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Abstract 

ln this thesis. the optimization of spherical four-bar linkages for the problem of 

path generation is presented ln this problem. a set of points is given. and the linkage whose 

coupler link contains a pomt tracing a trajectory. cal/ed coupler curve. passing as close as 

possible to a given set is sought The problem is formulated as a two-Iayer minimization 

of the linkage error whlch IS defined as the sum of the distances between the coupler 

curve and each point of the given set. thereby decouplmg the linkage parameters From 

the configuration variables. Hence. the optimlzatlon procedure consists of evaluatmg a set 

of input angles. {wd1. defining m linkage configurations, and the linkage parameters 

independently. This leads to a nonllnear least-square mlnlmization problem wlth equality 

constramts The orthogonal-decomposition algorithm. mtroduced elsewhere. is employed 

to solve the problem. which allows us to obtam the solution iteratively. Continuation and 

damping techmques are used in the numerical procedure to ensure convergence and speed 

up its rate. The optimization scheme IS developed on a general basis and can handle the 

problems of m prescribed pomts. where m can be any number greater than nine Several 

design problems are solved by using the method and results are presented in ::he thesis. 

ln addition to solvmg the synthesis problem. a novel criterion for mobility analysis of the 

spherical four-bar linkage was devised and is inc/uded in the thesis. 

ii 



1 
Résumé 

Dans cette thèse, l'auteur présente une métho~" d'optimisation des mécanismes 

sphériques à quatre barres articulées pour le tracée de trajectoires Dans le cadre de cc 

problème, un ensemble de points est donné et /'on cherche le mécanisme dont la bielle 

contient un point traçant une traJet:tOlre, dite la courbe de la bielle, qui passe aussI proche 

que possible de l'ensemble donné La formulatIOn du problème consiste en une minimi­

sation à deux stages Imbriqués de l'erreur du mécanisme, qui est défini iCI commme la 

somme des distances entre la courbe de la bielle et chacun des pOints de l'ensemble donné, 

Cette approche permet de découpler les paramètres cinématiques du mécanisme et les 

variables décrivant la configuration AinsI. la procédure d'optimisatIOn consiste à évaluer 

indépendament un ensemble d'angles d'entrée, {'!j't.- }1' définissant ni configurations, et 

les paramètres cinématiques du mécanisme On formule ainSI un problème de minimisa­

tion dit de moindres carrés contraint, soumis à des contraintes d'égailté. L'algorithme de 

décomposition orthogonale, présenté ailleurs, est utilisé pour résoudre ce probleme, ce qui 

conduit à une solution Ité, ative Les techniques de continuation et d'amortissement sont 

également introdUites afm d'accélérer la procédure et de garantir sa convergence De plus, la 

généralité de l'algOrithme d'optimisation développée ICI permet de résoudre le problème de 

tracée de trajectoire pour m points, où m peut être n'Importe quel nombre supérieur à neuf 

PlUSieurs problèmes de conception de mécanismes sont résolus à l'aide de la méthode décrite 

ci-haut et les résultats sont présentés dans cette thèse. Enfin, r auteur présente dans cette 

thèse une nouvelle condition de mobilité du mécanisme sphérique à quatre barres articulées, 
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Claim of Originality 

The author daims the onginality of the ide a of the optimization scheme reported 

in this thesis. Moreover, to the author's knowledge, the criterion for the mobility analysis 

of spherical four-bar linkages IS origmal and has not been presented elsewhere. 
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Chapter 1 Introduction 

Modern technology has brought along a wide application of the spherical mech­

anism to industry. We have. In thls category. solar-tracklng mechanisms. rotating radar 

mechantsms. robotic wrists and prosthetic devlces. such as artificial wrists and subtalar 

joints. etc. In this type of mechanisms. the motion takes place on the surfdce of a sphere. Of 

ail sphencal mechanisms. the spherical four-bar linkage is the simplest in structure and has 

received a special attention A common p.xample of this type of mechanlsm IS the universal 

joint. Many practical problems dealing with spherical four-bar linkages are related to t~e 

trajectory followed by a certain pomt on the coupler Imk. which leads ta the problem of path 

generation The design of a solar collector. for example. whlch traces a solar-path. belongs 

to this category. Hence. the slgnlflcance of developing efficient schemes for solvlng thls 

type of problems becomes apparent. 

The synthesis of path-generating linkages is a classical problem in applied kine­

matics ln connectlon wlth the four-bar linkage. it requires to determine the dimenSions 

of the linkage having the property that one of the point51 of Its coupler link passes through 

certain prescribed positions Reported in this thesis is the solution of the aforementioned 

problem ln the spherical case. In this context. ail the relevant parameters of a spherical 

RRRR four-bar Imkage are computed. glven a set of points on the surface of the sphere on 

which the motion of the linkage takes place. so that one point of Its coupler link. which 

we cali coupler point. traces a path whose distance to the glven points IS a minimum. The 

problem solved here is aimed at the approximate synthesis of the linkage. the exact syn-
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1. Introduction 

thesis being regarded as a particular case of this. 

Linkage synthesis problems have been a subjeet of intensive research in kine­

maties. Classieal problems. such as path generatlon. rigid-body guidance and functlon 

generatlon. have been extenslvely studled Various methods have been proposed ln the 

literature to deal wlth these problems Toma~ (1968) showed that the maJority of prob­

lems concerning the synthesls of mechanlsms can be formulated as nonlmear program­

mlng problems. F'lx and Willmert (1967) and Alizade. Novruzbekov and Sandor (1975) 

apphed nonhnear programmlng techniques to solve the synthesis problem for function gen­

eration. whlle Ri'lO (1979) used geometnc programmmg to solve the same type of synthesis 

problems Sutherland and Karwa (1978) developed a general seheme for the synthesis of 

linkages for rigid-body guidance. Chlang (1984) used the concept of kmematic mversion and 

solved the synthesis of path generatlon symbolteally. Other methods have been studied by 

different researchers. such as the geometnc and algebraie methods proposed by Hartenberg 

and Denavit (1964). and the Monte-Carlo method (Gohnskl. 1970). On the whole. a variety 

of methods has been developp.d by different researchers in the past decades for dealing with 

various problems ln the area of linkage synthesls. 

However. it seerns that the research has mostly focused on planar linkages. 

InvestIgations ln the sphencal case are reJatively few. For the case of path generatlOn 

of spherical four-bar linkages. although sorne work has been done. the ansmg problems 

are mamly solved for not more than four given points (Suh and Radcliffe. 1978) or for 

the coordination of three or four prescribed points and the correspondmg crank rotations 

(Chlang. 1986). Although it has been proved theoretically that up to Olne glven points 

on a sphere can be met exactly by a spherical four-bar linkage (Kraus. 1952). finding 

the solutions becomes a major task. due to the highly nonlinear nature of the equatlons 

involved Up to now. no research has been reported in the literature for more than four 

given positions. It seems clear that. as the synthesis problems turn more comphcated. the 

conventlonal geometncal and symbohc methods meant for the exact-synthesis problem are 

very limited and difflcult to apply. Consider the problem of path generation. for example. On 
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.1 Introduction 

the olle hand. those methods can only be used for less than five prescribed positions which 

are to be met exactly. On the other hand. when the number of prescribed points exceeds 

a certain maximum. namely. mne. an overdetermmed system of nonhnear equatlons will 

arise. which means that no exact solutions are possible Thus. for such problems. we must 

resort to numerical methods for optlmlzation As practlcal path-generating problems may 

very likely IIlciude more than nille pOllltS, devlsmg a general scheme capable of handmg 

more pomts becornes of the utmost concern ThiS motlvates the research work reported in 

thls thesis. 

Recently, Angeles. Alivizatos and Akhras (1987) and Akhras and Angeles (1987) 

proposed a nE'W method to solve approxlmate synthesls problems for planar linkages They 

applied a variable-sepùratlon technique and unconstrallled nonllllear least-square optlmlza­

tion schemes to the problems of path generatlOn and ngld-body gUidance Thelr method 

is very effiCient, smce It can handle any number of glven positions and Orientations ln 

seeking the same performance for spherical problems. unconstramed r'lethods are no longer 

applicable. and hence. constramed least-square techniques have to be rntroduced While 

sorne common features between planar and sphencal linkages eXlst. special charactenstlcs 

concernmg sphencal hnkages must be considered For example. due to the fact thdt ail the 

joints and pOlllts of Interest III the problem lie on the surface of a sphere, algebralC con­

straints on the coordinates of points defining the locatIOn of the centre of these JOlllts are 

necessary. The problem IS hence formulated as one of constramted nonllllear least-square 

optlmizatlon. Two layers of mmimizatlOn are mcluded, each of them belng consldered sep­

arately. An iterative scheme IS used III evaluatmg the deSign variables III the outer layer of 

optimizatlon. while. in the mner layer. the optimal chOice of Input angle correspondmg to a 

linkage configuration. with the coupler point Iying the closest to a glven pOint. is found. In 

this formulation. equahtj' constramts are used. whlch eases the computatlOnal procedure 

to a large extent ln facto whereas the solution of least-square minimlzatlon problems, 

subject to continuous equahty constraints, are contmuous functions ot the problpm pa­

rametus. those of mathematlcal programming problems subject to 'nequallty constralnts 

are. in general. discontÎnuous functions of the problem parameters. This properly has rel-
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1 Introduction 

evant consequences. for it allows the introduction of a technique known as continuation in 

the solution procedure This technique. in turn. guarantees the convergence to a solution­

provided th .. t the problem has one-even if the mitial guess Iles far from the said solution. 

Moreover. the convergence rate 15 enhanced by the use of dampmg techniques ln the Iterative 

procedure Ali these techniques contribute to the efflclency of the method 

The optimlzatlon scheme aims at solving prablems in whlch a set of pOints are 

given on the surface of a sphere To this end. the problem of synthesis for path generation. 

given any number of pOints. greater than nme. can be solved However. no coordination 

between these pOints and the mput angles are considt!red ln the formulation For thls type 

of problems. certain modificatIons ln the formulation are necessary. which fall beyond the 

scope of the thesis 

A Fortran 77 computer package. called SPH ER1. has been written for imple­

mentmg the whole optlmlzatlon sc he me and runs on the Unix-based workstations of the 

McRClM network A brlef deSCription of the computer package IS given in Appendix E. Some 

design problems. includlng solar-tracking mechanisms and a linkage for driving a Geneva 

wheel. are solved by using the computer package. The results are reported in Chapter 6 

ln addition to the synthesls work mentloned above. the mobihty range of sphen­

cal four-bar linkages are studled uSlng the concept of hnkage dlscrimll1ant The ful/-mobillty 

reglons of both the input and the output links are descrlbed in the 4-D space of hnkage 

parameters a nover form of the entenan for mobihty analysis bemg thus proposed The 

details are glven in Chapter 2. 
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Chapter 2 Backgrol. .• d and Terminology 

2.1 On Spherical Four-Bar Linkages 

Shown in Fig. 2.1 is a general sphelical RRRR four-bar linkage The axes of the 

four revolute Joints. A. B. C and D. intersect ln one pOint O. the centre of the sphere on 

whlch the motion of the linkage takes place We defme AD as the fixed IInk. AB and CD as 

the Input and output links. respectlvely. and BC as the coupler IInk A pOint P on the coupler 

link is chosen as the coupler pomt whlch will generate a coupler curve when the linkage 15 ln 

motion The Imk dimensions are glven by the angle between adjacent JOint axes. 1 e . Ql' for 

1 = 1,2,3,4. as shown ln Fig 2 1 Addltlonally. three other angles. ü,. 06 and 07' are 

defined to descnbe the coupler pomt PossIble combmatlons of the length of each IInk yleld 

different types of linkages double-crank. crank-rocker. rocker-crank. or double-rocker As 

in the planar case. the well-known rule of Grashof can be used to identify linkage types 

(Hartenberg and Denavit. 1964. Chiang. 1984). Here a new method is develûped for this 

purpose. as described below 

2.1.1 Input,Output Analysis 

Since the four-bar linkage is a one-degree-of-freedom mechanism. the input an­

gle t/J. namely. the angle between the links AB and AD measured from the major clrcle 
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B' 

A D 

Figure 2.1 A General Spherical RRRR Four-Bar linkage 

AD. defines its motion. Correspondtngly. the angle between CD and AD. measured as indi­

cated in Fig 2.1 and called <1>. is deflned as the output angle. A distinct function. which 

is called the Input-output function. eXlsts that defines the relationships between the input 

and the output angles. as described ln (Angeles. 1982. Angeles and Bernier. 1987). Here. an 

alternative form is used. namely. 

where k is defined as the four-dimensional vector of linkage parameters. its kt compo­

nent&. for i = 1,2,3,4. being defined as follows: 

k
1 
= cos a.l co~ 02 co~ 0:4 - cos 03 

sm 0:2 sin 0:4 

k = sm 0:1 cos 04 
2 sin 04 

k3 = cos 0:1 

(2.2a) 

(2.2b) 

(2.2c) 
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2 Background and Terminology 

k = sin (ll cos Q2 
4 sin (ll 

(2.2d) 

The above equatlon. although related to that glven by Angeles and Bernier 

(1987). bears some differences with It The major Improvement here IS the avoldance of 

the singuJanties at 0'2 = 90- . A possible inversion of those equations is the followmg. 

. Ik2k3k4 - k1 (1 - k~))2 
sm Q3 = Il - -- ----- - ~ - -- - -----------

~ (1 - k~ + k~fl(1 + kf - kn 2' 
(2.3) 

(k2 k3 k4 - kt (1 - kj)] 
cos (l3 = 

(1 - k~ + k~)(l + kf - kn' 

where ail the angles are assumed to be wlthm the range from 0 to 71 

W,th simple tngonometrlcal transformations. eq.{2 1) can also be expressed in 

the following form. 

where 

A (t/J) T 2 + 2B ( 1/J) T + C (1/J) = 0 

A(W) = kt + k4 + (k2 + k3) cos 1/J 

B(w) = sin W 

C(w) = kt - k4 + (k2 + k3) cos 'I/J 

T = tan(~/2) 

(2.4) 

(2.50 ) 

(2.5b) 

(2.5(') 

(2.5d) 

8 
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2 Background and Terminolog) 

The output angle in terms of the input angle is then obtained as: 

(2.6) 

where ]{ IS the branch mdex of linkage configurations It IS dehned as the slgn of the sine of 

the transmission angle. Il. as shown in Fig 2.1 The reason why 1\ IS introduced IS that 

branch'ng problems may occur ln the synthesls procedure That is. for a certain input angle 

'lflk' the coupler pOint Pk attams two conjugale positIOns. which correspond to the two 

different roots obtamed from eq (2 6) when Its dlscrimmant IS greater than zero. In order 

to aVOId branch Jumping. K is then used to dlstmgUlshmg between linkage configurations 

(Ma and Angeles. 1987) 

Simllarly. to obtain the mput angle in terms of the output angle. we rewrite 

eq (2 1) as follows 

D(rjJ)S2 + 2E(<p)S + F(<t» = 0 (2.7) 

where 

D(dJ) = kt - k2 - (k4 + k3 ) cos <p (2.80 ) 

E(Q>} = sin <1> (2.8b) 

F(Q» = kt + k2 - (k4 - k3 )cosQ> (2.8c) 

5 = tan (11'/2) (2.8d) 

and an expression similar to eq (2,6) for the input angle can then be obtained. 

Once the dimensions of a linkage are glven. the position of the coupler pomt 

becomes a function of the Input angle. As the mput angle varies in its moblhty range. the 

coupler pOint moves on the surface of the sphere and the coupler curve IS generated. 

2.1.2 Mobility Analysis 

The mobility of linkages has been intensively studied by various researchers since 

Grashof first proposed a set of inequalities for its analysis in the planar case (Grashof. 1883). 

9 
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which is widely known as Grashof' s criteria. Different methods concerning the mobility anal­

ysis of spherical hnkages. both algebraic and geometncal. have been devised in the pa st 

(Duditza and Dittrich. 1969. Soni and Harrtsberg, 1967: Savage and Hall, 1970. Gupta. 1986) 

Here, the moblhty range of the spherical four-bar linkage IS analyzed based on the concept 

of linkage dl5Cflmmant. whlch was flrst proposed by Angeles and CalleJas (1984) and has 

been further studled by dlfferent researchers (Williams and Remholtz, 1986 & 1987. An­

geles and Bernier, 1987, Gosselin and Angeles. 1988) The followmg approach is based on 

the input-output functlon defined by eq (2.1) and IS an extension to the one presented by 

Gosselln and Angeles (1988) Here, the new defmltlon of k ln eqs (22a-d) IS used 

Now, the dlsCrlmmant of eq (24) IS wntten as 

6(cos '!jJ) =- B2(1;'}) - A('Ij')C(~') (2.90) 

= (k~ - k~ - 1) cos 2 1," + 2( - k1 k2 - k3k4) cos l!- + (1 -- ki + kil (2.9b) 

where the coefficient of the quadratic term is negative definite, i.e. 

2 2 sin 2 0'1 
k3 -- "'2 - 1 = - -. - < 0 

sm 2 t'X4 
(2.10) 

which means that eq. (2.9b) represents a parabola ln COS~) wlth negatlve curvature The 

condition for the input Imk to have full moblhty IS that the linkage dlscnmmant be positive 

for every value of cos '1,', I.e.. for 1· cos 1j' -- 1 ThiS IS equlvalent to saymg that 

6(-1) ~ 0 and 6(1) > 0, whlch ylelds the followmg mequahtles 

or 

(k2 + ktl 2 < (k3 - k4)2 

(k2 - ktl 2 ~~ (k3 + k4)2 

k1 + k2 :s; Ik3 - k4 i 

k1 + k2 2: - 1 k3 -- k4 1 

k2 - kl :s; Ik3 + k4 i 

k2 - kl 2: -lk3 + k41 

(2.11a) 

(2.11b) 

(2.12a) 

(2.12b) 

(2.12c) 

(2.12d) 

10 
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The foregoing inequalities define the full mobility region of the Input link in 

the 4-0 space of linkage parameters. It is apparent that each of the above Inequalities 

represents a half-space separated by a 4-0 plane. once the signs of k3 - k4 and k3 + k4 

are determlned The common part of the these half-spaces is the full mobllity region of the 

hnkage If a Imkage falls Into thls reglon. i.e .. if ail the above mequalities are met. then the 

linkage has an Input crank. otherwise. ItS mput link IS a rocker. 

For the output hnk. we repeat the above analysis usmg eq.(2. 7). The new 

linkage dlscrrminant IS wrrtten as 

6(cos 6) -= ])2 (<p) - E(cb)F(4» (2.13a) 

= (1.-1 - kl- 1) cos 2 Il> + 2(k1 k4 + k2k3) cos ~ + (1 - kf + k~) (2.13b) 

Again. the coefficient of the quadratlc term in eq.(2.11) is negative definite. i.e .. 

2 
,.2 k2 1 _ sm al 0 
fi'3 - 4 - - - < 

5m 2 a2 
(2.13b) 

The full mobilrty conditIon of the output hnk is expressed as h( -1) ~ 0 and 

6(1) ? O. which leads to the following Inequalttles. 

(kt - k4)2 ~ (k2 + k3)2 (2.15a) 

(kt + k4)2 :: (k2 - k3)2 (2.15b) 

or 

k1 - k4 S Ik2 + k31 (2.16a) 

k1 - k4 ~ -lk2 + k3 (2.16b) 

kt + k4 ::; Ik2 - k31 (2.16c) 

k1 + k4 ~ -lk2 - k3 (2.16d) 

These inequalities form the full mobility reglon of the 4-D space of linkage parameters in 

which the output link is a crank. For an output crank. the linkage shou1d be inside this 

11 
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region 50 that ail the inequalities in eqs.(2.16a-d) are satisfied Otherwise. the output link 

is a rocker or the linkage is unfeasible. 

For identifying the linkage type. the common part of the full-mobility regions of 

both the input and the output links have to be found. inside of which the linkage is a double­

crank. otherwise. the linkage is a crank-rocker. rocker-crank. double-rocker or unfeasible. 

depending on where the linkage is located in the space of linkage parameters. A dlagram 

illustrating this relationship is glven in Fig. 2.2. 

--------

Double-RockPr or Unfl.'asible LlOkagl.' 

Full moblhty reglon 

of thl' anput link. 

Full moblht) rl.'glon 

of the output Iink 

Figure 2.2 Diagram of linkage Type Identification 

8ased on the above analysis. a mobility criterion of spherical four-bar linkages 

can be obtained. This criterion arises directly from the inequalities (2.12a-d) and (2.16a-d). 

The detailed analysis can be found in Appendix A. Here. the result is presented: 

12 
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The input link is a crank if the following conditions are met: 

min(k3' k4) :s s :s max(k3' k4 ) 

.~ .- mm(k1. k2). if k3 + k4 < 0 

(2.170) 

where . ., = (k1 + k2 + k3 + k4)/2 The conditions for the output link to be a crank are the 

followmg' 

(2.17b) 

It is apparent that If both eqs.(2.17a) and (2.17b) are satisfied. the linkage is a 

double-crank: the linkage 15 a crank-rocker or rocker-crank if only eq.(2.17a) or (2.17b) 15 

met: the linkage IS a double-rocker or unfeaslble otherwise. 

2.2 On Constrained Least-square Optimization 

The purpose of thls Section IS to mtroduce the problem of constrained least­

square optlmlzatlon and outhne its method of solution. The mtroduction of thls method is 

crucial ln comput mg solutions of the problem at hand. 

2.2.1 General Description 

Constramed least-square optimizatlon problems are a special case of nonlinear 

programming problems. which tan be stated as follows: 

min z(x) (2.18) 

13 
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subject to 

i = 1, 2, ... ,p (2.19a) 

and 

7 = 1, 2, ... ,q (2.19b) 

where x = (Xl, x2, ... , xrd T is the vector of design variables. and z(x) is the objective 

function to be minimlzed by a proper choice of x. For least-square optimizatlon problems. the 

objective function has a quadratlc form. namely. z(x) = e(x)TWe(x). where W IS a posltlve­

definite weighting matrix. Here. the problem is expressed ln a general way 50 that both 

equality and mequality canstraints are mduded As a rule. equahty constramts are easler 

to handle than Inequahty constralnts. Therefore. it IS Important to formulate a design 

problem. If possible. uSlng only equality constraints. In facto inequahty constramts can be 

avoided for many cases by properly formulating the optlmlzatlon problem to be solved 

There are mainly two types of method far solvmg constrained least-square ap­

timlzation problems. namely. the unconstrained approach and the direct method ln the 

former. the most common way IS to transform design variables so that constraints are 

eliminated or satlsfled automatically The problem is therefore transformed lOto an un­

constrained one However. real problems are usually too camplex for thls approach <lnd 

penalty functlon methods are often used (Fiacco and McCormick. 1964. Zangwill. 1967). 

although thls method sometimes has limitations in connection wlth equahty-canstrained 

problems. Direct methods inc/ude those that deal wlth the constraints dlrectly dS IlfIllting 

hypersurfaces in the deSign space We have. In this category. the method of feaslble direc­

tions (ZoutendIJk. 1960. Fox. 1971). the gradient projection method (Rosen. 1960) and the 

sequence of linear programming problems (Zhou and Mayne. 1985. Schlttkowskl. 1985) 

As related to kinematic synthesis. least-square optlmization techmques have 

been proven to be a powerful tool and have been used for solvmg vartous synthesJs prob­

lems. such as those reported by Chi- Yeh (1966). Lewis and Falkenhagen (1968) and Angeles. 

Alivizatos and Akhras (1987). In this approach. the error between the desired output and 

the actual output for a certain problem IS first squared. the objective functlOn then being 

14 
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defined as the sum of the resulting squares. However. for the following design stages. no 

single method exists which is best suited to ail problems formulated in this way. Discussed 

in the next section IS a newly developed method. the orthogonal-decompositlon algorithm. 

which will be used to solve our problem 

2.2.2 The Orthogonal-Decomposition Aigorithm 

A detailed description of the orthogonal-decûmposition algorithm is given in 

(Angeles. Anderson and Gosselin. 1987). As a quick reference. it ;s br;efly described here. 

the aspects important to our problem being emphasized. 

As a direct method. the algonthm consists of solving the onginal nonlinear 

programmmg problem as a sequence of linear quadratic programming problems. A pos­

itive definite quadratlc performance index of an m-dlmensional nonlinear vector function 

f(x) is included in the problem statement. where x IS an n dimensional vector of design 

variables. Then. the objective function IS written in the following form' 

z(x) = ~f!x) TWf(x) (1.20) 

where W is a constant positive defmlte m :< m matrix. The design vector IS subject to a 

set of p nonlmear equality constramts represented as g(x) = O. Further assumptions are 

madt> chat m IS greater than 11 --- JI and both f(x) and g(x) are contmuous and differentiable 

fllnctlons of x An Iterative scheme is used in the algorithm. in which both the objective 

function and constramt functions are hnearized ln each iteration. which allows the appli­

cation of the techniques for hnear quadratlc programming problems. That IS. the following 

linear quadratlc programming problem is solved at each iteration: 

m~n ~eTwe (1.21) 

subject to 

Cx = d (1.22a) 

with 

e = b - Ax (1.22b) 

15 
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where band d are n- and p- dimensional vectors. respectively. and A and C are m x n and 

px n matrices. respectively. Here. an orthogonal complement of the matrix C representing 

the equality constraints 15 computed efficiently so that thp solution space is decomposed 

into two orthogonal components one Iying in the nullspace of C and one Iylng in the 

range of CT This makes the method computatlonally simpler than others such as the one 

reported by Betts (1980). 

The orthogonal-decomposition algorithm is weil suited for our problem. which 

is formulated in the same way as stated above. As will be seen in the next chapter. the 

objective function. as weil as the constramt functlons. are formed m such a way that they 

are both continuous and dlfferentiable. As for the condition of m /' n - p. this 15 actually 

met since we are aimmg at solvmg the approxlmate synthesls problem concerntng more 

than nine: points l i,~ls whereas Tl and pare fixed. m can be any number greater thôn nine. 

16 
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Chapter 3 Problem Formulation 

3.1 General Considerations 

The synthesis problem under study conslsts of findmg ail the relevant param­

eters of a sphencal four-bar linkage with a coupler point tracing a path Iying a minimum 

distance away from a set of glven pOints on the surface of a sphere. If m + 1 points {Q k }ü 
are given. the coupler point should attain m + 1 positions Pk, for k = 0,1,2, ... , m. that lie 

as close as possible from the given set. 

As discussed in the previous chapter. we need seven angles. Q1, 0'2, .... a7. to 

define the dimensions of a Imkage and ItS coupler pOint. Moreover. to describe the location 

of the linkage. the positions of the flxed joints. A and D. need to be known For thls 

purpose. we can specify the orientation of a coordinate frame rigidly attached to the fixed 

link AD. which will be defmed presently. in terms of the position vectors of both Joints 

A and D Actually. we need eight independent parameters to uniquely define a spherical 

four-bar linkage. whether they are angles or Cartesian coordinates. As far as the design 

parameters are concerned. including angular quantities is not convenient. On the one hand. 

inequality constrains would have to be mtroduced since the angle values are bounded as: 

i= 1,2, ... ,7 

and the sum of adjacent angles must not exceed 27r. As discussed in Chapter 2. inequality 

constrains like these will no doubt increase the compfexity of the problem and will render 
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its solutions discontinuous functions of the problem parameters. On the other hand. due 

to the special characteristics of spherical hnkages. the length of each link can b~ replaced 

by its supplementary arc on the sphere without affectmg the kinematlc behaviour of the 

linkage. In other words. a certain spherical four-bar linkage can be defmed by different 

value!:> of the (\ angles ln facto for any spherlcal four-bar hnkage. fifteen addltlonal linkages 

exist. whlch are kmematlcally equlvalent to It (Chlang. 1984) Therefore. other variables 

than angles should be defmed 

The problems mentlOned above can be aVOIded If we simply use the position ve<..­

tors of the four JOint centres as design variables Once these four vectors are evaluated. the 

link lengths. or the arcs that connect adjacent jOints. can be readily determlned Then. the 

relevant Q angles are computed from the foregolng vectors Hence. the design variables are 

chosen as the Carteslan coordlnates of the four jomt centres. We group them ln a design 

vector x defined as. 

(3.1) 

where a, b, c and d are the position vectors of points A. B. C and D. respectively. I.e .. 

a=lxA, YA, ZA)T 

b=l.ru, YI.' znf. 

c = Ixe, Y('. Zef'. 

d = IXD- YD, zDf 

(3.2a) 

(3.2b) 

(3.2r) 

(3.2d) 

The components of x are not independent. for the four joints are located on the 

surface of a sphere. say the unit sphere. and their position vectors have ail a urât magnitude. 

These vectors are. then. constrained as follows: 

(3.3a) 

(3.3b) 

(3.3e) 

18 
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(3.3d) 

As for the coupler point. one of the glven points. Qo. is used to define it in the 

Oth configuration. namely. as Po == Qo. Here. 0 denotes the reference configuration There­

fore. although ni + 1 points are given on the surface of the sphere. only rn pomts have to 

be included in the optlmjz~tlon procedure. one point being met exac.tly 

When x IS glven d certain value in the optlmlzation procedure. findmg the gen­

erated coupler curve based on the chosen coupler pomt becomes crucial in solvmg the 

problem because these tralectory points. attammg the minimum error with the correspond­

mg pOints ln the given set {Qdt. are needed for the following minimlzatlOn steps To ease 

the formulation. three coordmate systems. with the same ongm O. are deflned as shown 

in Fig. 3.1 The transformation of coordlnates between each two frames is discussed in the 

next section 

3.2 Transformations Between Coordinate Frames 

Now. reference is made to Fig 3.1 The three coordinate frames are assigned ln 

the following way. The design parameter x. the coupler point P and the glven set {Q k}1 

are defined m the first coordinate frame The second frame IS defmed as follows X2 

passes through A and } '2 Iles ln the plane determmed by the position vectors of joints A 

anrf D The thlrd coordlnate system IS defmed m a simllar way X 3 passes through jomt 

Band l'3 Iles on the plane determmed by the position vectors of JOints Band C. In domg 

so. the coupler pOint can be easlly located ln the thlrd coordlnate frame and. through hnear 

transformations. expressed ln the flrst coordinate frame 

The rotation matnces specifymg the coordlnate transformations between each 

two coordinate frames are next defmed. For each two adjacent coordmate frames z' and 

i + 1. a matnx. QI' exists. whlch specIfies the rotation between them (Angeles. 1988). We 

can write thls relatlonshlp as follows 

19 
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z, 

Y, 

x, 

Figure 3.1 Coordinate Systems Assigned to the Spherical Four-Bar linkage 

Now. let il! jl and ~ denote the unit vectors parallel to coordinate axes XI' }~ and ZI' for 

z = 1,2,3. respectively. The matrix transforming coordinates from the second coordinate 

system to the first one. expressed in the first coordmate system. IS then defmed as 

h· il 
h . jl 
h· kt 

(3.4) 

al'ld the matrix transforming coordmates from the third coordinate system to the second 

one. expressed in the second coordinate system. IS defmed as: 

h· i2 
h·h 
h ·k2 

(3.5) 

For brevity. [Qtl1 and [Q2b will be written as QI and Q2' respectively. in what 

follows. Moreover. If [ph denotes the array containing the Cartesian coordinates of the 
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coupler point in the third coordinate system. then that contaming its coordinates in the 

first coordinate framE' can be written as' 

Obviously. Iph IS a functlon of both ~': and x For a glVen linkage. Iph will 

depend only on the mput angle 'l,As the mput angle d' varies wlthm Its moblltty range, 

the coupler curve IS generated So, eq (3.6) IS actually the equation of the coupler curve of 

a spherical four-bar linkage. 

3.3 Setting Up the Optimization Procedure 

From the coupler curve generated based on eq.(3.6), with the coupler point 

defmed as Po == Qo. we can always find a set of points {Pd! which lie the close st from 

the given set {Qdï1 The sum of the distances between the two sets {Pk}! and {Qdr is 

henceforth denoted as the Imkage error Moreover. In general. the dimensions of the linkage 

can be corrected so that the linkage error becomes smaller ThiS forms the baSIC idea in 

solvmg the optlmlzatlon problem at hand ln fact, the whole synthesis procedure conslsts 

of two layers of optlmlzatlOn Suppose we have deflned a functlon z(x. u') representmg the 

linkage error We Will flrst FIx the dimensions of the Imkage by setting x = xr and mlnimlze 

Its error over the mput angle. '!p. 1 e .. 

(3.7) 

which Will produce a set of input angles t/-'k' for k == 1,2, ... m. corresponding to the config­

urations under whlCh the coupler pOint lies closest to the given pOlOtS. For convenlence. the 

set {~)dlls grouped in an m-dimenslOnal vector 1V1 Next. the outer layer of optimization 

will be performed on the linkage error over x as follows: 

subject to 

min z(x, 11/;) 
x 

g(x) = 0 

(3.Ba) 

(3.8b) 

21 



G 

3 Problem Formulation 

where g(x) is a set of constraints to be defined in Chapter 4. A new x is then computed 

50 that the linkage error decreases. 

Thus. we can accumulate the above two optlmization layers and state the whole 

procedure as fo"ows' 

(3.ga) 

subject to 

g(x) = 0 (3.9b) 

Since we Will write z(x. t,+') ln quadratic form. eqs.(3.9a) and (39b) define a least-square 

optlmizatlon problem with equality constraints The two layers of optlmizatlOn mvolved will 

be treated separately. using dlfferent numerical schemes. the detalls of wh/ch are discussed 

ln the followrng chapters. 
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Chapter 4 Optimization Procedure 

4.1 Introduction 

ln this chapter. the optlmizatlon procedure for the synthesis problem is intro­

duced. As mentioned in the previous chapters. the whole procedure consists of two layers 

of optimizations and they are dealt wlth separately. In the inner layer. the objective function 

representing the linkage error is minimized over the input angle '1/-'. with linkage dimensions 

flxed for a glven Iteration of the outer layer of optlmization This reqUires the solution of 

a set of nonlmear equatlons. The output of thls is the set of input angles defining the 

linkage configurations under which the coupler pOint attalns the closest position from a 

given point The outer layer. on the other hand. mmlm.zes the linkage error over the design 

vector. x. which In~olves an iterative scheme The correction to x IS computed in each 

iteration so that the linkage error becomes smaller and smaller until the convergence cnte­

rion. as yet to be derived. is met The orthogonal-decomposition algorithm. as mtroduced 

in Chapter 2. is used to deal wlth this layer of optimization. Numerical techniques enhancing 

the convergence of the procedure. namely. dampmg and continuation. are introduced. as 

discussed ln detail in the next chapter. As the Jacobian matrix of the objective function 

plays a very Important role in the optimlzation. its evaluation is given special attention and 

is included in this chapter. 
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4.2 The Inner Optimization loop-Computation of the Input Angles 

{1/Jdr 

Glven the dimensions of a sphencal four-bar hnkage deflned by the design vector 

x at certain Iteration. alcng wlth the coupler pOint Po ln the Initial configuration. the set 

{'!L'dl is to be determmed 

Let the position vector of the kth glven point Cd k be qk and the assoclated 

closest traJectory point be Pk' whlch is to be found via angle 'I/.'k' Here. ail vectors are 

represented I~ the first coordlnate system For slmpllclty. the subscnpt 1 is dropped Thelr 

components are written as follows. 

qk = [~:] . (4.1 ) 

From eq.(3.6). we can write Pk in the followmg form: 

(4.2) 

Now. the error between P" and Qk. ek. associated wlth a given configuration 

k. is expressed as follows. * 

ek = pdtb) - qk = [:: = ~:l 
zk - Çk 

(4.3) 

and the Euclidean norm of the the error. dk . is defmed as the distance between pOints Pk 

and Qk Thus. 
~-------- ~ --- ------------- -- -

dk(l/:) = Ilek(l/J) 1: = Vi (Xk - ~k)2 + (Yk - 11k)~ + (Zk - Çk)2 (4.4) 

We now define function 'd't/J) as one half of the square of the Euclidean norm 

of the error. i.e .. 

(4.5) 

.. For brevity. the argument 1/J of xk' Yk and zk is omitted henceforth 
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Furthermore. considering the special geometry of spherical linkages defined on a unit sphere. 

eq.(4.5) can be rewritten as follows. 

The problem is thus reduced to mmimizing Dk (~,) over 'Ij' ln order for functlon 

Ddu') to reach a minimum, Its denvatlve wlth respect to the input angle 'li' must vantsh. i.e .. 

(4.7) 

Upon substitution of eq.(4.2) into eq.(4.7) and noticing that only Q2 is a func­

tion of '1)'. we obtain the followmg equation' 

k = 1, 2, ... ,m (4.8) 

Equation (4.8) is called the configuration normality condition. It consists of m 

equations for k = 1,2. .., m. Their roots will give the set {wdr, ln other words. the m 

equatlons ln eq.(4.8) define V'k. for 1 = 1, 2, .. , m. In order to solve these equatlons for 

t/Jk. various methods can be employed Among them. the secant method (Forsythe. Mal­

colm and Moler. 1977) 15 more conventent for this case. slnce hkh~') IS not reqUired in 

this method However. sometlmes the roots may lie very close to dead points of the cou­

pler traJectory and the secant method Will fail to solve the problem The golden section 

search method (Brent. 1973) Will take over in thls case. as dlscussed ln detail in (Ma and 

Angeles. 1987) 

4.3 The Outer Optimization Loop-Evaluating the Linkage 

Parameters 

With the set {t;Jd r found for a given design veclor xr. a new vector xr+l 

is sought so that the linkage error will decrease. The said procedure is performed itHa­

tively: each time. a better x is found. until no further improvement is possible. 
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Now we define two 3m dimensional vectors p and q as follows: 

(4.9) 

(4.10) 

The linkage error is therefore expressed as. 

f(x) = p - q (4.11 ) 

and the performance index of the optlmizatlon problem is next defmed as. 

z(x) = ~ f(x) TWf(x) (4.12) 

where W is a positive-defmlte constant weightmg matrix that accounts for normahzatlon 

and allows the assignment of different relevance to each trajectory point. For example. if 

W is chosen as 
1 

W = --1 
3m 

(4.13) 

where l IS the 3m y 3m identity matnx. then z(x) in eq.(4.12) represents the RMS value 

of the position errors of ail the glven pOints 

5lnce the components of the design vector x are not mdependent. as discussed 

in Chapter 3. geometnc constraints have to be imposed on them for completing the optl­

mlzation problem. Equations (3.30-d) are used for thls pur pose. The constraint functlon 

is hence wrttten as follows 

(4.14) 

Up to now. the optimization problem is fully defined by eqs.(411)-(4.14). No­

tice th~t the number of unknowns in these equations is 12 + 3m. namely. the Carteslan . 
coordinai\~s of the four joints of the linkage grouped in the design vector x and the Carte­

sian coordi'lates of the m points corresponding to the set {tPk}i and grouped in vector 
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p. However. only two components of the Cartesian coordinate of the point on the surface 

of the sphere are mdependent. and hence. the total number of inde pendent unknowns in 

these equations IS 12 + 3m - 4 - m = 8 + 2m. Moreover. if we improve the condition that 

the linkage error f(x). as defmed ln eq.(411). vanish. then we establlsh 3m equations. If 

the number of Independent unknowns is to equal the number of equatlons. then the system 

can be solved exactly Thus. If 8 + 2m = 3m. we have ni = B. which means that up to 9 

positions can be met wlth zero error under this formulation If 111 > 9. an overdetermined 

system arises and no exact solutions eXlst Hence. optimlzatlon methods are adopted to 

fmd the approxlmate solutions to the problem 

The orthogonal-decomposltlon algorithm. as briefly outlined in Chapter 2. is 

employed to solve the foregotng optlmlzation problem. To th,s end. we start from a glven 

.. 1 0 d h 1 2 k k+ 1 Initia guess x . an t e sequence x , x , , ... x ,x , .. is then generated as: 

(4.15) 

where the increment llxk is computed in each iteration as the solution of the following 

constrained linear least-square optimization problem. 

(4.16) 

subject to 

(4.17) 

with é defined as 

(4.18) 

and Fk and GIc represent the Jacobian matrices F and G of functions f and g. with respect 

to x. evaluated at x = xk. 

The foregoing scheme is repeated until the following convergence criterion. dis­

cussed in detail in (Angeles. Anderson and Gosselin. 1987). is met at the solution: 

(4.19) 
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where € is a prescribed tolerance. 

T 0 stabilize the above numerical procedure and ensure a fast convergence rate. 

damping techniques are used in every iteratlon step Continuation is also introduced to 

guarantee Its convergence The details of these techniques are dlscussed ln Chapter 5. 

4.4 The Jacobian Evaluation 

ln using the orthogonal-decomposition algorithm. the computatIOn of the Jaco­

bian matrices of both functions f(x) and g(x) are required. Let these matrices be denoted 

by F(x) and G(x). 

From eq. (4.11). we have 

(4.20) 

Moreover. from eqs (3.6) and (4.9). vector p can be written in the following 

form: 

[ 

[plh 1 [p2h 
P= 

(Pmh 

(4.21 ) 

Differentiating both sides of eq.(4.21) with respect to x. the following is ob-

tained: 

(4.22) 

8ased on eq.(3.6). the kth submatrix in eq.(4.22) is written as 

d(Pkh = [dQ
l Q (p) + Q dQ2 [pl + Q Q, d[ph] 

d" d" 2 3 1 dx 3 1 l dx l/J=tPk 
(4.23) 
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Now. it is clear that QI is a function of x and al: Q2 is a function of 

Qb a2' 03, 04. t/-, and 4>: and [ph is a function of only a5 and 0:6' Here. in order to en­

hance the numencal stablllty of the problem. instead of using angles Qz. for i = 1,2, ... ,7. 

their sine and cosme functions are used ln computing the right hand side of eq.(4.23). 

Hence. the three denvatlves in eq.(4.23) are computed as follows: 

dQl BQ1 BQl dq BQI ds! -- = --- + --- --- + --
dx dX dct dx aSI dx 

4 
dQ2 = L (a~ de! + aQ2 dst_) + aQ2 d'IjJ + .9Q2 d~ 
dx dC! dx asz dx a'tj; dx a</J dx 

1=1 
6 

d(ph = ,( a[ph dC1 + B(ph ds z ) 
dx L- ac! dx Bs~ dx 

~=5 

where c~ == cosat and SI = sinaz• for t = 1,2, ... 7. 

(4.24) 

(4.25) 

(4.26) 

From the geometry of the general spherical four-bar linkage. we can readily 

express the sine and cosine functions of the 0 angles in terms of the dot and cross prod­

ucts of the pOSition vectors of two adjacent jOints. thereby enabling the computation of 

dCzldx and dS 1 idx ln computmg d'l/,/dx and drP/dx. we resort to both the normality 

condition. eq.(48). and the mput-output function. eq (2.1). which can be written in the 

followmg forms' 

(4.27) 

(4.28) 

Differentlating both sides of eqs.(4.27) and (4.28) with respect to x. the follow­

ing, is obtained: 

(4.29) 

(4.30) 
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Next. eqs.(4.29) and (4.30) are written in matrix form as 

where 

and 

àh 
aIl = àt/--' 

with t defined as the 12 )< 12 identlty matrix 

From eq.(4.31). we obtam 

[
d'I/J/dX

] 

d4>/dx 

which yields 

dtjJ G22 b l - Q12b2 

dx all a22 - ana2I 

4. Optimization Procedure 

(4.31 ) 

(4.32) 

(4.33a) 

(4.33b) 

(4.35) 

(4.36a) 

(4.36b) 

The detailed procedure of the above computations. as weil as the computation 

cor,cerning the Jacoblan matrix of the constramt function. G(x) = dg(x) / dx. are mcluded 

in Appendices C and 0 
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Chapter 5 Convergence Enhancement 

5.1 Introduction 

As pointed out in Chapter 2. various numerical schemes have been devised ta 

solve least-square optlmlzatlon problems wlth equality constramts. In thls thesis. a newly­

developed scheme. the orthogonal-decomposltion algorithm. is employed. Nonlinear least­

square optimlzation problems wlth equality constramts can be solved very efficiently wlth 

the orthogonal-decompos Ition algonthm Moreover. the algorithm converges very fast if the 

Jacobian matrices of both the objective functlOn and constralnt function are well-conditioned 

and the initiai guess IS reasonably close to the solution However. the said Jacobian matrices 

can sometlmes become ill-condltioned. which will lead ta divergence. This is a situation ta 

be taken into account. Here. to measure the condltlonlng of these Jacoblan matrices. the 

concept of condition number of a rnatnx is recalled (Golub and Van Loan. 1983). which 

measures the amplification of the roundoff error in solvmg a system of linear equations 

assoclated with that matrix. A well-conditioned matrix has a small condition number close 

to 1. If the condition number of the Jacobian matrix is high with respect to the roundoff 

error of the data. convergence will not be achleved unless sUitable numencal means are 

used. In our case. the techniques of damping and continuation are applied. Dampmg IS 

performed withm each Iteration by reduclng the computed correction by a certain amount 

50 that the procedure IS stablized and attams a hlgh convergence rate. Continuation. on 

the other hand. is used if an Initial guess Iying reasonably close to the solution is difficult 
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to estimate. It is applied to the whole procedure in such a way that the final solution is 

obtained step by step along a certain path from an initial guess. quite arbitrary With these 

techniques added. the problem is solved safely No doubt. these techniques are essential to 

the success of the aforementloned method. as will be discussed m this chapter. 

5.2 Oamping Techniques 

Sometimes in the optimization procedure. the condition number of the Jacobian 

matrix of the objective function may become relatlvely hlgh at certain Îteratl0ns. This IS the 

case when sorne of the jomt centres move too far away from the surface of the sphere after 

the correction in certain iteratlon. or sorne 'Il'k values defme a configuration close to a de ad 

point. If this happens. the roundoff error becomes madmlsslbly large and the computed 

correction to the design vector. 6x. is meanlngless This may lead to the violatIon of the 

constraints and sorne of the joints may go further apart from the surface of the unit sphere 

m the followmg Iterations The procedure will ftnally diverge. Means to cope with this 

problem rel y on damping techniques. which have been proved to be a useful tool (DahlqUist 

and 8Jorck 1974: Angeles. 1982). We flrst reduce the correction to a certain amount to make 

the procedure stable. and then go to the next Iteration This IS achieved as follows. Instead 

of using eq.(4 15} directly. we use the following. 

xk+l = xk + d6xk (5.1) 

where d is a scalar between 0 and 1. called the dampmg factor. which serves to reduce 

the magnitude of l::t.xk. When one damping is not enough to stablrze the procedure. further 

dampmgs are performed until convergence IS achlP'Jed USlng damping techniques here 

becomes essential m the optimizatlon procedure. Indeed. it keeps the procedure more stable 

and maintains a higher convergence rate. However. if the condition number of the Jacobian 

matrix becomes very high. damping will fail to work. In th.s case. the mIt lai guess has to 

be re·selected. To prevent the Joints from gorng too far from the surface of the sphere. we 

also in :Iude a normahzatlon step ln each iteratlon to keep the magnrtude of the pOSition 

vectors cf joint centres close to 1: we found that thls proviSion enhances the convergence of 
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the procedure. Of course. the value of the damping coefficient is problem dependent. When 

the convergence behavlour is not so favourable. the damping value need to be changed. 

slnce the procedure 15 very sensitive to Il. We can always achieve a fastest convergent 

rate. or a minimum number of Iterations for obtaining a solution. with a proper choice of 

this value However. there are no general rules for obtalnlng thls value ln many cases. it is 

found through triai and error 

ln addition to a well-condltlOned Jacobian matrix. an Initiai guess Iyeng reason­

ably close to the solution IS also Important for the problem ta converge Smce. in general. an 

initial guess close to the solution IS not available. a technique called contmuation 15 mtro­

duced. the detalls of whlch are dlscussed ln the next section 

5.3 Continuation 

Due to the difhculty ln locatlng a suitable initial guess which lies close enough 

to the solution. continuation is necessary. Continuation IS a powerful means to guide an 

initial guess step by step ta the fmal solution. as has been wldely recogmzed in numencal 

computations (Wasserstrom. 1973. Avila. 1974. Richter and DeCario. 1983). It works for 

problems whose solutions are cont:nuous functlons of the parameters of the problem. In 

our case. we propose the tollowing scheme: 

For the given set {Qd1. we flrst choose an arbitrary initiai guess xO under 

whlch. together wlth the coupler pOint. Po =- Qo. a coupler curve is generated on the 

surface of the sphere. and the correspond mg trajectory points {Pk }1' Iying the closest 

to the relevant pOints in the glven set {Qd1. are found Now. we connect points Qk 

and Pk' for k = 1. 2 .. " m. wlth a major circular arc and compute the points Rb, for 

l = 1.2, ,1. whlch dlvlde the arc mto 1 parts. as shawn ln Fig. 5.1. Then. we start 

the numerlcal procedure from the current mlt.al guess with {Rkdt defmed as the glven 

points Sence pOints {Rkd 1 are very close to the corresponding points in the coupler 

curve associated with the initial linkage. if we choose 1 large enough-say 1 = 5-the 
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procedure will converge to a solution. Then. using this solution as the initial guess of the 

next continuation step. we repeat the procedure and it will soon reach the next solution 

associated with the set {Rk2} l' ln this way. the procedure goes from one continuation 

step to the next one. until the original set {Qk}r is met. 

z, 

Y, 

Figure 5.1 Continuation Scheme 

For simpliclty. we divide the arc into equal parts and use the following scheme 

to compute the dividing pOints: First. a new coordlnate system labeleJ K. with origin at 

O. is assigned to describe each arc connecting Pk and Q k. for k = 1,2, ... ,m. as shown in 

Fig. 5.1. The Xk axis passes through Pk' wherea's the Yk axis lies on the plane determined 

by peints Pk, Qk and O. Hence. in the K coordinate system. the arc connecting Pk and 

Q k beèomes a part of the following circle: 
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where 

If rkt denotes the position vector of Rb, we have 

k = 1,2, .. , m 

i=1,2, ... ,/ 

(J,,: = cOS-
1(Pk . qk) 

fl(J/r = (J1c 
1 

5 Convergence Enhancement 

(5.2) 

(5.3) 

(5.4) 

To obtaln an expression for r k1 ln the hrst coordinate system. in which Pk and 

qk are deftned. the rotation matrix R, which transforms coordlnates from the K coordinate 

system to the flrst coordmate system. IS next computed. 

where 

and hence, we have 

R = [Pb e, f] 

f = Pk x qk 

l'Pk x qk 1: 

e = f x Pk 

thereby completing the computation of the dlviding points. 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

The number of dlviding points depend on the problem and the initial guess. It is 

always advisable to adJust the mit lai guess to make this number smaller, since involvmg too 

man y continuation steps will lead to a computational procedure unnecessarily expensive 
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Chapter 6 Examples 

8ased on the optimization scheme described in prevlOus chapters. a general 

Fortran77 computer package. SPHER1. was developed. along wlth graphies software for 

visuahzing the spherical four-bar Imkage in a 3-D representatlon on Unix-based worksta­

tlons. Several examples regardmg t' ,e design of sphencal four-bar mechanlsms were solved 

with S PHERl and thelr results are reported ln this chapter ln solvlng practical problems 

with the aid of thls package. the flrst step is to glve a proper description of the prob­

lem in the context of synthesis of spherical four-bar path generators That IS. defme the 

set of given trajectory pOints accordlng to the problem and represent the linkage wlth the 

Cartesian coordmates of ItS four jOints ln a certain coordinate system Then. wlth the help 

of the graphies facillty. choose a sUitable initiai guess to start the numencal computation 

and. at the sa me tlme. plan the contmuatlon procedure for the problem Havmg do ne ail 

t"IS. the problem can be solved satisfactonly Followmg the steps mentioned above. four 

design problems are solved. the results of which are presented next 

6.1 A Circular-Path-Tracking Spherical Four-Bar linkage 

This ;S oTlgmally a tr;al problem for testing the computer package Actually. it 

is not \necessary to use a four-bar linkage to trace a circular path. smce a smgle Imk will 

do. The ~purposes of Introducmg thls example is to outlme the optimlzatlOn procedure with 

a real proL.lem and to discuss an interestmg result. The circular path used in thl5 example 
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Figure 6.1a Points Selected from the Circular Path 

is defined by the following two surfaces: 

x2 + l + i = 1 

x + y + z = 4V3/5 

6 Examples 

where the circle has a radius of 0.8. Eleven points are selected from the circle as the given 

points. their coordinates being given as follows (Fig. 6.1a): 

Qo (0.1, 0.1, 0.989949), 

Ql (0.7, 0.7, 0.141421), 

Q2 (0.393329, 0.892081, 0.222449), 

Q3 (0.0892059, 0.892081, 0.434581), 

Q4 (-0.096204, 0.710749, 0.696790), 

Qs (-0.092081, 0.406671, 0.908922), 
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Q6 (0.406671, -0,092081, 0,908922), 

Q7 (0.710794, -0.096204, 0.696790), 

Qs (0.896204, 0.0892059. 0.434581). 

Qf) (0.892081. 0393320, 0.222449). 

QlO (0.827015. 0.536801, 0.167001) 

where the coupler pOint ln its inItIai confIguratIon IS Po :=. Qo Next. the initial guess is 

chosen Here. to avoid Involving too many continuatIon steps in the procedure. an mitial 

guess Iying reasonably close to the solutIon IS destred This is achieved by trial and error 

with the help of the graphics facihty Different linkages were tned and adJusted untt! the one 

with the coupler curve comparatlvely close to the given pOints IS found. In this example. a 

suitable mitlal guess found m thl~ way IS glven as follows (FIg 61b) 

aO :::; [0.5491. 0 3936. 0.7373]T 

bO :::; [0.3186. 0.0216, 0.99476r 

co:::; [0.047, 0.4288, 0.9022f 

dO :::; [0.404, 0.56, 0.7237]T 

A three-step contmuatlon scheme is used for the ex ample to ensure convergence The 

solutions at the end of each continuation step are shown ln Figs (6 lc) and (6 Id) 

The optImum linkage obtatned IS defined by the followlng posItIon vectol's of 

joint centres (FIg. 6.1e) 

a = [0.539957, 0.561799, 0.626760f 

b = [0.305536, 0.00317, 0.952175]T 

c = (0.09804. 0.416301, 0.903924]T 

d = (0.516004, 0.534261, 0.669556f 

Here the average number of iteratlons withtn each continuation step is around 15. the final 

solution containing a linkage error of the arder of 10-4 . 

The mteresting issue here is that. in the solution. joints A and D lie very close 

to each o~her. It is also found that. if we impose an even smaller tolerance on the procedure 
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Y, 

Figure 6.1b Initial Guess 

Z, 

Figure 6.1c Solution at the End of the First Continuation Step 

c 
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z, 

p 

Figure 6.1d Solution at the End of the Second Continuation Step 

z, 

Figure 6.1e Final Solution 
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and allow more iterations. A and D will become closer and closer. In the limit. they meet 

at one point. namely. the centre of the circle. Then. the length of the fixed link vanishes 

and the four-bar linkage collapses ;nto one single rigid-body which rotates about an axis 

passing through the centre of the clrcle This is reasonable. since this IS a case in whlCh 

the given pOints are met exactly by merely rotating a single rigld-body about a flxed axis. 

as pointed out at the begmnlng of the example 

6.2 The Design of Solar-Tracking Mechanisms 

6.2.1 A Spherical Mechanism Tracing a Solar Path on the Summer Solstice 

The celestial sphere can be consldered centred at a pOint 0 on the surface of 

the earth. As the sun traverses the celestial sphere from sunrise ta sunset. it describes a 

trajcctory whlCh can be proJected onto a Unit sphere centred at 0. For a spherical mechanism 

on the surface of the earth. the centre of Its sphere can be considered ta be at 0 as weil. 

Our design of the solar-trackmg mechanism takes place on the unit sphere. 

The solar path is generated by usmg the following equations (Iqbal. 1983): 

sin () = sin 'P sm b + cos cp cos {; cos w 

sin () ~in cp - sin b 
cos 1 = -----­

cos 0 cos 'P 

. cos8 sm w 
sm 1 = () cos 

(6.1) 

(6.2) 

(6.3) 

where: 0 is the solar altitude angle: Î is the solar azimuth angle: 'P is the latitude of point 0 

on the earth: b is the declination. and w is the hour angle. which at noon is zero and in the 

morning. positive The solar path used in this example IS based on Montreal (latitude of 

45° north) on the day of the summer solstice (8 = 23.5°). The original data obtained from 

the above equations are expressed in latitude and aZlmuth angles in a spherical coordinate 
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system. Here. to fit our method. they are transformed into a Cartesian coordinate system 

defined as follows' The Xl axis is directed to the south: the YI axis is directed to the east 

and the ZI axis is directed to the Zenith. Fourteen points are selected from the solar path 

as shown ln Fig. 6.2a. starting trom 8:30 a.m and ending at 3:00 p.m for every ha If an 

hour. 

Zenith 

South 

Xl 

o 

Figure 6.2a Points Selected from the Solar Path of Summer Solstice 

One point. namely. the point which represents the solar position at noon. is 

chosen as the coupler point in its initial configuration. i.e .. Po == Qo. and the remaining 

points form the given set. {Qk}}3. They are given by the following coordinates: 

Qo (0.366501, 0, 0.930418), 

QI (0.112799, 0.727553, 0.676715), 

Q2 (0.176518, 0.648459, 0.740488), 

Q3 (0.232499, 0.558271, 0.796416), 

Q4 (0.279624, 0.458530, 0.843541), 
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Q5 (0.317140, 0.350'944, 0.881057), 

Q6 (0.344406, 0.237353, 0.908322), 

Q7 (0.360954, 0.1197'01, 0.924870). 

Q8 (0.360954, - 0.119701. 0.924870), 

Qg (0.344406, -0.237353, 0.908322), 

QlO (0.317140, - 0.350944, 0.881057), 

Qu (0.279624, -0458S30, 0.843541), 

Q12 (0.232499, -0558271. 0.796416), 

Q13 (0.176518, -0.648459, 0 ?~\i48B) 

The initIai guess is cho!:é!n next in the sa me way as we did in the last exam-

pie. We then have the following (Fig. 6.2b): 

aD = [-0.75, 0.23, 0.62f 

bD = [0.13, 0.33, Q,935fT 

cO = [0.1, -0.42, 0.902]T 

dO = [-0.68. -0.12, 0.7233JT 

To ensure the procedure to converge to a solution. a three-step continuation 

~~heme is used. under whi,h the procedure converges satisfactorily with an average of 

about 30 iteratlons per continuation step. Shown ln Flgs (6.2c) and (6.2d) are the solutions 

at the end of each continuatIon step The linkage error at the final solution waf found to 

be the order of 10 - 3. The position vectors of the four JOInts of the optimum linkage are 

(FIg. 62e): 
a = [-0.751365, 0.027818, 0.65929.I3]T 

b = [0.135741, 0.332738, 0.933199f 

c = [0.095161, --0.408915, 0.907597]T 

d = [-0.685186, -0.072465, 0,724754f 
and the Q angles are hence given as follows: 

Ql = 8°. Q2 = 58.5°, Q3 = 43.6°, Q4 = 51.50 

Q5 = 23.4 C , Q6 = 38.3° , Q7 = 28.4° 
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Figure 6.2b Initial Guess 

r--------------------------------------------------------------~ 

Figure 6.2c Solution at the End of the First Continuation Step 
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Figure 6.2d Solution at the End of the Second Continuation Step 
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XI 

Figure 6.2e Final Solution 
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6.2.2 A Spherical Mechanism Tracing a Solar Path on the Winter Solstice 

Again. we use eqs.(6 1 )-(6.3) to compute the soJar path in Montreal wlth fi = 

- 23.5". for the wmter solstice The data used m thls example are selected from the solar 

path. also startlng from 8.30 a m and ending at 3'00 p.m for every half an hour. the 

coordinates of the set {Q d~3 bemg as follows (Fig 6 3a) 

Qo (0.930418. O. 0.366501). 

Q1 (0.676715, 0.727553. 0.112799). 

Q2 (0.740488. 0.648459. 0.176518). 

Q3 (0.796416. 0.558271. 0.232499). 

Q4 (0.843541. 0.458530. 0.279624). 

Q5 (0.881057. 0.350944. 0.317140). 

Q6 (0.908322. 0.237353. 0.344406), 

Q7 (0.924870. 0.119701. 0.360954). 

Q8 (0.924870. -0.119701, 0.360954). 

Qg (0.908322. 0.237353. 0.344406). 

QlO (0.881057. -0.350944. 0.317140). 

Qll (0.843541. - 0 458530, 0.279624). 

Q12 (0.796416. 0.558271. 0.232499). 

Q13 (0.740488. - 0.648459. 0.176518) 

where Po := Qo. the solar position at noon. is the coupler pOint m ItS initiai configuration. 

" sUltable initiai guess was obtamed and IS glven as follows (Fig. 6.3b). 

aO = [0.62. 0.23, --0.75f 

bO = [0.935, 0.33, 0.13JT 

ca = [0.902, -0.42. 0.1]T 

da = [0.7233, 0.12. - 0.68f 
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Figure 6.3a Points Selecled from the Solar Path of Winter Solstice 

1 

i 
~------------------------------------------------------~ 

Figure 6.3b Initial Guess 
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Figure 6.3c Final Solution 

With a three-step contmuatlon simllar to the one in the last example. the solu­

tion to the problem IS readily obtamed as follows (Fig. 63e). 

El = (0.659294. 0.027820. -0.751364f 

b = (0.933195. 0.332741. 0.135757f 

c = (0.907591. -0.408922, 0.095191jT 

d = (0.724764. -0.072462. -0.685176I T 

at whieh the hnkage error was found to be the order of 10- 3 Then. we have the dimensions 

of the optimal linkage as follows 

01 = 8c
• 02 = 58.6c

, 03 = 43.6°, 0:4 = 51.5° 

05 = 23.4'>, QG = 38.30
, 07 = 28.4° 

Obviously. the dimensions-the ° angles-of this linkage are identical to those 

of the optimum linkage obtained in last example. The reason for thls IS clear if we notice 

the fact' that every Q Ir point of the solar path in the summer solstice and Ils counterpart ln 

the winter solstice are related in such a way that their x and z coordinates are exchanged. 
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while their y coordinate remains the same. In other words. one trajectory can be obtained 

from other by a simple IInear transformation The matrix representing the transformation 

is. in facto the followmg' 

Q.<u' = [~ ~ ~] 
100 

which is clearly a reflectlon about the plane .r + z = D. It IS easy to see that the solutions 

of a, b. c and d m these two examples also bear thls relatlOnship. Therefore. the angles 

between each two Jomt vectors are preserved. which is just a consequence of the fact 

that one set 15 il reflectlon of the other ThiS can be a useful conclusion 10 the design of 

solar-trackmg mechamsms 

6.3 A Four-Bar Geneva- Wheel Oriving Mechanism 

A Geneva mechanism IS a very common means of producing mtermlttent mo­

tion. Sometlmes It IS drlven by a four-bar linkage instead of a crank for reducmg the inertia 

force and t/1e consequent wear on the sldes of the slot. slnce a jump ln acceleratlon occurs 

upon engagement and dlsengagemem (Shlgley. 1959. Pazouki and Rees Jones, 1982) ln 

using a four-bar linkage as the driver. the traJectory traced by the pm whlch is placed at 

the coupler pomt of the linkage can be carefully planned to fit the smoothness reqUlre­

ments 10 the wheel motion. thereby ellmmatmg the problem of Jerk dlscontlnUitles (DIJks­

man, 1966) The linkage IS then deslgned as a sphencal four-bar path generator. based on 

the reqUired coupler curve ln thl5 example. a sphencal four-bar linkage to drive a four-sloted 

spherrcal Geneva mechanlsm (Fig 64) IS to be designed The acceleratlon of the Geneva 

wheel 15 reqUired to follow a sine functlon. the engagement and disengagement pOints of 

the pm located at 0 and 271, respectlvely. 50 that the jumps in acceleratlon at these two 

pomts are ellmmated 

Flrst of ail. the traJectory to be followed by the pm under the above reqwements 

is determined We set up a 5pherical coordmate system and assume that the pm moves on 

49 



1 
1 

+-

\ 
\ , 

\ 
\ 

\ , 
" ." .-

/ 

1 
/ 

1 
/ 

/ 

'" '" 

\ , , 
\ , 

1 
1 

/ 
/ 

\ 

, 
1 
1 

1 

Figure 6.4 Spherical Geneva Wheel Driven by A Fout·Bar linkage 
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a Unit sphere The motion of the pm can then be deflned by the following two coordmates 

the angular dis placement of the Genava wheel. O. and the relative dlsplacement of the pin 

with respect to the wheel. Î' as show,.. m Fig 6 4 The equatlons of motion () = fJ( t) and 

') = 1(t) are next determmed As reqwed, we write 0 as 

o = Cl sin(2Tt ~ ) 
to 

(6.4) 

where Clis a constant to be determlned from the problem's conditIOns, to IS the tlme 

spanned from engagement untll dlsengagement The angular veloclty and dis placement of 

the wheel are thus derlved as 

J" to t o = Odt = -Cl -2 cos(27i - ) + C2 
Tt to 

(6.5) 

J 
. t 2 t 

o = Ddt = -Cl ~ sin(211"-) + C2 t + C3 
471" to 

(6.6) 

with the followmg boundary conditions' 

for t = 0, 8 = 0, 8 = 0: 

for t = to, 
71" 

0=2' 9= O. 
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Hence we obtam 

(6.7) 

Upon substitution of eq (6 7) mto eq (66). we have 

1 . ( ) r. B = -4 sm 27iï +"2 T (6.8) 

where ï == t 'to. represents the normallzed tlme We have then 0 :S T S 1. Equation(6.8) 

thus defmes the motion of the wheel Glven ln (F tg 6.5a) is the plot of 0 vs T. 

9(rad ) 

16r-~--~--~~--~~---r--r-~--ï 

14 

12 

08 

06 

04 

02 

o~--~~--~~--~~--~--~~--~ T 

o 01 02 Ol 04 05 06 07 011 09 

Figure 6.5a Plot!: of" vs normallzed tlme 

5mce no partlcular reqUirements are Imposed on the relative motIon of the pin 

with respect to the wheel. l' it may be arbltrary as long as it does not exceed the length of 

each slot and attains the same values upon both engagement and dlsengagement ln our 

case. 1 is chosen as 

Î = -1.5T2 + 1.5T + C (6.9) 

where constant C depends on the length of the slots. For this example. C = 53.13° = 
0.9273 rad The Î vs r plot is given in Fig 6 Sb. 
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"Y(rad) 

I.J5r--~---'--Y----.---r-~-...--~-""'---""" 

09~~~--~~--~~--~~--~~ T 

o 01 02 03 04 05 06 07 011 09 

Figure 6.5b Plot of ') vs normahzed time 

From eqs (68) and (6.9). the coupier traJectory IS computed After transformmg 

it into Cartesfan coordinates. the following are selected as the glven trajectory points 

(Fig 6.6a) 

Qo (0.1875895, 0.1875895, 0.9641682), 

Ql (0.6. O. 0.8). 

Q] (0.5082041, 0.0026555, 0.8612326). 

Q3 (0.4090282. 00231497, 0.9122280). 

Q4 (0.3282382. 0.0645749. 0.9423851). 

Qs (0.2605160, 0.1181456. 0.9582135). 

QG (0.1181456, 0.2605160, 0.9582135). 

Q7 (0.0645749, 0.3282382, 0.9423851), 

Qa (0.0231497, 0.4090282, 0.9122280). 

Q9 (0.0026555, 0.5082041, 0.8612326). 

Ql0 (0, 0.6. 0.8) 

of which Po == Qo is the coupler point in the initial configuration. The optimization starts 
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Figure 6.6a Points Selected trom the Trajectory tollowed by the Pin 

from the followlng initial guess (Fig 6.6b)· 

aD = [0.69, 0.59, 0.4192]T, 

bD = [0.52. 0.2. 0.83042f. 

cO = 10.2. 0.52. O.83042f. 

dO = /0.59. 0.69. 04192]T 

6 Examples 

Agam. a three-step continuation IS apphed to the procedure. whlch ylelds the optimum 

linkage (Fig 6.6c). The position vectors of the four JOint-centre of the linkage are glven as: 

a = (0.63081. 0.47113, 0.61653f. 

b = 10.46102. 0.18003. 0.86894)T. 

c = (0.18101, 0.45984. 0.86936]T. 

d = (047052. 0.63101, 0.61680]T 

the linkage error being of the order of 10-3. Here. the average number of Iterations within 

each continuation step is around 35. For the solution found. the dirensions of the linkage 
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6 Examples 

o ZI 

YI 

Figure 6.6b Initial Guess 

ZI 

YI 

Figure 6.6c Final Solution 
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are computed as' 

03 :: 22.83' . 

as :: 36.76'. 06 :: 47.29=. a7:: 36.74: 

8(rad) 
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,. 
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Destrtd output 

Actualoutput 

o~--~~--~--~--~~--~-----~--~~ 
o 01 02 03 04 O~ 06 07 08 Og 

6 Examples 

; 

Figure 6.7 The Actual Output in Wheel Motion Compared with the Deslred Output 

It IS apparent that the optimum linkage IS symmetric to the plane l + Y = 
O. whlch IS not surprtsmg because the glven pomts. as weil as the initiai linkage. are both 

symmetnc wlth respect to the same plane 

Now. from Fig. 6.7. we can look at the error ln the motIon of the wheel when 

it is drlven by the four-bar linkage obtained above. We can see that the two curves meet 

upon engagement and disengagement. 1 e .. at T = 0 and T = 1. which means that zero 

accelerations are achieved at these two pOints. Also to be noticed is the fact that the two 

curves mtersect at r = 0.5. whlch actually corresponds to the case that the coupler point 

passes through QO' the point belng met exactly 
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Chapter 7 Concluding Remarks 

ln summary. a constrained least-square optimization scheme was developed to 

deal with the problems of synthesis of spherical four-bar path generators. The problem 

is formulated as two-Iayer optimization procedures. in which the linkage parameters and 

the configuration variables. namely. a certain set of input angles. are evaluated separa tel y 

in each layer Since no upper bound of given points IS imposed on the formulation. the 

method can handle the synthesis problem subject to any number of given points on the 

surface of the sphere on which the four-bar linkage is defined. as long as this number is 

greater than nme. Thus. the method aims at solving the approximate synthesls problem 

of path generation. The orthogonal-decompositlon algorithm was employed here. which 

allowed us to obtain the solution iteratively from an initial guess ln order to use the said 

numencal scheme. the computation of the Jdcoblan matrix associated with the objective 

function becomes a major task and has been discussed fully ln Chapter 4. The behaviour 

of the Jacobian matrix. which affects the convergence of the procedure. is assessed by 

resorting to the concept of condition number. Damping techniques are used to stabilize the 

iterative procedure and speed up Its convergence rate. Moreover. as an important step to 

ensure the procedure to converge to a solution. continuation is applied. A general computer 

package. SPHER1. was developed for the whole optimization scheme. Numerical examples 

concerning the deSign of spherical mechani'.n·,s were introduced and solved in Chapter 6. 

The results show that the method is efficient for the optlmization of sphencal four-bar path 

generators. 



--- --~---~~~-- .. ~-- --

1 Concluding Remarks 

Here. a few remarks are added in concluding the thesis: 

1. The optimlzatlon sch(:me presented here deals with problems in which only the 

glven traJectory pOints are specifled For solvmg problems which have special 

rqtllrements. t'le method has to be modifled correspondingly in the formulation 

For exampi0. ;.1 sorne practical problems. certain IInk lengths or positIOns of 

certain jomts need to be speCified ln thls case. we can slmply Include them m 

the constralnt functlon g(x) and compute Its Jacoblan G(x) accordmgly By the 

same token. the coordmation between the glven pOints and the mput angles can 

be incorporated. dlthough th,~ case IS still under devclopment 

2 Obvlously. the sol'j~.vll Jbtalned by uSlng the proposed scheme produces a local 

minimum The solution depends on the nature of the problem and the initial 

guess chosen. It IS possible that. for the same problem. different mitlal gues ses 

lead to dlfTerent solutions. whlch correspond to different linkage errors This 

may be the base for fmdlng the global minima. whereas how to obtam the global 

minima IS still a tOplC of further research 50 far. no research has been reported 

ln the IIterature on path-generatmg linkage dealmg wlth the computation of the 

global minimum. 

3 From the examplec; m Chapter 6. it IS clear that the optrmum Imkage reflects 

some charactenstlcs of the set of given points. In section 6.3. for example. the 

property of symmetry ln the given pomts leads to the same property ln the 

optimal linkage obtamed. the transformation relationshlP ln the glven sets of 

the two examples ln section 6 2 also appears in the final solution. Ali these 

facts suggest the eXlst ~ 1ce of similanty in the synthesis procedure. which makes 

sense both geometncally and logically Actually. this is a fact we can exploit in 

choslng the initiai gues~. judgmg the correctness of the solutions. or extendlng 

results from a known solution 

4. When m is given exactly as nine. which is the case allowing for exact synthe-
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sis. the procedure. which is heavlly dependent on the orthogonal-decomposition 

algorithm. can still be used. However. in thls case. the system of nonlinear 

equations arising from the zeroing of the error become stiff and convergence is 

very difflcult to achleve. 

On the whole. the optlmlzatlon scheme solved the synthesis problems of spher­

ical four-bar path generators efflclently. as shown in the thesÎs The formulation has no 

strict limitation on the type of linkages or the nature of the synthesls problems to be 

solved For the other synthesls problems 10 the realm of sphencal linkages. such as rlgld­

body gUidance. we can defme a linkage error for the speclflc case and fmd a correspond mg 

normality condition as ln eq (4.8) and then apr1y the optlmlzatlon scheme Even for other 

types of hnkages. the above Idea can be still applled. whereas the computatlonal procedure 

of Jacoblan matrices has to be reorganlzed ta meet the special case. whlch mlght be a 

major task The author found that the computation of the Jacoblan matnx of the objective 

function IS a painful process. while It IS essential for the success of the whole optlmizatlon 

scheme It i5 deslred that the sa Id computatIOn be slmphfled or replaced wlth an easler 

equivalence However. how to achleve thls remalns unsolved and 15 left for future research 

Finally. a few words on the new cntenon of mobliity analysis for sphencal four­

bar linkages. as glven ln Chapter 2 Although only the spherlcal case 15 studled here. flndmg 

its equivalence 10 the planar case IS straightforward. slnce we have a simllar forrn for the 

input-output functlon for planar linkages. Actually. thls has been stud,ed and will be mcluded 

in a forthcommg paper 
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Appendix A Mobility Analysis with linkage Parameters 

Appendix A. Mobility Analysis with Linkage Parameters 

Same as denoted ln Sect/on 2.1.2, we assume 8 = (k1 + k2 + k3 + k4 ),/2 ln the 

followmg procedure The mequahties representmg the mobllity reg/on for the input link are 

flrst handled 

For eqs (2.120) and (2.12b), we have the followlng' 

from which we obtain 

(n) If k3 - k4 S O. then 

which yield 

k1 + k] k3 - k4 

k2 + kt :.' k4 - k3 

k2 + kt ~> k4 - k3 

k2 + kt <_ k3 - k4 

Both (i) and (11) hold If 

From eqs.(2 12(' & b). we have' 

(i) If k3 + k4 2 O. then 

k2 - k1 :; k3 + k4 

k2 - kt > - k3 - k4 
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Appendix A Mobility Analysis wlth linkage Parameters 

which leads to 

or simply 

(iz) If k3 + k4 ': O. then 

k2 "1 '.- -- k3 - /..:4 

k2 k1 2' k3 + k4 

from whlch we obtain 

or 

Now. the mequahties representing the mobillty range of the output link are 

analyzed 

From eqs (2.160 & b). we have 

(z) If k2 + k3 ~ O. then 

which yield 

or 

k1 - k4 ~ k2 + k3 

k1 - k4 ~ -k2 - k3 
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Appendix A Mobility Analysis with linkage Parameters 

(ii) If k 2 + k3 ::; O. the" 

from whlch we obtain 

or 

kt - k4 s: -k2 - k3 

k1 - k4 ~. k2 + k3 

From eqs (216(' & b). we have 

which yield 

(11) If k 2 - k3 :::: O. then 

which ylelds 

k1 + k4 =- k2 - k3 

k 1 + k4 ~ -k3 + k2 

k1 + k4 -:; k3 - A'2 

k1 + k4 :' k2 - k3 

If we combine the results of U) and (li). the following is obtained: 
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Appendix B Computation of the Rotation Matrices QI and Q2 

Appendix B. Computation of the Rotation Matrices QI and Q2 

8ased on eqs. (34) and (3.5) and the geometric relationships of Figs. 2.1 and 

3.1. we have 

Q1 = Il. m. nJ 

where 

1= a. 
1 

m = --(d -- aq). 
81 

n=I-·m 

and 

Q2 = lu. v, w] 

with 

1 [ ct c4 - sI s4 cos <1> -- c2 C3 ] 

v =;- 84 cl cos <i> + q 81 - S2 C3 cos 1/-' , 
3 84 Sin ÇJ - S2e3 Sin '1/-' 

w = u x V 
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Appendix C Oetailed Computation of the Jacobian Matrix F (x) 

Appendix C. Oetailed Computation of the Jacobian Matrix F(x) 

ln the followrng discussion. the components of vector a ln the ftrst coordmate 

frame are denoted T;1. YA' .: A. wlth simllar defmitlons for the components of vector b. c 

and d Throughout. we will use the notation Introduced ln Chapter 4 

C.I Partial Derivatives Pertaining to Q1 

From the expression of QI ln Appendlx A. we have 

?~! = 1 iJ~ . dm d."] 
dx 

. 
ax dx dx 

Hence. we obtain 

BQ. _ ! [ri -Cl 

-~D ] . BQ1 1 
[ s~ 

0 ZD ] 0 -ct ·-~D aXA - S1 0 0 YD 
BYA "1 0 

BQ. = ! [~ 0 -YD] 0 TD 
aZA SI -q 0 '~1 

aQI DQI aQI BQI aQI aQI 
= 03 • 3 = = 

aTR aYil o':Jj i7T(' Jy(' az(. 

1 [~ ~ z~], 
'~1 0 0 . YA 

where 03 ), 3 is the 3 . 3 zero matrlx. 

As far as S1 and Cl' for l = 1,2,3,4. is concerned. Q1 depends only on '~1 and 
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Appendix C. Oetailed Computation of the Jacobian Matrix F(x) 

c Cl. Hence. we have 

~=[~, am an] 
aSl aSl aS1 

, 
aS1 

aQl=[~ am an J 
dq Bq' aq aq 

where 

-~ =0. 
a.sl 

am cl 
- = --(d - aq) 
aS l s~ 

an am 
---- = ",,-
aS1 aS1 

am 1 
-=--8 
aq s1 

and 0 is the 3-dimensional zero vcctor 

C.2 Partial Derivatives Pertaining lo Malrix Q2 

From the expression of Q2 in Appendix B. we have. for i = 1, 2, 3, 4. 

BQ2 = [au. av aw] 
as! as! as! 

, 
as, 

BQ2 = [au, av aw] - , 
BCI dC I aCt ac~ 

C 
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Appendix C Detailed Computation of the Jacobian Matrix F(x) 

where 

C3 
- 52 

3 [

ct q - 81 8 4 cos <P - C2 c3 ] 
84 c l cos cP + c4 5 1 - s2 c 3 cos 'li'] , 

54 sm cp - s2c3 sm t}J 

[ co~ .;;] 
smw 

ôw au av 
-=-xv+ux--, aSl a8t abl 

for l = 1, 2, 3, 4. 

Furthermore. 

au m aC2 

av 1 [T] aC2 83 

av 1 [CI] 
Bq = ~ ri 

for i = 1, 2, 3, 4 

where 0 IS the 3-dimensional zero vector. 

C.2.2 Computation of aQ2 / atjJ 

We have 

ôQ2 = [au av aw 
ôt/J at/J' at/) , av' ] 
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Appendix C Oetailed Computation of the Jacobian Matrix F(x) 

where 

au [b2 ~in ~ ] , [ 0 ] 
av 1 . 

â~' 
-, - = - 82C3 Sin t/J 
av' 83 

82 cos 'l/' -s2C3 COS~) 

dw du dV ) v+ ':J • ---

d'l;' 0'1.1• à'!J' 

C.2.3 Computation of aQ2 ,C<1J 

We have 

where 

aQ au av aw 
a~ = [ad>' ad>' ai] 

au _ 0 
aô - . 

ow av 
-- = u /-
00 ad; 

and 0 is the 3-dlmensional zero vectot. 

C.3 Partial Derivatives of (ph 

Form the geometnc relationship of Fig. 2.1. we have 

Iph = [S;~6l 
s5 86 

Hence. 

a[ph = [~] , 8[ph _ [;] aC5 BCG 

à[ph [::] . 8[ph [!] = 
aS5 88G 
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Appendix C Oetailed Computation of the Jacobian Matrix F (x) 

C.4 Computation of 8 t and c~ and their derivatives for i = 1,2 .... ,7 

From the geometry of Fig. 21. we have the followlng relatlonships' 

('1 = a . d, '''1 = lia, d 

C2 = a· b. '~2 = lia· b 

C3 = b . c.. '''3 = lib . cl 

C4 = c· d, '~4 = Ile ' dl 

C5 = b· Po, 85 = lib> Po 1 

Cl = Po . c, 

b > c b >' Po 
C6 = ---. --------

lib> cil I,b y Poil 

c ;.; PO' b 
86 = -, ---1----- -

1 b ' cil· Il b ' Po 1 

Here. the position vector of the coupler pOint in ItS mitial configuration, Po. is included 

and ail sines have been assumed positive. glven that the assoclated angles are supposed 

to lie between 0 and 7r. The numerator of the expression of '~6 IS positive slnce the mlxed 

product there is ln counter-clockwise order. Moreover, for l, = 1, 2, 3, 4, 5. 7. we can 

dlreetly use the followlng relations 
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Hence. the followmg is obtained: 

de5 [01' l' 01', OT]T, 
d~ = , Po' 

C2 1bT, aT • Or, 01']1' 
'''2 

dS 3 __ C3 (01' l' bT 0]1' 
dx - '''3 . c. . 

d84 q l' l' l' TT -- - = -- [ ° . 0 , d , C 1 
dx 64 

d.sS Cs l' T T l' --- = - --10. PO' ° , 0 ] 
dx ,"s 

where ° stands for the 3-dlmenslOnal zero vector For c6 and 86. we have the following' 

where 

d ( b . Po ) 1 [ b . Po ] -- -- ---- = 1 >, Po + (b )< Po) 0 b 
db lib ' Po; Ilb)< Pol! lib x pol12 

d ( b J, C ) 1 [ b . C J - --- - 1,x b --- b) C C 
de lib, e' - lib x cil + [lb ), C 12 ( , ) 0 
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Appendix C Oetailed Computation of the Jacobian Matrix F(x) 

and 

dS6 1 r ~(c x PO' b) __ c~J~g_'_ b d (lb· e :b > po!!)] 
dx il b xci' Il b x Po Il L dx' Il b " e! i l' b . Po dx 

with 

d ( b) lOT ( )T (PO' b)T. 01']1' -- c . PO . = . e· Po • 
dx 

d 7' Id T TT d~ ( b ,c b, PO!:) = [0 T. (;~ ( 1 b . e b, po')) . \ de (! b . c i b . Po )) . 0 ] 

and 0 IS the 3-dlmenslOnal zero vector 

C.5 Partial Derivatives of the Input-Output Function Ih·. c/>. ,{cJ1, {s/}1) 

From eqs (21) and (2 2a-d). we obtam 

of 
. -- = - k2 Sin 'l.' -- k3 sm l." cos <1>-1- cos 1,' sm <p 
a1j' 

of -- = - k3 cos ".. sin (Ji + k4 Sin Cl + sm V' cos (Ji 
8q> 

for l = 1. 2. 3, 4. where 

ct C2C~ + qq 
8~S~ -- -
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Appendix C Oetailed Computation of the Jacobian Matrix F (x) 

ôk] = c4 i!~ = ~~1 = 0 
a'''1 "'4 a82 a.., 3 • 

~~) = ?!-'3 = d~'3 = ?~) = 0 
d"1 d.,] d,,, 3 d64 

dk4 dk4 
2 

-
('2 "1 ('2 

- = 
(hl '''2 d82 2 

''''2 

dk1 ('2Q àk1 qq 
= 

dCJ • ... ]· .. 4 dt') ''']'''4 

dk2 ak2 - dk] = O. 
Dk] 

= - = 
ôq de2 dq ôc'4 

iJk3 =1, 
ôk3 dk3 

del 

ak4 = 0, 
aq 

a('] 
-

0('3 

Ôk4 iJk4 =u 
d"3 iJs4 

dk1 1 ôk1 
dq $2 8 4 ôq 

bl 

"'4 

ôk3 
=0 -

dC4 

C.6 Partial Derivatives of the Function 11(11), cp, {c1 }1.{8 l }1, x) of the 

Configuration Normality Condition 

From eq.(4.8). we can wnte the followmg. 

qc] 

'''2 8 4 
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Appendix C Detailed Computation of the Jacobian Matrix F (x) 

for 1 = 1. 2" , 6 

The mlxed derrvatlves of Q2 in the above equations are computed in the followrng 

sections 

C.7 Mixed Derivatives and Partial Derivatives of Q2 

C.7.1 Computation of dQ2/d'ljJ 

where 

From the expression of Q2 in Appendlx A. we have 

du 
d1jJ 

dQ2 [dU dv dW] 
dV) = dt,') , d~;" dt!· 

du dv 
>: V + u ,,: --

dt/, dt, 

where if/ denotes d<p / d~) and is computed ln section C 8. 
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C.7.2 Computation of a(dQ2/dt/J)/iN 

where 

We have 

ri (du) [ 
ch .. . dl. . -

i!_ ( ~'! ) . -~ (d~) J 
dt' \ dt" (h" \ dt, 

o ] 
'~2 cos V 

"2 sm 11' 

r 
"1-"4 Sin l1>(a<l//dtl·) ] 

cl"4 sm <1>(86', a~') + "'2CJ cos v' 
."4 cos 11>( ao' dl!') + 82CJ Sin V 

()o (dW ) d (dU) du 
d~' d~ = dt, dl.' ,v + d1.' 

~Jv + ?~ " dv + u;< a (dV) 
dt' iJ'iJ' dt,J a'l/-' dl!' 

where 80' ,al. 1 IS computed m the Section ca 

C.7.3 Computation of a(dQ2/du,)/ao 

where 

We have 

_~ (du) = 0 
do dt" 

d (~V) 
d<!> dÇJ 

1 
51b4[COSOd/ + Sin <;>(dd/,'dol] 

-ct $4 [cos qx!} + sm 6( ào' drP)] 

54 r -- sin <1>0' + cos 9( 0<;>',' ao)] 

a d d av d du 
d;;' Cl~) = d~' . a9 + U > if~ ( dlJ' ) 

and 0 IS the 3-dlmenslonal zero vector. The computation of a6' 'acp is given in the Section 

c.a 
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Appendix C Oetailed Computation of the Jacobian Matrix F(x) 

C.7.4 Computation ofa(dQ2/dt/J)/as~ and a(dQ2IdtJ;)/oc! 

We have 

for 1 = 1.2.3.4, where 

() (du) 
d81 dl}' 

[ 
si~ tI-,] 
cos 'II' 

j) (dv) iJ (dW)] 
dei d~' . 0('/ dl;' 

'''1'~4 sIn cp [q '''3 (âq/ l iJ83)] 

q'~4 5111 0[('3 - b3(OQ' la83)] + C2C3'~4 sm t' 

64 cos 6 h 83 (a4>' /Ob3)] - ,C,2C~ cos '!J' 

'''1 sm $[4>' + "'4 (iJç,' /(84)] 
a dv 1 - - ( --- ) = -

a"'4 dt!, ~ 3 
--Cl sin ci> [ç/ + "'4 (ad>' /084 )] + ('2 sin '1,' 

cos cP[1l + "'4(09' /a'''4)] 
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Appendlx C Detailed Computation of the Jacobian Matrix F(x) 

[ 

sls4SincJ>(ad/jdctl ] 

=}3 -,s4 sm cp [ <!J' + q (r1</J' / oq ) ] 
84 cos O(do' , oq) 

rI~ 2 (:;.) = .I; [ 

ii~3 (::.l =,~ [ 

Sl,s4SIIlO(do"ÙC2) 1 
ct 54 Sin o( ad 1 d( 2) 
,<" 4 COS 0 ( d d 1 (h 2 ) 

"'1'~4 sm 6(dd t'o(3) ] 
ct '~4 sm o( da>', dq) + .'>2 Sin <P 

'''4 COS Q(do' d('3) 82 cOS 'V 

d d 1 [81S4SIIl9(OOl/()q)] 
, - ( V) = _ ct '~4 sIn <1>(()(/J' dq) 
oC4 d~, '~3 ..1.( -, 1 ri )) "'4 COS <;J uO, C'4 

and the computatIon of iJ<1>','a8/ and aa>' iac t • for 1 = 1,2,3,4.15 given in the Section c.s. 

C.8 Mixed Derivatives and Partial Derivatives of the Output Angle <P 

Resorting to the input-output functlon of eqs. (2 1) and (2.2a-d). the following 

relatIons are obtarned: 

a ch' 
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.. .. for i = 1,2.3,4 .. where 

for l =1.2.3.4 

Appendix C Detailed Computation of the Jacobian Matrix f(x) 

Ct = k2 sin '1j', + k3 sin 1/-' cos dl - cos t' Sin cP 

C3 = k3 sin li, sm 9 + cos '1,) cos (; 

()4 = k2 cos 1.' + k3 cos L' COS(j) + sm t'Sin 0 

('5 = "'3 cOS~' cos c1J k4 cos 0 + SIn~' sin (!> 

C6 = k3 Sin 1;' sin Q + cos v' cos Ci> 
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Appendix 0 Jacobian Matrix G(X) of the Constraint Function 

c 
Appendix D. Jacobian Matrix G(x) of the Constraint Function 

From eq (4 14). we can readily obtain the followmgo 

T l' 

[

a 0 
DT l' 

G(x) = 2 DT ~T 
DT DT 

where 0 15 the 3-dlmenslonal zero vector. 
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Appendix E A Bnef Description of the SPHERI Package 

Appendix E. A Brief Description of the SPHERl Package 

SPHERI IS a Fortran 77 code for implementmg the optlmlzatlon scheme pre­

sented ln the thesls It was used for solvmg several design problems. as show" ln Chapter 

6. The program IIstmg IS omltted from the thesis slllce It contalns more than 5000 Imes 

and it IS avallable ln the McRCI M network Glven 111 thls appendlx 15 a brlef deSCription of 

SPH ER1. whlch serves to outline the package and provlde the reader wlth baSIC knowledge 

for ItS use Attention will focus on the mam program and those subroutmes whlch the user 

will deal wlth dlrectly III solvmg a partlcular problem 

5 PHERl can be dlvlded II1to three parts (1) Orthogonal- DecompositIOn Algo­

rithm. (11) Functlon and Jacoblan Matnx Evaluation. and (111) Ccntmuatlon Each part 

performs sorne special tasks The main program resldes III the flrst part. whlch IS the 

beginnmg of the optlmlzatlon procedure An outhne of the mall1 program. along wlth sorne 

Important su brout Ines m each part. are glven below 

1. Orthogonal-Decomposition Algorithm (ODA) 

This part of the package IS for Implementmg the OOA ln our synthesis prob­

lem. which mvolves an Iteration scheme for computmg the correction 6x III the outer 

optlmlzatlon layer A dampmg loop 15 Included ln each Iteration to perform necessary re­

ductlon on the computed ~tep Sile l:l.x The mam program for the optmllzatlon scherne 

resldes m thls part ln order to start the optlmizatlOn procedure. the followmg data should 

be input and stored ln the proper array. as Indicated ln the instructions ln the program 

comments 

• An initial guess of the deSign vector x. 

• The given set {Q k Hr. with Qo specified as the glven point. 

• The number of points in the glven set. m: 
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Appendix E A Brief Description of the SPHERl Package 

• Some tolerances. including the one imposed on the first-order normahty con­

dition (Angeles. Anderson and Gosselin. 1987). and the one imposed on the 

constralnt functton; 

• Bounds on the number of IteratIons 1) the maximum number of Iteration allowed 

ln the outer optlnllzatlon layer. H) the maximum number of Iterations allowed 

withm each damptng loop. 

• Weightmg matnx W. 

• Damptng coefficient. d. 

and then. the followmg subroutlnes have to be called: 

DECOMP performs the Cholesky decomposltion (Dahlquist and Bjorck. 1974) of W to 

obtatn V matnx for later use (W = VTV). 

NGCLS4 Implements the ODA. 

Addltlonally. the routme for the conttnuation scheme can be called in the main 

program for performtng the overall optlmizatlon scheme in one single run 

2. Function and Jacobian Matrix Evaluation 

ThIs part of the package serves to compute both the objectIve function. f(x). and 

the constramt functlon. g(x). as weil as thelr Jacobian matrices. F(x) and G(x). respec­

tlvely. ta be used by the ODA Three subrouttnes are written for thls purpose. whlch are 

called by subrouttne NGCLS4 Il' the flrst part of the package They are' 

FUNFDFDX evaluates both the objectIve functlon. f(x). and its Jacobian matrix. F(x). 

FUNG evaluates the constramt functlOn. g(x): 

DGDX . evaluates the Jacobian matrix of the constraint function. G(x). 
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There are various subroutines in FUNFDFDX. Those. under the main subroutme 

JACBSUB. implement the detailed computations given ln Appendices C and D. under the 

main subroutine EVLPSI are the subroutines which solve the equallons of the configuration 

normahty condItion for the set {'l/.Jk}t. 

3. Continuation 

The continuation scheme mtroduced ln Chapter 5 is implemented ln this part 

of the package. It can be used ln two ways elther as a separate program to provlde data 

for the main program. or as a subroutlne to run together wlth the main program. In both 

ways. the following data should be Input 

• number of desircd continuation steps. 1: 

• initial guess of the linkage together with the couplt::r point: 

• The given set {Qk }Ol 

and they should be stored ln the proper array. as indlcated m the comments of the program. 

The output conslsts of the sets of dividing pOints corresponding to dlfferent continuatIOn 

steps. The detailed computations are implemented ln the subroutlne EQLDVD 

AddltlOnally. a group of routines. onginally from the computer package KINVERS 

(Anderson. 1987). are also avatlable for evaluating the conditIon number of the Jacobian 

matrices via Householder Reflectlons T:,~ main subroutme for thls purpose is HHCOND 

and IS ca lied ln NGCLS4 in the first part of the package. 
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