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Abstract

In this thesis. the optimization of spherical four-bar linkages for the problem of
path generation is presented In this problem, a set of points is given, and the linkage whose
coupler link contains a point tracing a trajectory, called coupler curve, passing as close as
possible to a given set is sought The problem is formulated as a two-layer minimization
of the linkage error which 1s defined as the sum of the distances between the coupler
curve and each point of the given set, thereby decoupling the linkage parameters from
the configuration variables. Hence, the optimization procedure consists of evaluating a set
of input angles, {v }1". defining m hnkage configurations, and the linkage parameters
independently. This leads to a nonlinear least-square minimization problem with equality
constraints The orthogonal-decomposition algorithm, introduced elsewhere, is employed
to solve the problem, which allows us to obtain the solution iteratively. Continuation and
damping techmques are used in the numerical procedure to ensure convergence and speed
up its rate. The optimization scheme 1s developed on a general basis and can handle the
problems of rn prescribed points, where m can be any number greater than nine Several
design problems are solved by using the method and results are presented in the thesis.
In addition to solving the synthesis problem, a novel criterion for mobility analysis of the

spherical four-bar linkage was devised and is included in the thesis.
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Résumé

Dans cette thése, I'auteur présente une méthod~ d'optimisation des mécanismes
sphériques a quatre barres articulées pour le tracée de trajectoires Dans le cadre de ce
probléme, un ensemble de points est donné et 'on cherche le mécanisme dont la belle
contient un point tracant une trajectoire. dite la courbe de la bielle, qui passe aussi proche
que possible de I'ensemble donné La formulation du probléeme consiste en une mtimi-
sation a deux stages imbriqués de l'erreur du mécanisme, qui est défini ici commme la
somme des distances entre la courbe de la bielle et chacun des points de I'ensemble donné.
Cette approche permet de découpler les paramétres cinématiques du mécanisme et les
variables décrivant la configuration Ainsi. la procédure d’optimisation consiste a évaluer
indépendament un ensemble d'angles d’entrée. {vy}{". défimssant m configurations, et
les paramétres cinématiques du mécamisme On formule ainsi un probleme de mimimisa-
tion dit de moindres carrés contraint, soumis a des contraintes d’égalité. L’algorithme de
décomposition orthogonale, présenté ailleurs, est utilisé pour résoudre ce probleme, ce qui
conduit 3 une solution ité.ative Les techniques de continuation et d'amortissement sont
également introduites afin d'accélérer la procédure et de garantir sa convergence De plus, la
généralité de I'algonthme d'optimisation développée ict permet de résoudre le probleme de
tracée de trajectoire pour m points, ou m peut €tre nimporte quel nombre supérieur a neuf
Plusieurs problemes de conception de mécanismes sont résolus a I'aide de la méthode décnte
ci-haut et les résultats sont présentés dans cette these. Enfin, I'auteur présente dans cette

thése une nouvelle condition de mobilité du mécanisme sphérique a quatre barres articulées.
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Claim of Originality

The author claims the originality of the idea of the optimization scheme reported
in this thesis. Moreover, to the author's knowledge, the criterion for the mobility analysis

of spherical four-bar linkages i1s original and has not been presented elsewhere.
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Chapter 1 Introduction

Modern technology has brought along a wide application of the spherical mech-
anism to industry. We have, in this category, solar-tracking mechanisms, rotating radar
mechanisms, robotic wrists and prosthetic devices, such as artificial wrists and subtalar
joints, etc. In this type of mechanisms, the motion takes place on the surface of a sphere. Of
all spherical mechanisms, the spherical four-bar linkage is the simplest in structure and has
received a special attention A common example of this type of mechanism 1s the universal
joint. Many practical problems dealing with spherical four-bar linkages are related to the
trajectory followed by a certain point on the coupler hnk, which leads to the problem of path
generation The design of a solar collector, for example, which traces a solar-path. belongs
to this category. Hence, the significance of developing efficient schemes for solving this

type of problems becomes apparent.

The synthesis of path-generating linkages is a classical problem in applied kine-
matics In connection with the four-bar hnkage. it requires to determine the dimensions
of the linkage having the property that one of the points of 1ts coupler link passes through
certain prescribed positions Reported in this thesis is the solution of the aforementioned
problem in the spherical case. In this context, all the relevant parameters of a spherical
RRRR four-bar hnkage are computed, given a set of points on the surface of the sphere on
which the motion of the linkage takes place, so that one point of its coupler link, which
we call coupler point, traces a path whose distance to the given points 1s a minimum. The

problem solved here is aimed at the approximate synthesis of the linkage. the exact syn-




1. Introduction

thesis being regarded as a particular case of this.

Linkage synthesis problems have been a subject of intensive research in kine-
matics. Classical problems, such as path generation, rigid-body guidance and function
generation, have been extensively studied Various methods have been proposed in the
literature to deal with these problems Tomas (1968) showed that the majority of prob-
lems concerning the synthesis of mechanisms can be formulated as nonlinear program-
ming problems. Fox and Willmert (1967) and Alizade, Novruzbekov and Sandor (1975)
applied nonlinear programming techniques to solve the synthesis problem for function gen-
eration, while Rao (1979) used geometric programming to solve the same type of synthesis
problems Sutherland and Karwa (1978) developed a general scheme for the synthests of
linkages for rigid-body guidance. Chiang (1984) used the concept of kinematic inversion and
solved the synthesis of path generation symbolically. Other methods have been studied by
different researchers, such as the geometric and algebraic methods proposed by Hartenberg
and Denavit (1964). and the Monte-Carlo method (Golinski, 1970). On the whole, a variety
of methods has been developed by different researchers in the past decades for dealing with

various problems in the area of linkage synthesis.

However, it seems that the research has mostly focused on planar linkages.
Investigations in the spherical case are relatively few. For the case of path generation
of spherical four-bar linkages, although some work has been done, the anising problems
are mainly solved for not more than four given points (Suh and Radcliffe, 1978) or for
the coordination of three or four prescribed points and the corresponding crank rciations
(Chiang, 1986). Although it has been proved theoretically that up to nine given points
on a sphere can be met exactly by a spherical four-bar linkage (Kraus, 1952), finding
the solutions becomes a major task, due to the highly nonlinear nature of the equations
involved Up to now, no research has been reported in the literature for more than four
given positions. It seems clear that, as the synthesis problems turn more comphcated, the
conventional geometrical and symbolic methods meant for the exact-synthesis problem are

very limited and difficult to apply. Consider the problem of path generation, for example. On

3
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.1 Introduction

the one hand, those methods can only be used for less than five prescribed positions which
are to be met exactly. On the other hand. when the number of prescribed points exceeds
a certain maximum, namely. mne, an overdetermined system of nonlinear equations will
arise, which means that no exact solutions are possible Thus, for such problems. we must
resort to numerical methods for optimization As practical path-generating problems may
very likely include more than nine points, devising a general scheme capable of handing
more points becomes of the utmost concern This motivates the research work reported in

this thesis.

Recently, Angeles, Alivizatos and Akhras (1987) and Akhras and Angeles (1987)
proposed a new method to solve approximate synthesis problems for planar linkages They
applied a variable-separation technique and unconstrained nonlinear least-square optimiza-
tion schemes to the problems of path generation and ngid-body guidance Ther method
is very efficient, since it can handle any number of given positions and orentations In
seeking the same performance for spherical problems. unconstrained methods are no longer
applicable, and hence. constrained least-square techniques have to be introduced While
some common features between planar and spherical linkages exist. special characteristics
concerning spherical linkages must be considered For example, due to the fact that all the
joints and points of interest in the problem lie on the surface of a sphere, algebraic con-
straints on the coordinates of points defining the location of the centre of these joints are
necessary. The problem is hence formulated as one of constrainted nonlinear least-square
optimization. Two layers of minimizaticn are included. each of them being considered sep-
arately. An iterative scheme 1s used in evaluating the design vanables in the outer layer of
optimization, while, in the nner layer. the optimal choice of input angle corresponding to a
linkage configuration, with the coupler point lying the closest to a given point, is found. In
this formulation, equality constraints are used, which eases the computational procedure
to a large extent |In fact. whereas the solution of least-square minimization problems,
subject to continuous equality constraints, are continuous functions ot the problem pa-
rameters. those of mathematical programming problems subject to nequality constraints

are, in ganeral, discontinuous functions of the problem parameters. This property has rel-
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evant consequences, for it allows the introduction of a technique known as continuation in
the solution procedure This technique, in turn, guarantees the convergence to a solution—
provided thut the problem has one—even if the initial guess hes far from the said solution.
Moreover, the convergence rate is enhanced by the use of damping techniques in the iterative

procedure All these techniques contribute to the efficiency of the method

The optimization scheme aims at solving problems in which a set of points are
given on the surface of a sphere To this end, the problem of synthesis for path generation,
given any number of points, greater than nine. can be solved However. no coordination
between these points and the input angles are considered in the formulation For this type

of problems. certain modifications in the formulation are necessary, which fall beyond the

scope of the thesis

A Fortran77 computer package, called SPHER1, has been written for imple-
menting the whole optimization scheme and runs on the Unix-based workstations of the
McRCIM network A brief description of the computer package is given in Appendix E. Some
design problems, including solar-tracking mechanisms and a linkage for driving a Geneva

wheel. are solved by using the computer package. The results are reported in Chapter 6

In addition to the synthesis work mentioned above, the mobility range of spheri-
cal four-bar linkages are studied using the concept of inkage discriminant The full-mobility
regions of both the input and the output links are described in the 4-D space of linkage
parameters a novel form of the critenion for mobility analysis being thus proposed The

details are given in Chapter 2.
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Chapter 2 Backgrow.id and Terminology

2.1 On Spherical Four-Bar Linkages

Shown in Fig. 2.1 is a general sphetical RRRR four-bar linkage The axes of the
four revolute joints, A. B, C and D. intersect in one point O, the centre of the sphere on
which the motion of the linkage takes place We define AD as the fixed ink, AB and CD as
the input and output links, respectively. and BC as the coupler link A point P on the coupler
link is chosen as the coupler point which will generate a coupler curve when the linkage 1s in
motion The link dimensions are given by the angle between adjacent joint axes. 1e, «,. for
1 =1,2,3,4, as shown in Fig 21 Additionally, three other angles. «ag. g and aj. are
defined to describe the coupler point Possible combinations of the length of each link y:eld
different types of linkages double-crank, crank-rocker, rocker-crank, or double-rocker As
in the planar case, the well-known rule of Grashof can be used to identify linkage types
(Hartenberg and Denavit, 1964, Chiang, 1984), Here a new method is developed for this

purpose, as described below

2.1.1  Input-Output Analysis

Since the four-bar linkage is a one-degree-of-freedom mechanism. the input an-

gle ¥, namely, the angle between the links AB and AD measured from the major circle




2. Background and Terminology

Figure 2.1 A General Spherical RRRR Four-Bar Linkage

AD, defines its motion. Correspondingly. the angle between CD and AD, measured as indi-
cated in Fig 2.1 and called ¢. is defined as the output angle. A distinct function, which
is called the input-output function, exists that defines the relationships between the input

and the output angles. as described in (Angeles, 1982, Angeles and Bernier, 1987). Here. an

alternative form is used. namely,
J(¥, ¢ k) = ky + kycostp + kzcos ycos ¢ — kycos ¢ +sinysing =0 (2.1)

where k is defined as the four-dimensional vector of linkage parameters, its k, compo-

nents, for 1 = 1,2, 3,4, being defined as follows:

COS (1 COS ) COS Qg — COS @
ky = 1205 Mt 24 3 (2.2a)
Sin o) Sin ay
sin aq cos a
ky= 1> (2.2b)
SNy
k3 = cos a4 (2.2¢)

7
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by = sin a4 €os ap (2.2d)

sin oy

The above equation, although related to that given by Angeles and Bernier
(1987). bears some differences with it The major improvement here 1s the avoidance of

the singulanties at oy = 90 . A possible inversion of those equations is the following.

sinay = \/1 - k_,z’, cos aq = k3

1 - I\'§ k4

sinay =, — -5 3, COS (9 = —==mm=mm=m=,
2 2
\ 14 k3 -~ k3

. | [kokskq - k1(1 - K3))2
s oz = | 1- - ;_.i "9 2— - —73; —“‘2“5, (2.3)
C (1 -k k(1 + Ky - K3)

[kokaky — kq (2 - £2)]

COsS 3 = 3
(1- k% + k) + k- k)
- _
sin a f 1- k§ cos a ky
8=\ T § = T
\ 1+ kS - K3 V1+Hk - K

where all the angles are assumed to be within the range from O to 7

With simple trigonometrical transformations, eq.(2 1) can also be expressed in

the following form.

AW)T? +2B(W)T + C(¢) = 0 (2.4)
where
A(I/J) =ki+ kg + (ko + k3) cos P (2.5q)
Bly) = siny (2.55)
C(‘([)) =ky - kg + (kg + kg)COS P (2.5¢)
T = tan(¢/2) (2.54d)




2 Background and Terminology

The output angle in terms of the input angle is then obtained as:

_ B(¥) + KV/B(w)2 — AW)C(¥)
= an 1 —
o =2t ( A(Y]

where I 1s the branch index of linkage configurations It i1s defined as the sign of the sine of

(26)

the transmission angle, u, as shown in Fig 2.1 The reason why K 1s introduced s that
branching problems may occur in the synthesis procedure That is, for a certain input angle
v, the coupler point I, attains two conjugate positions, which correspond to the two
different roots obtained from eq (2 6) when its discrinninant 1s greater than zero. In order
to avoid branch jumping. KA is then used to distinguishing between linkage configurations

(Ma and Angeles, 1987)

Similarly, to obtain the input angle in terms of the output angle, we rewrite

eq (2 1) as follows

D(¢)S? + 2E(¢)S + F(o) =0 (2.7)
where
D(0) = ky ~ ky — (kg + k3) cos ¢ (2.84)
E(¢) =sin¢ (2.8b)
F(¢) = ky + ky — (kg - k3) cos ¢ (2.8¢)
S = tan(v,2) (2.84)

and an expression similar to eq (2.6) for the input angle can then be obtained.

Once the dimensions of a linkage are given. the position of the coupler point
becomes a function of the input angle. As the input angle varies in its mobility range. the

coupler point moves on the surface of the sphere and the coupler curve 1s generated.

2.1.2 Mobility Analysis

The mobility of linkages has been intensively studied by various researchers since

Grashof first proposed a set of inequalities for its analysis in the planar case (Grashof, 1883),

9




2 Background and Termunology

which is widely known as Grashof's criteria. Different methods concerning the mobility anal-
ysis of spherical linkages. both algebraic and geometrical, have been devised in the past
(Duditza and Dittrich, 1969, Soni and Harrisberg, 1967; Savage and Hall, 1970, Gupta, 1986)
Here., the mobihlity range of the spherical four-bar linkage 1s analyzed based on the concept
of linkage discriminant, which was first proposed by Angeles and Callejas (1984) and has
been further studied by different researchers (Williams and Reinholtz, 1986 & 1987, An-
geles and Bernier, 1987, Gosselin and Angeles, 1988) The following approach is based on
the input-output function defined by eq (2.1) and 1s an extension to the one presented by

Gosselin and Angeles (1988) Here, the new definition of k in eqs (2 2a-d) 1s used

Now, the discriminant of eq (2 4) 1s wnitten as

Afcos v) = B2(y) - A(v)C(¢) (2.9a)
= (k2 — k3 — 1) cos? g + 2(~ kyky - kakg)cos & + (1 - kI +k2) (2.90)

where the coefficient of the quadratic term is negative definite, i.e ,
Kk -1=-2" <0 (2.10)

which means that eq.(2.9b) represents a parabola in cos 1) with negative curvature The
condition for the input link to have full mobility 1s that the linkage discriminant be positive
for every value of cosy'. 1e., for 1 < cosw - 1 This 1s equivalent to saying that

A(~1) > 0 and A(1) > 0. which yields the following inequalities

(ky + k1)? < (k3 - kq)? (2.11a)
(ky — k1) < (k3 + kg)? (2.116)
or
ki + ky < k3 — ky} (2.12(1)
ky + ky > — ks - Ky (2.12b)
k2 — kl < |k3 + ky' (2.12(‘)
ky — kq 2 —lk3 + ky| (2.12d)

10




2 Background and Terminology

The foregoing inequalities define the full mobility region of the input link in
the 4-D space of linkage parameters. It is apparent that each of the above inequalities
represents a half-space separated by a 4-D plane, once the signs of k3 - k; and k3 + kg
are determined The common part of the these half-spaces is the full mobility region of the
hnkage If a linkage falls into this region, i.e., if all the above inequalities are met, then the

linkage has an nput crank, otherwise. its mput link s a rocker.

For the output link, we repeat the above analysis using eq.(2.7). The new

linkage discriminant is written as

6(cos &) = D?(0) - E()F(0) (2.13q)
= (k3 - k2 - 1) cos? @ + 2(ky kg + kpk3) cos & + (1 - k2 + k2)  (2.13b)

Again. the coefficient of the quadratic term in eq.(2.11) is negative definite, i.e.,
sin? gy

Sln2 Q)

k2 -kl -1=- <0 (2.13b)

The full mobilty condition of the output link is expressed as 6(—1) > 0 and

6(1) > 0. which leads to the following inequalities.

(k1 - ka)? < (K + k3)? (2.15a)

(ky + k) < (kg — k3)? (2.15b)
or

ky — kg < |ky + k3| (2.16a)

ky — kg > —lky + k3 (2.16b)

ki + kg < |ky — k3 (2.16¢)

kl + ky > —lky — k3 (216d)

These inequalities form the full mobility region of the 4-D space of linkage parameters in

which the output link is a crank. For an output crank, the linkage should be inside this

1




2 Background and Terminology

region so that all the inequalities in eqs.(2.16a-d) are satisfied Otherwise, the output link

% is a rocker or the linkage is unfeasible.

For identifying the linkage type. the common part of the full-mobility regions of
both the input and the output links have to be found, inside of which the linkage is a double-
crank, otherwise, the linkage is a crank-rocker. rocker-crank, double-rocker or unfeasible,
depending on where the linkage is located in the space of linkage parameters. A diagram

illustrating this relationship is given in Fig. 2.2.

Space of Linkage Paramcters (ky, ky, k3, k)

Double-Rocker or Unfeasible Linkage

// Full mobility region
pd

of the input link,
\ Full mobility region
\ of the output link

Figure 2.2 Diagram of Linkage Type ldentification

Based on the above analysis. a mobility criterion of spherical four-bar linkages
can be obtained. This criterion arises directly from the inequalities (2.12a-d) and (2.16a-d).
Q The detailed analysis can be found in Appendix A. Here, the result is presented:

12




2 Background and Terminology

The input link is a crank if the following conditions are met:

min{k3, k3) < s < max (k3. ky)

s - max(kl. kz) if k3 <+ If4 > 0, (217(1)

s < min(ky. ky). if k3 + kg <O
where s = (kg + k7 + k3 + k3) /2 The conditions for the output link to be a crank are the

following-

min(ky, k3) < s < max(ky, k3)

s > max(ky, ky). if ky + k3 >0 (2.17b)

.s<min(k1, k4). if k2+k3 <0

It is apparent that if both eqgs.(2.17a) and (2.17b) are satisfied, the linkage is a
double-crank: the linkage 1s a crank-rocker or rocker-crank if only eq.(2.17a) or (2.17b) is

met: the linkage 1s a double-rocker or unfeasible otherwise.
2.2 On Constrained Least-square Optimization

The purpose of this Section 1s to introduce the problem of constrained least-
square optimization and outline its method of solution. The introduction of this method is

crucial in computing solutions of the problem at hand.

2.2.1 General Description

Constrained least-square optimization problems are a special case of nonlinear

programming problems, which can be stated as follows:
min z(x) (2.18)

13




2 Background and Terminology

subject to

g.(x)=0, =1,2 ...,p (2.19q)
and

h(x) <0. 1=1,2 ...,¢ (2.198)
where X = (z1, 7p, ..., z,)7 is the vector of design variables, and z(x) is the objective

function to be minimized by a proper choice of x. For least-square optimization problems, the
objective function has a quadratic form. namely. z(x) = e(x)7 We(x). where W 1s a positive-
definite weighting matrix. Here. the problem is expressed in a general way so that hoth
equality and inequality constraints are included As a rule, equality constraints are easier
to handle than inequality constraints. Therefore, it is important to formulate a design
problem, if possible, using only equality constraints. In fact, inequality constraints can be

avoided for many cases by properly formulating the optimization problem to be solved

There are mainly two types of method for solving constrained least-square op-
timization problems. namely, the unconstrained approach and the direct method In the
former, the most common way 1s to transform design variables so that constraints are
eliminated or satisfied automatically The problem is therefore transformed mto an un-
constrained one However, real problems are usually too complex for this approach and
penalty function methods are often used (Fiacco and McCormick, 1964, Zangwill, 1967),
although this method sometimes has limitations in connection with equality-constrained
problems. Direct methods include those that deal with the constraints directly as limiting
hypersurfaces in the design space We have, in this category. the method of feasible direc-
tions (Zoutendik. 1960, Fox, 1971), the gradient projection method (Rosen, 1960) and the
sequence of linear programming problems (Zhou and Mayne, 1985. Schittkowsk:, 1985)

As related to kinematic synthesis, least-square optimization techniques have
been proven to be a powerful tool and have been used for solving various sy:thesis prob-
lems. such as those reported by Chi-Yeh (1966), Lewis and Falkenhagen (1968) and Angeles,
Alivizatos and Akhras (1987). In this approach. the error between the desired output and

the actual output for a certain problem s first squared, the objective function then being

14




2 Background and Termi ology

defined as the sum of the resulting squares. However, for the following design stages. no
single method exists which is best suited to all problems formulated in this way. Discussed

in the next section 1s a newly developed method, the orthogonal-decomposition algorithm,

which will be used to solve our problem

2.2.2 The Orthogonal-Decomposition Algorithm

A detailed description of the orthogonal-decemposition algorithm is given in
(Angeles, Anderson and Gosselin, 1987). As a quick reference. it is briefly described here,

the aspects important to our problem being emphasized.

As a direct method, the algonthm consists of solving the ornginal nonlinear
programming problem as a sequence of linear quadratic programming problems. A pos-
itive definite quadratic performance index of an m-dimensional nonlinear vector function
f(x) is included in the problem statement, where x 1s an n dimensional vector of design

variables. Then, the objective function 1s written in the following form:
LT
z(x) = Ef(x) Wf(x) (1.20)

where W is a constant positive definite m x m matrix. The design vector i1s subject to a
set of p nonlinear equality constraints represented as g(x) = 0. Further assumptions are
made chat m 1s greater than n — p and both f(x} and g(x) are continuous and differentiable
fanctions of x An iterative scheme is used in the algorithm, in which both the objective
function and constraint functions are linearized n each iteration, which allows the appli-
cation of the techniques for hinear quadratic programming problems. That s, the following

linear quadratic programming problem is solved at each iteration:

.1 T
min e We (1.21)
subject to
Cx=d (1.22a)
with
e=b— Ax (1.22b)
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where b and d are n- and p- dimensional vectors, respectively, and A and C are m x n and
p X n. matrices, respectively. Here, an orthogonal complement of the matrix C representing
the equality constraints 1s computed efficiently so that the solution space is decomposed
into two orthogonal components one lying in the nullspace of € and one lying in the
range of €7 This makes the method computationally simpler than others such as the one

reported by Betts (1980}.

The orthogonal-decomposition algorithm is well suited for our problem, which
is formulated in the same way as stated above. As will be seen in the next chapter, the
objective function, as well as the constraint functions, are formed in such a way that they
are both continuous and differentiable. As for the condition of m .- n - p, this 1s actually
met since we are aiming at solving the approximate synthesis problem concerning more

than ninz points Thus whereas n and p are fixed. m can be any number greater than nine.

16




Chapter 3 Problem Formulation

3.1 General Considerations

The synthesis problem under study consists of finding all the relevant param-
eters of a spherical four-bar linkage with a coupler point tracing a path lying a minimum
distance away from a set of given points on the surface of a sphere. If m +1 points {Qy }7*
are given, the coupler point should attain m + 1 positions Py, for k = 0,1,2,...,m, that lie

as close as possible from the given set.

As discussed in the previous chapter, we need seven angles. oy, a9,....a7. to
define the dimensions of a linkage and its coupler point. Moreover, to describe the location
of the linkage, the positions of the fixed joints, A and D. need to be known For this
purpose, we can specify the orientation of a coordinate frame rigidly attached to the fixed
link AD, which will be defined presently, in terms of the position vectors of both joints
A and D Actually. we need eight independent parameters to uniquely define a spherical
four-bar linkage. whether they are angles or Cartesian coordinates. As far as the design
parameters are concerned. including angular quantities is not convenient. On the one hand,

inequality constrains would have to be introduced since the angle values are bounded as:
0< o, <2m. 1=1,2,...,7

and the sum of adjacent angles must not exceed 27. As discussed in Chapter 2, inequality

constrains like these will no doubt increase the complexity of the problem and wili render
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its solutions discontinuous functions of the problem parameters. On the other hand. due
to the special characteristics of spherical linkages, the length of each link can be replaced
by its supplementary arc on the sphere without affecting the kinematic behaviour of the
linkage. In other words, a certain spherical four-bar linkage can be defined by different
values of the o angles In fact. for any spherical four-bar linkage, fifteen additional linkages
exist, which are kinematically equivalent to it (Chiang, 1984) Therefore, other variables

than angles should be defined

The problems mentioned above can be avoided if we simply use the position vec-
tors of the four joint centres as design vartables Once these four vectors are evaluated. the
link lengths, or the arcs that connect adjacent joints, can be readily determined Then, the
relevant o angles are computed from the foregoing vectors Hence, the design variables are
chosen as the Cartesian coordinates of the four joint centres. We group them in a design

vector x defined as.

x=[a’, b7, T, dT)7 (3.1)

where a, b, c and d are the position vectors of points A B, C and D, respectively. i.e.,

a=lca. ya, 24]” (3.20)
b=rg, u. zp]". (3.26)
¢ =lrc, yeo z2e]T (3.2¢)
d=|rp. yp, 2p)’ (3.2d)

The components of x are not independent, for the four joints are located on the
surface of a sphere, say the unit sphere, and their position vectors have all a urit magnitude.

These vectors are, then, constrained as follows:

ala=1 (3.3a)
b7b=1 (3.36)
cTe=1 (3.3¢)
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d7d=1 (3.3d)

As for the coupler point, one of the given points, Q. is used to define it in the
Oth configuration, namely, as Py = Qq. Here, 0 denotes the reference configuration There-
fore. although 7 + 1 points are given on the surface of the sphere. only m points have to

be included in the optimization procedure, one point being met exactly

When x 1s given a certain value in the optimization procedure, finding the gen-
erated coupler curve based on the chosen coupler point becomes crucial in solving the
problem because these trajectory points, attaining the minimum error with the correspond-
ing points in the given set {Qk}i". are needed for the following minimization steps To ease
the formulation. three coordinate systems, with the same ongin O. are defined as shown

in Fig. 3.1 The transformation of coordinates between each two frames is discussed in the

next section
3.2 Transformations Between Coordinate Frames

Now, reference is made to Fig 3.1 The three coordinate frames are assigned in
the following way. The design parameter x, the coupler point P and the given set {Qk};"
are defined in the first coordinate frame  The second frame 1s defined as follows X
passes through A and % lhes in the plane determined by the position vectors of joints A
and D The third coordinate system 1s defined in a similar way X3 passes through joint
B and Y73 lies on the plane determined by the position vectors of joints B and C. In doing
so, the coupler point can be easily located in the third coordinate frame and. through hnear

transformations, expressed in the first coordinate frame

The rotation matrices specifying the coordinate transformations between each
two coordinate frames are next defined. For each two adjacent coordinate frames ¢ and
i+ 1. a matnix, Q,. exists, which specifies the rotation between them (Angeles, 1988). We

can write this relationship as follows

[pl. = Qu[Pl.+1
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3. Problem Formulation

Ys

Figure 3.1 Coordinate Systems Assigned to the Spherical Four-Bar Linkage
Now. let i,, j, and k, denote the unit vectors parallel to coordinate axes X,, Y, and Z,. for
1 = 1,2, 3, respectively. The matrix transforming coordinates from the second coordinate
system to the first one, expressed in the first coordinate system, is then defined as

-l vl ki
[Qili= 1001 J2-d1 k-iy (3.4)
ip-ky 2 kg ky-kg

and the matrix transforming coordinates from the third coordinate system to the second
one, expressed in the second coordinate system, i1s defined as:
i3y 3y k3
Q= |30y i3'i2 ks-b2 (3.5)
i3-ky j3-ky ky-ky
For brevity. [Q4]4 and [Q3], will be written as Qq and Q. respectively, in what

follows. Moreover, If [p]3 denotes the array containing the Cartesian coordinates of the
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coupler point in the third coordinate system, then that containing its coordinates in the

first coordinate frame can be written as

[pl1 = Q1Qy[p}; (3.6)

Obviously, [p]; ts a function of both v> and x For a given hnkage. [p]; will
depend only on the input angle v* As the input angle < varies within its mobility range,
the coupler curve is generated So. eq (3.6) is actually the equation of the coupler curve of

a spherical four-bar linkage.
3.3 Setting Up the Optimization Procedure

From the coupler curve generated based on eq.(3.6), with the coupler point
defined as Fp = Qp. we can always find a set of points {P;}T* which lie the closest from
the given set {Q) }T' The sum of the distances between the two sets { P }{" and {Q;}7" is
henceforth denoted as the linkage error Moreover, in general, the dimensions of the linkage
can be corrected so that the linkage error becomes smaller This forms the basic idea in
solving the optimization problem at hand In fact, the whole synthesis procedure consists
of two layers of optimization Suppose we have defined a function z(x. ) representing the

linkage error We will first fix the dimensions of the linkage by setting x = x" and minimize

its error over the input angle. vy, 1e..

m¢|n 2(x", ¥) (3.7)
which will produce a set of input angles ;. for k = 1,2,...m, corresponding to the config-
urations under which the coupler point lies closest to the given points. For convenience, the

set {y}1" 1s grouped in an m-dimensional vector t,, Next, the outer layer of optimization

will be performed on the linkage error over x as follows:
min z(x, ty) (3.8a)

subject to
g(x) =0 (3.8b)
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3  Problem Formulation
where g(x) is a set of constraints to be defined in Chapter 4. A new x is then computed

so that the linkage error decreases.

Thus, we can accumulate the above two optimization layers and state the whole

procedure as follows*

minnmun z{x, t, 3.9qa
X (%, ty) (3.94)
subject to

Since we will write z(x. t,,) in quadratic form, eqs.(3.9a) and (3 9b) define a least-square
optimization problem with equality constraints The two layers of optimization involved will
be treated separately, using different numerical schemes, the details of which are discussed

in the following chapters.
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Chapter 4 Optimization Procedure

4.1 Introduction

In this chapter, the optimization procedure for the synthesis problem is intro-
duced. As mentioned in the previous chapters, the whole procedure consists of two layers
of optimizations and they are dealt with separately. In the inner layer, the objective function
representing the linkage error is minimized over the input angle ¢, with linkage dimensions
fixed for a given iteration of the outer layer of optimization This requires the solution of
a set of nonlinear equations. The output of this is the set of input angles defining the
linkage configurations under which the coupler point attains the closest position from a
given point The outer layer, on the other hand, minimizes the linkage error over the design
vector, x, which involves an iterative scheme The correction to x is computed in each
iteration so that the hnkage error becomes smaller and smaller until the convergence cnte-
rion, as yet to be derived, is met The orthogonal-decomposition algorithm, as introduced
in Chapter 2, is used to deal with this layer of optimization. Numerical techniques enhancing
the convergence of the procedure, namely. damping and continuation, are introduced, as
discussed in detail in the next chapter. As the Jacobian matrix of the objective function
plays a very important role in the optimization. its evaluation is given special attention and

is included in this chapter.
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4.2 The Inner Optimization Loop—Computation of the Input Angles
{31

Given the dimensions of a spherical four-bar linkage defined by the design vector
x at certain iteration, along with the coupler point Py in the initial configuration, the set

{w }]" is to be determined

Let the position vector of the kth given point (). be q; and the associated
closest trajectory point be p,.. which is to be found via angle vy,.. Here. all vectors are
represented 1~ the first coordinate system For simplicity. the subscript 1 is dropped Their

components are written as follows.

&k 71(v)
QG = | | - Prlvw) = | ykl(v) (4.1)
Sk zp(w)

From eq.(3.6). we can write p; in the following form:

Pe(t) = QuQylels (42)

=1/
=v

Now, the error between P, and Q.. e, associated with a given configuration

k. is expressed as follows.”

T — &
er =pe{¥) —qr = |y - me (4.3)
L~ Sk

and the Euclidean norm of the the error, d;.. is defined as the distance between points P,

and @, Thus,

de(¥) = llee( ) = /(2 — €6)2 + (u - ) + (21 - )’ (4.4)

We now define function 7. (1) as one half of the square of the Euclidean norm

of the error, i.e.,

Dy(#) = yeiTer = Slpe() - 0l Ipilv) - o] (45)

* For brevity, the argument 4 of Zj, Yj and z is omitted henceforth
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Furthermore. considering the special gegometry of spherical linkages defined on a unit sphere,

eq.(4.5) can be rewritten as follows.

D(¥) =1-qp - pe() (4.6)

The problem is thus reduced to minimizing Dy (y') over v In order for function

D, (v) to reach a minimum, its derivative with respect to the input angle v must vanish. i.e..

, dpy(v)
h,\.(w) = I)kl(t,’) = —Qr ~EE*(-*) ! =0 (47)
d‘g" |1p:1/1k

Upon substitution of eq.(4.2) into eq.(4.7) and noticing that only Q, is a func-

tion of y), we obtain the following equation:

T aQ,

hy(v) = - .-{Q——— ] =0, k=1,2,....m 48
e(0) = - (QrgElpls) o (4.8)
Equation (4.8) is called the configuration normality condition. It consists of m
equations for k =1,2. ...m. Their roots will give the set {i}{". In other words, the m
equations in eq.(4.8) define v, for7 =1, 2, ..,m. In order to solve these equations for
v, various methods can be employed Among them, the secant method (Forsythe, Mal-
colm and Moler, 1977) 1s more convenient for this case. since i) (1) 1s not required in
this method However, sometimes the roots may lie very close to dead points of the cou-
pler trajectory and the secant method will fail to solve the problem The golden section
search method (Brent, 1973) will take over in this case, as discussed i detail in (Ma and

Angeles, 1987)

4.3 The Outer Optimization Loop—Evaluating the Linkage

Parameters

With the set {y,}]" found for a given design vector x", a new vector x"

is sought so that the linkage error will decrease. The said procedure is performed itera-

tively: each time, a better x is found, until no further improvement is possible.
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Now we define two 3m dimensional vectors p and q as follows:
p=1Ip{. P, ....pm]” (49)

a=[q]. a3. ... ap,)" (4.10)

The linkage error is therefore expressed as.
f(x) =p—q (4.11)
and the performance index of the optimization problem is next defined as.
e T
z(x) = 2f(x) Wi (x) (4.12)

where W is a positive-definite constant weighting matrix that accounts for normalization
and allows the assignment of different relevance to each trajectory point. For example, if

W is chosen as
1

w= - (4.13)

where 11s the 3m x 3m identity matrix, then z(x) in eq.(4.12) represents the RMS value

of the position errors of all the given points

Since the components of the design vector x are not independent, as discussed
in Chapter 3. geometrnic constraints have to be imposed on them for completing the opti-
mization problem. Equations (3.3a-d) are used for this purpose. The constraint function

is hence written as follows

alTa-1
bTb -1

gx)=| 1. _1| =0 (4.14)
d’d -1

Up to now, the optimization problem is fully defined by egs.(4 11)-(4.14). No-
tice that the number of unknowns in these equations is 12 + 3m, namely, the Cartesian
coordinat:as of the four joints of the linkage grouped in the design vector x and the Carte-

sian coordinates of the m points corresponding to the set {1 }{" and grouped in vector

26
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p. However, only two components of the Cartesian coordinate of the point on the surface
of the sphere are independent. and hence, the total number of independent unknowns in
these equations i1s 12 +3m — 4 - m = 8+ 2m. Moreover, if we improve the condition that
the hnkage error f(x). as defined in eq.(4 11). vanish, then we establish 3m equations. If
the number of independent unknowns is to equal the number of equations. then the system
can be solved exactly Thus, if 8+ 2m = 3m, we have m = 8, which means that up to 9
positions can be met with zero error under this formulation If = > 9. an overdetermined
system arises and no exact solutions exist Hence, optimization methods are adopted to

find the approximate solutions to the problem

The orthogonal-decomposition algorithm. as briefly outlined in Chapter 2. is
employed to solve the foregoing optimization problem. To this end. we start from a given

initial guess x¥ and the sequence x1, x2, ... xk xk*t1 s then generated as:
xkH = xk 4 Axk (4.15)

where the increment Ax* is computed in each iteration as the solution of the following

constrained linear least-square optimization problem.

Lr\n;r; %(ek)TWek (4.16)
subject to
G axk = —g(xF) (417)
with e* defined as
et = —f(xF) — Fkax* (4.18)

and F¥ and G represent the Jacobian matrices F and G of functions f and g. with respect

to x, evaluated at x = x*.

The foregoing scheme is repeated until the following convergence criterion, dis-

cussed in detail in (Angeles, Anderson and Gosselin, 1987), is met at the solution:

1axk|| < e (4.19)
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where ¢ is a prescribed tolerance.

To stabilize the above numerical procedure and ensure a fast convergence rate.
damping techniques are used in every iteration step Continuation is also introduced to

guarantee its convergence The details of these techniques are discussed in Chapter 5.

4.4 The Jacobian Evaluation

In using the orthogonal-decomposition algorithm, the computation of the Jaco-
bian matrices of both functions f(x)} and g(x) are required. Let these matrices be denoted

by F(x) and G(x).
From eq.(4.11), we have

F(xk) — df(x) I’/) wk :"@/f:'/’k (4‘20)

Moreover, from eqs (3.6) and (4.9). vector p can be written in the following

form:
[P1]1
b= [P?]x (421)
lpm]i
Differentiating both sides of eq.(4.21) with respect to x, the following is ob-
tained:
dlpy)s/dx
d dx
Flx) = [Pz]:1/ 422)
dpm]y/dx
Based on eq.(3.6). the kth submatrix in eq.(4.22) is written as
dlp dQ d|p
Pels 190 1p)s + @y 2225}, + @0, 0B (423)
V=Y
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Now, it is clear that Qg is a function of x and oy: Q; is a function of
aq, @y. a3. ag. ¥ and ¢; and [p]3 is a function of only ag and og. Here, in order to en-
hance the numenical stabihity of the problem, instead of using angles ¢, for + = 1,2,...,7.
their sine and cosine functions are used in computing the right hand side of eq.(4.23).

Hence, the three derivatives in eq.(4.23) are computed as follows:

dQy _ 0Qq  9Qqdey | 0Qy dsy
dx - 0x ()(’1 dx asl dx (424)
dQ) o~ (0Qy de,  3Qpds,\ | 9Qydy | IQy do
dx "§< de, dx T Bs, 2) " G an t Bed (4:25)
6
dlp]; _ dlp]3 de, | Olpl3 ds,
dx Z( de, dx * ds, dx) (4.26)

1=5

where ¢, = cos o, and s, = sing,, for 1 =1,2,..7.

From the geometry of the general spherical four-bar linkage, we can readily
express the sine and cosine functions of the a angles in terms of the dot and cross prod-
ucts of the position vectors of two adjacent joints, thereby enabling the computation of
dc,/dx and ds, 'dx In computing dy»/dx and d¢/dx. we resort to both the normality

condition, eq.(4 8), and the nput-output function, eq (2.1), which can be written in the

following forms:

e, 6, {63, {815, x) =0 (4.27)

F(@W, ¢, {c,}1, {s,}1) =0 (4.28)

Differentiating both sides of eqs.(4.27) and (4.28) with respect to x. the follow-

ing. is obtained:

dhdy  Ahdod Ohde, Ohds,\ Oh _
30 dx T Bpdx Z(acz o s din) T ax =0 (4.29)
=
of dd} 6fd¢ af dc, Bf ds,\
50 dx | 96 dx Z<3cl ax " s, EI) =0 (4.30)
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Next, eqs.(4.29) and (4.30) are written in matrix form as

ayjyl agl [dd'/dl
ayl apxl d¢/dx

|

by
b,

4. Optimization

where
oh ?ﬁ _ 0 _ (9_
and
by = O Y[ ki
17" ox —\Bc, dx  Bs, dx
4
_ df de, df ds,
by = Z(aq dx + 8:9; dx)
1=
with 1 defined as the 12 -~ 12 identity matrix
From eq.(4.31). we obtain
d’(,b/dx 1 a221 —aul bl
de/dx aq1azz — 412021 ~anl a1 b,

which yields

dy _ apby —apby

dx  ajyap; —apayy

dp _ annby —ayby

dx  ayapy - apay

|

Procedure

(4.31)

(4.32)

(4.33a)

(4.33b)

(4.35)

(4.36a)

(4.365)

The detailed procedure of the above computations, as well as the computation

concerning the Jacobian matrix of the constraint function, G(x) = dg(x) /dx. are included

in Appendices C and D
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Chapter 5 Convergence Enhancement

5.1 Introduction

As pointed out in Chapter 2, various numerical schemes have been devised to
solve least-square optimization problems with equality constraints. In this thesis, a newly-
developed scheme, the orthogonal-decomposition algorithm, is employed. Nonlinear least-
square optimization problems with equality constraints can be solved very efficiently with
the orthogonal-decomposition algorithm Moreover, the algorithm converges very fast if the
Jacobian matrices of both the objective function and constraint function are well-conditioned
and the initial guess 1s reasonably close to the solution However, the said Jacobian matrices
can sometimes become ill-conditioned, which will lead to divergence. This is a situation to
be taken into account. Here, to measure the conditioning of these Jacobian matrices, the
concept of condition number of a matnix is recalled (Golub and Van Loan. 1983), which
measures the amplfication of the roundoff error in solving a system of linear equations
associated with that matrix. A well-conditioned matrix has a small condition number close
to 1. If the condition number of the Jacobian matrix is high with respect to the roundoff
error of the data. convergence will not be achieved unless suitable numerical means are
used. In our case, the techmques of damping and continuation are applied. Damping 1s
performed within each iteration by reducing the computed correction by a certain amount
so that the procedure i1s stablized and attains a high convergence rate. Continuation. on

the other hand, is used if an nitial guess lying reasonably close to the solution is difficult
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to estimate. It is applied to the whole procedure in such a way that the final solution is
obtained step by step along a certain path from an initial guess, quite arbitrary With these
techniques added, the problem is solved safely No doubt, these techniques are essential to

the success of the aforementioned method. as will be discussed in this chapter.

5.2 Damping Techniques

Sometimes in the optimization procedure, the condition number of the Jacobian
matrix of the objective function may become relatively high at certain iterations. This is the
case when some of the joint centres move too far away from the surface of the sphere after
the correction in certain iteration, or some ;. values define a configuration close to a dead
point. If this happens, the roundoff error becomes inadmissibly large and the computed
correction to the design vector. Ax, is meaningless This may lead to the violation of the
constraints and some of the joints may go further apart from the surface of the unit sphere
in the following iterations The procedure will finally diverge. Means to cope with this
problem rely on damping techniques, which have been proved to be a useful tool (Dahlquist
and Bjorck 1974; Angeles. 1982). We first reduce the correction to a certain amount to make
the procedure stable, and then go to the next iteration This 1s achieved as follows. Instead

of using eq.(4 15) directly, we use the following.
X = xk 4 dAxk (5.1)

where d is a scalar between 0 and 1. called the damping factor, which serves to reduce
the magnitude of Ax*. When one damping is not enough to stablize the procedure, further
dampings are performed until convergence s achieved Using damping techniques here
becomes essential in the optimization procedure. Indeed, it keeps the procedure more stable
and maintains a higher convergence rate. However. if the condition number of the Jacobian
matrix becomes very high, damping will fail to work. In this case. the mtial guess has to
be reselected. To prevent the joints from going too far from the surface of the sphere, we
also in :lude a normalization step n each iteration to keep the magnitude of the position

vectors cf joint centres close to 1: we found that this provision enhances the convergence of
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the procedure. Of course, the value of the damping coefficient is problem dependent. When
the convergence behaviour is not so favourable, the damping value need to be changed,
since the procedure i1s very sensitive to it. We can always achieve a fastest convergent
rate, or a minimum number of iterations for obtaining a solution, with a proper choice of
this value However. there are no general rules for obtaining this value In many cases, it is

found through tnal and error

In addition to a well-conditioned Jacobian matrix, an imtial guess lying reason-
ably close to the solution 1s also important for the problem to converge Since, in general, an
initial guess close to the solution 1s not available, a techmque called continuation 1s intro-

duced, the details of which are discussed in the next section

5.3 Continuation

Due to the difficulty in locating a suitable initial guess which lies close enough
to the solution, continuation is necessary. Continuation 1s a powerful means to guide an
initial guess step by step to the final solution, as has been widely recognized in numerncal
computations (Wasserstrom, 1973, Awvila, 1974, Richter and DeCarlo, 1983). It works for
problems whose solutions are cont'nuous functions of the parameters of the prcblem. In

our case, we propose the following scheme:

For the given set {Q;}]". we first choose an arbitrary initial guess x0 under
which, together with the coupler point, F3 = Q. a coupler curve is generated on the
surface of the sphere. and the corresponding trajectory points {P;}7". lying the closest
to the relevant points in the given set {Qk};”. are found Now, we connect points Q.
and P, for k =1.2.. .,m, with a major circular arc and compute the points E;,, for
: = 1,2, !, which divide the arc into / parts, as shown in Fig. 5.1. Then, we start
the numerical procedure from the current imitial guess with {Ryq}{" defined as the given
points Since points {Ryq}7" are very close to the corresponding points in the coupler

curve associated with the initial linkage, if we choose { large enough—say [ = 5—the

33




€

63

5 Convergence Enhancement

procedure will converge to a solution. Then, using this solution as the initial guess of the
next continuation step, we repeat the procedure and it will soon reach the next solution
associated with the set {7 }1". In this way, the procedure goes from one continuation

step to the next one, until the original set {Q}7" is met.

Figure 5.1 Continuation Scheme

For simplicity, we divide the arc into equal parts and use the following scheme
to compute the dividing points: First, a new coordinate system labeled K, with origin at
O. is assigned to describe each arc connecting Py and Q4. for k = 1,2,...,m, as shown in
Fig. 5.1. The X axis passes through P,. whereas the Y} axis lies on the plane determined
by points P, @, and O. Hence. in the K coordinate system, the arc connecting P, and
Qk becomes a part of the following circle:

{ :a:,zC + y,zc =0
2, =0
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5 Convergence Enhancement

If ry, denotes the position vector of R;,. we have

[ri]k = [cos(iAB;), sin(:88;). 0], (5.2)
k=12, ..,m
1=1,2,....1
where
B = cos ™! (py - i) (53)
ABy = %’* (5.4)

To obtain an expression for ry, In the first coordinate system, in which p; and
q;. are defined, the rotation matrix R, which transforms coordinates from the K coordinate

system to the first coordinate system, 1s next computed.

R = [p;, e, f] (5.5)
where
— Pk X% (5.6)
Pk X Qi |,
e="fx P (57)
and hence, we have
[re.]1 = Rlrg, ) & (5.8)

thereby completing the computation of the dividing points.

The number of dividing points depend on the problem and the initial guess. It is
always advisable to adjust the initial guess to make this number smaller, since involving too

many continuation steps will lead to a computational procedure unnecessarily expensive
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Chapter 6 Examples

Based on the optimization scheme described in previous chapters, a general
Fortran77 computer package, SPHER1, was developed. along with graphics software for
visuahzing the spherical four-bar hnkage in a 3-D representation on Unix-based worksta-
tions. Several examples regarding t'.e design of spherical four-bar mechanisms were solved
with SPHER1 and their results are reported in this chapter In solving practical problems
with the aid of this package, the first step is to give a proper description of the prob-
lem in the context of synthesis of spherical four-bar path generators That s, define the
set of given trajectory points according to the problem and represent the linkage with the
Cartesian coordinates of its four joints in a certain coordinate system Then, with the help
of the graphics facility, choose a suitable initial guess to start the numerncal computation
and. at the same time, plan the continuation procedure for the problem Having done all
this, the problem can be solved satisfactorily Following the steps mentioned above, four

design problems are solved, the results of which are presented next

6.1 A Circular-Path-Tracking Spherical Four-Bar Linkage

This is onginally a trial problem for testing the computer package Actually, it
IS not"necessary to use a four-bar linkage to trace a circular path, since a single hnk will
do. The tpurposes of introducing this example is to outhne the optimization procedure with

a real prollem and to discuss an interesting result. The circular path used in this example
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L 7]
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Figure 6.1a Points Selected from the Circular Path
is defined by the following two surfaces:
22 + y2 +22=1
z+y+z2=4/3/5

where the circle has a radius of 0.8. Eleven points are selected from the circle as the given

points, their coordinates being given as follows (Fig. 6.1a):

Qo : (0.1, 0.1, 0.989949),
Qq : (0.7, 0.7, 0.141421),

@, : (0.393329, 0.892081, 0.222449),

Q@3 : (0.0892059, 0.892081, 0.434581),
Q4 : (—0.096204, 0.710749, 0.696790),
Qs : (~0.092081, 0.406671, 0.908922),
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Qs : (0.406671, —0,002081, 0,908922),
Q; : (0.710794, —0.096204, 0.696790),
Qg : (0.896204, 0.0892059, 0.434581).
Qo  (0.892081. 0393329, 0.222449).
Q10 : (0.827015. 0.536801, 0.167001)

where the coupler point in its imtial configuration 1s Py = Qg Next, the initial guess is
chosen Here, to avoid involving too many continuation steps in the procedure, an mitial
guess lying reasonably close to the solution is desired This is achieved by trial and error
with the help of the graphics faciity Different linkages were tried and adjusted until the one
with the coupler curve comparatively close to the given points is found. In this example, a

suitable iitial guess found in this way is given as follows (Fig 6 1b)
a’ = [0.5491. 0 3936. 0.7373)7
b0 = [0.3186. 0.0216, 0.99476]7
c? = [0.047, 0.4288, 0.9022]7
d® = [0.404, 056, 0.7237)7

A three-step continuation scheme is used for the example to ensure convergence The

solutions at the end of each continuation step are shown in Figs (6 1c) and (6 1d)

The optimum linkage obtained 1s defined by the following position vectors of
joint centres (Fig. 6.1e)
a = [0.539957, 0.561799, 0.626760]7
b = [0.305536, 0.00317, 0.952175]7
c = [0.09804. 0.416301, 0.903924]7
d = [0.516004, 0.534261, 0.669556]7

Here the average number of iterations within each continuation step is around 15, the final

solution containing a linkage error of the order of 1074,

The interesting issue here is that, in the solution, joints A and D lie very close

to each other. It is also found that, if we impose an even smaller tolerance on the procedure
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Figure 6.1b Initial Guess

Z,

Figure 6.1c Solution at the End of the First Continuation Step
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Figure 6.1d Solution at the End of the Second Continuation Step

]

Figure 6.1e Final Solution
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and allow more iterations. A and D will become closer and closer. In the limit, they meet
at one point, namely, the centre of the circle. Then, the length of the fixed link vanishes
and the four-bar hinkage collapses into one single rigid-body which rotates about an axis
passing through the centre of the circle This is reasonable, since this 1s a case in which
the given points are met exactly by merely rotating a single rigid-body about a fixed axis,

as pointed out at the beginning of the example

6.2 The Design of Solar-Tracking Mechanisms

6.2.1 A Spherical Mechanism Tracing a Solar Path on the Summer Solstice

The celestial sphere can be considered centred at a point O on the surface of
the earth. As the sun traverses the celestial sphere from sunrise to sunset, it describes a
trajectory which can be projected onto a unit sphere centred at O. For a spherical mechanism
on the surface of the earth. the centre of its sphere can be considered to be at O as well.

Our design of the solar-tracking mechanism takes place on the unit sphere.

The solar path is generated by using the following equations (lgbal, 1983):

sinf = sin o sin 6 + cos ¢ cos 6 cos w (6.1)
cosy = sinfsing —sin é (6.2)
cos 6 cos
siny = o0smw (6.3)
T T os 0 |

where: @ is the solar altitude angle: ~ is the solar azimuth angle: ¢ is the latitude of point O
on the earth: é is the declination. and w is the hour angle, which at noon is zero and in the
morning, positive The solar path used in this example i1s based on Montreal (latitude of
45° north) on the day of the summer solstice (§ = 23.5°). The original data obtained from

the above equations are expressed in latitude and azimuth angles in a spherical coordinate
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system. Here. to fit our method. they are transformed into a Cartesian coordinate system

defined as follows* The X axis is directed to the south: the Yj axis is directed to the east

and the Z; axis is directed to the Zenith. Fourteen points are selected from the solar path

as shown in Fig. 6.2a, starting from 8:30 a.m and ending at 3:00 p.m for every half an

hour.

East

Zenith

1

Q:Q493QsQ
QIQB' - 7 ) '7. Qs
° Qo Qs
Qo

JQu

Qs

South
X,

Figure 6.2a Points Selected from the Solar Path of Summer Solstice

One point, namely, the point which represents the solar position at noon, is

chosen as the coupler point in its initial configuration, i.e., Py = Qg. and the remaining

points form the given set, {Qk}i:" . They are given by the following coordinates:

Qo :
Q :
Q :
Q3 :
Q4 :

(0.366501, 0, 0.930418),

(0.112799, 0.727553, 0.676715),
(0.176518, 0.648459, 0.740488),
(0.232499, 0.558271, 0.796416),
(0.279624, 0.458530, 0.843541),
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Qs : (0.317140, 0.350944, 0.881057),

Q¢ : (0.344406, 0.237353, 0.908322),

Q@7 . (0.360954, 0.119701, 0.924870).

Qg - (0.360954. - 0.119701. 0.924870),
Qo . (0.344406, —0.237353, 0.908322),
@10 - (0.317140, —0.350944, 0.881057),
@11 (0.279624, —0 458530, 0.843541),
@12 : (0.232499, —0558271. 0.796416).
@13 : (0.176518, —0.648459. 074G488)

The initial guess is chocen next in the same way as we did in the last exam-

ple. We then have the following (Fig. 6.2b):
a’ = [-0.75, 0.23, 0.62]T

b° = [0.13, 0.33, 0.935]7
c’ = [0.1, —0.42, 0.002)T
d’ = [-0.68. —0.12, 0.7233]7
To ensure the procedure to converge to a solution, a three-step continuation
ccheme is used, under which the procedure converges satisfactorily with an average of
about 30 iterations per continuation: step. Shown in Figs (6.2¢c) and (6.2d) are the solutions

at the end of each continuation step The hnkage error at the final solution was found to

be the order of 10”3, The position vectors of the four jonts of the optimum linkage are

(Fig. 62e):
a = [-0.751365, 0.027818, 0.659208]7

b = [0.135741, 0.332738, 0.933199)"
c = [0.095161, --0.408915, 0.907597]

d = [-0.685186, —0.072465, 0.724754]T
and the a angles are hence given as follows:
a; =8°. ay =585°, a3=43.6°, ay =51.5°

g = 23.4C, oG = 38.30, ay = 28.4°
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Xy

Figure 6.2b Initial Guess

2

)

Figure 6.2c Solution at the End of the First Continuation Step
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Figure 6.2d Solution at the End of the Second Continuation Step

Z,

Figure 6.2e Final Solution
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6.2.2 A Spherical Mechanism Tracing a Solar Path on the Winter Solstice

6 Examples

Again. we use egs.(6 1)-{6.3) to compute the solar path in Montreal with 6 =

~23.57, for the winter solstice The data used in this example are selected from the solar

path, also starting from 8.20 a m and ending at 300 p.m for every half an hour. the

coordinates of the set {Qk}(1)3 being as follows (Fig 6 3a)

Qo

Q-
Q@ .

Q3

Qs
Qs -

Q6

Q7 .

Qg

Qo -

Q1o

T
Q
Q@3 -

(0.930418. 0. 0.366501).

(0.740488
(0.796416

(0.908322,

(0.924870

(0.924870.

(0.881057.

(0.843541

(0.740488

(0.843541.
(0.881057.

(0.908322.

(0.796416.

. 0.648459.
. 0558271.

. 0.119701.

. -0458530, 0.279624).

. - 0.648459

0.458530.
0.350944.
0.237353.

0.237353
-0.350944

0.558271

(0.676715, 0.727553. 0.112799).

0.176518).
0.232499).
0.279624).
0.317140),
0.344406),
0.360954).

-0.119701, 0.360054).
. 0.344406).
. 0.317140).

. 0.232499).

. 0.176518)

where Py = Qq. the solar position at noon, is the coupler point in its initial configuration.

A suitable initial guess was obtained and s given as follows (Fig. 6.3b).

a® =[062. 023, —-0.75)7

b° =[0.935, 0.33, 0.13)7

® = (0902, -0.42. 0.7

d® =[0.7233, 0.12. -0.68]7
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Figure 6.3a Points Selected from the Solar Path of Winter Solstice
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Figure 6.3b Initial Guess
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Z,

Figure 6.3c Final Solution

With a three-step continuation similar to the one in the last example, the solu-

tion to the problem is readily obtained as follows (Fig. 6 3c).

a = [0.659294. 0.027820. —0.751364)7
b = [0.933195. 0.332741. 0.135757)7

¢ = [0.907591. —0.408922, 0.095191)7
d = [0.724764. -0.072462. —0.685176]7

at which the linkage error was found to be the order of 10”3 Then. we have the dimensions

of the optimal linkage as follows
a; =8. ap;=58.6°, a3=436°, o =515°
Qg = 23.40, Qg = 38.30, ay = 28.40

Obviously. the dimensions—the o angles—of this linkage are identical to those
of the optimum linkage obtained in last example. The reason for this 1s clear if we notice
the fact that every @, point of the solar path in the summer solstice and its counterpart in

the winter solstice are related in such a way that their z and z coordinates are exchanged.
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while their y coordinate remains the same. In other words. one trajectory can be obtained

from other by a simple linear transformation The matrix representing the transformation

is, in fact, the following-

Qv =

- O o
O = O
o O -

which is clearly a reflection about the plane r + = = 0. It 1s easy to see that the solutions
of a, b. c and d in these two examples also bear this relationship. Therefore, the angles
between each two joint vectors are preserved, which is just a consequence of the fact

that one set 1s a reflection of the other This can be a useful conclusion in the design of

solar-tracking mechamsms

6.3 A Four-Bar Geneva-Wheel Driving Mechanism

A Geneva mechanism 1s a very common means of producing intermittent mo-
tion. Sometimes 1t 1s driven by a four-bar hnkage instead of a crank for reducing the inertia
force and the consequent wear on the sides of the slot, since a jump in acceleration occurs
upon engagement and disengagement (Shigley. 1959, Pazouki and Rees Jones, 1982) In
using a four-bar linkage as the driver. the trajectory traced by the pin which is placed at
the coupler point of the linkage can be carefully planned to fit the smoothness require-
ments 1n the wheel motion, thereby eliminating the problem of jerk discontinuities (Dijks-
man. 1966) The linkage 1s then designed as a spherical four-bar path generator, based on
the required coupler curve Inthis example, a spherical four-bar linkage to drive a four-sloted
spherical Geneva mechanism (Fig 64) i1s to be designed The acceleration of the Geneva
wheel is required to follow a sine function. the engagement and disengagement points of
the pin located at 0 and 2n, respectively, so that the jumps in acceleration at these two

points are eliminated

First of all. the trajectory to be followed by the pin under the above requirements

is determined We set up a spherical coordinate system and assume that the pin moves on
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|
|
|

Figure 6.4 Spherical Geneva Wheel Driven by A Four-Bar Linkage
a unit sphere The motion of the pin can then be defined by the following two coordinates
the angular displacement of the Genava wheel, 8. and the relative displacement of the pin
with respect to the wheel. 7, as shown in Fig 6 4 The equations of motion & = §(t) and

~ = ~(t) are next determined As required. we write 6 as
t
§=Cy sin(27rt—) (6.4)
0

where Cy 1s a constant to be determined from the problem’s conditions. tg Is the time
spanned from engagement until disengagement The angular velocity and displacement of

the wheel are thus derived as

= g = -c, o !

6 = /Odt = -Cy o= cos(27rt0) + Cy (6.5)
— [an _ . t

0= /Odt = “Clm 5|n(27r6) + Czt +C3 (66)

with the following boundary conditions
fort=0, 6=0, 6=0:

fOft:to, 6=
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Hence we obtain )
=5 Cp=:-. C3=0 (6.7)
to 2f0

4

where 7 = t'lg. represents the normalized time We have then 0 < 7 < 1, Equation(6.8)

thus defines the motion of the wheel Given in (Fig 6.5a) is the plot of § vs 7.

b(rad )

16 v v v v — r ——

14} 4

12t

08t
06}
D4t

02}

Figure 6.5a Plots of » vs normalized time

Since no particular requirements are imposed on the relative motion of the pin
with respect to the wheel, +, it may be arbitrary as long as it does not exceed the length of
each slot and attains the same values upon both engagement and disengagement In our
case, v is chosen as

4=-15r2 4157 +C (6.9)
where constant C depends on the length of the slots. For this example, C = 53.13° =
0.9273 rad The 4 vs 7 plot is given in Fig 6 5b.
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Figure 6.5b Plot of 5 vs normalzed time

From eqs (6 8) and (6.9). the coupier trajectory 1s computed After transforming

it into Cartesian coordinates, the following are selected as the given trajectory points

(Fig 6.6a)

Qo :

@
Q7
@3

(0.1875895, 0.1875895, 0.9641682),
(0.6. 0. 0.8).

: (0.5082041, 0.0026555, 0.8612326).

Qs -

Qs
Qs

Q7
: (00231497, 0.4090282, 0.9122280).

Qs
Qo
Q10

(0.4090282. 0 0231497, 0.9122280).
(0.3282382. 0.0645749. 0.9423851).
(0.2605160, 0.1181456. 0.9582135).
(0.1181456, 0.2605160, 0.9582135).
(0.0645749, 0.3282382, 0.9423851),

: (0.0026555, 0.5082041, 0.8612326),

. (0, 0.6. 0.8)

of which Py = Qg is the coupler point in the initial configuration. The optimization starts
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Figure 6.6a Points Selected from the Trajectory followed by the Pin

from the following initial guess (Fig 6.6b)

a® = [0.69. 059, 0.4192]7.
b® = [0.52. 0.2. 0.83042)7.
® =[0.2. 0.52. 0.83042)7.
d® = [0.59. 0.69. 04192)7

Again. a three-step continuation i1s applied to the procedure. which yields the optimum

linkage (Fig 6.6c). The position vectors of the four joint-centre of the linkage are given as:
a = [0.63081. 0.47113, 0.61653]T.
b = [0.46102. 0.18003. 0.86894) .
c = [0.18101, 0.45984. 0.86936] .
d = [047052. 0.63101, 0.61680]T

the linkage error being of the order of 10~3. Here. the average number of iterations within

each continuation step is around 35. For the solution found, the dirensions of the linkage
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2

Figure 6.6b Initial Guess

e e o

4

Figure 6.6¢ Final Solution
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are computed as’
a; =1312°. 0y =2430. a3 =2283. aq4= 2427,
ag = 36.76°. ag = 4729°. a7 = 36.74°

f(rad )

16 ———

14¢

08t

06

~-=- Desired output

02t —— Actual output

6 ot 02 03 04 05 06 07 08 09

:

Figure 6.7 The Actual Output in Wheel Motion Compared with the Desired Output

It 1s apparent that the optimum linkage s symmetric to the plane r + y =
0. which 1s not surprising because the given points, as well as the initial linkage, are both

symmetric with respect to the same plane

Now. from Fig. 6.7, we can look at the error in the motion of the wheel when
it is driven by the four-bar linkage obtained above. We can see that the two curves meet
upon engagement and disengagement, 1e., at 7 = 0 and 7 = 1, which means that zero
accelerations are achieved at these two points. Also to be noticed is the fact that the two
curves intersect at = 0.5, which actually corresponds to the case that the coupler point

passes through @g. the point being met exactly
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Chapter 7 Concluding Remarks

In summary, a constrained least-square optimization scheme was developed to
deal with the problems of synthesis of spherical four-bar path generators. The problem
is formulated as two-layer optimization procedures, in which the linkage parameters and
the configuration variables, namely, a certain set of input angles, are evaluated separately
in each layer Since no upper bound of given points i1s imposed on the formulation, the
method can handle the synthesis problem subject to any number of given points on the
surface of the sphere on which the four-bar linkage is defined, as long as this number is
greater than nine. Thus, the method aims at solving the approximate synthesis problem
of path generation. The orthogonal-decomposition algorithm was employed here, which
allowed us to obtain the solution iteratively from an initial guess In order to use the said
numerical scheme, the computation of the Jacobian matrix associated with the objective
function becomes a major task and has been discussed fully in Chapter 4. The behaviour
of the Jacobian matrix, which affects the convergence of the procedure, is assessed by
resorting to the concept of condition number. Damping techniques are used to stabilize the
iterative procedure and speed up i1ts convergence rate. Moreover, as an important step to
ensure the procedure to converge to a solution, continuation is applied. A general computer
package. SPHER1, was developed for the whole optimization scheme. Numerical examples
concerning the design of spherical mechani.n.s were introduced and solved in Chapter 6.
The results show that the method is efficient for the optimization of spherical four-bar path

generators.




7 Concluding Remarks

Here, a few remarks are added in concluding the thesis:

. The optimization scheme presented here deals with problems in which only the

given trajectory coints are specified For solving problems which have special
reguirements, the method has to be modified correspondingly in the formulation
For exampie. in some practical problems, certain hnk lengths or positions of
certain joints need to be specified In this case, we can simply include them in
the constraint function g(x) and compute its Jacobian G(x) accordingly By the
same token, the coordination between the given points and the input angles can

be incorporated, although thrs case 1s still under development

Obviously, the sol:t..i obtained by using the proposed scheme produces a local
minimum  The solution depends on the nature of the problem and the initial
guess chosen. It 1s possible that, for the same problem, different initial guesses
lead to different solutions, which correspond to different linkage errors This
may be the base for finding the global minima, whereas how to obtain the global
minima 1s still a topic of further research So far. no research has been reported
in the literature on path-generating linkage dealing with the computation of the

global minmum.

From the examples in Chapter 6, it i1s clear that the optimum hnkage reflects
some characteristics of the set of given points. In section 6.3, for example. the
property of symmetry in the given points leads to the same property in the
optimal linkage obtained. the transformation relationship in the given sets of
the two examples in section 6 2 also appears in the final solution. All these
facts suggest the exist < 1ce of similarity in the synthesis procedure, which makes
sense both geometncally and logically Actually, this is a fact we can exploit in

chosing the initial guess<. judging the correctness of the solutions, or extending

results from a known solution

4. When m is given exactly as nine, which is the case allowing for exact synthe-
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sis, the procedure. which is heavily dependent on the orthogonal-decomposition
algorithm, can still be used. However, in this case, the system of nonlinear
equations arising from the zeroing of the error become stiff and convergence is

very difficult to achieve.

On the whole, the optimization scheme solved the synthesis problems of spher-
ical four-bar path generators efficiently, as shown in the thesis The formulation has no
strict limitation on the type of inkages or the nature of the synthesis problems to be
solved For the other synthesis problems in the realm of spherical linkages. such as ngid-
body guidance, we can define a linkage error for the specific case and find a corresponding
normality condition as in eq (4.8) and then apply the optimization scheme Even for other
types of linkages, the above idea can be still appled, whereas the computational procedure
of Jacobian matrices has to be reorganized to meet the special case, which might be a
major task The author found that the computation of the Jacobian matnix of the objective
function 1s a painful process, while 1t Is essential for the success of the whole optimization
scheme It is desired that the said computation be simplified or replaced with an easier

equivalence However. how to achieve this remains unsolved and is left for future research

Finally. a few words on the new criternion of mobility analysis for spherical four-
bar linkages. as given in Chapter 2 Although only the spherical case i1s studied here, finding
its equivalence in the planar case 1s straightforward. since we have a similar form for the
input-output function for planar linkages. Actually, this has been studied and will be included

in a forthcoming paper
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Appendix A Mobility Analysis with Linkage Parameters

Appendix A. Mobility Analysis with Linkage Parameters

Same as denoted in Section 2.1.2, we assume s = [ky +ky + k3 +k4)/2 in the

following procedure The inequalities representing the mobility region for the input link are

first handled

For eqs (2.12¢) and (2.12h}. we have the following’

(1) I ky kg = 0. then
A‘1 + I\'2 A‘3 -~ k4

kz—l-k] < kg - k3
from which we obtain

I\"3 R l\‘4

(l?) If I\‘3 - /{'4 < 0, then
k2 + ’\‘1 > /\‘,4 — k3

k2+k1 < k3~ k4
which yield
k4 <8< I('3

Both (¢) and (1) hold if

min{k3, kg) < s < min(ks, kg)

From eqs.(2 12¢ & b). we have:

—
-~

) if k3 + k4 > 0. then
kZ—kl < k3+k4

ky - kg > -ky - ky
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Appendix A Mobility Analysis with Linkage Parameters

which leads to

or simply

s - max(ky. ky)

(v2) Whg + kg < 0, then
kz - l\'] ';' - k3 - k4

kz kl o k3 + ](‘4
from which we obtain

Siklv S\_gkz

or

s < min(ky, ky)

Now. the inequalities representing the mobility range of the output link are

analyzed
From eqs (2.16a & b). we have
(z) 1 ky+ k3> 0. then
ky —ky < ky+ k3

ky — ky
which yield

or
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(1‘1') if k‘2 + k3 < 0. then

k1 - k4 R kz -+ /-'3

from which we obtain

or

From eqs (2 16¢ & b), we have

(1) If kz - k3 > 0, then
ky+ky = kg~ k3

Mobility Analysis with Linkage Parameters

ki — kg < ~ky — k3

k1+k4 2—k3+k2

which yield

(22) W ky - k3 < 0. then
ki + kg < ks — ky
ki + ky - ko - ks
which yields
k3 2 s < ky

If we combine the results of (z) and (:2). the following is obtained:

min(kz, kg) < s< max(k;. k3)
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Appendix B. Computation of the Rotation Matrices Q, and Q,

Based on eqs. (3 4) and (3.5) and the geometric relationships of Figs. 2.1 and

3.1. we have

Q; =[. m. n]
where
1
l=a m = -—(d - acy). n=1>-m
51
and
Q=[u v, w]
with
€
u= |sycosy |,
Sy sin ¥

€14 — S184 cos Q = €3
V= — | 55¢1€0SP+ c45) — Spc3cos8 |,
%3 8§45 QO — 8yc3 SN

W=uxyv
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Appendix C  Detailed Computation of the Jacobian Matrix F(x)

Appendix C. Detailed Computation of the Jacobian Matrix F(x)

.
&
In the following discussion. the components of vector a in the first coordinate
frame are denoted r4. y4. =4 with similar definitions for the components of vector b. ¢
and d Throughout. we will use the notation introduced in Chapter 4
C.1 Partial Derivatives Pertaining to Q
From the expression of Qq in Appendix A, we have
r ()91 iy al om d_n]
;E Ox  ‘ox’ dx° oOx
Hence, we obtain
aQy {151 Ta 0 9Q, 1 0 0 zp
Foa = 5. 0 0 -2zp =% a 0
Ao tlo 0 yp A tlo o0 -1p
3z =—10 0 Irn
<A 31 $1 ~(‘] O
0Qy _ 9Q; _ 9Qy _ 0Q, _9Qy _9Qy _,
613_ ()yB :B_al'('-uy( _()’( - 33
r 7] —
60118(1)0 aQ118(1)5A
= - z4 | — = —
%tp 1o 0 gy % 10y o g,
aq, 1|29 wva
o = 0 0 -1y
<D S1 _0 1 0 ]
where 03, 3 is the 3 - 3 zero matnix.
: As far as s, and ¢, for 1 = 1,2, 3,4, is concerned. Qy depends only on sy and
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¢q. Hence, we have

where

Appendix C.
Q_ 2
sy '0sy’
0Q; _ o
dey  ‘9c¢q’

om
) 831

0,

om

dcy

and 0 is the 3-dimensional zero vector

C.2 Partial Derivatives Pertaining to Matrix Q;

Detailed Computation of the Jacobian Matrix F(x)

om
381 ’

om
dey

om
881

im
acl

C.2.1 Computation of 3Q,/3s, and 9Q,/dc,

From the expression of Qj in Appendix B. we have, for : =1, 2, 3, 4.

0Q; _(9u
ds, '9s,’
2Q, _ ou
de, 'd¢,’

ov
ds,’

ov
dc, ’

on
381

on
(9(‘1

4
—1(d - acy)
|

ow
0s,

ow
de,
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Appendix C  Detailed Computation of the Jacobian Matrix F(x)
where
du OJu Ou du 0
EPN Rl Bs; | <%V
! 3 4 2 siny
gy 1 | Tsacose av 1 (c’os ]
— = — cy s T = 3 )
d';l S3 0 6.52 83 —e3 sin 1/’
v e €1C4 — 8184 COS @ — €3 | v —81COS @
— = ——5 [ s4¢1 cOS P + c451 — Spczcos Y | - = — | ¢1c0s@
ds3 52 dsy  s3 )
3 §45IN Q@ — S9c3SIN Y sino
0 o v
—!v—z—uxv+u><——, for 1 =1, 2, 3, 4.
ds, Os, ds,
Furthermore,
1
du Jdu _ Ju _ du 0
dcy ey Ocy dcy 0
[ 7] —C3
o 1 ov 1
a—‘!— = — | s4c08 ¢ |, Ey =—1 0
| 53 0 €2 83 0
ov_ 1| 2 Y ov 1|4
— = — | =8¢0 — = - | 8§
dcy 53 | s, s dey s 0
ow Ou v .
—=—xVv+ux_——, for i=1,2 34
de, Jc, de,

where 0 1s the 3-dimensional zero vector.

C.2.2 Computation of 3Q,/dy

We have
aQ, _ _6_11
oy oy’

v ow
oy’ oY
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where 0
al! = | —sysiny
A e
8 €COS 1
aw Ju v v
duv v Ju
C.2.3 Computation of 0Q; ‘o
We have
oQ du
do ~ ‘0o’
where
Jdu _ dv
do a¢
ow ov
Y
do do

and 0 is the 3-dimensional zero vector.

C.3 Partial Derivatives of [p]3

Detailed Computation of the Jacobian Matrix F(x)

ov 1 (li /
— = Syc3 SNy
o 83 —89€3 COS !
ov Bw]
do~ ¢
1 5134 sin 1)
— | —84Cq sin ¢

°3 84 €COS @

Form the geometric relationship of Fig. 2.1, we have

Hence,

dp)s
dcy,

olel; _

()85

lpls =

)

S5€6
3556

0
olels _ |,
deg 05
0
aels _ [ §
386 S5
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Appendix C  Detailed Computation of the Jacobian Matrix F(x)

C.4 Computation of s, and ¢, and their derivatives for 7 = 1,2....,7

From the geometry of Fig. 21, we have the following relationships-

cg=a-d, s =Ja. d
¢y =a-b, sp=|a- b
c3=b-c. s3=1b - c
cg =c-d, s4 = |lc - d|
c5 = b-po, ss = [lb> po|
er =pg - €, s7 = Pp > €

b ci- llb Pl

Here, the position vector of the coupler point in its itial configuration, py. is included
and all sines have been assumed positive, given that the associated angles are supposed
to lie between 0 and 7. The numerator of the expression of s I1s positive since the mixed
product there is in counter-clockwise order. Moreover, for : = 1, 2, 3, 4, 5. 7, we can
directly use the following relations

D=l GIT T G

ds, ds, \r ds,T db,T d’s ™T
B @, (ST, (T (S
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Appendix C Detailed Computation of the Jacobian Matrix F(x)

Hence, the following is obtained:

dey _ a7, o7, 07, 7|7, %1 = AT, o7, 0T, a7
51

dx dx

dey T T T oT17T ds; 2,7 aT. o7, o7y7
g;:[b.a.0.0]. E;I"‘:;[b-a-0~0]
des T T T oTqT ds3 37 T T T
_d_;:lo.c_b,o]_ d_xz_;;m.c.b.O]
dey T oT 4T TaT dsg 4T nT 4T TT
.C.i,x:[() _O_d,c] . ix :#\54[0.0 .d.C]
des T o T oTT dsg e T T aTT
d.x_:[07,p(7,.0.0]7. —&—:-65-[0-90-0-0]
dey =107, 0", pl, 7|7 dsy _ ~T, o7, T, o7
dx N - 0’ 3 dx 37 . . 0 -

where 0 stands for the 3-dimensional zero vector For cg and sg. we have the following’

deg _ [ b_’_gf:f [ b pg ] [b> Po ]T.‘_"_{L’.f__J
dx  L'b-c | dxlilb - pg b = pp|! dxl|ib > c!

where

b’PoJ [ d/ b - p
- s m e = 0 > 3 R Ll 0 >3- 0 >’]
dx[b*Poi‘ 33 ﬂlb(llb‘Pof> 3 T

sl o) =t Pt s ® @)
i) = e (e ) de(e) 05
sos) =l er p sat o)
a({“(r*: ’§> = |[b>1<cH [1 g b+[;Tl)f%‘;7(b > °)®°]
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x and
dsg 1 [d c - pgb d

- 6 L e pyb)— PO T h e b gl
? & = To b rpol Lax® P D) T 5 gy ax! P € P ol
: with
s d -
! (e po-b) =[07. (¢ po)". (po - b)". 0]
4
: | S
- d d T d 1 U
i b cpol) =107 (5 (b . Py e b T
| Z(b-c b pof) [0 (db(lb ¢ bopp)) . (, (b cb po)).o]
]
'k d b - ¢ b po”

(b s pol) = - — (b LT

(b bopol) b b (b-po)ro + b cl (b-c)b
d ‘b - pp
] —_ b N B \ = - ———— e — .

g lbre bopgl)=- -r (b-c)b

and 0 1s the 3-dimensional zero vector

C.5 Partial Derivatives of the Input-Output Function f(z'. ¢. ,{cl}g. {s[};‘)

From eqs (21) and (2 2a-d). we obtain

d
—f =-kysiny - k3sinvrcos @+ cos v'sing
duv
af .
.= = -kzcosusino + kgsin o+ sinvcos o
el
of 0k 4 ok . Ok; o oky
=S = —= 4 % €ost 4 -~ €0S Y COS cos ¢
ds,  0s, ds, ' ds, v Js, ¢
of Jdky dk Ok, ks
- = == + _-Z Cosy + -—" COS Y COS cos &
de, = e, Tae, VT 5, Osvese
for 1 =1. 2. 3, 4, where
Okq —0 okq _ clc%cl; + cyc3 okq —0 dky _ ('1C2('g + ¢3¢y
681 ' 852 3%34 ) 6-93 ’ 854 3232

Rl
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C.6 Partial Derivatives of the Function h(

Ok,
Ew
8k3
d.&}

oky
dsyq

ok
dey

()/\‘2
deq

¢y
o4

ks _

€4

$2%4

dey

Appendix C
Oy _0ky _ ky _ 165
dsy  Ods3 Jsy sf
oky _ok3 _,
dss Jsy h
dky "1(‘% Oky _ Oky —0
dsy s% ) dsg - ds4 -
d/\'1 _ c1¢4 akl . 1 akl _ clcz
dey &84 dey  sysg deqy 8384
_ ()_kz _0 Oky 51
()('3 o 6('4 54
ok ok ok
_y Ok _ ok ok
d(‘z d(‘3 dC4
ok ok dk
_o _st Oky _ Oky _
802 $§) 863 364

v, 6, {¢,13.{s,}5, x) of the

Configuration Normality Condition

From eq.(4.8). we can write the following.

ony
oYy,

Ohy,
dQ)k

kg

ox

Z—Qk'

9 ,dQ,

Q50 (G20l _,

Jen L (e,

| ox dy,

r0Qy dQZ[ ] }

/

'w:"‘)k

Detailed Computation of the Jacobian Matrix F(x)
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Ohy, 9Q; dQ, sz dlpl3
ds, W [851 dy [pls ( )[ s+ dv Js, ]¢-=¢k
Ohy. _ 9Q; dQ) 9 sz sz dlp)3
e = a0 Rl + Qe (el + @y Je,

forr=1.2,. .6

The mixed derivatives of Q; in the above equations are computed in the following

sections

C.7 Mixed Derivatives and Partial Derivatives of Q,

C.7.1 Computation of dQ;/dy

From the expression of Qj in Appendix A, we have

dQ; _[du dv dw
dy — Ldy:' d¢" di

where

du 0_ J
_— = — & )
20 Sy sin

89 €COS

K !
w1 [ swsined
d—w = — | —C€15458In od' + $9¢3 51N U
s4cos ¢¢’' — spc3 cos Y

dw du v+ u dv
dy — di Y

where ¢’ denotes d@/dy and is computed in section C 8.
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C.7.2 Computation of 3(dQ;/dv) /0y

We have
Jd (dQ_z) _[_(_') (du) J dv_) J (dW)]
Al dy T lde Ndye /T duiNde /T g N de
where
d jduy 0
o (\dv) = | f2cosv
' sy siny
d dvy 1 <184 50 @80’ /01")
" (d— ) = cys4 51N 0(0¢", AY') + spc3cos v
o "3 sqcos o(do’ I) + sye3 sy
(’)o(dw) d du> v+du ()v+6u dv_*_u a(dV)
- _— - — .- ) . - DU R — X —— ——
duv \du v (dl' dv  dv Ov  dy oY \di

where do' ' 91 1s computed in the Section C.8

C.7.3 Computation of 3(dQ; /dv’)/d¢

We have
0 1dQ o /du d /dv o sdw
5ol at) =13 (5) 5al@) 55 (G0)]
where 9 du
8})((1?'> =0
S184 [cos od' + sin o(dd)’,'dé)}
o ;dv 1 } ;.
80((—10> = ‘:3 - €184 {cos @d' + sino(do dm)]
sq4] - sinog' + cos ¢((’)o’/80)]
d sdw du Ov d rdu
oo i) = G " 6t a6\

and 0 1s the 3-dimensional zero vector. The computation of 3¢’ 'do is given in the Section

C.8
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C.7.4 Computation of 3(dQ;/dy)/ds, and A(dQ,/dv))/dc,

We have

0 ¢dQ rd s d 3, d ) /d
i o) =l (@) acli) a Gl

7

7 (dQZ_) _ r(Z(dU)‘ 0 (dv>. _(’) (dw”

de, 5(', dy: de, \ dy:

{

for + = 1.2.3.4. where

J o d g ,d ) /d
o i) = o @) = o (i) =0

0 (du ) 'Oll
— - ) = |siny
8‘52 dy
€os
9 v 1 -54 sin QS{OI + 91 (aé’ /'6\53)]
ds‘l (JL') - Lsé — €154 SN d)(f)é/ Oy
i 54 €05 &(do' 1 %)
J dv 1 [ sy84 SN o(do’ dsy)
9 } = (254 SN O(()C)I ()sl)
8 : S
"2 3 | 54 cos p(d0' 1dsy)  e3cos v
S184SI0 d)[q 53(0d)'/033)}
g  dv 1
delae) =72 g4 SIN o[(g - 53((96)’/853)] + ¢pe384 SIN Y
S3 ' 33
54 COS é[g s3(04' /c’)a:;)] - szcg cos ¥’
sy5n 0|6 + 54(08' /05y)]
0  dv 1

—¢qsin d>[c,’>’ + 54 (00 /(')54)] + ¢ysin g

953\ T
cos 8]0/ + (04 j0s4)]
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dcq

d*u
dy

(&)

dv
dy

d
deyq

(o)

dv
dy

J
()(‘2

(
(

)
)

o
dey

dv
dy

Jd
dey

dv
dy

(i)

Appendix C  Detailed Computation of the Jacobian Matrix F(x)
_a (dU)__ d (dU) _ 9 (du 9 (dU) —0
- 3('1 dy - 3(‘2 dl//' - 863 dyr/ B (9('4 d?," -
1 [ 8184 sin @(8(1)’/dc1)
= - | —sgsmo [G)' +¢1(80' /04 )]
S3 .
84 €0s o(do’ 1 deq)
1 I $184 50 O(()C)’ ’()('2)
= - cq84 S0 (D((')(f)l/()(z)
"3 | sgcos0(0dd0ey)
1 i s154 SN 0(0F /dc3)
= cqaqsin @00, deg) + s8N o
B spcos0(d0 de3)  sycos
1 [ &g 848N C)(aO’/(')(‘A)
= - ¢q54SIN (D(()(DI d(4)
&
31 s4cos0(00, deq))

and the computation of d¢''ds, and 9o’ 'dc,. for 1 =1,2, 3,4, 1s given in the Section C38.

cs8

Mixed Derivatives and Partial Derivatives of the Output Angle ¢

Resorting to the input-output function of egs.(2 1) and (2.2a-d). the following

relations are obtained:

e i) e o)
5 awlic) = & (55 - o)
B ouli) = gy (0 cug)
g—f:‘; 582;(53) :az“(c%" lozg%)

9
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Appendix C  Detailed Computation of the Jacobian Matrix F(x)

for 1 = 1,2.3,4., where

Cy = ky siny + k3 singy cosd — cos U'sin

(9 = kgsma - k3cosv sing+ sin i cos o

C3 = k3sint'sin @ +€os 3208 O

(g = kpcos i + k3 cos v coso+ sinyrsin o

('s =hk3cosycose  kycoso+ sinysino

Cg = k3 sin¢ sin @ + oS v Cos @

¢ 2 Sinw + Oks sin ¥ cos @
= v .2
; ds, ds,
v 6’\—3 . ak4
Cg, =~ -~ cost'sind + -~ sino
5, ().SI
Co 2Ok Ok s
= — R 2 w
> dc, ‘ de, @
ak3 . 6’\‘4
Cio, = ——— cosysind + ;--sin
10 e 0s Y + 5 o

1 1

for: =1.2.3.4
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Appendix D. Jacobian Matrix G(x) of the Constraint Function

From eq (4 14). we can readily obtain the following:

al o" o7 o
o7 b7 o7 of
o7 o7 T of
07‘ 07' OT dT

G(x) = 2

where 0 1s the 3-dimensional zero vector.
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Appendix E. A Brief Description of the SPHER1 Package

SPHER1 s a Fortran 77 code for implementing the optimization scheme pre-
sented in the thesis It was used for solving several design problems. as shown in Chapter
6. The program hsting i1s omitted from the thesis since it contains more than 5000 hnes
and it 1s available in the McRCIM network Given in this appendix 1s a brief description of
SPHERI1. which serves to outline the package and provide the reader with basic knowledge
for its use Attention will focus on the mamn program and those subroutines which the user

will deal with directly in solving a particular problem

SPHER1 can be divided into three parts (:) Orthogonal-Decomposition Algo-
rithm. (17) Function and Jacobian Matrix Evaluation, and (i22) Continuation Each part
performs some special tasks The main program resides in the first part, which is the
beginning of the optimization procedure An outhine of the main program, along with some

important subroutines n each part, are given below
1. Orthogonal-Decomposition Algorithm (QODA)

This part of the package 1s for implementing the ODA in our synthesis prob-
lem. which involves an iteration scheme for computing the correction Ax in the outer
optimization layer A damping loop 1s included in each iteration to perform necessary re-
duction on the computed step size Ax The main program for the optimization scheme
resides in this part In order to start the optimization procedure. the following data should
be input and stored in the proper array, as indicated in the instructions n the program

comments
¢ An initial guess of the design vector x,
o The given set {Q }q'. with Q specified as the given point,

¢ The number of points in the given set, m;
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¢ Some tolerances, including the one imposed on the first-order normality con-

dition (Angeles, Anderson and Gosselin, 1987). and the one imposed on the

constraint function;

o Bounds on the number of iterations 7) the maximum number of iteration allowed
in the outer optimization layer, 1:) the maximum number of iterations allowed

within each damping loop,
o Weighting matrix W,
e Damping coefficient, d.
and then, the following subroutines have to be called:

DECOMP  performs the Cholesky decomposition {Dahlquist and Bjérck, 1974) of W to

obtain V matnx for ater use (W = VTV).
NGCLS4 implements the ODA.

Additionally. the routine for the continuation scheme can be called in the main
program for performing the overall optimization scheme in one single run
2. Function and Jacobian Matrix Evaluation

This part of the package serves to compute both the objective function. f(x), and
the constraint function. g(x). as well as ther Jacobian matrices. F(x) and G(x). respec-
tively. to be used by the ODA Three subroutines are written for this purpose. which are

called by subroutine NGCLS4 i the first part of the package They are:
FUNFDFDX evaluates both the objective function, f(x). and its Jacobian matrix. F(x),
FUNG evaluates the constraint function. g(x):

DGDX - evaluates the Jacobian matrix of the constraint function, G(x).
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There are various subroutines in FUNFDFDX. Those, under the main subroutine
JACBSUB, implement the detailed computations given in Appendices C and D. under the
main subroutine EVLPSI are the subroutines which solve the equations of the configuration

normality condition for the set {}{".

3. Continuation

The continuation scheme introduced in Chapter 5 is implemented in this part
of the package. It can be used in two ways either as a separate program to provide data
for the main program, or as a subroutine to run together with the main program. In both

ways, the following data should be input
e number of desired continuation steps. /:
e initial guess of the linkage together with the coupler point;
e The given set {Q; }7"*

and they should be stored in the proper array, as indicated in the comments of the program.
The output consists of the sets of dividing points corresponding to different continuation

steps. The detailed computations are implemented in the subroutine EQLDVD

Additionally, a group of routines. onginally from the computer package KINVERS
(Anderson, 1987), are also available for evaluating the condition number of the Jacobian
matrices via Householder Reflections Ti.. main subroutine for this purpose is HHCOND

and 1s called in NGCLS4 in the first part of the package.
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