

constraint of parallax-free camera configurations, and is thus capable of handling

more general cases of input camera motion.
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Figure 2–1: A manifold mosaic with a pushbroom camera model is built by connect-
ing thin strips from inputs taken when the camera moves along a continuous path as
the dotted line in the figure. Figure 4 of Peleg et al. [40] ( c©[2000]IEEE, reproduced
here with permission).

Zomet et al. [68] introduced a new manifold mosaicing algorithm based on

crossed-slits projection. All the rays in this projection model pass through two non-

parallel slits: the camera path and the second line perpendicular to the camera

path, as illustrated in Figure 2–2. This projection is a superset of the perspective

and pushbroom projections and thus, the mosaic result can be converted easily to

either of the other two projection models. Crossed-slits projection mosaicing offers

the benefit that the results are closer to perspective images than those of traditional

pushbroom mosaics.

Theoretically, manifold mosaicing, due to its dense sampling, exhibits greater

robustness to parallax effects than other techniques summarized in the previous

section. Nevertheless, it still produces noticeable artifacts in the mosaic result when

presented with a complicated depth distribution or object motion in its inputs.
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Figure 2–2: A cross slits camera projection is performed by requiring all the rays pass
through two non-parallel slits: the camera path and the second line perpendicular
to the camera path. Figure 3 in Zomet et al. [68] ( c©[2003]IEEE, reproduced here
with permission).

A recent effort of Agarwala et al. [1] reduced the artifacts of manifold mo-

saicing by minimizing error functions based on criterion of smooth and continuous

strip connections. This approach was applied to the production of long (wide) man-

ifold panoramas of approximately planar scenes based on relatively sparse samples

obtained by a moving hand-held camera. Instead of combining strips with regular

shapes as done by Peleg et al. [39][40], they used Markov Random Field optimiza-

tion to construct the panorama from arbitrary shaped regions of sources, so that the

output exhibited the best stitching results with minimal artifacts. However, in the

case of inputs containing obvious parallax, their work cannot generate a perceptually

valid panorama.

Zheng et al. [67] also used dense sampling and multiperspective projections.

Although their technique did not restrict itself to the use of thin strips from input
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images, it nevertheless shares many of the attributes of other manifold mosaicing

algorithms, and so, is included here.

Each pixel in the overlapping regions between sources was registered into a

layered multiperspective cylindrical space based on its estimated depth value to con-

struct a layered depth panorama (LDP). Similar to the layered depth image (LDI) [50],

the result may include multiple pixels at different depths along each line of sight,

wherein the depth is determined by the intersection of the ray and objects along its

path. Integration of depth information in this manner produced reasonable panora-

mas, provided that the sampling rate was sufficient to guarantee that the entire scene

was covered within the overlapping regions between inputs.

2.2.3 Dynamic Mosaicing

The algorithms described in the previous two sections are intended for the con-

struction of panoramas of mainly static scenes. In this section, we introduce dynamic

mosaic techniques, which address the added challenge of object motion and generate

mosaic video that captures dynamic events taking place in the environment.

These algorithms apply robust image alignment procedures to minimize the im-

pact of dynamic objects so that they can accurately estimate camera motion based

only on the static contents of the scene. The static contents together with, if appli-

cable, the dynamic contents of the same input frame are warped according to the

estimated camera motion model to build the dynamic mosaicing video on a frame-

by-frame basis. The much improved image registration results constitute the crucial

advance of these mosaicing techniques, allowing them to cope with object motion,

rather than being limited to static scenes. However, these algorithms only worked
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with inputs of rotational (panning) camera movements and thus, largely motivated

the problem of parallax effects. Non-parallax-free camera configurations remain be-

yond the capabilities of these algorithms.

Irani et al. [25] defined the concepts of static and dynamic mosaics, the former

as a single view of the full scene over the entire input video sequence. Any objects

exhibiting motion against the static background are either excluded from the result

or appear as ghost errors in the panorama. A dynamic mosaic records chronological

object activities as a sequence of mosaic images, each updated according to the most

recent frame in the input sequence. Again, however, the process of synthesizing these

mosaics was restricted to inputs from cameras with pure panning rotations.

An important advance for the synthesis of dynamic mosaics was the work of

Sawhney and Ayer [46], who introduced a motion-separated layered representation

of the input video. The input sequence was divided based on dominant motion

separation into a layer of fixed background and other layers of moving objects. Input

frames were then registered based only on the static background layer, and finally

these layered contents were combined into a mosaic video. Their work only analyzed

inputs with panning rotations, and did not discuss other camera motions.

Bartoli et al. [6] applied a combined feature-based and direct image registration

procedure to address object motion in inputs. First, a bundle adjustment based on

matching features was used to generate initial estimates of camera motion models. A

direct image registration was then implemented to refine these initial results locally

between consecutive frames. Outliers to the motion model were classified as dynamic

layer contents and the inliers as part of the static background. Although this resulted
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in three useful components, namely, a background panorama, a registered input

sequence, and dynamic layers containing moving objects, the authors did not describe

how such components could be combined to produce a true dynamic mosaic.

Taking advantage of dense sampling inputs and the manifold mosaicing synthesis

technique, Rav-Acha et al. [4] removed the constraint of purely rotational camera

movement for the construction of a dynamic video mosaic. Their algorithm first

produced an aligned space-time volume based on the input video sequence. It then

swept a continuous 2D freeform surface, or time front, through the space-time volume

as shown in Figure 2–3 to synthesize frames constituting the final panoramic video.

The construction of the time front was controlled by an optimization algorithm

that guaranteed smooth connection of output contents in both temporal and spatial

domains. By removing chronological constraints, this achieved smooth appearance of

object motion in the final mosaic video. However, the loss of chronological ordering

of object movements may lead to an incorrect representation of activities occurring

in the scene.

2.3 Summary

The literature presented in Section 2.2.1 generates static panoramas based on

parallax-free inputs. Even when combined with optimization methods, such as the

work of Uyttendaele et al. [60], the ability to compensate for ghost errors due to

parallax or object motion is still very limited. Manifold approaches, described in

Section 2.2.2, combined with an optimization algorithm based on smoothness crite-

rion, such as that implemented by Agarwala et al. [1], offer promising results for static

mosaics. However, the requirement of a dense sampling of the scene is impractical
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Figure 2–3: An illustration of synthesizing mosaic frames using time front to scan
the space-time volume, in which t represents a time axis and x corresponds to the
horizontal axis in image plane. In both (a) and (b), the time fronts across differ-
ent input frames constitute snapshots in dynamic mosaic video thus, obviously, the
chronological order of object motions are broken. Figure 6 in Rav-Acha et al. [4]
( c©[2007]IEEE, reproduced here with permission).

for many applications. State of the art dynamic mosaicing algorithms, introduced in

Section 2.2.3, generally assume limited parallax resulting from camera motion, which

too is often unrealistic. Moreover, none of the algorithms surveyed here can build a

real mosaic video that preserves both motion consistency and chronological ordering

of motion as appears in the input video.

In summary, the previous approaches all impose constraints of either a parallax-

free camera configuration or a dense sampling of the scene, which, as discussed in

Section 1.1, may not be sufficient to address the requirements of all applications.

Based on our need for a true panoramic video of moving objects, these limitations

motivate our effort to develop new techniques that can produce smooth mosaicing

results, even in the case of a highly limited number of input sources and a scene with

large depth variance.
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CHAPTER 3
Image Mosaicing through Virtual Dense Sampling

The first solution to deal with the problems of parallax was inspired by manifold

techniques that use dense sampling of the environment to build multi-perspective

projection panoramas. As the general camera configuration, e.g. a small number

of cameras in fixed positions along a large base line, usually cannot itself generate

such a dense sampling, we turn to synthesis as an alternative. Starting from a pair

of stereo cameras with a large baseline, along with their calibration parameters, a

set of virtual images is synthesized from positions in between source cameras to

compensate for the limited sampling rate. Next, an appearance-based optimization

procedure is applied to select the set of strips from these real or virtual frames to

build the final mosaics. Experiments indicate significantly improved mosaic results

over competing methods.1

3.1 Synthesis of Virtual Images

The synthesis of virtual frames is performed using the plane sweep algorithm [16].

The basic idea is that when a set of parallel planes sample a 3D volume, the position

within each plane, where rays received by different input cameras and containing

the similar colors intersect, probably represents an object point of the scene. After

1 The work in this chapter is based on the contents of the author’s BMVC publi-
cation [42].
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collecting the depth information of these potential object points, we project them to

the image plane of a target virtual camera to build the synthesized output frame.

The implementation of this idea includes the following three steps.

3.1.1 Building Intermediate Images through Plane Warping

Critical to the image mosaicing operation, the movement (both translation and

rotation) between neighboring cameras must be smooth and continuous. Therefore,

the virtual sources are positioned at equal intervals between the physical cameras

and their orientations are interpolated smoothly between the rotation matrices of

the source cameras.

Given the position and orientation of the virtual camera, we project pixels from

input images onto sampling planes at different depths, and then re-project them onto

the target virtual camera plane. Therefore we generate a set of intermediate images,

each of which is actually the image of an xy sample plane at depth d and observed

from the target virtual camera, as shown in Figure 3–1(d-f). In the plane sweep

algorithm, this two-step process can be achieved through one warping operation

performed by a projective mapping transformation known as a homography.

In general, the image Ximage = [x y 1]′ of an object point Xworld = [X Y Z 1]′ in

the sampling plane at depth d and observed by a camera with the projection matrix

P = [p1 p2 p3 p4] is given by
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where M3×3 = [p1 p2 d·p3+p4], which only depends on the parameters of the camera

projection matrix and the depth value of this sampling plane, and X̄ = [X Y 1]′.

Thus the mapping between the projection of an object point X̄ in a source image

and that in an intermediate image is
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(3.2)

where H = MintermediateM
−1
source is the homography that warps the source image into

intermediate images corresponding to sampling plane at different depth levels d.

Each intermediate image contains RGB color channels, which are computed by

a weighted pixel-wise averaging of warped source images. Every intermediate image

also contains an associated matching score channel that measures the similarity be-

tween the projections from the input images. The matching score is calculated based

on the aggregated sum of squared differences between these projections over support-

ing windows. We apply the approach of multi-resolution aggregation as introduced

by Yang et al. [63] to achieve the robustness of similarity measurement in not only

the textureless regions but also the regions across the depth boundaries. The pixels

with low matching scores appear to be in focus in the intermediate images, as shown

in Figure 3–1(d-f).

The number of intermediate images required is identical to the number of sam-

pling planes, which should be located at the depth levels that best approximate the

disparity distribution of the scene. In our experiments, these sampling planes are

positioned at N evenly interpolated depth levels from Zmin to Zmax, where N is twice
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the maximal disparity value observed in the source images in order to accommodate

the sub-resolution of disparities. Note that the X and Y axes of the world coordinate

system define a plane that is parallel to all the sampling planes, while the Z axis

points in the direction of depth.

3.1.2 Optimization through Graph Cut

The set of intermediate images are stacked together into a volume V (x, y, z),

where (x, y) represents pixel coordinates and z corresponds to the depth level. The

one-parameter representation of V (z) indicates an intermediate image at depth z.

Generating a synthesized virtual image is actually a procedure that maps pixels from

the desired output image to their correspondences in intermediate images. This

mapping only takes place in the depth domain provided that the matching pixels

do not have position shift within the image plane, so that the output pixel p(i, j)

may correspond to those at the same position (i, j) in intermediate images. Let P

denote the set of pixels in the output virtual image and L be the set of depth levels

{d1, · · · , dN}. The problem of building a synthesized image is defined as:

Problem. Given N intermediate images, find a labelling f : P → L that assigns

each output pixel a proper depth level di, i ∈ [1, N ], so that the energy of the labelling

f is minimized.

The energy of the labelling is defined as:

E(f) = Edata + Esmoothness (3.3)
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The first term, Edata, measures the cost of assigning the set of depth labels to pixels

in the virtual image. In our application, Edata is related to the matching cost of the

entire synthesized virtual image as:

Edata =
∑

p∈Ioutput

A(p) (3.4)

where Ioutput is the synthesized virtual image and A(p) is defined as:

A(p) = max(φ(p, d(p)), τ) (3.5)

where φ(p, d(p)) is the matching cost of pixel p in the intermediate image V (d(p)), if

p is assigned the depth value, d(p). Here τ is a constant, which is chosen empirically

based on the color distribution of the input images. A lower matching score represents

a higher probability that the pixel corresponds to an object located on the sampling

plane at depth d(p).

The second term, Esmoothness, measures the cost of assigning depth values to

a pair of neighboring pixels and is used to indicate the smoothness of the depth

transition from one pixel to its neighbors, i.e., neighboring pixels having similar

colors should typically have similar depths as well:

Esmoothness =
∑

p∈Ioutput

(
∑

{q∈Np|d(p)6=d(q)}
B(p, q)) (3.6)

where (p, q) is a pair of neighboring pixels with different depth values. Np is a

neighboring system around pixel p, such that |xp − xq| + |yp − yq| = 1. B(p, q) is

an increasing function of ∆I(p, q), the abstract color difference between the pair of
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pixels (p, q), and defined following the work of Boykov et al. [9] as:

B(p, q) =





3λ if ∆I(p, q) < 5

λ otherwise
(3.7)

where λ is a value chosen empirically based on the color distribution of input images.

B(p, q) generates a higher penalty value, 3λ, when two neighboring pixels happen to

have similar colors (∆I(p, q) < 5), but different depth values. Although the advanced

quadratic Esmoothness term maybe be considered as an alternative, our experiments

suggest that the B(p, q) defined by Boykov et al. [9] works sufficiently well.

With the energy definition of Equation 3.3, an alpha-expansion graph cut algo-

rithm2 [8][9] is applied to find the optimal labelling f .

3.1.3 Synthesizing Virtual Images

Given the optimal labelling f : P → L, for a certain pixel p in the output

image, the color of its corresponding pixel in the intermediate image at depth f(p)

is pasted into the final synthesized virtual image. In this manner, an output is built

as illustrated in Figure 3–1c.

When two input cameras are located along a wide baseline, as is the case in

our test data, there are likely to be some portions of the 3D scene that are visible

by one camera but occluded in the other. Pixels in these regions have matching

2 Many computer vision problems, e.g., the stereo correspondence problem, can
be formulated in terms of energy minimization. The corresponding minimum energy
solution is calculated as a minimal cut of the graph by the max-flow min-cut theorem.
Such an algorithm is called a graph cut.
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Figure 3–1: Illustration of the plane sweep algorithm. Given two input images (a)
and (b), we first warp them onto the parallel sampling planes, stacked at different
depth levels along the z axis. Comparing the images of these sampling planes, i.e.,
the intermediate images, we synthesize a virtual image (c) at a position between
the inputs. Examples of intermediate images are illustrated in (d)(e)(f). Note that
different objects in the scene are in focus at the different depth levels, where their
projections from different inputs coincide well with their real 3D positions.
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Figure 3–2: There are two shaded hole regions in this figure. On the kth scan line,
points l1, r1 and l2, r2 are the pairs of non-hole-region depth values on both sides of
the segments across hole regions h1 and h2 respectively. We fill segments on the kth
scan line in the hole region h1 with the higher depth value, i.e. the one further away
from the camera, of l1 and r1 and do likewise to fill the segment of hole h2.

scores, φ(p, d(p)) as appeared in Equation 3.5, beyond the threshold, and thus all

receive a special depth label as “Occluded” during the graph cut optimization. These

pixels constitute hole regions appearing in the virtual images and must be filled using

depth information from neighboring pixels. To do so, we scan the hole region row

by row. As illustrated in Figure 3–2, for any row, each hole hi can be delineated

on both sides by the nearest non-hole points, li and ri, with corresponding depths

determined by the plane sweep operation. Assuming that a distant hole is occluded

by objects closer to the input cameras, we estimate its depth by choosing between

the two points li and ri the one further from the camera. Once all the depth values

for the hole regions are estimated in this manner, we can use a forward mapping to

project the corresponding input images, i.e., if li is chosen then we use the left source

and, conversely, if ri is chosen, we use the right source, onto the virtual image plane

at the specified depth, thereby filling in the missing texture of the virtual images.

Although more advanced hole-filling algorithms, such as inpainting, are well known,

our experiments suggest that when, as in our cases, inputs contain translationally
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dominant camera motion or are rectified, the simple strategy described above works

sufficiently well for the small holes typically observed in the virtual images.

Determining the number of virtual images needed is a difficult sampling analysis

problem [51]. Obviously, there is a minimal number of virtual images, which is neces-

sary to guarantee the anti-aliased rendering of the final mosaic result. This minimal

sampling rate has a complex relationship with the depth range, texture complexity,

and resolution of input images. It is defined according to the boundaries of the depth

range regardless of the complexity of depth variance in the scene. A big difference

between Zmin and Zmax may lead to a higher minimal sampling rate. If the texture

of the scene presents less variation and the input images are of lower resolution, a

smaller minimal number of virtual images may be sufficient. We generate 50 virtual

images, which are sufficient for any of the data sets we tried in our tests.

3.2 Generating the Mosaic through Appearance-Based Optimization

A good mosaic result should exhibit minimal visual or perceptual artifacts, i.e.,

each local region in the panorama should resemble its corresponding area in the

source images. Assuming source images all present smooth appearances, the con-

structed panorama should ideally inherit this smoothness, especially in the regions

where patches from different sources are merged. This smooth appearance transition

has become an important criterion to judge the quality of mosaic results [1][3][4].

Thus, in this section, we introduce a technique that uses appearance, i.e., texture,

optimization, to build the final panorama from a dense sampling, which now includes

both real and synthesized images of the environment. Similar to other work [62], we

generate the final mosaic by combining thin vertical strips from source images along
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a minimum-cost path calculated by dynamic programming [19], based on the smooth

connection criterion.

Compared to traditional manifold mosaicing algorithms, the new technique does

not explicitly estimate the geometrical relationship between input frames. Instead,

the analysis of texture similarity among strips in the search space automatically de-

termines the group of slices that should be connected side by side in the mosaicing

plane. Furthermore, unlike traditional algorithms, which only consider several suc-

cessive frames in their image alignment, the new technique determines a stitching

path that considers the matching performance across the sequence of entire dense

sampling frames. This may provide a mosaic result closer to the global optimum

solution than any conventional manifold mosaicing algorithm.

3.2.1 Problem Definition

As explained above, the virtual images in this dense sampling set are synthesized

at discrete camera positions along a continuous path between two input cameras.

They can thus be regarded as a sequence of video frames taken by a camera moving

along this path. These frames form a spatiotemporal volume V (x, y, t), where x, y

parameterizes the space as pixel coordinates, and t parameterizes time as the index

of the camera position along the acquisition path. The two coordinate representation

of V (x, t) means the x’th column taken from the t’th frame. In an (x, t) slice (one

scanline through time) of a sample input volume, as shown in Figure 3–3(a-b), each

input image is represented as a horizontal gray bar. The group of column strips are

first selected from inputs according to the smoothness connection criterion, and then
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stitched side by side to build the output mosaic, which is of larger size than any of

the input images, as shown in Figure 3–3c.

As suggested by Peleg et al. [40], in our case of a translationally dominant

camera motion model, it is reasonable to choose vertical strips from input images to

generate the mosaic results. Thus, columns in input images become the fundamental

element in the algorithm. Note that the rectification is not strictly necessary in this

approach. As long as input images do not contain changes of focal length and the

effects of forward or backward motion are significantly smaller than other camera

motion in the inputs, the new algorithm may build reasonable mosaic results by

copying columns from the virtual dense sampling set.

Building a final mosaic result is represented as a mapping Γ from columns in

the output mosaic to columns in input images. The mapping Γ(θi) is a vector of the

form (x, ∆y, t), which maps any output column θi to an input column V (x, ∆y, t),

in which the ∆y represents a vertical shift value for the column V (x, t). For most of

our test cases, ∆y equals zero, either because we use rectified inputs or the vertical

motion between cameras is trivial.

The problem of creating a final mosaic is defined precisely as follows:

Problem. Given the set of virtual dense samples as obtained by a camera with trans-

lationally dominant movement along a continuous path, we need to find the mapping

Γ(θ) for every column in the output panorama, such that the connection cost of the

panorama is minimized.
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(a) a volume V (x, y, t)

(b) an (x, t) slice of the volume

(c) the output panorama

Figure 3–3: (a) The spatiotemporal volume V (x, y, t). (b) An (x, t) slice of the
volume, as indicated by the gray plane in (a). Each sampled image is represented as
a horizontal gray bar in an (x, t) slice. The group of column strips are first selected
from inputs according to the smoothness connection criterion, and then stitched side
by side to build the final mosaic. (c) The diagram shows the output panorama, which
is larger than any of the input images.
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Assuming the final mosaic contains M columns, {θi|i = [1,M ]}, the connection

cost of this mosaic result is defined as:

Cost(Γ) =
M∑
i=1

Cs(Γ, θi) (3.8)

where

Cs(Γ, θi) = ‖Γ(θi)− Γ(θi+1)‖γ (3.9)

Here, γ is a constant, used as an exponent on the L2 norm. If Γ(θi) = V (j, 0, k) and

Γ(θi+1) = V (g, 0, h), which means the columns θi and θi+1 in the output panorama

correspond respectively to the columns V (j, k), the j’th column taken from the k’th

input sampling frame, and V (g, h), the g’th column taken from the h’th input sam-

pling frame, then Equation 3.9 becomes

Cs(Γ, θi) = ‖V (j, k)− V (g − 1, h)‖γ (3.10)

The total connection cost of the panorama is a summation of Cs over all the

neighboring columns in the output. Cs is defined based on the smooth connection

criterion. When column V (g, h) is next to column V (j, k) in the final mosaic, a

good Cs value indicates high similarity between V (j, k) and V (g − 1, h), and thus,

the transition from V (j, k) to V (g, h) appears as smooth as the local transition

from V (g − 1, h) to V (g, h) in the same frame taken at the h’th position along the

acquisition path.
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3.2.2 Implementation

Finding the optimal mapping {Γ(θi)}M
i=1 in the spatiotemporal volume V (x, y, t)

to minimize the connection cost of the output panorama is an optimization problem.

Given the starting point as the first column in the initial frame and the ending point

as the last column in the final frame, a standard dynamic programming algorithm is

used to calculate the shortest path, i.e., the path with the minimal connection cost,

between these two terminals. Columns along the shortest path are then copied into

the final mosaicing plane one by one and merged to build the output panorama.

Since pixel-wise intensity difference is unreliable in the analysis of stereo dispar-

ity [47], the connection cost between successive columns in the output panorama, as

in Equation 3.10, should apply a window-based aggregation, i.e., an average filter,

rather than column-wise comparison. ‖Γ(θi) − Γ(θi+1)‖ is calculated as the aggre-

gated L2 norm distance of column differences between two rectangular windows with

centers at columns Γ(θi) and Γ(θi+1) respectively.

Theoretically, the dynamic programming algorithm searches for the successor

of column Γ(θi) among any column in volume V (x, y, t) that has not been included

in the path up to Γ(θi). Practically, however, it is not necessary to consider all

these potential options, some of which are obviously very different from the current

column. Instead, only those enclosed by a neighboring window in the spatiotemporal

volume are compared, where the window size depends on motion velocity between

input frames. Such constraints on the search space greatly reduce the computational

cost, although at the risk of missing the globally optimal solution. However, it is the

local smoothness, i.e., the smoothness of connections between neighboring columns,
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that is the primary determinant of quality of the output mosaic result. Thus, the

local optimal solution obtained by a constrained dynamic programming search still

produces a satisfactory panorama result. This will be illustrated in the next section

of experimental results.

3.3 Experimental Results

To evaluate the quality of the proposed algorithm, we compare the results to

those of traditional image mosaicing techniques, which typically generate excellent

mosaics from source images constrained by the conditions outlined in Section 1.1.

This comparison highlights the capacity of our approach to generate significantly

improved mosaics from source images exhibiting non-trivial parallax. Although the

significant degree of overlapping content between neighboring input images, required

by traditional image mosaicing algorithms, is not necessary for our approach, some

overlap is still necessary. We have not characterized this minimum quantitatively,

as the value is likely to depend on image content. For our experiments, the input

images exhibited an overlap over a minimum of 1/3 of their areas.

We use three data sets in the tests. Both the Middlebury teddy data set [48] and

the data from Seitz [49] contain structured indoor or outdoor scenes, which exhibit

a complex, wide range of depth distribution. The sample results provided here use

as input two fixed video cameras with a large baseline and fixed parameters. Obvi-

ously, these results can be extended in a straightforward manner to take advantage

of additional cameras. Camera calibration is performed using Zhang’s [66] method,
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as implemented by Bouguet [7] for our own data, which will be used for the experi-

ments in the next two chapters, and by the structure-from-motion algorithm [23] for

externally supplied data.3

3.3.1 Comparison of Results with Autostitch

Autostitch [12], a state of the art representative of traditional image mosaicing

techniques, may produce unpleasant artifacts in its mosaic results if given as input

two sparse samples of the scene with complex depth variation.

The first kind of artifact, distortion, is mainly caused by disparity variance be-

tween objects at different depths from the camera. Autostitch has to deform the

input images, compressing close objects and expanding distant objects to equalize

their respective disparities. The normalized amount of overlap between the images

allows for a smooth combination of the two deformed inputs. The results of Autos-

titch, seen in Figures 3–4, 3–5, and 3–6, contain a foreground region at the bottom

of the mosaic, which has shrunk relative to the background at the top.

This stretching effect is proportional to the amount of disparity variance in the

input images. For example, among the three data sets, the “house”, displayed in

Figure 3–6, presents the smallest range between the maximal and minimal disparity

values as the scene objects are all distant from the camera. Thus the Autostitch

result of this data set exhibits the least distortion of compression or expansion.

3 While the calibration was likely of sufficient quality so that the effects of cali-
bration errors were not observed in the results, this could be a factor in general.
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(a) left input image (b) right input image

(c) Autostitch mosaicing result

(d) stitching result of our algorithm

Figure 3–4: Given two input images from the teddy data set, the mosaic results of
Autostitch are compared to that of our algorithm. Regions with ghost errors are
indicated by highlighted rectangles. These errors are caused mainly by inaccurate
image alignment.
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(a) left input image (b) right input image

(c) Autostitch mosaicing result

(d) stitching result of our algorithm

Figure 3–5: Mosaicing results of Autostitch compared to our algorithm for the data
set from Seitz. An example ghost error is indicated by a highlighted rectangle in (c).
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(a) left input image (b) right input image

(c) Autostitch mosaicing result

(d) stitching result of our algorithm

Figure 3–6: Mosaicing results of Autostitch compared to our algorithm for the
“house” data set from Seitz.
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(a) mosaicing result using two real input im-
ages

(b) mosaicing result using virtual dense sam-
pling inputs

Figure 3–7: Compare the mosaic results of Autostitch using respectively the sparse
real input images or the virtual dense sampling inputs. The ghost errors, in figure
(a) and enclosed by the highlighted rectangles, are compensated by using the virtual
dense samples, in return, the intensities and the resolution of the mosaic result, in
figure(b), decrease in certain regions.

The second kind of artifact, ghost error, appears in the highlighted rectangu-

lar boxes in the Autostitch mosaic results of Figure 3–4 and 3–5. As observed in

these results, accurate image alignment remains difficult even after compensating for

disparity differences by compressing the foreground and expanding the background

objects. This is due to the depth variance in the scene and the significant view

disagreement between two cameras with a wide baseline.

In contrast, the new algorithm generates results free of such artifacts, and thus

satisfies the desired properties summarized in Section 1.1. As is evident, the parallax

effects have been greatly reduced by the incorporation of synthesized virtual images.

This is illustrated in the results of Figures 3–4, 3–5, and 3–6.

In theory, the use of virtual dense samples should also benefit Autostitch to

eliminate the ghost artifacts due to image alignment errors and reduce distortion of
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compression and expansion. As illustrated in Figure 3–7, the ghost errors enclosed

by the highlighted rectangles in the mosaic, resulting from sparse inputs, are visibly

reduced by the use of virtual dense samples. However, the blending of 52 highly

overlapped inputs, as shown in Figure 3–7b, not only degrades the intensity level on

both sides of the mosaic, i.e., the non-overlapping regions of the real inputs, but also

decreases the resolution of the mosaic result, as is particularly evident in the blurred

chart on the background wall. These problems do not occur with our algorithm in

its use of the same dense samples.

3.3.2 Locality of Smooth Connection in Mosaicing Results

Determining the quality of a particular image mosaic is largely based on the

criterion of smoothness and continuity of its appearance. In our algorithm, any

mosaic result built on the path calculated by dynamic programming satisfies this

criterion.

We manually choose a reference node in V (x, y, t), which splits the stitching path

into two segments. Different choices of this reference node lead to different paths

through the volume. Comparing the two results in Figure 3–8, which have reference

nodes (x = 130, t = 2) and (x = 162, t = 11) respectively, we find that they

both successfully combine the input information into the panorama output without

inducing artifacts of missing or duplication of objects. Perceptually, it is difficult to

judge which of the two is of better quality than the other, as there are multiple paths

through the spatiotemporal volume V (x, y, t) that all provide reasonable outputs.
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(a) one stitching path in V (x, y, t) (b) another stitching path in V (x, y, t)

(c) mosaic result of path (a) (d) mosaic result of path (b)

Figure 3–8: Comparison of mosaic results from two stitching paths. Path(a) goes
through the node (x = 130, t = 2) and contributes to the mosaic result of size
499 × 375, while path(b) passes the node (x = 162, t = 11) with a corresponding
mosaic result of size 506 × 375. Despite their differences, both mosaic results are
perceptually correct.
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As noted earlier in Section 3.2.2, constrained dynamic programming may not

find the global minimal cost stitching path although it achieves more efficient compu-

tational performance. Nevertheless, the mosaic result from a locally optimal stitching

path is still perceptually satisfactory.

3.3.3 Computational Expense Analysis

The analysis of computational complexity of the virtual dense sampling image

mosaicing algorithm (VDS) is a challenge, since the VDS contains a sequence of

processing steps of camera calibration, the synthesis of virtual dense samples, and fi-

nally, the generation of mosaics. Most significantly, the computational cost is related

to the input parameters, such as the resolution of input frames, and the number of

depth levels assumed. We conducted a run-time analysis for the step of synthesis

of virtual dense samples, varying both of these parameters. As shown in Table 3–

1, computational cost increases exponentially with the number of depth levels and

(approximately) with the square of the resolution of the input images.

3.3.4 Limitations

With the help of virtual dense sampling, our algorithm can construct reason-

able mosaics given inputs taken under most camera motion patterns, such as the

pure translation of the Teddy data set, and the dominant translation with a panning

rotation in the data from Seitz. However, because the algorithm has not yet consid-

ered the scaling factor, changes of scale or resolution between input images, caused

by zoom adjustment or forward/backward camera motion, are beyond the capability

of our algorithm.
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Table 3–1: Comparison of run-time (in seconds) under different combinations of input
parameters for the synthesis of virtual frames. Table (a) illustrates the exponential
relationship between number of depth levels and computational cost while Table (b)
illustrates the approximately square relationship between input resolution (in pixels)
and computational complexity. The second row in Table (b) provides a normalized
resolution value, based on the scale of 225× 187 pixels as equivalent to 1.0.

(a)

depth levels 11 22 33 44 55 66 77
run-time (s) 0.60 1.77 4.43 8.13 13.14 22.03 31.64

(b)

input 225× 187 270× 225 315× 262 360× 300 405× 337
resolution
normalized 1 1.44 1.96 2.56 3.24
resolution

run-time (s) 13.14 36.10 76.94 174.67 247.34

The algorithm performs well for static scenes, although does not usually generate

consistent mosaic results over time if there are dynamic objects in the environment.

Object motion induces texture changes in images, which result in varying stitching

cost for paths in the volume V (x, y, t), and in turn, lead to different optimal stitching

paths between successive frames. If used to generate a mosaic video, this will typically

result in discontinuities of object movement.

Moreover, for each output mosaic frame, the regeneration of the set of synthe-

sized virtual images and the recalculation of the optimal stitching path represents a

high computational expense. When computation time is a serious consideration, our

algorithm is obviously not an ideal choice.
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3.4 Summary

This chapter poses the problem that traditional mosaicing techniques typically

fail to generate reasonable mosaic results when given a limited number of inputs with

non-trivial parallax.

Our novel image mosaicing algorithm built on the techniques of image-based

rendering and optimization methods offers a potential solution to this problem. Ex-

periment results demonstrate that the new method outperforms conventional image

mosaicing techniques when presented with challenging inputs.

However, the high computational requirements and inability to handle dynamic

objects prevents the use of this technique to achieve more general goals, such as

construction of dynamic mosaic video.
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CHAPTER 4
Depth Based Image Mosaicing

To overcome the parallax issues in image mosaicing, this chapter introduces a

new method that uses a camera projection procedure, with depth estimates gener-

ated from a virtual mosaicing camera, to construct the final panorama. Experiments

indicate the capability of the new approach to generate improved results over tradi-

tional algorithms when given challenging sources, such as sparse input samples that

exhibit non-trivial parallax effects. Furthermore, the ability of the new approach to

deal with more diverse environments, e.g., containing dynamic objects, at a lower

computational cost reflects its superiority over the algorithm presented in the previ-

ous chapter.1

4.1 Introduction

Traditional techniques construct mosaics by first aligning, i.e., registering, the

input images, and then warping and stitching them in mosaicing surfaces. However,

when there is considerable disparity variance between foreground and background

contents, the general assumption of a planar scene is no longer applicable. In this

case, the image alignment procedure applied by traditional image mosaicing algo-

rithms may fail to determine a common motion model that is appropriate for both

1 The work in this chapter is based on the contents of the author’s ICPR publica-
tion [43].
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near and far objects in the scene. Even if it manages to estimate such a trans-

formation model, the resulting distortion of image contents leads to perceptually

unacceptable mosaic results.

In summary, state of the art image mosaicing algorithms are incapable of han-

dling the effects of parallax in inputs due to a complex depth distribution in the

scene. However, assuming a depth map of the entire environment is available, we

may nevertheless synthesize the panorama as if seen through a virtual camera with

a wider FOV. Provided that the depth estimates are reasonable, we may build a

panorama free of parallax-related artifacts, e.g., distortion, duplication or missing

objects.

In the output mosaic result, pixels corresponding to objects in overlapping re-

gions, Ro, which are observed by multiple input cameras, are synthesized using tradi-

tional image-based rendering techniques. Pixels from non-overlapping regions, Rnon,

and consequently, lacking stereo information, are neglected by traditional view syn-

thesis techniques. As an improvement, the new approach described in this chapter

provides a solution to include such pixels from Rnon into the mosaic result.

The remainder of this chapter is organized as follows. The synthesis of mosaics in

overlapping and non-overlapping regions are discussed in Section 4.2 and Section 4.3

respectively. Section 4.4 provides a comparison of experimental results with those

of Autostitch and those using ground truth depth values. Section 4.5 discusses

the limitations of the proposed algorithm. Finally, a brief summary is provided in

Section 4.6.
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4.2 Mosaic Synthesis in Overlapping Regions

The synthesis of mosaics in overlapping regions, Ro, is performed by the plane

sweep algorithm [16] using the method introduced in Section 3.1.

The parameters of the virtual camera that is used to build the output panorama

are chosen as the smooth interpolations between those of input cameras. However,

because the output mosaic has larger image size than any of the sources, the corre-

sponding elements in the internal parameter matrix of the virtual camera must be

adjusted accordingly. Without loss of generality, in our test, we only consider the

enlargement of the image size along the horizontal, x, direction.

Given the selected pose and the internal parameters of the virtual camera, the

inputs are then projected onto parallel planes located at different depths to generate

a set of intermediate images, {Idi
}N

i=1, as illustrated in Figure 3–1 (d-f). Each inter-

mediate image represents a sampling plane that discretizes the 3D space at depth

level di.

Let the labelling f : P → L be a procedure assigning every output pixel, p ∈ Ro,

a proper depth level in the set L = {di}N
i=1. With the optimal solution of this labelling

calculated by a graph cut algorithm [8][9], each pixel, p ∈ Ro, finds its correspondence

in the intermediate image If(p). Pasting the color of the corresponding pixel for every

p ∈ Ro into the final output, we construct a mosaic result exhibiting contents only

in Ro, as seen in the regions enclosed by black bounding boxes in Figure 4–4 and

Figure 4–6. Construction of the mosaic result for the non-overlapping regions will

be introduced in the next section.
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4.3 Mosaic Synthesis in Non-Overlapping Regions

The areas in source images that correspond to the FOV of only a single input

camera contribute to Rnon of a mosaic result by projecting them onto the mosaic-

ing image plane according to their depth estimates. However, as these are observed

only by a single input camera, their depth estimates must be calculated by a dif-

ferent method from that applied to Ro of the mosaic, which can make use of stereo

correspondences. Such a method is the topic of this section.

We observe that depth discontinuities rarely occur in regions of uniform texture

but typically coincide with color segment boundaries [57][65]. Thus, taking advantage

of color segmentation in the sources, (reliable) depth information of color segments in

Ro can be propagated to adjacent color segments in Rnon, provided that this results

in an appearance of smooth connection between them.

4.3.1 Color Segmentation

Input images are first decomposed into color segments using the mean-shift-

based segmentation algorithm that incorporates edge information as proposed by

Georgescu et al. [21]. These color segments are then divided into two groups. One

group, which already has reliable depth estimates, contributes to Ro in the mosaic

result. The second group, which lacks depth estimates, constructs Rnon. An example

segmentation result of the data from Seitz is shown in Figure 4–1(c-d), where hashed

color segments represent the Rnon in the output mosaic.

Generally, as long as boundaries along color discontinuities are preserved, a color

segmentation with larger segments is preferred to an over-segmentation. Minimizing
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the number of color segments reduces the computation in the depth propagation pro-

cedure, the details of which will be addressed in the following sections. Furthermore,

over-segmentation into small size segments may result in poor depth estimates in

textureless regions.

4.3.2 Problem Definition

Because of the lack of available 3D information to establish the shape functions

for color segments in non-overlapping regions, we naively assume that each color

segment in Rnon is of uniform depth. While this may not be true in practice, our

experiments suggest that the mosaic results based on this assumption of uniform

depth are, nevertheless, still perceptually correct.

Given the set of intermediate images, {Idi
}N

i=1, built when synthesizing the

mosaic in overlapping regions, the construction of mosaics in non-overlapping re-

gions involves mapping the color segments from Rnon of the output mosaic to their

correspondences in intermediate images. Let S denote the set of color segments

{s1, s2, . . . , sM} in Rnon and L be the set of depth levels {d1, · · · , dN}. Based on

the assumption of uniform depth, the problem of synthesizing the non-overlapping

regions in the output mosaic is defined precisely as follows:

Problem. Given N intermediate images, find a labelling ρ : S → L assigning each

color segment in the non-overlapping regions of the output mosaic a proper depth

level di, so that the energy of the labelling ρ is minimized.

The energy of the labelling is defined as:

E(ρ) = Esmoothness + Eocclusion (4.1)
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The first term, Esmoothness, evaluates the overall connection cost between neighboring

color segments as follows:

Esmoothness =
M∑
i=1

∑

(p,q)∈Ψ

Ci(p, q) (4.2)

where
∑

(p,q)∈Ψ Ci(p, q), with respect to one color segment si (si ∈ S), equals the

total connection cost of all pairs of neighboring pixels, (p, q), within the region Ψ,

which represents border areas between the color segment si and its neighbors that

already have depth estimates.

In Equation 4.2, the connection cost of one pair of neighboring pixels is calcu-

lated as follows:

C(p, q) = |ID(p)(p)− ID(q)(p)|2 + |ID(p)(q)− ID(q)(q)|2 (4.3)

where D(p) and D(q) are the depths of p and q respectively. ID(p) refers to the

intermediate image at the depth D(p) and ID(p)(p) represents the intensity of pixel p

in this intermediate image. The transition between p and q is smooth when the local

region containing this pair of pixels in the output mosaic resembles the corresponding

areas in the intermediate images. With such a definition, C(p, q) is minimized when

the two patches in ID(p) and ID(q) respectively, and both containing the pair of

neighboring pixels as (p, q), exhibit similar texture around (p, q).

If at every possible depth level, the smooth connection cost,
∑

(p,q)∈Ψ Ci(p, q),

of color segment si exceeds a threshold, or the number of neighboring pixel pairs in

its Ψ region is insufficient to generate a reliable depth estimate, si is defined to be

occluded. Accordingly, its smooth connection cost in Equation 4.2 is set to zero.
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In order to ensure that the energy function 4.1 is not biased towards a trivial

optimum by considering all color segments as occluded, i.e. Esmoothness = 0, we

assign a constant penalty λocc to any occluded segment. The second term Eocclusion

in Equation 4.2 accounts for the case of occlusion in the manner:

Eocclusion =
M∑
i=1

Pocc(si) (4.4)

where

Pocc(si) =





λocc if si is occluded

0 otherwise
(4.5)

4.3.3 Optimization through Greedy Algorithm

Finding the optimal labelling that minimizes the energy function 4.1 is a non-

trivial problem. Given M color segments, each of which has N distinct depth levels,

there are a total of MN possible solutions to the labelling ρ. Such a large solution

space is indicative of the complexity of this optimization problem. Moreover, the

basic idea of spreading depth estimates from overlapping regions into neighboring

non-overlapping regions implies a slow updating procedure. These factors suggest

that the optimization of the energy function by global search would be a computa-

tionally expensive process.

Instead, the depth propagation procedure, which spreads the reliable depth es-

timates from Ro into Rnon, indicates an optimal substructure2 suitable for a greedy

2 A problem exhibits optimal substructure if an optimal solution to the problem
contains optimal solutions to its sub-problems.
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algorithm implementation. As demonstrated in the last chapter, the locality of the

smooth connection criterion indicates that a locally optimal solution, calculated by

a greedy algorithm, produces a reasonable mosaic result.

Algorithm 1 The greedy algorithm pseudocode to calculate ρM1 = {ρM1(si), i ∈
[1,M1]}, given inputs of SM1 = {s1, s2, . . . , sM1}

ρnew
M1 (si) = ρold

M1(si) = occluded, i = [1,M1]
E(ρold

M1) = M1 · λocc

mainloop = 1
while (mainloop < MaxLoop) and (∆E > Threshold) do

for i = [1,M1] such that si ∈ SM1 do
for j = [1, N ] such that dj ∈ L do

for k = [1,M1] do

ρj(sk) =

{
dj k = i
ρold

M1(sk) k 6= i
end for
calculate E(ρj)

end for
ρnew

M1 (si) = darg minj E(ρj)

end for
calculate E(ρnew

M1 )
if E(ρnew

M1 ) < E(ρold
M1) then

E(ρold
M1) = E(ρnew

M1 )
ρold

M1 = ρnew
M1

end if
∆E = |E(ρold

M1)− E(ρnew
M1 )|

mainloop = mainloop + 1
end while
ρM1 = ρold

M1

The greedy algorithm starts with SM1 = {s1, s2, . . . , sM1}, the group of color seg-

ments immediately adjacent to the overlapping regions, and calculates the labelling

ρM1 = {ρM1(si), i ∈ [1,M1]} that minimizes their energy as defined in Equation 4.1.

The initial depth value for each si ∈ SM1 is occluded and the initial energy of the
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entire group is E(ρM1) = M1 · λocc. As illustrated in Algorithm 1, the calculation

proceeds as follows, repeating until either the number of iterations exceeds a certain

threshold or the change of labelling energy between iterations becomes insignificant.

1. For each color segment si ∈ SM1, all its depth candidates, dj ∈ L, are tested

and the corresponding E(ρj) are calculated with the depth estimates of all the

other color segments fixed. The best depth value for si that minimizes the

labelling energy is then chosen and recorded.

2. Once the best depth candidate has been found for each of the color segments

in the group, if the total labelling energy, E(ρM1), is reduced with the new

depth assignments, the depth estimates and the labelling ρ of the entire group

are updated accordingly. Otherwise, these are left unchanged.

This process is applied in a similar manner to the neighbors of the previously pro-

cessed group of segments, for which depth estimates have not yet been computed.

This continues until no unprocessed color segments remain. Once all the depth es-

timates are obtained, the mosaic in Rnon is rendered by copying the corresponding

color segments from intermediate images into the mosaicing image plane to build the

final panorama.

4.4 Experimental Results

The method is validated using the same data sets as in Section 3.3. The sample

results provided here use inputs from two fixed video cameras with a large baseline,

and thus exhibit non-trivial parallax effects. As was the case for our earlier approach,

described in Section 3.3, we assume the images used in our experiments exhibited

overlap over a minimum of 1/3 of their areas. These results can be extended in a
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straightforward manner to take advantage of additional cameras. The inputs need

not necessarily be rectified; a translationally dominant camera configuration accom-

panied by some panning or tilting rotations is also acceptable.

As seen in Figure 4–1e, the complicated depth distribution in the data set from

Seitz [49] results in obvious distortion (e.g., of the human subject) and artifacts

(e.g., the ghost errors of the box and the light switch) in the Autostitch mosaic

result. In contrast, the depth-based image mosaicing (DBM) technique described

in this chapter synthesizes a reasonable panorama, as shown in Figure 4–1f. The

noticeable improvements of the DBM technique over traditional image mosaicing

algorithms is illustrated once more in Figure 4–2 using our own data set.

When presented with sparse inputs containing non-trivial parallax effects, both

the DBM method and the virtual dense sampling image mosaicing algorithm (VDS),

introduced in Chapter 3, generate reasonable mosaic results. These satisfy the im-

portant perceptual properties described in Section 1.1. We note, however, the funda-

mental difference that the VDS generates multi-perspective mosaic results while the

DBM renders the panorama from the perspective of a single virtual reference camera.

For both the VDS and DBM, the computationally most expensive processing step is

the synthesis of virtual frames. Because the DBM needs to calculate only one virtual

frame, whereas the VDS needs to perform this calculation once for each of the virtual

samples3 that are synthesized, we conclude that another significant difference is that

the computational expense of the DBM is much lower than that of the VDS.

3 In our case, we use 50 virtual samples, as discussed in Section 3.1.3
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(a) left input image (b) right input image

(c) color segmentation of left image (d) color segmentation of right image

(e) mosaicing result of Autostitch (f) depth-based image mosaicing result

Figure 4–1: Depth-based image mosaic results of data set from Seitz. The virtual
mosaicing camera is chosen to coincide with rightmost source camera. (c) and (d)
Hashed regions of the color segmentations contribute to non-overlapping regions in
the final mosaic. (e) Autostitch mosaic result exhibits distortion and artifacts as
indicted by the overlaid rectangle. (f) Our algorithm synthesizes a much improved
result.
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(a) left input image (b) right input image

(c) color segmentation of left image (d) color segmentation of right image

(e) mosaicing result of Autostitch (f) depth-based image mosaicing result

Figure 4–2: Depth-based image mosaic results of our own data set. The virtual
mosaicing camera is chosen to coincide with rightmost source camera. (c) and (d)
Hashed regions of the color segmentations contribute to non-overlapping regions in
the final mosaic. (e) Autostitch mosaic result exhibits distortion and artifacts as
indicted by the overlaid rectangles. (f) Our algorithm synthesizes much improved
result.
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For further comparison, a reference mosaic generated with the DBM method

using the ground truth depth values from the teddy data set is shown in Figure 4–

4b. The virtual mosaicing camera is chosen to coincide with the left source, i.e., the

camera that captures the second image (im2 ) in the data set, and its internal param-

eters are adjusted to accommodate more image contents within a wider FOV. The

overlapping regions in our mosaic result, i.e., the regions within the black boundaries

in Figure 4–4a, exhibit reasonable coherence with the reference mosaic. However,

slight appearance differences due to the variance of depth estimates are observed in

the non-overlapping regions, i.e., the regions outside the black boundaries, especially

toward the right of the mosaic result in Figure 4–4a.

It bears comment that unlike image-based rendering algorithms [51], our DBM

approach does not attempt to determine the real depth in non-overlapping regions.

Indeed, with the naive assumption of uniform depth of each color segment in Rnon,

the DBM method generates depth estimates that usually do not conform to the

ground truth topology of most scenes. Nevertheless, the depth estimates obtained

though a smooth appearance connection criterion guarantee sufficient resemblance

between local regions in the mosaic results and those in the inputs. Thus, outputs

based on these depth estimates still appear reasonable and perceptually acceptable.

4.5 Limitations

The quality of mosaic results is in large part dependent on the quality of color

segmentation. As explained in Section 4.3.1, provided this segmentation preserves
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(a) left input image (b) right input image

(c) color segmentation of left image (d) color segmentation of right image

(e) mosaicing result of Autostitch

Figure 4–3: Comparison with the reference mosaic using the ground truth depth
values of Teddy data set (part I). The virtual mosaicing camera is chosen to coincide
with the left source camera. (c) and (d) Hashed regions of the color segmentations
contribute to non-overlapping regions in the final mosaic. (e) Autostitch mosaic
result exhibits distortion and artifacts.
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(a) depth-based image mosaicing result

(b) DBM result using ground truth depth value

Figure 4–4: Comparison of (a) our DBM result and (b) reference DBM result con-
stituted using the ground truth depth values of Teddy data set. In both results,
the areas within or outside the black boundaries correspond to the overlapping and
non-overlapping regions, respectively.
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edges well along depth discontinuities, larger color segments are preferred to over-

segmentations. A careful tuning procedure of the color segmentation algorithm pro-

posed by Georgescu et al. [21] is required for a specific separation of color segments

in order to obtain the best output mosaic for a given data set. The need for this

empirical tuning limits the system’s suitability to many real-life applications. Fur-

thermore, ever with a carefully tuned color segmentation, occlusions in Rnon may

still induce undesirable artifacts.

If the virtual mosaicing camera has different position and orientation from those

of the source camera, which covers the non-overlapping regions, holes due to occlusion

may occur in Rnon of the mosaic result. These holes do not have any correspondence

in the inputs, and thus violate the smooth appearance connection criterion, i.e., a

local region in the output mosaic should resemble some corresponding region in the

sources. Filling these hole regions using the DBM method based on the smooth

appearance connection criterion may prove insufficient unless the holes actually cor-

respond to textureless scene content.

We use the Cone data set [48] as a more challenging input set to test the

limitations of our algorithm with regard to occlusions. Furthermore, we deliberately

restrict the algorithm to employ only half of the mosaic in the overlapping regions

calculated by the plane sweep algorithm, from which depth estimates are propagated

to the other half, exhibiting more occlusions. As expected, noticeable holes appear

in the mosaic result (Figure 4–6a). Because of the texture in the corresponding scene

contents, filling these holes may result in artifacts. However, it should be noted that
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holes also appear in the reference mosaic result using the ground truth depth values

(Figure 4–6b).

Notwithstanding the holes due to occlusion, the DBM method constructs much

improved results compared to traditional algorithms, as shown in Figure 4–1, 4–2, 4–

3 and 4–5, with respect to its avoidance of distortions and synthesis artifacts resulting

from the image alignment errors. Although we have not characterized quantitatively

the maximum texture complexity and depth complexity that the DBM method can

tolerate,4 for all our experiments in this thesis, the input images in this Cone data

set exhibit the most complicated texture and depth distributions, which are seldom

encountered in the real world cases. In general, the new DBM technique introduced

in this chapter overcomes the parallax problem and produces reasonably high quality

panoramas for most real-world applications.

4.6 Summary

This chapter describes our second solution to overcoming parallax issues in im-

age mosaicing. This approach explicitly uses depth cues to render scene contents,

whether from overlapping or non-overlapping regions of the source data, onto their

proper positions in the final mosaic. Experimental results indicate the strengths of

the new algorithm in generating mosaics that are generally free of parallax-related

artifacts, even when presented with challenging inputs.

4 This is a long-lasting unsolved problem common to all the new view synthesis
algorithms.
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(a) left input image (b) right input image

(c) color segmentation of left image (d) color segmentation of right image

(e) mosaicing result of Autostitch

Figure 4–5: Comparison with the reference mosaic using the ground truth depth
values of Cone data set (part I). The virtual mosaicing camera is chosen to coincide
with the right source camera. (c) and (d) Hashed regions of the color segmentations
contribute to non-overlapping regions in the final mosaic. (e) Autostitch mosaic
result exhibits distortion and artifacts.
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(a) Depth-based image mosaicing result

(b) DBM result using ground truth depth value

Figure 4–6: Comparison of (a) our DBM result and (b) reference DBM result con-
stituted using the ground truth depth values of Cone data set. In both results, the
areas within or outside the black boundaries correspond respectively to the overlap-
ping and non-overlapping regions.
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As an improvement over the the virtual dense sampling approach introduced

in the previous chapter, this algorithm requires significantly reduced computation

for mosaic synthesis of static scenes. Furthermore, it offers the potential to address

mosaicing problems involving dynamic scenes, as will be discussed in details in the

following chapter.
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CHAPTER 5
Depth Based Dynamic Mosaicing

5.1 Introduction

We now elaborate the solution to the problem of generating a perceptually cor-

rect mosaic that includes moving objects in the scene.1

To ensure continuous acquisition of video in both time and space over the de-

sired viewing area, a single moving video camera, as used in the majority of previous

dynamic mosaicing research [4][6][24], is clearly insufficient. Instead, we use a mul-

tiple camera configuration with a large baseline, which poses a greater challenge to

any mosaicing system because of its non-parallax-free character.

As discussed in Section 4.1, obtaining accurate image alignment, or registra-

tion, usually the first step in traditional image mosaicing techniques, remains diffi-

cult when depth variance in the scene causes obvious parallax effects in the inputs.

Furthermore, it proves difficult to preserve the temporal coherence of these image

registration results when objects at different depths to the camera are dynamically

changing their gestures and positions.

These issues of misalignments lead to several potential problems for traditional

image mosaicing techniques to generate dynamic mosaics when presented with inputs

1 The work in this chapter is based on the contents of the author’s Oceans and
ICPR publications [41][43].
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containing moving objects. First, the static background may appear to distort, shift,

or jitter over time. Second, the motion of foreground objects may be inconsistent, as

if resulting from a sudden change of camera parameters. Third, the parallax effects in

inputs may cause noticeable ghost errors about either the static or moving contents

in dynamic mosaicing results.

To cope with these issues, our depth-based image mosaicing (DBM) approach

performs a segmentation of foreground and background layers using a Mixture-of-

Gaussians (MoGs) model, and then projects these layers separately onto the mosaic-

ing plane, according to their respective depth estimates, to render the final result.

This guarantees both temporal and spatial coherence of the resulting mosaic video.

The remainder of this chapter is organized as follows: The MoGs modelling based

segmentation algorithm is discussed in Section 5.2, followed by an introduction of

background mosaic construction in Section 5.3. The foreground mosaic construc-

tion in overlapping regions and non-overlapping regions are discussed in Sections 5.4

and 5.5 respectively. Section 5.6 provides a comparison of experimental results with

those of Autostitch. Finally, Section 5.7 summarizes this work and its implementa-

tions.

5.2 Foreground-background Segmentation

Foreground-background segmentation is a process of separating objects of in-

terest, such as the moving human subjects in our cases, from the rest of the image,

i.e., the static background. The process can be categorized as either motion-based,

depth-based or stochastic background modelling based, according to the method of

image measurement.
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Motion-based segmentation algorithms analyze either optical flow [10][53] or dif-

ferences between consecutive image frames [30][61] to determine which pixels exhibit

motion and thus, are classified as moving foreground objects. However, the impact of

shadows and illumination changes are usually not considered by motion-based algo-

rithms. Depth-based segmentation algorithms [26][27][35] detect foreground objects,

for example, a human subject standing in the scene, as pixels whose depth values

differ from the expected background. These algorithms are robust to photometric

variance of the background; however, their dependence on stereo information pre-

vents them from processing input corresponding to non-overlapping regions of the

scene.

Inspired by the observations that foreground human objects are rarely station-

ary and usually have distinct appearances from the background, a stochastic back-

ground model may provide a means of distinguishing between the rapidly changing

foreground contents and the slowly varying background scene. The work of Stauf-

fer and Grimson [54], who modeled each pixel by a mixture of Gaussians (MoGs),

which were updated adaptively, online, according to slow changes of background, is

a standard background subtraction technique. In our work, we apply an improved

version by Lee [32], which used an adaptive, rather than fixed, learning rate for each

Gaussian to obtain improved convergence speed without sacrificing stability. This

process is explained in further detail in the following sections.

5.2.1 Mixture-of-Gaussian Background Model Construction

Suppose all the pixels from the frames in a given time interval satisfy the dis-

tribution of a Mixture-of-Gaussians (MoGs) background model. In this case, the
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probability that a pixel assumes a value X is given by Stauffer and Grimson [54]:

P (X) =
K∑

i=1

ωiP (X|Gi) (5.1)

where

P (X|Gi) =
1√

(2π)n|Σi|
exp−1

2
(X − µi)

T Σ−1
i (X − µi) (5.2)

where µi is the mean of the i’th Gaussian, Σi is the diagonal covariance matrix, and

ωi is its weight.

Any new pixel value is compared against the available models. If the value

can be represented by an element of the MoGs, it is used to update the model.

Otherwise, the least-likely Gaussian element, i.e., with the smallest ωi, is replaced

by a new Gaussian initialized with the new pixel value. Our present implementation

uses K = 3 Gaussians.

For our purposes, pixel values are represented in the Y CbCr colour space, because

this offers greater robustness to photometric noise than either RGB or HSI [31].

Source frames, which are used to train the MoGs model, are not required to contain

only pure background scenes. In fact, samples including moving foreground help the

model learn the characteristics of dynamic shadows, which should be classified as

part of the background.
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5.2.2 Segmentation

For a given frame, the probability that each pixel, X, belongs to the background,

B, is calculated according to the trained MoGs background model:

P (B|X) =
K∑

i=1

P (B|Gi)P (Gi|X)

=

∑K
i=1 P (X|Gi)P (Gi)P (B|Gi)∑K

j=1 P (X|Gj)P (Gj)

(5.3)

where P (B|Gi) = 1/(1 + e−awi/σi + b) for Gi, i = [1, 3], as defined by Lee [32]. a

and b are constants, ωi is the weight of i’th Gaussian, and σi is the average of the

summation of the trace in Σi. If the probability P (B|X) exceeds some threshold, the

pixel is considered as an element of the background, and otherwise, as a foreground

(or non-static) object. Thus the output of the segmentation process is a binary

mask with white pixels representing foreground regions and the remaining black

area corresponding to the static background.

Dynamic shadows cast by moving objects onto the background surfaces may

pose a challenge to the segmentation algorithm as these may lead to false-positive

detection as foreground regions. In our experimental environment, because the short

distance between a moving object and the static checkboard results in a significant

reduction of light reaching the surface, and thus, shadows on the checkboard are

obvious, as in Figure 5–1c.

A post-processing step of shadow removal, which takes advantage of the simple

color of the checkboard, is applied to correct the segmentation errors. First, we

calculate the mean (µ) and variance (σ) of the color distribution for every pixel on
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(a) the original frame (b) color segmentation

(c) raw mask (d) after shadow removal (e) final cleaned mask

Figure 5–1: An illustration of foreground and background segmentation. (c) The
raw mask of the foreground layer contains some dynamic shadow points cast on
the checkboard. (d) These shadow points are removed. (e) The final mask after
integrating color segmentation information from (b).
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the checkboard. Then, in a given frame, if the color of any assumed checkboard pixel

is within a 3σ2 distance from µ, it is removed from the segmentation result. In this

way, shadow pixels in the initial segmentation results, after thresholding P (B|X),

are largely eliminated, as illustrated in Figure 5–1d.

The raw mask after thresholding and shadow removal contains many isolated

foreground points. Combining the result of color segmentation of the input frame,

as shown in Figure 5–1b, we integrate these isolated points into a group of color

segments contributing to a silhouette of a foreground object with boundaries closely

matching the outlines of a human body, as illustrated in Figure 5–1e. This silhouette

will later assist in the generation of foreground mosaicing frames.

5.2.3 Background Image Generation

In addition to the binary foreground-background segmentation result, the back-

ground image, a weighted sum of the means of each Gaussian element from the MoGs,

is also constructed. This provides a full description of the static regions in the en-

vironment whereas the complement of a silhouette is incomplete due to occlusions

from foreground objects.

2 If a data distribution is approximately normal, then approximately 68% of the
values are within 1σ from the µ, approximately 95% of the values are within 2σ and
approximately 99.7% lie within 3σ. This is known as the 68-95-99.7 rule, or the
empirical rule. In our case, we chose 3σ to distinguish checkboard pixels from the
others.
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The background image is computed as the expected value, E[X|B], of the ob-

servation X, assuming it to be background, as the following weighted average [32]:

E[X|B] =
K∑

i=1

E[X|Gi]P (Gi|B)

=

∑K
i=1 µiP (B|Gi)P (Gi)∑K
j=1 P (B|Gj)P (Gj)

(5.4)

where µi represents the mean of the i’th Gaussian, Gi.

Two such background images are pictured in Figure 5–2b and 5–2c. These are

used to construct the background mosaic as explained in the next section.

5.3 Mosaic Construction of Background Layer

As discussed at the beginning of this chapter, in order to preserve both the

spatial and temporal coherence of dynamic mosaicing video, the static background

and the moving foreground should be processed separately. We first describe the

procedure to construct a background mosaic that is common to all frames.

The pose and internal parameters of the virtual camera are chosen according to

the method shown in Section 4.2. Using the depth-based image mosaicing (DBM)

technique introduced in the last chapter, both overlapping and non-overlapping re-

gions of the mosaic are rendered as if seen by this virtual camera, which has all its

parameters fixed during the synthesis of the entire dynamic mosaicing video.

Figure 5–2 illustrates the background images and the depth-based mosaic based

on them. Because the dynamic foreground objects have been removed, they exercise

no influence over the image alignment process, and thus, the appearance of the back-

ground in the mosaic video remains consistent over time. In our tests, a multi-band
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(a) sample training frames for the left camera

(b) background image of left camera (c) background image of right camera

(d) depth-based background
mosaic of overlapping
region

(e) after non-overlapping re-
gion filled

(f) after multi-band blending

Figure 5–2: Mosaic construction of background layer.
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blending strategy [14] is required to balance the color differences between camera

responses. This smooths the boundary between overlapping and non-overlapping

regions in the background mosaic.

5.4 Foreground Mosaic in Overlapping Regions

Similar to the work in Section 4.2, generating a depth-based image mosaic of

the foreground layer in the overlapping regions, Ro, of multiple input cameras, is a

typical view synthesis problem. Given the set of input frames and their corresponding

camera parameters, the plane sweep algorithm [16] and graph cut optimizations [8][9]

are applied to construct a synthesized foreground mosaic in Ro observed from the

virtual mosaicing camera.

When foreground objects move beyond the FOV of a single input camera, we

have to combine the foreground layer contents from multiple sources to build a com-

plete mosaic video. Under this condition, the large baseline separation between cam-

eras, either real or virtual, may result in an appearance problem of the foreground

layer. As illustrated in Figure 5–3, an object leaves Rnon and enters Ro between two

successive frames. When switching between the foreground layer from source camera

C1, in Rnon to that of a virtual mosaicing camera, Cv, it is difficult to achieve a

smooth transition of foreground content due to the different viewpoints of the two

cameras. This results in an obvious difference of object pose as seen in Figure 5–3.

Our solution is to synthesize foreground layers at each time instance within [t+

1, t+W ], from W smoothly interpolated positions between cameras C1 and Cv, where

W = 10 in our experiments. We then project each of these synthesized foreground

layer instances onto the mosaicing plane according to their depth estimates so as to
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(a) foreground mosaic at time t,
when object is in Rnon

(b) foreground mosaic at time t + 1,
when object enters Ro

Figure 5–3: The obvious appearance differences between foreground layers when an
object leaves Rnon at time t and enters Ro at time t + 1.

build dynamic mosaic frames containing only foreground object. In such a manner,

the abrupt changes of foreground appearance over two successive frames at time

[t, t+1], as illustrated in Figure 5–3, are replaced by gradual and smooth transitions

over [t, t + W ] frames, as presented in Figure 5–4.

5.5 Foreground Mosaic in Non-overlapping Regions

Since no stereo information is available to estimate depth values of foreground

objects in the non-overlapping regions, Rnon, depth-based foreground mosaics in

these regions must be processed differently from that in Ro.

5.5.1 Previous Approaches of Depth Calculation

View synthesis techniques based on stereo information are obviously not suitable

for calculating depth values of foreground layer contents in Rnon.

However, when presented with a monocular video sequence, the technique of

structure-from-motion may reconstruct the shape and position of moving objects.

The method stems from the factorization algorithm by Tomasi and Kanade [58],
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Figure 5–4: The illustration of the usage of interpolated virtual mosaic frames to
compensate for an abrupt appearance difference between foreground layers, when
the person moves from Rnon to Ro, as presented in Figure 5–3. We synthesize 10
foreground layers from time t+1 to t+10 respectively. We also present the foreground
mosaic frames at time t and t + 11 to illustrate the smooth transition between this
group of interpolated virtual mosaic frames with the rest of the dynamic mosaicing
video.
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which was only applied to rigid objects. The basic idea is to decompose a mea-

surement matrix, which contains image coordinates of a group of matching features

across the entire video sequence, into its components of shape and motion. The for-

mer represents the 3D positions of the feature points included in the measurement

matrix, and the latter describes the relative movement between a video camera and

scene objects.

A newer technique, nonrigid structure-from-motion [11][18][59] can estimate

time-varying 3D shapes from 2D point tracks in monocular video input but is still

limited to objects with comparatively low degrees of freedom of movement. However,

a full-body human subject may generate significantly more complex motion patterns,

and produce self-occlusions during movement. These factors make 3D reconstruction

of such an object from monocular video difficult. Reconstruction may even become

ill-posed if arbitrary deformations are allowed.

Instead of considering other approaches to discover the real 3D shape and po-

sition of foreground moving objects in Rnon, we focus on a perceptually correct

representation of foreground motion in a dynamic video while preserving spatial and

temporal motion consistency.

5.5.2 Motion Perception and its Mathematical Representation

Psychological research of motion perception reveals that humans are sensitive

to significant changes of physical features, i.e., speed and direction in motion tra-

jectories [28]. People understand motion activities based on when and where these

changes occur [64]; moreover, the order of these events is another important cue for

perception [38].
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Rao et al. [45] translated these conclusions into a mathematical representation.

A 2D trajectory, which represents the path of an object in a video sequence, is

defined as a spatiotemporal curve with the function:

r(t) = [x(t), y(t), t] 1 ≤ t ≤ n (5.5)

where t represents the frame index and [x(t), y(t)] indicates the pixel coordinates

of the object centroid in the t’th frame. The curvature, k(t), which is responsive to

discontinuities in velocities and accelerations of r(t), is given by:

k(t) =
‖r′(t)× r′′(t)‖

‖r′(t)‖3
(5.6)

where r′(t) or r′′(t), the first and second derivatives of r(t), represent its velocity

and acceleration respectively.

Significant changes of physical motion features, also named instants, are defined

as the maxima in curvature of a 2D trajectory [45]. Each 2D trajectory can be

decomposed into a sequence of instants, which is the mathematical representation of

motion understood and distinguished by humans.

As long as cameras remain in the same half hemisphere of the viewing space,

such instants are independent of view direction. In other words, although the 2D

trajectories of the same motion may appear differently from various camera positions,

as illustrated in Figure 5–5, they share a common sequence of instants, which leads

to the identical perception of object movement.

In the next section, we discuss the details of our novel algorithm. This gener-

ates perceptually correct dynamic mosaicing video by propagating the reliable depth
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Figure 5–5: Trajectories, the paths consisting connected dots in white, from different
view points for opening (top) and closing (bottom) overhead cabinet action. Both
the opening and closing actions in the same column are taken at the same viewpoint.
Figure 10 of Rao et al. [45] ( c©[2002]Springer, reproduced here with permission).

information of the foreground layer from overlapping regions into neighboring non-

overlapping regions, in such a manner that the sequence of motion instants is pre-

served.

5.5.3 Problem Definition

Our goal is to synthesize a mosaic video by generating a sequence of foreground

mosaic frames in the non-overlapping regions, from the perspective of the virtual

mosaicing camera.

As discussed above, humans perceive motion through instants, i.e., the locations

of curvature maxima in a 2D trajectory, r(t). If the motion in an output mosaic video

is generated by naively replicating the velocity of r(t) in the monocular input video,

curvature is preserved, as this depends on the velocity and its first derivative. As

such, the sequence of instances, i.e., the perception of motion, is also preserved.
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Furthermore, motion consistency, as observed in the input video, is achieved in both

spatial and temporal domains in the output mosaic video.

It bears comment that, the output constructed in this manner does not faithfully

present the projection of real 3D motion seen by the virtual mosaicing camera.

However, given the fact that it is computationally expensive, or sometimes, even

impossible to achieve reliable 3D information when presented with a monocular

input video, we consider it acceptable to obtain output that maintains the correct

perception of motion and continuity of motion. As in the case of static mosaicing,

for which we require a smooth transition of appearance between different sources,

here, for dynamic mosaicing of foreground layers, we require consistent perception

of motion as objects move across the FOVs between different cameras.

For simplicity, we ignore the depth variance of foreground objects, treating them

as if parallel objects to the image plane of the viewing camera. Consequently, con-

structing a foreground mosaic video in Rnon becomes a procedure to find a suitable

depth level d for each foreground object at every time t. After projecting these onto

the mosaicing image plane according to their depth estimates, the motion trajectory

of these warped foreground objects, rnew(t), should present the same velocities as

those of r(t) in the monocular input video.

Let L denote the set of depth levels {d1, . . . , dN}. In our application, the 2D

motion trajectory in the input video, r(t), is represented by the history of silhouettes,

as shown in Figure 5–6a. The 2D motion trajectory in the synthesized mosaic video,

rnew(t), consists of the history of warped silhouettes. The velocity v(t) of a 2D

trajectory is related to the first derivative of the silhouette sequence, i.e., ∆S(t) =
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(a) the history of silhouettes as a 2D trajectory

(b) the difference between two successive silhou-
ettes

Figure 5–6: (a) An example of a 2D motion trajectory, which is represented by a
history of silhouettes, containing {S(1), ..., S(20)}. (b) The velocity of a 2D motion
trajectory is related to the difference between two successive frames, where regions
in white are evaluated with value “-1”, regions in black with value “1”, and regions
in gray with value “0”.
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S(t + 1) − S(t) as shown in Figure 5–6b. The speed component of the velocity of

r(t) is given by:

Speed(∆S(t)) =

∑
s(i,j)=1 ∆S(t)∑

s(i,j)=1 S(t + 1)
+

∑
s(i,j)=−1 ∆S(t)∑

s(i,j)=1 S(t)
(5.7)

Speed(∆S(t)) is a sum of two area ratios, the first of which is between the area of

regions with value “1” in ∆S(t) and that of the foreground layer in silhouette S(t+1),

while the second is between the area of regions with value “−1” in ∆S(t) and that

of the foreground layer in silhouette S(t). The direction of velocity is defined as:

~γ(t) = sgn(CM1(t)− CM−1(t)) (5.8)

where CM1 is the centroid of “1” valued regions and CM−1 is that of “−1” valued

regions in ∆S(t). The function sgn(x) is given by:

sgn(x) =




−1 if x < 0

1 otherwises
(5.9)

If x is a vector, sgn(x) returns a vector constituted of the sgn values of each of its

elements.

From these definitions, the problem of generating the t’th depth-based fore-

ground mosaic frame in Rnon can be stated precisely as follows:

Problem. Given a monocular input video of a foreground object in Rnon and assum-

ing that the object is of uniform depth, find the best depth estimate d(t), so that the

difference of velocity, difv(t), between r(t) and rnew(t) is minimized.
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The difference of velocity, difv(t), is defined as follows:

difv(t) = difspeed(t) + difdirection(t) (5.10)

The first term, difspeed(t), measures the difference between speeds of velocities in r(t)

and rnew(t):

difspeed(t) = Speed(∆S(t))− Speed(∆Snew(t)) (5.11)

where Speed(∆S(t)) is defined in Equation 5.7. Speed(∆Snew(t)), based on rnew(t),

is constructed in the same manner.

The second term in Equation 5.10 accounts for the difference between directions

of velocities in r(t) and rnew(t).

difdirection(t) = ‖~γ(t)− ~γnew(t)‖ · λdirection (5.12)

where λdirection is a constant penalty. difdirection(t) generates a cost value proportional

to the measurement of direction differences between the velocities of r(t) and rnew(t).

If the velocities coincide in all directions, difdirection(t) is zero.

Without loss of generality, we test all the depth candidates starting from frame

t, immediately prior to the entry of a foreground object into the overlapping region,

where reliable depth estimates are already available. The value that provides the

best match of motion velocity between (Snew(t + 1), Snew(t)) and (S(t + 1), S(t)),

and consequently, minimizes the difference of velocity in Equation 5.10 is selected.

We then apply that same calculation to estimate the foreground mosaic at time

(t− 1), and continue until the first frame of the sequence is reached. In this manner,

the foreground mosaic video in Rnon is obtained over the time domain [0, t]. A
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simple merging of the background mosaic, as in the example of Figure 5–2f, with the

foreground mosaic, results in the final dynamic mosaic video.

5.6 Experimental Results

The depth-based dynamic mosaicing method was tested on our own data. We

generated video sequences of a single moving object using two input cameras with

fixed parameters located along a wide baseline. Since we have not yet solved the

problem of synchronization of multiple inputs through post-processing, the input

cameras must be frame-synchronized during video acquisition. Camera calibration

was performed using Zhang’s [66] method, as implemented by Bouguet [7], and the

radial lens distortion was removed after calibration. Although the sample results

provided here used only two fixed video cameras as inputs, it would be a straightfor-

ward extension to take advantage of additional cameras, even with a more complex

arrangement than the translationally dominant configuration used here.

To the best of our knowledge, the method introduced in this chapter is the first

instance of a dynamic mosaicing algorithm that can cope with the issues of parallax

and object motion if given sparse input samples. There is no contemporary reference

against which to compare results. Autostitch is thus selected as a benchmark, given

that it is a top-referenced representative of conventional mosaicing techniques.

As predicted in Section 5.1, when given moving objects in the scene, Autostitch

generates dynamic mosaic results exhibiting jitter effects. Figure 5–7 illustrates

the difference images between pairs of successive mosaicing frames. These differ-

ences arise from non-rigid movements of dynamic objects, and certain contents in
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(a) Frame 21 (b) Frame 22 (c) Frame 23

(d) |I22 − I21| (e) |I23 − I22|

Figure 5–7: Illustration of jitter in the dynamic mosaic results of Autostitch. (a)-(c)
Three successive mosaicing frames by Autostitch. The difference images, (d) and
(e), exhibit changes of contents not only caused by the object motion but also by
the jitter of static background regions.

the static background regions, due to inconsistent image registration between neigh-

boring frames. The latter results in jitter seen on a frame-by-frame basis in the

Autostitch dynamic mosaic. In contrast, our algorithm applies a common mosaicing

background, as illustrated in Figure 5–2f, in each frame of the dynamic mosaic. In

such a manner, it avoids the problems of jitter entirely and thus results in a consis-

tent background throughout the entire dynamic mosaic video, equivalent to that as

seen in the input videos. This is a desired property summarized in Section 1.1.

More importantly, parallax effects in the inputs lead to ghost errors observed

in mosaicing frames of Autostitch, as illustrated in Figure 5–8a. As summarized in

Chapter 2, parallax is also a challenge to conventional dynamic mosaicing algorithms.
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(a) mosaicing frames of Autostitch

(b) mosaicing frames of our method

Figure 5–8: (a) Illustration of ghost errors in the dynamic mosaic result of Autostitch.
(b) The corresponding frames built by our algorithm are free of such errors.

Although their improved image registration techniques may avoid jitter problems by

reducing the impact of dynamic objects in the scene, they cannot overcome the

parallax issue, which remains evident even in the static environment. The results of

Figure 5–8b illustrate that our approach generates results free of these errors.

In order to validate the results of our algorithm with respect to preservation of

motion consistency in the spatiotemporal domain, we compare these to the output

of a reference camera, which was located well behind the baseline between two input

cameras. This allows us to obtain a similar FOV as the virtual mosaicing camera.

As illustrated in Figure 5–9a, the video acquired by the reference camera and the

synthesized dynamic mosaicing video present similar motion trajectories, with the
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same sequence of instants, which are identified as maxima in the curvature of tra-

jectory, as shown in Figure 5–9b. The corresponding frame indices of these maxima

are also marked on the trajectories as key frame points. The similarity of trajecto-

ries and instants between the reference video and the dynamic mosaic confirms that

the latter preserves not only motion consistency in the spatiotemporal domain but

also provides an identical perception of motion. Samples from both the reference

video and the dynamic mosaic, taken from identical frames indices, are provided in

Figure 5–10 to illustrate motion consistency.

The current depth-based dynamic mosaicing algorithm presents a successful pro-

cessing pipeline that generates reasonable mosaic video containing a single moving

object. We have not yet addressed more complicated motion patterns, such as those

involving multiple objects with occlusion and disocclusion effects. In such cases,

moving objects are unfortunately detected as a single silhouette when they overlap,

as shown in Figure 5–11a. This common silhouette is used to calculate the depth

estimate for each separately moving object, based on the respective motion trajec-

tory analysis. As shown in Figure 5–11(b-c), at time instant t, the entire content

of the silhouette will be warped onto a different position (I or II) of the output mo-

saicing frame depending on which object, i.e., the male or female subject, is used

to determine its depth. This results in duplicated foreground content, as appears

in the output mosaic frame of Figure 5–11d. A possible solution may be to take

advantage of motion tracking or 3D models of foreground objects, obtained prior to

the algorithm. Ultimately, this may enable the construction of dynamic mosaics that

include arbitrary motion of multiple objects.
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(a) motion trajectory of dynamic object in the video sequences

(b) curvature values of the motion trajectory

Figure 5–9: (a) Motion trajectories of the reference video and the dynamic mosaic
video. (b) Corresponding curvature values. Strong coherence of both the trajectories
and the sequence of instants is observed between the two paths.
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(a) object appearing in non-overlapping region

(b) an interpolated virtual mosaic frame when object transitions from non-overlapping to over-
lapping region

(c) object appearing in overlapping region

Figure 5–10: Comparison of frames from the dynamic mosaic to those from the
reference video.
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(a) (b)

(c) (d)

Figure 5–11: (a) The common foreground mask (silhouette) containing multiple mov-
ing objects. (b) and (c) The different warping positions of the foreground contents
based on the depth estimates calculated according to motion trajectories of differ-
ent moving objects. (d) The resulting duplicated foreground content in the output
mosaic frame.
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Another limitation of the current dynamic mosaicing approach is that it must

first obtain reliable depth estimates of the foreground layer, obtained from the over-

lapping region, in order to propagate these into the neighboring non-overlapping

regions. As a consequence, the algorithm is presently unsuitable for on-line applica-

tions, unless all moving foreground objects are first seen in the overlapping regions.

Overcoming this limitation remains a problem for future work.

The shadow of the moving objects is unfortunately removed in the current dy-

namic mosaicing results. This is due to our training of the statistical background

model, which regards such shadows as part of the static background. In order to

preserve such shadows and render them properly in the dynamic mosaicing results, a

shadow and light source detection algorithm must be included in the implementation.

5.7 Summary

Chapter 4 introduced our depth-based image mosaicing algorithm and demon-

strated its application to static scenes. This chapter described an extension to the

algorithm as necessary for generating dynamic mosaics.

Following the foreground-background segmentation, we project the separated

layers onto the mosaicing image plane according to their depth estimates. This

results in our construction of the first reasonable chronologically consistent dynamic

mosaic video, which includes contents from both overlapping and non-overlapping

regions and preserves spatiotemporal motion consistency, even when presented with

challenging inputs exhibiting obvious parallax effects.

The new algorithm provides an efficient pipeline for construction of dynamic

mosaics, which overcomes both the challenges of parallax and dynamic objects. We
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believe the work presented in this chapter will lead to many promising applications

of dynamic video mosaicing.
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CHAPTER 6
Conclusions

6.1 Future Directions

Dynamic Mosaic of Multiple Objects

As discussed in Section 5.6, although the current depth-based dynamic mosaicing

algorithm accommodates the motion pattern of a single moving object, it is not

designed to cope with more complicated motions of multiple objects in the scene.

The first problem that must be tackled in this case is the difficulty of background

segmentation. When the dynamic foreground contents occupy a significant portion

of the FOV, it is hard to distinguish them from the fixed background based on

statistical information. Thus, a robust segmentation method is required to handle

such conditions. Secondly, the complex motion pattern of group activity, including

multiple independent trajectories with occlusion and disocclusion effects make it

difficult to preserve motion consistency in the output dynamic mosaic. Access to

motion tracking information or 3D models of foreground objects may prove helpful

in this case.

Sensor Fusion for Improved Segmentation

Color segmentation, foreground-background segmentation and depth estimation

are three correlated factors related to depth discontinuities, so that the combination

of them in the form of sensor fusion may improve their overall results.
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In the thesis, the quality of depth-based image mosaicing results is in large part

dependent on the quality of color segmentation. A careful parameter tuning proce-

dure is required to achieve the appropriate size of color segments that preserve edges

well along depth discontinuities. If integrated the foreground-background segmen-

tation and depth estimation, it should be possible to design a fully automatic color

segmentation algorithm.

Evaluation Metric

A widely acknowledged shortcoming in the field of image mosaicing is the lack

of an evaluation method to compare algorithms quantitatively. Because of the prob-

lematic issues involved in producing ground truth results, and the challenge of fairly

comparing the results obtained by different synthesis methods, e.g., multiperspective

vs. single perspective projection, mosaic quality is invariably judged subjectively. It

would be helpful to create a novel gradient domain analysis to determine the location

and the severity of mosaicing errors.

A Real-time Application

For our target application of a video-conferencing system, optimization of these

algorithms for video rate performance at high resolution is vital. Possible ideas we

would like to explore, include exploitation of the parallel computation abilities of a

GPU to produce fast rendering for overlapping regions, and the use of pre-calibrated

stereo cameras or laser scanners to construct an accurate depth map of the entire

scene. The latter would reduce the computation required to obtain depth estimates.
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Efficient Video Compression and Transmission

Video contains redundant information, such as static scene content that ap-

pears repeatedly in consecutive frames. Following the approach of the majority of

video compression algorithms, representations that preserve significant structures

and motion can improve the efficiency of transmission, browsing and searching of

video sequences. Our novel depth-based dynamic mosaicing technique eliminates

much of the redundancy of video sequences and generates three related outputs: the

static background panorama, the dynamic foreground layers, and their correspond-

ing depth estimates. With further research, it may be possible to reconstruct the

individual input video stream from these three related representations, thus leading

to advances in video compression, transmission and indexing method.

6.2 Concluding Remarks

This thesis addressed the problem of overcoming the challenges of parallax and

motion in image mosaicing. It removed the traditional constraints of parallax-free

camera motion or dense sampling of the environment and contributed to the devel-

opment of a dynamic mosaicing algorithm that copes with non-parallax-free video

inputs.

A novel image mosaicing algorithm built upon these techniques, i.e., the inte-

gration of image-based rendering and optimization algorithms, was introduced and

validated in Chapter 3. However, its computational cost motivated the investigation

of more efficient methods.
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Another algorithm, which formulated the image mosaicing as a depth-based view

synthesis problem, and notably included the contents in non-overlapping regions be-

tween sources by using a depth propagation procedure, is discussed in Chapter 4. As

demonstrated in Chapter 5, the depth-based image mosaicing algorithm, if integrated

with the technique of foreground-background segmentation and the consistent mo-

tion perception criterion, can be extended to generate reasonable dynamic mosaics

that are robust to both parallax and motion issues.

Conventional image mosaicing techniques warp inputs by estimating the geo-

metric relationship, i.e., the camera motion models explicitly, so that input images

are aligned particularly in their regions of overlap. However, by incorporating depth

cues, our new approaches applied the smooth appearance connection criterion to

ensure natural transition between contents in panoramas of static scenes. Similarly,

they also imposed a consistent motion perception criterion with respect to moving

objects. This preserved continuity of object movements in dynamic mosaicing videos.

Experiments demonstrated that the new algorithms generate promising results, even

when given challenging inputs on which traditional image mosaicing algorithms tend

to fail. Nevertheless, it bears comment that the use of depth cues to overcome the is-

sues of parallax and object motion also imposes constraints. Specifically, we assume

that the inputs present observable disparity differences; our algorithms would fail

if presented depth-free inputs, which do not contain sufficient stereo information to

enable further depth estimation. Furthermore, unlike traditional image mosaicing al-

gorithms, our approach requires camera calibration, which may be a time-consuming

task.

97



Finally, our investigation of techniques to overcome parallax and motion issues

has exposed opportunities for further improvements, and also raised further open

questions.
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